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Preface

Quantum field theory is a very broad, mathematical framework within
which one can successfully describe an incredibly large, rich and diverse
plethora of physical systems. There are many examples of such systems
ranging from the “microscopic” (e.g. descriptions of elementary particle
physics) to the “macroscopic” (e.g. low temperature superconductors). In
fact, one of the most celebrated examples of a quantum field theory — the
Standard Model of Particle Physics — is the most accurate scientific model
ever constructed, successfully confronting experimental observations at the
level of one part in 100 billion in some cases.

Like quantum field theory, string/M theory is also an extremely broad,
mathematical framework which addresses an incredibly rich and diverse
plethora of physical systems. However, string/M theory has a distinctive
advantage over quantum field theory: string theory consistently unifies el-
ementary particle forces with gravity. For instance, in some solutions of
string theory, gravitons and photons are simply different massless states
of one and the same quantum string. Quantum field theory, in this sense,
seems incomplete; gravity cannot be incorporated into the framework in
any obvious way.

String Phenomenology is usually the name given to the branch of
string/M theory devoted to addressing questions in elementary particle
physics, physics beyond the Standard Model, dark matter and cosmology
and was really born in the mid-eighties shortly after Green and Schwarz dis-
covered “anomaly cancellation” and the existence of unified gauge groups
like Eg X Eg.

Why String Phenomenology? The Standard Model of Particle Physics
is based upon relativistic wave equations: Maxwell’s equations, the Dirac
equation, the Yang-Mills equations and, now that the Higgs boson has been
discovered, the Klein-Gordon equation. A mathematical fact is that all of
these equations emerge from string theory in the simple, low energy limit.

vii
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A bonus is that one also gets Einstein’s equations in the same limit! But,
you might say, these are very general statements, what about details? Well,
one of the most highly cited papers on String Phenomenology was written
in the mid-eighties by Candelas, Horowitz, Strominger and Witten. This
paper clearly demonstrates that solutions of the low energy limit of the
heterotic string theory with three large dimensions of space give rise to a
model with non-Abelian gauge symmetry and chiral families of interacting
charged fermions. Subsequent work showed that the masses of these fermion
families are generically hierarchical. Therefore, the key properties of the
Standard Model of Particle Physics clearly emerge from string/M theory
in a straightforward fashion.

But, what about the fine details like the electron mass and the W-boson
mass? The quick answer to that is that they are a calculation in progress
and, in fact, the articles in this volume describe some of the tremendous
progress which has been made towards questions like this. In principle,
these quantities are calculable in any given solution of string theory, but in
practice such calculations are extremely difficult at a precision level and,
moreover, such calculations do not seem to provide any conceptual or scien-
tific insights. However, in most other frameworks including quantum field
theory, these quantities are not even calculable in principle.

In any case, the framework called string/M theory contains solutions
which very plausibly include the Standard Model of particle physics, address
physics beyond the Standard Model and address important physics topics
like dark matter and dark energy.

This volume contains Perspectives on String Phenomenology by a num-
ber of experts in the field but also includes the viewpoint of physicists not
normally labelled under that banner. The volume is designed not only to
provide a snapshot of the state of the art today; it includes both general,
introductory level articles as well as technical material and both reviews as
well as articles at the frontier of string phenomenology research. Malcolm
Perry has provided an introduction to “the electron” from the string theory
perspective and Joe Conlon a basic review of the physics of “moduli fields”,
which are the low energy remnants of extra dimensions. Mary K. Gaillard
has written an introduction to the early heterotic string phenomenology
alluded to earlier, whilst Hans Peter Nilles and Patrick Vaudrevange de-
scribe the state of the art in that area in a later article. General, per-
sonal perspectives on the whole subject are provided separately by Keith
Dienes, Mike Douglas and Bert Schellekens. Fernando Quevedo reviews
some of the tremendous progress in Type IIB string theory solutions in
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recent years, whilst Saukura Schafer-Nameki does the same for aspects of
F-theory. Piyush Kumar and Gordy Kane have both provided perspectives
on both M theory phenomenology and more general aspects of string/M
theory phenomenology. A review of the cosmological constant problem and
dark energy from the string theory perspective is provided by Brian Greene
and Gary Shiu, whereas Alexander Westphal has written a perspective on
inflationary cosmology. Finally, Tom Banks, who has argued against the
effective field theory approach to the low energy limit of string theory that
has been adopted by many of our contributors, describes an alternative
approach, dubbed cosmological supersymmetry breaking, which leads to a
set of particle physics predictions.

Bobby Samir Acharya
Gordon Kane

Piyush Kumar
September 2014
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What is an Electron?

Malcolm J. Perry

DAMTP, Centre for Mathematical Sciences, Wilberforce Road,
Cambridge, CB3 0WA, England

Can we try to say what an electron (or a quark, gluon or photon) is, as
opposed to just describing its properties. String theory can address that
question.

We all know how to describe an electron and its behavior. Since the discov-
ery of the Dirac equation, we have had a satisfactory theory of electrons.
Quantum electrodynamics was developed so that the electron interacting
with photons could be described and this led to a theory that has been
verified to an accuracy of around one part in 10°. Let’s examine the g-
factor for the magnetic dipole moment of the electron. The Dirac equation
predicts that ¢ = 2, but once virtual photons are taken into account in
quantum electrodynmics, we find that g —2 = 115965218 17.8 x 1013 the-
oretically, compared to 115965218 07.3 x 10~!3 experimentally. This makes
quantum electrodynamics extraordinarily accurate. In quantum electrody-
namics, the electron is just a quantized fluctuation in the electron field.
This explains why all electrons are identical. Why should one look further
than this picture. The answer is because there is more to the world than
electrodynamics. There are the other interactions, the strong and weak
nuclear forces and gravitation. It is possible to include the strong and
weak interactions into a straightforward generalization of quantum electro-
dynamics. Gravity however cannot be treated in the same way. For this
reason, we move on to string theory.

What is string theory and why should one study it? These questions are
those that one is always asked by those outside the string theory community.
It does not matter who is doing the asking; it could be a condensed matter
theorist or an immigration inspector or someone you meet at a cocktail
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party. In each case, the question is always the same. What follows is
an attempt to provide some answers on the route to explaining what an
electron is in string theory. For us, normally an electron is a spin-half
particle with almost no mass and an electric charge that couples to the
electromagnetic field that describes photons. But what is it really?

The Standard Model (SM) of particle physics is perhaps the most suc-
cessful theory ever invented. It provides us with explanations of most of
the phenomena in nature. It is a construction that assumes that point par-
ticles are properly described by a normalization relativistic quantum field
theory. Contained in it are the basic interactions of nature. It contains
three generations of leptons and colored quarks together with gauge bosons
that carry the fundamental forces of nature, massless colored gluons that
mediate the strong force, the massless photons that are responsible for the
electromagnetic interaction and the massive W+ and Z bosons that medi-
ate the weak interaction. Color is rather like electric charge but is carried
only by the quarks and gluons. In addition, there are Higgs scalars which
act to provide the mass to those particles that are massive. The whole
theory is based on the gauge group SU(3) ® SU(2) @ U(1). Each of the
strong, electromagnetic and weak interactions are associated to a coupling
strength.

What the Standard Model does not provide is any insight into dark
matter or dark energy which make up around 27% and 68% of the Uni-
verse respectively. Also, what goes into the Standard Model does seem
rather arbitrary. For example, there is no obvious reason why the gauge
group should be what it is, and no obvious reason why there should be
three generations. There is however a hint, from a knowledge of the mag-
nitudes of the three coupling strengths, that there should be some deeper
picture underlying the standard model. Couplings depend on energy in a
way specified by the renormalization group equations. If one extrapolates
the three couplings to an energy scale of around 10'® GeV, they become
numerically similar. If one makes a modest extension of the standard model
to include supersymmetry, then this numerical coincidence becomes even
stronger. We take this to mean that there is some kind of unification of
these three interactions at that scale.

Missing from the Standard Model, and indeed from any conceivable ex-
tension of it is any description of the interaction that controls the behavior
of the entire Universe; gravitation.

It is often said that the gravitational force is a special case and unlike the
other forces. Whilst it is very familiar, at the level of individual subatomic
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particles it is vastly weaker than the other forces, by about a factor of
1039, This makes it difficult to study, and so the microscopic mechanism
behind gravitation is yet to be fully understood. The only reason we notice
gravitation is that unlike the other forces, it is purely attractive in nature.
The other forces can either be attractive or repulsive; that is to say they
have charges of both signs. In electromagnetism, like charges attract and
unlike charges repel. That picture holds for all interactions except gravity.
Gravity only has one sign of charge. So although it is weak on the atomic
scale, its effects build up and become easily observable for large objects.
It is for that reason that gravity is most easily observed on astronomical
distance scales. There is an excellent theory of gravitation that works at
the classical level and that is Einstein’s general theory of relativity.

Yet, the unification scale of 10'® GeV is so close to the scale of grav-
itation, the Planck scale of 10! GeV, that to ignore gravitation is surely
misconceived. At these energy scales, the strengths of the other couplings
become similar to that of gravitation. And since there can hardly be one set
of laws for gravitation and a different set for everything else we are driven
to try to find a picture in which all of the interactions can be accounted for
at once. Superstring theory is the only known picture that includes grav-
itation that does not suffer from some kind of fatal difficulty. Trying to
incorporate gravitation into a quantum field theory of particles, a method
that has been astonishingly successful for the other forces, encounters nu-
merous problems.

To do so, one postulates the existence of a graviton that transmits the
gravitational force in a way that is similar to how a photon transmits the
electromagnetic force. A graviton viewed as an elementary particle must be
massless and have a spin of two in contrast to the photon which is massless
and has a spin of one. It is the fact that the gravity is universally attractive
that requires the graviton to have a spin of two. Perhaps the most serious
difficulty that nobody has ever found a way around is the ultra-violet diver-
gence problem. In relativistic quantum field theory, one always encounters
infinite quantities. One can think of this as being associated with the fact
that the self-energy of a point particle is infinite. In theories without grav-
itation, it is possible to control these infinities through a process known
as renormalization. If one tries to construct a quantum theory of gravity
by following the same route, it is impossible to get rid of these infinities
without violating some essential physical principle. The principles that one
comes into conflict with are either causality, the idea that no information
can propagate faster than light or unitarity, the idea that the probability
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for any event lies in the range zero to one inclusively. These two principles
as so basic to our understanding of the universe that it impossible for us
to conceive of any theory that does not satisfy these conditions. Such a
theory is termed unrenormalizable and as a fundamental physical theory
makes no sense.

In fact, it is easy to see why gravity is different. The idea of a point
particle in gravitation does not really exist. To see why, consider a spherical
body like the earth. To escape from it, one needs to achieve a certain
velocity, the escape velocity. If a body of fixed mass gets smaller, its escape
velocity increases. If this velocity becomes equal to the speed of light, then
nothing can escape from the body. Such an object is a black hole. In
general relativity this is the closest one can get to a point particle. Black
holes have finite size. For example if the Sun were to be shrunk to form a
black hole,m then it would have a radius of around 3 km. One might think
that this would require a density that is impossible to obtain, but in fact for
the Sun the density would be equivalent to about that of the nucleus. As
one considers larger objects, then their density gets lower and if one thinks
about the density of black holes in the center of galaxies, their density is
about that of water.

The simplest string theory is the bosonic string. It is termed bosonic
because it results in objects in spacetime that are all bosons. The bosonic
string cannot describe fermions and therefore at best is a toy model for real-
istic physics. One replaces the “worldline” of a particle, a one-dimensional
timelike line in spacetime generated as the particle moves, with a two-
dimensional surface with one time direction and one spatial direction. The
spatial direction can be either a line segment - the open string - or a circle
- the closed string. Thus, a string is a surface in space time. An open
string is one that has spatial endpoints that sweep out lines in spacetime.
A closed string is a cylinder in spacetime. One can regard a string as being
a generalization of a particle.

In classical mechanics, to describe the behavior of a particle, one con-
structs an action and uses its Euler-Lagrange equations as the particle
equations of motion. The action is proportional to the proper length of
the worldine. Extremising the action with fixed initial and final positions
yields the particle equations of motion. Interactions between particles can
now happen but the interactions must be concentrated at points and in
practice are restricted by conservation laws that constrain how elementary
particles are observed to interact. At the classical level these interactions
must be introduced by hand. In quantum field theory, these interactions
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are introduced naturally as cubic or higher order terms involving the fields
corresponding to particular particles. Their diagrammatic treatment is as
if the particles had classical interactions involving three or higher point
vertices. The nature of these interactions is rather ad hoc and is governed
by what one has observed experimentally together with some consistency
requirements such as gauge invariance, hermiticity and renormalizability.

To describe the behavior of a string, a similar action can be constructed.
The action is proportional to the proper area of the string worldsheet. Un-
like point particle theory, all string interactions are contained in this action.
Whilst free strings are described by tubes or planar worldsheets, there is no
restriction on the topology of the worldsheet. The surface that describes
the string can have holes or junctions where string meet. The string action
can describe how strings interact without having to introduce any assump-
tions about how interactions take place. A string can in principle live in d
spacetime dimensions. A string is described by whether it is open or closed,
by its center of mass motion, and how it is vibrating. if one thinks about
a point on the surface of the string, it can move in two directions in the
plane of the string, or in d — 2 directions perpendicular to the surface of the
string. Motion in the direction of the string is just moving one point on the
worldsheet into another and does not correspond to any physical change
in the string, just how it is described. Since the surface of the string has
one timelike and one spacelike direction, the physical degrees of freedom all
correspond to spacelike displacements and so it is only these d — 2 direc-
tions that are physical string motions. These vibrations in d — 2 directions
transverse to the string should really be thought of as waves traveling along
the string rather in the same way that vibrations of a string in a musical in-
strument such as a guitar involve waves causing displacement of the string
perpendicular to the string itself.

Lets first consider the closed bosonic string. The spectrum of states of
the string consists of a collection of excitations that are classified by their
mass and other quantum numbers. States can either be massless or have
masses on the order of the string scale. Since the string scale is of the
order of the Planck scale, roughly 10'? GeV, the only excitations that are
directly observable are those that are massless. These massless states can be
described using the same language one uses for elementary particles. That
is really because on any distance scale we can measure directly, the strings
are invisibly small, of the order of the Planck length, roughly 10733 cm. One
finds that the spectrum of massless states contains three types of object:
something with the quantum numbers of a scalar particle, something that is
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a bit like a photon and an object with the quantum numbers expected for a
graviton, the object that transmits the gravitational force. These massless
excitations are universal features of all string theories. It is this graviton
like object that is most intriguing as it is something which comes out of the
theory automatically rather than something that has to be put in by hand.
It is a hint that string theory really does contain gravitation.

An open bosonic string is a little different. Here the waves can be
reflected at the endpoints of the string and set up standing waves. An open
string has massless excitations which look rather like a photon. A simple
modification of the open bosonic string is to place a label at each end of the
string which can take integer values from 1 to N. The result is that instead
of an abelian gauge theory like a photon, one finds excitations that behave
like Yang-Mills particles with gauge group U(N). U(N) is the unitary group
of rank N which can be thought of as the set of all NV by N unitary matrices.
It is rather like the SU(2) or SU(3) groups found in the Standard Model. In
a similar way, one can also realise gauge theories of the orthogonal groups
SO(N) and the symplectic groups USp(N). Thus strings are represented
in low-energy physics, the physics that we see, by fields in quantum field
theory and can carry quantum numbers such a spin and charge. One way to
think of Yang-Mills particles is that they are generalizations of the photon
in which the gauge transformations have become rather more complicated
and controlled by a components of a Lie algebra rather than just numbers
as would be the case for electromagnetism. Just as photons can couple to
objects with electric charge, Yang-Mills particles can couple to objects with
generalizations of electric charges.

One can then ask if the string theory is quantum mechanically con-
sistent. This is a rather non-trivial step which is forced on one because
string theory has a hidden classical symmetry, called conformal symmetry.
The conformal symmetry is essential for the string to work properly. Yet
quantum effects can cause conformal symmetry to be broken. This would
be an undesirable state of affairs. It turns out that the fields that yield
string theories with unbroken conformal symmetry are precisely those that
obey the classical Einstein euqations or Yang-Mills equations or for scalars
a version of the wave equation. This indicates a deep relationship between
the known laws of physics and string theory. In fact, one could say that
these laws of physics instead of being postulated, have in fact been derived
from just the symmetry of string theory.

There are some difficulties in promoting bosonic string theories into
fully sensible models of fundamental physics. The first is that quantum



What is an FElectron 7

effects result in the string making sense only if d = 26, which is rather a
long way from the d = 4 we observe. A second problem that they do not
contain any fermions. A final problem is that all bosonic string theories
contain a fatal flaw in the form of a tachyon. For the most part, we not
need to worry about massive string states simply because their mass is so
high that we cannot observe them. An exception to this is what happens
in bosonic string theory, and that is that its spectrum contains a tachyon,
that is a particle that has to move faster than light. Such objects as well
as being objectionable due to their conflict with causality, also tend to
indicate instabilities. Since their masses of the order of the Planck scale,
whatever instability they signal will governed by a timescale of order of the
Planck time of 10743 seconds, in gross conflict with the observed age of the
universe.

However, we have learnt some interesting facts. The first is that one
finds a quantum field theory of massless particles as a low energy version
of string theory. All other string excitations are not directly observable at
energies scales we can access. In amongst these string excitations, there is
the graviton and so we have the potential to describe gravity using string
theory. One might wonder if such a theory has the same kind of problems
with infinites as gravity on its own does. The answer is no. String theory
does not have the kind of divergences encountered in quantum field theory.
The reason is that when one tries to calculate the types of quantities that
diverge in quantum field theory, we find they do not diverge in string theory.
Mathematically, this comes about because of the effect of all the massive
excitations of the string is to kill off those divergences. We have made
progress.

But now we need to fix up the difficulties found in bosonic string theory.
The remedy is supersymmetry and the result of incorporating supersym-
metry this way yields the superstring. The basic idea of supersymmetry is
to introduce a symmetry that exchanges bosons with fermions. For every
boson, there will be a fermion. The supersymmetry we are interested in is
going to be a new kind of structure on the string worldsheet. The physical
degrees of freedom of the string are the spacetime coordinates transverse
to the worldsheet. These degrees of freedom behave like bosons living on
the string worldsheet. Now, we introduce partners to some or all of these
degrees of freedom. These are fermionic variables that pair up with bosonic
variables. Remarkably, it turns out there are five different ways of doing
this in a way consistent with quantum mechanics.

In each case, the first thing we discover is that instead of being consistent
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in only 26 spacetime dimensions, the superstring is only consistent in 10
spacetime dimensions. The second thing we discover is that there are no
tachyons in the spectrum of the superstring. Lastly, although there are
massive string states as before, there are still massless string states but
now as well as representing bosons, there are fermions too. For historical
reasons, these massless string states all contain gravity as well as a collection
of other fields. The five different string theories are usually referred to as
Type IIA string theory, type IIB string theory, SO(32) string theory and
two heterotic string theories, SO(32) and Es ® Eg. The contain different
spectra of massless particles. In each case, the fields are the same as those
found in various ten-dimensional supergravity theories. Supergravity is
an extension of general relativity that is supersymmetric. The two type II
string theories are related to N = 2 pure supergravity and the other theories
are related to N = 1 supergravity theories coupled to supersymmetric Yang-
Mills theories with either the SO(32) or Es® Eg gauge groups. Any of these
theories has the potential to turn into realistic models of physics.

There are connections which enable one to translate any problem in any
one of the string theories into any of the other string theories. These are
known as duality symmetries. The complete picture of the five string the-
ories and the eleven dimensional theory in which the connections between
all of them are realized is known as M theory. Whilst quite a lot is known
about M theory, it is still a work in progress.

M theory is our candidate theory of everything. It does however seem a
long way from something we recognize. What would we want from a theory
that describes all the phenomena we observe? Firstly, it must be a theory
with four space time dimensions not ten or eleven. Secondly at low energies,
it must contain the Standard Model as well as gravitation. One thing we
can be pretty certain of, and that is at around the GUT scale of roughly
10'6 GeV, our theory must be described by a four-dimensional theory that
has supersymmetry. So assuming we start in eleven spacetime dimensions,
we need to be able to get rid of seven of them. Suppose you look at a tree
trunk from close up. What you see is the trunk with all kinds of wrinkles
and defects in its bark. As you go further away, the trunk appears to get
smaller and smaller until when you are very far away, you can barely see a
structureless vertical line. At even greater distances, you see nothing. The
lesson is that if you are very far away from something you font really notice
it.

It is by this kind of method that we get rid of seven space time di-
mensions. We assume that they are so small, that on the scale on which
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we exist, they just don’t get noticed. We imagine that these directions of
space are on the unification scale or smaller. In a sense, this is derivable
in both string and M-theory. The wrinkles on space in these directions do
have a physical consequence however. The precise shape and size of these
extra dimensions is reflected in low energy physics by the existence of light
scalars or some new fields called moduli fields and axions that describe re-
lations among the small dimensions. These wrapped up spatial directions
need not be smooth. They can have spikes and these spikes turn out to be
interesting. If the space is spiky it results in Yang-Mills fields appearing
in our part of space together with their fermionic superpartners. the na-
ture of the spikiness determines what kind of gauge group these Yang-Mills
fields have. It could be that the gauge group is SU(5), the gauge group
expected in Grand Unified Theories. In this case the fermionic partners
can be multiplets of quarks and leptons. By adjusting the spikiness, one
can instead generate the low-energy gauge group of the Standard Model,
namely SU(3)® SU(2)®@U(1). Thee fields will then be exactly those found
in the Standard Model namely, colored quarks associated with the SU(3),
the W* and Z associated with the SU(2) and a photon. The fermionic
superpartners are then the quarks, the electron and the neutrinos. In this
case, an electron is the result of spikiness in the hidden extra dimensions.
One might wonder if there is somekind of limit in complexity of the gauge
group. The most complicated form of spikiness results in the gauge group
FEs. In a way this observation contains a miracle in that from a theory
involving a single Eg type of spike, one finds a theory with three and only
three generations of quarks and leptons, exactly as appears to be the case.

There is however another picture that seems just as plausible, In the
heterotic string, one finds exactly the same Yang-Mills fields and super-
partners as a result of just oscillations of the string. So for heterotic string,
the electron come about as oscillations of the string and not as a result of
any particular kind of properties of space.

How is it possible that there are two different descriptions of the same
thing in string theory? The answer is that there is a curious collection of
symmetries which relate one picture in string or M theory to another. There
is a translation between phenomena in the heterotic string and phenomena
in M theory. It just so happens that what is described by spikiness of
hidden parts of space in the M theory picture is just string excitation in
the the heterotic string. It does not make sense to ask which one is right.
They are both legitimate explanations of what is happening in nature. In
this sense, the phenomenon is exactly like wave-particle duality in quantum
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mechanics. whether you decide to think of an electron or a wave is up to
you. Its behavior is accurately described by the quantum mechanical theory
however you care to describe it. M theory has its now dualities which allow
one to describe the electron as one thing in the eleven dimensional picture
and a different thing in the heterotic picture. However, if you ask questions
about physics you can measure, you will get the same answers in either
description.

What we have described here is a how one should think of an electron,
or indeed any other elementary particle in string theory. In quantum field
theory, these are all quantized field excitations. However in string theory,
everything is much more geometrical. There appear to many equivalent
ways of looking at the same particle indicating a huge hidden symmetry in
string theory that has yet to be completely explored. This is a huge chal-
lenge as the mathematics of string theory is hard. Nonetheless, humanity
has in the past risen to such challenges and reached our current under-
standing of the nature of the Universe. Even 50 years ago, it would have
been impossible to predict how much progress has been made. We can only
hope that our civilization can continue to encourage and support progress
in this field whose aim to understand what we are ultimately made of.

I would like to thank the Michigan Center for Theoretical Physics for
its hospitality whilst this written and Gordy Kane for many stimulating
conversations.
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I discuss moduli: what they are, and what they are not, where they come
from and where they are useful, where they are physically irrelevant and
where they are crucial.

1. What are Moduli?

The existence of moduli is one of the most generic, and therefore one of the
most interesting, predictions of string compactifications.

The effective field theories of string compactifications can differ in many
different ways. Different vacua of string theory can involve very different
gauge groups and representation content for matter particles. For example,
the exceptional groups appear in compactifications of the heterotic string
or F-theory, but not in weakly coupled compactifications of branes in type
ITA or type IIB theory. This landscape of possibilities creates an apparent
problem for making connections to observational physics.

However one feature common to many different string compactifications
is the generic existence of moduli. Furthermore, the types of moduli and
the interactions present often take a very similar form between different
string theories, and are largely independent of the detailed form of the gauge
group. This makes the study of moduli one of the most important aspects of
string phenomenology, as this sector is the most model-independent aspect
of string compactifications.

What are moduli? The quickest definition is as light scalar particles with
no gauge interactions and only gravitational-strength interactions. Let us
give some examples of moduli. Possibly the most universal modulus is the
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dilaton modulus, which also exhibits many features that are often present
in the effective action.

The dilaton modulus (conventionally denoted as ) is the modulus
whose vev determines the value of the string coupling. As the string cou-
pling is present in all string theories, the dilaton modulus is a universal
feature of string compactifications. The real part of the vev gives the string
coupling, possibly with a volume factor, while the imaginary part is axionic.
In heterotic string theory,

S = =2V + jaq. (1)

Here e=? = g;! and V is the compact six-dimensional volume written in
units of the string length. In type IIB string theory

S =e % +iag, (2)

! sets the string coupling. In both cases ag is an

where again e ¢ = g7
axionic field.

The presence of the axionic part ag implies the presence of a axionic
shift symmetry for the vev of S, S — S+ ie. This shift symmetry is a good
symmetry of string perturbation theory in both the o/ and gy expansion.
It is violated by effects non-perturbative in g, (for example D-instantons
in type IIB string theory). The fact that the symmetry is however a good
symmetry of perturbative string theory implies one important feature: the
perturbative action cannot depend on Im(S), and is a function only of S+5S.

The latter is a surprisingly powerful constraint. As S + S is non-
holomorphic, it cannot appear in the superpotential. The immediate con-
sequence is then that the perturbative superpotential is independent of S:
W (S) only features non-perturbative contributions. Such contributions do
indeed arise — for example from gaugino condensation. The shift sym-
metry S — S + ie also restricts the form of the Kéhler potential to be
K = K(S+S5) — again, up to corrections that are non-perturbative in e=%.

Another example of a ‘universal’ modulus is the volume modulus, de-
noted by 7. This mode corresponds to a homogeneous rescaling of the
metric of the extra dimensions, g;; — R2gi3. This modulus is called ‘uni-
versal’ as it is present whenever the extra dimensions are fundamentally
geometric. This is not always true, but is certainly true in many cases. If
so, the existence of the volume modulus is also independent of the detailed
properties of the compactification manifold or the branes and fluxes that
are used to define it. The volume modulus also has similar properties to
the dilaton in terms of axionic symmetries and its imaginary component is
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axionic, thus generating a shift symmetry 7" — T + ie that remains good
within perturbation theory.

Let us describe the microscopic origin of these shift symmetries. In het-
erotic string theory, the imaginary component of T" arises from the world-
sheet 2-form, b = f22 Bs. This vanishes for all worldsheets that are topolog-
ically trivial, and so can only be non-zero for worldsheets that wrap cycles
in the extra dimensions. Such worldsheets are known as worldsheet instan-
tons. They are perturbative in gs: they have the topology of the sphere.
However they are non-perturbative in o/, and generate terms that are sup-
pressed by e~ 2T, Tt therefore follows that the action can only depend on
b via effects that are non-perturbative in o'.

In type IIB compactifications with D3/D7 planes and O-planes, the
Kaéhler moduli are the gauge kinetic functions for D7 branes wrapped on
4-cycles. In this case their real parts are

T, = e ? \/_Z] + 1 Cy. (3)
I Y44

The volume modulus corresponds to the linear combination in the direction
of overall rescaling, g;;; — /\Qgij. In general there are many Kéhler mod-
uli — Ab', where 1! is the appropriate Hodge number for the Calabi-Yau.
hY1 s typically O(100), which is illustrative of the fact that many moduli
can survive to the low energy effective theory. Each cycle has an associ-
ated axion, coming from reduction of an axionic form on that cycle. In IIB
theory, this arises from reduction of Cy4 on the 4-cycle, whereas in heterotic
compactifications it arises from reduction of the NS-NS 2-form B on an
appropriate cycle.

There are also complex structure moduli. These parametrise the com-
plex structure of the compactification manifold — colloquially, its shape.
For a Calabi-Yau these are counted by h%!. As the name suggests, these
are generally complex. Neither component has an axionic interpretation:
both the real and imaginary components are on the same footing. Again,
the multiplicity may be high - h?! is again O(100) for a Calabi-Yau, and
so very many moduli can survive into the low energy effective theory.

There are also other sources of moduli. These can arise for example from
deformation of vector bundles on the Calabi-Yau: generally these bundles
have continuous deformations that are consistent with the supersymmetry
conditions, and these deformations manifest themselves as moduli in the
4-dimensional theory. Another source of moduli comes from the motion
of branes: the position fields of D3 branes are uncharged under gauge
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interactions, and manifest themselves in the 4d theory as moduli.

While the above discussion has focused on the case of Calabi-Yau com-
pactifications, it should be clear that it extends to any (approximately) su-
persymmetric compactification. Deformations of the extra-dimensional ge-
ometry — where ‘geometry’ is understood in the broadest possible sense —
that preserve the supersymmetry of the comapctification will appear in
the 4-dimensional theory as moduli. The same is also true for non-
supersymmetric compactifications, although as discussed below it is harder
there to preserve the sense of moduli as being approximately massless.

How should one then classify a particle as a modulus? The rough defini-
tion is as a scalar particle with gravitational couplings that is approximately
massless. The last condition is the most vexing. In certain contexts — for
example supersymmetric gauge theory — the word modulus is used to de-
scribe an exactly flat direction. In string compactifications, this would not
be appropriate, as moduli must get non-zero masses as otherwise they would
generally give rise to unobserved fifth forces. Furthermore, the dynamics of
supersymmetry breaking, required for a realistic vacuum, will necessarily
also generate a potential and thereby a mass for the moduli.

2. What are Moduli Not?

It is also important to say what moduli are not. Moduli are generally neither
the only scalars present, nor the only gravitationally coupled particles, nor
even the only gravitationally coupled scalars. What properties should a
particle not have if it is to be called a modulus?

First of all, moduli are not fermions and moduli are not vectors. Moduli
have to be scalar particles. The reason for this is simple and mundane. The
interesting physics of moduli comes from the many possible vevs they can
take. Scalars however are the only particle type that can take a vev without
simultaneously breaking 4-dimensional Lorentz invariance. As Lorentz in-
variance is so well tested, this leaves scalars as the interesting case where we
can consider potential large displacements in vevs without violating Lorentz
invariance.

Another exclusion property follows from the requirement that moduli
belong to the four dimensional effective field theory. Modes that are gen-
uinely higher dimensional, such as Kaluza-Klein modes, or modes that are
fundamentally stringy, such as excited string harmonics, should not be clas-
sified as moduli. This is despite the fact that some of these string or KK
modes may transform as scalars under the four-dimensional Lorentz group.
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The point is that these modes are never massless: there is no limit in which
they are massless, they cannot be counted as ‘light’ and it makes no sense
to include these modes within the four dimensional effective field theory
without also including all other modes within the tower of string excited
states.

For a good decoupling limit to exist, the mass spectrum is then required
to look like

Mmoduli K MKk < Ms.

If we also have mygx < My, then there is a further region in which the
theory is described by an effective higher-dimensional supergravity theory.

How are moduli different from scalars found in conventional four dimen-
sional theories? After all, one apparently fundamental scalar was recently
found at CERN in the form of the Higgs. Supersymmetric extensions of the
Standard Model also contain many scalar particles, one for each fermion of
the Standard Model, and these particles are not regarded as moduli. What
are the distinctive features of moduli that separate them from the scalars
encountered in regular particle physics model building?

One difference is that moduli do not have a good concept of zero vev.
Many ‘regular’ scalar fields often come with a well defined notion of zero vev,
where the zero vev locus corresponds to a restored or enhanced symmetry,
and a non-zero vev corresponds to a breaking of that symmetry. This is
certainly true of the Higgs: at (¢p) = 0, the SU(2) x U(1) symmetry is
unbroken, whereas once (¢p,) # 0 this symmetry is broken down to U(1)y,
and mass terms are generated in the Lagrangian for both the W+ and Z
bosons and the fermionic particles of the Standard Model. This point is
also true for the scalars normally considered in field theory: there is a good
notion of zero vev (¢) = 0, and thus a preferred locus in moduli space (this
is manifestly true for any charged scalar, where (¢) = 0 is the only locus
with unbroken gauge symmetry). In these cases one often also performs an
expansion about zero vev, where non-renormalisable effects are suppressed
by Agw where Ayy is the appropriate UV scale.

This is not true of moduli. There are certain moduli where the notion
of ‘zero vev’ can indeed have a sensible meaning: one example would be a
modulus that controls the blow up of a certain cycle away from a singularity.
Here zero vev corresponds to the point where the cycle is collapsed at

the singularity and has zero size, while a non-zero vev corresponds to the
resolution of the cycle to finite volume, and the greater the vev the greater
the size of the blown-up cycle. However, for many cases there is no such



16 J. Conlon

‘zero vev’ point in moduli space. Examples are the string coupling or the
overall volume modulus. These can take a continuum of values, and there
is no preferred locus or expectation value that corresponds to zero vev. The
metric on moduli space for these fields are
2 2
ME_psors and NP
(S+5)2 (T +T)2

Denoting 7 = Re(T) and g; ! = Re(S), the canonically normalised fields
are then

,0.TO"T.

M Mp+/3
b, = 2P lng and &; = G

Note that no single value is preferred - both the gs — 0 and the g; — oo
limits are at an infinite distance in field space from any finite value of
gs. So although we might naively think that g; = 0 should correspond to
‘zero vev’, we see that this is not so. We also see that what appear to be
relatively small changes in gs (e.g. from g; = 0.1 to gs = 0.2) are actually

lnTb.

at Planckian separations in field space. Moduli therefore inhabit a space
where there is no a priori special value, and where in terms of canonically
normalised fields they can range over several Planckian distances in field
space.

Of course, one can always choose the eventual stabilised minimum of the
modulus potential and define this value as ‘zero vev’. If we work close to
the stabilised vacuum, we can then expand fluctuations of the modulus field
about this value. However the point is that this value is one we have put in
the end, once we know the potential. In earlier epochs of the universe — for
example during the inflationary epoch — this value would not have been
special in any way. In particular, it does not appear special from the start,
in the way that for the Higgs potential the point of zero vev is always a
special point in moduli space.

3. How Heavy are Moduli?

In exactly supersymmetric N = 2 compactifications to Minkowski space,
moduli are exactly massless. In this case the flatness of moduli space is pro-
tected to all orders by the extended supersymmetry. In A/ = 1 compactifi-
cations, the supersymmetry is no longer sufficient to protect flat directions
to all orders in perturbation theory. However it is still useful to think of
moduli as approximately massless degrees of freedom, whose masses arise
from small perturbative or non-perturbative effects.
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Most work on string compactifications assumes that the supersymme-
try breaking scale is low: there is a clear hierarchy mgs,, < Mp. This is
motivated for both practical reasons (it is easier to control the computa-
tions if ms3/9 < Mp) and phenomenological ones (supersymmetry may be
relevant for addressing the weak hierarchy problem). In this context, the

supersymmetry breaking scale is approximately zero, at leading order in an
msz/2

Mp N
generates moduli masses at this same order in smallness,

expansion in ( The dynamics of supersymmetry breaking typically

me ~ m3/2. (4)
We note that there are also often logarithmic enhancements to this expres-
sion,
Mp
me ~ M3 /o In ( ) . (5)
¢ / M

These originate from non-perturbative dynamics and their competition with
tree-level terms. These may be non-trivial as In (1018GeV/103GeV) ~ 30,
but do not change the parametric picture.

If a low supersymmetry breaking scale — a small value for ms,, —
arises in a controlled fashion, then this gives a natural separation of scales
between the moduli masses and the UV scales. In the cases where ms /5 is
not far separated from the Planck scale, then the notion of moduli becomes
harder to define as there is no longer a good separation between the scale
of moduli masses and the scale of KK modes (for example).

It is worth commenting on scalings different from (4) or (5). One inter-
esting example is the scaling of the volume modulus in the LARGE Volume
Scenario,

1/2
m3/2
mg ~ m3/2 < M; ) . (6)

In this case the contribution of O(mg3,2) to the mass of the volume modulus
is absent and my < mg/p. This can be traced to the underlying no scale
structure. The basic feature of no scale is the presence of a flat poten-
tial together with non-zero supersymmetry breaking, and thus for no scale
models the mass of a modulus can be lighter than it ‘ought’ to be. Even
lighter moduli can sometimes be found in fibered versions of the LARGE
volume scenario, with a mass scaling

2/3
m




18 J. Conlon

This again traces to the underlying no-scale structure present in these mod-
els.

A contrasting example is the case where moduli are much heavier than
the gravitino mass. This however can generally only be accomplished with
fine-tuning, so the gravitino mass is smaller than it naturally ought to be.
For example, in many KKLT scenarios, the complex structure moduli are
stabilised at a mass scale much greater than that of the gravitino mass,

my > ms)a- (8)

In this context, this arises as the gravitino mass is much smaller than
it ‘ought’ to be. The gravitino mass is tuned small through a random
cancellation of fluxes. The natural scale of the complex struture moduli is
my ~ myR™3, which is also the natural scale of the gravitino mass, as

M
mg g ~ eK12W ~ R—‘I; /Gs A Q, (9)

and the last expression is semi-topological being independent of the volume
of the space.

However a cancellation occurs in W ensuring a small value for mg3/o: as
eq. (90 shows, the gravitino mass arises from the sum of many different
terms. If there happens to be an accidental cancellation (the difference of
two large numbers being small), the gravitino mass is much smaller than
would be expected. Put another way: the magnitude of the potential is
anomalous small compared to the curvature of the potential.

4. Why are Moduli Important?

Why are moduli so crucial for making contact with low-energy physics? The
simplest reason for this is that, within string theory, the value of almost
every observable quantity originates as the vev of a modulus. Let us give
some examples:

(1) The strong (and weak, and electromagnetic) gauge couplings. The high-
scale values of these couplings are set in string theory by the vev of the
modulus that controls the gauge kinetic function: for gauge groups
realised by wrapping branes on cycles, this would be the modulus that
controls the size of this cycle. Moduli vevs are important not just for
the high-scale gauge coupling. The low-scale gauge coupling at a scale
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Ajoy is given by

. 1 J&; Apy
?(Alow) TP (Apv) + 1672 = <Alow> . 1o

However in string theory Ayy is also a function of moduli. The UV
scale will typically be the string scale or the compactification scale,
and the numerical value of the string scale or compactification scale in
relation to the 4-dimensional Planck mass Mp = 2.4 x 10'8GeV is set
by moduli vevs.

(2) The Yukawa couplings of the Standard Model. These parameters,
which are dimensionless in the Standard Model, arise in string the-
ory as the vevs of moduli. As an example, the superpotential would
involve a term

Yk (®)H,QLUp, (11)

where ® are moduli fields. The vev of ® would therefore affect the
numerical value of the Yukawa couplings. There may be other, addi-
tional structure in any model (for example a Froggatt-Nielsen struc-
ture). However the above effect will always be present.

(3) The scale of supersymmetry breaking and the structure of soft terms
(in any string compactification, these are in principle observable quan-
tities). This is set, in the first approximation, by ms /9, which is in turn
set by the moduli vevs. The structure of soft terms is determined by
the couplings between the source of supersymmetry breaking and the
Standard Model; these couplings are also determined by moduli vevs.

One of the most noticeable features about the world is the presence of
hierarchies. There are many examples. They include the ratio of the weak
scale to the Planck scale My, /Mp ~ 10716, the ratio of the electron mass to
the weak scale, m./mg ~ 1075, the smallness of the cosmological constant
compared to almost any other scale, A2, ~ 107120/}, Tt is expected that
these hierarchies have some physical origin: the exponential differences
in scales that arise in several places is not simply a fluke, but rather a
reflection of deeper underlying physics. As moduli vevs control many of
these scales, we see that moduli physics is expected to play an important
role in understanding hierarchies: we expect the vevs to be such as to
generate these hierarchies.

Cosmology provides another arena for the importance of moduli when
connecting string compactifications to observations. It is highly plausible
that the early universe went through a period of inflationary expansion,
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during which the size of the universe grew exponentially. In this scenario,
the observed density perturbations originated as the quantum fluctuations
of the scalar inflaton field. During the inflationary epoch, the universe was
in an approximate de Sitter solution, violated by a slowly rolling scalar
field.

Both the existence and stability of an approximately de Sitter solution
require control of all scalar fields in the potential. Inflation requires the
absence of unstable directions and an approximately flat direction along
which the inflaton can roll. Ensuring the absence of unstable directions
requires control of the moduli potential: even a single unstabilised direction
is sufficient to cause fast roll in that direction.

In this respect, it does not matter that moduli have only Planck-
suppressed couplings to the visible sector. As is well known, the flatness
of the inflationary potential is vulnerable against Planckian corrections to
the Kahler potential. This is manifest for example in the supergravity eta
problem. The structure of the supergravity scalar potential,

V = ef/ME (KijDiWDjW — %|W|2> (12)
Mp
implies that a Planck suppressed correction to the kdhler potential,
oP

leads, on expanding the exponential term eX/M# | to an O(1) correction to
the n parameter,

n= Mﬁvv-
Control of any inflationary model therefore requires control of any Planck-
suppressed contributions to that model.

It follows that while in certain areas of physics (for example in com-
puting strong interaction cross-sections) the existence of moduli can just
be neglected without affecting the physics in any way, when constructing
inflationary models this is no longer true. If the existence of moduli is ig-
nored when building an inflationary model, restoring the moduli will just
destroy the model: the moduli introduce unstable fast-roll directions and
the original model does not survive in any sense.

(14)

This is particularly clear when considering the universal moduli such as
the dilaton or the volume modulus. Whatever the original source of the
inflationary potential, its scale should depend on the fundamental scale of
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the theory, M, = \/% This is physically clear: any potential ultimately
has a microscopic origin, and the microscopic magnitude always depends
on the fundamental scale of the theory. However, the fundamental scale is
related to Mp = 2.4 x 10'GeV through the moduli,
Mp

M, = g, Nk (15)
and therefore any inflationary potential automatically induces a potential
for the dilaton and volume directions. As the string coupling and volume are
exponential in these fields, the potential would by itself be an exponential
runaway in these directions. It is thus essential to include the potential
for these modes explicitly. Without doing this, any inflationary model is
automatically destabilised on including the volume and dilaton moduli.

The above reflects the fact that inflation is UV-sensitive: the details
and properties of inflationary models are sensitive to Planck-suppressed
physics. Moduli are also a virtue in this respect: there are many string
inflation models which include moduli as the inflaton field.

There is another place in cosmology where moduli play a crucial role.
The fact that moduli have Planck-suppressed interactions means that when
considering the production of an ensemble of particles, the existence of mod-
uli can essentially be ignored: they couple so much more weakly than any
other particle and so moduli are to all practical purposes not produced.
This is why it is not worth considering moduli when computing QCD pro-
cesses at the LHC: particles that can be produced by renormalisable inter-
actions are produced by renormalisable interactions.

The converse however is true when considering the decays of an initial
ensemble of particles. Here the late-time physics is dominated by the par-
ticles which have the weakest interactions and thus the longest lifetimes.
This is particularly true in the expanding early universe, where radiation is
diluted more rapidly than matter (a=* versus a=2). Now it is the particles
that have renormalisable decay channels that are irrelevant: they decay
rapidly and their decay products are diluted. It is the long-lived particles
with only gravitational interactions that survive.

This is the situation that prevails after inflation. A large inflationary en-
ergy density will cause the production through the misalignment mechanism
of many scalars, including moduli: the inflationary energy density gives a
contribution to the potential, and so the fields are initially misaligned from
their final zero-temperature minimum. The subsequent dynamics sees the
relaxation of these fields to zero vev and their subsequent decay, giving the
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epoch of reheating. However this should be dominated by the particles with
the longest lifetimes — and these are the moduli.

Moduli therefore play a crucial role in understanding the physics of
reheating — viewed from a different angle, this goes by the name of the
cosmological moduli problem. Moduli live a long time, and if they are too
light me < 30TeV they decay after the time by which nucleosynthesis must
have occurred.

5. Summary

Moduli are the light, weakly coupled scalar degrees of freedom that arise
almost ubiquitously in string compactifications. Their existence is one of
the most generic predictions of string compactifications, as they arise in all
limits of the theory. They also play a crucial role in connecting the theory
to observations: in string theory the values of low-energy parameters are set
by the vevs of moduli, and the dynamics of moduli is crucial for generating
the hierarchies and scales that we see in nature.
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Since the first “string revolution” of 1984, the weakly coupled Fg ® FEsg
heterotic string theory has been a promising candidate for the underly-
ing theory of the Standard Model. The particle spectrum and the issue
of dilaton stabilization are reviewed. Specific models for hidden sec-
tor condensation and supersymmetry breaking are described and their
phenomenological and cosmological implications are discussed. The im-
portance of T-duality is emphasized. Theoretical challenges to finding a
satisfactory vacuum, as well as constraints from LHC data are addressed.

1. Prologue

String theory was first introduced into particle physics as a candidate the-
ory of strong interactions, in its bosonic version, that required 26 space-
time dimensions. The supersymmetric version requires only 10 space-time
dimensions, but still many more spatial dimensions than the three that
we observe. Moreover, string theory requires a massless spin-two particle,
and no such animal was to be found among the light hadrons. However
this made string theory a prime candidate for a quantum theory of gravity
which requires a massless graviton with spin two. Supersymmetry is essen-
tial for the consistency of a superstring theory of gravity, but not sufficient.
Any superstring theory that might describe the universe we observe has to
be a ten dimensional supersymmetric theory of gravity coupled to gauge
fields. A stumbling block to this approach was the presence of “hexagon
anomalies”, the ten dimensional analogue of the triangle anomalies which,
if present in gauge theories, would break gauge invariance and render them
unrenormalizable. The hexagon anomalies break Lorentz invariance, as well

23


https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1142/9789814602686_0003

24 M. K. Gaillard

as gauge invariance. The “first string revolution” occurred in 1984 when
Mike Green and John Schwarz showed [1] that there were two gauge groups,
with the same dimension (496) and the same rank (16), that were anomaly-
free, namely SO(32), the group of rotations in 32 Euclidean dimensions,
and the direct product of the maximal exceptional group Eg with itself,
or Fg ® Eg. An O(32) string theory had already been constructed, and,
not long after the Green-Schwarz result, the Fg @ Eg “heterotic” string
was found by Gross, Harvey, Martinec and Rohm [2]. This theory ap-
peared promising for phenomenology, especially when the six extra spacial
dimensions were compactified on a Calabi-Yau manifold, first achieved by
Candelas, Horowitz, Strominger and Witten [3].

Eventually it was established that there were five consistent theories,
a situation that disturbed some theorists until the advent of the “second
string revolution”, when it was discovered that these five theories were re-
lated to one another by dualities: S-duality, the inversion of the fine struc-
ture constant o at the string scale, or T-duality: the inversion of a radius
of compactification when one of the nine spatial dimensions dimensions is
curled up into circle of radius R. It was further discovered, thanks to these
dualities, that all five string theories can be obtained from an eleven dimen-
sional theory of membranes known as M-theory, as illustrated in Figure 1.
If the extra eleventh dimension of M-theory is curled up into a circle, one
gets the type ITA string theory in ten dimensions. Curling up one of the
radii of the ITA theory into a circle gives a nine dimensional theory that
can also be obtained by a similar operation on the type IIB ten dimensional
string theory, or by compactifying two dimensions of M-theory on a torus
(combining the two circles). On the other hand, restricting the eleventh
dimension of M-theory to a finite distance on a line gives a theory with
two ten dimensional worlds, each with an Eg gauge theory. If the length of
this line is considerably larger than the radii of the hidden six dimensional
sectors of the two four dimensional worlds, one of which we live in, we get
the Hofava-Witten (HW) scenario [6]. If instead the length of the eleventh
dimension is shrunk to zero, we get back the string theory in ten dimensions
found by Gross et al. Compactifying one dimension of this theory on a circle
gives a nine dimensional theory that can also be reached by compactifying
one of the two O(32) theories on a circle, or directly from M-theory by
compactifying two dimensions on a cylinder (a line and a circle). The two
0(32) theories (type I and heterotic) are related to one other by S-duality,
and the two nine dimensional theories are related to one another T-duality.
Another limit of M-theory gives supergravity in eleven dimensions; when
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D=11
D =10
D=9

ITA IIB: D-Branes

11-D supergravity

x x )
x | O(32)1
M
G

< -

HW theory: (very?) large extra dimension(s) Eg x Eg

Fig. 1. M-theory according to John Schwarz [4] (top) and Mike Green. [5].

seven of these are reduced to a point, one gets N = 8 supergravity in four
dimensions.

Many theorists were heartened by the discovery that the string theories
could be unified into a single theory. But there was still the problem of
finding the right vacuum: how did we end up in the world we live in? Not
only are there five different string theories, as well as many other points
in the M-theory landscape of Bousso and Polchinski [7], but each string
theory has many different possible vacua, depending on the size and shape
of the hidden space. In particular, there has been a lot of activity in
trying to count the number of type IIB vacua; the number is very large—so
large that it can in practice be thought of as infinite. At some point the
theoretical community seemed to divide into two camps. One camp takes a
probabilistic and anthropic approach: we should be living at a point in the
landscape with the features that are the most probable within the subset
of vacua that are capable of supporting some kind of observers.

The other group tries to find a specific vacuum that reproduces what
we observe, and postpones worrying about how we got here. This camp
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focuses largely (but not exclusively) on the Eg ® Egs heterotic string or its
nearby neighbor, the HW theory. These efforts will be the main focus of
this perspective.

2. Compactifications of the Eg ® Eg heterotic string

The zero-slope, or infinite string tension, limit of the theory is ten dimen-
sional supergravity coupled to a supersymmetric Yang-Mills theory with an
Es ® Fg gauge group. To make contact with the real world, six of these ten
dimensions must be compact and here they are generally assumed to be of
order of the (reduced) Planck length (mp)~! ~ 10732cm. The spectrum of
particles that appears in the effective low energy theory below the scale of
compactification, as well as the residual symmetry of that theory, depends
on the way in which these six extra dimensions curl up.

For example, if the topology of the extra dimensions were three two-
tori, each of which has a flat geometry, the 8-component spinor operator
of N = 1 supergravity in ten dimensions would appear as the four two-
component operators of N = 4 supergravity in four dimensions, giving a
uniquely defined theory with matter in the adjoint of the gauge group,
which does not resemble the world in which we live. On the other hand,
compactification on a six-sphere would leave no supersymmetry in four
dimensions, because there is no spin component that is invariant under
the SO(6) holonomy group (the group of transformations under parallel
transport) of that geometry. A world with no low energy supersymmetry
may be the one we live in, but supersymmetry not too far above the scale of
electroweak symmetry breaking would go a long way towards addressing the
notorious gauge hierarchy problem: the mass gap of about sixteen orders
of magnitude between the electroweak scale—a quarter of a TeV-and the
Planck scale of 2 x 1015 TeV.

The attractive property of a Calabi-Yau (CY) manifold is that it leaves
only one two-component spinor invariant under the holonomy group, which
is an SU(3) subgroup of the maximal SU(4) = SO(6) holonomy group of
a six dimensional compact space. This breaks N = 4 supersymmetry to
N =1 in four dimensions. This is the only phenomenologically viable su-
persymmetric theory at low energies, because it is the only one that admits
complex representations of the gauge group that are needed to describe
quarks and leptons.

Curvature in the compact 6-space implies that some components of the
graviton acquire vacuum values (vev’s); these are related by supersymmetry
to fermions. Nonvanishing fermion vacuum values would break four
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dimensional Lorentz invariance; to prevent this relations must be imposed
among the vacuum values of the bose fields of ten dimensional super-
gravity that include, besides the graviton gy;n and the Yang-Mills fields
Apr, a scalar, the dilaton ¢, and an antisymmetric tensor bp;n, where
M,N = 0,...,9. Candelas et al. chose the simplest solution, with
(¢) = (b) = 0, and nonvanishing vev’s for some of the Yang-Mill fields with
spin components along compact directions. For this solution, the affine
connection of general coordinate transformations on the compact space,
described by three complex dimensions, is identified with the gauge con-
nection of an SU(3) subgroup of one of the Eg’s: Eg 5 Eg®@SU (3), resulting
in Eg ® Eg as the gauge group in four dimensions.

Since the early 1980’s, F has been considered the largest group that is
a phenomenologically viable candidate for a Grand Unified Theory (GUT)
of the Standard Model (SM). Hence Eg is identified as the gauge group
of the “observable sector”, and the additional Eg is attributed to a “hid-
den sector”, that interacts with the former only with gravitational strength
couplings. Orbifolds, which are flat spaces except for points of infinite
curvature, are more easily studied than CY manifolds, and orbifold com-
pactifications that closely mimic CY compactification, and that yield real-
istic spectra with just three generations of quarks and leptons, have been
found [8-10]. In this case the surviving gauge group is

B ®G,®Es, G, € SU(3).

The low energy effective field theory is determined by the massless spec-
trum, i.e., the spectrum of states with masses very small compared with
the string tension and compactification scale. Massless bosons have zero
triality under an SU(3) which is the diagonal of the SU(3) holonomy group
and the (broken) SU(3) subgroup of one Eg. The ten-vectors Ap; appear
in four dimensions as four-vectors A,, 4= M =0,1,...,3, and as scalars
Ap, m=M—3=1,...,6. Under the decomposition Eg > Eg ® SU(3),
the Fg adjoint contains the adjoints of Eg and SU(3), and the represen-
tation (27,3) + (27,3). Thus the massless spectrum includes gauge fields
in the adjoint representation of Fg ® G, ® Eg with zero triality under both
SU(3)’s, and scalar fields in 27 + 27 of Eg, with triality +1 under both
SU(3)’s, together with their fermionic superpartners. The number of 27
and 27 chiral supermultiplets that are massless depends on the topology
of the compact manifold. The important point for phenomenology is the
decomposition under Eg — SO(10) — SU(5):

(27)p, = (16 +10+ 1) 5540 = ({5 + 10+ 1} + {5+ 5} + 1)y 5, (1)
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A 5+ 10+ 1 contains one generation of quarks and leptons of the SM,
a right-handed neutrino and their scalar superpartners; a 54 5 contains
the two Higgs doublets needed in the supersymmetric extension of the SM
and their fermion superpartners, as well as color-triplet supermultiplets.
While all the states of the SM and its minimal supersymmetric extension
are present, there are no scalar particles in the adjoint representation of
the gauge group.? In conventional models for grand unification, these (or
other large representations) are needed to break the GUT group to the SM.
(A counter example is flipped SU(5) [11], in which the GUT symmetry can
be broken by a 10 of SU(5), and which can also be obtained [12] from the
heterotic string.) In string theory, gauge symmetry breaking can also be
achieved by the Hosotani or “Wilson line”, mechanism in which gauge flux
is trapped around “holes” or “tubes” in the compact manifold, in a manner
reminiscent of the Aharonov-Bohm effect. The vacuum value of the trapped
flux < [d¢™A,, > has the same effect as an adjoint Higgs, without the
difficulties of constructing a potential for large Higgs representations that
actually reproduces the observed vacuum. When this effect is included, the
gauge group in four dimensions is

Gobs @ Ghid,  Gobs = Gsm @G ©Go, Gsm @G € Es, G, € SU(3),

Ghia € Es, Gsm = SU(3)C ® SU(Z)L & U(l)w. (2)

There are many other four dimensional vacua of the heterotic string, in
addition to those described above. The attractiveness of the above picture is
that the requirement of N =1 SUSY naturally results in a phenomenolog-
ically viable gauge group and particle spectrum, and the gauge symmetry

can be broken to a product group embedding the SM without introducing
large Higgs representations.

3. Gauge coupling unification

In the weakly coupled heterotic string, the scale of unification—mnamely the
string scale:
Ms = gsMmpy, mp; = (87TGN)7% ~ 2 x 108GeV, (3)

is determined [13-15] by the value of the gauge coupling constants g, at
that scale:

ga(my) = g, = ((Res)™H), @)

2We do not consider higher affine level k = n > 1 for non-Abelian gauge groups.
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where the dilaton Res is the real part of the scalar component of the dilaton
chiral supermultiplet S:

(s) = (SI) = g5% —i6/8x>. (5)
More precisely, in the M S scheme one gets [16]

9a(1) = gs,  p=gsmpi/V2e, (6)

Lis almost two orders of magnitude larger than the value

which, for g2 = £
1t~ 106 GeV found by extrapolating the measured couplings in the Mini-
mal Supersymmetric Standard Model (MSSM) [17]. It was argued that this
result favored the Hotava-Witten model, where the presence of a relatively
large eleventh dimension, r1; ~ 10716 GeV ™! lowers the unification scale
to the inverse radius where gravitational interactions become important in
that scenario.

On the other hand there are other effects that can modify the renormal-
ization group evolution in the weakly coupled heterotic string. In orbifold
compactifications, these include threshold corrections [18] that depend on
the Kahler moduli 77 whose vev's determine the size and shape of the com-
pact dimensions. However these are absent in the Z3 and Z7 orbifolds that
have been found promising for phenomenology, and threshold effects are
small in the weak coupling limit (¢/) ~ 1, where ¢! is the scalar component
of T1.

In the context of the weakly coupled heterotic string, the most natural
resolution to this discrepancy in scales is the presence of vector-like pairs of
chiral multiplets that do not form complete SU(5) representations [16, 19],
and that get masses at some intermediate scale between the Planck and
electroweak scales. Such additional states are commonplace in orbifold
compactifications of the heterotic string.

4. Supersymmetry breaking

If supersymmetry provides a correct description of nature, we live in a world
of broken supersymmetry, because we have not observed the supersymmet-
ric partners of the known particles. There are two ways to break super-
symmetry while preserving its ability to provide a technical solution to the
“gauge hierarchy” problem. The first is spontaneous symmetry breaking.
The second is to introduce soft terms that explicitly break supersymmetry;
these include scalar masses and mixing, gaugino masses, and trilinear (A-
terms) and bilinar (B-terms) holomorphic functions of scalars. This route
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leads to a large number of arbitrary parameters that have to be introduced
into the theory. The more attractive route, namely spontaneous symmetry
breaking, has been shown to be impossible in supersymmetric extensions of
the Standard Model (SM); it inevitability leads to the existence of at least
one quark scalar superpartner that is lighter than all the quarks [20]. For
this reason it was proposed that there might be a “hidden” world in which
supersymmetry is broken, and that the information of this is transmitted
to our world only by gravitational strength interactions.

The Eg ® Eg heterotic string provides this hidden world with the sec-
ond Egs (or whatever it becomes after Hosotani breaking of the Eg symme-
try). Supersysmmetry can be spontaneously broken in this hidden world
by strong interaction effects of the gauge couplings in that world. This sce-
nario was initially plagued by the “runaway dilaton problem”: the dilaton
coupling to the Yang-Mills sector”

1 E
Ly = / doZ swews + e, (M)
8 R
where W is the Yang-Mills superfield strength, induces [22] a superpoten-
tial for the dilaton of the form
W(S) o e/, (8)

where b, determines the coefficient of the one-loop beta-function of the
condensing gauge group:

dge 3, 3
Mo 5bede 9)

The result (8) follows from the R-symmetry and scale invariance of this
sector, which is most easily seen in flat-space supersymmetry, with the
Yang-Mills action

sy 1 1 d?
Son = /d4m/d295WaaW£+h.c. == /d4x—SWfWg +h.c. (10)
4 4 do?
At the classical level this action is invariant under the transformations:
r— ez, 60— el@TM/20 gy — edr, df — e~ (a=i0)/2¢
Walz,0) — e 3029 (1.6), S(xz,0) — S(z,0). (11)

The classical invariance (11) is broken by the chiral and conformal anoma-
lies; invariance is maintained at the quantum level by modifying the last

bWe use the Kihler superspace formalism of ref. [21]. E is the superdeterminant of the
supervielbein, and R is an auxiliary field of the supergravity multiplet.
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transformation property in (11)
S(x,0) — S(x,0) + 3b.(a + i), (12)

such that the variation of the Lagrangian due to anomalies is exactly can-
celed by the variation in S. Then the superpotential action

gsus 4 2 4
%up}érpot /d /d GW +hC —/d d02 +hC (13)

is also invariant. Writing explicitly
W(S) = A% 57t (14)

with A of the order of the string scale or the Planck scale, one recognizes
the (cubed) condensation scale as determined by the renormalization group
equations (RGE). The same result can be obtained [23] by introducing a
chiral field for the gaugino condensate (interpreted as the lightest bound
state in the strongly coupled sector) and constructing [24] its superpotential
by anomaly matching. The above arguments go through in the same way for
supergravity [25, 26]; in this case local supersymmetry assures [14, 26, 27]
that the higher order corrections to the beta function are encoded in the
result.

The “runaway dilaton” problem was that the resulting potential for
the dilaton s = S|, V(s) o< e=2%/% has its minimum for vanishing gauge
coupling (s) — oo, vanishing gaugino condensate and no supersymmetry
breaking. One class of solutions to this problem used the so-called “race-
track models”, which involved large gauge groups with very similar beta-
functions. These models tend to give a negative vacuum energy, and are not
easily accommodated in the heterotic string, where the condensing group
is a subgroup of FEg.

In any case the above picture is incomplete; the superpotential for the
dilaton does not respect T-duality, which is known [28] to be an invari-
ance of the heterotic string to all orders in perturbation theory. T-duality
transformations effect a Kéhler transformation:

K~ K+FT)+FT), W—e W,  W,—e W, (15)

with an appropriate redefinition of 6, as in (11), such that the classical
supergravity terms (7) and

1 E
Esuperpot - 5 /d40E€K/2W + h.C., (16)



32 M. K. Gaillard

are invariant.© Here F' is a holomorphic function of the “K&hler moduli”
T; for example in orbifolds with three (folded up) tori, there are three
“diagonal moduli” T7. The real parts of their scalar components t/ = T ‘
determine the radii of compactification of each torus in string units (3):

R' = ((Ret"))ym . (17)

The group of T-duality transformations includes an SL(2,Z) group under
which the diagonal Kéhler moduli transform as

T I aTI — 'Lb _ .
T —T =TT+ d a,b,c,d €7, ad —be = 1. (18)
In this case
F(T)=)Y_FNT"), F'=icT"+d (19)
I

In the effective field theory, invariance under T-duality is broken at the
quantum level by the chiral and conformal anomalies. Specifically, under
(18), the Yang Mills Lagrangian in (16) shifts by the amount

1 E S| ;
5ﬁyM:—8/d4ﬁR;WaWa8W2; CQ—Z:C’Q(I—qf) + h.c.,

(20)
where C,, and C? are adjoint and matter quadratic Casimirs, and ¢/ is the
“modular weight” of the matter chiral superfield ®*; under (18)

P e TraiF g, (21)

This anomaly signals that the theory is incomplete: a four-dimensional
version [29] of the Green-Schwarz (GS) counterterm is needed to cancel the
field theory anomalies.

The classical Kéhler potential for the dilaton chiral superfield S,

K(S,8)=—In(S+29), (22)

is invariant under T-duality if S is invariant. However, if the Kéahler po-
tential (22) is modified to read

K(S,8) = —In(S + S+ bVg), (23)

where the function Vg (T, T, |®|?) of chiral superfields transforms under (15)
as

Vo — Vo + F(T) + F(T), (24)
¢[d*0E/R in (7) and (16) transforms like [ d26 in (10) and (13).




Perspective on the Weakly Coupled Heterotic String 33

invariance of (23) requires that S transform as
S — S —0bF. (25)

Then the anomaly is canceled provided

1
b=
872

Co—>» Ci (1—q{)], Y a,l (26)

This universal anomaly condition is indeed satisfied in Z3 and Z; orbifolds
with no moduli-dependent threshold corrections. In other orbifolds the
anomaly is canceled by a combination of the “Green-Schwarz” term in (23)
and threshold corrections of the form

1 E werra bl
»Cthresh = _g /d40E ZWa Wa Z {72 nQ(TI)a
a I

by =8mb—Ca+ Y Ci(1-gq]), (27)

where the Dedekind n-function transforms under (18) as
1l
(") — e2"(T"). (28)

The dependence of the GS function Vi on the diagonal moduli 77 is deter-
mined by matching [14] the field theory and string theory coupling of the
Yang-Mills fields to Im¢t/, giving

Ve =g(T.T)+0(9"), 9= 4¢'. ¢ =-W(@ +77), (29)
I
which is the same as the dependence of the Kéhler potential on these mod-

uli. This Kéhler potential leads to a “no-scale” structure [30] of the poten-
tial V' if the superpotential W is independent of T"

2
V(T,S) = eX (Z DWKYD;W + DsWEKSSDW — 3|W|>
I

= DsWKSSDgW = V/(8), (30)
where
K"eX2DgW = K"l (W + Ky W) = —F" (31)

is the auxiliary field for the chiral supermultiplet ®”.
The earliest studies invoked a second contribution to the superpotential
for S in order stabilize the potential at nonvanishing coupling and to cancel
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its contribution to the vacuum energy. This led to T mediated supersym-
metry breaking:

(FS)=0,  (FT)=(2Ret/e"/2 V) 0, (32)

which is considered problematic for flavor changing neutral currents, be-
cause the Kéhler moduli couplings to matter are not universal. Another
problem is that the Kahler moduli vev’s are not determined, and the vacuum
is degenerate. (This could be a discrete degeneracy [31] if the condensate
superpotential is canceled by quantized flux [22], i.e. the vev of the three
form of 10-d gravity: (Hjmn) # 0, but this breaks supersymmetry at a very
high scale.)

When it was realized that modular invariance had to be restored to the
effective potential for S, this was first done “by hand” [26, 32, 33], that is,
by simply inserting a factor n°(T), so that the condensate-induced super-
potential W,(S) o n°(T)e™%/% transforms as in (15). The T-dependence
in the superpotential destroys the no-scale property of the potential and
generally gives a negative vacuum energy, but it does stabilize the mod-
uli, for example at the oft-quoted value [32] (¢) = 1.23 for a single Kéhler
modulus under the assumptions (22) and (32).

This approach ignored the GS term, which could be incorporated by
using (23) and (25), and taking

We(S) = APe5/bep/bemt, (33)

However the presence of the GS term in the Kéhler potential for the dilaton
by itself destroys the no-scale structure of the potential, and destabilizes it
with a run-away direction towards strong coupling [34].

In all these cases the no-scale structure, with a positive semi-definite
potential, can be restored by reinterpreting [35, 36] the wave function renor-
malization of the strongly coupled gauge fields as a correction to the Kéahler
potential of the composite field, rather than to its superpotential, in confor-
mity with nonrenormalization theorems of supersymmetry. However in this
case we still have moduli mediated supergravity, with the above mentioned
problems, and it is difficult to break supersymmetry (except at a very high
scale) when the GS term is included [36].

All the above potentials for the dilaton can be obtained by introducing
gaugino and matter [37, 38] condensates as ordinary chiral superfields, but
this is actually a questionable [36] procedure. The composite superfield
WEWE is a chiral field that satisfies a constraint; in supergravity this reads

(D*Dy — 24R) WIWS — (DaD* — 24R) WEW = total derivative, (34)
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and one would expect the interpolating field for the gaugino condensate to
satisfy the same constraint. This can be achieved by taking the condensate
chiral superfield U to be the chiral projection of a vector superfield V' [39,
40]:

U=—(DsD* —8R)V, (35)

which automatically satisfies (34), and, as it turns out, is the natural for-
mulation [41] in the context of the heterotic string. Supergravity in ten di-
mensions contains a dilaton ¢ and gauge invariant two-form potential bps .
Their remnants in four dimensions include the dilaton Res and a two-form
b, whose three-form field strength h,,, provides the axionic companion
a = Ims of the dilaton through the duality transformation
2

e,uupaaaa'a(aRleIZP - h,uup- (36)
It follows from supersymmetry that the chiral supermultipet is dual to a
linear supermultiplet [42], whose components are a scalar ¢, a two-form
and a majorana spinor (with no auxiliary field). The coupling of the chiral
superfield S to the Yang-Mills superfield strength implies that it is dual to
a modified linear superfield, defined by

(D*—8R)L=—> WWg. (37)

When one of the superfield strength bilinears on the RHS forms a conden-
sate, we replace that bilinear with its interpolating chiral supermultiplet U,
and (34) is automatically satisfied. In other words we identify the vector
superfield V' in (35) with the modified linear superfield L.

It is not intuitively obvious how to generate a potential for an anti-
symmetric tensor (Kalb-Raymond field) b, or for a linear supermultiplet
L. The former problem was solved in 1981 by Aurilia and Takahashi [43].
Following their approach, the latter problem has been solved for global su-
persymmetry [39, 40] and for local supersymmetry, first using gauge fixed
superconformal supergravity [40], and then in the Kahler superspace of [21]
with the GS term incorporated [36].

In fact, the 4d Green-Schwarz term is more elegantly introduced in the
linear multiplet formulation [44]; it appears [45] as a constant of integration
in the superfield duality transformation:

L oK

T oL (38)

S+§+VG(T,<I>):—/
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It has been argued [39] that the two formulations are equivalent in the
presence of nonperturbative effects such as gaugino condensation. Although
there are some indications [36, 46] that these formulations are not exactly
equivalent, they have been shown to give the same results for condensate-
induced potentials [47]. The construction of an effective potential for the
dilaton is more straightforward in the linear formulation, but the results
can easily be translated [48] to the more familiar language of the chiral
formulation. However the linear formulation has the advantage that that
there is no mixing of the dilaton ¢ with the Kéhler moduli ¢/, and the salient
features of the model are therefore more transparent.

5. Kahler stabilization of the dilaton

Because the GS term destabilizes the dilaton in the direction of strong
coupling, nonperturbative corrections to the dilation potential, either field
theoretic [49] or string theoretic [50] must be included. Since the latter,
proportional to e~%/9, are less suppressed for weakish coupling, a~' =
47 (Res) > 1, than the former, proportional to e’“/92, they are expected
to dominate. It was argued [49, 52] that these effects could stabilize the
dilaton potential, and explicit realizations of this scenario were subsequently
constructed, first for a single gaugino condensate [34, 53]. In this case,
when T-duality is imposed [34] by including the GS term, the moduli-
dependence of the anomalous quantum correction is canceled, and Kéhler
moduli are not stabilized. The general (and more realistic) case of several
gaugino condensates as well as matter condensates was considered in [38].
When matter condensates and/or threshold corrections (27) are included
the moduli are stabilized at self-dual points, <tI > = 1 or €', with vanishing
F-terms (F!) = 0. As a consequence, supersymmetry breaking is dilaton-
dominated, with universal couplings to matter.

The effective potential for the condensates is constructed by anomaly
matching. Once the heavy condensates have been integrated out, and the
Kéahler moduli fixed at their vev’s, the potential for the dilaton takes the

dThese are in fact implicitly included in the approach of [34, 38]; it has been shown [51]
that those constructions, using static condensates, give the same result as obtained
after integrating out dynamical condensates, the potential source of the field theoretic
corrections.
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2
V() => [ua| [k’(ﬁ) (1 —bat)” — Ebi} L ua(O)]? = cactO-250 ba.

(39)
Here k() is the Kéhler potential for the dilaton, u, = U,|, and

1 1 ;
bo= 55 <ca -3 Z ca) (40)

is related to the one-loop S-function of the group G, as in (9). The constant
cq depends on the various Casimirs of the group G,, and contains as a factor
the vev of the modular (T-duality) invariant term

I GRR R R R (41)
K3
Evaluated at self-dual points, the terms in square brackets are approxi-
mately unity, The value of |u,(€)] is dominated by the standard RGE factor
e~ 1/t with now 9.2 = (s(£)), ¥ a at the string scale. The function s(¢)
satisfies the differential equation

K (0) = —205/(0), (42)

which is just the lowest component of the derivative of (38) if we identify
s(0) = Res + $Va(t, ¢).

Unless there are condensing gauge groups with nearly-but not quite-
degenerate values of b, (which is difficult to achieve in this context), the po-
tential is dominated by the contribution from the group(s) with the largest
value of b,. The phenomenology® is the same as for a single condensing
gauge group with one important exception. If there is just one conden-
sate (or more than one with the same beta-function coefficient) larger than
the QCD condensate, there is an unbroken R-symmetry [49]; as a conse-
quence the axion partner of the dilaton is massless above the scale of QCD
condensation, and is a candidate for the Peccei-Quinn axion [55].

To determine [56] the spectrum of the remaining particles in this
scenario, it is sufficient to consider a single (or dominant) condensate
u with beta-function b., and drop the sum over a in (39). If we im-
pose the conditions that the vacuum energy is vanishingly small and that
g 2(ms) = (s(f)) is close to the measured value of about 2, we can make
a two or three parameter fit to the nonperturbative corrections to k(¢) of

¢For a detailed review of the phenomenology and cosmology of this class of models see
Ref. [54].
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the form [56], for example, k(¢) = In(¢) + <a1 + @/\/Z) exp(—b/v/¥) with
a;,b ~ 1; other parameterizations have been considered in [57]. The phe-
nomenology is insensitive to this choice.

The requirement of (nearly) vanishing vacuum energy requires that

) 32
KOO = (1 _ gob )2 ~ sz, 80 = <€>7 (43)

since generally b, < 1, and in the weak coupling regime we expect £y ~ 1.
The dilaton kinetic energy term is given by

1 0?k(s)
4 0s?

/ /
Lip(l) = PO WLAC )aﬂea“z - k4(f°)aﬂzaﬂe [1+0@)] .
0
(44)
where here s = s(¢) and £ = ¢ — 5. Since (43) implies that k'(¢g)/lo is
very small, the dilaton mass mg, proportional to £y/k’(£y) is quite large; if
V" (€) ~ 1 (in reduced Planck mass units)

1
i ggmy S my, my = Clul (45)

b2

C

The Kéahler moduli have smaller masses:

2 (b
~—|——1
e (51

but can still be considerably larger than the gravitino mass m 3 if b > b,
thus alleviating the cosmological “moduli problem” [58]. The matter scalar
masses m; depend on their couplings to the GS term (29):

(46)

l\)\@

ms < m; < my. (47)

The lower bound is satisfied if Vi is independent of ®?, and the upper bound
holds if the O(®?) term is just the completion of the Kéhler potential K (T+
T,|®|?). An analysis of the viability of electroweak symmetry breaking
favors the former [59] for the MSSM scalars, at least for the stop and the
Higgs. On the other hand the condition (43) suppresses the gaugino masses:

s'(¢ K¢
m (0) ~ 928020, = _g2a )M )5

3
200 |~ SoR(Ae)b2my |

(48)
For the scalars, the running of the wave function from the string scale

1
2

to A, is canceled by the running of bilinear couplings of scalars to the
condensate, which are proportional to the Kahler metric. So they are de-
generate at the condensation scale. However the gaugino wave function
renormalization runs as usual between these scales, and the ratios among
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gaugino masses are the same as in the minimal supergravity (nSUGRA—
or ¢cMSSM, for constrained MSSM) model [60], up to additional radiative
corrections [61]. In fact, because the gauginos are much lighter than the
scalars, these can be important; in some regions of parameter space the
gaugino spectrum resembles that of an anomaly mediated scenario [62, 63].
Radiative corrections are especially important if the upper bound in (47)
is satisfied for some scalars.

Possibilities for generating the observed energy density of dark mat-
ter [64] and a successful inflationary epoch [65] have also been explored in
this class of models with promising results. However, these scenarios will
have to be revisited [66] in light of results from the Large Hadron Collider
(LHC).

6. The virtues of T-duality

T-duality assures that the self-dual points, t = 1, e'6 are extrema of the
potential. When the dilaton is stabilized by corrections to the Kahler po-
tential, with cancellation of the modular anomaly, these are always minima,
with vanishing F-terms for the Kéhler moduli. This assures that supersym-
metry breaking is dilaton dominated; the universal coupling of the dilaton
to squarks in turn assures that no flavor changing neutral current (FCNC)
effects are introduced at tree level in the effective theory, provided matter
couplings to the GS term are flavor diagonal (or absent). However it has
been argued [67] that loop corrections can introduce large FCNC effects be-
cause they involve the Kéhler Ricci tensor R;, that itself is a contraction
of the Kéhler Riemann tensor which involves a sum over all the scalars of
the effective 4-d theory:

2 2

A L
Litoop 3 — -5 Rin F'F™ = —
1-loop > 1672

L6 RI._FIF™, (49)

ijm

with the auxiliary fields F"* given (31). The large number of terms in the
sum over j could potentially compensate for the loop suppression factor.
There are several ways in which these terms can be suppressed in the present
context [68]. The tree level Lagrangian contains the term

Liree > —KimF'F™, (50)

The vev of the Kahler metric (K;z) has to be flavor diagonal to a high
degree of accuracy to avoid kinetic flavor mixing, and the strong suppression
of FCNC at tree level requires that the vev of MSSM scalar derivatives of
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the whole expression in (50) be flavor diagonal. If conservation of flavor
symmetry in the K&hler metric is due to an isometry of the Kahler geometry,
the symmetry of the Kéhler potential is also a symmetry of the Ricci tensor.
For example, the Kéhler potential for the “untwisted” sector of orbifold
compactifications with just three diagonal Kahler moduli:

3 Nr
Kuntw = ZKI = - Zln <TI +TI Z |(I)1[1?1tw|2> I (51)
I=1 I a=1

has, in addition to the SL(2,Z) = SL(1,1) symmetry defined by (18) and
(21), a much larger symmetry, namely ]_[?:1 SU(N1 4+ 1,1), which assures
that the Kéhler Ricci tensor is proportion to the Kéhler metric for each
untwisted sector I:

RiIm = (Nn + 2)Kilm~ (52)
If the full Kdhler metric possessed a similar isometry, there would be no

significant FCNC contributions from loop corrections. More generally, if
supersymmetry is dilaton dominated [48]:

!

no flavor violation is introduced at one loop. Regularization of the quadratic
divergences with a constant momentum cut-off A does not preserve super-
symmetry. Supersymmetric Pauli Villars regularization introduces addi-
tional terms in such a way that the entire quadratically divergent contribu-
tion amounts to [69, 70] a redefinition of the vierbein ef; and a renormaliza-
tion of the Kihler metric: K (®*,77,8) — Kf(®* 71 S), and the masses
for MSSM scalars ¢* are given by (in the absence of D-term contributions,
and assuming for concreteness the lower bound in (47))

(m?); = 8m3 — (Br)jn FRER) (54)
with the subscript R denoting the renormalized Riemann tensor and aux-
iliary fields. R;lsg vanishes at tree level and is proportional to 5;- at one
loop. Even under more general assumptions, it seems difficult to generate
large quadratically divergent contributions in the heterotic string context;
their detailed expression depends on parameters in the Pauli-Villars sector
that are not completely determined by the cancellation of quadratic and
linear divergences—and that reflect the underlying UV physics that make
the theory finite [68].

In addition, T-duality suppresses [71] higher dimension operators that
could break [49] the R-symmetry that keeps the “universal” axion—that
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is, the axion partner of the dilaton—massless down to the scale of QCD
condensation. An analysis [55] using b. = .038, the preferred value at
the time for the correct abundance of dark matter [64], found that this
axion could be the QCD—-or Peccei-Quinn—axion, provided the group of T-
duality transformations is larger than the minimal one defined by (18). As
it happens, that value of b, is very close to a critical value 872b. = N, = 3
(for low energy QCD) where the axion mass vanishes, and the residual
R-symmetry does not include a transformation on the quarks, so in that
limit there is no solution to the QCD CP violation problem. In addition the
axion coupling is quite high in this scenario, and its viability requires a very
small misalignment angle in the early universe [72]. However the preferred
value of b. has to be reconsidered taking into account LHC data [66]; a
considerably larger value of b. could alleviate these problems.

Finally, T-duality might provide a rationale for R-parity, or an even
stronger symmetry' [73] that may be required to suppress the dimension
four superpotential operator (U¢)2D¢E¢, which leads to dimension five op-
erators in the effective Lagrangian that, if suppressed only by a factor ml_g1
or m; !, is in conflict [74] with limits on proton decay. The transforma-
tions (21) and (28) actually have phase factors on the RHS with constant
phases [75] ¢ that depend on the parameters a,b,c,d in (18). These are
commonly dropped in the literature, because they do not appear in the
potential, and can be reabsorbed [76] into the definition of the chiral super-
fields ®/. However, it is precisely the phases in (28) that forbid operators
of higher order in superfield strength bilinears from appearing in the La-
grangian, thereby protecting the mass of the universal axion.

When these phases are kept explicit one gets selection rules for super-
potential couplings that are identical to string selection rules [77], but now
expressed in terms of the symmetries of the effective field theory. The
group of modular invariance is broken by the vev’s of the moduli and the
gaugino condensate, but a subgroup that leaves the self-dual points and
the gaugino condensate invariant, remains a symmetry of the theory. This
may be further broken by the large vev’s of scalars, for example, when an
anomalous U(1) symmetry is broken. The resulting discreet symmetry is a
combination of T-duality and U(1) transformations that leaves the scalars
with nonvanishing vev’s invariant, under which chiral superfields ® trans-
form with phase factors e??/™, where ~ is an arbitrary rational number.
(For example v = n/33 in the extensively studied model of Ref. [9].) This

fSee also Section 6.1 of [54].
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allows for the possibility of a symmetry stronger than R-parity that also
forbids the dangerous dimension four operators in the superpotential [73].

7. Challenges

Orbifolds with Wilson lines, generally have an anomalous U(1), often de-
noted by U(1)x, that is not an anomaly of the underlying string theory,
and must be canceled by an additional GS term [78]. This is accomplished
by the substitution in (23) or (38) Vo — Vo — dxVx, where Vy is the
U(1)x vector superfield, and

S = @x =~y Y0 Cha¥ =~ Q% (55)

The matrix Qx = diag(q;%,...,qx) is the U(1)y charge operator. The
conditions in (55), required for full anomaly cancellation, hold in all orbifold
compactifications. The presence of dx Vx in the GS term leads to a D-term,
Dx # 0, which is canceled by the vev's of U(1)x-charged scalars. Since
these are generally charged under additional U(1)’s, full cancellation of
of the D-term requires some number m of U(1)’s being broken by n >
m scalar vev’'s. This is in fact a welcome feature since it removes many
matter fields from the effective theory below the U (1) x-breaking scale and
allows for an asymptotically free gauge group that can condense and break
supersymmetry. This additional GS term can also stabilize the dilaton and
provide a flat, inflationary potential during the early universe [65]

For “minimal” models with n = m, the phenomenology$ [57] of gaugino
condensation with Kéhler stabilization of the dilaton does not change sub-
stantially from that discussed above except for MSSM scalar masses, that
now get an additional contribution

G
Ami = pmy Z Qi (56)

where the m x m matrix Q4 is the inverse of the matrix Q% whose elements
are the U(1), charges ¢% of the m scalars ¢* that get large vev's at the
U(1)-breaking scale. If ¢ ~ 1 (56) will dominate over (47). It is not posi-
tive definite, and can destabilize the MSSM vacuum. It can also generate
FCNC effects unless MSSM states with the same SM quantum numbers
also have the same U(1), charges (which could easily be the case in Z,
orbifolds). Another issue is the large degeneracy of the vacuum which can

gSee also Section 5 of [54].
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leave massless “D-moduli” [79]. In minimal models all the complex scalars
that vanish in the vacuum get vev’s as in (47), but their fermionic partners
remain massless—a cosmological disaster [58, 80]—unless they get masses
through Yukawa couplings. Models with n > m are even more problem-
atic for both cosmology and phenomenology. The challenge for string phe-
nomenologists is to find orbifold compactifications with ( < 1, as well as a
mechanism for sufficient suppression of the proton lifetime. Models with R-
parity conservation have been found [81] in Zg orbifold compactifications,
but as discussed in the previous section, a stronger symmetry is needed to
suppress dimension-four superpotential terms.

Another obvious challenge is finding a compactification that produces,
not just the SM particle content, but the pattern of quark and lepton
fermion masses, and in particular explaining the very small neutrino masses.
For example, it was found [82] that a simple seesaw mechanism does not
arise in the well-studied standard model-like Z3 orbifold compactifications.

Finally, the effective supergravity theory described above is probably
still incomplete. In addition to the anomalous terms containing Yang-
Mills superfield strength bilinears, there are many others. In particular,
every logarithmic divergence has an associated conformal anomaly. The
full chiral [83, 84] and conformal [84] anomalies in supergravity have been
calculated. A subset of the latter combine with chiral anomalies to form
“F-term” anomalies like (20); others have no chiral counterpart and form
“D-term” anomalies. Determining the conformal anomalies requires reg-
ulating the theory; using a supersymmetric Pauli-Villars regulation [85]
the anomalous coefficients of the Yang-Mills bilinears, as well as operators
associated with space-time curvature and the Kéahler connection, are can-
celed by the GS mechanism. There are other operators, that depend on
the modular weights and U(1)x charges of the matter fields, whose can-
cellation appears to require constraints on unknown twisted matter Kahler
potential terms, and on the detailed choice of Pauli-Villars regulators. It
has been shown [86] that the GS term completely cancels the anomalies in
Zs and Z7 orbifold compactifications (without Wilson lines) at the string
level. Achieving this at the effective field theory level could provide infor-
mation relevant for the suppression of FCNC and for loop corrections to
soft supersymmetry breaking terms [48].

The ultimate challenge for any theory is confrontation with experiment.
Signatures for Kéhler stabilized heterotic models with anomaly cancellation
were studied in detail [87] before the startup of the LHC. The absence of
supersymmetry signals at the LHC and the discovery of an SM-like Higgs
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with a mass considerably larger than the MSSM tree level prediction m;, <
my for the lightest Higgs scalar constrain supersymmetry in general and
the class of models discussed above in particular. An analysis [66] of Kéhler
stabilized, modular invariant models without D-term couplings to MSSM
scalar masses, and with no MSSM couplings in the GS term, led to the
following constraints on these models: (1) scalar superpartners are too
heavy to be accessible to the LHC and their contribution to deviations
from SM prediction are negligible, (2) gluino masses are no larger tha 2900
GeV, and more likely (for smaller values of b. < 0.1 as expected in these
models) less than 2100-and LHC accessible, (3) the Higgs mass can be no
larger than 127 GeV and has SM-like couplings, (4) the ratio of the two
Higgs vev's tan 8 > 40 is large, implying a small x4 parameter, (5) there will
be a collection of neutralinos and charginos, much lighter than gluinos, but
about twice as heavy as those in a similarly constrained mSugra model, with
small mass splittings, (6) the LSP (lightest supersymmetric particle, which
is stable and can provide dark matter) will be mostly Higgsino, and (7)
evidence for dark matter should show up in the Large Underground Xenon
(LUX) experiment within two years. However, there remains a significant
region of parameter space still to be explored, including variations on the
above assumptions.
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String theoretical ideas might be relevant for particle physics model
building. Ideally one would hope to find a unified theory of all fun-
damental interactions. There are only few consistent string theories in
D = 10 or 11 space-time dimensions, but a huge landscape in D = 4.
We have to explore this landscape to identify models that describe the
known phenomena of particle physics. Properties of compactified six
spatial dimensions are crucial in that respect. We postulate some use-
ful rules to investigate this landscape and construct realistic models.
We identify common properties of the successful models and formulate
lessons for further model building.

1. Introduction

One of the main goals of string theory is the inclusion of the Standard
Model (SM) of particle physics in an ultraviolet complete and consistent
theory of quantum gravity. The hope is a unified theory of all fundamental
interactions: gravity as well as strong and electroweak interactions within
the SU(3) x SU(2) x U(1) SM. Recent support for the validity of the particle
physics Standard Model is the 2012 discovery of the “so-called” Higgs boson.
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How does this fit into known string theory? Ideally one would have
hoped to derive the Standard Model from string theory itself, but up to
now such a program has not (yet) been successful. It does not seem that
the SM appears as a prediction of string theory. In view of that we have
to ask the question whether the SM can be embedded in string theory. If
this is possible we could then scan the successful models and check specific
properties that might originate from the nature of the underlying string
theory.

Known superstring theories are formulated in D = 10 space time dimen-
sions (or D = 11 for M theory) while the SM describes physics in D = 4.
The connection between D = 10 and D = 4 requires the compactification of
six spatial dimensions. The rather few superstring theories in D = 10 give
rise to a plethora of theories in D = 4 with a wide spectrum of properties.
The search for the SM and thus the field of so-called “String Phenomenol-
ogy” boils down to a question of exploring this compactification process in
detail.

But how should we proceed? As the top-down approach is not successful
we should therefore analyse in detail the properties of the SM and then use
a bottom-up approach to identify those regions of the “string landscape”
where the SM is most likely to reside. This will provide us with a set
of “rules” for D = 4 model constructions of string theory towards the
constructions of models that resemble the SM.

The application of these rules will lead us to “fertile patches” of the
string landscape with many explicit candidate models. Given these models
we can then try to identify those properties of the models that make them
successful. They teach us some lessons towards selecting the string theory
in D = 10 as well as details of the process of compactification.

In the present paper we shall describe this approach to “string phe-
nomenology”. In Section 2 we shall start with “five golden rules” as they
have been formulated some time ago [1]. These rules have been derived
in a bottom-up approach exploiting the particular properties of quark- and
lepton representations in the SM. They lead to some kind of (grand) unified
picture favouring SU(5) and SO(10) symmetries in the ultraviolet. How-
ever, these rules are not to be understood as strict rules for string model
building. You might violate them and still obtain some reasonable models.
But, as we shall see, life is more easy if one follows these rules.

In Section 3 we shall start explicit model building along these lines. We
will select one of those string theories that allow for an easy incorpora-
tion of the rules within explicit solvable compactifications. This leads us
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to orbifold compactifications of the heterotic Eg x Eg string theory [2, 3]
as an example. We shall consider this example in detail and comment
on generalizations and alternatives later. The search for realistic models
starts with the analysis of the so-called Zg-1II orbifold [4-11]. We define the
search strategy in detail and present the results known as the “MiniLand-
scape” [8, 11], a fertile patch of the string landscape for realistic model
building. We analyse the several hundred models of the MiniLandscape to-
wards specific properties, as e.g. the location of fields in extra-dimensional
space. The emerging picture leads to a notion of “Local Grand Unifica-
tion”, where some of the more problematic aspects of grand unification
(GUT) can be avoided. We identify common properties of the successful
models and formulate “lessons” from the MiniLandscape that should join
the “rules” for realistic model building.

Section 4 will be devoted to the construction of new, explicit MSSM-
like models using all Z n and certain Zy x Z s orbifold geometries resulting
in approximately 12000 orbifold models. Then, in Section 5 we shall see
how the lessons of the MiniLandscape will be tested in this more general
“OrbifoldLandscape”.

In Section 6 we shall discuss alternatives to orbifold compactifications,
as well as model building outside the heterotic Eg x Eg string. The aim is
a unified picture of rules and lessons for successful string model building.
Section 7 will be devoted to conclusions and outlook.

