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SEMIPARAMETRIC ANALYSIS OF TIME-TO-EVENT

DATA AND LONGITUDINAL DATA

Ruiwen Zhou

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Interval-censored failure time data are commonly observed in demographical, epi-

demiological, financial, medical, and sociological studies. It is well-known that the

proportional hazards model is one of the most used regression models for the anal-

ysis of failure time data, and significant literature has been established for fitting it

to interval-censored data. Many authors have discussed the problem when complete

information on the covariates is available, or the missing is completely at random.

Nevertheless, an established method for the situation where the missing is at random

does not seem to exist. The first part of this dissertation discusses fitting the pro-

portional hazards model to interval-censored failure time data when there may exist

missing on covariates. A sieve maximum likelihood estimation approach is proposed

with the use of I-splines to approximate the unknown cumulative baseline hazard

function. For the implementation of the method, we develop an EM algorithm based

on two-stage data augmentation. Furthermore, we show that the proposed estimators

of regression parameters are consistent and asymptotically normal.

Many authors have discussed the joint analysis of longitudinal data and time-

to-event data, but most of the existing methods are the hazard-based approach for
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the failure time of interest. It is well-known that sometimes the mean residual life

(MRL) model, which measures the remaining life expectancy, may be of more interest.

To address this issue, the second and third parts of this dissertation consider an

MRL-based method for the joint analysis, which gives a meaningful and informative

alternative to the hazard-based approach. In the second part, we propose to utilize

the proportional mean residual life (PMRL) function with latent random effect to

jointly access the observed baseline prognostic factors and continuous longitudinal

risk factor on the MRL function. The proposed method extends the conventional

proportional mean residual model to accommodate a latent random effect that links

the time to event with longitudinal measurement. For the parameter estimation, we

propose an extended estimating equation approach. The simulation study shows that

the performance of the proposed method is satisfactory. We then apply the proposed

method to the ADNI study that reveals insights into critical factors that influence

the progression time from MCI status to AD conversion.

To further accommodate binary longitudinal outcome, in the third part, the pro-

portional mean residual model and the generalized linear mixed model are employed

to model the failure time of interest and the longitudinal variable, respectively. For

estimation, a quasi-likelihood approach is developed with the use of Laplace approx-

imation. A simulation study is conducted, and the proposed method is applied to a

set of real data.
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Chapter 1

Introduction

1.1 Estimation of the Proportional Hazards Model

based on Interval-censored Data with Missing

Covariates

It is well-known that the proportional hazards model is one of the mostly used re-

gression models for the analysis of failure time data and a great literature has been

established for fitting it to right-censored or interval-censored data, especially the

former. By the latter, we mean that the failure time of interest is observed only to

belong to an interval instead of being known exactly and it is apparent that the latter

includes the former as a special case (Sun, 2006). Among others, the fields that gener-

ate interval-censored data include demographical, epidemiological, financial, medical

and sociological studies.

As discussed by many authors, missing data can arise due to many circumstances

and in general, their analysis highly depends on the censoring mechanism (Little
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and Rubin, 2002). For the situation, a naive approach is the so-called complete-case

(CC) method, which bases the analysis only on the complete part of the data or

throw away the subjects with missing information. It is apparent that this may not

only be inefficient but also yield biased estimation when the missing data mechanism

depends on the observed data such that covariates may be missing at random (MAR)

(Ibrahim and Chen, 1999; Little and Rubin, 2002; Qi and Prentice, 2005). Instead of

the CC method, some alternatives could be the multiple imputation procedure and

the estimating equation approach. As pointed by many authors, when the missing is

MAR, the maximum likelihood approach may be preferred or should be used.

Several maximum likelihood methods have been proposed for regression analysis

of right-censored failure time data with missing covariates under the proportional haz-

ards model when the missing is MAR (Chen and Ying, 2002; Chen and Little, 1999;

Zhou and Pepe, 1995). However, it does not seem to exist an established approach for

interval-censored data with missing covariates except Wen and Lin (2011). In Wen

and Lin (2011), they proposed a semiparametric maximum likelihood estimation pro-

cedure for regression analysis of current status data, a special case of interval-censored

data, with missing covariates under the proportional hazards model.

To fill the research gap, we will consider the estimation of the proportional haz-

ards model when one faces case II interval-censored data with missing covariates and

propose a sieve maximum likelihood estimation approach in Chapter 2. The method

can be easily implemented and makes use of I-spline functions to approximate the

underlying cumulative hazard function.
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1.2 Mean Residual Life Model

The mean residual life (MRL) model is a meaningful and informative alternative

to hazard-based models. In clinical studies, the researchers and patients may be

more interested in knowing how much the treatment can influence the remaining

life expectancy rather than the hazards given the patient’s current situation. For a

nonnegative survival time T with finite expectation, the MRL function at time t ≥ 0

is defined as

m(t) = E(T − t|T > t)

and can be interpreted as the remaining life expectancy of a subject given survival

up to t. Oakes and Dasu (1990) first proposed the two samples proportional mean

residual life model, which provides an alternative to the Cox proportional hazards

model. Later on, various studies have been conducted for regression analysis of the

MRL function m(t|Z). Maguluri and Zhang (1994) studied the proportional mean

residual life model (PMRL) defined by

m(t|Z) = m0(t) exp (β′Z)

without censoring.They utilized the relationship between the PMRL function and

proportional hazards function under Hall-Wellner class of distributions to formulate

the estimating equations.

Chen and Cheng (2005) later proposed a semiparametric inference procedure for

coefficients and baseline mean residual life with censored data. They developed ad-hoc

estimation for β and m0(t). Later, to fulfill the monotonic nondecreasing requirement

for the life expectancy, Chen and Cheng (2006) proposed a linear mean residual life
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model

m(t|Z) = m0(t) + βTZ

and developed estimating equations based on counting processes, extended Buckley-

James estimation, and Quasi partial score estimation. To have a more general model,

Sun and Zhang (2009) proposed a class of transformed mean residual life models for

fitting survival data under right censoring

m(t|Z) = g {m0(t) + β′Z} ,

where g : < 7→ < is a prespecified link function. They utilized the inverse proba-

bility of censoring weighting approach and developed the estimating equations under

independent censoring and dependent censoring.

Regression analysis of covariate effects on mean residual life has been well studied.

However, the joint modeling of longitudinal outcomes and survival time has never been

introduced into the MRL regression framework. Considering joint modeling under the

MRL regression framework will provide an important alternative that allows people

to look from a different perspective since the MRL model offers another interpretation

and has been commonly used in survival analysis.

1.3 Simultaneous Analysis of Longitudinal and Sur-

vival Outcomes

Simultaneously observing longitudinal outcomes and survival endpoints on the same

subject over time is quite common in the biomedical field or public health field. For
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example, in the public health field, we can observe both the life quality and the death

time for each subject, along with the subject’s health indicators and covariates for

disease history. It might be interesting to research the impacts of different patients’

health indicators or disease history on life quality and death time simultaneously. For

this purpose, joint modeling is necessary since it allows the researchers to take the

dependence between the two types of outcomes within the same subject into account.

The joint modeling of survival and longitudinal data has been studied by many

authors in the literature. One of the most commonly used models is the shared

parameter model, where a random effect is included in the model to link the longi-

tudinal outcome and survival time. Under the shared parameter model, there are

mainly two subtypes, selection model and mixture model. Model selection between

those two subtypes is subject to the specific research questions. The selection model

focuses on estimating the distribution of survival time given the longitudinal data, so

research interest lies in covariates’ impacts on survival time given other longitudinal

indicators. The selection model with categorical longitudinal data was considered by

Faucett (1998), Huang et al. (2001), Xu and Zeger (2001), Lin and Mayne (2002),

Chen and Ying (2002), Larsen (2004), Chakraborty and Das (2010). However, the

mixture model is more interested in estimating the parameters of the longitudinal re-

gression analysis given survival time. As a result, it can be applied to make inferences

on longitudinal data with informative dropouts. Pulkstenis et al. (1998), considered

the pattern mixture model of binary longitudinal outcomes with informative dropout.

Albert and Follmann (2000) proposed to model repeated count data subject to infor-

mative dropout. Albert et al. (2002), and Albert and Follmann (2007) studied binary

longitudinal data with informative missingness.
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Despite the development of joint modeling of longitudinal data and survival time

under the hazards function framework. However, the joint modeling of longitudi-

nal outcomes and survival time has never been introduced into the MRL regression

framework. As a result, in Chapter 3, we propose a framework for the analysis of time

to event data and continuous longitudinal data under proportional mean residual life

model and linear mixed model. Later, in Chapter 4, to generalize the method pro-

posed in Chapter 3 to binary longitudinal outcome, we focus on the proportional mean

residual model for survival outcome and used the generalized linear mixed model to

model longitudinal data.
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Chapter 2

A New Approach to Estimation of
the Proportional Hazards Model
based on Interval-censored Data
with Missing Covariates

2.1 Introduction

As described in Section 1.1, interval-censored data with missing covariates is com-

monly observed in different areas. Many methods have been developed for regression

analysis of interval-censored data with missing covariates under missing completely

at random mechanism. When the missing is missing at random, comparing to the

multiple imputation procedure and the estimating equation approach, the maximum

likelihood approach may be preferred with less restriction on the missing-data mech-

anism.

In this chapter, we will discuss the fitting of the proportional hazards model
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to interval-censored failure time data when there may exist missing on covariates

under missing at random mechanism, using a sieve maximum likelihood estimation

approach. For the estimation, I-spline functions are employed to approximate the

unknown baseline cumulative hazard function, and a Poisson-based EM algorithm is

developed. The proposed estimator of regression parameters is shown to be consis-

tent and asymptotically normal. The simulation studies indicate that the proposed

method seems to work well empirically.

The rest of the Chapter 2 is organized as follows. We will begin in Section 2.2

by introducing the model and assumption that will be used throughout the paper

and then presenting the resulting likelihood functions. The proposed sieve maximum

likelihood estimation approach will be derived in Section 2.3, and in particular, for

the determination of the proposed estimators, an EM algorithm is developed. Section

2.4 establishes the asymptotic properties of the proposed estimators of regression

parameters. Some results obtained from a simulation study are presented in Section

2.5 and suggest that the proposed approach works well in practical situations. Section

2.6 provides an application and some discussion and concluding remarks are given in

Section 2.7.

2.2 Models, Assumptions and Likelihood

Consider a failure time study that involves n independent subjects and let Ti and

Xi denote the failure time of interest and a p-dimensional vector of covariates as-

sociated with subject i. In the following, suppose that for each subject, there exist

two monitoring variables or observation times Ui and Vi with Ui < Vi and instead of

8



observing Ti, one observes only Ui and Vi and the indicator variables δ1i = I(Ti < Ui),

δ2i = I(Ui ≤ Ti < Vi) and δ3i = 1− δ1i − δ2i. That is, we only know if the failure for

subject i has occurred before Ui, during the examination interval [Ui, Vi) or after V

and observe case II interval-censor (Sun, 2006).

For the covariate effect on Ti, we will assume that given the covariates Xi, the

cumulative hazard function of Ti has the form

Λi(t|Xi) = Λ0(t) exp{β′Xi} , (2.1)

where Λ0(t) denotes an unspecified baseline cumulative hazard function and β a p-

dimensional vector of regression parameters. That is, Ti follows the proportional

hazards model. In the following, we will assume that given the covariate Xi, the failure

time Ti is independent of observation times Ui and Vi or we have the independent

interval censoring.

Under the assumptions above, if there is no missing covariate, the likelihood func-

tion would have the form

Lc(β, γ,Λ0) =
n∏
i=1

f(Ui, Vi, δ1i, δ2i, δ3i|Xi; β,Λ(t)) f(Xi; γ) ,

where f(Xi; γ) denotes the density function of the covariate with the unknown pa-

rameter γ and

f(Ui, Vi, δ1i, δ2i, δ3i|Xi) ∝ [1− exp{−Λ0(Vi)exp(β′Xi)}]δ1i

×[exp{−Λ0(Ui)exp(β′Xi)} − exp{−Λ0(Vi)exp(β′Xi)}]δ2i

9



×[exp{−Λ0(Ui)exp(β′Xi)}]δ3i , i = 1, . . . , n. (2.2)

It follows that we would have the log likelihood function

ln(β, γ,Λ0) = log[Lc(θ, β, γ,Λ(t))]

=
n∑
i=1

log[f(Ui, Vi, δ1i, δ2i, δ3i|Xi; β,Λ(t))] +
n∑
i=1

log[f(Xi; γ)]

= l1(β,Λ0) + l2(γ) . (2.3)

It is easy to see that one can maximize l1(β,Λ0) and l2(γ) separately if the goal is

to estimate β, γ and Λ0, or can ignore l2(γ) since γ is usually not of interest. As

will be seen below, we have to estimate β, γ and Λ0 together when there are missing

covariates.

