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extract the relevant information from the image. (c) The MgNet is drawn

in a 2D diagram for a better illustration, where all 3D images (3D cubic

grids) are shown as 2D squares. From left to right, an image with two

feature channels is fed into the MgNet, and information is then processed

by different layers of filters and connected through various shortcuts. The

final prediction is an ion density distribution map. . . . . . . . . . . . . . . 54
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4.2 Comparison between MetalionRNA server [243] and MgNet on cross-

validation set. Histogram shows the distribution of the number of correct

hits over the top-prediction ranks. The horizontal axis represents the rank

of the predictions, where n on the axis means the nth-ranked prediction for

a given RNA, and the vertical axis represents the number of the experimen-

tally determined ions in the cross-validation set that are correctly identified

by the nth-ranked prediction of each RNA. The table in the figure shows

values of TPR and PPV of the MgNet model and the MetalionRNA model,

respectively, on the cross-validation set. The results shown here exclude

the structure of PDB ID 3T1Y due to the failed retrieval of the prediction

data from the MetalionRNA web-server. The cutoff RMSD for correct hits

is 3 Å. MetalionRNA server results were obtained from the MetalionRNA

server with default settings, and MgNet results were collected from our

five-fold cross-validation models with default clustering settings. The

details of the default clustering settings can be found in the Methods

section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 MgNet-predicted (magenta spheres) vs. experimentally determined ( green

spheres, labeled with residue identifiers) Mg2+ ion sites in (a) 58 nt frag-

ment of Escherichia coli 23S rRNA (PDB ID: 1HC8) and (b) the anticodon

loop in tRNAAsp. The predicted site in (b) is shifted upward towards the G30

· U40 wobble pair. Four residues shown in red are labeled with the residue

names and the residue sequence numbers. . . . . . . . . . . . . . . . . . . 63
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4.4 Example of saliency calculation for eight binding motifs. Saliency values

were calculated for eight binding sites: (a) 3Q3Z-V85; (b) 2Z75-B301; (c)

2YIE-Z1116; (d) 1VQ8-08004; (e) 3DD2-B1000; (f) 2QBA-B3321; (g)

4TP8-A1601; (h) 3HAX-E200. And two input channels: volume occu-

pancy (top) and partial charge (bottom). Experimentally determined posi-

tions of Mg2+ cation are indicated by green spheres, oxygen atoms in water

molecules are shown in small red spheres. Direct coordinations (inner-

sphere coordination) are shown as magenta dashes, and indirect coordi-

nations (outer-sphere coordination, i.e., mediated by water molecules) are

shown as black dashes. Residues and coordinating atoms other than oxy-

gen of water molecules are labeled with red text. One extra Mg2+ in (a) is

shown as a cyan sphere. The saliency values of each RNA atom are shown

in blue scale, where the atom with larger saliency values are shown in a

darker blue color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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4.5 Radial frequency distributions and relative saliency distributions of dif-

ferent atom types and representative atoms around the correctly predicted

Mg2+ ion sites. The figure shows the contact radial frequency distributions

(a, d), the relative saliency distributions for the volume occupancies (b, e)

and the partial charges (c, f) for the different RNA atom types, respectively.

The frequencies and saliency values are normalized to the [0, 1] range. In

(d-f), only the representative atom of each atom type is shown (with the

same color as the corresponding atom type in (a-c)). Or is the average of

two sugar oxygen atoms (O3′ and O5′) due to the similar radial frequen-

cies and relative saliency distributions, and Oph is the average of the two

phosphate oxygen atoms OP1 and OP2. . . . . . . . . . . . . . . . . . . . 70

4.6 Representative sites for newly discovered Mg2+ binding motifs. Magne-

sium ions and inner-sphere interactions are shown in green spheres and

black dashed lines, respectively. The coordinating RNA atoms and nearby

nucleotides are labeled with red text. These representative sites are de-
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follows: (a) “16-member ring” (1QU2-T-9) and (b) “Phosphate pyramid”
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4.7 Relative abundance of top-5 previously reported and newly discovered

inner-sphere Mg2+ binding motifs in MgNet prediction set (red) and

MgRNA benchmark set [41] (blue). The two newly discovered motifs are

shown in the inset. The percentage of each motif is calculated by dividing
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4.8 Block structure with a residual shortcut. Figure shows the entire block

structure, where X is the input of this block (i.e., X is the output from the

previous layer) and ReLU is the Rectified Linear Unit. Within this block,

input X passes through two convolutional layers. The whole transforma-

tion in this block can be viewed as a function F , which maps input X to

output F (X), and an identity-mapping shortcut on the right-hand side adds

X directly to the processed output F (X). . . . . . . . . . . . . . . . . . . 79

4.9 MgNet model. Ten blocks are stacked sequentially to make a 22-layer

CNN. All convolutional layers have the same number of filters except for

the last layer, which only has one filter. A sigmoidal activation function is

applied to confine the predicted ion density within the 0 ∼ 1 range. . . . . 80

5.1 RNA-targeted drug discovery requires the synergy of enhanced sampling

and accurate scoring with fast computational speed. The distinct aspects

of RNA-ligand docking compared to protein-ligand docking pose unique

challenges, which demand a new generation of molecular docking mod-

els. This review presents an overview of recently developed RNA-ligand

docking methods for RNA-targeted drug discovery. . . . . . . . . . . . . . 89
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5.2 Three major applications of an RNA-ligand interaction model. Virtual

screening involves docking against small molecules in a large library

and scoring every docked pose. Top-scored selections are treated as the

most promising candidates for putative binders. For a given RNA-ligand

pair, computational models for ligand binding pose identification and

RNA-ligand binding affinity prediction rely on scoring the possible RNA-

ligand complex structures. An ideal scoring function for ligand binding

pose identification should have the ability to distinguish the native pose

from a large pool of docked decoy poses, while achieving the maximum

correlation between the predicted scores and the experimental affinities for

different RNA-ligand pairs. . . . . . . . . . . . . . . . . . . . . . . . . . 92
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5.3 RNA conformational changes and binding interactions mediated by wa-

ter molecules and ions. (a) The local structure difference of preQ1 ri-

boswitches between apo (ligand-free) and holo (ligand-bound) states. The

structure in orange denotes the apo state (PDB code: 6VUH [288]) and

the structure in blue denotes the holo state (PDB code: 3Q50 [289]) with

its bound small molecule (PRF) colored in magenta. Upon binding, the

small molecule displaces residue A14 (colored in green for both apo and

holo states) and causes the local structural transition. (b) Water molecules

mediated RNA-ligand interactions. Water molecules form a bridge be-

tween small molecule Neomycin B (NEM, magenta) and 16S-rRNA A-site

(PDB code: 2ET4 [290]). The isolated red dots denote the oxygen atoms

in water molecules. The black dashed lines show the water-mediated hy-

drogen bonding contacts that promote NEM binding to the RNA receptor.

(c) Metal ions in RNA-small molecule interactions. The ligand benfoti-

amine (BTP, magenta) interacts with residues G60, C77, and G78 of the

Thi-box riboswitch through two magnesium ions (green) and the G42-A43

base stack (PDB code: 2HOO [291]). The black solid lines represent the

inner sphere metal ion coordination. The polyanionic RNA recognizes the

positively charged metal ion complex made up of the monophosphorylated

compound and cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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5.4 The difference between local and blind docking. A complex of an amino-

glycoside antibiotic, gentamicin (green) and the 16S-rRNA A site of bac-

terial ribosome is used for illustration (PDB code: 2ET3 [290]). In this

example, both docking (local & blind) processes are carried out using the

RLDOCK model [119, 120]. In local docking, the binding pocket is prede-

fined and the sampling is contained within the red dashed box. The small

magenta spheres denote candidate binding sites predicted by RLDOCK.

In blind docking, the binding site detection is performed across the whole

surface of the RNA. The small yellow and magenta spheres denote the pre-

dicted high- and low-probability binding sites, respectively. Two cavities

identified by RLDOCK (anchored by yellow spheres) are zoomed out sep-

arately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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5.5 Illustration of conformational sampling methods used in RLDOCK, using

the docking of 2’-deoxyguanosine to 2’-deoxyguanosine riboswitch (PDB

code: 3SKL [310]) as an example. An ensemble of different conformers

of the 2’-deoxyguanosine (dG) is constructed for flexible docking. The

sampling and scoring procedures are shown in order and labeled through A

to E. (A) First, the regions of possible anchor sites within the riboswitch,

colored in magenta, are determined by the geometric features of the target

RNA. (B) Second, with exhaustive sampling of these prepared conformers

through translation and rotation around the anchor sites, (C) binding sites

(yellow dots) are selected according to Lennard-Jones potential between

RNA and ligand atoms. (D) Finally, the sampled ligand conformations

associated with the selected binding sites are ranked (E) by a physics-based

scoring function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Different approaches to modeling RNA flexibility in RNA-ligand interac-

tions illustrated using HIV-TAR RNA (PDB: 1ANR [317]) as an example.

The orange and blue regions correspond to rigid and flexible portions of

RNA, respectively. From left to right, a) bases from the active site are al-

lowed to partially overlap with atoms from ligand through soft potential,

b) an ensemble of various RNA conformations is used to perform docking,

and c) RNA with full flexibility. Computational efficiency decreases from

left to the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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5.7 The typical workflow of a machine-learning approach. Training and vali-

dation cycle usually needs to be performed many times before the perfor-

mance on the validation set reaches an acceptable level. After the training-

validation cycle, the trained model is used to make predictions on the test

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.8 A simplified representation of the binding kinetics between the unbound

receptor (R), unbound ligand (L) and the bound receptor-ligand complex

(RL). (a) The binding kinetics of a system with only one transient state

(TS) along the binding reaction coordinate. The figure shows a binding

scenario where both receptor and ligand undergo conformational changes

in the binding process. The kinetic residence time (i.e., the inverse of the

RNA-ligand dissociation constant koff) depends on the free energy differ-

ence (∆Goff) between the bound state and transient state, while the thermo-

dynamic binding energy (∆Gbind) is determined by the free energy differ-

ence between the unbound state (R+L) and bound state (RL). (b) In prac-

tice, often the binding kinetic profile of a system contains multiple transient

states (TS) and intermediate states (IS) with a much more complicated ki-

netic mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
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6.1 The comparison between SPRank and other scoring functions [119, 124,

126] on the pose-identification set with 42 RNA-ligand complexes. (a)

The success rate of different scoring functions for the top-1 (red) and

top-3 (blue) predictions. For both top-1 and top-3 predictions, correct

prediction requires that at least one of the top-ranked poses is within

RMSD 2.0Å relative to the native pose. (b) The number of the native

binding modes correctly identified by various scoring functions with top-1

prediction and RMSD cutoff 2.0 Å. The successful cases are shown in

different colors, where green/yellow/orange/red denotes the cases with the

RMSD within (0.0Å,1.0Å)/(1.0Å,1.5Å)/(1.5Å,2.0Å)/(2.0Å,2.5Å) RMSD

intervals, respectively. The data of ITScore-NL, RLDOCK, LigandRNA,

and DOCK 6 were collected from previous publications [119, 124, 126]. . 146

6.2 The Pearson correlation coefficients between the experimental affinities

and the predicted scores on the affinity-estimation set (77 nucleic acid-

ligand complexes) for various scoring functions. (a) The comparison of

the correlation values between SPRank and other scoring functions. The

SPRank(ensemble) and SPRank(single) represent predictions with only ex-

perimental solved structures and predictions with the generated conforma-

tional ensembles, respectively. The scoring function associated with a spe-

cific docking engine is shown in score(engine) format. (b) The plot of both

experimental affinities and the scores predicted by SPRank (ensemble) on

the affinity-estimation set. . . . . . . . . . . . . . . . . . . . . . . . . . . 147
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ABSTRACT

Ribonucleic acid (RNA) is a polymeric nucleic acid that plays a variety of critical roles

in gene expression and regulation at the level of transcription and translation. Recently,

there has been an enormous interest in the development of therapeutic strategies that target

RNA molecules. Instead of modifying the product of gene expression, i.e., proteins, RNA-

targeted therapeutics aims to modulate the relevant key RNA elements in the disease-related

cellular pathways. Such approaches have two significant advantages. First, diseases with

related proteins that are difficult or unable to be drugged become druggable by targeting the

corresponding messenger RNAs (mRNAs) that encode the amino acid sequences. Second,

besides coding mRNAs, the vast majority of the human genome sequences are transcribed

to noncoding RNAs (ncRNAs), which serve as enzymatic, structural, and regulatory ele-

ments in cellular pathways of most human diseases. Targeting noncoding RNAs would

open up remarkable new opportunities for disease treatment.

The first step in modeling the RNA-drug interaction is to understand the 3D structure

of the given RNA target. With current theoretical models, accurate prediction of 3D struc-

tures for large RNAs from sequence remains computationally infeasible. One of the major

challenges comes from the flexibility in the RNA molecule, especially in loop/junction re-

gions, and the resulting rugged energy landscape. However, structure probing techniques,

such as the “selective 2′-hydroxyl acylation analyzed by primer extension” (SHAPE) ex-

periment, enable the quantitative detection of the relative flexibility and hence structure

information of RNA structural elements. Therefore, one may incorporate the SHAPE data

into RNA 3D structure prediction. In the first project, we investigate the feasibility of us-

ing a machine-learning-based approach to predict the SHAPE reactivity from the 3D RNA

xxx



structure and compare the machine-learning result to that of a physics-based model. In the

second project, in order to provide a user-friendly tool for RNA biologists, we developed

a fully automated web interface, “SHAPE predictoR” (SHAPER) for predicting SHAPE

profile from any given 3D RNA structure.

In a cellular environment, various factors, such as metal ions and small molecules, in-

teract with an RNA molecule to modulate RNA cellular activity. RNA is a highly charged

polymer with each backbone phosphate group carrying one unit of negative (electronic)

charge. In order to fold into a compact functional tertiary structure, it requires metal ions

to reduce Coulombic repulsive electrostatic forces by neutralizing the backbone charges.

In particular, Mg2+ ion is essential for the folding and stability of RNA tertiary structures.

In the third project, we introduce a machine-learning-based model, the “Magnesium con-

volutional neural network” (MgNet) model, to predict Mg2+ binding site for a given 3D

RNA structure, and show the use of the model in investigating the important coordinating

RNA atoms and identifying novel Mg2+ binding motifs.

Besides Mg2+ ions, small molecules, such as drug molecules, can also bind to an RNA

to modulate its activities. Motivated by the tremendous potential of RNA-targeted drug

discovery, in the fourth project, we develop a novel approach to predicting RNA-small

molecule binding. Specifically, we develop a statistical potential-based scoring/ranking

method (SPRank) to identify the native binding mode of the small molecule from a pool

of decoys and estimate the binding affinity for the given RNA-small molecule complex.

The results tested on a widely used data set suggest that SPRank can achieve (moderately)

better performance than the current state-of-art models.
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Chapter 1

Introduction

The backgrounds of my research projects are described in this chapter.

1.1 RNA and its biological significance — a brief overview

Ribonucleic acid (RNA) is a polymeric molecule transcribed from DNA in the cell nucleus

and is essential in various biological roles in coding, decoding, regulation, and expres-

sion of genes. A nucleotide, which consists of a phosphate group, a ribose sugar, and a

nucleobase. is the building blocks of an RNA molecule. There are four types of natural

nucleotides: adenine (A), uracil (U), cytosine (C), or guanine (G). Like DNA, an RNA is

assembled as a chain of nucleotides connected through phosphodiester bonds, but unlike

DNA, an RNA is often found to be single-stranded and contain self-complementary se-

quences that allow parts of the RNA to fold and pair with itself to form highly structured

tertiary conformation. RNA structure can often be viewed from three different structural

levels (see Fig. 1.1): the primary (1D) level of an RNA structure is described by the linear
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Figure 1.1: Example of nucleotides in RNA and RNA structure, viewed from different structural
levels. (a) Two consecutive nucleotides (C and G) connected through a phosphodiester bond. (b)
The sequence (primary (1D) structure) of the RNA molecule starts from 5′- to 3′-hydroxyl terminal
functional groups. (c) The secondary (2D) structure shows the loop and helix. (d) The tertiary (3D)
structure shows the three-dimensional geometry of the nucleotides and atoms.

sequence information of the nucleotides; the secondary structure is described at the two-

dimensional (2D) level and is defined by the contact pairs (base pairs) of the nucleotides,

and the tertiary structure is described at the three-dimensional (3D) level where all the

interactions can be projected onto the structure in 3D space.

RNA molecules can be categorized into two types: coding RNAs that carry the ge-

netic information and are translated into proteins, and the noncoding RNAs (ncRNAs),

which constitute the vast majority of the RNA molecules and serve as enzymatic, struc-

tural, and regulatory elements for gene expression. Only approximately 1.5% of the human

genome [1–10] encoding proteins. The vast majority of human genome encodes ncRNAs.

Typical ncRNAs include those directly involved in protein synthesis, such as transfer RNAs

(tRNAs) that deliver amino acids to the ribosome, and ribosomal RNAs (rRNAs) that link

amino acids together to form coded proteins. In addition, there are many ncRNAs involved

in post-transcriptional modification or gene regulation, such as various riboswitches, small

nuclear RNA (snRNA), guide RNA (gRNA), long noncoding RNA (lncRNA), microRNA
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(miRNA), and small interfering RNA (siRNA), etc [11, 12].

With the ever increasing discoveries of new RNA structures and functions, RNA-based

therapeutics is considered as a highly promising new strategy for disease treatment and has

gained significant interest recently [2, 4, 13–21]. One of the common approaches in RNA-

based therapeutics is modulating the activity of the target RNA molecule involved in the

disease-related cellular process through small molecule binding [2, 4, 16–21]. However,

correct identification of the potential drug molecule requires a comprehensive understand-

ing of both RNA 3D structure and various interactions that affect RNA function, such as

those between RNA and metal ions [22–40].

1.2 The significance of Mg2+ in RNA folding

Since RNA is a negatively charged molecule, metal ions, especially Mg2+, are essential for

shielding of charges in the polyanionic backbones and allowing RNA to adopt a diverse

range of folded structures. Mg2+ is more effective in stabilizing RNA structure than other

ions [22–25, 27, 28, 38–40]. First of all, Mg2+ has a higher charge than monovalent ions,

which causes less entropic cost when becoming localized around the RNA [24–26]; In ad-

dition, it has a smaller radius than other divalent ions and can bind into well-defined narrow

pockets and grooves in RNA [41–47]. For example, tRNA stability increases remarkably in

the presence of monovalent (in particular Na+ and K+) and divalent (Mg2+) cations [38].

And ribosome requires Mg2+ to stabilize due to its highly compact tertiary fold [42, 48,

49]. Researchers have shown that the growth of Escherichia coli cells under conditions

of Mg2+ starvation results in ribosome depletion [50] and the in vitro association of the

small and large ribosomal subunits to form intact ribosomes depends strongly on Mg2+
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concentration [51–53].

Mg2+ is usually considered as the natural cofactor to help recognize binding partners

and mediate catalytic processes [31, 36, 37, 54–58]. Previous studies [30, 32–36] have

shown that Mg2+ participate in the catalytic reactions of certain ribozymes. Hammerhead

ribozymes are a well-known examples that require metal ions to be present both for forming

the functional three-dimensional fold and performing the cleavage functions of a phospho-

diester bond [31, 37, 56–58].

Metal ions are also relevant to drug discovery [59–61]. Metal ions can interfere with

RNA-targeted antibiotic inhibition. For example, aminoglycoside bound to RNA can dis-

place structurally important divalent metal ions and such a competitive binding can signif-

icantly influence drug efficacy [61]. Similar mechanisms of Mg2+ displacement have also

been found in the inhibition of other ribozymes by neomycin. These findings suggested

that aminoglycosides can compete with Mg2+ at functionally and structurally important

ion binding sites [60].

However, experimental studies of RNA-Mg2+ interactions are challenging because it is

difficult for X-ray crystallography to distinguish chemically distinct species with indistin-

guishable electron distributions. For example, Mg2+, Na+, and H2O all have 10 electrons

and are hard to be distinguished from the electron density maps alone [62]. Since partial

and mixed occupancies of ions are also possible, other species, such as K+ with 55% oc-

cupation [63], although have different numbers of electrons, can have the same observed

effective electron number as that of a Mg2+, Table 1.1 shows a summary for the species

with the same effective electron number. Due to the reason above, coordination distances

and geometries are two additional criteria that are often used for assigning ionic species to

electron density spots [64–69]. For example, the metal water coordination distance is what
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distinguishes Na+ from Mg2+ and is only interpretable at a high resolution [70]. Misinter-

preted locations of ions bound to macromolecules have been found in many macromolecule

structures [71, 72] and Mg2+ is not an exception [73]. Because they all have 10 electrons

and can be distinguished only in high-resolution structures, Mg2+ could be easily mistaken

for water molecules or Na+ or simply missing from the crystal structures [41]. A signif-

icant number of incorrectly identified Mg2+ sites can impose a strong (incorrect) bias on

Mg2+ binding analysis. Thus, high resolution (1.5 A or better) and high occupancy are

necessary to accurately identify Mg2+ in crystal structures. This demands the development

of a computational model that can accurately predict Mg2+ binding sites. Such a model can

be used to assist experimentalists to verify and validate their results and it can also further

our understanding of the RNA-metal ion interaction.

Table 1.1: The table shows species with the same number of effective electrons at different
occupancies observed in X-ray crystallography. The occupancy column lists the occupancy
values, where full occupancy is indicated by 1.0 and mixed occupancy between two species
is shown with a slash. Data collected from publication [63].

Species Occupancy Effective Effective number
radius Å of electrons

H2O 1.0 1.40 10
Na+ 1.0 0.95 10

Mg2+ 1.0 0.65 10
K+ 0.6 1.33 10

H2O/Na+ 0.8/0.2 1.31 10
H2O/K+ 0.8/0.1 1.39 10

1.3 Evaluating RNA-small molecule interaction

RNA molecule can serve as the target for drug (small molecule) binding [2, 4, 16–21], and

this approach is analogous to protein-targeted drug discovery. For example, bacterial in-
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fection can be treated with antibiotics that target the active sites of the bacterial ribosomal

RNAs (rRNAs) through the inhibition of the protein synthesis [74–77]. Another possi-

ble method is to regulate gene expression by modulating common riboswitches in bacterial

cells through ligand-induced RNA conformational changes [78–92]. In addition to bacterial

RNAs, another type of interesting RNA target is viral RNA with highly conserved struc-

tured motifs [16, 18, 93], such as the HIV transactivation response (TAR) element in the 5′

untranslated region [94, 95], the internal ribosome entry site (IRES) element located in the

hepatitis C virus (HCV) genome [96–100], and the influenza A virus RNA promoter [101,

102]. Previous studies have identified a small molecule compound against the atypical

three-stemmed RNA pseudoknot that stimulated -1 programmed ribosomal frameshifting

in SARS-CoV RNA genome, the compound shows inhibition of -1 ribosomal frameshifting

with IC50 at 210 µM [103–106], which provides guidance for designing novel drugs for the

treatment of SARS-CoV-2 disease.

Compared to protein, there are two unique challenges in modeling RNA-small molecule

interactions. First, unlike a protein, RNA is highly charged, with each phosphate group car-

rying one electronic charge. Thus, RNA folding and ligand binding require the participation

of metal ions such as Mg2+ and water molecules to stabilize the binding pocket structure

of the RNA and to mediate ligand-RNA interactions [107–110]. Second, RNA molecules

are often quite flexible, capable of folding into multiple stable conformations, and ligand

binding often induces structural switches between different conformers of the RNA recep-

tor. Compared with protein-ligand binding, ligand-binding sites on RNA can be less deep

and more polar, solvated, and conformationally flexible [3, 18, 110], which adds further

complexity to predicting RNA-small molecule interactions.

The prediction of RNA-ligand (small molecule) binding involves the generation of
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an ensemble of possible binding modes and the scoring/ranking of the different binding

modes such that the best-scored (ranked) RNA-ligand binding mode is predicted. Cur-

rent scoring functions generally fall into three types: physics-based approach [109, 111–

120], knowledge-based approach [121–126], and machine-learning approach [127–129].

Compared to the physics-based approach, recently, there is much more active development

in the knowledge-based and machine-learning scoring functions, with several newly pub-

lished methods [130]. This trend reflects the increasing experimental data of RNA-ligand

complexes which enables a more effective training process. The traditional physics-based

approaches use either an atomistic based physical force field derived from thermodynamic

data and ab initio calculations, or an empirical energy that contains the linear combina-

tion of terms for various physical interactions. The atomistic force-field approach typically

uses a combination of molecular dynamic force field (e.g., AMBER and CHARMM force

fields) and implicit solvent model (e.g., Poisson-Boltzmann surface area model [131–137]

or Generalized-Born surface area model [138–146]) to model the energy changes due to

RNA-small molecule interactions and molecule-solvent interactions. DOCK 6 [112] and

MORDOR [111] are two such examples. However, for the consideration of computational

efficiency, the majority of the physics-based approaches adopted empirical energy func-

tions [109, 113–120]. By evaluating the total energy as a weighted sum of individual

interactions, such as van der Waals, electrostatic, desolvation and hydrogen-bond interac-

tions, these models are able to achieve a better balance between computational cost and

accuracy. In fact, most RNA-small molecule docking software adopted this type of energy

functions [109, 113–120].

In recent years, knowledge-based and machine-learning approaches are two types of

emerging scoring functions for modeling RNA-small molecule interactions [121–129]. In
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the knowledge-based approach, the basic assumption is that the interaction potential be-

tween atom pairs can be derived from the statistics of the known RNA-small molecule

complexes through inverse Boltzmann’s law. In contrast, machine-learning approaches

do not assume any pre-defined functional form of the interactions and can leverage the

experimental data better with a much larger number of trainable parameters. A variety of

machine-learning models such as support vector machine (SVM), random forest (RF), neu-

ral network (NN), and convolutional neural network (CNN) have been proposed and shown

success to predict protein/RNA-small molecule interactions [127–129, 147–152]. How-

ever, although machine-learning models for protein folding [153–158] and protein-small

molecule interactions [159–162] have shown significant success, the lack of a comprehen-

sive and high-quality curated database of RNA-small molecule complexes imposes great

challenges on both knowledge-based and machine-learning approaches.

1.4 Extracting 3D structural information from SHAPE
data

Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) is an effective

chemical probing technique that provides insights into RNA local structure at single

nucleotide resolution [163, 164]. SHAPE reagents are small-molecule electrophiles—

1-methyl-7-nitroisatoic anhydride (1M7), 1-methyl-6-nitroisatoic anhydride (1M6),

N-methylisotoic anhydride (NMIA), benzoyl cyanide (BzCN), 2-methyl-3-furoic acid

imidazolide (FAI), and 2-methylnicotinic acid imidazolide (NAI)—that react preferentially

with the 2′-hydroxyl group of the target RNA through acylation to form a 2′-O-adduct

(see Fig. 1.2). Although the mechanism that governs the SHAPE reactivity is still not

8



fully understood, several studies have suggested a variety of conformations that render

a nucleotide reactivity of SHAPE [165, 166], and indicated that SHAPE reactivity can

reflect local nucleotides flexibility [167–169]. Highly SHAPE-reactive nucleotides often

come from the unconstrained region of the RNA, such as the flexible loop/junction region,

which is capable of sampling multiple conformations and has greater probability to adopt

the SHAPE-reactive conformations. On the other hand, nucleotides that are constrained

by base-pairing and stacking interactions are less flexible and hence less SHAPE-reactive.

This characteristic feature makes SHAPE a useful tool for the quantitative measurement

of RNA local structural dynamics. In particular, SHAPE reactivity can be used to estimate

whether a nucleotide is in a rigid base pair (either in a helix or in a structured loop) or

remains unpaired in a flexible loop/junction. The local structural information provided

by SHAPE can place effective constraints on the RNA conformational space, which

results in a much more effective computational modeling of RNA structure. Studies [165,

166, 170–172] have shown that SHAPE reactivity can be used to guide 2D/3D structure

predictions and exclude SHAPE-incompatible structures.

9
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Figure 1.2: SHAPE chemical probing of RNA structure. (a) Illustration of the SHAPE acylation
between a single 1M7 and an RNA molecule. (b) Normalized SHAPE reactivities (see scale) shown
in both an RNA 2D structure plot and a bar plot.

1.5 Briefly summarizing the main results

1.5.1 Project 1: Developing a machine-learning approach to the pre-
diction of SHAPE reactivity

Machine learning has shown unprecedented success in protein structure prediction [173–

178], protein-ligand binding [179–182], regulatory genomics, and cellular imaging [183,

184]. In this project, we investigated the possibility of using a particular machine learning

approach—convolutional neural network (CNN)—to see how the machine learning perfor-

mance can be translated into the SHAPE prediction. We compared the performance of the

CNN model to a previously developed analytical model, 3DSSR [171], for a set of RNA

with 20 cases. Results have shown that indeed, the machine learning approach can give

10



promising results if large amount of data is available. When only limited data is available,

however, we found that the analytical model can provide better predictions. The result high-

lighted the importance of the size and quality of training data set for successful machine

learning approaches.

The work led to a publication: Travis Hurst*, Yuanzhe Zhou*, and Shi-Jie Chen.

“Analytical modeling and deep learning approaches to estimating RNA SHAPE reactivity

from 3D structure” (* denotes equal first author). In: Commun. Inf. Syst. 19.3 (2019),

pp. 299-319. DOI: https://dx.doi.org/10.4310/CIS.2019.v19.n3.a4.

URL: https://www.intlpress.com/site/pub/pages/journals/items/

cis/content/vols/0019/0003/a004/index.php.

1.5.2 Project 2: Developing a software pipeline and web server for
predicting SHAPE reactivity

The SHAPE data serves as a convenient and efficient way to probe the RNA local flexibil-

ity. The information contained in the SHAPE reactivity for the target RNA can be used to

guide the 2D/3D structure prediction [165, 166, 170–172]. To facilitate the research and

provide a user-friendly interface for the end-users, we simplified the workflow of our most

recent computational model, the reformulated 3DSSR [172], for predicting SHAPE reac-

tivity, and compiled it into a software pipeline. We also provide a standalone web service,

SHAPER [185], for our model. By predicting the SHAPE profile for any given RNA 3D

structure and calculating the correlation between the predicted and experimental SHAPE

profile, the SHAPER web server guides users to select the correct native structure based on

experimental SHAPE data.

The work led to a publication: Yuanzhe Zhou, Jun Li, Travis Hurst, and Shi-Jie
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Chen. “SHAPER: A Web Server for Fast and Accurate SHAPE Reactivity Prediction”.

In: Front. Mol. Biosci. (2021), pp. 715. DOI: https://doi.org/10.3389/

fmolb.2021.721955. URL: https://www.frontiersin.org/articles/

10.3389/fmolb.2021.721955/full.

1.5.3 Project 3: Predicting Mg2+ binding sites for a given RNA struc-
ture using convolutional neural network (CNN) model

The ability to accurately predict the Mg2+ ion binding sites has a far-reaching impact

to RNA structure prediction and RNA-targeted drug design. We recently developed a

machine-learning-based computational model for predicting Mg2+ binding sites. By ex-

ploiting the local 3D shape (RNA volume) and electrostatic information associated with

experimentally observed Mg2+ binding sites, our CNN model is able to achieve higher

accuracy and efficiency in binding site prediction than traditional knowledge-based and

physics-based models. Besides the comparison between various computational models, we

also used the saliency analysis to reveal the most important coordinating atoms on the ion-

binding sites. Further investigation on Mg2+ binding sites predicted by the CNN model led

to the identification of two new Mg2+ binding motifs.

This work has been submitted for publication: Yuanzhe Zhou, and Shi-Jie Chen. “A

method for decoding nucleic acid-magnesium ion interactions using deep learning convo-

lutional neural network”, 2021.
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1.5.4 Project 4: A critical review of computational models for RNA-
small molecule interactions

The rapidly growing interest in RNA-targeted drug discovery causes leads to increasing

demands for a fast and accurate computational tool that can facilitate the drug screening

process. In this work, we presented a critical review for the currently available computa-

tional approaches for modeling RNA-small molecule interactions. Our critical assessment

of the different models suggest that although recently developed models have led to encour-

aging improvements in the prediction of binding modes, the accuracy for the predictions of

binding modes and binding affinities are generally quite low. We need more accurate mod-

els to achieve complete sampling and accurate scoring for RNA-ligand binding modes.