2. Five Golden Rules

Let us start with a review of the “Five golden rules for superstring phe-
nomenology”, which can be seen as phenomenologically motivated guide-
lines to successful string model building [1]. The rules can be summarized
as follows: we need

—~
—_
~—

spinors of SO(10) for SM matter

incomplete GUT multiplets for the Higgs pair

repetition of families from geometrical properties of the compactifica-
tion space

(4) N =1 supersymmetry

(5) R-parity and other discrete symmetries

—_~
w N
= —

Let us explain the motivation for these rules in some detail in the following.
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2.1. Rule I: Spinors of SO(10) for SM matter

It is a remarkable fact that the spinor 16 of SO(10) is the unique irre-
ducible representation that can incorporate exactly one complete genera-
tion of quarks and leptons, including the right-handed neutrino. Thereby, it
can explain the absence of gauge-anomalies in the Standard Model for each
generation separately. Furthermore, it offers a simple explanation for the
observed ratios of the electric charges of all elementary particles. In addi-
tion, there is a strong theoretical motivation for Grand Unified Theories like
SO(10) from gauge coupling unification at the GUT scale Mgyt ~ 3 x 106
GeV. Hence, the first golden rule for superstring phenomenology suggests
to construct string models in such a way that at least some generations of
quarks and leptons reside at a location in compact space, where they are
subject to a larger gauge group, like SO(10). Hence, these generations come
as complete representations of that larger group, e.g. as 16 of SO(10).

The heterotic string offers this possibility through the natural presence
of the exceptional Lie group Eg, which includes an SO(10) subgroup and
its spinor representation. Furthermore, using orbifold compactification the
four-dimensional Standard Model gauge group can be enhanced to a local
GUT, i.e to a GUT group like SO(10) which is realized locally at an orb-
ifold singularity in extra dimensions. In addition, there are matter fields
(originating from the so-called twisted sectors of the orbifold) localised at
these special points in extra dimensions and hence they appear as complete
multiplets of the local GUT group, for example as 16-plets of SO(10).

On the other hand, the spinor of SO(10) is absent in (perturbative) type
IT string theories, which can be seen as a drawback of these theories. Often
this drawback manifests itself in an unwanted suppression of the top quark
Yukawa coupling. On the other hand, F-theory (and M-theory) can cure
this through the non-perturbative construction of exceptional Lie groups
like e.g. Eg. When two seven-branes with SO(10) gauge group intersect in
the extra dimensions, a local GUT can appear at the intersection. There,
the gauge group can be enhanced to a local Eg and a spinor of SO(10) can
appear as matter representation.

2.2. Rule II: Incomplete GUT multiplets for the Higgs pair

Beside complete spinor representations of SO(10) for quarks and leptons,
the (supersymmetric extension of the) Standard Model needs split, i.e. in-
complete SO(10) multiplets for the gauge bosons and the Higgs(—pair).
Their unwanted components inside a full GUT multiplet would induce rapid
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proton decay and hence need to be ultra-heavy. In the case of the Higgs dou-
blet, this problem is called the doublet—triplet splitting problem, because
for the smallest GUT SU(5) a Higgs field would reside in a five-dimensional
representation of SU(5), which includes beside the Higgs doublet an un-
wanted Higgs triplet of SU(3). This problem might determine the locali-
sations of the Higgs pair and of the gauge bosons in the compactification
space: they need to reside at a place in extra dimensions where they feel
the breaking of the higher-dimensional GUT to the 4D SM gauge group.
Hence, incomplete GUT multiplets, e.g. for the Higgs, can appear. This is
the content of the second golden rule.

In this way local GUTs exhibit grand unified gauge symmetries only
at some special “local” surroundings in extra dimensions, while in 4D the
GUT group seems to be broken down to the Standard Model gauge group.
This allows us to profit from some of the nice properties of GUTs (like
complete representations for matter as described in the first golden rule),
while avoiding the problematic properties (like doublet-triplet splitting).

In the case of the heterotic string on orbifolds the so-called untwisted
sector (i.e. the 10D bulk) can naturally provide such split SO(10) multi-
plets for the gauge bosons and the Higgs. In particular, when the orbifold
twist acts as a Zs in one of the three complex extra dimensions, one can
obtain an untwisted Higgs pair that is vector-like with respect to the full
(i.e. observable and hidden) gauge group. Combined with an (approximate)
R-symmetry this can yield a solution to the u-problem of the MSSM. Fur-
thermore, as all charged bulk fields originate from the 10D Eg x Eg vector
multiplet this scenario naturally yields gauge—Higgs—unification.

Finally, an untwisted Higgs pair in the framework of heterotic orbifolds
can relate the top quark Yukawa coupling to the gauge coupling and hence
give a nice explanation for the large difference between the masses of the
third generation compared to the first and second one. In order to achieve
this, the top quark needs to originate either from the bulk (as it is often
the case in the MiniLandscape [8] of Zg-II orbifolds) or from an appro-
priate fixed torus, i.e. a complex codimension one singularity in the extra
dimensions.

2.3. Rule III: Repetition of families

The triple repetition of quarks and leptons as three generations with the
same gauge interactions but different masses is a curiosity within the Stan-
dard Model and asks for a deeper understanding. One approach from a
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bottom-up perspective is to engineer a so-called flavour symmetry: one in-
troduces a (non-Abelian) symmetry group, discrete or gauge, and unifies
the three generations of quarks and leptons in, for example, a single three-
dimensional representation of that flavour group. However, as the Yukawa
interactions violate the flavour symmetry, it must be broken spontaneously
by the vacuum expectation value of some Standard Model singlet, the so-
called flavon. This might explain the mass ratios and mixing patterns of
quarks and leptons.

The third golden rule for superstring phenomenology asks for the origin
of such a flavour symmetry. The rule suggests to choose the compactifica-
tion space such that some of its geometrical properties lead to a repetition
of families and hence yields a discrete flavour symmetry. In this case, the
repetition of the family structure comes from topological properties of the
compact manifold. Within the framework of type II string theories, the
number of families can be related to intersection numbers of D-branes in
extra dimensions, while for the heterotic string it can be due to a de-
generacy between orbifold singularities. In the latter case, one can easily
obtain non-Abelian flavour groups which originate from the discrete symme-
try transformations that interchange the degenerate orbifold singularities,
combined with a stringy selection rule that is related to the orbifold space
group [12]. In any case the number of families will be given by geometrical
and topological properties of the compact six-dimensional manifold.

2.4. Rule IV: N = 1 supersymmetry

Superstring theories are naturally equipped with A/ = 1 or 2 supersym-
metry in 10D. However, generically all supersymmetries are broken by the
compactification to 4D. The fourth golden rule suggests to choose a “non-
generic” compactification space such that A/ = 1 survives in 4D. Examples
for such special spaces are Calabi—Yaus, orbifolds and orientifolds. Motiva-
tion for this is a solution of the so-called “hierarchy problem” between the
weak scale (a TeV) and the string (Planck) scale. Supersymmetry can sta-
bilize this large hierarchy. Since such a supersymmetry appears naturally
in string theory, we assume that A/ = 1 supersymmetry will survive down
to the TeV-scale.

2.5. Rule V: R-parity and other discrete symmetries

Apart from the gauge symmetries of string theory, we need more symme-
tries to describe particle physics phenomena of the supersymmetric Stan-
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dard Model. These could provide the desired textures of Yukawa couplings,
explain the absence of flavour changing neutral currents, help to avoid too
fast proton decay, provide a stable particle for cold dark matter and solve
the so-called p-problem. We know that (continuous) global symmetries
might not be compatible with gravitational interactions. Hence, local dis-
crete symmetries might play this role in string theory.

One of these symmetries is the well-known matter parity of the mini-
mal supersymmetric extension of the Standard Model (MSSM): it forbids
proton decay via dim. 4 operators and leads to a stable neutral WIMP
candidate. Other discrete gauge symmetries are required to explain the
flavour structure of quark/lepton masses and mixings.

3. The MiniLandscape

As we have seen in our review in Section 2, the five golden rules [1] naturally
ask for exceptional Lie groups. SO(10), although it is not an exceptional
group, fits very well in the chain of exceptional groups Eg — E; — Eg —
SO(10) — SU(5) — SM. Therefore, the Eg x Eg heterotic string is the
prime candidate and we choose it as our starting point. Alternatives to
obtain Eg in string theory are M- and F-theory, where such gauge groups
can appear in non-perturbative constructions.

The implementation of the rules in string theory started with the con-
sideration of orbifold compactifications of the Eg x Fg heterotic string. This
lead to the so-called “heterotic brane world” [14] where toy examples have

Fig. 1. Gauge group topography from Ref. [13]. At different fixed points (corners of
the tetrahedron), Eg gets broken to different subgroups (U(1) factors are suppressed).
At the edges we display the intersection of the two local gauge groups realised at the
corners. The 4D gauge group is the standard model gauge group.
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Fig. 2. The six-dimensional torus (e1,...,eg) of the Zg-II orbifold. In the 6-, w-twisted

sector the second, third torus is left invariant, respectively, while in the fw-sector there
are fixed points (labelled by a, b, c).

been constructed in the framework of the Zs x 7, orbifold. There, the
explicit “geographical” properties of fields in extra dimensions have been
presented and the local GUTs at the orbifold fixed points were analysed,
see e.g. Fig. 1.

3.1. Exploring the Zg-1I orbifold

A first systematic attempt at realistic model constructions [8, 11] was based
on the Zg-1I orbifold [4] of the Eg x Eg heterotic string. This orbifold consid-
ers a six-torus defined by the six-dimensional lattice of Gg x SU(3) x SO(4)
modded out by two twists, each acting in four of the six extra dimensions:
0 of order 2 (#* = 1) and w of order 3 (w® = 1), see Fig. 2.

In Ref. [8] the embedding of the twists into the Eg x Eg gauge group
was chosen in such a way that at an intermediate step there are local
SO(10) GUTs with localised 16-plets for quarks and leptons. This choice
can be motivated by rule I, as discussed in the previous section. Further
breakdown of the gauge group to SU(3) x SU(2) x U(1) is induced by two
orbifold Wilson lines [15]. In this set-up, a scan for realistic models was
performed using the following strategy:

e choose appropriate Wilson lines (and identify inequivalent models)

e SM gauge group SU(3) x SU(2) x U(1)y C Eg times a hidden sector

e Hypercharge U(1)y is non-anomalous and in SU(5) GUT normalisation
e (net) number of three generations of quarks and leptons

e at least one Higgs pair

e exotics are vector-like w.r.t. the SM gauge group and can be decoupled

Using the above criteria, the computer assisted search led to a total
of some 200 and 300 MSSM-like models in Refs. [8] and [11], respectively.
The models typically have additional vector-like exotics as well as unbroken
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U(1) gauge symmetries, one of which is anomalous. This anomaly induces
an Fayet—Iliopoulos-term (FI-term), hence a breakdown of the additional
U(1)’s and thus allows for a decoupling of the vector-like exotics. Explicit
examples are given in Ref. [9] as benchmark models.

All fields of the models can be attributed to certain sectors with specific
geometrical properties. In the present case there is an untwisted sector with
fields in 10D (bulk), as well as twisted sectors where fields are localised at
certain points (or two-tori) in the six-dimensional compactified space. The
Ow twisted sector (Fig. 2) has fixed points and thus yields fields localised
at these points in extra dimensions that can only propagate in our four-
dimensional space-time. The 6 and w twisted sectors, in contrast, have
fixed two-tori in extra dimensions. Fields in these sectors are confined to
six space—time dimensions. Many properties of the models depend on these
“geographic” properties of the fields in extra dimensions. For example,
Yukawa couplings between matter and Higgs fields and in particular their
coupling strengths are determined by the “overlap” of the fields in extra
dimensions.

3.2. Lessons from the Zg-II MiniLandscape

Given this large sample of realistic models, we can now analyse their prop-
erties and look for similarities and regularities. Which geometrical and geo-
graphical properties in extra dimensions are important for realistic models?

By construction, all the models have observable sector gauge group
SU(3) x SU(2) x U(1) and possibly some hidden sector gauge group relevant
for supersymmetry breakdown. There is a net number of three generations
of quarks and leptons and at least one pair of Higgs doublets H, and Hg.
The Higgs-triplets are removed and the doublet—triplet splitting problem
is solved. A first question concerns a possible “u-term”: puH, H; and we
shall start our analysis with the Higgs-system, following the discussion of
Ref. [16].

3.2.1. Lesson 1: Higgs-doublets from the bulk

The Higgs-system is vector-like and a p-term pH, Hy is potentially allowed.
As this is a term in the superpotential we would like to understand why
1 is small compared to the GUT-scale: This is the so-called u-problem.
To avoid this problem one could invoke a symmetry that forbids the term.
However, we know that p has to be non-zero. Hence, the symmetry has
to be broken and this might reintroduce the p-problem again. In string
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theory the problem is often amplified since typically we find several (say
N) Higgs doublet pairs. In the procedure to remove the vector-like exotics
(as described above) we have to make N — 1 pairs heavy while keeping one
light. In fact, in many cases the small p-parameter is the result of a specific
fine-tuning in such a way to remove all doublet pairs except for one. We
do not consider this as a satisfactory solution. Fortunately, the models of
the MiniLandscape are generically not of this kind.

Many MiniLandscape models provide one Higgs pair that resists all
attempts to remove it. This is related to a discrete R-symmetry [9] that
can protect the p-parameter in the following way: In some cases the discrete
R-symmetry is enlarged to an approximate U(1)g [17, 18].* Therefore, a -
parameter is generated at a higher order M in the superpotential W, where
the approximate U(1) g is broken to its exact discrete subgroup. This yields
a suppression p ~ (W) ~ M where € < 1 is set by the FI parameter.

The crucial observation for this mechanism to work is the localisation of
the Higgs pair H, and Hy in agreement with our second golden rule: both
reside in the 10D bulk originating from gauge fields in extra dimensions.
Furthermore, the Higgs pair is vector-like with respect to all symmetries,
gauge and discrete. This is related to the Zs orbifold action in one of the
two-tori. Hence, each term in the superpotential f(®;) C W also couples to
the Higgs pair, i.e. f(®;)H,H; C W. As SUSY breakdown requires a non-
vanishing VEV of the superpotential the u-term is related to the gravitino
mass, i.e. = f((®;)) = (W) ~ €M ~ mg,5. This is a reminiscent of a field
theoretical mechanism first discussed in Ref. [19].

3.2.2. Lesson 2: Top-quark from the bulk

Among all quarks and leptons the top-quark is very special: its large mass
requires a large top-quark Yukawa coupling. Many MiniLandscape models
address this naturally via the localisation of the top-quark in extra dimen-
sions: both (£,b) and ¢ reside in the 10D bulk, along with the Higgs pair.
Hence, we have gauge-Yukawa unification and the trilinear Yukawa coupling
of the top is given by the gauge coupling.

Typically the top-quark is the only matter field with trilinear Yukawa
coupling. The location of the other fields of the third family is strongly
model-dependent, but in general they are distributed over various sectors:
the third family could be called a “patchwork family”.

aIn addition, U(1) gz symmetries can explain vanishing vacuum energy in SUSY vacua.
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3.2.3. Lesson 3: Flavour symmetry for the first two families

The first two families are found to be located at fixed points in extra di-
mensions (Fig. 2). As such they live at points of enhanced symmetries,
both gauge and discrete.

The discrete symmetry is the reason for their suppressed Yukawa cou-
plings. In the Zg-1I example shown in the figure two families live at adjacent
fixed points in the third extra-dimensional torus: one family is located at
a =>b=c=1, the other at a = b =1 and ¢ = 3 (see Fig. 2). Technically,
this is a consequence of a vanishing Wilson line in the eg direction. This
leads to a Dy flavour symmetry [4, 12, 20]. The two localised families form
a doublet, while the third family transforms in a one-dimensional represen-
tation of Dy. This set-up forbids sizeable flavour changing neutral currents
and thus relieves the so-called “flavour problem”. Furthermore, the geo-
metric reason for small Yukawa couplings of the first and second family is
their minimal overlap with the bulk Higgs fields. This leads to Yukawa
couplings of higher order and a hierarchical generation of masses based on
the Froggatt—Nielsen mechanism [21], where the FI-term provides a small
parameter € that controls the pattern of masses.

In addition, the first two families live at points of enhanced gauge sym-
metries and therefore build complete representations of the local grand
unified gauge group, e.g. as 16-plets of SO(10). Hence, they enjoy the suc-
cessful properties of “Local Grand Unification” outlined in the first golden
rule.

3.2.4. Lesson 4: The pattern of SUSY breakdown

The question of supersymmetry breakdown is a complicated process and we
shall try to extract some general lessons that are rather model-independent.
Specifically we would consider gaugino condensation in the hidden sec-
tor [22—-25] realized explicitly in the MiniLandscape [26], see also Section 5.4.

A reasonable value for the gravitino mass can be obtained if the dilaton
is fixed at a realistic value 1/g*(Mgut) = ReS ~ 2. Thus, the discussion
needs the study of moduli stabilization, which, fortunately, we do not have
to analyse here. In fact we can rely on some specific pattern of supersym-
metry breaking which seems to be common in various string theories, first
observed in the framework of Type IIB theory [27-33] and later confirmed
in the heterotic case [34, 35]: so-called “mirage mediation”. Its source is a
suppression of the tree level contribution in modulus mediation (in particu-
lar for gaugino masses and A-parameters). The suppression factor is given
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by the logarithm of the “hierarchy” log(Mpianck/m3/2), which numerically
is of the order 47w2. Non-leading terms suppressed by loop factors can now
compete with the tree-level contribution. In its simplest form the loop cor-
rections are given by the corresponding (-functions, leading to “anomaly
mediation” if the tree level contribution is absent. Without going into
detail, let us just summarise the main properties of mirage mediation:

e gaugino masses and A-parameters are suppressed compared to the grav-
itino mass by the factor log(Mpianck/m3/2)

e we obtain a compressed pattern of gaugino masses (as the SU(3) -
function is negative while those of SU(2) and U(1) are positive)

e soft scalar masses mgo are more model-dependent. In general we would
expect them to be as large as mg/o [29].

The models of the MiniLandscape inherit this generic picture. But they
also teach us something new on the soft scalar masses, which results in
lesson 4. The scalars reside in various localisations in the extra dimensions
that feel SUSY in different ways: First, the untwisted sector is obtained
from simple torus compactification of the 10D theory leading to extended
N = 4 supersymmetry in D = 4. Hence, soft terms of bulk fields are
protected (at least at tree level) and broken by loop corrections when they
communicate to sectors with less SUSY. Next, scalars localised on fixed
tori feel a remnant A" = 2 SUSY and might be protected as well. Finally,
fields localised at fixed points feel only A/ = 1 SUSY and are not further
protected [36, 37]. Therefore, we expect soft terms mg ~ mg/, for the
localised first two families, while other (bulk) scalar fields, in particular
the Higgs bosons and the stop, feel a protection from extended SUSY.
Consequently, their soft masses are suppressed compared to m3 /o (by a loop
factor of order 1/472). This constitutes lesson 4 of the MiniLandscape.

4. The OrbifoldLandscape

The 10D heterotic string compactified on a six-dimensional toroidal orb-
ifolds provides an easy and calculable framework for string phenomenol-
ogy [2, 3]. A toroidal orbifold is constructed by a six-dimensional torus
divided out by some of its discrete isometries, the so-called point group.
For simplicity we assume this discrete symmetry to be Abelian. Com-
bined with the condition on A/ = 1 supersymmetry in 4D one is left with
certain Zy and Zy X Zps groups, in total 17 different choices. For each
choice, there are in general several inequivalent possibilities, e.g. related to
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the underlying six-torus. Recently, these possibilities have been classified
using methods from crystallography, resulting in 138 inequivalent orbifold
geometries with Abelian point group [38].

The orbifolder [39] is a powerful computer program to analyse these
Abelian orbifold compactifications of the heterotic string. The program
includes a routine to automatically generate a huge set of consistent (i.e.
modular invariant and hence anomaly-free) orbifold models and to identify
those that are phenomenologically interesting, e.g. that are MSSM-like.

A crucial step in this routine is the identification of inequivalent orbifold
models in order to avoid an overcounting: even though the string theory
input parameters of two models (i.e. so-called shifts and orbifold Wilson
lines) might look different, the models can be equivalent and share, for
example, the same massless spectrum and couplings. The current version
(1.2) of the orbifolder uses simply the massless spectrum in terms of the
representations under the full non-Abelian gauge group in order to identify
inequivalent models. However, there are typically five to ten U(1) factors
and the corresponding charges are neglected for this comparison of spectra,
because they are highly dependent on the choice of U(1) basis. As pointed
out by Groot Nibbelink and Loukas [40] one can easily improve this by using
in addition to the non-Abelian representations also the U(1)y hypercharge
as it is uniquely defined for a given MSSM model. We included this criterion
into the orbifolder. However, it turns out that using this refined comparison
method the number of inequivalent MSSM-like orbifold models increases
only by 3%.

4.1. Search in the “OrbifoldLandscape”

Using the improved version of the orbifolder we performed a scan in the
landscape of all Zy and certain Zy x Zj; heterotic orbifold geometries
for MSSM-like models, where our basic requirements for a model to be
MSSM-like are:

SM gauge group SU(3) x SU(2) x U(1)y C Eg times a hidden sector
Hypercharge U(1)y is non-anomalous and in SU(5) GUT normalisation
(net) number of three generations of quarks and leptons

at least one Higgs pair

all exotics must be vector-like with respect to the SM gauge group

We identified approximately 12000 MSSM-like orbifold models that suit
the above criteria. Given the large number of promising models we call
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them the “OrbifoldLandscape”. A summary of the results can be found
in the appendix in Tabs. A.1 and A.2. Furthermore, the orbifolder input
files needed to load these models into the program can be found at [41].
The scan did not reveal any MSSM-like models from orbifold geometries
with Zs, 77 and Zis X Zg-11 point group. This is most likely related to the
condition of SU(5) GUT normalisation for hypercharge.

Note that this search for MSSM-like orbifold models is by far not com-
plete. For example, we only used the standard Z y X Zj; orbifold geometries
(i.e. those with label (1-1) following the nomenclature of Ref. [38]). In ad-
dition, our search was performed in a huge, but still finite parameter set of
shifts and Wilson lines. Finally, the routine to identify inequivalent orbifold
models can surely be improved further. Hence, presumably only a small
fraction of the full heterotic orbifold Landscape has been analysed here.

4.2. Comparison to the literature

Let us compare our findings to the literature. The Zg-1I (1-1) orbifold has
been studied intensively in the past, see e.g. [4, 6, 7, 10]. Also the MiniLand-
scape [8, 11] was performed using this orbifold geometry, see Section 3.1. In
the first paper [8] local SO(10) and Eg GUTs were used as a search strategy
and thus one was restricted to four out of 61 possible shifts, resulting in
223 MSSM-like models. In the second paper [11] this restriction was lifted,
resulting in almost 300 MSSM-like models. They are all included in our set
of 348 MSSM-like models from Zg-1I (1-1), see Tab. A.1 in the appendix.

Similar to Zg-1I, the Zo x 7Z4 orbifold geometry has been conjectured
to be very promising for MSSM model-building [42]. Here, we can confirm
this conjecture: we found 3632 MSSM-like models from Zg x Z4 (1-1) — the
largest set of models in our scan. Also from a geometrical point of view,
the Zso x 7,4 orbifold is very rich: there are in total 41 different orbifold
geometries with Zsy x 74 point group, i.e. based on different six-tori and
roto-translations [38]. We considered only the standard choice here, labelled
(1-1). Hence, one can expect a huge landscape of MSSM-like models to be
discovered from Zio X 7Z.4.

Recently, Groot Nibbelink and Loukas performed a model scan in all
7s-1 and Zg-11 geometries [40]. They also used a local GUT search strategy
(based on SU(5) and SO(10) local GUTs) and hence started with 120 and
108 inequivalent shifts for Zg-1 and Zg-11, respectively. Their scan resulted
in 753 MSSM-like models. Without imposing the local GUT strategy our
search revealed in total 1713 MSSM-like models from Zg, see Tab. A.1.
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Fig. 3. Number of MSSM-like orbifold models vs. number of local SO(10) GUTs with
16-plets for matter.

Further orbifold MSSM-like models have been constructed using the
7.12-1 orbifold geometry [43, 44]. This orbifold seems also to be very promis-
ing as we identified 750 MSSM-like models in this case, see Tab. A.1. Fi-
nally, we confirm the analysis of Ref. [45] for the orbifold geometries Zg-1
and Zy with N = 3,4,7 and standard lattice (1-1).

In the next section we will apply the strategies described by the “Five
golden rules of superstring phenomenology” to our OrbifoldLandscape and
search for common properties of our 12000 MSSM-like orbifold models.
Thereby, we will see how many MSSM-like models would have been found
following the “Five golden rules” strictly and how many would have been
lost. Hence, we will estimate the prosperity of the “Five golden rules”.

5. Five Golden Rules in the OrbifoldLandscape

In the following we focus on the golden rules I-IV. A detailed analysis of
rule V is very model-dependent and will thus not be discussed here.

5.1. Rule I: Spinor of SO(10) for SM matter

As discussed in Section 2.1 at least some generations of quarks and leptons
might originate from spinors of SO(10) sitting at points in extra dimensions
with local SO(10) GUT.P Hence, we perform a statistic on the number of
such localisations in our 12000 MSSM-like orbifold models. The results are
summarised in Tab. A.2 and displayed in Fig. 3.

It turns out that 25% of our models have at least one local SO(10) GUT.
Furthermore, we find that some orbifolds seem to forbid local SO(10) GUTs

PSee also [5, 14] and for an overview on local GUTs Ref. [10].
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Fig. 4. Number of MSSM-like orbifold models vs. number of local SU(5) GUTs with
10-plets for matter.

with 16-plets (for example Zg-I [10]). On the other hand, the MSSM-like
models from Zg-1I and Zs-I (1-1) and (2-1) prefer zero or two localised
16-plets of SO(10). Three local 16-plets are very uncommon, they mostly
appear in Zso X Zy4.

Note that the number of local GUTs can be greater than three even
though the model has a (net) number of three generations of quarks and
leptons. Obviously, an anti-generation of quarks and leptons is needed in
such a case. The maximal number we found in our scan is four local SO(10)
GUTs with 16-plets for matter in the cases of Zg X Zg and Zsg X Z4 orbifold
geometries.

5.1.1. Other local GUTs

In addition, we analyse our 12000 models for local SU(5) GUTs with local
matter in 10-plets. The results are summarised in Table A.2 and displayed
in Fig. 4. We find this case to be very common: almost 40% of our MSSM-
like models have at least one local 10-plet of a local SU(5) GUT.

Next, we also look for local Eg GUT's with 27-plets. We find only a few
cases, most of them appear in Zy X Z); orbifold geometries, see Table A.2.

Finally, we scan our models for localised SM generations (i.e. localised
left-handed quark-doublets) transforming in a complete multiplet of any
local GUT group that unifies the SM gauge group. Again, our results are
listed in Table A.2 and visualised in Fig. 5. We find most of our models,
i.e. 70%, have at least one local GUT with a localised SM generation.

In summary, the first golden rule, which demands for local GUTs in
extra dimensions in order to obtain complete GUT multiplets for matter, is
very successful: most of our 12000 MSSM-like models share this property
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Fig. 5. Number of MSSM-like orbifold models vs. number of local GUTs with local
GUT multiplets for SM matter.

automatically, it was not imposed by hand in our search.

5.2. Rule II: Incomplete GUT multiplets for the Higgs pair

Since the Higgs doublets reside in incomplete GUT multiplets, they might
be localised at some region of the orbifold where the higher-dimensional
GUT is broken to the 4D Standard Model gauge group. This scenario yields
a natural solution to the doublet—triplet splitting problem. The untwisted
sector (i.e. bulk) would be a prime candidate for such a localisation, but
there can be further possibilities. The numbers of such GUT breaking
localisations are summarised in Table A.1 and displayed in Fig. 6.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
it of localisations for the Higgs

Fig. 6. Number of orbifold models vs. number of localisations with broken local GUT
such that only a Higgs doublet but not the triplet survives. The 10D bulk is the most
common localisation of this kind.

We see that GUT breaking localisations are very common among our
MSSM-like models. Only a very few models do not contain any GUT



66 H. P. Nilles and P. K. S. Vaudrevange

breaking localisations that yield incomplete GUT multiplets for at least one
Higgs. On the other hand, there are 4223 cases with one GUT breaking
localisation — in most cases (4097 out of 4223) this is the bulk. In addition,
there are many models that have more than one possibility for naturally
split Higgs multiplets, but in almost all cases the bulk is among them.

Note that most of our MSSM-like models have additional exotic Higgs-
like pairs, mostly two to six additional ones. In contrast to the MSSM Higgs
pair they often originate from complete multiplets of some local GUT. On
the other hand, we identified 1011 MSSM-like models with exactly one
Higgs pair. Cases with exactly one Higgs pair, originating from the bulk
might be especially interesting.

In summary, the second golden rule, which explains incomplete GUT
multiplets for the Higgs using GUT breaking localisations in extra dimen-
sions, is very successful — as in the case of the first golden rule, most of
our 12000 MSSM-like models follow this rule automatically.

5.3. Rule III: Repetition of families

The Standard Model contains three generations of quarks and leptons with
a peculiar pattern of masses and mixings. This might be related to a
(discrete) flavour symmetry.©

From the orbifold perspective discrete flavour symmetries naturally arise
from the symmetries of the orbifold geometry [12, 20]. However, certain
background fields (i.e. orbifold Wilson lines [15]) can break these symme-
tries. The maximal number of orbifold Wilson lines is six corresponding
to the six directions of the compactified space. The orbifold-rotation, how-
ever, in general identifies some of those directions. Hence, the correspond-
ing Wilson lines have to be equal. For example, the Zj3 orbifold allows for
maximally three independent Wilson lines.

In general, one can say that the more Wilson lines vanish the larger is the
discrete flavour symmetry. On the other hand, non-vanishing Wilson lines
are generically needed in order to obtain the Standard Model gauge group
and to reduce the number of generations to three. Hence, it is interesting
to perform a statistic on the number of vanishing Wilson lines for our 12000
MSSM-like orbifold models, see Tab. A.1 in the appendix and Fig. 7.

There are orbifold geometries, like Zy4, Zg-1 and Z12-1, apparently de-

°A gauged flavour symmetry like SU(2) or SU(3) is also possible. Some of the models
in our OrbifoldLandscape realise this possibility, but we do not analyse these cases in
detail here.
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Fig. 7. Number of MSSM-like orbifold models vs. the percentage of independent Wilson
lines that are vanishing (e.g. the Zs x Z2 orbifold allows for six independent Wilson lines.
If one is vanishing, the percentage is 16.7%). Higher percentages generically correspond
to larger flavour symmetries.

manding for all possible orbifold Wilson lines to be non-trivial in order to
yield the MSSM, see Tab. A.1. These MSSM-like models are expected to
have no discrete, non-Abelian flavour symmetries. On the other hand, there
are several orbifold geometries that seem to require at least one vanishing
Wilson line in order to reproduce the MSSM with its three generations,
for example Zg-11, Zo X Zo, 7o X 74, 73 X 73 and Zy4 X 7Z4. In general,
the case of vanishing Wilson lines is very common: we see that in 75% of
our MSSM-like orbifold models at least one allowed orbifold Wilson line
is zero. In these cases non-Abelian flavour symmetries are expected. For
example, most of the MSSM-like models from Zg-II (1-1) have a D4 flavour
symmetry with the first two generations transforming as a doublet and the
third one as a singlet [4, 12, 20].

In summary, the third golden rule, which explains the origin of three
generations of quarks and leptons by geometrical properties of the com-
pactification space, is generically satisfied for our 12000 MSSM-like orbifold
models.

5.4. Rule IV: N = 1 supersymmetry

By construction, i.e. by choosing the appropriate orbifold geometries, our
12000 MSSM-like orbifold models preserve A’ = 1 supersymmetry in four
dimensions. This is expected to be broken by non-perturbative effects,
i.e. by hidden sector gaugino condensation [22-25]. Here, we follow the
discussion of [26] where low energy supersymmetry breaking in the Mini-
Landscape of Zg-1I orbifolds was analysed. See also [46, 47] for a related
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discussion.

In detail, our MSSM-like models typically possess a non-Abelian hidden
sector gauge group with little or no charged matter representations. The
corresponding gauge coupling depends via the one-loop S-functions on the
energy scale. If the coupling becomes strong at some (intermediate) energy
scale A the respective gauginos condensate and supersymmetry is broken
spontaneously by a non-vanishing dilaton F-term. Assuming that SUSY
breaking is communicated to the observable sector via gravity the scale of
soft SUSY breaking is given by the gravitino mass, i.e.

3
i 1)

Plank
where Mpian denotes the Planck mass and the scale of gaugino condensa-
tion A is given by
A~ M, ( L ) )
GuT P 26 g*(Mcur))

For every MSSM-like orbifold model we compute the S-function of the

largest hidden sector gauge group under the assumption that any non-

mgzs2 ~

trivial hidden matter representation of this gauge group can be decoupled
in a supersymmetric way. Furthermore, we assume dilaton stabilization
at a realistic value 1/¢g?(MguT) = ReS ~ 2. Hence, we obtain the scale
A of gaugino condensation. Our results are displayed in Fig. 8. For an
intermediate scale A ~ 10'3GeV one obtains a gravitino mass in the TeV
range, which is of phenomenological interest.
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Fig. 8.  Number of MSSM-like orbifold models vs. scale of gaugino condensation for the
largest hidden sector gauge group.

The models in the OrbifoldLandscape seem to prefer low energy SUSY
breaking. This result is strongly related to the heterotic orbifold construc-
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tion: the Eg x Eg gauge group in 10D is broken by orbifold shift and Wilson
lines, which are highly constrained by string theory (i.e. modular invari-
ance). Therefore, both Eg factors get broken and not only the observable
one. It turns out that the unbroken gauge group from the hidden Eg has
roughly the correct size to yield gaugino condensation at an intermediate
scale and hence low energy SUSY breaking.

Note that our analysis is just a rough estimate as various effects have
been neglected, for example the decoupling of hidden matter, the identifica-
tion of the gaugino condensation and (string) threshold corrections. These
effects can in principle affect the scale of SUSY breaking even by 2-3 orders
of magnitude.

6. The General Landscape

With these considerations we have only scratched the surface of the pa-
rameter space of potentially realistic models. In addition, we have used
“five golden rules” as a prejudice for model selection and it has to be seen
whether this is really justified.

For general model building in the framework of (perturbative) string
theory we have the following theories at our disposal:

e type I string with gauge group SO(32)
heterotic SO(32)

heterotic Eg x Eg

type ITA and IIB orientifolds

intersecting branes with gauge group U(N)

M

As we explained in detail, our rule I points towards exceptional groups
and hence towards the Eg x Eg heterotic string. On the other hand, type
IT orientifolds typically provide gauge groups of type SO(M) or U(N) and
products thereof. Although we have SO(2/N) gauge groups in these schemes,
matter fields do not come as spinors of SO(2NV), but originate from adjoint
representations. In the intersecting brane models based on U(N)M gauge
groups matter transforms in bifundamental representations of U(/N) x U(L)
(originating from the adjoint of U(N + L)). While this works nicely for
the standard model representations, it appears to be difficult to describe a
grand unified picture with e.g. gauge group SU(5). Trying to obtain a GUT
yields a gauge group at least as large as U(5) and one has problems with
a perturbative top-quark Yukawa coupling. One possible way out is the
construction of string models without the prejudice for GUTS, see e.g. [48].
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A comprehensive review on these intersecting brane model constructions
can be found in the book of Ibdnez and Uranga [49] or other reviews [50].
These models have a very appealing geometric interpretation, see e.g. [51]:
Fields are located on branes of various dimensions. Thus, physical proper-
ties of the models can be inferred from the localisation of the brane-fields
in the extra dimensions and by the overlap of their wave functions, simi-
lar to the heterotic MiniLandscape. This nice geometrical set-up leads to
attempts to construct so-called “local models”. Here, one assumes that all
particle physics properties of the model are specified by some local proper-
ties at some specific point or sub-space of the compactified dimensions and
that the “bulk” properties can be decoupled. However, the embedding of
the local model into an ultraviolet complete and consistent string model is
an assumption and its validity remains an open question.

Further schemes include “non-perturbative” string constructions:

e M-theory in D =11
e heterotic M-theory Eg x Eg
e F-theory

These non-perturbative constructions are conjectured theories that general-
ize string theories or known supergravity field theories in higher dimensions.
The low energy limit of M-theory is 11-dimensional supergravity. Heterotic
M-theory is based on a D = 11 theory bounded by two D = 10 branes
with gauge group Eg on each boundary and F-theory is a generalization
of type IIB theory, where certain symmetries can be understood geomet-
rically. This non-perturbative construction allows for singularities in extra
dimensions that lead to non-trivial gauge groups according to the so-called
A-D-E classification. Groups of the A-type (SU(V)) and D-type (SO(2N))
can also be obtained in the perturbative constructions with D-branes and
orientifold branes, while exceptional gauge groups can only appear through
the presence of E-type singularities. This allows for spinors of SO(10) and
can produce a non-trivial top-quark Yukawa coupling within an SU(5) grand
unified theory. In that sense, F-theory can be understood as an attempt to
incorporate rule I within type IIB theory. Unfortunately, it is difficult to
control the full non-perturbative theory and the search for realistic models
is often based on local model building. Many questions are still open but
there is enough room for optimism that promising models can be embedded
in a consistent ultraviolet completion.

A general problem of string phenomenology is the difficulty to per-
form the explicit calculations needed to check the validity of the model.
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This is certainly true for the non-perturbative models, where we have (at
best) some effective supergravity description. But also in the perturba-
tive constructions we have to face this problem. We have to use simplified
compactification schemes to be able to do the necessary calculations — we
need a certain level of “Berechenbarkeit”. In our discussion we used the
flat orbifold compactification that allows the use of conformal field theory
methods. In principle, this enables us to do all the necessary calculations
to check the models in detail. In the Zg-II MiniLandscape this has been
elaborated to a large extend. For the more general orbifold landscape, this
still has to be done. Other constructions with full conformal field theory
control are the free fermionic constructions [52] and the “tensoring” of con-
formal field theory building blocks: so-called Gepner models [53]. They
share “Berechenbarkeit” with the flat orbifold models, but the geometric
structure of compactified space is less transparent.

We have to hope that these simplified compactifications (or approxi-
mations) lead us to realistic models. In the generic situation one needs
smooth manifolds, e.g. Calabi-Yau spaces, and some specific models have
been constructed [54, 55]. However, these more generic compactifications
require more sophisticated methods for computations that are only par-
tially available, for example in order to determine Yukawa couplings. More
recently a simplification based on the embedding of line bundles has allowed
the constructions of many models [56, 57]. Still the calculational options
are limited. It would be interesting to get a better geometric understanding
of the compact manifold. At the moment the “determination” of couplings
is based on a supergravity approximation using U(1) symmetries. These
symmetries are exact in this approximation at the “stability wall” but are
expected to be broken to discrete symmetries in the full theory. This is
in concord with rule V asking for the origin of discrete symmetries. Fur-
thermore, this question has recently been analysed intensively within the
various string constructions [58-62].

7. Summary

We have seen that there is still a long way to go in the search for realistic
particle physics models from string theory. There are many possible roads
but we are limited by our calculational techniques. Thus, in the near future
we are still forced to make choices. Here, we have chosen to follow “five
golden rules” outlined in Section 2, which are mainly motivated by the quest
for a unified picture of particle physics interactions. This strategy seems
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to require an underlying structure provided by exceptional groups pointing
towards the Eg x Eg heterotic string and F-theory.

Even given these rules, there are stumbling blocks because of the com-
plexity of the compact manifolds. We cannot resolve these problems in full
generality: we have to use simplified compactification schemes or approxi-
mations. We have to hope that nature has chosen a theory that is somewhat
close to these simplified schemes. Of course, any method to go beyond this
simplified assumptions should be seriously considered. However, there is
some hope that this assumption might be justified: The orbifold models
studied in this work have enhanced (discrete) symmetries that could be
the origin of symmetries of the standard model, especially with respect to
the flavour structure and symmetries relevant for proton stability as well
as the absence of other rare processes. Generically, these symmetries are
slightly broken as we go away from the orbifold-point. This gives rise to
some hierarchical structures, for example for the ratio of quark masses in
the spirit of Froggatt and Nielsen [21].

The analysis of the MiniLandscape can be seen as an attempt to study
these questions in detail. Based on the availability of conformal field theory
techniques we can go pretty far in the analysis of explicit models. A detailed
analysis of the “OrbifoldLandscape” has not been performed yet, but should
be possible along the same lines. In Section 4 we started this enterprise
of model building by constructing 12000 MSSM-like models. In a next
step, the detailed properties of promising models have to be worked out.
Especially the framework of the Zs x Z4 [42] should provide new insight into
the properties of realistic models and might teach us further key properties
shared by successful models.

One key property that we have learned is the geography of fields in the
extra dimensions. The localisation of matter fields and the gauge group
profiles in extra dimensions are essential for the properties of the low energy
model. This is the first message of the heterotic orbifold construction and
shared by the “braneworld” constructions in type II string theory and F-
theory. Further lessons are:

e The Higgs pair is a bulk field. This allows for a convincing solution of
the p-problem using a (discrete) R-symmetry and yields doublet—triplet
splitting.

e A sizeable value of the top-quark Yukawa coupling requires a sufficient
overlap with the Higgs fields in extra dimensions. Thus, the top-quark
should extend to the bulk as well.
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e The matter fields of the first and second generation should be localised
in a region of the extra-dimensional space where they are subject to an
enhanced gauge symmetry, like SO(10). This local GUT forces them to
appear as complete representations, e.g. as spinors of SO(10). Further-
more, the geometrical structure can manifest itself in a discrete flavour
symmetry.

e The quest for low energy supersymmetry is the guiding principle in
string model building. Still, it has to be seen whether this is realised
in nature. At the moment no sign of supersymmetry has been found at
the LHC, although the value of the Higgs mass is consistent with SUSY.
The analysis of the models of the MiniLandscape and the location of
the fields suggests a certain structure where even some remnants of
extended supersymmetry (for fields in the bulk) seem to be at work.
This picture of “heterotic supersymmetry” [36, 37] can hopefully be
tested experimentally in the not too far future.
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Appendix A. Summary of the OrbifoldLandscape



Table A.1. Statistics on MSSM-like models (using the search criteria listed in Section 4.1) obtained from a random scan in all Zy and
certain Z X 7Zps heterotic orbifold geometries. The first column labels the geometry following the nomenclature from [38]. The second
column gives the number of inequivalent MSSM-like models found in our scan. Next, we give the maximal number of independent
Wilson lines (WLs) possible for the respective orbifold geometry and in the fourth column we count the number of MSSM-like models
with a certain number (i.e. 0,1,2,3,4) of vanishing Wilson lines, see Section 5.3. In the fifth column we count the number of locations
with broken local GUT such that Higgs-doublets without triplets appear, see Section 5.2. Finally, in the last column we give the number
of models without U(1)anom, i.e. without FI term.

max. # # models with # models with # MSSM
orbifold # MSSM|| of indep. 0 1 2 3 >4 0 1 2 3 4 5 > 6 | without
WLs indep. vanishing WLs locations for split Higgs U(1)anom
Zs (1,1) 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
Z4 (1,1) 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0
(2,1) 128 3 128 0 0 0 0 6 107 12 3 0 0 0 0
(3,1) 25 2 25 0 0 0 0 0 25 0 0 0 0 0 0
Ze-1 (1,1) 31 1 31 0 0 0 0 0 31 0 0 0 0 0 0
(2,1) 31 1 31 0 0 0 0 0 31 0 0 0 0 0 0
Ze-11 (1,1) 348 3 13 335 0 0 0 20 167 111 34 8 2 6 1
(2,1) 338 3 10 328 0 0 0 19 162 107 33 9 2 6 2
(3,1) 350 3 18 332 0 0 0 17 172 112 41 7 1 0 2
(4,1) 334 2 39 295 0 0 0 17 161 113 32 11 0 0 3
iy (1,1) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Zig-1 (1,1) 263 2 221 42 0 0 0 0 128 85 50 0 0 0 7
(2,1) 164 2 123 41 0 0 0 0 76 53 35 0 0 0 5
(3,1) 387 1 387 0 0 0 0 27 150 175 32 3 0 0 27
Zg-11 (1,1) 638 3 212 404 22 0 0 12 257 165 123 16 50 15 7
(2,1) 260 2 92 168 0 0 0 15 108 84 34 2 12 5 3
Zi12-1 (1,1) 365 1 365 0 0 0 0 5 259 55 42 4 0 0 8
(2,1) 385 1 385 0 0 0 0 7 271 63 44 0 0 0 9
Z12-11 (1,1) 211 2 135 76 0 0 0 9 40 107 31 12 4 8 3
Zo X Zs (1,1) 101 6 0 59 42 0 0 79 0 10 3 8 0 1 0
Zo X Ly (1,1) 3632 4 67 2336 1199 30 0 | 393 1194 160 690 83 449 663 10
Zo X Ze-1 (1,1) 445 2 332 113 0 0 0 54 118 105 79 27 13 49 5
Zo X Ze-11I  (1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Zs3 X Zs (1,1) 445 3 1 369 75 0 0 27 212 1 15 102 0 88 9
Zs X Zg (1,1) 465 1 441 24 0 0 0 4 39 64 82 88 110 78 0
Zg X Uy (1,1) 1466 3 11 529 921 5 0 28 441 49 195 81 323 349 1
Ze X Zg (1,1) 1128 0 | 1128 0 0 0 0 9 74 165 271 161 148 300 0
total | 11940 ]| 748 4223 1796 1869 622 1114 1568 102

|2
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Table A.2. Statistics on MSSM-like models (using the search criteria listed in Section 4.1) obtained from a random scan in all Z and
certain Zn X Zps heterotic orbifold geometries. The first column labels the geometry following the nomenclature from [38]. The next
four columns display the number of MSSM-like models with 0,1,2,3 and (up to) 4 local GUTs of specified gauge group with corresponding
local matter: local SO(10) GUTs with local 16-plets, local Eg GUTs with local 27-plets, local SU(5) GUTs with local 10-plets and,
finally, any local GUTs that unify SU(3) x SU(2) x U(1)y in a single gauge group with corresponding local matter representations
containing left—handed quark doublets.

# models with # models with # models with # models with

orbifold 0 1 2 3 4 0 1 2 0 1 2 3 4 0 1 2 3 4
local SO(10) GUTs local Eg¢ GUTs local SU(5) GUTs local GUTs

Zs3 (1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Zy (1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(2,1) 78 50 0 0 0 50 78 0 128 0 0 0 0 0 128 0 0 0
(3,1) 5 20 0 0 0 20 5 0 25 0 0 0 0 0 25 0 0 0
Ze-1 (1,1) 31 0 0 0 0 31 0 0 31 0 0 0 0 31 0 0 0 0
(2,1) 31 0 0 0 0 31 0 0 31 0 0 0 0 31 0 0 0 0
Zig-11 (1,1) 155 2 187 4 0 332 6 10 | 203 12 133 0 0 2 3 293 4 46
(2,1) 148 1 186 3 0 323 5 10 | 204 6 128 0 0 2 5 324 4 3
(3,1) 164 1 185 0 0 328 11 11 202 12 136 0 0 2 11 293 9 35
(4,1) 158 3 173 0 0 299 23 12 195 18 121 0 0 0 14 315 5 0
VA (1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z.g-1 (1,1) 143 0 120 0 0 263 0 0 | 226 37 0 0 0 106 31 120 6 0
(2,1) 92 0 72 0 0 164 0 0 147 17 0 0 0 75 15 74 0 0
(3,1) 164 140 83 0 0 346 32 9 | 336 29 22 0 0 105 117 133 32 0
Zg-11 (1,1) 428 7 133 0 0 638 0 0 | 276 155 207 0 0 79 194 355 10 0
(2,1) 180 29 51 0 0 260 0 0 89 52 114 5 0 28 29 185 18 0
Z12-1 (1,1) 365 0 0 0 0 259 0 106 | 365 0 0 0 0 250 0 115 0 0
(2,1) 385 0 0 0 0 269 0 116 | 385 0 0 0 0 269 0 116 0 0
Zi12-11 (1,1) 110 69 32 0 0 177 31 3 86 78 47 0 0 0 80 131 0 0
Zio X Zo (1,1) 72 6 12 1 10 66 33 2 75 0 11 0 15 3 18 8 30 42
Zio X Za (1,1) 2948 300 297 68 19 | 3181 358 93 (2831 71 707 7 16 |/1918 70 670 911 63
Zo X Ze-1 (1,1) 312 124 9 0 0 252 63 130 245 126 71 3 0 40 66 193 119 27
Zio X Ze-11 (1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Zis X Zs (1,1) 444 1 0 0 0 445 0 0 289 3 2 151 0 246 2 3 194 0
Zis X Ze (1,1) 396 33 36 0 0 463 2 0 e 294 42 12 40 3 291 116 15 40
Zig X Za (1,1) 1246 116 94 10 0 1293 173 0 | 703 31 709 13 10 353 205 674 224 10
Ze X Ze (1,1) 761 349 18 0 0 1122 6 0 | 274 656 191 7 0 0 609 511 8 0
total H 8816 1321 1688 86 29 (10612 826 502 |7423 1597 2641 198 81 H3543 1913 4629 1589 266
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In keeping with the “Perspectives” theme of this volume, this Chapter
provides a personal perspective on the string landscape. Along the way,
the perspectives of many other physicists are discussed as well. No at-
tempt is made to provide a thorough and balanced review of the field,
and indeed there is a slight emphasis on my own contributions to this
field, as these contributions have been critical to forming my perspective.
This Chapter is adapted from a Colloquium which I have delivered at a
number of institutions worldwide, and I have attempted to retain the in-
formal and non-technical spirit and style of this Colloquium presentation
as much as possible.

1. Some background

This Chapter grew out of a Colloquium which I have given at a number of
physics departments across the U.S. This colloquium was called “Probing
the String Landscape: Implications, Applications, and Altercations”, and
my goal in this Colloquium was to introduce the string landscape in a non-
technical way, to discuss the implications of the existence of the landscape,
to present several applications of the landscape, and to give the audience
some sense of the nature of the controversies it has spawned. Needless to
say, such a Colloquium cannot avoid revealing the personal perspectives
of the speaker, and this Colloquium was no exception. Indeed, the Collo-
quium was more in the style of social science rather than hard science, as
I was more interested in conveying both the history of and current opin-
ion about the string landscape than details concerning the landscape itself.
Nevertheless, I also presented a considerable amount of my own work in this
Colloquium, partly as illustration and also partly as a way of motivating
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my own ultimate opinions on this subject.

For this Chapter, I have opted to present what is essentially a written
transcript of this Colloquium. Some parts of the Colloquium have been
deleted, but others have been embellished. In keeping with its overall social-
science flavor, the original Colloquium also liberally quoted a number of
prominent physicists. I have opted to retain these quotes, even if (as in some
cases) those very same physicists have themselves contributed Chapters to
this volume. I apologize to those physicists for the extra exposure I am
hereby giving to their words.

2. Motivation: We live in exciting times

I'll begin with a summary of the situation from one prominent physicist®:

What we’ve discovered in the last several years is that
string theory has an incredible diversity — a tremendous
number of solutions — and allows different kinds of envi-
ronments. A lot of the practitioners of this kind of math-
ematical theory have been in a state of denial about it.
They didn’t want to recognize it. They want to believe
the universe is an elegant universe — and it’s not so ele-
gant. It’s different over here. It’s that over here. It’s a
Rube Goldberg machine over here. And this has created
a sort of sense of denial about the facts about the theory.
The theory is going to win, and physicists who are trying to

deny what’s going on are going to lose. — Lenny Susskind,
Felixz Bloch Professor of Theoretical Physics, Stanford Uni-
versity.

Any subject that can evince a reaction such as this is clearly an exciting
onel!

Indeed, as we shall see, discussions of the landscape invariably lead to
a plethora of questions which are not the sorts of questions which normally
appear in a physics Colloquium. These include, for example, questions such
as:

2The majority of quotes in this Chapter are taken from http://edge.org/
conversation/the-landscape and/or http://edge.org/documents/archive/edgel45.
html, which may be taken to be the source of all quotes whose origins are otherwise
uncredited.
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e Can the ground state of a theory be completely irrelevant to that
theory? Are we deluding ourselves by always focusing on the vac-
uum?

e What is the boundary between explanation and observation?

e How can we judge when a theory is “natural”? How can we judge
whether one theory is more “natural” than another?

e What does it mean for a theory to be predictive? Falsifiable?

e What kinds of numbers should a fundamental theory of physics be
capable of predicting? The mass of the electron? The radius of
the Earth’s orbit around the Sun? The price of tea in China?

e What tools are we allowed to use in formulating a scientific theory?
The results of experiments? Theoretical expectations? Qurselves?

e Are we, once again, destined to be the center of the universe?

e To what extent can one talk meaningfully about alternative uni-
verses?

e Are all possible universes created equal? How many alternate uni-
verses might exist? What properties would they have that distin-
guish them from our own?

e If the nature of fundamental reality is universe-dependent, what
becomes of the traditional methods of learning about the natural
world which presuppose the uniqueness of a correct answer? Is this
really science?

Of course, many of these questions don’t sound like physics. Rather, they
sound like something far more pernicious: the philosophy of physics. The
sociology of physics. Indeed, one might suspect that any discussion of these
questions represents nothing more than the the first steps on the slippery
path to social science!

The point, however, is this: We are currently in the throes of a poten-
tially huge paradigm shift in physics. My goal in this Chapter is therefore
to explain what this is, and where it came from. Rather than present a
finished story with a tidy outcome, I'll instead simply try to convey the
sense of excitement and frustration that many in the string community are
currently facing.

3. Introducing the string landscape

Most discussions of fundamental physics begin with the standard “tour”
through relevant energy and length scales. They start with human-sized
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things, proceed to atoms, then nuclei, and finally arrive at the Standard
Model of quarks and leptons. Finally, they push onwards into uncharted
BSM (“Beyond the Standard Model”) territory and discuss (currently) hy-
pothetical notions such supersymmetry, GUT’s, or strings.

3.1. (Not) Setting the stage

In this writeup, I'll spare the reader a review of the Standard Model (SM)
and the reasons to believe that there is some sort of hidden structure beyond
the Standard Model. I'll also spare the reader a survey of the some of the
dominant ideas that high-energy physicists have developed over the past
30 years for what might lie beyond the Standard Model at higher energies,
such as supersymmetry (SUSY) and grand-unified theories (GUT’s).

It is important to stress, however, that neither the SUSY idea nor the
GUT idea present us with a single model with sharp predictions. Rather,
they represent certain types of quantum field theories within which the act
of model-building takes place, and therefore lots of distinct phenomenolo-
gies are possible within these frameworks. For example, on the SUSY side,
numerous questions remain unanswered, chief among them the question of
how SUSY is broken. The typical approach is to introduce SUSY-breaking
by hand, which in turn requires the introduction of many additional phe-
nomenological parameters (masses and mixing angles) even beyond those
of the Standard Model. Similarly, even within the GUT framework, there
are many unanswered questions. For example, what is the larger sym-
metry group underlying the GUT force? SU(5)7 SO(10)? Eg? Other
groups? How do the different particles join together under these groups?
What kinds of interactions are allowed while respecting these enlarged sym-
metries? Might there exist sequences of successive GUT embeddings at
higher and higher energy scales? Clearly, many questions still remain!

Both the SUSY idea and the GUT idea are very compelling. They and
their low-energy effects will be the focus of experimental high-energy physics
over the next 20 years. But high-energy theorists have plenty of work to do:
We must be able to build theories in order to be able to interpret data! But
the above questions remain. How do we build realistic SUSY theories? How
do we build realistic GUT theories? How can we make sense of alternate
proposals for physics beyond the SM, such as alternative/extended Higgs
structures, large extra spacetime dimensions, strongly coupled (Randall-
Sundrum-type) scenarios, and so forth? How do we incorporate gravity?

The possibilities clearly seem endless. It is therefore natural to seek
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guidance from some deeper framework. And this is where string theory
comes in.

I will not take the time here to introduce string theory. However, in
a nutshell, the main characteristic of string theory is that at the natural
energy scale for string theory (which is parametrically identified with the
Planck scale ~ 10! GeV), each elementary particle is viewed as a specific
vibrational or rotational mode of a one-dimensional closed loop of energy
called a string. Thus, in string theory, we simply determine the spectrum
of allowed vibrational or rotational excitations for our fundamental strings
(subject to certain geometric constraints), and then interpret these allowed
excitations at lower energies as different particles: electron, neutrino, quark,
photon, W, Z, gluon, Higgs, and even graviton. In this way, string theory
makes predictions about the nature of “low-energy” world, and moreover
“unifies” all of this information as coming or emerging from a single un-
derlying entity, namely the string itself. Both the spectrum and allowed
interactions are specified. Furthermore, because string theories naturally
exist in ten dimensions, this rich geometric structure must be somehow
compactified to four dimensions. Depending on how this compactification
is performed, closed strings can then wrap or “wind” around these com-
pactified dimensions.

The story is even richer if we consider open strings. Open strings can
be useful tools for understanding the non-perturbative physics associated
with closed strings, but can also serve as candidate fundamental strings
themselves. Unlike closed strings, open strings have endpoints, and these
can end on membrane-like surfaces of various dimensionalities called D-
branes. Moreover, these D-branes can intersect each other and have strings
stretching between them. Likewise, both the strings and the D-branes can
wrap around compactified spacetime dimensions in many different ways,
resulting in huge numbers of highly non-trivial geometric configurations.

This geometric richness is tremendously important because all of these
features have profound implications for the allowed excitations of the fun-
damental strings and branes in the theory. Thus, the choices inherent in
this geometric richness have tremendous impact on on the predicted “low-
energy” spectrum of particles and forces to which these excitations corre-
spond. Consequently, through studies of these possible compactifications, it
has been the hope and expectation that string theory would make specific,
detailed predictions about the world of the Standard Model and beyond.
Indeed, extracting this information from string theory has been the primary
goal of string phenomenology ever since the earliest days of string theory.
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It of course goes without saying that over the past 30 years, string theory
has come to occupy a central place in high-energy physics. It has had a
profound impact in many branches of theoretical physics and mathematics,
and has led to many new ideas and insights concerning the structure of
field theory, gauge theory, supersymmetry, and their relations to gravity.
Indeed, as early as the 1980’s, it has even been called (reputedly by Edward
Witten, a professor at the Institute for Advanced Study in Princeton and
1990 Fields Medalist) “a piece of 21%%-century physics that fell by chance
into the 20*" century”.

But in order for string theory to actually fulfill its phenomenological
promise as a guide to physics beyond the Standard Model, it must actually
make unique statements about “low-energy” physics. This uniqueness is
critical.

Now, string theory does make detailed, specific statements about the
low-energy world. However, these statements do not (yet?) rise to the level
of unique predictions.

Ultimately, the reason is that string theory gives rise to a multitude of
self-consistent vacua. Each one is called a different “string vacuum” or a
different “string model”. It is like having a big master equation with many
possible solutions, each with different properties. Roughly speaking, each of
these different string vacua corresponds to a different way of compactifying
the theory from ten dimensions down to four dimensions. The different
vacua correspond to different choices of compactification manifolds and
D-brane wrappings, different Wilson lines, different vacuum expectation
values for unfixed moduli fields, different choices of fluxes, and so forth.
These features are all part of the geometric richness we discussed above, but
string theory apparently provides no theoretical basis on which to declare
that one set of choices — i.e., one string model or string vacuum — is
favored over another.

Unfortunately, this richness in the numbers of string models produces a
corresponding richness in the different possible low-energy phenomenologies
that are “predicted” by the string. For example, one set of choices might
lead to a low-energy world exhibiting the Standard-Model gauge group
SU(3) x SU(2) x U(1), three chiral generations of fermions with certain
charges and transformation properties under this gauge group, and N' =1
supersymmetry. However, another might lead to an SO(10) gauge group
with five generations and two anti-generations of 16 representations, but
without supersymmetry. Still another might lead to a low-energy theory
whose properties have already been ruled out by experiment. Indeed, the
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possibilities for the resulting spacetime physics are quite rich and varied,
and string theory does not appear to give any mechanism for selecting
between them.

Of course, we do know certain things. We know, for example, that these
low-energy predictions must be consistent with the Standard Model. (Or at
least, we must demand that this be true.) Imposing this phenomenological
requirement already truncates the set of self-consistent string compactifi-
cations quite significantly, and one might then hope that by studying only
the surviving compactifications, string theory might still manage to pro-
vide theoretical guidance concerning the many possible extensions to the
Standard Model — guidance that might fill in the gaps in our knowledge
as we move upwards in energy scale. However, it turns out that even this
truncation does not restrict the space of remaining string models enough
that one might be able to make predictions for physics beyond the Standard
Model on the basis of the string models that are left. There are simply too
many remaining possibilities.

Thus, we see that although a given string model may be completely
predictive, string theory as a general framework is not.

3.2. Huge numbers of string models: A bit of history

That there are so many self-consistent ways of compactifying the theory
has been known since the mid-1980’s. Indeed, ever since these earliest days
of modern string theory, it was understood by workers in the field that the
space of possible string theories is quite large and perhaps even infinite,
with each string theory corresponding to a potentially distinct low-energy
phenomenology. Different formalisms had been developed for constructing
(often overlapping) classes of strings — orbifold constructions, bosonic con-
structions, fermionic constructions, constructions based on other worldsheet
conformal field theories (CFT)’s, and so forth. Some of these constructions
even went beyond the possibility of being interpreted as purely geometric
compactifications. Each construction technique gave rise to its own “mod-
uli space” of possible string vacua, and the number of different construction
techniques seemed bounded only by the limitations of imagination or clev-
erness. Thus, throughout the late 1980°s and 1990’s, workers in the field
already understood that there was a large space of possible string theo-
ries and were already grappling with the unpleasant consequences of this
fact insofar as the ultimate low-energy predictivity of string theory was
concerned.
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In June 1998, I was invited to give a set of lectures on string phe-
nomenology and string model-building at the TASI Summer School. After
two weeks of lectures focusing on different construction techniques concern-
ing one particular class of string theories (those which were perturbative
and heterotic), I then devoted a major part of the final lecture to provid-
ing an “assessment” of the position in which we now found ourselves. The
following is a direct quote from the Proceedings of my 1998 TASI lectures,
as written at that time:

At this point, it is perhaps useful to assess the position
in which we now find ourselves. Clearly, through these
constructions, we are able to produce many string mod-
els. In fact... the number of self-consistent string models
in D < 10 is virtually infinite, and there exists a whole
space of such models... Moreover, each of these models has
a completely different spacetime phenomenology. What,
then, is the use of string theory as an “ultimate” theory,
if it does not lead to a single, unique model with a unique
low-energy phenomenology?

To answer this question, we should recall our discussion
at the beginning of these lectures. Just as field theory is
a language for building certain models (one of which, say,
is the Standard Model), string theory is a new and deeper
language by which we might also build models. The advan-
tages of using this new language, as [we] discussed, include
the fact that our resulting models incorporate quantum
gravity and Planck-scale physics. Of course, in field theory,
many parameters enter into the choice of model-building.
These parameters include the choice of fields (for exam-
ple, the choice of the gauge group, and whether or not to
have spacetime supersymmetry), the number of fields (for
example, the number of generations), the masses of parti-
cles, their mixing angles, and so forth. These are all space-
time parameters. In string theory, by contrast, we do not
choose these spacetime parameters; we instead choose a set
of worldsheet parameters [e.g., parameters corresponding
to the specific compactification of the worldsheet of the
string, or to a particular internal string-construction tech-
nique]... All of the phenomenological properties in space-
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time are then derived as consequences of these more fun-
damental choices. But still, just as in field theory, we are
faced with the difficult task of model-building.

Is this progress, then? While opinions on this ques-
tion may differ, one can argue that the answer is still defi-
nitely “yes”. Recall that quantum gravity is automatically
included in these string models. This is one of the ben-
efits of model-building on the worldsheet rather than in
spacetime. Also recall that string theory is a finite theory,
and does not contain the sorts of ultraviolet divergences
that plague us in field theory. This is another benefit of
worldsheet, rather than spacetime, model-building. More-
over, worldsheet model-building ultimately involves choos-
ing fewer parameters than we would have to choose in field
theory — for example, we have seen that an entire infi-
nite tower of string states, their gauge groups and charges
and spins, are all ultimately encoded in a few underly-
ing worldsheet parameters... Furthermore, because of this
drastic reduction in the number of free parameters, string
phenomenology is in many ways more tightly constrained
than ordinary field-theoretic phenomenology. Thus, it is in
this way that string theory can guide our choices and ex-
pectations for physics beyond the Standard Model. Indeed,
from a string perspective, we see that we should favor only
those patterns of spacetime physics that can ultimately be
derived from an underlying set of worldsheet parameters...
These would then serve as a “minimal set” of parameters
which would govern all of spacetime physics!

Of course, at a theoretical or philosophical level, this
state of affairs is still somewhat unsatisfactory. After
all, we still do not know which self-consistent choice of
string parameters ultimately corresponds to reality... Non-
perturbative insights have thus far changed our under-
standing of the size and shape of this moduli space, they
have not yet succeeded in leading us to an explanation of
which points in this moduli space are dynamically selected.

So where do we stand? As string phenomenologists, we
can do two things. First, we can pursue model-building:
we can search through the moduli space of self-consistent
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string models in order to determine how close to realistic
spacetime physics we can come. This is, in some sense, a
direct test of string theory as a phenomenological theory
of physics. Of course, this approach to string phenomenol-
ogy is ultimately limited by many factors: we have no as-
surance that our model-construction techniques are suffi-
ciently powerful or general to include the “correct” string
model (assuming that one exists); we have no assurance
that our model-construction techniques will not lead to
physically distinct models which nevertheless “agree” as
far as their testable low-energy predictions are concerned;
and we have no assurance that the most important phe-
nomenological features that describe our low-energy world
(such as the pattern of supersymmetry-breaking) are to
be found in perturbative string theory rather than in non-
perturbative string theory. For example, it may well be
(and it has indeed been argued) that the true underlying
string theory that describes nature is one which is intrinsi-
cally non-perturbative, and which would therefore be be-
yond the reach of the sorts of approaches typically followed
in studies of string phenomenology.

Another option, then, is to temporarily abandon string
model-building somewhat, and to seek to extract general
phenomenological theorems or correlations about space-
time physics that follow directly from the general struc-
ture of string theory itself. Clearly, we would wish such
information to be model-independent, i.e., independent of
our particular location in moduli space... For example, if
some particular configuration of spacetime physics (some
pattern of low-energy phenomenology) can be shown to be
inconsistent with being realized from an underlying set of
[worldsheet] parameters, and if such a demonstration can
be made to transcend the particular construction in use
so that it relies on only the primordial string symmetries
themselves, then such patterns of phenomenology can be
ruled out. In this way, one can still use string theory in
order to narrow the list of possibilities for physics at higher
energies, and to correlate various seemingly disconnected
phenomenological features with each other. Such correla-
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tions would then be viewed as “predictions” from string
theory...

Despite recent advances in understanding various non-
perturbative aspects of string theory, our inability to an-
swer the fundamental question of vacuum selection per-
sists. Until this challenge is overcome, string phenomenol-
ogy therefore must content itself with answering questions
of a relative nature (such as questions concerning relative
patterns of phenomenology) rather than the sorts of abso-
lute questions (such as calculating the mass of the electron)
that one would also ideally like to ask. Nevertheless, as we
shall see, string theory can still provide us with consider-
able guidance for physics beyond the Standard Model.

My purpose in providing this lengthy quote from 1998 is not to claim
credit for any sort of unique idea here. As indicated above, ideas like this
were already widely acknowledged and discussed by workers in this field
long before this point, and I was hardly unique or especially clairvoyant.
Rather, my purpose is merely to provide illustration of the kinds of think-
ing that were prevalent in the late 1990’s, and the approaches that people
were then pursuing. Indeed, as indicated above, many string phenome-
nologists at that time were pursuing traditional model-building, imagining
that at least they were learning about certain classes of promising string
theories and might ultimately come across (by dint of hard work and/or
clever construction methodology) the “correct” string model. This activity
continues today. Others were instead pursuing global theorems — state-
ments (usually taking the form of correlations between different low-energy
observables) that rested on fundamental string symmetries such as confor-
mal or modular invariance and which would therefore hold in a general
sense across the space of all models. However, the important point is that
even during those “early” years of the late 1980’s and 1990’s, it was well
understood that there existed huge numbers of apparently self-consistent
string models, and that this was ultimately critical to the future of string
phenomenology and the predictivity of string theory.

3.3. The emergence of the modern string landscape

Although many string phenomenologists were already grappling with the
large space of apparently self-consistent string models, I think it is fair to
say that during the late 1980’s and 1990’s the bulk of the string community
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was not directly focused on this issue. Although it is always difficult (and
indeed somewhat dangerous) to speculate on the sociological reasons why a
particular scientific community might focus on a particular set of problems
at one time but not another, it is my sense that there were three funda-
mental reasons why the larger string community was not worrying about
the large plethora of existing string models:

e These string models usually had flat directions — i.e., there were no
dynamical ways of fixing many of the continuous parameters that
could be freely adjusted. Flat directions are in direct conflict with
experiment, since they correspond to extra (unobserved) massless
particles and unseen forces.

e These models were usually supersymmetric, yet the real world is
non-supersymmetric.

e These models were usually formulated in flat space or anti-de-Sitter
space (negative cosmological constant). This was also not realistic.

It was therefore tacitly assumed that some sort of vacuum-selection mech-
anism would eventually be found (presumably relying on the mysterious
non-perturbative aspects of string theory), and that this stabilization mech-
anism would lead to a unique vacuum that would solve the other problems
(namely, break SUSY and introduce de Sitter space). In other words, even
though no vacuum-selection principle had yet been found, there was a very
strong faith within the formal string community that such a principle would
eventually be found, and that the whole problem of having to deal with
large spaces of apparently self-consistent string models would disappear on
its own.

So what changed? Starting in the mid-1990’s, and more urgently since
2003, there has been an increasing realization that this is not what is going
to occur. First, in the mid-1990’s, formal string theorists gained consider-
able insight into the non-perturbative behavior of these theories, and dis-
covered that these theories continue to be self-consistent even when these
parameters are left unfixed and even at strong coupling. Second, starting
around 2003, various proposals suggested the existence of controlled meth-
ods of stabilizing vacua, breaking SUSY, and realizing de Sitter space in
string theory. Unfortunately, none of these ideas led to a vacuum-selection
principle. Instead, they showed that a plethora of self-consistent string com-
pactifications is likely to continue to exist, even after vacuum stabilization
and other problems are solved.
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What emerged, then, was the dawning realization that string theory
really might contain an entire multitude of solutions — i.e., a multitude
of stable ground states — without a dynamical or symmetry argument to
select amongst them. Such ground states can be viewed as local minima in
a complex theoretical terrain of hills and valleys. It is this terrain which
was then somewhat whimsically dubbed the string-theory “landscape”.

A natural question that arises, then, is the total number of these solu-
tions across the landscape. How many are there? The number most often
bandied around comes as the result of a heroic analysis by Michael Dou-
glas (hep-th/0303194), who showed that this number could be as large as
10590, T often like to think that even writing this number in this form is
an abuse of scientific notation, since it masks how truly large this number
is. The digit ‘1’ followed by five hundred zeros will easily fill a page. Or,
to make this even more dramatic, we could write the digit with as many as
491 zeros after it, and we would still have only described only one billionth
of the total number of solutions in this landscape. This is a large number
indeed.

Unfortunately, the choice of which vacuum we live in does matter. As
we have discussed above, the low-energy phenomenology that emerges from
the string depends critically on the particular choice of vacuum state. Thus,
detailed quantities such as the choice of gauge group at unification, the num-
ber of chiral generations, the method of and energy scale associated with
SUSY-breaking, even the value of the cosmological constant, all depend on
the particular vacuum state selected!

Thus, starting around 2003, it became accepted by a large fraction of
the string community that the landscape might be real after all, and not
merely reflect our ignorance concerning a possible as-yet-missing piece of
string theory. And if so, string theory and string phenomenology will really
need to find a way to deal with it.

3.4. Living without a vacuum-selection principle: Statistics!

How then can we make progress in the absence of a vacuum-selection prin-
ciple? One natural idea (proposed by Douglas in hep-th/0303194 and per-
haps also by others) is to examine the landscape statistically, and look for
correlations between low-energy phenomenological properties that would
otherwise be unrelated in field theory. This would then provide a new
method for extracting phenomenological predictions from string theory.
As T indicated above, there had been many previous proposals by string
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phenomenologists to seek correlations across the landscape of possible string
vacua as a way of extracting predictions from string theory in the absence
of a vacuum-selection principle. However, what was usually envisioned
was the extraction of theorems — mathematical relations which followed
directly from underlying string symmetries. What was now being proposed,
by contrast, was to find statistical correlations — correlations which might
hold frequently although not always. Such correlations might therefore
emerge out of the hidden complexity of string theory without being a direct
mathematical consequence of some underlying string symmetry.

In some sense, this proposal represents the most direct possible frontal
assault on the string landscape. One takes its existence at face value, and
probes it almost as an experimentalist would, gathering statistical data and
looking for noteworthy features.

This idea has triggered a surge of activity examining the statistical prop-
erties of the landscape. Indeed, string theorists have undertaken detailed
statistical studies of numerous phenomenological features on the landscape,
focusing on issues such as the SUSY-breaking scale, the cosmological con-
stant, the ranks of predicted gauge groups, the prevalence of actual SM
gauge group SU(3) x SU(2) x U(1), the numbers of predicted chiral gen-
erations, and so forth. Moreover, this statistical line of attack has also led
to various paradigm shifts. For example, based on statistical studies of the
landscape, string theorists have advanced alternative notions of naturalness,
new cosmological/inflationary scenarios, new kinds of anthropic arguments,
and even field-theory analogues of the landscape. There has even been work
attempting to understand the distinction between the landscape and the
so-called “swampland” (i.e., the space of theoretical phenomenologies al-
lowed by field theory but not by string theory), as well as outright negative
assertions (often called “landskepticism”) concerning the existence of the
landscape itself and the methods by which it can be explored.

Indeed, such work on the landscape has even led in some quarters to a
formal organized attempt (the so-called “String Vacuum Project”, or SVP)
to bring systematic methods to bear on the constructions and analysis of
compactifications of string theory. The SVP is a large, multi-year, multi-
institution, inter-disciplinary collaboration to explore the space of string
vacua, compactifications, and their low-energy implications through the
enumeration and classification of string vacua, through the detailed analy-
sis of those vacua with realistic low-energy phenomenologies, and through
statistical studies across the landscape as a whole. As such, the SVP in-
volves intensive research at the intersection of particle physics (string theory
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and string phenomenology), mathematics (algebraic geometry, classification
theory), and computer science (algorithmic studies, parallel computations,
database management).

At first glance, this might seem like massive over-reach, especially given
that the landscape is so huge, consisting of ~ 10°°° vacua. However, if the
landscape exists, then explore it we must. Lots of branches of science, from
astrophysics and botany all the way to zoology, begin with large data sets.
For each, science then proceeds through well-defined stages: enumeration,
classification, and pattern-hunting. Why should the string landscape be
any different?

4. Examples of landscape statistical analyses

To date, there has been considerable work in studying the properties of the
string landscape. Collectively, this work has focused on different classes
of string models, both closed and open, employing a number of different
underlying string constructions and formulations. However, regardless of
the particular string model or construction procedure utilized, any such
statistical analysis can be characterized as belonging to one of four different
classes:

e Abstract studies: First, there are abstract mathematical studies
that proceed directly from the construction formalisms (e.g., con-
siderations of flux combinations). Although large sets of specific
string models are not enumerated or analyzed, general expectations
and trends are deduced based on the statistical properties of the
parameters that are relevant in these constructions.

e Direct-enumeration studies: Second, there are statistical stud-
ies based on direct enumeration of finite subclasses of string mod-
els. Within these well-defined subclasses, one enumerates literally
all possible solutions and thereby collects statistics across a large
but finite tractable data set.

¢ Random-search studies: Third, there are statistical studies
that aim to explore a data set which is (either effectively or literally)
infinite in size. Such studies involve randomly generating a large
but finite sample of actual string models and then analyzing the
statistical properties of the sample, assuming the sample to be
representative of the class of models under examination as a whole.
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e “Fertile-patch” studies: Finally, there have been studies which
concentrate on some particular region of the landscape which one
has reason to believe is “fertile” — i.e., likely to give rise to a
particularly attractive low-energy phenomenology.

Indeed, all four types of studies have been undertaken in the literature.

Certain difficulties are inherent to all of these approaches. For exam-
ple, in each case there is the over-arching problem of defining a measure in
the space of string solutions. We shall discuss this problem further below.
However, for simplicity, most researchers simply assume that each phys-
ically distinct string model is to be weighted equally in any counting or
averaging process.

By contrast, other difficulties are specifically tied to individual ap-
proaches. For example, the first approach has great mathematical gen-
erality but often lacks the precision and power that can come from direct
enumerations of actual string models. Likewise, the second approach is fun-
damentally limited to classes of string models for which a full enumeration
is possible — i.e., string constructions which admit a number of solutions
which is both finite and accessible with current computational power. Fi-
nally, the fourth approach is perhaps the most efficient if one’s goal is the
traditional goal of string phenomenology — namely to construct realistic
string models with the hopes of finding “the” correct string model. How-
ever, this approach can never teach us about the properties of the landscape
as a whole, such as its structure and overall global properties.

For this reason, a number of researchers have pursued the third direc-
tion — that of undertaking random search studies. However, even within
this approach, one must choose a particular class of string models to study
as well as a particular formalism within which to generate models in this
class. Amongst such classes of models might be, for example, Type I
models or heterotic models. Depending on the choices of class, different
construction techniques are also available. For example, heterotic string
models might be constructed through so-called orbifold-based techniques,
or through bosonic or fermionic formulations. Likewise, Type I models are
even richer — they can involve different sorts of flux vacua, intersecting D-
branes, etc. Moreover, the models that one chooses for examination might
be further narrowed in other phenomenological ways: they might all have
N = 1 SUSY, for example, or be non-supersymmetric but tachyon-free.
They might all have the Standard-Model gauge group as a precondition
(a so-called “prior”), or satisfy some other phenomenological requirements.
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Finally, such models can vary in their levels of sophistication. For example,
may exhibit various degrees of moduli stabilization — i.e., they may truly
represent local “minima” within an actual dynamical landscape, or they
might continue to have unfixed moduli. Indeed, the vast majority of ran-
dom searches involve models with unfixed moduli — this is often the state
of the art for such searches. Thus, it is clear that many different types of
random landscape searches can be contemplated and executed.

In the rest of this section, I will provide a few illustrative results from
my own research which has focused on that portion of the landscape corre-
sponding to perturbative heterotic strings. These models have all been con-
structed through the so-called “free-fermionic” construction, and as such,
they contain unfixed moduli. However, experience has shown that this is a
class of models which are particularly amenable to rapid computer genera-
tion and analysis, but for which a great deal of complexity is nevertheless
possible.

One kind of investigation one can perform concerns the gauge groups
associated with these string models. For example, how likely are different
gauge groups to appear? In hep-th/0602286, we showed that across all
string models in our sample, 10.65% contain SU(3) factors, while 95.06%
contain SU(2) factors and 90.80% contain U(1). Approximately only 10%
contain all three factors simultaneously, thereby comprising the Standard-
Model gauge group. In fact, we have found that 99.81% of all heterotic
string models in our sample which contain one or more SU (n) factors also
exhibit an equal or greater number of U(1) factors. This is an example
of an extremely strong correlation between two spacetime quantities that
would otherwise be completely unrelated in field theory.

Another useful piece of information concerns cross-correlations between
all possible gauge groups of interest? What are the joint probabilities that
two different gauge-group factors will appear within the same string model
simultaneously? This is especially useful to know if one factor is observable,
the other hidden. Such information can be found in hep-th/0602286.

Another important quantity which string theory is in a unique position
to predict/evaluate is the one-loop vacuum energy (cosmological constant)
A. A histogram of results found across our sample set is shown in Fig. 1(a).
Note that our conventions are such that A > 0 corresponds to anti de Sitter
space. By contrast, in Fig. 1(b), we see a striking correlation between cos-
mological constants and gauge groups — models that have greater numbers
of twists, thereby breaking their gauge groups into smaller and smaller
pieces with smaller and smaller ranks have smaller average cosmological
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Fig. 1. Left panel: Histogram showing the one-loop vacuum amplitude A across our
sample of N 2 10° tachyon-free perturbative heterotic string vacua with string-scale
supersymmetry breaking. Both positive and negative values of A are obtained, with
over 73% of models having positive values (corresponding to anti de-Sitter spacetimes).
Right panel: A striking correlation between cosmological constants and gauge groups:
The average value of the cosmological constants obtained from models with a fixed
number of gauge-group factors is plotted as a function of this number.

constants. Again, these are features which would be completely unrelated
in quantum field theory. Both are discussed further in in hep-th/0602286.

These examples are drawn from my own work, but I do not mean to
suggest that my work is unique in any way. By now there is a relatively
large literature providing statistical analyses of all sorts of phenomeno-
logical quantities including chirality, numbers of fermion generations, hy-
percharge normalizations, gauge-coupling unification, Yukawa couplings,
string threshold corrections, intermediate-scale physics (SUSY-breaking,
new gauge structures, etc.). Moreover, such analyses have been performed
across a wide variety of string models (Type I, heterotic, perturbative ver-

sus non-perturbative, supersymmetric versus non-supersymmetric, and so
forth).

5. Two cautionary tales

On the one hand, it is incredible that string theory enables statistical cal-
culations of the sort discussed above. After all, these are literally statistical
calculations regarding probabilities that one set of laws and fundamental
constants for the universe are favored over another!
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On the other hand, there are numerous subtleties that emerge when
trying to perform analyses of this type, and new methods need to be devel-
oped in order to extract phenomenological predictions in a meaningful way.
In order to illustrate this point, I'll now tell two cautionary tales. Both
must be borne in mind when attempting to extract statistical information
from studies of the string landscape.

5.1. Cautionary tale #1: Counting is hard

Our first complication has to do with the problem of floating correlations.
This was first discussed in hep-th/0610319 (with my collaborator Michael
Lennek), and is a generic problem which affects any random search through
the landscape. In particular, this problem turns out to play a huge role in
obtaining meaningful statistical results from any data set to which one has
only limited computational access.

The problem of floating correlations is the observation that some statis-
tical correlations are unstable — they “float” (or evolve) as the sample size
increases. Why does this happen? Essentially, as we continue to randomly
generate models, it gets harder and harder to find new (i.e., distinct) mod-
els. Thus, physical characteristics which were originally “rare” are often
forced to become less “rare” as the sample size increases and as we probe
more deeply into the space of models.

To see this more explicitly, let us consider the process of randomly
generating string models. In general, one must generically employ a model-
construction technique which specifies models according to some set of inter-
nal parameters (e.g., fluxes, orbifold twists, boundary conditions or phases,
Wilson lines, etc.) Each set of parameters maps to a single model, but the
mapping is rarely unique! Thus, as illustrated in Fig. 2, some models are
much more likely to be generated than others! (An example of this would
be Model A in Fig. 2.) This feature is essentially unavoidable.

As a result, any random search of the parameter space is not a random
search in the space of corresponding models. The implication of this, as
illustrated in Fig. 3, is that we are not actually probing the space of models
directly; we are instead actually probing a deformed version of this space,
the so-called probability space in which different models occupy volumes
proportional to their odds of being realized through the chosen construction
technique.

Unfortunately, this difference is critical when we are trying to extract
statistical correlations between physical observables. In general, the phys-
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Fig. 2. Random searches of the landscape typically explore the space of parameters
which define string models. However, this mapping is rarely one-to-one. Thus a random
search of the parameter space is not a random search in the space of corresponding
models.
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Fig. 3. The consequence of the situation sketched in Fig. 2 is that we don’t have access
to the space of models directly; instead we are actually probing a deformed version of
this space, the so-called probability space, in which different models occupy volumes
proportional to their odds of being realized through the chosen construction technique.

ical properties of our models will be correlated with these probability de-
formations. Thus, even though our goal is to extracting statistical correla-
tions within the model space (where all models are weighted equally), all
we really have access to is the probability space, with no knowledge of the
deformations that have transformed the former to the latter.

In order to proceed, we can begin by revisiting our model-generation
methodology. A partial solution is to avoid counting a newly-generated
model if it has already been generated once before and is therefore already
in our data set. Rather, we can consider it a “failed attempt”, disregard
this model, and try again. However, we are still not finding the very “rare”
models (such as Model B in Fig. 2) which are not often generated. It will
take a considerably larger data set before will stumble across such rare
models, and in principle we have no information about where they are, how
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common they are, or whether they even exist!

The solution is to restrict our attention to the relative ratios of proba-
bilities of models with different characteristics — but equally importantly,
to only calculate those ratios when the spaces of models with these charac-
teristics are equally explored.

Of course, we need a measure for the notion of “equally explored”. How
can we judge how deeply we have penetrated into a particular model space?
The solution is to look at the number of attempts it takes to randomly
generate a new model with a specified characteristic. If it is easy to generate
new models of a given type, then the corresponding space of models of that
type is relatively unexplored. As we progress, however, it gets much harder
to find new models of that type and the number of failed attempts per new
model increases. Thus, by measuring numbers of models found against
numbers of attempts to generate new models, and by comparing this ratio
for two different groups of models, we can extract information about the
relative volumes of their corresponding model spaces and thereby deduce
their true relative probabilities.

To see how this works in practice, let us consider a simple example: An
urn contains 300,000 balls of different colors. One third of the balls are red.
We seek to know what fraction of balls in the urn are red, and we try to
determine this by choosing a ball randomly from the urn, noting its color,
marking it for future identification, replacing the ball in the urn, mixing,
and then repeating over and over. Clearly, if all balls are treated equally
(no bias), approximately one third of all balls selected will be red. This
will not vary significantly with sample size. However, let us now suppose
the red balls have a different size than the others, so that the probability
of picking a red ball from the urn on a given try is « times that of picking a
ball of any other color. What fraction of selected balls will be red? Clearly
at the beginning of the process, we will find a probability /3 of finding red
balls. However, as we continue, this fraction will “float” with the sample
size, only reaching the true value 1/3 once we have fully explored the urn.
This is the problem of floating correlations. But suppose we don’t have
enough time/ability to wait that long, and we don’t know v. What can we
do?

Our solution, as outlined above, is the following. As we select balls from
the urn, one after another, we simply keep a tally of two numbers: X,eq (the
number of failed “red” attempts to find the last new red ball — i.e., the
number of red balls that must be drawn before finding a new red ball) and
Xother- At any moment in the search, these X -variables measure how deeply
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into the corresponding spaces of red (and “other”) balls we have already
probed. We also record Nyeq(Xred), the total number of new red balls
which have been found by the time our search has reached a penetration
level X,eq. We also record the analogous quantity Nother(Xother). Our
solution is then to identify the desired quantity (in this case the number
of red balls in the urn divided by the number of “other” balls in the urn)
as Nred(Xyed)/Nother(Xother) for any sufficiently large but equal values of
Xied and Xother. Here the condition “sufficiently large” can be considered
to be satisfied when the corresponding ratio ceases to float. This happens
relatively quickly under this prescription. Further details and examples of
this prescription in action are given in hep-th/0610319.

In fact, the true computational situation we face for the landscape is
even more complicated than in this simple example. There can be a whole
spectrum of different sizes (intrinsic probabilities) for the different balls
(string models). Likewise, there is no guarantee that the sizes (intrinsic
probabilities) of the balls (models) are in any way correlated with their
colors (physical characteristics). In general, there can be a huge “CKM
matrix” between colors and sizes, all of whose entries are essentially un-
known! Thus, one requires methods of extracting meaningful statistical
information even for such general situations. These issues are discussed
further in hep-th/0610319.

5.2. Cautionary tale #2: Not all vacua are vacua

Another possible complication when calculating landscape statistics is the
following. All of our previous discussions assume that the low-energy limit
of a given string model has a relatively simple field-theoretic structure: a
single vacuum (the ground state), and a tower of excited states built on that
vacuum. In such cases, the resulting phenomenology associated with each
string model is uniquely determined, and each string model corresponds to
a unique possible ground state for the universe. In other words, one string
model corresponds to one vacuum, and thus counting models corresponds
to counting vacua.

In recent years, however, there has been increasing recognition that
many models also contain additional metastable vacua whose lifetimes can
easily exceed cosmological timescales. Moreover, the phenomenological
properties of the metastable vacuum can be completely different than those
of the true ground state! For example, supersymmetry and R-symmetries
may be preserved in the true vacuum but broken in the metastable vacuum,;
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these different vacua may have different gauge groups and particle contents;
and so forth. As a result, the one-to-one connection between models and
vacua need not apply! As a result, the full landscape of string theory can be
even richer than previously imagined, since all long-lived metastable vacua
must also be included in the analysis.

This effect can be extremely dramatic and can completely alter our per-
spective on the sorts of physics which might dominate the landscape. This
is because many string vacua take the form of so-called “flux compactifica-
tions”, and these theories have “deconstructed” low-energy versions which
correspond to supersymmetric abelian gauge theories with very specific par-
ticle contents. In the presence of kinetic mixing, however, it has recently
been shown (see arXiv:0811.3335, in collaboration with B. Thomas) that
these theories give rise to infinite towers of metastable vacua with higher
and higher energies! Indeed, as the number of vacua grows towards infinity
in these models, the energy of the highest vacuum remains fixed while the
energy of the true ground state tends towards zero. Thus, even if such
models are relatively rare across the landscape, the fact that they give rise
to infinitely many vacua means that they could completely dominate the
statistical properties of the landscape as a whole! Clearly, such effects must
also be taken into account in any exploration of the string landscape.

6. Naturalness and SUSY: A case study

It turns out that the existence of the landscape allows us to reformulate
many of our usual theoretical notions in hitherto-unimaginable ways. For
example, let us ask a simple question: Is SUSY natural?

This is an important question. For very compelling phenomenological
and theoretical reasons, most theoretical frameworks for physics beyond the
SM involve the introduction of SUSY. As a result, SUSY is truly ubiquitous
across the landscape of theoretical particle physics. However, in the past
15 years, many competing theories have emerged — theories with large
extra dimensions, small extra dimensions, strong dynamics, and so forth.
Some of these theories are quite arcane, and require that we are made
of open strings, that we live on a brane, that the brane lives in extra
dimensions, that the brane is wrapped and intersects other branes, that
the extra dimensions are warped, that the warping is severe and forms a
throat, that the brane is falling into the throat, and so forth. All of this
may sound highly unnatural. But is SUSY itself truly natural? What does
it mean to be “natural”, anyway?
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There are many different notions of “naturalness” which are often
bandied about. For example, EFT (Dirac) naturalness posits that an EFT
(an Effective Field Theory) is “natural” if the dimensionless coefficients
of all operators are ~ O(1) — no unnaturally small numbers are allowed.
Under this criterion, the gauge hierarchy is unnatural (and is thus the
biggest motivation for SUSY). Another example is 't Hooft naturalness,
which posits that even if a number is small, it can be “natural” if protected
by a symmetry. But neither of these addresses the question as to whether
a theory, even if “natural” in the above sense, is likely to be right. How
likely is SUSY to be the correct theory?

“Likely”? Even though we constantly judge theories in this way, we
don’t say it aloud because the question seems more philosophical than sci-
entific.  How likely relative to what?  All other theories that one can
imagine? Who is doing the imagining? How can one compare the likeli-
hood of one theory against another?

As we have seen, string theory provides a framework in which this ques-
tion can be addressed in a meaningful way. Thanks to the landscape, we
can reformulate this question as follows: In the landscape of possible string
solutions, how many of these solutions are supersymmetric? Is SUSY “nat-
ural” on this landscape, or relatively rare?