Now suppose that some covariates may be missing and the covariate can be written

as Xi
′ = (Xobs

i
′
,Xmis

i
′
), where Xobs

i denotes the components of the covariates that

are known or can be observed and Xmis
i the components of the covariates that are

missing. Also suppose that we can write the density function of the covariates as

f(Xobs
i ,Xmis

i ; γ) ∝ f(Xobs
i )f(Xmis

i |Xobs
i ; γ) .

Let Ri = (Ri1, ..., Rip)
′ denote the missing indicator with Rij = 1 if the jth component

of the covariate associated with subject i is observed and 0 otherwise. In the following,

10



we will assume that the covariate is missing at random, meaning that

f(Ri|Ui, Vi, δ1i, δ2i, δ3i,X
mis
i ,Xobs

i ) = f(Ri|Ui, Vi, δ1i, δ2i, δ3i,X
obs
i )

for the conditional density function of Ri. Then the observed likelihood function has

the form

Lo(θ) =
n∏
i=1

∫
f(Ui, Vi, δ1i, δ2i, δ3i|Xmis

i ,Xobs
i ; β,Λ(t))f(Xobs

i ,Xmis
i ; γ)dXmis

i ,

where θ = (β, γ,Λ0). In the next session, we will discuss estimation of θ by maximizing

Lo(θ).

2.3 Sieve Maximum Likelihood Estimation

In this section, we will discuss estimation of θ by maximizing Lo(θ) with the focus

on making inference about β. For this, it is apparent that it would be difficult

directly to maximize it and thus we will develop an EM algorithm. Before presenting

the algorithm, we will first discuss the use of the sieve approach and then the data

augmentation.

It is well-known that the sieve approach can be used to approximate an unknown

function in order to reduce the number of unknown parameters and the computational

burden (Ma and Sun (2015); Zhao et al. (2015); Li et al. (2017)). More specifically, for

the estimation here, we suggest to first approximate the baseline cumulative hazard
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function Λ0(t) by monotone splines such as

Λn(t) =
s+kn∑
l=1

αlIl(t)

(Ramsay, 1988). In the above, {Il(t), l = 1, . . . , s + kn} are integrated spline basis

functions with the order s and the number of knots kn, and the α′ls are nonnegative

coefficients that ensure monotonicity of Λn(t). The degree s determines the smooth-

ness of the true baseline cumulative hazard function and is often taken to be 1, 2, or

3, which corresponds to linear, quadratic, or cubic basis functions, respectively. In

practice, for the choice of s and kn, one commonly used method is to try different

values of them and compare the obtained results. As an alternative, one could also

use the AIC to choose the values of s and kn that give the smallest AIC and more

discussion on this is given below.

Now we discuss the data augmentation and for this, we will assume that all co-

variates have been observed. Then the log likelihood function l1(β,Λ(t)) would have

the form

l1(β,Λ0) =
n∑
i=1

log{[1− exp{−Λ0(Vi)exp(β′Xi)}]δ1i × [exp{−Λ0(Ui)exp(β′Xi)}

−exp{−Λ0(Vi)exp(β′Xi)}]δ2i [exp{−Λ0(Ui)exp(β′Xi)}]δ3i} . (2.4)

By replacing Λ0 by Λn, we have that

l∗1(β, αl) =
n∑
i=1

log

{
[1− exp{−(

s+kn∑
l=1

αlIl(Vi))exp(β′Xi)}]δ1i

12



×[exp{−(
s+kn∑
l=1

αlIl(Ui))exp(β′Xi)} − exp{−(
s+kn∑
l=1

αlIl(Vi))exp(β′Xi)}]δ2i

×[exp{−(
s+kn∑
l=1

αlIl(Ui))exp(β′Xi)}]δ3i
}
. (2.5)

Note that as pointed out by McMahan and Tebbs (2013), the direct maximization of

the function above with the traditional algorithm would suffer numerical instability.

Also one may often get local maximizers and have other issues like convergence. In

the following, we will further augment the observed data.

LetNi(t) denote the latent Poisson process with the mean function Λn(t)exp{β′Xi},

i = 1, . . . , n, and define Zi = Ni(t1i) and Wi = Ni(t2i) − Ni(t1i) for δ1i = 0,

where t1i = ViI(δ1i = 1) + UiI(δ1i = 0), and t2i = ViI(δ2i = 1) + UiI(δ3i = 1).

Then Zi and Wi are Poisson random variables with means Λn(t1i)exp{β′Xi} and

{Λn(t2i) − Λn(t1i)}exp{β′Xi}, respectively, and they are independent given δ1i = 0.

Furthermore, note that if Ti is left-censored or interval-censored, we have that

P (Ti ≤ t1i) = P (Ni(t1i) > 0) = P (Zi > 0) = 1− exp{−Λn(Vi)exp(β′Xi)} ,

or

P (t1i < Ti ≤ t2i) = P{Ni(t1i) = 0, Ni(t2i) > 0} = P (Zi = 0,Wi > 0)

= exp{−Λn(Ui)exp(β′Xi)} − exp{−Λn(Vi)exp(β′Xi)} ,

and for right-censored Ti, we have that

P (Ti ≥ t2i) = P{Ni(t2i) = 0} = P (Zi = 0,Wi = 0) = exp{−Λn(Ui)exp(β′Xi)} .
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Thus if the Zi’s and Wi’s were observed, the log likelihood function corresponding to

l∗1(β, αl) would have the form

l∗∗1 (β, αl) =
n∑
i=1

log{PZi(Zi)PWi
(Wi)

δ2i+δ3i{δ1iI(Zi > 0)

+δ2iI(Zi = 0,Wi > 0) + δ3iI(Zi = 0,Wi = 0)}} .

In the above, PA(.) denotes the probability function associated with the random

variable A.

In addition, note that one can decompose or write Zi and Wi as Zi =
k∑
l=1

Zil and

Wi =
k∑
l=1

Wil, the summation of k independent Poisson random variables Zil’s and

Wil’s with means αlIl(t1i)exp(β′Xi) and αl{Il(t2i) − Il(t1i)}exp(β′Xi), respectively.

Then by treating { (Zi,Wi, Zil,Wil,X
mis
i ) } to be known, we would have the complete

log likelihood function

l∗∗∗1 (β, αl) =
n∑
i=1

k∑
l=1

log
{
PZil(Zil)PWil

(Wil)
δ2i+δ3i

×{δ1iI(Zi > 0) + δ2iI(Zi = 0,Wi > 0) + δ3iI(Zi = 0,Wi = 0)}}

corresponding to corresponding to l∗1(β, αl). Now we are ready to discuss the two

steps of the proposed EM algorithm. Let Oi = (Ui, Vi, δ1i, δ2i, δ3i,X
obs
i ,Ri) denote

the observed data on subject i and θ(d) = (β(d)′ , α
(d)′

l , γ(d)′)
′

the estimator of the

parameters given after the d iterations. In the E-step of the (d + 1)th iteration, we
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need to determine the expectation Q(θ|θ(d)) = E[l∗∗∗1 (β, αl) + l2(γ)|Oi, θ
(d)] or

Q(θ|θ(d)) =
n∑

i=1

k∑
l=1

[{E(Zil|Oi, θ
(d))+(δ2i+δ3i)E(Wil|Oi, θ

(d))}×{log(αl)+β′1X
obs
i }

+{β′2E(ZilX
mis
i |Oi, θ

(d)) + β′2(δi2 + δi3)E(WilX
mis
i |Oi, θ

(d))}

−αlexp(β′1X
obs
i )E(exp(β′2X

mis
i |Oi, θ

(d))){(δ1i + δ2i)Il(Vi) + δ3iIl(Ui)}]

+
n∑
i=1

∫
log{f(Xobs

i ,Xmis
i ; γ)}f(Xmis

i |Oi, θ
(d))dXmis

i + l(θ(d)) ,

In the above, β1 and β2 denote the components of β corresponding to the observed

and missing covariates, respectively, and l(θ(d)) is a function of θ(d) free of θ.

For the determination of the expectation above, we need to calculate

E(Zil|Oi, θ
(d)) =

α
(d)
l Il(Vi)E(Zi|Oi, θ

(d))

Λ(d)(Vi)
,

and

E(Wil|Oi, θ
(d)) =

α
(d)
l {Il(Vi)− Il(Ui)} × E(Wi|Oi, θ

(d))

Λ(d)(Vi)− Λ(d)(Ui)
,

where Λ(d)(.) =
k∑
l=1

α
(d)
l Il(.). Note that if there were no missing covariates, by following

Wang et al. (2016), we would have that

E(Zi|Oi, θ
(d)) =

Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmis
i )δ1i

1− exp{−Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmis
i )}

,

and

E(Wi|Oi, θ
(d)) =

{Λ(d)(Ui)− Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmis
i )δ2i

1− exp[−{Λ(d)(Ui)− Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmis
i )]

.
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When there exist missing categorical covariates, by following Lipsitz and Ibrahim

(1998), we have that

E(Zi|Oi, θ
(d)) =

∑
xmisi (j)

Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))δ1ipij

1− exp{−Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))}
,

and

E(Wi|Oi, θ
(d)) =

∑
xmisi (j)

{Λ(d)(Ui)− Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))δ2ipij

1− exp[−{Λ(d)(Ui)− Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))]
.

Here xmisi (j) denotes the jth possible missing data pattern for subject i and pij the

conditional probability of a given missing data pattern, which can be estimated in

the dth iteration of the EM algorithm by

pij = P (Xmis
i = xmisi (j)|Oi, θ

(d))

=
f(Ui, Vi, δ1i, δ2i, δ3i|xobs

i , xmisi (j))f(xobs
i , xmisi (j); γ(d))∑

xmisi (j)

f(Ui, Vi, δ1i, δ2i, δ3i|xobs
i , xmisi (j))f(xobs

i , xmisi (j); γ(d))
.

For the situation where missing covariates are continuous, the calculation, which will

be described at Appendix I, will involve integrations and do not have the closed forms.

In the M-step of the (d+ 1)th iteration, we need to maximize Q(θ, θ(d)). For this,
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one can solve the following score equations

∂Q

∂β1
=

n∑
i=1

[{E(Zi|Oi, θ
(d)) + δ2iE(Wi|Oi, θ

(d))} − {(δ2i + δ1i)Λ(Vi) + δ3iΛ(Ui)} (2.6)

exp(β′1X
obs
i )E(exp(β′2X

mis
i ))|Oi, θ

(d))]Xobs
i = 0,

∂Q

∂β2
=

n∑
i=1

[{E(ZiX
mis
i |Oi, θ

(d)) + δ2iE(WiX
mis
i |Oi, θ

(d))} − {(δ2i + δ1i)Λ(Vi) + δ3iΛ(Ui)}

×exp(β′1X
obs
i )

∂E(exp(β′2X
mis
i |Oi, θ

(d)))

∂β2
] = 0, (2.7)

∂Q

∂αl
=

n∑
i=1

[α−1
l {E(Zil|Oi, θ

(d)) + δ2iE(Wil|Oi, θ
(d))} − {(δ2i + δ1i)Il(Vi) + δ3iIl(Ui)}

×exp(β′1X
obs
i )E(exp(β′2X

mis
i |Oi, θ

(d)))] = 0, (2.8)

∂Q

∂γ
=

n∑
i=1

∂[
∫

log{f(Xobs
i ,Xmis

i ; γ)}f(Xmis
i |Oi, θ

(d))dXmis
i ]

∂γ(d)
= 0 . (2.9)

In the above,

∂E(exp(β′2X
mis
i |Oi, θ

(d)))

∂β2
=

∑
xmisi (j)

exp
(
β′2x

mis
i (j)

)
xmisi (j)pij ,

E(Xmis
i |Oi, θ

(d)) =
∑

xmisi (j)

xmisi (j)pij ,

E(ZiX
mis
i |Oi, θ

(d)) =
∑

xmisi (j)

Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))xmisi (j)δ1ipij

1− exp{−Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))}
,

and

E(WiX
mis
i |Oi, θ

(d)) =
∑

xmisi (j)

{Λ(d)(Ui)− Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))xmisi (j)δ2ipij

1− exp[−{Λ(d)(Ui)− Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 xmisi (j))]
.