The work led to a publication: Yuanzhe Zhou, Yangwei Jiang, and Shi-Jie Chen. “RNA-

ligand molecular docking: Advances and challenges”. In: Wiley Interdiscip. Rev. Comput.

Mol. Sci. (2021), pp. e1571. DOI: https://doi.org/10.1002/wcms.1571.

URL: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/

wcms.1571.

1.5.5 Project 5: Developing a statistical potential approach to Identi-
fying small molecule native binding mode

A successful identification of high-quality lead compounds in drug design requires an accu-

rate scoring function for the interactions between RNA and small molecules. We developed

a knowledge-based scoring function (SPRank) that uses statistical potential to estimate the

binding affinity and to rank the small molecule. Specifically, based on a training data set

with 130 experimentally determined RNA-small molecule complexes, SPRank employs

an iterative process to derive the pairwise atomic potentials such that using the pairwise
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atomic potentials, the simulated pairwise distribution agrees with that of the experimental

data set. Extensive tests indicate that SPRank outperforms other general scoring functions.

A manuscript will be submitted soon to report this new model.

14



Chapter 2

Analytical modeling and deep learning
approaches to estimating RNA SHAPE
reactivity from 3D structure

This chapter was published1.

The selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemical

probing method provides information about RNA structure and dynamics at single

nucleotide resolution. To facilitate understanding of the relationship between nucleotide

flexibility, SHAPE reactivity, and RNA 3D structure, we developed an analytical 3D

Structure-SHAPE Relationship (3DSSR) method and a predictive convolutional neural

network (CNN) model that predict the SHAPE reactivity from RNA 3D structures. Starting

from an RNA 3D structure, the analytical model combines key factors into a composite

1Travis Hurst, Yuanzhe Zhou, and Shi-Jie Chen. “Analytical modeling and deep learning approaches
to estimating RNA SHAPE reactivity from 3D structure”. In: Communications in Information and Systems
19.3 (2019), pp. 299–319. DOI: https://dx.doi.org/10.4310/CIS.2019.v19.n3.a4.
URL: https://www.intlpress.com/site/pub/pages/journals/items/cis/content/
vols/0019/0003/a004/.
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function to predict conformational flexibility of each nucleotide and calculate the corre-

lation between the prediction and experimental SHAPE reactivity. Here, we apply the

3DSSR and the deep learning SHAPE model to SHAPE data-assisted RNA 3D structure

prediction. We show that the models provide an effective sieve to exclude 3D structures

that are incompatible with experimental SHAPE data. Additionally, we compare the

3DSSR analytical model with the CNN deep learning model that recognizes structural and

physical/chemical patterns to predict SHAPE data from RNA 3D structure. Depending

on the training data set, the analytical model outperforms the deep learning approach

for most test cases, indicating that insufficient data is available to adequately train the

CNN at this juncture. For other test cases, the deep learning approach provides better

predictions than the analytical model, suggesting that the deep learning approach may

become increasingly promising as more SHAPE data becomes available.

2.1 Introduction

Galvanized by recent progress in RNA chemical probing technology, researchers developed

efficient, data-driven experimental modeling approaches that place effective constraints on

RNA structure to complement established template and physics-based methods [187–191].

Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) provides signif-

icant insights into local nucleotide structure and dynamics in RNA [163, 164]. SHAPE

reagents are small ligands—such as 1-methyl-7-nitroisatoic anhydride (1M7) [192]—that

covalently bind to the 2′-hydroxyl group of a nucleotide (see Fig. 2.1) [193]. Previous stud-

ies [167–169] suggest that unconstrained nucleotides have a greater ability to sample more

conformations and to adopt SHAPE-reactive postures, which causes them to have higher
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SHAPE reactivity. In contrast, nucleotides that are constrained by base-pairing and stack-

ing interactions have a lower propensity to sample a variety of poses and are much less

reactive. By quantitatively measuring local nucleotide dynamics, SHAPE is an effective

tool for probing whether a nucleotide is constrained by interactions with other nucleotides

(in a helix or structured loop) or is located in a flexible loop/junction, without many in-

teractions. In secondary structure modeling, use of SHAPE data substantially improves

accuracy and efficiency [165, 166, 194–196], where SHAPE reactivity is used to provide

additional structural constraints for free-energy based predictions [197]. Moreover, when

used as the basis for advanced experimental approaches, such as differential SHAPE re-

activity, mutate-and-map, and time-resolved SHAPE chemistry, SHAPE probing provides

helpful information for the in vitro and in vivo determination of non-canonical tertiary in-

teractions and RNA kinetics [198–204].

CO2

Unbound 1M7

2’-OH

Figure 2.1: The SHAPE reaction. The RNA nucleotide 2′-OH group attacks the reactive carbon of
1M7, releases CO2, and forms a covalent bond (purple) with the SHAPE reagent.

Machine learning is a general method of data analysis that automates analytical model

building and is based on the idea that models can learn from data, extract patterns, and

make decisions with minimal human intervention. Complex problems without clear under-

lying mathematical structures benefit from machine learning because manually constructed

analytical models cannot easily capture all of the underlying mechanics. The appeal of
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machine learning methods is the ability to derive predictive models without a need for

strong assumptions about underlying mechanisms, which are frequently unknown or insuf-

ficiently defined in computational biology. Machine learning has exhibited unprecedented

performance in protein structure prediction [173–178], protein-ligand binding [179–182],

regulatory genomics and cellular imaging [183, 184]. Deep learning is a subset of machine

learning based on artificial neural networks, and “deep” refers to the presence of multi-

ple hidden layers. The convolutional neural network (CNN) is one of the deep learning

network models and has gained significant attention due to its success in computer visual

recognition.

Previously, we developed an analytical function to quantitatively predict the SHAPE

profile from individual RNA 3D structures [171]. We showed how our function can be

applied to exclude SHAPE-incompatible structures. To establish the relationship between

SHAPE reactivity and nucleotide dynamics, we generated conformational ensembles with

MD simulations to measure the correlation between SHAPE reactivity and the conforma-

tional propensity of each nucleotide. Then, by combining key factors that account for phys-

ical properties implicated in the SHAPE mechanism—the nucleotide interaction strength,

SHAPE ligand accessibility, and base-pairing pattern—we developed the analytical 3D

Structure-SHAPE Relationship (3DSSR) function, which characterizes the local nucleotide

flexibility and predicts SHAPE reactivity based on information about the nucleotide pos-

ture and local energetics. To test the discriminating ability of our tool, we used the 3DSSR

function to show how SHAPE-incompatible decoy structures may be excluded based on

the low correlation between their predicted SHAPE profile and experimental SHAPE data.

Here, we revisit the 3DSSR model and develop a novel convolutional neural network

(CNN) model, which uses experimental structural data to predict the SHAPE reactivity for
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any given nucleotide. First, we briefly describe the formulation of the 3DSSR model on a

molecule that was not originally used to test or train either the 3DSSR or CNN model.

Then, we describe the methods used to obtain the CNN model. Finally, we compare

the ability of the two models to make useful predictions of SHAPE reactivity on RNA

molecules used in training and a molecule neither algorithm has seen, emphasizing that

analytical formulations often provide more insight than pattern recognition methods when

limited data is available.

Table 2.1: RNA structures used for validation. The Protein Database ID (PDBID), length of the
RNA in nucleotides (nt), type of RNA, and organism of origin are displayed. The SHAPE profiles
for these RNA molecules are from the published experimental data [167, 195, 196, 205, 206].

PDBID Length (nt) Type of RNA Organism
2L8H 29 TAR RNA HIV-1
1AUD 30 U1A protein binding site RNA H. sapiens
2L1V 36 M-box riboswitch B. subtilis
2K95∗ 48 Telomerase pseudoknot H. sapiens
1Y26 71 Adenine riboswitch V. vulnificus
1VTQ 75 PreQ1 riboswitch aptamer B. subtilis
1EHZ 76 Aspartate tRNA Yeast
1P5O∗ 77 IRES Domain II Hepatitis C
2GDI 79 TPP riboswitch E. coli
3IWN 93 Cyclic-di-GMP riboswitch V. cholera
4KQY 117 SAM-I riboswitch B. subtilis
1C2X∗ 120 5S rRNA E. coli
3IVK∗ 128 Catalytic core of RNA polymerase ribozyme E. coli
1NBS 154 Specificity domain of Ribonuclease P RNA B. subtilis
3PDR 154 M-box riboswitch B. subtilis
1GID∗ 158 Group 1 Ribozyme Synthetic
3P49∗ 169 Glycine Riboswitch H. sapiens
3DIG 174 Lysine riboswitch T. maritima
4UE5∗ 299 SRP RNA C. lupus
3G78∗ 421 Group II intron O. iheyensis

∗ Denotes cases used to parameterize the CNN model, not the 3DSSR model.
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2.2 Methods

2.2.1 Finding structures corresponding to SHAPE data

In order to find RNA structures that correspond to our SHAPE sequences, we used the se-

quence searching interface equipped with NCBI’s BLAST (Basic Local Alignment Search

Tool) program [207] provided by RCSB protein databank [208] to align the sequences. In

the 3DSSR (CNN20) model 12 (20) RNA structures with an average length of ∼92 (120)

nucleotides that have SHAPE reactivity data were used (see Table 2.1). For comparison,

we also parameterized the CNN model using the same 12 structures as 3DSSR (CNN12).

SHAPE reactivity data came from databases for sharing nucleic acid chemical probing data,

the RNA mapping database (RMDB) [206] and the SNRNASM database [205]. To have

comparable SHAPE reactivity values between different RNA structures, all of the negative

values of SHAPE reactivity data are set to zero, in accordance with previous work [166].

Furthermore, the SHAPE profiles are scaled by the maximum reactivity value of each re-

spective RNA structure, which confines SHAPE reactivity data to range from 0 to 1.

2.2.2 Reviewing 3DSSR methods and conclusions

Previously, we used simulations to show that SHAPE data corresponds with nucleotide

flexibility, parameterize the 3DSSR model, and generate decoys to illustrate how our model

can be used to exclude SHAPE-incompatible structures [171]. The ability of a nucleotide

to react with SHAPE depends on the propensity of a nucleotide to sample SHAPE-reactive

postures and the ability of the SHAPE ligand to access the reactive site. Capturing these
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Figure 2.2: The 2D, 3D, and SHAPE reactivity of RNA-Puzzle 8 (PDBID: 4L81). A) The 2D
structure [209] shows the four-way junction (4WJ), base-pairs, and long range interactions. B) The
3D structure shows the 4WJ and an example of a base stacking interaction. C) The experimental
and predicted SHAPE profiles for the crystallized 4L81 structure show good agreement (Pearson
correlation = 0.57).
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concepts, we proposed the 3DSSR function

P (n) = BP (n) · SAS(n) + S0

|II(n)− 1.0|
(2.1)

to estimate the nucleotide stability and predict the SHAPE reactivity P (n) for a nucleotide

n. The base-pairing factor BP (n) accounts for the 2D structure, which is characterized by

the base-pairing pattern: a nucleotide n in a helix region is assigned BP (n) = 0.01 and a

nucleotide in a loop or junction region is assignedBP (n) = 1.0. A 2D structure can always

be extracted from a 3D structure (for example, using the RNApdbee 2.0 webserver [210]),

and helix nucleotides are normally SHAPE-inert. The SHAPE ligand accessible 2′-OH

surface area SAS(n) describes the necessary requirement of a SHAPE ligand to access the

nucleotide for a reaction to occur. If a nucleotide 2′-OH is buried inside the RNA structure,

SHAPE reagents cannot react, which reduces the SHAPE reactivity. The unbound SHAPE

ligand has an effective radius between 2.0 and 2.5 Å, and our results indicate that the

3DSSR function is not sensitive to different probe sizes within this range. The accessible

surface of 2′-OH is calculated using VMD [211]. S0 is a constant, accounting for the

ability of a nucleotide to become accessible during experimental SHAPE probing. II(n) is

the interaction intensity for nucleotide n, which accounts for tertiary structure interactions.

Through fitting, information from base-pairing and base-stacking interactions are combined

to calculate the II(n), a quasi-energy score for each nucleotide.

In the present study, we focus on a SHAPE data-assisted approach to RNA 3D structure

prediction. For a given RNA sequence, we can generate an ensemble of possible conforma-

tions using, for example, the IsRNA coarse grained simulation model [212]. We then score

each conformation by the correlation (similarity) between the (3DSSR-predicted) SHAPE

profile of the conformation and the experimentally determined SHAPE data for the RNA
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molecule. Although due to the low-resolution energy model, the 3DSSR model might not

be able to identify the native, crystal structure from SHAPE data alone, as shown below,

the model can assist structure prediction by successfully excluding SHAPE-incompatible

structures.

2.2.3 Applying the model to the SAM-I/IV riboswitch aptamer

For illustration, here we apply the 3DSSR model to the SAM-I/IV riboswitch aptamer

(PDBID: 4L81) that was used in round 8 of RNA-Puzzles [213] (see Fig. 2.2), a

community-wide, CASP-like blind test for RNA 3D structure prediction. This structure

has not been previously used to train or test the 3DSSR model, and the structures submitted

in the RNA-Puzzle competition by different labs give us objective decoys to show the

ability of the 3DSSR model to exclude structures that are incompatible with SHAPE.

First, we access the submitted structures and assessment results from the RNA-Puzzles

database (see Fig. 2.3A for a structure submitted to the competition). Next, we extract the

2D structures from the submitted 3D structures using the RNApdbee 2.0 webserver [210]

(Fig. 2.3B). After that, we use RNAview software to identify the base pair types from the

3D structures [214] (Fig. 2.3C). Additionally, we directly calculate the stacking interaction

information from the 3D structures: the angles and distances between different RNA bases

(Fig. 2.3D). Then, we calculate the solvent accessible surface of each nucleotide 2′-OH in

the 3D structures with VMD [211] (see Fig. 2.3E for a visual representation). Finally, we

use the 3DSSR function to combine all of the structural information and predict the SHAPE

reactivity for each nucleotide (Fig. 2.3F). To evaluate the SHAPE-compatibility, we also

calculate the Pearson correlation between the experimental and 3DSSR-predicted SHAPE

profiles. Comparison of the 3DSSR-predicted and experimental SHAPE profiles on the
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native, crystal structure can be seen in Fig. 2.2C. Provided with candidate 3D structures

and experimental SHAPE data, we can exclude SHAPE-incompatible structures on the

basis of their 3DSSR-predicted SHAPE profile.
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Figure 2.3: 3DSSR workflow on an RNA-Puzzle 8 decoy. A) A candidate 3D structure decoy
is processed by RNApdbee 2.0 [210], RNAview [214], in-house software, and VMD [211] to B)
produce a 2D structure, C) identify base pair types, D) extract stacking angle/distance information,
and E) calculate the solvent accessible surface of the 2′-OH, respectively. The information extracted
from the structure is input into the 3DSSR function to produce F) the predicted SHAPE profile for
each nucleotide.

The sensitivity of the model to structures with high RMSD and lower Interaction Net-

work Fidelity (INF; a quantity to measure the similarity in interaction pattern) [215] can be

seen in Fig. 2.5, where we apply the 3DSSR model on all of the submitted structures for
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RNA-Puzzle 8 to show the ability of the 3DSSR function to exclude SHAPE-incompatible

structures. Contributing to the objectivity of the test, the submitted 3D structures and as-

sessment results (values of RMSD and INF for each structure) for RNA-Puzzle 8 were all

taken from the RNA-Puzzles database. The results suggest that many of the 43 submitted

structures could be discarded because they are incompatible with SHAPE. For example,

the native crystal structure is ranked in the top ten, and we could comfortably discard the

bottom 20 structures, which all have a correlation < 0.45. Only one structure ranked in

the bottom 20 by the 3DSSR model has RMSD (INF) < (>) 11.2 (0.80), and no structure

in the bottom 20 has favorable assessment values for both RMSD and INF. As can be seen

in Fig. 2.5A, the combination of assessment results indicate that a cutoff of 0.45 is quite

conservative. We could discard the bottom 65 percent of structures (the bottom 28), which

would keep all of the structures with favorable assessment results for both RMSD and INF.

For RNA-Puzzle 8, discarding more than the bottom 70 percent would cause us to discard

the native structure. However, the quality of the SHAPE data, the size of the RNA, and the

quality of candidate structures all affect the number of structures that may be comfortably

excluded on the basis of SHAPE data using 3DSSR. These factors should be known so that

a reasonable sieving scheme can be found.

2.2.4 Using a CNN to predict SHAPE reactivity from structure

Describing the nucleotide environment

In agreement with SHAPE experiments, our CNN method probes RNA structure at single

nucleotide resolution. For each nucleotide, the surrounding environment refers to neigh-

boring atoms within a cubic volume of space around the nucleotide. Since we define the
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space surrounding a nucleotide as the space confined in a cube, the environment captured

by this cube is not rotationally invariant. To remove the effects caused by the different

choices of the cube orientation, we set a local Cartesian coordinate system for every given

nucleotide. The coordinate system of a nucleotide is determined by the C1′, C4′, and O4′

atoms. Specifically, the origin of the local coordinate system is located at the atom O4′,

and the local x, y, and z axes are defined as follows. First, we denote the rC1′ , rC4′ , and

rO4′ as the coordinates of the selected atoms, C1′, C4′, and O4′. Second, we calculate three

vectors vx, vy and vz with respect to the local origin as

vx = rC4′ − rO4′

vy = rC1′ − rO4′

vz = vx × vy

(2.2)

where vx represents the vector from atom O4′ to atom C4′, vy represents the vector from

atom O4′ to atom C1′ and vz is just the cross product of vx and vy. Then, the x, y and z

axes are set according to the following Eq. 2.3,

x =
vx

‖vx‖

z =
vz

‖vz‖

y = z× x

(2.3)

The surrounding environment of each nucleotide is captured through a cube centered

and oriented according to the local coordinate system. As shown in Fig. 2.4, the length of

the cube is 24 Å and the atoms contained in the cube will be used to generate the image for

CNN model.
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Figure 2.4: . Extracting the 3D image of an RNA nucleotide. The magenta color depicts the
nucleotide under assessment and the surrounding environment is confined within the cube with
length 24 Å. The surrounding atoms are drawn in cyan, and the cube boundaries are drawn with
yellow solid lines.

Input: defining the 3D image as input into the CNN

As we described in the previous section, a 24 Å × 24 Å × 24 Å cube is used to provide

the surrounding environment of each nucleotide. The corresponding image associated with

this nucleotide is contained within this cube. As a normal 2D digital image has three color

channels (RGB) with each channel represented by a 2D pixel matrix, the 3D image that

we used to capture the surrounding environment is also composed of multiple channels.

However, our 3D images do not simply use RGB color channels: the channels we selected

represent certain physical or chemical features. In our CNN model, we defined 5 channels,

which are fully described in Table 2.2.

Since we extract our 3D image from a cube, each channel of the 3D image is represented

by a 3D matrix, and each position in this 3D matrix has a voxel (3D pixel) value. We set

the length of our 3D image equal to the cube with an image resolution of 1 Å, so each
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Table 2.2: Feature channels used for 3D images.

Feature Description
Hydrophobic Aliphatic or aromatic carbon atoms
Aromatic Aromatic carbon atoms
Positive ionizable Gasteiger positive charge
Negative ionizable Gasteiger negative charge
Excluded volume All atom types

voxel has a dimension of 1 Å× 1 Å× 1 Å. A step function fills the voxels of each channel.

For example, the voxels of the excluded volume channel that are occupied by RNA atoms

are filled with 1, and the rest are filled with 0, according to their Van der Waals radius. A

similar procedure was used to generate other channels.

Describing the CNN architecture

Our CNN model takes the multi-channel images as input, and outputs a predicted SHAPE

reactivity for each image. The network is a basic ResNet [216] architecture with only

slight modifications and has 10 convolutional layers. The detailed architecture is shown in

Table 2.3. The first layer accepts the 3D image in a convolutional layer and has 64 7× 7×

7 filters with a stride of 2. The next layer has 4 residual blocks, with each block containing

two convolutional layers. Downsampling is directly performed in the first convolutional

layer and by the beginning convolutional layers of blocks 2-4. Finally, the network ends

with a global average pooling layer and a 512-way fully-connected layer with a sigmoid

activation function. Except the first layer, all of the convolutional layers use 3 × 3 × 3

sized filters. Batch normalization [217] was applied right after each convolutional layer

and before ‘Rectified Linear Unit’ [218] activation, following [217]. In our network, two

hidden layers inserted residual shortcut connections for every block. The shortcut takes

an identical input from the previous block and maps this identity shortcut right before the
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activation of the second hidden layer within the block; the block is same as the original

ResNet block [216]. We initialize the weights as in [216, 219] and train all residual nets

from scratch. The only preprocessing we used is the subtraction of a mean value from

each image. This mean value is calculated by averaging all the voxels of all images in the

training set.

Table 2.3: Details of CNN Architectures. Each building block is shown with two convolutional
layers. Downsampling is performed in every convolutional layer with a stride of 2.

Layer name Output size Filter size Filter num
first layer conv1 12× 12× 12 7× 7× 7 64, stride 2
block1 conv2 12× 12× 12 3× 3× 3 64, stride 1
block1 conv3 12× 12× 12 3× 3× 3 64, stride 1
block2 conv4 6× 6× 6 3× 3× 3 128, stride 2
block2 conv5 6× 6× 6 3× 3× 3 128, stride 1
block3 conv6 3× 3× 3 3× 3× 3 256, stride 2
block3 conv7 3× 3× 3 3× 3× 3 256, stride 1
block4 conv8 2× 2× 2 3× 3× 3 512, stride 2
block4 conv9 2× 2× 2 3× 3× 3 512, stride 1
last layer fc 1× 1× 1 average pool, 512-d fc, sigmoid

For the network optimizer, we used Adam [220] with default parameters for momentum

scheduling (β1 = 0.99, β2 = 0.999) provided by PyTorch [221], and a mini-batch size of

128 was used for training. The learning rate started from 0.01 and was divided by 10 when

the training accuracy plateaued, and the models were trained for up to 100 epochs. For our

loss function, we calculated the mean square error (MSE) loss between predicted SHAPE

reactivities and experimental SHAPE reactivities as

Loss =
N∑
n=1

(Pn −Gn)2/N (2.4)

where N is the number of images and Pn(Gn) is the predicted(experimental) SHAPE reac-
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tivity for image n.

Output: predicting SHAPE reactivity with a CNN

For any given 3D image that describes the surrounding environment of the considered nu-

cleotide, our CNN model will output a real number characterizing the predicted SHAPE

reactivity. This output value is confined within range from 0 to 1.

Implementation and cross-validating

Based on the SHAPE data for 20 RNAs (totally 2455 nucleotides) collected by different ex-

perimental labs, we have 2455 SHAPE data along with the corresponding high-resolution

atomic coordinates for all the nucleotides and their pertinent physical and chemical pa-

rameters. All the data together serve as the input for the CNN. To test and validate the

deep learning approach, we used the leave-one-out cross-validation method to validate the

performance of our model. Each time, our model was trained on 19 RNA cases with cor-

responding SHAPE reactivity data and tested on 1 RNA case. This process was carried out

20 times, leaving out each RNA in turn. The overall performance is evaluated by averaging

the Pearson correlation coefficients of the 20 test cases over the leave-one-out process. We

also carried out this procedure for the 12 cases used to parameterize the 3DSSR function.

The results of the cross-validation process are summarized in Table 2.4. The Pearson corre-

lation coefficient was used to measure the similarity between the predicted SHAPE profile

and the experimentally derived SHAPE profile. For each training and validation set in the

cross-validation, we chose the model that has the best performance on the validation set to

avoid overfitting.
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Figure 2.5: Sieving SHAPE-incompatible structures from RNA-Puzzle 8 submissions. A) The 3D
representation shows the trend of the assessment results (RMSD and INF) with the correlation be-
tween 3DSSR-predicted SHAPE profiles and experimental SHAPE (3DSSR Correlation). Warmer
colors indicate higher correlation, higher INF, and lower RMSD. The INF and RMSD values were
taken from the RNA-Puzzles database. 2D plots of the B) INF and C) RMSD with respect to the
3DSSR and CNN20 correlations are also shown, along with their respective Spearman rank coeffi-
cients (SR).
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2.2.5 Comparing 3DSSR to CNN models

As can be seen in Table 2.4, the 3DSSR model generally outperforms the CNN model,

regardless of whether 20 or 12 structures are used to train the CNN. In contrast, the CNN

model performs substantially better on 3PDR, which may indicate that information in the

structure of 3PDR leading to its SHAPE reactivity profile is contained in the other cases.

Because 3PDR has high performance in the CNN model in spite of its length, we may

expect improvements in other cases once the amount of training data is increased. The rel-

atively poor performance in other cases may indicate that factors that contribute to SHAPE

reactivity in those RNA are not adequately represented by the structures provided in the

training set. In addition, the small fluctuations captured in the 3DSSR model by using

solvated, near-native representations to fit the unknown parameters may help boost its per-

formance over the CNN.

However, the correlation alone does not show us the discerning ability of the 3DSSR

and CNN models on decoy structures. For that, we turn to the results on RNA-Puzzle 8,

where the Spearman rank correlation coefficient (SR) can tell us how well the models per-

form on ranking the structures in comparison to objective assessments (RMSD and INF).

For INF(RMSD), the SR values were 0.57(-0.35) and -0.01(-0.13) for 3DSSR and CNN20,

respectively, which shows that 3DSSR markedly outperforms the CNN20 model on both

ranking assessments and can be used to exclude more SHAPE-incompatible structures (see

Fig. 2.5BC).
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Table 2.4: Pearson correlations between the experimental SHAPE data and the prediction algo-
rithms: 3DSSR and the cross-validated CNN model trained on 11(19) cases and tested on the one
left out, denoted as CNN12(CNN20).

PDB Length (nt) 3DSSR CNN20 CNN12
2L8H 29 0.96 0.85 0.87
1AUD 30 0.92 0.90 0.71
2L1V 36 0.83 0.81 0.79
1Y26 71 0.88 0.52 0.66
1VTQ 75 0.71 0.71 0.80
1EHZ 76 0.80 0.77 0.78
2GDI 79 0.89 0.81 0.66
3IWN 93 0.74 0.33 0.38
4KQY 117 0.75 0.58 0.64
1NBS 154 0.61 0.48 0.34
3PDR 154 0.61 0.81 0.83
3DIG 174 0.70 0.64 0.68
Average 92 0.78 0.68 0.68

2.3 Conclusion

Efficient chemical probing methods, like SHAPE, provide a wealth of information about

RNA structure and dynamics. By formulating an analytical expression that captures the key

factors determining SHAPE reactivity, we can predict SHAPE reactivity from individual

RNA structures. After computing predictive SHAPE profiles for a set of candidate RNA

3D structures, we can sieve the structures based on the correlation between the predicted

and experimental reactivities, and SHAPE-incompatible structures can be excluded. This

general method of combining efficient experimental data with computational sieving may

be transferred to other efficient probing methods, enabling more confident computational

determination of RNA tertiary structure at lower cost.

Machine learning techniques are incapable of creating new concepts and require the

training data to be a good representative of the test data. To put it simply, a dog classi-
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fication model trained with only dog images can not be used to classify cats; the model

cannot be generalized to predict information it has never seen during training. Because we

only have 20 RNA structures with SHAPE reactivity profiles in our data set, there is a good

chance that nucleotides in a test RNA are not well represented by the other 19 structures,

which results in worse performance. Additionally, using features that are important for

determining SHAPE reactivity of a given nucleotide can greatly facilitate the learning pro-

cess. However, finding the right combination of image channel features is not easy since

the underlying mechanism that governs SHAPE reactivity is still unclear.

Although the mechanism that governs SHAPE reactivity is not fully understood, our

general understanding is enough to formulate a relatively simple analytical function—the

3DSSR model—to predict reactivity based on the sensitivity of SHAPE to local nucleotide

dynamics and the accessibility of SHAPE-reactive nucleotides. Because there is not enough

data to apply a trained, pattern recognizing CNN to new structures, our manually con-

structed, analytical 3DSSR function is better at ranking structures on the basis of experi-

mental SHAPE data. Although machine learning and advanced data-processing methods

are leading to rapid advances on many problems with ample data and unclear underlying

mathematical structure, physics-based models can perform better in systems where limited

data is available and underlying mechanisms are known well enough to mathematically

express the mechanics, even if the mechanisms are incompletely understood. As more data

becomes available, we expect performance of the CNN model to improve. In the meantime,

we recommend using expressions of the underlying mechanics to predict SHAPE reactivity

for guiding RNA structure prediction.
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Chapter 3

SHAPER: A Web Server for Fast and
Accurate SHAPE Reactivity Prediction

This chapter was published1.

Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemical prob-

ing serves as a convenient and efficient experiment technique for providing information

about RNA local flexibility. The local structural information contained in SHAPE reactivity

data can be used as constraints in 2D/3D structure predictions. Here, we present SHAPE

predictoR (SHAPER), a web server for fast and accurate SHAPE reactivity prediction. The

main purpose of the SHAPER web server is to provide a portal that uses experimental

SHAPE data to refine 2D/3D RNA structure selection. Input structures for the SHAPER

server can be obtained through experimental or computational modeling. The SHAPER

server can accept RNA structures with single or multiple conformations, and the predicted

SHAPE profile and correlation with experimental SHAPE data (if provided) for each con-

1Yuanzhe Zhou et al. “SHAPER: A Web Server for Fast and Accurate SHAPE Reactivity Prediction”. In:
Frontiers in Molecular Biosciences 8 (2021), p. 715. ISSN: 2296-889X. DOI: 10.3389/fmolb.2021.
721955. URL: https://www.frontiersin.org/article/10.3389/fmolb.2021.721955.
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formation can be freely downloaded through the web portal. The SHAPER web server is

available at http://rna.physics.missouri.edu/shaper/.

3.1 Introduction

With the development of novel ribonucleic acid (RNA) structure determination methods

alongside discoveries of new RNA structures and cellular functions, RNA has become

increasingly important, contributing new avenues in the development of therapeutic ap-

plications for human diseases. Computational modeling of RNA structures could greatly

deepen our understanding of RNA folding mechanisms. However, computational predic-

tion of RNA structures from the sequence remains a significant unsolved problem [222–

224].

Although lacking complete structural information, some experimental methods can pro-

vide useful details for guiding structure prediction. The selective 2′-hydroxyl acylation an-

alyzed by primer extension (SHAPE) method is a convenient and efficient RNA structure

probing technology with single nucleotide resolution that can provide information about

local nucleotide structural dynamics [163, 164]. The SHAPE reactivity of a nucleotide

is reflected by the ability to bind SHAPE reagents—small ligands such as 1-methyl-7-

nitroisatoic anhydride (1M7)—that preferentially bind to the oxygen of 2′-hydroxyl group

of RNA nucleotides [193]. Previous studies [167–169] suggested that SHAPE reactivity

is correlated with nucleotide flexibility, where unconstrained nucleotides tend to be more

reactive while nucleotides constrained by base pairing, stacking, or other interactions are

less reactive. The signals seen in SHAPE experiments intrinsically reflect interactions in

the 3D structure, and can therefore be used to place effective constraints on the possible
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structures in a conformational pool generated by computational modeling software.

Since many RNA structure prediction studies would benefit from utilizing experimental

SHAPE data, having a freely available, dedicated web server for rapidly predicting SHAPE

profiles and filtering structural ensembles is essential. In this paper, we present our SHAPE

predictoR (SHAPER) web server for predicting the SHAPE profile of any given RNA struc-

ture. The organization of the server is shown in Fig. 3.1. The SHAPER server only requires

the 3D coordinates of the target RNA (in PDB format). These structures can come from ex-

perimental structures, simulation snapshots, or computational structure-prediction models,

etc. The SHAPER server can accept either individual structures or a structural ensemble,

and the output contains predicted SHAPE profiles with the correlations between predicted

profiles and a provided experimental SHAPE profile (if available). The engine powering

the SHAPER web server is the new SHAPE prediction model [172], which is an updated

version of the original 3D Structure-SHAPE Relationship (3DSRR) model [171]. The

SHAPER model incorporates RNA sequence-dependent bias into the prediction and is able

to provide higher correlations between SHAPE data and the native RNA structure, which

improves our ability to discern between SHAPE-compatible and -incompatible structures

on decoys than the previous 3DSRR model.

