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Abstract 

Vulnerable populations include groups of people with a higher risk of poor health as a result of 

the limitations due to illness or disability. The health issues of vulnerable populations include three 

categories: physical, psychological, and social. The people with physical issues include high-risk 

mothers and infants, older adults and others with chronic illnesses and people with disabilities. 

The psychological issues of vulnerable populations include chronic mental conditions, such as 

bipolar disorder, major depression, and hyperactivity disorder, as well as substance abuse and 

those who are suicidal.  The social issues in vulnerable populations include those living in abusive 

families, the homeless, etc. This dissertation concentrates on methods for helping two groups of 

vulnerable populations, namely, frail older adults and psychiatric hospital patients, to monitor their 

activity level, respiration rate, sleeping quality, and restless time in bed. 

In the first part of our work, we investigate a contactless monitoring system for psychiatric 

patients in a naturalistic hospital setting that can track their motion in bed, estimate the breathing 

rate of patients during their peaceful sleeping periods, and can be used to estimate a patient’s 

restless time and sleep quality. Specifically, the contactless monitoring system uses a Vayyar 

Radar system with a carrier frequency of 6.014 GHz to capture all reflections by the FMCW 

(frequency modulation continuous waveform) signal. The Vayyar Radar system has been installed 

in a Psychiatric Center to capture 12 nights with over 135 hours of data from 7 patients.  A depth 

camera and a thermal camera have also been installed and are used as the ground truth. The goal 

is to classify in bed and out of bed classes, quantify restlessness in bed, and determine the breathing 

rate while patients are lying in bed.  

We have simulated the psychiatric hospital set-up in the lab, where a respiration belt is used for 

ground truth, and tested the system with body postures of patients observed in the psychiatric 
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hospital. We estimated respiration rate with different sleep postures, with the aim of investigating 

a contactless monitoring system for psychiatric patients in the hospital that can estimate the 

breathing rate of patients during typical sleeping postures, and find the torso area when the patients 

use other postures, such as reading books in bed or reversing the body on the bed. 

In the second part of our work, we investigate two methods for learning the room structure via 

radio wave reflections for longitudinal health monitoring of older adults in a naturalistic home 

setting. The goal is to use these data as part of a monitoring system that can be easily installed in 

a home with minimal configuration, for the purpose of detecting very early signs of illness and 

functional decline. Two studies are conducted using RF (radio frequency) sensing. The first 

method learns the structure from the RF clutter patterns and uses the beat frequency of the 

maximum peak in each chirp to calculate the wall position. The second method learns the room 

structure from active movement patterns and uses the open space between the clusters of active 

movement patterns to estimate the possible wall locations. Comparing the two results from these 

methods provides a more robust wall location. In addition, a background filter is designed based 

on the wall position, and the activity level of people in different rooms is estimated using a fuzzy 

rule system applied to the RF motion data.  
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I. Introduction  

1.1 Contactless Monitoring for Psychiatric (Psych) Center Patients 

1.1.1 Motivation  

Millions of people in the U.S are affected by mental illness each year. For instance, 51.5 

million adults in the U.S experienced mental illness in 2019, 13.1million of U.S adults 

experienced serious illness in 2019, and those serious illness patients need 24-hour 

residential treatment [1]. With this situation, there has been considerable interest in 

monitoring psychiatric patients’ status in the hospital, including respiration rate, sleeping 

quality, and restless time during treatment periods. 

In the Psych Center environment, stringent requirements are in place to protect the 

patients’ privacy and safety, to ensure that they are not harming themselves or others. 

Safety checks are conducted by the staff every 15 minutes, and each patient’s status is 

manually recorded in a log, which includes the location of the patient as well as breathing 

and sleeping status. At night, staff will often enter the patient’s room with a flashlight to 

perform these checks. Cameras are not permitted due to privacy requirements. The safety 

requirements also prevent the use of wearable sensors and other accessible sensors. For 

instance, a bed sensor positioned under the mattress is problematic if the hardware or wires 

are accessible to the patient. For patient safety, furniture in the Psych Center rooms are, in 

fact, bolted to the floor and cannot be moved. Thus, a contactless monitoring system that 

is not accessible to patients is essential in this setting.  Our motivations are as follows: 

1) Detect life signs in a naturalistic hospital setting of patients 

2) Track movement patterns in bed of patient 
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3) Estimate patients’ breathing rate during the sleeping period 

4) Estimate restless time and sleeping quality 

1.1.2 My Contribution  

We investigate a contactless monitoring system for Psych Center patients in a 

naturalistic hospital setting that can track their motion in bed, estimate the breathing rate 

of patients during their peaceful sleeping periods, and can be used to estimate a patient’s 

restless time and sleep quality. Specifically, the contactless monitoring system uses a 

Vayyar Radar system with a carrier frequency of 6.014 GHz to capture all reflections by 

the FMCW (frequency modulation continuous waveform) signal. The Vayyar Radar 

system has been installed in the Psych Center to capture 12 nights with over 135 hours of 

data from 7 patients.  A depth camera and a thermal camera have also been installed and 

are used as the ground truth. The goal is to classify in bed and out of bed classes, quantify 

restlessness in bed, and determine the breathing rate while patients are lying in bed. 

We explore different sleeping postures in a lab setting. In our current IRB-approved 

study in a Psychiatric Center, sensors were embedded into the area above the ceiling and 

mounted over the bed at a height of 2.3 m. We have simulated this set-up in the lab, where 

a respiration belt is used for ground truth, and tested the system with body postures of 

patients observed in the psychiatric hospital. We present work on respiration rate 

estimation with different sleep postures, with the aim of investigating a contactless 

monitoring system for psychiatric patients in the hospital that can estimate the breathing 

rate of patients during typical sleeping postures, and find the torso area when the patients 

use other postures, such as reading books in bed or reversing the body on the bed. Data 
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were collected from twelve healthy younger adults and two older adults in a controlled lab 

setting; 

 

Fig.1 The flow diagram for the Psych Center data processing 

1.2 Learning Room Structure and Activity Patterns Using RF Sensing for 

In-Home Monitoring of Older Adults 

1.2.1 Motivation  

In recent years, the number of older adults has increased substantially in the world. The 

global population aged 60 years or over numbered 962 million in 2017, more than twice as 

large as in 1980 [2]. The number of people aged 80 or over worldwide will increase more 

than threefold between 2017 and 2050, and adults rise from 137 million to 425 million. 

The number of older persons is expected to double again by 2050, when it is projected to 

reach nearly 2.1 billion [2]. With this demographic trend, there has been considerable 

interest in helping older adults to maintain their health and functionality as they age. 
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Fig.2 Number of persons aged 60 years or over by the development group from 1980 to 2050 [2] 

To support independent living for older adults, there has been much work using a variety 

of approaches. In our observations on monitoring older adults in the home, especially frail 

older adults, they are more willing to accept passive, non-wearable sensors mounted in the 

home, which do not require them to do anything special. PIR motion sensors are 

inexpensive and can easily be installed to get room-specific activity. However, current 

installation methods require manual configuration such that each address must be 

designated for a specific room. Also, batteries need to be replaced regularly for continued 

monitoring. We aim to address these limitations by exploring a different sensing method 

that would, ultimately, be a one-time set-up, in which someone hangs it on a wall and plugs 

it in. Our motivations are as follows: 

1) Capture general movement patterns in home of older adults 

2) Recognize pattern changes that relate to changing health 

3) Support scalable deployments in real home settings 
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4) Support easy installation without requiring measurements including by 

consumers 

5) Eliminate the need for replacing batteries 

1.2.2 My Contribution  

We present preliminary work on RF (radio frequency) sensing for longitudinal health 

monitoring of older adults in a naturalistic home setting, with the aim of detecting early 

changes in health status. Specifically, the RF sensor uses a frequency modulated 

continuous wave (FMCW) radar with center frequency 2.315 GHz to capture all reflections 

by radio signal, so older adults do not need to wear any sensor or do anything outside of 

their normal daily routines. Two methods are investigated in our work for learning the 

room structure in a naturalistic setting, which includes learning room structure via the RF 

clutter pattern and learning the room structure from active movement. The results from 

these two approaches are compared to get a more accurate wall position. Next, a 

background filter is designed based on the estimated wall position, which allows us to 

estimate the overall activity level in the different rooms. A system of fuzzy rules is then 

used to estimate activity density as part of the in-home behavior pattern. 

 

Fig.3 the flow diagram for the wall position estimation 
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1.3 Dissertation Organization 

Chapter 2 provides an in-depth review of RF sensing, vital sign detection, learning room 

structure, and activity level estimation. It reviews the historical evolution of RF 

sensing, vital sign detection in different areas, such as in the lab setting, in the non-clinical 

environment, and in the clinical environment, different signal processing approaches, and 

in-home monitoring system for older adults. 

Chapter 3 introduces all data sets in this dissertation: Psychiatric center data set (2019), 

Eldercare and Rehabilitation Technology Lab data set (2020), and Contactless Extraction 

of Heart and Respiratory Rate with Depth, Thermal and Radar Sensing Devices project 

(2018) data set. 

Chapter 4 introduces the FMCW radar system in the Psychiatric center contactless 

monitoring system and analyzes its performance by the MATLAB simulation. 

Meanwhile, this chapter introduced the FMCW radar system of the Learning Room 

Structure and Activity Patterns Using RF Sensing for In-Home Monitoring of Older Adults 

project and analyzed its performance by MATLAB simulation. 

Chapter 5 presents the RF signal processing, which is included in frame data processing, 

beamforming, angle of arrival, matched filter design, and target detection. 

Chapter 6 presents the out of bed vs. in bed classification algorithm, which is included 

in data preprocessing, single patient’s balanced data classification, and imbalanced data set 

classification. 

Chapter 7 presents respiration rate estimation algorithms. We present work on 

respiration rate estimation with different sleep postures, with the aim of investigating a 
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contactless monitoring system for psychiatric patients in the hospital that can estimate the 

breathing rate of patients during typical sleeping postures and find the torso area when the 

patients use other postures, such as reading books in bed or reversing the body on the bed. 

This respiration rate estimation algorithm is applied to estimate the respiration rate of psych 

center patients. The restless time of psych center patients estimate by the restless time 

formula. 

Chapter 8 presents a learning room structure and activity patterns project. We present 

preliminary work on RF (radio frequency) sensing for longitudinal health monitoring of 

older adults in a naturalistic home setting, with the aim of detecting early changes in health 

status. Two methods are investigated in our work for learning the room structure in a 

naturalistic setting, which includes learning room structure via the RF clutter pattern and 

learning the room structure from active movement. The results from these two approaches 

are compared to get a more accurate wall position. Next, a background filter is designed 

based on the estimated wall position, which allows us to estimate the overall activity level 

in the different rooms. A system of fuzzy rules is then used to estimate activity density as 

part of the in-home behavior pattern. 

The conclusions are summarized in Chapter 9, and future work is discussed. 
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II.  Background and Related Work 

2.1 RF Sensing  

The beginning of modern electromagnetic theory can be traced first to Hertz in 1886 

who demonstrated reflection of radio waves, and in 1900 Tesla described a concept for 

electromagnetic detection and velocity measurement in an interview. In 1903 and 1904, 

the German engineer Hulsmeyer experimented with ship detection by radio wave reflection. 

In 1922, Guglielmo Marconi demonstrated the radio’s ability of public broadcast. In the 

same year, Naval Research Laboratory (NRL) demonstrated ship detection and aircraft 

detection by radar. All of those substantial investigations led to a US patent for what would 

be called a continuous wave (CW) radar in 1934. The development of radar accelerated 

and spread in the middle and late 1930s. Most countries used radar for military applications 

including surveillance, navigation and weapon guidance for ground, sea, and air vehicles 

[3-5].  

Radar is an electromagnetic system where the transmitting antenna emits 

electromagnetic radiation, the signal energy reradiated back by reflecting the target. The 

received antenna collects the returned signal. The received signal is processed by the digital 

signal processing part of the radar to extract target location, angular position and relative 

velocity. Radar is capable of sensing through the structure, darkness, haze, log, rain, and 

snow. Compared to other sensors, sensing through the environment is the most important 

attribute. Now radar enjoys an increasing range of application, including weather 

monitoring and prediction [6-7], traffic control [8-9], wind turbine design [10-11], soil 

surface level sensing [12], remote sensing [13-14] and clinical environments [15-16]. 
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2.2 Contactless Monitoring for Psychiatric (Psych) Center Patients 

In the Psych Center environment, stringent requirements are in place to protect the 

patients’ privacy and safety, to ensure that they are not harming themselves or others, and 

to track each patient’s status which includes the location of the patient as well as breathing 

and sleeping status. To minimize the risk of the patients’ absences from the unit in the 

psychiatric center, there has been some work using radio frequency identification (RFID). 

The method of using an RFID-enabled solution monitored psychiatric patients from 

absconding, localized the patients in the unit, and generated an alert if the patients escaped 

from unit [17-18].  

The vital signs such as respiration rates are important measurements of patients’ status. 

In the clinical environment, the Respiration Inductance Plethysmography (RIP) strap and 

Electrical Impedance Tomography is used to monitor the respiration rate of patients, and 

those are accurate measurements for breathing. But RIP would cause considerable 

discomfort for requiring patients to wear a sensor during sleeping [19-20].   

In non-clinical environments, a number of researchers have been investigating wearable 

sensors for monitoring respiration rate. Some wearable sensors use microphones that 

capture the patients’ acoustic signal during breathing. The accelerometers embedded in 

wearable fitness trackers [21-22] have been used to estimate breathing rate by capturing 

mechanical movements of patient’s chest expansion. The hydraulic bed sensors [23-25] 

have been used to monitor the respiration rate when the people are sleeping. The heath 

chair [26-27] has been used to monitor the respiration rate and heart rate when people were 

sitting on chairs. 



10 

 

To enable continuous and unobtrusive monitoring the respiration rate, there has been 

much work using wireless signals in lab environment settings. The contactless infant 

monitoring system [28] has been used to achieve motion detection and respiration 

monitoring by using white noise for sleeping infants in the life-like infant simulator 

environment. The ORiNOCO system [29] was developed with two wireless LAN PC cards, 

one as a transmitter and the other one as a receiver and is operated as 2.4 GHz microwave 

Doppler radar principle. The ORiNOCO system was used to obtain heart rate and 

respiration rate of the seating subject at the distance of 40cm.  The Sleep Minder system 

[30] operates at 5.8 GHz pulsed-wave Doppler mode, and is placed facing the subject, in 

line with the chest at a distance of approximately 0.2 m and with an elevation of 

approximately 0.5 m from the edge of the bed, and facing towards the torso of the subject.  