The proposed EM algorithm can be summarized as follows.
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Step 1. Select the initial estimates β
(0)
1 , β

(0)
2 , α

(0)
l and γ(0).

Step 2. At the (d+ 1)th iteration, compute the conditional expectations

E(ZiX
mis
i |Oi, θ

(d)), E(WiX
mis
i |Oi, θ

(d)), E(Zil|Oi, θ
(d)), E(Wil|Oi, θ

(d)), E(Zi|Oi, θ
(d)),

and E(Wi|Oi, θ
(d)).

Step 3. Obtain β̂1
(d+1)

and β̂2
(d+1)

by solving the equations (2.6) and (2.7) with

α
∗(d)
l (β) =

n∑
i=1
{E(Zil|Oi, θ

(d)) + δ2iE(Wil|Oi, θ
(d))}

n∑
i=1

[{(δ2i + δ1i)Il(Vi) + δ3iIl(Ui)}exp(β′1X
obs
i )E(exp(β′2X

mis
i |Oi, θ(d)))]

(2.10)

Step 4. Obtain α̂
(d+1)
l (β) by solving the equation (2.8) and applying the Quasi-Newton

method or the equation (2.10) given β̂1
(d+1)

, β̂2
(d+1)

.

Step 5. Obtain γ̂(d+1) by solving the equation (2.9).

Step 6. Repeat Steps 2 - 5 until a pre-specified converge criterion is satisfied.

Let θ̂n = (β̂n, γ̂n, Λ̂n) denote the the maximum likelihood estimator of θ given by the EM

algorithm above and θ̂∗n = (β̂n, Λ̂n). In the next section, we will establish the asymptotic

properties of θ̂∗n.

2.4 Asymptotic Properties

To describe the asymptotic properties of θ̂∗n, let θ∗0 = (β0,Λ0) denote the true value of

θ∗ = (β,Λ0) and define the distance between θ1 = (β1
1, β2

1,Λ1) and θ2 = (β1
2, β2

2,Λ2) as

d(θ1, θ2) = { ||β1
1 − β1

2||2 + ||β2
1 − β2

2||2 + ||Λ1 − Λ2||22 }1/2 .

In the above, ||v|| denotes the Euclidean norm of a vector v and ||Λ1 − Λ2||22 =
∫

[{Λ1(u)−

Λ2(u)}2 + {Λ1(v) − Λ2(v)}2]df(u, v), where f(u, v) represents the joint density function of
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U and V . Then we have the following consistency and asymptotic normality results.

Theorem 1. Assume that the regularity conditions given in Appendix II hold. Then

as n→∞, we have that d(θ̂n, θ0)→ 0 almost surely and

√
n(β̂n − β0)→ N(0,Σ)

in distribution with Σ given in Appendix II.

The proof of the results above is sketched in Appendix II. For inference about β, it

is apparent that one needs to estimate Σ and one common approach would be to employ

the Louis’s Formula. However, it can be seen below that this would be computationally

intensive for the situation considered here and thus instead by following Wen and Lin (2011)

and others, we propose to employ the nonparametric bootstrap method (Efron, 1981; Su

and Wang, 2016). Specifically, let Q be an integer and for each 1 ≤ q ≤ Q, draw a new data

set, denoted by O(q), of the sample size n with replacement from the original observed data

{Oi; i = 1, . . . , n }. Let β̂qn denote the estimator of β defined above based on the bootstrap

samples O(q), q = 1, ..., Q. respectively. Then one can estimate the covariance matrix of β̂n

by using the sample covariance matrix of the β̂
(q)
n ’s and the numerical results below suggest

that it seems to work well.

2.5 A Simulation Study

In this section, we present some results obtained from a simulation study conducted to eval-

uate the finite sample performance of the sieve maximum likelihood estimation procedure

proposed in the previous sections. In the study, it was assumed that there exist two covari-

ates Xobs and Xmiss that followed the Bernoulli distribution with the success probabilities
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0.6 and

exp(1−Xobs)

(1 + exp(1−Xobs))
,

respectively. Given the covariates, the failure times of interest Ti’s were generated based on

model (1) with Λ0(t) = t3 or t.

For the missing mechanism, we considered the following two situations

P (Ri = 1|Oi) =
exp{U + V +Xobs

i }
{1 + exp{U + V +Xobs

i }}
,

and

P (Ri = 1|Oi) =
exp{0.22U + 0.22V + 0.22Xobs

i }
{1 + exp{0.22U + 0.22V + 0.22Xobs

i }}
,

which correspond to the missing rates of 30% and 40%, respectively. For the generation of

the observation times or censoring intervals, it was assumed that the Ui’s and Vi’s follow

the uniform distribution over the region {(u, v) : 0 ≤ u ≤ 0.28, u + 0.8 ≤ v ≤ 1.2}. The

results given below are based on the sample size n = 200 with 1000 replications.

Table 2.1 gives the obtained results on estimation of the regression parameters β1 and

β2 with their true values being {0.2, 0.5} and {0.5, 1}, respectively, and the 30% missing

rate. Here for the I-spline approximation to the cumulative baseline hazards function, we

took s = 3, the degree or order of the spline basis functions, and kn = 5, the number of

knots is 5, and chose the knots equally spaced between the smallest and largest observation

times by following Wang et al. (2016). In the table, we calculated the estimated bias given

by the average of the estimates minus the true value (Bias), the sample standard error (SE),

the average of the estimated standard error, and the 95% empirical coverage probability

(CP). For comparison, we also applied the naive or complete data approach, denoted by CC

in the table, that deleted the subjects with missing covariates and the full data approach,

denoted by Full in the table, that assumed no missing covariates.
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One can see from Table 2.1 that the proposed method and the Full approach gave similar

performance and both seem to do better than the CC method. In particular, the proposed

estimator seems to be unbiased and the bootstrapping variance estimation performed well

for these situations. Also the results on the coverage probabilities indicate that the normal

approximation to the distribution of the proposed estimator appears to be reasonable. To

further see this, we investigated the quantile plots of the standardized estimator against

the standard normal distribution and present in Figure 2.1 the plots corresponding to the

situations considered in Table 2.1, which again suggest the normal approximation is appro-

priate. Table 2.2 displays the estimation results obtained as above except for 40% missing

rate, and the results in Table 2.3 were also obtained as above except that Λ0(t) = t. It is

apparent that they gave similar conclusions as with Table 2.1 and again suggest that one

should not apply the CC approach when there are missing covariates. We also considered

some other set-ups and obtained similar results.

2.6 An Application

Now we apply the sieve maximum likelihood estimation procedure proposed in the previ-

ous sections to a set of data arising from Alzhehelmer’s Disease Neuroimaging Initiative,

discussed by Li et al. (2020) among others. The original study is a longitudinal study and

among others, one variable of interest is the Alzheimers disease (AD) conversion. Due to the

nature of the study, only interval-censored data are available on the occurrence time of the

AD conversion, and the participants in the study are classified into three groups based on

their cognitive conditions, cognitively normal, mild cognitive impairment and Alzheimer’s

disease. By following Li et al. (2020) and others, we will focus on the patients in the mild

cognitive impairment group to determine the baseline prognostic factors or covariates for

the AD conversion.
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Li et al. (2020) considered five baseline covariates. They are the Rey Auditory Verbal

Learning Test (RAVLT), the Middle temporal gyrus (MidTemp) from Neuroimaging, the

participants’s Alzheimer’s Disease Assessment Scale 13 items (ADAS13), the functional

assessment questionnaire score (FAQ), and the participant’s baseline age (Age). Among

the 396 participants in the mild cognitive impairment group, around 20% of them missed

the information on the MidTemp. Also there are 3 subjects with missing ADAS13 and 3

subjects with missing FAQ, and in the analysis below, we will exclude these six subjects for

simplicity.

Table 2.4 presents the analysis results given by the proposed sieve maximum likelihood

estimation procedure, including the estimated covariate effect (Estimate), the estimated

standard error (SE) and the p-value for testing the covariate effect being zero. For com-

parison, we also include in the table the results given by Li et al. (2020) based on the

316 subjects with complete information on the MidTemp. One can see that the proposed

method suggests that except Age, all other four covariates, RAVLT, MidTemp, ADAS13

and FAQ, had significant effects on the AD conversion. In contrast, the approach that

ignored the missing information indicates that MidTemp may only have some mild effect

and ADAS13 had no effect on predicting the AD conversion. In addition, as expected, the

proposed method gave more efficient estimates than Li et al. (2020) for all covariates.

2.7 Discussion and Concluding Remarks

In this chapter, we discussed the inference about the proportional hazards model when one

faces interval-censored failure time data with missing covariates and for the problem, a sieve

maximum likelihood estimation procedure was proposed. In the method, I-spline functions

were employed to approximate the unknown baseline cumulative hazard function and a

Poisson-based EM algorithm was developed. The proposed estimator of regression param-

22



eters was shown to be consistent and asymptotically normal, and the numerical studies

indicated that the proposed method seems to work well for practical situations and should

be used when covariates are missing at random.

Table 2.1: Estimation of regression parameters β1 and β2 with Λ0(t) = t3 and 30%
missing covariates.

True values Method β̂1 β̂2
β1 β2 Bias SE ESE CP Bias SE ESE CP
0.5 0.5 Proposed −0.021 0.199 0.196 95.2 −0.018 0.225 0.227 94.7

CC 0.064 0.254 0.261 93.7 0.041 0.248 0.240 94.6
Full −0.026 0.196 0.205 94.2 0.000 0.197 0.200 95.8

0.2 0.5 Proposed −0.024 0.198 0.198 94.7 −0.010 0.226 0.232 94.4
CC 0.041 0.246 0.246 94.2 0.038 0.242 0.248 94.6
Full −0.017 0.196 0.195 95.4 0.014 0.193 0.196 95.4

0.5 1 Proposed −0.093 0.211 0.212 92.8 −0.052 0.229 0.228 95.2
CC 0.091 0.306 0.306 93.4 0.125 0.307 0.313 92.2
Full −0.032 0.212 0.212 94.8 −0.009 0.211 0.212 95.2

Table 2.2: Estimation of regression parameters β1 and β2 with Λ0(t) = t3 and 40%
missing covariates.

True values Method β̂1 β̂2
β1 β2 Bias SE ESE CP Bias SE ESE CP
0.5 0.5 Proposed −0.031 0.200 0.198 94.9 −0.021 0.245 0.243 94.6

CC 0.036 0.279 0.285 94.8 0.062 0.275 0.285 94.5
Full −0.023 0.196 0.196 95.4 −0.024 0.197 0.198 94.6

0.2 0.5 Proposed −0.035 0.199 0.199 94.5 −0.010 0.246 0.251 95.1
CC 0.014 0.269 0.265 94.6 0.026 0.267 0.274 93.4
Full −0.017 0.195 0.196 95.4 −0.014 0.196 0.195 95.4

0.5 1 Proposed −0.117 0.213 0.212 92.8 −0.070 0.247 0.250 93.0
CC 0.074 0.349 0.339 94.5 0.124 0.398 0.350 92.9
Full −0.055 0.212 0.210 94.1 −0.037 0.211 0.204 95.4
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Table 2.3: Estimation of regression parameters β1 and β2 with Λ0(t) = t and 30%
missing covariates.