3.2 Materials and Methods

3.2.1 Workflow

The following shows both the workflow and theoretical background of the SHAPER server.

Detailed description and analysis of the SHAPER model can be found in the original pa-
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Figure 3.1: A schematic view of the organization and function of the SHAPER web server.

per [172].

Step 1: Uploading Input Data

As shown in Fig. 3.2, Step 1, the input parameters are the following: (1) the input RNA

structure file in PDB format, (2) user provided SHAPE profile, (3) user provided MASK

file for the target RNA (for masking nucleotides that interact with ligands), (4) an email
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address for delivery of the calculation results, and (5) a simple text verification to prevent

robotic usage. Required parameters are labeled by red asterisks. After submitting the

job, the user will be redirected to a waiting page (Fig. 3.2, Step 2), where they can view

information about the running job. The information shown in the table in Fig. 3.2, Step 2

includes: JobID—an identification code used to look up the results— and the file names of

the RNA, SHAPE, and MASK file uploaded by user, respectively.

Step 2: Calculating SHAPE on Server Side

After submitting the job, SHAPER will put the job in a queue and will run the job once

the computational resources are available. Usually, it takes less than a minute for a single

structure with around 100 nucleotides. The procedures taken by the SHAPER server are

listed in the order of execution.

• Validating input.

The input RNA file (in PDB format) is checked before any further processing. Enti-

ties other than RNA will be removed from the PDB file, only the backbone of modi-

fied residues and the first occurrence of atoms with multiple alternative locations will

be kept for SHAPE reactivity calculations.

• Identifying base pairing and stacking interactions.

Base pairs are identified by RNAView [214], while stacking nucleotides are identified

by our in-house Perl script. Then, pairing and stacking energies are combined into

the interaction energy score (IE) for a given nucleotide i as

EIE(i) =
∑
m

[A · E(t)
bp (i,m) +B] +

∑
k

E
(i)
st (i, k) (3.1)
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where all the type-t base pairing energies E(t)
bp (i,m) and all the stacking energies

E
(i)
st (i, k) of nucleotide i are summed together. A and B are two extra parameters

trained for the SHAPER model. The base pairing interactions E(t)
bp (i,m) were de-

rived through a quasi-chemical statistical potential approach based on the statisti-

cal frequencies of the base pairing interactions extracted from the non-redundant

RNA Basepair Catalog [225], and the stacking energies introduce 5′ → 3′ polarity-

dependence by using different weights and energy parameters for upstream 5′ and

downstream 3′ nucleotides, respectively.

• Extracting 2D structure.

Using the Dissecting the Spatial Structure of RNA (DSSR) tool [226], the 2D struc-

ture is extracted from the input 3D structure. A parameter E2D(i) is introduced to

represent the energy contributed by the base pairing nucleotide i in the 2D structure.

• Accounting for other structural features.

(1) Ligand Accessible Surface (ASAS). The accessibility of the SHAPE reagent

(1M7) to the 2′-hydroxyl of each nucleotide is calculated using Visual Molecular

Dynamics (VMD) [211] with a bead radius of 2.0 Å.

(2) Ribose sugar conformations. Previous studies [227, 228] suggest that the con-

formation of the ribose sugar is important for SHAPE-reactivity. A correction Fsug

determined by the pseudorotation angle of the ribose is employed to account for this

effect.

(2) Tail nucleotides. Simple parameter Fterm on terminal nucleotide is used to ac-

count for the effect of the short nucleotide sequence added at the terminal regions

during SHAPE experiments.

(3) Bound ligands. Nucleotides interacting with a bound ligand need different treat-
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ment. To account for these effects, a ligand binding energy penalty Elig is introduced

for the nucleotides that are interacting with bound ligands. This is achieved by mask-

ing the nucleotides that interact with the ligand. Users can supply their own mask

file when submitting jobs on the web server, supplying 0 and 1 for non-interacting

and interacting nucleotides, respectively. By default, the SHAPER server will treat

all nucleotides as not interacting with ligand.

• Accounting for the effects of neighboring nucleotides.

Due to observations that a free nucleotide next to rigid nucleotides will be less re-

active than a free nucleotide that has flexible neighbors, we introduce a weighted

averaging scheme to account for this type of correlative effect for EIE , E2D, and

ASAS terms as

ĒIE(i) =

∑3
j=0wj × EIE(i+ j − 1)∑3

j=0wj
(3.2)

Ē2D(i) =

∑3
j=0 dj × E2D(i+ j − 1)∑3

j=0 dj
(3.3)

ĀSAS(i) =

∑3
j=0 aj × ASAS(i+ j − 1)∑3

j=0 aj
(3.4)

where w0 − w3, d0 − d3, and a0 − a3 are weights accounting for the influence of in-

teractions involving the nucleotide of interest (NOI) and/or neighboring nucleotides.

• Predicting the SHAPE profile.

The final SHAPE prediction is a combination of the interaction factors, written as

pi = SFi × eSEi (3.5)
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where structural factors SFi and energy-like scores SEi are determined by

SFi = (ĀSAS(i) + A0
SAS)× Fsug(i)× Fterm(i) (3.6)

SEi = Ē2D(i) + ĒIE(i) + Elig(i) (3.7)

and A0
SAS is a parameter that accounts for the breathing of the RNA structure that

may allow an apparently inaccessible nucleotide to become accessible to the SHAPE

reagent. The model implies an effective ambient temperature when modeling

SHAPE reactivity. Indeed, solution conditions including temperature can influence

RNA conformational fluctuation and the reaction for SHAPE reagents (such as

1-methyl-7-nitroisatoic anhydride) to form 2′-O-adducts with RNA nucleotides.

Because SHAPE experimental data were collected under the folding conditions for

the respective (folded) RNAs, the parameters in the model may be appropriate for

the selection of folded RNA structures for the experimental conditions involved

in the training data set. Considering that different SHAPE experimental data for

different RNAs were often collected at different solution (such as temperature)

conditions, the parameters in the model reflect an average effect of the different

experimental conditions.

• Calculating regular and noise-adjusted Pearson correlations.

In the original 3DSSR model, the relationship between the predicted SHAPE profile

and experimental SHAPE data (if provided) was characterized by the Pearson

correlation (PC). However, this regular PC does not account for the log-normality of

SHAPE data and noise found by multiple previous studies [229, 230]. The newer

SHAPER model uses a noise-adjusted normalization method to calculate the noise-
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adjusted PC between the predicted SHAPE profile and reweighted experimental

SHAPE reactivities [172].

Step 3: Showing Output

After submitting a job, the user will be directed to a result page which shows the job

status and information about the input files. This page will be refreshed every few seconds.

Once the job is done, The result page will be updated and the Job status will change from

“Waiting” to “Done”. A plot of the predicted and user-provided (if any) SHAPE profile

along with normal and noise-adjusted Pearson correlation coefficients will appear below

the status table. Links to download corresponding SHAPE prediction and correlation files

will appear at the bottom of the page (Fig. 3.2 Step 3). Existing results can be accessed

by using the JobID, by bookmarking the address of the result page, or by checking email

results (if provided).

3.2.2 Server Implementation

Several programming and scripting languages are used in the SHAPER server, including

Bash, C++, Python, Perl, and Tcl. The SHAPE prediction module is implemented in C++

for performance. Third party software packages are used in other modules for preparing

the necessary input files. Dissecting the Spatial Structure of RNA (DSSR) [226] is used to

extract the 2D structure and torsional information of the ribose sugars from a 3D structure.

RNAView [214] is used to identify base pair types shown in 3D structure, and the identifi-

cation of stacking interactions is carried out by our in-house program written in Perl. The

ligand accessible surface of the 2′-hydroxyl for each nucleotide is calculated using Visual

Molecular Dynamics (VMD) [211]. The above tools help automate the preparation process
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Figure 3.2: Interface of the SHAPER web server and the steps involved in submitting a
job. The overview of the interface of the starting page is shown in the top left, and the
area within the dashed red box is updated in each step. There are three steps: uploading
and choosing parameters (Step 1), waiting the job (Step 2), and checking results of the job
(Step 3).

and greatly reduce the potential for human error. All modules were combined by Python

and the web server is based on Apache 2.2.15.

3.3 Case Study

3.3.1 Sieving RNA 3D structures generated by 3D structure prediction
software

To better illustrate the function of the SHAPER web server, we ran an example case with

known experimental SHAPE data to show the ability of SHAPER to distinguish near-native
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conformations from a pool of decoys. The test RNA structure (PDB code: 2L8H) contains

29 nucleotides. We used our coarse grained (CG) simulation software (IsRNA) [212, 231]

and an all-atom molecular dynamics (MD) simulation to generate 59 decoy conformations

for the target RNA. We selected 20 near-native conformations and 39 non-native confor-

mations generated with native and non-native 2D structures [172]. These decoys along

with the native structure allow us to show the ability of the SHAPER server to distinguish

native conformation from conformational pools. Then we put these 60 structures into the

SHAPER web server, and the correlation coefficients (PC and noise-adjusted PC) between

predicted SHAPE profiles and experimental SHAPE data were calculated. The root mean

square deviations (RMSDs) between the native and decoy conformations were calculated

for heavy atoms. As shown in Fig. 3.3C for the relationship between RMSD and SHAPE

correlation coefficients, the native structure shows the highest correlation, and the near-

native conformations around 2 Å of RMSD also have high correlations. However, similar

correlations were also found for non-native conformations around 4 Å to 6 Å. This is be-

cause the 2D structural constraints (see, Fig. 3.3B) used to generate these decoys are similar

to the native 2D structural constraints (see, Fig. 3.3A). As for the non-native conformations

generated by using different 2D structural constraints (see, Fig. 3.3B), both correlation co-

efficients (PC and noise-adjusted PC) drop significantly relative to the values of the native

conformation. The above results suggest that SHAPE correlation may serve as a useful

measure to sieve structures and find the native and near-native 2D and 3D structures.

45



Figure 3.3: SHAPE profiles for native (A) and selected decoy (B,D) conformations at dif-
ferent RMSDs. Predicted and experimental (i.e., User SHAPE) profiles are shown in red
and blue curves, respectively. 2D structure in (A) corresponds to the native structure, and
2D structures shown in (B,D) were used as constraints to run the simulations. (C) The re-
lation between PC/noise-adjusted PC (red/blue) and RMSDs relative to the native structure
for sixty tested conformations (include the native one, PDB code: 2L8H). The data point
of native conformation is shown on the top left of (C) and pointed out by an arrow.

3.4 Conclusion

SHAPER is a fast and accurate web server to predict SHAPE profile for any given RNA

structure. Compared to the original 3DSSR model, SHAPER greatly improves perfor-

mance [171] by accounting for sequence-dependent bias, tail effects, and ligand binding. In

46



addition, the SHAPER model better reflects that SHAPE reactivities are a direct reflection

of the underlying system energetics and incorporates effects related to the log-normality of

SHAPE data and noise. The server provides functionalities for predicting SHAPE profiles

for RNA with either a single structure or a structural ensemble. Combined with the avail-

able experimental SHAPE data, SHAPER can provide a reliable measure of the nativeness

of the target conformation and serves as a convenient tool to help researchers select the

most probable RNA 3D structures from a pool of decoys.
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Chapter 4

A method for decoding nucleic
acid-magnesium ion interactions using a
deep learning convolutional neural
network

This chapter has been submitted1.

Magnesium ions (Mg2+) play a vital biological role as cofactors, interacting with

RNA molecules to facilitate RNA folding and function. Previous attempts to accurately

model RNA-Mg2+ binding have been plagued by difficulties arising from the challenge of

accurately locating Mg2+ binding sites. Using experimental RNA structural data, we de-

veloped and applied MgNet, a machine-learning model, to predict Mg2+ binding sites in

RNA molecules. This approach exploits local binding information associated with each

nucleotide. In particular, electrostatic and 3D-shape (RNA volume) features are used to

capture the key interaction patterns for the network to predict the density distribution of

1Yuanzhe Zhou and Shi-Jie Chen. “A method for decoding nucleic acid-magnesium ion interactions
using a deep learning convolutional neural network”. In: submitted (2021).
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Mg2+ around the RNA molecules. Five-fold cross-validation on a dataset of 177 selected

Mg2+-containing structures and comparisons with three different types of methods validate

the approach. Results show that this new approach predicts Mg2+ binding sites with higher

accuracy and efficiency. We use saliency analysis for eight different Mg2+ binding motifs

to reveal the coordinating atoms of Mg2+ ions. Furthermore, learning the relevant phys-

ical mechanism through in-depth training on the known ion-RNA complexes, MgNet also

uncovers new Mg2+ binding motifs.

4.1 Introduction

The phosphodiester backbone of RNA carries an electronic charge per nucleotide, thus,

metal ions, through binding to RNA, play a critical role in stabilizing an RNA structure. In

particular, magnesium ions (Mg2+) are essential for RNA tertiary structure folding, stabil-

ity [22–25, 27–29], and function in biological processes [30–37]. However, experimental

studies of RNA-Mg2+ interactions are challenging. The flexible nature of RNA can lead

to an ensemble of low-energy conformations, and Mg2+ binding preferences may change

in different conformations. Furthermore, using electron density maps to distinguish Mg2+

from water (H2O) and sodium ion (Na+) is challenging because they all have 10 electrons

and can be distinguished only in high-resolution structures, so Mg2+ can be easily mistaken

for H2O or Na+ [41, 62]. Alternatively, Mg2+ may be simply missing from crystal struc-

tures [41]. A significant number of misidentified Mg2+ binding sites can impose a strong

and incorrect bias on Mg2+ binding analysis and prediction.

In addition to the obstacles created by RNA conformational multiplicity and misiden-

tification of Mg2+ binding sites, a relative dearth of high-resolution data also imposes a
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barrier to understanding the relevant biological processes that depend on RNA-Mg2+ bind-

ing. As of April 16, 2021, 1558 structures that have RNA-Mg2+ interactions are available

in the Nucleic Acid Database [225, 233]. Of these, 1555 are X-ray structures, and only 942

have high resolution (< 3.0 Å). Many of these structures come from the same molecule and

organism with similar Mg2+ binding sites, making them redundant. High-resolution exper-

imental studies are time-consuming and inefficient, which makes computational prediction

of Mg2+ binding a highly desirable supplement to experimental benchmarks. The grow-

ing number of experimentally solved RNA structures motivates us to take advantage of

the increasing amount of experimental information by developing a knowledge/data-based

method to model the interactions between RNA and Mg2+.

During the last few years, researchers have developed a number of novel approaches

to predict RNA-metal ion binding sites. We can categorize these modeling efforts into

physics-based approaches and knowledge-based approaches. Physics-based methods ex-

plicitly consider physical interactions. These models provide detailed information about

the physical energetics and dynamics for RNA-ion binding. However, given their rela-

tively complex functional forms, the physical approaches are often computationally in-

tensive. All-atom MD [29, 234–236], Brownian dynamics [59, 237], Poisson-Boltzmann

(PB)/generalized Born (GB) models [238, 239], and statistical mechanical models [240,

241] are all physics-based models, with varying levels of success. Knowledge-based meth-

ods rely on information extracted from experimentally determined structures. Such meth-

ods are usually much less computationally demanding than physics-based approaches, but

the inability of these methods to take conformational dynamics into consideration also

makes them ill-suited for ion binding prediction that involves conformational changes.

FEATURE [242] and MetalionRNA [243] represent two important knowledge-based meth-
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ods.

FEATURE [242] is a knowledge-based predictor that can predict the most typical metal

ion-binding sites in RNA structures. By collecting a set of metal ion binding sites as “sites”

and a set of control non-binding sites as “non-sites”, FEATURE [242] transforms the en-

vironments around these “sites” and “non-sites” into a set of feature vectors, where each

feature vector describes a unique environment encoding either a binding site or a non-

binding site. Collections of these feature vectors are called microenvironments. When

given a query region in a new structure, the Wilcoxon rank-sum test is used to compare the

feature vector of the query region with the collection of “sites” and “non-sites” microen-

vironments. This nonparametric test determines the group with which the query region is

most similar and scores the likelihood that the query region is a binding site.

MetalionRNA [243] uses a representative set of 113 crystallographically determined

structures to derive statistical potentials for Na+, K+, and Mg2+ ions. The model evaluates

the three-body anisotropic contact frequencies between metal ions and a set of predefined

covalently bonded RNA atom pairs that are known to make the strongest contributions

to metal ion binding. The model then transforms the contact frequencies into statistical

potentials through the inverse Boltzmann law. Given a new structure, MetalionRNA scores

every grid point in the space according to statistical potentials derived from the observed

contact frequencies in the training set. These scores are used to predict the final binding

sites.

Here, we propose a convolutional neural network (CNN) model, MgNet, which uses

experimental structural data to predict metal ion binding sites. CNNs have found success

in various fields, especially in computer visual recognition. CNN models excel at pattern

recognition by using convolutional operations to combine correlated data and identify un-
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derlying trends. Our CNN has a layered structure as shown in Fig. 4.1c. The more layers

the CNN contains, the deeper the network is. The convolutional filters connect the differ-

ent layers of the CNN. As the core components of the network, these convolutional filters

contain trainable parameters. They perform convolutional operations on the output of each

preceding layer. By extracting and processing the features from preceding layers, filters

serve as feature extractors. Features extracted from an image can be combined, processed,

and propagated through multiple layers, resulting in a high-level abstraction of the impor-

tant features in the original image. This high-level abstraction of features allows the model

to make knowledge-based predictions. Our approach transforms each RNA structure with

Mg2+ into a collection of images for MgNet training, validation, or testing.

In this study, we apply a regression CNN with residual shortcuts similar to the

ResNet [216] model. While normal CNNs read 2D images as input, our MgNet reads “3D

images” that contain the local environment of the binding and non-binding sites as input.

Just as each 2D image has three color channels that provide different information for a

2D CNN, our 3D images have multiple “color” channels, which contain partial charge

information, volume occupancy information, or other chemical properties that contribute

to the interactions between RNA and metal ions.

4.2 Results

4.2.1 Outline of the method

Our machine-learning model is a variant of the vanilla convolutional neural network. Com-

pared to the traditional knowledge-based methods [242, 243] used for predicting RNA-
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Mg2+ binding sites, our MgNet model has two distinct advantages: it does not assume

any functional form of the interaction energy prior to training, and with the progression of

the convolution through a layer-wise organization, it captures the long-range correlations

between RNA atoms and Mg2+ ions that are missing from traditional knowledge-based

approaches [242, 243].

In our method, electrostatic and 3D-shape (RNA volume) information taken from the

Mg2+ binding environment were used as the input features. This information can usually

be obtained rapidly, automatically, and reliably from macromolecular modeling software,

such as UCSF Chimera [244]. Ion distributions around the RNA can then be identified

by MgNet through 3D image analysis of the target RNA with computed electrostatic and

3D-shape (RNA volume) information.

We compare specific Mg2+ binding sites predicted by MgNet to experimental results

and to those predicted from other methods: a knowledge-based approach [243], a molecu-

lar dynamics simulation-based approach [29] and a Brownian dynamics simulation-based

approach [59]. In order to identify Mg2+ binding sites from the predicted ion probability

distribution, we use the DBSCAN [245] method to cluster the ion binding sites of proba-

bility maxima. Within each high-probability region, k-means clustering was used to find

the representative points of the region. These representative points were chosen as the pre-

dicted ion sites and were ranked based on the sum of the probabilities of the points within

the corresponding cluster.

We use two criteria, true positive rate (TPR) and positive predictive value (PPV), to

measure the predictive power of the model. Physically, TPR (PPV) is the ratio between

the number of the correctly predicted ion binding sites and that of experimentally observed

(theoretically predicted) bound ions. Generally speaking, although one may alter TPR and
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Figure 4.1: Overview of the MgNet. (a) Three key atoms (shown in red) in the sugar ring
and bases are used to determine the local Cartesian coordinate system. The origin of the
local coordinate system is set to the midpoint between the carbon atom (C1′) and nitrogen
atom (N1 for pyrimidine or N9 for purine), where the vector formed by C1′ and oxygen
atom (O4′), and the vector formed by C1′ and nitrogen atom (N1 or N9) are used to deter-
mine the x-y plane of the system. (b) Each 3D image is taken from a 24 Å x 24 Å x 24 Å
cubic box centered at a given nucleotide, and is used to capture the information for binding
and non-binding sites. The cubic box is shown with yellow frames. The local Cartesian
coordinate system (i.e., orientation of the cubic box) is determined by the key atoms in
the associated nucleotide. Two feature channels (partial charge and volume occupancy) are
used to extract the relevant information from the image. (c) The MgNet is drawn in a 2D
diagram for a better illustration, where all 3D images (3D cubic grids) are shown as 2D
squares. From left to right, an image with two feature channels is fed into the MgNet, and
information is then processed by different layers of filters and connected through various
shortcuts. The final prediction is an ion density distribution map.

PPV by adjusting the definition of the “correctly” predicted sites, these two metrics are

often antagonistic to each other except for a perfect model. In practice, increasing of the

number of the predicted sites usually improves the TPR but in the meantime, causes the
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degradation of the PPV, and vice versa. Thus TPR and PPV together can provide an overall

measure for the performance of the model.

To extract physical insights from the neural network, we performed saliency calculation

and coordination classification. From the gradients of the predicted scores with respect

to the input image pixels (saliency values), the saliency analysis identifies [246] the

most sensitive pixels in the input image whose small variations cause substantial changes

in the output result. The saliency technique allows us to uncover the RNA atoms that

most sensitively determine Mg2+ binding. Furthermore, a thorough investigation on the

configurations of RNA atoms around a bound Mg2+ ion reveals Mg2+ binding motifs.

4.2.2 Evaluating MgNet performance through cross-validation

We carried out a five-fold cross-validation on the selected dataset with 177 RNA-Mg2+

complex structures. Details of this dataset can be found in section “Methods” and

Table 4.6-4.10. With two sets of 36 RNA structures and three sets of 35 RNA structures,

we randomly split the 177 Mg2+-containing structures into 5 subsets. For each cycle,

we use one of the subsets for testing and the other four for training the MgNet model.

The cross-validation approach ensures the complete sampling of the whole data sets

while keeping test and training sets not overlapping in the same cycle. For each test set,

we measure the accuracy using the root-mean-square-deviation (RMSD) between the

predicted and the experimentally determined coordinate of the bound Mg2+ ion. The five

test sets contain 234, 361, 283, 265 and 264 experimentally determined Mg2+ ions. As

shown in Table 4.1, the MgNet model predicts 371, 490, 309, 346 and 347 Mg2+ binding

sites for the 1st, 2nd, 3rd, 4th, and 5th test sets, respectively, and the predicted Mg2+ ion
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coordinate is within 3 Å from the experimentally determined position for 118, 179, 123,

133 and 108 predicted binding sites, respectively. In summary, for the 177 RNA-Mg2+

complex structures, there are 1407 experimentally determined Mg2+ binding sites, MgNet

predicts 1863 Mg2+ binding sites, among which 661 Mg2+ binding sites (coordinates)

were predicted within 3 Å from the experimentally results. Statistically speaking, the test

result implies that the MgNet model is able to identify nearly half of true Mg2+ binding

sites with high accuracy.

Table 4.1: TPR and PPV of the five-fold cross-validation test. Table shows values of TPR
and PPV of MgNet model on the five-fold cross-validation test. The number after cv indi-
cates the index of the validation. The column under the total is the averaged results of the
five-fold cross-validation.

cv1 cv2 cv3 cv4 cv5 total
TPR 50.43% 49.58% 43.46% 50.19% 40.91% 46.91%
PPV 31.81% 36.53% 39.81% 38.44% 31.12% 35.54%

4.2.3 Comparing the performance between MgNet and MetalionRNA

By comparing MgNet to a knowledge-based method, MetalionRNA [243] model, we assess

the performance of the CNN approach. Following the previous studies [242, 243], we first

compare the performance of MgNet and MetalionRNA on a 58 nt fragment of Escherichia

coli 23S rRNA which contains seven Mg2+ ions in the crystal structure (PDB code 1HC8).

As shown in Table 4.2, MgNet and MetalionRNA can identify all the seven Mg2+ ions

within the top-9 and top-29 ranked predictions with an accuracy of 0.5-3.6 Å and 0.6-3.8

Å, respectively. Lower ranked sites correspond to predicted sites with lower confidence.

Among the top-9 predictions from MgNet, six out of the seven Mg2+ ions are predicted
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with an accuracy of 0.5-2.8 Å. The remaining experimental ion is found in between two

experimentally determined ions (residue number 1161 and 1160) with a distance of 2.8 Å

and 3.6 Å to the ions of residue number 1161 and 1160, respectively. The result suggests

that these two Mg2+ sites could share a mutual binding area, see Fig. 4.3a. As shown in the

*MgNet column of Table 4.2, the top-12 predicted Mg2+ ion coordinates give all the seven

experimentally determined ions with accuracy of 0.5-2.3 Å. However, while the adjusted

cluster setting increases the overall TPR values, it also reduces the PPV values of MgNet

predictions on the five-fold cross-validation set. Thus, combining TPR and PPV, MgNet

with the default clustering settings is used for the comparisons with other methods. With

the default cluster setting, for the top-9 predicted sites, MetalionRNA and MgNet predict 4

and 6 correct Mg2+ binding sites with an accuracy of 0.6-1.9 Å and 0.5-2.8 Å, respectively.

Table 4.2: Comparison between the performance of MetalionRNA and of MgNet for the
58 nt fragment of 23S rRNA structure (PDB code: 1HC8). RMSD values and ranks of the
predictions of MetalionRNA [243] and MgNet for Mg2+ ions in the 58 nt fragment of 23S
rRNA structure (PDB code: 1HC8). The leftmost column lists the Mg2+ identifiers (residue
number) as labeled in the PDB file. From the second column to rightmost column, we
summarizes predictions made by MetalionRNA, MgNet with default cluster settings, and
MgNet with an adjusted cluster settings, respectively. The 7 experimentally determined ion
sites are successfully predicted by MetalionRNA, MgNet, and *MgNet within the top-29,
9 and 12 ranked hits, respectively. For each entry, the number in a parenthesis indicates the
rank of the corresponding prediction. A dash line means there is no predicted ion for the
corresponding experimental binding site.

Mg2+ MetalionRNA(29) MgNet(9) *MgNet(12)
(res no.) Å(rank) Å(rank) Å(rank)
1159 0.8 (1) 0.8 (8) 0.8 (7)
1160 1.9 (6) - 0.6 (12)
1161 2.9 (29) 2.8 (7) 2.3 (8)
1163 0.6 (3) 1.8 (5) 1.3 (4)
1164 1.4 (2) 2.3 (3) 1.4 (5)
1167 3.8 (10) 0.5 (1) 0.5 (3)
1172 3.2 (13) 1.6 (9) 1.8 (9)
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For a more comprehensive comparison, we use TPR and PPV to evaluate the perfor-

mance of MetalionRNA web-server [243] on our cross-validation dataset. Table inside the

Fig. 4.2 summaries the results. Fig. 4.2 also shows the distributions of the number of the

correctly predicted sites from the MgNet model and the MetalionRNA web-server on the

176 RNA-containing structures, it can be easily seen that MgNet has a much better rate in

giving the experimental ion binding sites for most of the top ranked predictions.

Figure 4.2: Comparison between MetalionRNA server [243] and MgNet on cross-
validation set. Histogram shows the distribution of the number of correct hits over the
top-prediction ranks. The horizontal axis represents the rank of the predictions, where n
on the axis means the nth-ranked prediction for a given RNA, and the vertical axis rep-
resents the number of the experimentally determined ions in the cross-validation set that
are correctly identified by the nth-ranked prediction of each RNA. The table in the figure
shows values of TPR and PPV of the MgNet model and the MetalionRNA model, respec-
tively, on the cross-validation set. The results shown here exclude the structure of PDB ID
3T1Y due to the failed retrieval of the prediction data from the MetalionRNA web-server.
The cutoff RMSD for correct hits is 3 Å. MetalionRNA server results were obtained from
the MetalionRNA server with default settings, and MgNet results were collected from our
five-fold cross-validation models with default clustering settings. The details of the default
clustering settings can be found in the Methods section.
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4.2.4 Comparing performance between MgNet and a molecular dy-
namics (MD) simulation-based method

Although several physics-based methods have been developed to investigate the metal ion-

RNA interactions, most of the methods focus on the dynamics or statistical properties in-

stead of the ion binding sites. As suggested by Fischer et al. [29], a molecular dynamics

(MD) method with explicit water can be applied to characterize Mg2+ distributions around

folded RNA structures as well as predict Mg2+ positions. In the study [29], seven RNA

structures consist of Mg2+ ions were selected as target system in MD simulation. Two

of them fold into helical structure while the rest of the structures fold into more complex

forms.

For Mg2+-involved simulations, Fischer et al. [29] created two different systems for

each RNA structure, with Mg2+ as the counterion (CI) (Mg2+
CI ) only and at the physiological

salt (PS) concentration (Mg2+
PS) with Mg2+ counterions and 0.15 M/l NaCl [29]. In order to

investigate whether MD simulation can recover the experimental binding sites, ions were

initially randomly placed in the simulation box. The predicted ion positions are determined

by the occupancy of Mg2+ during the simulation using the software MobyWat [247, 248].

In order to compare the MgNet predictions with the MD simulations results for the

seven RNA structures, we use a five-fold cross-validation procedure. First, we use the

same five subsets of RNA structures generated from five-fold cross-validation. Second, for

each subset, we remove any duplicate RNA structures that are the same as or similar to

any of the seven test structures. The second step results in the removal of RNA structures

with PDB codes 1D4R, 1Y95 and 4FRG, leaving 174 remaining RNA structures. We then

performed the five-fold cross-validation for the five (modified) subsets. Finally, we used

each trained model to predict the Mg2+ binding sites for the seven test RNA structures. Our
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results are shown as the MgNet column in Table 4.3.

Table 4.3: Comparison between the molecular dynamics (MD) simulation-based method
and MgNet on seven test structures. RMSD values and the standard deviations between
the predicted ion sites and the corresponding experimental ion sites, measured in angstrom.
The PDB code and the corresponding experimental Mg2+ ions are listed in the first two
columns. Column Mg2+

CI and Mg2+
PS show the average RMSD values and the standard devia-

tions of MD simulation-based method. The top-50 predicted sites from the MD simulation-
based method were used. Column MgNet shows the averaged RMSD values over the pre-
dictions of the five trained MgNet models. We note that MD simulation-based method did
not provide the rank order for the predicted ions, thus we only listed average RMSD and
the standard deviation for each Mg2+. Ranks of the predictions of MgNet model can be
found in Table 4.12.