The Sleep Minder has been used to measure respiration rate during a sleeping subject in a 

laboratory environment. 

In order to reduce environmental factors, such as light, temperature, interference from 

other signals, and fading effect, the continuous wave (CW) radar has been used to monitor 

the vital signs in laboratory environments. In [31-33], the medical radar has been 

researched for remote monitoring of human cardiac and respiratory motion, which has 

transmitted a 0.5-18GHz continuous wave (CW) radio frequency measure heart rate of a 

person lying on his back with a bare chest and the radar antenna above the chest.  In [34] 

the 2.4 GHz Doppler radar used to capture the abdomen’s movement during breathing 

when the stationary subject was positioned 0.8m away from antennas where antennas were 

aligned to focus on the abdomen. The Fourier and wavelet transform approaches were used 

in extracting respiration rate. 
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Compared to CW radar, frequency modulated continuous wave (FMCW) radar can 

accurately measure the range and velocity of the target, since much work has used FMCW 

radar to monitor vital signs in laboratory settings, which operated at 24 GHz ,77GHz and 

81 GHz facing the subject’s chest area of the subject to capture chest movement caused by 

the breathing and heartbeat [35-36]. In [37-39], the FMCW radar has been used to monitor 

multiple users’ vital signs simultaneously to separate the RF reflections arriving from 

different objects in laboratory settings. 

To evaluate the capability of FMCW radar in estimating respiration rate in a natural 

home setting, WiBreath system was developed by the University of Washington, and used 

2.4 GHz with single transmitter-receiver pair to capture the respiration rate at various line 

of sight and non-line of sight position in homes [40].  The DeepBreath system [41-42] was 

developed by MIT and monitors the respiration signals throughout night for people who 

share the same bed.  

The theoretical signal processing analysis for FMCW radar has been presented in some 

papers [43-45]. The wavelet transform method was applied to separate the heart rate and 

respiration rate [46]. Adaptive cancellation of respiration harmonic was implemented for 

extracting heart rate signal [47]. The novel signal processing method was used to separate 

and recover respiration signals [48]. 
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2.3 Learning Room Structure and Activity Patterns Using RF Sensing for 

In-Home Monitoring of Older Adults 

To support independent living for older adults, there has been much work using a variety 

of approaches. For example, Honeywell developed the Independent LifeStyle Assistant 

(ILSA) system for passive monitoring (medication, mobility, sleep patterns, occupancy) 

[49]. Activities of Daily Living (ADL) have been captured by a variety of sensors including 

heat sensors, motion sensors, vibration sensors and electric current sensors [50]. Passive 

infrared (PIR) motion sensors have been used to capture activity in the home [51], [52]; 

motion density estimation based on motion sensors may provide indications of health 

change [53] - [55]. The combination of motion sensors, bed sensors, and door sensors has 

been used to detect cognitive changes [56]. Some monitoring systems have used a mixture 

model to analyze a person’s behavioral patterns [57]. Walking gait in the home has also 

been investigated because of the link to both physical and cognitive health [58] - [62]. 

An alternative approach is to use wearable health monitoring devices. A number of 

researchers have been investigating wrist sensors for monitoring human rest/activity cycle 

[63]. Some of the wrist sensors use a model to measure the health condition of an individual 

[64]. In nursing homes, actigraphy sensors worn on the wrist have been used to monitor 

the circadian activity rhythm; also, daily maximum activity level may link to heart failure 

of a patient [65], [66]. An RFID-detecting glove has been used to recognize activities by 

analyzing proximity with objects [67]. While the wearable sensor has the advantage to 

collect data outside of the home, many seniors refuse to wear it because of discomfort, have 

difficulties charging the sensor, or forget to wear it. Thus, there are still challenges in using 

wearable sensors for continuous, long-term monitoring of older adults. 
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Additional research is also being performed on in-home monitoring systems based on 

Wi-Fi fingerprints. Researchers have been investigating the use of Wi-Fi fingerprints for 

localizing people. The advantage of this approach is that no additional hardware is needed, 

as the system just uses existing Wi-Fi signals, and people are localized according to the 

received signal strength indicator from the wireless access points. However, individuals 

are required to carry a smartphone with them for localization [68]-[71], and many older 

adults are unable or unwilling to use smartphones now. 

To enable sensing through structure, a number of researchers have been investigating 

see-through-wall technology. In [72]-[73], the passive bistatic Wi-Fi radar has been 

attempting to detect people moving behind walls. In this system, the Wi-Fi access point 

(AP) was as the transmitter, and three nodes of multistatic netted radar operated at 2.4 GHz 

were as receivers. The wall reflection removed by quantitatively examines the difference 

between the signal of line sight node and the signal of the non-line sight node. The moving 

objects have been detected through a substantial multilayer wall structure which also 

contained an air gap. 

 In [74]-[77], the ultra-wide bandwidth (UWB) RF sensor with multiple GHz bandwidth 

used to localize and track the person behind the wall. In  [78]-[79], the wall reflection was 

removed in the time domain by using a very short pulse, whereby the pulse reflected off 

the wall arrives earlier in time than that reflected off moving people behind the wall. In 

[80]-[81], the removing wall reflection was achieved in the frequency domain by using an 

analog filter. In this case, reflections off objects at different distances arrive with different 

frequencies, and the analog filter was designed based on the frequency of the wall. UWB 

has bigger bandwidth which gives higher resolution, the short wavelength with high signal-
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noise ratio (SNR), and the higher resolution which is good for RF imaging processing. 

However, the cost of UWB is expensive. 

 Researchers have recognized the limitation of UWB and explored the less expensive 

narrowband RF system. Wi-Vi system [82] is a less expensive and simple RF system for 

localizing people’s movement behind the wall.  The system was constructed using an 

FMCW radar with three LP0965 directional antennas, two for the transmitting signal, and 

one for the receiving signal. Three USRP N210 software radios with SBX daughter boards 

were connected to the antennas. The Wi-Vi system employed at 2.4 GHz with 20MHz 

bandwidth which were close to the ISM Wi-Fi band, and the movement of people emulated 

an antenna array, which has been used to identify the moving direction with respect to the 

Wi-Vi system. The wall reflection was eliminated by subtracting the channel between the 

first transmit antenna and the receive antenna from the channel between the second transmit 

antenna and the receive antenna. The Wi-Vi can accurately track single person movement.  

The Wi-Track system [83]-[84] is an advanced system of the Wi-Vi system and 

mounted on a foldable platform with ten WA5VJB directional antennas, five for transmit 

signal, and five for receiving signal.  USEP2 with LFRX-LF daughterboard at the receive 

chain used to digitize signals. The wall reflection in Wi-Track was eliminated by 

subtracting the output of the time of flight (TOF) profile in a given sweep from the TOF 

profile of signal in the previous sweep due to the reflections of static objects maintained 

constant over time. The Wi-Track can localize multiple people and track 3D motion of an 

individual behind the wall. 
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III. Data Set 

3.1 Psychiatric (Psych) Center Data Set (2019) 

Most rooms in Psych Center are single patient rooms, and the furniture is bolted to the 

floor and cannot be moved for patient safety (Fig.5). They have one double room which 

can take two patients at the same time. We decided to use the double room to run an 

experiment because the patients in the double room are usually not as severely ill as the 

patients might be in a single room. 

We installed a depth camera, a thermal camera and the Vayyar radar (14 TX, and 13 

Rx.) system on ceiling over each bed in the double room. The depth camera data and the 

thermal camera data are used as the ground truth. Safety checks are conducted by the staff 

every 15 minutes, and each patient’s status is manually recorded in a log which is used as 

another ground truth for the radar system. 

Each night’s data are collected from 9:00 pm to 6:00 am over 9 hours (32400 seconds). 

The total number of radar data frames for 9 hours is 372,504, where each frame has 34,034 

data samples. The total required memory space for 9 hours is 95 GB. In the psych center, 

we have seven different subjects; The patient’s information is shown in Table Ⅰ. We have 

6 male patients and one female patient, and their ages are from 19 to 49. All patients have 

some type of mental health problem and at times, poor sleeping quality during nighttime 

sleeping periods. 

3.2 Eldercare and Rehabilitation Technology Lab Data Set (2021) 

Data were collected from three healthy younger adults and two older adults in a 

controlled lab setting; see Table Ⅱ for subject details. Subject 1 and subject 2 were asked 
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to lie on the bed in eleven different sleeping postures. Five subjects were asked to flip their 

head to the opposite side of bed Subjects 3-5 were asked to sit up in bed while reading. The 

RF sensor was installed over the bed in the same position and distance to bed as the patient 

room setting in the University of Missouri Psychiatric Center. 

Table.I   Patient Information for Psychiatric Center Study 

patient ID sex age height(cm) weight (kg) BMI 

1 M 49 172.7 98.6 33 

3 M 38 180.3 92.3 28 

5 M 49 185.4 89.5 26 

7 M 41 177.8 81.2 26 

10 F 18 149.8 51.2 23 

2 M 20 175.2 86.3 28 

4 M 19 182.8 113 34 

 

Table.II   Subject Information for 2021 Lab Study 

 sex age height weight BMI 

Subject 1 F 34 166cm 53kg 19.3 

Subject 2 M 26 170cm 66kg 22.8 

Subject3 F 30 164cm 55kg 20.4 

Subject 4 F 67 161cm 68kg 26 

Subject 5 M 70 179cm 77kg 24 
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3.3 Contactless Extraction of Heart and Respiratory Rate with Depth, 

Thermal and Radar Sensing Devices Lab Data Set (2018) 

As part of an earlier study in 2018, a depth camera, a thermal camera and the Vayyar 

radar (14 TX, and 13 Rx.) system was installed on the ceiling of the Center for Eldercare 

and Rehabilitation Technology lab. The respiration rate was collected by the depth camera, 

the thermal camera, respiration belt and the radar system. For the purpose of this 

dissertation, we are interested in the Vayyar radar data.  The respiration belt is used as the 

ground truth for the radar data. Subjects (see Table Ⅲ for subject details) were asked to lie 

on the bed in four different sleeping postures: back sleeping, left side sleeping, right side 

sleeping and stomach sleeping [85]. 

Table.III   Subject Information for 2018 Lab Study 

Subject sex age height (cm) weight(kg) BMI 

Subject2 M 25 179.3 78 24 

Subject6 M 35 179.3 78 24 

Subject8 M 29 179.3 85 26 

Subject9 F 27 170 60 21 

Subject10 F 27 160 55 21 

Subject11 F 23 157 48 19 

Subject12 F 24 162.5 61 23 

Subject13 F 26 164 50 19 

Subject15 F 24 162.5 54 20 
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IV. System 

4.1 FMCW Radar System 

The frequency modulated continuous wave (FMCW) radar is an ideal mode for short 

range radar system, and it has the advantages as follows [86]: 

1) Ability to detect the target in very small range  

2) Ability to measure simultaneous targets’ range and velocity 

3) Being more robust against noise. The information of received signal is stored in 

the phase of received signal in the frequency modulation, thus, FMCW radar is 

less affected by the noise in comparison to other radar systems. 

4) The vital sign information is encoded in the phase of the received signal, 

therefore, FMCW radar is the best choice for detecting the breathing rate.   

 In the FMCW radar system, the slope, S, of the chirp (Fig.4) is defined by [87-88]  

𝑆 =
𝐵

2 𝑇𝑐
                                                                       (1) 

 

 

Fig.4 Transmitted signal chirps [87] 
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We present the relationship between the chirp duration, Tc and the frequency of chirp, f, 

as: 

𝑓 = 𝑆𝑡 + 𝑓𝑠𝑡𝑎𝑟𝑡                                                                      (2) 

where the 𝑓𝑠𝑡𝑎𝑟𝑡 is the carrier frequency 𝑓c. Combining Eq. (1) and Eq. (2), we have: 

𝑓 =
𝐵

2𝑇𝑐
𝑡 + 𝑓𝑐                                                                     (3) 

In addition, we can estimate the maximum range, Rmax, that can be detected by the radar: 

𝑅𝑚𝑎𝑥 =
𝐹𝑠∗ 𝑐

2∗𝑆
                                                                 (4) 

where Fs is the sample frequency of analog-to-digital converter (ADC), and c is the speed 

of light.  