True values Method β̂1 β̂2
β1 β2 Bias SE ESE CP Bias SE ESE CP
0.5 0.5 Proposed 0.021 0.203 0.213 94.7 0.049 0.243 0.247 94.3

CC 0.101 0.250 0.248 93.3 0.082 0.245 0.237 93.0
Full 0.016 0.194 0.196 94.4 0.005 0.194 0.189 95.3

0.2 0.5 Proposed −0.015 0.196 0.196 95.4 0.004 0.235 0.230 94.8
CC 0.056 0.242 0.238 94.5 0.064 0.239 0.227 93.3
Full 0.007 0.191 0.189 95.2 −0.000 0.191 0.188 95.1

0.5 1 Proposed 0.013 0.250 0.247 95.2 0.148 0.290 0.278 92.5
CC 0.150 0.297 0.308 92.0 0.198 0.303 0.312 89.9
Full 0.071 0.223 0.221 94.0 0.108 0.222 0.227 92.6

Table 2.4: Analysis results of Alzhehelmer’s Disease data

Covariate Method Estimate SE p-value
RAVLT Li et al. (2020) −0.679 0.324 0.018

Proposed −0.305 0.096 0.001
Midtemp Li et al. (2020)) −0.434 0.290 0.072

Proposed −0.291 0.075 0.000
ADAS13 Li et al. (2020) 0.380 0.690 0.291

Proposed 0.410 0.094 0.000
FAQ Li et al. (2020) 0.426 0.244 0.040

Proposed 0.410 0.071 0.000
Age Li et al. (2020) −0.364 0.274 0.092

Proposed −0.087 0.083 0.147
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(a) (b)

(c) (d)

Figure 2.1: Quantile plots of the standardized estimates of (a) β1 with β1 = β2 = 0.5,
(b) β2 with β1 = β2 = 0.5, (c) β1 with β1 = 0.5 and β2 = 1, and (d) β2 with β1 = 0.5
and β2 = 1.
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Chapter 3

Joint Modeling of Continuous
Longitudinal and Survival
Outcomes under the Proportional
Mean Residual Life Model

3.1 Introduction

In survival analysis literature, the additive hazards and proportional hazards models are

commonly used models to search for prognostic factor effects on the hazard rate of the

event of interest. However, when the mean residual life (MRL) is of interest rather than

the hazard, the mean residual life model is necessary to show the correlations between risk

factors and the mean residual life function. The mean residual function at time t ≥ 0 is

defined as m(t) = E(T − t | T > t), where T denotes the survival time of interest. Since

Oakes and Dasu first proposed MRL function, various works have been done. Maguluri

and Zhang (1994), Chen and Cheng (2005), considered the proportional MRL model for
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survival outcome without and with censoring. Later, Chen and Cheng (2006), Chen (2007)

developed an additive RML model to further loosen restrictions in the proportional MRL

(PMRL) model.

MRL function (MRLF) is widely applied in many fields, such as survival analysis and

reliability research. The methodology developed in this project is motivated by the phase-1

of ADNI study. Within the 800 study subjects, about 200 subjects are cognitive normal at

baseline, 400 patients are with mild cognitive impairment (MCI) status at baseline, and 200

AD conversion patients at baseline. The participants were checked at 0, 6, 12, 18, 24, and

36 month. At each visit, their cognitive status, neuropsychological assessments, and clinical

measurements were recorded. In the literature, many pieces of research have been done

on the MCI population. MCI is a risky transitional state between normal cognition and

AD. About 32% of MCI patients will transit to Alzheimer’s dementia within five years. At

present, there is no cure existing for AD. Medications and treatments can only temporarily

improve the symptoms (Lin et al., 2020). Therefore, it is important for the researchers to

know the prognostic factors and evaluate the treatments that can prolong the progression

time from MCI to AD. To this end, the mean residual time function for AD onset time is

more informative than the hazards of AD development when we are interested in prolonging

the progression time from MCI to AD conversion.

Joint models of longitudinal and survival outcomes were discussed by many authors.

(Wulfsohn and Tsiatis, 1997; Liu et al., 2004; Elashoff, Li, et al., 2016; Shen et al., 2019).

Under the shared parameter model, the assumed submodels for survival outcome and lon-

gitudinal outcomes are linked by using a common latent structure. Compared to only

include baseline longitudinal information as covariates in the survival model, joint model-

ing with time-dependent longitudinal outcome including the dependency of the two types

of outcomes will reduce the bias for parameter estimation and improve statistical inference

efficiency. However, there seems not exist work that focuses on joint model longitudinal
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outcomes and survival outcome under MRL model. The development of methodology in

this chapter will provide an informative alternative for the joint analysis of two types of

outcomes.

As a result, in this chapter, we provide a unified framework that simultaneous regression

analysis of time-to-event data and longitudinal data under proportional mean residual life

model and linear mixed model. For the estimation process, we propose a two-step proce-

dure, which use the Restricted Maximum Likelihood to estimate the parameters and latent

random variable of the longitudinal model in the first step and estimate the parameters in

the proportional MRL (PMRL) model in the second step with extended estimation equa-

tion. In the second step, similar to He et al. (2017), the baseline mean residual life function

and the parameters are all involving in the exponential function of latent variables, which

adding additional computational difficulty and requiring technically demanding estimating

equations.

The rest of this chapter is organized as followed. Section 3.2 presents the models for

longitudinal and survival outcomes. The two-step estimation procedure for unknown pa-

rameters and baseline MRL function is developed in Section 3.3. Section 3.4 shows the

simulation studies to exam the empirical performance of the proposed method with finite

sample sizes. An application to the ADNI study for the MCI patients is presented in Section

3.5 We conclude the chapter in Section 3.6 with some discussions about the present work.

3.2 Model Formulation and Notation

Let Y (t) denote the longitudinal process at time t and suppose that Y (t) follow the linear

mixed model. We use T to denote the survival time, and the survival time is subject to right-

censoring. Suppose that a random sample of subjects with size n is followed during time

[0, τ ], where τ is the maximum follow-up time. Subject-specific random effects are denoted

28



by bi, i = 1, ..., n, and we assume that the b′is are mutually independent and identically

distributed from MVN(0,Σb).

Under the linear mixed model assumption, given the random effect bi, the longitudinal

outcome Y i(t) at time t for subject i is from the following

Yi(t) = XT
i β + X̃T

i bi + εi. (3.1)

In the above, we denote Xi(t) and X̃i(t) as the vector of observed covariates for subject i

at time t, Xi(t) represent the covariates that only affect longitudinal outcome, and X̃i(t)

represent the covariates that affect both longitudinal and survival outcomes. The covariates

Xi(t) and X̃i(t) can be completely different or share some components. The parameter

β = (β0, β1, ..., βpn) is a pn + 1 dimensional vector of unknown parameters and εi denotes

the measurement error process and from MVN(0,Ψε).

Given the random effect bi and the observed covariates, the conditional mean residual

life time function for the survival time Ti for subject i at time t is assumed to follow the

proportional mean residual life model

m(t|bi,Z(t)) = m0(t) exp
(
γ ′Zi(t) + Z̃i(t)(ψ ◦ bi)

)
. (3.2)

Here we denote Zi(t) and Z̃i(t) as the vector of observed covariates for subject i at time

t, Zi(t) represent the covariates that only affect survival outcome, and Z̃i(t) represent the

covariates that affect both longitudinal and survival outcomes. The covariates Zi(t) and

Z̃i(t) can be completely different or share some components. Additionally, m0(t) denotes

the unknown baseline mean residual life function, γ is the vector of parameter for the fixed

effect, ψ is the vector of parameter for the random effect, and ψ◦bi denotes the component-

wise product. Under model (3.1) and model (3.2), we assume that the longitudinal outcome

Y i(t) and survival time Ti are independent given the random effect bi and the observed
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covariates. The parameter ψ indicate the dependence between longitudinal outcome and

survival time linked by the latent random variable bi. If ψ is significantly not equal to 0,

it means the longitudinal outcome and survival time are correlated by the latent random

variable. If not, the dependence between the longitudinal outcome and survival time is not

caused by random latent variable.

3.3 Two Step Estimation Procedure

Let Y = (Y1, · · · ,Yn) , b = (b1, · · · , bn) , and θ be a vector containing unknown compo-

nents of {Ψε,Σb}. The full likelihood for longitudinal observation is

Q (θ,β) =

∫
l(θ,β | b)p (b) db.

Here, l(θ | b) is the complete-data log-likelihood function with the form of

l(θ,β | b) = −1

2
{n(q + ni) log(2π) + n log |Ψε|+ n log |Σb|

+
n∑
i=1

(
Yi − xT

i β − x̃T
i bi

)T
Ψ−1
ε

(
Yi − xT

i β − x̃T
i bi

)
+

n∑
i=1

bTi Σb
−1bi},

where p (bi | Y,θ)
D
= N

(
µbi ,Σ∗

)
with µbi = ΣbX̃

TΨ−1
ε (Yi − xT

i β) and Σ∗ =(
Σb
−1 + X̃TΨ−1

ε X̃
)−1

. The estimated parameter θ̂ can be obtained using restricted max-

imum likelihood estimation, and fixed effect parameter β̂ can be estimated by

β̂ =
{
XTΨ−1

ε X
}−1

XTΨ−1
ε Y . For the inference of the proportional mean residual life

model, following He et al. (2017), we propose the borrow-strength estimation method given

the latent random variable b.

Let Ci denote the censoring time for subject i, and ∆i = I(Ti ≤ Ci) denote the censoring

indicator. The observed time is Vi(t) = min {Ti, Ci}. Let Ri(t) = I(VI > t) denote the
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at-risk process. We assume that Ti and Ci are independent given covariates and latent

random effect b. For the estimation of baseline mean residual life function m0(t), along the

same line of the method in the work of Huang et al. (2019), we formulate the estimating

equations by IPCW technique with a class of zero-mean stochastic process

Mi(t) =
∆iI (Vi > t)

G (Vi)

[
(Vi − t)−m0(t) exp

(
γ ′Zi(t) + Z̃i(t)(ψ ◦ bi)

)]
. (3.3)

In the above, G(·) denotes the distribution function for censoring time C. The censoring

survival function G(Vi) can be estimated based on {(Vi, 1−∆i) : i = 1, . . . , n, j = 1, } by

using Kaplan-Meier (K-M) estimator Ĝ(t) =
∏
k:Ck≤t

(
1− dck

nck

)
,

where dck =
∑

i (1−∆i) I (Vi = Ck) , n
c
k =

∑
i I (Vi ≥ Ck) and 0 < C1 < C2 < . . . < CD are

distinct censoring times.

Plugging the K-M estimators to equation (3.3), by assuming that we know the param-

eters, covariates, and latent random effect, we can obtain an estimating equation for m0(t)

as

∆iI (Vi > t)

Ĝ (Vi)

[
(Vi − t)−m0(t) exp

(
γ ′Zi(t) + Z̃i(t)(ψ ◦ bi)

)]
= 0. (3.4)

Here, 0 ≤ t ≤ τ and 0 ≤ τ = inf{t : P (T ≥ t) = 0} < ∞. Then we can have a closed form

for m0(t) below

m̂0(t;γ,φ, b) =

∑
i

∆iI(Vi>t)

Ĝ(Vi)
(Vi − t)∑

i
∆iI(Vi>t)

Ĝ(Vi)
exp

(
γ ′Zi(t) + Z̃i(t)(ψ ◦ bi)

) , 0 ≤ t ≤ τ.

However, the random effect b′is are latent variable and can not be observed. As the

result, we can not apply estimation equation (3.4) directly. To address this issue, following

He et al. (2017), we apply the estimator of bi based on longitudinal model (3.1) with known
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θ, which takes the following form,

b̂i(θ) = Γ(θ)(Y −Xβ),

where Γ(θ) =
(
X̃TΨ−1

ε X̃
)−1

X̃TΨ−1
ε is a q × q matrix of θ, and q is the dimension of

random effect bi. With the estimated random effect b̂i(θ), we can estimate m0(t) by

m̂0(t;γ,φ, b) =

∑
i

∆iI(Vi>t)

Ĝ(Vi)
(Vi − t)∑

i
∆iI(Vi>t)

Ĝ(Vi)
exp

(
γ ′Zi(t) + Z̃i(t)(ψ ◦ b̂i(θ))

) , 0 ≤ t ≤ τ.

Given the estimated baseline MRL function m̂0(t) and latent random effect variable b, ac-

cording to Sun and Zhang (2009), we can formulate the estimating equation from stochastic

process (3.3) for the parameter γ and ψ

D(γ,ψ | b) =
∑
i

∫ τ

0

∆iI (Vi > t)Zi

Ĝ (Vi)

[
(Vi − t)− m̂0(t) exp

(
γ ′Zi + Z̃i(ψ ◦ bi)

)]
dH(t).

(3.5)

In the above, H(t) is an increasing weight function and can be specified in different forms.

We set H(t) to be the observed counting process N(t) =
∑

ij I (Yij ≤ t) δij due to its

good performance as shown in the simulation study by Sun and Zhang (2009). Note that

E(D(γ,ψ | b)) = 0. As a result, we can estimate γ and ψ by solving estimating equation

D(γ,ψ | b) = 0.