PDB Ion Mg2+
CI Mg2+

PS MgNet

1D4R
MG-90 1.0 ± 0.5 1.1 ± 0.5 2.2 ± 0.6
MG-91 5.0 ± 0.7 4.4 ± 0.7 3.7 ± 0.8

2MTK

MG-48 7.4 ± 3.2 5.8 ± 1.9 4.8 ± 0.5
MG-49 3.9 ± 0.9 2.9 ± 1.6 3.6 ± 0.5
MG-50 6.7 ± 3.0 5.7 ± 2.3 1.6 ± 0.2
MG-51 3.2 ± 0.8 3.5 ± 0.4 7.1 ± 8.1
MG-52 3.6 ± 0.5 3.8 ± 2.4 7.7 ± 0.4
MG-53 2.1 ± 0.4 2.3 ± 1.1 2.1 ± 0.7

2QEK MG-49 2.5 ± 0.2 2.5 ± 1.3 6.3 ± 4.4

4FRG

MG-179 2.4 ± 0.7 4.4 ± 0.8 1.2 ± 0.6
MG-180 2.4 ± 0.8 5.3 ± 0.4 1.5 ± 0.4
MG-181 2.8 ± 0.5 1.4 ± 0.5 18.8 ± 0.2
MG-182 7.6 ± 0.5 7.0 ± 0.6 2.0 ± 0.1
MG-183 3.7 ± 1.5 4.7 ± 2.9 1.6 ± 0.8
MG-184 1.1 ± 0.3 2.0 ± 1.5 2.1 ± 0.9
MG-185 3.7 ± 1.3 5.9 ± 1.4 4.8 ± 5.5

4JF2

MG-94 2.2 ± 1.1 2.7 ± 1.0 0.7 ± 0.2
MG-95 3.2 ± 0.6 4.6 ± 0.7 4.0 ± 6.7
MG-96 2.5 ± 0.8 2.9 ± 0.9 0.5 ± 0.1
MG-97 18.3 ± 2.7 20.6 ± 0.8 0.6 ± 0.2

4KQY
MG-121 1.8 ± 0.4 3.4 ± 0.9 1.3 ± 0.4
MG-122 1.8 ± 0.5 4.2 ± 2.0 6.4 ± 1.4

4P5J
MG-85 1.1 ± 0.7 1.8 ± 0.2 1.5 ± 0.4
MG-86 2.5 ± 0.5 3.5 ± 2.1 1.3 ± 0.1
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The MgNet model gives overall better predictions than the MD simulations for the

locations of the bound ions, The different results between MgNet and MD simulations

are due to several reasons. First, the RNA structures used in MgNet training are mainly

crystal structures, thus the interaction patterns learned by MgNet may not be ideal for

NMR solution structures, which causes slightly worse results for 2MTK (PDB ID), an

NMR solution structure. Second, MD simulations for ions directly bound to RNA may

suffer from the incomplete sampling problem due to the high barrier for Mg2+ dehydration.

4.2.5 Comparing the performance between MgNet and a Brownian
dynamics (BD) simulation-based method

In Brownian dynamics (BD) simulations [59], diffuse cations move under the influence

of random Brownian motion in the electrostatic field and the metal ion binding sites are

identified by analyzing the trajectories of positively charged test spheres. Previous BD

simulations were able to identify Mg2+ binding sites in the crystal structures of loop E of

bacterial 5S rRNA (PDB code: 354D), tRNAPhe (PDB code: 4TRA) and tRNAAsp (PDB

code: 3TRA). To compare MgNet with the BD simulations, we used the aforementioned

five-fold cross-validation procedure with the test RNA structures removed from the training

set. The resultant dataset contains 175 RNA structures. Table 4.4 shows the comparison

between the BD simulations and our MgNet models.

Overall speaking, both BD simulations and MgNet show good performance for

the tested RNA structures. However, there exist two notable differences between the

predictions from the two approaches. Several trained models of MgNet failed to predict

the binding sites within 10 Å from the experimental site for Mg2+ ion A-76 (354D) and ion

61



Table 4.4: Comparison between the Brownian dynamics (BD) simulation-based method
and MgNet on three test structures. RMSD values between the predicted ion sites and
the experimental ion sites, measured in angstrom. The PDB codes and the corresponding
experimental Mg2+ ions are listed in the first two columns. By simulating many positively
charged spheres under the influence of both random Brownian motion and the electrostatic
field of the RNA, the predicted binding sites of BD simulations were identified as the
regions where a significant number of the test charges are finally trapped. The results of
the trained MgNet models are listed from columns cv1 to cv5 with the ranks shown in
parentheses. Experimentally determined ion sites that theoretical models failed to predict
within 10 Å are labeled with a dash.

PDB Ion BD cv1 cv2 cv3 cv4 cv5

354D

A-203 1.8 0.9 (2) 1.1 (2) 1.6 (6) 1.2 (7) 1.0 (3)
B-200 0.7 0.4 (1) 0.5 (3) 0.5 (2) 0.9 (1) 1.0 (2)
B-201 1.3 1.2 (4) 1.6 (5) 1.3 (4) 1.0 (5) 0.9 (1)
B-202 1.4 1.1 (5) 1.1 (1) 1.7 (3) 0.8 (4) 1.2 (6)
B-204 2.7 1.4 (7) 1.6 (6) 5.8 (1) 1.6 (6) 6.4 (4)

3TRA A-76 ∼5.0 - - - 4.3 (6) -

4TRA

A-77 2.6 2.0 (4) 2.5 (6) 2.1 (7) 2.4 (4) 2.2 (4)
A-78 2.1 1.0 (5) 0.7 (2) 0.9 (4) 0.5 (5) 1.4 (1)
A-79 2.2 2.1 (7) 1.2 (3) 1.0 (5) 1.8 (6) 1.9 (5)
A-80 0.3 6.2 (6) - - 6.1 (7) 6.0 (6)

A-80 (4TRA). One predicted site within 10 Å was captured for ion A-76, and the RMSDs

of the MgNet-predicted ion A-80 are larger than that of BD simulation. For ion A-76 of

3TRA, the crystal structure of tRNAAsp contains a single Mg2+ located in the anticodon

loop at the C31 · G39 base pair [59]. Both BD simulations and MgNet-predicted ion sites

were found within a distance of ∼5 Å from the site in the crystal structure, and both

were shifted upward in the anticodon stem towards the G30 · U40 wobble pair (Fig. 4.3b).

This shifted ion binding pattern shares similarities with the experimentally found metal

ion binding site at G·U pairs in the crystal structure of P4-P6 of group I intron [59]. The

result might suggest a delocalized binding of metal ions in the anticodon loop of tRNAAsp.

As for ion A-80 of 4TRA, the predicted site deviates from the experimental site possibly
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because this particular ion is in close contact with a non-standard residues Wybutosine

(yw). We note that Mg2+ binding to one or more non-standard residues is not common in

our training set, the predictions of MgNet on such cases are less reliable.

a b

Figure 4.3: MgNet-predicted (magenta spheres) vs. experimentally determined ( green
spheres, labeled with residue identifiers) Mg2+ ion sites in (a) 58 nt fragment of Escherichia
coli 23S rRNA (PDB ID: 1HC8) and (b) the anticodon loop in tRNAAsp. The predicted site
in (b) is shifted upward towards the G30 · U40 wobble pair. Four residues shown in red are
labeled with the residue names and the residue sequence numbers.

4.2.6 MgNet-saliency analysis for metal ion binding sites

In machine-learning, a large saliency value means that a slight change in the corresponding

input feature causes a markedly change in the output prediction score. Therefore, saliency

analysis can identify the key physical features that most sensitively determine the predicted

ion binding. In MgNet, from each input 3D image, the convolutional network predicts a 3D

matrix where a matrix element p(i, j, k) is the probability of finding a bound ion at the grid

site (i, j, k). From the gradients of the predicted ion distribution with respect to the images

of the target binding site, the saliency analysis identifies the RNA atoms and the physical

attributes that most critically determine the ion distribution; see the “Methods” section for
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a detailed description of the saliency calculation.

A previous survey on the Mg2+ sites in RNAs deposited in the Protein Data Bank [208]

led to 13 Mg2+ binding motifs [41]. By examining the predictions for RNAs in cross-

validation set and for several ribosomal RNAs which are not included in cross-validation

set, we select eight example binding-sites with different motifs. These motifs differ by the

type of the coordination (i.e., inner-sphere or outer-sphere coordination), the number and

type of the coordinating atoms, and the geometry of the coordination. Six cases (Fig. 4.4a-

f) have inner-sphere interactions with RNA atoms, while the rest (Fig. 4.4g-h) interact only

with RNA atoms through outer-sphere hydrogen bonds (mediated by water molecules).

Several motifs (Figs. 4.4a and 4.4b, 4.4c and 4.4d) share geometrical similarities. The

“Magnesium clamp” [45, 47] and “Y-clamp” [41] use the bridging capability of phosphates

to stabilize these close interactions through juxtaposition of two different strands or two dis-

tant segments of the same strand, very much similar to the disulfide bonds in proteins. The

“U-phosphate” [41] and “G-phosphate” [42] both require the coordination of a phosphate

oxygen and a nucleobase oxygen. The more complicated motifs, “Purine N7-seat” [41] ,

“G-G metal binding site” [46] , and “Triple G motif” [44] , contain complex water mediated

coordination.

Saliency analysis for the above examples reveals important atoms that are critical for

the stabilization of magnesium ions at the binding site. As shown in Fig. 4.4, atom saliency

values for the two input channels (volume occupancy and partial charge) indicate specific

coordinating atoms as the important factors in determining Mg2+ binding sites. Note that

in Fig. 4.4a, two of the important phosphate oxygen atoms (OP1 of A34 and OP2 of G46)

in the opposite direction have darker color, this is because there exists another Mg2+ that

binds in the nearby location (shown as cyan sphere), causing these oxygen atoms to have
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a large saliency value. Note that saliency value of a particular atom reflects the sensitivity

of the predicted ion density with respect to this particular atom, namely, small change in

the pixel values (physical attributes) of the blue atoms shown in the figure would markedly

alter the predicted ion (probability) density.
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a U-phosphateY-clamp

Triple G motifPurine N7-seat

Magnesium clamp G-phosphate

G-G metal binding site

b c d

f g h10-member ringe

Figure 4.4: Example of saliency calculation for eight binding motifs. Saliency values were
calculated for eight binding sites: (a) 3Q3Z-V85; (b) 2Z75-B301; (c) 2YIE-Z1116; (d)
1VQ8-08004; (e) 3DD2-B1000; (f) 2QBA-B3321; (g) 4TP8-A1601; (h) 3HAX-E200. And
two input channels: volume occupancy (top) and partial charge (bottom). Experimentally
determined positions of Mg2+ cation are indicated by green spheres, oxygen atoms in water
molecules are shown in small red spheres. Direct coordinations (inner-sphere coordination)
are shown as magenta dashes, and indirect coordinations (outer-sphere coordination, i.e.,
mediated by water molecules) are shown as black dashes. Residues and coordinating atoms
other than oxygen of water molecules are labeled with red text. One extra Mg2+ in (a) is
shown as a cyan sphere. The saliency values of each RNA atom are shown in blue scale,
where the atom with larger saliency values are shown in a darker blue color.
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As shown in Fig. 4.4, the coordinating atoms (connected through dashed lines) have

relative large saliency values, indicating their importance in determining the Mg2+ binding

sites. Indeed, as shown in Table 4.5, for the motifs shown in Fig. 4.4, As shown in Table 4.5,

all of the binding sites can be successfully predicted by the MgNet model for the original

RNA structures, however, after removing the coordinating atoms, MgNet fails to find the

correct binding sites for six cases.

Table 4.5: Comparison between the performance of MgNet model for the original RNAs
and for RNAs with the coordinating atoms removed. Number of successful MgNet pre-
dictions for each Mg2+ binding case. Predictions were made by five previously trained
models obtained through five-fold cross-validation. However, for a binding case included
in the cross-validation dataset (top-four cases), only the model trained without the case was
used to make predictions. The purpose of this test is to show the importance of the coordi-
nating atoms – the removal or change of the coordinating atoms would result in incorrect
binding sites. The first column shows the PDB code and the Mg2+ identifier for the posi-
tion of the bound ion. The column labeled with RNA and RNAR shows the result for the
original RNA and the RNA with coordinating atoms removed, respectively. The results are
shown in the n/N format, where n and N represent the numbers of the MgNet model with
successful predictions and of all the trained MgNet models, respectively. A prediction is
successful if the the RMSD between the predicted ion site and the experimentally observed
site is within 3 Å.

Mg2+ RNA RNAR

2YIE-Z1116 1/1 0/1
3HAX-E200 1/1 1/1
3Q3Z-V85 1/1 0/1
2Z75-B301 1/1 0/1
3DD2-B1000 5/5 2/5
1VQ8-08004 5/5 0/5
4TP8-A1601 3/5 0/5
2QBA-B3321 5/5 0/5

To further investigate the spatial distribution of the RNA atoms around the bound ions,

we classified four types of RNA atoms [41]: (i) Oph, phosphate oxygen (OP1/OP2); (ii) Or,

oxygen in ribose (O2’/O4’) or oxygen bridging phosphate and ribose (O3’/O5’); (iii) Ob,
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nucleobase oxygen and (iv) Nb, nucleobase nitrogen, where the last two types (Ob and Nb)

were further divided into subtypes according to the nucleotide type (purine or pyrimidine),

resulting in overall six types.

We use radial distribution function (see Methods) to quantify the spatial distribution

of the different types of atoms around a bound ion (see Fig. 4.5a). To further differentiate

the effects of the different types of atoms, we define the radial distribution of the saliency

value ht(i) (for the correctly predicted ion binding sites):

ht(i) =
st(i)

nt(i)
(4.1)

where st(i) is the average of all the saliency values for the type-t RNA atom in the ith

shell around the ion, and the denominator nt(i) is the number of the type-t RNA atoms

appearing in the ith shell. Physically, the saliency values ht(i) indicates relative sensitivity

of ion binding site to various types of RNA atoms.

The contact frequency distribution, as shown in Fig. 4.5a, shows two characteristic

peaks at∼2.3 Å and∼4.3 Å, corresponding to inner-sphere and outer-sphere coordinations,

respectively. The peak at ∼2.3 Å for Oph indicates that Oph is the most abundant inner-

sphere coordinating atom, and the peak at ∼4.3 Å comes from the coordinations mediated

by water molecules. For purine-Nb, we found multiple nitrogen atoms in guanine/adenine

residue that are spatially correlated, which explains the peaks around ∼4.3 Å and ∼6.3 Å.

We note the the distribution curves become flat as distance increases, reflecting the relative

abundance of these atom types in our cross-validation set.

The radial distributions of saliency values for volume occupancy and partial charge

channels, as shown in Figs. 4.5b & c, are peaked at smaller radial distances than the contact

frequency distribution shown in Fig. 4.5a. The shift in the peak positions is because Mg2+ is
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more sensitive to the coordinating atoms that have closer contacts with it. Furthermore, the

saliency peaks of the different atom types in partial charge channel are higher than those in

volume occupancy channel, except for Or. The result suggests that Mg2+ binding sites are

more sensitive to the partial charges of the coordinating atoms than the occupancy of RNA

atoms. The abnormal behavior of Or may be caused by its spatial correlations with Oph.

In the volume occupancy channel, Oph and Or often appear together as coordinating atoms

thus show the similar peaks in the saliency distribution. In contrast, in the partial charge

channel, the partial charge of an Or is less than that of an Oph thus shows a smaller peak

(weaker sensitivity). Figs. 4.5c shows that purine-Ob atoms show the highest saliency peak.

However, it is important to note that a saliency distribution in Figs. 4.5b & c represents

only the average over different atoms for each RNA atom type. For example, the results for

purine-Nb are averaged over ten different nitrogen atoms in a purine base, while the results

for purine-Ob are only averaged over one oxygen in a purine base.

To identify the critical atoms for each case, we investigate the radial frequency

distribution and the relative saliency distribution of each individual atom. Distributions of

representative atoms within 3 Å (Fig. 4.5d) are similar to the radial frequency distributions

(Fig. 4.5a), where the normalized distributions (Fig. 4.5d) are roughly twice as large due

to the fact that Oph contains two phosphate oxygen atoms (OP1 and OP2). The similar

distributions suggest that these representative atoms are indeed the dominant inner-sphere

coordinating atoms for each RNA atom type. Thus, the saliency distributions (Fig. 4.5e

& f), which are dominated by RNA atoms with close contacts to Mg2+, also show similar

trends as in Fig. 4.5b & c.
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Figure 4.5: Radial frequency distributions and relative saliency distributions of different
atom types and representative atoms around the correctly predicted Mg2+ ion sites. The
figure shows the contact radial frequency distributions (a, d), the relative saliency distri-
butions for the volume occupancies (b, e) and the partial charges (c, f) for the different
RNA atom types, respectively. The frequencies and saliency values are normalized to the
[0, 1] range. In (d-f), only the representative atom of each atom type is shown (with the
same color as the corresponding atom type in (a-c)). Or is the average of two sugar oxygen
atoms (O3′ and O5′) due to the similar radial frequencies and relative saliency distributions,
and Oph is the average of the two phosphate oxygen atoms OP1 and OP2.

4.2.7 Identification of novel Mg2+ binding motifs

The MgNet approach led to two novel Mg2+ binding motifs [41]. Mg2+ binding motifs

are defined as the recurring patterns of coordinating RNA atoms (i.e., geometric arrange-

ment and atom type of the coordinating atoms). Typical Mg2+ can coordinate with 6 atoms

forming octahedral geometry, these coordinating atoms are usually electronegative oxy-

gen/nitrogen atoms from either water molecules or RNA molecules. In this study, we

focused on motifs involving inner-sphere coordination with RNA atoms as MgNet does not

treat outer-sphere coordinations (i.e., interactions mediated by water molecule).

For the MgNet prediction set with 373 representative sequences/structures (see Meth-
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ods), MgNet predicts 1137 binding sites with inner-sphere coordinations, among which

313 are previously reported binding motifs and 654 are inner-sphere coordination binding

sites with a single coordinating RNA atoms. For single atom-coordinated these sites, the

bound Mg2+ ions could be partially dehydrated and it is possible that some of them belong

to certain outer-sphere Mg2+ binding motifs if water-mediated outer-sphere interactions are

considered. However, our current MgNet model is unable to identify the position of the co-

ordinating water molecules thus Mg2+ coordinated by single RNA atom is not considered

as a robust motif in this study.

The remaining 170 sites with inner-sphere coordination were examined and recurring

specific patterns were identified. We found two new binding motifs, namely, the “16-

member ring” and “Phosphate pyramid” (see Fig. 4.6). The 16-member ring motif involves

two inner-sphere coordinating oxygen atoms from two phosphate groups, respectively, sep-

arated by one residue (not consecutive phosphate groups). The two coordinating oxygen

atoms, the RNA backbone atoms in between, and the Mg2+ form a ring with 16 atoms

(see Fig. 4.6a). The “Phosphate pyramid” motif contains either a “10-member ring” or a

“16-member ring” with another inner-sphere ion coordinating the phosphate oxygen atoms,

which makes motif look like a pyramid (see Fig. 4.6b).
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a Phosphate pyramid16-member ring b

Figure 4.6: Representative sites for newly discovered Mg2+ binding motifs. Magnesium
ions and inner-sphere interactions are shown in green spheres and black dashed lines, re-
spectively. The coordinating RNA atoms and nearby nucleotides are labeled with red text.
These representative sites are defined by PDB codes, chain id, and the predicted Mg2+

residue number as follows: (a) “16-member ring” (1QU2-T-9) and (b) “Phosphate pyra-
mid” (4FAR-A-30).

We also calculated the relative abundance of the previously reported binding motifs and

the newly found ones for both the MgRNA benchmark set [41] and the MgNet prediction

set; see Fig. 4.7. The MgRNA benchmark set contains comprehensive high-quality Mg2+

binding sites selected from Mg2+-containing RNA structures in Protein Data Bank [208].

This set was previously used in the study [41] to identify Mg2+ binding motifs. The

percentage of each motif is calculated by dividing the number of the sites of the corre-

sponding motif by the total number of sites with inner-sphere coordinating RNA atoms.

For previously reported inner-sphere motifs, only top-5 abundant motifs are plotted. His-

togram shows that the “Magnesium clamp” and “10-member ring” motifs are the top-2

abundant motifs in both the MgNet prediction set and the MgRNA benchmark set, and

“G-phosphate”, “U-phosphate”, and “Y-clamp” motifs occur at similar levels. The newly

discovered motifs are shown in the inset of the figure. The similar abundance of the “Phos-

phate pyramid” motif for both the MgNet prediction set and the MgRNA benchmark set

indicates that this new motif was already presented in the MgRNA benchmark set and was

probably overlooked in the previous study [41]. Interestingly, the abundance of the “16-
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member ring” motif in MgRNA benchmark set is significantly lower than that in MgNet

prediction set. By investigating the sites that are identified as a “16-member ring” motif in

MgNet prediction set, we found that 65% of the sites belong to structures not included in

the MgRNA benchmark set. Although these motifs are discovered by our machine-learning

model, further computational and experimental studies are needed to validate these two

newly identified motifs in RNA-Mg2+ interactions.
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Figure 4.7: Relative abundance of top-5 previously reported and newly discovered inner-
sphere Mg2+ binding motifs in MgNet prediction set (red) and MgRNA benchmark set [41]
(blue). The two newly discovered motifs are shown in the inset. The percentage of each
motif is calculated by dividing the number of the sites belonging to the corresponding motif
by the total number of sites with inner-sphere coordinating RNA atoms.

4.3 Discussion

MgNet is a machine-learning method that uses a novel neural network (CNN) approach to

predict Mg2+ binding sites for a given RNA structure. Currently, the model is trained to

predict Mg2+ binding sites. With the increasing number of known RNA structures with

bound ions, we can realistically expect the continuous improvement in the accuracy of
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MgNet predictions and its applicability for other metal ions. Comparisons with other exist-

ing approaches such as MetalionRNA [243], MD simulations [29], and Brownian dynam-

ics simulations [59] indicate that MgNet leads to notable improvements in the prediction

of Mg2+ binding sites. Furthermore, saliency map analysis identifies and visualizes the

RNA atoms that are most critical for Mg2+ binding. The information about the critical

RNA atoms can facilitate our understanding of metal ion-RNA interactions. In contrast

to physics-based models are usually excessively demanding in computational and human

resources, with 3D RNA structures as the input and the predicted metal ion binding sites

as the output, MgNet here can be conveniently implemented as a computationally efficient

module that can be readily integrated into any automated processes.

4.4 Methods

4.4.1 Curating data sets

In order to generate a suitable collection of images, we used a set of 177 crystallograph-

ically determined structures containing both RNA and Mg2+ ions from the Protein Data

Bank [208], including protein-RNA and DNA-RNA complexes (see Table 4.6-4.10).

These 177 structures were selected according to the following criteria. Based on the

sequence/structure equivalence classes ( [249] version 3.54), for RNA PDB structures,

we remove redundant structures of the same RNA molecule with similar Mg2+ binding

sites. Due to computational limitations, for large RNAs, we select only 16S rRNA (∼1500

nucleotides). Compared with other large 18S, 23S and 28S rRNAs, 16S rRNA contains

more binding sites for Mg2+ and less sites for other metal ions. Because the resolution of

74



crystallographic structures is a key factor for accurate determination of the identity and

position of Mg2+, we kept only structures with resolution 3 Å or better. While allowing

curation of a training set with sufficient data, this resolution cutoff serves to exclude

structures that may misidentify Mg2+ binding sites. For structures with multiple models,

we used the first model, and for residues with more than one alternative conformation,

we used the first variant. In order to apply a five-fold cross-validation evaluation, the 177

RNA-containing structures were randomly divided into five subsets (Table 4.6-4.10).

Table 4.6: CV1 validation set.

1b23 1hq1 2a43 2g91 2oiu 301d 3cul 3l3c 3q51 3tzr
4l81 4qlm 4yco 5ew7 5ns4 5vjb 6b14 6cu1 1drz 1zz5
2cv1 2nok 2qus 354d 3ftm 3mei 3ssf 437d 4m30 4rge
5bjo 5ktj 5tpy 5wti 6c8d 6dta

Table 4.7: CV2 validation set.

1duh 1ik5 1kxk 1nuj 2ann 2hw8 2yie 2zzn 3egz 3jxq
3loa 3ski 3v7e 4bwm 4nya 4p95 5dh6 5m0i 1feu 1j1u
1mms 1y26 2b8s 2oe5 2zzm 3cr1 3eph 3knc 3mxh 3t1y
430d 4g6r 4oji 4yb0 5lqt 5xus

Table 4.8: CV3 validation set.

1jid 2nug 2qbz 3f4h 3hhn 3nd4 3oin 3u56 4frg 4m4o
4pdq 4xco 5d8h 5e54 5kpy 5ndh 5v0k 6dme 2fmt 2pjp
2val 3fs0 3ivn 3nkb 3td0 4en5 4ghl 4pcj 4pqv 4xw7
5ddp 5fj0 5mga 5u3g 5xtm
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Table 4.9: CV4 validation set.

1dfu 1f27 1hc8 1lnt 1mzp 1pjo 1yls 2ply 3cgs 3gvn
3la5 4oog 4znp 5btp 5lyv 5une 5y85 6dnr 1evv 1ffy
1hr2 1mji 1ntb 1y95 2g3s 364d 3d2x 3hax 3q3z 4z4f
5aox 5c9h 5t3k 5voe 6cc3

Table 4.10: CV5 validation set.

1d4r 1jzv 1tra 2ao5 2q1r 2tra 3f2q 3oxd 4cs1 4jrc
4lx6 4tzx 5btm 5dar 5fj1 5u0q 6aso 6db9 1dk1 1l9a
1xjr 2fqn 2quw 2z75 3gx3 3zgz 4e8n 4k27 4rwn 4wkj
5ckk 5dhc 5nzd 5v2h 6c8o

4.4.2 Defining 3D image

We used 24 Å × 24 Å × 24 Å cubic boxes to capture the information from binding and

non-binding sites. The information contained in these boxes serve as the input “images”

for learning. Similar to a 2D image having three color channels (red, green, blue), our

3D images contain two feature channels, volume occupancy and partial charge (see

Table 4.11). For each channel in an image, there are 48 × 48 × 48 voxels (pixels for 3D

images), and each voxel has a volume of 0.5 Å × 0.5 Å × 0.5 Å. As a result, a 3D image

is generated by two 48× 48× 48 sized boxes stacked together.

Table 4.11: Feature channels used for the 3D descriptor.

Feature Rule
volume occupancy all the RNA atom types (not including Mg2+)
partial charge partial charge values for all the RNA atom types

(not including Mg2+)
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4.4.3 Generating 3D images for RNA

For a given structure, each nucleotide is associated with an image. The midpoint between

the backbone carbon atom C1′ and the base nitrogen atom connected to the C1′ atom is

used as the origin for the corresponding image box. A local Cartesian coordinate system

associated with each residue is set to avoid the need of image augmentation (i.e., 3D rota-

tion transformation for each image). The space around the residue (within the image box)

is discretized and filled with voxel values. The local coordinate system is set up accord-

ing to the following steps. First, three key atoms are selected in the residue: O4′ and C1′

from the sugar ring and one nitrogen atom from base (N1 from uracil and cytosine or N9

from adenine and guanine, see Fig. 4.1a). Second, we calculated the vectors from C1′ to

O4′ (CO) and from C1′ to the base nitrogen atom (CN). We selected vectors CN and

CN × CO as the x- and the z-axis, respectively. The cross product of the z- and x-axes

gives the y-axis.

We filled images with voxel values according to the Van der Waals radius rvdw of each

atom type. For each voxel in a property channel, we went through all RNA atoms to

calculate the voxel occupancy. For example, we first calculate the distance rij between the

RNA atom j and a given a voxel i. Then, we used a step-like function

ni = fj × (1− e−(
rvdw
rij

)
12

) (4.2)

to evaluate the contribution of RNA atom j to the voxel value, where fj represents the

feature value associated with atom j. For the volume occupancy channel, fj is 1, whereas

for the partial charge channel, fj is the partial charge of atom j. If more than one RNA

atom contributes to the same voxel, we assign the average value from the contributors [250].
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Only standard RNA residues were considered in this study.

In total, 15912 images were generated for the 177 structures. In the training process,

we removed images with less than 300 non-zero voxels from the training set.

4.4.4 Labeling targets

Because training MgNet is a supervised learning task, we need to label each image with its

true ion distribution and use image-label pairs to guide the learning process. In reality, the

precision of ion positions in RNA structures is limited due to various factors. For example,

X-ray diffraction can only resolve ion positions up to a certain resolution. In order to take

these factors into consideration, we employed the distribution function in Eq. 4.2 (with

rvdw = 2.5Å for Mg2+) to account for the diffusiveness of the experimentally observed

Mg2+ ions. The distribution of Mg2+ within each image box is used as the target label in

MgNet training to compute the mean squared error (MSE) loss per voxel between the true

and the predicted distributions. The minimization of the MSE loss guides the parameter

training process in MgNet.

4.4.5 Choosing hyperparameters for MgNet

MgNet uses the two-channel 3D images of the RNA as the input and outputs a predicted

Mg2+ distribution for each image. The network has 22 convolutional layers. Each of the

first 21 layers contain 16 3×3×3 filters, and the last layer has only one 3×3×3 filter. Here,

we use 3× 3× 3 filter to start with smaller filters. We used 16 filters each layer to optimize
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the usage of the GPU memory and the computer time spent on the training. Following a

previous study [217], the batch normalization in each layer was applied immediately after

the convolutional operation and before the “Rectified Linear Unit” [218] activation. The

batch normalization [217] was also applied for the last layer before the final activation,

and we replaced the “Rectified Linear Unit” [218] activation function with a sigmoidal

activation function to keep the predicted voxel value in the range from 0 to 1. Based on the

plain network, residual shortcut connections were inserted for every block with two hidden

layers. The shortcut takes an identical input from a previous block and maps this identity

shortcut right before the activation of the second hidden layer within the block (see Fig. 4.8

and Fig. 4.9). We initialize the weights [216, 219] and train all residual nets from scratch.

To keep the input and output image sizes identical, we did not use any downsampling

methods during the training.

conv layer

X

ReLU
XF(X)

F(X)+X

Batch Normalization

conv layer

Batch Normalization

ReLU

Figure 4.8: Block structure with a residual shortcut. Figure shows the entire block structure,
where X is the input of this block (i.e., X is the output from the previous layer) and ReLU
is the Rectified Linear Unit. Within this block, input X passes through two convolutional
layers. The whole transformation in this block can be viewed as a function F , which maps
input X to output F (X), and an identity-mapping shortcut on the right-hand side adds X
directly to the processed output F (X).
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Figure 4.9: MgNet model. Ten blocks are stacked sequentially to make a 22-layer CNN.
All convolutional layers have the same number of filters except for the last layer, which
only has one filter. A sigmoidal activation function is applied to confine the predicted ion
density within the 0 ∼ 1 range.

The only data preprocessing we used is the subtraction of the voxel mean from each im-

age. For a given channel, the voxel mean was calculated by averaging the training set voxel

values for all possible voxel positions in the corresponding channel. To center the data, we

subtracted the voxel mean from each voxel value. This preprocessing was performed on

the training, validation, and test sets.

For the network optimizer [220], we used default parameters provided by PyTorch [221]

for momentum scheduling (β1 = 0.99, β2 = 0.999). A mini-batch size of 32 was used for

training. The learning rate was initialized at 0.01 and divided by 10 at each plateau in

training accuracy. The models were trained for up to 250 epochs. Our goal during the
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training is to minimize the weighted MSE loss function, Lw, which is calculated from the

following equation

Lw =
N∑
n=1

48∑
i,j,k=1

wijk
(Pn(i, j, k)−Gn(i, j, k))2

483N
(4.3)

where N is the number of images, i, j, k is the voxel index, and Pn(i, j, k) and Gn(i, j, k)

are the predicted and ground-truth ion distributions for the nth image, respectively. Further,

the weights are defined as

wijk =


1 Gn(i, j, k) = 0

30 ·Gn(i, j, k) Gn(i, j, k) 6= 0

The above loss function gives the MSE between the predicted distributions and ground-

truth distributions for all the voxels. Because the space sparsely occupied by Mg2+, the

data is highly imbalanced. The weighted loss function balances the learning process

by increasing the penalty of a false negative prediction for positions that are truthfully

occupied by Mg2+.

4.4.6 Training and evaluating MgNet

To perform an unbiased evaluation for MgNet, we adopted a five-fold cross-validation

procedure. For each fold, we trained MgNet for a total of 250 epochs with each epoch

of training taking around 5 minutes. The training was conducted on 2 GTX 1080 Ti

NVIDIA GPUs and one AMD Ryzen Threadripper 1950X 3.4 GHz 16-Core Processor. Be-
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cause the loss quickly reached a plateau, we chose the model at epoch 40 as the final model.