The transmitted signal equation should be a sinusoidal equation, the transmitted 

signal xTX: 

𝑥𝑇𝑋(𝑡) =  𝐴𝑇𝑋𝑐𝑜𝑠 (𝜓(𝑡))                                                      (5) 

where  

𝜑(𝑡) = 2𝜋𝑓𝑡 +  𝜙(𝑡)                                                         (6) 

Eq. (3) applied to Eq. (6), and the Eq. (6) can be written as: 

𝜑(𝑡) = 2𝜋(
𝐵

2𝑇𝑐
𝑡 + 𝑓𝑐)𝑡 +  𝜙(𝑡)                                               (7) 

where ϕ(t) is phase noise from the transmitter. Combining Eq.7 and Eq.5, we have 

𝑥𝑇𝑋(𝑡) = 𝐴𝑇𝑋𝑐𝑜𝑠 (2𝜋(
𝐵

2𝑇𝑐
𝑡 + 𝑓𝑐)𝑡 +  𝜙(𝑡))                                              (8) 

Received signal is a time delay of transmitted signal, that is: 
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𝑥𝑅𝑋(𝑡) = 𝐴𝑅𝑋 𝑐𝑜𝑠 (2𝜋 (
𝐵

2𝑇𝑐

(𝑡 − 𝑡𝑑) + 𝑓𝑐) (𝑡 − 𝑡𝑑) +  𝜙(𝑡 − 𝑡𝑑))

= 𝐴𝑅𝑋 𝑐𝑜𝑠 (2𝜋𝑓𝑐(𝑡 − 𝑡𝑑) + 𝜋
𝐵

𝑇𝑐
(𝑡 − 𝑡𝑑)2 +  𝜙(𝑡 − 𝑡𝑑)) 

  (9) 

After mixer, we can get IF signal: 

𝑥𝐼𝐹(𝑡) = 𝐴𝐼𝐹𝑐𝑜𝑠 (𝜓(𝑡) − 𝜓(𝑡 − 𝑡𝑑))                                                 (10) 

 

𝑥𝐼𝐹(𝑡) = 𝐴𝐼𝐹 𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡 + 𝜋
𝐵

𝑇𝑐
𝑡2 + 𝜑(𝑡) − 2𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑐𝑡𝑑 − 𝜋

𝐵

𝑇𝑐
(𝑡 − 𝑡𝑑)2 −

𝜑(𝑡 − 𝑡𝑑)) = 𝐴𝐼𝐹𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡𝑑 + 2𝜋
𝐵

𝑇𝑐
𝑡𝑡𝑑 − 𝜋

𝐵

𝑇𝑐
𝑡𝑑

2 + ∆𝜑(𝑡))                                                      

(11) 

where the beat frequency 𝑓𝑏 is defined as: 

𝑓𝑏 = 𝑘𝑡𝑑 =
𝐵

𝑇𝑐
𝑡𝑑                                                              (12) 

Combining Eq. (11) and Eq. (12), the IF signal in Eq. (10) can be written as: 

𝑥𝐼𝐹(𝑡) = 𝐴𝐼𝐹cos (2𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑏𝑡 − 𝜋
𝐵

𝑇𝑐
𝑡𝑑

2 + ∆𝜑(𝑡))                   (13) 

where the phase difference ∆𝜑(𝑡) is: 

∆𝜑(𝑡)  =  2𝜋𝑓𝑐∆𝑡 = 2𝜋
𝑐∆𝑡

𝜆
 = 4𝜋

∆𝑑

𝜆
                                        (14) 

If the target velocity is equal to 𝑣𝑡𝑎𝑟𝑔𝑒𝑡, and the distance ∆𝑑 is equal to: 

∆𝑑 = 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑇𝑐                                                               (15) 

The phase difference  ∆𝜑(𝑡) in the Eq. (14) can be written as: 
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∆𝜑(𝑡)  =  4𝜋
𝑣𝑡𝑎𝑟𝑔𝑒𝑡∗𝑇𝑐

𝜆
                                                     (16) 

The IF signal in the Eq. (13) can be written as: 

𝑥𝐼𝐹(𝑡) = 𝐴𝐼𝐹cos (2𝜋𝑓𝑐𝑡 + 2𝜋𝑓𝑏𝑡 + 4𝜋
𝑣𝑡𝑎𝑟𝑔𝑒𝑡∗𝑇𝑐

𝜆
)                                 (17) 

If the distance of target is equal to 𝑅𝑡𝑎𝑟𝑔𝑒𝑡, and the IF signal is updated to: 

𝑥𝐼𝐹(𝑡) = 𝐴𝐼𝐹cos (2𝜋𝑓𝑏𝑡 + 4𝜋𝑓𝑐
𝑅𝑡𝑎𝑟𝑔𝑒𝑡

𝑐
+ 4𝜋

𝑣𝑡𝑎𝑟𝑔𝑒𝑡∗𝑇𝑐

𝜆
)                                     (18) 

4.2 Psych Center System  

Most rooms in the Psych Center are single patient rooms, and the furniture is bolted to 

the floor and cannot be moved to address patient safety concerns (Fig.5). They do have one 

double room which can take two patients at the same time. Due to safety concerns, patients 

with acute psychiatric conditions that might be a danger to themselves or a danger to others 

are assigned the single patient rooms, and patients who are more stable and less likely to 

be in danger are assigned the double room. Therefore, we were advised to use the double 

room for our experiment because the patients in the double room are usually in a better 

mental state than the patients assigned to the single rooms. 

We installed a depth camera, a thermal camera and the Vayyar radar (14 TX, and 13 

Rx.) system on ceiling for each subject in the Psych Center. The depth camera data and the 

thermal camera data are used as the ground truth of radar data. Safety checks are conducted 

by the staff every 15 minutes, and each patient’s status is manually recorded in a log which 

is used as another ground truth of the radar system. 
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Fig.5 The furniture in the Psych Center patient room 

4.2.1 Radar System for Psych Center 

The Vayyar radar in the Psych center was constructed using a frequency modulated 

continuous wave (FMCW) radar and was originally designed for military applications by 

the Vayyar company. Therefore, the system prototype used in this study was not 

commercially available. The Vayyar company has other radar products which are 

commercially available and have been applied to tracking targets, health pattern monitoring, 

and image processing [89]. 

By analyzing the output data from the Vayyar radar in the psych center, we observe that 

there are 27 antennas: 14 antennas for the transmitting signals (TX), and 13 antennas for 

the receiving signals (RX).  Fig. 6 (a) shows there are 182 * 2 TX RX pairs, which means 

the number of virtual antennas in the Vayyar radar system is 182. The first column 

represents the TX antenna ID number, and second column represents the RX antenna ID 
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number. For instance, Fig. 6 (b) shows the RX antenna ID’s =4, 0, 5, 3, 12, 6, 13, 15, 1, 14, 

17, 16, and 18 will receive the signal when the TX antenna ID =2 is transmitting. Fig.6 (a) shows 

the radar raw data ‘Smat’ size is 182 *187, and the data type class is a complex double 

number.  Thus, each frame has 182 chirps, each chirp has 187 samples, and each sample 

has two quadrature channels (Fig.6 (c)).  Fig.6 (d) shows the frequency parameter ‘Freq’ 

is from 6.01 GHz to 7.76 GHz. Thus, the bandwidth of the radar is 1.75 GHz, and the range 

resolution is: 

𝑟 =
𝑐

2𝐵
                                                                             (19) 

where c is the speed of light 3×108 m/s, and B is the total swept bandwidth 1.75 GHz. 

Based on Eq. (19), the RF sensor range resolution is 8.6cm. 

The carrier frequency 𝑓𝑐 of the Vayyar radar is 6.014 GHz, hence the wavelength of 

radar is: 

𝜆 =
𝑐

𝑓𝑐
                                                                          (20) 

Based on Eq. (20), the wavelength of the Vayyar radar is 5cm. 

There are 187 samples in each chirp, 182 chirps in each frame, and the velocity 

resolution 𝑣𝑟𝑒𝑠is: 

𝑣𝑟𝑒𝑠 =
𝜆

2𝑇𝑓
                                                                   (21) 

Based on Eq. (21), we obtain that the velocity resolution of the Vayyar radar is equal to 

0.31m/s. 

There are 14 transmit antennas, 13 receive antennas, and the angle resolution 𝜃𝑟𝑒𝑠: 

𝜃𝑟𝑒𝑠 =
2

𝑁𝑎𝑛𝑡
                                                               (22) 
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where 𝑁𝑎𝑛𝑡 is the total number of antennas. Based on Eq. (22), we obtain that the angle 

resolution of the Vayyar radar is equal to 0.630. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig.6 The Vayyar Radar data. (a) Data structure, (b) TX-RX pairs, (c) IQ quadrature channels’ data, (d) 

Bandwidth 

4.2.2 Psych Center Radar System Simulation  

In order to better understand the performance of the Vayyar Radar system, we designed 

a simple Radar Performance App (Fig.7). In the simulation process, we set different 

numbers of chirps, and two targets. We set the first target location is 2m, the velocity is 

0.7m/s, the azimuth angle is 100, and second target location is 1.5m, the velocity is 1.5 m/s, 

and the azimuth angle is 400. 

We set TX antennas are 14, the RX antennas are 13, the samples of per chirp are 187, 

the number of chirps 256, the sample frequency is 4.18MHz, the chirp bandwidth is 

1.75GHz, the center frequency is 6.014GHz, and all radar’s parameters are same with 

Vayyar radar system. The results from App in the Fig.7 show the maximum range which 

can be detected by the Vayyar radar is 8.014m, the range resolution is 8.57cm, the 

maximum velocity which can be measured by the Vayyar radar is 27.88 m/s, the speed 

resolution is 0.22 m/s, the angle resolution is 0.63 degree. 



26 

 

 

(a) 

 

(b) 
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(c) 

Fig.7 Radar performance simulation. (a) Number of chirp=252, the velocity resolution=0.22m/s, (b) 

Number of chirp=512, the velocity resolution=0.11m/s, (c) Number of chirp=1024, the velocity 

resolution=0.054m/s 

We changed the number of chirps to 512, 1024, and it will affect the speed resolution. 

The speed resolution is changed to 0.11m/s, and 0.054m/s. Therefore, we concluded that: 

• The range resolution depends on IF bandwidth. 

• The speed resolution depends on the number of chirps in each frame. If the 

number of chirps is increased, the speed resolution is getting higher. 

• Angle resolution depends on the number of antennas. 

4.3 The System for Learning Room Structure and Activity Patterns 

The RF sensor was deployed in a set of campus rooms containing two offices (A, B) 

and a meeting room (C) (Fig.8). All the rooms have standard furniture: tables, chairs, and 
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bookshelves. The meeting room is 5.51m × 7.1m; office A is 3.2 m × 3.71m; office B is 

3.2 m × 3.29m. 

 

Fig.8 The top view of office and meeting space 

In this experiment, the RF sensor is deployed in four different positions (,,,) in 

the offices (A, B) and the meeting room (C) (Fig. 8), and motion data are collected over 

time. 

4.3.1 Radar System for Learning Room Structure and Activity Patterns 

An RF sensor was constructed using an FMCW radar with two LP0965 direction 

antennas, one for the transmitting signal, and one for the receiving signal (Fig.9). The linear 

chirp is generated by two components: 

● The VCO (voltage-controlled oscillator) operates in the range of 2.315GHz to 

2.536GHz and transmits at 10mW. 
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● The ramp generator, XR-2206, produces a linear ramp and a synchronization pulse 

where the rising edge coincides with the start of the up-ramp. 

 

(a) 

 

(b) 

Fig.9 The RF system (a) FMCW radar system, (b) block diagram of RF sensor. Where LNA is the low 

noise amplifier 

The carrier frequency of the FMCW radar is 2.315GHz, the bandwidth is 221MHz. 

Based on Eq. (19) and Eq. (20), the RF sensor range resolution is 67.8cm, and the 

wavelength λ is 0.13 m. There are 960 samples in each chirp, 512 chirps in each frame, the 

frame time duration Tf is 10.24s. Based on Eq. (21), the RF sensor velocity resolution is 

0.63 cm/s. 
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The transmitted signal and the target echo signal are heterodyned in the mixer stage of 

the receiver. The intermediate frequency (IF) signal data goes through the ADC (Analog 

to Digital converter) process.  A computer sound card with a 48 kHz sample frequency 

plays a role of the ADC. The ADC data is amplified in GNU radio, and store as a .wav file, 

which is processed by Matlab. 

4.3.2 Radar System for Learning Room Structure and Activity Patterns Simulation  

In order to better understand the performance of the RF system, we used the Radar 

Performance App in the Fig.10. In the simulation process, we set different numbers of 

chirps, and two targets. We set the first target location is 2m, the velocity is 0.7m/s, the 

azimuth angle is 100, and second target location is 1.5m, the velocity is 1.5 m/s, and the 

azimuth angle is 400. 

We set TX antennas are 1, the RX antennas are 1, the samples of per chirp are 960, the 

number of chirps 256, the sample frequency is 48kHz, the chirp bandwidth is 221MHz, the 

center frequency is 2.4GHz, and all radar’s parameters are same with RF system. The 

results from App in the Fig.7 show the maximum range which can be detected by the RF 

sensor is 325.8m, the range resolution is 67.87cm, the maximum velocity which can be 

measured by the Vayyar radar is 1.56m/s, the speed resolution is 0.012 m/s, the angle 

resolution is 110 degree. 

We increased the number of chirps to 512, 1024, and it will affect the speed resolution. 

The speed resolution is changed to 0.006m/s, and 0.003m/s. The speed resolution of the 

RF system is getting higher. 
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(a) 

 

(b) 
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(c) 

Fig.10 Radar performance simulation. (a) Number of chirp=252, the velocity resolution=0.012m/s, (b) 

Number of chirp=512, the velocity resolution=0.006m/s, (c) Number of chirp=1024, the velocity 

resolution=0.003m/s 

The Radar Performance App was designed based on the FMCW radar equations (Eq.(1) 

-Eq.(22)), which could be used to simulate any FMCW radar system. In the simulation App, 

students can set the number of TX/RX antennas, bandwidth, number of samples in each 

chirp, number of chirps in each frame, and center frequency. All those parameters come 

from the company that provides the radar.  Then,  the RVA output in the Radar 

Performance App shows range resolution, speed resolution, angle resolution, maximum 

range, and maximum speed which can be detected by the radar. In addition, Students could 

try different parameters in the parameters setup part, and look at the influence of each 

parameter. This App could help students better understand the radar system’s performance.  
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V. Methodology 

5.1 Radar Data Processing  

The radar system transmits N equal spaced chirps in over the time 𝑇𝑓, and this unit is 

called ‘frame’, the time  𝑇𝑓 is called frame time (Fig.11 (a)). The received channel data 

from the same chirp is stored in the same raw (Fig.11 (b)). In the radar data matrix, each 

row is corresponding to chirp index, and each column is corresponding to the range bin. 

 

(a) 

 

(b) 

Fig.11 Radar data structure[87] (a) frame (b) radar data matrix 

In our research projects, the company that provided the Vayyar radar was not 

able/willing to provide more detailed information, such as ADC sample frequency, frame 

time, and chirp duration. Therefore, we estimate the frame time by Eq. (23): 

𝑇𝑓 =
𝑡𝑜𝑡𝑎𝑙 #𝑜𝑓 𝑓𝑟𝑎𝑚𝑒

9 ℎ𝑜𝑢𝑟𝑠
                                                                   (23) 
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After get the frame time, we can calculate the number of frames in per window by: 

#𝑓𝑟𝑎𝑚𝑒 𝑖𝑛 𝑝𝑒𝑟 𝑤𝑖𝑛𝑑𝑜𝑤 = 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 ∗ 𝑓𝑟𝑚𝑎𝑒 𝑡𝑖𝑚𝑒 

Then we can read the radar raw data from the hard drive based on the window’s size as 

shown Fig.12 (a).  The data in per frame comes from the different antennas. In order to 

combine the signal from different antennas, first, we used the beamforming algorithm for 

estimating the angle of arrival (AOA) corresponding to the strongest signal, then coherently 

combining the signal (Fig. 12(b)). The beamforming algorithm and AOA will be discussed 

in Section 4.2.  