However, even though E(b̂ | b) = b, simply replacing b by b̂ in D(γ,ψ | b) would lead

to biased estimator since

E
[
exp

{
ψT b̂i(θ)

}
| bi
]

= exp

{
ψTbi +

1

2
ψTD(θ)ψ

}
(3.6)
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and

E
[
exp

{
ψT b̂i(θ)

}
b̂i(θ) | bi

]
= exp

{
ψT bi +

1

2
ψTD(θ)ψ

}
{bi + D(θ)ψ} (3.7)

where D(θ) =
(
X̃TΨ−1

ε X̃
)−1

.

To eliminate the bias, using equations (3.6) and (3.7), we can develop the following

extended estimating equations for the parameters in the proportional mean residual model

with

D(γ | b) =
∑
i

∫ τ

0

∆iI (Vi > t) Z̄i

Ĝ (Vi)
[(Vi − t)− m̂0(t) exp(γ ′Zi + Z̃i(ψbi)−

ψZ̃Ti D(θ)ψZ̃i
2

)]dH(t), (3.8)

D(ψ | b)

=
∑
i

∫ τ

0

∆iI (Vi > t) b∗i Z̃
∗
i

Ĝ (Vi)
[(Vi − t)− m̂0(t) exp

(
γ ′Zi + Z̃i(ψ ◦ bi)

− ψZ̃Ti D(θ)ψZ̃i
2

]dH(t) +
∑
i

∫ τ

0

∆iI (Vi > t) biZ̄∗i
Ĝ (Vi)

[m̂0(t)

exp

(
γ ′Zi + Z̃i(ψ ◦ bi)−

ψZ̃Ti D(θ)ψZ̃i
2

)
ψD(θ)Z̃i]dH(t). (3.9)

With θ, we can estimate the parameters for proportional MRL by solving D(γ | b) = 0

and D(ψ | b) = 0 with Newton-Raphson algorithm. Then we can update m̂0(t,γ,ψ) with

closed form equation (3.10), for 0 ≤ t ≤ τ.
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m̂0(t;γ,φ, b) =

∑
i

∆iI(Vi>t)

Ĝ(Vi)
(Vi − t)∑

i
∆iI(Vi>t)

Ĝ(Vi)
exp

(
γ ′Zi + Z̃i(ψ ◦ bi)− ψZ̃

T
i D(θ)ψZ̃i

2

) , 0 ≤ t ≤ τ. (3.10)

For the variance estimation, we use bootstrapping method to sample with replacement from

the observed data. Then we can estimate the variance by the empirical variance estimator

from the bootstrap sample estimation.

3.4 A Simulation Study

In this section, we conduct a simulation study to show the empirical performance of the

proposed method. In this simulation study, we assume that the longitudinal outcome Yij is

continuous variable generated from

Yij(t) = β0 + β1X1i + β2X2i + β3X3ij + bi + εi, (3.11)

for i = 1, ..., n, and j = 1, ..., ni. The survival outcome were generated from proportional

MRL model as follow,

m (t | bi) = m0(t) exp {γ1Z1i + γ2Z2i + ψbi ∗ Z3i} ,

where bi ∼ N
(
0, σ2

b

)
, εi ∼ N

(
0, σ2

)
, X1i ≡ Z1i was generated from a Bernoulli(0.5), and

X2i ≡ Z2i was simulated from the Unif(0, 1). They were included in both hazard and lon-

gitudinal models. The covariate Zi3 was generated from the standard normal distribution,

and it was included only in the mean residual model. We denote X3ij as the time at

measurement generated uniformly from 0 to maximum observation time τ = 2.4 with the

number of observation times ni = 10, and it was included only in the longitudinal model.
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Table 3.1 and Table 3.2 present the results on estimation of the regression parameters

β0, β1, β2, β3, γ1, γ2, φ, and σ2
b with baseline mean residual function m0(t) = −0.5t+ 0.5,

m0(t) = −0.5t+ 1, and 10%, 20% censoring rate, respectively. The sample size in the Table

3.1 and Table 3.2 is n = 500. In the Table 3.3, we increased the sample size to n = 1200.

In Tables 3.1− 3.3, we calculated the estimated bias given the average of the estimates

over 500 replication minus the true value (Bias), the sample standard deviation (SE), the

average of estimated standard error (ESE), and the 95% empirical coverage probability

(CP). From Tables 3.1− 3.3, we can see that the bias of the proposed estimation is small,

and the bootstrapping variance estimation performs well in different setups. The coverage

probabilities that the normal approximation to the parameter distribution seems to be

reasonable. Furthermore, as shown in Table 3.3, when the sample size increased from 500

to 1200, the parameter estimation bias is closer to zero with a smaller standard error.

3.5 Real Data Example

In this section, we will apply the proposed joint modeling approach to analyze the data

from the first phase of the Alzheimer’s Disease Neuroimaging Initiative study

(http://adni.loni.usc.edu/) described in section 3.1. We are interested in identifying the

important risk factors that have prognostic effects on the progression time-to-AD in the

MCI population.

For the analysis below, we include 351 subjects with at least one follow-up and with

complete information on 22 covariates and risk factors. Since the exact date of conversion

from MCI to AD was unknown, following Li et al. (2018), we define the survival endpoint

as the date of the first follow-up with an AD diagnosis. Subjects that did not convert were

censored at the date of their last interview. For the application of the proposed method,

Ti denotes the AD conversion time for subject i, m(t) = E(T − t | T > t) denotes the
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expectancy of progression time to AD diagnosis given the subject with MCI as initial status

progresses to AD after time t, and Yi(t) is the the Alzheimer’s Disease Assessment Scale

Score 13 (ADAS13).

ADAS13 represents a composite score of 13 items and ranges from 0 to 85 measuring the

cognitive functions. Higher ADAS13 score indicates poor cognitive function. According to

Li et al. (2017), ADAS13 is the strongest longitudinal predictor of MCI-to-AD conversion

diagnosis. Figure 3.1 displays the smooth curves of ADAS13 over time for three subgroups

in the sample: red curve represents for participants with less than 3 years follow-up time;

green curve represents for participants with more than 3 years and less than 6 years follow-

up time; blue curve represents participants with more than 6 years follow-up time. Shaded

regions are 95% pointwise confidence intervals. Three curves all show that the ADAS13 score

increases with the follow-up time in three subgroups. However, ADAS13 score tends to be

higher with a shorter follow-up time, which means the patients with higher ADAS13 score

and more severe cognitive impairment have a shorter progression time to AD conversion.

This figure indicates a strong correlation between ADAS13 and progression time to AD

conversion. This correlation between longitudinal outcome and survival outcome indicates

dependence. As a result, separate modeling longitudinal outcome and the terminal event

will ignore the dependence and lead to a biased inference.

To identify the covariates and risk factors that have effects on the progression time to

AD conversion. Following Yi and Sun (2020), the longitudinal and survival models are
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assumed to be

yi (tij) =α0 + α1tij + α2 Age i + α3 APOE ε4i + α4 CDRSB

+ α5 DIGIRSCOR + α6 TRABSCOR + α7 FAQ + α8 Ventricles

+ α9 Hippocampus + α10 WholeBrain + α11 Entorhinal + α12 Fusiform

+ α13 MidTemp + α14 ICV + α15 RAVLT.i + α16 RAVLT.l + α17 RAVLT.f

+ α18 RAVLT.perc.f + bi + εi (tij) ,

and

mi(t) =m0(t) exp(β1ti + β2 Age i + β3 APOE ε4i + β4 CDRSB + β5 DIGIRSCOR

+ β6 TRABSCOR + β7 FAQ + β8 Ventricles + β9 Hippocampus

+ β10 WholeBrain + β11 Entorhinal + β12 Fusiform

+ β13 MidTemp + β14ICV + β15 RAVLT.i + β16 RAVLT.l

+ β17 RAVLT.f + β18 RAVLT.perc.f + β19 PTMARRY

+β20 PTEDUCA i + β21 MMSE + β22 ADASQ4+γbi).

The results in Table 3.4 show that ADAS13 was clearly correlated with observation time,

age, APOE ε4i, DIGIRSCOR (participant’s digit symbol substitution test score), TRAB-

SCOR (Trails B score), Entorhinal ( MRI entorhinal volume), Midtemp, RAVLT.i (Rey

auditory verbal learning test score of immediate recall). With time progression, the pres-

ence of at least one apolipoprotein E allele (APOE E4), higher TRABSCOR, the patients

is more likely to have higher ADAS 13 score with poorer cognitive function. Besides, elder

group, people with higher DIGIRSCOR, larger Entorhinaln volume, larger Midtemp (mid-

dle temporal gyrus), and higher RAVLT.i score will have smaller ADAS13 score with better

cognitive function. Furthermore, the larger observation time, higher RAVLT.f score, and

higher education level will increase the progression time from MCI to AD conversion. The
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presence of at least one apolipoprotein E allele (APOE E4), larger MRI entorhinal volume,

and higher score of RAVLT.perc.f (higher forgetting percent) will decrease the progression

time to AD conversion.

The conclusions from the above analysis are similar to Yi and Sun (2020) with DI-

GIRSCOR and RAVLT.i score. Both show that a high DIGIRSCOR and a small RAVLT.i

score indicate a large ADAS13 score. However, we find significant effects of observation

time, age, APOE ε4i, TRABSCOR (Trails B score), Entorhinal (MRI entorhinal volume),

and Midtemp on the ADAS13 score, which were shown to be insignificant in Yi and Sun

(2020). For the survival outcome, similar to Yi and Sun (2020), the analysis result with

the proposed method also indicates that higher score of RAVLT.perc.f (higher forgetting

percent) will decrease the progression time to AD conversion, therefore have higher hazard

of developing AD conversion as stated in Yi and Sun (2020). On the contrary, with the

proposed method, we find that the baseline time, the presence of at least one apolipopro-

tein E allele, entorhinal volume, and RAVLT.f have significant effects on the expectancy

progression time-to-AD, but not on the hazards of AD conversion.

3.6 Discussion

This chapter discussed the estimation for joint analysis of longitudinal data and right-

censored failure time data under a proportional MRL model. As mentioned above, the MRL

function is an important alternative method to the hazard model. When MRL function or

life expectancy is of interest, the proposed approach can increase estimation accuracy and

efficiency by joint modeling longitudinal outcome and survival outcome. Under the shared

parameter framework, a common latent random effect is applied to link the longitudinal

model and time to event model and take the dependency between two types of outcomes

comes from sampling on the same subject into account. We proposed a two-step estimation
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procedure with an extended estimation equation to perform parameter estimation, and the

numerical studies indicated that it works well in practice.

Table 3.1: Estimation of regression parameters with m0(t) = −0.5t + 0.5 and 10%
censoring rate and n = 500 and 500 replications.

Par. True MLE
Bias SE ESE CP

β0 −0.5 −0.001 0.077 0.072 93.2
β1 0.5 0.003 0.064 0.066 96.4
β2 −0.5 0.006 0.113 0.113 94.6
β3 −0.2 −0.000 0.009 0.009 94.8
γ1 −0.1 −0.018 0.048 0.049 95.8
γ2 −0.1 −0.054 0.049 0.055 97.2
ψ −0.1 0.098 0.045 0.043 94.0
σ2
b 0.5 0.001 0.034 0.034 96.0
σ2 0.25 0.000 0.033 0.035 95.4

Table 3.2: Estimation of regression parameters with m0(t) = −0.5t + 1 and 20%
censoring rate and n = 500 and 500 replications.

Par. True MLE
Bias SE ESE CP

β0 −0.5 −0.001 0.077 0.072 93.2
β1 0.5 0.003 0.064 0.066 96.4
β2 −0.5 0.006 0.113 0.113 94.6
β3 −0.2 −0.000 0.009 0.009 94.8
γ1 −0.1 −0.018 0.057 0.055 94.2
γ2 −0.1 −0.052 0.058 0.052 91.8
ψ −0.1 0.098 0.053 0.047 90.6
σ2
b 0.5 0.001 0.034 0.034 96.0
σ2 0.25 0.000 0.033 0.035 95.4
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Table 3.3: Estimation of regression parameters with m0(t) = −0.5t + 1 and 20%
censoring rate and n = 1200 and 500 replications.