Using the statistical techniques we have developed (as discussed, above),
we have investigated this question within the space of perturbative four-
dimensional tree-level free-fermionic heterotic string models. Our results
(derived in collaboration with M. Lennek, D. Sénéchal, and V. Wasnik in
arXiv:0704.1320) are shown in Table 1.

Table 1. Classification of the four-dimensional
tree-level heterotic landscape as a function of the
number of unbroken spacetime supersymmetries and
the presence/absence of tachyons at tree level.

SUSY class % of heterotic landscape
N'=0 (tachyonic) 32.1
N=0 (tachyon-free) 46.5
N=1 20.9
N=2 0.5
N=4 0.003

We thus see that nearly half of the heterotic landscape is non-SUSY
but tachyon-free! Indeed, the SUSY portion of the heterotic landscape
represents less than 1/4 of the full landscape, even at the string scale!
Moreover, we see that models exhibiting extended (N > 1) SUSY are
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exceedingly rare, representing less than 1% of the full landscape. In fact,
the SUSY fraction of full landscape may be even smaller than this. Free-
field constructions probably tend to favor models with unbroken SUSY and
large gauge groups. Moreover, even when stabilized models exhibit SUSY
at the string scale, it’s statistically unlikely that SUSY will survive down
to the weak scale.

Thus, we conclude that weak-scale SUSY is rather unnatural from a
string landscape perspective. Is this a problem? Not at all — it could
even be considered good news — for it implies that we will actually learn
something about string theory and its preferred compactifications if/when
weak-scale SUSY is discovered in upcoming collider experiments!

One can extend such an analysis even further. For example, one can ask
how the degree of supersymmetry of a given string model is correlated with
its gauge group. Within the same class of perturbative heterotic strings dis-
cussed above, this question was analyzed in arXiv:0804.4718, with results
shown in Table 2. From this table we see that the Standard Model prefers
to remain non-supersymmetric, while GUT’s apparently have greater pref-
erence for SUSY than does the SM alone. Indeed, exceptional groups such
as Fg, E7, or Eg almost require SUSY! Thus, we see that such strings favor
either the non-SUSY Standard Model or SUSY GUTSs, but not the MSSM!

Table 2. The likelihood that a given perturbative heterotic string model with gauge
group G will exhibit various levels of unbroken SUSY, within the sample set studied.
Note that smaller (larger) gauge groups are strongly correlated smaller (larger) amounts
of SUSY.

SUSY Uy SU, SU3 SUs SUs5 SOg SO10 | SO>10 | Fs,7,8
N =0 || 69.80 | 58.41 | 68.79 | 45.29 | 17.33 | 37.98 | 43.68 16.21 1.85
N =1 | 29.68 | 40.94 | 30.51 | 52.78 | 71.56 | 56.66 | 46.75 55.38 83.00
N =2 0.51 0.65 0.69 1.92 10.65 | 5.25 8.95 26.84 10.59
N =4 || 0.004 | 0.002 | 0.002 | 0.006 | 0.44 0.11 0.63 1.57 4.57

7. Is string theory predictive?

Needless to say, the existence of the landscape also prompts a number of
questions of a more philosophical nature. For example, given the existence
of the landscape, one natural question concerns the extent to which string
theory is predictive. In some sense, this goes to the heart of what it means
to be doing science. As such, there can be no more critical question for
string theory than this!

It is easy to imagine how a debate on this topic might proceed. P will
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start by remarking that predictivity is not an absolute necessity for all
aspects of science — indeed, good science often begins with observation
and classification. Q will retort that this is true, but while observers and
experimentalists need not be primarily concerned with making predictions,
theorists must be. Theories of science must incorporate the ability not only
to explain, but also to predict. P will then protest that the most direct
experimental consequences of string theory lie at inaccessible energy scales!
Is it fair, then, to hold string theory to normal standards of predictivity? Q
will then state that even though many of the direct consequences of string
theory lie at presently inaccessible energy scales, not all will be. And even
if all of the firm experimental consequences of string theory were somehow
proven to lie at scales exceeding those reachable by current accelerator
technology, this would not free string theory from its obligations to make
predictions which are testable at those higher energy scales — i.e., testable
in principle, if not in practice.

At this stage, P might respond that “string theory” is not a model like
the Standard Model — it’s a language (like QFT) within which the subse-
quent act of model-building takes place! QFT does not make predictions
on its own — why hold string theory to such a standard? But of course Q
could claim that this misses a critical point. While quantum field theory
tolerates many free parameters, string theory does not: generally all free
parameters in string theory (such as gauge couplings, Yukawa couplings,
ete.) are determined by the vacuum expectation values of scalar fields and
thus are expected to have dynamical origins within the theory itself. String
theory should determine its own parameters!

Given the existence of the landscape, it is certainly too much to demand
that string theory give rise to predictions for such individual quantities as
the number of particle generations. However, as we’ve seen, it is perhaps
not too much to ask that string theory manifest its predictive power through
the existence of correlations between physical observables that would oth-
erwise be uncorrelated in quantum field theory. Such correlations would
be the manifestations of the deeper underlying geometric structure that
ultimately defines string theory and distinguishes it from a theory whose
fundamental degrees of freedom are based on point particles.

Thus, our question concerning the predictivity of string theory boils
down to a single critical question: To what extent are there correlations
between different physical observables across the string-theory landscape as a
whole? The existence of such correlations would imply that string theory is
predictive, while the absence of such correlations would imply the opposite.
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Unfortunately, the true picture is likely to be much more complicated,
lying somewhere between these two extremes, with different regions of the
landscape exhibiting different correlations. Such regions may have different
sizes, and moreover are likely to exhibit non-trivial overlaps.

This then leads to a highly non-trivial pattern of correlations. To see
why, let us suppose that our landscape consists of only three regions, as
illustrated in Fig. 4, and let us further suppose that each of these regions
exhibits a correlation between only two physical observables. In particular,
let us imagine that Region I exhibits a correlation between two observables
X and Y, while Region II exhibits a correlation between Y and Z and
Region III exhibits a correlation between W and Z.

Region Il

Region |
(X,Y)

(¥,2)

Region Il
w,z)

Fig. 4. Sketch of a landscape in which different regions exhibit different correlations
between phenomenological observables X, Y, Z, and W. As discussed in the text, the
overlaps between these regions can then exhibit correlations amongst larger subsets of
observables or multiple independent correlations involving smaller subsets of observables.

This then leads to a highly non-trivial pattern of correlations in the dif-
ferent overlap regions! Indeed, the overlap region between Regions I and 1T
exhibits a single three-quantity correlation among (X,Y, Z), while that be-
tween Regions II and IIT exhibits a single three-quantity correlation among
(Y, Z, W) and that between Regions I and III exhibits two two-quantity cor-
relations (X,Y") and (W, Z). Moreover, the overlap region between all three
regions exhibits a single four-quantity correlation amongst (X,Y, Z, W).
This is clearly a very complex structure!

How then might we proceed? One evidently requires practical statisti-
cal methods of probing such a non-trivial correlation structure “experimen-



108 K. R. Dienes

tally” through the random generation and analysis of string models drawn
across the landscape as a whole! In this way, one might hope to develop
and quantify a practical notion of “predictivity” for such a system. Initial
steps in this direction are discussed in arXiv:0809.0036.

8. The Multiverse, the A-word, and Captain Kirk

Thus far, we have treated the landscape in a rather simplistic manner:
There are many possible states, and the universe chooses one. But of
course, from a quantum cosmological standpoint, it is more likely that
all possibilities are realized, and that our universe is only one “bubble” in
a such a larger multiverse (or megaverse). In accordance with the string
landscape, each universe in the multiverse would have its own physical laws
and its own constants of nature. Welcome to the Multiverse!

If this is the true nature of things, then our own universe is not special
at all, and there would be many other parallel universes whose properties
need not resemble those of our own universe in any way! Indeed, one can
further imagine that these different universes are continually being spawned
in a process dubbed “eternal inflation”, first proposed by Andrei Linde in
a more general context more than 25 years ago.

If these ideas are correct, then entirely new sets of questions are spawned
as well. For example,

e Is the number of possible universes finite or infinite? Is this even
knowable? Does it matter?

e How are these universes generated?  Through vacuum de-
cay/tunneling? In the interiors of black holes? Do they decay?

e Are all possible universes created equal? Or are some favored in
a Darwinian sense, having characteristics that will cause them to
inflate more rapidly than others and thereby come to dominate the
landscape of universes?

e How did we land in this universe? Are the fundamental laws of
physics (as we know them) destined to become nothing more than
environmental accidents of initial conditions?

e Are quantities such as the electron/proton mass ratio now going to
be viewed as having no deep theoretical underpinnings, but instead
like the planetary orbital radii, valid just “by accident” in this
universe?

Or, to summarize all of these questions in the most dramatic of ways:
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e [s theoretical particle physics destined to become a branch of cos-
mology, a study of randomly chosen cosmological initial conditions?

Along with this comes perhaps the biggest question of all:

e Why are we here? Is there anything special about our own universe
whatsoever, any tool that remains by which we can hope to develop
insight into our universe and make predictions?

[Obviously, the astute reader recognizes that we are heading towards very
dangerous waters. We now take the plunge...]

There is, of course, one way of answering all of these questions: the
Anthropic Principle. There are many ways of expressing this principle,
some of which sound silly and others of which may be profound. Here’s one
way: The universe takes the form that it does so as to allow observers to
observe it.

My personal verdict on this formulation of the anthropic principle is that
it is silly. In my opinion, the universe doesn’t care about me or you, and
it doesn’t exhibit narcissistic or exhibitionist tendencies that make it want
to be observed. (This would not be anthropic, but anthropomorphic!) This
form of the anthropic principle essentially asserts that the universe may
seem random and spontaneous, but that there’s really a hidden “script”
behind the scenes which is fine-tuned towards the single goal of being wit-
nessed by an “audience”. Now, some universes are indeed known to operate
this way (I'm here thinking of the “WWE Universe”) — but some have ar-
gued that the anthropic principle is really about intelligent life...

But there are other versions of the anthropic principle which are perhaps
not so silly. Here’s a pop quiz: The Federation Star Ship “Enterprise”
enters an uncharted solar system with 105°° planets. In order to survey the
planets quickly, Captain Kirk sends a landing party down to each planet
simultaneously. After an hour, he puts out a general call for survey reports
to be sent back to the ship. Question: What percentage of surveys will
report an M -type planet (i.e., capable of supporting life)?

A moment’s thought will convince you that there is only one answer:
100%! All other teams will be dead, and won’t be able to file any reports.
Indeed, there is a profound lesson here: Certain outcomes about the uni-
verse are guaranteed, because otherwise we couldn’t have even asked the
question.

This form of the anthropic principle has had some successes, most no-
tably the prediction of a non-zero cosmological constant A of approximately
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the right size, a full decade before it was observed! Indeed, in 1987, Wein-
berg observed that A cannot be too big, or else the universe would have
expanded too rapidly to allow the formation of structure (galaxies, stars,
...) as needed to generate life. This gives an upper value for A. Now, this
alone is not the anthropic principle. This is just an upper bound on A.
In particular, A = 0 would still be allowed. The anthropic principle which
Weinberg then used is to say that since there is no other argument concern-
ing the size of A, there is nothing else to suppress A further. Consequently
the value of A should be at or near this critical value (and hence not zero).
And indeed, experimental observations ten years later have borne this out!

If the multiverse is real, the only hope we may have for understanding
the properties of our own universe is through these sorts of applications
of the anthropic principle. But it should be noted that there is also fierce
opposition to this idea. Some physicists assert that this is not the way sci-
ence should be done, that the anthropic principle represents a surrendering
of the idea that the fundamental laws of physics are unique and not tuned
for particular outcomes — especially not an outcome such as life. Indeed,
as Burt Richter, the former director of SLAC, commented during a public
debate during the SUSY 2006 Conference at UC Irvine, “The anthropic
principle is not an explanation; it’s an observation.”

In science, we normally accept various “priors” (inputs, assumptions,
axioms), and seek to use those inputs in order to derive new results. The
question that emerges, then, is whether it is fair to use our own existence
as such an input. How we decide which input “data” are acceptable, and
which “data” aren’t? And what is the data: intelligent civilizations? Life
in general? What kinds of life can we imagine? Indeed, are universes
which are capable of supporting life somehow preferred (in a Darwinian
sense) over those that don’t? Obviously, there are no easy answers to these
questions.... just a raging debate.

Closely related to these questions is another: How can we test the Mul-
tiverse idea? Is it even falsifiable?

I have found no better discussion of this issue than that from Lenny
Susskind. His words are eloquent, so I will simply quote them here:

Throughout my long experience as a scientist, I have
heard unfalsifiability hurled at so many important ideas
that I am inclined to think that no idea can have great
merit unless it has drawn this criticism. I'll give some
examples..
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In the early days of the quark theory, its many oppo-
nents dismissed it as unfalsifiable. Quarks are permanently
bound together into protons, neutrons and mesons. They
can never be separated and examined individually. They
are, so to speak, hidden behind a veil... But by now, al-
though no single quark has ever been seen in isolation,
there is no one who seriously questions the correctness of
the quark theory. It is part of the bedrock foundation of
modern physics.

Another example is Alan Guth’s inflationary theory. In
1980 it seemed impossible to look back to the inflationary
era and see direct evidence for the phenomenon. Another
impenetrable veil called the “surface of last scattering” pre-
vented any observation of the inflationary process...

Good scientific methodology is not an abstract set of
rules dictated by philosophers. It is conditioned by, and
determined by, the science itself and the scientists who
create the science. What may have constituted scientific
proof for a particle physicist of the 1960’s — namely the
detection of an isolated particle — is inappropriate for a
modern quark physicist who can never hope to remove and
isolate a quark. Let’s not put the cart before the horse.
Science is the horse that pulls the cart of philosophy.

In each case that I described — quarks, inflation, ... —
the accusers were making the mistake of underestimating
human ingenuity. It only took a few years to indirectly test
the quark theory with great precision. It took 20 years to
do the experiments that confirmed inflation... What people
usually mean when they make the accusation of unfalsifia-
bility is that they, themselves, don’t have the imagination
to figure out how to test the idea. Will it be possible to
test eternal inflation and the Landscape? I certainly think
so, although it may be, as in the case of quarks, that the
tests will be less direct, and involve more theory than some
would like. — Lenny Susskind

Indeed, several ideas along these lines have already been proposed. Some
tests are possible only in principle...

e in the long-distance future, if our horizon expands sufficiently,
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e if/when our universe tunnels into another vacuum state,
e through signatures of physics at or near a domain wall,

while others are potentially more realistic, relying on

e traces of stringy physics and/or inflationary history imprinted on
the Cosmic Microwave Background (CMB),

e evidence for strings through deviations from general relativity,

e direct observation of string theory at the LHC (which is possible if
the string scale Mgiring is in the TeV-range), and/or

e observation of spatial variation of the fundamental constants.

But these issues are far from settled:

I am very glad that Susskind has been able to give these
issues much more visibility. But it would be very unfor-
tunate if string theorists finally accept there is an issue
with predictability, only to fall for the easy temptation of
adopting a strategy towards it that cannot yield falsifiable
theories. The problem with non-falsifiable theories is noth-
ing other than that they cannot be proven wrong. If a large
body of our colleagues feels comfortable believing a theory
that cannot be proved wrong, then the progress of science
could get stuck, leading to a situation in which false but
unfalsifiable theories dominate the attention of our field.
— Lee Smolin, Perimeter Institute, Waterloo, Canada

Finally, one can ask why we should go through all of this worry. Even
if the multiverse exists, why not just focus on our own universe?

In my opinion, there are three fundamental reasons why we should care.
First, it is part of the compelling nature of scientific challenge. As the old
joke says, “Why climb Mount Everest? Because it is there.” Second, if there
are really 10°°° vacua, it is very unlikely that we will determine which one
describes our universe, exactly. Many will satisfy current experimental con-
straints. So our need to make predictions still requires that we understand
something of the more global structure. But finally, I believe that such an
understanding provides the only way of answering the “why” questions as-
sociated with the Standard Model. Why are there three generations? Why
are there three types of non-gravitational forces? As A.N. Schellekens of
NIKHEF in the Netherlands has written in 0807.3249, “If the Standard
Model is part of a huge ensemble, then the only way to answer such ques-
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tions is to understand the distribution of that ensemble. We simply have
to care about more than just our own universe, and... it is inevitable that
anthropic arguments will play a role in addressing such questions...”

9. Conclusions and perspectives

Clearly, a statistical analysis of the string landscape has the potential to
address questions of relevance to string phenomenology — even without a
vacuum-selection principle. However, more work along these lines remains
to be done. Perhaps most importantly, one needs to develop methods of
generating and analyzing large classes of stable string models without un-
fixed moduli. Concurrently, one also needs to develop new algorithmic and
statistical tools with which to conduct analyses of the types that will be
required. The landscape is a huge place, and it will not be possible to visit
all corners and perform the types of complete studies that one would other-
wise like to perform. However, this does not mean that certain sections of
the landscape cannot be examined, with meaningful information extracted.

That said, one must be aware of certain dangers inherent in conducting
such studies. There are three, in particular, that I consider paramount.
First is what may be called the “lamppost” effect — the danger of re-
stricting one’s attention to those portions of the landscape where one has
control over calculational techniques. This does not guarantee that one is
looking at the most interesting regions of the landscape at all. Second is
what may be called the “Gdédel” effect — the landscape is so large that
it is possible that no matter how many input “priors” one demands, there
will always be another observable which cannot be uniquely predicted. Fi-
nally, there is also the “bull’s-eye” effect — we don’t always know what our
“target” is (i.e., how to define success), since we are not certain how our
low-energy world ultimately embeds into the fundamental theory (SUSY?
GUTSs? technicolor? something else?).

Nevertheless, despite these dangers, I believe that direct examination
of actual string models can uncover features and behaviors that might not
otherwise be expected. Moreover, through direct enumeration, we gain
valuable experience in the construction and analysis of phenomenologically
viable string vacua. Finally, as string theorists, I believe we must ultimately
come to terms with the landscape. Just as in astrophysics, botany, and
zoology, the first step in the analysis of a large data set is enumeration
and classification. Thus, properly interpreted, I believe that statistical
landscape studies can be useful and relevant in this overall endeavor.
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So where does all of this lead us? Unfortunately, the answer is not clear.
Perhaps more than any other, the landscape idea has spawned a raging
debate within the string community. Let us recall the quote from Lenny
Susskind with which we began this Chapter. However, not all physicists
share in his excitement:

I love Lenny, but I hate this recent landscape idea and
I am hopeful it will go away. — Paul Steinhardt, Albert
Einstein Professor of Science, Princeton University

Likewise,

When I hear Lenny say that “this theory is going to
win, and physicists who are trying to deny what is going
on are going to lose”, then to my opinion he is going too
far... This is not the way physics has worked for us in
the past, and it is not too late to hope that we will be
able to find better arguments in the future. — Gerardus 't
Hooft, University of Utrecht, the Netherlands, Nobel Prize
in Physics, 1999

Lenny responds,

That’s hard to argue with. I consider myself to be
a cautious, rather conservative physicist. I really don’t
like new ideas. But I also find wisdom in a quote from
Sherlock Holmes: “When you have eliminated all that is
impossible, whatever remains must be the truth, no matter
how improbable it is.”

Many others have joined this debate:

I feel the views of some, that such a picture is unsci-
entific, or a cop-out, are extreme. In particular, under-
standing the laws that give rise to the megaverse is a very
scientific question, and one that I think is well worth study-
ing further. — Steve Giddings, University of California,
Santa Barbara

Indeed, many statements are quite provocative:

Finally, after 15 years, the debate has started that
should have started around the mid-80’s, but was stifled
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by irrational opposition against the notion that our ob-
servation of the Standard Model could be biased by our
own existence... To me, at least one thing seems abso-
lutely obvious: the idea that the Standard Model is (even
approximately) unique will eventually find its place in his-
tory next to Kepler’s attempt to compute the orbits in
the solar system: understandable at its time, but terribly
anthropocentric. — A.N. Schellekens, NIKHEF, Amster-
dam, the Netherlands, in 0807 .3249

However, I’d like to close with a final quote which I think sums up the
debate in the most succinct way possible:

We now believe we live on an ordinary planet, one of
many, circling an ordinary star, one of many, in an ordinary
galaxy, one of many. Perhaps we need to take the next
step, admittedly a revolutionary one, of saying we live in
an ordinary universe, a very small part of an enormous
megaverse. — Gino Segre, University of Pennsylvania

Indeed, perhaps this debate about the meaning of the string landscape
can be viewed as nothing more than a 21%%-century continuation of the
conflict between the Copernican and Ptolemaic world-views. If so, then the
current debate about the string landscape is not new at all — it is actually
an ancient one, taken to what might be considered its logical and most
complete conclusion. This is not entirely unexpected. A generation goes
and a generation comes, but the debate concerning the universe and our
true place within it remains forever.
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We survey some of the basic mathematical ideas and techniques which
are used in string phenomenology, such as constructions of Calabi-Yau
manifolds, singularities and orbifolds, toric geometry, variation of com-
plex structure, and mirror symmetry.

1. Introduction and overview

String theory and M theory predict that our universe has six or seven extra
dimensions, which form a small compact space. In principle, all of the fun-
damental laws we observe — the Standard Model, and whatever extensions
of it we will someday discover — can be derived from the properties of this
space and the fields and objects contained within it.

If we believe this, then the problems of classifying the relevant six and
seven dimensional manifolds, and making the relevant computations, be-
come central problems of fundamental physics. While these problems are
much discussed elsewhere in the volume, let us begin with a brief sum-
mary of their mathematical content. To a first approximation, one can
think of string and M theory as leading to supergravity in ten or eleven di-
mensions. This theory contains general relativity and the simplest class of
quasi-realistic solutions are a product of Minkowski space-time and a Ricci-
flat internal manifold. Thus to get started, we would like to classify the six
and seven-dimensional Ricci flat manifolds. Some of the string theories also
contain ten-dimensional Yang-Mills theory, so we would also like to classify
solutions of the Yang-Mills equations of motion on these manifolds.

These are already hard problems, but here they are only a starting
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point. Once we have a solution, we would like to understand the small
fluctuations around the solution, particularly those which lead to massless
fields in four dimensions. We would then like to compute overlaps between
these modes, meaning the integral over the extra dimensions of products of
three or more eigenfunctions, to get low energy couplings. Once we know
how to do this, we are ready to face up to the problem that supergravity
was only a first approximation, and the real string and M theories involve
many corrections, controlled by the length scales of the extra dimensions in
units of the string or Planck scale, and by Planck’s constant. Furthermore,
string and M theory allow singularities which would not have made sense
in general relativity, such as metric degenerations, and branes which carry
gauge fields and other matter. There are even further generalizations of
the problem we will not discuss, such as nongeometric backgrounds. Un-
derstanding all of this is a tall order and it is rather amazing that string
theorists have gone as far as we have in this direction.

The initial problems on our list, of classifying manifolds and solutions on
them of nonlinear PDE’s such as the Einstein and Yang-Mills equations, are
particular cases of more general problems which have been actively studied
by mathematicians for about fifty years. The classification of spaces (or
manifolds) is part of topology and geometry. Spectral theory on Rieman-
nian manifolds was originally studied as a generalization of the theory of
vibrating media. The combination of these theories leads to index theory,
which relates the number of zero modes of linear operators to the topol-
ogy of the manifolds and bundles on which they are defined. Index theory
is one of the most powerful and general theories of modern mathematics.
Since in most compactifications the particles we can produce and study
are far lighter than the scale set by the size of the extra dimensions, they
correspond to approximate zero modes, and thus index theory is the usual
starting point for studying compactification. An introduction from this
point of view, still well worth readng, can be found in the second volume
of Green, Schwarz and Witten’s famous textbook (GSW [1]). Still, index
theory is not able to answer important questions such as the stability of a
compactification, or whether particular wavefunction overlaps are zero or
nonzero. Of course, eventually we need quantitative results to do string
phenomenology.

At present, the most powerful and successful mathematical framework
for getting a quantiitative handle on string compactification is algebraic
geometry. Originally, algebraic geometry was the study of spaces defined
by simple equations, such as spheres, Riemann surfaces, and the like. Typ-
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ically, one starts from a very simple higher dimensional space, say real or
complex Euclidean space, and describes the space of interest as the set of
solutions to one or more equations formulated in the higher dimensional
space. For the simplest case of the unit N-sphere, rather than define it
in terms of coordinate patches or symmetry properties, the algebraic geo-
metric definition is the subset of real N + 1-dimensional space consisting of
solutions of the equation

N+1

1=Y" X7 (1)
i=1

The idea of algebraic geometry is then to relate properties of the defining
equations to properties of the space. For example, the degree 2 of this
equation, can be related to the fact that the N-sphere is simply connected.

As physicists, this might already give us pause — while such relations
are certainly interesting, it would be rather odd for the laws of physics to
know or care about whether physical space and time could be embedded in
another, still higher-dimensional space, by equations which take a simple
form. And indeed, algebraic geometry was not much used in fundamental
physics before the first superstring revolution of the 80’s. One of the main
goals of this article will be to explain how it became not just relevant to
fundamental physics but one of the most basic parts of the discussion. In
particular, one can show in some generality that the ability to describe the
extra dimensions as solutions to polynomial equations in a higher dimen-
sional space is not an additional assumption. Rather, it follows from the
other physical and mathematical constraints on the problem, in an indirect
way which will take us some time to explain.

One of these physical constraints, justified elsewhere in this volume, is
to restrict attention to solutions with low energy supersymmetry.? Doing
this has a huge impact on the mathematical nature of the problem, focusing
our attention on complex geometry and manifolds of special holonomy. Of
course, the general theory of four-dimensional supersymmetry requires the
scalars to group into complex fields, and from this point of view it seems
natural that the extra dimensions should be a complex manifold. Actually
this is oversimplified as there are other possibilities for the extra dimensions,
such as G2 manifolds, which are not complex. We will outline the broader
picture, before focusing on the case of complex extra dimensions.

aNote that “low” here means relative to the string, Planck and compactification scales,
so this assumption is not based solely on bottom-up considerations. Some top-down
arguments for supersymmetry can be found in [4-6].
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The starting point for supersymmetric compactification, as discussed
in GSW and many textbooks, is to find a covariantly constant spinor on
the extra dimensional space, as this implies an unbroken supersymmetry in
four dimensions. This leads us to the study of holonomy and generalized
holonomy. We review this topic and some of the mathematics it leads
to in §2. There is a classification of holonomy groups, and an emerging
classification of generalized holonomy,” which we expect to provide a fairly
short list of around ten or twenty local geometries which are compatible
with supersymmetry.

By far the best-studied local geometry is SU(3) holonomy, which leads
to Calabi-Yau compactification. We discuss a variety of constructions of
these manifolds in §3, such as hypersurfaces in projective space and in toric
varieties, and the theory of orbifolds. We give only the most basic examples,
instead focusing on the concepts in algebraic geometry which are used to
study them, such as line bundles, characteristic classes, and resolution of
singularity. Along the way, we will explain why six-dimensional Calabi-Yau
manifolds, which a priori need have no simple definition as the solution
of equations in a higher dimensional space, nevertheless always do. This
justifies the central role of algebraic geometry in the discussion.

In §4 we discuss how the definition of complex moduli space, which the
reader should be acquainted with from its use in string world-sheet pertur-
bation theory, is made for Calabi-Yau threefolds. A number of explicit one
and two-parameter examples have been worked out in detail, originally as
tests of mirror symmetry and string duality. These results are much used
in quantitative work on string phenomenology, such as moduli stabilization
and the computation of coupling constants.

In §5, we survey some more advanced topics, including construction of
bundles and mirror symmetry. We close with some comments on longer
range questions.

2. Holonomy and complex geometry

An unbroken supersymmetry in a compactification is a spinor e for which
the supersymmetry variation of the gravitino and other fermionic fields
vanishes, schematically

0=y = Dre+ Yy GY) (T7Ke (2)

b At the time this was written, this theory was under active development, but the general
classification had not been finished.
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where Dy is a covariant derivative and the G?})___ x are p-form field strengths,
often called “flux.”

Let us begin with the case G = 0, so we are looking for a covariantly
constant spinor €. To understand the nature of this problem, consider the
analogous problem of finding a covariantly constant vector field, one pre-
served by parallel transport along any path. This is a very strong condition
which forces the Riemann curvature tensor to be zero in every component
along the vector field, effectively restricting the curvature to one lower di-
mension. A more geometric way to say this is to define the holonomy group
of the manifold as the group of all rotations of an orthonormal frame which
can be achieved by parallel transport (to be precise, we choose a basepoint
and consider parallel transport around a loop starting and ending at this
basepoint). The condition for a covariantly constant vector field is that
the holonomy group, which for a general D-dimensional manifold would
be SO(D), must be SO(D — 1) or a subgroup thereof. Equivalently, if we
restrict the fundamental representation of SO(D) to the holonomy group,
it must contain an invariant subspace, or singlet representation.

Now, the parallel transport of a spinor can be derived from that of a
vector, by taking the associated rotation acting on an orthonormal frame,
considered as an element of SO(D) acting in the fundamental representa-
tion, and re-expressing it in the spinor representation. Thus, the condi-
tion that there exists a spinor which is preserved by parallel transport, is
that the spinor representation of SO(D), when restricted to the holonomy
group, must contain a singlet. If we do not want extended supersymmetry,
the singlet must be unique.

What is the simplest way this can happen? Suppose our manifold admits
complex coordinates, in other words we can group the coordinates in pairs
= 22" + iz?"*t! such that the transition functions between coordinate
patches are holomorphic. Suppose further that the metric is hermitian, so
that it takes the form g¢,,7dz""dz"™ in each patch. In this case, the subgroup
of frame rotations which do not mix up the z’s and z’s will preserve the
metric — so it is the unitary group U(N) with N = D/2. The spinor
representations of SO(2N) then decompose into a sum over the n-index
antisymmetric representations of U(N), with n even or odd depending on
their chirality. Since the case n = 0 is a singlet of SU(N), if we can find a
metric with U(N) holonomy group, this gets us most of the way.

It turns out that U(N) holonomy is the condition that the metric be
Kahler. As will be familiar from N = 1 supersymmetry, whereas a general

Zn
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metric tensor has D(D + 1)/2 components, a Ké&hler metric is determined
(locally) by a single function. This is an example of how the constraints of
supersymmetry will dramatically simplify our problems.

The subrepresentation with n = 0 will still be charged under U(1) C
U(N) and thus to have a covariantly constant spinor, the holonomy group
must in fact be SU(N). One consequence of this is that there must exist
a covariantly constant N-index antisymmetric tensor, because this repre-
sentation is also a singlet of SU(N).¢ It is not hard to show that a metric
with SU(N) holonomy is Ricci-flat, [1] and thus we can get N = 1 super-
symmetry in d = 4 Minkowski space-time by taking the internal space to
be a six-dimensional complex manifold with a metric of SU(3) holonomy.

Showing that such a metric exists still sounds hard. Now there is a
necessary condition on the U(1) part of the holomony, which is easy to
analyze. As we will discuss in the next section, the integrals of the U(1) part
of the curvature over two-cycles give a topological invariant of the manifold,
the first Chern class. If this is nonzero, any metric on the manifold must
have nontrivial U(1) holonomy, and therefore a manifold of SU(3) holonomy
must have zero first Chern class. Famously, it was conjectured by Calabi
and proven by Yau that this necessary condition is also sufficient. Although
we have no closed form expression for the resulting Ricci flat metrics (and
there is a strong belief that none exists), they have been proven to exist,
and one can say a fair amount about them if needed.

It turns out that the Ricci-flatness condition can be written as a single
PDE for a single unknown function, and thus one might expect its solution
to be unique. This is true with the caveat that reducing it to a single
equation requires specifying additional parameters, called moduli, and thus
the Ricci flat metrics come in a family parametrized by a moduli space.
One way to see that additional parameters must come in is that, since the
Ricci flatness condition is scale-invariant, the overall scale of the metric
will always be a modulus. We will discuss the moduli further below and
see that they come in two types — the Kéhler moduli (as we explain in
§3) and the complex structure moduli (§4). The moduli correspond to
fields in the D = 4 effective field theory, and computing those parts of the
effective potential which stabilize them is one of the key problems which a
quantitative treatment of compactification must solve.

One can look at group theory tables to find other subgroups of SO(D)
for which the spinor contains a singlet. However, it turns out that not all

°For N odd, it corresponds to the same covariantly constant spinor.
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subgroups of SO(D) can appear as holonomy groups.? The possibilities

were classified by the mathematician Berger in the 50’s, and are called
the special holonomy groups. The possibilities which admit covariantly
constant spinors are SU(D/2), Sp(D/4) (the hyperkéhler metrics), Gg in
seven dimensions, and Spin(7) C SO(8) in eight dimensions. Of these, the
G, case leads to four-dimensional compactifications of M theory with N =1
supersymmetry, a number of phenomenological implications of which have
been studied in [2]. While G5 metrics have been proven to exist, starting
with Joyce [3], this theory is still in its infancy.

Let us turn now to the case with flux, G # 0. The particular list of field
strengths G depends on the supergravity theory under discussion. The
first example to be discussed was the D = 10, N = 1 theory which is the
low energy limit of the heterotic string. It has a Yang-Mills field strength
Ff; and a three-form NS field strength usually denoted H; k. In a precise
discussion, we would also have to take nonconstant dilaton and warp factor,
leading to additional functions multiplying the terms in Eq. (2), but this
will not be needed for our qualitative discussion.

To see how these field strengths fit into the holonomy analysis, we
need to decompose the field strengths into representations of the holon-
omy group. In the case at hand of SU(3), this amounts to the reduction
SU(3) € SO(6), under which a fundamental 6 = 3 + 3. Introducing com-
plex coordinates, the fundamental and antifundamental of SU(3) have local
bases dZ! and dZ! respectively, and are usually called holomorphic and
antiholomorphic indices. The space of n-forms can then be decomposed
into (p,q)-forms with p antisymmetrized holomorphic indices, ¢ antisym-
metrized antiholomorphic indices, and p + ¢ = n. Normally a background
flux will break supersymmetry unless its nonzero terms are singlets under
this decomposition.

Let us begin with the three-form NS field strength. A real-valued triple
antisymmetric representation of SO(6) contains a unique singlet of SU(3),
a combination of (3,0) and (0, 3) forms which are complex conjugates of
each other. Thus, it is possible to have a non-zero NS field, but for a given
Calabi-Yau metric it will be unique up to overall scale. Since these field
strengths are quantized, this can be used to stabilize some of the moduli,
as we will discuss in §4.

A similar story can be told about M theory compactification on Gs

dThey can all appear as holonomy groups of homogeneous spaces, but these spaces have
too much symmetry to lead to realistic compactifications.
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manifolds. Since this geometry has an invariant four-form, the four-form
field strength G* can be nonzero, and will stabilize metric moduli.

As for the Yang-Mills field, to be consistent with supersymmetry it must
satisfy

F]ajzzeaglj7 (3)
where the e are constants taking values in U(1) factors, and g;7 is the
Kéahler metric. These are known as the Donaldson-Uhlenbeck-Yau equa-
tions. It is not hard to show that they imply the Yang-Mills equations, and
thus supersymmetry again implies the equations of motion. One can also
show that, like the SU(3) holonomy condition, these are as many equations
as unknowns (the local structure of the connection is determined by a single
function of matrices) and thus the solutions will come in finite-dimensional
moduli spaces. These moduli correspond to D = 4 matter multiplets.

The most important attribute of a background Yang-Mills connection is
its holonomy group, again referring to the group of gauge rotations which
can be induced by parallel transport around an arbitrary loop, but now
acting on the gauge charges. Physically, a compactified theory with gauge
group G and a background with holonomy H, will have unbroken lower-
dimensional gauge symmetry H’, the commutant of H in G. Working these
out for Fg leads to the well known result that heterotic compactification
will lead to the GUT groups Eg, SO(10) and SU(5), if H is one of SU(3),
SU(4) or SU(5) respectively. In fact, the generic solution of Eq. (3) will
have H 2 G and break all gauge symmetry.

From the point of view of a solution which preserves some gauge sym-
metry, many of the moduli will enlarge H and reduce H'. Physically, they
are charged. The discussion of charged moduli is intricate as their N = 1
effective field theory is relatively unconstrained, leading to complicated su-
perpotentials and symmetry breaking patterns. In practice, this discussion
is often done in the higher dimensional language, considering families of
bundle and brane configurations and reformulating the equations of motion
as conditions in algebraic geometry, as we explain in §5.1. This has the
advantage that (at least some) quantum corrections can be obtained from
the higher dimensional picture.

The type II supergravities have several field strengths and thus the
discussion becomes more involved. Now it is possible for the covariant
derivative and the field strength terms in Eq. (2) to cancel in a nontrivial
way. To treat all the terms on a more equal footing, one can regard the field
strength terms as additional components to add to the metric connection,
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to obtain a new connection on the spinor bundle. This new connection will
have a holonomy, which is referred to as generalized holonomy. Unbroken
supersymmetries will again correspond to a reduction of the generalized
holonomy group which preserves one or more singlets, and in principle
the discussion could be made in a parallel way. In practice, the analysis
is usually done by introducing “torsion classes.” These are defined by
considering the field strengths and their first derivatives, and decomposing
these under one of the standard holonomy groups. The equations of motion
then lead to constraints on the nonzero torsion components, which can be
worked out to find the possible local geometries with flux.

3. Constructing complex manifolds

We will go back and forth between the many techniques for constructing and
analyzing the spaces used in string phenomenology, and the concepts which
are being used and which tell us to what extent these techniques actually
do cover all the possibilities. Of course, we will barely be able to scratch the
surface; a number of introductory articles as well as mathematical articles
exist on the subject.

As we reviewed, the starting point for Calabi-Yau compactification is to
construct a Kahler manifold with zero first Chern class. There are various
recipes in the literature for this. The simplest is to use the fact that a
submanifold of a K&hler manifold, defined as a set of solutions to a set of
complex equations which is nonsingular at every point, is itself a Kéhler
manifold. We want a three complex dimensional manifold, so the simplest
possibility is to take a simple four-dimensional K&hler manifold and impose
a single complex equation, to get a “hypersurface.”

Now the simplest Kahler manifolds are the complex projective spaces
CPY, defined by taking N + 1 complex coordinates Z;, and identifying two
points Z ~ Z' if they are related by an overall rescaling Z; = AZ! with A
a complex number. Excluding the case of all Z; = 0, the resulting set is a
compact complex manifold with b2 = 1. To get an explicit description in
terms of coordinate patches, we define the j'th patch by setting Z; = 1 and
using the Z; for i # j as its coordinates.

Next, we need to pick an equation f = 0 on CP% At this point a
reader truly new to the subject might ask how we could do this, as the only
holomorphic functions on a compact manifold are the constant functions.
The answer is to work with local coordinate patches and postulate a differ-
ent defining function, call it f;, in each patch. All we need is for pairs of
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equations f; = 0 and f; = 0 to have the same solution set wherever they
overlap. This will be true if they are related by a nonvanishing holomorphic
transition function, f; = pjk fx.

An explicit discussion in terms of patches can be found in textbooks;
let us simply note that the appearance of transition functions suggests that
a better way to think about f is that it is not a function but rather a
section of a vector bundle, related between patches by nontrivial gauge
transformations. The special case in which the section is locally a single
complex function, related by a single holomorphic transition function, is
called a “line bundle” as in algebraic geometry the space parameterized by
a single complex number is always called a “complex line.”

Taking f to be a holomorphic section of a line bundle works and can
be used on arbitrary manifolds, but for the special case of CPV we can do
something simpler. We take f to be a homogeneous polynomial (one of
fixed degree) in the Z;, such as the “Fermat polynomial”

N+1
0= fnalZ)=> (Z)" (4)
i=1
One way to see that this makes sense is to check that its solutions agree in
each of the coordinate patches Z; = 1. A better way is to note that under
the relation Z — AZ, we have fyq — /\di,d, so the condition fy 4 =0 is
independent of \.

We should check that our equation f = 0 defines a manifold and not
some more singular space. Just as in real geometry, the condition for this
is that the gradient V f # 0 at every point of the manifold (in other words
where f = 0). This is clearly true for the Fermat polynomial Eq. (4), and
true for generic polynomials. On the other hand, by adding an additional
term with a parameter, say for definiteness

0=Z27 +Z5+ Z3+ Z] + ZE + N21 22232475, (5)

one can see that it is also easy to violate this condition — doing this requires
tuning one parameter and thus “singularities are codimension one.”
Singularities are ubiquitous in algebraic geometry and thus one usually
talks not about manifolds but about “varieties,”
ties. Analogous to the definition of a manifold which is made by patching
together small regions which each look like RY or CV, the definition of
a variety is made by patching together small regions which each look like

the set of solutions of some set of equations in CV. Another of the discov-

which can have singulari-

eries that makes algebraic geometry so useful for string/M theory is that
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many of these singular varieties still define sensible compactifications — this
is usually what is meant when one says that “string/M theory resolves
singularities of conventional geometry.”

3.1. Characteristic classes

Although one can continue the discussion in this concrete vein, as the next
step is to determine the topology of our manifold and find a case with van-
ishing first Chern class, we have arrived at the point where some elementary
mathematical formalism will prove its worth. We leave a systematic dis-
cussion to the references, and simply introduce a few of the concepts we
would need to develop, beginning with the theory of characteristic classes
of vector bundles. Its basics will be familiar to many readers from its use
in the theory of monopoles and in the discussion of nonperturbative effects
in gauge theory. Consider the definition of a Dirac monopole of magnetic
charge n. Rather than talk about a connection which is singular on a Dirac
string, the modern discussion takes the vector potential to be a U(1) con-
nection on a nontrivial bundle over R3 — {0}. Such a bundle can be defined
concretely in terms of coordinate patches and transition functions, as is
done in textbooks. Its most important attribute, and indeed its only topo-
logical invariant, is the total magnetic field, defined as an integral over any
surface surrounding the origin. This is [ F' = 27n, where n must be an
integer by the Dirac quantization condition.

In mathematical terms, the electron wavefunction in a monopole back-
ground is a section of a line bundle, and n is its first Chern class. More
generally, given a line bundle on any manifold, we can postulate some U(1)
connection, compute its curvature F', and its integrals over any two-cycle
define the first Chern class of the bundle. A somewhat better rephrasing of
this is that the first Chern class is the cohomology class [F| in H?(M,Z),
in other words the cohomology class of a two-form whose integral over any
two-cycle is an integer. It is a topological invariant of the bundle, because
under any continuous change of the connection A — A+ § A, the curvature
changes by an exact form, F' — F + djA.

Connections for nonabelian groups will act on vector bundles, and we
also need to discuss these. One can try to extend this definition to a vector
bundle by taking the cohomology class of Tr F', which is invariant up to
an exact form even in the nonabelian case. This will be interesting if the
trace can be nonzero, which is a question of group theory; it is only true
for structure groups with U(1) factors, such as U(N). To get characteristic
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classes for other groups, one must use more general invariants, such as
TrEF A F, higher powers, and even traces in other representations for non-
unitary groups.

For U(N) structure group (so, complex vector bundles), the standard
characteristic classes are the Chern classes ¢,,, and the Chern characters
ch,,. These are defined as terms in the series expansions of

2
det(l+zF)=Zz”cn:1+zTrF+%(TrF/\TrF—TrF/\F)+...
Z2
Tr exsz:Zz”chn:N—i—zTrF—i—ETrF/\F—i—...

and then taking the cohomology classes of these 2n-forms. These are essen-
tially two ways of packaging the same information, each more convenient
for certain computations. In particular, the Chern character is additive
under taking direct sums, and is usually the one which arises in physics, as
in tadpole cancellation conditions and brane charges.

A good deal of the topology of a line or vector bundle is captured by
these characteristic classes. Since an embedded manifold has several natural
bundles associated to it — its tangent bundle, its normal bundle in the
ambient space, and others — this is very useful, and often just using relations
between characteristic classes one can work out all of the even cohomology
of the manifold. The odd cohomology is rather different; for a Calabi-Yau
threefold it is related to its complex structure as we discuss later.

To begin these arguments, let us work out the possible line bundles on
CPV, and decide which line bundle has the defining polynomial in Eq. (4)
as a section. The simplest case is the trivial bundle whose sections are
functions — this is denoted Og¢p~y or simply O. Of course, it has a flat
connection, so ¢1(O) = 0.

The next case is d = 1, which includes the homogeneous coordinates Z;.
These are not coordinates on CPY, bur rather sections of the “hyperplane
line bundle” which is denoted O(1) and has ¢; = 1.° Similarly, a homo-
geneous polynomial of degree d is a section of a line bundle denoted O(d),
with ¢; = d. There is also a series of bundles whose transition functions
are the inverses of those for O(d). These are O(—d), and they only have
meromorphic sections (with poles). In any case, d must be an integer.

¢The name comes because setting a degree one f = 0 defines a hyperplane in the ambient
space. As for the sign of ¢;, the conventions are chosen so that bundles with holomorphic
sections are positive.
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Then, it turns out that we have listed all topological classes of line bun-
dle on CPY - they are classified by the single integer d, the first Chern class.
Furthermore, one can work out a natural (most symmetric) connection on
this bundle, and check that its curvature satisfies f F =2nd!

Given these concepts, there is a very simple computation of the first
Chern class of the hypersurface M defined by Eq. (4). The point is that,
since they can be expressed in terms of curvature, the Chern classes for
sums, quotients and products of bundles satisfy simple additive relations.
In particular, the tangent bundle for the ambient space CPY, is locally a
direct sum of the tangent bundle of M with the normal bundle to M, and
the latter must be somehow related to the bundle of which the defining
polynomial is a section. Since a normal vector n to M satisfies nV f = 1,
and 1 is a function, they are in fact inverses. This leads to

c1(M) + ¢1(O(=d)) = e1(CPY). (6)

Thus we need the first Chern class of the tangent bundle of CPY. Although
we leave a convincing argument to the references, here is its essential point.
The tangent bundle has as basis the vectors 9/0Z;, modulo the overall
rescaling » . Z;0/0Z;. These have degree —1 and 0 respectively, while the
first Chern class is defined as a trace, so we find ¢; (CPY) = (N +1)-(—1) —
(0) = —=(N+1). Combining all this, to get a Calabi-Yau threefold, we need
to take N =4 and d = 5.

One can go on to understand the even-dimensional homology of a man-
ifold in detail using these techniques. For example, a section of the line
bundle O(n)cp~y should have “n zeroes,” which at least locally will define
submanifolds of complex dimension dim M — 1. This idea can be made
precise by defining a “divisor” associated to a line bundle. Then, two such
submanifolds will generically intersect in a submanifold of complex dimen-
sion dim M — 2. Continuing, we can intersect N = dim M divisors, to get a
collection of points. The number of these points is the intersection number
I of the set of divisors, which we can write

I=DiNDyN...NDy. (7)

Just as homology is dual to cohomology, one can compute this intersection
number by taking the first Chern classes of the line bundles involved, ¢1 (L),
¢1(L2) and so on, and computing

I:/Mcl(Ll)/\Cl(LQ)/\.../\Cl(LN). (8)

fThe monopole is a special case of this, using the topological identification S2 = CIP1.
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This is both a basic topological invariant of the manifold, and turns out
to have direct physical applications. The original example is that, by the
fact that cohomology classes such as ¢;(L) have harmonic representatives
(which solve equations of motion), one sometimes finds that these inter-
section numbers directly compute wave function overlaps. In the original
Candelas et al Calabi-Yau compactifications of the heterotic string, these
numbers gave the tree level Yukawa couplings of 27 multiplets associated
to elements of b1

3.2. Calabi-Yau threefolds are algebraic

Let us now explain how we know that, as we said many times, any Calabi-
Yau threefold (of the sort which leads to N = 1 supersymmetry; so we
leave out cases like K3 x T?), can be defined as the set of zeroes of some set
of polynomials. This follows from two deep theorems. First, the Kodaira
embedding theorem tells us that these manifolds are projective, meaning
that they can be embedded in CP¥ for some (possibly large) N. Second,
Chow’s theorem tells us that any embedding into CPY can be defined by
polynomial equations.®

The intuition behind Chow’s theorem is that, once we are talking about
embeddings in CP", since the only holomorphic quantities at all are sections
of the line bundles O(n), the only global equations we can impose are
polynomial equations. Showing that any embedding can be defined globally
by equations requires arguments from commutative algebra.

Let us say a bit more about the Kodaira embedding theorem as it can
be understood to some extent using intuition from physics [7]. The idea is
to embed the manifold by sections. Suppose we have some line bundle L
over our manifold, which has holomorphic sections. Although a section is
not a function, a ratio of sections is a function, though possibly with poles,
because the action of a gauge transformation s — as will cancel out. Stated
another way, a pair of sections (s1, s2) defines a map from the manifold into
CP', where the s; are homogeneous coordinates. In the same way, a set of
N sections defines a map into CPN~!. If this map is injective (never takes
two distinct points of M to the same point of CPV~1), the map could be
an embedding. Of course, we should check that the map is nonsingular as
well. A bundle whose holomorphic sections provide an embedding is called

&The general principle behind these theorems, that complex manifolds defined “globally”
and “analytically” have (under certain assumptions) a global algebraic definition, is
sometimes called “GAGA” and was developed in the 1950’s by Serre and Grothendieck.



Mathematics for String Phenomenology 131

“yery ample.”

To see that a very ample bundle exists, let us think of the sections as
quantum mechanical wavefunctions for a particle moving on the manifold,
in the magnetic field F' defined by the connection on the line bundle. In
Euclidean space, these wavefunctions would be organized into highly degen-
erate Landau levels, each with a basis of localized states of width l/m
On a more general manifold, if the magnetic field is much larger than all of
the other scales (such as the curvature), the same picture will apply.

Now, one can show that on a complex manifold, and with a magnetic
field satisfying F%? = 0 (as is the case here), the lowest Landau level wave-
functions are related (by a complex gauge transformation) to holomorphic
sections. This is simply because Fy 7 = [0 + Af, 05 + Aj] = 0 is the inte-
grability condition that allows us to gauge d; + A; — 7. Thus, we have a
picture of the holomorphic sections for a bundle with a large positive first
Chern class — there are many of them, and there is a basis in which each
one is localized to a small region of the manifold. One can check by explicit
calculations on C™ that this provides an embedding locally. Furthermore,
since each small region has one dominant wavefunction, no two regions can
have the same values for all of the wavefunctions, so this provides a global
embedding.

There is one more subtle condition which must be satisfied for this to
work. It is clear from the definition of a holomorphic vector bundle that the
curvature will be a (1,1)-form. However, the condition that the magnetic
field is large everywhere might only be satisfied by a more general two-
form. This is sometimes the case and that is why, for example, not all
K3 surfaces are projective. However, if all two-forms are (1, 1)-forms, or in
other words b%° = 0, this cannot happen. This is the case for our Calabi-
Yau threefolds and thus they are always projective. As we emphasized in
the introduction, this is the deep reason why algebraic geometry is always
applicable to Calabi-Yau compactification.

Although the possibility to embed in projective space is important for
the general theory, the embeddings we get this way will often be too com-
plicated to be useful. We would be happier if the manifold were defined by
one or a few equations. More importantly, it often happens that one needs
more defining equations than the codimension of the manifold, so that some
of the defining equations are redundant. This makes the analysis extremely
complicated.

These redundancies often arise for topological reasons. As an example,
a manifold embedded into projective space will naturally have b? = 1,
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since the ambient space does. While one can realize b > 1, this is going
to involve complicated embeddings, singular embeddings, or both. Since
almost all Calabi-Yau threefolds have b > 1, it would be better to have
ambient spaces with b2 > 1 to embed in as well.

There are a variety of ways to get these. One which was much used in
the early literature was the “weighted projective space.” This is defined by
weighted homogeneous coordinates satisfying an identification like

Zr =NV 7} (9)

where the n; are various integers. Now these spaces are singular, and the
embedded submanifold can inherit these singularities, in which case it is
not obvious a priori whether string theory makes sense. However, some
Calabi-Yau hypersurfaces in weighted projective space can also be defined
physically as Gepner models, so these ones do make sense. Furthermore, it
was found that, somehow, the singularities led to b% > 1.

3.3. Orbifold singularities

The underlying reason for this, is that singularities in complex geometry
tend to have natural smooth spaces or “resolutions” associated to them, and
string theory knows about these resolutions. The simplest and prettiest
(though by no means only) case is that of an orbifold singularity. An
orbifold, as will be familiar, is a quotient of a space by a discrete group,
call it T, whose action has fixed points. The example of 7°/Zj3 is discussed
in GSW.

An isolated singularity can be understood by considering its small
neighborhood, which one can model as complex Euclidean space, say C3.
Let us work our way up to this. A quotient C/Z,, say by the action
Z — Z -exp2mi/n, does not define a new complex space, as one could
simply make the reparameterization W = Z™. However, it does define a
nontrivial singular metric — we can see this because the space is a cone with
a deficit angle, which can be measured far from the singularity. Since the
deficit angle is an integral of the curvature, which in two real dimensions
is a total derivative, we see that no resolution of this space (which keeps
the asymptotics fixed) could possibly be Ricci flat. For our purposes of
supersymmetric compactification, we can ignore it.

The same conclusion could be reached by considering the holonomy
group. If we parallel transport a tangent vector around the singularity,
even at a distance, we will rotate it by exp2wi/n. Thus the holonomy
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group will be at least a representation of Z,, in U(1) and, once we smooth
out the singularity, perhaps larger. Again, since the holonomy is visible at
infinity, it cannot be removed by resolution.

The holonomy analysis can be easily generalized to higher dimensions.
Any resolution of a CV/T' singularity, which preserves the asymptotics,
will have as holonomy group either an embedding of I' in U(N), i.e. an N-
dimensional representation of I, or some larger subgroup of U(N). Since for
supersymmetry we know we need SU(N) holonomy, we find the necessary
condition that the action of I' on a tangent vector must be a subgroup of
SU(N).

We are now ready for the two-complex dimensional singularities which
are compatible with supersymmetry. We have seen that the group I' must
have a representation in SU(2). The simplest case is the cyclic group Z,,
which we can take to act as (Z!,Z%) — (e2™/"Z' =27/ 72) There is
no other possibility among abelian groups. To get the possible nonabelian
groups, since SU(2) is the double cover of SO(3), it is plausible that these
will be the ones which have an action preserving a finite collection of points
in three-dimensional space. These are the dihedral groups, obtained by
adjoining the exchange of the two coordinates, and the symmetry groups
of the regular polyhedra — tetrahedral, octahedral and icosahedral. This
collection of cyclic, dihedral and polyhedral symmetry groups makes up the
famous ADE classification of discrete subgroups of SU(2).

Now, the beautiful fact, which we cannot explain in detail here, is that
all of these singularities admit smooth resolutions with SU(2) holonomy,
which contain additional two-cycles. The two-cycles have a natural inter-
section form Eq. (7), which because N = 2 here is a number associated to a
pair of cycles. This structure is encoded by the extended Dynkin diagram
associated with the corresponding ADE Lie group — cycles correspond to
nodes, and two cycles which intersect are connected by a link. This shows
up in many ways in string duality, with the most direct being the enhanced
gauge symmetry of M theory compactified on K3. A K3 manifold has a
moduli space of metrics, with many singular limits. In these limits, one or
more groups of two-cycles degenerates to a C?/T" orbifold singularity. This
causes wrapped M2-branes to become massless, which provide the charged
vector multiplets of ADE gauge symmetry.

The heart of the theory of these singularities, known as the McKay
correspondence, is the relation between the representation theory of the
group I', and the intersection form and Dynkin diagram. Each irreducible
representation R; of I' corresponds to a node and thus a two-cycle. The
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links correspond to terms in the tensor decomposition R; ® F' = > n;; R,
where F' is the two-dimensional fundamental representation by which I" acts
on C2.

The relation of the McKay correspondence to singularities can be seen
very explicitly through the quiver construction of the resolved singularity
developed in mathematics by Kronheimer and Nakajima [8] and found in
D-brane physics by Douglas and Moore [9]. This even allows computing
the Ricci-flat metric, as a hyperkahler quotient.

Almost all of this generalizes directly to three and higher dimensions.
Now the orbifolds compatible with supersymmetry are CV/I" with T’ a
discrete subgroup of SU(N). The quotient depends on the specific action
of I'. For example, Z, can act on C? as Z' — exp2mi/n;Z' with any
(n1,n2,n3) satisfying ny + no + ng = 0 mod n. There are also orbifolds
by nonabelian groups, and the group As; defined as a central extension of
Z3 x Z3 has played a significant role in string phenomenology [10, 11]. The
same relation between group theory and quiver diagrams holds, now called
the generalized McKay correspondence.

For N = 3, each of these orbifolds can be resolved to a completely
smooth space, sometimes in many topologically distinct ways. There is a
developed theory of this structure based on toric and birational geometry,
which we will say a bit more about below.

One could use any of these resolved orbifolds as ambient spaces to con-
struct submanifolds with % > 1. However there is an even more general
construction.

3.4. Toric varieties and gauged linear sigma models

From a physics point of view, a toric variety is the space of solutions of the
D-flatness conditions of an NV = 1 supersymmetric abelian gauge theory
(defined up to gauge equivalence, of course). Thus a particularly physical
construction of a Calabi-Yau manifold would be to embed it as a subvariety
of a toric variety defined by F-flatness conditions which follow from a su-
perpotential. This approach to the problem was introduced by Witten [12]
and has been heavily used since.

The data of an abelian supersymmetric gauge theory can be given sys-
tematically as follows: there is the rank r of the gauge group U(1)"; N
chiral superfields ¢*; a matrix of U(1) charges Q2

70

a gauge-invariant su-
perpotential W, and finally a set of Fayet-Iliopoulos parameters (;. The
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D-flatness conditions are then

G=Y QNP Vi, (10)
A

while the gauge equivalences are ¢ ~ exp(iQ:'e;)¢™.

Let us describe the quintic this way. The ambient space CPV ! is the
simplest toric variety — we take r = 1 and all Q4 = 1. Furthermore we
see that the parameter ¢ controls the overall scale of the metric. However,
to complete the definition of a Calabi-Yau manifold in this framework, we
need a superpotential such that the F-flatness conditions VW = 0 include
a defining equation such as Eq. (4). A little thought shows that this is not
possible unless we introduce an additional chiral superfield P. We can then
write

W = P f(¢) (11)

so that Eq. (4) is the F-flatness condition OW/0P = 0. Of course this
modifies the D-flatness condition, and we also have to study the additional
F-flatness conditions 9W/0¢* = 0. Regarding the latter, one can note
that, if the manifold f = 0 is nonsingular, their only solution will be P =0
(physically, the P field pairs up with the normal direction V f), while if the
manifold is singular, the P field could have nontrivial physics. This is the
first hint that this definition knows something about singularities.

An extremely illuminating way to continue is to study the d = 2 sigma
model with (2,2) supersymmetry defined by dimensionally reducing the
d =4, N = 1 supersymmetric gauge theory. The original paper [12] is well
worth reading, but let us mention a few highlights. First, a d = 2 U(1)
gauge theory can be anomalous, and the anomaly cancellation condition is
(we give it for the general case)

0="> QVi. (12)
A

For the case at hand this requires Q = —5 and gauge invariance of W
requires that the degree of f must be 5, corresponding to the case of zero
first Chern class, to get anomaly cancellation. This is no coincidence but
follows from a relation between the U(1) anomaly and the beta function
in these theories — in sigma model terms, we require Ricci flatness to get a

conformal field theory and zero beta function.
The appearance of the first Chern class in the discussion is no coinci-
dence either, as one can show the following. First, the second Betti number
of the toric variety (so, the solutions of Eq. (10) before imposing F-flatness)
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is b> = r. Thus there is no limit on the % which can be realized this way.
Second, the U(1)" charges Q:! have a direct interpretation as the first Chern
class of the line bundle of which ¢4 is a section. Recall that the first Chern
class is an element of H?; thus the index 4 implicitly labels a basis ; of Ho
and Q# is the integral over the two-cycle ¥;. Thus, a large set of natural
line bundles are easy to work with in this construction.

Finally, we can explain the Kéhler moduli using this construction. Their
general definition is the integral of the Kahler two-form w, which is defined
in terms of the metric and complex structure, over a basis of Hy. It is not
hard to show that the Kéhler metric (sigma model kinetic term) restricted
to the solutions of Eq. (10) (and of F-flatness as well) satisfies

/E‘wzg. (13)

i

Thus the parameters (; become the Kéahler moduli of the resulting toric
variety, and are also Kdhler moduli (not always all of them) of the Calabi-
Yau manifold.

This makes the Kéhler moduli concrete and easy to work with, but raises
another question: what if we take some (; < 0 ? Consider our running
example. The need to have the P field turns the D-flatness condition into

C=10' P + %7 +16°F + 6" + |6°* — 5| P (14)

and we see that, even when ¢ < 0, there is a solution, now with P # 0.
What is it?

This is discussed at length in Ref. [12]. The answer is that the P field
breaks U(1) to a discrete Zs gauge symmetry, and thus its low energy limit
is an orbifold of a model with chiral superfields and a superpotential, or
Landau-Ginzburg orbifold. In the limit { — —oo we find the Gepner model,
an exactly solvable d = 2 conformal field theory. Thus, not only does this
construction know about singularities, it knows about relations between
seemingly different physical models, which are actually different phases of
the same underlying model.

This of course implies that, although the (; do parameterize the Kéahler
moduli space of Ricci-flat metrics on Calabi-Yau manifolds, identifying this
with the Kéhler moduli space used in string/M theory is simplistic and
in fact false. A next step in defining the “stringy Kéhler moduli space”
is to note that in any string theory on a Calabi-Yau manifold, or indeed
any theory which has a space-time two-form gauge potential B, there is
another set of moduli arising from the integrals of B over a basis of Ha.
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These combine with the geometric Kéhler moduli (the ¢; or [w’s) to form
complex variables which lead to chiral superfields in the effective field the-
ory, complex as they must be. However this is only a first step as it turns
out that physical observables which depend on Kéahler moduli get instan-
ton corrections, and these actually modify the structure of moduli space.
The simplest and best definition of stringy Kahler moduli space uses mirror
symmetry, as we discuss in §5.2.

Whereas in the quintic example, going from ¢ > 0 to ¢ < 0 connects a
geometric sigma model to a “non-geometric” Landau-Ginzburg model, in
other examples, it can connect sigma models with two distinct topologies,
through a transition known as a “flop.” While an example in a compact
Calabi-Yau is a bit too lengthy to present here, the basic idea can be seen
by considering the U(1) gauge theory with four chiral superfields of charges
(+1,+1,—1,—1), and thus with the D-flatness condition

[AM? + A% = B + B2 + ¢ (15)

Suppose that ¢ > 0; then the right-hand side is always positive and the
space of solutions is a CP' parameterized by the A?, with a vector bundle
over them parameterized by the B¢ (in fact it is O(—1)@® O(—1) over CP!).
This space has a single two-cycle whose volume is (, in keeping with our
general discussion. Now suppose that we take ¢ < 0 instead. Clearly we
will get a similar picture, but with a CP! of volume —( parameterized by
the B?, and a fiber parameterized by the A°.

While here the two phases are spaces of the same topology, exactly the
same structure can arise as a small region in a larger, compact Calabi-Yau.
In this case, the A* and B* could be related to coordinates on the larger
space in different ways, and the two signs of ¢ will lead to two different
topologies for the larger space, related by a flop transition. The flop is just
one example of a “birational equivalence,” and the upshot is that the true
stringy Kéahler moduli space for a Calabi-Yau will also contain a large set
of other Calabi-Yau manifolds to which it is birationally equivalent, and
perhaps additional Landau-Ginzburg and other “non-geometric” phases.

While in principle all Calabi-Yau manifolds can be realized as subvari-
eties of toric varieties (after all they were subvarieties of projective space),
it is not known how to do this in any systematic way, and even the ques-
tion of whether the number of distinct Calabi-Yau threefolds is finite or
infinite remains open. What has been extensively studied is the set of
toric hypersurfaces, with a single defining equation. It turns out that the
various conditions needed for the data Q to lead to a Calabi-Yau n-fold
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can be phrased in geometric terms as the condition that they describe an
n + 1-dimensional “reflexive polytope.” All 4-dimensional reflexive poly-
topes were classified some time ago by Kreuzer and Skarke [13], and it
turns out that there are 473,800, 776 of them, corresponding to Calabi-Yau
manifolds with Betti numbers shown in Figure 1. Many of these are differ-
ent descriptions of the same manifold, or birationally equivalent manifolds,
and it is not known how many distinct toric hypersurfaces exist. Anyways,
it is easy to work out Betti numbers and intersection numbers from this
description, and there are computer databases of this information. There
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Fig. 1. hi1 + hi2 vs. Euler number x = 2(h11 — hi2) for all pairs (h11,h12) with
h11 < hia.

are other constructions of Calabi-Yau manifolds, of course. The most im-
portant is the elliptic fibration, which we will say a bit more about in §5.1.
It is thought to describe most but not all Calabi-Yau threefolds and is also
the starting point for F theory compactification. However we must move
on to other topics.

4. Complex structures and moduli

Having given a taste of the definition of Kéhler moduli space, we now turn to
describe the complex structure moduli space of a Calabi-Yau manifold. We
assume that the reader has seen the elementary discussion of the complex
structure of a two-torus, with a single parameter usually called 7, and its
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moduli space given by the upper half plane quotiented by SL(2,7Z). This
can serve as a general paradigm for Calabi-Yau moduli space as well — it
will have many complex parameters and a duality group — but in fact the
global picture is not at all understood when there are more than one or two
parameters.

The most elementary definition of a complex structure moduli space is
in terms of the coefficients of the defining equation. Thus, in the family of
quintic manifolds Eq. (5), A is a complex structure modulus. This defining
equation can be generalized to

0= Z CIJKLMZ[ZJZKZLZM (16)
I,J,K,L,M

which has 126 complex parameters ¢//5ZM On the other hand, varying the
overall scale of the parameters, or performing a SL(5) rotation which can
be undone by a rotation of the Z;, does not change the resulting Calabi-
Yau manifold. Thus the complex structure moduli space of the quintic
is at least 101 dimensional. In fact it is 101 dimensional, but in more
complicated constructions it can happen that not all of the complex moduli
show up in this way. This is because, as we mentioned earlier, a fully general
construction might require using redundant systems of equations, and the
simpler hypersurface construction might only capture part of the moduli
space.

A fully general definition of complex structure can be based on periods,
in the same way as for the two-torus. There we had A and B cycles, and
we could use 7 = [ pdz/ / 4 dz as a parameter. This was the particular case
of a Calabi-Yau 1-fold and on this level the discussion generalizes directly.
We consider the middle homology H™(M) for an n-complex dimensional
manifold, and introduce a basis of n-cycles 3;. The intersection form be-
tween a pair of such cycles is symmetric for n even and antisymmetric for n
odd, so the discussion branches at this point. Let us consider n odd, then
we can define A and B cycles as for the two-torus, satisfying

(=5 = (2P, 5F) =0; (17)
(=4, 58) = (28, 58) =45 (18)

We then construct the holomorphic three-form €2, which by the general
discussion of §2 is unique up to an overall factor, and define its periods,

I = Q nf= Q. (19)

A ¢ B
b Y
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For hypersurfaces it is easy to write an explicit expression for €2, so this is
reasonably concrete.

There is then a “Torelli theorem” like that for the torus and other
Riemann surfaces, to the effect that two manifolds with the same periods
IT, have the same complex structure (in other words, there is a complex
diffeomorphism between them). On the other hand, if the II are different,
it could be that the two manifolds are related by a duality transformation,
which induces some Sp(b™,Z) transformation on the basis of H™. So this
is useful but not a full solution to the moduli space problem, especially as
the relevant duality groups are not known.

Another point we need to settle to use the periods to define complex
structure moduli space is that there are b — 1 periods (taking out the over-
all scale) but only b%/2 — 1 complex structure moduli. For higher Riemann
surfaces, characterizing the vectors Il which are actually periods of Rie-
mann surface is the notoriously difficult “Torelli problem,” which although
solvable drastically limits the value of this description. For Calabi-Yau
threefolds, however, this problem is easy to solve, at least locally, through
special geometry. Without entering into details, we simply recall that a
special geometry is a complex space parameterized by N + 1 homogeneous
coordinates t;, together with a complex prepotential F which is a degree
2 homogenous function, F(\t) = A2F(t). Locally, if we take the A-cycle
periods as coordinates, we have

oF

o4 =t ns == 20
z F=o (20)

Furthermore, there is a natural Kéhler metric on this space,
K =logy T IP -1/ (21)

where the bar denotes complex conjugation. One could substitute Eq. (20)
or any other explicit expression for the periods into this to get this metric,
which determines a kinetic term in the effective field theory.

One can show mathematically that the complex structure moduli space
of a Calabi-Yau threefold is a special geometry with dimension N+1 = b /2,
so this tells us when we have found enough parameters and focuses attention
on computing F and/or the periods. This rapidly becomes a very technical
discussion as the usual way to get the periods is to derive the so-called
Picard-Fuchs differential equations which they satisfy and solve them, as
in the pioneering work [14]. Let us briefly outline some of the results from
this paper.
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The starting point is the subset of quintics defined by the equation
Eq. (5). While this is only a particular one-parameter slice through the
full 101-dimensional moduli space, it is also the subset of manifolds which
respect an additional discrete symmetry group, namely the group Zi gen-
erated by the rotations Z; — exp(2mi/5)Z; (of course rotating all five co-
ordinates is a no-op on CPP*), and thus this restriction is natural. One can
then write the periods as Eq. (19) and start differentiating with respect to
A. Since there are only 4 linearly independent periods, these derivatives
should eventually become linearly dependent, and this happens by forming
a combination of integrand.s which is holomorphic and single-valued, thus
integrating to zero. The resulting differential equation,

(D*+52(5D + 1)(5D + 2)(5D + 3)(5D + 4)) I(z) = 0, (22)

where z = 1/)\° and D = z(d/dz), can be solved in terms of hypergeometric
functions, which can be analyzed explicitly.

The basic qualitative result from this analysis is that the complex moduli
space of quintics Eq. (5) is a three-punctured sphere — in other words the
periods are not single-valued but have three branch points, at singularities
of various types. Going around one of these three branch points induces a
monodromy on the basis of periods. Geometrically, the operation of going
around a branch point is a duality transformation on the basis of A and
B-cycles and thus the monodromy matrices must be elements of Sp(4,7Z),
which are given in Ref. [14].

The branch points are z — oo, z = 1 and z = 0. This last is actually not
a singular Calabi-Yau but rather a point at which the Calabi-Yau picks up
an extra Zs symmetry. It corresponds to the Gepner model construction.
The z — oo limit is the “large structure limit” which plays a role in mirror
symmetry, as we discuss in §5.2. Finally, the point z = 1 corresponds to
what is called a “conifold” degeneration. This can be pictured locally in
a way similar to how we pictured the flop in §Eq. (15). Now the local
neighborhood of the singularity in the Calabi-Yau will be described by an
“F-flatness” condition or complex equation,

t=27+2Z5+ 25+ Z;. (23)

Its gradient Vf vanishes at the point Z; = 0, which is part of the space
f =0 only for t = 0, and thus this describes a region in complex structure
moduli space (parameterized by ¢) which includes a singular point. By
separating the coordinates into two real vectors, Z; = x; + iy;, one can see
that for ¢ > 0 and real the general solution is the S* with Y. (z;)* = ¢ and
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y; = 0, fibered over by y satisfying the orthogonality condition = -y = 0.
Thus this is a space with b3 = 1. The volume of this three-cycle, which we
will call ¥ 4, is controlled by |¢|.

While in this noncompact space, A and B-cycles need not be paired, if
this geometry appeared as a region in a compact space, ¥4 would have a
conjugate Y g (parameterized near the curve by the 3%). Going around the
singularity as t — exp(i6)t, one can show, corresponds to the change of
basis

YA — A, Y — X+ 24. (24)

One can show that the periods have the corresponding monodromy; in fact
t
I ~t; HBNO—F%lOgt. (25)
271

These asymptotics are also the appropriate ones for particle masses in an
N = 2, d = 4 supersymmetric abelian gauge theory, and this type of
relation plays an important role in string duality arguments and “geometric
engineering.”

While some more general theory has been developed over the years, and
one can make general statements about the nature of singularities and the
behavior of the periods and metric near the singularities, there is still no ef-
fective way to work with high-dimensional complex structure moduli spaces,
and almost all physics work relies on one and two-parameter examples.

4.1. Flux vacua

One application of these results is to compactification of the type IIb su-
perstring on a Calabi-Yau manifold with flux. The IIb string has two three-
form field strengths F®) and H®). Turning them on produces a vacuum
energy which depends on the dilaton 7 and complex structure moduli ¢. By
a combination of physical arguments first given in Ref. [15], one can show
that an important part of this energy is described by the superpotential

Wi(t) = / Q) A (FO +7HO) (26)

By Poincaré duality, the integral of a three-form wedged with one of these
fluxes is equal to its integral over a dual three-cycle ¥; by flux quantization
this three-cycle must live in H3(M,Z). Thus the superpotential can be
written in terms of the periods, schematically

W(t) => (N +7N") - TI(). (27)
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Note that the periods IT are not functions on complex moduli space, since
they depend on a choice of normalization of 2. However the superpotential
in N = 1 supergravity is not a function either; it is a section of an line
bundle, reflecting the normalization ambiguity of the covariantly constant
spinor in Eq. (2), and this all fits together as it should.

To find an explicit flux vacuum with stabilized moduli, one must try
different choices for the fluxes N and look for solutions of DW = 0. Once
one sees that for each asymptotic direction in moduli space there is some
period which grows in that direction, it should not be surprising that non-
trivial minima exist. This is true, basically because of approximate inverse
relations between the volumes of A and B-cycles in these limits. Still, given
the complexity of the periods II, explicit examples are not easy to find.
Papers which do this and find vacua include [16]. One can also make a sta-
tistical treatment, in which one sums over all fluxes N and finds a density
of flux vacua on complex structure moduli space, as in [17, 18].

5. Further topics

5.1. Constructions of gauge bundles

The original heterotic string compactifications included both (2, 2) models,
in which the Yang-Mills connection was set equal to the Levi-Civita con-
nection on the tangent bundle, and (0,2) models, in which a more general
Yang-Mills connection was allowed, subject to the anomaly cancellation
condition that it has the same first and second Chern classes as the tangent
bundle. Classifying the (0,2) models requires classifying SU(N) bundles
on a Calabi-Yau, where N = 3,4, 5 for quasi-realistic models.

While some work has been done on this, it is far more complicated
than classifying Calabi-Yau manifolds. The mathematical reason for this is
that, while the moduli spaces of Calabi-Yau manifolds are themselves man-
ifolds, with a known dimension, the moduli spaces of bundles are generally
complicated singular varieties with many branches of varying dimensions.
Physically, the difference is that Calabi-Yau moduli space can be studied in
the context of d = 4, N = 2 supersymmetry without gauge symmetry, for
which there is no superpotential. On the other hand, the heterotic string
leads to d = 4, N = 1 supersymmetry, and the interesting models always
have a superpotential for matter fields. Solving the F-flatness conditions
generally leads to a complicated variety with many branches.

Let us explain this point a bit further as it would be attractive to



144 M. R. Douglas

have a simple expression like Eq. (27) for this superpotential. A higher-
dimensional expression analogous to Eq. (26) is

W(t):/ﬂ(t)/\Tr (%AAF—}—%A/\A/\A). (28)

The parenthesized expression is the holomorphic Chern-Simons functional,
whose variation leads to the condition F(%2) = ( which defines a holomor-
phic bundle. Then, to get an analog of Eq. (27), one would need a general
way to define the moduli ¢, and an expression for the gauge connection A(t),
to substitute in. Explicit expressions for A(t) are very complicated, and
in addition, as one moves around in the moduli space, new moduli become
massless and open up new branches. For this reason, the most successful
work on understanding N = 1 compactifications tends to work directly in
the higher dimensional theory, and only reduces to effective field theory
and a superpotential in the neighborhood of a solution. Thus there is no
known shortcut around the problem of classifying bundles - though in §5.3
we will mention some ideas in this direction.

There are basically two general constructions of bundles which have
been used in the string theory literature. The first is the so-called “monad”
construction, which appears physically in (0,2) sigma models. The idea
is to postulate three sums of line bundles U, V, W and to write a “chain
complex”

0—-U—-V-—->W=0. (29)

The arrows in this diagram represent linear maps, and we require that
the composition of any two successive maps is zero. This is the sort of
diagram used in defining cohomology, and the bundle we are constructing
is exactly the cohomology, the kernel of the map V' — W modulo the image
of the map U — V. Physically, the two maps correspond to superpotential
constraints and gauge invariances, respectively.

To get a sense for this, consider a simpler example in which we drop the
U term,

o0 — 0(1)2. (30)
The arrow represents a 4 x 2 matrix whose entries are linear in the homo-

geneous coordinates, say

(31)

ANANANA
(22 73 74 Zl) '
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The kernel of this map will generically be two dimensional and thus might
define a U(2) bundle, whose Chern character is the difference 4 ch(O) —
2 ch(O(1)). For this to be a bundle, it must be two dimensional everywhere.
In our example, this fails when the two rows become colinear, but one can
check that this only happens at four points. If we use this for a Calabi-Yau
hypersurface which does not intersect these points, we get a bundle.

In general, checking that the objects one defines are bundles is non-
trivial. But the construction makes sense without this condition — if one
allows the dimensions of kernels and cokernels to vary on the manifold, one
gets a more general class of objects called coherent sheaves. These include
objects such as zero size instantons. However, it is not really understood
which sheaves can be used in heterotic string compactification.

To claim that a bundle constructed this way leads to a solution of the
DUY equation and can be used in heterotic string compactification, there
is one final point to check — the bundle must be p-stable. This condition
can also be understood physically and has to do with D-flatness conditions
in the effective theory.

While a fair amount of work has been done in this context, and inter-
esting claims such as a (0, 2) mirror symmetry have come out, it appears to
have only scratched the surface, and no general statements as compelling as
the Kreuzer-Skarke diagram have emerged. Furthermore, it is known that
not all bundles on a threefold can be realized this way (one would need a
sequence with four terms), so it is not clear that this construction is general
enough to reveal any patterns.

The second construction is the spectral cover. It only applies to a subset
of Calabi-Yau manifolds, the elliptic fibrations, but it is more general, per-
haps describing all bundles. We will not describe it in any detail, but the
basic idea is to use T-duality on the fiber. An elliptic fibration is a manifold
which locally is a product of an n — 1-dimensional base manifold (generally
not Calabi-Yau), and a fiber which is an elliptic curve, a real two-torus with
a complex structure and a preferred base point. The physics intuition be-
hind the spectral cover is to realize the bundle on Dirichlet branes which fill
the Calabi-Yau, let us call them D9-branes, and then do T-duality on the
fibers. This turns a U(NN) bundle into a collection of N D7-branes which
wrap the base and sit at points on the fiber, determined by the holonomy
of the original gauge connection on the fiber.

The tricky part of this construction is that (except for special cases like
K3 x T?), the elliptic fibration will always have singularities at which the
torus degenerates. The simplest example is the base CP!; to get the K3
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surface one needs a fibration with 24 singularities (in F theory these would
be 7-branes, but here they are just mathematical artifacts). Dealing with
these singularities is the main part of the work. They are well understood
for CP! and largely understood for a two complex dimensional base, so
this is a viable way to construct bundles. However, the need to combine
information from various singularities leads one into sheaf theory and much
more mathematical formalism.

5.2. Mirror symmetry

This was the first great discovery in the string-math interface and much
of the early work on these topics was done in this context. The basic
physics idea is probably familiar to the reader, that the (2,2) nonlinear
sigma models with two different Calabi-Yau target spaces M and W can
be shown to be equivalent by a very simple world-sheet argument. This
leads to numerous predictions that mathematical objects related to M and
W will be equivalent. Many of these predictions were subsequently proven
by mathematicians, and the topic remains very active.

For string phenomenology, mirror symmetry is simply one type of
string/M theory duality, and we can apply it in the same general way,
turning hard to solve problems into duals which are easier to solve. The
basic example following from our discussion so far is the treatment of the
Kahler moduli space for a Calabi-Yau sigma model. These sigma models
have world-sheet instantons which correct the kinetic term in a type IT com-
pactification to d = 4, N = 2 supergravity, the superpotential in type Ila
with flux and heterotic compactifications, and so on. On the other hand,
the analogous quantities which depend only on complex structure moduli
are classically exact, and given by formulas like Eq. (21) and Eq. (27). The
mirror symmetry recipe for solving all such problems is to turn them into
complex structure moduli problems, which are classically exact. This in-
cludes the kinetic term on Kéhler moduli space and the flux superpotential
for type Ila compactifications.

As an example, we can connect the definition of Kéhler moduli space
made in §3.4, in terms of the Kédhler form or Fayet-Iliopoulos terms, to the
stringy Kéahler moduli space, using mirror symmetry. The short definition
is that the stringy Ké&hler moduli space of a Calabi-Yau M is equivalent to
the complex structure moduli space of its mirror W. This requires more
work to make precise as we need a map from the complexified Kahler moduli
¢ +1i | B to the complex moduli ¢, which typically will exist only in some
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region (the “large structure limit”) of moduli space. This can be worked
out by expressing both sides in special coordinates (the ¢ of Eq. (20)), as is
done in the references.

5.3. Dirichlet branes

After the discovery of D-branes, many quasi-realistic models were developed
in which the Standard Model and BSM matter and gauge fields come from
open strings between branes. The original models involved orbifolds and
branes with angles, and these can be analyzed with physics techniques, but
putting branes in Calabi-Yau or special holonomy manifolds requires some
mathematical help.

To give the briefest summary of this, just as supersymmetry is asso-
ciated to manifolds of special holonomy, supersymmetric D-branes are as-
sociated to calibrated submanifolds. A calibration is a p-form ¢ (real or
complex) which gives a lower bound on the volume: given a p-dimensional
submanifold X, we have

‘ /E ¢‘ < vol (9). (32)

This idea was introduced by the mathematicians Harvey and Lawlor, but
turns out to be related in string theory to BPS bounds: it maps directly
into the lower bound on a mass or tension M given by a central charge Z,

|Z| < M. (33)

Furthermore, the objects which saturate the bound preserve a fraction of
supersymmetry (normally 1/2).
Given a covariantly constant spinor €, one can show that

¢IJ...K — €tFIJ...K€ (34)

is a calibration, so all of the special holonomy manifolds have calibrations.
For manifolds of SU(NN) holonomy, the calibrations are w, the Kéhler
form, and €2, the holomorphic N-form. It turns out that saturating the
bound for one form implies vanishing of the pullback of the other form.
Thus, there are two types of supersymmetric branes.
The A-branes are 3-branes (in the Calabi-Yau; of course they can have
other space-filling dimensions) which satisfy

0=w|s =Ime Qs (35)
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thus the restriction of 2 to the brane has a definite phase. Now w, being
an antisymmetric tensor, is a symplectic structure. Asking that its restric-
tion be zero defines a Lagrangian submanifold. The combination of both
conditions defines a “special Lagrangian manifold.” Being D-branes, they
can also carry a gauge connection, but generally it must be flat.”

The B-type branes are even-dimensional holomorphic submanifolds.
This includes the point, the entire manifold, and holomorphic curves and
surfaces in the manifold. In addition, these branes can carry holomorphic
gauge fields which satisfy the DUY equation Eq. (3). Many types of singu-
lar gauge fields are allowed as well, corresponding to a known subset of the
coherent sheaves.

The general classification of branes on a Calabi-Yau is not a well-
understood subject, but progress is being made. As little is known about
special Lagrangian manifolds at present, the first step is to abandon the
A-type branes, instead (by using mirror symmetry if necessary) looking
at B-type branes. There is a universal construction which includes all of
the B-type branes, the derived category of coherent sheaves. The physical
intuition behind this construction is that we choose a finite set of branes
such that sums of these branes and their antibranes reproduce all possible
Chern characters (so, we need b° + b2 + b* + b8 different branes). Then, by
taking bound states in all possible ways, we will get all possible branes.

Understanding the derived category of coherent sheaves appears to be
a simpler problem than understanding all the bundles, for several reasons.
First, it corresponds more closely to what is allowed in string theory, as
zero size instantons and other coherent sheaves are allowed. Second, there
are other constructions which lead to the same derived category, such as the
generalized McKay correspondence for orbifolds. Another example is ma-
trix factorization, which is a mathematical description of the branes which
can be obtained from a Gepner model or orbifold theory. Because these
models are connected to the original Calabi-Yau by varying Kéhler moduli,
one gets the same derived category of branes. The matrix factorization
approach also exhibits the moduli in a more unified way and allows one to
write a superpotential in terms of the moduli, analogous to Eq. (27).

To know that an object in the derived category corresponds to a physical
brane and can be used in string compactification, one again has to check a
stability condition, called II-stability or Bridgeland stability. This condition
is fairly well understood for orbifolds and is a subject of active research for

hThere are some exceptions to this on tori, called co-isotropic branes.
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compact Calabi-Yau manifolds, so one can hope for near-term progress.

5.4. Computing the low energy Lagrangian

Given a compactification with a quasi-realistic spectrum, one wants to com-
pute the d = 4, N = 1 effective Lagrangian, at least for the observable
sector. While the superpotential is highly constrained by holomorphy and
by the more detailed mathematical structures we have been discussing, and
there are many computations even including quantum effects, getting quan-
titative results for the spectrum and couplings requires some control over
the kinetic terms (the Kahler potential) as well. This problem has only
been solved in very special cases, but is not beyond hope.

One approach is to work with models with a concrete microscopic defi-
nition, such as branes in a torus or an orbifold of a torus, and use physics
techniques. Examples are discussed elsewhere in this book.

We can do exact computations of kinetic terms in a d = 4, N = 2 theory,
where they follow from a prepotential, using the complex structure moduli
techniques outlined in §4. The current state of the art for N = 1 is more
or less to work with cases which are close enough to an N = 2 theory to
treat the differences as a perturbation. This could work for cases like the
original CHSW (2,2) models, but there we do not have good techniques to
work out the moduli potential.

In principle, the classical kinetic terms for matter and gauge fields are
computable from the higher dimensional definitions. This requires knowing
the Ricci-flat metric on the Calabi-Yau, and it appears that this can only
be obtained using a combination of analytical and numerical techniques.
Some success has been had with an approach (pioneered by Donaldson)
that describes the Calabi-Yau metric as one in a family of simple metrics
pulled back from the ambient space. This can be generalized to bundle
metrics as in [19].

Quantum corrections to the kinetic terms remain a very difficult prob-
lem, even in simple d = 4 theories.

5.5. QOutlook

The string-math interface is a very active subfield and it seems likely that
all of the topics we discussed will develop substantially over the coming
years. What are the most important physical questions to answer, and
what progress can we expect on the 5-10 year timescale? Here are my own
thoughts on this.
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One clear goal would be to work out even a single quasi-realistic model to
the point of general acceptance — showing that all moduli are stabilized and
that supersymmetry is broken at a low scale, and estimating the Yukawa
couplings to within an order of magnitude. This might be doable in a local
model — one in which the Standard Model degrees of freedom are localized to
branes or singularities in a small part of the Calabi-Yau. We would probably
need to find a model (and duality frame) for which quantum corrections are
either small or inessential at the compactification scale — although we know
they are essential for the Standard Model and probably for supersymmetry
breaking, we could hope to deal with them at low energies using purely
d = 4 field theoretic techniques.

Although the basic framework for doing this may involve a good deal
of mathematical input, it is hard to see how mathematics will help with
the details, and hard to see how the results would lead to major physics
advances. If our techniques only suffice to do this for a special class of
models, without having physical arguments that these models are somehow
preferred, any predictions they lead to would not be very compelling. Still,
as a benchmark and foundation for further progress, this step would be very
important, and probably could be achieved on the 5-10 year timescale.

Could mathematics help us get quantitative results for larger classes of
compactifications? Or could it somehow suggest principles that prefer or
select particular classes of compactifications? Personally, I am quite hope-
ful about both of these possibilities, but I believe that this will not come
primarily from trying to compute the observables we could measure at LHC
and/or in cosmology and astrophysics. Rather, I believe that the crucial
step which would enable such progress would be to develop some sort of
“big picture” which describes most or all stable four-dimensional compact-
ifications, the possible transitions between them which could take place in
early cosmology, and the possible ways that they can break supersymmetry
and lead to quasi-realistic (Standard Model and similar) physics.

Why do I say this? For me, the main lessons from string phenomenol-
ogy as we understand it now are that, while string theory can reproduce
the physics we observe in a satisfying way, only a tiny fraction of string
compactifications lead to quasi-realistic physics at all. The consistency
conditions, such as anomaly and tadpole cancellation, and vacuum stabil-
ity conditions, do not seem to favor the Standard Model in any way beyond
what we already know from quantum field theory. They do favor low energy
supersymmetry, but not necessarily at energies low enough for us to test.
Other aspects of the theory, such as the ease of getting Fg gauge symmetry
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and its subgroups, do favor GUTs and the Standard Model. But since they
are only part of the picture, it is hard to know what to make of them.

Although superficially this might seem discouraging, I feel this is not so
at all. Let us consider the analogy between solutions of string theory and
solutions of the Schrédinger equation which describe atoms and molecules.
Although very different, both have a large and complicated set of metastable
solutions. Then, these comments are rather like saying that although the
Schrodinger equation does describe specific molecules and their chemistry,
nevertheless the list of all of the metastable molecules which it predicts can
exist, has no apparent relation to the actual set of molecules we see around
us on Earth, in the universe, or even in the chemistry lab. Nevertheless
we can understand what we see, not just as a set of empirical facts, but in
part from theoretical models. We have a good qualitative understanding
of the possible molecules, and simple principles which drastically constrain
their dynamics, such as conservation of the number of each atomic species,
energetic arguments, and the basic phase structure of matter. This allows
us to make models of the dynamics which created the molecules we see —
on Earth, in the sun, and in other environments.

Such models can be made even for environments we cannot observe at
all. We have far less observational knowledge about the center of the Earth
than we do about electroweak scale particle physics, yet we feel we under-
stand it much better. This understanding comes largely from theoretical
arguments. There is no reason to think we cannot do as well some day for
the physics of very high energies and the early universe, using theoretical
arguments based on string/M theory.

This larger or “big picture” level is the one on which any sort of selec-
tion principle must be found. It seems very likely to me that a comparably
simple overall picture of the complete set of string/M theory compactifica-
tions, and principles constraining the dynamics, will someday be developed.
This will enable us to understand how certain vacua, including the one we
live in, were preferentially formed in the earliest moments of cosmology. I
suspect this picture and these principles will not have much in common
with the details of the Standard Model, but will come out of structures
in string/M theory and in mathematics which will be as surprising to us —
though in retrospect foreshadowed by what we know now — as string duality
was surprising to us in the 1990’s. I believe we could make progress towards
such a picture over the next 5-10 years, if enough people are attracted to
work on it.
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The String Theory Landscape
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Perhaps the most important way string theory has affected the perspec-
tive of particle physics phenomenology is through the “string theory
landscape”. We discuss the evidence supporting its existence, describe
the regions of the landscape that have been explored, and examine what
the string theory landscape might imply for most Standard Model prob-
lems.