                           
(a)       
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                   (b)  

Fig.12 Flow diagram for data processing (a) read raw data from hard drive (b) frame data processing 

5.2 Frame Data Processing 

For frame data processing, we have two strategies: constant data frame processing, and 

the variable data frame processing. Why did we do two different frame data processing 

strategies?  The reason is due to the lack of more detailed information, such as ADC sample 

frequency, frame time, and chirp duration. Therefore, we are missing the following 

information: 

• The number of frames per second 

• The number of chirps per frame 

• The distance between the two antennas 

Therefore, we run different experiments to identify which one is the best way to do radar 

signal processing.  We used the constant data frame and the variable data frame to process 
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the radar data, estimated the time when the patient came to the bed, and those times are 

compared with depth camera information. 

5.2.1 Constant Data Frame 

In Psych Center data, each night data is collected from 21:00 pm to 6:00 am over 9 

hours, and the total frame numbers are 𝑁𝑓𝑟𝑎𝑚𝑒. In the first strategy, we used same numbers 

of chirps in each frame, the frame time are same in over time, and the number of chirps in 

each frame: 

𝑁𝑐ℎ𝑖𝑟𝑝 =
𝑁𝑓𝑟𝑎𝑚𝑒

9∗60
                                                        (24)          

5.2.2 Variable Data Frame 

In Psych Center data, each night data is collected from 21:00 pm to 6:00 am over 9 

hours, and the total frame numbers is 𝑁𝑓𝑟𝑎𝑚𝑒. In the second strategy, we used variable 

numbers of chirps in each frame, and the number of chirps in each frame is based on the 

time when the frame is created. 

5.2.3 Results and Discussion 

For psych center 09/10/2019 one night data, we used the constant data frame and the 

variable data frame to process the radar data, estimated the time when the patient came to 

the bed, and those times are compared with depth camera information. The depth data 

shows the patient came to bed at 21:24 (Fig.13), the radar data based on constant data frame 

processing shows the patient came to bed at 21:26 (Fig.13), however, the radar data based 

on variable data frame processing shows the patient came to bed at 21:15 (Fig.14).  We did 

the same data processing for different night data for other two patients, the results are 

shown in Table Ⅳ. 
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Fig.13 Depth data and Radar data based on the constant data frame 

 

Fig.14 Depth data and Radar data based on the variable data frame 
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The results in Table Ⅳ show that the time from the constant data frame processing is 

more closed to the time from the depth camera, and the maximum difference between those 

two times are 3 minutes. However, the time from the variable data frame processing is less 

accurate; the maximum difference between the time from variable data processing and the 

time from depth camera is 20 minutes. Therefore, we used constant data frame processing 

for the psych center project. 

Table.IV   Constant data frame vs. Variable data frame 

Date for Psych Center The time by using 

Constant data frame 

processing 

The time by using 

variable  data frame 

processing 

The time from the depth 

09/10/2019 26 min 15 min 24 min 

09/11/2019 126 min 102 min 123 min 

09/12/2019 26 min 21 min 23 min 

 

5.3 Arrival of Angle and Beamforming 

A radar measures the spatial distribution of reflectivity in the three-dimension spherical 

coordinate system of range, azimuth angle and elevation angle. 

 

Fig.15 Data structure of a multichannel radar[4] 
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A phase array is a radar system with multiple receive antennas, and the multiple receive 

channels are corresponding to the phase center axis in Fig.15. The chirps in a radar system 

are corresponding to the slow time axis (pulse axis), and the samples in the chirps are 

corresponding to the fast time axis in Fig.15. Many radar signal processing implement the 

Fourier transform of slow time and fast time axis to get the range and angle information of 

the target. These spectral domains correspond to Doppler shift and angle of arrival. 

The angle of arrival indicates the direction of incoming signal. In Fig.16 (a), 𝜃1, and 

𝜃2 are the arrival angle of the signal 1 and the signal 2, respectively. The phase 

information will be change over antennas, the time delay are between the two antennas be 

defined [90 -91]: 

𝜏 =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
=

𝑑𝑐𝑜𝑠𝜃

𝑐
                                                             (25) 

Where 𝜃 is arrival angle, c is speed of light, and d is the distance between the antennas. 

An array is commonly referred to as a uniform linear array, therefore, we find that: 

𝜏𝑘 = (𝑘 − 1)
𝑑𝑐𝑜𝑠𝜃

𝑐
     for  𝜃𝜖[−900 , 900]                                 (26) 

Where k is the number of antennas in an array. 

 

(a) 
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(b) 

Fig.16 Arrival angle of an antenna array[91] 

The reflection power of different incoming angles varies. We evaluate the spatial 

spectrum for every possible direction and try to find the arrival angle with a higher 

reflection power for the receive power. There are different ways to estimate the arrival 

angle: 

• Beamforming 

• MUSIC 

We choose the case that the patient is lying in the bed and use the beamforming that is 

a coherent combination of data from multiple RX antennas. In Psych Center, we have 14 

TX and 13 RX, and the number of the virtual antennas are: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑠 = 14 ∗ 13 = 187                                       (27) 

Assembling the 187 antennas samples into vector form given the array at a fixed time: 

𝒚 = [𝑦[0]  𝑦[1] ⋯  𝑦[𝑁]]                                                     (28) 

where N is number of antennas, and the one antenna samples y[n] is represented by: 

𝑦[𝑛] = 𝐴𝑒−𝑗2𝜋𝑛𝑑𝑠𝑖𝑛𝜃/𝜆                                                     (29) 

Hence the vector 𝒚 is represented by: 
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𝒚 = 𝐴 [1  𝑒−
𝑗2𝜋𝑑𝑠𝑖𝑛𝜃

𝜆     ⋯    𝑒−
𝑗2𝜋(𝑁−1)𝑑𝑠𝑖𝑛𝜃

𝜆 ] = 𝐴𝒂𝒔(𝜃)                             (30) 

Conventional nonadaptive beamforming is implemented as weight sum of the element 

signals: 

𝑧(𝜃) = 𝒉′𝒚                                                         (31) 

Where h is a vector of complex weights 

𝒉 = [ℎ0  ℎ1    ⋯   ℎ𝑁−1]′ = 𝒘′⨀𝒂𝒔(𝜃)                                                        (32) 

Where we choose the same weight for all vectors in order to estimate the angle with the 

higher power. The weights are matched to an angle of 𝜃0. The response of a beamforming 

steered to 𝜃0 to an incoming wavefront at angle 𝜃 is  

𝑧(𝜃) = 𝒉′𝒚 = �̂� ∑ 𝑎𝑛𝑒−𝑗2𝜋𝑛𝑑(𝑠𝑖𝑛𝜃−𝑠𝑖𝑛𝜃0)/𝜆𝑁−1
𝑛=0                                       (33)                     

We just have one subject; therefore, the steered beamforming angle is zero degree. 

Fig.12 shows the arrival angle estimating from two methods. Fig.12 (a) shows the results 

of conventional beamforming method, and Fig.12 (b) shows the results of MUSIC method. 

We can estimate the arrival angle -90 and -30. 
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(a) 

 

(b) 
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(c) 

Fig.17 Arrival angle of an antenna array. (a) conventional beamforming, (b) MUSIC, (c) coherent 

combination signals from multiple antennas[91] 

 

(a)   
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 (b) 

Fig.18 Different Arrival angle results. (a) Arrival angle   𝜃 = −90, (b) Arrival angle   𝜃 = −30, 

5.3 Matched Filter 

In wireless communication systems, the primary emphasis is on signal-to-noise ratio 

(SNR). How do we remove the noise power, and increase the signal power? The higher 

SNR improves the detection performance of the radar system. 

Assume the receiver output, 𝑦(𝑡) , the received power 𝑥(𝑡) , and the relationship 

between the output and the input in frequency domain: 

𝑌(Ω) = 𝐻(Ω)𝑋(Ω)                                                  (34) 

where 𝐻(Ω) is the frequency response of the filter. The power of signal at the instant 

time 𝑡𝑚: 

|𝑦(𝑡𝑚)|2 = |
1

2𝜋
(∫ 𝑋(Ω)𝐻(Ω)𝑒−𝑗Ω𝑡𝑚𝑑Ω

∞

−∞
)|

2

                               (35) 
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Consider the noise power of the radar system is white noise with power density 
𝑁0

2
 watts 

per hertz. The total noise power is then: 

𝑛𝑝 =
𝑁0

4𝜋
∫ |𝐻(Ω)|2𝑑Ω

∞

−∞
                                             (36) 

The SNR measured at time 𝑡𝑚: 

𝑆𝑁𝑅 =
|𝑦(𝑡𝑚)|2

𝑛𝑝
=

|
1

2𝜋
(∫ 𝑋(Ω)𝐻(Ω)𝑒−𝑗Ω𝑡𝑚𝑑Ω

∞
−∞ )|

2

𝑁0
4𝜋

∫ |𝐻(Ω)|2𝑑Ω
∞

−∞

                                     (37) 

Clearly, the choice of 𝐻(Ω) that will maximize the SNR. According to the Schwarz 

inequality is  

∫ 𝐴(Ω)𝐵(Ω) 𝑑Ω ≤ {∫ 𝐴(Ω)𝑑Ω}{∫ 𝐵(Ω)𝑑Ω}                                            (38) 

Applying the Schwarz inequality to SNR equation, we can get: 

 

𝑆𝑁𝑅 =
|𝑦(𝑡𝑚)|2

𝑛𝑝
=

|
1

2𝜋
(∫ 𝑋(Ω)𝐻(Ω)𝑒−𝑗Ω𝑡𝑚𝑑Ω

∞
−∞ )|

2

𝑁0
4𝜋

∫ |𝐻(Ω)|2𝑑Ω
∞

−∞

≤
(

1

2𝜋
)

2
|∫ 𝑋(Ω)𝑒−𝑗Ω𝑡𝑚𝑑Ω

∞
−∞ |

2
|∫ 𝐻(Ω)𝑑Ω

∞
−∞ |

2

𝑁0
4𝜋

∫ |𝐻(Ω)|2𝑑Ω
∞

−∞

                   

(39) 

Therefore, the SNR is maximized when 

𝐻(Ω) = 𝛼𝑋∗(Ω)𝑒−𝑗Ω𝑡𝑚                                      (40) 

In time domain, it will be: 

ℎ(𝑡) = 𝛼𝑥∗(𝑡𝑚 − 𝑡)                                           (41) 

This receiver filter, 𝐻(Ω) is called a matched filter, because the response is “matched” 

to the signal waveform and can maximize the SNR of the radar system. 
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5.4 Target Detection 

Doppler processing is the term applied to filtering or spectral analysis (FFT) the signal 

received from a fixed range over a period of time corresponding to several chirps. In 

general, the slow time signal of a range bin consists of noise, clutter, and the echo from 

target. If the reflection power from the target below the clutter power or noise, the target 

cannot be detected. Therefore, the noise and clutter can be removed in the first step of the 

target detection, as shown in the Fig.19. 

 

Fig.19  the flow diagram for the wall position estimation 

After passing through the matched filter, the noise and clutter in the chirp data can be 

removed by: 

𝑦( 𝑡, 𝑁) = 𝑦(𝑡, 𝑁) − 𝑚𝑒𝑎𝑛 (𝑦(𝑡, 𝑁))                                       (42) 

We perform the FFT algorithm for each chirp in order to get the target range information, 

and it is called range FFT processing, as Fig.15. 
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Fig.20 the range FFT[87] 

In Psych center data, we used two different methods for detecting target: 

• Constant false alarm rate (CFAR) detection method 

• Cross correlation detection method  

A. Constant false alarm rate (CFAR) detection method 

Constant false alarm rate (CFAR) detection, also frequently referred to as “adaptive 

threshold detection” or “automatic detection”, is a set of techniques designed to provide 

predictable detection and false alarm behavior in realistic interference scenarios. 

In psych center data processing, we used the cell-averaging CFAR, which used adaptive 

calculation of the threshold for the CFAR detection. 

 

 

(a) 
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(b) 

Fig.21 CFAR windows[4]. (a) one-dimensional window for range-only processor. (b) two-dimensional 

window for range-Doppler processor 

Fig. 20 (a) shows a one-dimensional data vector of range cells with the cell under test, 

𝑥𝑖, in the middle. The data in grey cells to either side, representing data from ranges nearer 

and farther from the radar than the cell under test, are averaged to estimate the noise 

parameter. These cells are called the reference cells. The cross-hatched cells immediately 

adjacent to the cell under test, called guard cells, are excluded from the average. Generally, 

more than one guard cell would be skipped on each side of the cell under test. The 

combined reference cells, guard cells and cell under test are referred to as the CFAR 

window. Fig. 16(b) shows two dimensional CFAR windows, which is used for psych center 

target detection. The estimated threshold is defined as: 

�̂� =
𝛼

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                                                  (43) 

For a given false alarm power 𝑃𝐹𝐴
̅̅ ̅̅̅,  the required threshold multiplier, 𝛼 is 

𝛼 = 𝑁(𝑃𝐹𝐴
̅̅ ̅̅̅−

1

𝑁 − 1)                                                     (44) 

B. Cross correlation detection method  
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𝑝𝑖 and 𝑝𝑗 denote the two received signal power from two chirps, 𝑖 𝑎𝑛𝑑 𝑗, and can be 

represented as [92-94]: 

𝑝𝑖 = 𝑠𝑖 + 𝑛𝑖                                                                        (45) 

𝑝𝑗 = 𝑠𝑗 + 𝑛𝑗                                                                         (46) 

𝑠𝑖 and 𝑠𝑗 are signal power, and 𝑛𝑖 and 𝑛𝑗  are the noise power. We assume the noises are 

the zero mean additive white Gaussian noises. Calculating the cross correlation between 

the two chirps: 

𝑅𝑝𝑖𝑝𝑗
= 𝐸[𝑝𝑖𝑝𝑗] = 𝐸[(𝑠𝑖 + 𝑛𝑖)(𝑠𝑗 + 𝑛𝑗)] = 𝐸[𝑠𝑖𝑠𝑗] + 𝐸[𝑠𝑖𝑛𝑗] + 𝐸[𝑛𝑖𝑠𝑗] + 𝐸[𝑛𝑖𝑛𝑗]              

(47) 

The signals are from two chirps are correlated, but the noise are not correlated because 

they are random, therefore,  

𝐸[𝑠𝑖𝑛𝑗] = 𝐸[𝑛𝑖𝑠𝑗] = 𝐸[𝑛𝑖𝑛𝑗] = 0                        𝑖 ≠ 𝑗                                      (48) 

Finally, we can increase the signal-to-noise ratio of the signal, and it will be a more 

accurate way to detect the target. 