Par. True MLE
Bias SE ESE CP

β0 −0.5 −0.001 0.049 0.047 94.2
β1 0.5 −0.003 0.041 0.044 96.6
β2 −0.5 0.000 0.070 0.073 96.6
β3 −0.2 0.000 0.006 0.006 95.6
γ1 −0.1 −0.003 0.039 0.035 92.0
γ2 −0.1 −0.005 0.057 0.050 92.2
ψ −0.1 0.097 0.031 0.031 94.0
σ2
b 0.5 −0.001 0.021 0.022 95.8
σ2 0.25 0.001 0.021 0.022 96.4
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Table 3.4: Analysis results of Alzhehelmer’s Disease data
Longitudinal model ADAS13

Estimate SE p-value
Intercept 0.227 0.037 0.000

tij 0.285 0.037 0.000
Age −0.133 0.053 0.001

APOEE4 0.129 0.039 0.000
CDRSB 0.062 0.043 0.143

DIGIRSCOR −0.098 0.046 0.003
TRABSCOR 0.118 0.047 0.011

FAQ 0.056 0.046 0.224
Ventricles 0.020 0.063 0.749

Hippocampus −0.116 0.065 0.073
WholeBrain 0.032 0.099 0.743
Entorhinal −0.086 0.044 0.048
Fusiform −0.076 0.049 0.121
Midtemp −0.125 0.058 0.033

ICV 0.027 0.087 0.755
RAVLT.i −0.240 0.054 0.000
RAVLT.l −0.019 0.048 0.686
RAVLT.f −0.031 0.076 0.683

RAVLT.perc.f 0.084 0.095 0.377
σ2 0.083 0.021 0.000
σ2
b 0.287 0.037 0.000

Proportional Mean residual Model
Estimate SE p-value

ti 0.504 0.035 0.000
Age 0.001 0.031 0.484

APOEE4 −0.008 0.028 0.000
CDRSB 0.022 0.032 0.238

DIGIRSCOR 0.010 0.028 0.357
TRABSCOR 0.028 0.029 0.172

FAQ −0.019 0.027 0.246
Ventricles −0.032 0.042 0.221

Hippocampus 0.415 0.040 0.154
WholeBrain 0.014 0.055 0.400
Entorhinal −0.051 0.028 0.033
Fusiform −0.032 0.034 0.175
Midtemp 0.010 0.033 0.383

ICV −0.037 0.059 0.264
RAVLT.i −0.022 0.042 0.299
RAVLT.l −0.057 0.045 0.102
RAVLT.f 0.186 0.049 0.000

RAVLT.perc.f −0.182 0.072 0.000
PTEDUCA 0.061 0.004 0.000

MMSE −0.002 0.028 0.460
ADASQ4 0.022 0.033 0.252
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Figure 3.1: Smooth curve of ADAS-Cog 13 over time for MCI patient. Shaded regions
are 95% pointwise confidence intervals.
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Chapter 4

Joint Modeling of Binary
Longitudinal and Survival
Outcome under the Proportional
Mean Residual Life Model

4.1 Introduction

As introduced in Section 1.3, joint analysis of longitudinal data and survival outcome is

necessary to allow one to take the dependence of two types of outcomes within the same

subject into account. Utilizing the mean residual life model for survival outcome in the joint

modeling offers informative insights on the remaining life expectancy given the current sta-

tus. In Chapter 3, we have discussed the simultaneous modeling of continuous longitudinal

outcome and right-censored survival outcome under the proportional mean residual life

model.

In this chapter, we will focus on the proportional mean residual model for survival
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outcome and use the generalized linear mixed model to incorporate both categorical and

continuous longitudinal data, although we mainly focus on the binary longitudinal data.

Under the shared parameter framework, we assume that the random effects are from a mul-

tivariate normal distribution. The maximum likelihood approach using the Expectation-

Maximization (EM) algorithm will provide estimators that are consistent and asymptoti-

cally follow normal distribution (Zeng and Cai, 2005). However, the EM algorithm requires

integration that can be computationally intensive with high sample size and a larger num-

ber of observations on longitudinal outcomes. As a result, in the estimation procedure, we

utilize the relationship between MRL function and hazard function to formulate the like-

lihood function and propose a quasi-likelihood approach to develop an efficient estimation

procedure for parameter inference.

The rest of this chapter is organized as follows. We will begin in Section 4.2 by intro-

ducing the model and assumption that will be used throughout the paper. The likelihood

for simultaneous modeling survival outcome and longitudinal outcomes will be derived in

Section 4.3, and in particular, an iterative estimation procedure with the proposed quasi-

likelihood estimation approach is developed. In Section 4.4, we will show some simulation

results obtained from a simulation study. Section 4.5 will provide a real data application.

Some discussion and concluding remarks will be given in Section 4.6.

4.2 Model Formulation and Notation

We denote Y (t) as the longitudinal process at time t. Suppose that Y (t) is from the

exponential family to include both continuous and discrete variables. We use T to denote

the survival time, and the survival time is subject to right-censoring. Suppose that a random

sample of subjects with size n are followed during time [0, τ ], where τ is the maximum follow-

up time. Subject-specific random effects are denoted by bi, i = 1, ..., n, and we assume that
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b′is are mutually independent and identically distributed from MVN(0,Σb), and the vector

length of bi is db.

Under the exponential family distribution assumption, given the random effect bi, the

longitudinal outcome Yi(t) at time t for subject i has the following density

exp

{
yiηi (t|bi)−B (ηi (t|bi))

A (Di(t;ψ))
+ C (yi, Di(t;ψ))

}
(4.1)

with

ηi (t|bi) = g (µi (t|bi)) = Xi(t)β + X̃i(t)bi.

In the above, µi (t|bi) = E (Yi(t)|bi) = B′ (ηi (t|bi)), vi (t|bi) = Var (Yi(t)|bi) =

B′′ (ηi (t|bi))A (Di(t;ψ)) = v (µi (t|bi))A (Di(t;ψ)) , and the functions A(·), B(·), C(·), and

D(·) are known and ψ is the dispersion parameter. We use g(·) and v(·) to denote the known

link and variance functions, respectively. The covariates Xi(t) and X̃i(t) are the observed

covariates for subject i, Xi(t) represent the covariates that only affect longitudinal outcome,

and X̃i(t) represent the covariates that affect both longitudinal and survival outcomes. The

covariates Xi(t) and X̃i(t) can be completely different or share some components. The

parameter β is the parameter for fixed effect, and bi represents the within-subject random

effect.

Given the random effect bi and the observed covariates, the conditional mean residual

life time function for the survival time Ti for subject i at time t is assumed to follow the

proportional mean residual life model

m(t|bi,Z(t)) = m0(t) exp
(
γ ′Zi(t) + Z̃i(t)(φ ◦ bi)

)
. (4.2)

The covariates Zi(t) and Z̃i(t) denote the vector of observed covariates for subject i at time

t, Zi(t) represent the covariates that only affect survival outcome, and Z̃i(t) represent the
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covariates that affect both longitudinal and survival outcomes. The covariates Zi(t) and

Z̃i(t) can be completely different or share some components. The function m0(t) denotes

the baseline mean residual life function, γ is the vector of parameter for the fixed effect,

φ is the vector of parameter for the random effect, and φ ◦ bi denotes the component-wise

product.

Under model (4.1) and model (4.2), we assume that the longitudinal outcome Yi(t) and

survival time Ti are independent given the random effect bi and the observed covariates.

The parameter φ represents the dependence level between longitudinal outcome and sur-

vival time linked by the latent random variable bi. If φ is significantly not equal to 0, it

means that the longitudinal outcome and survival time are correlated by the latent random

variable. If not, the dependence between the longitudinal outcome and survival time is not

caused by the random latent variable.

4.3 Quasi Likelihood Estimation

Suppose that for each subject i, we have ni repeated measurements for the longitudinal

outcome. We assume that the observation time is non-informative and the number of

repeated measurements is bounded. For the missingness of Yi(t), we assume it to be non-

informative as well. The observed longitudinal data for n subjects is
(
ni, Yij ,Xij , X̃ij

)
, i =

1, . . . , n, j = 1, . . . , ni. The observed survival data for n subject is(
Vi,∆i,

{(
Zi(t), Z̃i(t)

)
: t ≤ Vi

})
, i = 1, . . . , n, where Vi = min (Ti, Ci), ∆i = I (Ti ≤ Ci).

We denote Ci as the censoring time for subject i and we assume that the censoring time is

independent of Ti and Yi(t) given the random effect and observed covariates.

The goal of the joint modeling is to estimate and make inference on the parameters

θ =
(
βT ,φT ,Vech (Σb)

T ψT ,γT
)T

. For the mean residual life model, we also need to

estimate the baseline MRL function m0(t). The Vech(·) operator creates a column vector
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containing the unknown parameters in the matrix.

For n subjects, we have longitudinal outcomes Y =
(
Y T

1 , . . . ,Y
T
n

)T
, where Y i =

(Yi1, . . . , Yini)
T , survival time observations, V = (V1, . . . , Vn)T , and the subject-specific

random effects b =
(
bT1 , . . . , b

T
n

)T
. Utilizing the relationship between MRL function and

hazard function and the relationship between MRL function and survival function from

Oakes and Dasu (1990), we have

λ
(
t|Zi(t), Z̃i(t), bi

)
=

1

m0(t)

(
dm0(t)

dt
+ exp

(
−(γ ′Zi(t) + Z̃i(t)(φ ◦ bi))

))
(4.3)

and

S
(
t|Zi(t), Z̃i(t), bi

)
=
m0(0)

m0(t)
exp

−
∫ t

0

exp
(
−(γ ′Zi(ω) + Z̃i(ω)(φ ◦ bi))

)
dω

m0(ω)

 (4.4)

The full likelihood function of observed data (Y ,V ) has the form

Lf (θ,m0(t);Y ,V ) =

∫
b
Lc(θ,m0(t);Y ,V , b)db,

where the complete likelihood function Lc(θ,m0(t);Y ,V , b) for longitudinal data, survival

data and unobserved random effect can be expressed as

Lc(θ,m0(t);Y ,V , b) =
n∏
i=1

[f (Y i, Vi|bi) f (bi)] =
n∏
i=1

f (Y i|bi) f (Vi|bi) f (bi)

=
n∏
i=1

f (Y i|bi)
([
λ
(
Vi|Zi(t), Z̃i(t), bi

)∆i

S(Vi|Zi(t), Z̃i(t), bi)

])
f (bi)
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=
n∏
i=1

exp


ni∑
j=1

Yij
(
Xijβ + X̃ij(t)bi

)
−Bij (β; bi)

A (Di (tj ;φ))
+ C (Yij ;Di (tj ;φ))


× m0(0)

m0(Vi)1+∆i

(
dm0(t)

dt
|t=Vi + exp

(
−(γ ′Zi(Vi) + Z̃i(Vi)(φ ◦ bi))

))∆i

× exp

−
∫ Vi

0

exp
(
−(γ ′Zi(ω) + Z̃i(ω)(φ ◦ bi))

)
dω

m0(ω)



×(2π)−db/2 |Σb|−1/2 exp

{
−1

2
bTi Σ−1

b bi

}
.

With the double integration, directly maximizing the full likelihood function can be chal-

lenging. When we assume that the baseline MRL function m0(t) is known, the estimate of

regression parameters β,γ and φ can be obtained through an EM algorithm by considering

random effect b as missing data. However, the integration in the E-step will cause intensive

computation burden with a large sample size n, longitudinal data observation times ni, and

the number of parameters. With the iterations, the integration will potentially slow down

the EM algorithm convergence. To estimate β, γ, and φ with less computational burden,

following Choi and Zeng (2017), we propose to utilize first-order Laplace approximation to

approximate the full likelihood in order to avoid integration over the random effect.

To derive the approximated likelihood function, we rewrite the full likelihood as

Lf (θ,m0(t);Y ,V ) = (2π)−ndb/2 |Σb|−n/2
∫
b

exp

{
n∑
i=1

[
li|bi (θ,m0(t))− 1

2
bTi Σ−1

b bi

]}
db,

where the logarithm of the conditional joint density given an unobserved random effect bi
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is

li|bi (θ,m0(t)) =

ni∑
j=1

Yij
(
Xijβ + X̃ij(t)bi

)
−Bij (β; bi)

A (Di (tj ;φ))
+ C (Yij ;Di (tj ;φ))

+

log{m0(0)} − (1 + ∆i) log{m0(Vi)}+ ∆i log{dm0(t)

dt
|t=Vi + exp(−(γ ′Zi + Z̃i(ψ ◦ bi))))}

−
∫ Vi

0

exp
(
−(γ ′Zi + Z̃i(ψ ◦ bi))

)
dω

m0(ω)
.