1. Changing Perspectives

This chapter consists of three parts. In the present section, we will give a
brief historical overview of the birth of the string theory landscape and we
will explain its main features. We also present the main arguments in favor
of its existence, both from a top-down (string theory) and a bottom up (the
Standard Model) point of view. Furthermore we underline the important
changes this concept has on the perspectives for string phenomenology. In
Section 2 we present an overview of the various methods of constructing
string theories in four dimensions, by direct construction and by compacti-
fication. In Section 3 we discuss how far one can get towards understanding
the Standard Model from the landscape perspective, in comparison to the
traditional, symmetry-based approach.
Part of this chapter is based on the review article [1].
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1.1. The age of symmeltries

At the time when string theory started being considered as a theory of all
interactions including gravity, the theoretical work on the Standard Model
had reached its final form. Several decades of experimental work were
still needed to establish it, but theorists started moving ahead using the
concepts that had led to so much success in understanding the three non-
gravitational interactions. The most important of these concepts was sym-
metry. It revolutionized the understanding of fundamental physics. From
the seemingly hopeless chaos of nuclear and hadronic physics a very simple
description of those interactions had emerged in just about two decades: a
spontaneously broken gauge theory which was called the “Standard Model”.

The name does not suggest much confidence in this idea, and indeed
nobody saw the Standard Model as more than an intermediate stage, at
best an approximate description of nature, eventually to be supplanted by
something even simpler and mathematically more elegant. Indeed, by using
the same group-theoretical methods that turned out to be so successful in
the description of the Standard Model, new theories were found that looked
more attractive. The highest achievable goal appeared to be supersymmet-
ric Grand Unified Theories (susy-GUTs), which got even more credibility
in the early nineties, when the precision results of LEP suggested that the
three gauge couplings evolved to a common value at the very interesting
energy scale of about 10'6 GeV, a few orders of magnitude below the Planck
scale. Even today, despite the fact that the experimental evidence has not
(yet) shown up, it is hard to believe that this could all be just a coincidence.

A few years earlier string phenomenology had entered the scene. When
it did, it seemed to point at even grander symmetries. In 1984, the first
results obtained by compactifying the just-discovered Eg x Eg heterotic
string suggested the ultimate unification. The Standard Model appeared
to emerge (almost) uniquely from the jewel of Lie algebra theory, the Lie
algebra Ej.

1.2. The birth of the landscape

But in the remainder of the eighties there was the beginning of a slow shift
away from the notions of symmetry and uniqueness that were considered
almost self-understood until then. History will decide if this was the begin-
ning of a paradigm shift or just prematurely giving up on uniqueness. But
the evidence that the former is true is mounting.

Perhaps we will conclude one day that these beautiful ideas have always
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carried the seeds of their own destruction. A Standard Model family fits
beautifully in the (5)+(10) of SU(5) and even more beautifully in the (16) of
SO(10), but the Standard Model Higgs field does not. Furthermore, even if
SU(5) or SO(10) exist as symmetries at short distances, there is no unique
path to the Standard Model at the weak scale: in SU(5) models there
are two minima of the GUT Higgs potential, one leading to the Standard
Model, and one to a SU(4) x U(1) gauge theory. In SO(10) models the
number of options increases.

The idea of low energy supersymmetry was also plagued by serious prob-
lems from the very beginning. It introduces light bosons into the spectrum
that lead to rapid proton decay. By contrast, a sufficiently long life-time
of the proton is automatic in the Standard Model. On general grounds,
one would expect low energy supersymmetry to give rise to flavor viola-
tions that should have been observed a long time ago already. These, as
well as other problems can be evaded by additional assumptions, but it is
disturbing that the pieces of the puzzle do not fall into place more easily.
Furthermore, although susy and GUTs are well-motivated answers to im-

portant questions, they have never led to a substantial simplification of the
Standard Model.

1.2.1. String vacua

The uniqueness of string theory was also in doubt right from the start.
The Eg x Eg heterotic string was not unique, but part of a small set of 10-
and 11-dimensional supersymmetric theories which were initially taken less
seriously.

But more importantly, there was an explosion of compactifications and
four-dimensional string constructions in the two years following 1984 [2-7].
Already as early as 1986 it became customary to think of the different string
theories or compactifications as “vacua” or “ground states” of a fundamen-
tal theory (see for example the last line of [8] or discussion at the end of [9];
here one also finds the remark that perhaps our universe is merely a suf-
ficiently long-lived metastable state). The proliferation of “string vacua”
has not stopped since then. Here and in the following we use the word
“vacuum” for the metastable state that correctly describes our Universe,
and all its analogues with different gauge theories. The proper definition
is itself a difficult issue, especially in de Sitter space, but if no well-defined
description exists that matches our Universe, string theory would be wrong
anyway.
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1.2.2. Moduli

Soon it became clear that these “string compactifications” or “four-
dimensional strings” had continuous deformations that can be described
by vacuum expectation values of massless scalar singlets, called “moduli”.
Typically, there are tens or hundreds of them. All quantum field theory
parameters depend on the moduli, and hence the existence of moduli is a
first step towards a plethora of possibilities.

These singlets generate unobserved fifth forces and their presence is
cosmologically unacceptable [10, 11], but so is the fact that supersymmetry
is unbroken. For more than a decade, this left room for the possibility that
the abundance of string vacua would be reduced to just a few, maybe just
one, once these problems were solved. But in the beginning of this century
considerable progress was made towards solving the problem of moduli
stabilization and — to a lesser extent — that of supersymmetry breaking.

The large number of available ingredients (fluxes, D-branes, orientifold
planes and various perturbative and non-perturbative effects) led to the
nearly inevitable conclusion that if there was one solution, there were go-
ing to be many more. Almost two decades after 1984 the denial phase
reached its end, marked by an influential and somewhat provocative paper
by L. Susskind [12], who also gave the subject its current name, the “string
landscape”.

1.2.3. The cosmological constant

Remarkably, these developments were driven to a considerable extent by
observation: the discovery of an accelerated expansion of the universe in
1998 [13, 14]. The most straightforward interpretation is that we live in
a universe with positive vacuum energy density, which acts like a cosmo-
logical constant, and implies that we live in de Sitter (dS) rather than
flat Minkowski space. Contrary to some statements in the literature, there
was never any difficulty in getting positive vacuum energy in string theory.
Some of the aforementioned papers from 1986 built non-supersymmetric
strings, and some of those string theories have positive vacuum energy. At
that time this feature was merely observed, but not yet considered to be
of any interest. However, we have little computational control over non-
supersymmetric strings, and at the moment the only viable path to string
theory in dS space is to “up-lift” supersymmetric AdS vacua with negative
vacuum energy.

The explanation of the observed accelerated expansion requires not only
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positive vacuum energy, but an extremely small amount of it. It is about 120
to 60 orders of magnitude less than its natural scale, depending on whether
one compares to the Planck scale or the weak scale. In non-supersymmetric
string theory vacuum energy comes out as a sum of positive and negative
contributions of Planckian size. Everything we know suggests that this
will give rise to numbers of order one in units of the natural value. If the
contributions in the sum are random, the chance of finding a result near
the observed value is about 1 in 10'2°. This would imply that one needs an
ensemble of at least 102" vacua to have a chance of finding one like ours.
With any smaller ensemble, the existence of the small observed value would
be a bizarre coincidence.

1.2.4. The Bousso-Polchinski mechanism

It was realized decades ago [15] that anti-symmetric tensor fields A,,,, might
play an important role in solving the cosmological constant problem. Such
four-index field strengths can get constant values without breaking Lorentz
invariance, namely Fj,,,c = C€uvpo. If we couple the theory to gravity, it
gives a contribution to the cosmological constant A:
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_ o nvpo _ -2
A Ao 48FHVPUF AO + 20 R (].)

where Ay is the cosmological constant in the absence of anti-symmetric field
strength contributions. In string theory c is not an arbitrary real number:
it is quantized [16]. These quantized fields are called “fluxes”. It turns
out that string theory typically contains hundreds of fields F},,,», which we
label by i = 1,..., N. The resulting formula for A is
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where the f; are numbers derived from the string theory under considera-
tion. One would expect the values for the real numbers f; to be different.
If the values of f; are distinct and incommensurate, then Eq. (2) defines a
dense discrete set of values. Bousso and Polchinski called it a “discretuum”.
This realizes a dynamical neutralization of A first proposed by [17, 18]. See
also [19] for a related realization of this idea in string theory.

The discretuum is populated by some physical process that is able to
connect the different string vacua. The mechanism proposed for this is
tunneling by bubble nucleation in eternal inflation, a near inevitability in
most models of inflation. See [20, 21] for reviews and references. This area
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is — so far — less deeply connected to string theory, and therefore we will not
discuss it in detail, except to mention that it leads to the very thorny issue
of the multiverse measure problem. See [22-25] for various ideas about this.

1.2.5. Existence and distribution of de Sitter vacua

To make use of the Bousso-Polchinski neutralization of A a sufficiently dense
discretuum of such vacua is needed. This mechanism relies on the fact that
whatever the contribution of particle physics, cosmology and fundamental
theory might be, it can always be canceled to 120 significant digits by flux
contributions, without making actual computations with that precision. If in
reality these distributions are severely depleted in part of the range, or have
a highly complicated non-flat structure, this argument would fail. There
might still exist a huge landscape, but it would be useless.

We will consider here only type-IIB (and related F-theory) compactifi-
cations where the most explicit results have been obtained. For references
to work in other areas and more details see [1, 26-30].

In type-1IB theories one starts with a Calabi-Yau compactification with
ho1 complex structure (“shape”) moduli and hi; Kéhler (“size”) moduli,
where ho; and hy; are the Hodge numbers of the CY manifold (see Sec-
tion 2.3 for more details on Calabi-Yau compactifications). One can add
to this background configuration a choice of gadgets from the string theory
toolbox, such as 3-form RR and NS fluxes, 5-form fluxes, denoted F'3, H3
and F'5 respectively, and D3 and D7 branes.

The 3-form fluxes can stabilize all complex structure moduli. This is
due to a tree-level term in the superpotential that takes the form [31]

Wi = / (Fy — rHy) A Q) ()

where 7 = a +ie~?, and a is the axion and ¢ the dilaton. The dependence
on the complex structure moduli is through €2, the holomorphic three-form
of the Calabi-Yau manifold. This term also fixes the dilaton and axion.
However, Wgyux does not depend on the Kéahler moduli and hence cannot
fix them. Since every CY manifold has at least one Kéhler modulus, this
leaves therefore at least one modulus unfixed.

One may fix the size moduli with non-perturbative terms in the superpo-
tential. These take the form W o exp(i\s), where s is the size modulus and
A a parameter. Such terms can be generated by instantons associated with
Euclidean D3-branes [32] or from gaugino condensation in gauge groups
on wrapped D7 branes. If at least one of these effects is present, string
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vacua with all moduli stabilized can be obtained [33]. This work, usually
referred to as “KKLT”, builds on several earlier results, such as [34-36]
and references cited therein. The solution obtained in this way has a nega-
tive vacuum energy, and is a fully stabilized supersymmetric AdS vacuum.
However, the required instanton contributions may not exist in all cases.
They are not generic [37] and may even be so rare that one only gets a
“barren landscape” [38].

The next step is more problematic and more controversial. One must
break supersymmetry and obtain a dS vacuum (this is called “up-lifting”).
In KKLT this is done by adding an anti-D3 brane in a suitable location on
the Calabi-Yau manifold, such that the validity of the approximations is not
affected. Anti-D3 branes explicitly violate supersymmetry, and hence after
introducing them one loses the control offered by supergravity. Attempts
to realize the KKLT uplifting in supergravity or string theory have failed
so far [39, 40], but opinions differ on the implications of that result. There
exist several alternatives to D3-brane uplifting [41-45].

The result of a fully realized KKLT construction is a string vacuum
that is free of tachyons, but one still has to worry about non-perturbative
instability. The uplift contribution vanishes in the limit of large moduli, so
there is always a supersymmetric vacuum in that limit, separated from the
dS vacuum by the uplifted barrier that stabilized the AdS vacuum. One can
work out the tunneling amplitude, and KKLT showed that it is generically
much larger than the observed lifetime of our universe.

An alternative scenario (called the LARGE volume scenario or LVS) was
presented in Ref. [46]. The starting point is type-1IB fluxes stabilizing the
complex structure moduli and the dilaton and axion. By means of suitable
(a')? corrections these authors were able to find minima where all moduli
are stabilized at exponentially large volumes in non-supersymmetric AdS
vacua. Additional mechanisms are then needed to lift the vacuum to dS.
An explicit example was presented recently [47].

The existence of the required dense distribution of vacua is still disputed,
and some even question the existence of any such vacuum. Recent work
seems to indicate that in the vast majority of cases the AdS vacua become
tachyonic after uplifting [48, 49]. Another potential problem is a dramatic
increase in tunneling rates as a function of the number of moduli [50].
These effects may dramatically reduce the number of dS vacua, rendering
the Bousso-Polchinski argument inadequate. In [51] several criticism of the
landscape are presented, including the use of effective potentials and of
Coleman-de Luccia [52] tunneling between dS vacua in theories of gravity.
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1.2.6. Vacuum Counting

The KKLT construction has been the starting point for estimates of the
total number of flux vacua [53-55],
K/2
Nowe IRV (@
(K7/2)!
where L is a number of order 1 to 100 (the “tadpole charge”) and K the
number of distinct fluxes. For typical manifolds this gives numbers of order
10V, where N is of order a few hundred. A often quoted estimate is 10°°°.
It is noteworthy that this formula turns a nuisance (a large number of
moduli) into a virtue: the large number of moduli gives rise to the exponent
of Eq. (4), and it is this large exponent that makes neutralization of the
cosmological constant possible. All the ingredients used in the foregoing
discussion are already present in string theory. Since all Standard Model
parameters depend on the moduli, this results in a large distribution of
options covering the environment of the Standard Model in QFT.

1.3. A paradigm shift?

If we were to accept that our laws of physics are picked out of a huge
ensemble, and that the parameters have such special values just by coinci-
dence, this would imply the end of science. Then the entire Standard Model
could just be a random item from a huge ensemble. It is indeed remark-
able that in the current state of particle physics, many of the remaining
problems could be just environmental: the Standard Model provides an ad-
equate description, but often with strange parameter values. Some genuine
problems remain (such as dark matter and the mechanisms behind inflation
and baryogenesis), but most other problems that are often discussed should
really be called “worries”. This means that we cannot be completely sure
that there exists a solution. Perhaps these problems only exist in our minds.
This includes the choice of the Standard Model gauge group, the choice of
matter representations, charge quantization, the number of families, quark
and lepton mass hierarchies, the smallness of neutrino masses, the gauge
hierarchy problem and dark energy.

1.3.1. Anthropic arguments

All these worries only exist because there are minds to worry about them. It
is quite plausible that this would not be the case if we allow the parameters



The String Theory Landscape 163

and discrete choices of the Standard Model to vary. In an ensemble like the
string landscape many such variations can occur, and it is inevitable that
worrying minds will only worry about the small subset in which they can ex-
ist. This statement is one of several possible formulations of the “anthropic
principle”. It is a misnomer for several reasons, and in this formulation it
is certainly not a principle of physics, like the equivalence principle. It is
output, not input. One could even choose to ignore it, but then one would
miss several potential explanations of some of the environmental problems.

Without its embedding in the string theory landscape, anthropic rea-
soning might also be called the end of physics, but in combination the two
concepts merely are a complete change of course for traditional physics. The
notion of symmetries as a fundamental concept is replaced by a combination
of anthropic arguments and information about distributions of parameters
in a mathematically well-defined ensemble. The lack of evidence for “new
physics” may imply that we have reached the historical moment where this
change is occurring. But particle physics is an experimental science, and
the huge number of experimental results coming up in the next few years
may revive the notion of symmetries, and postpone the emergence of a first
glimpse of a landscape indefinitely.

1.3.2. Deriability vs. Uniqueness

One often finds criticisms of string theory like: “String theory was supposed
to explain why elementary particles could only have the precise masses and
forces that they do”. In reality there has never been even a shred of evidence
that string theory was going to lead to that. It is also nearly impossible to
find quotes of this kind even in the earliest string papers. People making
such statements are simply projecting their own expectations for a funda-
mental theory on string theory.

These expectations reflect the traditional uniqueness paradigm of par-
ticle physics: the hope that one day we will be able to derive all laws of
physics, in particular the Standard Model and all its parameters. The fine
structure constant o was expected to be given by some simple formula.
This hope can be illustrated by famous quotes by Einstein, Feynman and
others. But two concepts are often confused in this discussion, uniqueness
and derivability. According to our current understanding of string theory,
it is not really the uniqueness of the underlying theory that is at stake,
but the uniqueness of the vacuum. If the vacuum is not unique, the Stan-
dard Model and its parameters can not be derived by purely mathematical
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manipulations. Additional information about the choice of vacuum, either
phenomenological or anthropic, must be provided.

The fact that the Standard Model and it couplings fit nicely in an SU(5)
susy-GUT is often proclaimed as a strong hint in favor of uniqueness. But
once again a distinction between uniqueness and derivability must be made.
While GUTs may indeed point in the direction of a unique theory, SU(5)
GUTs also gave the first hint against derivability, since they have two phys-
ically distinct vacua. The non-uniqueness of the return path towards lower
energies first encountered in GUTs becomes much worse if one starts from
the loftier vantage point of Eg x Eg heterotic strings. It is like climbing
a mountain: eventually one may reach a unique point, the top, but there
may exist many other paths downwards, leading to other valleys.

Since string theory emerged during the height of the symmetry era, it
is not surprising that it was first seen as the realization of the dream of
uniqueness, interpreted as derivability. But in reality, string theory has
been sending us exactly the opposite message almost from the beginning.
One day, this may be recognized as its most important contribution to
science.

1.3.3. Ewvidence outside string theory

From now on we will use the term “uniqueness” rather than “derivability”,
because that is what is commonly used. There has never been any evidence
in favor of the uniqueness paradigm, the idea that the Standard Model has
to be derivable. But there are several pieces of circumstantial evidence of
the contrary, even without string theory.

Theories of inflation typically lead to multiple instances of new uni-
verses, a “multiverse”. Even without inflation, what argument do we have
to suggest that our own universe is unique, in any sense of the word? And
if it is not unique, what argument do we have to tell us that the other
universes must have exactly the same laws of physics as ours? The only
fact that makes our universe and laws of physics unique is that they are
the only ones we can observe.

The possible existence of a plethora of scalars provides another reason
to question the uniqueness of the Standard Model. We have seen particles
of various spins and Standard Model couplings, but only recently we may
have observed the first Lorentz scalar, the Higgs boson. We have only been
able to see it because it is unusually light and because it comes from a
field that is not a Standard Model singlet. But experimentally we know
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nothing about Lorentz scalar fields that are gauge singlets. If they exist,
they would appear in the Lagrangian as polynomials, modifying all dimen-
sionless parameters. Then all parameter values are vacuum expectation
values of scalar fields. One may still hope that this vacuum expectation
value is somehow uniquely determined, but in almost all examples we know
(including the Higgs potential of SU(5) GUTs) scalar potentials tend to
have more than one local minimum. One cannot say more without a more
concretely defined theory, but in the only theory where such potentials
can be discussed, string theory, the number of local minima appears to be
astronomical.

Finally, the fact that the Standard Model is anthropically tuned provides
evidence against the idea of its derivability. This is because the Standard
Model stands out as a very special region in parameter space where nuclear
physics and chemistry lead to complex structures we call “life”. It would
require an uncanny miracle for the two unrelated computations to give
compatible results. Especially the last argument suggests that the ultimate
fundamental theory — assuming such a notion makes sense and that we have
enough intelligence and information to determine it — must have a large
ensemble of physically connected vacua. This allows a process like eternal
inflation to sample all these vacua, occasionally producing a universe within
the anthropic domain.

1.3.4. Uniqueness in the string landscape?

One may still hope that the resulting scalar potential somehow has a math-
ematically unique local minimum, but that would be pure wishful thinking.
One may even hope for a unique global minimum. However, it is not clear
what to minimize, because vacuum energy is not bounded from below.
However, if vacuum energy takes discrete values, there is a — presumably
unique — vacuum with the lowest positive vacuum energy. Could that de-
scribe our universe? Could it be that in the sampling process of universes
this particular one is somehow preferred? Another notion is the “dominant
master vacuum”, the state that dominates eternal inflation because it is
most frequently sampled, often by a huge factor [56]. This is determined
by its stability against tunneling to other states, as well as the likelihood of
others tunneling into it. Both of these — the vacuum with lowest positive
vacuum energy or the dominant master vacuum — have a sense of unique-
ness, but the anthropic tuning argument makes it very unlikely that they
happen to have the properties that allow life to exist. There is no need for
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that, once there is a landscape. Then the anthropic genie is already out
of the bottle. All that is required is that there exist metastable vacua in
the anthropic zone of parameter space, and that their sampling frequency
is non-zero. There is no reason why they should dominate the multiverse
statistics. The dominant master vacuum does have an important positive
feature, because one may argue that most vacua have it in its history. Then
it can serve as a kind of eraser of initial conditions. Most observers would
find themselves in the anthropic universe most frequently reached by tun-
neling from the dominant master vacuum. See [57] for some speculations
regarding this idea.

1.4. Changing perspectives on string phenomenology

The existence (or non-existence) of the string theory landscape has an im-
portant impact on string phenomenology. One may distinguish at least
three different attitudes. The first is that we should simply find the exact
point in the landscape that corresponds to the Standard Model, use current
data to fix it completely, and then make an indefinite number of predic-
tions for future experiments and observations. This includes all work on
explicit “string model building” in many corners of the landscape, reviewed
in the next section. The second is trying to extract generic predictions from
classes of models rather than individual ones. An example of work in this
category is the study of a class of M-theory models, reviewed in [58] (see
also Section 2.11). The third is to try and understand the Standard Model
by considering landscape distributions in combination with anthropic con-
straints. This is the point of view we take in Section 3. These three points of
view are not mutually exclusive. Their relative importance depends on how
optimistic one is about the chances of finding the exact Standard Model as
a point in the landscape.

2. The Compactification Landscape

We will present here just a brief sketch of the string compactification land-
scape. For further details we recommend the very complete book [59] and
references therein.

2.1. World-sheet versus space-time

In their simplest form, fermionic string theories live in ten flat dimensions.
In addition there is an 11-dimensional theory that is not described by inter-
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acting strings, but closely related to string theory, known as M-theory. But
in any case, to make contact with the real world we have to find theories
in four dimensions.

There are essentially two ways of doing that: to choose another back-
ground space-time geometry, or to change the world-sheet theory. The
geometry can be chosen as a flat four-dimensional space-time combined
with a compact six-dimensional space. This is called “compactification”.
The world-sheet theory can be modified by choosing an appropriate two-
dimensional conformal field theory. In D-dimensional flat space a string
theory is described by D free two-dimensional bosons X*, and, if it is
a fermionic string, also by D free fermions ¢*. Instead, one can choose
another two-dimensional field theory that satisfies the same conditions of
conformal invariance, called a conformal field theory (CFT). In particular
one may use interacting two-dimensional theories, as long as X* and y*
w=0,...3 remain free fields.

The simplest compactification manifold is a six-dimensional torus. This
can easily be described both from the space-time and the world-sheet point
of view. The resulting theories only have non-chiral fermions in their space-
time spectrum. The same is true for the more general asymmetric torus
compactifications of the heterotic string with 6 left-moving and 22 right-
moving “chiral” bosons found by Narain [2].

The chirality problem is easily solved by a simple generalization that
yields a valid compactification manifold, namely a torus with discrete iden-
tifications. These are called orbifold compactifications [60]. These methods
opened many new directions, such as orbifolds with gauge background fields
(“Wilson lines”) [61], and were soon generalized to asymmetric orbifolds [7],
where “asymmetric” refers to the way left- and right-moving modes were
treated. Just as torus compactifications, orbifolds can be viewed from both
a space-time and a world-sheet perspective. Some orbifold compactifica-
tions can be understood as singular limits of geometric Calabi-Yau com-
pactifications, which historically were discovered a little earlier (see Section
2.3). With more complicated compactifications, the connection between the
world-sheet and space-time perspectives becomes more and more difficult
to make.
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2.2. General features
2.2.1. Massive and massless modes

Before introducing some of the earliest string constructions and compactifi-
cations in a little more detail, we will give a summary of the kind of spectra
they generically produce. Here we will assume a supersymmetric spectrum.
This already implies the prediction of a large number of particles that have
not (yet) been observed. All types of particles listed below typically occur
in non-supersymmetric string spectra as well, but in that case it is even less
clear what their ultimate fate is, since the stability of these string theories
is not understood.

Any string theory contains infinitely many additional particles: massive
string excitations, Kaluza-Klein modes as in field theory compactifications,
and winding modes due to strings wrapping the compact spaces.

Their masses are respectively proportional to the string scale, the in-
verse of the compactification radius or the compactification radius itself. In
world-sheet constructions the different kinds of modes are on equal footing,
and have Planckian masses. In geometric constructions one can consider
large volume limits, where other mass distributions are possible. But in
any case, of all the modes of the string only the massless ones are relevant
for providing the Standard Model particles, which will acquire their masses
from the Higgs mechanism and QCD, as usual.

Among the massless modes of string theories one may find some that
match known particles, but usually there are many that do not match
anything we know. This may just be an artifact of the necessarily primitive
methods at our disposal. Our intuition from many years of four-dimensional
string model building may well be heavily distorted by being too close to
the supersymmetric limit, and by algebraically too simple constructions.
Some of the additional particles may actually be a blessing, if they solve
some of the remaining problems of particle physics and cosmology. The art
of string phenomenology is to turn all seemingly superfluous particles into
a blessing, or understand why their presence is not generic.

In addition to moduli (already introduced in Subsection 1.2.2) and ax-
ions (to be discussed in Section 3.6) string spectra generically include:

2.2.2. Chiral fermions and mirrors

All charged Standard Model fermions are chiral, and hence they can only
acquire a mass after weak symmetry breaking. Therefore one can say that
the weak interactions protect them from being very massive. It is very well
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possible that for this reason all we have seen so far at low energy is chiral
fermionic matter.

In attempts at getting the Standard Model from string theory, it is
therefore reasonable to require that the chiral spectra match. In general
one finds additional vector-like matter, whose mass is not protected by the
weak interactions. Typically, if one requires three chiral families, one gets
N + 3 families and N mirror families. If the N families “pair off” with
the N mirror families to acquire a sufficiently large mass, the low energy
spectrum agrees with the data.

2.2.3. Additional vector bosons

Most string spectra have considerably more vector bosons than the twelve
we have seen so far in nature. Even if the presence of SU(3), SU(2) and
U(1) as factors in the gauge group is imposed as a condition, one rarely
finds just the Standard Model gauge group. In heterotic strings one is
usually left with one of the Eg factors. Furthermore in nearly all string
constructions additional U(1) factors are found. A very common one is a
gauged B — L symmetry.

Additional gauge groups are often needed as “hidden sectors” in model
building, especially for supersymmetry breaking. Extra U(1)’s may be
observable trough kinetic mixing [62] with the Standard Model U(1), via
contributions to the action proportional to F},, V¥, where F' is the Y field
strength, and V' the one of the extra U(1)’s.

2.2.4. FExotics

One often finds particles that do not match any of the observed matter
representations, nor their mirrors. Notorious examples are color singlets
with fractional electric charge or higher rank tensors. These are generically
called “exotics”. If there are exotics that are chiral with respect to SU(3) x
SU(2) x U(1), these spectra should be rejected, because any attempt to
make sense of such theories is too far-fetched to be credible. These particles
may be acceptable if they are vector-like, because one may hope that they
become massive under generic perturbations.

2.3. Calabi-Yau compactifications

The first examples of compactifications with chiral spectra and N=1 super-
symmetry were found for the Eg x Eg heterotic string in [63], even before
the aforementioned mathematically simpler orbifold compactifications. The
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compactification manifolds are six-dimensional, Ricci-flat Kahler manifolds
with SU(3) holonomy, called Calabi-Yau manifolds. The B,,, field strength
H,,, was assumed to vanish, which leads to the consistency condition

dH:TrR/\R—?)—IOTrF/\on. (5)

This implies in particular a relation between the gravitational and gauge
field backgrounds. This condition can be solved by using a background
gauge field that is equal to the spin connection of the manifold, embedded
in an SU(3) subgroup of one of the Fg factors. In compactifications of
this kind one obtains a spectrum with a gauge group Eg X Fs. The group
Eg contains the Standard Model gauge group SU(3) x SU(2) x U(1) plus
two additional U(1)’s. The group Es is superfluous but hidden (Standard
Model particles do not couple to it), and may play a role in supersymmetry
breaking.

If some dimensions of space are compactified, ten-dimensional fermion
fields are split as

Uy (z,y) = Vi(x)Vy(y) + Vr(2)V-(y) (6)

where x denotes four-dimensional and y six-dimensional coordinates, +/—
denotes chirality in ten and six dimensions, and L, R denote chirality in four
dimensions. The number of massless fermions of each chirality observed in
four dimensions is determined by the number of zero-mode solutions of the
six-dimensional Dirac equation in the background of interest. These num-
bers are equal to two topological invariants of the Calabi-Yau manifold, the
Hodge numbers, h11 and hi2. As a result one obtains k17 chiral fermions in
the representation (27) and hys in the (27) of Eg. The group Fg is a known
extension of the Standard Model, an example of a Grand Unified Theory,
in which all three factors of the Standard Model are embedded in one sim-
ple Lie algebra. It is not the most preferred extension; a Standard Model
family contains 15 or 16 (if we assume the existence of a right-handed neu-
trino) chiral fermions, not 27. However, since the 11 superfluous fermions
are not chiral with respect to SU(3) x SU(2) x U(1), they can acquire a
mass without the help of the Higgs mechanism, in the unbroken Standard
Model. Therefore these masses may be well above current experimental
limits.

The number of Calabi-Yau manifolds is huge. A subset associated with
four-dimensional reflexive polyhedra has been completely enumerated [64].
This list contains more than 470 million topological classes with 31,108
distinct Hodge number pairs.
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In 1986 Strominger [3] considered more general geometric background
geometries with torsion. This gave rise to so many possibilities that the
author concluded “all predictive power seems to have been lost’.

2.4. Free field theory constructions

Several other methods were developed around the same time as Calabi-Yau
compactifications and orbifolds. Narain’s generalized torus compactifica-
tions lead to a continuous infinity of possibilities, but all without chiral
fermions. Although this infinity of possibilities is not really a surprising fea-
ture for a torus compactification, Narain’s paper was an eye-opener because,
unlike standard six-dimensional torus compactifications, this approach al-
lowed a complete modification of the gauge group.

More general world-sheet methods started being explored in 1986. Free
field theory constructions allowed a more systematic exploration of certain
classes of string theories. It became clear very quickly that also in this case
there was a plethora of possibilities. But unlike Narain’s constructions,
these theories can have chiral fermions, and furthermore they did not seem
to provide a continuum of options, but only discrete choices. With the
benefit of hindsight, one can now say that all these theories do have con-
tinuous deformations, which can be realized by giving vacuum expectation
values to certain massless scalars in the spectrum. Since these deformed
theories do not have a free field theory descriptions, these deformations are
not manifest in the construction. They are the world sheet construction
counterparts of the geometric moduli. This does however not imply that
the plethora of solutions can simply be viewed as different points in one
continuous moduli space. Since many spectra are chirally distinct, it is
more appropriate to view this as the discovery of a huge number of distinct
moduli spaces, all leading to different physics.

An important tool in these free-field theory constructions is boson-
fermion equivalence in two dimensions. In this way the artificial distinction
between the two can be removed, and one can describe the heterotic string
entirely in terms of free fermions [4, 6] or free bosons [5]. These construc-
tions are closely related, and there is a huge area of overlap: constructions
based on complex free fermions pairs can be written in terms of free bosons.
However, one may also consider real fermions or free bosons on lattices that
do not allow a straightforward realization in terms of free fermions.
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2.4.1. Free fermions

Both methods have to face the problem of finding solutions to the conditions
of modular invariance, a one-loop consistency condition. In the fermionic
constructions this is done by allowing periodic or anti-periodic boundaries
on closed cycles on the manifold for all fermions independently. Modular
transformations change those boundary conditions, and hence they are con-
strained by the requirements of modular invariance. These constraints can
be solved systematically (although in practice usually not exhaustively).
Very roughly (ignoring some of the constraints), the number of modular
invariant combinations is of order 22™("=1 for n fermions. There are 44
right-moving and 18 left-moving fermions, so that there are potentially huge
numbers of string theories. In reality there are however many degeneracies.

In-depth explorations [65] have been done of a subclass of fermionic
constructions using a special set of free fermion boundary conditions that
allows spectra with three families to come out. This work focuses on Pati-
Salam model. Other work [66, 67] explores the variations of the “NAHE”
set of free fermion boundary conditions. This is a set of fermion boundary
vectors proposed in [68] that are a useful starting point for finding “realistic”
spectra.

2.4.2. Free bosons: Covariant lattices

In bosonic constructions the modular invariance constraints are solved by
requiring that the momenta of the bosons lie on a Lorentzian even self-dual
lattice. This means that the lattice of quantized momenta is identical to
the lattice defining the compactified space, and that all vectors have even
norm. Both conditions are defined in terms of a metric, which is +1 for left-
moving bosons and —1 for right-moving ones. These bosons include the ones
of Narain’s torus, plus eight right-moving ones representing the fermionic
degrees of freedom, ¥* and the ghosts of superconformal invariance. These
eight bosons originate from the bosonic string map (originally developed for
ten-dimensional strings [69]) used to map the entire fermionic sector of the
heterotic string to a bosonic string sector [5]. Then the Lorentzian met-
ric has signature ((+)22, (—)'4)), and the even self-dual lattice is denoted
I'99,14. This is called a covariant lattice because it incorporates space-time
Lorentz invariance for the fermionic string. Since the conditions for modu-
lar invariance are invariant under SO(22, 14) Lorentz transformations, and
since the spectrum of Ly and Lg is changed under such transformations,
their would appear to be a continuous infinity of solutions. But the right-
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moving modes of the lattice are strongly constrained by the requirement of
two-dimensional supersymmetry, which is imposed using a non-linear real-
ization [70] (other realizations exist, see for example [71, 72]). This leads to
the so called “triplet constraint” [4]. This makes the right-moving part of
the lattice rigid. The canonical linear realization of supersymmetry, relat-
ing X* to ¢", on the other hand leads to lattices I'a2 6 X Eg with complete
Lorentz rotation freedom in the first factor, which is just a Narain lattice.

2.5. An early attempt at vacuum counting

Several of the 1986 papers make attempts at getting a rough idea about
the number of solutions. This is fairly straightforward for free fermions
with periodic and anti-periodic boundary conditions, as explained above.
However, the main problem is that not all solutions are different. Indeed,
in general there are huge degeneracies among solutions that reduce the
estimate by large factors. We will explain here a counting estimate used
for covariant lattice constructions, because it give an interesting insight
in the growth of the number of possibilities. However, this should not be
confused with counting moduli stabilized points in potentials. Indeed, all
these string theories have unstabilized moduli.

An interesting estimate exists for even self dual lattices, which has the
advantage that it only counts distinct solutions. Unfortunately, heterotic
strings are based on lorentzian lattices, for which there are no such theo-
rems. In fact, these lattices are unique up to Lorentz transformations, but
the Lorentz transformations modify the heterotic spectrum. However, co-
variant lattices that lead to chiral spectra have a rigid right-moving sector
that forbids continuous Lorentz transformations.

The rigidity of the right-moving part of the lattice discretizes the num-
ber of solutions, which is in fact finite for a given world-sheet supersymme-
try realization. A very crude attempt to estimate the number of solutions
was made in [5], and works as follows. One can map the right-moving
bosons to a definite set of 66 left-moving bosons, while preserving modu-
lar invariance. This brings us into the realm of even self-dual Euclidean
lattices, for which powerful classification theorems exist.

Such lattices exist only in dimensions that are a multiple of eight, and
have been enumerated for dimensions 8,16 and 24, with respectively 1,2
and 24 solutions (in 8 dimensions the solution is the root lattice of Fg, in
16 dimensions they are Eg & Eg and the root lattice of Dig plus a spinor
weight lattice, and in 24 dimensions the solutions were enumerated in [73]).
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There exists a remarkable formula (the “Siegel mass formula”) which gives
information about the total number of distinct lattices A of dimension 8k

in terms of :
4k—1

1 Bs,
-1 _ L baj
ot = g T 3 (7)

Here g(A) is the order of the automorphism group of the lattice A and Ba;
are the Bernoulli numbers. Since the automorphisms include the reflection
symmetry, g(A) > 2. If we assume that the lattice of maximal symmetry is
Dgy, (the root lattice plus a spinor, which is a canonical way to get an even
self-dual lattice)) we have a plausible guess for the upper limit of g(A) as
well, namely the size of the Weyl group of Dgy,, 28*71(8k)!. This assumption
is incorrect for £ = 1, where the only lattice is Fg, and k = 2, where the
lattice Fs x Fg wins against D1, but for £ = 3 and larger the Weyl group
of Dgy is larger than the automorphism group of the lattice (Fg)*. For
k = 3 the assumption has been checked in [74] for all 24 Niemeier lattices.
Making this assumption we get

1 4k—1 B.. 4k—1 B..
— B 22U < Ngp < 28518k — 1)! B 2%
15 Bk Jl;[l 1 < Ngi, < (8 )! Bug, gl;[1 1 (8)

which for k = 11 gives 10%3° < Ngg < 101999 (in [75] this number was
estimated rather inaccurately as 10'5°0; all numbers quoted here are based
on an exact computation).

From a list of all Ngg lattices one could read off all the free bosonic
CFTs with the world-sheet supersymmetry realization discussed above. In
particular, this shows that the total number is finite. However, there is
a very restrictive subsidiary constraint due to the fact that 66 of the 88
bosons were obtained from the right moving sector. Those bosons must have
their momenta on a D3 x (D7) lattice and satisfy an additional constraint
inherited from world sheet supersymmetry, the triplet constraint. Perhaps
a more reasonable estimate is to view this as a lattice with 32 orthogonal
building blocks, D3 x (D7)? x (D1)??, which should be combinatorically
similar to (D1 )32 then the relevant number would be N3o, which lies between
8 x 107 and 2.4 x 10°!. But unlike Ngg, N3y is not a strict limit, and
furthermore is still subject to the triplet constraint.

All of this can be done explicitly for 10 dimensional strings. Then one
needs the lattices of dimension 24, and eight of the 24 lattices satisfy the
subsidiary constraints for ten-dimensional strings [75], namely the presence
of a Dg factor.
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2.6. Unexplored landscapes: Meromorphic CFTs

The concept of chiral conformal field theories and even self-dual lattices can
be generalized to interacting theories, the so-called meromorphic conformal
field theories [76]. These can only exist if the central charge ¢ (the gener-
alization of the lattice dimension to CFT) is a multiple of 8. For ¢ = 8 and
¢ = 16 these meromorphic CFTs are just chiral bosons on even self-dual
lattices, but for ¢ = 24 there 71 CFT’s are conjectured [77] to exist includ-
ing the 24 Niemeier lattices (most of them have indeed been constructed).
Gauge symmetries in the vast majority of the heterotic strings in the liter-
ature (for exceptions see for example [78]) are mathematically described in
terms of affine Lie algebras, a kind of string generalization of simple Lie-
algebras, whose representations are characterized by a Lie-algebra highest
weight and an additional integer parameter k called the level. In the free
boson theories the only representations one encounters have k = 1, and
the total rank equals the number of compactified bosons in the left-moving
sector, 22 for four-dimensional strings, and 24 for Niemeier lattices. All
even self-dual lattices are direct sums of level 1 affine algebras plus a num-
ber of abelian factors (U(1)’s), which we will call the gauge group of the
theory. In meromorphic CFT’s the restriction to level one is removed. The
list of 71 meromorphic CFTs contains 70 cases with a gauge group whose
total central charge is 24, plus one that has no gauge group at all, the
“monster module”. Just one of these yields an additional ten-dimensional
string theory with tachyons and an Ejg realized as an affine Lie algebra at
level 2. This solution was already known [79], and was obtained using free
fermions.

The importance of the meromorphic CFT approach is that it gives
a complete classification of all solutions without assuming a particular
construction method. In four dimensions the same method can be used.
For example, from a list of meromorphic CFTs with ¢ = 88 all four-
dimensional string theories with a given realization of world-sheet super-
symmetry (namely the same one used above) can be obtained, independent
of the construction method. Unfortunately next to nothing is known about
meromorphic CFTs for ¢ > 32. It is not known if, like lattices, they are
finite in number. Their gauge groups can have central charges that are not
necessarily 0 or the total central charge of the meromorphic CFT. It is not
known if the gauge groups are typically large or small. There is an entire
landscape here that is totally unexplored, but hard to access.

So far this method of mapping a heterotic theory to a meromorphic CFT
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has only been applied to a world-sheet supersymmetry realization using
the triplet constraint. But this can be generalized to other realizations of
world-sheet supersymmetry, including perhaps the ones discussed in the
next section.

The point we are trying to make here is that despite many decades of
work, we are probably still only able to see the tip of a huge iceberg.

2.7. Gepner models

In 1987 world-sheet constructions were extended further by the use of inter-
acting rather than free two-dimensional conformal field theories [80]. The
“building blocks” of this construction are two-dimensional conformal field
theories with N = 2 world-sheet supersymmetry. These building blocks are
combined (“tensored”) in such a way that they contribute in the same way
to the energy momentum tensor as six free bosons and fermions. This is
measured in terms of the central charge of the Virasoro algebra, which must
have a value ¢ = 9. In principle the number of such building blocks is huge,
but in practice only a very limited set is available, namely the “minimal
models” with central charge ¢ = 3k/(k+2), for k = 1...00. There are 168
distinct ways of adding these numbers to 9, so that only a few members of
the infinite set are actually used.

With the constraints of superconformal invariance solved, one now has
to deal with modular invariance. In exact CFT constructions the partition
function takes the form

P(7,7) = Z Xi(7)Mijx;(T) 9)

where x; are characters of the Virasoro algebra, traces over the entire
Hilbert space built on the ground state labeled i by the action of the Vira-
soro generators L:

Xi(T) — TreQﬂ'i‘r(Lgfc/Qél). (10)

The multiplicity matrix M indicates how often the ground states |i)|j) oc-
curs in the spectrum. Its entries are non-negative integers, and it is severely
constrained by modular invariance. Note that in (9) we allowed for the pos-
sibility that the left- and right-moving modes have a different symmetry (a
different extension of superconformal symmetry) with different sets of char-
acters x and . But then the conditions for modular invariance are very
hard to solve. They can be trivially solved if the left and right algebras are
the same. Then modular invariance demands that M must commute with
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the matrices S and T that represent the action of the modular transforma-
tions 7 — —1/7 and 7 — 7 4 1 on the characters. This has always at least
one solution, M;; = d;;.

However, assuming identical left and right algebras is contrary to the
basic idea of the heterotic string. Instead Gepner model building focuses
on a subset, namely those spectra that can be obtained from a symmetric
type-II spectrum by mapping one of the fermionic sectors to a bosonic
sector. For this purpose we can use the same bosonic string map discussed
above. This results in a very special and very limited subset of the possible
bosonic sectors.

Using the discrete symmetries of the building blocks, for each of the
168 tensor combinations, a number of distinct modular invariant partition
functions can be constructed, for a grand total of about five thousand [81].
Each of them gives a string spectrum with a gauge group Fg x Eg (or
occasionally an extension of Fg to F; or Eg) with massless chiral matter
in the representations (27) and (27) of Ep, exactly like the Calabi-Yau
compactifications discussed above.

Indeed, it was understood not long thereafter that there is a close rela-
tionship between these “Gepner models” and geometric compactifications
on Calabi-Yau manifolds. Exact correspondences between their spectra
were found, including the number of singlets. This led to the conjecture that
Gepner Models are Calabi-Yau compactifications in a special point of mod-
uli space. Evidence was provided by a conjectured relation between N = 2
minimal models and critical points of Landau-Ginzburg models [82, 83].

Getting the right number of families in this class of models has been
challenging, since this number turns out to be quantized in units of six or
four in nearly all cases that were studied initially. The only exception is a
class studied in [84].

2.8. Dualities, M-theory and F-theory

In general, four-dimensional string theories are related to others by maps
like S-duality [85] (strong-weak dualities due to inversion of coupling con-
stants), T-duality (transformations involving inversion of compactification
radii) and combinations thereof. This suggests a connected “landscape” of
four-dimensional strings. However, this is still largely based on anecdotal
evidence. A complete picture of the four-dimensional string landscape is
still very far away.

In ten (and eleven) dimensions, the picture is better understood. Under
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S-duality, Type-IIA string theory is mapped to an 11-dimensional theory
compactified on a circle [86, 87]. The 11-dimensional theory is not a string
theory. It is called “M-theory”. Its field theory limit is D = 11 supergravity.

A similar relation holds for the Eg x FEg heterotic string. Its strong
coupling limit can be formulated in terms of 11-dimensional M-theory com-
pactified on a line-segment [88], the circle with two halves identified. This
is sometimes called “heterotic M-theory”.

Strong coupling duality maps type-1IB strings to themselves [89]. Fur-
thermore the self-duality can be extended from an action just on the string
coupling, and hence the dilaton, to an action on the entire dilaton-axion
multiplet. This action is mathematically identical to the action of modular
transformations on the two moduli of the torus, and corresponds to the
group SL(2,7Z). This isomorphism suggests a geometric understanding of
the self-duality in terms of a compactification torus 7>, whose degrees of
freedom correspond to the dilaton and axion field. An obvious guess would
be that the type-IIB string may be viewed as a torus compactification of
some twelve-dimensional theory [90]. But there is no such theory. The
first attempts to develop this idea led instead to a new piece of the land-
scape called “F-theory”, consisting only of compactifications and related to
Es x Eg heterotic strings and M-theory by chains of dualities.

2.9. New directions in heterotic strings
2.9.1. New embeddings

The discovery of heterotic M-theory opened many new directions. Instead
of the canonical embedding of the SU(3) valued spin-connection of a Calabi-
Yau manifold, some of these manifolds admit other bundles that can be em-
bedded in the gauge group. In general, condition (5) is then not automat-
ically satisfied, but in heterotic M-theory one may get extra contributions
from heterotic five branes [91, 92].

In this way one can avoid getting the Standard Model via the compli-
cated route of Eg Grand Unification. Some examples that have been studied
are SU (4) bundles [93], U(1)* bundles [94] and SU(N) x U(1) bundles [95],
which break Eg to the more appealing SO(10) GUTs, to SU(5) GUTs, or
even directly to the Standard Model. Extensive and systematic searches are
underway that have resulted in hundreds of distinct examples [96] with the
exact supersymmetric Standard Model spectrum, without even any vector-
like matter (but with extra gauge groups and the usual large numbers of
singlets). However, the gauge group contains extra U(1)’s and an Eg fac-
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tor, and large numbers of gauge singlets, including unstabilized moduli.
There can be several Higgs multiplets. To break the GUT groups down
to the Standard Model, background gauge fields on suitable Wilson lines
are used. For this purpose one needs a manifold with a freely acting (i.e.
no point on the manifold is fixed by the action) discrete symmetry. One
then identifies points on the manifold related by this symmetry and adds a
background gauge field on a closed cycle on the quotient manifold (a Wilson
line).

2.9.2. The heterotic mini-landscape

The Heterotic Mini-landscape is a class of orbifold compactifications on a
torus 1T /Z¢ cleverly constructed so that the heterotic gauge group Eg x Eg
is broken down to different subgroups in different fixed points, such as
SO(10), SU(4)? and SU(6) x SU(2). This leads to the notion of local
unification [97-99]. The Standard Model gauge group is the intersection
of the various “local” gauge realized at the fixed points. Fields that are
localized near the fixed points must respect its symmetry, and hence be in
complete multiplets of that group. Unlike field theory GUTSs, these models
have no limit where SO(10) is an exact global symmetry. In this way one
can make sure that matter families are in complete spinor representations
of SO(10), while Higgs bosons need not be in complete representations of
S0O(10), avoiding the notorious doublet splitting problem of GUTs. The
number of 3-family models in this part of the landscape is of order a few
hundred, and there is an extensive body of work on their phenomenological
successes and problems, see for example [100, 101] and references therein.

2.9.3. Heterotic Gepner models

As explained above, the original Gepner models are limited in scope by the
requirement that the left and right algebras should be the same. There is no
such limitation in free CFT constructions, but they are limited in being non-
interacting in two dimensions. What we would like to have is asymmetric,
interacting CFT constructions. Examples in this class have been obtained
using a method called “heterotic weight lifting” [102]. In the left-moving
sector one of the superconformal building blocks (combined with one of
the Eg factors) is replaced by another CFT that has no superconformal
symmetry, but is isomorphic to the original building block as a modular
group representation. This opens up an entirely new area of the heterotic
string landscape. It turns out that the difficulty in getting three families



180 A. N. Schellekens

now disappears.

2.10. Orientifolds and intersecting branes

The Standard Model comes out remarkably easily from the simplest het-
erotic strings. But that is by no means the only way. One may also get
gauge groups in string theory from stacks of membranes. If open strings
end on a D-brane that does not fill all of space-time, a distinction must be
made between their fluctuations away from the branes, and the fluctuations
of their endpoints on the branes. The former are standard string vibrations
leading to gravity (as well as a dilaton, and other vibrational modes of
closed strings), whereas fluctuations of the endpoints are only observable
on the brane, and give rise to fermions and gauge interactions.

2.10.1. Chan-Paton groups

The possibility of getting gauge theories and matter from branes sparked
another direction of research with the goal of getting the Standard Model
from open string theories. To get towards the Standard Model, one starts
with type-II string theory, and compactifies six dimensions on a manifold.
This compactified manifold may have a large radius, as in the brane world
scenario, but this is optional. In these theories one finds suitable D-branes
coinciding with four-dimensional Minkowski space, and intersecting each
other in the compactified directions. These can be D5, D7 or D9 branes
in type-1IB and D6 branes in type-ITA. Each such brane can give rise to a
gauge group, called a Chan-Paton gauge group, which can be U(N), Sp(N)
or O(N) [103]. By having several different branes one can obtain a gauge
group consisting of several factors, like the one of the Standard Model.
The brane intersections can give rise to massless string excitations of open
strings with their ends on the two intersecting branes. These excitations
can be fermions, and they can be chiral. Each open string end endows the
fermion with a fundamental representation of one of the two Chan-Paton
groups, so that the matter is in a bi-fundamental representation of those
gauge groups.

Remarkably, a Standard Model family has precisely the right structure
to be realized in this manner. The first example is the so-called “Madrid
model” [104]. It consists of four stacks of branes, a U(3) stack giving the
strong interactions, a U(2) or Sp(2) stack for the weak interactions, plus
two U(1) stacks. The Standard Model Y charge is a linear combination of
the unitary phase factors of the first, third and fourth stack (the stacks are
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labeled a ... d)

1 1 1
Y = =Qa+3Qc — 5Qu

This configuration is depicted in Fig. 1(a).

2.10.2. The three main classes

There are other ways of getting the Standard Model. They fall into three
broad classes, labeled by a real number . The Standard Model generator
is in general some linear combination of all four brane charges (assuming
stack b is U(2) and not Sp(2)), and takes the form [105]

Y= )Qat (0o Qo taQet e -1Qa (1)

Two values of x are special. The case x = % leads to a large class contain-
ing among others the Madrid model, Pati-Salam models [106] and flipped
SU(5) [107] models. The value x = 0 gives rise to classic SU(5) GUTs [108].
To get Standard Model families in this case one needs chiral anti-symmetric
rank-2 tensors, which originate from open strings with both their endpoints
on the same brane. The simplest example is shown in Fig. 1(b). It has
one U(5) stack giving rise to the GUT gauge group, but needs at least one
other brane in order to get matter in the (5) representation of SU(5).

Other values of = can only occur for oriented strings, which means that
there is a definite orientation distinguishing one end of the string from the
other end. An interesting possibility in this class is the trinification model,
depicted in Fig. 1(c).

Note that it was assumed here that there are at most four branes par-
ticipating in the Standard Model. If one relaxes that condition, the number
of possibilities is unlimited.

2.10.3. Orientifolds

An important issue in open string model building is the cancellation of tad-
poles of the disk diagram. These lead to divergences and can lead to chiral
anomalies. These tadpoles can sometimes be canceled by adding another
object to the theory, called an orientifold plane. In fact, the usual proce-
dure is to start with an oriented type-II string, and consider an involution
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Fig. 1. Brane configurations: (a) the Madrid model, (b) SU(5) GUTs and (c) Trinifi-
cation.

of the world-sheet that reverses its orientation. Then one allows strings to
close up to that involution. In terms of world-sheet topology, this amounts
to adding surfaces with the topology of a Klein bottle. The combination of
torus and Klein-bottle diagram acts like a projection on the closed string
theory, removing some of its states. In most cases, removing states from
string theory comes at a price: other states must be added to compensate
what was removed. In this case, this role is played by open strings. These
ideas were pioneered in [109, 110].

Orientifold model building has been very actively pursued during the
first decade of this century (see [111] for a review).

2.10.4. Anomalies, axions and massive abelian vector bosons

Canceling all tadpoles between the disk and crosscap diagram removes most
anomalies, but some factorized anomalies remain which can then be can-
celed by the Green-Schwarz mechanism [112] involving tree-level diagrams
with exchange of axions. In contrast to perturbative heterotic strings the
anomaly factorizes in terms of several factors. These anomalies are then
canceled by a Green-Schwarz mechanism involving multiple axions, which
are available in the Ramond-Ramond sector of the closed theory.

In four dimensions, a factorized anomaly always involves a U(1). The
corresponding U (1) vector bosons acquire a mass by “eating” the axion,
which provides the missing longitudinal mode. String theory will always
remove anomalous symmetries in this manner, but it turns out that this
can happen for non-anomalous U(1)’s as well. This can be traced back to
anomalies in six dimensions [113].
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2.10.5. Boundary RCFT constructions

Just as in the heterotic string, one can construct orientifold spectra using
purely geometric methods, orbifold methods or world-sheet constructions.
Most work in the literature uses the second approach.

World-sheet approaches use boundary CFT: conformal field theory on
surfaces with boundaries and crosscaps. This requires an extension of the
closed string Hilbert space with “states” (in fact not normalizable, and
hence not in the closed string Hilbert space) that describe closed strings
near a boundary, or in the presence of orientation reversal. An extensive for-
malism for computing boundary and crosscap states in (rational) CFT was
developed in the last decade of last century, starting with [114], developed
further by several groups [115-119], culminating in a simple and general
formula [120]. For an extensive review of this field see [121]. This was
applied to orientifolds of Gepner models [122], and led to a huge (of order
200.000) number of distinct string spectra that match the chiral Standard
Model. This set provides an extensive scan over the orientifold landscape.

These spectra are exact in perturbative string theory and not only the
massless but also all massive states are known explicitly. There are no
chiral exotics, but in general there are large numbers of the ubiquitous
vector-like states that plague almost all exact string spectra. All tadpoles
are canceled, but in most cases this requires hidden sectors. However, there
are a few cases where all tadpoles cancel entirely among the Standard Model
branes (hence no hidden sector is present) and furthermore the superfluous
B — L vector bosons acquires a mass from axion mixing. These spectra
have a gauge group which is exactly SU(3) x SU(2) x U(1) (there are a
few additional vector bosons from the closed sector, but the perturbative
spectrum contains no matter that is charged under these bosons; this is the
same as in the type ITA string, which contains a vector boson that only
couples to non-perturbative states, DO-branes).

2.11. Decoupling limits

Brane model building led to an interesting change in strategy. Whereas
string theory constructions were originally “top-down” (one constructs a
string theory and then compares with the Standard Model), using branes
one can to some extent work in the opposite direction, “bottom-up”. The
idea is to start with the Standard Model and construct a brane configuration
to match it, using branes localized at (orbifold) singularities. Then this
brane configuration may be embedded in string theory at a later stage.
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This point of view was pioneered in [123], who found examples with Z;
singularities. See e.g. [124, 125] for other kinds of singularities.

One extreme possibility is to decouple gravity by sending the compacti-
fication radius to infinity. In heterotic string models both gravity and gauge
interactions originate from closed string exchange, and such a decoupling
limit would not make sense.

The other extreme is to take the details of the Standard Model for
granted and focus on issues like moduli, supersymmetry breaking and hier-
archies. In this case one has to assume that once the latter are solved, the
Standard Model can be added.

Both points of view are to some extent a return to the “old days” of
quantum field theory. On the one hand, the techniques of branes and higher
dimensions are used to enrich old ideas in GUT model building; on the other
hand, string theory is treated as a “framework”, analogous to quantum field
theory, where gauge groups, representations and couplings are input rather
than output.

Decoupling of gravity is an important element in recent work on F-
theory GUTs [126-128] obtained by compactifying F-theory on elliptically
fibered Calabi-Yau fourfolds. This allows the construction of models that
may be thought of as non-perturbative realizations of the orientifold SU(5)
GUT models depicted in Fig. 1(b), solving some of their problems, es-
pecially the absence of the top-Yukawa coupling, which is perturbatively
forbidden. This has led to a revival of Grand Unified Theories, invigorated
with features of higher dimensional theories. See the reviews [129-132] for
further details.

An example in the second category is recent work in the area of M-
theory compactifications [58]. Getting chiral N=1 supersymmetric spectra
in M-theory requires compactification on a seven dimensional manifold with
G2 holonomy [133], also known as a Joyce manifold. Much less is known
about M-theory than about string theory, and much less is known about
Joyce manifolds than about Calabi-Yau manifolds, since the powerful tool
of complex geometry is not available. For this reason the Standard Model
is treated as input rather than output, in the spirit of QFT.

Another kind of compactification that allows splitting the problem into
decoupled parts is the LARGE Volume Scenario [46], originally invented
for the purpose of moduli stabilization (see Section 1.2.5). Here both kinds
of decoupling limits have been discussed, and there have also been steps
towards putting both parts together [134]. This illustrates that focusing
on decoupling limits does not mean that the original goal of a complete
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theory is forgotten. Indeed, there also exist global F-theory constructions
[135, 136].

2.12. Non-supersymmetric strings

Although the vast majority of the literature on string constructions con-
cerns space-time supersymmetric spectra, in world-sheet based methods
— free bosons and fermions, Gepner models, and certain orbifolds — it is
as easy to construct non-supersymmetric ones. In fact, it is easier, be-
cause space-time supersymmetry is an additional constraint. These spec-
tra are generally plagued by tachyons, but by systematic searches one can
find examples where no tachyons occur. This was first done in ten dimen-
sions in [137, 138]. These authors found a heterotic string theory with a
S0O(16) x SO(16) gauge group, the only tachyon-free non-supersymmetric
theory in ten dimensions, out of a total of seven. Four-dimensional non-
supersymmetric strings were already constructed shortly thereafter [5, 79].
Non-supersymmetric strings can also be constructed using orientifold meth-
ods, see for example [139-143].

Non-supersymmetric strings can have a vacuum energy A of either sign.
See for example [144] for a distribution of values of the vacuum energy for
a class of heterotic strings. There also exist examples where A vanishes
exactly to all orders in perturbation theory [145] but probably this feature
does not hold beyond perturbation theory [146].

One might think that in the absence of any evidence for low energy
supersymmetry, and because of the evidence in favor of an accelerated ex-
pansion of the universe, non-supersymmetric strings with a positive cos-
mological constant are a better candidate for describing our universe than
the much more frequently studied supersymmetric ones. But the absence
of supersymmetry is a serious threat for the stability of these theories, even
in the absence of tachyons in the perturbative spectrum.

3. The Standard Model in the Landscape

In this chapter we will discuss how the main features of the Standard Model
fit in the String Theory Landscape, taking into account anthropic restric-
tions and analytical and numerical work on landscape distributions. We
focus on questions related to susy-GUTs, where the stress between symme-
try and landscape anarchy has been building up in the last few years.
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3.1. The gauge group

It is by now abundantly clear that string theory can reproduce the discrete
structure of the Standard Model: the gauge group SU(3) x SU(2) x U(1)
with chiral fermion representations. Indeed, the gauge group is easy to get
in many construction methods: Heterotic Calabi-Yau and orbifold com-
pactifications with GUT symmetries broken by Wilson lines, orientifold
models with various kinds of intersection branes, strings at singularities,
free fermion and free boson constructions, heterotic Gepner models and
Gepner orientifolds, higher level heterotic strings with symmetry break-
ing by the standard adjoint Higgs, F-theory with Y-flux, and others. See
section 2 for references to all this work.

But this work also demonstrates very clearly that there is nothing special
about the Standard Model from the top down perspective, except that it is
rather simple. Many other gauge theories and representations are possible
as well, although both are limited in size. Unlike quantum field theory,
string theory only allows small representations. Furthermore, the size of the
gauge group tends to be limited by the conformal anomaly in closed strings,
or dilaton tadpole cancellation in open strings. This is not a theorem:
there are remarkable exceptions with very large gauge groups, but it seems
plausible that these are far out in the tail of landscape distributions, and
hence statistically very rare. The Standard Model gauge group does have
one remarkable feature, namely that it fits beautifully in a Grand Unified
gauge theory. We will discuss that below in section 3.2.3.

From the landscape perspective, one might hope that the gauge group
can be understood using string theory plus anthropic constraints. The an-
thropic constraints are hard to determine, but all three factors of the gauge
group are needed for our kind of life. Electromagnetism is so essential that
it is impossible to imagine life without it. One can imagine life without
SU(3)color and only electromagnetism, but it is by no means obvious that
such universes will really come to life. Rigorous evidence of such state-
ments is unlikely to emerge soon, as it requires to work out the full nuclear
and atomic spectrum as well as astrophysics, nucleosynthesis and baryo-
genesis for alternatives of the Standard Model. But given what we know,
the presence of electromagnetic and strong interactions are well-motivated
anthropic assumptions.

The weak interactions also play a crucial role in our universe, but per-
haps not in every habitable one. See [147] for a detailed discussion of a
“weakless” universe that may yield acceptable nuclear and atomic physics
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even though the weak scale is pushed towards the Planck scale. Perhaps
the main role of the weak interactions is to provide chirality to fermions,
protecting them from getting a large mass. For this to be true, one has
to be able to argue that in the string theory landscape it is easier to have
a single light scalar than several light fermions. See [148] for a discussion
along these lines.

3.2. Family structure and charge quantization
3.2.1. Quantum field theory

A Standard Model family is described by the following reducible SU(3) x
SU(2) x U(1) representation:
1 2 1

1 * *
(3,2,6)+(3 ,1,§)+(3 ,1,—§)+(1,2,—§)+(1,1,1) (12)

where we ignore singlets. This occurs three times, and in addition to this
there is a Higgs field in the representation (1,2, —1). At first, this looks ar-
bitrary and unintuitive, but on closer examination some structure becomes
apparent. For example, the three entries of each irreducible term multiply
to an integer. This fact implies that all color singlet bound states of the
broken SU(3) x U(1) spectrum have charges that are integer multiples of
the electron charge. This fact is not explained in the Standard Model. An
arbitrary representation has the form (Rs, Ra, q) where R, is an SU (n) rep-
resentation and ¢ a real number. But the observed representations satisfy
the rule

t3 to 1
—+ =4+ -=0 d1 13
st T mod 1, (13)

where t3 is the triality of the SU(3) representation and t2 the duality of
SU(2), twice the spin modulo integers. Group-theoretically this means
that all observed representations are in fact representations of the group
S(U(3) x U(2)), which has the same Lie algebra as SU(3) x SU(2) x U(1).

It seems clear that the family structure is more than just an environmen-
tal fact. Some of it is explained by the consistency conditions imposed by
anomaly cancellation. This implies that four cubic traces and a linear one
must vanish. There is also a global SU(2) anomaly [149] and perhaps one
should impose a string-inspired non-abelian SU(2) anomaly [150]. These
anomaly cancellation conditions are sufficient to explain charge quantiza-
tion if one assumes that there is just a single family with the observed
SU(3) x SU(2) content. But quantum field theory offers no reason for these
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assumptions, and the fact that there are three families ruins the argument
anyway.

3.2.2. String theory

String theory makes important contributions towards understanding the
family structure. First of all, it limits the choice of representations to only
a handful of options. Secondly, as far as anyone knows, string theory always
implies absolute charge quantization. By this we mean that the charges are
rational numbers, though not necessarily the right ones. And thirdly, string
theory provides a rationale for anomaly cancellation that is somewhat more
deeply rooted than the ad-hoc rules of quantum field theory.

3.2.3. Grand unification

Usually Grand Unification is invoked to explain Eq. (12). In the context
of quantum field theory, this would offer a plausible explanation for the
fact that particles fit in S(U(3) x U(2)) representations. There is no good
motivation in QFT to consider just S(U(3) x U(2)). From the traditional
symmetry-based perspective, assuming that what we see is a broken SU(5)
(or larger) gauge theory looks like a natural idea. But it is by no means
perfect. It does not explain the family structure, but it just limits the
allowed combinations of SU(3) x SU(2) x U(1) representations. It does not
explain why a breaking to SU(3) x SU(2) x U(1) is preferred, and it has
difficulties accommodating the Higgs field. In SU(5) the Standard Model
Higgs has an SU(3) triplet partner which must remain heavy and cannot
have a vacuum expectation value: the doublet triplet splitting problem.
The GUT hypothesis would get a lot more credibility if a second non-
trivial coincidence is established: the renormalization group convergence of
the coupling constants to a single value at the GUT scale. This does not
hold if one extrapolates the current low-energy couplings, but it would work
if more or less standard supersymmetric partners of all Standard Model
particles are discovered at a future run of LHC.

Since many Standard Model realizations in string theory look superfi-
cially like GUT theories, one might have expected that all facts mentioned
in the foregoing paragraphs are naturally combined to get a satisfactory ex-
planation of family structure and charge quantization. But this has never
worked as easily as it should.
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3.2.4. Grand unification in heterotic strings

The oldest examples studied are compactifications of the heterotic string.
There are two equivalent ways of understanding why Grand Unification
emerges so easily in Eg X Fg heterotic strings. In Calabi-Yau compactifica-
tion this comes from the embedding of the SU(3) holonomy group of the
manifold in one of the Eg factors, breaking it to Eg, which contains SO(10)
(and hence SU(5) as a subgroup). In world-sheet constructions this is a
consequence of the “bosonic string map” [5] used to map the fermionic
(right-moving) sector of the theory into a bosonic one, in order to be able
to combine it in a modular invariant way with the left-moving sector. The
bosonic string map takes the fermionic sector of a heterotic or type-II string,
and maps it to a bosonic sector. The world-sheet fermions * transform
under the D-dimensional Lorentz group SO(D—1,1). The bosonic string
map replaces this by an SO(D +6) x Fg affine Lie algebra, which manifests
itself as a gauge group in space-time. In [5] this trick was used to map
the problem of finding modular invariants to the already solved problem
of characterizing even self-dual lattices. This automatically gives rise to
a four-dimensional theory with an SO(10) x Egs gauge group and chiral
fermions in the spinor representation of the first factor.

With only slight exaggeration one can state that this ideal GUT group,
S0O(10), emerges uniquely from the heterotic string. All we had to do is
specify the space-time dimension, D = 4, and apply the bosonic string map,
and we get SO(10) for free.

3.2.5. Fractional charges in heterotic spectra

A mechanism to break SO(10) to SU(3) x SU(2) x U(1) can also be found,
but it does not come out automatically. Furthermore, it does not work as
nicely as in field theory GUTs, because the heterotic string spectrum does
not contain the Higgs representation used in field theory. The breaking can
instead be achieved by adding background fields (Wilson lines).

But in that case the full spectrum of these heterotic strings will never
satisfy (13), and it is precisely the deep underlying structure of string the-
ory that is the culprit. In a string spectrum every state is relevant, as is
fairly obvious from the modular invariance condition. Removing one state
destroys modular invariance. In this case, what one would like to remove
are the extra gauge bosons in SU(5) in comparison to SU(3) x SU(2)x U (1).
To do this one has to add something else to the spectrum, and it turns out
that the only possibility is to add something that violates (13) and hence
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is fractionally charged [151]. The possible presence of unconfined fractional
charges in string spectra was first pointed out in [152] and the implications
were discussed further in [153].

The occurrence of fractional charges in heterotic string spectra has been
studied systematically for free fermion constructions and for heterotic Gep-
ner models. All these models realize the gauge group in the canonical
heterotic way, as a subgroup of SO(10) (which may be further extended to
Eg). There is a total of four distinct subgroups that one may encounter
within SO(10). These subgroups are further subdivided into several classes,
distinguished by the minimal electric charge quantum that occurs in their
spectra. These charge quanta are not determined by group theory in quan-
tum field theory, but by affine Lie algebras in string theory. This gives a
total of eight possibilities, with charge quanta given in curly brackets:

SU3)x SU(2) x U(1) xU(1) {3,
SU(3) x SU(2)., x SU2)r x U(1) {3
SU(4) x SU(2)1 x SU(2)r {

plus SU(5) x U(1) and SO(10), which automatically yield integer charges.
This classification applies to all constructions in the literature where the
Standard Model is realized with level 1 affine Lie algebras, with a standard
Y charge normalization, embedded via an SO(10) group. The minimal elec-
tric charge must be realized in the spectrum, but it is in principle possible
that fractionally charged particles are vector-like (so that they might be-
come massive under deformations of the theory), have Planck-scale masses
or are coupled to an additional interaction that confines them into integer
charges, just as QCD does with quarks.

Fractional charges can be avoided by looking for spectra where all these
particles have Planckian masses. In [65] a large class of free fermionic
theories with Pati-Salam spectra was investigated. These authors did find
examples with three families where all fractionally charged particles are at
the Planck mass, but only in about 10~° of the chiral spectra. In [102, 154—
156] a similar small fraction was seen, but examples were only found for
even numbers of families. These authors also compared the total number
of spectra with chiral and vector-like fractional charges, and found that
about in 5% to 20% of the chiral, non-GUT spectra the fractional charges
are massless, but vector-like. They also found some examples of confined
fractional charges.

In a substantial fraction of explicitly constructed string vacua the frac-
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tionally charged particles are vector-like. If one assumes that in genuine
string vacua vector-like particles will always be very massive, this provides
a way out. There is a more attractive possibility. In orbifold models SO(10)
is broken using background gauge fields on Wilson lines. In this process
fractional charges must appear, and therefore they must be in the twisted
sector of the orbifold model. If the Wilson lines correspond to freely acting
discrete symmetries of the manifold (see [157]), the twisted sector fields
are massive, and hence all fractionally charge particles are heavy. This
method is commonly used in Calabi-Yau based constructions, e.g. [158],
but is chosen for phenomenological reasons, and hence this does not answer
the question why nature would have chosen this option. Also in the het-
erotic mini-landscape an example was found [159]. These authors suggested
another rationale for using freely acting symmetries, namely that otherwise
the Standard Model Y charge breaks if the orbifold singularities are “blown

up”.
But even though there are ways out, it is disappointing that charge
quantization comes out less easily than it does in field theoretic SU(5)

GUTs, without string theory.

3.2.6. GUT unification in brane models

There is another important region in the landscape where SU(5) GUTSs can
be obtained, namely intersecting brane models. The simplest possibility is
to intersect a stack of U(3) branes with a stack of U(2) branes. The entire
Standard Model group can be embedded in these two groups, but to get
the matter representations one needs not only bi-fundamentals (from strings
stretching between the two stacks) and rank-2 anti-symmetric tensors, but
also U(3) and U(2) vectors. They would come from endpoints of an open
string, but then additional neutral branes are needed for the other endpoint
to end on. The resulting configuration is exactly as shown in fig. 5b, but
with the U(5) stack split in U(3) and U(2).

It has been known for a long time already that SU(5) GUTs can be
obtained from configurations like 5b [160]. These authors noticed however
that solutions to the tadpole conditions do not generically lead to the ex-
pected anomaly free representation (5) + (10), but to more complicated
solutions involving the symmetric tensor (15). One can also start with a
split stack, but then more input would seem to be required. This includes
not only the brane configuration, but also the exact embedding of the U(1)
group in U(3) x U(2) and the particle assignment. In other words, a set of
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allowed massless open string states is hand-picked to match the Standard
Model spectrum. With all these assumptions, one can indeed find numerous
solutions [105].

Interestingly, these U(3) x U(2) intersecting brane models do provide a
convincing rationale for the gauge group U(3) x U(2), which is not easily
found in field theory models. But how do we get the restriction to S(U(3) x
U(2)) to give the correct charge conjugation, and how do we justify the
choice of representations in a Standard Model family? For example, if
even in the U(5) limit symmetric tensors are hard to avoid, with split
stacks there are even more possibilities. Note that by “split stacks” we
do not necessarily mean a U(5) stack with branes move apart. There are
more general possibilities, where the U(3) and U(2) stacks occupy unrelated
cycles on a compactification manifold.

It turns out that there is an extremely simple answer to this question
if one allows a mild anthropic condition [148]. It turns out that for all
anomaly free matter configurations, and for all possible U(1) embeddings
the electromagnetic U (1) is chiral after Higgs symmetry breaking, or there
remain massless charged leptons in the spectrum, with one exception: the
Standard Model, with a number of families of the form (12). The motivation
for these conditions is that a chiral U(1) will be broken by the color group,
and massless charged leptons can be pair-produced without limit, so that
the entire universe becomes an opaque plasma of lepton-antilepton pairs
[161]. Although we cannot prove that life is impossible without a massless
photon or in an opaque plasma, the circumstances for our kind of life —
indeed, any kind of life based on atomic physics — are so adverse that one
can certainly defend this as a well-motivated anthropic assumption.

One can say that the assumption of symmetry at high energies has
been traded for these anthropic assumptions, and remarkably, the latter
are more powerful. Even the Higgs choice does not have to be put in, but is
determined. Indeed, unless we see evidence for gauge coupling unification
because of new matter bending the coupling constant curves, full SU(5)
unification has nothing useful to offer.

The argument can be extended to more general U(M) x U(N) stacks
with a few additional assumptions. The group SU(M) is assumed not to
be broken by the Higgs, and to be a strong interaction group that is asymp-
totically free, and dominates over the other gauge interactions. The Higgs
is assumed to give mass to all charge fermions, not just the leptons (above
we just required the quarks to become non-chiral, not necessarily massive).
These simple conditions have a few solutions: the Standard Model, a series
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of models without leptons, a few cases with SU(2) “color” and no con-
served baryon number, and a few models with just electromagnetism and
no strong interactions. Finally, there is an SU(4) x U(1) model, broken by
a Higgs boson to SU(3)color X U(1)em. This uses the alternative breaking
pattern of SU(5) to SU(4) x U(1) instead of the Standard Model. However,
it has baryon-number violating weak interactions that are probably fatal.
All other alternatives appear to have fatal problems for life as well, and
the Standard Model really stands out as the optimal, and probably unique
anthropic solution within this class of brane models.

In this class, SU(5) symmetry is not needed to explain charge quanti-
zation, nor the structure of a family. In the heterotic case, it does not work
as an explanation of charge quantization. Similar remarks may apply to F-
theory GUTSs, where the GUT group is present by choice, and not because
it is required. There are some corners in the landscape where SU(5) really
works as in field theory. The only example we know are heterotic string
theories with GUT group with affine level larger than 1 [162].

3.3. The number of families

The string theory landscape does not offer, according to our current un-
derstanding, an answer to the question why we observe three families. Al-
though early constructions, for example the first Gepner models, had some
difficulties getting three families (the number was predominantly a multiple
of four or six [81, 163]), further work showed that the number of families in
heterotic strings has a slow exponential fall-off, with the number three ap-
pearing not much less frequently than 2 (see e.g. [154, 164]). In orientifold
models the fall off seems to be much faster [122].

There is no convincing anthropic argument for three families. We are
built out of just one family. The most often mentioned feature is that three
families are needed for CP violation in the CKM matrix, which in its turn
might be required for baryogenesis, which is obviously anthropically rele-
vant. But CP violation in the CKM matrix is not believed to be sufficient.
The top quark plays an interesting role in the running of couplings, and
the stability of our vacuum under tunneling depends in a remarkable way
on both the top and the Higgs mass. Perhaps this points to an important
role for the third family, but then why does the second family exist? The s-
quark is not completely irrelevant in QCD, and the muon affects biological
mutations, but neither of these arguments provides a convincing reason.
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3.4. Quark and lepton mass hierarchies

An area where there is an interesting rivalry between symmetry-based ideas
and landscape anarchy is the understanding of quark and lepton mass hi-
erarchies. Already long ago Grand Unified theories predicted interesting
mass relations for the second and third family fermions. Certain string ap-
proaches, such as the heterotic mini landscape point to top Yukawa-gauge
unification. Using F-theory compactifications, part of the structure of the
observed masses and mixing angles can be nicely explained.

But on the other hand, one can also get a long way towards the correct
distribution of quark and lepton masses by assuming statistical distribu-
tions of Yukawa couplings. Clearly, flat distributions will not work, because
the quark and lepton masses have an unmistakable hierarchical structure,
and the mixing angles are small, and seem to get smaller as the hierarchies
get larger. However, scale invariant distributions (with a cut-off fit to the
data) [165, 166] or Gaussian overlaps [167, 168] work rather well. They
even lead generically to small mixing angles, but it is not automatic in all
cases that the mass eigenvalues of the up and down quarks are ordered
correctly. Then in an alternative universe the three charge % quarks would
predominantly couple to a different permutation of the three charge —%
quarks, and only in one-sixth of all universes with SU(3) x SU(2) x U(1)
the Standard Model ordering would be observed. One may view this either
as a minor statistical problem, or an indication that something essential is
missing. For a more detailed discussion and references see [1].

This issue is far from settled. Without prior knowledge of the answer,
none of the aforementioned ideas would have given an accurate description
of the quark and lepton spectrum, even if the existence of three families is
provided as information, and even if the anthropic constraints on the light
fermions are used. Furthermore it is plausible that the top quark mass, in
combination with weak symmetry breaking and the Higgs mass, plays an
important role that remains to be elucidated.

The smallness of neutrino masses has a well-known natural explanation,
the see-saw mechanism. This is so natural and requires so few changes to
the Standard Model that it is generally seen as the most plausible kind
of beyond the Standard Model physics. Indeed, all that is required are
additional singlets (right-handed neutrinos) having their natural mass. This
mass is not proportional the the Higgs vev, and hence one would expect
it to be large. How large, and how it is distributed depends on several
assumptions, and there are also several anthropic issues related to neutrino



The String Theory Landscape 195

masses. See [1] for more details.

3.5. The scales of the Standard Model

The Standard Model has two scales, the strong and the weak scale. To
first approximation the strong scale, Agcp, determines the proton mass,
and the weak scale My determines the masses of the quarks and leptons.
The proton mass owes less than 1% of its mass to the up and down quarks.
However, the smallness of both scales with respect to the Planck scale has
an important environmental impact.

In quantum field theory, the strong scale is said to be determined by
“dimensional transmutation”, which turns a dimensionless coupling con-
stant into a scale. The appearance of a scale from a dimensionless theory
is due to quantum loop effects. The relation is:

Agep =Q 6—1/(250%@2))’ (14)
where a is the strong coupling constant, @ the scale where it is defined and
0o the leading coefficient of the S-function. This relation does not determine
the scale, since as(Q?) is input, but from a landscape perspective it affects
the distribution of scales in such a way that a large hierarchy is easy to
obtain. How easy depends on the distribution of a, in a fundamental
theory, but what we know about the landscape suggests that this argument
is valid.

This then leaves the weak scale Myeax to worry about. In contrast to
Agcep, the p? parameter in the Standard Model Higgs potential receives
quadratic quantum corrections from higher scales. This worry has been the
focus of decades of work on natural solutions to the hierarchy problem. All
of these solutions lead to predictions of new particles near the weak scale,
although some can be pushed a few orders of magnitude higher. So far no
such particles have been found. One can take the point of view that we
simply have to be more patient. After all, the top quark and the Higgs
boson also required a lot of patience. But the current situation clearly
demands a reassessment of the arguments. During the year 2013, after the
existence of the Higgs boson was convincingly established, there has been
a lot of discussion about this. The different lines of argument are roughly
as follows.

e There is no hierarchy. Some people argue that the hierarchy should
be viewed as a misconception in quantum field theory. They point
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to the fact that unlike logarithmic corrections, quadratic correc-
tions are not present in every regularization scheme, and argue
that they may not really be physical; see e.g. [169-172]. However,
these papers deal with just the Standard Model in quantum field
theory, and ignore potential BSM physics (such as GUTSs) and cer-
tain BSM physics (gravity). There is general agreement that the
existence of new massive particles beyond the weak scale implies
a quadratic hierarchy for 2 [173]. One can try to get around this
by following a minimalistic approach in which new physics beyond
the weak scale is completely avoided, as in [174]. But then one
still has to deal with gravity. It is possible that the naive notion
that since there is a Planck scale, there must be new physics at
that scale is wrong. Perhaps nature is fundamentally scale invari-
ant (as suggested for example in [175-177]; see however [178] for
criticism). However, this escape route is closed off in string the-
ory, which clearly predicts not just new physics but concrete new
particles at the Planck scale. This still leaves the next option:

e The Planck scale is at the weak scale. This possibility exists if
there are large extra dimensions at a length scale far larger than
typical length scale of particle physics, even as large as 0.1 mm.
Such a scenario was proposed in [179], but it predicts observable
gravitational physics, perhaps even black holes, at the weak scale.
This idea is put under severe stress by the latest LHC results.

e The weak/GUT or weak/Planck scale hierarchy is real and is gen-
erated by new dynamics (technicolor, compositeness) at the weak
scale. In this approach the weak scale is generated analogously to
the strong scale by dimensional transmutation. Also in this case
absence of new physics at the LHC is a serious problem. Further-
more it is hard to build credible examples where the entire Standard
Model (including quark and lepton masses) is reproduced.

e The weak/GUT or weak/Planck scale hierarchy is real and is “pro-
tected” by low energy supersymmetry. Since low energy super-
symmetry does not determine the weak scale, this still requires an
additional mechanism to generate it, and often this is related to
dimensional transmutation (e.g. gaugino condensation). This idea
is facing similar observational problems as the previous two.

e The hierarchy is mainly anthropic (see below).

From the string theory perspective, the second option is very attractive
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since it would give direct access to gravitational physics; from the land-
scape perspective the question is how often large extra dimensions occur
in conjunction with a Standard Model with a weak scale as we observe.
The third option is unattractive from the landscape point of view since
it would imply that our vision of fundamental physics would be blurred
by an additional “onion shell” which we have to peel off first (since tech-
nicolor gained some renewed interest due to an interpretation as a dual
of a Randal-Sundrum model [180], some people view this as an appealing
prospect).

At this moment, low energy supersymmetry is usually considered to
be the most attractive of options 2, 3 and 4. It is a well-motivated idea
because it not only controls the hierarchy, but also provides additional par-
ticles needed for the convergence of the running coupling constants as well
as dark matter candidates. Furthermore string theory may come with su-
persymmetry built in. The latter statement holds for all string theories
with a controlled perturbative expansion. Without supersymmetry, quan-
tum corrections diverge beyond one loop. Supersymmetry may be required
for a fundamental understanding of quantum gravity, or it may just be a
calculational tool we need because our current understanding is too primi-
tive.

Since, despite good arguments in its favor, no sign of low energy super-
symmetry has been seen so far, we have to ask which mistakes may have
been made in arriving at the overly optimistic expectations. We will men-
tion three here, labeled as “anthropic”, “landscape” and “string theory”.

Anthropic. The idea that the hierarchy might be anthropic was not even
mentioned during three of the four decades of discussion of naturalness,
and during the past decade was mentioned only to ridicule it. And yet it is
true. It is true in the sense that in an ensemble of theories with a range of
gauge hierarchies, (intelligent) life can exist only for theories with a large
hierarchy. The simplest argument is based on the weakness of gravity. The
largest structures that can exist without being crushed into a black hole
have N building blocks, where N = (Mpjanck/m)? and m is the mass of the
building block (the proton mass in our universe). This already requires a
hierarchy of nine orders of magnitude for something with the complexity
of a human brain to exist. More detailed arguments with stronger (and
more debatable) assumptions pin the weak scale down with a precision
of less than ten per cent (see [1] for more details and references). But
even if the entire hierarchy of 18 orders of magnitude is fully understood
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anthropically, this still does not imply that the hierarchy is explained by
anthropic arguments alone, as suggested in [181] and [182].

Landscape. One may still ask the question if the underlying physics helps
in getting the anthropically required hierarchy. In a landscape of variants
of the Standard Model with a fixed Planck scale and a full range of values
of 2, flatly distributed, the chance of getting an anthropically acceptable
theory is about 10734, That is the fraction of theories with a ;2 parameter
that is small enough, if the parameter x? can be though of as a sum of
uncorrelated terms of order (Mplanck)Q. So with a large enough landscape,
one could consider the problem solved. But this is not true if the landscape
contains other vacua where the statistical penalty of 10734 does not have
to be paid. Technically natural theories escape this penalty. However, then
the question arises what the cost is in getting technical naturalness.

These questions can only be addressed in a context where the relative
abundance of theories can be compared. In particular, it makes no sense in
quantum field theory. Indeed, the very concept of technical naturalness is
at best a poorly defined intuitive notion without the context of an ensem-
ble of theories, a landscape. The string theory landscape certainly contains
supersymmetric theories; indeed, these are the only ones under computa-
tional control. To predict if they dominate, one would have to estimate the
ratio of the number of supersymmetric and non-supersymmetric theories,
given the hierarchy. Supersymmetric theories start with a huge advantage
of a factor 1034, but they may still lose by being far less abundant, or be-
cause they have to satisfy additional anthropic constraints to avoid fast,
catastrophic proton decay. Unfortunately, answering this question is not
feasible at present. What has been tried is comparing supersymmetric the-
ories with different supersymmetry breaking scales. Very roughly (for many
more details see [27]) one would like to compute

Mweak Msus
P p sy ) 15
( Msusy > (MPlanck> ( )

the probability for getting a weak scale given a supersymmetry breaking

scale times the probability for getting a certain supersymmetry breaking
scale given the Planck scale. The first factor is (Myeak /J\Jsusy)2 by the usual
naturalness argument. It varies between 1 and 10734 if we move Mgysy from
the weak scale to the Planck scale, and this is the basis for the prediction
Mgusy = Myeak. But all QFT-based, bottom up naturalness arguments
completely ignore the second factor, which is not even defined in QFT. The
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first attempts to compute it in the string landscape produced the result
that it was proportional to Msusy/Mpianck to a power larger than 2, so
that large susy scales dominate over small ones by a large factor [183, 184].
Meanwhile that conclusion has been shown to be too simplistic [27, 185],
and furthermore an important contributing factor was underestimated in
earlier work, namely that vacua with broken susy are less likely to be stable.
This can lead to a huge suppression [48; 49]. But one conclusion remains:
even if the second factor in Eq. (15) is difficult to compute in a well-defined
setting, this does not imply that it can be ignored in approaches where it
cannot even be defined.

String Theory. An obvious weakness of the “MSSM” hypothesis is the
first M, which stands for “minimal”. There is no good fundamental reason
to expect minimality, but dropping this restriction implies a substantial loss
of predictive power. If the supersymmetric Standard Model is realized in
string theory, the result is rarely minimal, see Section 2.2. But while most
of the additional particles can at least be avoided in special constructions,
one kind is essentially inevitable: moduli.

It has been known for a long time that moduli can lead to cosmological
problems [10, 11, 186]. If they decay during or after BBN they will produce
additional baryonic matter and destroy the successful BBN predictions.
Bosonic moduli have potentials, and will in general be displaced from their
minima. Their time evolution is governed by the equation

; 174
O+ 3H)+ 57 =

where H is the Hubble constant. If V = %mQ(i)Q + higher order terms,
and H > m, then the second term dominates over the third, and ¢ gets
frozen at some constant value (“Hubble friction”). This lasts until H drops
below m. Then the field starts oscillating in its potential, and releases its
energy. The requirement that this does not alter BBN predictions leads to
a lower bound on the scalar moduli mass of a few tens of TeV (30 TeV,
for definiteness). For higher masses moduli decay can reheat the universe
sufficiently to restart BBN from electroweak equilibrium.

Furthermore one can argue [187] that the mass of the lightest modulus
is of the same order of magnitude as the gravitino mass, mg/,. The latter

0, (16)

mass is generically of the same order as the soft susy breaking scalar masses:
the squarks and sleptons searched for at the LHC. Gaugino masses can be
one or two orders of magnitude less. This chain of arguments leads to
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the prediction that the sparticle masses will be a few tens of TeV, out of
reach for the LHC, probably even after its upgrade, but there would still
be a good chance to observe gauginos. Circumstantial evidence in favor of
this scenario is that it prefers a Higgs mass near the observed value [188],
whereas bottom-up supersymmetric models, ignoring moduli, suggested an
upper limit of at most 120 GeV.

But there is one worrisome point. The 30 TeV bound on moduli masses
is not an anthropic bound. Observers in universes with moduli masses below
that bound would be deeply puzzled that their attempts at computing BBN
abundances gave incorrect answers. They might see a helium abundance
of only 19% while their computations predicted 24%, but nothing we know
suggests that this has adverse effects on life. Now if supersymmetry prefers
a lower scale because of naturalness, this would imply that universes with
deeply puzzled observers should dominate universes with observers enjoying
successful BBN predictions, such as ourselves.

None of these three mistakes is obviously fatal, but taking into account
the “anthropic landscape of string theory” and all its implications definitely
lowers the confidence level of predictions of low energy supersymmetry.

3.6. Axions and the strong CP problem

The Standard Model Lagrangian contains a term

2 8

93 a a vpo

6225 > Fp Fpe™ (17)
a=1

where the sum is over the eight generators of SU(3). The parameter 6,
an angle with values between 0 and 27, is not an observable by itself. By
making suitable phase rotations of the fermions its value can be changed,
but then these phase rotations end up in the mass-matrices of the quarks. In
the end, this leads to one new physical parameter, § = 0 —arg det (M, M),
where M, and M, are the quark mass matrices. A non-zero value for this
parameter would produce a non-zero dipole moment for the neutron and
certain nuclei, which so far has not been observed. This puts an upper
limit on @ of about 1071%. Since there is no anthropic argument in favor
of such a small value — the smallest one can argue for anthropically [189]
is 1073 — this is the one of the most serious naturalness problems in the
Standard Model. No one would argue that we observe such a small value
just by chance.
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This problem has a rather simple solution, the Peccei-Quinn [190] mech-
anism. It works by postulating an additional pseudoscalar boson with a
dimension 5 interaction with the QCD vector bosons

1 L a a a v po
AL = S0uad"a+ 5o EQ:FWF,MG’ ", (18)
where f, is the “axion decay constant”. Since FF (where f?',w =

T€upo FP7) is a total derivative, after integration by parts the second term
is proportional to d,a. Hence there is a shift symmetry ¢ — a + €. This
allows us to shift a by a constant —6f, so that the FF' term (17) is removed
from the action. However, the shift symmetry is anomalous with respect to
QCD because the FF term is a derivative of a gauge non-invariant oper-
ator. Through non-perturbative effects the anomaly generates a potential

with a minimum at ¢ = 0 of the form

V(a) x A?QCD (1 —cos(a/fa)) - (19)
Note that @ is periodic with period 27, so that the shift symmetry is globally
a U(1) symmetry. It was pointed out in [191, 192] that this breaking of the
U(1) symmetry leads to a pseudo-scalar pseudo-Goldstone boson, which
was called “axion”.
The mass of this particle is roughly A(QQCD / fa, but if we take into account
the proportionality factors in (19) the correct answer is

mg = m}rfw F(myg), (20)

where fr is the pion decay constant and F'(m,) a function of the (light)
quark masses that is proportional to their product. The scale f, was origi-
nally assumed to be that of the weak interactions, leading to a mass predic-
tion of order 100 KeV, that is now ruled out. But soon it was realized that
fa could be chosen freely, and in particular much higher, making the axion
“harmless” or “invisible” (see [193] and references therein). This works if
the coupling f, is within a narrow window. For small f, the constraint
is due to the fact that supernovae or white dwarfs would cool too fast by
axion emission. This gives a lower limit f, > 10° GeV. There is an upper
limit of f, < 10'? GeV because if f, were larger the contribution of axions
to dark matter would be too large. This results in a small allowed window
for the axion mass: 6 ueV < m, < 6 meV.