    



50 

 

(a)     

                                                             

  (b) 

 

(c) 

Fig.22 Target detection (a) range FFT results, (2) CFAR detection results, (c) cross correlation results 

The target position shows in the area 2.3m from the range FFT results in the Fig.21 (a). 

The target’s range bin shows 148 around from the CFAR detection in the Fig.21 (b).  The 

cross-correlation results in the Fig.21 (c) indicates the target’s position in the area 2.1m-- 

2.3m. Compared those three results, we can get a more accurate target position and the 
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range bin. The range bins from range FFT, CFAR, and the Cross-correlation algorithm 

were used the features to classify the in bed vs. out of bed. 

VI. Out of Bed vs. in Bed Classification 

6.1 Preprocessing  

6.1.1 Outlier Removal 

An outlier is defined as the point that lies very far from the mean of the corresponding 

random variable [95 -98].  

The radar data has many multipath signals, and the noise from the environment. This 

will cause the outlier problem. The noise data and the multipath signal are very far from 

the mean of the data set and will produce large errors during the training data set and may 

have disastrous effects. In order to get higher accuracy for the classification, first, we need 

to remove those outliers. This distance is measured with respect to a given threshold, 

usually a number of times the standard deviation. For a normally distributed random 

variable, a distance of two times the standard deviation covers 95% of the points, and a 

distance of three times the standard deviation covers 99% of the points. We defined the 

threshold that is two times standard deviation, and removed the outlier points. 

6.1.2 Data Normalization 

We used the different features in the classification process. The features ranges have big 

differences, some features have large values, such as PSD, and some features have small 

values, such as the phase variation.  The features with large value may have larger influence 

in the cost function than features with small values, although this does not necessarily 

reflect their respective significance in the design of the classifier. Therefore, we need to 
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normalize all features after outlier removal processing. For N available data of features, we 

have the mean, 𝜇, and the variance, 𝜎,  of the data set: 

μ =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1                                                                    (49) 

𝜎2 =
1

𝑁−1
∑ (𝑥 − μ)𝑁

𝑖=1                                              (50) 

Then the normalized features  𝑥𝑁: 

𝑥𝑁 =
𝑥−μ

𝜎2
                                                          (51) 

 

6.1.3 Missing Data 

Missing data is a common problem in the engineering application. For example, the 

wireless communication system. The radar is the wireless commutation system, which 

consists of the transmitter and the receiver. The transmitter transmitted the radio frequency 

signal, and the receiver collected the signal by reflecting objects. But the receiver signal 

will be included in the target signal, the multipath signal, and the noisy signal. If the signal-

to-noise ratio is low, the data of the receiver will be missed during the outlier removal 

processing. The most common techniques in dealing with missing data include schemes 

that: 

• All missing data is equal to zero. 

• All missing data is equal to the mean of observed data. 

• All missing data is equal to the [𝜇 − 𝛽𝜎, 𝜇 + 𝛽𝜎], where  𝜇  is the mean of 

observed data,  𝜎 is the variance of observed data. 

All missing data of the radar in the Psych center project is imputed by the mean of observed 

data. 

6.1.4 Classifier and Confusion Matrix 
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The classifier’s role is to divide the feature space into the regions that corresponding to 

either class A or class B. If a feature vector x, corresponding to an unknown pattern, falls 

in the class A region, it classified as class A, otherwise as class B. This does not necessarily 

mean that the decision is correct. If it is not correct, a misclassification has occurred. 

Therefore, we used the confusion matrix to evaluate the classifier performance.  In the 

confusion matrix in the Fig. 23, the accuracy and the recall will be calculated by: 

𝑎𝑐𝑢𝑟𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                             (52) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                         (53) 

 

Fig.23 Confusion matrix 

 

6.2 Classification Results for Out of Bed vs. In Bed 

6.2.1 Single Patient’s Balanced Data Classification  

During the nighttime period, the patients in the Psych center spent most of their time in 

bed; therefore, the dataset collected was imbalanced for classifying two classes that are 

patient in bed vs. patient out of bed. At the beginning, we started from the balanced data 

of one patient. We used five features: 

• PSD: power spectrum density 

• Phase: phase information of target’s range bin 
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• Phase variation: phase variation of target’s range bin 

We normalized those three features, and created two new features: 

• feature 𝑥3 is generated by: 

𝑥3 = 𝑃𝑆𝐷 ∗ 𝑝ℎ𝑎𝑠𝑒 ∗ 𝑝ℎ𝑎𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛                                            (54) 

• feature 𝑥8 is created by: 

𝑥8 = 𝑒(𝑝ℎ𝑎𝑠𝑒−𝑃𝑆𝐷)2
                                                          (55) 

a) The depth camera and nurse’s notes 

The depth camera data and the nursing notes in the log are used as the ground truth of the 

radar data. The depth camera data is labeled manually. For instance, the data are from the 

patient whose ID is 4; patient information is given in Table III. 

Table.V   Patient ID=4 information 

Patient ID Sex Age  Height  Weight  BMI Start time  End time 

4 M 19 113 182.8 34 21:00 pm 6:00 am 

 

The nurse’s notes in the log show the patient came to the bed between the 21:20 pm to 

21:43 pm in the Fig. 24 (a). Then, we checked the camera data; the depth camera results 

show the patients came to bed at 21:38 pm, as illustrated in the Fig. 24 (b). In addition, the 

patient went to the bathroom at 04:46 am, according to the depth data. 
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(a) 

 

(b) 

Fig.24 The Nurse’s Notes and depth data. (a) Nurse’s note in the log (b) depth camera information. Class 

1 is empty bed, label is 1, and Class 2 is the patient in the bed, and label is 30 
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b) Classifying Empty bed vs. Bed with a person using two features 

We used two features, phase and PSD, to classify two classes:  Empty bed (class1) vs. Bed 

with a person (class2). One hour of data was used, with 30 minutes data from the empty 

bed class, and 30 minutes from the patient in bed class.   

Table.VI   Classifier with two features 

Labels Empty bed (class1) vs. Patient in bed (class2) 

Features PSD, phase 

Data Total one hour of data, with 30 minutes data from the empty 

bed class, and 30 minutes from the patient in bed class.  90% 

samples for training data, 10% samples for testing data; the 

process is repeated 10 times (10 fold cross validation) 

Statistics RBF 

Classifier SVM 

 

    

(a) 
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 (b) 

   

(c) 
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 (d) 

Fig.25 Classification by using two features (a) Class1: empty bed (red) class, and data collection time 

period: 21:00 – 21:30. Class 2: patient was lying in the bed (green) class, and data collection time 

period: 21:44 --- 22:14. (b) Confusion matrix for (a), (c) Class1: empty bed (red) class, and data 

collection time period: 21:00 – 21:30. Class 2: person was lying in the bed (green ) class, and data 

collection time period: 12:00 am --- 12:30am, (d) Confusion matrix for (c) 

c) Classifying Empty bed vs. Bed with a person using three features 

We used three features, phase variation, feature 𝑥3 and feature  𝑥8 , to classify two 

classes:  Empty bed (class1) vs. Bed with a person (class2).  First, the outliers in all features 

are removed, then, the features are normalized by the method in the Section 6.1.2, using 

the mean of the observed data set. One hour of data was used, with 30 minutes data from 

the empty bed class, and 30 minutes from the patient in bed class.   
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Table.VII   Classifier with three features 

Labels Empty bed (class1) vs. Patient in bed (class2) 

Features phase variation (𝑥5), 𝑥3, 𝑥8 

Data Total one hour samples data, with 30 minutes data from the 

empty bed class, and 30minutes from patient in bed class.  90% 

samples for training data, 10% samples for testing data; the 

process is repeated 10 times (10 fold cross validation) 

Kernel 

Function 

RBF 

Classifier SVM 

       

(a)                                                                     
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 (b) 

        

(c)                                                                     
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 (d) 

Fig.26 Classification by using three features (a) Scatter plot. Class1: empty bed (blue) class, and data 

collection time period: 21:00 – 21:30. Class 2: patient was lying in the bed (orange) class, and data 

collection time period: 21:44 --- 22:14. (b) Confusion matrix for (a), (c) Scatter plot. Class1: empty 

bed (blue) class, and data collection time period: 21:00 – 21:30. Class 2: person was lying in the bed 

(orange) class, and data collection time period: 12:00 am --- 12:30am, (d) Confusion matrix for (c) 

 

6.2.2 Single Patient’s One Night Data Classification 

We used the same features in Section 6.1.1 for classifying one full night of data for the 

same patient. First, the outlier in all features are removed, then, the features are 

normalized by the method in Section 6.1.2, using the mean of the observed data set. The 

classifier information as follows: 
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Table.VIII   Classifier for one night data 

Labels Empty bed (class1) vs. Patient in bed (class2) 

Features PSD, phase, phase variation (𝑥5), 𝑥3, 𝑥8 

Data Total 9 hours data for one patient 

Kernel 

Function 

RBF 

Classifier SVM 

 

a) We used the same features, same classifier and the same patient’s one night data 

as in Section 6.1.1; the results are shown in Fig. 27(a). There were 39 data 

samples from class 1, and 481 data samples from class 2. If we use the same 

classifier as in Section 6.1.1 to the imbalanced data set, the results are shown 

below:  

Accuracy = 92% 

Recall = 0% 

b) We used the same features, same classifier as in Section 6.1.1, but used a second 

full night of data which was from the patient whose ID is 1; results are shown in 

Fig.. 27(b). There were 124 data samples from class 1, and 386 data samples from 

class 2. If we use same classifier as in Section 6.1.1 to that imbalanced data set, 

and we got the accuracy and the recall as follows: 

Accuracy = 99% 

Recall = 97% 



63 

 

c) We used the same features, same classifier as in Section 6.1.1, but used a third 

one night data which was from the patient whose ID is 7, the results are shown in 

the Fig .27(c). In this case, there was not any data sample from class 1, and 505 

data samples from class 2. If we used same classifier in the Section 6.1.1 to those 

imbalanced data set, and we got the accuracy and the recall as follows: 

Accuracy = 99% 

Recall = 100% 

 

(a) 

 

(b) 
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(c) 

Fig.27 Confusion matrix. (a) Confusion matrix of one night data classification for Patient ID=4. (b) 

Confusion matrix of one night data classification for Patient ID=1. (c) Confusion matrix of one night 

data classification for Patient ID=7. 

6.2.3 Discussion  

In this section, we used five features, PSD, phase, phase variation, feature 𝑥3, and 

feature 𝑥8, to classify the out of bed vs. in the bed classes. We offer the following 

conclusions. 

1) When the data is a balanced data set from one patient at every 30 minutes, the 

classifier SVM with kernel function RBF has higher accuracy and higher recall 

to classify two classes. 

2) When the data is an imbalanced data set from one patient at one night, the 

accuracy and the recall of the classifier SVM with kernel function RBF depends 

on the level of data imbalance. 

3)  If the data is totally imbalanced, such as, less than 10% samples data from class 

1, and more than 90% samples from class 2, the recall and the accuracy of the 

SVM would be low.  
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4) If the data is imbalanced, for instance, more than 20% samples data from class 1, 

and less than 80 % data from class2, the recall and the accuracy of SVM would 

be higher. 

5) If the data is imbalanced, there was no sample data from class 1, and all samples 

were from class2, the recall and the accuracy of SVM would be higher. 

6.3 Imbalanced Data Set Classification for The Out of Bed vs. In The Bed  

In the psych center, we have seven different patients, and the patient’s information is 

shown in Table Ⅰ. We have 6 male patients and one female patient, and their ages are from 

19 to 49. We used six patient data to train the classifier, and out of one patient data for 

testing the classifier. In order to improve classifier accuracy for an imbalanced data set, we 

increased the feature number to 12. Those features are important, simple to extract, and 

useful for discriminating patterns in different classes [90,95]. 

1) PSD 

We can calculate the periodogram: 

𝑃𝑥𝑥
𝑖 (𝑓) =

1

𝑀
|∑ 𝑥𝑖(𝑛)𝑀

𝑛=1 𝑒−𝑗2𝜋𝑓𝑛|
2

                          𝑖 = 0,1, … 𝐾 − 1         

We obtain PSD: 

𝑃𝑥𝑥
𝐵 (𝑓) =

1

𝐾
∑ 𝑃𝑥𝑥

𝑖

𝐾

𝑖=0

(𝑓) 

2) Accumulation of PSD 

3) PSD variation 

𝑣𝑎𝑟[𝑃𝑥𝑥
𝐵 (𝑓)] =

1

𝐾2
∑ 𝑣𝑎𝑟(𝑃𝑥𝑥

𝑖𝐾
𝑖=0 (𝑓)) 

4) Mean of PSD 

𝐸[𝑃𝑥𝑥
𝐵 (𝑓)] =

1

𝐾
∑ 𝐸(𝑃𝑥𝑥

𝑖𝐾
𝑖=0 (𝑓)) 
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5) Phase of target’s range bin 

6) Phase variation of target’s range bin 

7) Phase standard deviation of target’s range bin 

8) Mean of phase variation 

9) Mean phase standard deviation 

10) Target’s range bin from cross correlation algorithm 

11) Target’s range bin from range FFT 

12) Created new Feature 12 was by: 

Feature12 = Feature1 * Feature 11 

Table.IX   Classifier for imbalanced data set 

Labels Empty bed (class1) vs. Patient in bed (class2) 

Features 12 features 

Data Total number of patients are seven, we used the data from six 

patients for training, and of the remaining patient’s data for 

testing , (10-fold cross validation for all patients’ data) 

Kernel 

Function 

polynomial function 

Classifier SVM 
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(a) 

 

(b) 

Fig.28 Psych Center data classification. (a) Scatter plot. (b) Confusion matrix, class 1 is empty bed and 

labeled 0, class2 is person in bed and labeled 1 

We used seven patients, and 12 nights of data to train the classifier. The classifier used 

the SVM algorithm with polynomial kernel function. 12 features were used to the classifier. 