Fowllowing Choi and Zeng (2017), we define

−κ(b) =
n∑
i=1

[
li|bi (θ,Λs)−

1

2
bTi Σ−1

b bi

]
=

n∑
i=1

[−κi (bi)]

and apply Laplace’s approximation as following,

−κi (bi) ≈ −κi
(
b̃i

)
− 1

2

(
b− b̃i

)T
κ′′i

(
b̃i

)(
bi − b̃i

)

where κ′ and κ′′ denote the db vector and db×db dimensional matrix of first and second-order

partial derivatives of κ with respect to b and b̃.

Then the the full likelihood Lf (θ,m0(t);Y ,V ) can be approximated by

Lp(θ,m0(t);Y ,V )

=

n∏
i=1

[
(2π)−db/2 |Σb|−1/2

∫
b

exp

{
−κi

(
b̃i

)
− 1

2

(
bi − b̃i

)T
κ′′i

(
b̃i

)(
bi − b̃i

)}
db

]

= |Σb|−n/2 exp

{
n∑
i=1

[
−κi

(
b̃i

)
− 1

2
log
∣∣∣κ′′i (b̃i)∣∣∣]

}
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= exp

{
n∑
i=1

[
−1

2
log
∣∣∣Idb −Σb l̃

′′
i|bi (θ,m0(t))

∣∣∣+ l̃i|bi (θ,m0(t))− 1

2
b̃
T

i Σ−1
b b̃i

]}
.

With known baseline mean residual function m0(t), we could maximize the approx-

imated likelihood function Lp(·) derived above and apply the iterative procedure to get

parameter estimation. However, m0(t) is usually unknown in most situation. It is still in-

tractable to maximize the approximated likelihood with an unknown baseline mean residual

function. Therefore, in the following, we propose a quasi-likelihood approach that is easy

to compute.

To formulate the quasi-likelihood, we consider formulating the quasi-score using stochas-

tic processes. Following Sun and Zhang (2009), a class of zero-mean stochastic processes

can be established with the IPCW technique,

Mi(t) =
∆iI (Vi > t)

G (Vi)

[
(Vi − t)−m0(t) exp

(
γ ′Zi(t) + Z̃i(t)(φ ◦ bi)

)]
, (4.5)

where G(·) denotes the distribution function for censoring time C. We assume that the

censoring time C is independent of failure time T given observed covariates and random

effects. The censoring survival function G(Vi) can be estimated based on {(Vi, 1−∆i) :

i = 1, . . . , n, j = 1, } by using Kaplan-Meier (K-M) estimator Ĝ(t) =
∏
k:Ck≤t

(
1− dck

nck

)
,

where dck =
∑

i (1−∆i) I (Vi = Ck) , n
c
k =

∑
i I (Vi ≥ Ck) and 0 < C1 < C2 < . . . < CD are

distinct censoring times. After plugging in the K-M estimators to equation (4.5), we obtain

an estimating equation

∆iI (Vi > t)

Ĝ (Vi)

[
(Vi − t)−m0(t) exp

(
γ ′Zi(t) + Z̃i(t)(φ ◦ bi)

)]
= 0, (4.6)

where 0 ≤ t ≤ τ, where 0 ≤ τ = inf{t : P (T ≥ t) = 0} <∞.

Given γ,φ, and b, (4.6) becomes an estimating equation for m0(t). We can show that

with this estimating equation (4.6), we can derive the closed form solution for baseline mean
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residual life function as

m̂0(t;γ,φ, b) =

∑
i

∆iI(Vi>t)

Ĝ(Vi)
(Vi − t)∑

i
∆iI(Vi>t)

Ĝ(Vi)
exp

(
γ ′Zi(t) + Z̃i(t)(φ ◦ bi)

) , 0 ≤ t ≤ τ.

Following Sun and Zhang (2009), we can construct the quasi-score for γ and φ given random

effect b by plugging in m̂0(t;γ,φ, b) and Ĝ(t) into stochastic processes (4.5). The quasi score

can be written as

D(γ,φ | b) =
∑
i

∫ τ

0

∆iI (Vi > t)Zi

Ĝ (Vi)

[
(Vi − t)− m̂0(t) exp

(
γ ′Zi + Z̃i(φ ◦ bi)

)]
dH(t).

(4.7)

Here, H(t) is an increasing weight function and can be specified in different forms. We

set H(t) to be the observed counting process N(t) =
∑

ij I (Yij ≤ t) δij due to its good

performance as shown in the simulation study by Sun and Zhang (2009).

With quasi-score in equation (4.7), we derive the following quasi conditional log-likelihood

function lq(·) given below to approximate the true conditional log-likelihood function li|bi(·)

in Lp(θ,m0(t);Y ,V ). The quasi conditional log-likelihood lq(θ | b) is constructed with the

quasi score function in (4.7), and it is defined as

li|bi(θ,m0(t)) ≈ lq(θ | b) =

n∑
i=1

`iq =

n∑
i=1

(`i1 + `i2q).

Here,

`i1 =

ni∑
j=1

Yij
(
Xijβ + X̃ij(t)bi

)
−Bij (β; bi)

A (Di (tj ;ψ))
+ C (Yij ;Di (tj ;ψ))


and

`i2q =
∑
i

∫ τ

0

∆iI (Vi > t)

G (Vi)
(Vi − t)

ηi − log
∑
ij

∆iI (Vi > t) exp (ηi)

G (Vi)

dN(t)
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is the conditional quasi log-likelihood function for γ and φ given b corresponding toD(γ,φ |

b). A noteworthy feature of the proposed quasi likelihood is that it does not depend on

unknown m0(t), leading to an efficient quasi likelihood inference approach. With the de-

rived quasi conditional log-likelihood `q(θ|b) and first order Laplace approximation, we

can get quasi-likelihood Lpq(θ,m0(t);Y ,V ) defined below as a further approximation for

Lf (θ,m0(t);Y ,V ). We define Lpq(θ,m0(t);Y ,V ) as

Lf (θ,m0(t);Y ,V ) ≈ Lpq(θ,m0(t);Y ,V )

=
n∏
i=1

[
(2π)−db/2 |Σb|−1/2

∫
b

exp

{
−κi

(
b̃i

)
− 1

2

(
bi − b̃i

)T
κ′′i

(
b̃i

)(
bi − b̃i

)}
db

]

= |Σb|−n/2 exp

{
n∑
i=1

[
−κi

(
b̃i

)
− 1

2
log
∣∣∣κ′′i (b̃i)∣∣∣]

}

= exp

{
n∑
i=1

[
−1

2
log
∣∣∣Idb −Σb l̃

′′
iq (θ,m0(t))

∣∣∣+ l̃iq (θ,m0(t))− 1

2
b̃
T

i Σ−1
b b̃i

]}
.

We utilize one-step Newton-Raphson method to obtain estimation for θ and b. The

procedure is a three-step iteration until the pre-specified parameter convergence is achieved.

• Step 1: At the k-th interation, conduct one-step Newton-Raphson iteration to ob-

tain the solution b̃ of κ′(b) = 0. The (k + 1) -th estimate is b̃
(k+1)

= b̃
(k)
−[

κ′′
(
b̃

(k)
)]−1 [

κ′
(
b̃

(k)
)]T

, where b̃
(k)

= b̃
(k)
(
θ̂

(k−1)
)
,

κ′(b) =
(
κ′1 (b1)T , . . . ,κ′n (bn)T

)T
and κ′′(b) =

(
κ′′1 (b1)T , . . . ,κ′′n (bn)T

)T
. κ′n and

κ′′n can be calculated by following equations

κ′i

(
b̃i

)
= −l̃′iq (θ) + Σ−1

b b̃i,

κ′′i

(
b̃i

)
= −l̃′′ip (θ) + Σ−1

b ,

where l̃′ip (θ) and l̃′′ip (θ) are the first and second derivatives of conditional quasi log
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likelihood function liq(θ) with respect to bi evaluated at b̃i.

• Step 2: The (k + 1)-estimate of θ can be obtained by one step Newton-Rapshon

method by

θ̂
(k+1)

= θ̂
(k)
−
[
S′q

(
θ̂

(k)T
)]−1 [

Sq

(
θ̂

(k)T
)]T

,

where Sq

(
θ̂

(k)T
)

and S′q

(
θ̂

(k)T
)

are the first and second derivatives of

Lpq(θ,m0(t);Y ,V ) with respect to θ.

• Step 3: With θ(k+1) and b(k+1), we can update m0(t) by

m̂0(t;γ(k+1),φ(k+1), b(k+1)) =∑
i

∆iI(Vi>t)

Ĝ(Vi)
(Vi − t)∑

i
∆iI(Vi>t)

Ĝ(Vi)
exp

(
γ′(k+1)Zi(t) + Z̃i(t)(φ

(k+1) ◦ b(k+1)
i )

) .

For variance estimation of the parameters θ̂, we propose to use the nonparametric

bootstrap method. Specifically, we sample with replacement from the observed data set

for Q times, where Q is an integer to denote the number of bootstrap samples. For each

bootstrap sample, we can get an estimation of θ(j), j = 1, ..., Q with the proposed quasi-

likelihood estimation procedure. Then, the estimate for the variance of θ̂ can be estimated

by the empirical variance of the bootstrap sample θ(j), j = 1, ..., Q.

4.4 A Simulation Study

In this section, we present some results obtained from a simulation study that is conducted

to evaluate the finite sample performance of the proposed quasi-likelihood estimation pro-
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cedure. In the simulation study, we assume that Yij is a binary outcome following

P (Yij = yij | bi) = exp {yijξij − log (1 + exp {ξij})} , yij = 0, 1

with ξij = Xijβ + bi = β0 + β1X1i + β2X2i + β3X3ij + bi for j = 1, . . . , ni and

m (t | bi) = m0(t) exp {ψbi ∗ Z3i + γ1Z1i + γ2Z2i} .

In the above, bi ∼ N
(
0, σ2

b

)
, X1i ≡ Z1i are generated from a Bernoulli(0.5), and X2i ≡ Z2i

are simulated from the Unif(0, 1). They are included in both hazard and longitudinal models.

The covariate Zi3 is generated from the standard normal distribution, and it is included

only in the mean residual model. The covariate X3ij denotes the time at measurement, and

it is included only in the longitudinal model. Following Choi and Zeng (2017), we generate

the measurement time points as every unit of time over the follow-up ranging 0 through 2.4

and simulate four different units which are 0.3, 0.1, 0.05 and 0.03 producing the numbers

of longitudinal observations (ni) per subject to be 4, 8,15 and 25, respectively.

Tables 4.1− 4.3 show the results on estimation of the regression parameters β0, β1, β2,

β3, γ1, γ2, φ, and σ2
b with the baseline mean residual function m0(t) = −0.5t+ 1 and 20%

censoring rate. In Tables 4.1 − 4.3, we calculate the estimated bias given by the average

of the estimates over 500 replication minus the true value (Bias), the sample standard

deviation (SE), the average of estimated standard error (ESE), and the 95% empirical

coverage probability (CP). In Table 4.1, we have assumed that the number of longitudinal

observation time for all the subjects is fixed at 20, which may not be true. As the result, in

Table 4.2 and Table 4.3, the observation times for each subject were generated uniformly

from 0 to 2.4 with a random number of observation times generated uniformly from 15−20

and 10−20. From Tables 4.1−4.3, we can see that the bias of the proposed quasi likelihood is

small and the bootstrapping variance estimation performs well for this setup. The coverage
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probabilities indicate the normal approximation to the parameter distribution seems to be

reasonable.

4.5 Real Data Example

To illustrate the methodology, we applied the proposed method to the data from the first

phase of Alzhehelmer’s Disease Neuroimaging Initiative (http://adni.loni.usc.edu/).

The participants were followed up for 3.2 years before conversion to AD or censoring

and checked periodically for their cognitive status. Among the 804 participants, 402 of

them had mild cognitive impairment (MCI) as initial cognitive condition. MCI represents

the intermediate stage in the AD progression, and the subjects with MCI have became an

increasingly common target population for evaluating prognostic factors for AD conversion.