The upper limit of f, is interesting since on the one hand it is large,
but on the other hand it does not quite reach the string scale. The non-
renormalizable interaction in the axion Lagrangian points to new physics
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at that scale, and from a string theory perspective the natural candidate
for such new physics would be string theory itself. But then the scale seems
uncomfortably low in comparison to typical string scales. Indeed, in [194]
the difficulties are examined and possible ways out are discussed.

One way out is suggested by the fact that the amount of axion dark
matter is proportional to sin?y, where 6 is the initial misalignment angle
of the axion potential. In deriving the upper bound, one assumes that our
universe emerges from a configuration with random alignments, resulting
in an average of sin®fy. This would give a value of 3 for (sin®@y).

The fact that the parameter is an angle and that axions are not strongly
coupled to the rest of the landscape makes it an ideal arena for anthropic
reasoning [195]. It is possible that our universe comes from a single inflated
region with a small value of §y. For a larger value of 6y (given an axion decay
constant at the string scale) too much dark matter would be produced.
One has to argue that, even though the likelihood of living in a region
with small 8 is small, this is compensated by the fact that more observers
will find themselves in such regions, because larger dark matter densities
are detrimental for the existence of life. The most likely reason for that
is galaxy formation and the density of matter in galaxies, both of which
depend on the dark matter fraction. See [196-199] for further discussion. It
has even been argued that finding a high scale axion would provide evidence
for the multiverse and the string theory landscape [200]. The upper bound
on the axion decay constant can also be raised if there is a non-thermal
cosmological history, for example caused by decay of heavy moduli [58].

Candidate axions occur abundantly in string theory, but their survival
as light particles is affected by the moduli stabilization mechanism. They
may be thought of as phase factors of complex fields. The real parts of those
fields must be stabilized. They would otherwise give rise to fifth forces or
affect BBN predictions. But thanks to their derivative couplings, axions
are far less constrained. However, not every mechanism to stabilize moduli
is capable of giving mass to the real part and leave the imaginary part un-
affected. For example, stabilization by fluxes or by instanton induced terms
in the superpotential gives mass to both the moduli and the corresponding
axions.

Axions that survive moduli stabilization may in principle play the role
of PQ axions that solve the strong CP problem, provided they do not
acquire masses by other mechanisms. The usual folklore that gravity does
not allow exact global symmetries suggests that all axions will eventually
get a mass. Otherwise their presence as massless particles would imply
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the existence of an exact, but spontaneously broken global symmetry, with
axions as Goldstone bosons. Just as the QCD instanton get a mass from
non-perturbative QCD effects, all other axions should get a mass as well.
The Peccei-Quinn mechanism works as long as there is an axion coupling
to QCD with a mass contribution from any other sources that is at least
ten orders of magnitude smaller than the QCD contribution.

It is clear from the previous paragraph that if string theory produces
a PQ axion, it is likely that it produces many other axions in addition
to this. Since their masses are generated by non-perturbative effects, it is
natural to expect them to be distributed in a scale invariant way, spanning
many orders of magnitude. This plenitude of axions has been called the
“axiverse” [200]. Since the masses of the additional axions (not involved
in the PQ mechanism) are not limited to the QCD window, this provides
ample opportunities for observations in many mass regions.

Realizations of an axiverse have been discussed in fluxless M-theory
compactifications [201] and in type-IIB models in the LARGE Volume Sce-
nario [202]. Both papers consider compactifications with many Kahler mod-
uli that are stabilized by a single non-perturbative contribution rather than
a separate contribution for each modulus. Then all Kahler moduli can be
stabilized, but just one “common phase” axion acquires a large mass. For
supersymmetric moduli stabilization (such as the KKLT scenario, but un-
like LVS) a no-go theorem was proved in [203]. Axions in the heterotic
mini-landscape were discussed in [204]. They consider discrete symmetries
that restrict the superpotential, so that the lowest order terms have acci-
dental U(1) symmetries that may include a PQ symmetry.

There are numerous possibilities for experiments and observations that
may shed light on the role of axions in our universe, and thereby provide in-
formation on the string theory landscape. The observation of tensor modes
in the CMB might falsify the axiverse [201, 205]. See [200, 206, 207] for a
variety of possible signatures, ongoing experiments and references.

4. Conclusions

The past four decades have been a magnificent golden age for particle
physics, but also for the leading approach to understanding it in terms
of a fundamental theory of quantum gravity, string theory. Now we appear
to be approaching an interesting and perhaps decisive moment in history.
The Standard Model seems complete, and string theory has led to a math-
ematical challenge of monstrous proportions: the string theory landscape.
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Whether one likes it or not, successful string phenomenology requires tam-
ing this monster. This will almost certainly involve a reconsideration of
the questions we wish to answer. In the future, the current time may be
remembered as the transition from the era of symmetries to a new era with
different ways of thinking about fundamental problems.

In experimental physics, we are faced with a situation where positive
results may emerge but are not guaranteed, and where negative results
tell us fairly little. Apart from the traditional “new physics”, examples
of positive results that would have an impact on the landscape are varia-
tions of constants of nature, the observation of axions, dark matter of any
kind, neutrino Majorana masses, sterile neutrinos, massive vector bosons,
and many serendipitous discoveries ranging from desirable (e.g. proton
decay or magnetic monopoles) to totally unexpected (e.g. something like
faster-than-light neutrinos). With the large number of experiments and as-
trophysical observations still underway, it seems unthinkable that the Higgs
particle will turn out to be the last discovery in particle physics. But if it
is, this has to be viewed as circumstantial evidence in favor of a landscape.
Any of the aforementioned positive results can be good or bad for the land-
scape idea, but there is no gold-plated experiment that verifies or falsifies
it.

Further supportive or damaging evidence must come from pure theory.
The (non)-existence of a broadly spread distribution of de Sitter vacua in
string theory is a decidable issue, but it has turned out to be very difficult
to reach a conclusion. The fundamental principle behind string theory still
eludes us. The quantization of vibrating strings is not an acceptable fun-
damental starting point, and does not describe everything we call string
theory anyway. The best hope for acceptance of the landscape idea is that
it is derived from a fundamental theory of gravity which in its turn is de-
rived from a plausible principle of nature. Meanwhile, we can try to bridge
the gap between the Standard Model and the string landscape. We must
convince ourselves that our Universe is indeed contained in the string the-
ory landscape. We can explore our environment in the landscape, to see
if we can understand why we observe the Standard Model and all of its
features, especially the puzzling ones. This requires determining landscape
distributions in various regions, and using anthropic arguments where pos-
sible.

This may all be postponed until the indefinite future if new physics
still emerges during the next few years. If that new physics is due to large
extra dimensions and a low higher-dimensional Planck scale, we can explore
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quantum gravity directly. This has always seemed too good to be true, and
probably it is. If the new physics is low energy supersymmetry, which
is still a well-motivated option, perhaps the winding road to the string
landscape becomes a broad avenue all the way to the Planck scale. Most
other options may provide more decades of exciting particle physics, but
the historic moment we might be witnessing now would have passed and
may never return.
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A brief overview is presented of the progress made during the past few
years on the general structure of local models of particle physics from
string theory including: moduli stabilisation, supersymmetry breaking,
global embedding in compact Calabi-Yau compactifications and poten-
tial cosmological implications. Type IIB D-brane constructions and the
Large Volume Scenario (LVS) are discussed in some detail emphasising
the recent achievements and the main open questions.

1. Introduction

The aim of string phenomenology is well defined and very ambitious: to
uncover string theory scenarios that satisfy all particle physics and cos-
mological observations and hopefully lead to measurable predictions (for a
comprehensive treatment of the field with a very complete set of references,
see Ref. 1).

This defines a list of concrete challenges for string constructions that
have been addressed over the years:

(1) Gauge and matter structure of the Standard Model (SM).

(2) Hierarchy of scales and quark/lepton masses (including a proper ac-
count of neutrino masses).

(3) Realistic flavour structure with right quark (CKM), lepton (PMNS)
mixings and right amount of CP wviolation, avoiding flavour changing
neutral currents (FCNC).

(4) Hierarchy of gauge couplings at low energies potentially unified at high
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energy.

(5) Almost stable proton but with a realistic quantitative account of baryo-
genesis.

(6) Inflation or alternative early universe scenarios that can explain the
CMB fluctuations.

(7) Dark matter (but avoid overclosing).

(8) Dark radiation (4 > Neyp > 3.04).

(9) Dark energy (with equation of state w = p/p ~ —1).

Addressing all of these issues has kept the string phenomenology com-
munity busy for several decades now. Partial success has been achieved
on each of the points but not for all of them at the same time in particu-
lar classes of models. This list can be seen as a guideline for the present
overview. Notice that in string theory, contrary to field theoretical model
building, if a model fails with one of the above requirements it has to be
ruled out.

The prospect of obtaining a proper ultraviolet complete extension of the
Standard Model (SM) not only justifies efforts in this direction but provides
for the first time a well defined alternative to the traditional bottom-up
approach to model building beyond the SM that has very limited guidelines
beyond experiment and that is currently being under pressure by the LHC
results so far.

In order to address these issues, several approaches have been followed.
Ideally the first attempts are to try as much as possible to extract ‘generic
model independent implications of string theory. Regarding the general
string predictions relevant for our universe (see for instance the discussion
in?) we can mention only very few:

e Gravity + dilaton + antisymmetric tensors + gauge fields + matter.

e Supersymmetry (SUSY) (with 32, 16 or less supercharges, but breaking
scale not fixed).

e Extra dimensions (6 or 7) (flat, small, large, warped?).

e No (massless) continuous spin representations (CSR) in perturbative
string theory.

These have to be compared with general model independent field theo-
retical predictions which are also very few (identity of particles, existence
of antiparticles, relation between spin statistics, the CPT theorem and the
running of physical couplings with energy, following the renormalisation

group (RG) equations). The 4th prediction above is relatively less known,?
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it essentially states the fact that in perturbative string theory massive and
massless representations of the Poincare group are linked to each other and
since the massive representations are finite dimensional the same should be
true for the massless representations, forbidding then the continuous spin
representations.? Notice that being massless they could have been relevant
at low energies and perturbative string theory indicates that they should
not exist at least as perturbative string states, an statement consistent with
all observations that has no clear explanation otherwise.

Having stated the general properties of string models we may concen-
trate on their general 4-dimensional implications. The most promising com-
pactifications have N/ = 1 SUSY that guarantees stability and chirality in
the spectrum. The generic properties of 4D string compactifications are:

(1) Moduli: gravitationally-coupled scalar fields that usually measure size
and shape of extra dimensions. They are massless as long as supersym-
metry is unbroken.

(2) Antisymmetric tensors of different ranks implying the generic existence
of axions, the possibility of turning on their fluxes in the extra di-
mensions and the generic appearance of branes that couple to these
antisymmetric tensors and may even host the Standard Model.

(3) Matter appears on low dimensional group representations: (bifunda-
mentals, symmetric, antisymmetric, adjoints).

(4) If the 4D theory has SUSY broken at the TeV scale the moduli tend
to receive a mass of an order similar to the soft terms, implying the
Cosmological Moduli Problem (CMP) ( they overclose the universe or
ruin nucleosynthesis upon late decay unless the mass of all the moduli
can be made m > 10 TeV).

These generic predictions are very powerful and can be used to study
general ‘string inspired’ scenarios to try to make contact with observations
but are clearly not enough for a proper phenomenology and we have to
consider concrete ways to explicitly build models. Over the years, two
general classes of models have been studied.

e Global string models: 10D string theory compactified on 6D manifold.
Gauge and matter fields in 4D come from gauge multiplets in 10D.

aContinuous spin representations (CSR) are representations of the little group for mass-
less states of the Poincare group which is the Euclidean group in two dimensions. Elimi-
nating these infinite dimensional unitary representations (arguing for instance that these
particles have not been observed in nature*) limits to the subgroup SO(2) with the stan-
dard helicity quantum number.
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e Local string models: Standard model lives on a D-brane localised in
some point in the extra dimensions.

The global models are essentially the heterotic models in which the
gauge symmetry is already present in the 10-dimensional theory and upon
compactification it may lead to chiral string models. Local models are
essentially the type II string models in which the gauge and matter fields
are localised on D-branes. The extreme case could be the Standard Model
localised on a D3 brane which is just a point in the extra dimensions. This
allows to separate the physics questions between the questions that can be
addressed only by how the Standard Model fits inside the D-brane and the
global questions that do depend on the full structure of the six or seven
extra dimensions. This is known in the string literature as the ‘bottom-up’
approach to string model building.

Local Questions Global Questions

Gauge Group Moduli Stabilisation

Chiral Spectrum Cosmological Constant

Yukawa Couplings Supersymmetry Breaking

Gauge Couplings Physical scales (unification, SUSY breaking, axions)
Proton Stability Inflation or alternative, Reheating

Flavour issues (CKM. PMNS)  Cosmological Moduli Problem

The bottom-up approach is simply a systematic way to organise the
challenge of realistic string model building. It is midway between traditional
field theoretical model building and fully-fledged string constructions. Since
the challenges are so big, it makes the search for realistic models more man-
ageable asking a set of questions at the time and follow a modular approach
to model building.” In contrast in global models such as the heterotic string
all the physics questions have to be addressed at once. Heterotic models
have other advantages such as starting already with a unified group like
Es. Local models at the end have to be fully embedded into a complete
compactification that is not straightforward. Both approaches have been
followed with different amounts of success.

Over the years the main obstacles for realistic string model building
have been, more than getting precisely the Standard Model spectrum at
low energies, the stabilisation of moduli (which otherwise would source

bAt this stage this is only a convenient computational strategy rather than physically
motivated. That will come later in this article.



Local String Models and Moduli Stabilisation 223

unobserved long-range interactions) and supersymmetry breaking. These
are the questions that we will address next.

2. Moduli Stabilisation

This model independent sector for string compactifications is usually com-
posed of the following fields: The axio-dilaton S, the complex structure
moduli or size of the non-trivial 3-cycles U, and the Kahler moduli mea-
suring the size of the non-trivial 4 and 2 cycles: T;. Being scalar fields, their
vevs have to be specified dynamically. The simplest supersymmetric com-
pactifications leave them unspecified. The effective field theory depending
on the Kéhler potential K, superpotential W and gauge kinetic function f
are such that the corresponding scalar potential is flat and here the SUSY
non-renormalisation theorems protect the flatness of their potential pertur-
batively. Therefore there are limited sources of their scalar potential:

(1) Fluxes of Antisymmetric tensors to generate a non-vanishing tree-level
superpotential.

(2) Non-perturbative corrections to the superpotential W.

(3) Perturbative (and non-perturbative) corrections to the Kéhler potential
K in both ¢/ and string-loop expansions.

(4) Induced D-terms.

We will use all of them.® Fluxes are usually complicated to deal with
and it took many years before people learned to manage them.%” The main
reason is that they tend to change the structure of the compact manifold
in such a way that there is no much mathematical understanding on the
compactification manifold. Fortunately the case of IIB compactifications
is such that the manifold after flux compactifications is conformal to the
well studied Calabi-Yau manifolds and this is one of the main reasons these
compactifications have attracted much attention in the past decade. This
is just a computational rather than conceptual advantage and from string
dualities we know all other string compactifications should lead to similar
physics once the technical aspects are sorted out. Since the spectrum of IIB
supergravity has two 3-index antisymmetric tensors, fluxes on 3-cycles are
able to fix all the U, fields and the axio-dilaton through a flux superpotential

“Notice that the simplest constructions in which all these effects are neglected are not
viable since neglecting all these effects is either inconsistent or very non-generic (setting
by hand all fluxes to zero for instance). It is good news that including all available
sources lead to more realistic physics.
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Wo(S,U). Naively the fluxes of a three form field strength Hs tend to fix
the size U of a three-cycle v by the quantisation condition fv Hs = 27mn,
this effect is captured in the EFT by the flux superpotential Wy (U, S).4
The perturbative superpotential cannot depend on the T' fields since their
imaginary components are axion-like fields having a perturbative Peccei-
Quinn shift symmetry: Im7; — Im7; + ¢; and the holomorphicity of W
would then not allow dependence on the full superfield T;. Therefore they
can only appear in W through non-perturbative effects.

Wap = Z Agem s (1)

in which the A; may be functions of other moduli or even matter fields.
Combining this with the flux superpotential gives the full W = Wy+W,,
which combined with the corrections to K are able to fix all moduli. This
has been done in practice for only a handful of models.
The scalar potential derived from the general N = 1 supergravity ex-
pression V = Vg 4+ Vp, with:

Ve = [K17D,WD ;W — 3|W|2} 2)

where K77 is the inverse of the Kéhler metric K;; = 8;0;K and D;W =
O;W + WK is the Kahler covariant derivative. The D-term part of the
salar potential is:

Vb (€p1(T) + KoT®)? (3)

Ref
where {py ~ OK/OT are the (misnamed) field-dependent Fayet-Iliopoulos
terms, only present for abelian groups, ® a matter field transforming under
the corresponding gauge group and 7 are the corresponding generators
(charges in the case of a U(1)). Gauge indices suppressed.

Concentrating on the moduli dependence, the typical shape of the mod-
uli scalar potential takes the form:

KSS|DsW |2 + KD ,WD;W\ [Ae20"  Be "W, C|W,|?
Vr 5 + - 3 + 3
vV 1% V 1%
(4)
Here 7 = ReT represents a typical 7" modulus, with V the overall vol-
ume (function of the 7' fields) and the potential is meant to be seen as

dMore explicitly the flux superpotential takes the form J G3 AQ where G3 = H3 +1iSF3
with H3, F3 the two 3-form field strengths of the two stringy 2-form potentials. Here 2
is the unique (3,0) form that exists for every CY manifold. Expanding €2 in a basis of
three-forms generates a superpotential dependence on the U, fields.
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an expansion in large volume, where the effective field theory treatment
is justified. In this case the first terms in parentheses are of order 1/1?
and being positive definite they have to vanish at the minimum, imposing
DsW = D,W = 0 and therefore fixing S and U, generically. This in turn
fix the values of Wy at the minima which is a huge distribution of values
but mostly fitting in the range 0.1 < |Wy| < 100. The second parenthe-
ses is not positive definite and depending on the signs of the coeflicients
A, B, C it gives a minimum for the Kdhler moduli 7. In particular the sign
of C depends on the sign of the Euler number of the Calabi-Yau manifold,
by mirror symmetry half of them have negative Euler number and then
positive C' implying a minimum at volumes of order

V~etm with T~ReS~1/gs>1. (5)

Implying an exponentially large volume. This gives rise to the LARGE
volume scenario or LVS.® For very particular values of Wy, the large number
of solutions allows for a few of them to satisfy |Wp| < 1. In this case Wy
can be tuned so that Wy ~ W,,,, ~ e~ so the term proportional to C' can
be neglected and a minimum can be found for 7. This is essentially the
KKLT scenario.” But for generic values of Wy only the LVS works. It has
been shown that this holds as long as the number of 3-cycles is larger than
the number of 4-cycles and both greater than one (hij2 > hy; > 1) which
is satisfied for half of the CY manifolds by mirror symmetry. The second
condition is the existence of at least one collapsible 4-cycle which is the
generic case.

In both KKLT and LVS the position of the minimum is at negative
values of Vr so leading to AdS vacua. The main difference is that in KKLT
this minimum is supersymmetric (D7W = 0) but in LVS supersymmetry is
broken. They both have small parameters in which to base the approximate
effective theory, 1/V for LVS and W, for KKLT. Notice that we have not yet
used the D-term part of the scalar potential. This is more model dependent
since it depends on charged matter fields for which we need to specify the
concrete model. Being positive definite it will tend to uplift the minimum
found from purely Vr.'0 However for KKLT there is a strong restriction,
since the minimum is supersymmetric, it means all F-terms vanish which
in turn imply that the D-terms have to vanish. In LVS D-terms can lift
the minimum opening the possibility of leading to de Sitter space. But
this is very model dependent and there is a need to have a full global
compactification with all matter fields to make a proper study. This will
be addressed later on in this article.
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Another way to uplift the minimum to de Sitter was proposed in KKLT
by introducing anti D3 branes at the tip of a warped region in the com-
pact manifold. This provides a positive contribution to the vacuum energy
given by the warped brane tension and an explicit supersymmetry break-
ing source. The effective field theory is more complicated to handle since it
leaves the regime of validity of N' = 1 supergravity. For LVS this is also an
option but D-terms (and matter F-terms) provide a more promising avenue
to obtain de Sitter within a purely supersymmetric effective action.®

In LVS there is a clear hierarchy of scales shown in the table below.

Table 1. Relevant physical scales in LVS.

Physical scale Volume dependence
Planck mass Mp

String scale Ms = %
Kaluza-Klein scale Mgk = \%IZ
Gravitino mass mg/p = MILWO
Volume modulus mass my = N{}’;ZO

Notice that a clear bound for Wy is |[Wy| < V/3 in order to have a
proper hierarchy (Mg > ms/) and guarantee the consistent use of an
effective field theory to describe the physical implications of the scenario

|'/6 guarantees the effective potential being

(an even stronger bound is |
smaller than M ). Also even though the gravitino mass is supposed to set
the scale of all particles that receive a mass after SUSY breaking, all mod-
uli S,U, and most of T; receive a mass of the order of the gravitino mass,
however the overall volume modulus has a mass much lighter and remains
small after quantum effects even though it is not protected by supersym-
metry.>* Furthermore, in some Calabi-Yau manifolds which happen to be
fibrations of 4D manifolds such as K3, the corresponding modulus does not
receive a mass until loop effects are taken into account and therefore their
mass is even smaller than that of the volume modulus (m ~ Wy /V%/3).

¢For other interesting proposals to obtain de Sitter from purely supersymmetric EFTs
see Ref. 11.
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Some general properties of LVS:

e Stability. Even though the overall minimum is locally stable the fact
that even the AdS vacuum is not supersymmetric makes it subject to
non-perturbative instabilities, such as bubble of nothing decay. This
was studied in.'? As long as the effective field theory is valid the AdS
minimum is stable and no indication to a bubble of nothing decay.
This leads to the possibility of having a CFT dual and therefore a
proper non-perturbative description of these vacua despite being non-
supersymmetric. The dS minima are clearly metastable and the decay

V?. The probability to decay to an AdS min-

imum is preferred over a dS as a ratio Pys/Paas ~ e~V whereas its

rate goes like I' ~ e~

decay towards the 10D decompactification vacuum (¥ — o) is further
suppressed Pye./Pis ~ eV, Clearly the larger the volume the more
stable the vacuum.

e Bounds on the volume. However the volume cannot be arbitrarily large
since for values V ~ 1030 the string scale becomes smaller than the TeV
scale, also beyond V ~ 10%° the gravitino mass (and usually soft terms)
will be smaller than the TeV scale. Finally for volumes V > 109 the
volume modulus becomes lighter than 10 TeV which would lead to the
cosmological moduli problem (CMP). Smaller volumes 10% < V > 10%
are consistent and survive overclosing (with the larger volumes being
the more stable from the previous item) but still imply a special cos-
mological role for the volume modulus (or any lighter one in particular
cases). This modulus is the latest to decay and its decay would be
the source of reheating of the observable universe leading to interesting
post-inflationary cosmology (see for instance Ref. 16).

e Inflation. The three terms in the second parentheses for Vp hint at a
concrete realisation of inflation. Assuming the volume is already at its
minimum value, the potential for 7 is precisely of the form A — Be™*
for large values of 7 which is one of the preferred inflationary potentials
for a canonically normalised inflaton field x. In order to achieve this
concretely at least three T; fields are required which is very generic in
string compactifications. Loop corrections may destabilise the flatness
of the potential during inflation. A more elaborated and stable under
quantum corrections model of inflation has been proposed in which the
inflaton is a fibre modulus. For this scenario the spectral index and
tensor to scalar ratio r ~ 1073 falls just in the preferred Planck regime
(see Ref. 14 for a recent overview). However, if the recent results from
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BICEP are confirmed r ~ ((0.1) then these scenarios are ruled out
by experiment. An example on how string scenarios can be predictive
and contrasted with experiment. The string scenarios consistent with
BICEP: N-flation, axion monodromy and Wilson line inflation'® can
be embedded in the LVS. More work in this direction is needed.

e Axions. There are plenty of axions in string compactifications, many
can survive at low energies but some do not. In LVS it is clear that
the axion partners of the dilaton and Kéhler moduli stabilised by non-
perturbative effects acquire a mass of order the gravitino mass. Other
axions are eaten by anomalous U(1)s by the Stuckelberg mechanism.
But some survive at very low energies, in particular the axion partner
of the volume modulus is essentially massless after moduli stabilisation
and may have some implications for late time cosmology. In particular
contributong to dark radiation. Also axions coming from phases of
matter fields may survive low energies but are more model dependent
(see Ref. 17 for a recent overall review on stringy axions).

Before finishing this section let us also mention the progress made in
other string compactifications. In heterotic strings despite many efforts
there is no yet a compelling scenario for stabilisation of all moduli. Sub-
stantial progress has been made in the past few years to stabilise most of
them. Contrary to IIB strings that have two 3-index antisymmetric tensors
to turn on, in the heterotic there is only one and so fluxes are not as effi-
cient as they are in IIB strings. The number of equations and unknowns is
similar leaving no room for a landscape and no mechanism to solve the cos-
mological constant problem. Furthermore they move the model away from
the Calabi-Yau spaces. Yet, since heterotic strings carry a large gauge
group already before compactification, this introduces new moduli (called
‘bundle moduli’) that can actually help to fix the complex structure moduli
by consistency gauge conditions that have to be satisfied. Nonperturbative
effects still can fix the K&hler moduli, similar to the IIB case. Clearly fur-
ther progress is expected in this direction since for realistic model building
heterotic models are probably the most developed.

G2-holonomy manifolds compactifications of the 11D supergravity limit
of M-theory have been studied also. There is no explicit model of particle
physics from these compactifications which need much more mathematical
developments although they are also clearly local models also. For moduli
stabilisation there are interesting properties that can be extracted without
entering into details. In particular all moduli are similar to the 7" moduli
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of type IIB, making the moduli stabilisation issue easier to define. Fluxes
are not an option in this formalism and therefore the full superpotential
is non-perturbative. A superpotential of the form W = Zij Aze%iTi has
been proposed with the potential to fix all T" fields. The general properties
of this scenario have been summarised in Ref. 25.

3. Supersymmetry Breaking

The breaking of supersymmetry is intimately related to moduli stabilisa-
tion. This explains that only after a well defined framework for moduli
stabilisation it was possible to extract information about supersymmetry
breaking in string theory. Progress in moduli stabilisation eventually ex-
tends to progress in supersymmetry breaking. Contrary to moduli stabili-
sation in which to large extent the location of the standard model can be
ignored, here it is fundamental. In IIB local models the standard model can
be inside a D3 brane at a singular point in the extra dimensions or at a D7
brane wrapping a 4-cycle of the extra dimensions. Other odd dimensional
branes are dual to these and even dimensional branes would appear in the
ITA case.

What we can see from both LVS and KKLT' is that both the S and U,
fields do not break supersymmetry at leading order since they are fixed by
the condition DgW = D, W = 0.

An important information is regarding the contribution to supersymme-
try breaking of the cycle where the standard model lives on the D7 brane
case. On the D3 brane case this may also be thought as a collapsed 4-cycle.
The point is the following. In any brane sector where there is chiral matter,
the corresponding 7" modulus, measuring the size of the 4-cycle that the
D7 brane is wrapping, acquires a charge under an anomalous U(1). There-
fore it is not possible to have a term of the form W,, = Ae=7sM in the
superpotential in which A is a constant, since this term would not be gauge
invariant. Therefore whenever a dependence on 1" appears it has to come
together with a dependence of A on charged matter fields that compensate
the gauge variation of Tsy;. This makes it very difficult to stabilise Ty
by the LVS or KKLT methods since the SM fields are supposed to have
zero vev at the high scales (otherwise they may induce colour breaking for
instance). Let us call this the BMP constraint.?6 As long as one of the

fFor KKLT even though the source of SUSY breaking is the uplift by anti D3 branes
a very interesting scenario called mirage mediation has emerged with interesting phe-
nomenological implications.'®
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moduli T}, from a hidden sector (in which chirality is not required) appears
in W, = Ae™ %" with constant (or only moduli dependent) A the LVS
minimum is obtained. The Tsps cycle may be fixed by D-terms or even by
loop corrections to V.

Some general properties of SUSY breaking in LVS are

(1) The source of SUSY breaking is well identified coming from generic
values of the 3-form fluxes for which DgW = D, W = 0 but Wy # 0
and the F- term of the Kahler moduli is non-vanishing. This is major
difference as compared to KKLT in which before uplifting SUSY is not
broken and its breaking is fully determined by the anti-D3 brane that
performs the uplift. In LVS the uplift can be done in different ways but
even if the anti-brane is added, its contribution to soft terms is usually
negligible.

(2) The existence of the landscape allows for the first time to address simul-
taneously the cosmological constant and the hierarchy problems. This
justifies the standard strong assumption that has been made over the
years regarding the use of low-energy SUSY to address the hierarchy
problem: that something else takes care of the cosmological constant
problem and has no direct influence on the calculation of soft SUSY
breaking terms (good). But, by the nature of the landscape, it pre-
vents us to find new physical phenomena at low energies determined
by the cosmological constant (bad). It also opens the possibility to use
anthropic arguments to address the hierarchy problem (ugly).

(3) SUSY is broken by the Kéhler moduli which do not enter in the tree-
level matter superpotential, therefore as long as Kéahler and complex
structure moduli do not mix (true at tree-level Kéhler potential) then
flavour problems, generic for gravity mediation, are ameliorated.'®2”
The correct estimate on how much flavour violation is induced by quan-
tum corrections mixing the moduli is an open question.

(4) The dominant source of SUSY breaking in the EFT is the F-term of the
volume modulus. But this gives rise, to leading order, a no-scale model
with vanishing soft terms. Therefore next order corrections are relevant.
In order to explicitly compute the soft terms requires knowledge of the
F-term of the cycle that hosts the SM. If its F-term vanishes (to avoid
the BMP obstruction) then soft terms can be very much suppressed
(M5 ~ O(mg/2/V)). Otherwise they are proportional to the gravitino
mass up to a small loop factor. We list the different scenarios in the
table below. Notice that if we use a TeV gravitino mass, it would
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select one of the first two scenarios. The second one needs a strong
fine-tuning in Wy in order to simultaneously obtain the unification and
SUSY breaking scales at the preferred values. The first one does not
need the tuning at the cost of lowering the unification scale. Both suffer
from the cosmological moduli problem (CMP). If we use the avoidance
of this problem as the selection criterion then the last three scenarios
are preferred. The first one of those gives up a natural explanation
of the TeV scale. The last two are sequestered scenarios in which the
F term of the SM modulus vanishes to avoid the BMP obstruction.
Sequestered scenarios may be subject to modifications due to quantum
corrections and at the moment only models in which the SM is at
D3 branes at singularities seem to remain truly sequestered. If so then
both TeV SUSY breaking and the preferred GUT scale can be obtained
without the CMP.

Table 2. SUSY Breaking Scenarios in LVS.

Name String Scale Wy m3yo Soft masses CMP
Intermediate Scale 101 GeV O(1) 1 TeV Msopt ~ 1 TeV Yes
Tuned GUT Scale  10'® GeV 10710 1 TeV Mgope ~ 1 TeV Yes
Generic GUT Scale 10 GeV ~ O(1) 10'° GeV Mgopi ~ 100 GeV No

m
Sequestered Unsplit  10'° GeV O(1) 10'0 GeV Mgoft ~ 3T/2 ~ 1 TeV No

Sequestered Split 10'% GeV O(1) 1010 GeV My o ~ % ~ m?}/z ~1TeV No

The intermediate scale scenario and the tuned GUT scenario have been
studied in the past with some detail.'® Despite the fact that they both have
the CMP the soft terms can be calculated in a more explicit way since the
dominant contribution comes from the F-term of the SM cycle. The generic
GUT scale scenario has not been studied in detail since the superpartners
are much heavier than the TeV scale and no hope to be detected not even
in the long term. This scenario however realises explicitly the large SUSY
scale proposals recently discussed??:2! in which the hierarchy problem is
not solved by low-energy supersymmetry but fits with the measured value
of the Higgs mass. The two sequestered scenarios proposed in Ref. 22 are
very interesting because they both have the preferred GUT scale while at
the same time superpartners have the TeV scale that solve the hierarchy
problem. However since the SM cycle does not break SUSY then the explicit
expressions for the soft terms are difficult to compute since they are small
compared to the gravitino mass and they are more model dependent. In
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particular they depend on the uplifting mechanism which gives negligible
contributions in the other scenarios. Therefore these scenarios have not
been studied in detail. See however Ref. 23.

4. Local and Global Model Building

One of the implications of the LVS is that the standard model has to be
localised. The reason is that if it lives on a D7 brane wrapping a four-cycle,
this cycle cannot be the one dominating the volume, since the volume is
exponentially large and the gauge coupling of the gauge theory living on
the brane is inversely proportional to the size of the cycle 951%4 ~ ReTgm
and would generically be too small to fit realistic values O(20) expected
at the GUT scale. Therefore either the SM lives on a D7 brane wrapping
a small cycle or at a D3 at a singularity. In both cases it is localised.
This provides an independent argument to consider local string models
in IIB compactifications. Notice that local F-theory models can be seen
as strong-coupling generalisations of magnetised D7 brane models and in
principle also fit with this analysis.

We will restrict here to local models at singularities (for a more com-
prehensive discussion see the nice review?® in which both local F-theory
models and branes at singularities are reviewed). An argument to justify
this selection is the following. Since the SM is chiral the corresponding mod-
ulus Tsps is usually charged under anomalous U(1) groups on the brane.
This has two important implications, first as mentioned before there is the
BMP obstruction to fix Tisps from nonperturbative effects. Second the cor-
responding U(1) group has a Fayet-Iliopoulos (FI) term £ o ReT. The
corresponding D-term potential

Vp o (€ - Qi|¢i|2)2 (6)

combined with soft mass terms induced for matter fields m?|¢;|? tend to
prefer £ = 0 and then towards a collapsed cycle ReTsy; — 0. This implies
that the effective field theory (EFT) valid for large values of moduli (com-
pared with the string scale) is not valid and a different EFT has to be used
valid as an expansion around the singularity. Fortunately this is also known
for orbifold-like singularities in which the FI term is also proportional to
the size of the blow-up mode £ x pgps and again the D-term minimisation
tends to prefer the collapsed cycle pgpr — 0.2 Quantum corrections may

&Notice that EFTs can be written in the two regimes in which the cycle is either much
larger than the string scale or very close to zero. It is a complicated open question to
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blow-up the singularity to non-vanishing values of the blow-up mode but
in general keeping it within the singularity regime (i.e. psas < I%) with I,
the string length scale.

This argument is however not a proof that the SM has to live at a
singularity since there are two ways out: the FI term is model dependent
and usually is a linear combination of moduli fields. There may be a way to
engineer the models so that these combinations vanish with non-vanishing
fields (see for instance Ref. 37). Furthermore the soft terms contributions
to the matter fields ¢; may be tachyonic and then ¢; # 0 at the minimum.

Local models of D-branes at singularities have been studied over the
years.?0-32 But it is only until very recently that they have been systemati-
cally embedded in compact Calabi-Yau compactifications including moduli
stabilisation3® (see also Ref. 36).

Let us start with the fully local constructions first and discuss the global
embedding later. The gauge theory of branes at singularities can be de-
scribed by quiver diagrams with nodes and arrows, node i represents n;
D-branes implying a group U(n;) and arrows going from the ¢ node to
the j node represents a bifundamental (n;,7;). Usually a closed loop in a
quiver represents a gauge invariant superpotential term although the pre-
cise structure of the superpotential needs further techniques based on dimer
diagrams that we will not discuss here.?? A simple example is provided by
the Zs singularity with a triangular quiver and three arrows connecting the
nodes. Choosing n; = n; guarantees an anomaly free model (except for
an anomalous U (1) that become massive from the Stuckelberg mechanism)
which can be easily evaluated by counting the number of arrows coming
in and out each node which should match for anomalies to be canceled.
We show in the figure the simplest of these cases including the SM which
corresponds to n; = 3 and is precisely the trinification model SU(3)? with
three families.

30(3,3,1) 4+ (1,3,3) + (3,1,3)] (7)

which is actually three families of 27s of FE.

This simple orbifold singularity is actually the simplest of a very special
class of singularities called del Pezzo n or dP, singularities. These singu-
larities are actually collapsed del Pezzo surfaces which are four-dimensional
surfaces (which in our case are four-cycles inside a Calabi-Yau space). These
are defined as the complex 2-dimensional projective space Py blow up at
n points with n = 0,1---8. The Zs singularity corresponds to dFPy. The

find the matching between the two EFTs going through the domain of string scale cycle.
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Fig. 1. The simplest realisation of a chiral model at D3 brane singularities containing
the SM (the trinification model at dPy in this case). The three gauge groups are identical,
SU(3)3. The three arrows imply three families of bi-fundamental fields. The equal
number of ingoing and outgoing arrows at each node guarantees anomaly cancellation.

special property of the del Pezzo surfaces is that they are the simplest 4-
cycles that can collapse to a single point in a Calabi-Yau manifold. The
quiver diagrams and superpotential couplings have been uncovered on the
past years. Leading to phenomenological considerations. The correspond-
ing quiver diagrams have n + 3 nodes. For instance the next case, the dP;
singularity has a square quiver. Furthermore given a vev to a bifundamen-
tal between two quivers merge the two nodes into one and reproduces the
dPy case. This can be interpreted geometrically as the fact that dP, has
n + 1 non-trivial 2-cycles and the higgsing corresponds to an independent
collapse of one of these cycles.

Other more general classes of singularities have been studied (called
toric singularities) that provide a large number of local string models with
chiral matter content.

Some of the general properties of these local models are the following:

e The gauge coupling at the singularity is given at tree level by the vev
of the dilaton field S so there is unification without necessarily having
a simple GUT group. The gauge group is usually a product of simple
groups. This avoids the standard problem of D-brane models for which
having simple GUT groups leads to vanishing top Yukawas (which has
been the main argument to consider F-theory models). Top Yukawas
are easily generated if the groups are not simple.

e The maximum number of families (arrows) happens to be three, which
is the one observed in nature. However starting with a complicated
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enough quiver and by higgsing more (but not many) families may be
obtained.

e There is always one zero eigenvalue in the spectrum. In the case of dPy
the massive states have eigenvalues (M, M, 0) where the mass M is de-
termined by the vev of the low-energy Higgs field. Having two families
degenerated and one massless is not realistic. However all other dP,s
with three families have eigenvalues (M, m, 0) with m < M which have
the proper hierarchy observed in nature. Quantum effects are expected
to lift the zero-eigenvalue although this is not straightforward.'®

e Apart from the overall U(1) that can be simply decoupled, there are two
anomalous U (1)s that obtain their mass by the Stuckelberg mechanism.

The rest of the physics has to be extracted in a model by model case. A
large increase on the number of these models comes from the possibility to
add D7 branes to each configuration. These allow for many more choices
of integers n; (for instance in dPy we can have (n1,ne,n3) = (1,2, 3) giving
the SM gauge group from D3 branes times a hidden or flavour symmetry
coming from the D7 branes which cancel the anomalies). The number of
D7 branes is restricted by tadpole cancellations which usually are equiva-
lent with anomaly cancellation. This enhance substantially the number of
realistic models at singularities.

Quasi realistic models including the SM gauge and matter fields as well
as proper Yukawas, CKM and PMNS mixings, proton stability, and unifi-
cation have been constructed using D3/D7s at singularities. In particular
dPs; models have proved to be manageable enough and at the same time
rich enough to address the flavour questions.?? The issue of gauge coupling
unification in these models is no much if there is unification (up to small
thresholds as usual) which is automatically achieved but knowing that the
gauge couplings are unified how do they evolve to low energies. Since usu-
ally the matter content of the models is not just that of the MSSM then
the success of the MSSM for gauge unification would be most probably
an accident in this class of models (for good or for bad as in most string
constructions). Achieving the right values of the couplings at low energies
is not easy. There is one simple local model that stands out in this regard.
This is the one based on (ni,ng,ng) = (3,2,2,) giving rise to a left-right
symmetric model SU(3) x SU(2)r, x SU(2)r x U(1) p—r, with three families
and three extra pairs of Higgses (after D7-D7 states get vevs):

3((3,2,1) + (3,1,2) + (1,2,1) + (1,1,2) + (1,2,2)] + singlets  (8)
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The extra matter content together with the fact that the hypercharge
normalisation is not standard combine in a way that there is unification with
a similar level of precision as the MSSM. The unification scale though is
intermediate 10!! GeV approximately.2?-3? In order to get realistic Yukawas
this model can be embedded into higher dP,s.

This model built from both D3s and D7s and the trinification model
built from only D3s are examples of very simple quasi-realistic chiral mod-
els. But being purely local they cannot be called string vacua, since in
their construction compactification was not considered. In order to be-
come honest-to-God string compactifications the corresponding singularity
has to be embedded in a compact Calabi-Yau manifold (to preserve su-
persymmetry and chirality). Actually starting from IIB string theory and
compactifying on a CY manifold leads to A/ = 2 supersymmetry and then
non-chiral models. The missing ingredient is orientifolding. This is essen-
tially a Zo twist of the CY compactification exploiting the fact that the
worldsheet theory is orientable and has a Zs symmetry. It is well known
that combining this twist with a CY compactification leads to chiral N' = 1
theory in 4D.

A concrete way to embed local singularity models in fully-fledged CY
compactifications was outlined in Ref. 34. The idea is to look for CY
compactifications with at least three dP, surfaces. Two of them map to
each other under the Zs orientifold twist, where the SM would live and a
third one to provide the non-perturbative correction to the superpotential.
A fourth 4-cycle (not a dP,,) will be the one dominating the volume. This
is the minimum set-up. In the figure below we illustrate it.

In the past 2 years concrete realisations of these models were achieved.??
The details are too technical for this review but it is worth emphasising the
main points:

(1) A classification of Calabi-Yau manifolds constructed as hypersurfaces
from toric varieties is available from the work of Kreuzer and Skarke.??
From this large class of models a classification of those with a relatively
small number of Kéhler moduli (4 and 5) to fulfill the requirements.
This gives a few thousand models of which a couple of hundred have
dP, surfaces mapped into each other under a Z, (illustrated in the
figure)

(2) A configuration of D3 and D7 branes as well as orientifold planes (fixed
under orientifold action) is introduced satisfying a highly non-trivial set
of consistency conditions: tadpole cancellations (local and global) for all
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gaugino condensate

D3-branes

Fig. 2. An explicit global embedding of local D-brane models. The SM is located at a
dPy mapped to an identical singularity by a Zs twist. Two ther 4-cycles are needed to
stabilise Kahler moduli and obtain a global realisation of LVS with chiral matter.

D-brane charges, cancellation of the so-called Freed-Witten anomalies
that appear in the presence of fluxes, K-theory charges, etc.

(3) The set-up allows for the SM to be hosted at the singularities on the
dP,’s mapped into each other. Realising globally the local examples
mentioned before.

(4) Furthermore, the conditions for moduli stabilisation are realised with
non-perturbative superpotential generated at the third dP, cycle (ei-
ther by Fuclidean D3 branes or gaugino condensation.

Fig. 3. de Sitter minimum for a compact fluxed CY compactification with chiral matter
at a dPp singularity.

(5) The modulus corresponding to the SM cycle is stabilised by D-terms in
a way that it is naturally stabilised at zero and therefore in the singu-
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larity regime. This part of the potential takes the form V(Tsps, ¢) =
Vb + Viopt with Vp ~ (Epr + ¢|¢]?)? and Viopr ~ m?|¢|2. Tt is clear
that as long as the soft masses for matter fields ¢ are non-tachyonic
this fixes the minimum (at leading order ) at ¢ = 0 and p; = 0 since
both terms in the potential are positive definite. This is only leading
order since these terms are of order 1/1? so small vevs are generated
that compete with next order in 1/) expansion which is the 1/V3 that
precisely gives rise to the LVS. These, together with the F-term of the
matter fields ¢ end up contributing a term of order 6V = cW@/V® with
1 < a < 3andc¢> 0. This term uplifts the LVS minimum to higher
values including de Sitter space and the superpotential can be tuned
to give an almost Minkowski vacuum. Notice that this tuning of W)
is easy to achieve knowing that the large number of complex structure
moduli allows for order 10°90 solutions for values of Wy in the small
range 0.1 < Wy < 103.

(6) Having such explicit CY compactifications allows also to explicitly solve
the complex structure and dilaton equations DyW = D,;W = 0. How-
ever technically this is a huge number of solutions and it has not been
done for fluxes in all the 3-cycles. Nevertheless some CYs admit enough
discrete symmetries that allow to fix most of the complex structure
moduli and only using fluxes in a handful of them. This has been done
recently in Refs. 38 and 39. Then we have for the first time a global CY
compactification®® with quasi-realistic visible sector including the SM,
with all geometric moduli stabilised leading to de Sitter space using
a fully supersymmetric EFT. Supersymmetry broken with computable
soft terms.

As a non-trivial check of ‘phenomenological consistency’ the local LR sym-
metric model sketched before for a dP, singularity has an interesting phe-
nomenological property: having the LR spectrum plus three pairs of Hig-
gses, together with the normalisation of the hypercharge gives precise uni-
fication at an intermediate scale 10! GeV with an accuracy similar to that
one for the MSSM. However from the global realisation, both the unifica-
tion scale and the value of the coupling at unification should be outputs of
the dynamics of the global model after moduli stabilisation. It is in fact
remarkable that for the global realisation of this model the volume is found
to be of order ¥V ~ 10'2 and the gauge coupling (dilaton vev) precisely of
the value that fits with the unification. Two completely independent cal-
culations give rise the same physical quantities (see the second reference
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in3® for details). Rather than emphasising the qualities of this model (that
has other phenomenological problems regarding flavour and the CMP) this
illustrates the challenge for any other attempt to achieve unification includ-
ing moduli stabilisation.
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Fig. 4. Unification in Left-Right symmetric model with low energy RG running match-
ing the unification scale and gauge coupling with those values obtained independently
from moduli stabilisation.

5. Open Questions

Clearly local models have passed a threshold in the sense that there are now
explicit local chiral models that have been properly embedded in a global
compactification including moduli stabilisation and realistic values of phys-
ical scales and computable soft SUSY breaking terms. This is good progress
and a sign of a healthy field that has evolved over the years with continuous
progress. Still obtaining a fully realistic model is an open question.

On more concrete open questions: Embed the most realistic local models
in a global compactification, such as those based on dPs or even higher dP,
including a successful inflation scenario. Also in cosmology, address in
detail post-inflationary cosmological issues such as reheating, dark matter
and baryogenesis and implement them in explicit models.

Determining dynamically the symmetry breaking pattern that leads to
the SM is a next step after geometric moduli stabilisation, that is moduli
stabilisation in the open string sector. On SUSY breaking, study in detail
all the different scenarios including phenomenological observables at reach
at LHC and potential future colliders. In particular the sequestered sce-
narios.2? An important challenge is to make consistent the large string and
gravitino scale hinted by BICEP with TeV soft terms.

Regarding more calculation developments, next order corrections to the
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EFT are needed. In particular quantum corrections to the Kéahler potential
for the moduli and matter fields. This is crucial to obtain reliable soft terms,
including contributions to non-universality. Finally it would be interesting
to identify CFT duals of the AdS compactifications to provide them a
proper non-perturbative definition.

A key point to keep in mind is to try identify potential observables that
can put classes of models to test. The dark radiation issue raised recently
is a good example. It has led to put strong constraints on hidden sector
models that would give too large an effect but also to identify a cosmic
axion background (CAB) with potential observable effects manifested as
X-ray excess in galaxy clusters.*® Similar ideas have been put forward in
the past regarding the potential of observing cosmic strings motivated by
the way to end brane inflation, etc. These observable effects are very rare
and difficult to identify but worth pursuing. Also, potential discoveries in
the recent future by LHC, Planck and other CMB experiments, on dark
matter, axions searches, etc. should give us guidelines as to how to restrict
or identify realistic string models. We may get lucky one of these days.
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We give a lightning overview of recent progress in F-theory model build-
ing. After a review of the basic paradigm of geometric engineering of
grand unified theories by elliptically fibered Calabi-Yau fourfolds, we ex-
plain the connection to local models, construction of fluxes, phenomeno-
logical implications as well as the recent advances in building global
models with U(1) symmetries.

1. Introduction

String phenomenology has prospered in the last decade, and much progress
has been made in developing a connection to phenomenology for the corners
of the string theory landscape. A strong emphasis has been put on develop-
ing a set of rules and mechanisms that allow the embedding of the Standard
model and its supersymmetric extensions into string compactifications.

There are two distinct questions that one can pose when validating
string phenomenology: first of all, is it possible, at all, to embed the (Min-
imal supersymmetric) Standard Model ((MS)SM) into string theory. Sec-
ondly, does the class of string compactifications that allow for such an
embedding have phenomenological implications, i.e. testable predictions.
These questions do not necessarily have to be answered in succession. In
fact in F-theory the initial approach has largely been to try to answer the
latter by determining the class of effective theories that can arise from
F-theory compactifications.

The very starting point for F-theory realizations of the MSSM or grand
unified theories (GUTs) with N = 1 supersymmetry is a local model, which
is analyzed systematically for its phenomenological validity, and as a second
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step, global constraints are incorporated. A general review of this type of
bottom-up model building can be found in' in this volume. F-theory is par-
ticularly amenable to this approach as the gauge degrees of freedom, which
model the four-dimensional effective theory, are localized on 7-branes that
wrap a complex surface S and stretch long R'3, and thus can be to some
extend decoupled in a local model. F-theory local models have a beautiful
description in terms of Higgs bundle spectral covers, and studying the vac-
uum structure of such gauge configurations is already highly constraining
the possible four-dimensional theories.

In this review we will give a brief overview of the main tools in con-
structing F-theory models, starting in Section 2 by first explaining the
global structure of elliptically fibered Calabi-Yau fourfolds, the relation to
7-branes and the structure of singularities that give rise to gauge fields, mat-
ter and Yukawa couplings. In the second part we will turn more concretely
to models with SU(5) unification groups and characterize the local limit
and its description in terms of Higgs bundle spectral covers in Section 3.3.
Embedding into the spectral cover models is already highly constrained,
and has non-trivial phenomenological implications.

Often, symmetries are required to make GUT models phenomenologi-
cally sound, e.g. by forbidding the perturbative generation of certain phe-
nomenologically disfavorable couplings such as dimension 5 proton decay.
Discrete symmetries usually require a high specialization of the surface S,
thus defying the point of characterizing generic features of a larger class of
consistent models. Thus large parts of the F-theory literature focus on ad-
ditional U(1) gauge symmetries. Likewise, breaking of the GUT group and
lifting the Higgs triplets and non-SM gauge bosons is achieved by switching
on background flux in the hypercharge direction U(1)y. One of the main
conclusions in local model building, based on anomaly cancellation, is that
combining hypercharge GUT breaking with U(1) symmetries for proton de-
cay protection, are only consistent with certain types of U(1) symmetries.

The global validity of such spectral cover models relies on understand-
ing their lift to global compactification geometries, which in the case of F-
theory are elliptically fibered Calabi-Yau manifolds. Construction of global
models has been recently the main focus, and will be reviewed in detail.
Likewise, construction of background G4-fluxes is an essential input into the
model building, for instance to induce chirality. A systematic exploration
of the possible global models with U(1) symmetries will enable to give an
exact answer to the question, which four-dimensional effective theories can
be embedded into a global construction, potentially giving interesting phe-
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nomenological constraints. Construction of global models with additional
abelian gauge factors is at present a very active field of research, which is
reviewed in Section 4. Clearly this review has as a main focus the spectral
problem, i.e. the F-theoretic construction of realistic supersymmetric spec-
tra for GUT models. Many important string phenomenological questions
remain only briefly touched upon, and we will give an overview of these, as
well as some of the most pressing open questions in the concluding Section
5.

It may be useful for the reader to provide a brief comparison with
other string theories amenable to realistic model building. Perturbative ITA
and IIB brane constructions have been immensely successful, both from a
bottom-up and top down point of view, with one key advantage of these
setups is that the effective action of the four-dimensional theories is much
better under control than in F-theory. Compared to IIB orientifold con-
structions, on the other hand, the main advantage of F-theory resides in the
existence of exceptional gauge groups, which in GUT models can be essen-
tial for the construction of top Yukawa couplings. In IIB these would have
to be obtained by instanton effects, whereas in F-theory the exceptional
singularities, that realize such couplings, are on the same footing as the
classical gauge groups. Heterotic string theory is another classic setting for
string phenomenology, where exceptional gauge groups based on Eg x Eg
and subgroups thereof, are paramount and thus provide a natural setting
for realizing GUT models. The key difference to F-theory is that heterotic
constructions do not allow a decoupling of gauge theory degrees of freedom
from gravity ones, as these have a common origin in the closed heterotic
string. This in particular implies that characterizations of heterotic models
are much more dependent on a case by case analysis of complete com-
pactifications (including the geometry and vector bundles), than F-theory
models. In the latter, gauge degrees of freedom are localized on 7-branes
and much generic features can be infered by whole classes of F-theory com-
pactifications, rather than specific example geometries. This point has led
to much progress in developing techniques for scanning efficiently through
heterotic sub-landscapes, a development that has not had as much atten-
tion in F-theory, as other methods are available to infer properties of classes
of compactifications (by means of studying and constraining the structure
of the elliptic fiber of the compactification).

Much of the progress in F-theory GUTs is based on the development of
mathematical tools, and F-theory model building has been progressing hand
in hand with exciting new developments in properties of elliptically fibered
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Calabi-Yaus and their birational geometry. Therefore some part of this
review may seem too mathematical for a review of phenomenological impli-
cations. However, what the progress in the last few years has shown is that
taking F-theory GUTs seriously, and requiring local and global consistency
— which most of the time are based on the intricate mathematical struc-
tures underlying F-theory compactifications — usually results in interesting
phenomenological implications. One of the prime examples is the study
of U(1) symmetries, which are constraint both locally, through anomalies,
and also globally, through the general mathematical constraints on elliptic
fibrations that realize such abelian symmetries (i.e. elliptic fibrations with
extra sections, as we shall review in Section 4). Precisely this interplay
between the beautiful mathematics on the one hand, and phenomenologi-
cal constraints of the corresponding F-theory compactifications is the main
strength of this approach to string phenomenology, which has the potential
to constrain the viable F-theory models through the intricate structures of
elliptic curves and fibrations.

2. F-theory geometric engineering

2.1. F-theory

F-theory? ™ is a placeholder name for Type IIB superstring theory vacua
which are not necessarily perturbative. The axio-dilaton, which is the com-
plex combination of the dilaton ¢, which sets the string coupling, and the
axion Cy defined by

T=Co+ie?, (1)

in F-theory is not necessarily constant, or does gs = e~% have to be small.
Under the S-duality group SL2Z of Type IIB, the axio-dilaton transforms
as

at +b
er+d’

T— (2)
where ab — ¢d = 1 and defines a two-dimensional representation of SLoZ.
The ingenious idea in? was to interpret 7 geometrically, namely, as the
complex structure modulus of a two-dimensional torus, or more precisely,
an elliptic curve. Compactifications of F-theory have the elliptic curve
incorporated. The standard Type IIB paradigm of considering a space-
time compactification manifold B, gets augmented to an elliptic fibration
Y : E; — B, which assigns to each each point on the base B an elliptic
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curve, whose complex structure is given by the axio-dilaton. For the pur-
pose of building four-dimensional F-theory vacua, which preserve N = 1
supersymmetry, we consider elliptically fibered Calabi-Yau fourfolds, with
a complex three-dimensional base Bs. If the fibration is non-trivial (which
it will be in the case of interest to us), the base will not be Calabi-Yau, but
can e.g. be (weak-) Fano.

We do not know a fundamental description of F-theory. However, there
are various indirect ways to study F-theory compactifications, either by
taking a weak-coupling limit to Type IIB, the so-called Sen limit,>% or by
dualities to other string theories. For the present purpose, two dualities are
particularly important:

e F-theory on elliptic K3-fibered Calabi-Yau fourfold is dual to
the heterotic string compactified on an elliptic Calabi-Yau three-
fold:.3*7 For Calabi-Yau fourfolds with an elliptic K 3-fibrations,
many checks could be enabled using this duality, and much of the
local model building is based on matching the spectral data of het-
erotic vector bundles to the Higgs bundle spectral data for local
7-brane models in F-theory.”®

e M-theory/F-theory duality:® 12
This approach is particularly useful in order to determine the ef-
fective action of F-theory. It is based on T-duality between I1B
and ITA, as well as lifting ITA to M-theory. The duality chain for a
simple T2 torus compactification with A and B cycles, is as follows:

M/S} x S ITA/SE
RAaRBHOa gszRA/RB:ﬁXed

RA—0 Rp—0
= -

1IB

More generally, F-theory is obtained from M-theory on an elliptic

curve E, in the following limit
Im(7) = g, = fixed
Elliptic curve E, ~ S4 x Sg () =9
Vol(E;) — 0

This duality has in particular been very useful in understanding

the effective action,'”
13

as well as the geometry of the F-theory com-
pactification.
2.2. Gauge theory from geometry

Gauge degrees of freedom in F-theory are localized on 7-branes, which are
generalizations of the standard D7-branes of Type IIB, and have a purely
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geometric characterization. Recall that D7-branes in IIB source Fy, which
is dual to dCy, where Cy is the RR 0-form axion in 10 dimensions. For
a D7-brane located at zp in the direction perpendicular to the 7-brane,
z = 28 + iz, the corresponding source is d x Fy = (2 — zp), which gives
rise a non-trivial monodromy of the dual dC

dCy = 1. (3)
Sl

In a local expansion, this can be solved for Cy and thus 7, by

r(2) = 7(20) + 5 log(= — ) + - @)
Along the branch-cut, the axio-dilaton undergoes a monodromy 7 — 7+ 1.
More generally, a 7-brane, that couples to the SLsZ invariant combination
7, transforming as (p,q) under the SL.Z, will result in a general mon-
odromy for 7 (2). Geometrically we can therefore characterize such (p, q)
7-branes as those loci in the base above which the elliptic fibration has a
singular fiber, i.e. the complex structure 7 diverges.

Fig. 1. Schematic depiction of the elliptic fibers: above a generic point in the base B of
the elliptic fibration the fiber is a smooth torus (elliptic curve). Above a surface S C B,
i.e. a codimension one subspace of the base, which is a component of the discriminant,
the fiber becomes singular, realizing gauge degrees of freedom on S x R1:3. The gauge
group is determined by the singularity type.

In mathematical terms, the singularities that can occur in elliptic curves,
or more generally in elliptic fibrations, have a long history. The main tool
for describing elliptic fibrations E, — Bs is its realization (which exists for
all elliptic curves with a section — more about this in Section 4) in terms of
the Weierstrass equation

y? = 2* + fouwt + gu®, (5)
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where [w,z,y] are homogeneous coordinates in the weighted projective
space P23 and we usually work in the patch w = 1, where v,z are now
affine coordinates. Furthermore, f and g are functions (more precisely,
sections of line bundles Kgf and K ]gf, respectively) on the base Bs. The
generic fiber will be an elliptic curve, but as the point in the base varies,
the elliptic curve can become singular. To characterize these loci, note that
(5) describes a two-sheeted cover of the complex plane, with branch cuts
connecting the roots of the cubic equation and infinity. When two such
branch-points collapse, the curve becomes singular, which can be detected
by the vanishing of the discriminant

A=4f3+27¢%. (6)
In terms of the elliptic fibration, we can think of A = 0 as an equation in

Bs, that characterizes a complex codimension one subspace, i.e. a surface.
This is exactly the surface that is wrapped by the 7-branes.

Fig. 2. Fibers in the resolved geometry corresponding to an SU(5) singularity. Above
each point in the GUT surface S, which is a component of the discriminant, the resolved
fiber is a ring of five P's (shown as black lines), which intersect in the affine A5 Dynkin
diagram.

In general this has several components, so let us denote by z a local
coordinate on Bj, such that z = 0 corresponds to a surface Sqyr in Bs,
which is an irreducible component of the discriminant. Then both f and g
have a local expansion

f=Zf¢zi7 gzzw. (7)

If the elliptic fibration (5) is singular above z = 0, then one considers the
expansion of A, starting with n > 1

A= (502’” + 512n+1 + 522n+2 + - (8)
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The singular fibers have been classified for elliptic surfaces by Kodaira and
Neron and it is believed that this classification holds true in codimension
one in the base also for higher dimensional elliptic fibrations and they char-
acterized by the vanishing orders of (f, g, A) with respect to z. For instance
SU(n) gauge groups are realized by I,, fibers, which correspond to the van-
ishing orders (0,0,n). Resolving the singularities in the fiber results in a
chain of P's that intersect along an affine Dynkin diagram, in the case of
SU(5), the resolved fiber is shown in figure 2.

From the point of view of F-theory compactifications, the singularity
type determines the gauge group of the effective theory on the 7-brane
that wrap the surface Sqyr x RY3 characterized by z = 0. To see this, it is
useful to consider the M-theory compactification on the resolved Calabi-Yau
fourfold. Consider for instance an I,, singular fiber, where the exceptional
P! in the resolved fiber gives rise to a (1,1) form, wgl’l), which allows
decomposition of the C'5 three-form in M-theory as

03 :ZAi/\wgl’l), (9)

where A; are the gauge potentials for U(1)"~1, corresponding to the Cartan
subalgebra of the gauge group. The remaining gauge bosons arise from
wrapped M2-branes, which however become massless only in the singular
limit, and thus in the F-theory limit.

Fig. 3.  Geometric realization of matter: the usual paradigm of matter from intersection
of the stack of branes realizing the GUT gauge degrees of freedom with a flavor brane
is shown on the left hand side. In F-theory this is realized by further enhancement of
the singularity above a curve ¥ inside the GUT surface S C B. These codimension two
loci above which the singularity can enhance are encoded in the discriminant. The fiber
type above ¥ determines the representation of the localized matter.
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2.3. Maitter and Yukawas from geometry

In perturbative Type IIB, matter arises from the intersections of D7-branes,
for instance as shown in figure 3. Consider a D7-brane stack, realizing a
gauge theory with gauge group G, and intersect this with a single D7-brane,
carrying (flavor) U(1) symmetry. Then the open string degrees of freedom
localized along the intersection give rise to matter, where locally one can
think of the gauge group as being enhanced to a higher rank group G, which
is higgsed to the gauge group G. The adjoint of G gives rise to the adjoint
of G, as well as (bifundamental) matter in a representation, which depends
on the enhanced group G, for instance a simple intersection of D7-branes
of this type would give rise to matter in the fundamental representation, as
shown in figure 3, with G = SU(n + 1), G = SU(n)*

The F-theoretic realization of this corresponds to a further degenera-
tion of the elliptic fibration, i.e. along a curve contained inside Sgyr and
therefore a codimension two sublocus in the base Bs, the singularity in the
fiber gets enhanced to a singularity associated to a higher rank gauge group
é, and the corresponding matter localized along this curve is obtained by
the decomposition of the adjoint of G

G — GxU®)

Adj(G) —  Adi(G)®Adj(U1) ®R; & R_. (10)

The loci where such singularity enhacement can occur are determined from
the discriminant (8). The subleading order term dy, indicates exactly where
further singularity enhancements are localized along z = 0. The fibers that
can occur in codimension two z = d9 = 0 have a beautiful description that
ties in with representation theory of the gauge groups and we refer the
reader to'? for further details.

Like in the case of intersecting D7-branes, the singularity enhancement
can be thought of as the collision of two singularities above a codimension
two locus, the matter curve, in Bs: each singular fiber corresponds to 7-
branes, e.g. an [, singular fiber above z = 0 colliding with a single 7-brane
corresponding to an I fiber given by an equation b = 0, as shown in figure 3.
The equation for the matter curve is then z = b = 0 inside the Calabi-Yau
fourfold.

Yukawa couplings are generated in codimenion three in B, along which
matter curves intersect and thereby lead to a higher vanighing order of the

aMore precisely in perturbative IIB, the gauge groups would be U(n), however the overall
U(1) gets a mass of order of the string coupling in F-theory.!*
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Fig. 4. Yukawa couplings: Yukawa coulings arise from codimension three loci, i.e.
points, in the base B where matter curves intersect. Above these Yukawa points, singu-
larity enhances further, and again the type of singular fiber determines what coupling is
generated. Note that three divisors in a Calabi-Yau fourfold generically meet in a point.

discriminant. This has a local gauge theoretic interpretation in terms of
higgsing a higher rank gauge group

G, —  GxUQ1)xUQ), (11)

which generates couplings of matter fields consistent with the U(1) charges.
Geometrically, the singular fiber above the Yukawa point in B determines
the local enhancement type, i.e. G). One of the main advantages compared
to perturbative Type IIB brane constructions is the existence of exceptional
gauge groups in F-theory, and in particular exceptional higher codimension
fibers. As we shall see below, this is of quite some importance in SU(5)
GUT models building, where the top Yukawa coupling arises from Fg.

3. SU(5) GUTs in F-theory

Following this general overview of geometric engineering in F-theory, we
now turn to the concrete phenomenological question of generating an SU(5)
GUT model within this framework. The basic phenomenological input, like
matter and Yukawa couplings as well as constraints on GUT breaking and
proton decay have been summarized in Appendix A.1.

3.1. The SU(5) Tate model

In F-theory we can engineer an SU(5) GUT model from an elliptic fibration
in Weierstrass form with vanishing orders along a surface z = 0, given by
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f=0(3Y, g =0(:% and A = O(2°). A slightly more elegant way to
construct such models is to apply Tate’s algorithm!?:16
general such equation in terms of a hypersurface in the weighted projective
space P23 [w, x, ]

and write the most

y? = 23 4 biay + boza® + b3y + by23x + be2® (12)

where we set w = 1P, and the explicit z-dependence guarantees that the
singular fiber in codimension one is of I5 type, realizing SU(5). The b;
replace f, g and are sections of suitable line bundles on Bs, with an expan-
sion b; = bj o+ b;,12 + ---. The Tate form has the additional advantage
that in a scaling limit it encodes the spectral data of the Higgs bundle that
describes the local gauge theory on the 7-brane,'” and so provides a direct
link between local and global models. For the SU(5) Tate model (12) the
discriminant has an expansion in z

A= 2555 + 2656 + 0(27) , (13)

where §; have multiple components. As we have explained, these higher
codimension loci correspond to further enhacements of the singularity and
allow the generation of matter and Yukawa couplings. In terms of the
coefficients b; the codimension two and three enhanced singular loci are

Codim |Gauge Group|Fiber Type|Equation in B

codim1| SU(B) | Is  |z=0

codim2| SU®6) | Is |z=P=0 (14)
| SO(10) | 11 lz=b1=0

codim 3 S0(12) z=by=b3=0
‘ ‘ IV* z = bl = bg =0

Here P = b3bg — b1bsby + b2b3 denotes the 5 matter locus. To determine
the actual singularity type and corresponding local enhaced symmetry, one
has to resolve the geometry and determine the intersection structure of the
P! in the fiber in codimesion 2 and 3'7'8¢. Above a generic point in the
surface z = 0, the fiber in the resolved geometry is an I5 fiber corresponding
to a ring of five P's as shown in Figure 2.

Along codimension 2 loci (14), or matter curves, the discriminant van-
ishes to higher order. The precise nature of the singularity enhancement is
determined again by following the resolved fiber components to the codi-
mension 2 locus, above which some of the P's will become reducible. The

bThis corresponds to going to the patch where w does not vanish. This is sufficient, as
the singularity is exactly located in this coordinate patch on the P23,

°There are various topologically inequivalent resolutions, which were all determined in.1?
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irreducible components of the fiber in codimension 2 can be associated to
weights of representations of SU(5), determined by a higher rank group G
as in (10). For SU(5) the matter is obtained from local fiber enhacements
to I and I}, realizing SU(6) and SO(10), with matter in the 5 and 10
representations, respectively. The fibers are depicted in figure 5.

sUG) SU(5) S0(10)

Su(6)

ey o A

Fig. 5. Elliptic fibration for SU(5) models, with resolved fibers in codimension one and
two. The codimension one (in B) fiber above z = 0, the GUT surface S, is I, i.e. five Pls
intersecting in the affine Dynkin diagram of SU(5). This gives rise to the SU(5) gauge
degrees of freedom. Along matter curves in S, i.e. codimension two loci, z = P = 0 or
z = b1 = 0, the fibers split (with new fiber components shown in blue/green), either into
an Is and If fiber, realizing locally SU(6) and SU(10), respectively.

Likewise along the codimension 3 loci (14), the fibers above the matter
curves split further. The fiber type above the SO(12) point is precisely
I35, which generates the down-type Yukawa coupling. Much interesting
mathematics has arisen from the fiber above the Fg Yukawa point, which
is not a standard IV* fiber, but monodromy reduced,'®'®2% as shown in
figure 6. For SU(5) GUTs this is especially vital as the top Yukawa coupling
10 x 10 x 55 obtained by decomposing the adjoint of Fg to SU(5)

E6 — SU(5) X U(l)l X U(l)z
78 — (240,0 ®1o,0® 1o,0) B (1_5_3® 15.3)
® (5-3,3®53,-3) ®(10_1,_3®101,3) ® (1040 B 10_4) .
(15)
The absence of a full IV* fiber, which implies the absence of a full local
FEg gauge symmetry, does however not affect the generation of a Yukawa
coupling, as the fiber components above the codimension two matter curves
split consistently with the Yukawas.!” For instance, a fiber component
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E6

50(10)
SU(6)

SU(5)

Fig. 6. Fibers in codimension three: as in figure 5, the codimension one and two fibers
are shown in terms of intersecting P! (colored/black lines). Above the codimension three
locus, i.e. Yukawa points in B (purple), with the equation z = b1 = by = 0, the fibers
split further and generate a (monodromy-reduced) FEg fiber.

associated to the weight of a 10 representation can split into components
corresponding to weights of the 10 and 5 representations.

3.2. Chirality from Fluxes

The structure we discussed so far generates bifundamental matter. Chi-
rality is induced by switching on supersymmetric background G4 fluxes,
which are harmonic (2,2) forms on the Calabi-Yau fourfold. The three-
form potential C3 for the G-flux has to be have one leg on the fiberd. From
the point of view of the 7-brane theory, the G-flux induces gauge flux by
decomposing it in the (1,1)-forms w;

G4:dC’3:F¢/\wi. (16)

The four-form flux G4 € H?2(Y}), with one leg in fiber has to satisfy the
supersymmetry and quantization conditions

1
GAJT=0, G+§cz(Y4)eH4(Y4,Z), (17)

where c2(Yy) is the second Chern class of the Calabi-Yau fourfold, which
can be computed from the resolved fourfold. The four-form flux can be

d(C3 that has a component when integrated over a curve in the fiber or is containe in the
base will break Lorentz invariance in four dimensions.
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integrated over so-called matter surfaces Sgr, which are obtained by consid-
ering a P! fiber of the resolved four-fold over a matter curve, corresponding
to a representation R of the gauge group. This computes the chiral in-

dex11,17,21-23

nrR —Nr = G4 . (18)
Sr
The chiralities can also be computed by computing the cohomologies valued
in the line bundle that C5 induces on a matter curve Lg?212*

nr = hO(ER, K1/2 ® ,CR)

19
ng = h'(Sr, K% ® LR). 19)

Here K1/2 denotes the spin bundle of the matter curve.

One class of fluxes is obtained from dualizaing the (2,2) forms to sur-
faces, which are orthogonal to vertical and horizontal surfaces, i.e. they
should be orthogonal to all surfaces that are either the restriction of the
elliptic fibration to a curve, or sit entirely inside a section of the fibrations.
In addition we will assume that the flux does not break the SU(5) GUT
group. Fluxes of this type have been constructed in Refs. 17, 23, 25-27.

More generally one can consider fluxes that correspond to algebraic
cycles in Yy, which are homologically non-trivial already in the singular ge-
ometry.?? More recently these were discussed in the context of the Deligne
cohomology and Chow groups in Ref. 28, a direction that certainly will see
much more development in the near future.

3.3. Local Models and Spectral Covers

F-theory model building had its advent not directly in terms of construc-
tions of global models, but initially the focus was largely on the local
models, i.e. effective theories describing the 8-dimensional gauge the-
ory that lives on the 7-brane compactified on the GUT surface S times
R1:3 8:21,24,29,30 The Jocal model is characterized in terms of a Higgs bun-
dle, i.e. vacuum expectation value of an adjoint scalar field, and a gauge
field. The global analog of these are complex structure parameters and G-
fluxes, discussed in the previous sections. The spectral cover construction
for this Higgs bundle is inspired by heterotic/F-theory duality, however,
it has a very precise meaning directly in terms of a local limit of a gen-
eral F-theory compactification, that is not necessarily dual to a heterotic
model 17
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The effective theory on Sqyr x RV is a half-twisted supersymmetric
Yang-Mills theory, with maximal rank gauge group Eg, whose gauge de-
grees of freedom are higgsed to the GUT group SU(5) and its commutant,
SUB) .,

Es — SU((B)L xSUB)gur
248 — (24,1)+(1,24) (20)
+(10,5) + (5,10) + (10,5) + (5,10)
by an SU(5). adjoint valued scalar field (®gyi),) ~ diag

(A1, A2, A3, Ag, As) with Y- A; = 0. The eigenvalues \; are solutions to the
characteristic polynomial

C= det(s — <¢SU(5)L>) =0b; + bas + b3$2 + b453 + b585 =0. (21)

This spectral surface should be thought of as embedded in the bundle
PY(Ks @ Os) — S, and defines a five-fold covering of the GUT surface
S. The coefficients b; are by definition symmetric polynomials of the eigen-
values, for instance

b1 = bg A1 A2 A3 a5, by =bo Z AN AR\

i<j<k<l (22)
bs=bo > NN,  ba=boY N\, b= A=0.
i<j<k i<j i
Along special loci in S, the gauge group is enhanced as follows:
SO(IO) 0= b1 ~ Hl )\1
SU(6):0=P~T[(A+ ;)
SO(12):0="b1 =bs: (Ni + X))+ A+ X))+ (Am) = (23)

)
E5:0:b5:b42()\i)+()\j)+(—/\k—/\l):0
E820:b2:b3=b4=b5.

These loci in turn realize matter and Yukawa couplings, much like the
higher codimension loci in the elliptic fibration. This analogy is of course
not a coincidence. One obvious question is, to link these local models to
globally consistent F-theory compactifications, which can be addressed in
the Tate form (12) of the singularity. We can define a divisor y? = 2% in
the Tate form, the Tate divisor, and in the local limit, i.e. when zooming
into the singularity at = y = z = 0 by defining s = y/z and z/s = fixed

while taking s, z — 0, precisely reproduces the Higgs bundle spectral cover
C.17,31,32
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In addition to the spectral cover, the local model is characterized
through a gauge configuration given by a non-abelian vector bundle V on
S with ¢1 (V) = 0. Denoting the projection map from the spectral cover by

pHiggs : C — S, (24)

such a vector bundle can be constructed as push-forward of a line bundle
on the spectral cover ./\/Higgs — C by

r
V= le'ggs,*NHiggs ; NHiggs =0 (7 + 5) y (25)

where v is a divisor in C and r is the ramification divisor of the covering
map Priggs- This combination ensures that ¢1(V) = 0 as paiggs,«y = 0.
The chiralities of matter induced by such spectral cover fluxes are computed

by intersection of v with the matter curves.®3%

3.4. GUT breaking

String theory provides alternative mechanisms to break the unification
group gauge group to the Standard Model gauge group, which go beyond
a GUT Higgs mechanism. For instance, discrete Wilson lines are a well-
studied mechanisms in heterotic model building. In F-theory, a flat line
bundle in the hypercharge direction, unfortunately, always leads to non-
GUT exotics in the zero-mode spectrum of Sgyr, and therefore is phe-
nomenologically excluded.?3:34

A more successful way to break the SU(5) to the Standard Model gauge
group is to consider non-trivial background flux in the hypercharge direc-

29:33,35 The requirements in a local models are that the zero modes on

tion.
S in the presence of the hypercharge flux £y produces only vectors in the
adjoint of the Standard Model gauge group, i.e. from the following table,

we see that h?(S, Kg) = 1 and all others vanish.

SU(3) x SU(2) x U(l)y| Cohomologies

(8,1)0® (1,3)0 & (1)o | H*(S,Ks) ® H(S,Ks) ® H'(S, Kg) (26)
(332)75/6 HO(SVC}_/l)@Hl(Sa‘CY)@Hl(Sa‘C}_/l)
(3,2) 4576 HO(S,Ly) ® H'(S,Ly") ® H'(S, Ly)

On the other hand the hypercharge flux should restrict trivally to all 10
and 5 matter curves, however it should have non-trivial restricion on the
Higgs matter curves in order to lift the zero modes of the Higgs triplets

Lylsy,,, #70. (27)
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The main phenomenological requirement on such hypercharge flux is how-
ever, that it retains masslessness of the hypercharge gauge boson. To see
this, recall that in the F-theory effective action, there is a Chern-Simons
like coupling with the RR 4-form Cy

/ CiNGy NGy, (28)
Y xR1:3

Expanding G4 with respect to the (1,1) form corresponding to the hy-
percharge direction into gauge connection and background value G =
(Fy + c1(Ly)) Awy and Cy = Ci A w;, w; € H?(Bs,Z), and inserting
into the Chern-Simons coupling generates a mass term for the hypercharge
Fy

(Tr(Tf/)/Scl(Ey)/\i*wQ ( - C;’AFY> , (29)

where Ty is the generator of U(1)y. However this unwanted mass term can
vanish as long as

/ a(Ly)Ni*w; =0 for all w; € H*(Bs3,Z). (30)
S

This topological condition on the hypercharge flux is equivalent to the ex-
istence of three-chain 23 in Bs ,whose boundary is the dual inside S of
c1(Ly). Examples of base geometries, that accomodate such classes have
appeared in Refs. 25, 36-38. The characterization of hypercharge flux in
global models based on elliptic fibrations is an active area of research, and
recent developments have appeared in Ref. 39. Nevertheless, the triviality
of the hypercharge flux as a class in Bs causes it to integrate restrict trivially
over matter surfaces in the compact Calabi-Yau. This in particular causes
an issue if we would like to combine this with certain U (1) pg charges, under
which the Higgs multiplets are charged non-oppositely. Engineering global
models with hypercharge flux and PQ symmetries, in addition remains a
challenge.

4. U(1) Symmetries

U(1) symmetries are indispensable when constructing realistic F-theory
GUT models, mainly to ensure protection from rapid proton decay by di-
mension 4 and 5 operators. An F-theory model will have an additional U(1)
symmetry only after suitably tuning the complex structure of the elliptic
fibration, which in the local model corresponds to tuning the coefficients of
the Higgs bundle spectral cover.
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One of the striking results of local F-theory GUTs has been the insight
that the existence of U(1) symmetries in addition to hypercharge flux GUT
breaking induces very stringent phenomenological constraints on the mod-
els imposed by anomaly cancellation. Understanding the types of globally
consistent U(1) models, and their geometric constructions in terms of ex-
plitic elliptic fibrations, has been one of the main directions of research in
the last few years, with the most promising phenomenological implications.

4.1. Local models, U(1)s and Anomalies

U(1) symmetries in local models are engineered by reducing the monodromy
of the eigenvalues of the Higgs bundle, which leads to a factorization of
the spectral cover. The permutation group S5 acts on the five sheets of
the SU(5), spectral cover, labeled by the eigenvalues of the Higgs bundle
Ai. Generically, all sheets are permuted into each other and there is no
overall U(1) symmetry. However, if ' C S5 is a subgroup that does not act
transitively on the sheets of the spectral cover, then the \; form a reducible
representation of I', and decomposing them into irreducible orbits results
in the factorization of the spectral cover

N
c=]Jc". (31)
=1

The factorization leads to a reduced structure group of the Higgs bundle,
which now corresponds to an S(U(ny) x ---U(ny)) group. This leaves
unbroken an SU(5) x U(1)N~! gauge group. From a phenomenological
point of view it is crucial to see what type of U(1) symmetries can be
retained, when higgsing the Eg down to SU(5)cur, and a complete survey
of such models can be found in.4°

U(1) symmetries are instrumental for controlling dimension 5 proton
decay operators. We define a Peccei-Quinn U(1)pg symmetry to have
charges of up- and down-type Higgs doublets that are not opposite to each
other, i.e.

apq(Hu) + qrq(Ha) # 0. (32)

This perturbatively forbidgs the p-term, as well as (under the assumptions
that the Yukawa couplings are consistent with the U(1) symmetry), the
dimension 5 proton decay operator

1
W, ~pH,Hy and  Weaims ~ KQ3L. (33)
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A spectral cover model that realizes this is obtained by a 3+ 2 factorization
of the five-sheeted cover C.*! Another model of interest, which realizes a
U(1)p_r corresponds to a 4 + 1 factorization of the cover.3°

The most striking result, which shows the existence of generically appli-
cable, stringent phenomenological constraints already in the framework of
local model building, is that there is a tension between the GUT breaking
using hypercharge flux, and the existence of certain U (1) symmetries, which
imply constraints on the spectrum.*0:42-45
initially from spectral cover models and were then derived from anomalies
between the additional U(1) symmetries and the SM gauge group.

To formulate the anomaly constraints, let > be a matter curve with
matter representation R carrying hypercharge Yg. Then the chiral index
for matter with flux determined by a line bundle Ly, and hypercharge flux
Ly is computed by

nR—nRZ/Ecl(cE@QL?*):/E(cl(cz)+MRc1(c§R)) . (34)

These constraints were observed

For the 10 and 5 matter we can write the multiplicities in terms of the chiral
index for multiplets in irreducible SU(3) x SU(2) x U(1)y representations
n(1,1)1, — T1,1)_, = M1o + Nio
n(3,2) 16 ~ (3,2)_ 1,6 — M10
N(3,1) 55 ~ "8.1)12/s = M10 = Nio (35)
M@ 1)s1ss ~ U3 ays = Ms
N(1,2) 1, — N(1,2) 11,2, = M5 — N5

The integers M correspond to the number of chiral multiplets that are
in full GUT group representations, whereas N measures the hypercharge
flux, that threads the corresponding matter curve. Considering a theory
with gauge group SU(5) x U(1)", we first note the pure Gasssy anomaly
cancelation conditions, which in this parametrization read

> Myg=> Mg, > Nig=)» Nz =0. (36)
1 7 1 7

The G?wss u X U(1) mixed anomaly cancellation imply a constraint on
the hypercharge restrictions N; and the U(1) charges g of the respective
multiplets*?

> 4(10) Nygr = 3" a(5)Ns, (37)

i J
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This constraint is automatically satisfied in spectral cover models. Finally,
considering the U(1)y x U(1) x U(1)" anomalies yields*

3 a(10)q'(10")N1g: = Y 4(57)¢/(57)Ns; - (38)

10 J
The relatively innocent looking (37) has some very stringent constraints on
the type of U(1) symmetries that are viable if we require a minimal GUT
spectrum:
If we require a minimal SU(5) GUT model then (37) implies

Q(Hu) + q(Hd) =0, (39)

and the resulting U (1) symmetry is essentially U(1)g_y. In particular, this
is not a PQ symmetry and does not forbid the dimension 5 proton decay
operator.

If one insists on a U(1) symmetry that fobids the couplings W, and
Wiim 5, then the anomaly constraint (37) implies

q(Hu)+q(Hq) #0 = some Nig,Ng #0. (40)

So requiring a U(1) pg implies the existence of non-GUT multiplets in the
spectrum — in addition to the standard H, 4 doublets. Various approaches
to deal with this have been put forward.*?** One way to make a virtue
out of this unfortunate exotic spectrum is to use the exotics as messengers
in a high-scale gauge mediation setup, by giving them a mass by coupling
to a charged singlet field, which has interesting, non-minimal type GMSB
characteristics.** Unification in this context becomes quite subtle, with
additional contributions from hypercharge flux, Higgs fields, exotics and
high scale threshold corresctions.?344:46

The constraint (38) is not automatic in spectral cover models and fur-
thermore constrains them, allowing only a small subclass of 34+2 and 2+2+1
models. Globally constructed consistent F-theory models with U(1) sym-
metries and hypercharge flux breaking should elucidate what mechanism
cancels this anomaly®, which brings us to the final topic of U(1) symme-
tries in global F-theory compactifications.

4.2. Global realizations: Elliptic fibrations with
extra sections

In view of the severe constraints that the co-existence of U(1) symmetries
and hypercharge flux imply in local models, it is one of the most pressing

©In the perturbative IIB orientifold limit, it was understood in*” that there is a geometric
Stueckelberg type mechanism, which makes the U(1) massive, see also.48
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questions in F-theory model building to understand the class of global F-
theory models, which have U(1) symmetries and can support hypercharge
flux. Regarding the altter, some progress has recently been made in Ref. 39.
Global models with abelian gauge factors were initially constructed with
some inspiration from local factored spectral cover models in Refs. 23, 49,
which realize the global lift of the 441 split spectral cover model and fluxes.

However a more systematic approach is necessary if we want to de-
termine the complete set of F-theory vacua with SU(5) x U(1)" gauge
groups. The geometric characterization of non-abelian gauge symmetries
in F-theory can be achieved by singularities of elliptic fibrations, as ex-
plained in Section 2. Abelian gauge group factors correspond to additional
(rational) sections!.®* Recall, that an elliptic curve written in Weierstrass
form has a section, which when embedded into P23[w, x, ]

y? =23 + fawt + gut, (41)
is given by w = 0. This defines a point [0 : 1 : 1] in the elliptic curve
above each point in the base Bs of the fibration. The rational points® of
an elliptic curve form a group, the Mordell-Weil group, with the operation
defined by the group law on the elliptic curve.

The zero-section, which is present in any Weierstrass model, defines a
copy of the base in the fiber. Each additional rational section gives rise to
a U(l) gauge symmetry as follows. A section o; defines a divisor in the
Calabi-Yau fourfold, S;, and a dual wgl’l) form in the fiber. Reducing the
M-theory three-form on these

C5 =Y wnAl, (42)

results in abelian gauge fields A’. The generator of the U(1) is then deter-
mined, in the resolved Calabi-Yau fourfold, by subtracting suitable excep-
tional classes, so to make the U(1)s orthogonal to the non-abelian part of
the gauge group — the Shioda map.

A systematic construction of models with U (1) symmetries was initiated
by Ref. 51, which showed that an elliptic curve with two rational points
have a natural embedding into P!'2. Following this several works appeared
constructing models with multiple U(1) symmetries.’%*2°¢ The elliptic
curves realizing one and two U(1)s can be embedded as follows:

fFor a nice discussion of holomophic versus rational sections see Ref. 50.

&Here, we think of the elliptic curve defined over some field, and the points are rational
solutions over this field to the elliptic curve equation. Concretely, here this is the function
field of the base manifold Bs.
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e One extra section, i.e. U(1):
Embedding into P'2[w, z, y]:

y? + boz’y = cow* + crwizs + cow?a? + czwa® (43)

Sections: y = w = 0 and w = y + bga? = 0.
e Two extra sections, i.e. U(1)%:
Embedding into dPs(w, z, y; 1, l2]:

s1315w° + solilow? 4 s3liwa® + sslil3wy (44)
+ sglilswxy + 57llx2y + sslgwyz + 5912xy2 =0

Sections: 11 =0;1o=0; 2 =389, y = —s7

Again, as in the Weierstrass or Tate forms in P23, the coefficient sections
¢;, biy s; can have vanishing orders along a divisor z = 0 in the base, that
correspond to a singular elliptic fibration. Resolving these singularities,
one can determine the intersection of the U(1) generators with the matter
curves.

Several example models with SU(5) x U(1)* for i = 1,2,3 have been
constructed based on toric methods.?®°2-°7 Their phenomenology has been
given some consideration for ¢ = 1,2 in Ref. 58. However, this remains an
incomplete analysis as long as the full set of possible global models is not
determined first.

To achieve this goal of a determining a comprehensive list of SU(5) x
U(1)? spectra that have a global realization with such a gauge group, it is
vital to find a method that generalizes the Tate type forms, i.e. canonical
realizations of a given type of singular Kodaira fiber with a distribution
of extra sections. This analysis is carried out in Refs. 59 and 60 and the
resulting types of models have been shown to allow for more general models
than were obtained in the toric constructions. The possible SU(5) x U(1)
models with one or two 10 curves are shown in Table 1. The toric models
are subcases of this set of fiber types. There are further models with three
10 curves which can be found in Ref. 59. Similarly, there is a classification
of SU(5) x U(1) x U(1) models realized in Ref. 60. Clearly, repeating a
survey-type analysis that was done for local models in Refs. 42, 40, 44
for all global models with U(1) is an outstanding problem of considerable
interest. For the toric constructions with one and two U(1)s this was done
in Ref. 58, however these do not include models with multiple 10 matter
curves, which can add considerable model building freedom.
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Table 1. Codimension two loci, fiber types, and matter and U(1) charges for
SU(5) x U(1) models with one or two 10 matter loci, based on Tate’s algorithm in P12
in Ref. 59. Superscripts in the fiber types indicate the separation of the two sections, i.e.
(01) has the sections on one component of the I5 fiber, whereas (0|1) on neighboring,
etc. The codimension 2 loci are shown schematically, see Ref. 59 for details. Subscript
nc indicates that this is a model that that does not have simply realization in terms of
vanishing orders of coefficients in (43), but the coefficients satisfy non-trivial relations,
much like in the non-standard Tate forms in Ref. 16.

Fiber in
Codim 1 Codim 2 locus Rep and U(1) charge | Codim 2 fiber

15(01) b1,0 100 + 100 7; D
C3,0 51451 Iéoll)

¢3,0 + bo,5b1,0 5, +5 1 Iéoll)

b%,oco,s — b1,0b2,2c1,3 + b§7202,1 50 + Bo Iéoll)

Iéou) bi0 102 +10_» 1O
bo,o 56 +5 6 oY

bo,0c2,1 — b1,0c3,1 5 4454 Iéo\|1>

b%,oCoA — b1,0b2,2¢1,2 — ciQ 51 +5_1 Iéoll)
I pio 10; + 10_4 TRl
P3O 10_4 + 104 P

PP 5_7+57 Iém)

Pz5 5_o + 5o Iéom)

Py 55 +5_3 o

Isg?r‘zlc) P 102 +10_» I;(0|1)
Py° 10_5 + 105 o

PP 56 +5_g Iém)

Pz5 5_4+54 Iéo‘“)

P? 51+5 1 7o

5. Outlook

F-theory model building has come a very long and successful way, develop-
ing gauge theoretic and geometric tools that allow engineering of realistic
spectra for supersymmetric GUTs. One of the driving forces in F-theory
model building has been the focus on generic properties, i.e. properties that
not so much depend on the specific compactification, i.e. a specific base
manifold, but will be applicable in (almost) any attempt to build models
within the framework of F-theory. The rich mathematical structure of el-
liptic curves is an immensely powerful tool in achieving this — for instance
we have seen stringent constraints on what type of U(1) symmetries can
be realized geometrically, in a completely general fashion. Another pow-
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erful way to approach constraints is using the ideas of bottom-up model
building! applicable in this context by first analysing the local model that
controls the effective theory on 7-branes.