4.4.7 Clustering to predict Mg2+ binding sites

Regions of the highest ion binding probability around the RNA were identified using

the DBSCAN [245] clustering method. Within each high-probability region, we then

used k-means clustering to generate N clusters, where N was determined from the ration

between the volume (v) of the high density area and a preset cluster size (m). The

representative points of the N clusters were chosen as predicted ion sites. These sites were

combined and ranked based on the sum of the probabilities of all the voxels within the

corresponding cluster. By changing the preset cluster size (m), we can adjust the number

of clusters (N) within each high-probability region. The default clustering settings used

in MgNet were obtained by optimizing the performance on the five-fold cross-validation

through refining the preset cluster size (m).

4.4.8 Defining the evaluation metric

We used RMSD to evaluate the performance of MgNet for an individual test structure.

The overall performance of the model for a large number of test structures was evaluated

by the true positive rate (TPR) and the positive predictive value (PPV). TPR and PPV are

calculated from the following equations:

TPR =
TP

P
=

TP

TP + FN
(4.4)
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PPV =
TP

TP + FP
(4.5)

Here, P is the number of positive (experimentally observed) cases, TP (true positive) is

the number of predicted Mg2+ that resides within a 3 Å sphere around an experimentally

observed Mg2+, and FP (false positive) is the number of predicted Mg2+ that falls outside

the 3 Å range from experimentally observed Mg2+ ions.

4.4.9 Calculating radial frequency distribution

The radial frequency distribution in Fig. 4.5 is generated from the following steps. First,

we find all the bound Mg2+ ions in the training set. Second, for each Mg2+ in the training

set, the space within 9 Å around the ion is discretized into 18 spherical shells, each having a

shell thickness of 0.5 Å. For each Mg2+, we locate all the RNA atoms within the 9 Å sphere

and bin them in the shells. Then, according to the different types of coordinating atoms,

we counted the frequency of each coordinating atom type in the spherical shells for all

the Mg2+ ions and computed the radial frequency distribution for every coordinating RNA

atom type. The radial frequency in each spherical shell (or the distance bin) is normalized

by the volume of the corresponding shell:

ft(i) =
nt(i)

v(i)
(4.6)

where nt(i) is the number of the type-t RNA atoms appearing in the ith shell for the

bound Mg2+, and ft(i) is the frequency normalized by the corresponding shell volume v(i).
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4.4.10 Collecting dataset for motif identification

RNA structures used in motif identification were collected from nucleic-acid database

(NDB). Initially, 980 crystallographically determined Mg2+-containing structures with res-

olution better than 3 Å were downloaded. To avoid the redundancy in the dataset, we

reduced the 980 Mg2+-containing structures to 350 crystal structures with 373 representa-

tive sequence/structure equivalence classes according to the representative set of RNA 3D

structures [249].

Table 4.12: RMSD table of the MD simulation-based method and MgNet on seven test
structures. Column Mg2+

CI and Mg2+
PS are the average RMSD values and standard devia-

tions of MD method between experimental and predicted binding sites during the produc-
tion phase. Top 50 predicted sites were used in MD method. Columns cv1 to cv5 are the
predictions made by MgNet with default clustering settings, shown in RMSD values with
ranks in parentheses. In MgNet model, only predicted sites with RMSD less than 20 Å are
listed in the table, experimental ions with no predicted sites within 20 Å are labeled with
dash. (Contents of the table are shown in next page.)
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Table 4.13: TPR and PPV of MD simulation-based method and MgNet on seven test struc-
tures. Table shows the TPR and PPV for both MD simulations and MgNet. Column Mg2+

CI

and Mg2+
PS are the results of MD simulations with the different ion conditions. Columns

cv1 to cv5 are the predictions made by the corresponding trained MgNet models. Only
predicted sites with RMSD less than 3 Å are considered as true positive ones. For MD
simulations, predictions were made by using the top 50 predicted sites. Since the default
clustering settings of MgNet tend to give fewer predictions than the MD simulations (i.e.,
50 sites), we provide MgNet results with two different settings. One uses default clustering
settings and the other one uses the same number of predicted binding sites for each struc-
ture as the MD simulations (i.e., 350 predicted sites for seven structures). The results of
these two settings are shown as TPR and PPV without and with asterisk, respectively).

Mg2+
CI Mg2+

PS cv1 cv2 cv3 cv4 cv5
TPR - - 70.83% 70.83% 58.33% 66.67% 70.83%
PPV - - 31.48% 26.98% 25.93% 29.63% 32.08%
TPR* 54.17% 37.50% 87.50% 87.50% 87.50% 91.67% 91.67%
PPV* 3.71% 2.57% 6.00% 6.00% 6.00% 6.29% 6.29%

Table 4.14: Details of MgNet Architecture. Each building block is shown with two con-
volutional layers together without line separation. No downsampling is performed in this
network, so the stride has size equal to 1 for all layers.

Block Layer Output Size Filter size Filter number Padding
first conv conv1 48× 48× 48 3× 3× 3 16 1

block1
conv2 48× 48× 48 3× 3× 3 16 1
conv3 48× 48× 48 3× 3× 3 16 1

· · · · · · · · · · · · · · · · · ·

block10
conv20 48× 48× 48 3× 3× 3 16 1
conv21 48× 48× 48 3× 3× 3 16 1

last conv conv22 48× 48× 48 3× 3× 3 1 0
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Chapter 5

RNA-ligand molecular docking:
Advances and challenges

This chapter was published1.

With the rapid evolution of computer algorithms and hardware, computational model-

ing of RNA-small molecule interactions has become an indispensable tool for novel drug

discovery. Fast and accurate virtual screening has led to a drastic acceleration in the selec-

tion of effective, RNA-targeted small molecules as drug candidates. The docking-scoring

method is the main approach for the virtual screening of RNA-targeted drugs. Accurate

docking-scoring modeling needs to tackle four crucial problems: (1) conformational flex-

ibility of the ligand, (2) conformational flexibility of the RNA, (3) complete sampling of

binding sites and binding poses, and (4) accurate scoring of different binding modes. In

addition to the problems associated with conformational flexibility, RNA molecules are neg-

1Yuanzhe Zhou, Yangwei Jiang, and Shi-Jie Chen. “RNA-ligand molecular docking: Advances and
challenges”. In: WIREs Computational Molecular Science (2021), e1571. DOI: https://doi.org/
10.1002/wcms.1571. eprint: https://wires.onlinelibrary.wiley.com/doi/pdf/
10.1002/wcms.1571. URL: https://wires.onlinelibrary.wiley.com/doi/abs/10.
1002/wcms.1571.
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atively charged polymers, further complicating scoring functions for RNA-ligand binding.

Advances in physics-based and knowledge-based scoring functions have shown highly en-

couraging success in predicting ligand binding modes and binding affinities. Furthermore,

recent reports suggest that including dissociation kinetics (ligand residence time) in predic-

tive models can improve performance in estimating in vivo drug efficacy. Moreover, the rise

of deep-learning computational approaches has led to new tools for predicting RNA-small

molecule binding. This review focuses on the recently developed computational methods

for predicting RNA-ligand binding and their respective pros and cons.

Graphical Abstract
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Figure 5.1: RNA-targeted drug discovery requires the synergy of enhanced sampling and
accurate scoring with fast computational speed. The distinct aspects of RNA-ligand dock-
ing compared to protein-ligand docking pose unique challenges, which demand a new gen-
eration of molecular docking models. This review presents an overview of recently devel-
oped RNA-ligand docking methods for RNA-targeted drug discovery.

5.1 Introduction: targeting RNA with small molecules is
a highly promising strategy for drug discovery

Ribonucleic acid (RNA) molecules are transcribed from DNA in the cell nucleus and play

a variety of critical roles in gene expression and regulation at the level of transcription

and translation. According to their cellular functions, RNA molecules can be categorized

into two types: messenger (coding) RNAs (mRNAs) that encode the amino acid sequences

and are translated into proteins, and noncoding RNAs (ncRNAs), which, instead of encod-

ing amino acid sequence, serve as enzymatic, structural, and regulatory components for

gene expression. With the coding RNAs occupying only <3% of the human genome [1–
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3], the vast majority of the human genome sequences are transcribed to ncRNAs, such

as ribosomal RNAs (rRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs),

small nuclear RNAs (snRNAs), and various riboswitches [11, 12]. With the ever increas-

ing discoveries of new RNA structures and cellular functions and the continuous devel-

opments of powerful RNA structure determination methods, RNA-based therapeutics are

becoming new promising methods to treat human disease. In general, RNA-based ther-

apeutics can be classified into two types. In the first type, therapeutic RNAs—including

RNA aptamers, antisense oligonucleotides (ASO), small interfering RNAs (siRNA), and

guide RNAs (gRNA)—bind to the target (e.g., RNA transcripts, DNA targets, and protein

targets) to inhibit or induce targeted biochemical reactions. This approach has attracted

tremendous interest in the field of gene therapy and has been under very active develop-

ment [13–16]. In the second type of RNA-based therapeutics, an RNA molecule serves as

the target for drug (small molecule) binding [2, 4, 16–21]. This second approach is anal-

ogous to protein-targeted drug discovery. However, in comparison to RNA targets, only

∼1.5% of the human genome encodes protein [2–7], and of these protein-encoding genes,

only 10-15% are disease-related [2–4, 8–10]. The availability of druggable protein targets

is further restricted by the structural and energetic fitness required for high-affinity drug

binding. In contrast, genes that are undruggable or difficult to drug by targeting their as-

sociated proteins may be inhibited by drugs targeting the corresponding protein-encoding

mRNA sequence. Therefore, compared to proteins, RNAs show much broader druggability.

Additionally, noncoding RNAs play important roles in most human diseases from cancer to

viral infection such as COVID-19. Targeting the large number of noncoding RNAs would

open up remarkable new opportunities for drug discovery. For example, antibiotics target-

ing ribosomal RNA (rRNA), which forms the active site of a bacterial ribosome, effectively
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inhibit bacterial protein synthesis [74–77]. Specific small molecules (ligands) bound to

common riboswitches in bacterial cells regulate gene expression through ligand-induced

conformational changes of the RNA [78–92]. To inhibit viral replication, a potentially ef-

fective strategy is to use small molecule as a drug to target viral RNA motifs which are often

often highly structured [16, 18, 93], such as the HIV transactivation response (TAR) ele-

ment in the 5′ untranslated region [94, 95], the internal ribosome entry site (IRES) element

located in the hepatitis C virus (HCV) genome [96–100], and the influenza A virus RNA

promoter [101, 102]. Screening small molecule compounds selected from the compound

library against an atypical three-stemmed RNA pseudoknot that stimulates -1 programmed

ribosomal frameshifting [103, 104] in SARS-Cov RNA genome shows inhibition of the -1

ribosomal frameshifting of SARS-CoV with an IC50 of 210 µM [105, 106]. In addition to

the above examples, many precursor messenger RNAs and microRNAs have shown great

promise as therapeutic targets [16, 20, 21].

Compared with predicting protein-ligand interactions, which remains a challenging

problem, modeling binding interactions between RNA and small ligand molecules presents

three unique challenges. First, unlike a protein, RNA is highly charged, with each phos-

phate group carrying one electronic charge. Thus, RNA folding and ligand binding require

the participation of metal ions such as Mg2+ and water molecules to stabilize the binding

pocket structure of the RNA and to mediate ligand-RNA interactions [107–110]. Second,

RNA molecules are often quite flexible, capable of folding into multiple stable conforma-

tions, and ligand binding often induces structural switches between different conformers

or change the structure of an RNA receptor. Compared with protein-ligand binding, ligand

binding sites on RNA can be less deep and more polar, solvated, and conformationally flex-

ible [3, 18, 110], which adds further complexity to predicting RNA-small molecule interac-
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tions. Third, the fact that we have a limited number of experimentally determined structures

for RNA molecules and RNA-ligand complexes makes pure knowledge-based approaches

less effective for RNA-ligand predictions. In this regard, a physics-based approach or a

hybrid knowledge-based and physics-based approach can yield unique advantages [109,

111–120, 251–253].
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Figure 5.2: Three major applications of an RNA-ligand interaction model. Virtual screen-
ing involves docking against small molecules in a large library and scoring every docked
pose. Top-scored selections are treated as the most promising candidates for putative
binders. For a given RNA-ligand pair, computational models for ligand binding pose iden-
tification and RNA-ligand binding affinity prediction rely on scoring the possible RNA-
ligand complex structures. An ideal scoring function for ligand binding pose identification
should have the ability to distinguish the native pose from a large pool of docked decoy
poses, while achieving the maximum correlation between the predicted scores and the ex-
perimental affinities for different RNA-ligand pairs.

Although successful computational tools have been developed for protein-ligand bind-

ing [159–162], the difference in chemical structure and energetics between RNA and pro-
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teins demands new methods for RNA-ligand interactions. These new methods for small

molecule selection, shown in Fig. 5.2, are necessary for virtual screening, binding mode

identification, and binding affinity prediction of specific RNA targets. A successful com-

putational drug discovery requires the integration of three key components: (i) a method

to identify the druggable RNA target, (ii) a computationally efficient sampling algorithm

for RNA conformations, ligand conformers, and ligand poses, (iii) accurate scoring func-

tions to assess the RNA-ligand complex structures and evaluate the binding affinity. In this

review, we focus on computational challenges in predicting RNA-ligand interactions, with

specific emphasis on the recent advances.

5.2 Methods for identifying druggable RNA targets and
binding sites

5.2.1 Identifying druggable target RNAs

The druggability of a particular RNA target depends on the answers to three questions.

First, does the inhibition/enhancement of the target RNA function lead to effective control

of the disease? Second, is the RNA target accessible for the small molecule binding in

cellular environment? Multiple factors can affect the accessibility of the target RNA, such

as the abundance and lifetime of the target RNA in disease-related cellular processes [2,

4, 16]. Third, does the target RNA adopt binding site that enables small molecule binding

with high affinity and high specificity? Small molecule targeting the particular RNA with

high specificity can reduce the off-target side effects. An effective way to achieve high

specificity is to target RNA that is unique in the diseased cells, pathogenic viruses or bac-
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teria, such as riboswitches which are common in bacteria but rarely occur in eukaryotes.

Another way is to computationally identify RNA motifs that is able to form unique and

high-affinity pockets capable of small molecule binding [2, 4, 254].

Inforna [255, 256] is a template-based method capable of selecting RNA targets ac-

cording to RNA secondary structure motifs such as hairpins, symmetric and asymmetric

internal loops, and bulges. The current Inforna 2.0 template database [256] contains 1936

pairs of known RNA secondary structure motif-ligand bound complexes [256]. For a given

RNA target, Inforna 2.0 [256] identifies RNA secondary structure motifs and from the tem-

plate database, for a given motif, finds the corresponding ligand partners with fitness scores

[257, 258]. The fitness score [257, 258] provides a measure of RNA-ligand binding affin-

ity as well as the selectivity of the RNA motif against many other small molecules [256].

RNAs of high selectivity and affinity fitness scores are more likely to be druggable. With

top scored small molecules as lead compounds, chemical similarity screening of compound

library gives potential potent binders. Inforna [255, 256] has been proved to be successful

in various studies [4], such as identifying small molecules that target oncogenic miRNA

precursors [259, 260] and an A bulge in the (iron responsive element) IRE [261] of the

SNCA mRNA related to Parkinson’s disease [262].

On the basis of RNA secondary structures, Warner et al. [2] showed that information

content [263, 264] can be used to identify druggable RNA motifs for potentially high-

specificity and high-potency binding [265]. Information content measures the amount of

information (in bits) required to specify the sequence and structure complexity of an RNA

motif, where motifs with high bits (∼30 bits) are more complex and more likely to be

unique in the transcriptome [2]. In experiments, RNA structural information content is

attainable through chemical probing techniques such as selective 2′-hydroxyl acylation an-

94



alyzed by primer extension (SHAPE) [163, 266–268]. Focusing on RNA motifs with

sufficient complexity (high information content) can lead us to RNAs with high binding

specificity and affinity thus higher druggability. As an example, the binding affinities of

GTP [264, 269] and targaprimir-96 [270] both show a strong correlation with the informa-

tion content of the RNA motifs, where a 10 bits increase in information content results in a

10-fold increase in binding affinity [2].

5.2.2 Identifying binding sites for a given target RNA

An overall assessment of binding pockets

A recent statistical analysis demonstrates that many RNAs indeed fold into structures that

form pockets amenable to selective small molecule binding [254]. To identify potential

RNA suitable for ligand binding, Hewitt et al. [254] have evaluated RNA binding pock-

ets using PocketFinder [265] for 1552 structured RNAs and all the proteins in the Protein

Data Bank (PDB) [208], where a binding pocket is described by the volume and the sol-

vent exposure of the pocket (buriedness) and the fraction of the pocket considered to be

hydrophobic (hydrophobicity). The results suggest that although ligand-bound pockets on

RNAs and proteins show overall similar physical properties, RNA pockets are on average

less hydrophobic than their protein counterparts [254]. Moreover, compared to the unbound

pockets of RNA, the ligand-bound pockets are generally larger in volume, more buried, and

more hydrophobic [254].
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Geometry-based methods

In search for binding sites based on RNA-ligand shape complementarity, DOCK 6 [112]

selects the binding pockets from a negative image of the receptor surface, where each cav-

ity is characterized by a set of overlapping spheres [271]. Similarly, rDock [118] applies

a two-sphere mapping algorithm to identify the binding sites. Within the defined docking

space, large spherical probes are placed on each grid point to rule out superficial and shal-

low sites. Then, small spherical probes are placed on the remaining unallocated grid points

to map the cavities that serve as the possible binding sites [118]. Wide and shallow minor

grooves of RNA, which can geometrically accommodate a wide range of ligand shapes

and serve as non-specific binding sites, are often identified as putative binding pockets and

cause false-positive predictions.

Energy-based methods

Other programs find binding sites by estimating the overall probe-pocket interaction en-

ergies, where the probes are virtual atoms and traverse the surface of the receptor. Pock-

etFinder [265] and AutoLigand [272] are such cases and are equipped in ICM [273] and

AutoDock [274], respectively. PocketFinder uses a Lennard-Jones (LJ) potential to de-

scribe the interactions between probe atoms and receptor atoms, and grid maps generated

from the calculated interactions are used to identify the binding sites. AutoLigand uses

a similar approach but involves an extra iterative step to identify the optimal binding sites

from the grid maps, and it accounts for connections between the neighboring possible pock-

ets.
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Network and machine-learning approaches

By treating RNA-ligand interaction as a network of contacting atoms, network-based ap-

proaches have shown great promise in the prediction of the functional sites in RNA-ligand

interactions. For example, using inter-nucleotide Euclidean (hamming) distance network

for a 3D or 2D structure Rsite [275] and Rsite2 [276] predict the functional sites for RNA-

ligand binding from the maximally closely clustered nucleotides. However, since the inter-

nucleotide networks in Rsite and Rsite2 do not distinguish the different connection types

between the nucleotides, these models often lead to false positive predictions. To distin-

guish the different connection types, RBind [277, 278] transforms an RNA structure into a

graph, where a node and a edge denote a nucleotide and a noncovalent contact between the

nucleotides, respectively, and predict the functional sites as regions formed by nucleotides

of the maximum closeness. On a test set with 19 RNA-ligand complexes, RBind (aver-

age positive predictive value PPV = 0.67) outperforms Rsite (average PPV = 0.42) and

Rsite2 (average PPV = 0.40) [277]. The result suggests that the different types of inter-

nucleotide interactions encoded in the RNA structure provide important information for

the prediction of the functional sites. RNAsite [279], a random forest-based model, uses

sequence-based and/or structure-based descriptors to predict whether a given nucleotide

belongs to the functional sites. In the model, a nucleotide is defined as part of a func-

tional site if it contains an atom within 4 Å to the target ligand. In RNAsite, four different

sets of features for each nucleotide are extracted: geometrical features of local surface

convexity/concavity (Laplacian norm), topological features of the RNA nucleotide inter-

action network similar to the one used in RBind [277, 278], nucleotide-specific accessible

surface areas, and position-specific evolutionary conservation of the nucleotide calculated

from multiple sequence alignment. The model is trained on 60 RNAs with five-fold cross
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validation and tested on two separate sets with 19 (RB19) and 18 (TE18) RNAs, respec-

tively. By using Mathews correlation coefficient (MCC) and area under the receiver op-

erating characteristic curve (AUC), RNAsite [279] shows better performance compared to

Rsite [275], Rsite2 [276] and RBind [277, 278], with 0.253 and 0.567 for MCC, and 0.776

and 0.877 for AUC on TE18 and RB19 sets, respectively. The promising results indicate

the necessity to include more independent features as descriptors. Although these models

have been trained specifically for RNA-small molecule complexes, further improvements

are possible, for example, through a combination with other machine learning methods

[280–283].

5.3 Methods for efficient sampling of ligand binding
modes with flexible conformations — a major chal-
lenge in RNA-ligand docking

Exhaustive sampling of possible RNA-ligand complex structures is challenging due to the

flexible nature of RNA and small molecules. Additionally, following the induced-fit effect

or the conformational selection mechanism, RNA targets often undergo conformational

changes in response to ligand binding [92, 284–286] (see Fig. 5.3a). This leads to the

coupling between RNA folding, including cotranscriptional folding, and ligand binding

when virtual screening is performed [92, 284–287]. A widely used approach to tackle this

problem is ensemble docking [94, 95, 107, 121], where a ligand docks into an ensemble of

RNA structures. An alternative approach is to sample the conformational changes on the

fly in the docking process. Various methods [111, 112, 115, 117–119] have been developed

to treat flexible docking. However, in part due to the required computational time for large-
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scale virtual screening, predicting large conformational changes remains a challenge.

Figure 5.3: RNA conformational changes and binding interactions mediated by water
molecules and ions. (a) The local structure difference of preQ1 riboswitches between apo
(ligand-free) and holo (ligand-bound) states. The structure in orange denotes the apo state
(PDB code: 6VUH [288]) and the structure in blue denotes the holo state (PDB code:
3Q50 [289]) with its bound small molecule (PRF) colored in magenta. Upon binding,
the small molecule displaces residue A14 (colored in green for both apo and holo states)
and causes the local structural transition. (b) Water molecules mediated RNA-ligand in-
teractions. Water molecules form a bridge between small molecule Neomycin B (NEM,
magenta) and 16S-rRNA A-site (PDB code: 2ET4 [290]). The isolated red dots denote
the oxygen atoms in water molecules. The black dashed lines show the water-mediated
hydrogen bonding contacts that promote NEM binding to the RNA receptor. (c) Metal
ions in RNA-small molecule interactions. The ligand benfotiamine (BTP, magenta) inter-
acts with residues G60, C77, and G78 of the Thi-box riboswitch through two magnesium
ions (green) and the G42-A43 base stack (PDB code: 2HOO [291]). The black solid lines
represent the inner sphere metal ion coordination. The polyanionic RNA recognizes the
positively charged metal ion complex made up of the monophosphorylated compound and
cations.

For ligand docking to RNA targets, such as ribosomal RNAs and riboswitches with

reliable binding site information [292, 293], local sampling with a rigorous energy scor-

ing function can often provide accurate predictions for the ligand binding pose. How-

ever, for a broad range of therapeutic RNAs including viral genomic RNAs [294, 295],

the lack of the binding site information poses a great challenge to drug screening. For

RNAs, unlike proteins, we have limited examples of RNA-ligand bound structures and

scarce knowledge about the binding sites. This fact highlights the importance of blind

docking (vs. local docking), where a small molecule is docked to the entire surface of the
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receptor without any prior knowledge of the binding site (see Fig. 5.4). Although com-

putational models—including AutoDock Vina [117], GOLD [113], and Glide [114]—or

models originally developed for protein-ligand docking, but optimized for RNA targets—

such as AutoDock [274], ICM [273], DOCK 6 [112], and FITTED [251]—can be adopted

for RNA-ligand docking, methods developed specifically for RNA targets, such as Ri-

boDock [115], rDock [118], MORDOR [111], and RLDOCK [119, 120], have demon-

strated advantages for RNA systems. See Table 5.1 for a list of docking software.

Figure 5.4: The difference between local and blind docking. A complex of an amino-
glycoside antibiotic, gentamicin (green) and the 16S-rRNA A site of bacterial ribosome
is used for illustration (PDB code: 2ET3 [290]). In this example, both docking (local &
blind) processes are carried out using the RLDOCK model [119, 120]. In local docking,
the binding pocket is predefined and the sampling is contained within the red dashed box.
The small magenta spheres denote candidate binding sites predicted by RLDOCK. In blind
docking, the binding site detection is performed across the whole surface of the RNA. The
small yellow and magenta spheres denote the predicted high- and low-probability binding
sites, respectively. Two cavities identified by RLDOCK (anchored by yellow spheres) are
zoomed out separately.
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Table 5.1: Docking programs available for RNA. Docking programs without dedicated
binding site detection module are shown with a dash.

Docking program Target
Conformational
search algorithm

Binding site
prediction

AutoDock Vina [117] protein
Monte Carlo &
quasi-Newton -

GOLD [113] protein genetic algorithm -
Glide [114] protein Monte Carlo SiteMap [296]

AutoDock [274] protein/RNA genetic algorithm AutoLigand [272]
ICM [273] protein/RNA Monte Carlo PocketFinder [265]

DOCK 6 [112] protein/RNA
incremental
construction sphgen module [271, 297]

FITTED [251] protein/RNA genetic algorithm -
RiboDock [115] RNA genetic algorithm two-sphere filter

rDock [118] protein/RNA
genetic algorithm

Monte Carlo
simplex minimization

two-sphere filter

MORDOR [111] RNA molecular dynamics
grid-based

systematic search

RLDOCK [119, 120] RNA
multi-conformer

docking
grid-based

systematic search

5.3.1 Sampling of ligand conformations

There are three general ways to treat flexible ligand conformations in docking [298–300]:

multi-conformer docking, incremental construction, and stochastic optimization. These

three strategies differ in their computational speed and the conformational adaptability of

the docked ligand to the geometric features of the binding-site.

Multi-conformer docking

The multi-conformer docking algorithm prepares a conformational ensemble for a ligand

(small molecule) and performs rigid docking for each the ligand conformers against the
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same target [301]. For a given binding pocket, this method can be computationally fast

if a limited number of conformers are docked. A key determinant for the success of this

approach is that the near native conformations of the ligand must be included in the lig-

and conformer ensemble. Currently, there exist a number of ligand conformer generators,

such as OMEGA [302, 303], RDKit [304], and Open Babel [305]. These models have

been shown in benchmark studies to reproduce reliable conformational ensembles of small

molecules within seconds [305, 306]. Combining a new molecular dynamics approach

and a quantum mechanically-refined ligand-RNA interaction force field, a recently released

conformer generator has led to improved accuracy for in silico drug design [307, 308]. Its

web-based server and the database of bioactive conformational ensembles not only speed

up the process of finding experimentally favorable ligand conformations through massive

docking but also provide proper initial structures for further optimization [309]. In addition,

in the docking process, a ligand conformer ensemble is constructed prior to conformational

sampling, thus, the conformer ensemble can be appropriately built for the small molecules

in question. For example, a ligand conformer ensemble can be generated with bias toward

the low-energy states [119, 120] or with maximum diversity in the conformational space.

RNA–Ligand DOCKing (RLDOCK) [119, 120] is a recently developed docking model

for flexible ligands using a multi-conformer approach. In RLDOCK, the ligand-binding

mode is described by four variables (R, L, A, O), where L denotes the ligand conformer,

A denotes the ligand atom placed at (anchor site) R, and O is the 3D rotation angle of L

about A (at position R). For each RNA-ligand pair, the RLDOCK algorithm generates an

ensemble of flexible ligand conformers and binding poses through the following steps.

1. The algorithm generates an ensemble of viable anchor sites R based on the following

two criteria: (a) there should be no steric clash between ligand and RNA atoms and
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(b) the RNA structural environment around R should form a pocket geometry.

2. Based on the viable anchor sites R generated above, by exhaustively enumerating all

the different combinations of (R, L, A, O), RLDOCK samples all the possible ligand

binding sites and binding poses. The results are stored for subsequent refinement.

Before applying the scoring function to rank order all the binding modes, to acceler-

ate computational speed, RLDOCK first sieved the exhaustive ensemble by removing

those with high LJ potential between RNA and ligand.

3. All R sites with low LJ potentials ULJ(R) (below the threshold) are selected as pre-

ferred R sites. Here ULJ(R) is the minimum LJ potential over all possible (L, A, O)

values for a given R.

4. For each preferred R, preferred ligand conformers L are selected from low LJ poten-

tials ULJ(R, L), the minimum LJ potential over all possible (A, O) values for a given

set (R, L).

5. Similarly, for each preferred R and L, preferred ligand atoms A are selected from the

low LJ potentials ULJ(R, L, A), the minimum LJ potential over all possible O values

for a given set (R, L, A).

After the above procedure, a preferred (R, L, A, O) ensemble with all the possible ori-

entations (O) of the ligand is generated and subsequently ranked by the scoring function.

To speed up the LJ potential calculation, RLDOCK employs a grid-based energy calcula-

tion, where each grid stores the LJ energy between RNA and a probe atom on the grid for

fast computation of LJ energy for a given binding mode. Through the above procedure,

RLDOCK generates millions of possible ligand configurations through exhaustive rotation
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and translation transformations at each putative binding site for each preconfigured con-

former (see Fig. 5.5). Compared with other models, RLDOCK has the unique merit of

using complete sampling for ligand conformers and binding modes.

Incremental construction

By anchoring rigid fragments through geometric matching and then incrementally building

the ligand structure, on-the-fly ligand conformer sampling allows the local environment of

the binding pocket to guide the growth of the small molecule. An inherent drawback of

this approach is that small errors in the early steps can be amplified throughout the process,

especially for large ligands. DOCK 6 [112] adopts this incremental construction strategy

for ligand conformational sampling and search [105]. Unlike the original greedy algorithm

(cluster-based pruning) to sieve the sampled ligand structures followed by clustering and

ranking at each step, an improved algorithm, which skips the conformational clustering

step in order to retain the original, diverse conformations of the flexible bonds, has led to

an increase in the success rate by 10% for the prediction of binding poses [112]. The results

have demonstrated the importance of maintaining the diversity of ligand conformers.

Stochastic optimization

The stochastic optimization method searches for binding modes on-the-fly by optimizing

flexible torsional angles, orientation, and position of the small molecule. The Monte Carlo

(MC) [114, 117] and Genetic algorithms (GA) are the most widely used stochastic opti-

mization algorithms. A combination of different stochastic methods often lead to improved

sampling and optimization results. For example, AutoDock Vina [117] adopts a hybrid ap-

proach with MC for global optimization and Broyden-Fletcher-Goldfarb-Shanno (BFGS)
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Figure 5.5: Illustration of conformational sampling methods used in RLDOCK, using the
docking of 2’-deoxyguanosine to 2’-deoxyguanosine riboswitch (PDB code: 3SKL [310])
as an example. An ensemble of different conformers of the 2’-deoxyguanosine (dG) is
constructed for flexible docking. The sampling and scoring procedures are shown in order
and labeled through A to E. (A) First, the regions of possible anchor sites within the ri-
boswitch, colored in magenta, are determined by the geometric features of the target RNA.
(B) Second, with exhaustive sampling of these prepared conformers through translation and
rotation around the anchor sites, (C) binding sites (yellow dots) are selected according to
Lennard-Jones potential between RNA and ligand atoms. (D) Finally, the sampled ligand
conformations associated with the selected binding sites are ranked (E) by a physics-based
scoring function.

for local optimization [117]. Other examples include ICM [273] and RiboDock [115],

which employ MC coupled with simulated annealing. Several protein docking programs,
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such as GOLD [113], AutoDock [274], and FITTED [251], use GA to sample and search

for ligand conformations. Modifications to some of these methods for RNA targets have

led to highly promising results. For example, through parameterizing the scoring func-

tion [311] or adding a new solvation term to the original scoring function [312], AutoDock

can treat RNA-ligand interactions. Similarly, through proper optimization [110], FITTED

can be used to predict RNA-ligand docking. The accuracy may be further improved once

all possible RNA hydrogen bond donors and acceptors are considered, and after metal ions

such as Mg2+ and Mn2+ are included as part of the receptor [110]. Like other stochastic op-

timization algorithms, a shortcoming of MC and GA is that the optimization process may

become trapped in the local minima. This may pose a severe challenge due to the rugged

energy landscape of RNA-ligand complexes. The problem can be alleviated through repet-

itive docking with random placement of the small molecule (ligand) and implementation of

algorithms such as tabu search [313, 314] and stochastic tunneling [315] to accelerate the

detrapping from the local minima. By minimizing the likelihood of poses being trapped in

a local minimum in the early stages of the conformational search, rDock [118], a model

for both nucleic acid and protein docking, employs a GA/MC hybrid method to enhance

efficient sampling of ligand binding poses. The GA/MC hybrid method involves three

rounds of GA, low-temperature MC, and Simplex minimization, each of which adopts an

independent scoring function. An optimized set of scoring functions has been shown to

significantly enhance the efficiency of sampling even with an unfavorable initial pose by

minimizing the possibility of being trapped in a local minimum during the conformational

search.