From the results in Fig.26 (b), we can see that the classifier has 97% accuracy and 96% 

recall to the imbalanced data set from Psych Center.  
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VII. Respiration Rate Estimation  

7.1 Respiration Estimation in Different Sleeping Postures 

Our target application of monitoring patients in a psychiatric hospital offers additional 

challenges over previous related work. Due to safety concerns, sensors must be non-contact 

and without any components accessible, including wires, cables, or even units mounted in 

view on the wall. In our current IRB-approved study in a Psychiatric Center, sensors were 

embedded into the area above the ceiling and mounted over the bed at a height of 2.3 m. 

We have simulated this set-up in the lab, where a respiration belt is used for ground truth 

and tested the system with body postures of patients observed in the psychiatric hospital. 

We present work on respiration rate estimation with different sleep postures, with the aim 

of investigating a contactless monitoring system for psychiatric patients in the hospital that 

can estimate the breathing rate of patients during typical sleeping postures, and find the 

torso area when the patients use other postures, such as reading books in bed or reversing 

the body on the bed. 
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Fig.29 Eleven test sleeping postures. (a)-(c) Back. (d)-(f) Right side. (g)-(i) Left side. (j) Stomach. (k) 

Covered with a blanket 

7.2 Signal Processing  

A. RF Sensor 

The RF sensor was constructed using the Vayyar Radar system with a carrier frequency 

of 6.014 GHz to capture all reflections by the FMCW (frequency modulation continuous 

waveform) signal. The RF sensor has 27 antennas, 14 transmitting antennas and 13 

receiving antennas. Each frame has 182 chirps, each chirp has 187 samples, and each 
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sample has two quadrature channels. The radar bandwidth is 1.75 GHz, and the range 

resolution is 8.6cm. 

The carrier frequency 𝑓𝑐 of the RF sensor is 6.014 GHz, the radar wavelength is 5cm, 

and the angle resolution equal to 0.63 degrees. 

The data were collected by the Vayyar radar system. The detectable distance was from 

0 m to 5 m, the azimuth angle was from -45 degrees to 45 degrees, the elevation angle was 

from -45 degrees to 45 degrees.  These radar parameters were fixed in the data acquisition 

system. All the data from the radar were stored in .mat files on the computer. 

At the same time, the breathing rate was collected by a respiration belt for ground truth 

data. The respiration belt data was collected by a data acquisition system with a frequency 

of 1 kHz. 

B. Finding the Person on the Bed 

The .mat files included the following information: the TX-RX pairs, bandwidth, and the 

reflection signal from different distances. In order to combine the signal from different 

antennas, first, we used the multiple signal classification (MUSIC) algorithm for estimating 

the angle of arrival 𝜃 corresponding to the strongest signal. The received signal y for 

antenna n is represented by: 

𝑦[𝑛] = 𝐴𝑒−𝑗2𝜋𝑛𝑑𝑠𝑖𝑛𝜃/𝜆                                                     (56)     

where d is distance between two antennas, 3cm, and A is the received power of the RF 

signal.  Coherently combining the signal, 𝑧(𝜃) from different antennas over one minute, 

we use:  

𝑧(𝜃) = 𝐴 ∑ 𝑒−𝑗2𝜋𝑛𝑑(𝑠𝑖𝑛𝑠𝑖𝑛 (𝜃) −𝑠𝑖𝑛 (𝜃0))/𝜆𝑁−1
𝑛=0                                        (57) 
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where the beamforming steered angle 𝜃0 is equal to 0 degrees. 

Second, the combined signals implemented the range FFT and the constant false alarm 

detection (CFAR) processing for detecting the subject position. For instance, if one subject 

slept on his back in the middle of bed (Fig.29 (b)), the received strong reflection from the 

subject shows in the area 2.3m from the RF sensor (as in Fig.31).   

 

Fig.30 Flow diagram for respiration rate estimation 
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(a) 

 
(b) 

Fig.31 The subject position detection when sleeping on the back in the middle of bed. (a) range FFT (b) 

CFAR detection 
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(a)              

 
(b) 

  

(c) 
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 (d) 

Fig.32 The Subject position detection, (a) back sleep, (b) side sleep (right),  (c) stomach sleep, (d) Sleeping 

while covered by a blanket 

C. Estimating Respiration Rate 

After accurately locating the range bin, we extracted phase information corresponding 

to the range FFT peaks. We used the unwrapping of the phase information, removed the 

noise in the phase, filtered the phase, and implemented the FFT to the phase. The 

respiration rate then corresponds to the frequency of the dominant phase FFT peak within 

the breathing-region spectrum [17]. The respiration belt sensor is used as the ground truth 

of the RF sensor. 

𝑝ℎ𝑎𝑠𝑒 = 𝑢𝑛𝑤𝑟𝑎𝑝(𝑡𝑎𝑛−1(
𝑄 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑎𝑡𝑎

𝐼 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑎𝑡𝑎
))                                    (58) 

For instance, the respiration rate from belt sensor in Fig 33(a) is 18bpm. In same time 

period, the respiration rate from RF sensor in Fig.33 (b) is: 

Respiration rate =0.32*60=19bpm                                                    (59)   
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(a) 

 
(b) 

Fig.33 The respiration estimation. (a) Respiration signal from respiration belt sensor is used as the ground 

truth of RF sensor. (b) RF sensor respiration rate estimation 

 

7.3 Finding Torso Area 

In the psychiatric hospital setting, the patient has different postures on the bed. Some 

patients will read books or flip their head to the other side of the bed when they cannot 

sleep. This will cause a new challenge in finding the torso area for estimating the respiration 

rate (as in Fig.34). 
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Fig.34 Sleeping postures (a) on the back.  (b) reversing the body in bed. (c) sitting up in bed, reading 

First, we need to distinguish the torso area from the leg area. The torso area of a human 

being is larger than the leg area; hence, the reflection signal from the torso will be stronger. 

For instance, the CFAR detection from legs is shown as Fig. 35(b), which is different from 

the reflection signal from the torso area in Fig. 35(a).  Even if we extract the phase 

information from the range FFT peaks in the legs’ reflection signal to estimate the 

respiration rate, the result will be much lower than a normal respiration rate of human 

beings because there is no phase vibration signal. Therefore, we can distinguish the legs 

from the torso area.  To automate the process, we use steer beamforming from -45 degree 

to 45 degree by using a 5-degree step size to search for the torso area (see also Fig. 36). 



77 

 

 
(a) 

 
(b) 

Fig.35 CFAR detection (a) back sleeping.  (b) reflection signal from legs  
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Fig.36 The flow diagram for finding torso area 

7.4 Experimental Set Up and 2021 Lab Data Set Results 

We present the respiration rate estimation via the RF sensor on different sleep postures. 

Data were collected from three healthy younger adults and two elder adults in a controlled 

lab setting; see Table Ⅱ for subject details. Subject 1 and subject 2 were asked to lie on the 

bed in eleven different sleeping postures, as shown in Fig. 29.  Five subjects were asked to 

flip their head to the opposite side of bed (see Fig. 34 (a) (b)). Subjects 3-5 were asked to 

sit up in bed while reading. The RF sensor was installed over the bed in the same position 

and distance to bed as the patient room setting in the University of Missouri Psychiatric 

Center. 
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A. Estimation of respiration on different sleeping postures 

The RF sensor with the Vayyar radar was deployed on the ceiling of the Eldercare and 

Rehabilitation Technology lab, and the TX/RX antennas in the RF sensor are directed 

toward the torso area of the subjects. The data were collected by the RF sensor and the 

respiration belt sensor at same time. The respiration belt sensor’s data were used as the 

ground truth for the respiration rate. The distance between the bed and the RF sensor was 

2.3m, which was the same set-up as the patient hospital room in the Psychiatric Center.   

In addition, we installed a depth sensor in the Psychiatric Center patients’ room as a 

coarse ground truth of the RF system. That is, a patient’s general location and body posture 

appear as shadowy silhouettes. According to the depth data, we found that there were 

eleven common sleeping postures of these patients. Hence, we asked each subject in this 

current lab study to emulate the most common sleeping postures, holding each posture for 

at least 6 minutes. The sleep postures are described below: 

a) Back  

The Psychiatric Center patients slept on their back much of the time, varying the angle 

of the body with respect to the bed (Fig.29 (a)-(c)).  

b) Side  

The side sleeping postures were also popular positions with the Psychiatric Center 

patients. These include both right side sleeping postures (Fig.29 (d)-(f)) and left side 

sleeping postures (Fig.29 (g)-(i)), again with varying angles of the body with respect to the 

bed.  
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c) Stomach  

Some patients slept on their stomach (Fig.29 (j)).  

d) Covered by a Blanket 

A few patients preferred to sleep with a blanket covering the body and face. This is a 

test for capturing torso motion under the blanket. 

We examined the respiration estimation algorithm accuracy on all eleven different 

sleeping postures (Fig.29). The results in Table Ⅹ show the average respiration estimation 

accuracy on the three back postures is 92%. The average respiration estimation accuracy 

on the six side postures is 84%, the respiration estimation accuracy on the stomach position 

is 76%, and the respiration estimation accuracy on the case of a blanket covering is 90%.  

Table.X   Sleeping Postures and respiration rate Estimation Accuracy 

Position 
Subject 1 Accuracy Subject 2 Accuracy 

Back  (a) 
90% 94% 

Back  (b) 
93% 95% 

Back  (c) 
91% 94% 

Right side  (d) 
86% 95% 

Right side  (e) 
88% 85% 

Right side  (f) 
85% 80% 

Left  side   (g) 
82% 82% 

Left  side   (h) 
84% 86% 

Left  side   (i) 80% 80% 

Stomach     (j) 
75% 77% 

Covered by a blanket (k) 
90% 90% 
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7.5 Estimation Results of Respiration Rate When the Torso Area’s 

Position Was Changed 

Additional body postures were tested, based on observations of the Psychiatric Center 

patients.  According to the depth data, we found that some patients sit up in bed, while 

reading or flip their head to the opposite side of the bed when they cannot sleep. Hence, 

we asked each subject in this current lab study to emulate three sleeping postures, holding 

each posture for at least 5 minutes. The sleep postures are described below: 

a) Back  

The Subjects slept on their back much of the time (Fig.32 (a)).  

b) Reverse Back 

The Subjects slept on their back but flipped their head on the other side of the bed 

(Fig.32 (b)).  

c) Sitting in bed 

The Subjects read a book on the bed (Fig.32 (c)).  

We examined the torso area searching algorithm for respiration estimation accuracy on 

three different sleeping postures. The results in Table Ⅺ show the average respiration 

estimation accuracy on the back sleeping postures is 90%. The average respiration 

estimation accuracy when the subjects flipped their head on the other side of bed is 87%, 

the respiration estimation accuracy on the reading position is 86%.  
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Table.XI   Position Postures and respiration rate Estimation Accuracy 

Position Subject 1 Subject 2 Subject3 Subject4 Subject 5 

Back (a) 90% 94% 89% 88% 87% 

Reverse back (b) 88% 89% 87% 86% 86% 

Sitting in bed(c) — — 88% 85% 87% 

 

7.6 Experimental Set Up and 2018 Lab Data Set Results 

The 2018 Contactless Extraction of Heart and Respiratory Rate Sensing project was 

developed to estimate respiratory rate (RR) based on four sleeping postures using the radar, 

thermal camera, and depth sensing devices. I used the radar data of this project in my 

dissertation, and the belt sensor data as ground truth for the radar data. The depth camera 

data and thermal camera data are used as a reference. 

Nine students/employees of University of Missouri-Columbia, aged from 18 to 50 years 

old participated in this project for a short-term respiratory rate study with different body 

postures (Table Ⅲ). Every subject was asked to lie in four different sleeping postures: back 

sleeping, right sleeping, left sleeping and stomach sleeping; each body posture was kept 

for three minutes. We examined the respiration estimation algorithm accuracy on the four 

different sleeping postures. The results in Table Ⅻ show the average respiration 

estimation accuracy on the back postures is 92%.  The average respiration estimation 

accuracy on the side postures is 84%, and the respiration estimation accuracy on the 

stomach position is 82%.  
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Table.XII   Sleeping Postures and Respiration Rate Estimation Accuracy 

Sleeping 

poster 

Subject 

2 

Subject 

6 

Subject 

8 

Subject 

9 

Subject 

10 

Subject 

11 

Subject 

12 

Subject 

13 

Subject 

15 

Average 

accuracy 

back  90% 85% 87% 100% 100% 86% 83% 87% 97% 91% 

left  82% 92% 64% 88% 91% 86% 90% 86% 81% 84% 

right  85% 81% 77% 88% 77% 82% 91% 91% 87% 84% 

stomach  89% 95% 88% 79% 69% 85% 73% 80% 80% 82% 

 

7.7 Experimental Results Discussion  

From the results in Section 7.4-7.6, we found that the accuracy of the respiration rate 

depends on the sleep posture and the sleeping position. We offer the following conclusions. 

(1) When the patients are sleeping on their back, the torso area is directed toward 

the RF sensor. When sleeping in the middle of the bed, the movement of the 

torso area is easily detected by the RF sensor; hence, we can get an accurate 

respiration rate. If the patient’s position moved toward the side of the bed in a 

back sleeping posture, it does not significantly affect the respiration rate 

estimation. 

(2) When the patients are sleeping on their side and in the middle of the bed, the 

movement of their side can be detected by the RF sensor. The movement of the 

patient's side during the breathing is much smaller than the movement of the 
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abdomen; therefore, the accuracy of respiration rate estimation on the side 

sleeping posture is lower than the accuracy on the back sleeping posture because 

of the motion amplitude. If the patient’s position moved toward the side of the 

bed on a side sleeping posture, it does not significantly affect the respiration rate 

estimation. 