In this review, we have focused thematically on the progress in con-
structing realistic spectra and the uncovering of generic features in F-theory
compactifications to supersymmetric GUTs. Consequently (and due to the
finite amount of space in this volume) we have omitted various aspects
that are instrumental in building realistic models. Much of the basics of
F-theory have been reviewed in Ref. 61 and geared towards GUT models
building in Refs. 62, 63. The omissions made here include the following
aspects of model building:

e Supersymmetry breaking, moduli stabilization and non-perturbative ef-
fects:
supersymmetry breaking is is intimately tied to non-perturbative effects,
such as D3-instantons, which have been studied in Refs. 64-66 and ap-
plied in supersymmetry breaking scenarios in Refs. 67, 68. Understanding
their global lift remains an open question.

e Flavor:
in the early days of F-theory model building, the favorable flavor struc-
ture, which compared to Type IIB arises from the tree-level generation of
the top Yukawa coupling, with a leading order rank one Yukawa matrix,
was one of the main motivations for F-theory model building. Much
excitement occurred following®® regarding the subleading terms in the
CKM mixing matrix, however much careful computations have followed
and generated a comprehensive picture of flavor in F-theory.”® ™ Most
recently, T-branes or gluing branes,”™ 7 were utilized to generate realis-
tic up-type quark masses.”0

e Cosmology:
cosmology in F-theory GUTSs was first discussed in local models.”” More
recently, following the BICEP2 measurement of B-modes, the validity of
inflationary scenarios in F-theory with 7-branes and axion inflation, have
been studied in Refs. 78, 79.

One constant in the developments of this field since the initial pa-
pers?h24:29 hag been the interplay between particle physics and geometry.
Modeling nature in F-theory goes hand in hand with studying and explor-
ing beautiful mathematical structures, at times beyond what is known in
the mathematics literature.

Many open issues remain, before a complete model, including spectrum,
moduli stabilization and supersymmetry breaking, as well as cosmological
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issues, can be attained. In addition to the already mentioned open ques-
tions in computing G-fluxes and alternative GUT breaking mechanisms, as
well as global aspects of hypercharge flux breaking, the following questions
remain to be explored:

e Effective action of F-theory:
Using M /F-theory duality much progress has been made in the direction
of determining the effective action of F-theory.!?:11:80:81  Determining
however Kaehler potentials for matter fields would be very important for
instance for studying supersymmetry breaking.
From an alternative point of view, it would be interesting to find the F-
theory effective action from first principles, for example using the SLoZ
duality and making this manifest, similar to T- or U-folds.
e Supersymmetry breaking and moduli stabilization:
Which mechanisms work in F-theory, and is there a LARGE volume type
mechanism for F-theory?? Some preliminary results to this effect have
been obtained in Ref. 82. What mediation mechanisms are viable in
F-theory, beyond local gauge mediation models?
e Landscaping:
What class of compactifications of F-theory yield four-dimensional N =1
supersymmetric vacua? Some interesting alternative directions to the
standard paradigm of elliptically fibered Calabi-Yau compactifications
were proposed recently. One interesting direction is to consider genus one
83,84 which do not have a section. Another direction of gener-
alization are gluing branes or T-branes, which correspond to local models
with non-diagonalizable Higgs bundle, where the spectral data alone does
not fully characterize the gauge configuration.” " One open question is
to fully understand the global lift of such compactifications®>:36
as their full phenomenological implications, such as in flavor physics.

fibrations,

as well

Finally, recently an alternative to Calabi-Yau compactifications was pro-
posed by studying F-theory on Spin(7) manifolds, which breaks super-
symmetry entirely.87
e Geometry and singularity resolution:

Albeit not necessarily of direct phenomenological relevance, the geomet-
ric structures studied in F-theory model building have developed into
an exciting direction of research in itself. In particular the resolution of
singularities in higher codimension, which are instrumental in realizing
matter and Yukawa couplings have uncovered so-far unknown results in

hSee Ref. 1 in this volume for a general review of this mechanism.
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13,17-19,23,88 which are beauti-

the resolution of singular elliptic fibrations,
ful structures, that are well worth exploring for their own mathematical

sake in the future.
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A.1. Phenomenological input

The standard minimal phenomenological requirements that are imposed on
F-theory GUTSs correspond to an N = 1 supersymmetric four-dimensional
GUT with gauge group SU(5) and the following additional data:

e Gauge group: minimal unification group SU(5)

e Matter content of the MSSM packaged into representations of SU(5), i.e.
three generations of

Q~(3,2)11/6 . =
¢ — / — D ~ (37 1)+1/3
10y = | U~ (3,1)_9/3 ) Sy =

B~ (1,1)1

Higgs sector:

5 . Hu ~ (172)+1/2 5 . Hd ~ (1, 2)_1/2
T\ H® ~ (3,1) ’ T\ H® <31
u y4)—1/3 d ( 5 )+1/3
(A.2)

Superpotential couplings

W ~ (/\t)ij 5y X 103\/[ X 103\4 + (/\b)ij 5y X 53\4 X 10%4 (A.3)

A mechanism to break the GUT group to the MSSM gauge group, lifting
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the unwanted XY-bosons:
SU((B) — SUB) x SU(2) x U(1)y
24 — (8,1)0® (1,3)0® (1,1)0 @ (3,2)_5 ® (3,2)45 (A4)
Gauge Fields Exotics
e Doublet-triplet splitting: mechanism to lift the Higgs triplets
SU((B) — SUB) x SU(2) x U(1)y
57— (1,2)412®(3,1)_1/3
H, Exotics

e R-parity to protect from dimension 4 proton decay operators.
e U(1) symmetry to disallow dimension 5 proton decay operators

3
L
~ QT A > 10%7 GeV. (A.5)
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In recent years it has been realized that in string/M theories compacti-
fied to four dimensions which satisfy cosmological constraints, it is possi-
ble to make some generic predictions for particle physics: a non-thermal
cosmological history before primordial nucleosynthesis, a scale of super-
symmetry breaking which is “high” as in gravity mediation, and scalar
superpartners too heavy to be produced at the LHC (although gluino
production is predicted in many cases). When the matter and gauge
spectrum below the compactification scale is that of the MSSM, a ro-
bust prediction of about 125 GeV for the Higgs boson mass, as well as
predictions for future precision measurements, can be made. As a proto-
typical example, M theory compactified on a manifold of G2 holonomy
leads to a good candidate for our “string vacuum”, with the TeV scale
emerging from the Planck scale, a de Sitter vacuum, robust electroweak
symmetry breaking, and solutions of the weak and strong CP problems.
In this article we review how these and other results are derived, from
the key theoretical ideas to the final phenomenological predictions.

1. Introduction

We are living in an exciting era of high-energy physics. The Large Hadron
Collider (LHC) has had a monumental achievement — the discovery of the
Higgs Boson. The question about the nature of electroweak symmetry
breaking (EWSB) has thus been answered. However, it is well known that
the Higgs mass in the Standard Model is subject to quadratic divergences
from quantum corrections. In addition to this prominent aesthetic defect,
the Standard Model is incapable of explaining the origins of Dark Mat-
ter, the asymmetry between the abundance of matter and antimatter, and
the origin of neutrino masses, thereby strongly motivating the presence of

277


https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1142/9789814602686_0010

278 P. Kumar

beyond-the-Standard-Model (BSM) physics. Experiments in a variety of
fields in high-energy physics, ranging from the energy frontier to the pre-
cision and cosmic frontiers, are involved in serious explorations of physics
beyond the Standard Model (SM), already ruling out large regions of pa-
rameter space of many models. The hope is that at least some of the above
experiments would signal a clear evidence for BSM physics.

There is a second reason why we are entering an exciting era. Devel-
opments over the past few years have led us to an understanding that,
under some very general, simple and broad assumptions, string/M theory
provides a framework that (in practice) is capable of addressing key, fun-
damental questions about particle physics and cosmology. Moreover, the
framework addresses them in a unified way. At first sight, this may ap-
pear to be a surprising statement since we presumably still have a lot to
learn about string theory. Furthermore, there are an enormous number
of solutions to string/M theory which describe effectively four-dimensional
Universes — the string landscape. The enormity of the landscape has led to
the popular, but incorrect, view that string theory has no predictive power
and virtually any low-energy theory could be a part of the landscape.

In this article we provide a brief review some of the results which demon-
strate that, on the contrary, generic predictions do arise from string/M
theory which can be directly tested at current and future particle physics
experiments as well as with astrophysical and cosmological observations.
This article is a shorter and updated version of the review [1] which ap-
peared a few years ago.

2. Basic Idea

The basic assumption we make is the following: Our Universe is described
by a solution of string/M theory. Once one believes in the above, then
the task is to figure out ways to test predictions of various solutions of
string/M theory against current and future data. To this end, we elicit
from the theory the simplest, generic consequences which could describe
our Universe and are relevant for high energy physics and cosmological
observables. In order to make our task tractable and because low-energy
supersymmetry and grand unification are extremely well motivated, we
focus on string/M theory solutions with low energy supersymmetry and
grand unification(at around® 10'¢ GeV). However, in principle one can also
carry out the exercise below relaxing the above criteria.

aWe will use ‘natural’ units in which ¢ = A= 1.
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Given the above, the physics below the GUT scale can be effectively
described by a four dimensional supergravity theory whose field content is
at least that of the minimal supersymmetric Standard Model (MSSM) [2].
This four dimensional theory can be thought of as any other quantum field
theory, but with an essential difference. The theory also contains what are
moduli and axion fields, which parametrize the size and shape of extra di-
mensions, as well as their couplings to matter and to each other. A detailed
description of moduli and axions is provided in one of the other chapters in
this book. The moduli and axions are essentially the only low energy rem-
nants of the string/M theory origin of the effective theory, and all other
string/M theory modes are decoupled from the four dimensional theory.
There are typically large numbers of moduli and axion fields and, more-
over, the axion decay constants are of order the GUT scale [3]. We would
now like to ask: if we consider a generic solution of string/M theory with
low energy supersymmetry and grand unification, what phenomena does
it describe? This is completely analogous to asking within the framework
of quantum field theory, for example: what are the generic predictions of
chiral gauge theories with hierarchical Yukawa couplings and spontaneous
symmetry breaking? Essentially, if we threw a dart at the set of all solu-
tions of string/M theory which reduce to the Standard Model for physics
processes below the TeV scale, what would the properties of that solution
be?

The key to answering this question lies in the physics of the moduli and
axion fields and the effective supergravity theory. In the supergravity the-
ory, the mass of gravitino (the superpartner of the graviton), ms/s, sets the
scale for the masses of all scalar fields unless symmetries or special dynam-
ics prevent this. This is borne out by explicit string/M theory calculations.
One of the key results that underlies many of the predictions is a connection
between the lightest moduli mass and the gravitino mass. Essentially, the
gravitino mass mg /o is related to the lightest modulus mass (the smallest
eigenvalue of the extended moduli mass matrix) by an O(1) factor. Details
of the derivation are given in [4]. In fact, both the MSSM scalars and the
moduli fields will have masses of order mg/,. This is not true of the axion
fields a; due to the shift symmetries a; — a; + ¢; that originate from gauge
invariance in higher dimensions. We will see that this basic result (with
some mild assumptions) has extremely profound and robust implications
for a large number of observables for particle physics and cosmology.
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3. Assumptions

In this section we set out clearly the broad set of working assumptions under
which our arguments and claims are valid. Strictly speaking, none of the
assumptions are inevitable consequences of string theory compactifications
to four dimensions. However, we will explain why each assumption is well
motivated and sufficiently generic such as to hold true for a large class of
solutions.

The first working assumption is that the vacuum structure of a com-
pactified string theory is determined by an effective potential V. ;¢ which is
a function of all the moduli fields. The task is to include all relevant clas-
sical and quantum effects in determining V. sy and then determine its local
and/or global minima. This seems to be a well justified approach in most
cases, but is difficult to make precise within a theory of quantum gravity
(see [5]). A nice summary of these issues is provided in [6]. The philosophy
we adopt is that we are only interested in string/M theory solutions which
could describe our world, so we do not need to study the most general set of
solutions. With this point of view, the Wilsonian effective action paradigm
seems quite natural.

The second assumption we will make is that the solution to the cos-
mological constant problem is largely decoupled from particle physics con-
siderations. Note that we will still require that the vacuum energy van-
ishes approximately, but assume that additional mechanisms responsible
for giving rise to the exceptionally tiny value of the cosmological constant
have virtually no effect on particle physics. This assumption seems to be
quite natural and conservative as there is no known, measurable, particle
physics process in which the precise value of the cosmological constant is
important. While we cannot be sure until the solution to the cosmological
constant problem is agreed on, it seems unlikely that knowing its solution
will help in calculating the Higgs boson mass or the relic density of dark
matter, etc, and it seems unlikely that not knowing the solution will pre-
vent us from doing such calculations. As mentioned earlier, we restrict to
compactifications with low scale supersymmetry and with standard grand
unification at the Kaluza-Klein scale, Mk ~ Mgyr ~ 0.1Mg, though
many of our results can be extended to other cases. Here My; is the string
scale.

Regarding cosmological assumptions, we assume that the Hubble pa-
rameter in the very early Universe, such as during inflation, is larger than
O(mg/2). Since we consider compactifications with low-scale supersymme-
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try, this implies that the Hubble scale during inflation H; satisfies H; > 10°
GeV. Having a large H; seems to be a natural assumption for the following
reason. It is known that the slow-roll parameter for simple (single-field
2 (%)27 where V7 is the inflaton po-
tential and V] is its derivative with respect to the inflaton, can be written

e~ 10" <HI>2 (1)

mpi

slow-roll) models of inflation, e = m

in terms of H as:

using the value of the primordial density perturbations %2~ 1075. The
requirement ¢ < 1072 for ~ 60 e-foldings of inflation to solve the flatness
and horizon problems implies that H; < 10— My, which is the standard
fine-tuning in slow-roll inflation models. A smaller value of H; will make
e even smaller, implying an even larger fine-tuning than is necessary for
inflation. Hence, it is natural for H; to be as large as allowed by data,
giving rise to Hy (much) larger than O(mg/3). Another assumption we
make relevant for cosmology is that not all the moduli are stabilized close
to an enhanced symmetry point. It is clear that in a generic case the above
assumption will be satisfied, only under extremely special circumstances
could it be violated, if at all.

We finally outline assumptions about model-building. There has been
considerable progress in string phenomenology in this regard, and large
classes of string models have been constructed with quasi-realistic gauge
groups and matter content. The origin of flavor has also been addressed
in several different classes of solutions [7, 8]. We will see that some of our
broad predictions do not depend on the precise spectrum for the visible
sector, while some of the more detailed predictions do. For the latter, we
will make the reasonable assumption that the string/M theory compacti-
fication is such that the wvisible sector at low energies consists of the SM
gauge group with matter content that of the MSSMP. The precise unifica-
tion of gauge couplings, as well as successful radiative electroweak symme-
try breaking in the MSSM provide strong support for such an assumption.
Moreover, explicit string solutions with precisely the MSSM content have
been constructed [9]. The latter assumption can be easily relaxed to in-
clude more complicated matter as well as gauge sectors. We assume that
the visible sector is weakly coupled, i.e. all the SM fermions as well as the
Higgs fields are elementary (as opposed to composite) so that the standard

bWe allow the possibility of “dark sectors” weakly coupled to the visible sector, see
discussion in section 8.1.
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Higgs mechanism gives rise to electroweak symmetry breaking in the ef-
fective low-scale theory. As far as supersymmetry breaking is concerned,
because of the moduli problems discussed above, we assume gravity medi-
ation with a “hidden sector” of supersymmetry breaking. This is generic
in eleven dimensional M theory compactifications in which the extra di-
mensions form a Gs-manifold. There, non-Abelian gauge fields are local-
ized along three-dimensional submanifolds of the seven extra dimensions.
In seven dimension, two three-manifolds generically don’t intersect, there
are no matter fields charged under both the Standard Model and hidden
sector gauge symmetries. For other compactifications, this is more model-
dependent but can be satisfied; in any case, generically it must be satisfied
in order to avoid the moduli problem.

Finally, we assume that there are no other R or non-R global symmetries
(such as a PQ symmetry) at low energies. This is a natural assumption
since global symmetries are generically broken in the presence of gravity by
Planck suppressed operators, and within gravity mediation these Planck
suppressed operators are relevant. Also, the vanishingly tiny value of the
cosmological constant implies that the superpotential does not vanish in
the vacuum obtained after moduli stabilization, which explicitly breaks
any potential R-symmetry.

4. Moduli Stabilization and Supersymmetry Breaking

Based on the philosophy and assumptions outlined in the previous section,
we summarize the results about moduli stabilization and supersymmetry
breaking which will be relevant for low energy particle physics. We are in-
terested in compactifications of string/M theory to four dimensions which
preserve NV = 1 supersymmetry. In the limit in which the string coupling,
the string length and the size of the extra dimensions are small, the low
energy four-dimensional theory obtained in N' = 1 compactifications of all
corners of string/M theory is N' = 1, D = 4 supergravity. The internal
volumes, although small, must be large enough such that the supergravity
approximation is valid. Here “low energy” refers to energies far below the
compactification scale, or Kaluza-Klein (KK) scale. As explained earlier,
we will consider cases where Mg ~ Mgyr. Since Mgy is only deter-
mined after moduli stabilization, the above condition has to be checked
self-consistently.

N =1, D = 4 supergravity is completely specified at the two-derivative
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level by three functions:©

e The superpotential W, which is a holomorphic function of the chi-
ral superfields. W is not renormalized in perturbation theory but
receives non-perturbative corrections in general.

e The gauge kinetic functions f, for each gauge group G, which are
also holomorphic functions of the chiral superfields.

e The Kahler potential K, which is a real non-holomorphic function
of the chiral superfields and their complex conjugates. Unlike W
and F', K receives corrections to all orders in perturbation theory.
The finiteness of the string scale gives rise to corrections in powers
of (#) where [ is the string length and V' is the (stabilized)
volume of the extra dimensions 4. For values of V which correspond
to the unification scale Mgy, these corrections are small, as in the
ones discussed below.

Different compactifications of string/M theory give rise to different func-
tional forms for K, W and f in general, although we will see later that phe-
nomenologically realistic solutions arising from different corners of string
theory share many common features.

The fields in the four dimensional theory include the moduli, axions and
charged matter fields (both visible and hidden) as well as their superpart-
ners. However, since the moduli (and some hidden sector matter) fields
generically acquire large vevs (~ M) while the visible matter fields must
have vanishing vewvs®, it is a good approximation to first study the mod-
uli and hidden matter potential, subsequently adding visible sector matter
fields as an expansion around the origin of field space. It is important to
also make sure that effects which could induce vevs for SM-charged matter
fields are not present [11].

The gravitino mass mg/, is given in N = 1 supergravity by:

Mg = e/ %; — %%g;Fi> )

where F; are the F-terms (defined as derivatives of K and W wrt to the
scalar fields: F; = e/2(0; W 4 9; K W)); a non-zero expectation value for
any of the F; implies supersymmetry is broken. m,; is the reduced Planck

€See [10] for a review. Strictly speaking, the lagrangian depends upon two functions,
but it is convenient to use three.

dThis can be easily generalized to the 11D M theory case.

¢The Higgs vev, although non-zero, is much smaller than the typical moduli vevs.
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scale my = My / \/g, and in the second equality we have used the fact
that the cosmological constant is vanishingly small. Hence in such vacua the
gravitino mass is the order-parameter of supersymmetry breaking. Now,
since we are interested in classes of vacua with low-energy supersymmetry
to provide a solution to the hierarchy problem, m3/, must be much smaller
than my. This implies’ that (W) or F = /Y, (F'F;) has to be much
suppressed relative to my,;. In order to discuss these dynamical issues, it
will be useful to illustrate the results with an example. We will then see
how the results generalize to other compactifications as well.

4.1. M theory compactifications on G2 manifolds

Compactifications of 11D M theory to four dimensions preserve NV = 1
supersymmetry if the metric on the seven extra dimensions has holonomy
group equal to the exceptional Lie group G [12].

Phenomenologically relevant compactifications with non-abelian gauge
symmetry and chiral fermions can only arise from G5 manifolds endowed
with special kinds of singularities. In particular, non-abelian gauge fields
are localized along three-dimensional submanifolds inside the internal space
[13] while chiral fermions are supported at points in the extra dimensions
where there are conical singularities of particular kinds [14]. The gauge
fields and chiral fermions of course also propagate in the four large space-
time dimensions. Although many examples of smooth G2 manifolds have
been constructed [15], an explicit construction of compact G2 manifolds
with all the singularities required to give rise to phenomenologically rele-
vant solutions has proven so far to be too challenging technically, though
many such manifolds are strongly believed to exist. “String dualities” im-
ply the existence of many examples: for instance, the duality between M
theory and heterotic string and Type ITA compactifications. We will thus
assume that singular G5 manifolds supporting non-abelian gauge theories
and chiral fermions exist and use the fact that enough is known about
the K’s, W’s and f’s which arise from G3-manifolds in order to proceed.
Many properties of the four-dimensional A/ = 1 theory relevant for particle
physics can be derived from a Kaluza-Klein reduction of 11D supergravity
to four dimensions, which is the low energy limit of M theory.

At low energies, M theory is described by eleven dimensional supergrav-
ity theory which contains a metric, a 3-form gauge field (C) and a gravitino.
We will not be interested in solutions in which there is a non-trivial flux

fA large and negative K corresponds to a Kaluza-Klein scale much less than Mgy .
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for the field strength of C' along the extra dimensions: although fluxes can
stabilize moduli [16], they do not generate a hierarchy between the Planck
scale and the gravitino mass. We will see in Section 4.2 that unlike M
theory, fluxes do play an important role in Type IIB string theory.

In M theory compactifications on a Go-manifold, all the moduli fields
are geometric — they arise as massless fluctuations of the metric of the
extra dimensions [17]. Since these moduli s; are real scalar fields®, in order
to reside in the complex chiral supermultiplets required by supersymmetry,
additional real scalar fields must also be present. These additional fields
are the axions a; which arise as the harmonic fluctuations of C' along the
Go-manifold. The moduli and axions pair up to form complex scalar fields
which are the lowest components of chiral superfields ®; in the effective 4d
supergravity theory:

®; = a; + is; + fermion terms. (3)

4.1.1. Moduli and scales in M theory on a Ga-manifold

For future reference this subsection summarizes the relations between the
Go-moduli, the volume of the extra dimensions and the gauge couplings.
More precise relations are given in [18]. The volume V7 of a Gg-manifold
is a homogeneous function of the moduli of degree 7/3. For instance, if
the volume of a G5 manifold is dominated by a single modulus field, then
Vi ~ s7/3. Roughly speaking, it is useful to think of the moduli vevs as
parametrizing the volumes of a set of independent three-dimensional sub-
manifolds of the Go-manifold, in units of the 11d Planck length. So, if V7
is dominated by a single term, we think of the volume of the G2-manifold
as being dominated by a single three-cycle @ with volume Vol(Q) ~ s.
Non-Abelian gauge fields are localized along three-dimensional submani-
folds, hence the effective gauge coupling g%, is related to the volume of
g%’}rw =1/a="Vol(Q). Consider then a Gy-manifold
such that the three-manifold which supports the Standard Model (unified)
gauge group dominates V7. We then have that

the three-manifold as

Vi~

o~ (25)7/9 ()
dqur
where we use the fact that these volumes are understood to be given at the

GUT scale and that agyr ~ 1/25 with the MSSM field content. We then

&The subscripts i, j, k, .. are used to enumerate the moduli fields and their superpartners.
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further infer that
M2
m2y ~ Ve M7 = Tl; (5)
dcur
and, because the volume of @) is given by 1/agyr that

Mgk ~ Mgur ~ Muaé/ST. (6)

Thus, a value of agur ~ 1/25 gives a set of relations consistent with
Newtons constant, Mgyt ~ 2x10%GeV and My, > Mgyr. The latter fact
is required for validity of the low energy effective field theory approximation.

More generally if we assume that the Ga-manifold is more or less
isotropic then we expect the vevs of all moduli to be of the same order,
and hence the above scalings with agyr will still hold true. We now return
to discuss the potential for the moduli in more detail.

4.1.2. Hierarchies are generic in M theory
All the moduli ®; of M theory are invariant under shift symmetries [17]:
O, — ;4 ¢ (7)

with ¢; being an arbitrary constant.The origin of the shift symmetries can
be understood as follows. The real parts of the moduli ®;, denoted by
a; in (3), arise from the Kaluza-Klein (KK) reduction of the three-form
(antisymmetric tensor field with three indices) in eleven dimensions to four
dimensions. The underlying gauge symmetry of this three-form in higher
dimensions reduces to shift symmetries for the individual axions in four
dimensions: a; — a;j + ¢;. With A/ = 1 supersymmetry, the a; combine
with the modes arising from the KK reduction of the metric in eleven
dimensions to form chiral superfields whose scalar components are ®;, and
which are invariant under (7).

The above symmetries imply that the effective superpotential in four
dimensions, W, which must be a holomorphic function of the ®;, does not
contain ‘perturbative’ terms (i.e. terms polynomial in the ®’s). Hence the
perturbative superpotential for the moduli vanishes exactly. This is a key
point which distinguishes M theory on a G'o-manifold from other compact-
ifications such as Type IIB and heterotic string theories on a Calabi-Yau
manifold. For instance, Calabi-Yau manifolds generically have complex
structure moduli; since these moduli are already complex fields, the corre-
sponding supermultiplets do not have a shift symmetry and, consequently,
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the superpotential can contain perturbative contributions dependent on
these fields.

However, since axionic shift symmetries are generically broken by non-
perturbative effects the superpotential will not be zero in general. For
instance, if there is an asymptotically free gauge interaction present then
the corresponding strong gauge dynamics at low energies will necessarily
generate a non-perturbative superpotential proportional to (the cube of)

the dynamically generated strong coupling scale (A): W ~ A? ~ e% mf’)l
(in this case 1/b is the one loop [-function coefficient of the hidden sector
gauge theory and a is its fine-structure constant). More generally, ‘pure’
membrane instantons can generate terms in the superpotential [19]. In fact,
every term in the superpotential can be associated with a 3-cycle and will
be proportional to e’ ®i. Here, the N7 are the bs(X) integers specifying
the homology of the 3-cycle and b is a number characterising the given
instanton contribution. Obviously, different instanton contributions will
have different values for b and Nj.

For solutions of M theory for which the 4d supergravity approxima-
tion is valid, the KK scale is below the 11d Planck scale Mugand all of

M

these non-perturbative contributions, which are of order e M?i;, are ex-
ponentially small. Thus, on general grounds, one expects M theory com-
pactifications without flux to generate a very small expectation value for
W, which in turn implies an exponential hierarchy between mg/, and the
Planck scale my,;. Thus, we see that M theory on a Gs-manifold without
flux is an ideal framework for addressing the hierarchy problem. The key
questions then become: a) can the moduli potential generated by strong
hidden sector gauge dynamics also stabilize the moduli? b) does this poten-
tial spontaneously break supersymmetry? These questions were answered
affirmatively in [20, 21], thereby providing a proof of the ‘lore’ that hidden
sector strong dynamics could i) generate the hierarchy between the Planck
and weak scale, ii) stabilize the moduli fields and iii) spontaneously break

supersymmetry.

It is further important to note that, in a region of field space where
the supergravity approximation is valid, volumes are larger than one in 11d
units, so the contributions to the potential from strong gauge dynamics
is exponentially larger than the purely membrane instanton effects; this is
because in the former case b is proportional to é where d is a one-loop
beta-function coefficient — typically an integer larger than unity — whereas

such a ‘suppression’ of b is not present for membrane instantons. Hence,
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if strong gauge dynamics is present at low energies it will dominate the
moduli potential.

We will now review the results of [20-22] in more detail. The simplest
possibility is to consider a Ga-manifold with a single hidden sector inter-
action which becomes strongly coupled at some scale much smaller than
Mg k. For instance, this could be given by SU(N) super Yang-Mills the-
ory with no light charged matter. In terms of the supergravity quantities,
the inverse gauge coupling a;l can be identified with the imaginary part
of the gauge kinetic function for the hidden sector gauge theory (f3,), while
the strong coupling scale A can be identified with the non-perturbative
superpotential alluded to above [17]:

27

WA =ew fh’mf;l. (8)

In M theory, the Kéhler potential K = —3log(V7) [23]. Substituting
K, W, fr, into the formula for the supergravity potential and minimising
indeed shows formally that all the moduli can be stabilized in this case.
However, the vacuum is located in a region where the supergravity approx-
imation is not valid since the the 3-cycle volume is negative.

Following this, we considered two hidden sector gauge theories — both
super Yang-Mills without light charged matter. There are thus two domi-
nant terms in the superpotential, characterised by two integers P and @,
the one-loop B-function coefficients.

2mi

W:A1€P

fr1 +A2625i T2 (9)

where we introduced two constant normalizations A; and A; and set
mpy = 1. The normalizations are constant in M theory due to the ax-
ionic shift symmetries. Further simplification arises by assuming that fj;
and fpo are proportional to one another, though the more general case was
analyzed in [24]. We will describe the results of the simplified cases here
for ease of exposition, thus we set fr1 = fro = f = Zfil N ®;, since the
proportionality constant can be absorbed into re-defining Q. Here ¢ runs
over all the N moduli in general and N* are positive integers.

With two strong hidden sector interactions the supergravity potential
has many stable vacua in which all the moduli are stabilized. The fact
that there are many vacua should not come as a surprise since a suffi-
ciently generic potential for N fields will possess of order 2% critical points.
Moreover many of these vacua are in regions where the supergravity ap-
proximation is applicable and in these vacua the hidden sector coupling
ap, << 1. One can (semi-analytically) study the potential close to the min-
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ima in an expansion in «ay,. Let us consider the supersymmetric (anti-de
Sitter) vacuum?".
Here, one finds

1 1 PQ A,Q
— = 1 10
an  2rQ—P Og(AgP (10)
and the (dimensionless) moduli vevs are fixed to be of order
11
i~ i=1,2,.. N. 11
S N (11)

The physical meaning of these moduli vevs is that these are the volumes
(in units of the inverse eleven dimensional Planck scale) of various three-
manifolds inside the seven-dimensional GG manifold. They are related to
moduli fields §; in four dimensions with dimension one, via §; = my; s;. We
can now calculate the gravitino mass as a function of P, Q) and ay up to
numerical constants:

Mz xp W gt Q- Pl )

M) my, Vi /2 Q

so that a value of o, ~ 1/25 with Ay = 1,Q = 8, P = 7 for example, gives
ms/9 ~ 100 TeV. Note that ap ~ 1/25 can arise from values of P and Q
< 10 and normalization constants such that the logarithm in the formula
for ay, is > 1.

Another requirement for a realistic compactification is a de Sitter (dS)
vacuum i.e. positive cosmological constant. It is well known that de Sitter
vacua do not arise in the classical limit of string/M theory [25]. A review
of de Sitter space in string/M theory is given in [26]. One can interpret this
result as “the classical potential for moduli fields does not possess de Sitter
vacua”’. In the examples studied above, though the potential is generated
through quantum effects, it is exponentially close to the classical limit in the
sense that all terms in the potential are exponentially small. Hence, it is not
surprising that all of the vacua found had negative cosmological constant.
Therefore, we expect that in a would be de Sitter vacuum that the vacuum
energy is dominated by a field which is not a modulus of the G3-manifold.
In [21, 22], it was shown that including matter fields charged under the
hidden sector gauge symmetries leads straightforwardly to a vacuum with
a positive cosmological constant in which the dominant contribution to the
vacuum energy arises from the F-term of a hidden matter field. This turns

hThe formulae for the non-supersymmetric vacua are very similar
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out to be quite relevant for many phenomenological features, as will be seen
below.

Finally, it is important to mention the stabilization of axions, which are
the imaginary parts of the complex moduli fields. The moduli stabilization
mechanism stabilizes all the moduli but gives a mass of O(ms/3) to only
one combination of axions. The masses of the other axions are generated by
higher order instanton effects which make them exponentially suppressed
relative to mg /o [27]. This is crucial for a solution to the strong CP-problem
discussed in Section 8.2.

4.2. Type IIB and other compactifications

Here we consider moduli stabilization and supersymmetry breaking in other
branches of string theory. We will discuss Type IIB compactifications here
as progress towards phenomenologically viable moduli stabilization was first
made for these compactifications [28-30], stimulating a lot of activity [31—
34]. The Type IIB compactifications are also better understood from a
technical point of view and compactification manifolds with the required
properties to stabilize moduli can be explicitly constructed. We will also see
that the moduli stabilization mechanism described above in the M theory
case can be essentially carried over to the Type IIB case with minimal
differences. Since it is possible to construct explicit compactifications in
Type 1IB satisfying the criteria for moduli stabilization, this proves the
robustness of the physical ideas which are crucial in stabilizing all moduli
in M theory and Type IIB compactifications. At the end, we will briefly
comment on Type ITA and Heterotic compactifications.

In Type IIB compactifications to four dimensions, non-abelian gauge
theories can arise on the worldvolumes of D-branes — such as D7-branes
wrapping a four-dimensional manifold inside the six-dimensional internal
manifold. Chiral fermions arise from open strings at the intersection of two
D7-branes [35]. There are three different kinds of moduli in these compacti-
fications — complex structure, dilaton and Kéhler moduli. Unlike M theory
compactifications where all moduli were invariant under a shift symmetry,
in this case only the Kédhler moduli are invariant. Therefore, the pertur-
bative superpotential can depend upon the complex structure and dilaton.
It is possible to stabilize these moduli supersymmetrically at a high scale
(~ Mgxk) by an appropriate choice of fluxes [6, 30]. However, the Kahler
moduli are not stabilized by this mechanism. Non-perturbative effects can
stabilize the Kahler moduli just as in the M theory case. Therefore, these
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moduli are generically much less massive than the complex structure mod-
uli. It is convenient to first integrate out the heavier moduli, which gives a
constant contribution to the superpotential — Wy. This has to be combined
with the non-perturbative contributions to stabilize the Kéhler moduli. As
explained earlier, in order to solve the Hierarchy problem the value of the
superpotential in the vacuum must be much smaller than mf,l (if one does
not want the extra dimensions to be extremely large). Hence, Wy must be
very small (or zero). This can be arranged by a proper choice of fluxes in
Type IIB, but involves some tuning [36, 37]. Note that in the M theory case
Wy = 0 precisely, so the entire superpotential is non-perturbative naturally.

Vacua also exist in Type IIB theory with Wy = O(1). In these vacua, if
one includes the leading perturbative corrections to the Kéahler potential,
the moduli are stabilized at large values in which the volume of the Calabi-
Yau manifold is exponentially large. This is the so-called LARGE Volume
Scenario (LVS) and was developed in [32, 38]. LVS vacua exist partly
because of a balancing between the perturbative and non-perturbative con-
tributions to the potential which give rise to an exponentially large volume
for the extra dimensions or, equivalently, an intermediate string scale. One
obtains a hierarchy between mg,, and m,, precisely because of the exponen-
tially large volume — which corresponds to a large and negative expectation
value for the Kéhler potential. A variety of different possible phenomeno-
logical scenarios are possible in the LVS scheme resulting in different mass
hierarchies between supersymmetric particles. The existence of LVS vacua
is also closely tied to the fact that, in the classical limit, the low energy ef-
fective supergravity theory describing Type IIB compactifications exhibits
what is called “no-scale structure”. This implies, among other things, that
the vacua of the classical potential have zero vacuum energy and is the
reason why the perturbative corrections have such a significant effect when
Wy is not tuned to be small. With a lower string scale, LVS vacua do not
generically give rise to grand unification at around 10'°GeV. For this and
related reasons, some of the generic predictions we make may not always
apply to LVS solutions.

A generic Type IIB compactification has many Ké&hler moduli in gen-
eral, but most of the moduli stabilization mechanisms in many explicit
examples work only for a few Kéhler moduli. There is however one robust
mechanism, valid for small Wy, which stabilizes all Kéhler moduli in a
compactification with many K&hler moduli with minimal ingredients, and
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is inspired by results obtained in M theory.! It was shown in [39] that if
the non-perturbative superpotential depends on a linear combination of all
Kahler moduli, it is possible to stabilize all Kéhler moduli as long as the
four-manifold supporting the instanton or gaugino condensate satisfies a
certain mathematical property, namely it is a “rigid ample divisor”. Thus,
the qualitative result of stabilizing all moduli with low-scale supersymme-
try can be obtained in this class of compactifications as well. Explicit
Calabi-Yau manifolds satisfying the above criteria were constructed in [39].
These compactifications share the interesting feature with the M theory
case that all but one axion are stabilized with exponentially suppressed
masses relative to ms,p, which is crucial for solving the strong-CP prob-
lem. Finally, in order to generate a vacuum with positive cosmological
constant, vacuum energy contributions from non-moduli sources must be
included, as in M theory. In Type IIB compactifications, in addition to
possible F-term contribution arising from a hidden matter sector as in the
M theory [40], there could be contributions arising from D-terms [41] or
from explicit supersymmetry-breaking effects as well [30]. However, many
consequences for phenomenology do not depend on the details as long as
certain simple conditions are satsified, as we will explain in the following
subsection.

Finally, let us briefly comment on moduli stabilization in Type ITA and
Heterotic compactifications. In these cases, fluxes can stabilize some moduli
[42—44] but generically fail to generate the hierarchy. However, a better
understanding of these compactifications may eventually lead to progress
in demonstrating the existence of vacua with low energy supersymmetry in
particular classes, see for example [45, 46].

5. Moduli Spectra — Consequences

In this section, we provide some insight into the spectrum of the moduli
in general, and the lightest modulus mass in particular, relative to the
gravitino mass. We first explain a general result about the lightest modulus
mass which works in all cases satisfying the supergravity approximation
and is independent of the details of moduli stabilization. This result was
derived in [4], building on the work of [47]. The basic argument is as

I Another possible approach to stabilize more than one Kihler moduli in an LVS-like
scenario is to use a diagonal del-Pezzo divisor to stabilize the overall volume. The
remaining Kéhler moduli are stabilized by a combination of D-term constraints and
string loop corrections [34].
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follows. One considers the mass-matrix M? for all the scalar fields in the
true dS vacuum with broken supersymmetry, which is positive definite by
assumption. Then, one can use the theorem that its smallest eigenvalue
M2 . is smaller than ¢ M2¢ for any unit vector £&. Then, choosing a
direction in scalar field space which corresponds to that of the sGoldstino
(the superpartner of the Goldstino), one can show that:

Ir|

MZo=md, (24— 13
min m3/2 + mIQ)l ( )
where r is the “holomorphic sectional curvature” in the space of scalar
fields [47], evaluated in the sGoldstino directions. Now, if the only scales

in the problem are set by my;, then —r = O(1). For example, this is
l

the case in M theory compactiﬁcationspwhere all the moduli arise from
the metric and the only scale is set by the 11D planck scale M, which
determines both my; and mgz/; in terms of dimensionless constants after
moduli stabilization. In this case it can be shown that r is of order mgl.
This gives the result:

which we set out to prove. In other string compactifications, however, there
are different kinds of moduli, such as the dilaton, complex structure and
Kahler moduli. We focus on the Type IIB case for concreteness. In this
case, the Kéhler moduli are similar to the moduli in M theory, but it is
possible in general that additional scales A < my may be present for the
sGoldstino, due to the existence of other kinds of moduli. In this case, |r|

2 2
is enhanced by the ratio 72‘;1, so that 71;' =0(1) (%) [4]. In these cases,
pl

the general supergravity result, although correct, does not provide a useful
bound.

However, in realistic cases where all the moduli are stabilized by the
mechanism explained in sections 4.1.2 and 4.2, quite remarkably the result
(14) holds even in the presence of additional scales. A more detailed deriva-
tion is carried out in [72]. Thus, (14) seems to be a rather robust result in
realistic compactifications with stabilized moduli.

5.1. Cosmological consequences

The above result that the lightest modulus mass is close to mg,, has a pro-
found impact on pre-BBN cosmology. Current cosmological data can only
directly constrain the early Universe when it is colder than about a MeV,
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which is the onset of Big-Bang Nucleosynthesis (BBN). The most popular
assumption for cosmological history before BBN is a “thermal” history, i.e.
in which the early Universe starts out with a radiation dominated phase
due to reheating after inflation. In this case, the early Universe consists of
a plasma of relativistic particles at a very high temperature. The results
obtained above, however, question this assumption strongly under very gen-
eral conditions. For a Hubble parameter during inflation which is bigger
than about 20 TeV J, the moduli are displaced from their late-time min-
ima during the early Universe, they start oscillating about their late-time
minima when the Hubble parameter becomes comparable to their masses.
Since they redshift like matter, they quickly dominate the energy density
of the Universe giving rise to a matter-dominated phase. As mentioned
earlier, the moduli interact gravitationally with all matter and hence have
very long lifetimes. Requiring that the moduli decay reheats the Universe
to temperatures above a few MeV thus puts a lower bound on their mass
to be about 20 TeV. This gives rise to what is known as a “non-thermal”
cosmological history. The related gravitino problem is also solved in the
following manner. The decay of the lightest modulus produces a lot of en-
tropy, so the initial thermal abundance of the gravitinos is diluted away.
Furthermore, the lightest modulus is lighter than 2m3/, in most exam-
ples [22, 39], so that its branching ratio to gravitinos is also kinematically
forbidden/suppressed [48], and a large abundance of gravitinos is not re-
generated.

A non-thermal history of the Universe before BBN has very important
implications for many cosmological observables, and also for the origin and
abundance of Dark Matter (DM). Before moving on to issues related to DM
discussed in the next section in detail, we comment on possible cosmological
observables which follow from the existence of a non-thermal cosmological
history. One such observable could be the detection of gravitational waves
produced during inflation, as pointed out in [49]. Another observable is
related to the growth of substructures in the early Universe. As shown
in [50], the existence of a matter-dominated phase in the pre-BBN Universe
leads to a significantly different pattern in the growth of structure. More
studies are required to extract possible observable consequences.

IThis is part of our set of assumptions, which seems quite natural. See Section 3.
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5.2. Range of mg/s

We saw that there is a lower bound on the gravitino mass of around 20
TeV from cosmological constraints. A gravitino mass around this value can
also be obtained from realistic compactifications, as pointed out in [21, 22].
Is there also an upper bound on m3/, consistent with experimental con-
straints? The answer is yes for the following reason. As will be seen
later, axions arising in these string compactifications naturally have a relic
abundance comparable to the observed DM abundance. Moreover, the
axion relic abundance is proportional to a positive power of mg3/, and nat-
urally gives rise to an O(1) fraction of DM with minimal tuning only when
mg/p S 100 TeV [27], so one expects an upper bound on mg/, of around
100 TeV. We discuss these issues related to dark matter in more detail the
following section. A point worth noting is that the upper limit on ms/o
arises from phenomenological input rather than theoretical constraints. On
the other hand, for the lower bound, in addition to the phenomenological
requirement above, there is also a theoretical argument [22].

6. Particle Phenomenology

We now discuss important aspects of the broad phenomenology arising in
the setup considered. We will elaborate on general features of the superpart-
ner spectra discussed briefly in previous sections, followed by a discussion
of aspects of electroweak symmetry breaking, and the supersymmetric fla-
vor and CP-problems. As discussed in Section 2, within the general setup
considered, supersymmetry breaking in the hidden sector must be mediated
to the visible sector by gravitational interactions, since otherwise there is
a serious moduli problem. Thus, the gravitino mass sets the scale of all
superpartners so one generically expects all the supersymmetry breaking
mass parameters — the scalar masses, the trilinear parameters, and the
gaugino masses to be O(mg/,). We will now consider generic features of
these parameters and the resulting consequences below.

6.1. Scalar mass-squared and trilinear parameters

The expression for the soft scalar masses in N' = 1 supergravity coupled to
matter is given by [51]:

m3g = m3,Kas —Cag (15)
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where Kgp is the Kihler metric for the matter fields o and 3, and
Tap ~ F'FI3:0;Ksp with F' as the F-term for the modulus or hidden
matter field labelled by i. Here my; has been set to unity. The precise
expression for 'z can be found in [51]. In this basis the kinetic terms for
the visible matter scalars are not canonical since Kyp is non-trivial. To go
to the canonically normalized basis, one does a unitary transformation U
to make the Kihler metric diagonal, (UT K U)ap = IA(ado;B? and then does
an appropriate rescaling for each field labelled by « to scale away the K,.
In the canonical basis, the mass-squared for the visible matter scalars is
denoted by mé 5 and is given by:

1 1
m2s =m2ap — | —=UT—=U| . (16)
g VE VK )

Since T'a5 depends on the derivatives of Ka3, the second term in (16) is in
general not proportional to d53. Both f(ag and I'sg, however, depend on
the values of the stabilized moduli, and are generically O(1) in string or
11D units. Hence, this gives rise to

g = O(1)m3 5. (17)

A similar analysis for the trilinears gives flam = O(1) mg/ in the canoni-
cally normalized basis.

We have seen that scalar masses and trilinears are generically O(1) ms /2
in a general supergravity theory. Although phenomenological models have
been considered in which the mass-squared parameters above are parametri-
cally separated from mg,, and/or each other, it is very hard to realize these
within phenomenologically realistic string/M theory compactifications. In
M theory compactifications with no background closed string fluxes turned
on, sequestering does not seem to be possible [22]. The situation in Type
IIB string compactifications is more subtle. With partial moduli stabiliza-
tion, it was argued that sequestering may be possible in the presence of
strong warping [52], or due to the visible sector being localized in the extra
dimensions [53]. However,after taking into account the stabilization of all
moduli, there arise couplings between the moduli and the visible matter sec-
tor in the superpotential which do not allow for phenomenologically viable
sequestering® [54]. Thus, we conclude that both scalar masses and trilin-
ear parameters are generically of O(mg/;) in viable examples. In the M
theory and Type IIB moduli stabilization mechanisms considered, one can
K«

sort-of-sequestering”, defined in [54], may still be possible but that does not help.
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go much further, as one can compute K &g, 'ap in terms of the microscopic
parameters. Moreover, these functions satisfy homogeneity properties at
leading order in supergravity, and it can be shown that [22]:

Tap < Kgp + higher order corrections. (18)

If these higher order corrections are small, as will be assumed in the fol-
lowing, then in the un-normalized basis one has:

7 (miiree)Q ~

2 2 /2
mly~m?, [1—-—L2 | Kag
g / ( 3 m§/2

~ mg/z K@@H (19)

which gives rise to the following in the canonically normalized basis:

iy ), as (20)

since (m{5)? < m3 , for these compactifications as will be shown below,

and in the second line we have written the mass-squared matrix for the
sfermion fields in the canonically normalized basis. Thus, scalar masses are
very close to mg/, within the framework with stabilized moduli. A similar
statement can be made for trilinears [22].

6.2. Flavor and CP

The above results have implications for flavor and CP issues in the beyond-
the-SM (superpartner) sector. Note that this issue is distinct from the origin
and pattern of the quark and lepton Yukawa couplings in the Standard
Model. That still remains a mystery, although progress has been made in
understanding at least some of the issues involved from a top-down point
of view (7, 8].

It is well known that absent any underlying structure, gravity mediation
models generically lead to too large predictions for flavor and CP-violating
observables. However, within the context of an underlying supersymmetry
breaking mechanism arising in string theory, additional underlying struc-
tures, which help shed more light on these issues, are often present. One
possibility is that the underlying string compactification preserves flavor
symmetries which could effectively suppress flavor and CP-violation [96].
Another possibility arises from the structure of the underlying hidden sec-
tor and moduli dynamics associated with supersymmetry breaking and its
mediation to the visible sector. We will focus on the latter as this is more
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directly connected to the physics of moduli stabilization. Also, for concrete-
ness, we will focus on the M theory case as these issues have been studied
in detail in this context. However, we expect the qualitative results to hold
for other classes of compactifications as well, such as the class of Type IIB
compactifications described in Section 4.2.

As mentioned above, within realistic moduli stabilization mechanisms
as described in Section 4, f(&g satisfies homogeneity properties at leading
order that are broken by higher order derivative corrections. We assume
that these higher order corrections are either small and/or have approx-
imately the same flavor structure as that for the leading order [22], see
alsoNthe discussion in Section 6.1 above Eq. (19). Then, I';; is proportional
to Kj; to a good approximation. This gives rise to approximately flavor-
diagonal and universal soft mass-squared matrices, as shown in [22]. Note,
however, that this is only true at the scale where the boundary conditions
for the RG evolution are imposed, in this case the unification scale. RG
effects and rotation to the super-CKM basis in general introduce a small
amount of flavor violation. This can be parametrized by the quantities :

52
(Oxv)ij = —= (mXY)fj : (21)
V(ikey )i (Miy )i
Here X,Y € {L, R} and a hat denotes a matrix in the super-CKM basis.
The moduli stabilization mechanism discussed in Sections 4.1 and 4.2
also has an important consequence for the supersymmetric (weak) CP prob-
lem. An important feature of the moduli stabilization mechanism is that
it gives rise to a real superpotential in the vacuum at leading order, i.e. it
does not contain any CP violating phases. This has important consequences
for CP violation in the flavor diagonal and off-diagonal sector as we will
see. The reason is as follows. As explained in Section 5, at leading order
the potential stabilizes all the real parts of the complex moduli but only
stabilizes a few axions (the imaginary part of the moduli). For example,
for the case considered in detail in Section 5, there are two terms in the
superpotential at leading order. Then, it can be shown that one axionic
combination ¢ is stabilized such that cos t = —1, implying that the terms in
the superpotential align with the same phase (apart from a sign) [27, 55].
Since the overall phase of the superpotential can be rotated away and is
not observable, this means that the superpotential in the vacuum is real
at leading order. As will be seen in Section 8.2, all remaining axions are
stabilized by effects by other non-perturbative terms in the superpotential



Compactified String Theories 299

which are exponentially suppressed relative to the leading terms', making
them exponentially lighter than the gravitino mass and hence solve the
strong CP-problem. The same also implies that once these remaining ax-
ions are stabilized, there may be terms in the superpotential with different
phases, however since these terms are exponentially suppressed relative to
the leading terms, they can be neglected to an excellent approximation.
It is worth emphasizing that the solutions to both the weak and strong CP
problems have a common origin.

Using the above, one can show that the soft supersymmetry breaking
parameters in the Lagrangian are real at the unification scale to an excellent
approximation [55]. This implies that in particular the gaugino masses and
reduced trilinears Afj = flfj / Yl’; are real as well. Using the homogeneity
properties of IN(;j, it is possible to show that Afj is roughly proportional to
Yukawa couplings at the unification scale. Again, RG effects and rotation
to the super-CKM basis introduce CP phases in the trilinear parameters in
both the flavor-diagonal and off-diagonal sector. The most stringent con-
straints arise from observables like e, Re(€’/€) and electric dipole moments
(EDMs) [56]. CP-violation in the flavor off-diagonal sector affects observ-
ables like ex mainly through chirality-conserving interactions, while that
in the flavor diagonal sector affects EDMs through chirality-flipping inter-
actions. The real part of €’/e gets dominant contributions from chirality-
flipping flavor-violating effects such as (65,r)12 and (drr)12. Utilizing the
properties mentioned above, the contributions to all the above flavor and
CP-violating observables were computed in detail in [55, 56], and it was
found that all such constraints are satisfied with hierachical Yukawa cou-
plings, with scalar masses and trilinears = 30 TeV, and with gaugino masses
< TeV. Predictions were also made for various EDM measurements in [55].
In Section 7.2, we discuss possible experiments at the precision frontier
which could test and constrain the framework.

Note that there is a qualitative difference between the electron and
hadronic EDMs. The former is virtually vanishing in the SM, but the
latter does receive a contribution from the 6 angle in QCD, which in fact is
the origin of the strong CP-problem. Therefore, once EDMs are observed
for the electron, neutron, mercury, etc., it will be important to separate the
supersymmetric (BSM) contribution from the contributions proportional
to . We will show in Section 8.2 that there is a natural solution to the

IThis can happen quite naturally since the arguments of these exponential terms are
essentially given by the volume of sub-manifolds. So, if these volumes are just O(1)
larger than those in the leading exponential, these terms will be highly suppressed.
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strong CP problem within the string/M theory framework, and the value
of # is in principle determined by microscopic constants which also affect
astrophysical observables. So, this gives rise to an extremely interesting
(albeit indirect) connection between astrophysics and precision observables,
which should be explored further.

6.3. Gaugino masses

What about gaugino masses? We will work within the framework of grav-
ity mediated supersymmetry breaking, which is preferred due to BBN con-
straints as explained in Section 3. One could try to suppress gaugino masses
relative to mg/o by a symmetry (R-symmetry in this case). However, since
R-symmetry is broken by the rather large gravitino mass (> O(TeV)) in
realistic string compactifications, it is not possible to suppress them ar-
bitrarily. However, they can still be somewhat suppressed relative to the
gravitino mass by the dynamics of moduli stabilization and supersymme-
try breaking. This can be understood as follows. In many mechanisms of
moduli stabilization, the geometric moduli which appear in the gauge ki-
netic function, TP, are stabilized “close” to a supersymmetric point. The
dominant supersymmetry breaking contributions which give rise to a dS
vacuum are provided by other sources. Hence, the gaugino masses, which
are proportional to the F-terms for T*, are suppressed relative to the
gravitino mass in these situations. This is true for the case of M theory
compactifications [20-22]. In particular, using the results for moduli stabi-
lization in Section 4.1.2 leads to a rather simple expression for the gaugino
masses at tree level for phenomenologically viable cases:

N .
FZ 61 fm's
Mtree —
1/2 ; 20 Tm(fois)

N —%mg/z(l—k(?(ah)) (22)

where F; is the susy breaking F-term for moduli ¢ (the sum is over all N
moduli), and fy;s is the visible sector gauge kinetic function which is an
integer linear combination of all moduli, f,;s = Efv N's;. ap and Q are
defined in Section 4.1.2, with the former related to the hidden sector gauge
coupling ay, = %, and @ being an integer related to the rank of the hidden
gauge group. Note that the result is completely independent of the number
of moduli N as well as the integer coefficients N?! As explained above,

since fy;s only depends on the moduli and not on the hidden field which
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is the dominant source of supersymmetry breaking, gaugino masses do not
receive contributions from this dominant source and are hence suppressed
relative to the gravitino mass. At one-loop, there are anomaly mediated
contributions to the gaugino masses which turn out to be roughly of the
same order [20-22], hence they should be included as well.

Suppressed gaugino masses also arise in many classes of Type IIB com-
pactifications [30, 39, 57]. However, within Type IIB compactifications, it
could also happen that the F-terms for 7% are not suppressed, if, for ex-
ample, they are stabilized by string-loop effects or perturbative effects in the
Kahler potential [58]. In these cases, the gaugino masses are expected to be
of O(mg/). However, as will be explained in Section 8, in this case the LSP
abundance severely overcloses the Universe, so these are ruled out unless
R-parity is sufficiently violated. Furthermore, we will argue in Section 6.4
below that constraints from neutrino masses disfavor any form of R-parity
violation in string/M theory frameworks with SU(5) GUTs.™ Therefore,
only frameworks with suppressed gaugino masses will be considered.

6.4. pu and R-parity conservation

It is non-trivial to obtain a phenomenologically viable 1 parameter in string
theory. The phenomenologically viable value of p in the canonically nor-
malized basis of fields is around the TeV scale. It receives contributions
both from supersymmetric terms in the superpotential and supersymmetry
breaking terms arising from the Kéhler potential. The natural options are,
therefore, to have an approximate symmetry which suppresses the coeffi-
cient of the the holomorphic term H, H; term in the superpotential by a
large amount relative to the string/Planck scale (such as by exponential
effects) — the Kim-Nilles/Casas-Munoz mechanism, or forbid the superpo-
tential contribution altogether by a symmetry and generate a viable p term
by Kahler potential effects — the Giudice-Masiero mechanism. However,
the symmetry has to be such that large masses for color triplet fields are
allowed. Recall that the spectrum is assumed to arise from a GUT, hence
the Higgs fields are part of a multiplet which also includes color triplet
fields. These color triplet fields must get a large mass 2 Mgy in order to
not mediate proton decay at observably fast rates, which is the well-known
“doublet-triplet splitting problem”. Different string/M theory solutions
can contain different solutions to the doublet-triplet splitting owing to the
different origin of matter and gauge degrees of freedom as well as differences

MMany of the arguments can be generalized to other GUTs under certain conditions.
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in the underlying structure of these compactifications. We are interested
in those solutions which give rise to p < mg/5. See [59] for heterotic exam-
ples, [60] for perturbative Type ITA and IIB cases, [61] for F-theory and [62]
for M theory. In M theory compactifications one can further constrain p
by combining the requirements of moduli stabilization and the solution to
the doublet-triplet splitting problem proposed by Witten [63]. This generi-
cally gives rise to p ~ 0.1m3/9, but slightly smaller values may be possible
as well.

GUT frameworks arising within String/M theory that have a mecha-
nism for solving the doublet-triplet splitting and generating a phenomeno-
logically viable u (and Bpu), also have an important bearing on the issue
of R-parity violation. It was shown in [64] that in contrast to the more
model-dependent constraints on the proton lifetime, the limits on neutrino
masses provide a robust, stringent and complementary constraint on all
SU(5) GUT-based R-parity violating models. Furthermore, imposing the
neutrino mass bounds on models within this framework disfavors any R-
parity violation altogether [64]. This can be roughly described as follows.
In R-parity violating SU(5) GUT models with the above properties, it can
be shown that bilinear R-parity violation, through the term x LH,, + h.c.
in the superpotential, is always present. In addition, barring extreme fine-
tuning, x is generated at the same order as p unless R-parity violation is
forbidden by a symmetry. However, limits on neutrino masses impose an
upper bound on /u to be around 1072 even in the least stringent cases.
Therefore, these arguments suggest that R-parity should be conserved in
these classes of SU(5) GUT models. The same qualitative result holds for
minimal SO(10) GUT models within the above framework as well. For
more details, the reader is referred to [64].

6.5. The “Little” hierarchy

It is well known that electroweak symmetry is broken by RG effects in a nat-
ural manner in the MSSM once one imposes soft supersymmetry breaking
boundary conditions at around the unification scale. This is known as “ra-
diative electroweak symmetry breaking”. This is because the RG equation

for m%lu has a dependence on the top Yukawa coupling y; which is larger

than all other Yukawa couplings. Hence, it is natural for m%lu to be driven
to small or negative values, thereby destabilizing the point H, = Hy = 0
and giving rise to a Higgs vev. Thus, the higgs vev (or equivalently my)

becomes connected to the soft parameters and p.



Compactified String Theories 303

Although radiative EWSB is an extremely appealing feature of the
MSSM, it turns out that obtaining the correct value of the Z mass by
choosing O(1) values of soft parameters relative to a common scale Mo+
requires either a) mgopr ~ mz, or b) cancellation between soft parameters
(essentially m7, and p? when tan 3 is not small) of order m2, oo 1 Mot
is larger than my. The former option turns out to be incompatible with
direct constraints on superpartner masses as well as the Higgs mass bounds
from LEP, leaving the latter as the only option. This is the infamous “little
hierarchy” problem in the MSSM. Note that this is not just true for the
MSSM, the bounds on masses of new physics particles from direct produc-
tion as well as bounds from indirect electroweak precision data imply that
the problem is generically present in all other approaches to electroweak
symmetry breaking such as warped extra dimensional models, composite
higgs models, little higgs models, etc. and to a lesser extent even in weakly
coupled models with an extended matter sector such as the NMSSM.

Since the framework considered here assumes the MSSM matter and
gauge spectrum, the fact that the scalar superpartners are heavier than
around 220 TeV0 TeV would naively seem to suggest a much more severe
fine-tuning compared to MSSM models with scalar masses < TeV. However,
this turns out to be incorrect in models where p is also suppressed, as
we explain below. The basic reason is that in gravity mediation with no
sequestering of the visible sector fields relative to the hidden sector, which
seems to arise naturally within string theory solutions providing a solution
to the moduli problem, both scalar masses (My) and trilinears (Ag) are close
to each other, of O(mg/5). Since My and A appear in the RG equation for
the Higgs mass-squared parameter m%,u with opposite signs, this gives rise
to a near cancellation between the two terms, giving rise to a qu which
is naturally suppressed relative to mg /2 [65]. More concretely, m%,u at any
given scale t = log(Q/Qo), Qo being the unification scale, is given by:

mir, () = faro () MG — fa, (t) A3 + R(2). (23)

The quantities fuz, and fa, are determined by SM Yukawa couplings and
gauge couplings at leading order. R, on the other hand, is determined
primarily by the gluino mass parameter M3 and hence gives a negligible
contribution if My, Ag > M3, as is the case here. Then one finds that for
Mo ~ Ao =~ m3)2, fum, and fa, at the electroweak scale are naturally of
order 0.1 and also nearly cancel each other [65], implying that:

mi (Qewsg) ~ 1072 m3 y ~ TeV?. (24)



304 P. Kumar

Thus, in compactifications where u is “small’ (u? ~ 1072 m§/2) as for the
frameworks discussed in the previous section, the naive fine-tuning is sig-
nificantly reduced. For more details, please refer to [65]. Note that this
mechanism, dubbed the “Intersection-Point” in [65], is quite different from
the “Focus-point” region in the constrained MSSM [66], where Ay at the
unification scale is much smaller than the large soft mass parameters. When
p is “large”, i.e. of the same order as ms/s, the fine-tuning is quite severe
as expected.

Even for small 11, since m?; ~ TeV? rather than m% ~ 100 GeV?, some
degree of fine-tuning remains, at least from an electroweak scale point of
view, still remains. However, from a top-down point of view, two possibil-
ities exist. It is, of course, a possibility that a fine-tuning is intrinsically
present in Nature, but it is also possible that the fine-tuning is “apparent”
and is just a manifestation of our less-than-perfect understanding of the
underlying theory at the high scale. Finally, it is interesting to note that
in a different context it has been argued that essentially no physics would
change if the higgs vev, which is equivalent to mz, were several times larger
than the experimental value [67].

6.6. The Higgs mass

Within the Standard Model, the Higgs mass is just a parameter and can-
not be predicted. However, within a top-down framework of beyond-the-
Standard Model physics, it is computable in terms of microscopic parame-
ters. Within the framework considered, the Higgs mass can be computed,
rather remarkably, in terms of only a few parameters, if the matter and
gauge spectrum in the visible sector below the compactification scale is the
MSSM. The computation was first presented at the International String
Phenomenology Conference at the University of Wisconsin, Madison in
August 2011; a more detailed prediction appeared in [68]. It is remarkable
that the discovery of a Higgs boson by ATLAS and CMS near 125 GeV
is naturally consistent with the prediction of the Higgs mass within the
framework.

Since supersymmetric models require two Higgs doublets for anomaly
cancellation, by the “Higgs mass” we mean the mass of the lightest CP-
even neutral scalar in the Higgs sector. A remarkable fact about the Higgs
mass even in general supersymmetric theories is that an upper limit on M,
of order 2 My exists just from the requirement of validity of perturbation
theory up to the high scale of order 1016 GeV [69]. This is due to the
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fact that the Higgs mass at tree-level only depends on SM gauge couplings
(which have been measured), and possibly other Yukawa or gauge couplings
(which are bounded from above by perturbativity). However, in addition
to the gauge and matter spectrum, the precise value of the Higgs mass
depends crucially on radiative effects, which in turn depend on all the soft
parameters including the p and Bp parameters. Nevertheless, we will see
that for the framework considered the Higgs mass depends essentially on
two parameters — the overall scale m3/5, and the parameter tan 3 = Z—:
tan [ is correlated with p and Bp via electroweak symmetry breaking.

Since in the string/M theory frameworks above, scalar superpartner
masses are generically much larger than the electroweak scale and viable
models have gaugino masses which are < TeV, it is useful to integrate out
the scalars below their characteristic mass scale (= 30 TeV), and study the
effective theory consisting of the Standard Model particles, charginos and
neutralinos. As discussed earlier, higgsinos may or may not be suppressed
depending on the value of u, we consider both cases when computing the
Higgs mass. Note that all Higgs scalars except the lightest CP-even Higgs
h are quite heavy, with masses close to m3/3. Thus, we are in the so-called
“decoupling limit” of the two-Higgs doublet model. In this case, the Higgs
mixing angle® « is related to 3 as o = 3 — 7, and the lightest CP-even
Higgs behaves very close to the Higgs in the Standard Model.

The lightest CP-even Higgs mass, M}, is given by: Mj, = v/2 \v, where
A is the Higgs quartic coupling and v = 174 GeV is the Higgs vev. In
the MSSM, the quartic coupling is given by \g = % cos?(2f3) at tree
level®, which is small. Once the squarks, sleptons and heavy Higgs scalars
are integrated out around their mass-scale, this gives rise to a threshold
correction to the quartic coupling )\ at the scalar superpartner mass scale
Q = ymzmg,: AMQ) = Ao(Q) +A(Q)P. This quartic coupling can then be
RG evolved to the electroweak scale, where corrections arising from loops of
supersymmetric fermions at around the electroweak scale (more precisely
the M S scale m;), denoted by 6X, must be added as well. The lightest
Higgs mass M}, is thus given by:

My, = V20 ) Mmy) + 6 (my). (25)

Uy

The corrections 6\ and 6 also depend on tan 3 = - in general. For

“for its definition, please refer to Section 8.1 in [70].
°f3 is defined as g = tan_l(%) where v,, and vy are the vevs of the two Higgses in the

supersymmetric two-Higgs doublet model.
Pmg, ,mg, stand for the masses of the stop squarks.
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details on the Higgs mass computation, see [68] and references therein.
The computation in [68] used one-loop threshold corrections for dA(Q) and
SA(m;) and two-loop beta functions to RG evolve A from Q = N
to my. However, following the results of [71] it is possible to further refine
the result. In particular, it is possible to include two-loop threshold cor-
rections for dA(Q) and dA(m;) and three-loop beta functions to RG evolve
A from Q = /Mg, mg, to my. This analysis is being currently carried out
in [72]. The preliminary results are shown in Figure 1, and we gratefully
acknowledge Bob Zheng for providing the Figure.
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Fig. 1. The prediction for the Higgs mass for realistic string/M theory vacua
as described in the text, as a function of tan 8 for three different values of the
gravitino mass ms,2, and varying the theoretical and experimental inputs as
described below. For precise numbers and more details, see [68]. The central
band within the dashed curves for which scatter points are plotted corresponds
to m3z/o = 50 TeV. This band includes the total uncertainty in the Higgs mass
arising from the variation of three theoretical inputs at the unification scale, and
from those in the top mass m: and the SU(3) gauge coupling «s within the allowed
uncertainties. The innermost (white) band bounded by solid curves includes the
uncertainty in the Higgs mass for mg/o = 50 TeV only from theoretical inputs.
The upper (dark gray) band bounded by solid curves corresponds to the total
uncertainty in the Higgs mass for mg/, = 100 TeV while the lower (light gray)
band bounded by solid curves corresponds to that for mg/,, = 25 TeV.
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The Higgs mass prediction holds for all compactifications with an MSSM
matter and gauge spectrum below the compactification scale and with
scalars heavier than around 20 TeV and gaugino masses < TeV. In addition
to the dependence on tan 3, there is a mild dependence on the overall scale
mg/o which can vary from ~ 20 TeV to ~ 100 TeV within the framework.
For a given m3/, and tan 3, there is a small spread in the Higgs mass pre-
diction arising from variation of theoretical inputs like the trilinears and
the gluino mass parameter within reasonable ranges at the GUT scale, as
well as from experimental uncertainties in the top mass and the strong
gauge coupling. A precise experimental value for the Higgs mass will con-
strain mg /o, u and tan 3 significantly. Note that other authors have earlier
proposed that interpreting data in the context of supersymmetry was sug-
gestive of scalars heavier than might have been naively expected [73]. The
string theory derivation leads to definite predictions for the heavy scalars
(tens of TeV at the high scale) which gives a fairly sharp prediction for the
Higgs mass.

The framework also makes precise predictions about Higgs properties.
Since we are in the decoupling limit of the Higgs sector in the MSSM, the
Higgs behaves very similarly to the SM Higgs. In particular, the Higgs
production cross-section in the gluon fusion channel is virtually indistin-
guishable from that in the SM due to the stops being much heavier than
the tops. Furthermore, including the effects of superpartrners, the branch-
ing ratios to bb (which dominates the total width) and other modes such
as vy, Z v do not deviate from the SM by more than a few percent. This
is completely consistent with the current results of ATLAS and CMS.

7. High Energy Physics Signals

It is natural to ask how the framework we have studied manifests itself at
high energy physics experiments. These can be broadly divided into two
categories — the energy frontier and the precision frontier. We discuss both
of these below.

7.1. Energy frontier

The LHC has achieved significant milestones in its performance and has
amassed a wealth of high-quality data. It has already ruled out a signifi-
cant region of parameter space of many beyond-the-Standard-Model frame-
works. Here we discuss the broad LHC predictions for the framework under
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consideration and the constraints on the parameter space arising from cur-
rent LHC data.

Since scalars are expected to be heavier than about 30 TeV, they cannot
be directly produced at the LHC. However, the framework predicts gaugino
masses < TeV, so they should be accessible at the LHC. Therefore, the most
promising channel is pair production of gluinos followed by their decay
to a realtively high mutliplicity of third generation fermions such as top
and/or bottom quarks. The gluinos have a large production cross-section
because they carry color and are fermions. However, their cross-section
is suppressed relative to the case with comparable squark masses. The
gluinos decay via virtual squarks into ¢gx! or qq’xli since the squarks are
heavier than the gluinos. Since the rate scales as m~ , the lightest squarks
dominate the process. If all the scalar masses are roughly equal at the
unification scale (close to mg/3), then RG effects drive the third generation
squarks to be lighter than the first two. Thus, the gluino decay channels
G — ttxY, thxi, bbx) dominate over a large region of parameter spaced.
These lead to b-rich and lepton-rich final states with excellent prospects for
discovery. Detailed studies of these kind of models have been carried out
for the 14 TeV LHC in [74], and for the 7 TeV LHC in [75]. LHC studies of
phenomenological models with a similar spectrum have also been performed
in [76]. In particular, it has been shown that the 1 lepton, > 4 b channel is
particularly sensitive to this class of models even with moderate amounts
of data. In some cases, the same-sign (SS) dilepton channel can also be a
competitive model for discovery since it encounters fewer backgrounds from
SM processes. The current LHC data can be used to put constraints on
the allowed parameter space within the framework. For instance, using a
combined analysis of different branching fractions as espoused in [77], the
latest CMS results put a lower bound of about 900-950 GeV for the gluino
mass.

What about signals of the chargino and neutralino sector? If one as-
sumes the simple case of just a single visible sector consisting of the super-
symmetric Standard Model, the LSP in the framework is generically wino-
like with a small bino component. The higgsino component depends on the
value of p and could be either small or significant. The lightest chargino
Ni and the lightest neutralino Y are quasi-degenerate if the LSP is mostly
wino, with Mg — Mo < 200 MeV. In this case, the charginos decay to the
LSPs emlttmg soft plons Thus gluino decays to charginos could lead to

4Gluino decays to quq’, and X?qq are also significant.
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the charginos traveling through two or three layers of the tracker and then
decaying, giving rise to disappearing high pp charged tracks. Observing
this signal is challenging and requires a dedicated analysis, but should be
possible [78]. Electroweak production of charginos and neutralinos has a
significant cross-section [74] and should also be observable eventually, and
can help provide experimental information about the nature of the LSP.
The tree-level production for )Zf + X3 vanishes for a pure bino LSP, so the
cross-section is sensitive to the bino component of the LSP. Similarly, the
rate for production of )Zf +x¥ is about two times larger for a wino LSP
than for a higgsino LSP and can thus help determine the LSP type.

However, as was pointed out in Section 8.1, the simple picture above of
a single visible sector is under significant tension from astrophysical obser-
vations, the most prominent among them being the FERMI diffuse photon
signal coming from the Galactic Center. A natural extension of the sim-
ple framework above includes an additional (dark) sector which contains
the LSP and is very weakly connected to the visible sector. In this case,
the wvisible LSP, when produced in colliders, decays into the hidden sector
which ultimately cascade decays into the (dark) LSP and possibly some
visible SM particles due to the portal interaction between the two sectors.
The collider phenomenology of this framework deserves further exploration
and is currently under study [79].

To summarize, the framework gives rise to many falsifiable predictions
at the LHC which are being probed currently. The collider phenomenology
of the LSP may be especially rich as mentioned above. However, a robust
feature of the framework is that gauginos must be eventually observed at
the LHC with enhanced branching fractions to the third generation, else
the case with suppressed gaugino masses will be ruled out.

7.2. Precision frontier

Precision mesurements are sensitive to new particles running inside loops,
and hence can indirectly probe BSM physics. Within our framework, the
fact that the scalar masses and trilinears are 2 30 TeV while the gauginos
are < TeV helps keep the flavor and/or CP violating effects under control,
as explained in Section 6.2. However, some measurements can be sensitive
to new physics within the framework in the near future. For example, an
improvement in the constraints from b — s+ by about an order of mag-
nitude will start probing the framework [56]. Similarly, EDM predictions
from the framework naturally turn out to be one-to-two (for the mercury
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EDM), two-to-three (for the neutron EDM), and about four (for the elec-
tron EDM) orders of magnitude smaller than the current limits [55]. So, an
improvement in these limits in the future will be able to test the framework.
In addition, even though the decay width of Bs — pup is proportional to
tan 3%, we find that the prediction is still virtually indistinguishable from
the SM (Our current understanding of the theory suggests tan 5 < 20 [62]).

8. Dark Matter

A non-thermal cosmological history requires us to reassess our standard no-
tions of DM vis-a-vis the nature of DM candidates and the parameter space
of masses and interactions required to provide the entire DM content of our
Universe. The two most attractive candidates for DM are the weakly in-
teracting massive particle (WIMP), and the axion(s). We will find that the
generic string/M theory prediction is that both of these serve as excellent
candidates and could each provide an O(1) fraction of DM. Interestingly,
the current experimental and observational constraints point to a rather
different set of parameters to provide the correct abundance than what is
usually considered.

8.1. WIMPs

We will first consider the simplest possible setup within our framework, that
of a single visible sector which consists of some supersymmetric extension of
the Standard Model. Such a model with an exact or sufficiently conserved
stabilizing symmetry (such as R-parity) naturally contains a WIMP DM
candidate — the lightest superpartner charged under the particular sym-
metry, the LSP. The LSP in supersymmetric models with gravity mediation
is typically a neutralino but other particles, such as staus or sneutrinos, are
possible as well. However, as explained above using the result on the light-
est modulus mass, one finds that the gravitino is generically heavier than
around 20 TeV. This also generically sets the scale for squarks, sleptons
and sneutrinos to be around 20 TeV. Gaugino masses, on the other hand,
may or may not be suppressed relative to mg/; depending on the nature
of moduli stabilization. Examples of both kinds of models exist in the lit-
erature. For compactifications with unsuppressed gaugino masses, see [58].
The p parameter, which determines the higgsino mass, can also be either of
the same order or suppresed relative to ms,, depending upon the situation.
See Section 6.1 for more discussion.
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If gaugino masses are not suppressed then they, along with the squarks
and sleptons, are too heavy to provide a viable WIMP DM candidate. In
fact, this case can only be viable if the stabilizing symmetry of the LSP
(R-parity) is violated so that the would-be LSP decays sufficiently rapidly.
However, as argued in Section 6.4, constraints from neutrino masses dis-
favor any form of R-parity violation in string/M theory frameworks with
SU(5) GUTs and possibly other GUT groups as well. Hence, the case with
suppressed gaugino masses is, therefore, significantly more interesting. This
case can occur naturally in mechanisms of moduli stabilization in which the
F-terms of moduli which determine the SM gauge couplings are suppressed
relative to the dominant F' term, as in [20, 21, 39, 57]. Then the lightest
neutralino can be in the sub-TeV range, and can give rise to roughly the
correct relic-abundance as follows. As explained above, the lightest mod-
ulus X starts oscillating when H ~ mx and decays when H = I'x, the
decay width of the modulus. The decay width of the modulus is given by:

3
ry = P (26)

mpl

where Dx is a numerical coefficient which depends on the details of moduli
stabilization and the compactification. With no prior knowledge, Dx is
generically assumed to be O(1) but in a given compactification, it can be
larger, ranging from ~ 10 to ~ 10* depending upon the micrsocopic details.
A large Dx is possible if the modulus vev measures the volume of a sub-
manifold inside the internal manifold which is parametrically larger than
unity in string or 11D length units. A large Dx is equivalent to a modulus
decay constant which is smaller than the Planck scale, fx = ml;’;
it can be thought of as replacing the Planck scale in (26) by a smaller
scale such as the string scale or the compactification scale. It is a natural
possibility, therefore, that the decay constants of the moduli are similar to
those of the axions, which are also close to the compactification scale or the
GUT scale, as will be seen in Section 8.2".

The decay of the modulus reheats the Universe with a reheating tem-
perature Tr which has to be greater than a few MeV to satisfy BBN con-
straints. Since the canonically normalized X is generally a linear combina-

, i.e.

tion of moduli whose values determine the gauge couplings, it has an O(1)
coupling to gauginos. Thus, the branching ratio to the lightest neutralino

'The precise values for the moduli and axion decay constants can differ by O(1) due to
different mixing between the “flavour” and mass eigenstates for the two cases.
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is not small®, giving rise to the number density of DM particles y from X
decay as:

2 2 2 5

x  Ixmy  Dimik

ny ~ ~ - (27)
mx mpl

This is to be compared with the critical density for annihilations of x-
particles at the decay time (H = I'x):

FX Dxmﬁf

(28)

Ne ~ ~ .
< How) m;%z (o)

For typical weak scale values of masses and cross-sections, nf is much larger

than n., hence the DM particles annihilate after being produced until their
number density becomes of order n.. Thus, the final abundance of y is
given by:
H(Tg) Tr
Ny ~ nC(TR) ~ <O"U> QX h? ~ QX h?thermal) (TR>

where T is the thermal freezeout temperature of the LSP. This gives rise
My My )
S

to the following parametric dependence of (%X = on the various

quantities [4]:

Px 0.25 vy (

X~ 29)
/2 _1/2_1/2 ’

s DX/ m3§2 mpl/ (o)

which has to be normalized to the present value of the quantity, (py/s)o =
3.6 x 1072 GeV to get the LSP relic abundance 2, h?. Here 7, = 7;”;/‘2
the ratio of the low-scale LSP mass relative to ms/,.

For a weak-scale LSP, Tr is O(1 — 10) GeV while T is O(1 —10) MeV,
giving rise to two-to-three orders of magnitude enhancement of the abun-
dance over that of the thermal one for a given mass and cross-section. This
implies that particles which naturally have a larger cross-section compared
to that in the thermal case are good WIMP DM candidates. Hence, within
the supersymmetric standard model, a wino-like or higgsino-like LSP is a

great candidate for DM in this context as it naturally provides the above
enhancement in cross-section so as to roughly give rise to the correct abun-
dance, see [48, 80]. A wino-like LSP can also be naturally obtained in
explicit models with moduli stabilization [22, 81].

Although the above picture is extremely appealing, it seems to be in
strong tension with the current data from various astrophysical observa-

SNote that the modulus, being R-even, will decay to SM particles and superpartners,
with all superpartners quickly cascade-decaying to the LSP. This will also add to the
branching ratio to the LSP.
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tions. More precisely, FERMI-LAT observations of continuum photons
coming from the Galactic Center put a rather robust upper bound of ~ 10%
for the relic abundance fraction of winos with masses of order 100 GeV [82].
Furthermore, this relic abundance can be obtained within a non-thermal
cosmological history only for lightest modulus masses that are 102 — 10%
times heavier than the gravitino mass [82]. However, the results of [1] show
that this can happen only for extremely non-generic and fine-tuned cases;
generically one expects that the lightest modulus has a mass comparable
to mg 9. Similar qualitative statements can be made for higgsino DM.

The above suggests that if Dark Matter is a WIMP, then the setup
of a single visible sector may be too simplistic. However, another setup
for WIMP DM, which is also well motivated from a string theory point
of view, may be viable. This setup consists of a visible sector consisting
of a supersymmetric Standard Model which is very weakly connected to
another sector (call it the ‘Dark sector’) through some interactions. R-
parity, or some other stabilizing symmetry, is supposed to act globally on
all the sectors such that the lightest R-odd superpartner belongs to the Dark
sector. In this case, it may be possible to evade the various astrophysical
bounds with the Dark LSP still comprising an O(1) fraction of Dark Matter.
The details of this setup are currently being explored [79].

8.2. Axions

String compactifications to four dimensions generically give rise to a
plethora of axions, as they reside in chiral supermultiplets along with the
moduli fields. Stabilizing the moduli with a sufficiently large mass so as to
evade BBN constraints has interesting implications for axion physics. In
order for one of the axions to solve the strong CP-problem, i.e. to serve
as the QCD axion, it should predominantly receive its mass from QCD
instantons, and not additional stringy or supergravity effects. However,
compactifications with moduli stabilized by only superpotential effects give
axions masses comparable to ms /2;t hence none of the axions in these com-
pactifications can solve the strong-CP problem.

On the other hand, the M theory and Type IIB moduli-stabilization
mechanisms discussed above have moduli stabilized by a combination of
Kéhler potential and superpotential effects, as explained in detail in Section
5. In this case, only the moduli are stabilized at leading order while most
of the axions are left unstabilized. Integrating out the moduli and taking
higher order effects into account, the axions are then stabilized with masses

tAs in KKLT-type models [30].
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exponentially suppressed relative to ms,o by higher order non-perturbative
effects. This gives rise to a spectrum of axions with masses distributed
roughly evenly on a logarithmic scale [27], which was dubbed the “Axiverse”
in a more phenomenological approach [83]. In models with My > Mgy,
one finds that tha axions can span a huge mass range from m, ~ Hy ~
10733 eV to mg ~ 1 eV. One of these light axions could naturally serve as
the QCD axion if its mass is less than about 107!% eV, hence solving the
strong CP-problem [27].

One of the most important effects of these axions is their contribution
to the total energy budget of the Universe. Axions start oscillating when
H ~ m,, and the energy in coherent oscillations could provide an O(1)
fraction of the dark matter of the Universe". Within a thermal cosmological
history, the WMAP bound on the relic abundance puts an upper bound
on the axion decay constant f, to be around 10''~!2 GeV for an O(1)
misalignment angle. On the other hand, with a non-thermal history, the
computation of the axion relic abundance is different, and is schematically
given by [84]:

N 2
2 Jay, Tr 2
o, 17 = 10 (2 x 1016 GeV) (10 Mev> (6%) (30)

for an axion ay which starts to oscillate in the moduli-dominated era. Here

fak_ is the axion decay constant and Tr is the reheat temperature after the
decay of the lightest modulus, for more details see [27]. This can natu-
rally give rise to roughly the correct value for a much larger decay constant
fa, ~ 10 GeV and Ty > 5 MeV arising from the decay of a modulus
heavier than around 25 TeV. With around 1 to 10% tuning of the misalign-
ment angle (which may also arise from some hitherto unknown dynamical
mechanism), f, ~ Mgy ~ 10’6 GeV can also be accommodated. Within
a GUT-motivated frameowork, this seems a much more natural possibil-
ity since the decay constant in string/M theory solutions with unification
tends to be around the GUT scale. One can view this both as a solution of
the ‘cosmological axion decay constant problem’ in string theory and also
as a demonstration that axion physics is self-consistently much less fine-
tuned with the non-thermal cosmological history generically predicted by
string/M theory, than with a thermal one.

The Axiverse is subject to cosmological constraints and also has falsifi-
able predictions as discussed in [27, 83]. For example, axions in the mass

USince there are many axions, they will start oscillating at different times. Also, the
axions are so light that none of them have decayed yet.
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window 10728 < m, < 107! eV could give rise to step-like features in the
matter power spectrum at small scales. On the other hand axions in the
mass window 10710 < m, <1 eV can form bound states with black-holes,
thereby significantly affecting their dynamics by graviton emission [83, 85].
An important signal of axions is “isocurvature” fluctuations, arising from
the fluctuations of axions during inflation. The size of these fluctuations
is linearly proportional to the Hubble parameter H; during inflation [86].
Therefore, the upper bound on isocurvature fluctuations from PLANCK
puts an upper bound on Hy. In this context, the potential observation of
B-modes attributable to primordial gravitational waves by the BICEP2
collaboration [87] is very important. If the signal holds up, and if it is
attributable to primordial gravitational waves, then this provides a lower
bound on H; within simple (single-field slow-roll) models of inflation that
is inconsistent with the upper bound on H; from that of isocurvature fluc-
tuations. Taken at face value, this would imply that the axiverse is ruled
out unless the misalignment angle is severely fine-tuned [88]. However, it
is still too early to make definitive statements. First, the signal has not
been completely corroborated yet. Even if the signal turns out to be cor-
rect, there are a number of ways in which constraints on axion dark matter
may be avoided or alleviated. For example, in more complicated models
of inflation, it is possible that the Hubble parameter during inflation, H;,
is relatively small and gravitational waves giving rise to B-modes are pro-
duced by some other sources. In fact, it is possible that axions themselves
can give rise to B-modes through their coupling to E-B. The pattern of B-
modes produced from axions, however, should be distinguishable from that
of primordial gravitational waves. Also, non-trivial axion dynamics during
inflation, such as that arising from a non-minimal coupling to gravity [91],
or if the inflaton directly couples to the sector producing non-perturbative
effects relevant for axions [89-91], can evade the bounds.

The above shows that observations in the near-future will have cru-
cial implications for axion dark matter within string frameworks, and it is
extremely important to explore these in more detail.

9. The Matter-Antimatter Asymmetry

Finally, we discuss the origin of the matter-antimatter asymmetry of the
Universe within the framework and its connection to the LSP abundance.
The presence of light moduli imply a period of moduli domination shortly
after the end of inflation. This era lasts until the lightest modulus de-
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cays providing enough reheating temperature for successful nucleosynthesis.
However, the decay also produces a large amount of entropy greatly diluting
any pre-existing baryon asymmetry in the Universe. In light of this, two
possibilities arise in order to generate the baryon asymmetry within this
framework. The first is that a large baryon asymmetry (much larger than
the observed amount) is generated in the early Universe and gives rise to
the correct asymmetry after entropy dilution. The second possibility is that
the decay of the modulus itself generates the asymmetry at temperatures
around 10 MeV.

The second possibility requires baryon number violating decays, since
the modulus is a gauge singlet with vanishing baryon number and only
couples gravitationally to all SM fields. It is not clear at present if this
possibility could naturally occur within a string framework. On the other
hand, the first possibility is realized quite naturally. It is well known that
the Affleck-Dine (AD) mechanism can generate a large (even O(1)) baryon
asymmetry in a robust manner [92, 93]. In particular, this can happen via
B and L-violating flat-directions in the MSSM denoted by @ in general.
Within our framework, these flat-directions are also displaced from their
late-time minima during inflation, just like the light moduli. The sub-
sequent coherent oscillation and decay of these flat-directions could then
generate a baryon asymmetry. In the simple MSSM models realizing this
possibility, however, there are two issues. First, as mentioned before, there
is the danger of producing too much baryon asymmetry and second, the
origins of the baryon asymmetry and the DM abundance seem to be decou-
pled from each other. The presence of light moduli in our framework can
provide a resolution to both these issues, in the following manner.

The essential point is that the decay of the lightest modulus gener-
ates the LSP abundance (see Section 8.1), and at the same time provides
the dilution factor for computing the final asymmetric baryon abundance,
thereby relating the two. A careful analysis then gives rise to the following
ratio for the two abundances [94]:

Q roton Mt T o\
B O(1) Mproton Mpt T (00) (_0> ) (31)
Qy M3 My Xo

Here &y and X denote the initial displacements of the flat-direction and the
lightest modulus during inflation, respectively. Their ratio above arises in
the ratio of the corresponding energy densities and determines how much
baryon asymmetry is left after the dilution. Furthermore, as shown in
[94], flat directions corresponding to the highest dimension operators in
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the MSSM (which yield the largest ®() naturally give rise to % in the
range 1073 — 1072, Then, for natural values of other quantities in (31)
arising within the framework and consistent with other constraints, such as
mg/o in the 20-100 TeV range, giving rise to Tr around few to 100 MeV
(this depends on the modulus decay constant), m, around 200 GeV, and
(ov) around few x 10~ GeV?, the above ratio can be naturally close to the
observed value. Note that €, in (31) is not the full DM abundance since
axions also contribute to the DM abundance. Therefore, the ratio ?Ti has

to be somewhat larger than 0.2.

10. Comments and Outlook

In this review, we have outlined the typical or generic predictions of a
string/ M theory vacuum given our Universe is a solution of string/M
theory with low energy supersymmetry and grand unification. We have
carefully laid out the broad set of working assumptions under which our
arguments and claims are valid, in Section 3. In addition to the require-
ment of stabilizing all moduli in a vacuum which solves the gauge hierarchy
problem with supersymmetry, these essentially amount to assuming that
the supergravity approximation is valid, the Hubble parameter during in-
flation (or whatever solves the horizon and flatness problems in the early
Universe) is larger than mg/o, and that the particles in the visible sector
are weakly coupled from the TeV scale until a high scale like the unifica-
tion scale. Then, many broad predictions can be made for beyond-the-SM
physics. It the particle content of the visible sector is precisely that of the
minimal supersymmetric standard model, then precise predictions, such as
for the Higgs mass, can also be made. We now comment on a few relevant
issues.

It is worth addressing complaints which critical readers might have
about the whole approach. For example, some may complain that the
approach considered here has not tackled any of the deep fundamental
problems, such as the understanding of the cosmological singularity at very
early times, or the solution of the horizon and flatness problems in the
early Universe, or the extremely tiny value of the cosmological constant.
On a more mundane but technical level, others may complain that although
moduli stabilization has been understood at the effective supergravity level,
explicit compactifications with the required properties to stabilize all mod-
uli, and a realistic matter and gauge spectrum (such as that of the MSSM),
and a realistic texture of Yukawa couplings for the quarks, leptons and neu-
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trinos, do not exist.

Our philosophy regarding these issues is the following. It is clear that
our understanding of these deeper issues is rudimentary at best. However,
our main assumption is that our Universe is a solution of string/M theory.
If this assumption is correct, then there must be mechanisms present in
the theory (albeit unknown to us) which would have solved the first two
fundamental issues at very early times and presumably at very high scales.
Our focus in this work is on the broad features of beyond-the-SM physics
which depend on our understanding of the Universe at much later times,
essentially from around the time of BBN to the present time. Hence, these
features are largely decoupled from the first two issues. The cosmological
constant, on the other hand is a fundamental problem which persists even
at late times. So, regarding the cosmological constant our philosophy is as
follows. We only require that the cosmological constant approximately van-
ishes, with the implicit assumption that the (unknown) mechanism which
gives rise to the extremely tiny value of the cosmological constant has no
bearing on BSM particle physics. This appears to be a rather conservative
assumption since there is no known particle physics process whose outcome
depends on the precise value of the cosmological constant.

For the technical complaints it is worth noting that explicit compactifi-
cations which stabilize all moduli by incorporating the underlying physical
ideas exist for Type IIB compactifications [39]. For M theory compactifi-
cations, although explicit manifolds with such properties do not exist yet,
dualities from other corners of string theory suggest that essentially the
same mechanism should go through for these compactifications. Similarly,
many explicit compactifications realizing a realistic matter and gauge spec-
trum such as that of the MSSM have been constructed in various corners of
string theory [9]. While explicit string compactifications realizing all these
features in a single vacuum may have not yet been constructed, the fact
that these features exist (separately) in a large class of vacua lends support
to the expectation that there should exist 4D string/M theory vacua in the
landscape realizing all these features.

The approach we have espoused is very useful even if predictions do not
agree with data, since depending upon the nature of experimental data, it
could provide insights as to which of the assumptions need to be relaxed.
Let us explain this with a few examples. For concreteness, we assume that
the gauge hierarchy problem is solved by supersymmetry, since otherwise
it is clear that the entire framework is invalid.