In summary, while multi-conformer docking provides a fast way to consider ligand flex-

ibility prior to the docking calculation, its performance depends on the quality of the gen-
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erated conformer ensemble. In contrast, stochastic and incremental sampling approaches

can treat ligand flexibility during the docking process. However, such on-the-fly sampling

approaches suffer from the problem that a small error in the early steps can be amplified

in the later steps, and stochastic approaches suffer from the problem that poses can be po-

tentially trapped in a local minima while docking. In addition, both approaches require

additional energy terms to account for intra-ligand interactions. Although the conforma-

tional sampling modules in RNA-ligand docking software [109, 118–120, 126–128] have

shown promising results for recovering native or near-native ligand poses, for a flexible

RNA that undergoes conformational changes upon ligand binding, a search for a fast and

accurate sampling method by combining folding and binding algorithms for both ligand

and RNA continues.

5.3.2 Incorporation of RNA flexibility

It has been shown that for protein-ligand docking, ignoring the protein (receptor) flexibility

can cause incorrectly predicted binding modes [316]. The problem can be more severe for

ligand binding to an RNA, whose structure can be more flexible than a protein. To ad-

dress this important issue in RNA-ligand docking, several successful approaches have been

developed to incorporate RNA conformational changes in the docking algorithm. These

approaches can be classified into three types: soft docking, ensemble docking, and fully

flexible docking (See Fig. 5.6).

Soft docking

A mathematically convenient way for soft-docking is to decrease the energy penalties for

steric clashes, thus tolerating some degrees of overlap between RNA and ligand [318].
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Figure 5.6: Different approaches to modeling RNA flexibility in RNA-ligand interactions
illustrated using HIV-TAR RNA (PDB: 1ANR [317]) as an example. The orange and blue
regions correspond to rigid and flexible portions of RNA, respectively. From left to right, a)
bases from the active site are allowed to partially overlap with atoms from ligand through
soft potential, b) an ensemble of various RNA conformations is used to perform docking,
and c) RNA with full flexibility. Computational efficiency decreases from left to the right.

Glide [114] and GOLD [113] offer such options for users. In earlier work, Moitessier et

al. [107] have employed this strategy to dock aminoglycosides in ribosomal A-site RNA,

where RNA flexibility was considered using a set of soft van der Waals potentials, and the

approach led to increased average accuracy. Soft docking is attractive for its convenience of

implementation. However, the limited sampling space without the adjustment of backbone

108



prevents its application to large conformational changes.

Ensemble docking

In ensemble docking, a given ligand docks into an ensemble of RNA conformations or an

ensemble-averaged RNA conformation. Ensemble docking is found to be useful in several

RNA-targeted studies [94, 95, 107], and has also been proved successful in protein-small

molecule docking [319, 320]. In an attempt to reproduce the experimentally determined

RNA-aminoglycoside complexes, soft docking to an ensemble-averaged RNA structure

gives the best performance with an average RMSD of 2.49Å between the predicted and the

experimentally measured binding mode [107]. Ensemble docking-based virtual screening

with the ICM docking model [94] for HIV-TAR [94, 95] has predicted a TAR-targeting

compound with high specificity. Furthermore, virtual screening for an experimentally de-

rived TAR conformational ensemble against a ligand library composed of ∼100,000 drug-

like organic compounds [95] provided an enriched family of TAR-targeting binders. From

a practical perspective, the number of receptor conformations used in the ensemble dock-

ing is usually limited due to computational feasibility, thus receptor conformation selection

can influence the accuracy of the prediction. Using only the conformational ensemble in

the lowest-energy basin may not be the optimal strategy as ligand binding can stabilize

and selectively enrich the population of conformations in other basins on the energy land-

scape [321–323]. Therefore, ensemble docking should not ignore low-populated ligand-

free RNA conformations.

109



Molecular dynamics

Molecular dynamics (MD) simulation [324–331] can not only refine conformations of

RNA-ligand complexes and generate ligand and RNA structures, but also shed light on the

trajectory and the folding/unfolding of possible metastable states for both RNA and ligand

in the docking process [95, 98, 105]. However, in practice, ligand binding events can occur

in the timescale up to seconds [284, 286, 332], and an all-atom MD simulation for the

process goes beyond the capacity of available computing power, especially when virtual

screening for drug molecules is considered. Powered by advanced sampling techniques,

several computational methods have enabled the characterization of RNA conformational

changes upon ligand binding [333–337]. A non-equilibrium MD simulation [338] and an

umbrella-sampling-based MD simulation [339] both have revealed the competitive rela-

tionship between the formation of the kissing-loop and the binding of the small molecule.

A recent explicit-solvent MD simulation has shown a small molecule-induced stabilization

effect in an adenine riboswitch and the ability of the riboswitch in the near-native states

to attract small molecules through hydrogen bonding and base-stacking interaction [340].

These results demonstrated the unique advantage of MD simulations for the investigation

of physical mechanisms in RNA-ligand binding.

Fully flexible RNA

Molecular dynamics simulation with proper force field can provide reliable sampling of

RNA-ligand complex conformations. For example, by applying an RMSD penalty term to

the conventional potential energy, MORDOR [111] (MOlecular Recognition with a Driven

dynamics OptimizeR), by simulating ligand docking trajectories, can give conformational

sampling and show ligand-induced conformational changes for RNA [111]. As an appli-
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cation, a MORDOR-based virtual screening has found a small family of binders targeting

human telomerase RNAs (hTR) [341]. However, further applications of MORDOR are

limited by the high computational cost, which can take up to hours for a docking run. To

accelerate simulation, Supervised Molecular Dynamics (SuMD) has been proposed to sam-

ple the conformations of RNA-drug complexes [342]. SuMD accelerates the simulation by

applying a tabu-like algorithm to guide the docking when the ligand is far away from the

binding site and a conventional MD simulation when the ligand is close to the binding site.

The hybrid method enables efficient simulation of the binding process within an affordable

timescale. Although the simulated trajectory does not necessarily represent the physical

binding process, SuMD may capture possible conformational changes. The reliability of

SuMD for RNA-ligand docking is supported by success in predicting binding modes for

several pharmaceutically important RNAs [342], where SuMD predicts RNA-ligand dock-

ing mode with a minimum RMSD of 0.34Å for the best case.

Similarly, another method based on elastic potential grids was initially proposed for

modeling protein flexibility during docking [343] and later extended to RNA targets [121].

In this type of method, a 3D grid of the potential field of the initial RNA conformation

is calculated in advance using DrugScoreRNA [344]. After determining the potential grids,

AutoDock [274] is used as a docking engine with precalculated elastic potential grids for

docking. Due to its ability to account for RNA flexibility, docking to the deformable po-

tential grids generated from unbound RNA has a much better performance than simply

docking to unbound RNA alone. However, one of the limitations of the approach is that

it requires a priori knowledge of the available end states of deformation. Moreover, the

model cannot treat conformational changes caused by rotational flip motion and 2D struc-

tural rearrangements.
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In summary, Molecular dynamics-based methods are time-consuming and thus not suit-

able for large-scale virtual screening. Rigid docking is fast but lacks accuracy. Soft docking

and ensemble docking are in the middle ground between the two extremes as they sacrifice

the ability of a more complete sampling of conformations in order to reduce the computa-

tional time. At the current stage, a versatile approach to accurately treat receptor flexibility

awaits to be developed.

5.4 Accurate scoring functions for RNA-ligand docking:
challenges and promises

Selecting a native ligand binding pose from an ensemble of candidates requires a reliable

scoring function. There are three different approaches to the development of a scoring func-

tion: physics-based approach, knowledge-based approach, and machine-learning approach;

see Table 5.2 and Table 5.3 for a list of reviewed scoring functions and the summary of the

benchmark results, respectively.

5.4.1 Physics-based methods: physical principles of RNA-ligand bind-
ing lead to accurate scoring functions

Force-field approach

Atom-based physical force fields, originally derived from thermodynamic data and ab initio

calculations, have enabled molecular dynamics simulations for nucleic acids-targeted drug

discovery [346–350]. One of the key issues in physical force field-based computations

for molecular docking is the solvent effect. Since the virtual screening of ligands against
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Table 5.2: Summary of the reviewed scoring functions used in different models for pre-
dicting small molecule binding. a Some scoring functions optimized for protein may also
be used for RNA. b Some models contain more than one scoring function, only the default
one is listed. c The year that the model was first published, although some software is still
under active development.

Category Model Targeta Score typeb Yearc

Physics-
based

MORDOR [111] RNA force fields 2008
DOCK 6 [112] RNA force fields 2009
GOLD [113] protein empirical terms 1997
Glide [114] protein empirical terms 2004

RiboDock [115] RNA empirical terms 2004
AutoDock 4 [116] protein empirical terms 2007

AutoDock Vina [117] protein empirical terms 2010
iMDLScore1 [109]
iMDLScore2 [109] RNA empirical terms 2012

rDock [118]
protein

nucleic acid empirical terms 2014

RLDOCK [119, 120] RNA empirical terms 2020

Knowledge-
based

DrugScoreRNA [121, 122] RNA statistical potentials 2000

KScore [123]
protein

nucleic acid statistical potentials 2008

LigandRNA [124] RNA statistical potentials 2013

SPA-LN [125] nucleic acid
iterative

statistical potentials 2017

ITScore-NL [126] nucleic acid
iterative

statistical potentials 2020

Machine-
learning

T-Bind [345] protein
gradient

boosting trees 2018

RNAPosers [128] RNA random forest 2020

RNAmigos [129] RNA
graph

neural network 2020

an RNA target demands high computational efficiency for the docking calculation, implicit

solvent models, such as Poisson-Boltzmann surface area (PB/SA) model [131–137] and

the Generalized-Born surface area (GB/SA) model [138–146], would be highly promising
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due to the optimal balance between speed and accuracy. A hybrid force field that combines

an implicit solvent model and an all-atom force field can often lead to accurate and effi-

cient simulation of an RNA-ligand binding process. As shown by the success of DOCK

6 [112], generalized Born and Poisson Boltzmann implicit solvent models combined with

the AMBER force fields can provide an effective energy model for an RNA-ligand dock-

ing system [112]. MORDOR [111], which combines an implicit solvent model GBSW

(Generalized Born with Simple sWitching) [351] with the CHARMM-27 [352] force fields

for the receptor and AMBER force fields [353] for ligand molecules, demonstrated how

the hybrid energy function can lead to successful modeling of receptor-ligand binding. By

using root-mean-square-distance constraints in energy minimization, the model allows lo-

cal flexibility of the receptor to accommodate possible conformational changes induced by

ligand binding and in the meantime, to guide the ligand to probe the surface of the target

RNA.

In summary, physical force field-based scoring functions have the advantage of provid-

ing insights into the underlying physical mechanism of RNA-small molecule interaction,

however, computational costs and the need for expert knowledge in simulating a specific

system hinders the application of these models in large-scale virtual screening for drug

discovery.

Empirical energy approach

Physically, different interactions in an RNA-ligand complex are correlated thus nonaddi-

tive. A simplified approach is to evaluate the total energy as a weighted sum of the com-

ponent interactions such as van der Waals, electrostatic, desolvation and hydrogen-bond
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interactions:

∆G =
∑
i

wi ·∆Gi (5.1)

where the weight coefficients wi can be fitted by optimizing the success rate of the com-

putational prediction for the training set. The above empirical scoring function has the

advantage of high computational efficiency and adaptivity, which makes accurate predic-

tion possible for specific types of RNA targets and ligands. Compared to the more rigorous

force-field approach, empirical scoring functions, which often use “softer” energy forms,

are more tolerant for minor clashes and suboptimal interactions during docking, thus par-

tially alleviate the problem of incomplete sampling for receptors and ligand conforma-

tions. It is important to note that due to the different physical interactions and correlations

between the different interactions in protein-ligand and RNA-ligand systems, parameters

fitted from protein-ligand docking may not be transferable to RNA-ligand docking.

The semiempirical free energy function in AutoDock 4 [116], the fully empirical scor-

ing function of AutoDock Vina [117], and other models such as GoldScore in GOLD [113]

and GlideScore in Glide [114] have demonstrated success in predicting protein-ligand

docking. These docking software packages, not specifically designed for nucleic acids, may

not give optimal results for RNA-ligand docking. RNA-specific scoring functions such as

iMDLScore1 and iMDLScore2 [109] have optimized the weight coefficients of the scoring

terms [116] using multilinear regression (MLR) methods. In a comprehensive evaluation

and comparison for eleven other scoring functions, iMDLScore1 and iMDLScore2 [109]

have shown better performance in both binding mode and affinity predictions.

Several RNA-ligand docking software packages have incorporated their respective

built-in empirical scoring functions [115, 118–120] specifically for RNA/DNA-small

molecule interactions. The scoring function of rDock [118], the successor of the original
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model RiboDock [115], contains a weighted sum of various intermolecular and intramolec-

ular interaction energies, including the van der Waals potential (vdW), an empirical energy

term for attractive and repulsive polar interactions and the desolvation energy. Because

virtual drug screening can benefit from our knowledge, such as pharmacophoric points

and shape similarity, derived from known RNA-ligand complexes, rDock has added

pseudo-energy restraint terms as an empirical bias, such as pharmacophoric restraints.

Pharmacophoric restraints used in rDock ensures the generated ligand poses to satisfy the

pharmacophores derived from the known RNA-ligand complexes or the hot-spot mapping

methods. Applications to the virtual screening against Hsp90, both rDock and Glide show

significant improvements with the inclusion of the bias [118]. Since rDock has been

optimized for RNA docking, it outperforms Vina and Glide for RNA-ligand docking: For

a set of 56 RNA-ligand complexes, the top-ranked poses predicted by rDock show a 54 ±

3 % success rate with a 2.5Å RMSD cut-off compared to 29± 2% for Vina and around

17.8% for Glide [118].

RLDOCK [119, 120] trained the weight coefficients for the different interaction terms

such as van der Waals (vdW), electrostatic, polar and nonpolar hydration energies, and

hydrogen-bond interactions for a set of 30 RNA-small molecule complexes. To enhance

computational efficiency. RLDOCK adopts a two-step screening algorithm: In the first

step, using a computationally efficient, crude estimation for the Born radii in the electro-

static energy calculation and the solvent-accessible surface area in the hydration energy, the

model selects an initial pool of potential binding poses; in the second step, a rigorous scor-

ing function is used to re-rank the binding poses to identify the top-ranked poses. Test on a

separate set of 200 RNA-small molecule complexes indicates that the success rate of iden-

tifying the native/near-native binding modes increases significantly from the crude scoring

116



function to the more refined scoring function, with 8.3%, 22.2%, and 29.6% for the crude

scoring function and 17%, 40.4%, and 49.1% for the more rigorous scoring function within

RMSD thresholds 1Å, 2Å, and 3Å, respectively. Considering the fluctuations in the ligand

pose, RLDOCK groups similar ligand poses (according to the mutual RMSD) into clusters

and rank the clustered poses. With the RLDOCK-ranked ligand poses (clusters), 44.3%,

74.3%, and 82.2% of the top-10 are within 1, 2, and 3Å (RMSD), respectively, to the na-

tive pose [119, 120], Furthermore, tested on a previously proposed set of 38 RNA-small

molecule complexes [124], RLDOCK has demonstrated a higher success rate compared

to other models for recovering the native ligand binding poses within RMSD of 2Å to the

native pose. Specifically, RLDOCK shows a success rate of 55.3% (60.5%) for the top-1

(top-3) predicted poses as compared to 28.9% (39.5%), 36.8% (44.7%), 39.5% (47.4%),

and 50.0% (57.9%) for DrugScoreRNA [121, 344], DOCK 6 [112], LigandRNA [124, 354],

and a combined LigandRNA [124, 354] and DOCK 6 [112] approach, respectively. Since

RLDOCK distinguishes itself from other models by a global, complete sampling of all the

possible binding sites and poses, the results above demonstrate the importance of high-

quality sampling for ligand poses.

In summary, compared to atomistic force field-based approaches, the empirical en-

ergy function methods manage to reduce the computational burden using simple functional

forms for RNA-small molecule interactions. However, this approach is subject to two main

limitations: (a) neglecting the correlation between different interactions and (b) transfer-

ability of the weight coefficients between different RNA-ligand systems. The success of

the model depends on the quality of the curated training set, thus the accuracy of the pre-

dictions is limited by the lack of available high-quality data for RNA-ligand complexes.
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5.4.2 Knowledge-based scoring functions: statistical potential pro-
vides efficient scoring of binding modes

Statistical potential approach based on reference states

A statistical potential approach uses the inverse Boltzmann law to extract energy-like po-

tential for user-defined interacting pairs from the experimental data:

E ∝ −
∑
i∈R

∑
j∈L

ln ρij (5.2)

where and ρij is the relative frequency of the user-defined interacting pair (i, j) between

the receptor R and ligand L. Before being applied to RNA-ligand docking models [121,

123–126, 344], the statistical potential approach has been demonstrated to be effective for

predicting protein-ligand docking [122, 159, 160, 162, 355–367]. Different variants of the

statistical potential approach have been proposed for RNA-ligand systems since the devel-

opment of DrugScoreRNA [121, 344]. These statistical potential approaches mainly differ

in two aspects: the choice of reference state and functional forms of potential energy terms.

As early attempts, DrugScoreRNA [121, 344], Kscore [123], and LigandRNA [124] have

constructed the reference state by treating all the relevant atoms in the RNA-ligand complex

as non-interacting particles, with different atom types differentiated or undifferentiated. In

addition to the distance-dependent pairwise potential used in Kscore and DrugScoreRNA,

LigandRNA, by taking into consideration the relative orientations between different atom

pairs, has added a three-body anisotropic potential. Combined with DOCK 6 [112], this

orientation-dependent potential shows a higher success rate than DrugScoreRNA in predict-

ing the native binding modes. Specifically, for a test set consisting of 42 RNA-small

molecule complexes, with the 2Å RMSD criteria for a correctly predicted ligand pose,
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DrugScoreRNA, DOCK 6, and LigandRNA show a success rate of 31.0%, 35.7% and 35.7%,

respectively. A DOCK6 and LigandRNA hybrid score scheme further gives the success rate

of 47.6%. The results show that the knowledge-based approach can benefit from a more

accurate potential that accounts for more detailed information such as distance and angular

correlations between the different interactions.

Iterative statistical potential approach

A major limitation of the above traditional approach is that the reference state ignores the

many-body correlations between the different interactions. One way to circumvent this

problem is to iteratively refine the energy function until the simulated probability distribu-

tion of the different atom pairs agrees with that observed from the experimental data [125,

126, 212, 231, 368–371]. Because the simulated distribution is based on sampling over

the full energy landscape, an iterative approach can account for both native and nonnative

interactions.

SPA-LN [125] is an iterative statistical potential model for predicting nucleic acid-

small molecule interactions. Using intrinsic specificity ratio (ISR), a measure of the native

vs. nonnative binding modes discriminative power, the energy-like scoring function can

account for both affinity and specificity. For binding affinity prediction, using Pearson cor-

relation coefficient between the predicted and the experimentally measured affinity as a

measure, for a set of 77 complexes from version 2014 of PDBbind database [372] and a

separate set of 34 nucleic acid-small molecule complexes, SPA-LN gives Pearson corre-

lation coefficients 0.58 and 0.60, respectively. For the binding pose prediction, for a test

set of 56 nucleic acid-small molecule complexes [118], for the top-scored poses with 2.5Å

RMSD cutoff for a pose considered to be native or near-native, SPA-LN [125], rDock [118],
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AutoDock Vina [117] and Glide [114] give a success rate of 54(±3)%, 54(±3)%, 29(±2)%,

and 17.8%, respectively. The performance of SPA-LN suggests the importance of consid-

ering not only affinity but also the specificity of RNA-ligand binding.

To capture the stacking and electrostatic interactions in nucleic acids, ITScore-

NL [126], an iterative statistical potential approach [370], adds an extra distance-dependent

stacking potential term and an electrostatic potential energy term to the scoring function.

Stacking potentials were calculated for all carbon-carbon atom pairs involved in stacking

interactions between nucleobases and planar aromatic groups of a small molecule.

Electrostatic potential was calculated for the polar atom pairs using the Debye-Hückel

approximation. The model was compared with other methods in two datasets to validate

the performance on native pose recovery and binding affinity prediction. With the same

set of 77 nucleic acid-small molecule complexes used in the test of SPA-LN, ITScore-NL

achieved a higher Pearson correlation coefficient (R = 0.64) than that shown in SPA-LN

(R = 0.58). As for the success rate of native pose recovery, ITScore-NL [126] was able to

correctly identify native binding mode of 71.43% (50.64% for SPA-LN [125]) complexes

with RMSD cutoff 1.5Å if the top-3 predictions are selected and 90.90% (76.62% for

SPA-LN [125]) complexes with RMSD cutoff 3.0Å if the top-5 predictions are selected.

Compared to LigandRNA [124] on a 42 RNA-small molecule complexes with only

top-scored poses being selected and poses with RMSD cutoff 2.0Å being used, the success

rates of LigandRNA [124] and ITScore-NL [126] are 35.7% and 50.0%, respectively.

The results indicate the importance of including stacking and electrostatic interactions in

RNA-ligand docking.

In summary, compared to atomistic force field methods, the statistical potential ap-

proach is associated with a much higher computational efficiency. However, the choice
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of reference state places obstacles for accurate modeling of RNA-small molecule interac-

tions. Even though iterative approaches have been developed to circumvent the reference

state problem, constructing diverse and complete decoy sets for training remains a chal-

lenge for RNA-ligand complexes. Furthermore, because data-driven approaches rely on

experimentally determined structural data, the success of the models suffers from limited

structure data for RNAs and RNA-ligand complexes.

5.4.3 Machine-learning based scoring method for RNA-ligand dock-
ing: an emerging scoring approach with high promise

Machine-learning approach

With the success of machine-learning methods in various fields, a variety of machine-

learning models such as support vector machine (SVM), random forest (RF), neural net-

work (NN), and convolutional neural network (CNN) have been proposed and shown suc-

cess to predict protein-small molecule interactions [147–152]. Machine learning ap-

proaches not only have the advantage of utilizing the experimental data and making fast

predictions but also with a large number of trainable parameters, can leverage experi-

mental data better than traditional knowledge-based methods. Furthermore, the relation

between input features and output results is learned through the training process. There-

fore, a machine-learning method can be readily adopted across different types of tasks by

simply changing the input features and output format, which can be engineered for the cor-

responding task. Fig. 5.7 shows a typical workflow of training, validating, and testing a

machine-learning model.
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Figure 5.7: The typical workflow of a machine-learning approach. Training and validation
cycle usually needs to be performed many times before the performance on the validation
set reaches an acceptable level. After the training-validation cycle, the trained model is
used to make predictions on the test set.

Importance of feature engineering

Although the quality and amount of the training data is vital to the performance of machine-

learning methods, input feature engineering, which is often overlooked, is also critical to

the success of the model. Generally, input features extracted from structure or geometry-

based models for RNA-ligand binding often contain a large amount of detailed structural

information, resulting in noise and excessively high dimensions in the parameter space. For

example, there are many CNN-based approaches [181, 373–376] that simply extend the 2D

image in the original CNN model by treating the binding site as a 3D image. However, this

type of 3D image is not rotational invariant hence requires rotational augmentation when

used in training and prediction. The extra dimensions added would significantly increase

computer time for making a single prediction and for performing large-scale virtual screen-

ing for drug discovery. Additionally, many atoms which are shown as pixels in the image

may not even contribute to the binding, thus further complicate the learning process. An

optimal engineered feature should maximally simplify the input information while captur-

ing the key features that determine RNA-ligand docking results.
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T-Bind [345] is a method for protein-small molecule binding affinity prediction. What

makes it interesting for its possible application to RNA-ligand binding is not only the

machine-learning model but also, more importantly, its feature extraction method. In T-

Bind [345], Cang et al. [345] introduces a novel mathematical concept, element specific

persistent homology (ESPH) or multicomponent persistent homology, to capture the cru-

cial topological information around the binding site. This feature extraction method of-

fers a new way to embed geometric information into topological invariants and simplify

the input features while still capturing the key information. Benchmark tests using PDB-

bind database [372, 377–381], a comprehensive collection of protein-small molecule bind-

ing affinity data together with 3D structures, have yielded Pearson correlation coefficients

0.818 and 0.767 for PDBbind v2007 core set [379] and PDBbind v2013 core set [380],

respectively, and the T-Bind outperforms other scoring functions [345]. The result shows

the merit of this feature extraction method and the promise of applying the same approach

to the prediction of RNA-small molecule interactions.

RNAmigos [129] is a machine-learning model designed for the prediction of RNA-

small molecule interactions. In RNAmigos [129], the base-pairing network around the

binding site is simplified as a connected 2D graph with vertices and edges, where a nu-

cleotide is represented by a vertex and backbone connectivity and base-pairing are repre-

sented by the different types of edges. The base-pairing interactions encoded in the 2D

graph provide a signature for predicting the fingerprint of the small molecule that will most

likely bind to the site. Furthermore, RNAmigos [129] shows the versatility of the machine-

learning method. The model combines RNA base-pairing information at the binding site (in

a 2D graph format) and graph neural network [382] (designed for data with 2D graph struc-

ture) to directly predict the fingerprint for the small molecule. RNAmigos [129] encodes
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the predicted fingerprint as a 166 bit MDL Molecular Access keys (MACCS) [383]. The

small molecule can be found in a compound library simply by a similarity search against

the predicted fingerprint. This procedure circumvents the traditional virtual screening route

(docking then scoring) and substantially reduces the time for the search of a putative drug.

RNAmigos [129] was trained with a set of 773 RNA-small molecule binding sites associ-

ated to 270 unique small molecules. Test results on an enrichment dataset with 176 unique

RNA chains against 82 unique ligands have shown that RNAmigos outperforms a template-

based method (Inforna 2.0 [255, 256]). Although RNAmigos shows promising results, it

has two major limitations. First, RNAmigos requires prior knowledge of the binding site

in order to generate a base-pairing network, and a misplaced binding site could led to a

degradation in predictive power. However, accurate determination of the binding site itself

can be a challenging task. Second, RNAmigos considers different RNA-small molecule

complexes to occur equally likely. Such treatment can cause an effective bias in the train-

ing process because the binding affinities of the different RNA-small molecule complexes

can span across a large range of values.

As another machine-learning model for RNA-small molecule binding, RNA-

Posers [128] contains a set of trained pose classifiers that can estimate the “nativeness”

of a ligand for a given structure of the RNA and the ligand. The classifiers are based on

the random forest method [384] with an ensemble of 1000 decision trees. For a given

ligand, RNAPosers takes a pose fingerprint as its input, where the pose fingerprint is

calculated as the sum of a Gaussian function multiplied by a cosine damping factor over

the RNA-ligand interacting atom pairs. The comparison between RNAPosers and two

knowledge-based methods, DrugScoreRNA [121, 122] and SPA-LN [125], shows that

RNAPosers [128] is able to yield higher success rates for the prediction of the native
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binding pose. Specifically, for a set of 31 RNA-small molecule complexes used in

DrugScoreRNA [121, 122], RNAPosers gives a success rate of 61.9% as compared to

57.1% for DrugScoreRNA. For another set of 56 RNA-small molecule complexes used as

a validation set in SPA-LN [125], RNAPosers gives a success rate of 62.5% compared to

54.0% for SPA-LN. These results show the advantage of the machine learning method

over traditional knowledge-based approaches.

Coarse-grained conformational representation, traditionally implemented in RNA fold-

ing models, can lead to a unique method for feature engineering. Recently Stefaniak and

Bujnicki developed a new machine-learning model, AnnapuRNA [127], specifically for

RNA-ligand interactions. The feature engineering algorithm in AnnapuRNA employs a

coarse-grained representation of both RNA and ligand to derive RNA-ligand contact statis-

tics. Specifically, RNA structure is coarse-grained with each nucleotide replaced with five

beads [385], and a ligand is represented with the concept of pharmacophores [386]. Con-

tact statistics collected from the coarse-grained representation with the assumption that

the coarse-grained contact statistics can represent the core RNA-ligand interaction data.

Five different machine-learning algorithms (Random Forest-RF, k Nearest Neighbors-kNN,

Gaussian Naı̈ve Bayes-GNB, Support Vector Machines with RBF kernel-SVM, and Deep-

Learning-multi-layer feedforward artificial neural network-DL) have been trained on the

coarse-grained statistics and each RNA-ligand complex is evaluated using a scoring func-

tion for the nativeness probability of the contacts and the ligand internal energy [353].

Benchmark test with a set of 33 RNA-ligand complexes has shown that kNN and DL algo-

rithms give the best results and more extensive tests with 4 docking methods and 9 scoring

functions have demonstrated that AnnapuRNA outperformed other programs tested. The

results has indicated that the coarse-grained representation combined with the concept of
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pharmacophores can indeed provide an effective, simplified way of feature engineering for

RNA-ligand binding.

In summary, although machine-learning models for protein folding [153–158] and

protein-small molecule interactions [159–162] have shown significant success, model-

ing RNA-small molecule interactions using machine learning is a relatively new adventure.

The machine learning approaches have several intrinsic limitations. Because the model

involves a large number of trainable parameters, the training process is prone to overfit-

ting, especially for cases with only limited training data. The problem is more important

for RNA-small molecule binding due to the lack of a comprehensive and high-quality cu-

rated database. Although protein-focused libraries, such as PDB [208], PDBbind [372,

377–381], can contain data for RNA-small molecule complexes, a more comprehensive,

dedicated NDB-like database [225, 233] for RNA-ligand complexes is needed.

5.4.4 Accounting for solvent-mediated interactions

The sugar-phosphate backbone is negatively charged and polar, resulting in an accumula-

tion of water molecules, cations, and water/ion-mediated RNA-ligand interactions. How-

ever, most molecular docking models do not explicitly consider the bridging effects of

water molecules (Fig. 5.3b) and metal ions (Fig. 5.3c). The neglect of such solvent effects

is a notable drawback that can cause inaccurate predictions for RNA-ligand interactions.

A viable approach is to use simulations with explicit waters and/or ions to refine RNA

structures [105, 107]. Then, the positions of important water molecules can be retained for

further docking against ligands. In this approach, the results are sensitive to the selection

of the important water molecules. Because ligand-RNA interactions are sensitive to the po-

sitions and orientations of the water molecules and ions within the cavity space, achieving
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robust accuracy can be challenging with this approach.

An alternative approach is to predict the binding of water molecules and bound metal

ions to the RNA prior to docking [240, 241, 387–392] then treat the predicted bound wa-

ter molecules and/or ions as part of the receptor for RNA-small molecule docking. The

Tightly Binding Ion (TBI) [240, 393, 394] model and the Monte Carlo TBI (MCTBI)

model [241, 395] predict the ion distribution around an RNA structure. Through ex-

plicit sampling of the discrete ion distributions, TBI and MCTBI go beyond the mean-field

Poisson-Boltzmann theory by accounting for the correlation between the different ions.