(3) When the patients are sleeping on their stomach, the patient's back is directed 

toward the RF sensor, and the movement of the torso area is between the bed 

and patient's back which is a small, obstructed signal. Therefore, the accuracy 

of the respiration estimation on the stomach sleeping posture is lower. 

(4) When the patients are sleeping on their back while covered by a blanket, we still 

can get higher accuracy, because the RF sensor can sense through the blanket, 

and capture the movement of the torso area. 

7.8 Respiration Estimation and Restless Time Estimation Results for 

Psych Center Patients 

We used the patient’s night data to track their motion in bed, estimate the breathing rate 

during their peaceful sleeping periods, and estimate restless time and sleep quality for each 

night. Safety checks are conducted by the staff every 15 minutes, and we set the staff’s 

motion that is detected by radar as an unknown case. The flow diagram is shown in Fig. 

37. 

A. Unknown case 

Safety checks are conducted by the staff every 15 minutes, and each patient’s status is 

manually recorded in a log, which includes the location of the patient as well as breathing 
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and sleeping status. At night, staff will often enter the patient’s room with a flashlight to 

perform these checks. The motions from the staff or the nurse are detected by the radar, 

and we set those data as unknown cases. For instance, there were big changes in the range 

bin at 374 minutes of the radar data in the Fig.38 (a); at same time, depth camera data 

showed the patient was in the bed with motion, and the nurse’s notes indicate the nurse 

came to the patient’s room for the safety check as shown in Fig.38 (b). Therefore, we set 

those data as unknown cases, and remove from the data. 

 

Fig.37 Flow diagram of data processing for psych center patient 

1) Out of bed vs. In bed  

As a first step, we need to identify whether the patient is out of the bed or in the bed. In 

correlating the depth camera data with the range bin of the radar data, the range bin has 

large changes when the patient is out of bed., as described in Section 5.1. We used 12 

features including the range bin and SVM classifier to classify the data into two classes; 

class 1 is out of bed, and class 2 is in the bed. 

2) The motion in the bed 
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If the data is from class 2 which is patient in the bed, we check the range bin changes. 

We set the threshold: 

Threshold = mean (range bin) + 30%*mean (range bin)                       (59) 

If the range bin changes are greater than the threshold, we identify the data from the 

patient’s motion data and estimate the restless: 

Restless estimation = #of motion event /total event                   (60) 

The restless time from depth camera was estimated by the Eq. (60). For instance, the 

restless estimation of the patient in Fig.38 (a) is: 

Restless estimation based on depth = 9.1% 

Restless estimation based on radar = 9.6% 

Table.XIII   Restless Estimation for Psych Center Patients 

Patient ID Date  depth radar 

2 9/10/2019 48% 33% 

2 9/11/2019 13% 12% 

2 9/12/2021 38% 43% 

1 9/10/2019 5% 4% 

1 9/11/2019 13% 12% 

1 9/12/2019 6% 7% 

3 (covered by a blanket) 9/17/2019 30% 40% 

7 9/24/2019 15% 18% 

4 9/17/2019 44% 54% 

5 9/18/2019 9% 13% 

10(has lots of leg motion) 10/2/2019 17% 7% 

10 10/3/2019 10% 14% 
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3) Breathing rate 

If the range bin changes are less than the threshold, we identify the patient is sleeping 

peacefully in the bed and estimate the breathing rate by using our respiration algorithm in 

Section 7.1 – 7.3 . The flow diagram of the breathing rate is shown at the Fig.30. The 

breathing rate estimation in one-minute periods for the patient in Fig.39 (a) is shown in the 

Fig. 39(b). The respiration rate corresponds to the frequency of the dominant phase FFT 

peak within the breathing-region spectrum, which is shown in equation (61). 

Respiration rate = 0.2 *60 =12 bpm                                        (61) 

 

(a) 
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(b) 

Fig.38 Depth data, Radar data and nurses’ notes. (a) Depth data and Radar data (c) Nurse’s notes in log 

 
(a) 
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(b) 

 
(c) 

Fig.39 Breathing rate estimation in one-minute periods. (a) The phase of target’s range bin. (b) the 

breathing rate in the frequency domain (c) The breathing rate during night period 

We use this strategy to estimate the Psych center patients’ respiration rate of different 

nights, and the results are shown in Fig. 40-46. From the results, we offer the following 

conclusions: 

• The depth camera data and the nursing notes in the log are used as the ground truth 

of the radar data. The depth camera data is labeled manually; there are three classes: 

0: empty bed, 2: person in bed still, 3: person in bed with motion. We got the nursing 
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notes from the psych center staff. PSD and the respiration rate were calculated by 

using radar data in Fig. 40-46. 

• The motion of patients is not detected by the radar in some cases. The main reason 

is that the radar is more sensitive to the motion in the upper body, and to posture 

changes. The motion in the legs can be detected by the depth camera, but it is 

difficult for the radar to identify the motion from legs because we set the azimuth 

angle range as -45 degree to 45 degree. We can detect the patient’s whole-body 

motion during the large azimuth angle range.  For instance, the patient (ID=10) data 

in Fig.42(a), the motion in the patient’s legs is detected by the depth camera, the 

radar data is not able to detect the motion. This will affect the accuracy of restless 

time estimation. 

• The staff will enter the patient’s room every 15 minutes with a flashlight to perform 

these checks. Sometimes, two or three staff members will come to the patient’s 

room to check the patient. This will make the radar data noisy and will affect the 

restless time estimation because it is difficult to identify where the motion comes 

from. 

• Respiration rate estimation depends on the patient’s still time in bed. If the patient 

is more stable in bed, we can get a more accurate respiration rate; otherwise, the 

small motion of the torso area will be hidden in the body motion of the patient. 

• Our respiration estimation algorithm has higher robustness for the instant of small 

motion, such as hand movement, or leg movement. The patient’s small hand 

movement or leg movement in Fig.42 does not affect the respiration estimation. 
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•  The accuracy of respiration rate estimation depends on the accuracy of restless 

time estimation. Restless time estimation indicates the patient’s peaceful time, and our 

algorithm has a higher accuracy for the respiration estimation when the patient is sleeping 

peacefully. 

• For different sleeping postures, our respiration estimation algorithm has a lower 

accuracy for stomach sleeping.  

• A few patients in psych center preferred to sleep with a blanket covering the body 

and face as shown Fig.44. The radar can detect the motion under the blanket and 

find the patient’s still time to estimate their respiration rate. This cannot be done by 

the depth camera system. 

 

 
(a) 
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(b) 

               
(c) 

Fig.40 Depth camera labels, the radar data, and the breathing rate from patient ID=2 (a) Date: 09/10/2019. 

(b) Date: 09/11/ 2019(c) Date: 09/12/ 2019 
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Fig.41 Depth camera labels, the radar data, and the breathing rate from patient ID=5, date: 09/18/2019.  

 
(a) 
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(b) 

Fig.42 Depth camera labels, the radar data, and the breathing rate from patient ID=10 (a) Date: 10/02/2019. 

(b) Date: 10/03/ 2019 
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(a) 

 

(b) 
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(c) 

Fig.43 Depth camera labels, the radar data, and the breathing rate from patient ID=1 (a) Date: 09/10/2019. 

(b) Date: 09/11/ 2019. (a) Date: 09/12/2019 

        

Fig.44 Depth camera labels, the radar data, and the breathing rate from patient ID=3, date: 09/17/2019.  
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Fig.45 Depth camera labels, the radar data, and the breathing rate from patient ID=7, date: 09/24/2019.  

 

Fig.46 Depth camera labels, the radar data, and the breathing rate from patient ID=4, date: 09/17/2019.  
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VIII. Learning Room Structure and Activity Patterns 

8.1 Learning Room Structure from The RF Clutter Pattern 

A series of experiments was carried out to investigate the wall locations between offices. 

First, The RF sensor was deployed in office (A) position , as shown in Fig.8. The 

transmitting antenna and the receiving antenna were directed towards the meeting room. 

When the RF sensor transmits electromagnetic radiation, signals penetrate the wall in the 

office, and reflect from all objects in both office (A) and the meeting room (C). If there is 

no moving target, the main component of the received signal is the pattern of clutter echoes 

due to echoes from the surface scatter; the strongest reflection in this clutter comes from 

the wall.  In order to determine the wall position, we used the beat frequency corresponding 

to the maximum peak in the received signal to calculate the estimated wall location, 

described below (Fig. 31(a)): 

1) The beat frequency of the RF sensor is calculated by the equation below: 

𝑓𝑏 = 𝐹𝑠 ∗ (0: 𝑁/2)/𝑁                                           (62) 

where N is the number of samples in each chirp. 

2) Perform the FFT algorithm for each chirp. 

3)  Find peaks in each chirp due to the strongest reflection from the wall, and find the 

corresponding beat frequency. 

4)  Store all estimated beat frequency results from (3), generate a histogram, and find 

the maximum intensity value. 

5) Calculate the distance R according to the beat frequency in (4) by the equation 

below: 
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𝑅 =
𝑐∗𝑓𝑏

2∗𝑠𝑙𝑜𝑝𝑒
                                                                  (63) 

6) The RF sensor is deployed in office (A) position, as shown in Fig. 8. The 

transmitting antenna and the receiving antenna are directed towards office (B), and the 

process from step (1) to step (5) is repeated for finding the wall location between office 

(A) and office (B). The results are shown in Fig.35 (b). 

 

(a) 

 

(b) 

Fig.47 Estimating wall position from the RF clutter pattern. (a) the flow diagram for the wall position 

estimation. (b) the actual and the estimated wall positions 

8.2 Learning Room Structure from Movement Patterns 

In the naturalistic home setting, the active movement of people occurs in the open spaces 

in the room, i.e., not where the wall is located. In this method, the room structure is learned 
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by capturing the active movement of people over time and generating clusters that represent 

this open space. 

In this experiment, the RF sensor is deployed in four different positions (,,,) in 

the offices (A, B) and the meeting room (C) (Fig. 8), and motion data are collected over 

time. Four different experiment scenarios were tested in this naturalistic setting: 

▪ In position , the TX/RX antennas in the RF sensor are directed toward office (A) 

and the meeting room (C). A person walked in office (A) for 30 minutes, and then 

entered the meeting room (C) and walked for another 30 minutes. The RF sensor 

collected the motion data both in front of and behind the wall. The same experiment 

scenario was conducted in position  where the antennas of the RF sensor are 

directed towards office (B) and the meeting room (C), and a person walked in office 

(B) for 30 minutes, then entered the meeting room (C) and walked for another 30 

minutes. 

▪ In position , the antennas of the RF sensor are directed toward office (A) and 

office (B). A person walked in office (A) for 30 minutes, and then entered office 

(B) and walked for another 30 minutes. 

▪ In position , the TX/RX antennas of the RF sensor are directed towards the door 

in the meeting room; data were collected while a person walked back and forth in 

the room for 30 minutes. 

The range FFT on each chirp and the velocity FFT on each frame are performed for the 

RF sensor data in order to get the range and the velocity information of the person located 

in the rooms. A clustering algorithm is run on the RF motion data set, which has three 

features: velocity, range, and received power.  
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In order to get the possible number of clusters, the Improved Visual Assessment of 

Cluster Tendency (iVAT) algorithm is applied to the RF motion data set [99-100]. The 

iVAT image in Fig.36 (a) shows that the number of preferable tendency clusters is three. 

Furthermore, the Fuzzy C-Means algorithm is implemented for the RF data set by using 

the cluster numbers from the iVAT algorithm [101-103]. 

Fig.36(b) shows that there are three clusters, the first cluster (red) indicates the motion 

in the meeting room, the second cluster (cyan) indicates the motion  in office (A), the third 

cluster (blue) indicates the motion in office (B). The area between the red cluster and the 

cyan and blue clusters represents the possible wall position between the offices (A, B) and 

the meeting room C. The area between the cyan and blue clusters represents the possible 

wall position between office (A) and office (B). 

 

(a)   
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 (b) 

 
(c) 

Fig.48 The Learning room structure from active movement patterns (a) partitioned iVAT image (b) 

clustered motion data by FCM (c) the estimated wall positions   

8.3 Discussion  

Two different methods are presented for the wall position estimation via RF signals in 

a naturalistic setting, which include learning room structure from the RF clutter patterns, 

and learning the open space from the active movement patterns.  

The results in Fig.35(b) show the wall position estimation between the offices (A, B) 

and the meeting room (C) is 3.49m based on the RF clutter patterns;  the accuracy of this 

method is 91% compared to the actual distance as measured manually using a tape measure. 

Meanwhile, the method using active movement indicates there is no motion between the 

range of 3.5m to 4.4 m. Therefore, we estimate the final wall position between the offices 
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and the meeting is 3.49 m. The wall position between office (A) and office (B) is 3.62m 

based on the RF clutter patterns; the accuracy of this method is 98% compared to the 

manually measured distance. At the same time, the method using motion patterns shows 

there is no motion between 3.7m to 4.1m. Hence, we estimate the wall position is 3.62m. 

8.4 Background Filter Design 

RF sensors have a higher accuracy for tracking motion in the line of sight (LOS) due to 

the electromagnetic radiation travel in a direct path from the transmitter to the receiver. 

However, the RF signal will be attenuated in the obstructed environment (OBS), such as a 

signal penetrating a wall. The motion reflection behind the wall will be weaker (Fig.38 (a)) 

or sometimes even be hidden (Fig.38 (c)) due to a strong wall reflection; this effect can 

result in difficulties when calculating the motion density in different rooms. In order to get 

the activity density, we designed a background filter based on the estimated wall position 

in section III to remove the wall reflection effects.  

First, we deployed the RF sensor in position  in office (A) to collect the active 

movement in meeting room (C). Fig.38 (a) shows there is motion in the area 3.9m ~ 7.9m 

from the sensor. Meanwhile, a constant reflection shows in the area 3.4m ~ 3.7m from the 

sensor. In section III, we estimated the wall position between office (A) and meeting room 

(C) is 3.49m; therefore, we assume the constant reflection in Fig.38 (a) is from the wall. A 

Butterworth band-stop background filter is designed based on the wall beat frequency 

calculated by equation (3). The magnitude and phase responses of the background filter are 

shown in Fig. 37. The background filter is applied in the RF signal processing, and the 

result is show in Fig.38 (b).  
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Second, we deployed the RF sensor in office (A) to collect motion in office (B). A 

similar signal processing approach was used, and the results are shown in Fig.38 (d). The 

hidden motion reflection and the small constant reflection (Fig.38 (c)) due to a strong wall 

reflection becomes clearer in Fig.38 (d) after the background filter is applied to the RF 

sensor data.  