One way in which some of the above conclusions could be modified
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is if the matter and gauge spectrum below the compactification scale is
more extended than that of the MSSM. This could give rise to a different
prediction for the Higgs mass as well as its properties in general (although
in practice the differences may be small depending on the model). For
example, this could happen if the Higgs couples to additional particles
through Yukawa or gauge interactions.

As another example, if squarks and sleptons are observed at the LHC,
this would be in contradiction with some of the basic assumptions of the
framework. This would imply one of four possibilities — a) the moduli po-
tential is very non-generic which makes all moduli masses much larger than
m3/2, b) the moduli masses are close to mg/, but the Hubble parameter
during inflation is < m3/, so that the moduli are not displaced from their
late-time minima, c) the moduli masses are close to mg/, and the Hubble
parameter during inflation is larger than mg/,, but there exists a period of
thermal inflation at late-times to dilute the entropy production from the
decay of moduli [95], or d) the moduli masses are close to ms,5 2 30 TeV,
but the squarks and slepton masses are also suppressed relative to ms /o
in a phenomenologically consistent way. None of these possibilities seem
to be generic with our current understanding (in fact, they seem rather
non-generic), and none have been shown to occur in a convincing manner
in realistic string compactifications. So, if experiments observe squark and
slepton masses, it would be very challenging to realize such a setup within
a string framework.

If the predictions of this framework agree with data on the other hand,
it would be an extremely important step in connecting string/M theory to
the real world and would open up more opportunities for learning about
the string vacuum we live in.
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String/M theory is an exciting framework within which to try to under-
stand our universe and its properties. Compactified string/M theories
address and offer solutions to almost every important question and is-
sue in particle physics and particle cosmology. Earlier goals of finding a
top-down “vacuum selection” principle and deriving the 4D theory have
not yet been realized. Does that mean we should stop trying, as nearly
all string theorists have?

Or can we proceed in the historical way to make a few generic, robust
assumptions not closely related to observables, and follow where they
lead to testable predictions and explanations? In parallel, there can be
efforts to replace assumptions with derivations. Making only very generic
assumptions is a significant issue. I discuss how to try to proceed with this
approach, particularly in M theory compactified on a 7D manifold of G2
holonomy. One goal is to understand our universe as a string/M theory
vacuum for its own sake, in the long tradition of trying to understand
our world, and what that implies. In addition, understanding our vacuum
may be a prelude to understanding its connection to the multiverse.

I comment on some successful phenomenological and predictive as-
pects of this framework, such as moduli stabilization and supersymme-
try breaking, the emergence of TeV physics from the Planck scale, Higgs
physics, axions, dark matter, LHC and future colliders, rare decays and
EDMs, particularly to emphasize that apparent phenomenological suc-
cesses have reached a level where it is not justifiable to argue that it is
too soon to work on relating string/M Theory to the real world, and to
aim to identify our string/M Theory vacuum. Which results could be
considered as derivations and predictions of the string/M theory frame-
work? Some results, particularly for the Higgs mass and decays, seem
to be so generic and robust, and depend so little on the details of the
manifold, that they should already be considered as predictions of the
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compactified theory. Perhaps there is a better language emphasizing cor-
relations among properties of solutions instead of “derivations”?

1. Introduction

It would seem there should be great enthusiasm for following a string/M
theory path to achieve the ancient goal of describing, understanding and
explaining our world as well as possible. Compactified string theories can
contain chiral fermions (thus explaining the parity violation of the weak
interactions), can have three families of quarks and leptons, can imply the
Standard Model forces, can have N=1 supersymmetry that can be softly
broken, can explain Higgs physics, can have axions which solve the strong
CP problem, can have stabilized moduli and TeV physics emerging from
Planck scale physics, and more, and even are strong candidates for a quan-
tum theory of gravity. These features can all occur in the same theory.
Many of these features were recognized early. Enthusiasm was somewhat
dampened by strong insistance on a pure top-down vacuum selection princi-
ple rather than the traditional physics approach of building up increasingly
comprehensive compactified string/M theories, and to some extent the ef-
fort to build such theories never recovered, even after the unifying emer-
gence of dualities and M theory. There do not seem to be any physics-based
reasons for the less than maximal level of activity toward the traditional
goals.

Sometimes people say that the existence of many string vacua, many
solutions to the string theory framework, represent a barrier because it
could be so difficult to find vacua like ours. Work done in the past decade
has clearly shown that is simply not true. Lots of compactified string/M
theories look very much like our world, and can obviously be extended to
give better and better descriptions and explanations. There is not yet a
principle showing what Planck scale theory to compactify, nor what gauge
and matter group to compactify to, but there are only a limited number
of choices. Some are easily excluded by wrong predictions. Some may be
equivalent to others, while some may give distinguishable predictions. The
calculations needed to proceed along these lines are interesting and workable
for the M Theory case, and perhaps for other corners of string theory. Little
is known about the mathematics of Gy manifolds at present, though it is
an area of ongoing research. Some physical results seem to depend little on
these mathematical properties, while others do not depend on such details
at all. Much work needs to be done to improve the mathematical level of
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understanding, and to remove currently needed assumptions. The successes
of compactified String/M theories emphasize the need for such work, and
that it is a good time to pursue such work. In this chapter, I only consider
the traditional case of 10/11 dimensional theories with Planck scale size
curled up small dimensions.

2. Compactifying M Theory — Assumptions

Let us proceed by listing seven assumptions, after which we simply calcu-
late a long list of observables, explaining and predicting many features of
our world. For some assumptions I list motivations, which help select our
vacuum out of the multiverse. Some of the assumptions can be separately
derived in parallel, and all the assumptions are very reasonable. Along with
this list, I show some history of such compactifications with relevant results
from the literature. A review [1] as well as an updated version of the review
in this volume contain more detailed explanations.

e Compactify M theory on a Gs manifold in the fluxless sector at
the Planck scale. This is motivated because fluxes have mass di-
mensions and make it hard to find ourselves in vacua with TeV
physics. Fluxless compactifications imply a non-perturbative su-
perpotential. Then the resulting theory is a 4D N=1 supergravity
relativistic quantum field theory [2], and has non-Abelian gauge
matter generically localized on 3-cycles [3]. In addition, chiral
fermions are generically supported at points with conical singulari-
ties on the manifold [4]. An important result is that supersymmetry
breaking is gravity mediated since two 3-cycles generically do not
overlap in the 7D Gs manifold.

e Set the gauge group and matter content at compactification to
be that of the MSSM. No principle yet exists to automatically
determine the matter and gauge group content. The MSSM will
be an allowed choice generically, and larger gauge groups or matter
content can be studied later. The MSSM will always be part of the
matter and gauge group content.

e Assume no obstacles to constructing compact singular G, mani-
folds exist, though too little of the relevant mathematics is known
to be sure of this. The mathematics of Go manifolds is an active
area of research. The parameters of a G, manifold which are rel-
evant for physics are described by a set of constants by related
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to one-loop beta-function coefficients, a set of superpotential term
normalizations Ay, a set of rational numbers a; that sum to 7/3,
and a set of intergers N; in the gauge kinetic function that specify
the homology class of the three-cycle on which the non-Abelian
gauge group is localized. We study the moduli effective potential
as a function of the (bg, Ak, a;, N;).

e The actual Kahler potential has not been fully calculated. We as-
sume we can use the generic Kahler potential which satisfies certain
homogeneity properties [5].

e The actual gauge kinetic function has not been fully calculated.
We assume we can use the generic gauge kinetic function [6].

e Assume the p parameter is zero in the superpotential via the
generic approach of Witten [7], with an accidental geometric dis-
crete symmetry.

e Assume the cosmological constant problem is basically orthogonal
to the particle physics goals. This can only be certain after the CC
problem is solved, of course, but it is highly plausible. If the CC
problem is not solved there does not seem to be any obstacle to
stabilizing moduli, breaking supersymmetry, etc, while if the CC
problem is solved the solutions generally considered do not seem
to help stabilize moduli, break supersymmetry, etc. Care should
be taken to ensure that the value of the potential at its minimum
can be tuned to be very small, of the order of the observed vacuum
energy density.

None of these assumptions have any apparent relation to the physics
we hope to study in the compactified theory, such as the Higgs boson mass
and decay branching ratios, the LHC spectrum, the size of weak or strong
CP violation, dark matter, etc. In order to have a predictive theory, and
to understand the solutions that emerge to describe our world, it is impor-
tant to maintain these generic assumptions. If any extensions are made to,
for example, the Kahler potential, this may introduce a dimensionful pa-
rameter which in turn means that predictions depend on the value of that
parameter, and explanatory power is lost. More thought should be given to
maintaining generic superpotentials, Kahler potentials, and gauge kinetic
functions.

It should be emphasized that historically essentially all tests of theo-
ries depend on assumptions, from Galileo’s inclined planes to study motion
through efficiency calculations for Higgs boson observation. Sometimes peo-



Connecting String/M Theory and Our Four-Dimensional World 329

ple say that string theories are not testable because the associated energy
scale is the Planck scale and colliders cannot reach such scales. That is like
saying the big bang theory cannot be tested since no one was present when
the universe began, inspite of the expanding universe and nucleosynthesis
and the CMB radiation, or that we cannot learn how dinosaurs became
extinct because (it is usually agreed) no people were present then. Such
arguments are nonsense. Obviously the tests of string/M theories should
test predictions of the theories compactified to 4D, since we live in a 4D
universe. We will list a number of examples next.

A few quantum field theory tests do exist for general theories regard-
less of the particular force or Lagrangian, such as the requirement that
all electrons are identical since they are quanta of the electron field. Per-
haps general, non-trivial tests of string/M theories independent of com-
pactifications will exist, but none are known so far, except possibly being
a consistent quantum theory of gravity, and qualitative tests such as ex-
pecting non-Abelian gauge forces. The lack of such tests of the 10/11 D
theories does not in any interesting sense imply that string/M theories are
less testable than, say, F=ma, for which all tests require using a particular
force (analogous to a particular compactification). Well known tests after
compactification include having massless modes or singularities that give
Abelian and non-Abelian gauge matter and chiral fermions, and Abelian
and non-Abelian gauge symmetries like those of the Standard Model.

3. Results and Predictions of the Compactified M Theory

Given the above assumptions, a remarkable set of results and predictions
emerge from calculations with no adjustable parameters. I will list these
results below. All the results are from the same theory, using standard
supergravity quantum field theory techniques. In addition to the intrinsic
interest of obtaining these results and predictions in one underlying theory,
the results should encourage readers to think it is not too early for physicists
to engage with the compactified string/M Theories.

e The scalar potential is calculated. It depends on all (relevant)
moduli, so all moduli interact and are therefore stabilized at the
minimum of their potential energy. Their typical vacuum values
(vevs) are one to two orders of magnitude below the Planck scale.



330

G. Kane

e Generic 3-cycles occur, some with larger gauge groups for non-

Abelian matter. The associated RGE running leads to gaugino
condensation at scales of order 10'* GeV, giving non-zero F-terms
that break supersymmetry at such scales. Some of course have
smaller gauge groups, but they condense at lower scales. Although
supersymmetry is broken by gaugino condensation at scales A of
order 10 GeV, the gravitino mass comes out to be of order 50 TeV
from dimensional transmutation (see below). These non-Abelian
gauge groups may also play a role in understanding dark matter.
Conical singularities lead to chiral fermions and thus meson con-
densates that also generically occur at scales A of order 10'* GeV,
giving non-zero F-terms that also break supersymmetry at such
scales. The gaugino and meson condensates give a unique deSitter
vacuum without needing any extra “uplifting”.

The full supersymmetry soft-breaking Lagrangian is calculated.
Tree level scalar masses are degenerate and equal to the gravitino
mass to a good approximation. Tree level trilinear couplings have
contributions proportional to Yukawa couplings, and 3rd family
ones are about 1.5 times tree level scalar masses. Gaugino masses
are suppressed because they are proportional to the derivative of
the Standard Model gauge kinetic function fgs with respect to the
moduli, but the SM gauge kinetic function does not depend on the
meson condensate fields. Therefore its derivative with respect to
the meson F-terms vanishes, since My ~ Fy,,0p fsn. This gaug-
ino mass suppression is a generic and robust prediction. Tree level
gaugino masses are also degenerate, but there is an anomaly medi-
ation contribution to gaugino masses that is similar in size to the
suppressed tree level ones, so the resulting gaugino masses are not
degenerate, even at the high scale. We will review the derivation
of these results in the next section.

All terms in the soft-breaking Lagrangian turn out to have the
same phase, so their phase can be rotated away. Since the p—term
from the superpotential has been guaranteed to be zero by the Wit-
ten mechanism, p arises from the Kahler potential and its phase
(along with that of Bu) can also be rotated away by a PQ rota-
tion, and thus at tree level the “susy CP problem” is solved. Since
the scalars are of order the gravitino mass, tens of TeV, there are
no CP related phenomenological issues. EDMs are predicted to
be non-zero only because the phase(s) from the Yukawa couplings
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(that leads to the CKM phase) also appears in the trilinear cou-
plings, and gets rotated by the RGE running into the scalar masses
at the weak scale. This generates interesting EDMs, smaller than
current limits but not a great deal smaller [8, 9]. Thus EDMs are
calculable because they only depend on the CKM phase. Since
scalars are heavier than about 25 TeV, squarks will not be observ-
able at LHC, but some may be at a 100 TeV pp collider. Gluinos
and some lighter electroweakinos will be observable at LHC if it
reaches design energy and luminosity. Since scalars are heavy, the
rare decay Bs — pp will not be measurably different from its SM
value (as was predicted in the compactified theory well before the
LHC data), and (g — 2),, should also not deviate more than a few
per cent (from loop effects) from its SM value (so the current ~ 3o
effect should disappear).

The moduli mass matrix is calculable. Moduli have only gravita-
tional interactions, so their lifetimes for decay to all SM particles,
superpartners and axions are calculable.

The gravitino mass M3/, can be approximately calculated, by the
traditional dimensional transmutation top down method. The su-
perpotential W dimensionally is of order (A/Mpy)? and has a fur-
ther factor e/?
gravitino mass comes out to be about 50 TeV, to about a factor of

that is approximately a volume suppression. The

two. This result is crucial for this framework, and we will summa-
rize its derivation in the next section.

Remarkably, the gravitino mass and the lightest eigenvalue of the
moduli mass matrix can be related [10-12]. Qualitatively, the (com-
plex) scalar gravitino superpartner is degenerate with the gravitino,
and mixes with moduli. The scalar gravitino 2 x 2 mass matrix is
somewhere inside the positive definite moduli mass matrix and can
be moved to the diagonal, and the theorem that the lightest eigen-
value of the full matrix is less than the eigenvalues of any of the
2 x 2 submatrices gives the stated result. The full result depends
on the Kahler curvature of the full matrix, but for the compactified
theory of interest to us that should not matter, and in any case one
can prove a relevant result.

Then the lightest moduli mass should not be lighter than about
the gravitino mass, about 25 TeV from the top-down calculation
just described, so the moduli decay before BBN and there is no
cosmological moduli (or gravitino) problem.
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e String axions are present [13]. One combination is massless down
to the QCD scale and provides a solution to the strong CP problem.
Upper bounds on the axion decay constants increase because the
universe is matter dominated instead of radiation dominated after
inflation.

e When moduli are stabilized, the discrete symmetry Witten pro-
posed to solve doublet-triplet splitting and enforce 1 = 0 is broken
to generate nonzero p. Calculating the resulting value of p precisely
requires knowledge of G5 manifolds which is currently unavailable.
But the resulting value of p should vanish if supersymmetry be-
came unbroken, so it should be proportional to M3/, and p should
also vanish if the moduli were not stabilized, so it should be pro-
portional to typical moduli vevs divided by the Planck mass. As a
result, p should be suppressed from M3/, by an order of magnitude
or so.

e The moduli make the universe matter dominated instead of radi-
ation dominated until they decay near BBN time, so the cosmo-
logical history is non-thermal. Large entropy from moduli decay,
proportional to the temperature cubed so of order 10°, wash out
any freezeout dark matter, and any early matter asymmetry. Dark
matter is regenerated from moduli decay into superpartners, axions
and LSPs, and a matter asymmetry is generated. An initial matter
asymmetry of order unity at the end of inflation from Afflek-Dine
baryogenesis can lead to the observed matter asymmetry and can
explain the ratio of matter to dark matter [14].

e R-Parity conservation. Because the coefficient p of H,, H; and the
coefficient k of the bilinear R-parity violating term come from sim-
ilar Kahler operators and are therefore about the same size in the
compactified theory, one can show that all R-parity operators must
be absent or very large neutrino masses would be generated [15].

Conservatively, one can say that the M theory vacuum we are studying
can contain all these results in a correlated way. It is very encouraging
that so far nothing has gone wrong. The previously stated assumptions
still need to be satisfied, though hopefully most will be derived in the near
future.
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4. Derivation of M3/3 ~ 50 TeV from Moduli Stabilization
and Supersymmetry Breaking

A key result which is crucial for the connection between compactified M
theory and TeV scale physics is the fact that moduli stabilization fixes the
gravitino mass to be 50 TeV, within a factor of 2 or so. In order to keep
this review as self contained as possible, we provide a summary of this
derivation below, though the relevant results were first obtained in [16-19].

In G2 compactifications of M theory, the moduli fields s; in the effective
4-D theory arise from Kaluza-Klein zero modes of the covariantly constant
3-form @, which is uniquely determined by the metric of the G5 manifold
X. Note that the 3-form @ is real, such that the moduli fields s; are real
scalar fields in 4-D. The moduli Kahler potential can be inferred from the
classical moduli space metric to be [5]:

K = —3log4n'/3Vy (1)

where Vx is the volume of the Go-manifold in 11-d Planck units:

1
vxzf/cpmcp. (2)
7 Jx

Without explicit knowledge of the metric for a particular G, manifold,
the functional form for Vx in terms of the moduli fields s; can not be
determined. However, it is possible to argue on general grounds that Vx
is a homogeneous function of degree 7/3 in the moduli s;, in other words
Vx — A"3Vx if the moduli are scaled by a common factor s; — As;.
Using this homogeneity property, one can derive the identity:

N
ZSiKi = -7 (3)
i=1

where K; = 0K /0s;. We will use this homogeneity property in Section 2 to
derive general results from moduli stabilization without needing to specify
a particular form for V.
The Kahler potential for the matter fields is given by:
QQT
K = k(s;)—— (4)
Vx
where @) represents some chiral matter supermuliplet and k(s;) is a scale-
invariant function of the moduli s;. This form for the Kahler potential
was motivated in Section III of [19] by three independent arguments: (i)
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dimensional reduction, (ii) locality of the physical Yukawa couplings and
(iil) matching KK threshold corrections to the 4-D gauge coupling [20] in
the effective A/ = 1 SUGRA theory. For brevity we will not reproduce these
arguments here.

Moduli Superpotential

In order to preserve N' = 1 SUSY in the effective Lagrangian, the real
moduli fields s; must combine with some other scalar degree of freedom in
order to form the complex scalar component of some chiral mutliplet. Such
scalar degrees of freedom arise from the KK zero-modes of the real 3-form
C-field present in 11-dimensional supergravity. The complexified moduli z;
can be expressed as the zero-modes of the “complexified” 3-form & + iC:

b*(X) b*(X)
C+id = Z (ai + iSi) ¢; = Z Zi¢i (5)
i=1 i=1
where ¢; represent harmonic 3-forms ¢; € H*(X,Z) and b3(X) is the 3rd
Betti number of the GG3 manifold. From explicit constructions of smooth
G>-manifolds we expect b3(X) ~ O(100).
The a;, which are the scalar zero-modes of C, are axionic as they inherit
a shift symmetry in the 4-D effective theory from the underlying higher-
dimensional gauge symmetry of the C-field. This provides a very important
M-theoretic input for the 4-D effective lagrangian, namely that polynomials
of the complexified moduli fields can not appear in the superpotential, as-
suming that the axionic shift symmetry is violated only by non-perturbative
effects. In order to stabilize the moduli s;, we must assume the presence
of non-Abelian “hidden sector” gauge groups in addition to the Standard
Model one. In G5 compactifications of M theory, non-Abelian gauge fields
are localized along 3-dimensional submanifolds which parameterize fami-
lies of ADE orbifold singularities [3, 21]. Thus requiring the presence of
hidden sectors is equivalent to assuming that there are some other 3-cycles
in the G5 manifold which support non-Abelian gauge fields, in addition to
the visible sector 3-cycle which supports the SM gauge fields. Because two
3-cycles will generically not intersect in a 7-dimensional space, we assume
no light matter charged under both the visible and hidden sector gauge
groups and thus SUSY breaking will be gravity mediated.
In the presence of a pure SU(Q) SYM hidden sector, non-perturbative
dynamics generate an effective moduli superpotential of the form W =
Amgleﬂ”bf where f is the hidden sector gauge kinetic function f = 3. N;z;
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and b = 1/Q. The integers N; are determined by the homology class
of the 3-cycle. Such a superpotential will stabilize all moduli; how-
ever with the presence of only a single hidden sector may not yield vac-
uaa which are within the supergravity approximation (Vx > 1 in 11-D
Planck units). Introducing another pure SYM hidden sector such that
W = mf’)l (A1 ei2mbifi AgeiQ’Tbe?) will stabilize moduli within the super-
gravity approximation, but gives only AdS vacuaa. In order to obtain
de Sitter vacua with moduli stabilized in a region where the supergrav-
ity approximation is valid, at least one hidden sector SU(P) gauge group
with charged matter is required. It was discussed in [4] how chiral mat-
ter charged under a particular gauge group naturally arises from isolated
conical singularities in the G2 manifold.

In the minimal setup, we assume that there are two hidden sectors;
an SU(Q) pure SYM hidden sector, and a SU(P + 1) hidden sector with
Ny = 1 flavor of fundamental + antifundamental chiral multiplets. The
Affleck-Dine-Seiberg effective superpotential [22] is then given by:

W — A1¢—2b1 mgl €i27rb1 f1 4 Azmgl €i27rb2f2 (6)

where by = 1/P, ba = 1/Q, f1, f2 are the gauge kinetic functions of the
SU(P 4+ 1) and SU(Q) hidden sectors, and A; and As represent instanton
prefactors. ¢ represents the QQ meson condensate in SU(P + 1) sector.
There in principal will be other gauge groups which also contribute non-
perturbative superpotential terms. However their contribution to W will
scale like W oc e27f/(N=Ns) g0 hidden sectors with large N — Ny will
provide the dominant contribution to (W) while other smaller rank hid-
den sectors will provide a subdominant contribution to (W) and can be
neglected in the moduli stabilization analysis.

Moduli Stabilization and Determining Ms /o

From the discussion in the preceding section, we have argued that in Go
compactifications of M theory motivate the following forms for the Kahler
potential and moduli superpotential in the effective theory:

T
K= —310g47r1/3VX + /{h(si)%
Vx

W — A1¢—2b1 mgl ei277b1f1 + Angl ei277b2f2 (7)

where again we take ¢ to be the SU(P+1) hidden sector meson condensate.
We have neglected visible sector fields, as they do not develop vev’s at this
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stage and are thus irrelevant for the moduli stabilization analysis. In the
following analysis we assume that 3-cycles which support the SU(Q) and
SU(P + 1) gauge groups are equivalent in cohomology so that f; = fo = f.
This simplifies the moduli stabilization analysis; the more general case is
considered in [23]. Given W and K in (7), we can now compute the scalar
potential for the effective 4-D A/ =1 SUGRA Lagrangian:

V=K (g”ﬁFnFm ~3 |W|2) (8)

where the Kahler metric g,z is obtained in the usual way by differentiating
K with respect to the moduli and meson fields. The resulting form of the
Kahler potential in terms of the moduli fields along with the minimization
conditions are rather cumbersome, so we will not reproduce them here. The
details are provided in pages 21-25 of [19]. Here we simply recapitulate the
main points of the analysis, which in particular demonstrates that solutions
with stabilized moduli exist.
The stabilized moduli vev’s are given by the following ansatz:

i = 5 2Va 9)
where Vg is the volume of the hidden sector gauge kinetic functions, Vo =
Im(f) =3, Nis;. The a; are defined as 3a; = —s; 8[%/&%, and given an
explicit form for Vx their value at the de Sitter minimum can be obtained
by solving the following transcendental equation:

oK
asi s;=a; /N;

= —3N,. (10)

Regardless of the form for Vx, the homogeneity property (3) implies
>~ a; = 7/3. Given the ansatz (9) for s;, one can numerically solve for
the value of Vg which satisfies the moduli stabilization equations. A good
approximation for Vg is given by:

1 PQ (QA1¢02/P>

T or0-pP %\ pPa, (11)
in the limit where Vg > 1. In a regime where the supergravity approx-
imation is valid Vx > 1; since the homogeneity properties of Vx imply
Vx o s7/3, we expect s; > 1 and thus Vg = >_ N;s; > 1 if the supergrav-
ity approximation is valid.

Given the ansatz (9) along with the homogeneity property >, a; = 7/3,
the value of the scalar potential (8) at the minimum to lowest order in
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O(1/P.s4?) is given by:
2
e+ )
2 2 -
My M3 o Q—-P Vx

14 _ 2 2 ¢_3>_¢_3V_X
+gﬁ(13@—PO<Q—P+W el (12

where we have defined:

—2/P
QA1¢O ) . (13)

Peff :PlOg <%

Thus the superpotential coefficients A; and As have been absorbed into
our definition of P.r¢. Note from (11) that Vi = P.rsQ/27(Q — P), so
Vo > 1 ensures Peyp > 1.

We now require that the minimization condition for the meson conden-
sate ¢ causes the tree level scalar potential (12) to vanish. To leading
order in 1/ Pezf s» this imposes the requirement that®:

b 1BQ-P)-2)
B -P) —2/6@-P)

Thus given particular values of @ and P, imposing a vanishing cosmolog-

(14)

ical constant actually fixes the ratio A;/As. Put another way, tuning the
vacuum energy to zero at tree level upon moduli stabilization is only pos-
sible for a particular value of A;/As. Requiring the s; to be stabilized at
positive values requires P.ys > 0 as can be seen from (9) and (11), which
imposes the constraint @ — P > 3. If (14) is satisfied, then the meson vev
is obtained by determining the value of ¢y which causes (12) to vanish:

@2 7 2 )
oo P " i (1 3(Q_P)> +O(1/P%)). (15)

Thus we have shown that ¢ and s; are all stabilized by non-perturbative
effects from hidden sector strong dynamics. We can now compute the value
of the bare gravitino mass from (7)-(14):

¢5/2Vx A
ﬁ [P = Q| e /@N(16)
8vmVy

Mgy = mpe"/? W] =my,

Thus given the ranks of the hidden sector gauge groups SU(Q) and SU (P +
1), the value of mg 5 is completely determined up to the unknown instanton

2Note that we are neglecting the ¢o dependence of P.sy, due to the smallness of 2/P
along with the fact that the dependence is logarithmic.



338 G. Kane

prefactor As. Field theoretic computations [24] indicate that A2 = Q up to
RGE-scheme dependent and threshold corrections, so we expect A/Q < 1.

Now we examine constraints on the possible values of @ — P, which fixes
the exponential factor in (16). As discussed, we require @) — P > 3 so that
Vo = Im(f) =Y N;s; stays positive. From (11), (13) and (14) we see that
for Q — P =3, Vo = 3.37Q while for @ — P > 3, V5 < 0.84 Q). Recall that
for the supergravity approximation to be valid we require Vx > 1 from
which we expect s; > 1. Thus we expect Vg = >, NiS; 2 Nimod, Where
Npoq is the number of moduli fields. As mentioned in Section 1, from
explicit constructions we expect Npoq = b3(X) ~ O(100), so we roughly
expect Vg ~ O(100) if the supergravity approximation is valid. Thus the
larger the value of Q — P, the more difficult it is to stabilize moduli in a
region where the supergravity approximation is valid. To ensure the validity
of the SUGRA approximation we focus on the case where @ — P = 3; the
general case will be discussed at the end of this section. This fixes the
gravitino mass to be:

6 As
mg e ~ 10° (TeV) QT;/Q (17)
The value of Vx in (17) can be fixed from dimensional reduction ar-
guments by requiring that the 11-D supergravity theory gives the correct
value for the 4-D visible sector gauge coupling agyr at the GUT scale [20].
This constrains Vx to be:

Vx ~ 137L(Q)*/3 (18)

where L(Q) is a topological invariant, related to the analytic torsion of the
3-cycle Q@ on which visible sector gauge fields are localized. The dependence
of Vx on L(Q) arises from computing KK-threshold corrections to the vis-
ible sector gauge coupling. Motivated by triplet-doublet splitting [7], the
reference [20] assumes Q = S3/7Z, in which case L(Q) = 4gsin? (5rw/q). w
is an integer determined by the geometry of Q such that Mod(5w,q) # 0.
The Poincare conjecture seems to imply that this form for L(Q) is fairly
general, but we are still currently working on understanding this issue in
more detail. It is also straightforward to compute the scale of gaugino
condensation in the SU(Q) SYM hidden sector:

2w

e 53" 1.1 x 10" GeV
21/6Vy/? L(Q)/?

Assuming Q — P = 3 and L(Q) = 4¢sin? (5nw/q), we can combine (17)
and (18) to obtain some representative values for ms/s, given in Table 1

A~ mpi (19)
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of [19]. Depending on the values of p and ¢, 20 TeV < mg/5 (A2/Q) <
100 TeV. Thus up to the ratio As/Q which we expect to be < 1, we have
shown with a pure SU(Q) gauge group as well as an SU(P + 1) gauge
group with Ny = 1, setting ¢ — P = 3 and stabilizing moduli naturally
gives mg ;o ~ O(50) TeV within about a factor of 2.

We have shown that there exists a generic class of compactified M theo-
ries which naturally give m3,5 ~ 50 TeV upon moduli stabilization; however
a crucial assumption we have made is @ — P = 3 to ensure the validity of
the supergravity approximation Vx > 1. It may be in principal possible
to find valid solutions with @ — P > 3, which will greatly change ms /o
due to the exponential sensitivity in (16). However, it is straightforward to
show from (14) and (16) that for Q — P > 4, P.yr > 20, which results in
msg 2 1072M,;. Therefore @ — P = 3 is the only possibility which allows
a solution to the hierarchy problem between mg3/, and My,;. In other words,
if one demands a solution the hierarchy problem from moduli stabilization
in this framework, @) — P = 3 and m3/, ~ 50 TeV is a robust prediction.
If one takes the appropriate attitude for string phenomenology of looking
for a generic set of solutions that could describe our world, with stabilized
moduli, the set of solutions that emerges and solves the hierarchy problem
has mg/o ~ 50 TeV.

Hierarchy between Gaugino Masses and Mg/,

We now briefly discuss the hierarchy between ms/, and the soft SUSY
breaking gaugino masses, namely M o/ms3/o ~ 102, which results from
the moduli stabilization procedure mentioned in Section 2. The universal
tree-level contribution to the gaugino masses from the supergravity La-
grangian is given by [25]:

eK/2Fiai fvis

Mo = 2 T (foss) (20)

where F; are the F-terms for the moduli fields s; and f,;s is now the
visible sector gauge kinetic function, fyis = Y., N/*z;. The suppression
of M/, with respect to ms/y arises from a suppression of the moduli F-
terms F; with respect to the hidden sector meson condensate F-term Fj.
In particular, the moduli stabilization procedure discussed in the previous
section yields the following F-term vev’s:

‘eK/QFi L 2si s o, ‘eK/2F¢‘ ~ pms)s (21)
Peyy




340 G. Kane

The moduli stabilization procedure yields s; ~ ¢, and therefore the moduli
F-terms are suppressed by 1/P.f¢ with respect to the meson condensate
F-terms; therefore the meson condensate F-terms dominate the vacuum
energy. Since fy;s does not depend on the meson condensate ¢, 9y fris = 0
and only the smaller moduli F-terms contribute to (20). Consequently,
(12) yields:

1 2Vx >
My | ~ 1+ Ma/s. 22
(M| Peyy ( @Q-P)gg) " (22)

As discussed in the previous section, for solutions with Q—P = 3, Peyy =~ 61
and ¢3/VX ~ 0.5, and thus M/, ~ 0.03m3/5. Thus the universal tree
level contribution to gaugino masses from gravity mediation is suppressed

relative to m3/3. There are also the usual non-universal anomaly-mediated
contributions to the gaugino masses, as well as non-universal effects which
arise from renormalizing parameters down to the electroweak scale, but
they are of the same order of magnitude as the tree level contributions
from (20).

This result is significant for LHC phenomenology, as in gravity medi-
ation the soft SUSY breaking scalar masses are all O(mg/) assuming no
sequestering, as is expected to be generic in M theory compactifications.
This implies that all scalar superpartners will have masses 7m ~ m3 ;5 ~ 10’s
of TeV, while gauginos will have masses in the 200 GeV < M < 1.5 TeV
range (depending on the particular gaugino in question). Thus the com-
pactified M theory framework yields a robust prediction that scalar super-
partners will be out of reach of the LHC, while the gauginos (the gluino
in particular) should be light enough to be within kinematic reach. As we
have discussed, these predictions are largely insensitive to details regarding
the precise mathematical structure of compact GGo manifolds.

5. Higgs Mass “Prediction”

Next we want to ask about Higgs physics in this compactified M theory
vacuum. How can one approach the issue of Higgs physics in string/M
Theory? Vacua that do not allow Electroweak Symmetry Breaking (EWSB)
could not describe our world. Presumably we do not expect all vacua
to break the electroweak symmetry. It’s not clear what a pure top-down
approach might be. We think an approach where we consider the subset of
all vacua that can allow EWSB and study the resulting Higgs sector and
calculate observables in such vacua is appropriate. Various vacua might
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predict a range of Higgs masses and properties.

In the N=1 supersymmetric theory (already derived for the compacti-
fied M Theory) there are two Higgs doublets. The lightest mass eigenstate
is identified with “the Higgs boson”. Given the calculated Lagrangian soft-
breaking terms My, and My, one calculates the Higgs sector scalar poten-
tial and identifies the coefficient Aoy of the h* term. The EWSB conditions
are normally expressed in terms of the ratio of up- and down-type Higgs
vevs, tan 3. For values of tan /3 not too small, the EWSB conditions be-
come [26] approximately tan3 ~ Ms/5/1.7p. The value 1.7 would have
been 2 at the unification scale before RGE running, but since tan( does
not exist at the high scale until the RGE running generates the vevs, this
form is more useful.

Amazingly it turns out [27] that all solutions that satisfy the EWSB
conditions have the same Higgs boson mass, and it is 126 GeV, with an
uncertainty of about +1.5 GeV. The uncertainty is largely due to the ex-
perimental errors in the top quark mass, since the (not precisely known)
top Yukawa couplings give large 1-loop corrections to the Higgs mass. The
resulting uncertainty in the Higgs mass to be compared to experimental
data is currently somewhat larger than the reported experimental error.
Both will improve with time. The Higgs mass is probably the most precise
quantity that can be predicted from a compactified string/M Theory, be-
cause the combination of the large gravitino mass, the connection of scalar
masses to the gravitino mass, and the EWSB conditions force the outcome
of a precise value for Mj,. It is worth remarking that the central value of
the predicted My, was reported in summer 2011, well before any experimen-
tal information. The subtle evaluation of the uncertainty in the prediction
from connecting to the low scale, and including radiative corrections and
errors in input informatioin on the top mass etc was completed in November
2011, before the LHC reports.

Recently, three-loop contributions to the Higgs mass prediction have
become available [28-30]. They have been incorporated into our calculation
[31]. For heavy scalars at the few tens of TeV level that are expected from
the compactified M Theory, the three loop corrections can have large logs
and could have had large contributions (of the order of several GeV) to the
Higgs mass. When the full calculation is carried out however, the effects are
not large, increasing the Higgs mass by about one GeV. There is a robust set
of solutions with correlated values of My, tan 3, i, and M3 /5. This need not
have happened, and that it did is strong endorsement of the compactified M
Theory as a good candidate for describing our vacuum. The required values
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of 1 and tan 3 are consistent with compactified M theory predictions, but
are more tightly contrained than what can at present calculated from the
theory. Therefore the result is predictive without adjustable parameters,
but our ability to calculate u, tan 3, My and Ms/, separately from the
generic theory is not yet good enough to capture all compactified M theory
solutions.

6. Standard Model Higgs? Metastability? Naturalness?

The Higgs boson discovered at LHC had several apparently surprising prop-
erties. From the point of view of the compactified M Theory these prop-
erties are not surprising, and in fact are largely not only expected but are
generic.

e The Higgs mass value was larger than naively predicted in non-
string/M Theories. This follows automatically in the compactified
M Theory since the gravitino is calculated to be tens of TeV, and
the scalars masses are approximately equal to the gravitino mass.
Then one is in the decoupling limit of the MSSM Higgs sector,
and one needs to include supersymmetric loop effects which then
leads to the 126 GeV result. The inputs to this calculation are
fixed by the compactified M theory. From the theory point of view
all superpartners should naively be of order the gravitino mass,
that is tens of TeV. Luckily the largest F-term from the meson
condensate does not contribute to gaugino masses so the gluinos
and electroweakinos should have suppressed masses, some in the
one TeV or fraction of a TeV range. These should be observable
at the upgraded LHC if it reaches design energy and luminosity.
The spectrum is shown in Figure 1. Some of the squarks and
electroweakinos will be observable at a 100 TeV pp collider.

e The Higgs decay branching ratios were those of a SM Higgs boson to
good accuracy. This is standard and unavoidable in the decoupling
limit of the MSSM Higgs sector, a successful prediction.

e The Higgs potential has a shape that is largely determined by the
values of My,, and My, and ends up in a region that would be
on the edge of instability if the theory were the SM theory. In
the supersymmetric case the vacuum is automatically guaranteed
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to be stable — the value of A.s; is never below about 0.1, so the
metastability issue never arises. So the “apparent” SM metasta-
bility must be accidental. That is not an interesting coincidence,
because if one computes the allowed region on the My, — Mj, plane
in the supersymmetric case one finds that region always includes
the SM metastability point (see for example the talk of G. Isidori
at Supersymmetry 2013).

One can think of the breaking of the electroweak symmetry as the
mechanism to explain the gauge boson masses Mz and My, or
equivalently the Higgs vev v. If one just takes generic values for
all quantities in a top-down calculation of v, one finds a value of a
few TeV, rather than the actual value of a quarter of a TeV. This
is called the ”little hierarchy problem”. The usual equations are
for the squares of the masses, which then come out about two or-
ders of magnitude too large. The compactified M Theory suggests
a possible solution for this. The soft-breaking trilinear couplings
are calculable and come out about 1.5 times the gravitino mass.
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Then the RGE running produces values of M7 —and Mg that
do allow correct values of v or M7. Basically M7 —always runs to
nearly zero at or below the TeV scale, because the trilinears are
generically large, and do affect the running in the right way. This
is the first time a theoretical approach led to such large trilinears.
But the relevant quantities need to be strongly correlated to give
the small values of v, etc., so although this approach is promising
it is not yet a robust solution.

There has been much talk about the failure of naive naturalness,
since superpartners have not been observed yet, and the Higgs
boson is heavier than naively expected. Many talks and papers
by experts and non-experts have speculated on the implications.
Speakers at meetings in the past year often list alternatives. Sur-
prisingly, the most sensible alternative is seldom mentioned. The
opposite of unnatural is having a theory! Naturalness is basically
the argument that dimensional analysis in an effective theory will
allow masses and other properties to be estimated with some suc-
cess. When naturalness fails I think the obvious implication is that
there is an underlying theory, and the theory has outcomes that are
more complicated. That is just what happens in the compactified
M Theory case, where the gravitino mass sets the scale for elec-
troweak scale physics, but solutions having electroweak symmetry
breaking are then in the decoupling limit and have a suppressed
Higgs mass compared to the gravitino mass while the Higgs mass
is enhanced compared to the Z mass, and gaugino masses are sup-
pressed because the dominant F-term does not contribute to the
gaugino masses. The compactified theory naturally predicts the
observed Higgs mass, but the word “naturalness” has been abused
to mean something different, so we should probably not use it in
this context.

7. Some Predictions Robust, Others Not

The Higgs mass and branching ratios are calculable in the compactified
theory to very good accuracy, because of the physics of how they arise,
via heavy scalars. The gluino mass is suppressed, so it should be around

one TeV, but it’s mass depends on quantities that are not easily calculable,

such as the gaugino condensate F-term, and the derivative of the SM gauge

kinetic function. One can try to use precision unification conditions to
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constrain the gluino mass, but because the tree level mass terms and the
anomaly mediation contribution to the gaugino masses are comparable, and
because there are threshold corrections to the unification calculations [20],
an accurate calculation is again difficult. So gluinos should be a TeV to
about a factor of two. It is important to do a more accurate calculation
before LHC data is available. The cosmological history and solution of the
moduli problem depends only on moduli being heavier than about 25 TeV,
so that is robust.

8. What Does the String/M Theory Give Us Compared to
Models and Effective Theories?

Lots of authors like to make arguments about what kinds of models and
model parameters give a Higgs mass like the experimental one. What do we
gain if we have the compactified string/M Theory rather than just models?
Below is a table comparing the approaches, and one can see the major gains
in understanding resulting from the compactified M Theory.

One way to summarize why the compactified theory is far better than
purely effective theory approaches is to realize that in effective theories,
undetermined coefficients of effective operators are independent free pa-
rameters. In contrast, in the compactified theory all such coefficients are
determined by the theory and explicitly related to one another, which allows
one to make strong correlations between different physical observables.

9. More To Do

I have argued that the M Theory compactification, and perhaps others, are
successful enough so that the point of view that it is too early to try to use
compactified string/M theories to improve our understanding of our world
is no longer valid. There is evidence that if people work on it, success will
follow. I have focused on the M Theory approach where my own work has
been. In this framework one can identify several directions that are ripe for
improvement, and have not been worked on only because of lack of time
and people. In the following, I list some of these open problems.

e Any satisfactory theory must be able to derive the existence of
a top quark with Yukawa coupling of order unity, and no other
quarks or leptons with Yukawa couplings of order unity. There
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COMPACTIFIED(STRING)M THEORY

Derive solution to large hierarchy
problem

Generic solutions with EWSB derived

main F term drops out of gaugino
masses so dynamically suppressed

Trilinears > My, necessarily
M incorporated in theory (M-theory)

Little hierarchy significantly reduced
Scalars = M,;, ~ 50 TeV necessarily,
scalars not very heavy

Gluino lifetime about 10-1° sec, decay in

beam pipe
M, =126 GeV unavoidable, predicted

G. Kane

SPLIT SUSY (ETC) MODELS

Assumes no solution (possible) for
large hierarchy problem

EWSB assumed, not derived

Gauginos suppressed by assumed R-
symmetry, suppression arbitrary

Trilinears small, suppressed
compared to scalars

K not in theory at all; guessed to be
H~Ms),
No solution to little hierarchy

Scalars assumed very heavy,
whatever you want, e.g. 1010 GeV

Long lived gluino, perhaps meters or
more

Any M, allowed

has been some question as to whether this derivation works in M
Theory. Such a derivation is underway, and we think results will
be satisfactory [32].

Any satisfactory theory must at least provide a model of hierar-
chical Yukawa couplings for quark, lepton, and neutrino masses,
with at most a few parameters that are calculable in principle but
perhaps not in practice. The theory must also satisfy constraints
from the CKM and PMNS matrices.

Because of the coming LHC data, a fairly precise calculation of the
gluino mass is very important.

The theory should explain the dark matter. The simplest possibil-
ity is that in a uiniverse with a non-thermal history, some or all
of the dark matter is a visible sector wino-like lightest superpart-
ner, but this seems to be excluded by indirect detection satellite
data [33]. M Theory also has axionic dark matter with a relic den-
sity of order unity. The visible sector LSP can decay into lighter
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hidden sector gauge or chiral fermion matter, so it is necessary to
work out the associated relic density and observable effects.

e The compactified M Theory approach with its non-thermal cos-
mological history suggests that the matter asymmetry is of order
unity, from Affleck-Dine baryogenesis just after inflation. Then
when the lightest modulus decays somewhat before BBN the intro-
duced entropy dilutes the matter asymmetry to its present value,
and the dark matter (WIMPs plus axions) emerges in the modu-
lus decay [14]. This model also could explain the matter to dark
matter ratio since both emerge from moduli decay. Much better
calculations are needed of the Affleck-Dine mechanism and moduli
vevs and the amounts of dark matter.

e Mechanisms that could provide for the “little hierarchy” do exist
in the theory, but it would be good to sharpen them technically.

e Kahler potential corrections to gauge coupling unification, sizes
of trilinears, the gluino mass, and more should be brought under
better control.

e Although all the physics we consider begins as moduli oscillate in
their potentials at the end of inflation, it would be good to identify
inflatons with actual physical states in the theory, and connect
them and their properties to the other aspects of the theory.

10. Concluding Remarks

The main point of this paper is to argue that understanding of compactified
string/M Theories has reached the level where work in such areas, physics
and mathematics and removal of assumptions, should become mainstream.
Successful correlations of particular vacua and phenomenological observ-
ables exist. Some calculations of observables (such as the Higgs mass)
turn out to depend very little on missing knowledge of the manifolds. The
traditional goal to understand our universe better looks promising via com-
pactified string/M Theories.

The cover image would be good to keep in mind. Top-down approaches
(just the upper handle of the nutcracker) will not let us open up the content
of the curled up manifolds, nor will bottom-up ones such as model building
or data alone (the bottom handle of the nutcracker). Together they have
a greatly increased chance of leading to important progress. Using both
handles of the nutcracker is the approach of string phenomenology. The
background is LHC data, and in particular a Higgs boson event — under-
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standing and calculating the Higgs physics is a crucial challenge for any
approach to understanding our world.
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This is a short review of string cosmology. We wish to connect string-
scale physics as closely as possible to observables accessible to current or
near-future experiments. Our possible best hope to do so is a description
of inflation in string theory. The energy scale of inflation can be as high
as that of Grand Unification (GUT). If this is the case, this is the clos-
est we can possibly get in energy scales to string-scale physics. Hence,
GUT-scale inflation may be our best candidate phenomenon to preserve
traces of string-scale dynamics. Our chance to look for such traces is the
primordial gravitational wave, or tensor mode signal produced during in-
flation. For GUT-scale inflation this is strong enough to be potentially
visible as a B-mode polarization of the cosmic microwave background
(CMB). Moreover, a GUT-scale inflation model has a trans-Planckian
excursion of the inflaton scalar field during the observable amount of
inflation. Such large-field models of inflation have a clear need for sym-
metry protection against quantum corrections. This makes them ideal
candidates for a description in a candidate fundamental theory like string
theory. At the same time the need of large-field inflation models for UV
completion makes them particularly susceptible to preserve imprints of
their string-scale dynamics in the inflationary observables, the spectral
index ns and the fractional tensor mode power r. Hence, we will focus
this review on axion monodromy inflation as a mechanism of large-field
inflation in string theory.

1. Introduction
Cosmology has long been considered as a speculative field. Envisioning now
a combination of a candidate theory of quantum gravity and unification yet

to be fully understood, string theory, with early universe cosmology may at
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first warrant even more caution. However, before rushing to this conclusion
we shall start our discussion employing judicious use of the structure of ef-
fective field theory as a bottom-up tool and controlled approximations or
constructions in string theory. This will lead us to realize that certain phe-
nomena of early and late-time cosmology can be reasonably well embedded
and described by certain classes of solutions of string theory.

We will start making the following observation. String theory is a candi-
date theory for a fundamental unification of quantum mechanics with gen-
eral relativity. String theory solutions are typically subject to a requirement
of 10 dimensions of space-time. To make contact with our four dimensional
large-scale space-time, we need to compactify the six extra-dimensions on
an undetectably small internal manifold. However, at energies small com-
pared to the inverse string and compactification length scales string theory
reduces to an effective quantum field theory (EFT). This EFT contains
gauge fields coupled to fermionic matter and a number of scalar fields as
well as general relativity extended by a series of higher-order curvature
corrections from the string o/-expansion.

Hence, below string and compactification scales the usual decoupling
theorem of QFT ensures the absence of strong string-theoretic effects from,
e.g., weak-scale physics — except if weakly-broken symmetries protect a
hierarchical suppression of scales for some of the effects of string theory.
Examples for the latter are low-scale broken supersymmetry, and axionic
shift symmetries originating from higher-dimensional gauge symmetries of
string theory which usually enjoy exponentially suppressed scales of sym-
metry breaking due to its non-perturbative nature. Without the presence
of symmetries surviving unbroken to low scales, we conclude that the only
phenomena in cosmology which may warrant or even necessitate a descrip-
tion in a theory of quantum gravity must either live by themselves close
to the string scale or display explicit ultra-violet (UV) sensitivity to UV-
divergent quantum corrections.

From this argument we discern three such phenomena in need of a de-
scription beyond EFT coupled to general relativity:

e The initial cosmological singularity.®

e A very early period of cosmological inflation. As discussed further
below, there is increasingly strong evidence that the CMB temper-
ature fluctuations are down to inflationary scalar quantum fluctua-

2Note, that even in presence of eternal inflation space-time is geodesically incomplete to
the past, so even then there was a cosmological singularity in our past.!



String Cosmology 353

tions with almost scale-invariant 2-point function power spectrum
A% ~ H?/e. Barring suppression of the first slow-roll parameter e
by tuning, we expect € < 1/N, ~ 0.01 where N, ~ 60 denotes the
observable span of slow-roll inflation. Hence, from A% ~ 1079 we
expect slow-roll inflation to happen near the GUT scale. Moreover,
we will see below that slow-roll inflation is inherently UV-sensitive
to quantum corrections of the effective potential. This sensitivity
is only enhanced by the closeness of the inflationary energy scales
to the string scale.

e The late-time form of dark energy driving the observed contempo-
rary accelerated expansion of our universe. This phenomenon has
two aspects of needing a UV completion in some theory of quantum
gravity. Firstly, the contribution to dark energy in form of a cos-
mological constant from quantum field theory is manifestly power
law UV-divergent. As such, EFT coupled to general relativity can
only explain the present-day amout dark energy ~ 10722\ by
manifest and insane amounts of fine-tuning. Hence the need for UV
completion. Secondly, a pure cosmological constant generates eter-
nal de Sitter (dS) space-time in general relativity. QFT on eternal
dS space-time is not well defined as the S-matrix does not exist.
Hence de Sitter space is in need of a more fundamental description,
presumably a UV complete theory of quantum gravity.

While we do have in recent years some important progress in the de-
scription of cosmological singularities in string theory, it is probably still
fair to say that a full controlled description of space-time near a realistic
cosmological singularity (i.e. the one in the past of null-energy condition
satisfying FRW space-times) remains an open question (for reviews see e.g.
Refs. 2-4).

Given the stage set by this general discussion, it is important to recall
that it was the advent of several waves of observational progress during the
last two decades which have required string theory to confront de Sitter
space and the description of cosmological inflation. Moreover, the accuracy
of these new experimental results fundamentally changed the speculative
status of cosmology, leading to an era of precision cosmology.

At first, highly reliable and increasingly precise measurements of the
Hubble Space Telescope (HST) yielded a determination of present-day Hub-
ble parameter Hy = 73.8+2.4km s~ *Mpc~1.56 This milestone enabled the
construction of an ultra deep-space distance ladder by type IA supernovae.
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Systematic observations of such type IA supernovae at high red-shift culmi-
nated in the detection of a form of dark energy consistent with extremely
small (~ 107*22Mp) and positive cosmological constant, which drives a
late-time accelerated expansion of our Universe.”®

In the next step, the space-based satellite missions WMAP? and
PLANCK!%1! as well as the ground-based telescopes ACT'? and SPT!314
probed the cosmic microwave background (CMB) radiation with unprece-
dented precision and resolution. Their combined results together with the
HST and type TA supernova data led to the concordance model of obser-
vational cosmology. In its ‘essence’ this new standard model is consistent
with certain simple features of our observed Universe. We find ourselves
to a good approximation (sub-%-level) in a FLRW universe which is spa-
tially flat and undergoes accelerated late-time expansion driven by dark
energy. Moreover, the recent CMB missions provided measurements of the
two-point function power-spectrum of the 10~ °-level thermal fluctuations
with unprecedented precision. These results now bear increasingly strong
evidence that the very early Universe went through a much earlier and ex-
tremely rapid phase of accelerated expansion driven by the vacuum energy
of a slowly-rolling scalar field, called inflation!®> 18 (see e.g. Ref. 19 for a
recent review).

The recent high-precision data from PLANCK!®!! as well as the
ground-based telescopes ACT'? and SPT,'>'* and in particularly the
strong limits on the presence of non-Gaussianity in form of a non-vanishing

20 are consistent with a

three-point function from the PLANCK mission,
picture of simple slow-roll inflation driven by the scalar potential of a sin-
gle canonically normalized scalar field.

Finally, the recent report from the BICEP2 telescope?' announced the
detection of degree angular scale B-mode polarization in the CMB. B-mode
polarization in the CMB at such large angular scales can have a primordial
origin only from inflationary gravitational waves, so-called tensor modes.
However, polarized emission from galactic dust may provide the same type
polarization pattern as a foreground contaminatio.???? Discrimination may
be possible due to different angular power spectra and radio frequency spec-
tra of such dust induced B-modes versus the ones from primordial tensor
modes. If the B-mode detection by BICEP2 turns out to be of at least par-
tial primordial original, then the inflationary energy scale would be at the
GUT scale, and inflation would have to proceed as a large-field model with
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trans-Planckian field excursion.” Both features would spell a direct need

for embedding inflation into a fundamental candidate theory of quantum
gravity such as string theory as we will discuss below.

This progress of the last 15 years forced candidate theories for a fun-
damental unification of quantum mechanics with general relativity, such
as string theory, to accommodate both an extremely tiny positive cosmo-
logical constant and the dynamics of slow-roll inflation for the very early
Universe. In particular, string theory solutions are typically subject to a
requirement of 10 dimensions of space-time. To make contact with our four
dimensional large-scale space-time, we need to compactify the six extra-
dimensions on an undetectably small internal manifold. This process of
compactification produces a huge set of possible suitable manifolds, each of
which is accompanied by set of massless 4d scalar moduli fields describing
the allowed deformation modes of each manifold. Crucial progress towards
describing late-time and early-time (quasi) de Sitter (dS) stages of positive
vacuum energy in string theory involved the construction of string vacua
with complete stabilization of all geometrical moduli fields and control-
lable supersymmetry breaking, largely in type IIB string theory (see e.g.
Refs. 26-28 for reviews), and more recently also in heterotic string theory.2?

Hence, the outline of our discussions proceeds as follows. We will start
with a discussion of the basic ingredients of inflation and string theory in
Sections 2 and 3.

Section 4 will discuss inflation in string theory, emphasizing the ne-
cessity of having controlled string vacua with full moduli stabilization be-
fore even beginning to search for inflationary regimes. Some of the major
3033 of controlled type II
string flux compactifications (see e.g. Refs. 26, 27 for a review) with full

progress in recent years involved the construction

moduli stabilisation and positive vacuum energy necessary to make contact
with cosmologically viable 4d space-time descriptions incorporating the ob-
served late-time acceleration. A typical compactification has O(100) moduli
fields allowing for an exponentially large number of possible combinations
of fluxes. This led to the discovery of an exponentially large landscape of
isolated dS vacua in string theory.3!

bA very recent analysis of the 2D genus topology statistics and the cross-correlation be-
tween the BICEP2 150 GHz data and PLANCK polarization data in the BICEP2 region
at 353 GHz 2% by Colley and Gott III allowed for a first more dust-model independent
estimate of the dust emission fraction in the BICEP2 signal. This analysis yields the
dust part to be a bit less than 50% and results in » = 0.11 £ 0.04 (1 — o) providing
2.5 — o evidence for r > 0.2°
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Within the extant constructions of string theory dS vacua inflation must
then arise from a flat region of the moduli scalar potential supporting the
criteria of slow-roll by a flat potential, or higher-derivative kinetic terms
originating from mobile D-branes. Since we wish to focus on connecting
string-scale physics to the observables of inflation as closely as possible,
this motivates us to concentrate our discussion on large-field inflation in
the form of axion monodromy?34:3®
by Baumann and McAllister?” contains an exhaustive discussion of the many
models of small-field inflation in string theory (e.g. warped D3-brane infla-
tion, D3-D7 inflation, Kédhler moduli inflation, fibre inflation, DBI inflation,
etc.) following the seminal work of Kallosh et al.,3® which we consequently
omit here.

or aligned natural inflation.?¢ The book

Our discussion will need to include corrections to a scalar potential
driving slow-roll inflation. They will arise generically due to dimension-
six operators from radiative corrections or integrating out massive states,
rendering inflation UV sensitive. Hence, candidate fundamental theories of
quantum gravity such as string theory are necessary for a full description
of inflation beyond the limits of effective field theory.

Using this stage, we will try explain the general mechanism and struc-
ture of axion monodromy which underlies the various models of large-field
inflation with axions arising from higher-dimensional gauge-fields in string
theory (see e.g. Refs. 37, 39 for very recent reviews). I will openly say
at this point, that you will find the most probably definitive reference for
inflation in string theory in the recent book by Baumann and McAllister.37

2. Basics of Inflation

Inflation is a period of quasi-exponential expansion of the very early Uni-
verse, invented originally by Guth'® to overcome several initial condition
problems of the conventional hot big bang cosmology. A short discussion
of the two most pertinent of these, the horizon and flatness problems, will
serve us well to illuminate the essence of and need for inflation.

The horizon problem of the hot big bang has its root in the differing
behavior of the causal horizon distance and the stretching of physical length
scales in an expanding universe driven by radiation or matter.
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2.1. Classical theory

To begin, we recall a few basic facts about the description of spatially
homogeneous and isotropic expanding space-times in General Relativity.
In an FRW universe driven by any type of matter or energy in perfect
fluid form except vacuum energy, we have the energy density diluting as
p ~ a~ 30+ Here w denotes the equation of state of the fluid dominating
the energy budget. The 1st Friedmann equation governing an expanding
FRW universe, possibly with spatial curvature denoted by a parameter

k =0,+£1 reads
o\ 2
5 [a 1 k
H=(a):3‘a2 : (1)

In a spatially flat universe k = 0 this describes an expansion following

2 P
a~tP =—— and H== . 2
C PT30 1w ¢ )
At t = 0 we have a = 0, implying a curvature singularity, that is, the initial
big bang singularity. The exception to the above is pure vacuum energy,
e.g. the potential energy of a scalar field, which has w = —1 and thus

H = const. and a ~ et

(i.e. formally p — 00).
A given physical length scale, e.g. radiation of a given wavelength A,

will stretch with the expansion of an FRW universe as

)‘ph (tO)
Sy ) (3)

Hence, we can think about the continually stretching physical length scales

)‘ph (t) =

in terms of associated ‘comoving’ length scales A = Ay, /a, that is with
reference length scales obtained by scaling out the ’stretching’ with the
scale factor a.

We now compare a comoving length scale with the comoving light-travel
distance since the initial singularity, the comoving horizon distance 7

- fhete o

We see from the preceding discussion that for any fluid with w > —1 driving
the expansion we get

1 1- 1 - 1
(aH)_lfanlJ = 7= a7~ (5)

while for w = —1 directly 7 = 1/aH.
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The last result displays the horizon problem: An expanding universe
driven by a fluid with w > —1/3 or equivalently p < 1 has a growing
comoving horizon (aH)™' ~ a=P)/? with (1 —p)/p > 0 for p < 1. All
comoving scales A enter the horizon from outside from the past towards the
future. Therefore, all observable length scales were outside the horizon and
thus out of causal contact at sufficiently early times. For the CMB sky this
corresponds to patches separated by more than about 1 degree. Yet these
patches are all at the same temperature to better than 1 part in 10*. Why?

The problem arises from the integral in 7 and the fact that 1/aH is
growing with a for w > —1/3 or p < 1. The integral gets its main contri-
bution from late times. The problem was solved if at an earlier time we
can arrange for the comoving horizon 1/aH to decrease with increasing a.
Comoving length scales would then leave the horizon at an early time, and
then re-enter later on, after the expansion has changed from decreasing co-
moving horizon to the increasing comoving horizon of matter or radiation
domination. Therefore, at a very early time all observable comoving length
scales would have been inside the horizon and in causal contact, despite
leaving the horizon later on for quite a while.

Since in a expanding universe we have a > 0 always, this means we need
arrange for an early period where

d 1
E (a_H> <0 for t< te (6)

and positive thereafter. We denote with . the time when this early phase
of a decreasing comoving horizon ended.

What does this early phase mean? We evaluate %(aH )~ and by dif-
ferentiating in turn the Friedmann equation we arrive at

d (1 1 H 1

— =)= |1+=]=- a . 7

dt (aH) a < +H2> (aH)? (™)
An early phase of decreasing comoving horizon requires an interval of ac-
celerated expansion & > 0 ending at ¢t = ¢, and this is inflation in its most

general sense.
By inspecting the last result, we conclude that

i 7Y , _ "

Acceleration implies a condition on the first slow-roll parameter €y, namely
we need ey < 1. While this is the general condition for inflation, we see a
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very simple means of realizing this regime: We look for an energy source
yielding H ~ 0 in the sense of —H < H?2 (since inflation must end at
t = t., we cannot have H = 0 strictly). This implies Hubble slow-roll
H ~ const. and leads to a quasi-exponential phase of expansion a ~ ef?,
Thus, building inflation in the more narrow sense means constructing a
fluid which behaves almost like vacuum energy with w =~ —1 for a while
and then quickly changes towards w > 0 at t = t..

We now see that inflation driven by a source similar to vacuum energy
with p ~ const. solves the flatness problem as well. The contribution of
spatial curvature —k/a? to the Friedmann equation shrinks exponentially
during inflation compared to the source p =~ const. > 0 driving inflation.
Hence, if the exponential expansion latest long enough, inflation can render
the universe spatially flat enough at the beginning ¢, of the matter or
radiation driven expansion to avoid spatial curvature growing to more than
about a percent fraction now.

Plugging in the ratio of scales between, in the most extreme case, the
GUT scale and the largest cosmological scales visible today, we see that
inflation must grow the scale factor by at least

a(te) ~ a(t,)e” 9)

60 efolds, to suppress spatial curvature to less than a percent in our present
late-time universe. Solving the horizon problem, i.e. requiring that inflation
lasted long enough to have all the scales between the GUT scale and cos-
mological scales today inside the horizon at the beginning ¢, of the needed
amount of inflation, needs again about 60 efolds of inflation.

A very large class of inflation models realizing this path uses the dy-
namics of one or several scalar fields. A scalar field minimally coupled to
Einstein gravity is described in 4d at the 2-derivative level by an action

5= [aev=g|3r+ 5007 V)| (10)

If we can arrange for a regime where V > 0 and ¢? < V, then the scalar
potential will act effectively as a positive vacuum energy and drive expo-
nential expansion. The condition

P <V (11)
guarantees

ep K1 (12)
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the first Hubble slow-roll condition for inflation. In this case, we can also
further express ey < 1 by a 1st slow-roll condition on the scalar potential
itself

1 (V'\?
HTE= (V) <1 (13)
where we denote () = %(). Maintaing this condition for a long time to

generate at least about 60 efolds of exponential expansion, then requires a
2nd slow-roll condition on the scalar potential to hold

V/I
=—<<1 . 14
n= (14)
Scalar field models of inflation realizing Hubble slow-roll this way are called
slow-roll models of inflation.'”18
Alternatively, higher-derivative kinetic terms can generate a phase ey <
1 even if V. = 0 or if ¢,7 > 1 for the potential itself. One example of

40 and a simple realization of the same

this in field theory is k-inflation,
higher-derivative mechanism to generate Hubble slow-roll in string theory

is DBI-inflation.*!

2.2. Quantum fluctuations during inflation

The description of inflation using the dynamics of a scalar field has a very
far-reaching consequence. We have seen, that successful slow-roll inflation
entails the scalar inflaton being light n < 1 < mi < H?. However, light
scalar degrees of freedom are subject to quantum mechanical vacuum fluctu-
ations. Inflation takes these fluctuations and stretches their wavelength so
rapidly, that they become larger than the Hubble horizon (‘super-horizon’)
after a finite time. The finite average amplitude, which a given fluctuation
has at that point, then ‘freezes’ since super-horizon wave-length fluctuations
cease to evolve during inflation. They have become an essentially classical
field profile at this stage. Once inflation ends, these frozen large wave-length
modes re-enter the horizon at a certain time given as a function of their
comoving wavenumber. The modes who left the horizon during inflation
first, re-enter last after inflation. The scalar field distribution described by
these long wave-length modes causes a variation of the gravitational po-
tential. This ‘curvature perturbation’ generates an initial field of density
perturbations in the matter distribution after inflation. Hence, in this pic-
ture the inflationary quantum fluctuations are the ultimate cause of the
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primordial density perturbations which are the seed of structure formation
in the observable universe.*?
We describe the curvature perturbation ¢ by expanding around the FRW

metric
ds* = N?dt* — hyj (da’ + N'dt)(da? + N7dt) (15)

where N, N denote the lapse function and shift vector, respectively, which
enforce constraints containing the gauge invariance of GR. The spatial met-
ric reads

hij = a*(t) (e*0i + i) - (16)

During inflation we have a(t) ~ eff*. Plugging this ansatz into the action
eq. (10) and expanding in ¢ and the inflaton fluctuation d¢ leads at leading
order to a 2-derivative action for ¢ and d¢ without self-interactions. Time
reparametrization invariance relates ¢ and d¢. This gives us the freedom
to trade between ¢ and d¢ and implies the relation

H
¢ ¢¢> (17)

We usually characterize the fluctuation spectrum of ¢ in terms of the
power spectrum Ag, which is the Fourier transform of the 2-point func-
tion (((x)((y)). We define the power spectrum via

A
<AkAk’> = ﬁé(k + k/) (18)
for a fluctuation field A(x). The relation between ¢ and d¢ implies
P
(CeCk') = §<5¢k5¢k'> : (19)
In slow-roll inflation we have
1 (H\® ,
(00k0w) = 75 (ﬁ) dk+k) (20)
and so we get
H* k™! ,
(CkCrr) = pREpEYE (l@) d(k+k) . (21)

Here k, defines a reference wavenumber corresponding to large-scale CMB
fluctuations (e.g. corresponding to ¢, = 200 after decomposition of the
wave field into spherical harmonics). After the magnitude Az of the curva-
ture perturbation power spectrum, the spectral tilt ng constitutes our 2nd



362 A. Westphal

inflationary observable. ng captures the 1st-order variations of the slowly
rolling scalar field and is calculable for any given model of inflation.

Generically, interactions of the inflaton will generate higher-point func-
tions (Cg, - - - (i, ) from expanding out Eq. (10) beyond 2nd order. Non-
vanishing odd-point functions, such as the 3-point function (CxCe Crrr),
constitute ‘non-Gaussianity’. Two central results establish that non-
Gaussianity is small for single-field slow-roll inflation, while the magnitude
of non-Gaussianity is linked to the ‘speed of sound’ ¢, of the curvature per-
turbation. Furthermore, there are certain relations between the ‘shapes’
in momentum space which the 3-point function can take.2?4344 For in-
stance, DBI inflation*' produces a distinctive pattern of non-Gaussianity,
where the 3-point function peaks in the ‘equilateral’ configuration, where
all three momenta have roughly equal magnitude. This equilateral shape is
not yet that strongly constrained from the PLANCK data f]evqgil' = 42475,
contrary to the local shape from multi-field inflation fi¢¢ = 2.7 +5.8.20

Finally, there are gravitational waves in general relativity. These appear
as the fluctuations ;;, hence called ‘tensor modes’. FEach polarization s of a
gravitational wave formally constitutes a massless scalar degree of freedom.
Hence, inflation generates a long wave-length spectrum of gravitational
waves with a power spectrum

A7 , L (HN ,
D (st = 5ok + K) =Y o () dss’ Sk +K). (22)

’ ’ 7T
s,8'=1,2 S,8

Observationally, we often refer instead to the ‘tensor-to-scalar ratio’ r of
gravitational wave power to curvature perturbation power

AZ @2

From the PLANCK!'%11:20 and WMAP? satellite data, we know Ag ~
2.2 x 107, Hence, any detection of » > 0.01 implies a GUT-scale inflaton
potential Vli/;l ~ Mgyt ~ 109 GeV in the context of single-field slow-roll
inflation. This is one of the main reasons driving the search for tensor
modes.

Tensor modes are detectable in the CMB as a B-mode polarization
pattern. Recently, the BICEP22! experiment reported on the detection
of B-mode signal in the CMB on large angular scales ¢ ~ 100. If future
analyses along the line of Refs. 22, 23 using e.g. PLANCK polarization
data confirm a part of this B-mode signal to be primordial as opposed to
coming from polarized galactic dust, then we would know that r ~ 0.1.



String Cosmology 363

In models of single-field slow-roll inflation we can compute ns and r as
functions of the slow-roll parameters. To leading order we get

ng=1—6e+2n , r=16e . (24)

We can express these results in terms of the number of e-folds N(¢) that
inflation lasts from the field value ¢ until the end of inflation at ¢.. We
have

t(¢(Ne)) ¢(Ne) do
N, = Hdt = / — . 25
/ V2e (25)
t(de) Pe

CMB scales correspond to about N, = 50...60 e-folds before the end of
inflation. If we assume € to increase monotonically with ¢ then we can
bound N, by

N, < — . (26)

This implies the Lyth bound*®

Ag > \/ZNE . (27)

For N, ~ 50...60 we see that » > 0.01 implies A¢ > Mp. This ties a large
B-mode signal from primordial tensor modes to having a so-called ‘large-
field model’ of inflation, where sufficient inflation requires a trans-Planckian
initial field displacement.

2.3. Effective field theory and the role of symmetries

We now need to discuss inflation in effective field theory, the role which the
amount of field displacement A¢ plays for the ultraviolet (UV) sensitivity of
inflation. In effective field theory in the Wilsonian sense we Taylor expand
the effective action of the inflaton scalar field around a given point ¢q in field
space. We can organize this expansion in terms of the scaling of the various
operators under dilatations of space and time z* — ax". The operator
dimension of ¢ follows from the requirements of an invariant kinetic term,
$0 ¢ — ¢/a. This is necessary for the action to be dimensionless as it is the
phase in the path integral. Expanding the non-kinetic part of the action
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we get (assuming a Zs symmetry ¢ — —¢ for slight simplification)

S = / d'v=g | (0.0)° — ¢ o) +Z>%A4+j” ¢ — o)t -

?\44 @)+

Except for the mass all couplings are dimensionless as the relevant mass
scale M, suppressing the higher-dimension contributions appears every-
where. The higher-dimension operators scale under dilatation as O — GLAO
where e.g. for the non-derivative operators above we have Ayis, =4+ 2n
at weak coupling. We see that these operators induce scattering amplitudes
with effective couplings Majonerf. = Miyon(E/M,)?4+2n=% Hence, opera-
tors with n < 0, such as the mass term, are ‘relevant’ at low energies. The
quartic self-coupling of a scalar (n = 0) is an example of a ‘marginal’ op-
erator. The great majority of operators have n > 0. These are ‘irrelevant’
as they die out in the infrared. In the following discussion we will typically
have the UV mass scale M, = Mp

However, the viability of inflation depends on the slow-roll parameters
being small ¢, < 1. As they contain ¢-derivatives, we see that in par-
ticular n which pulls down two powers of ¢ can receive large contributions
from ‘dangerously irrelevant’ operators O442,,n > 0. In particular, an op-
erator of the form Og = A\sVo()(¢ — ¢0)?/M3E corrects ) by an O(1) shift
which destroys inflation. This happens even at low energy densities during
inflation H/Mp < 1 and for any field displacement A¢ = ¢ — ¢y.

Moreover, we see that for A¢ > Mp all higher-dimension operators of
type Ount2 above correct 7 by O(1) values, while for n > 2 their contribu-
tion is suppressed in (A¢/Mp)?"~2 < 1 at small A¢ < Mp. This is the
true significance of the split into ‘small-field” A¢ < 1 and ‘large-field” A¢
models of inflation.

We see that viable large-field inflation requires extra suppression of all
higher-dimension corrections \y_s, < 1. This amounts to the presence
of a symmetry effectively forbidding these terms at the high scale. As
the primary inflationary scalar potential itself has V(¢) < 1 this symme-
try effectively takes the form of a shift symmetry ¢ — ¢ + ¢. An exact
shift symmetry forbids non-derivative couplings. We can now argue that
breaking the shift symmetry weakly and smoothly by a large-field inflaton
potential V(¢) < 1 is sufficient to protect against the dangerous generic
higher-dimension corrections discussed above. The arguably simplest large-
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field (and likely simplest overall) inflaton potential is a mass term ’citeLIN-
DECHAOS

V(g)= g’ (29)

The ensuing argument works the same for a direct generalization to mono-
mial potentials V (¢) = u*=P¢?, p > 0.

Firstly, we see that expanding the potential around a reference point ¢
we get

V(o) =Vion (1+22) = vian + > (2)55s - o

During inflation ¢o9 > 1 and so we see that the interaction terms n > 3
have effective self-couplings of the inflaton dying out as 1/¢; " at large field
displacements. We therefore expect the potential to be safe from dangerous
radiative corrections induced by self-interactions at large field values.

Secondly, we can see this in field theory if we look at the rele-
vant Feynman diagrams.3*%% These daisy diagrams individually produce
catastrophic-looking contribution, but their sum constitutes an alternating
series, as e.g. for ¢* theory They resum into a good-natured logarithmic
correction

V() = \p* [1 +cln (‘ﬁ)} (31)
Mp

which corrects the numerical values of ng,r a bit but is far from spoiling
slow-roll.

? ) +>©<+ :(—1)”A¢4(Mip)2n4

Finally, quantized general relativity as a low-energy limit of quantum
gravity couples only to T,. This is sourced by V(¢) and 93V, but not
by field displacements themselves. Consequently, graviton loops induce
corrections to the effective scalar potential and Newton’s constant of the

form*6-48

v %V — 2

Large-field inflation requires p < 1 and hence V,aiv < 1 to real-
ize a COBE-normalized CMB spectrum from the curvature perturba-
tion. Hence, all quantum gravity corrections are highly suppressed in
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V/M3 5§V/M1% < 1 except at extremely large field displacements where
V/M3 8¢2)V/M1% <1.

The upshot of the whole discussion is that large-field slow-roll inflation
is technically natural in 't Hooft’s sense. If we succeed to generate the
mass scale u < Mp of a given large-field model dynamically, then it would
become even natural in the Wilsonian sense.

2.4. Need for UV completion

From the above discussion it is clear that large-field inflation works per-
fectly fine in effective field theory. However, the role of a UV complete
candidate theory of quantum gravity such as string theory becomes clear:
Firstly, the theory has to describe how the shift symmetry of the inflaton
arises in the first place. Secondly, the UV completion needs to describe
how it generates the large-field inflaton potential including the large trans-
Planckian field range. Finally, a fundamental description needs to describe
how the coupling of the inflaton to heavy states such as the moduli of string
theory participates in the breaking of the shift symmetry and backreacts
on the dynamics of slow-roll.

We will discuss in detail below, how shift symmetries of axions in
string theory arise as remnants of its higher-dimensional gauge symme-
tries. Hence, these p-form axions as natural large-field inflaton candidates
in string theory. However, string theory seems to limit the periodicity field
range of such axions to sub-Planckian values. We will see that monodromy
induced by the presence of higher p-form fluxes and/or branes breaks the
periodicity generating a large-field range monomial potential for the axions.
Combined with moduli stabilization this can be done in a regime V(¢) < 1
which provides radiative stability as seen above.

String theory provides the setting to discuss the interaction between the
many moduli of its myriad compactifications to 4D and the inflationary
dynamics of shift symmetry breaking from monodromy. However, we can
see the basic effect of integrating out the heavy moduli already at this point
by coupling a large-field inflaton to a heavy modulus field in field theory*°

V(60 = 560 + M~ x0) (3)

If we choose xo ~ m <« 1 and a heavy modulus M, > m we see that
this generates V ~ m2¢? as the effective potential at small ¢. However, at
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larger values of ¢ the full effective potential after integrating out x reads

142
g2 29
Verr.(¢) = Mim F 1 (34)
Hence the presence of the heavy field leads to a flattening of the inflaton
potential V(@) ~ ¢P compared to its naive tree-level power Vp(¢p) ~ ¢Po.
This behavior is generic and occurs in many cases of large-field axion mon-

odromy inflation after carefully including moduli stabilization.* 2!

3. Ingredients of String Theory

The above discussion gives us a clear motivation to use string theory as a UV
completion of inflation. We do not yet know if string theory is the correct
description of our world. However, it is a highly successful candidate theory
of quantum gravity while including a unification of SM-like gauge forces,
chiral fermion matter. Strong supporting evidence for this claim arises from
the various mathematical consistency checks and ‘null’ results obtained in
the last 20 years or so. These include the web of dualities linking all five
string theories and 11D supergravity, the AdS/CFT correspondence which
provides a setting where a certain non-perturbative definition of quantum
gravity is available, and the description of black hole entropy (even though
for highly supersymmetric settings only so far).

We do not have a complete picture or non-perturbative description of
string theory yet. Given that we have so far only various corners where per-
turbative control and/or the use of string dualities allow us calculational
access, we cannot yet compare the theory as a whole with experimental
data. At this stage we can only try to identify mechanisms in string the-
ory which realizes certain types of dynamics which we need to describe our
world. Certain mechanisms which realize inflation in controlled string the-
ory settings will be our prime examples here. These mechanisms may then
serve for comparisons with data, or they may inspire new model building
and analysis for the bottom-up construction of inflation models in effective
field theory as well.

The moving parts

Given this preamble, we start with collecting the necessary ingredients of
string theory which guide our current understanding of the many vacua
we get from string compactification to 4D. These ingredients provide the
necessary dynamics for moduli stabilization, and building string inflation
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within the stabilized vacua of the string landscape. The 2D worldsheet
action of superstrings gives rise to a 10D target spacetime if we demand
the Weyl anomaly to vanish for a flat target spacetime. Note, that giving
up flatness of the target space allows for string theories with D > 10 which
have interesting consequences such as a spectrum with 2 axions.®? > The
maybe simplest exact solution then is 10D Minkowski space with either A =
1 or 2 supersymmetry. Hence, in 10D the effective spacetime action is one
of the five possible 10D supergravities (type I, heterotic SO(32)/Eg x Esg,

type IIB, type ITA). We can write these 10D actions schematically as®®
1 _
S = 20/4 /dlox _Ge 20 (R + 4(6M¢)2) + Smatte'r~ (35)

The matter part needs more detailed discussion. We can write its action,
again schematically, as

Smatter:/dloxV [ 2¢|H3|2+Z|F |2+CS

359 P(z) 059 P(zy)
+Z< o )

+ higher-deriv.

Here C.S. denotes Chern-Simons terms involving the various p-form gauge
potentials and field strengths of string theory. The terms localized at the
9—p coordinates x| denote p-branes with tension Tf and orientifold planes
with tension Tpo . These different terms contribute various forms of potential
energy to the effective action. The various branes labeled by Tf contribute
effectively terms proportional to their tension times their worldvolume they
wrap in the internal dimensions as potential energy. On a subclass of them,
called D-branes, we can have open strings ending on them. This renders D-
branes dynamical. Their positions in the orthogonal dimensions are scalar
fields leaving on the worldvolume of a D-brane. Branes can carry charge
under some of the higher-dimensional p-form gauge potentials of string
theory, and we will make extensive use of that.

Tz? labels objects with negative tension. These are so-called orientifold
planes (O-planes) which arise from modding both the internal space and
the spectrum with generalizations of Z, action. In general, the number
and type of allowed O-planes follows from certain topological properties
and quantum numbers of the compact six dimensions. Hence, the theory
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limits the amount of negative energy objects which is rather beneficial for
vacuum stability.

The various terms |Hz|? and |F},|?> denote the kinetic and gradient en-
ergy contributions from the field strengths of higher-dimensional p-form
gauge potentials in string theory. They also contribute was is known as
quantized background fluxes to the effective action. Since we will employ
these objects far and wide, we will start by discussing their properties and
utilize their relation with ordinary electrodynamics as a theory of a 1-form
gauge potential.

Our discussion will follow the lines of e.g. Ref. 57. The electromag-
netic gauge potential A; = A; ,dz* is a useful means of describing electro-
magnetism though containing redundancy. The field strength Fr = dAj,
Fs 1 = 0, A1, — 0y A1, is gauge invariant under the gauge transformation
Ay — Ay +dA. This is not the only gauge invariant object object, as there
are for instance Wilson lines e/ 41 = ¢'$ A1ude” around a compact extra
dimension y. Let us look at the 5D metric with the y-direction compactified
on a circle S* with radius L, /(27) (so y — y + 1)

ds* = dt* — da3 — Lidy2 . (37)

There is a flat gauge connection Ay = Ay ,dy constituting a Wilson line
around the S! such that

Ay =a(@)wr , wi=dy , ax)= %Alyydy . (38)

The quantity a(x) with periodicity @ — a + 1 inherited from the S* is
effectively an axion in 4D with a perturbatively exact shift symmetry. a(x)
is gauge invariant under A; , — A , + 9, A since an S* has no boundary.
Reducing out the gauge kinetic term for F, we get

&@=/d%@v—MHmM2=/ﬁ%v—m/ﬁyv—%wmg”LEMF
— v

ST b YR (39
a2
= / d4x\/—794Lyﬁ.
Yy
The axion kinetic term appears with an overall prefactor f2, where we call
f the axion decay constant which here is f = 1/ \/L_y, and thus inversely
proportional to a power of the compact length scale. This is a generic prop-
erty of all of the known string theory axions which arise by close analogy
from the higher p-form gauge potentials in string theory in the presence of
compact extra dimensions.
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We now couple the electromagnetic field to a point charge. The inter-

/d4$JMA17“ = / A1 (40)

worldline

action term

effectively describes the Aharanov-Bohm effect: the worldline integral picks
up a phase along a closed path around a region containing a B-field, i.e.
magnetic flux [ BdA. This explains a second property of magnetic fluxes:
on a compact space they are quantized, for instance |, g2 F2 = N. This
should better be, as otherwise the Aharanov-Bohm phase picked up by a
particle around a small loop on the compact space would not be a multiple
of 27 producing a multi-valued wave function.

All of these properties generalize to higher dimensions with higher p-
form gauge potentials, where the objects charged under the gauge fields
generalize then as well from point charges to charged branes. The first
basic generalization comes from the anti-symmetric 2-form gauge potential
By for which the Polykav action of the string allows a coupling on the string
worldvolume ¥ reading

1
Sstring D/BQ = J/dzg —’YGQbBQ’MNaaXMabXN . (41)
>

The 10D effective action for By is the |H3|? = |dBz|* term in eq. (36) above,
with the field strength of By being H3 = dBs. The form of Hj3 provides
for gauge invariance under By — Bs 4+ dA;. In close analogy with the
electromagnetic case before this leads to axions

bi(r)= [ By , By=bi(z)w) (42)
5

on non-trivial trivial 2-cycles ¥4 with their associated basis 2-forms wj.
Again, the wavefunction of a string picks up an Aharonov-Bohm like phase
on a loop around a region with magnetic flux Hs due to the By worldvol-
ume coupling above. Consequently, there are quantized background fluxes
fzg Hsz = N, of H3 on non-trivial 3-cycles ¥§ of the compact dimensions.
The first natural guess to get inflation from the b-axion would be to
implement natural inflation.®® The kinetic term for b-axion arises from
reducing |H3|?,
priate 2-cycle X5 of the extra dimensions may provide a non-perturbative

contribution to the scalar potential of b. We get

L= f2(0,b)* — A* [1 — cos(b)] . (43)

while a Euclidean string worldsheet wrapping an appro-
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Canonically normalizing b into ¢ = bf gives the potential
V= A1 - cos(é/f)] - (44)

For large f >> Mp the potential approximates m?¢? around the minimum.
We can now compute ngs and r from the slow-roll parameters. Then, we
find that requiring ns > 0.945 as required by the PLANCK 95% confidence
limits implies f > 4.5Mp.3"*° However, the b-axion kinetic term gets a
prefactor f2 ~ M2/L? with ¢ > 1 for a 2-cycle with length scale L in string
units. This is in full analogy with the simple electromagnetic case before.
Since a controlled string compactification requires all radii to be large, we
have L > 1 and hence f < Mp. This behavior is generic — all known
string axions both from NSNS-sector or RR-sector p-form gauge fields have
sub-Planckian axion decay constants.’0 Attempts to evade this were so far

forced to resort to small radii or large string coupling.®!:62

4. Axion Monodromy

Pushing further we note that in analogy with Bs there are RR-sector p-
form gauge potentials Cj,_; and their field strengths F,, = dC,_1. They
arise from the type I/type II open string sector and have various branes
as objects whose worldvolume couples to Cp_;. By the same arguments as
above, RR-sector axions c,(cp_l)(x) = [ ) Cp—1 arise from the invariance
of F, under Cp_1 — Cp_1 + dAp_o. '

Finally, the full duality structure and set of gauge invariances of the
various string theories forces generalization of the RR-sector p-form field
strengths to include various Chern-Simons couplings

Fy=F,+BaAFp o . (45)
The corresponding kinetic terms |F},|? are invariant under By gauge trans-
formation as well, if at the same time Cp_; — Cp—1 — A1 A Fpp_a.

4.1. Axion monodromy inflation

We see that turning on RR-flux F,_5 provides Cj,_; with a ’Stueckelberg’
charge under the By gauge transformation. C,_; now shifts with A;, while
at the same time F, o-flux provides a mass term from |F,|? for the By
gauge field and its associated axion b(z).

This is in close analogy to the phenomenon of superconductivity: there,
spontaneous symmetry breaking leads to the appearance of a ‘Stueckelberg
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scalar’ 0(z) with a coupling (A; + df)? which provides the mass for the
electromagnetic field inside a superconductor. The A; A df coupling is the
analogue of the By A Fj,_» coupling in higher dimensions. The coupling
is necessary to preserve gauge invariance of the whole system even if the
gauge field is massive, as now A; — A; 4+ dA pairs with a shift 6 — 6 — A.

Hence, turning on the lower-dimensional fluxes Fj,_» provides a non-
periodic potential for the b-axions of the form

1% ~/de\/—Q/GIFpI2

(46)

N/dﬁy\/—igG(Fp + By A Fp,2)2 ~ (Np +b Np,2)2

Here N, and Np_» denote the flux quanta of Fj, and Fj,_s flux turned

on. The field range of a given b-axion no longer shows periodicity and

is a priori (kinematically) unbounded. This is the phenomenon of azion

monodromy parametrically extending the axion field range along a non-
periodic potential from fluxes.34:3%:49:63

We recall here that the structure of the potential eq. (46) is quite similar

to the 4D field theory version of axion monodromy in Refs. 35, 46, 64.

There, we start from an axion and a 4-form field strength
L~ (0,0)2 + (Fuupo)? + ——e P F, (47)
(" pvpo /=9 pvpo

Integrating out the 4-form while giving it ¢ units of flux gives ¢ a potential
V ~ (q + pu¢)?. The underlying shift symmetry appears as a joint shift of
both ¢ and ¢, but shifts in ¢ are again mediated by exponentially suppressed
brane nucleations. Hence picking ¢ chooses a branch, giving the axion ¢ a
non-periodic, a priori quadratic potential. The structure of this 4D theory
is rather similar to the reduction of |F,|? above.

Note, that we can compensate integer shifts of the axion b by appro-
priate integer changes in the F,_» flux quanta. However, these changes
are mediated by non-perturbative effects which are suppressed at weak
string coupling and large volume. Hence, the full system displays a set of
non-periodic potential branches for the b-axion.3%3%46:64 The branches are
labeled by the flux quanta of Fj,_5. The periodicity of the full theory is
now visible in the set of branches of non-periodic potentials when summing
over branches. However, as in spontaneous symmetry breaking, once we
pick a certain quantized flux Fj,, which can only change by exponentially
suppressed effects, we pick a certain branch along which the b-axion rolls
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in a non-periodic potential. Hence, axion monodromy clearly lends itself to
realize large-field inflation in the context of string theory.

The generic structure of the axion effective action on one such branch
picked by Fj,_ flux looks like

L= f2(x)(9b)% + n(x)* 7007 + A (x) cos(b) (48)

x summarily denote the moduli of a given string compactification, and
the axion acquires a periodic contribution from non-perturbative contribu-
tions. However, we expect their scale A* to be exponentially suppressed
in the radii of the extra dimensions and 1/gs. Hence, the generic axion
potential is a large-field monomial with a priori power py with tiny peri-
odic modulations on top. The axion decay constant, however, is moduli
dependent. As discussed above, in general f ~ Mp /L% g > 0. Hence, after
moduli stabilization the backreaction of the moduli x = x(b) due to the
inflationary vacuum energy may very well change f = f(x(b)) and thus the
canonically normalized inflaton field ¢(b) we get from d¢(b) = f(x(b))db.
Provided we realize this mechanism in a controlled setting with moduli
stabilization at large volume and weak string coupling and with a sub-
Plancian inflationary energy scale from axion monodromy, this mechanism
will inherit all the properties of radiative stability discussed in the previous
section. However, the presence of the moduli generically leads to backreac-
tion effects as already dicussed above in field theory. The CS-couplings in
the generalized flux kinetic terms lead to a priori axion potentials V' ~ bPo

o = 2,3,4.50,51,61,62,6567
b b *

with powers p, However, inclusion of the moduli

will generically lead to flattening from backreaction of the moduli onto the

axion potentia]4?-21:64

Veps. ~o(0)? , p<po . (49)

The associated predictions for the inflationary observables are ny = 1 —(2+
p)/(2Ne) and r = 4p/N, ~ 0.05...0.24 for p ~ 0.5...4 and N, = 50...60.

Finally, we can see the same basic effect of axion monodromy arising
from the coupling of the p-form gauge potentials to branes. This must
be the case, as the web of dualities in string theory in the ends relates
compactification with certain sets of branes to dual geometries without
branes but background fluxes describing the same physics.

For simplicity, we look at the effective action of Dp-branes wrapping
p + 1 dimensions of space-time. To start, we look at the worldline action
of a particle S = [ dtv/1 — &2. If this particle is charged under the electro-
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magnetic gauge potential, then

sz/ﬁ¢fiﬁ+q / Ay (50)

worldline

This structure generalizes to higher dimensions, where Dp-branes by anal-
ogy have a worldvolume action of DBI form together with a CS term pro-
viding charge under the various RR-sector gauge potentials

Spp = TDBp/dp-Hf\/— det(G + Ba) — o' F5 + /Lgp / (Cp+1 +...) (51

det G here denotes the determinant of the induced metric on the worldvol-
ume of the brane, while F5 is the field strength of a U(1) gauge field which
a single brane can contain.

Now let us take a 5-brane living on My x T2. That is, the 5-brane fills
all macroscopic 4D space-time, and wraps a small compact two-torus of the
extra dimensions. Now we put a By gauge field B1a = —Ba; = b(z) on the
T2, which in 4D is our b-axion. At same time there may be N, units of
combined 2-form flux Ny = fT2 Fs, where Fo == By + o' F,. Reducing the
brane action plus the |H3|? (for the b kinetic term) to 4D, we arrive at

L= 2% — \Juol(T2)2 + (b + No)? . (52)

Again, we see the appearance of an infinite set of potential energy branches
labeled by the flux integer N5. However, once we pick a flux Ny, we are on
one given branch. The b-axion now acquires a non-periodic scalar potential
which is linear

Vps ~ b (53)

at large b on each branch.?* Doing this on a D7-brane instead can pro-
duce Vp7 ~ b? instead.®> On each branch b will drive large-field slow-
roll inflation, while relaxation to different branches with different Ny is
subject to generically exponentially suppressed brane nucleation tunneling

35,46,64

events. The general story is the same as before, as in fact it is related

to the flux-induced version above by duality.