3D-RISM is another promising model for predicting the distribution of both solvent and

ions around a given macromolecule [391]. In combination with a force field calibrated

by prototype ionophores, 3D-RISM is able to recapitulate the water distribution around

guanine quadruplexes by considering the correlation between solvent particles and treating

the system as macromolecules in equilibrium with a bulk solvent at constant composition

(and chemical potential) [396]. For the Oxytricha nova telomeric G-quadruplex structure

as a test case, 35% (80%) of the 3D-RISM-predicted water binding modes are within 1Å

(2Å) from the crystallographic modes, indicating that the model may be reliable for treat-

ing solvent effects [396]. SPLASH’EM (Solvation Potential Laid around Statistical Hydration

on Entire Macromolecules) is a model for predicting bridging water molecules in nucleic

acid-ligand complexes. Using the statistical information of water molecules around nu-

cleotides in the PDB [208] and a scoring function containing a hydrogen-bonding potential

with both directionality and polarization, SPLASH’EM has identified 62% of water molecules

in nucleic acid-ligand complexes within 1Å [397].
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5.5 Current achievements of RNA-ligand docking models:
a performance comparison

Table 5.3 summarizes the benchmark test results of various computational methods for

RNA-ligand docking. The data is adopted from the original publications of the models and

the results are grouped according to the test sets. Cautions should be taken when compar-

ing the performance of the different models. First of all, RNAs and ligands in different

test systems can have different structural and physical features, thus a direct performance

comparison of the different models based on the results from different test systems may not

be appropriate. Second, even for methods evaluated based on the same test dataset, the in-

terpretation of the performance comparison can be complicated. For example, for the same

benchmark dataset, the decoy poses generated for pose identification can be quite different

for the different tests. A robust and objective comparison between the different scoring

functions demands a consistent and systematic benchmark test protocol for the generation

of the decoy binding poses [109].

Nevertheless, the benchmark test results in Table 5.3 provides useful insights for the

selection of computational methods. First, for pose identification, we find a clear trend

that RNA-specific methods consistently outperform those developed for proteins or generic

macromolecules. The result shows the importance of considering RNA-specific interac-

tions and structural features for RNA-ligand docking. Second, recent advances in RNA-

ligand scoring function have been mainly focused on knowledge-based/machine learning-

based approaches [125–128]. The knowledge-based/machine learning-based approaches

provide equal or better performance (especially for affinity prediction) than the traditional

physics-based/empirical approaches [112, 113, 116–118], except for MORDOR [111] and

RLDOCK [119, 120]. Third, even with the knowledge-based/machine learning-based ap-
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proaches, the current success rate for affinity prediction is quite low. To improve the pre-

diction accuracy, with the currently limited available data for RNA-ligand binding affinities

and complex structures, new physics-based models that can accurately capture RNA-ligand

interactions and conformational ensembles would be highly needed.

Table 5.3: Summary of the benchmark results in the literature. Results of different methods
tested on the same test set are grouped together for comparison. The first column “Test set”
shows the number of test cases and the original references reporting the test results. a Per-
formance of affinity prediction is reported in terms of the square of the Pearson correlation
coefficient, R2. Correlation coefficient is calculated between experimental binding affini-
ties and predicted binding affinities. Benchmarks without affinity prediction are shown as
dashes. b Performance of pose identification is reported in success rate. The criteria for
a correct prediction is shown in the (rank, RMSD) format. For example, (1, 2.5Å) means
the top-1 prediction that has RMSD <2.5 Å to the native pose. Benchmarks without pose
identification are shown as dashes. c RLDOCK, rDock, rDock solv, AutoDock Vina use
38 instead of 42 complexes. MORDOR uses 32 instead of 42 complexes. d Only several
top performing models evaluated in literature [109] are listed for this benchmark dataset.
e Three outliers 3GX3, 2ESI and 1F1T are excluded in the binding affinity calculation. f

Near native poses are sampled through rDock reference ligand method [118]. g Average
and standard deviation from 100 sets of 100 random docking poses out of a pool of 1000
decoy conformations. h Native pose is included in pose identification. i RNA-adapted
AutoDock scoring function [312]. j Scoring function is used to guide the docking instead
of using default Vina scoring function.

Test set Scoring Docking Affinitya Poseb

function engine prediction(R2) identification(%)

42 [119,

120, 124,

126]

complexes

Correlation (1, 2.0Å) (3, 2.0Å)

RLDOCK RLDOCK - 55.3c 60.5c

ITScore-NL DOCK6 - 50.0 54.7

LigandRNA+DOCK6 DOCK6 - 47.6 54.8

rDock solv rDock 2014 - 39.5c 55.3c

DOCK6 DOCK6 - 35.7 45.2
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LigandRNA DOCK6 - 35.7 42.9

AutoDock Vina AutoDock Vina - 31.6c 44.7c

DrugScoreRNA DOCK6 - 31.0 42.9

rDock rDock 2014 - 28.9c 47.4c

MORDOR MORDOR - - 62.5c

34 [109,

125, 126]

complexesd

Correlatione (3, 1.5Å) (5, 3.0Å)

SPA-LN rDock 2014 0.36 50.6 76.6

Gold Fitness GOLD5.0.1 0.25 42.9 73.2

ASP GOLD5.0.1 0.29 42.9 66.1

rDock solv rDock 2006.2 0.18 41.1 73.2

rDock rDock 2006.2 0.15 33.9 60.7

ITScore-NL - 0.41 - -

56 [118,

125, 128]

complexes

Correlation - (1, 2.5Å)

RNAPosers rDock 2014 - - 62.5f

rDock solv rDock 2014 - - 54±3g

SPA-LN rDock 2014 - - 54±3g,h

AutoDock Vina AutoDock Vina - - 29±2g

GlideScore Glide (v.57111) - - 17.8

31 [122,

128, 312]

complexes

Correlation (1, 2.0Å) (1, 2.5Å)

RNAPosers rDock 2014 - 57.1f 61.9f

DrugScoreRNA AutoDock 3.0.5j - 41.9 45.2

AutoDocki AutoDock 3.0.5j - 25.8 35.5

77 [125,

126, 377]

complexes

Correlation (3, 1.5Å) (5, 3.0Å)

ITScore-NL AutoDock 4.2 0.41 71.4h 90.9h
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SPA-LN rDock 2014 0.33 50.6h 76.6h

5.6 Nondocking based methods for modeling receptor-
ligand binding

In addition to the scoring functions discussed above, other physics-based methods can

also achieve high accuracy for determining the binding modes and affinities. Some of

these methods, however, are not suitable for docking software due to either the expen-

sive computational cost or the technical difficulty of incorporation of the method into a

software. Because extensive reviews have been reported for free-energy methods [398],

such as Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecu-

lar Mechanics/Generalized Born Surface Area (MM/GBSA) [399–406], Linear Interaction

Energy method (LIE) [407–409] Free-Energy Perturbation (FEP) [409, 410] and Thermo-

dynamic Integration (TI) [404, 411], we here focus on several more recently developed

physics-based methods for modeling small molecule binding problems, with the purpose

of applying the methods to predict RNA-ligand binding.

5.6.1 Quantum mechanical methods

Quantum mechanical approaches, which can treat polarization, charge transfer, and many-

body effects, are considered to be more accurate than force-fields in molecular mechanics.

Methods to model small molecule binding range from less accurate semiempirical methods

such as density functional theory (DFT) to more sophisticated methods, such as second-
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order Møller-Plesset perturbation theory (MP2), configuration interaction (CT) and strict

coupled-cluster calculations (CC) [412]. Improvements in computer hardware have sub-

stantially reduced the computational time for quantum mechanical calculations. However,

the cost is still relatively high, and systems under investigation usually need to be signif-

icantly simplified or divided into smaller fragments. Although fragmentation calculation

enables the use of quantum mechanics-based methods for computing the energies of large

biomolecules, such as proteins [413–415], the method has not been extensively applied

to RNA-small molecule interacting systems. The difficulties may stem from long-range

electrostatic interactions and many-body quantum mechanical effects in RNAs [415, 416].

Chen et al. [417] have extended molecular fractionation with conjugate caps (MFCC)

scheme using quantum mechanical calculations to study DNA/RNA-small molecule inter-

actions. Through the division of the system at each phosphate group, three oligo-nucleic

acid interaction systems are decomposed into smaller subsystems, and the calculated in-

teraction energy is found to be in excellent agreement with the results obtained from ab

initio calculation for the original full system. In another study, Mlýnský et al. [418] have

compared the abilities of various hybrid QM/MM methods, including ab initio, DFT and

semiempirical approaches, to investigate the possible catalytic mechanism for the hairpin

ribozyme. By using various hybrid QM/MM methods, Mlýnský et al. have computa-

tionally reconstructed potential and free energy surfaces for the catalysis reaction system.

Among the tested methods, the activation barriers calculated from spin-component scaled

Møller-Plesset (SCS-MP2) method and hybrid MPW1K functional show the best agree-

ment with those derived from the experimental rate constant data. Recently, Bezerra et

al. [252] have applied MFCC fragmentation scheme [419–421] within a density functional

theory framework to calculate the interaction energy between ribosomal RNA and amino-
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glycoside hygromycin B. The calculation has revealed the regions where the drug molecule

interacts strongly with the ribosome, and the result provides guidance for the improvement

of drug-receptor affinity.

Compared to MM/MD based approaches, the quantum-mechanics approaches above

are able to carry out more accurate calculations at the expense of expensive computational

cost and hence the methods may not be suitable for large-scale virtual screening in drug

discovery.

5.6.2 3D-RISM theory

By treating the distribution of bound ligands around the receptor as a receptor-ligand two-

body correlation problem, three-dimensional reference interaction site model (3D-RISM)

with Kovalenko-Hirata (KH) closure relation predicts the spatial distribution function of

the ligand in the field created by the receptor [422–424]. The probable binding sites are

identified from the peaks of the ligand spatial distribution function and the binding mode is

determined based on the superposition approximation [253]. The 3D-RISM/KH approach

has three unique advantages. First, it identifies the ligand-binding site from the distribution

function for the mixture of solvent and ligand. Because the calculation circumvents the

sampling and scoring in the traditional docking process, the 3D-RISM/KH approach avoids

the limitations of sampling methods. Second, the theory explicitly accounts for the solvent

effects. Therefore, the theory can treat ion and water-mediated interactions in receptor-

ligand binding. Third, unlike the traditional continuum models, 3D-RISM/KH calculation

can take the hydrogen bond between the solute and solvents into consideration. Several

studies [425–430] have employed 3D-RISM/KH theory to predict the binding sites and

binding modes of small molecules in proteins. In a recent study, Sugita and coworkers [253]
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have tested their 3D-RISM/KH approach on 18 different types of proteins and successfully

predicted the native binding modes for half of the systems.

However, the 3D-RISM/KH theory is not without limitations. First, there is an upper

limit of the query small molecules for a computationally feasible calculation. In practice,

a large ligand needs to be divided into fragments which are later re-connected based on

the calculated distributions. Second, 3D-RISM/KH takes longer than traditional docking

calculation to evaluate tens of thousands of ligands as drug candidates for a given target.

Third, the theory is based on correlation functions and may not be able to account for certain

discrete configurations and interactions that are important for an accurate prediction.

5.6.3 Kinetic effects

For many drug molecules, binding equilibrium might not even be reached or maintained in

the in vivo system. As a result, the thermodynamic equilibrium binding affinity may not

be a proper indicator for the in vivo efficacy of the drug. In contrast, residence time, or

the lifetime of the binary drug-target complex, measured by the inverse of the unbinding

constant koff, may be a better indicator for drug efficacy in vivo [431–435]. Indeed, a

growing amount of evidence points to the direct correlation between the residence time of a

drug molecule and its in vivo efficacy [431–441]; See Fig. 5.8 for a schematic visualization

of the binding process for systems with simple and complex transition and intermediate

states.

Currently, kinetic models such as unbiased MD, Markov state model, and weighted

ensemble and metadynamics (MTD) have demonstrated the success of kinetic modeling in

protein-targeted drug discovery [350, 434, 435, 442]. Similar kinetic studies for RNA-

ligand binding is expected to provide a novel strategy for RNA-targeted drug design [443].
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Figure 5.8: A simplified representation of the binding kinetics between the unbound recep-
tor (R), unbound ligand (L) and the bound receptor-ligand complex (RL). (a) The binding
kinetics of a system with only one transient state (TS) along the binding reaction coordi-
nate. The figure shows a binding scenario where both receptor and ligand undergo confor-
mational changes in the binding process. The kinetic residence time (i.e., the inverse of the
RNA-ligand dissociation constant koff) depends on the free energy difference (∆Goff) be-
tween the bound state and transient state, while the thermodynamic binding energy (∆Gbind)
is determined by the free energy difference between the unbound state (R+L) and bound
state (RL). (b) In practice, often the binding kinetic profile of a system contains multiple
transient states (TS) and intermediate states (IS) with a much more complicated kinetic
mechanism.

5.7 Conclusions and future perspectives

The rapidly growing therapeutic interest in RNA-targeted drug discovery causes an increas-

ing demand for computational tools for predicting RNA-ligand interactions. Virtual screen-

ing remains an important first step in novel drug design when only the targeted RNA infor-

mation is available. Various docking (sampling) methods and scoring functions have been

developed to accelerate this process and in the meantime, have deepened our understand-

ing of RNA-ligand binding mechanisms. Physics-based and knowledge-based approaches

have shown promising success in predicting ligand binding poses and binding affinities.

However, powered by advanced algorithms, machine-learning methods, although still in
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their infancy for RNA-ligand docking, have begun to show highly encouraging improved

performance compared to traditional approaches.

Computer-aided drug discovery has come a long way. Past efforts have been mainly

protein-centered. New RNA-based therapeutic design and computational methods have

emerged. With the growth of the database of known structures and kinetic and thermo-

dynamic measurements (e.g., binding affinity), data-driven methods, especially machine-

learning methods, are expected to play a more and more important role. Furthermore,

with the appreciation of RNA-ligand binding kinetic effects on in vivo efficacy of the drug,

kinetics-based models, although currently have not been fully explored for RNA-drug bind-

ing, would be developed at an accelerated pace. With the development of various compu-

tational tools developed for RNA-targeted drug discovery, a CASP- and D3R-like [444,

445] community-wide events with blind tests and well-curated benchmark datasets, similar

to the benchmarks widely used in the protein-ligand modeling community [367, 446–449],

would be much needed.
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Chapter 6

SPRank: an improved knowledge-based
scoring function for modeling
RNA-ligand interaction

Successful identification of high-quality lead compounds in the design of drug-like small

molecules requires a scoring function that can give an accurate quantification for the in-

teractions between RNA and small molecules. Here, we developed a knowledge-based

statistical potential scoring function, SPRank, for predicting RNA-ligand interactions. A

SYBYL-modified atom classification scheme is used to capture the intermolecular interac-

tions between different chemical species. The parameters of SPRank are optimized through

an iterative algorithm and the performance is evaluated by ten-fold cross-validation. On a

widely used test set, SPRank outperforms other scoring functions with 66.7% success rate

in identifying native binding modes for 42 RNA-ligand complexes, which is on par with

other RNA-focused scoring functions. And the Pearson correlation coefficient between ex-

perimental affinities and SPRank predicted scores is above 0.66 for a test set consisting of
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77 nucleic acid-ligand complexes.

6.1 Introduction

RNA molecules play critical roles in gene regulation [450–452] and protein synthesis [453–

455]. Small molecules specifically targeting these functional RNAs can significantly affect

the biological processes [456, 457]. Recently, RNA-based therapeutics has gained increas-

ing interest in the field [2]. Diseases with related proteins that are “undruggable” or difficult

to drug, i.e., proteins with a large flat surface without deep binding pockets, may be treated

by designing drug-like small molecules to target the corresponding RNA elements that

encode the proteins or regulate the biological processes. As an example, ligand-induced

conformational switch is crucial to the regulatory mechanism of riboswitch, which serves

as the critical regulatory element of its host messenger RNA [458]. One of the most ex-

tensively studied family of riboswitches is purine-sensing riboswitch. A small metabolite

such as hypoxanthine or guanine bound to B. subtilis xpt guanine riboswitch can lead to

the formation of a transcription terminator that “turns off” gene expression, In an adenine

riboswitch, adenine is recognized by the B. subtilis ydhL riboswitch and gene expression

can be activated by the disruption of the transcription terminator [459–461]. Due to their

high selectivity for small molecules and ubiquity in bacteria, riboswitches can serve as po-

tential antibacterial drug targets [462]. Another well-known example of small molecules

affecting gene expression is the inhibition of protein synthesis induced by amino-modified

glycoside, aminoglycoside [463, 464]. Aminoglycoside has the ability to interfere with

eukaryotic translation mechanism by binding to the ribosomal decoding region. The mech-

anism has been used clinically as Gram-negative antibacterial drug [463]. The family of

138



aminoglycoside antibiotics continues to grow with the addition of newly developed lead

compounds, which was found to improve read-through activity and reduce toxicity [465,

466].

Computer-aided drug screening is a cost-effective way for identifying the lead for a

large compound library. One of the core components to computationally model RNA-

ligand interactions is the scoring function, from which we can identify the native binding

mode and estimate binding affinity [467]. In the last decades, computational models have

led to the discovery of several potent RNA-binding small molecules. These successful

examples include the discovery of the lead compound (by the DOCK4 program) that dis-

rupts the ribosomal frameshifting of SARS-CoV (severe acute respiratory syndrome coro-

navirus) [105, 106] and novel small molecules that target the HIV type 1 (HIV-1) TAR

element (through the ICM program-aided virtual screening) [95]. These findings reveal the

power of computer-aided RNA-targeted drug design.

One of the main challenges for developing the scoring function is the limited knowl-

edge of the experimentally solved RNA-ligand complexes. Previous studies have included

protein-ligand complexes into the training set [112, 118]. Through training the parameters

for both RNA and protein systems, the approach could improve the overall performance

of the scoring function and avoid overfitting in the training process development of RNA-

targeted docking software. Examples are the scoring functions used in rDock [118] and

DOCK6 [112]. In recent years, advancement in the X-ray crystallography [468], Nuclear

Magnetic Resonance (NMR) Spectroscopy [469], and cryo-Electron Microscopy [470]

leads to an rapid increase in in high-resolution three-dimensional structures of RNA-ligand

complexes. Knowledge-based/machine learning scoring functions, such as SPA-LN [125],

ITScore-NL [126], RNAposer [128], AnnapuRNA [127], whose parameters are derived
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from training sets solely consisting of RNA-ligand complexes has shown noticeable im-

provements.

However, compared to the development of the protein-specific scoring functions, the

development of the RNA counterpart still lags. Much less effort is paid to predict the

binding affinity, current scoring functions designed for RNA targets shows moderate suc-

cess rate in native binding mode identification but limited performance in affinity estima-

tion [130]. The current best Pearson correlation coefficients (R) between the predicted

scores and the experimental binding affinities on the largest benchmark set (77 nucleic

acid-small molecule complexes) is achieved by an iterative statistical potential approach,

ITScore-NL [126], with R=0.64. The limited performance of current scoring functions de-

mand a scoring function specifically designed for RNA system with better predictive ability

in both binding mode identification and binding affinity estimation.

Knowledge-based/Statistical potential approach has been extended to RNA sys-

tem [124–126] due to its success in modeling protein-ligand interactions [359, 369]. The

performance of the derived scoring function highly depends on the chemical classification

of the atoms and definition of the interacting pairwise potentials. DrugScoreRNA [344]

uses SYBYL (mol2) [471] atom types to differentiate the interacting atom pairs through a

distance-based potential. Kscore, a scoring function that employs a base-sensitive atom-

typing scheme and distance-based potential, has achieved a Pearson correlation coefficient

R=0.81 in binding affinity estimation for 15 RNA-ligand complexes [123]. In addition

to the distance-dependent potential, LigandRNA [124] introduces an angle-dependent

three-body potential, which improves the performance in binding mode identification. In

this paper, we adopt a modified SYBYL-based atom classification scheme and an iterative

procedure to derive an improved scoring function, namely, SPRank. The statistical
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potential derived from a training set with 130 non-redundant RNA-ligand complexes can

improve the success rate of the native binding mode identification.

6.2 Materials and Methods

6.2.1 Curating the dataset

We downloaded all the RNA-ligand complexes from Protein Data Bank (PDB) [208]. Since

the accuracy of the knowledge-based model depends on the quality of the training set [472],

the following steps were used to compile our training set. First, we clustered redundant

RNA-ligand complexes with different PDB identifiers (IDs) into the same group and se-

lected the complex with the highest resolution as the representative case. Second, RNA

structures with modified nucleotides were also discarded and ligands with a number of

heavy atoms less than 5 were excluded. Finally, we removed RNA-ligand complexes in-

cluded in the pose-identification set, which contains 42 RNA-ligand complexes and was

used as a benchmark set in literature [124]. After the above steps, the training set was con-

structed with 130 RNA-ligand complexes. Besides the pose-identification set, a second test

set (affinity-estimation set) was also prepared for model validation. Affinity-estimation set

contains 77 nucleic acid-ligand complexes collected from the PDBBind database (version

2014) [377] with experimental binding affinity data. The PDB IDs of the training set and

test sets can be found in Table 6.1.

To generate an ensemble of diverse decoys for the training set, we performed self dock-

ing and blind docking for each RNA-ligand complex in training set via rDock with docksolv

score [118]. Reference-ligand method was used in self docking with the radius of the sphere
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set to 2, 4, 6, 8, and 10Åfor each docking run. In the blind docking, the two-sphere method

was employed with the radius of the outer sphere set to 20, 30, and 50Åfor each docking

run. 50 decoys were generated for each radius, and we were able to compile a confor-

mational ensemble with 400 decoys for each training case. Decoys for pose-identification

set and affinity-estimation set were generated in the same way as those generated in the

training set.

Table 6.1: PDB IDs of training set and test sets

Training set
1RAW 1ARJ 1ET4 1I9V 1LC4 1LVJ 1NTA 1O15 1O9M 1QD3
2GCV 1Y27 1YLS 1YRJ 2AU4 2B57 2ESJ 2ESI 2F4T 2G9C
2LWK 2HOO 2JUK 2KGP 2KTZ 2KU0 2KX8 2L1V 2L8H 2L94
2YIE 2M4Q 2MIY 2MXS 2O3V 2QWY 2XNW 2XNZ 2XO0 2XO1
3FO6 2Z74 3B4A 3DIL 3DIR 3DJ0 3GX3 3DVV 3E5C 3F4H

3MXH 3FU2 3G4M 3GAO 3GCA 3OWI 3GOT 3DS7 3IQN 3LA5
3SLM 3NPQ 3GER 3Q3Z 3Q50 3RKF 3S4P 3SD3 3SKI 3SKZ
4LVW 3SUH 3TZR 4ERJ 4FE5 4FRG 4JF2 4KQY 4L81 4LVV
4NYD 4LVX 4LVY 4LVZ 4LW0 4LX5 4LX6 4NYA 4NYB 4NYC
4YAZ 4NYG 4P95 4PDQ 4QK8 4QLN 4RZD 4TS2 4TZX 4XWF
5O62 4YB0 4ZNP 5BJO 5BTP 5BWS 5C45 5KPY 5KVJ 5KX9
6DLT 5OB3 5Z1H 5V3F 5XI1 5V0O 6AZ4 6BFB 6C63 6CK5
6QN3 6DMC 6E8S 6E1S 6E1W 6DN2 6FZ0 6HAG 6HBT 6HC5

Pose-identification set
1AJU 1AM0 1BYJ 1EHT 1EI2 1F1T 1F27 1FMN 1FYP 1J7T
1KOC 1KOD 1MWL 1NBK 1NEM 1PBR 1Q8N 1TOB 1UTS 1UUD
1UUI 1XPF 1Y26 2BE0 2BEE 2ET8 2F4U 2FCZ 2FD0 2GDI
2O3X 2OE5 2PWT 2TOB 4P20 3D2X 3GX2 3SUX 1HNW 1FJG
1XBP 2OGN

Affinity-estimation set
1ARJ 1BYJ 1F1T 1F27 1FYP 1I9V 1Q8N 1QD3 1UTS 1UUD
1YKV 1YRJ 2AU4 2B57 2BE0 2BEE 2F4S 2F4T 2F4U 2G5K
2G9C 2KGP 2KTZ 2KU0 2KX8 2L94 2O3W 2O3X 2XNW 2XNZ
2XO0 2XO1 2YDH 2YGH 3DS7 3E5C 3FO4 3FO6 3FU2 3G4M
3GAO 3GER 3GES 3GOG 3GOT 3LA5 3MUM 3MUR 3MXH 3NPN
3OWZ 3Q3Z 3Q50 3S4P 3SD3 3SLM 4AOB 4ERJ 4FE5 4JF2
4KQY 4LVV 1CVX 1CVY 1DB6 1NZM 1P96 1QV4 1QV8 1R4E
2D55 2JWQ 2LOA 2MB3 316D 407D 408D
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6.2.2 Deriving the statistical potential with an iterative algorithm

The pairwise atomic interaction potential is derived from the inverse Boltzmann’s law:

∆ui,j(r) = −kBT ln
fOBSi,j (r)

fREFi,j (r)
(6.1)

Here, (i, j) denote the atom type i and j for an interacting atom pair. fOBSi,j (r) and fREFi,j (r)

are the probability densities of the atom pair (i, j) at the distance r for the experimentally

observed state and reference state, respectively. kB is the Boltzmann constant and T is the

absolute temperature.

The goal of the iterative algorithm is to derive a set of pairwise atomic potentials which

can be used to distinguish the native/near-native binding pose from a pool of non-native

poses (decoys). We followed the iterative algorithm that was first proposed by Thomas and

Dill [369]. Previous studies have validated this iterative algorithm in both protein-ligand

interaction modeling [359] and RNA structure prediction [473].

To determine the pairwise potential, we categorize atoms into 19 types based on their

SYBYL types, see Table 6.2. For oxygen and nitrogen atoms, the classification depends on

their ability to be hydrogen-bond acceptor/donor. And the classification of carbon atoms

is adopted from ITScore [359]. Through the statistical analysis, we only keep the pairwise

contacts with more than 300 occurrences in the training set which left us with 361 pairwise

contacts.
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Table 6.2: Atom definition for RNA and ligand.

SYBYL Atom Definition SYBYL Atom Definition
type type type type

C.2, C.ar,
C.cat

C2NO sp2 carbon bonded to
1 negatively charged oxygen

N.2, N.am,
N.ar, N.pl3

N21 sp2 nitrogen bonded to
1 non-hydrogen atom

C2PN sp2 carbon bonded to
1 positively charged nitrogen

N22 sp2 nitrogen bonded to
2 non-hydrogen atoms

C2N amide carbon N2 other sp2 nitrogen

C2O carbonyl carbon
except the above N.4, N.3

NP positively charged
sp3 nitrogen

C2 other sp2 carbon N3 other sp3 nitrogen

C.3
C3C sp3 carbon bonded to

carbon or hydrogen only
O.co2 O2C carbonyl oxygen

O.2 O2 sp2 oxygen
C3 other sp3 carbon

O.3

O31 sp3 oxygen bonded to
1 non-hydrogen atomS.2, S.3

S.o, S.o2 S sulfur

F, Cl, Br Ha halogen O32 sp3 oxygen bonded to
2 non-hydrogen atoms

P.3 P phosphorus

6.2.3 Training with ten-fold cross-validation

To maximize the training efficiency and avoid overfitting, we adopted ten-fold cross-

validation to optimize the parameters. The training set was randomly divided into ten

subsets. Each time the model was trained on nine subsets and the remaining subset was

used to validate the model. The parameters with the best performance on the remaining

subset were kept, and the average of the parameters obtained from ten trained models is

used in the final scoring function.
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6.3 Results and discussion

6.3.1 Examining the performance for native binding mode identifica-
tion

Our SPRank model is compared with other state-of-art scoring functions, namely, ITScore-

NL [126] and RLDOCK [119, 120]. As shown in Fig. 6.1, success rate is used to eval-

uate the performance of the model with both top-1 and top-3 predictions on the pose-

identification set. The criteria for calculating the success rate is reported in the C(rank,

RMSD) format. For example, C(1, 2.0) represents the success rate for the top-1 prediction

that has RMSD <2.0 Å to the native pose. As shown in Fig. 6.1a, if C(1,2.0) (top-1 predic-

tion, red) is used, RLDOCK correctly identify the binding modes of 21 complexes out of

38 non-ribosomal complexes with a success rate of 55.26%. Both SPRank and ITScore-NL

can identify the native binding modes for over half of the 42 complexes, with success rates

of 45.24% and 45.24%, respectively. For a loose criteria C(3,2.0) (top-3 prediction, blue),

SPRank outperforms other scoring functions with a success rate of 61.90%.

A detailed analysis of the RMSD distribution for the correct identifications with

C(1,2.0) is shown in Fig. 6.1b. The number of successful identifications within different

RMSD cutoff intervals are shown with different colors. Among the 21 binding modes

correctly predicted by SPRank with C(1,2.0), more than half of the cases have RMSDs

below 1.0Å and shows a slightly better performance than RLDOCK. In general, both

SPRank and RLDOCK have comparable performance and outperform other scoring

functions in native binding mode identification.
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Figure 6.1: The comparison between SPRank and other scoring functions [119, 124, 126]
on the pose-identification set with 42 RNA-ligand complexes. (a) The success rate of dif-
ferent scoring functions for the top-1 (red) and top-3 (blue) predictions. For both top-1 and
top-3 predictions, correct prediction requires that at least one of the top-ranked poses is
within RMSD 2.0Å relative to the native pose. (b) The number of the native binding modes
correctly identified by various scoring functions with top-1 prediction and RMSD cutoff 2.0
Å. The successful cases are shown in different colors, where green/yellow/orange/red de-
notes the cases with the RMSD within (0.0Å,1.0Å)/(1.0Å,1.5Å)/(1.5Å,2.0Å)/(2.0Å,2.5Å)
RMSD intervals, respectively. The data of ITScore-NL, RLDOCK, LigandRNA, and
DOCK 6 were collected from previous publications [119, 124, 126].
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6.3.2 Examining the performance for binding affinity estimation

Accurate prediction of the binding affinity for any given RNA-ligand complex is a much

more challenging task than the binding mode identification. Because binding affinity is sen-

sitive to small deviations of the relative positions between RNA and bound ligand. Optimal

binding affinity estimation can only be obtained when the bound ligand is close enough to

the native binding mode. However, with current docking software, it is difficult to position

and orient the ligand to precisely reproduce the native binding mode, even when the pocket

is already known. Moreover, the inherent flexibility of RNA molecules implies that the

observed binding affinity should be the average of all the RNA-ligand complexes in a con-

formational ensemble. In practice, using a generated conformational ensemble for a given

bound ligand and keeping the RNA molecule rigid is a much more reasonable approach to

estimate the binding affinity due to the consideration of computational cost.

a b

Figure 6.2: The Pearson correlation coefficients between the experimental affinities and the
predicted scores on the affinity-estimation set (77 nucleic acid-ligand complexes) for vari-
ous scoring functions. (a) The comparison of the correlation values between SPRank and
other scoring functions. The SPRank(ensemble) and SPRank(single) represent predictions
with only experimental solved structures and predictions with the generated conformational
ensembles, respectively. The scoring function associated with a specific docking engine is
shown in score(engine) format. (b) The plot of both experimental affinities and the scores
predicted by SPRank (ensemble) on the affinity-estimation set.
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In this study, we used SPRank with two different approaches to estimate the binding

affinity for any given RNA-ligand complex, namely, SPRank (single) and SPRank (ensem-

ble). In the first case, SPRank (single), only the experimentally solved complex structure

is used for predicting binding affinity. The Pearson correlation coefficients (R) between

experimental binding affinities and predicted scores of various scoring functions on the

affinity-estimation set are shown in Fig. 6.2a. Clearly SPRank (single) and ITScore-NL

both outperform other scoring functions and are able to achieve similar correlations with

R=0.63 and R=0.64, respectively. In the second case, SPRank (ensemble), the predicted

score is a Boltzmann weighted average across the entire ligand conformational ensemble

for the given RNA-ligand complex. The ligand conformational ensemble is constructed by

including all the sampled poses with RMSD less than 5.0Å relative to the native pose (i.e.,

the sampled poses within the binding pocket). This way, we are able to slightly increase

the correlation from R=0.63 for SPRank (single) to R=0.664 for SPRank (ensemble).