 

Fig.49 The Magnitude and Phase Response of Background filter. 
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(a)   

                                                             

(b) 
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(c)     

                                                           

 (d) 

Fig.50 The Background filter. (a) motion in meeting room C without the background filter (b) motion in 

meeting room C with the background filter. (c) motion in office B without the background filter. (d) 

motion in the office B with the background filter 
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8.5 Activity Density 

Data from the RF sensor deployed in four different positions of the office rooms and the 

meeting room are processed using the background filter for removing the wall reflection, 

as described in Section V. The filtered data are processed using the range FFT and the 

velocity FFT to get the range and velocity information of a target. Then fuzzy rules are 

applied to the resulting motion dat , which has three features: velocity, range and received 

power, for estimating the activity level, which can be viewed as an activity density, i.e., 

amount of activity per unit of time  (Fig.39  (a)). The processing steps are included in 

several steps as follow: 

1) Define the input and output of fuzzy rules. The motion velocity and the received 

power are used as input to a system of fuzzy rules; the output of the fuzzy rules is 

the activity level of motion in the room. 

2) Create the membership functions for the fuzzy rule system. Based on the gait 

information of older adults, the average velocity of older adults in daily routines is 

0.5 m/s. Hence, the input variable ‘velocity’ can be represented by the Gaussian 

membership function in Fig.39 (b). The expected signal-to-noise ratio in the radar 

system is ± 10dB. According to the signal-to-noise ratio, the second input variable 

‘received power’ can be represented by the triangle membership function in Fig.39 

(c). The triangle membership function is used for the fuzzy output ‘activity density’ 

in Fig.39 (d). 

3) Create the compositional rules for the fuzzy rule system. 

 In the radar system, static objects have a constant amplitude and phase in each chirp, 

whereas the moving target has variable amplitude and phase information. When the target 
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velocity is higher, the variation of phase and amplitude in the received signal is higher. 

Therefore, the velocity information and the received power are used as the antecedent of 

the fuzzy system to create the fuzzy rules as follow: 

Rule 1.   If the velocity is low, and the received power is low, then motion density is 

low. 

Rule 2.   If the velocity is moderate, and the received power is normal or high, then 

the motion density is moderate. 

Rule 3.   If the velocity is high, and the received power is high, then the motion 

density is high 

 

(a) 
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(b)  

                                              

(c) 
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(d) 

Fig.51 The fuzzy rule system (a) the flow diagram for the fuzzy rule system, (b) the membership function 

of velocity (c) the membership function of received power,  (d) the membership function of activity 

density  

Due to the distance from the target to radar and the wall attenuation, the received power 

is higher or moderate if the motion is in the offices (A, B); however, the received power is 

lower or moderate if the motion is in the meeting room (C). Therefore, the fuzzy rule 

system used two antecedents: the received power and the velocity, and implemented the 

cylindrical closure operation. Fig. 40 (a) shows the activity level of meeting room is 65% 

moderate motion and the high motion is less than 1%. Fig.40 (b) shows the activity level 

of the office (A) is 48% moderate motion and the high motion in the office is less than 1%. 

Fig. 40 (c) shows the activity level of the office (b) is 52 % of moderate motion (Table Ⅹ).  
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(a)  

                                                                                               

 (b) 
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(c) 

Fig.52 The output of fuzzy rule system (a) the activity density of meeting room C, (b) the activity density 

of office A, (c) the activity density of office B 

Table.XIV   The A-B wall position  

Location Motion density (%) 
Activity 

level 

Office room A 48% Moderate 

Office room B 52% Moderate  

Meeting room C 65% moderate 
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8.6 Conclusion 

In this chapter, we present work on using an RF sensor for learning the room structure 

and the activity level estimation for in-home monitoring of older adults. We first 

investigate two different methods for the wall position estimation, which include learning 

room structure from RF clutter patterns and learning room structure from active movement 

patterns. The RF clutter pattern is more accurate in estimating wall position in the room 

without any target, but the movement pattern estimate confirms the wall location by 

observing moving targets. Comparing the results from the two different methods enables 

us to get a more accurate wall location in the case of unexpected noise. We also designed 

a background filter to remove the wall reflection in the received signal for calculating the 

activity level of older adults over time. In addition, we implemented a system of fuzzy rules 

using the filtered motion data captured over time, for activity level estimation of older 

adults in different rooms 
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IX. Conclusion and Future Work 

9.1 Conclusion  

This dissertation concentrates on methods for helping two groups of vulnerable 

populations, namely, frail older adults and psychiatric hospital patients, to monitor their 

activity level, respiration rate, sleeping quality, and restless time in bed. 

In the first part of our work, we have investigated a contactless monitoring system for 

Psych Center patients in a naturalistic hospital setting. A depth camera and a thermal 

camera have also been installed and are used as the ground truth. 

Chapter 3 provided the list of datasets that we collected for this study, including 

Psychiatric date set (2019), Eldercare and Rehabilitation Technology Lab Data Set (2021), 

Contactless Extraction of Heart and Respiratory Rate with Depth, Thermal and Radar 

Sensing Devices Lab Data Set (2018).  

In Chapter 4, I designed a FMCW simulation App, where we can set radar parameters, 

such as the number of TX/ RX antennas, the samples of per chirp, the number of chirps in 

per frame, the center frequency, bandwidth, the sample frequency of radar system, and got 

the important performance parameters of radar, including the range resolution, the velocity 

resolution, the maximum range, the maximum velocity, and the angle resolution. FMCW 

simulation App help us to better understand the performance of the FMCW radar system 

in the Psychiatric center contactless monitoring system and the FMCW system for the 

learning the room structure via radio wave reflections for longitudinal health monitoring 

of older adults in a naturalistic home setting. 



115 

 

The RF signal processing was presented in Chapter 5, which was included in frame data 

processing, beamforming, angle of arrival, matched filter design, and target detection. 

Compared to variable data frame processing, the constant data frame processing is more 

accurate. Therefore, we decided to use the constant data frame processing for all radar data 

signal processing. We used two different methods for detecting target in RF signal 

processing: Constant false alarm rate (CFAR) detection method, and Cross correlation 

detection method. Compared to the results from two methods, we could get a more accurate 

target position. 

Chapter 6 presented the out of bed vs. in bed classification algorithm, which was 

included in data preprocessing, single patient’s balanced data classification, and 

imbalanced data set classification. We designed an SVM classifier, and used six patient 

data to train the classifier, and out of one patient data for testing the classifier.  The 

classifier has 97% accuracy and 96% recall to the imbalanced data set from Psych Center.  

Chapter 7 presented the work on respiration rate estimation with different sleep postures, 

with the aim of investigating a contactless monitoring system for psychiatric patients in the 

hospital that can estimate the breathing rate of patients during more typical sleeping 

postures and find the torso area when the patients use other postures, such as reading books 

in bed or reversing the body on the bed.  I used three different data sets in Chapter 3 to test 

the respiration rate estimation algorithm.  For the 2018 Lab Data Set, the average 

respiration estimation accuracy on the back sleeping postures is 92%. The average 

respiration estimation accuracy on the side sleeping postures is 84%, and the respiration 

estimation accuracy on the stomach sleeping position is 82%. For the 2021 Lab Data 

Set, the average respiration estimation accuracy on the back sleeping postures is 90%. The 
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average respiration estimation accuracy when the subjects flipped their head on the other 

side of bed is 87%, the respiration estimation accuracy on the reading position is 86%. Our 

respiration estimation algorithm was tested by those two data sets and shown to have a high 

accuracy. Therefore, we applied the same algorithm to the 2019 Psychiatric data set to 

estimate the patient’s respiration rate in a naturalistic hospital setting. The restless time of 

a psych center patient is calculated by the number of motion events in the total event.  

The aim of investigating a contactless monitoring system for psychiatric patients in the 

hospital is to detect life signs, such as movement patterns and breathing patterns, in 

naturalistic hospital settings, which can be achieved in this dissertation. However, there are 

two limitations in our research: first, our respiration algorithm was tested by the subjects 

with normal BMI in lab experiments, then was applied to estimate the respiration rate of 

patients in the psych center hospital, in which the BMI was greater than 26, indicating an 

overweight condition. An overweight condition can significantly interfere with respiration 

function by decreasing lung volume and may result in rapid shallow breathing that could 

be harder to detect with the radar system. Thus, the patients in the psych center may have 

had a higher breathing rate than the rate estimated by the algorithm.  Second, depth camera 

data are used as ground truth for the radar data, and patients’ movement patterns for 

estimating restless time in depth data were manually labeled. The labeling of depth camera 

data was subjective, and there were times in which it was hard to see the movement, such 

as when the patient was under the blanket. 

In the second part of our work, we investigate two methods for learning the room 

structure via radio wave reflections for longitudinal health monitoring of older adults in a 

naturalistic home setting. We first investigate two different methods for the wall position 
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estimation, which include learning room structure from RF clutter patterns and learning 

room structure from active movement patterns. The RF clutter pattern is more accurate in 

estimating wall position in the room without any target, but the movement pattern estimate 

confirms the wall location by observing moving targets. Comparing the results from the 

two different methods enables us to get a more accurate wall location in the case of 

unexpected noise. The wall position estimation between the offices (A, B) and the meeting 

room (C) is 3.49m based on the RF clutter patterns; the accuracy of this method is 91% 

compared to the actual distance as measured manually using a tape measure. Meanwhile, 

the method using active movement indicates there is no motion between the range of 3.5m 

to 4.4 m. Therefore, we estimate the final wall position between the offices and the meeting 

is 3.49 m. The wall position between office (A) and office (B) is 3.62m based on the RF 

clutter patterns; the accuracy of this method is 98% compared to the manually measured 

distance. Next, a background filter is designed based on the estimated wall position and 

remove the wall reflection in the received signal for calculating the activity level of older 

adults over time. In addition, we implemented a system of fuzzy rules using the filtered 

motion data captured over time, for activity level estimation of older adults in different 

rooms. 

9.2 Future work 

In the first part of our work, we designed a classifier to identify the out of bed vs.  in 

bed and got high accuracy and recall. Meanwhile, we estimate the psych center patient’s 

restless time, and the patient’s respiration estimation algorithm with different sleep 

postures during a peaceful sleeping period. In the future, more work could be done to 

improve the results: 



118 

 

• Identify the patient’s motion from the nurse’s motion and get more accurate 

restless time estimation. 

• Identify the empty bed case from the person in bed without breathing. 

• Recover the small torso area motion from the body motion signal. 

• Improve our radar system. It will be more helpful for the radar signal processing 

if we know more information about the radar design parameters. The Vayyar 

radar system has swept bandwidth, 1.75GHz, and the range resolution is 8.6cm. 

If the RF system with higher bandwidth and higher frequency is used in Psych 

Center project, the range resolution and velocity resolution can be improved 

which will help in getting a higher respiration rate estimation accuracy. 

In the second part of our work, we investigated two methods for learning the room 

structure via radio wave reflections for longitudinal health monitoring of older adults in a 

naturalistic home setting. This is a great research topic. Future work in this area should 

include the following: 

• Change the radar system to the FMCW radar system with a higher bandwidth 

and multiple antennas. 

• Identifying the static object without any doppler shift is a big challenge for the 

FMCW radar system. A more advanced radar system and more data collection 

would help in learning the environment structure. 
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Table.XV   List of My Posters and Papers 

Posters 

Nuerzati Resuli, Marjorie Skubic, Scott Kovaleski. Learning Room Structure via Radio 

Reflection Patterns for In-Home Monitoring of Older Adults. E-week, University of Missouri, 

2019. 

Nuerzati Resuli, Nader Rohani, Youssef Atris. FMCW Radar Signal Processing via Data 

Compression for Automotive Application. On Semiconductor Summer Internship, Phoenix, 

AZ, USA, 2019. 

Papers 

Nuerzati Resuli, Marjorie Skubic, Scott Kovaleski. Learning Room Structure and Activity 

Patterns Using RF Sensing for In-Home Monitoring of Older Adults. 2020 IEEE International 

Conference on Bioinformatics and Biomedicine (BIBM), 2020. 

Nuerzati Resuli, Marjorie Skubic, Jung Myungki. Noninvasive Respiration Monitoring Using 

an RF Sensor in Different Sleeping Postures. IEEE International Conference on Bioinformatics 

and Biomedicine 2021 (IEEE BIBM 2021) 

 

 

 

 

 

  

https://ieeexplore.ieee.org/xpl/conhome/9312958/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9312958/proceeding
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Appendix A.  Nursing Notes  

1. Subject: 001 

Time: 09/10/2019 AT 19:59 – 09/11/2019 AT 06:51 
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2. Subject: 001 

Time: 09/11/2019 AT 19:50 – 09/12/2019 AT 06:48 
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3. Subject: 001 

Time: 09/12/2019 AT 19:51 – 09/13/2019 AT 06:46 
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4. Subject: 002 

Time: 09/10/2019 AT 19:52 – 09/11/2019 AT 06:46 
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5. Subject: 002 

Time: 09/11/2019 AT 19:50 – 09/12/2019 AT 06:48 
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6. Subject: 002 

Time: 09/12/2019 AT 19:51 – 09/13/2019 AT 06:46 
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7. Subject: 003 

Time: 09/17/2019 AT 19:05 – 09/18/2019 AT 06:51 
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8. Subject: 004 

Time: 09/17/2019 AT 19:05 – 09/18/2019 AT 06:50 
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9. Subject: 005 

Time: 09/18/2019 AT 19:04 – 09/19/2019 AT 06:09 
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10. Subject: 007 

Time: 09/24/2019 AT 19:20 – 09/25/2019 AT 06:19 
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11. Subject: 010 

Time: 10/02/2019 AT 19:44 – 10/03/2019 AT 06:46 
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12. Subject: 010 

Time: 10/03/2019 AT 19:16 – 10/04/2019 AT 06:16 
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