4.2. Inflating with several axions

Since axions seem to be ubiquitous in string compactifications (they com-
prise roughly h'!'/2 of the CY moduli, and for supercritical strings there
are O(2P) axions present in 4D>27%°), we might look for assistance effects of
several axions helping each other towards slow-roll. The original example of
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this is N-flation,® 7° where N < 1 axions are excited simultaneously from
the minima of the non-perturbatively generated V;(¢;) = A*[1 — cos(¢;/f)]
cosine-potentials. The Hubble parameter adds up the squares of the dis-
placements in the quadratic approximation to the axion potentials H ~
VY Vi ~ /Y, mPe? ~ VNy/m2¢? | ¢; ~ ¢ Vi. This increases the
friction term in the equation of motion for each axion by a factor ~ v/ N.
However, the Planck mass renormalizes as well, yielding in total
2 N m?¢*
M3 + N M?

(54)

where M, denotes the appropriate cut-off scale for the diagrams which
renormalize the Planck scale. This renders parametric enhancement of H at
large N difficult to achieve. However, we note here that describing the axion
decay constants of an N-flation setup as a randomized ensemble enhances
the relative likelihood of alignments or hierarchy among the decy constants.
This can reduce the pressure towards large N for N-flation somewhat.”!»72
The other option analyzed tries to realize natural inflation using a 2-
axion system. We start with a 2-axion system which is aligned in the axion
decay constants such that it has precisely one flat direction.?® We begin

with
L :ff(aﬂar)z + fez(auae)z

4 4 (55)
— A7 [1 = cos(pra, + p2ap)] — A5 [1 — cos(qia, + qzag)]

where the p;,¢; denote coefficients in the Euclidean action (e.g. coxeter
numbers for gaugino condensation) of the nonperturbative effects generat-
ing the axion potential. Canonically normalizing the axions gives

V(r,0) = A} [l—cos (plfﬁ—kpg%)} + A5 {1—COS <Q1%+Q2%)} (56)

Tuning an alignment ro /71 = g2/q1 = k produces a single flat direction.3¢

We have can now generate a shallow long-range axion potential by slightly
perturbing the alignment. There are two ways to do so. One way is to man-
ifestly tune a finite small misalignment into the above condition, changing it
to ro/r1 = k(14 9).3¢ The flat direction lifts slightly producing an effective
potential for the former flat direction

fo + A2 1

QK d (57)

Vepp. ~1—cos(@eps./ferr) + ferr. =

For § < 0.1 the approximately flat direction has a large-field potential with
Jefs. > 5Mp even if f,, fo < Mp.3% The smaller the initial decay constants
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fr and fp are, the smaller we must tune 0 to reach a desired fe.ys. For
2 axions the near-alignment typically constitutes at least 1-10% tuning.
However, among a larger number of axions with a random decay constant
distribution the likelihood for a random near-lignment of 2 axions with
small enough 6 among N axions can be rather sizable.”

Alternatively, we can leave the aligned situation Vj ~ 1 — cos(r/f, +
0/ f9) by simply adding a potential such that V. = W (r) + Vy(r,6). W(r)
can originate from some brane or flux induced monodromy,” or can come
from a non-perturbative effect itself W (r) ~ cos(r/f.).”" Providing a
hierarchy f,. < f/, fo is enough to give 6 a long-range shallow potential
with ferr > 5Mp for sub-Planckian initial decay constants. The potential
for the inflaton, which is approximately 6, sits like a set of terraces inside
the potential slope for r.

4.3. General structure of moduli stabilization

String theory in its critical version lives in 10D. Describing four dimen-
sional physics then typically employs compactification of the six extra di-
mensions on a small compact manifold. This process leaves various defor-
mation modes as vacuum degeneracies which therefore describe massless
and flat scalar fields in 4D, called the moduli. The presence of massless
scalars is in contradiction with various experimental data (no 5th forces,
light moduli screw up early Universe cosmology, etc.). The inclusion of
background fluxes, branes, O-planes and internal curvature lead to a much
improved understanding of moduli stabilization, that is giving mass to the
various moduli.”” Moduli stabilization also usually drives supersymmetry
breaking. This enabled the first classes of de Sitter vacua in string theory,
starting with the KKLT scenario.?°

Inflation in string theory is the phenomenon which after embedding
in string theory potentially lives closest to the string scale of all observ-
able phenomena so far (a verification of BICEP22! would imply V;L/f ~
Mgy ~ 1016 GeV, as discussed before). Given its dependence on a slow-
rolling scalar field, moduli stabilization is absolutely unavoidable before a
meaningful discussion of string inflation becomes possible.

Hence we sketch here the basics of moduli stabilization as they are
relevant for our discussion. The various fluxes, branes, and O-planes, as
well as internal curvature contribute after reducing to 4D potential energy
terms which scale as inverse powers of the radii and the volume V' of the
extra dimensions, and as different positive powers of the string coupling gs.
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These contributions fall into roughly three classes: i) certain branes, Hs-
flux and negative internal curvature contribute positive terms of the form
Vi ~ 4agit /V9 . ii) Negative terms Vo ~ —bg~2 /Y% which fall slower (g2 <
¢1) with inverse volume arise from O-planes, positive internal curvature,
and some quantum corrections. iii) Finally, a 2nd set of positive terms
falling even slower with the inverse volume, V3 ~ +¢g%3/V% arises from
RR-sector fluxes. In total, these contributions add up to a scalar potential
with a 3-term structure™ ™

r1 To r3
pir P T
Given the hierarchy 0 < g3 < g2 < ¢ so that the negative middle term
can produce a dip in an other positive potential, tuning the fluxes and the
negative term from O-planes and /or positive curvature allows to realize ex-
ponentially many dS vacua with suppressed cosmological constant. Due to
the large number of fluxes, the number of these flux vacua, called the ‘land-

V=W+W+V3=a

(58)

scape’, can easily surpass scales like 10°°°. This allows for environmential
explanations of the observed amount of dark energy.2%:39:31,:80

In general, stabilizing all moduli along the lines sketched above implies
supersymmetry breaking at the KK scales, as turning on the required fluxes
generically breaks SUSY.2®

However, we may insist on preservation of a single 4D supersymmetry
to low energies for various phenomenological reasons (such as the gauge
hierarchy problem). This case pretty much forces us to compactify critical
10D string theory on a Calabi-Yau (CY) manifold, or an orientifold thereof
in type II settings. Preserving the Calabi-Yau structure restricts the types
of background fluxes which are admissible. In particular, we may only use
imaginary self-dual 3-form flux G = F3 — 7H3 in type I1IB compactifica-
tions which probably provide still the best understood examples of moduli
stabilization so far.”” 7 = Cy +i/gs = Cpy + ie~?® denotes the axio-dilaton,
the complexified type IIB string coupling.

The moduli space of a CY compactification decomposes into a set of h?!
3-cycle complex structure moduli U® and hil Kahler or volume moduli 7;
which measure 4-cycle volumina in the CY. The index “+” refers to those
volume moduli which are even under the orienfold projection needed for
4D N = 1 supersymmetry. A CY itself has At > hil volume moduli
to start with. If A1 > hi’l, the remaining k"' moduli are orientifold-
6981 which in

these settings are some of our natural large-field axion monodromy inflation

odd combinations of the Bs- and RR-sector Cs-form axions,

candidates.?* Turning on just the CY compatible 3-form fluxes results in
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4D N = 1 effective supergravity for the moduli sector described by a Kéhler
potential and a superpotential

K =2 V(T;,T;) — In(—(1 — 7)/2i) — K..(U*, U)
(59)
WZWO(U(L,T) y W()(U(L,T)Z G3/\Q
cy
The 3-form fluxes induce a superpotential and corresponding scalar poten-
tial which serve to fix all the U® and axio-dilaton 7.2%77 However, this
leaves the volume moduli 7; with a no-scale scalar potential V(T;) = OVT;.
It is this feature, which requires using a combination of perturbative o
and string loop corrections to the volume moduli K&hler potential32:82-84

Kxsnler = —2In(V) — Kxanler = —2In(V + o’3¢) + 5K, (60)

and non-perturbative corrections in the T; from Euclidean brane instantons
or gaugino condensation on D-brane stacks

W=Wo—W=Wo+)» Ae T (61)

to stabilize the volume moduli.?®:3%:3233 These vacua are mostly AdS (ex-
cept for those of Ref. 33). Reaching dS vacua involves either introduc-
ing manifestly SUSY breaking objects like anti-branes in warped regions
(for control),?® or effects generating F- and/or D-terms from the open
string/matter sector.®>8¢ In these CY based constructions, the scale of
SUSY breaking associated with volume stabilization tends to be lower due
to the underlying no-scale structure than in more generic settings away
from CYs. Some CY schemes such as the Large Volume Scenario (LVS)32
can reach TeV scale gravitino mass either by stabilizing at very large vol-
ume or by using sequestering to suppress the soft masses with respect to
an intermediate scale gravitino mass.®” We note, that in certain settings a
racetrack combination of non-perturbative effects alone may suffice to stabi-
lize all geometric moduli without the use of any flux. G5 compactifications
of M-theory provide one such an example.®®

The underlying no-scale structure thus forces us to stabilize the volume
moduli at least partly by combinations of exponentially small effects. This
feature of CY compactification tends to render the volume moduli more
susceptible to backreaction from the inflationary vacuum energy. In turn,
once we require CY compactification, this more often requires us to sepa-
rate the mass scale of the volume moduli from the scale of inflation, leading
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to more tuning in the moduli stabilization than necessary in the generic sit-
uation away from CYs.?*#4950 In contrast, in more generic settings with
KK scale supersymmetry breaking, and all sources of moduli potential en-
ergy available in 10D in play, the inflationary vacuum often helps with
moduli stabilization.?® This leads to mostly harmless backreaction driving
flattening of the inflaton potential, replicating the spirit of the field theory
discussion of the last section.

We finally note, that”®7%-8% used more general combinations of negative
internal curvature, fluxes, branes and O-planes to generate new and more
general classes of dS vacua by generalizing the basic flux and brane setup
leading to the AdSs x X setup of the AdS/CFT pairs. These constructions
lead to very promising paths towards a holographic description of dS vacua
in terms of dSy/dSq_1 pairs? or similar and potentially related FRW /CFT

dual pairs.?!

5. Where Do We Go from Here?

From the preceding discussion we clearly see that we have just begun to
scratch the tip of an iceberg’s worth of a rich set of models and relation-
ships between various models of large-field inflation in string theory. We are
just starting to map the underlying structure of axion monodromy which
seems to be a widespread property of the axion sector of string compact-
ifications. Given that large-field inflation with its GUT-scale inflaton po-
tential is maybe our best hope to come close to string-scale physics using
observations, we should understand as much as possible about the generic
properties of the mechanism while continue to build more explicit sample
construction. A synopsis of both, particular constructions and an under-
standing of the general properties of axion monodromy, might give us what
we need to finally have estimates for the inflationary observables ns and r
beyond the level of a few lamp posts.
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We review the tension between the observational evidence for dark en-
ergy and various theoretical considerations. This tension has motivated
a reconsideration of the issue of naturalness, and spawned various ex-
otic approaches toward an acceptable solution. We discuss attempts to
realize dark energy in string theory, and the perspective on the string
landscape that these results have suggested.

1. Introduction

1.1. History of the cosmological constant

The cosmological constant has a rich if checkered history. Its story began in
the years following Einstein’s completion of his General Theory of Relatiivy,
in 1915. Shortly after this monumental achievement, Einstein applied the
equations of General Relativity to the universe as a whole, and came upon
an unexpected implication. The equations did not admit a solution in which
the scale factor of the universe was constant. Instead, the scale factor would
either have to increase or decrease over time, which would mean that space
itself would be either stretching or contracting.

The overwhelming prejudice at the time was that on the largest of scales,
the universe was static, eternal, and unchanging. All familiar astrophysical
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dynamics was deemed small scale motion, which on the largest of scales
would average out to no change at all. Adhering to this perspective, Ein-
stein modified the equations of General Relativity to allow for a static
solution. From a technical standpoint, the modification itself was minimal
and thoroughly reasonable. The Einstein field equations are nonlinear par-
tial differential equations that involve terms that are first and second order
differentials of the spacetime metric

Ry — (1/2)g, R = 87GT,,. (1)

Notice, however, that these equations leave out the sole term that would
have the appropriate symmetries under spacetime differomorphisms and be
a zeroth differential of the metric—a term proportional to the metric itself,
guv- Including this term, and calling the constant of proportionality A, the
modified field equations become

RILV - (1/2)9/wR + AgW = 87TGZLV. (2)

Einstein called A the cosmological member but over time has acquired the
moniker cosmological constant.

What is the physcial significance of A? There are two ways of answering,
corresponding to the two ways of including A in the field equations: on
the left hand side and on the right hand side. On the left hand side —
the geometrical side of the equations — A is interpreted as a property of
spacetime, a uniform intrinsic tension in the spacetime fabric. If written on
the right hand side — the source side of the equations — A is interpreted
as a homogenous contribution to the mass-energy whose equation of state
is p=—p.

Of course, the physical implications of A are independent of the in-
terpretation one chooses, and physicists routinely switch between the two,
dictated by context and utility. For our purposes, the most useful equation
involving A is the Friedmann equation for the scale factor of a Robertson-
Walker universe with constant curvature spatial sections whose metric is
ds?:

ds* = —dt* + a(t)*ds>. (3)
The Friedman equations are then:
N

a G k
H*= (-] = —piota — — 4
(a) 3 Ptotal = "5 (4)

a anG

= 5 (ptotal + 3ptotal) (5)

a 3
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where k& = 0, £1 correspond respectively to flat, positively and negatively
curved spatial sections, and we have incorporated A on the right hand
side—as a source—by defining

A
Ptotal = P+ e (6)
and
A
Ptotal = - 87TG . (7)

From these equations we can immediately see Einstein’s motivation for
introducing A: If k = 1 (uniform constant positive curvature for the spatial
sections, which can be taken to be three spheres, S3), A allows the Fried-
mann equations to yield a static solution (with non-relativistic matter):

=g o= (®)

This is Einstein’s Static Universe proposal of 1917. Physically, we see
that in the Friedmann equations positive A acts as an opposing gravita-
tional force to that of ordinary matter and radiation, which is why A is
sometimes colloquially described as generating “anti” or “repulsive” grav-
ity. Einstein’s static solution relies on a cancellation between these two
flavors of gravitational force.

Most descriptions of Einstein’s Static Universe note that in 1929 the
astronomical observations of Edwin Hubble established that the universe is
expanding, and with that Einstein was convinced that the static universe
he sought was not relevant to reality. And so, he retracted the cosmological
constant, citing it as one of his greatest blunders. However, there are two
points worthy of emphasis.

First, even before the observations of Hubble, it was clear that the
Static Universe had a fatal flaw. The balancing act between attractive and
repulsive gravity is unstable. Perturbing the Friedmann equation around
the static solution reveals this directly, but a simple physical argument
shows it too. If the radius of the static universe is made a touch larger,
attractive gravity will decrease since it is acting over larger distances, but
the cosmological constant’s repulsive gravity — being constant — will be
unchanged. Thus, the repulsive push will now win out, causing the universe
to expand unabated. If, on the other hand, the radius of the static universe
is made a touch smaller, attractive gravity will increase since it is acting
over shorter distances, but the cosmological constant’s repulsive gravity —
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being constant — will be unchanged. Thus, the repulsive push will now
lose, causing the universe to contract unabated.

Second, even with such instabilities, and even with the observations of
Hubble, there was no reason for Einstein to retract the cosmological con-
stant. It no longer made any sense to invoke the cosmological constant to
yield a static universe, but as the field equations involve first and second
order derivatives of the metric, there is no a priori reason to not include the
term proportional to the zeroth order derivative — the cosmological term.
Indeed, Einstein himself was aware of this, noting in a letter that the true
fate of the cosmological constant would await future astronomical observa-
tions. As is well known, and as we will note below, Einstein’s evaluation
of the cosmological constant was prescient. In 1998, observations of dis-
tant supernovae brought the cosmological constant back into mainstream
physics.

1.2. The cosmological constant problem

Keeping to the historical timeline, by the early 1930s the need for a cosmo-
logical constant had vanished. Yet, as quantum mechanics and quantum
field theory rapidly developed, it became clear that the cosmological con-
stant would not be vanquished quite so easily.

The simplest quantum mechanical system, the harmonic oscillator, re-
veals the issue. Classically, the lowest energy state of a harmonic oscillator
is the static configuration of the oscillator sitting at the lowest point in its
potential. Quantum mechanically, the lowest energy state is quite differ-
ent. Due to the Heisenberg Uncertainty principle, the oscillator can’t have
a definite location and a definite speed, and hence the classical zero energy
configuration is simply not allowed. Instead, the lowest energy configura-
tion has a non-zero energy, which is generally called the zero-point energy.
A simple calculation shows that the value of the zero point energy is the
famous factor for fiw/2 where w is the oscillator’s angular frequency. The
import of this basic result for the cosmological constant becomes apparent
when we generalize it to quantum field theory.

A (free) quantum field is nothing but an infinite collection of oscillators,
one for each of the infinite possible wavelengths of the field fluctuations.
Which means that the zero point energy of a quantum field is, formally,
infinite. This yields a constant, but formally infinite energy density. The
general expectation is that quantum field theory is an appropriate physical
description on sufficiently long wavelengths, motivating a short distance
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cutoff which, to be definite, can be taken at the Plank scale, [, = 10733
cm. With this cutoff, the constant energy density is on the order of 1 in
Planck units, an enormous value compared with the observational limit
of roughly 107%° grams/cm?, which is about 10~!2? in Planck units. So,
while astronomical observations led most everyone to anticipate that the
cosmological constant was zero, quantum considerations suggested a vastly
different from value.

The tension between observation and theoretical considerations becomes
only more strained as we consider detailed models of particle physics. A key
component of modern particle theory is symmetry breaking — a process
in which the universe undergoes a phase transition that discontinuously
changes the manifest symmetry group of the equations of motion. Such
transitions are typically accompanied by a change in the energy of the local
vacuum state the universe occupies, a process that in effect changes the
value of the cosmological constant.

So, the cosmological constant we experience today arises from the com-
bined influence of zero-point energies associated with each of nature’s quan-
tum fields, the effect of all phase transitions the universe undergoes, as well
as whatever primordial (bare) cosmological constant the universe may have
had at the outset. That these contributions, from disparate sources, should
somehow cancel each other out, yielding a net value of zero for the cosmolog-
ical constant, is the the puzzle that has become known as the ” cosmological
constant problem”.

1.3. Accelerated expansion

For decades, physicists sought an explanation for why all the sources for
a vacuum energy filling space would conspire to yield the combined value
zero. The problem seemed difficult, but far from hopeless, because zero is a
special value. One can at least imagine that some kind of symmetry princi-
ple or some kind of hidden relationship between the various sources would
explain their cancellation. Many such proposals were put forward, although
none was fully convincing, and hence the problem remained unresolved.
In 1998, the cosmological problem took on a decidedly different char-
acter. In that year, two teams of astronomers, who had been carefully
measuring the rate at which the expansion of the universe was slowing over
time announced a shocking result: the expansion is not slowing down. It
is speeding up. The expansion is accelerating. In the years since, confi-
dence in this result has only increased, requiring theorists to explain the
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outward force driving the accelerated growth of the scale factor. And the
explanation which best aligns with the data is that the outward force is the
repulsive push of a non-zero cosmological constant. In a sense, then, even
Einstein’s biggest “blunder” has turned out to be right.

Note however that while the resurrection of the cosmological constant
affirms Einstein’s conceptualization of this term in his equations, the value
of the cosmological constant necessary to explain the accelerated expan-
sion is far from the value Einstein invoked in developing his static model
of the cosmos. In fact, the value of the cosmological constant suggested
by the astronomical observations raises an even more acute version of the
cosmological constant problem.

Namely, the data point to a value of A that in Planck units is about
107122, A fantastically tiny value when expressed in these natural units,
but decidedly nonzero. Earlier we noted that explaining a value of zero for
A posed a significant challenge, but one that theorists could attack with
tools familiar from their standard mathematical arsenal — zero is value that
in many other contexts emerges from and is protected by considerations of
symmetry. But such an approach seems powerless to explain a fantastically
tiny but non-zero value.

Which is not to say that over the past decade and a half theorists haven’t
tried. There is a vast literature of proposed explanations.® Some attempt
to directly justify A ~ 107'22, Others have been inspired by the fact that
a vacuum energy of 107122 is on par with the energy content of the uni-
verse’s matter content, thus imagining dynamical values of vacuum energy
that track the energy density of matter. It is fair to say that none of the
proposals are sufficiently convincing to have risen to a point of prominence
and consensus. Instead, there is a widespread opinion that explaining the
origin of the accelerated expansion, in quantitative detail, ranks among the
deepest problems faced by theoretical physics.

The uncertainty regarding the origin and identity of the invisible vacuum
energy responsible for the accelerated expansion has led scientists to call
it “dark energy,” and the current failure to explain the dark energy and
calculate its value, is known as the dark energy problem.
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2. Anthropic Considerations

2.1. Brief history of anthropic thinking

When a problem in physics (and science more generally) stubbornly resists
being solved, that often reflects that the problem is difficult. But sometimes
it reflects that physicists are asking the wrong question, trying to solve the
wrong problem. Centuries ago, Johannes Kepler sought a first principles
explanation of the distance between the Earth and the Sun. Decades of
work resulted in no progress. Did that mean Kepler was tackling an ex-
tremely difficult problem? In this case, the answer is no. Instead, the other
explanation — that Kepler was asking the wrong question — comes to the
fore.

Once Isaac Newton came on the scene of physics, it became clear that
the distance between a planet and the star it orbits is not some fundamental
constant of nature. Rather, from the standpoint of physics, planets can
orbit their host star at essentially any distance. In any particular case, such
as the Earth-Sun system, the distance reflects the historical development
of the orbital system, and is thus not a question that is open to the kind
of explanation Kepler sought. Which means that Kepler made no progress
in explaining the Earth-Sun distance because he was asking the wrong
question. Planets can be, and are, at a huge variety of distances from their
host star. Given the intrinsic details of the Earth and the Sun, physics
alone can not delineate the size of the orbit.

The question Kepler should have been asking is this: Of all the possible
distances that planets might be from the Sun, why do we humans find
ourselves on a planet that’s at a distance of 93 million miles? And that’s
a question which has a sharp answer. At distances significantly different
from 93 million miles, the temperature is either too hot or too cold for
liquid water. And without liquid water, our form of life won’t take hold.

The move from the question Kepler asked to the one we’ve just an-
swered is a hallmark example of what’s come to be known as “anthropic
reasoning”. Omnce one realizes that a feature of the natural world is not
uniquely determined by physics (such as the radius of a planetary orbit)
and once one realizes that the feature does in fact take on a wide variety
of different values (planets orbit their host star at many different radii), we
should shift our attention from a first principles analysis of the value we
experience to describing it as a selection effect. For the feature in question,
we experience the value we do because other values are incompatible with
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our existence.

Anthropic reasoning inspires heated debate, but most of the heat is hot
air. When the condititions described in the previous paragraph hold, there
can be no question that reasoning via selection effects is justified. This does
not preclude the existence of other, non-selection effect explanations that
may offer deeper or more satisfying insights. But anthropic reasoning —
that is, taking account of selection effects — is beyond reproach.

To be clear, let’s reiterate that anthropic reasoning requires that two
conditions hold: (a) the physical feature which we seek to understand must
assume a wide range of values across the landscape of reality and (b) most
of the possible values (except for the value we experience) must be in-
compatible with our form of life. Attempts to use anthropic reasoning in
circumstances for which either or both of these conditions do not hold (usu-
ally (a)) have led some to believe that anthropic reasoning is circular. But
when applied appropriately, anthropic reasoning is unassailable.

2.2. Anthropic approaches to the cosmological constant

Long before the observations of accelerated expansion and the proposed
explanation invoking a tiny presence of dark energy throughout space, the
classic cosmological problem already posed a significant puzzle. As men-
tioned above, why would all the disparate contributions to the cosmological
constant exactly cancel, yielding a net result of zero? In the mid-1980s,
Steven Weinberg took a novel approach. Perhaps, he reasoned, the many
years of failed attempts to solve the cosmological problem indicated that,
much like Kepler, we’ve been asking the wrong question. Instead of a first
principles explanation, perhaps an anthropic approach is called for.

How would that go? Well, first off, we would need to imagine that our
universe, with its particular value of the cosmological constant, is but one
of many universes which possess cosmological constants of differing values.
And second, we’'d need to be sure that most values of the cosmological
constant would create conditions incompatible with our form of life. As
Weinberg pointed out, this appears to be the case: most values of the
cosmological constant are incompatible with the formation of galaxies, a
prerequisite for having habitable planetary systems. The reason is that
the clumping of dust into galactic seeds is easily disrupted by the repulsive
force of a cosmological constant that is too large and positive; the longevity
of a universe would be too short for galactic formation if it possessed a
cosmological constant that is too large and negative.
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Weinberg took this idea one step further and noted that these consid-
erations don’t favor a vanishing cosmological constant per se, but rather a
cosmological constant whose value is as large as it could be without crossing
into the uninhabitable zone. If the cosmological constant in our universe
were far smaller than this distinguished value, anthropic reasoning would
be ineffective at explaining its value: the mystery of why it was far smaller
than it could be, given our own existence, would remain in full force. Wein-
berg worked out the distinguished value? and found it to be on the order
of 107! (in Planck units). This calculation was in 1987, a decade be-
fore the observations of accelerated expansion gave the first evidence for
dark energy, and also showed that the value was on par with Weinberg’s
prediction.

A number of authors have pointed out subtleties that afflict the power of
Weinberg’s argument (most notably, Weinberg considered universes distin-
guished solely by the difference in the cosmological constant values, but if
other features can also vary, the conclusions are modified), but it launched
an anthropic perspective on the cosmological contant that has been devel-
oped by many in the years since. One key point of the argument, though,
is worth calling out. The number of universes with distinct values of the
cosmological constant needs to be sufficiently large to ensure that the spec-
trum of values includes the one we’ve measured. How large? Focusing
attention of cosmological constant values whose magnitude doesn’t exceed
one in Planck units, we’d need, say, at least 102! distinct universes, with
randomly distributed cosmological constant values, to ensure that a uni-
verse with our measured value would be represented.

Is there any natural way for a theory to generate a multiverse with such
a vast assortment of constituent universes? According to string theory, the
answer is yes.

3. String Theory and Dark Energy

The dark energy problem really only arises in the context of quantum grav-
ity. This is because the zero of the vacuum energy can be chosen arbitrarily
in the absence of gravity, and furthermore its value can be tuned at will clas-
sically. It is therefore natural to address this puzzle in a concrete framework
of quantum gravity, such as string theory. In this section, we will review
attempts to realize dark energy in string theory, and new twists on the
anthropic reasoning that the string theory landscape might suggest.



394 B. Greene and G. Shiu

3.1. Brief history of string compactifications

As it turns out, realizing dark energy in string theory also presents new
hurdles. Overcoming these hurdles requires one to confront several vexing
issues in string compactifications, such as moduli stabilization and super-
symmetry breaking. It was not until recent years that approaches to ad-
dress such central issues in string phenomenology® have been sufficiently
developed to be carried out in a controllable and calculable way.

It is an old idea that unification of the fundamental forces in Nature may
be rooted in the existence of extra dimensions. This idea which dated back
to the works of Kaluza and Klein'? reemerged around the 1970s-1980s with
the discovery of string theory as a consistent quantum theory of gravity.
Like the original Kaluza-Klein idea, string theory (at least in its known
weak coupling limits) is formulated in higher dimensions. However, what
distinguishes string theory from other Kaluza-Klein theories is that the
number (and type) of extra dimensions is not arbitrary but rather dictated
by quantum consistency.

While string theory helps limit the choice of extra dimensions, we are
still faced with many possibilities. The size and shape of the extra dimen-
sions can vary over four-dimensional space-time in a way consistent with the
equations of motion. Thus, they describe four-dimensional fields known as
moduli, so called because classically their potential energy function admits
continuous families of solutions. Each solution describes a different uni-
verse with different fundamental parameters (e.g., the values of Newton’s
constant or gauge couplings). Without a mechanism for “lifting” these flat
directions (i.e., giving the moduli a sufficiently heavy mass), these moduli
lead to unacceptable phenomena such as new long range forces, or time de-
pendence of fundamental parameters, in direct conflict with observations.
Moduli stabilization is therefore a problem with two parts: how do we give
masses to the moduli and why the fundamental parameters so obtained
match the values we observe.

Another and related problem is supersymmetry (SUSY) break-
ing. While there are many phenomenological reasons to consider four-
dimensional theories with low energy A/ = 1 SUSY (to name a few, the
Higgs hierarchy problem, gauge unification, and dark matter), this sym-
metry, if realized in nature, must be broken in the current state of our
universe. The discovery of dark energy, as described above, adds another
layer of complication: not only is our current universe in a SUSY breaking
phase, observations require it to be a (meta)stable vacuum (or in the case
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of time varying dark energy, so-called quintessence) with a tiny positive
vacuum energy. This is a tough order for the underlying string compactifi-
cation and the mechanism used to stabilize the moduli.

In string theory, the way SUSY emerges has more to do with the the-
oretical control it provides. In compactifications that preserve N’ = 1 su-
persymmetry at the Kaluza-Klein (KK) scale, the computation of the four
dimensional effective Lagrangian is greatly simplified as powerful physical
and mathematical tools can be brought to bear. Moreover, it is generally
easier to prove metastability for a SUSY breaking state in a supersymmet-
ric theory. These arguments for supersymmetry may appear to be more a
matter of convenience, and indeed it has recently been advocated (see e.g.,
Ref. 6) that models with broken supersymmetry at the string scale can be
equally brought under control as long as the vacuum is stabilized in the
weak coupling regime. Nonetheless, much of the effort in string compactifi-
cations has been focussed on scenarios with unbroken A/ = 1 SUSY at the
KK scale, with SUSY broken by dynamical effects at low energy.

Since the mid 1980s, it has been known that string theory admits sev-
eral weak coupling formulations. Four of these formulations are theories
of closed strings, known as type IIA, type IIB, heterotic Fs x Eg, and
heterotic SO(32). In addition, type I string theory provides a formula-
tion that involves both open and closed strings. The above five string
theories are all formulated in ten dimensions, and admit low energy limits
described by known supergravity theories (this fact will be important later
on). The type II theories have 32 supercharges and do not at first sight
include non-Abelian gauge sectors. One can obtain A/ = 1 supersymmetric
theories upon reducing the type II theories on non-geometric backgrounds
(e.g., asymmetric orbifolds”), but worldsheet conformal field theory argu-
ments demonstrated that the Standard Model cannot be obtained in this
manner.® The other three string theories have 16 supercharges and include
non-Abelian gauge sectors. Geometrical spaces that preserve d = 4, A" =1
supersymmetry at the KK scale are manifolds of SU(3) holonomy. Metric
spaces with SU(3) holonomy are known as Calabi-Yau manifolds, whose
existence was proved in Ref. 9. Calabi-Yau manifolds are Ricci-flat and
so serve as a good starting point for solving the supergravity equations
of motion. Substantial advances have been made in constructing realistic
vacua (i.e., those that can accommodate the Standard Model of particle
physics and its extensions) from Calabi-Yau compactifications of heterotic
string theories® (see e.g, Ref. 5 and also some reviews written in that pe-

aRelatively less effort was made on the Type I front in that period, see, e.g., Ref. 10 for
a collection of papers on realistic string compactificafions up to the late 1980s.
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riod!13).

3.2. Discovery of D-branes and flux compactifications

The above summarizes the state of affairs until the mid 1990s, when the sec-
ond string theory revolution provided new insights into a non-perturbative
formulation of string theory. The key observation is that string theory is
not merely a theory of closed or open strings but also contains in its non-
perturbative sector extended objects of higher dimensions, known as branes.
Dirichlet branes (D-branes for short) defined as boundary conditions for
open strings are a particularly simple description of these dynamical ex-
tended objects. They provide key links in the web of dualities between the
aforementioned weak coupling descriptions of string theory as well as eleven
dimensional supergravity. The different formulations of string theory are
now understood as different “phases” of a fundamental theory known as
M-theory.

D-branes are charged under certain massless fields appearing in the
Ramond-Ramond (R-R) sector of the ten-dimensional type ITA/B string
theories, and couple to those fields much as an electron couples to the
photon. More specifically, a p-brane is an extended object with p space-
like directions and one time-like direction and it couples to a (p + 1) form
potential Ay, as follows:

@ [ Ay (9)

The analogy with electromagnetism goes even further. If we compactify
string theory on a manifold M with a non-trivial homology group Hp42(M)
with ¥ being a non-trivial element of homology, we can consider a config-
uration with a non-zero flux (satisfying the Dirac quantization condition):

/ Fpyo=ne L. (10)
by

As in electromagnetism, turning on a field strength costs energy, propor-
tional to F2. Because the fluxes are threading cycles in the compact geom-
etry, this energetic cost will depend on the precise choice of metric on the
internal space. To see this explicitly,

V= [ Bpan R (11)
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where the metric enters in the definition of *. Thus a potential on the
moduli space is developed. Minimizing this potential (provided that it is
sufficiently generic) will fix the moduli.

While this idea is general and applies to both type II theories, it
is most explicitly expressed in the framework of type IIB string the-
ory!* 17 (see Refs. 20-22 for some reviews) where a superpotential®324
W = [(Fs—7H3) A Q is generated by the NS-NS 3-form Hj; and R-R
3-form F3 flux background (7 is the axio-dilaton). There has been some
success in constructing Standard Model like vacua in this context.'®'° In
type IIB theory, fluxes alone can only stabilize the complex structure mod-
uli and the axio-dilaton, leaving the Kahler moduli unfixed (a result of the
no-scale structure of the supergravity). Stabilization of the remaining mod-
uli invokes additional quantum corrections as e.g., in Refs. 25, 26. In type
ITA string theory, however, fluxes alone are sufficient for stabilizing all the
closed string moduli.?”

Moreover, depending on how the gauge and matter sectors are embed-
ded, SUSY can be softly broken by the supergravity flux with soft terms
generated in a calculable way.?8 33 In applying these results on flux-induced
soft terms, one should ensure that there are no additional moduli stabiliza-
tion contributions that could restabilize the vacuum to a supersymmetric
minimum, or sizable effects from “uplifting” (to be defined later).

3.3. No-go theorem for de Sitter space

Moduli stabilization and SUSY breaking are necessary conditions for de
Sitter vacua to arise from string compactifications but they are not sufficient
conditions. In fact, under fairly general assumptions, one can prove that
there are no non-singular de Sitter vacua in gravity theories.>* 3¢ Here we
follow closely the arguments for the no-go theorem presented in Ref. 36.
Consider a D-dimensional (D > 2) gravity theory compactified to d
dimensions, ds%, = Q?(y) (dm% + gmndymdy”) satisfying the conditions:

(1) The gravity action does not contain higher curvature corrections.
(2) The potential is non-positive, V < 0P.

(3) The theory contains massless fields with positive kinetic terms.
(4)

4) The d-dimensional effective Newton constant is finite.

Taking the trace of the D-dimensional Einstein equations (which, due

bThis condition is violated in massive ITA supergravity which has a positive cosmological
constant. This case is therefore treated separately.
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to (1), are the equations of motion):

WW@D—? = Ry +Q%(~T! + %Tf) (12)
where p = 0,...,d and L = 0,...,D. (2) and (3) imply that the second
term on the right hand side is non-negative. If Ry > 0, QP2V2QP~2 > 0.
Integrating over a compact manifold (volume is finite because of (4)), we
conclude that [ \/§(@QD’2)2 < 0 which is only possible if € is constant
and Ry = 0, thus no de Sitter solution.

3.4. FEwading the no-go theorem

An implicit assumption that went into the above no-go theorem is the
absence of localized sources. However, string theory is full of localized
sources, e.g., D-branes, which can give additional contributions to the stress
tensor. The no-go theorem can be evaded if the localized sources give (for
the interesting case of d = 4, D = 10):

(Te -7 <0,  p=0,...3andm=4,...,10.  (13)

For example, in type IIB compactifications whose 4d N’ = 1 SUSY is of the
type preserved by D3/DT branes, the following inequality

]. oc
L (T - T > Typlye (14)

is saturated by D3 branes and O3-planes, and by D7-branes wrapping holo-
morphic cycles. (D3 satisfies but not saturates it). Orientifold planes carry
negative tension and thus provide a key ingredient to evade the no-go result.
Condition (1) is also expected to be violated in string theory. In fact,
o’ corrections have been employed in moduli stabilization scenarios, e.g.,
Ref. 26 though orientifold planes are also present in such constructions.

3.5. KKLT, LVS, classical de Sitter, and beyond

Since the discovery of dark energy, various scenarios to construct de Sit-
ter vacua from string theory have been proposed. These scenarios can
be broadly divided into two types: those that invoke quantum effects, and
those within classical supergravity but which are supplemented by localized
sources.

The prototypical scenarios of the first type include the so-called KKLT
construction®” and Large Volume Scenario (LVS).26 The no-scale structure
that leaves the Kahler moduli in type IIB supergravity unfixed is expected
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to be broken by quantum effects (in gs and «’). The superpotential is
only corrected non-perturbatively while the Kahler potential receives both
perturbative and non-perturbative corrections. Schematically, we can write:

K=K+ K,+ K,) (16)

where Wy is the classical superpotential from fluxes. The KKLT scenario
corresponds to Wy << 1 (in which case corrections to the Kahler potential
are subdominant) whereas the LVS corresponds to Wy & 1 (the gravitino
mass is suppressed by large volume). Quantum corrections to the Kahler
potential are difficult to compute. While some o’ and g5 corrections to
the Kahler potential of 4d N/ = 1 type IIB compactifications have been
derived in the last years (see, e.g., Refs. 38-42), a complete understanding
is still lacking (though exact results were obtained, albeit for N' = 2 vacua,
in?). Tt has been argued?® that the leading corrections to the Kahler
potential of relevance to the stabilization of Kahler moduli is that of Ref. 44,
K> —2In(Vg — 4’2;%%) where x(M) is the Euler characteristic of the
compactification. ’

Regardless of whether Wy << 1 (KKLT) or Wy ~ 1 (LVS), the quantum
effects which stabilize the Kahler moduli generically lead to anti de Sitter
minima. Thus, additional uplifting mechanisms are invoked to lift these
minima to de Sitter vacua. In Ref. 37, an anti-brane is introduced at the
tip of a highly warped throat within the compactification. The anti-brane
provides a positive-definite contribution to the scalar potential and the
warping can be adjusted to make the vacuum energy to tunably small and
positive. It is worthwhile noting that finding explicit backreacted solutions
of anti-branes in warped backgrounds (see e.g., Refs. 46-57) and deriving

58-65 are subtle issues that are

warping corrections to the effective action
currently being actively investigated. Other uplifting mechanism include D-
term uplift,%% 8 Kahler uplift,%* "2 and the inclusion of dilaton-dependent
non-perturbative effects on the superpotential.”> The latter two mecha-
nisms exploit the interplay of several quantum effects to attain metastable
de Sitter minima.

Another class of de Sitter constructions are known as classical de Sitter

solutions.™ 7

The motivation for considering such classical constructions
is multifold. Quantum effects are difficult to compute explicitly in N' =1
string compactifications. For example, the moduli stabilizing instanton ef-
fects which stabilize the Kahler moduli can in principle depend non-trivially

on the complex structure as well as open string moduli. One has to invoke
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a hierarchy of scales® in order to safely neglect the complicated moduli
dependence. It is certainly desirable to find a class of string compactifica-
tions where the moduli stabilization potential can be explicitly computed.
Moreover, the no-go theorem discussed above3* 3¢ does not exclude the
possibility of classical de Sitter solutions (as long as appropriate localized
sources are present). As stabilized anti de Sitter vacua were shown to arise
in type ITA flux compactification,?” it is natural to wonder if de Sitter vacua
can be obtained in a similar context. As it turns out, there are further no-go
theorems”™ 7 that restrict the appearance of classical de Sitter solutions.

These additional no-go theorems follow from the scaling behavior of
different scalar potential contributions with respect to the two orthogonal
universal moduli p = (volg)'/? and 7 = e~ %/2\/vols that occur in any
perturbative and geometric string compactification. Here volg and ¢ are
the 6D internal volume in the string frame and ¢ is the 10D dilation. In
the 4D Einstein frame, the contributions from the NS-NS flux H3, RR flux
F,, O, planes and the 6D Ricci scalar Rg scale as:

q—6 _ _
Vi~ 172073, Ve, ~77 %P Vo~ Vg~ 2pTh (17)

These scalings in particular forbid the existence of de Sitter critical point
in ITA flux compactification on Calabi-Yau orientifolds™ (where Vg, = 0).
More generally, one can derive inequalities of the form (ar0- +bpd,)V > cV
where a, b, ¢ are real constants and ¢ > 0. These inequalities point to the
minimal ingredients for constructing classical de Sitter extrema.”7 Ab-
sence of tachyonic instabilities puts additional necessary conditions on the
Hessian of the potential in the (p,7) directions.® Taken together these
arguments naturally lead one to seek for SUSY breaking states in com-
pactifications on SU(3) structure manifolds.”®"” As homogeneous spaces
are more amendable analytically, much of the studies on explicit SU(3)
structure manifolds have been focussed on those that can be realized as
group manifolds and coset spaces (see e.g. Refs. 81-84). A rather exten-
sive search for de Sitter vacua in orientifold compactifications of SU(3)
structure group/coset manifolds has been carried out in Ref. 77 though all
the de Sitter critical points found there turn out to have tachyons. We
will return to discuss why tachyonic instabilities seem ubiquitous in these
constructions in Section 4.

°E.g., in IIB flux compactifications, the complex structure moduli are assumed to be
hierarchically heavier than the Kahler moduli so the former can be treated as constants.
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3.6. Fluxzes and the landscape

Not only are fluxes a key ingredient in moduli stabilization, they also sug-
gest an interesting view of the string theory landscape. Without going into
details of the string construction (e.g., the precise geometry, fluxes, branes
involved, etc.), one can already see how the notion of a discretuum emerges.

Recall that the fluxes are quantized fE F,io € Z. In a compact space,
these flux quanta need to satisfy some Gauss’s law constraints which state
that the total charge on the compactification manifold, including D-branes,
orientifold planes and all other sources must vanish. In an open string
picture, these constraints are related to anomalies and thus are an integral
requirement of a consistent string compactification. The essential point
is that these Gauss’s law constraints provide an upper bound on the flux
quanta. For example, in type IIB compactification with 3-form fluxes, the
flux quanta are bounded by the number of orientifold 3-planes in the vacua.
Therefore, even for a fized internal space topology, there are a discrete set of
string theory solutions labeled by the choices of flux quanta. The number
of discrete states can be estimated as follows. Let N be the number of
moduli (typically of @(100) to O(500), and Fyouna be the upper bound on
the flux quanta (which we can take for typical compactifications to be of
O(10 — 100)), then the number of discrete choices amounts to the number
of discrete flux quanta in a N dimensional flux sphere, i.e., #qiscrete ~
Fb](\)’und ~ 1019 to ~ 10%%°. Each choice corresponds to a different string
theory solutions (i.e., different D-brane content, volume of internal cycles,
etc). Thus they give rise to universes with a priori different gauge groups,
matter content, and fundamental constants.

Note that the number of theories—distinct possible universes—is what we
need for a successful anthropic explanation of the cosmological constant. In
this sense, string theory naturally offers an anthropic solution fo the dark
energy problem.

The above reasoning also suggests a way to realize an old proposal®?
in a string theory context®® (see also Ref. 87). It has been suggested in
Ref. 85 that the cosmological constant could be explained in terms of a
space-filling 4-form flux which could dynamically neutralize itself (in small
steps) by membrane nucleation. At first sight, this mechanism does not
seem to work in string theory since the supergravity fluxes are quantized
and thus the steps in which the cosmological constant can be changed would
exceed the current bounds. For example, the necessary flux can be obtained
in M-theory compactifications to 4-dimensions by reducing the 7-form flux



402 B. Greene and G. Shiu

in 11-dimensions on non-trivial 3-cycles of the internal manifold (similar
arguments can be made for other formulations of string theory). It was
observed in Ref. 86 that in a typical compactification, there are numerous
such 3-cycles in the internal space and hence many different 4-form fluxes
in the four noncompact dimensions. The net cosmological constant is then:

1 2 2
A:AO+§Xi:niqi (18)

where Ag is the bare (negative) cosmological constant, n?q? are the contri-
butions from n; quanta of each kind of 4-form (for the M-theory example,
qi = Mfl/ 2‘/@ /v/Vz. We can find cosmological constants within acceptable
bounds |A| < e if there exists a point within the n; charge lattice that lie
within a distance ~ e of a sphere of radius Ay centered at n; = 0. For
sufficiently large number of moduli, this can be achieved with ¢; ~ O(1),
i.e., the compactification scale can be comparable to the fundamental scale.

3.7. Anthropic thinking 2.0

The large number of flux vacua in the string theory landscape reminds us
of statistical physics where the systems of interest involve a large number
of degrees of freedom. As in statistical physics where such large numbers
make studying individual states impractical, we can try to draw statistical
statements from an ensemble of string theory solutions chosen to reflect
generic features of the microscopic physics. This brings us to the notion of
vacuum statistics and stringy naturalness to which we now turn.

Take the cosmological constant as an example. An implicit assumption
that went into Weinberg’s argument is that universes within the anthropi-
cally allowed window are realizable in the microscopic theory. The finely-
spaced discretuum provides a plausible explanation for this assumption.

Going further, though, we’d like to not only be assured that vacua with
small values of the cosmological constant exist within the landscape, we’d
like to have a sense of the likelihood or abundance of such vacua. To that
end, a useful concept is the vacuum counting distribution:

dNuae(T) =Y _8(T = T) (19)

where T; denotes collectively the discrete (e.g., gauge groups, matter rep-
resentations, etc) and continuous (e.g., gauge and Yukawa couplings, cos-
mological constant, density perturbation, SUSY breaking scale, etc.) pa-
rameters of the theory. It is important to distinguish the vacuum counting



Dark Energy in String Theory 403

distribution dN,,. from the probability distribution function
dup(T) =y P(i)§(T —T) (20)

where we assign a “probability factor” for each vacuum. Thus, the vac-
uum counting distribution encodes information about the set of consistent
string vacua, not the probability of their occurrence. A certain choice of
parameters T; can be said to be stringy natural if there is a large number
of vacua dN,,. with T = T;. See, e.g., Refs. 88-92 for a statistical analysis
of the scale of SUSY breaking in the string landscape.

More generally, though, any delineation of “natural” or “unnatural”
vacua requires commitment to a measure on the space of vacua, and such
a measure need not align with vacuum counts. As is thoroughly familiar
from quantum mechanics, a direct count of the number of ways a certain
outcome might happen (e.g. the number of combinations of up and down
spins that respect a given net spin value) need not have any relationship
to the likelihood of that configuration being observed (a probability that
is governed by the system’s wavefunction). To date, though, finding a
prefered, first principles measure on the space of string vacua, has remained
beyond reach.

Thus, as of now, we can use the landscape of string theory to argue for
the existence of hospitable universes, but we can’t say anything about how
common or natural such universes may be.

4. Stability and the Landscape

The counting of flux vacua provides a first step towards charting the land-
scape of string theory. And, as above, our understanding of the vacuum
structure is still far from complete. Beyond the question of a measure on
the landscape, we outline here some additional outstanding issues.

4.1. A closer look at the landscape

The argument presented in Section 3 suggested a large number of string
theory solutions in the flux landscape. However, this argument alone does
not guarantee that we have a similarly large number of (meta)stable vacua,
especially those with positive vacuum energy. Even if we lift all the flat
directions and hence the solutions are critical points of a dimensionally
reduced 4d supergravity, such critical points can be a local minimum, max-
imum, or saddle point. The large number of moduli which gives rise to the
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landscape also makes it harder to find critical points with a positive defi-
nite Hessian. Furthermore, even if we find solutions that are perturbatively
stable, they are subject to quantum tunneling. The large dimensionality of
the moduli space again leads to multiple decay channels which enhance the
tunneling rate. Here, we take a closer look at these issues in the landscape.

4.2. Of minima and stationary points

Among the stationary points of a scalar potential, only those with a positive
definite Hessian matrix are minima. In the absence of supersymmetry,
the scalar potential can easily develop instabilities along one of its many
field space directions. The scalar superpartner of the Goldstino is thus a
potentially unstable direction®® (see e.g. Ref. 94 for an extensive study of
this “sGoldstino” direction in supergravities). Explicit constructions point
to further potential tachyonic instabilities along some universal directions®°
as well as semi-universal ones (e.g., orientifold volume).%

However, when the number of moduli is large, direct examination of the
Hessian matrix at stationary points of an effective supergravity potential
becomes impractical. One is naturally led to a statistical approach, in
which the compactification data are taken to be random variables.?® This
random matrix approach was recently adopted to analyze the stability of
classical de Sitter solutions®® and random supergravity.®”
(improving an earlier estimate in Ref. 93) suggest that the probability for
the full mass matrix to be positive definite is exponentially suppressed by a
factor exp(—cNP) (to leading order in N) where N is the number of moduli
in the scalar potential and p lies between 1.3 to 2 depending on whether

These results

the soft masses are small compared with the supersymmetric masses. It
appears that the large number of moduli which leads to the picture of the
landscape (i.e., an exponentially large number of string theory solutions)
also predicts its own demise.

There are however ways out of this conclusion. For example, the sup-
pression due to stability requirements can be reduced if a large subset of
the moduli is decoupled by gaining large supersymmetric masses. The num-
ber of critical points is determined by the total number of fields while the
suppression factor only depends on the number of light fields.

4.3. Tunneling and quantum stability

Vacuum decay by quantum tunneling is well studied in quantum field the-
ory. In Refs. 98, 99, it was shown that the decay proceeded by the nucleation
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of bubbles of a lower vacuum inside the original false vacuum. In the semi-
classical approximation the nucleation rate per unit volume is governed by
a bounce solution of the Euclidean field equations which can be written in
the form I' = Ae B, where A depends on the determinant of fluctuations
around the bounce solution and B is the Euclidean action of the bounce.
The analysis was extended to include gravitational effects by Coleman and
De Lucia.'® For decay from a de Sitter vacuum the gravitational correc-
tions to the nucleation rate are typically small unless the potentials are
Planckian in scale or the bubbles nucleate with a size comparable to the
horizon length. With unusually flat potential barriers it can happen that
there is no Coleman-De Luccia bounce, but in such cases there is always

101 corresponding to a process in which an entire

a Hawking-Moss solution
horizon volume fluctuates to the top of the potential barrier.

There are several ways in which this picture can be modified in string
theory. First of all, different vacua of string theory differ not only in their
vacuum energies, but they can have vastly different 4d properties (e.g.,
gauge groups, matter content etc). The aforementioned results on vacuum
decay and quantum tunneling in quantum field theories may not be di-
rectly applicable. In fact, it has been argued that since different string the-
ory solutions can lead to globally different space-times and thus appear to
correspond to different quantum Hamiltonians, rather that different states

102 Secondly, the presence of multiple vacua

of a single quantum theory.
103,105 and stringy effects (tunneling via the DBI ac-

were shown to enhance the usual Coleman-De Lucia tunneling.

(resonant tunneling)
tion)104:105
Finally, it has been suggested!®® that tunneling in the landscape can be
rapid because of the multiple decay channels made accessible by the large
dimensionality of the moduli space. Specifically, by studying theories with
multiple scalar fields, Ref. 108 provided numerical evidence that the rate
for tunneling out of a typical false vacuum grows rapidly as a function of
the number of moduli fields. As a consequence, the fraction of vacua with
tunneling rates low enough to maintain metastability appears to fall ex-
ponentially as a function of the moduli space dimension. If such results
prove applicable to string theory, the landscape of metastable vacua may
not contain sufficient diversity to offer a natural explanation of dark energy.

4.4. Open questions

Driven by the dark energy problem, remarkable progress has been made in
charting the vacuum structure of string theory and its moduli dynamics.
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Yet many open questions remain. Is our landscape picture guided by the
low energy supergravity description of string theory a correct one? Could
a combination of statistical studies and explicit constructions point us to
a more promising region of the landscape? Besides introducing orientifold
planes, are there other stringy mechanisms to evade the no-go theorems for
de Sitter vacua in string theory? What can we learn from the increasingly
explicit constructions of de Sitter solutions the microphysics of de Sitter
entropy? Making progress on any of these fronts would undoubtedly propel
our understanding of quantum gravity.
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I review the ideas of holographic space-time (HST), Cosmological SUSY
breaking (CSB), and the Pyramid Schemes, which are the only known
models of Tera-scale physics consistent with CSB, current particle data,
and gauge coupling unification. There is considerable uncertainty in the
estimate of the masses of supersymmetric partners of the standard model
particles, but the model predicts that the gluino is probably out of reach
of the LHC, squarks may be in reach, and the NLSP is a right handed
slepton, which should be discovered soon.

1. Introduction

All known consistent string theory models, in asymptotically flat space-
time, are exactly supersymmetric. All well established examples of the
AdS/QFT correspondence, with radius that can be parametrically large in
string units, give flat space limits that are exactly super-symmetric.

The world around us is not supersymmetric. If a theory of quantum
gravity is to have relevance to the world, it must explain to us how SUSY
is broken, and extant string theory models do not do this. The rest of the
papers in this volume treat SUSY breaking in “string theory” by taking
a low energy quantum field theory derived as an approximation to a su-
persymmetric string model, and adding supersymmetry breaking terms to
it, which are at best plausibly connected to excitations in string theory. I
have criticized this procedure extensively [1]. T believe instead that SUSY
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breaking is connected to the asymptotic structure of space-time via degrees
of freedom that are thrown away in effective field theory. These are not
high energy DOF, but rather very low energy excitations, which decouple
from particles localized in the bulk because they are localized on the causal
horizon. In flat and AdS space, the horizon actually recedes to infinity, and
the horizon DOF need not be included in the Hilbert space, but in de Sitter
(dS) space, the finite horizon leads to a finite amount of SUSY breaking.

The theory of Holographic Space-time explains the “empirical facts”
of supersymmetry in string theory by choosing (in Minkowski space) the
variables of quantum gravity to be the cut-off generators of the (generalized)
super-BMS algebra. The super-BMS algebras are defined on the lightcone
in 4 dimensional® Lorentzian momentum space. It has two components,
corresponding to the top and bottom of the cone. The Py > 0 component
has generators ¢ (P, a), satisfying

[dji(Pa a)v 1&; (Qa b)]+ = ZabMM(Pv Q)O—Zﬂa(P : Q)v
and

Yo (P, (L)O'ZB-PM =0.

The delta function is non-zero only when P and @ are collinear, and so
both positive multiples of (1, 2), where € is a point on the unit 2-sphere.
M*" points in the same direction and chooses the minimum of the two
positive multipliers. The constraint on v says that it lies in the holomorphic
spinor bundle over the two sphere, while it’s conjugate lies in the anti-
holomorphic bundle. The local super-algebra, at fixed P, completed by
the commutators of Z,, with psi(P,a), and with themselves, has a finite
dimensional unitary representation generated by the action of the fermionic
generators on a single state. One should think of the index a as labelling
the eigen-functions of the Dirac operator on some compact manifold, with
a cutoff that fixes the volume of that manifold in Planck units [3]. Other
geometric properties of the compact space are encoded in the super-algebra.
For the purposes of this note, we can just set the Z,; to be a c-number times
dqp and let a,b run over the 16 components of a spinor in 7 dimensions.
This is the quantum theory of eleven dimensional supergravity compactified
on a 7 torus of Planck size. For fixed P, the super-BMS algebra is just

2We stick to four dimensions for simplicity of exposition. The formalism generalizes to
higher dimensions.
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the algebra of a single eleven dimensional graviton, and its superpartners,
compactified on a Planck sized torus.

Scattering theory, at least in theories of gravity, is considered to be a
map between the past and future representations of the super-BMS alge-

brab.

vl = 8Ty{s.

Scattering states are states in which the operator valued measures v, (P, a)
vanish outside of the endcaps of a finite number of Sterman-Weinberg cones,
and at P = 0.

For finite causal diamonds, these singular measures are replaced by a
sum over a finite set of spinor spherical harmonics. The P = 0 modes are
the degrees of freedom responsible for the entropy of horizons. For finite
horizons they contribute finite terms to the Hamiltonian, but they decouple
in the infinite horizon limit.

Cosmological SUSY breaking (CSB) is an attempt to implement the
consequences of these abstract ideas in low energy effective field theory,
and use them to guess at the correct model of Tera-scale physics. It leads
to a quite restrictive set of models. The phenomenological analysis of these
models is difficult because they must contain a new strongly coupled sector
at the TeV scale, but a recent breakthrough has allowed me to make a lot of
qualitative predictions for the spectrum of standard model super-partners.
The models, which are called Pyramid Schemes [4], have a mechanism that
produces large mixing between gauginos and composite adjoint chiral su-
perfields. As a consequence, they predict heavy gauginos, squarks and right
handed sleptons that should be in reach of the LHC, and a very complicated
Higgs sector, whose properties are hard to extract from the brown muck of
the new strong interactions. One can certainly get a 125 GeV Higgs, but
it is not clear that its interactions are close enough to the standard model
to fit the data. Questions of whether the weak scale is fine tuned in these
models are beset by similar strong interaction obscurities.

The Pyramid Schemes also provide a novel solution to the strong CP
problem, a novel dark matter candidate, a possible connection between the
dark matter density and baryogenesis, and a possible pathway to explain-
ing extra dark radiation (if the data indicating dark radiation improve to
the point where it needs explanation) . They explain the absence of all

bFor the BMS sub-algebra, Strominger has interpreted this equation as an expression of
spontaneous breakdown of the BMS symmetry, and shown that Weinberg’s graviton low
energy theorems follow from this equation.
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dimension 4 and 5 operators which could mediate unobserved baryon and
lepton violation, while permitting the dimension 5 seesaw operator, which
gives rise to neutrino masses.

2. Cosmological SUSY Breaking

The zero energy generators of the super-BMS algebra provide a huge set of
degrees of freedom, localized on the horizon (the conformal boundary ) of
Minkowski space that are not incorporated in quantum field theory. They
decouple from the S matrix of particles in Minkowski space. The basic
idea of CSB is that the coupling between these states and particles remains
finite, in the finite causal diamond of a single geodesic in de Sitter (dS)
space. We view the radius of dS space as a tunable parameter® and ask
how the coupling between particles and the horizon DOF leads to SUSY
breaking.

To proceed we will have to understand a bit more about the geometry
of dS space. The most important fact about dS space is that even a hypo-
thetical observer, who lives for an infinite amount of time, can only see a
finite distance R away. The entire history of the universe takes place inside
a sphere whose radius can never be bigger than R. That sphere is actually
running away from the observer at the speed of light. What is peculiar
about the dS universe is that the expanding sphere describing where the
backward light-cone from time 7" meets the forward light-cone from time
—T, has a finite radius, even as T goes to infinity. This remains true if
the universe is not exactly dS space, but began a finite time in the past,
and becomes dS space in the asymptotic future. If observations on the
acceleration of the universe are given their simplest interpretation in terms
of a positive value for Einstein’s cosmological constant (c.c.), then this is
what is going on in the universe we live in. The radius of our cosmological
horizon is about 10! Planck unitsd.

Now we want to think about implementing the idea that SUSY breaking
comes from interactions with the cosmological horizon in effective field the-
ory (EFT), the framework into which all physics below the Planck energy

¢The question of what determines this radius in the real world goes beyond the bounds
of this review, but has been addressed in [5]. Briefly, that cosmological model provides
a multi-verse of possibilities for the dS radius, and the choice is made by invoking the
anthropic principle.

dThe Planck distance scale is Lp = 10733 cm. . In units where A = ¢ = 1 that corre-
sponds to about Tp ~ 1044 seconds, and Mp = 1019 GeV. In these units, Einstein’s
c.c. is about 107123 M4,
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scale has been assumed to fit. In effective field theory, SUSY is a gauge
symmetry and can only be broken spontaneously. Gauge symmetries have
space-time dependent parameters e(x). We can do a gauge transformation
on any Lagrangian. If the original Lagrangian was not gauge invariant, the
result is a new Lagrangian, where e(x) is a new field. This new Lagrangian
is gauge invariant, if we let both the original fields and e(z) transform
under the gauge transformation®. The gauge potential is a field Af(z).
If the original Lagrangian was not gauge invariant, the semi-classical ex-
pansion reveals a massive excitation of the gauge field, and we say that
the Schwinger-Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble phe-
nomenon has taken place. In the case of supersymmetry, the gauge param-
eters are a fermionic spinor field €, (z). The massive excitation is that of
the gravitino field v, (x) and has spin 3/2. It’s mass is denoted mg ;.
The mass of the gauge excitation is proportional to the gauge coupling.
In the limit that the gauge coupling goes to zero, the Higgs phenomenon
morphs into the phenomenon of Nambu-Goldstone spontaneous symmetry
breaking (whence the somewhat inaccurate name spontaneous breaking of
gauge symmetry for the Higgs phenomenon). The longitudinal part of the
massive gauge field becomes the Nambu-Goldstone particle associated with
symmetry breaking. The mass is the product of the gauge coupling, and
the value of an order parameter, F', whose size depends on the energy
scale at which the symmetry is broken in the limit of zero gauge coupling.
In the case of supersymmetry, the gravitino is the symmetry partner of
mipf The order parameter F
has dimensions of squared mass, and determines the typical difference in

the graviton, and the relevant coupling is

squared masses between bosons and their supersymmetric partner fermions,
in non-gravitational supermultiplets. The gravitino mass is
F
mg/g ~ —.
mp
Super-Poincare invariance appears naturally in N = 1 SUGRA only
in the presence of a gauged discrete complex R symmetry, which sets the
constant in the super-potential to zero. Indeed, super-symmetry is com-
patible with general negative values of the cosmological constant. This has
been abundantly confirmed by the AdS/CFT correspondence, in which the

¢This is straightforward for a gauge group with one parameter. If there are multiple
parameter €,(z) and the different transformations do not commute with each other the
formalism is more complicated, but the results are the same [9] .

fmp = Mp 9% 1018 GeV, is called the reduced Planck mass..
N
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quantum theory of many space-times of the form
AdSq x K,

where K is a compact manifold, and Anti-deSitter space is the maximally
symmetric space with negative c.c.. SUSY is incompatible with positive
c.. The formula for the c.c. in SUGRA is

A= KPR,
mp

F is the SUSY breaking order parameter, and W is the order parameter for
R symmetry. R symmetry is the subgroup of the discrete symmetry group
of the model, which acts on the generators of the supersymmetry algebras8.

CSB depends on the hypothesis that the interactions with the horizon
generate R violating terms in the effective action, which in turn lead to
spontaneous SUSY breaking. It is also assumed that the gravitino is the
lightest particle carrying R charge.

Then the leading order diagrams that could lead to R violating inter-
actions coming from the horizon, have a gravitino line going out to the
horizon and another coming back, violating R symmetry by two units .
These diagrams are all proportional to

e~ 2ma/2Ras ¢

We can think of this as a term in second order perturbation theory in the
interaction via which the horizon emits and absorbs gravitinos, so that

1 .
C= Z(outWTE — H|s><s|V|m>,

where the sum is over all states of the horizon with which the gravitino
can interact. The energy denominators are all of order R%zs because the
em(RasMp)? gtates of the horizon, live in a band of this size.

The horizon is a null surface and the gravitino can propagate on it for a
proper time of order —2 According to conventional Feynman diagrams,
written in the Fock-Schwinger proper time parametrization, it performs a
random walk on the surface, with a step size in proper time given by the
UV cutoff. If, as we will assume, the theory has extra dimensions large in
10 or 11 dimensional Planck units, then the step size is given by the higher
dimensional Planck scale. Following Witten [6] we will assume that this

&More precisely: R symmetry is the coset of the discrete symmetry group G by the
subgroup H, which leaves the SUSY generators invariant. It can be shown that H is a
normal subgroup of G, so that G/H is a group, called the discrete R symmetry.
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is the scale of coupling unification which is 2 x 10'6 GeV. The entropy of
the horizon states with which the gravitino interacts is proportional to the

area in 4 dimensional Planck units that it covers in proper time #/2, and

is ¢ MU}n3/2 . Thus the full amplitude is proportional to

M2
c——P
672m3/2R€ My mg o )

Assuming that mg/, goes to zero as a power of R;; we find a contra-
diction unless the power is precisely R, Indeed, if the mass is assumed to
go to zero more rapidly than this, the formula for R breaking interactions
blows up exponentially as Rgs — oo, while if it goes to zero more slowly
the strength of these interactions vanishes exponentially.

Using the reduced Planck mass M3 = 8mm?% and the relation mpR;S1 =

A/3, we get

47TC mp
2

For a unification scale My = 2 x 10'6 GeV, this gives
m3/2 = I(].O_Qe\/7

with K a constant of order one. The SUSY breaking order parameter is
thus

F =2K x 107(GeV)?.

This is a remarkably low value for the SUSY breaking scale, a fact which
drives much of the analysis below.

The structure of diagrams contributing to the R violating terms in the
Lagrangian implies that these terms do not satisfy the usual constraints of
technical naturalness, familiar from QFT and perturbative string theory.
Any diagram with more than two gravitinos, or with heavier R charged
particle states, mediating between the local vertex and the horizon, will
be exponentially suppressed. Diagrams involving R neutral exchanges with
the horizon give contributions which have a finite limit as Ry — oo, and
are already incorporated in the A = 0 effective Lagrangian.

As a consequence, apart from the R symmetry itself, symmetries, or
approximate symmetries of the A = 0 model, are also preserved by the
R-violating terms. We exploit this in the following way: we choose the R
symmetry to forbid all terms of dimension 4 or 5 in the A = 0 model, which
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violate B and L, apart from the dimension 5 superpotential

b 2
Wu B MSCESGU) (HUL) ’
which generates neutrino masses of roughly the right order of magnitude®.
Insertions of higher dimension B and L violating operators into a diagram
with a pair of gravitino lines going out the horizon cannot generate the
lower dimension operators, because the extra gravitino loop is cut-off at
the SUSY breaking scale or below, by its space-time structure. We will see
later that, with one extra mild assumption, this mechanism for R violation
also provides a novel solution to the strong CP problem.

3. The Pyramid Schemes

We now want to build an effective field theory, compatible with current
experiment, and with the mechanism of CSB. It must contain the MSSM, as
well as an uncontrained goldstino superfield X, and must preserve SUSY and
a discrete R symmetry, but spontaneously violate SUSY when R breaking
terms are added. It must be consistent with the bounds on super-partner
masses.

If the only dynamically generated scale in the theory is the QCD scale,
it is impossible to do this. The most general renormalizable Lagrangian is
that of the Minimal Supersymemetric Standard Model (MSSM), with the
additional superpotentiall

Wx =gxXH,Hq+ C(X),

where C' is a cubic polynomial. This always has supersymmetric solutions’.
Even if we could generate a non-zero Fx the gluino mass generated by
this model would be too small to be compatible with experimental bounds.
Non-renormalizable corrections to this Lagrangian would be suppressed by
powers of My or mp and cannot help with these problems.

h'We do not attempt to explain why Mgeesaw is an order of magnitude or so less than
My;. This is a high energy problem.

IThe superpotential is an analytic function of the complex fields, whose value,Wy at the
minimum is the order parameter for spontaneous R symmetry breaking. In the A = 0
limit, Wo = 0, and the SUSY breaking order parameter is given by the gradient of W
w.r.t. the fields, and must vanish.

JA meta-stable SUSY violating solution can be acceptable only if the probability for
transitions into a Big Crunch by tunneling into the basin of attraction of the SUSic
minimum is the inverse recurrence time for dS space [10] [11]. There are not enough
parameters in the model to engineer this.
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To remedy the gluino mass problem, we must include a strongly cou-
pled hidden sector, some of whose fields carry color, in order to generate a
coupling between X and the QCD field strength W2, which can give a large
enough gluino mass. This is the only way to generate a new low energy
scale in a natural manner. The scale A3 of this new strongly coupled sector
has to be close to the SUSY breaking scale, since i—); will be the natural
scale that enters into the formula for the gluino mass, and F'x is so low.
The Pyramid Scheme models we propose, have a natural explanation for
this coincidence of scales.

The necessity for new colored particles is potentially problematic, if
we wish to preserve coupling unification. The obvious solution to this is
to include complete multiplets of some unified gauge group, but one must
also be sure that the gauge couplings have no Landau poles® below the
unification scale!. This puts restrictions on the size of the new strong gauge
group.

Seiberg’s general analysis of the IR behavior of asymptotically free
SUSY gauge theories [12] enables us to rule out many possibilities. Ini-
tially, I was led to the Np = No = 5 theory as the unique possibility that
could preserve SU(5) unification, but a careful analysis of two loop effects
showed that the model had Landau poles below the unification scale. I
cannot claim to have made an exhaustive survey, but at the moment the
only class of models that survives all of these simple tests are the Pyramid
Schemes [4].

The Pyramid Schemes utilize Glashow’s Trinification [13], an SU(3)3 x
Zs subgroup of Fg, with 3 generations of chiral fields in the (1,3,3) &
(3,1,3)®(3,3,1) representation. The Zs permutes the three SU(3) groups
and ensures equality of couplings in the symmetry limit. I will have to
assume the reader is familiar with this, and refer to the ith subgroup as
SU;(3). Color is embedded in SUs(3) and the weak SU(2) in SUz(3). 10
chiral fields of each generation are assumed to obtain mass at the unification
scale. The Higgs fields H,, 4 also belong to an incomplete multiplet, but we

kRenormalization group running of marginally irrelevant parameters in QFT, makes
them grow at high energy. A postulated value at low energy, chosen to fit phenomenology,
makes the coupling so strong at some scale, that one no longer knows how to analyze
the model. This is called a Landau pole.

ISome authors like to preserve coupling unification to two loop accuracy. Two loop
corrections are of the same size as one loop threshold corrections at the unification scale,
so I have never been very impressed by the “better fit” given by the two loop results. 1
will try only to preserve the one loop results and the fact that the two loop corrections
are small.
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do not specify what it is. More generally, we make no attempt to explain
details of physics at the unification scale.

The quiver diagram™ of Trinification is a chiral triangle. The simplest
extension of it answering our needs extends the triangle to a Pyramid with
triangular base (a tetrahedron). The fields connecting the apex of the
Pyramid to the base transform in the vector like representation T; @ T} €
(F,3;) ® (F,3;) and are called trianons. F is some representation of the
Pyramid Group Gp. Both the group and the representation must be fairly
small, to preserve standard model coupling unification.

While I don’t pretend to have made an exhaustive search, the only
examples I've found that work are Gp = SUp(k) with k& = 3,4 and F
the fundamental representation. The case k = 3 is more attractive in a
number of ways. The minimal R symmetry group that works for k = 3 is
Zg, compared to Zy4 for k = 4. Furthermore, there’s a natural explanation
for the coincidence between A3 and the scale of SUSY breaking for k = 3,
and an interesting dark matter candidate. So far, there are no analogous
advantages for k = 4.

3.1. The singlet sector

The R symmetry is chosen [4] to forbid all relevant super-potential terms,
which would otherwise be expected to be of order My or greater. Another
way to say this is that we insist that the A = 0 theory be technically natural.
The super-potential is thus

Ws =Y kTP + Ri(T)} + Wata,

where the second term is the familiar standard model super-potential, with
no p term, and no terms violating B or L. The expression T} refers to
the cubic invariant of the (3p, 3;) representation. The unified group would
set all these couplings equal, but unification scale symmetry breaking could
easily change that, without ruining the success of one loop gauge coupling
unification.

The R breaking diagrams with gravitinos propagating out to the horizon

can induce terms of the form

WLR = mlTlTl + MHqu + W().

MQuiver diagrams are schematic representations of the interactions in gauge theories,
with products of SU(N) gauge groups. They are geometric figures whose vertices are
labelled by the different gauge groups, and they have arrows going between the i and
jth pair of gauge groups, if there are chiral fermions transforming in the (Fj, Fj) repre-
sentation of SU(N;) ® SU(Nj).
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The model has a SUSY preserving minimum both with and without the
extra terms, and so does not satisfy the requirements of CSB. This indicates
the necessity of introducing other low energy fields.

The simplest way to do this, and perhaps the only one, which doesn’t
disturb the running of the standard model couplings, is to add singlets
under the full gauge group. It seems that the minimal number is 3 fields
S?. There is no reason to assume that the index here transforms under the
Z3 of the trinification group, though it is suggestive of interesting structure
at the unification scale. The R symmetry action on the S; can be chosen
so that the trilinear couplings

Ws = écijksisjsk + ol ST T; + 3iS°H, Hy,

are allowed. However, we will also impose an additional discrete symmetry,
which does not act on the supersymmetry generators, which ensures that
the matrix Cj; = CjpS k has a zero eigenvalue for any choice of S¥. The
full A = 0 super-potential, Wg + W3 + W4 has a SUSic, R symmetric
minimum when all fields vanish. Although the cubic super-potential has
flat directions, these are all lifted by non-renormalizable R symmetric cor-
rections to the Kahler and super-potentials, scaled by the unification or
Planck scales. Finally, with the given field content, the gauge couplings
remain small at low energy so that the model preserves both SUSY and R
symmetry. Thus, this low energy model is consistent with being the low
energy limit of the A — 0 limit of a model of stable dS space.

We now add

~ 1 . .
Wp=mT;T; + pH,Hg + imijSZSj + FS" + Wo,
to the superpotential. The equations for a supersymmetric point become
(1w + BiS")Hy (a) = 0,

L 1 ] '
>l TT; + §Cz'jk5”5k + Y miS + Fi + BiHyHy =0,
J J

O S'ad +my)T; + g;(T); =0,

O S'al +my)T; + g;(T)3 = 0.
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(T)j2 is the bilinear obtained by differentiating the trilinear invariant w.r.t.
7.

As noted, we can choose the R symmetry, plus another discrete sym-
metry which does not act on the supersymmetry generators, to ensure that
the matrix

Cij = CiyxS",

is not invertible for any S?. We further assume that the coefficients in

Wy are chosen so that p;; shares the zero modes of C;; and that the St

independent terms in ggﬁ have components in the zero mode subspace.

In this case, there can be no SUSic minimum. The constraints on Wg,
do not follow from symmetries, but these terms arise from a very special
class of diagrams. It’s only by imposing these constraints that we obtain a
low energy model compatible with an underlying gravitational model that
breaks SUSY.

To understand fully the dynamics of SUSY breaking in this model, we
must first make sure that the SUp(3) gauge theory indeed becomes strongly
coupled, and find the relation between its dynamical scale As and the CSB
SUSY breaking scale. The SU(3)p Lagrangian at high energies is SUSY
QCD, with Np = 3N¢. Its one loop beta function vanishes, but in the
absence of other couplings the two loop beta function is IR free. However,
if the couplings g; and g; are all equal to \/EX the gauge coupling, then
we have a line of fixed points. This line is attractive. We imagine that, at
the unification scale M the effective theory lies in the domain of attraction
of this line and is rapidly sent to a point where the coupling is relatively
strong, but barely in the perturbative regime”. The couplings then remain
fixed until we reach the highest mass threshold of the trianon fields. That
mass scale is set by the parameters m;, which come from interactions with
the horizon. These three parameters are of comparable order of magnitude
and all vanish like A/ Sm;m, when the c.c. is sent to zero. We do not know
how to calculate them more accurately than that. For phenomenological
reasons, we will assume that the lightest mass is m3, the mass of the colored
trianon.

Below the first two trianon thresholds, the lagrangian has Ny = N¢
and is asymptotically free. We have assumed that the fixed line value of
the gauge coupling is fairly large, so the confinement scale Ag is slightly
below the masses m; 2 of the two colorless trianons. We can think of the

"The last restriction is imposed in order to be able to do the analysis. It is likely that
even stronger couplings will also work, but it is hard to calculate in that regime.
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relations between these scales as roughly analogous to that between the
charmed quark mass and the QCD scale, m; =~ 4wA3. We will also assume
that mg is of order A3, somewhat analogous to the strange quark mass in
QCD. This means that we can analyze the low energy dynamics in terms
of chiral perturbation theory, which in this case means Seiberg’s effective
Lagrangian [12].

The colored trianons are confined into a three by three matrix M of
pyrmesons, which transform as an octet and singlet of color, and singlet
pyrmabaryon, B, and anti-pyrmabaryon, B, fields. The effective super-
potential on the moduli space is

Winod = AJ[L(BB — 1 — det M) + (m3 + a387)tr M

+#k3Bye, B + (8;57 + p)HyHy + C(S)] + Wita + Wo.

Wy is a constant added in order to tune the c.c. to its observed value. It
does not affect the low energy dynamics, which is independent of the Planck
mass to first approximation, once we fix the relevant couplings m;, u, and
F;. In this formula we’ve rescaled all fields and parameters by powers of Ag,
to make them dimensionless. Apart from this rescaling, C'(S) is the cubic
polynomial in the singlets, that appeared in the super-potential above the
scale As. L is a Lagrange multiplier field.

Before analyzing the predictions of this model, we note that something
very similar results if we set kappa; = kaﬁpai =0fori=1o0ri=2. The
UV model no longer has a fixed line, but the couplings vary slowly. In
particular, although the gauge coupling is now IR free, we can still have
a strong coupling scale As without producing a Landau pole below My,
as long as Az < 2 TeV [14]°. This is interesting because a model that
preserves one of the pyrma-baryon symmetries at the renormalizable level,
allows the lightest particle carrying this quantum number to be a dark
matter candidate if an appropriate asymmetry is generated in the very
early universe. We will discuss this further below.

4. Crude Estimates of MSSM Super-partner Masses

The first order of business is to estimate the masses of supersymmetric
partners of standard model particles in this model. Here I've recently been

°In [14] we were trying to preserve predictions of the original Pyramid Scheme, which
had explained various lepton excesses, now considered to be due to pulsars. We preferred
schemes where the conserved pyrma-baryon number was carried by colored trianons. The
current scenario will not produce light PNGBs.
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surprised. I’d initially thought that the Pyramid scheme was a form of
direct gauge mediation [15]. In fact, for the gluino at least, the gauge
mediated masses are much smaller that a contribution from mixing between
the gaugino and the pyrmeson octet. Write

M = M + \,M?,

where the fields are dimensionless a A\, represent the Gell-Mann matrices.
These fields, are the pyrmesons. Consider an operator

/d‘*@ f(M,M)D,M*W + h.c.

F
=gsfmm-——e— M M Yo NS + h.c. + fermions + derivatives.

The function f and its derivatives have a factor of the QCD coupling gs, but
no loop factors. They are analogs of hadron magnetic moments in QCD,
with the insertion of one weakly coupled field into an effective Lagrangian
for composites. The QCD fine structure constant ~ .1 gives g3 ~ 1.4, so
this is nominally of the same size as contributions to the Majorana mass

mg/d29 M, M*®.

(These formulae must be rescaled by the Kahler potential to get physical
masses), because s , Ag and mg are all in the TeV range.
The result is a pair of octet Majorana fermions, whose masses and mass

splitting are all of order ‘F/\‘ﬁ‘ . Given the rules of CSB, the numerator

is bounded by about 1014(Gev)4. RG running gives an upper bound on
A3 < 2 x 103 GeV. The lower bound is harder to determine but is related
to the fact that we haven’t seen any of the pyrma-hadrons and so is probably
about 1 TeV. Thus, the lightest mass eigenstate with the quantum numbers
of the gluino is between 10— 100 TeV. It is a mixture, with order one mixing
angle, of the gluino interaction eigenstate and the composite octet fermion
in the N* super-multiplet. The conventional gauge mediated Majorana
gluino mass is suppressed by a factor {45 relative to these masses [16].

The dominant contribution to squark squared masses comes from a one
QCD loop, convergent, diagram, as in super-soft models [17]. The squark
masses are universal and are of order

2
Mg ~ Mgruino\| ~ Tgz ~ 900 9000 GeV.
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The lower reaches of these estimates mean that squarks but not gluinos will
be within the reach of the LHC, while the upper values bode ill for near
term experimental detection of these particles.

A similar formula is also appropriate for the other gauginos, though here
the argument is more complicated. Basically, using arguments analogous
to those invoked when discussing mixing between the photon and strongly
interacting vector mesons, one counts factors of g;, and 47, with everything
else determined by dimensional analysis and the scale A3. In this kind
of bilinear mixing, there are no loop factors. Then one argues that when
gi; = 0 there is a stable adjoint fermion, with a Majorana mass of order 2ms
for the SU(2) triplet, and the lighter of 2m; and 2ms for the U(1) adjoint
(since both of the colorless trianons have U(1) couplings). Mixing between
the gauginos and these states is a seesaw mechanism [18], giving Majorana
gaugino masses of order

0 _ gy

m1/2 2Agm1 ’

It’s not completely clear which F' terms will give the dominant contribution
here. The masses are probably less than a TeV, though there’s considerable
uncertainty in these estimates. Slepton masses will be down from this by

the square root of a loop factor
o
=

One of the right handed sleptons is thus the NLSP. If the bino weighs a
TeV this crude estimate gives right handed slepton masses of order 30 GeV,
which is already ruled out. Indeed, for the decay topology of slepton going
to Goldstino, sleptons are ruled out up to about 260 GeV [19] [20] and the
next run of the LHC might explore another 100 GeV in massP. If we took
our estimates seriously, this would push the bounds on bino and chargino
masses up to about 9 and 27 TeV. However the strong SUp(3) uncertainties
do not warrant such drastic conclusions. I cannot emphasize too strongly
how much uncertainty there is in these estimates, but they lead us to expect
the discovery of right handed sleptons in the near future.

There is one caveat to the claim that a RH slepton is the NLSP, since we
have not studied the masses of all the states in the singlet sector. However,
the diagrams contributing to slepton masses are lepton flavor blind. The
coupling of sleptons to the singlet sector is mediated by the Higgs boson

PT’d like to thank Scott Thomas and Patrick Draper for explaining the LHC bounds on
right handed sleptons to me.
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and we know that the Higgs couplings of the leptons are small, ranging from
1075 to 1072, Decays of a slepton into a lepton and a hypothetical light
singlino, would occur outside the LHC detectors. Thus, even if it turns out
that the NLSP is a singlino, the light right handed sleptons predicted by
the model should be observed.

5. Pyramidal Cosmology

5.1. Dark matter

In the original paper on the Pyramid Scheme, Fortin and I got caught
up in the excitement surrounding positron excesses and other dark matter
signatures. The majority opinion seems to be that these excesses are no
longer considered to be relevant to dark matter. Since then I've returned
to the simple idea [22] that dark matter is one of the pyrma-baryons of the
strongly coupled Pyramid sector. This requires that we omit one pair of
trilinear couplings from the underlying Lagrangian, and one can choose the
R symmetry properties of the model to make this natural. We have seen
that the attractive RG structure of the model is preserved when we do this,
as long as the scale Az < 2 TeV.

We've seen above, that we want to keep the trilinear couplings of the
colored trianon. This implies that (if the dark matter is the fermion in
the supermultiplet) dark matter has a magnetic moment. This is an old
idea, which goes back to technicolor [23] and has potential observational
consequences [21].

In order to get the right dark matter density, we need to postulate an
asymmetry generated in the very early universe. This is very easy to do,
but has no predictive power. However, it opens the door to a connection
between the dark matter density and the baryon asymmetry of the universe.
The standard model couplings of the trianons lead to a coupling

a3

A3
which implies that an asymmetry in one quantum number will give rise to
a chemical potential for the other. If this chemical potential is substantial
when the interactions that violate the corresponding quantum number go
out of equilibrium, then spontaneous (pyrma) baryogenesis will occur [24]
[25], thus connecting the dark matter and baryon densities of the universe.

There may also be a possible dark matter candidate in the singlet sector
of the model, about which I understand too little to make a definitive

“oogn
Jpp B
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statement. Presumably, if it exists, it would be much more like a WIMP.
If this is the dark matter, we can restore the possibility of UV equality of
all the trianon trilinear couplings, which is somewhat more elegant.

5.2. Dark radiation

The gravitinos in any model implementing CSB are very light and were
certainly relativistic at the eras where the CMB and structure formation
may indicate the need for more relativistic species. Standard estimates [26]
indicate that such light gravitinos decouple before the electroweak phase
transition and contribute much less than a neutrino species to the evolution
of the universe. However, non-thermal repopulation of the gravitinos by late
decaying NLSPs, could generate the required excess. This could only occur
if the NLSP was part of the singlet sector, because our bounds on light
MSSM super-partners rule out such late decays.

6. The Strong CP Problem

As pointed out in [27] the Pyramid Scheme provides a novel solution to the
strong CP problem. When A = 0 the model has many U(1) symmetries
at the renormalizable level, which allow us to rotate away all CP violating
phases except the CKM phase. This would lead to an axion with a decay
constant that has been ruled out be experiment. However, the R symmetry
violating interactions coming from the horizon break all these symmetries
and give the axion a large mass. Normally, when we try to do this in
QUEFT, the U(1) breaking terms re-introduce CP violating phases.

In the Pyramid scheme, these terms come from a very special class
of diagrams, where two gravitinos are exchanged with the horizon. The
part of these diagrams localized near the origin has all the symmetries of
the A = 0 theory, and the CP violating fgcp induced through the CKM
matrix is tiny. The other end of the gravitino lines is more mysterious,
but since it lies on the horizon it is at a very high local temperature, of
order the unification scale. Thus, if the fundamental origin of CP violation
is spontaneous breakdown, at scales < My there will be no CP violation
near the horizon. Thus, the phases in all the R breaking diagrams are small,
without either fine tuning or an axion.
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7. The Higgs Potential and the Electroweak Scale

Neglecting loops involving standard model fields, the Higgs potential in the
Pyramid Scheme is

K (BiHyHy+03 M+ Fy)(B:Hy Hy+ a3 M+ F5) + |85 + pl (| Hy >+ | Hal?).

The Kahler potential depends on the singlet fields through the combinations
akF St for k =1,2. This comes from integrating out the colorless trianons.
In [27] this part of the Kahler potential was calculated in zeroth order
perturbation theory in the Pyramid coupling. This approximation is not
really justified because the masses of the trianons are just a few times Ag.
The parameters F; and p come from interactions with the horizon. We
expect them to be of order a few TeV, but do not have a way to calculate
them with any precision.

One should also include contributions to the Higgs potential from stop
loops, and, given the size of SU(2) x U(1) preserving gaugino masses that
we have estimated, loops of TeV scale gauginos. We will also want to choose
the couplings (; to be fairly large, which means that loops of singlets will
also be important in determining the Higgs potential.

In [27] we included some, but not all of these effects, many of which
push in opposite directions. We found that we could fit the LHC bounds
but that this required a few percent tuning. Given our new insights into
gaugino masses, and the singlet loops, which we simply forgot in [27] , the
problem becomes more complicated. In addition, the large [3; present us
with the possibility of large mixing between singlets and the lightest Higgs.
Neglect of the complicated dependence of the Kahler potential on the S?
was unjustified.

Note that the tuning in the Pyramid scheme is not really the same as
the oft discussed little hierarchy problem of the MSSM. It really comes
from the fact that the Higgs potential above contains a number of relevant
parameters whose natural scale in CSB is multiple TeV. The dimensionless
parameters are bounded from above in order to avoid Landau poles below
the unification scale. On the other hand, we have a rather complicated
function of 6 complex variables (the neutral Higgs fields h,, 4, the singlet
pyrmeson M, and the three S’ fields ) to minimize, so it seems premature
to conclude that a tuning of one part in a hundred is unnatural. It is, at
any rate, too complex to attempt here.
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8. Conclusions

The Pyramid Schemes are the only low energy effective field theories com-
patible with both the very low scale of SUSY breaking required by CSB,
extant experimental data, and standard model gauge coupling unification.
They contain a new strong coupling gauge theory, with fields carrying stan-
dard model quantum numbers. The most attractive candidate so far has
an SUp(3) gauge group.

The strong interactions complicate the computation of the Higgs po-
tential and parts of the spectrum, but terms that give rise to TeV Dirac
masses for gluinos (and probably the electroweak gauginos as well) enable
us to make a few robust predictions

e The MSSM spectrum can be characterized as “flipped mini-split
SUSY”, with squarks and sleptons systematically lighter than
gauginos. Gluinos will probably not be detected at the LHC, but
squarks should show up in the next run, with production and de-
cay modes characteristic of the gluino decoupling limit. The entire
Higgs sector is complicated by mixing with the singlet fields in the
low energy model. This spectrum is predicted by the model. It’s
realized more generally in any model in which there are adjoint
chiral superfields, Dirac masses comparable to the supersymmet-
ric adjoint mass term, and small SUSY breaking Majorana terms
for the gaugino. Models with adjoint fields that are elementary
up to scales much larger than the SUSY breaking scale, will have
problems with gauge coupling unification.

e The NLSP is either a right handed slepton, or something from the
singlet sector, but in any case the right handed sleptons are “detec-
tor stable” and should be seen soon at the LHC, since they decay
to leptons and very light gravitino LSPs. The crudest calculations
put their masses 9 times lower than the LHC lower bound. The
simplest way to solve this problem is to assume that the bino and
charged winos are at 9 and 27 TeV, but there is so much uncertainty
in these estimates from hidden sector strong interactions that one
should not take these drastic values that seriously. Anyone who
has followed my work on the Pentagon and Pyramid schemes will
know that I’d previously estimated that the bino was the NLSP
and that charginos should be found at the LHC. The recent dis-
covery of operators that give Dirac gaugino masses has changed
everything in a dramatic way.
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Apart from that, the Pyramid Schemes retain the flavor structure of gauge
mediation [15]. The only violation of rotation symmetries among the gener-
ations comes from Standard Model Yukawa couplings, and the mechanism
determining the pattern of those is assumed to operate at very high scale.
Dimension 4 and 5 baryon and lepton number violation is eliminated by a
combination of the discrete R symmetry of the A = 0 model and the special
properties of the R breaking operators coming from the horizon. A similar
conspiracy solves the strong CP problem. The discrete R symmetry im-
poses an accidental Upg(1) Peccei-Quinn symmetry on the renormalizable
terms of the A = 0 theory, and the special nature of discrete R violation,
combined with the assumption that CP is spontaneously broken at a scale
below the unification scale, guarantee that the would be axion is lifted to
a high mass, without introducing new phases into low energy couplings.

The Pyramid Schemes also have interesting implications for cosmol-
ogy. If we assume one of the pyrma-baryon symmetries is preserved at the
renormalizable level, then the dark matter candidate is a standard model
singlet fermion, with a mass of 10s of TeV and a commensurate magnetic
dipole moment. The correct dark matter density is obtained by assuming
an appropriate primordially generated asymmetry, and there is a poten-
tial connection between the dark matter density and the ordinary baryon
asymmetry via a form of spontaneous baryogenesis [25].

On the other hand it is possible, though not guaranteed, that there can
be a light state in the singlet sector that could serve as dark matter. In
this case we would be able to have an elegant and symmetric theory at the
unification scale, which would explain the coincidence of scales between Ag
and SUSY breaking. The model with only two of the three renormalizable
PB violating couplings does the same job, but is less elegant.

If the singlet dark matter candidate were sufficiently light, it could be
the NLSP, and its stability only due to R parity. Then it could also be a
form of late decaying dark matter, which would produce a dark radiation
density in the form of non-thermal gravitinos. It may be that cosmological
data will eventually require us to explain such a density of dark radiation.
The very light gravitinos of the Pyramid Scheme are hard to detect, but
beg to be used as dark radiation. Much more investigation along these lines
is needed.
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