6.4 Conclusion

We have developed a knowledge-based scoring function, SPRank, to identify the native

ligand-binding mode and estimate the ligand-binding affinity. The pairwise potentials

are defined by the modified SYBYL atom types and functions of the atom-pair distances.

The parameters are optimized iteratively through ten-fold cross-validation. On both pose-

identification set and affinity-estimation set, SPRank exhibits comparable performance as

the state-of-art models. Results on the affinity-estimation set show that the correlation can

be further improved through the ensemble-based scoring scheme.

148



Bibliography

[1] Sarah Djebali et al. “Landscape of transcription in human cells”. In: Na-

ture 489.7414 (2012), pp. 101–108. ISSN: 1476-4687. DOI: 10 . 1038 /

nature11233. URL: https://doi.org/10.1038/nature11233.

[2] Katherine Deigan Warner, Christine E. Hajdin, and Kevin M. Weeks. “Principles

for targeting RNA with drug-like small molecules”. In: Nature Reviews Drug Dis-

covery 17.8 (2018), pp. 547–558. ISSN: 1474-1784. DOI: 10.1038/nrd.2018.

93. URL: https://doi.org/10.1038/nrd.2018.93.

[3] Francesca Tessaro and Leonardo Scapozza. “How ‘Protein-Docking’ Trans-

lates into the New Emerging Field of Docking Small Molecules to Nucleic

Acids?” In: Molecules 25.12 (2020). ISSN: 1420-3049. DOI: 10 . 3390 /

molecules25122749. URL: https : / / www . mdpi . com / 1420 -

3049/25/12/2749.

[4] Matthew G. Costales et al. “How We Think about Targeting RNA with Small

Molecules”. In: Journal of Medicinal Chemistry 63.17 (2020). PMID: 32212706,

pp. 8880–8900. DOI: 10.1021/acs.jmedchem.9b01927. eprint: https:

149

https://doi.org/10.1038/nature11233
https://doi.org/10.1038/nature11233
https://doi.org/10.1038/nature11233
https://doi.org/10.1038/nrd.2018.93
https://doi.org/10.1038/nrd.2018.93
https://doi.org/10.1038/nrd.2018.93
https://doi.org/10.3390/molecules25122749
https://doi.org/10.3390/molecules25122749
https://www.mdpi.com/1420-3049/25/12/2749
https://www.mdpi.com/1420-3049/25/12/2749
https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1021/acs.jmedchem.9b01927


//doi.org/10.1021/acs.jmedchem.9b01927. URL: https://doi.

org/10.1021/acs.jmedchem.9b01927.

[5] Michele Clamp et al. “Distinguishing protein-coding and noncoding genes in

the human genome”. In: Proceedings of the National Academy of Sciences

104.49 (2007), pp. 19428–19433. ISSN: 0027-8424. DOI: 10 . 1073 / pnas .

0709013104. eprint: https://www.pnas.org/content/104/49/

19428.full.pdf. URL: https://www.pnas.org/content/104/49/

19428.

[6] Iakes Ezkurdia et al. “Multiple evidence strands suggest that there may be as few as

19 000 human protein-coding genes”. In: Human Molecular Genetics 23.22 (June

2014), pp. 5866–5878. ISSN: 0964-6906. DOI: 10.1093/hmg/ddu309. eprint:

https://academic.oup.com/hmg/article-pdf/23/22/5866/

17261056/ddu309.pdf. URL: https://doi.org/10.1093/hmg/

ddu309.

[7] Joseph C. Somody, Stephen S. MacKinnon, and Andreas Windemuth. “Struc-

tural coverage of the proteome for pharmaceutical applications”. In: Drug

Discovery Today 22.12 (2017), pp. 1792–1799. ISSN: 1359-6446. DOI:

https : / / doi . org / 10 . 1016 / j . drudis . 2017 . 08 . 004. URL:

https : / / www . sciencedirect . com / science / article / pii /

S1359644617301642.

150

https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1021/acs.jmedchem.9b01927
https://doi.org/10.1073/pnas.0709013104
https://doi.org/10.1073/pnas.0709013104
https://www.pnas.org/content/104/49/19428.full.pdf
https://www.pnas.org/content/104/49/19428.full.pdf
https://www.pnas.org/content/104/49/19428
https://www.pnas.org/content/104/49/19428
https://doi.org/10.1093/hmg/ddu309
https://academic.oup.com/hmg/article-pdf/23/22/5866/17261056/ddu309.pdf
https://academic.oup.com/hmg/article-pdf/23/22/5866/17261056/ddu309.pdf
https://doi.org/10.1093/hmg/ddu309
https://doi.org/10.1093/hmg/ddu309
https://doi.org/https://doi.org/10.1016/j.drudis.2017.08.004
https://www.sciencedirect.com/science/article/pii/S1359644617301642
https://www.sciencedirect.com/science/article/pii/S1359644617301642


[8] Andrew L. Hopkins and Colin R. Groom. “The druggable genome”. In: Nature

Reviews Drug Discovery 1.9 (2002), pp. 727–730. ISSN: 1474-1784. DOI: 10.

1038/nrd892. URL: https://doi.org/10.1038/nrd892.

[9] John P. Overington, Bissan Al-Lazikani, and Andrew L. Hopkins. “How many drug

targets are there?” In: Nature Reviews Drug Discovery 5.12 (2006), pp. 993–996.

ISSN: 1474-1784. DOI: 10.1038/nrd2199. URL: https://doi.org/10.

1038/nrd2199.

[10] Scott J Dixon and Brent R Stockwell. “Identifying druggable disease-modifying

gene products”. In: Current Opinion in Chemical Biology 13.5 (2009).

Omics/Biopolymers/Model Systems, pp. 549 –555. ISSN: 1367-5931. DOI:

https : / / doi . org / 10 . 1016 / j . cbpa . 2009 . 08 . 003. URL:

http : / / www . sciencedirect . com / science / article / pii /

S1367593109001070.

[11] Phillip A. Sharp. “The Centrality of RNA”. In: Cell 136.4 (2009), pp. 577–580.

ISSN: 0092-8674. DOI: https://doi.org/10.1016/j.cell.2009.02.

007. URL: https://www.sciencedirect.com/science/article/

pii/S0092867409001433.

[12] James Chappell et al. “The centrality of RNA for engineering gene expression”.

In: Biotechnology Journal 8.12 (2013), pp. 1379–1395. DOI: https://doi.

org/10.1002/biot.201300018. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/biot.201300018. URL: https://

onlinelibrary.wiley.com/doi/abs/10.1002/biot.201300018.

151

https://doi.org/10.1038/nrd892
https://doi.org/10.1038/nrd892
https://doi.org/10.1038/nrd892
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nrd2199
https://doi.org/10.1038/nrd2199
https://doi.org/https://doi.org/10.1016/j.cbpa.2009.08.003
http://www.sciencedirect.com/science/article/pii/S1367593109001070
http://www.sciencedirect.com/science/article/pii/S1367593109001070
https://doi.org/https://doi.org/10.1016/j.cell.2009.02.007
https://doi.org/https://doi.org/10.1016/j.cell.2009.02.007
https://www.sciencedirect.com/science/article/pii/S0092867409001433
https://www.sciencedirect.com/science/article/pii/S0092867409001433
https://doi.org/https://doi.org/10.1002/biot.201300018
https://doi.org/https://doi.org/10.1002/biot.201300018
https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.201300018
https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.201300018
https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201300018
https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201300018


[13] Stanley T. Crooke et al. “RNA-Targeted Therapeutics”. In: Cell Metabolism 27.4

(2018), pp. 714–739. ISSN: 1550-4131. DOI: https://doi.org/10.1016/

j.cmet.2018.03.004. URL: http://www.sciencedirect.com/

science/article/pii/S1550413118301827.

[14] Wei Yin and Mark Rogge. “Targeting RNA: A Transformative Therapeutic

Strategy”. In: Clinical and Translational Science 12.2 (2019), pp. 98–112. DOI:

https://doi.org/10.1111/cts.12624. eprint: https://ascpt.

onlinelibrary.wiley.com/doi/pdf/10.1111/cts.12624. URL:

https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/

cts.12624.

[15] Ai-Ming Yu et al. “RNA therapy: Are we using the right molecules?” In:

Pharmacology & Therapeutics 196 (2019), pp. 91 –104. ISSN: 0163-7258. DOI:

https : / / doi . org / 10 . 1016 / j . pharmthera . 2018 . 11 . 011.

URL: http://www.sciencedirect.com/science/article/pii/

S016372581830216X.

[16] Ai-Ming Yu, Young Hee Choi, and Mei-Juan Tu. “RNA Drugs and RNA Targets

for Small Molecules: Principles, Progress, and Challenges”. In: Pharmacologi-

cal Reviews 72.4 (2020). Ed. by RHIAN M. TOUYZ, pp. 862–898. ISSN: 0031-

6997. DOI: 10.1124/pr.120.019554. eprint: https://pharmrev.

aspetjournals.org/content/72/4/862.full.pdf. URL: https:

//pharmrev.aspetjournals.org/content/72/4/862.

152

https://doi.org/https://doi.org/10.1016/j.cmet.2018.03.004
https://doi.org/https://doi.org/10.1016/j.cmet.2018.03.004
http://www.sciencedirect.com/science/article/pii/S1550413118301827
http://www.sciencedirect.com/science/article/pii/S1550413118301827
https://doi.org/https://doi.org/10.1111/cts.12624
https://ascpt.onlinelibrary.wiley.com/doi/pdf/10.1111/cts.12624
https://ascpt.onlinelibrary.wiley.com/doi/pdf/10.1111/cts.12624
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/cts.12624
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/cts.12624
https://doi.org/https://doi.org/10.1016/j.pharmthera.2018.11.011
http://www.sciencedirect.com/science/article/pii/S016372581830216X
http://www.sciencedirect.com/science/article/pii/S016372581830216X
https://doi.org/10.1124/pr.120.019554
https://pharmrev.aspetjournals.org/content/72/4/862.full.pdf
https://pharmrev.aspetjournals.org/content/72/4/862.full.pdf
https://pharmrev.aspetjournals.org/content/72/4/862
https://pharmrev.aspetjournals.org/content/72/4/862


[17] Colleen M. Connelly, Michelle H. Moon, and John S. Schneekloth. “The

Emerging Role of RNA as a Therapeutic Target for Small Molecules”. In:

Cell Chemical Biology 23.9 (2016), pp. 1077 –1090. ISSN: 2451-9456. DOI:

https://doi.org/10.1016/j.chembiol.2016.05.021. URL:

http : / / www . sciencedirect . com / science / article / pii /

S2451945616302525.

[18] Thomas Hermann. “Small molecules targeting viral RNA”. In: WIREs RNA 7.6

(2016), pp. 726–743. DOI: https://doi.org/10.1002/wrna.1373.

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/

wrna.1373. URL: https://onlinelibrary.wiley.com/doi/abs/

10.1002/wrna.1373.

[19] Anita Donlic and Amanda E. Hargrove. “Targeting RNA in mammalian sys-

tems with small molecules”. In: WIREs RNA 9.4 (2018), e1477. DOI: https:

//doi.org/10.1002/wrna.1477. eprint: https://onlinelibrary.

wiley . com / doi / pdf / 10 . 1002 / wrna . 1477. URL: https :

//onlinelibrary.wiley.com/doi/abs/10.1002/wrna.1477.

[20] Samantha M. Meyer et al. “Small molecule recognition of disease-relevant RNA

structures”. In: Chem. Soc. Rev. 49 (19 2020), pp. 7167–7199. DOI: 10.1039/

D0CS00560F. URL: http://dx.doi.org/10.1039/D0CS00560F.

[21] Yanqiu Shao and Qiangfeng Cliff Zhang. “Targeting RNA structures in diseases

with small molecules”. In: Essays in Biochemistry 64.6 (2020), pp. 955–966. ISSN:

153

https://doi.org/https://doi.org/10.1016/j.chembiol.2016.05.021
http://www.sciencedirect.com/science/article/pii/S2451945616302525
http://www.sciencedirect.com/science/article/pii/S2451945616302525
https://doi.org/https://doi.org/10.1002/wrna.1373
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wrna.1373
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wrna.1373
https://onlinelibrary.wiley.com/doi/abs/10.1002/wrna.1373
https://onlinelibrary.wiley.com/doi/abs/10.1002/wrna.1373
https://doi.org/https://doi.org/10.1002/wrna.1477
https://doi.org/https://doi.org/10.1002/wrna.1477
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wrna.1477
https://onlinelibrary.wiley.com/doi/pdf/10.1002/wrna.1477
https://onlinelibrary.wiley.com/doi/abs/10.1002/wrna.1477
https://onlinelibrary.wiley.com/doi/abs/10.1002/wrna.1477
https://doi.org/10.1039/D0CS00560F
https://doi.org/10.1039/D0CS00560F
http://dx.doi.org/10.1039/D0CS00560F


0071-1365. DOI: 10.1042/EBC20200011. URL: https://doi.org/10.

1042/EBC20200011.

[22] Vinod K. Misra and David E. Draper. “On the role of magnesium ions in RNA

stability”. In: Biopolymers 48.2-3 (1998), pp. 113–135. DOI: https://doi.

org/10.1002/(SICI)1097-0282(1998)48:2<113::AID-BIP3>3.

0.CO;2-Y. eprint: https://onlinelibrary.wiley.com/doi/pdf/

10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%

3AAID-BIP3%3E3.0.CO%3B2-Y. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/%28SICI%291097-0282%281998%

2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y.

[23] Ignacio Tinoco and Carlos Bustamante. “How RNA folds”. In: Journal of

Molecular Biology 293.2 (1999), pp. 271–281. ISSN: 0022-2836. DOI: https:

/ / doi . org / 10 . 1006 / jmbi . 1999 . 3001. URL: https : / / www .

sciencedirect.com/science/article/pii/S0022283699930012.

[24] Vinod K. Misra and David E. Draper. “The linkage between magnesium bind-

ing and RNA folding11Edited by B. Honig”. In: Journal of Molecular Biology

317.4 (2002), pp. 507–521. ISSN: 0022-2836. DOI: https://doi.org/10.

1006/jmbi.2002.5422. URL: https://www.sciencedirect.com/

science/article/pii/S0022283602954227.

[25] DAVID E. DRAPER. “A guide to ions and RNA structure”. In: RNA 10.3 (2004),

pp. 335–343. DOI: 10.1261/rna.5205404. eprint: http://rnajournal.

154

https://doi.org/10.1042/EBC20200011
https://doi.org/10.1042/EBC20200011
https://doi.org/10.1042/EBC20200011
https://doi.org/https://doi.org/10.1002/(SICI)1097-0282(1998)48:2<113::AID-BIP3>3.0.CO;2-Y
https://doi.org/https://doi.org/10.1002/(SICI)1097-0282(1998)48:2<113::AID-BIP3>3.0.CO;2-Y
https://doi.org/https://doi.org/10.1002/(SICI)1097-0282(1998)48:2<113::AID-BIP3>3.0.CO;2-Y
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0282%281998%2948%3A2%3C113%3A%3AAID-BIP3%3E3.0.CO%3B2-Y
https://doi.org/https://doi.org/10.1006/jmbi.1999.3001
https://doi.org/https://doi.org/10.1006/jmbi.1999.3001
https://www.sciencedirect.com/science/article/pii/S0022283699930012
https://www.sciencedirect.com/science/article/pii/S0022283699930012
https://doi.org/https://doi.org/10.1006/jmbi.2002.5422
https://doi.org/https://doi.org/10.1006/jmbi.2002.5422
https://www.sciencedirect.com/science/article/pii/S0022283602954227
https://www.sciencedirect.com/science/article/pii/S0022283602954227
https://doi.org/10.1261/rna.5205404
http://rnajournal.cshlp.org/content/10/3/335.full.pdf+html
http://rnajournal.cshlp.org/content/10/3/335.full.pdf+html


cshlp.org/content/10/3/335.full.pdf+html. URL: http://

rnajournal.cshlp.org/content/10/3/335.abstract.

[26] David E. Draper, Dan Grilley, and Ana Maria Soto. “Ions and RNA Folding”.

In: Annual Review of Biophysics and Biomolecular Structure 34.1 (2005). PMID:

15869389, pp. 221–243. DOI: 10.1146/annurev.biophys.34.040204.

144511. eprint: https://doi.org/10.1146/annurev.biophys.

34.040204.144511. URL: https://doi.org/10.1146/annurev.

biophys.34.040204.144511.

[27] David E. Draper. “RNA Folding: Thermodynamic and Molecular Descriptions of

the Roles of Ions”. In: Biophysical Journal 95.12 (2008), pp. 5489–5495. ISSN:

0006-3495. DOI: https://doi.org/10.1529/biophysj.108.131813.

URL: https://www.sciencedirect.com/science/article/pii/

S0006349508819716.

[28] David E. Draper. “Folding of RNA tertiary structure: Linkages between back-

bone phosphates, ions, and water”. In: Biopolymers 99.12 (2013), pp. 1105–1113.

DOI: https://doi.org/10.1002/bip.22249. eprint: https://

onlinelibrary.wiley.com/doi/pdf/10.1002/bip.22249. URL:

https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.

22249.

[29] Nina M Fischer et al. “Influence of Na+ and Mg2+ ions on RNA structures stud-

ied with molecular dynamics simulations”. In: Nucleic Acids Research 46.10 (Apr.

2018), pp. 4872–4882. ISSN: 0305-1048. DOI: 10.1093/nar/gky221. eprint:

155

http://rnajournal.cshlp.org/content/10/3/335.full.pdf+html
http://rnajournal.cshlp.org/content/10/3/335.full.pdf+html
http://rnajournal.cshlp.org/content/10/3/335.abstract
http://rnajournal.cshlp.org/content/10/3/335.abstract
https://doi.org/10.1146/annurev.biophys.34.040204.144511
https://doi.org/10.1146/annurev.biophys.34.040204.144511
https://doi.org/10.1146/annurev.biophys.34.040204.144511
https://doi.org/10.1146/annurev.biophys.34.040204.144511
https://doi.org/10.1146/annurev.biophys.34.040204.144511
https://doi.org/10.1146/annurev.biophys.34.040204.144511
https://doi.org/https://doi.org/10.1529/biophysj.108.131813
https://www.sciencedirect.com/science/article/pii/S0006349508819716
https://www.sciencedirect.com/science/article/pii/S0006349508819716
https://doi.org/https://doi.org/10.1002/bip.22249
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.22249
https://onlinelibrary.wiley.com/doi/pdf/10.1002/bip.22249
https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.22249
https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.22249
https://doi.org/10.1093/nar/gky221


https://academic.oup.com/nar/article-pdf/46/10/4872/

24962537/gky221.pdf. URL: https://doi.org/10.1093/nar/

gky221.

[30] Anna Marie Pyle. “Ribozymes: A Distinct Class of Metalloenzymes”. In: Sci-

ence 261.5122 (1993), pp. 709–714. DOI: 10 . 1126 / science . 7688142.

eprint: https://www.science.org/doi/pdf/10.1126/science.

7688142. URL: https://www.science.org/doi/abs/10.1126/

science.7688142.

[31] Snorri Th. Sigurdsson and Fritz Eckstein. “Structure-function relationships

of hammerhead ribozymes: from understanding to applications”. In: Trends

in Biotechnology 13.8 (1995), pp. 286–289. ISSN: 0167-7799. DOI: https :

/ / doi . org / 10 . 1016 / S0167 - 7799(00 ) 88966 - 0. URL:

https : / / www . sciencedirect . com / science / article / pii /

S0167779900889660.

[32] Jamie H. Cate, Raven L. Hanna, and Jennifer A. Doudna. “A magnesium ion core at

the heart of a ribozyme domain”. In: Nature Structural Biology 4.7 (1997), pp. 553–

558. ISSN: 1545-9985. DOI: 10.1038/nsb0797-553. URL: https://doi.

org/10.1038/nsb0797-553.

[33] Thomas Hermann et al. “Evidence for a hydroxide ion bridging two magnesium

ions at the active site of the hammerhead ribozyme”. In: Nucleic Acids Research

25.17 (Sept. 1997), pp. 3421–3427. ISSN: 0305-1048. DOI: 10.1093/nar/

25.17.3421. eprint: https://academic.oup.com/nar/article-

156

https://academic.oup.com/nar/article-pdf/46/10/4872/24962537/gky221.pdf
https://academic.oup.com/nar/article-pdf/46/10/4872/24962537/gky221.pdf
https://doi.org/10.1093/nar/gky221
https://doi.org/10.1093/nar/gky221
https://doi.org/10.1126/science.7688142
https://www.science.org/doi/pdf/10.1126/science.7688142
https://www.science.org/doi/pdf/10.1126/science.7688142
https://www.science.org/doi/abs/10.1126/science.7688142
https://www.science.org/doi/abs/10.1126/science.7688142
https://doi.org/https://doi.org/10.1016/S0167-7799(00)88966-0
https://doi.org/https://doi.org/10.1016/S0167-7799(00)88966-0
https://www.sciencedirect.com/science/article/pii/S0167779900889660
https://www.sciencedirect.com/science/article/pii/S0167779900889660
https://doi.org/10.1038/nsb0797-553
https://doi.org/10.1038/nsb0797-553
https://doi.org/10.1038/nsb0797-553
https://doi.org/10.1093/nar/25.17.3421
https://doi.org/10.1093/nar/25.17.3421
https://academic.oup.com/nar/article-pdf/25/17/3421/3646952/25-17-3421.pdf
https://academic.oup.com/nar/article-pdf/25/17/3421/3646952/25-17-3421.pdf


pdf/25/17/3421/3646952/25-17-3421.pdf. URL: https://doi.

org/10.1093/nar/25.17.3421.

[34] Shu-ou Shan et al. “Three metal ions at the active site of the Tetrahymena group

I ribozyme”. In: Proceedings of the National Academy of Sciences 96.22 (1999),

pp. 12299–12304. ISSN: 0027-8424. DOI: 10.1073/pnas.96.22.12299.

eprint: https://www.pnas.org/content/96/22/12299.full.pdf.

URL: https://www.pnas.org/content/96/22/12299.

[35] Raven Hanna and Jennifer A Doudna. “Metal ions in ribozyme folding and cataly-

sis”. In: Current Opinion in Chemical Biology 4.2 (2000), pp. 166–170. ISSN: 1367-

5931. DOI: https://doi.org/10.1016/S1367-5931(99)00071-X.

URL: https://www.sciencedirect.com/science/article/pii/

S136759319900071X.

[36] Mathias Brännvall and Leif A. Kirsebom. “Metal ion cooperativity in ribozyme

cleavage of RNA”. In: Proceedings of the National Academy of Sciences

98.23 (2001), pp. 12943–12947. ISSN: 0027-8424. DOI: 10 . 1073 / pnas .

221456598. eprint: https : / / www . pnas . org / content / 98 / 23 /

12943.full.pdf. URL: https://www.pnas.org/content/98/23/

12943.

[37] Joachim Schnabl and Roland KO Sigel. “Controlling ribozyme activity by metal

ions”. In: Current Opinion in Chemical Biology 14.2 (2010). Biocatalysis and

Biotransformation/Bioinorganic Chemistry, pp. 269–275. ISSN: 1367-5931.

DOI: https://doi.org/10.1016/j.cbpa.2009.11.024. URL:

157

https://academic.oup.com/nar/article-pdf/25/17/3421/3646952/25-17-3421.pdf
https://academic.oup.com/nar/article-pdf/25/17/3421/3646952/25-17-3421.pdf
https://doi.org/10.1093/nar/25.17.3421
https://doi.org/10.1093/nar/25.17.3421
https://doi.org/10.1073/pnas.96.22.12299
https://www.pnas.org/content/96/22/12299.full.pdf
https://www.pnas.org/content/96/22/12299
https://doi.org/https://doi.org/10.1016/S1367-5931(99)00071-X
https://www.sciencedirect.com/science/article/pii/S136759319900071X
https://www.sciencedirect.com/science/article/pii/S136759319900071X
https://doi.org/10.1073/pnas.221456598
https://doi.org/10.1073/pnas.221456598
https://www.pnas.org/content/98/23/12943.full.pdf
https://www.pnas.org/content/98/23/12943.full.pdf
https://www.pnas.org/content/98/23/12943
https://www.pnas.org/content/98/23/12943
https://doi.org/https://doi.org/10.1016/j.cbpa.2009.11.024


https : / / www . sciencedirect . com / science / article / pii /

S1367593109001951.
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of Drugs That Target Bacterial Gene-Regulatory RNAs”. In: Accounts of Chemi-

cal Research 44.12 (2011). PMID: 21615107, pp. 1329–1338. DOI: 10.1021/

ar200039b. eprint: https://doi.org/10.1021/ar200039b. URL:

https://doi.org/10.1021/ar200039b.

[459] Robert T. Batey. “Structure and mechanism of purine-binding riboswitches”.

In: Quarterly Reviews of Biophysics 45.3 (2012), 345–381. DOI: 10 . 1017 /

S0033583512000078.

[460] Jane N. Kim and Ronald R. Breaker. “Purine sensing by riboswitches”. In: Biology

of the Cell 100.1 (2008), pp. 1–11. DOI: https://doi.org/10.1042/

BC20070088. eprint: https://onlinelibrary.wiley.com/doi/

258

https://doi.org/10.1038/nrd.2016.117
https://doi.org/10.1038/nrd.2016.117
https://doi.org/10.1038/nrd.2016.117
https://doi.org/https://doi.org/10.1016/j.ejmech.2019.112008
https://www.sciencedirect.com/science/article/pii/S0223523419311651
https://www.sciencedirect.com/science/article/pii/S0223523419311651
https://doi.org/10.1021/ar200039b
https://doi.org/10.1021/ar200039b
https://doi.org/10.1021/ar200039b
https://doi.org/10.1021/ar200039b
https://doi.org/10.1017/S0033583512000078
https://doi.org/10.1017/S0033583512000078
https://doi.org/https://doi.org/10.1042/BC20070088
https://doi.org/https://doi.org/10.1042/BC20070088
https://onlinelibrary.wiley.com/doi/pdf/10.1042/BC20070088
https://onlinelibrary.wiley.com/doi/pdf/10.1042/BC20070088


pdf/10.1042/BC20070088. URL: https://onlinelibrary.wiley.

com/doi/abs/10.1042/BC20070088.

[461] Maumita Mandal and Ronald R. Breaker. “Adenine riboswitches and gene activa-

tion by disruption of a transcription terminator”. In: Nature Structural & Molecu-

lar Biology 11.1 (2004), pp. 29–35. ISSN: 1545-9985. DOI: 10.1038/nsmb710.

URL: https://doi.org/10.1038/nsmb710.

[462] Vipul Panchal and Ruth Brenk. “Riboswitches as Drug Targets for Antibi-

otics”. In: Antibiotics 10.1 (2021). ISSN: 2079-6382. DOI: 10 . 3390 /

antibiotics10010045. URL: https : / / www . mdpi . com / 2079 -

6382/10/1/45.

[463] Frank Walter, Quentin Vicens, and Eric Westhof. “Aminoglycoside–RNA in-

teractions”. In: Current Opinion in Chemical Biology 3.6 (1999), pp. 694–

704. ISSN: 1367-5931. DOI: https : / / doi . org / 10 . 1016 / S1367 -

5931(99 ) 00028 - 9. URL: https : / / www . sciencedirect . com /

science/article/pii/S1367593199000289.

[464] Chi-Huey Wong et al. “Specificity of aminoglycoside antibiotics for the A-site

of the decoding region of ribosomal RNA”. In: Chemistry & Biology 5.7 (1998),

pp. 397–406. ISSN: 1074-5521. DOI: https://doi.org/10.1016/S1074-

5521(98 ) 90073 - 4. URL: https : / / www . sciencedirect . com /

science/article/pii/S1074552198900734.

[465] Jeyakumar Kandasamy et al. “Increased Selectivity toward Cytoplasmic versus Mi-

tochondrial Ribosome Confers Improved Efficiency of Synthetic Aminoglycosides

259

https://onlinelibrary.wiley.com/doi/pdf/10.1042/BC20070088
https://onlinelibrary.wiley.com/doi/pdf/10.1042/BC20070088
https://onlinelibrary.wiley.com/doi/abs/10.1042/BC20070088
https://onlinelibrary.wiley.com/doi/abs/10.1042/BC20070088
https://doi.org/10.1038/nsmb710
https://doi.org/10.1038/nsmb710
https://doi.org/10.3390/antibiotics10010045
https://doi.org/10.3390/antibiotics10010045
https://www.mdpi.com/2079-6382/10/1/45
https://www.mdpi.com/2079-6382/10/1/45
https://doi.org/https://doi.org/10.1016/S1367-5931(99)00028-9
https://doi.org/https://doi.org/10.1016/S1367-5931(99)00028-9
https://www.sciencedirect.com/science/article/pii/S1367593199000289
https://www.sciencedirect.com/science/article/pii/S1367593199000289
https://doi.org/https://doi.org/10.1016/S1074-5521(98)90073-4
https://doi.org/https://doi.org/10.1016/S1074-5521(98)90073-4
https://www.sciencedirect.com/science/article/pii/S1074552198900734
https://www.sciencedirect.com/science/article/pii/S1074552198900734


in Fixing Damaged Genes: A Strategy for Treatment of Genetic Diseases Caused

by Nonsense Mutations”. In: Journal of Medicinal Chemistry 55.23 (2012). PMID:

23148581, pp. 10630–10643. DOI: 10.1021/jm3012992. eprint: https:

//doi.org/10.1021/jm3012992. URL: https://doi.org/10.

1021/jm3012992.

[466] Narayana Murthy Sabbavarapu et al. “Exploring eukaryotic versus prokaryotic ri-

bosomal RNA recognition with aminoglycoside derivatives”. In: Med. Chem. Com-

mun. 9 (3 2018), pp. 503–508. DOI: 10.1039/C8MD00001H. URL: http:

//dx.doi.org/10.1039/C8MD00001H.

[467] Isabella A. Guedes, Felipe S. S. Pereira, and Laurent E. Dardenne. “Empirical Scor-

ing Functions for Structure-Based Virtual Screening: Applications, Critical As-

pects, and Challenges”. In: Frontiers in Pharmacology 9 (2018), p. 1089. ISSN:

1663-9812. DOI: 10.3389/fphar.2018.01089. URL: https://www.

frontiersin.org/article/10.3389/fphar.2018.01089.

[468] Andrea L. Edwards, Andrew D. Garst, and Robert T. Batey. “Determining Struc-

tures of RNA Aptamers and Riboswitches by X-Ray Crystallography”. In: Nu-

cleic Acid and Peptide Aptamers: Methods and Protocols. Ed. by Günter Mayer.

Totowa, NJ: Humana Press, 2009, pp. 135–163. ISBN: 978-1-59745-557-2. DOI:

10.1007/978-1-59745-557-2\_9. URL: https://doi.org/10.

1007/978-1-59745-557-2\_9.

[469] Huaqun Zhang and Sarah C. Keane. “Advances that facilitate the study of large

RNA structure and dynamics by nuclear magnetic resonance spectroscopy”. In:

260

https://doi.org/10.1021/jm3012992
https://doi.org/10.1021/jm3012992
https://doi.org/10.1021/jm3012992
https://doi.org/10.1021/jm3012992
https://doi.org/10.1021/jm3012992
https://doi.org/10.1039/C8MD00001H
http://dx.doi.org/10.1039/C8MD00001H
http://dx.doi.org/10.1039/C8MD00001H
https://doi.org/10.3389/fphar.2018.01089
https://www.frontiersin.org/article/10.3389/fphar.2018.01089
https://www.frontiersin.org/article/10.3389/fphar.2018.01089
https://doi.org/10.1007/978-1-59745-557-2\_9
https://doi.org/10.1007/978-1-59745-557-2\_9
https://doi.org/10.1007/978-1-59745-557-2\_9


WIREs RNA 10.5 (2019), e1541. DOI: https://doi.org/10.1002/wrna.

1541. eprint: https://wires.onlinelibrary.wiley.com/doi/

pdf/10.1002/wrna.1541. URL: https://wires.onlinelibrary.

wiley.com/doi/abs/10.1002/wrna.1541.

[470] Kaiming Zhang et al. “Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA
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