In this real data study, we also target at the MCI population. By the end of the first phase

study, 219 of the participants with MCI as initial cognitive condition had AD conversion,

183 participants stayed at MCI and had right censored time for AD conversion.

The goal of this study is to identify the predictors that will affect both the MCI subjects

expected progression time to AD conversion and important disease progression biomarkers

Functional Assessment Questionnaire (FAQ) and Mini-Mental State Examination (MMSE).

Current literature mainly focuses on using biomarkers at baseline to predict the hazards

of AD conversion for the subjects in the MCI population. However, the time expectancy

for MCI patients staying in MCI status before transferring to AD conversion may be more

of interest. Identification of the prognostic factors for the time expectancy is important

for developing treatment that can prolong the time patients staying in MCI status before

AD conversion. Besides, comparing to method that only utilize biomarkers information at

baseline, incorporation of longitudinal data into the modeling will increase the accuracy

and efficiency of parameter estimation.
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As the result, in this real data analysis, we modeled the longitudinal measurements

Functional Assessment Questionnaire (FAQ) and Mini-Mental State Examination (MMSE),

respectively, with time-to-AD conversion under the proportional mean residual model while

adjusting for age at baseline, the presence of apolipoprotein E (APOE) E4 allele, gender

and education level. The time of measurement was also included in the longitudinal model.

The longitudinal measurements can be correlated with time-to-AD conversion by a random

effect, where the random effect is assumed to be from a standard normal distribution.

In the analysis, the longitudinal measurements Functional Assessment and Mini-Mental

State Examination are transferred into binary outcomes. The original FAQ score is based

on some self-evaluating questions, such as, ”keeping track of current events” and ”preparing

a balanced meal”. The response score ranges from 0 (”Normal” or ”Never did [the activity]

but could do now”) to 3 (”Dependent”). According to Teng et al. (2010), the Functional

Activities Questionnaire (FAQ), a standardized assessment of instrumental ADLs (activities

of daily living), delineates the clinical distinction between MCI and Alzheimer’s with an

optimal cut-point of 5. Thus, we dichotomized this FAQ score into 0 (”Low functional

dependence”, FAQ < 5) and 1 (”High functional dependence”, FAQ ≥ 5). We then used

this binary outcome in our analysis. The advantage of dichotomizing the measurement is

to reduce possible measurement error. Similarly, following Yu et al. (2020), a cutoff score of

Mini-Mental State Examination (MMSE) ranging 24 − 27 can be used to detect cognitive

dysfunction with correct rate around 90%. Following their conclusions, we dichotomized

the MMSE score with cutoff score of 25. The MMSE score is defined as 0 (”high scores

reflect less cognitive impairment” MMSE > 25) or 1 (”lower scores reflect severer cognitive

impairment” MMSE ≤ 25).

In the Table 4.4, we show the estimates, the estimated standard errors and p-value of

the maximum quasi-likelihood estimation (MQLE). For longitudinal outcome FAQ, among

all the covariates, the result suggests that the presence of apolipoprotain E(AOPE) E4
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allele and time has significant effects on higher FAQ score or high functional dependence.

Under joint modeling of FAQ score and survival outcome, the FAQ score is negatively

correlated with the expectancy of MCI participants staying in MCI status, which means

higher functional dependence will shorten the expected time for MCI patient progression to

AD conversion. For joint modeling of MMSE and survival outcome, the intercept, baseline

age, the presence of apolipoprotain E(AOPE) E4 allele, female, and time of measurement

have significant effect on lower scores or severer cognitive impairment. In addition, the lower

the MMSE score, higher baseline age, the presence of apolipoprotain E(AOPE) E4 allele

and less number of education years have significant negative influence on the expectancy

time of participants staying in MCI status.

4.6 Conclusion

In this chapter, we have developed a joint regression model for binary longitudinal and

survival outcomes, where the generalized linear mixed model and proportional mean residual

model were utilized to model the longitudinal outcomes and time to event data. In the

method, an iterative estimation procedure with proposed quasi-likelihood approach was

developed. The numerical studies showed that the proposed method works well for practical

situations.
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Table 4.1: Estimation of regression parameters with m0(t) = −0.5t + 1 and 20%
censoring rate and n = 800 and 500 replications, ni=20.

Par. True PQMLE
Bias SE ESE CP

β0 −0.25 −0.084 0.087 0.090 94.6
β1 0.5 0.058 0.071 0.081 97.3
β2 −0.5 −0.053 0.119 0.137 96.4
β3 −0.2 −0.004 0.022 0.025 97.5
γ1 −0.1 0.005 0.053 0.056 96.4
γ2 −0.1 0.001 0.100 0.100 94.6
φ −0.1 −0.071 0.035 0.031 92.4
σ2
b 0.5 −0.010 0.028 0.025 91.7

Table 4.2: Estimation of regression parameters with m0(t) = −0.5t + 1 and 20%
censoring rate and n = 800 and 500 replications, ni is randomly generated from 15
to 20.

Par. True PQMLE
Bias SE ESE CP

β0 −0.25 −0.083 0.087 0.093 95.8
β1 0.5 0.061 0.069 0.081 97.8
β2 −0.5 −0.055 0.130 0.132 94.8
β3 −0.2 −0.005 0.026 0.026 95.8
γ1 −0.1 0.003 0.056 0.062 97.8
γ2 −0.1 0.001 0.103 0.111 96.4
φ −0.1 −0.071 0.035 0.034 95.4
σ2
b 0.5 −0.011 0.031 0.031 94.8

Table 4.3: Estimation of regression parameters with m0(t) = −0.5t + 1 and 20%
censoring rate and n = 800 and 500 replications, ni is randomly generated from 10
to 20.

Par. True PQMLE
Bias SE ESE CP

β0 −0.25 −0.083 0.091 0.097 95.2
β1 0.5 0.069 0.079 0.077 93.4
β2 −0.5 −0.065 0.125 0.133 95.4
β3 −0.2 −0.004 0.029 0.026 92.4
γ1 −0.1 0.007 0.058 0.055 95.2
γ2 −0.1 0.013 0.097 0.102 95.8
φ −0.1 −0.067 0.034 0.038 98.2
σ2
b 0.5 −0.012 0.031 0.025 90.0
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Table 4.4: Analysis results of Alzhehelmer’s Disease data
Longitudinal model FAQ MMSE

Estimate SE p-value Estimate SE p-value
Intercept 1.096 0.771 0.155 −1.447 0.358 0.000

Age 0.009 0.494 0.985 0.556 0.264 0.035
Education 0.155 0.447 0.728 −0.340 0.256 0.182
APOEE4 1.240 0.434 0.004 1.358 0.317 0.000
Gender 0.970 0.891 0.276 1.469 0.637 0.021

Time at measurement 1.127 0.383 0.003 1.237 0.260 0.000
Variance of random effect 4.475 0.815 0.000 3.700 0.429 0.000

Proportional Mean residual Model
Estimate SE p-value Estimate SE p-value

Random effect coefficient −0.010 0.001 0.000 −0.003 0.001 0.000
Age −0.116 0.075 0.120 −0.158 0.073 0.030

Education −0.122 0.115 0.289 0.358 0.115 0.002
APOEE4 −0.112 0.080 0.159 −0.4565 0.080 0.000
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Chapter 5

Future Research

5.1 Regression Analysis of Interval-Censored Data

with Missing Covariates

In Chapter 2, we have focused on the proportional hazards model (2.1). It is apparent that

the same type of missing data could happen to other commonly used regression models such

as the additive hazards model or the linear transformation model. It would be useful to

develop some estimation procedures similar to that proposed above for these latter models.

In addition, we have assumed that covariates are time-independent and it is clear that

sometimes there may exist time-dependent covariates. Thus it would be helpful to generalize

the proposed approach to allow time-dependent covariates. Also in Chapter 2, it has been

assumed that we observe case II interval-censored data and as pointed out by some authors,

in practice, one may face a more general type of interval-censored data, case K interval-

censored data (Sun, 2006; Wang et al., 2016). It is apparent that the method given above

cannot be directly applied to this latter situation and in other words, some generalizations
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of it are needed.

5.2 Joint Analysis of Longitudinal and Survival

Outcome under Mean Residual Life Model

One limitation of the proportional mean residual life model is its monotonically non-

decreasing assumption on m(t|z) + t = m0(t)exp(βTZ) + t, which may not always satisfy.

As pointed out by Chen and Cheng (2006), although a monotonically non-decreasing m0(t)

may mathematically fulfill the monotonically non-decreasing assumption on m(t|z) + t, it

may not be applicable for some processes, for example, human aging. Thus, one future re-

search direction is to extend the current proposed approach to additive residual life model

or transformed mean residual life model to loose the non-decreasing restriction.

In Chapter 3 and Chapter 4, we have assumed that the failure time of interest was

righted censored. However, in practice, one may observe current status data, or case II

interval censored data. It would be useful to develop some generalized method to allow

other types of censoring mechanism.

In addition, we have assumed that the latent variable and random error are from a

multivariate normal distribution, which can be relaxed by some modification of the estima-

tion procedure. A similar two-step estimation procedure could be proposed with an EM

algorithm as the first step with no restriction on the distribution of random effects.
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Appendix A

Appendix

A.1 Appendix I: E-step of the EM Algorithm for

Continuous Covariates in Chapter 2

In the E-step of the EM algorithm developed in Section 3, we need to calculate the expec-

tations E(Zi|Oi, θ
(d)) and E(Wi|Oi, θ

(d)). As described there, when missing covariates are

categorical, they are some summations and can be expressed in the closed form. However,

for continuous covariates, this will not be the case and instead we have to deal with the

integrals that do not have a closed form. More specifically, we have that

E(Zi|Oi, θ
(d)) =

∫
Xmiss

Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmiss
i )δ1i

1− exp{−Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmiss
i )}

×p(Xmiss
i |Oi, θ

(d))dXmiss
i ,
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and

E(Wi|Oi, θ
(d)) =

∫
Xmiss

i

{Λ(d)(Ui)−Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmiss
i )δ2i

1− exp[−{Λ(d)(Ui)−Λ(d)(Vi)}exp(β
(d)′

1 Xobs
i + β

(d)′

2 Xmiss
i )]

×p(Xmiss
i |Oi, θ

(d))dXmiss
i

by using the notation defined before.

To calculate the integrals above, by following Herring and Ibrahim (2001), one can

employ the Monte-Carlo estimation approach, which draws the sample from

pij = P (Xmis
i |Oi, θ

(d)) =
f(Ui,Vi, δ1i, δ2i, δ3i|Xobs

i ,Xmis
i )f(Xobs

i ,Xmis
i ; γ(d))∫

Xmis
i

f(Ui,Vi, δ1i, δ2i, δ3i|Xobs
i ,Xmis

i )f(Xobs
i ,Xmis

i ; γ(d))

∝ f(Ui, Vi, δ1i, δ2i, δ3i|Xobs
i ,Xmis

i )f(Xobs
i ,Xmis

i ; γ(d)) .

Note that f(Ui, Vi, δ1i, δ2i, δ3i|Xobs
i ,Xmis

i ) is log-concave (Gilks and Wild, 1992) and if

f(Xobs
i ,Xmis

i ; γ(d)) belongs to the exponential family, the logrithm of P (Xmis
i |Oi, θ

(d))

is concave. It follows that one can use the Gibbs sampler (Gilks and Wild, 1992) and

adaptive rejection algorithm (Gilks and Wild, 1992) to sample from P (Xmis
i |Oi, θ

(d)).

More specifically for the determination of E(Zi|Oi, θ
(d)), for each subject with missing

covariate Xmiss
i , we first apply the Gibbs sampler and adaptive reject algorithm to draw

the sample si,1, ..., si,ni of size ni from p(Xmiss
i |Oi, θ

(d)). Then the conditional expectation

can be approximated by

E(Zi|Oi, θ
(d)) =

1

ni

ni∑
k=1

Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 si,k)δ1i

1− exp{−Λ(d)(Vi)exp(β
(d)′

1 Xobs
i + β

(d)′

2 si,k)}
.

In comparison to the categorical covariate situation, the above operation can be regarded

as replacing each xmissi by ni sampled values with equal weight. It is apparent that

E(Wi|Oi, θ
(d)) can be calculated similarly.
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A.2 Appendix II: Proofs of the Asymptotic Prop-

erties in Chapter 2

In this Appendix, we will sketch the proof for the consistency and asymptotic normality

of the proposed estimators given in Theorem 1 by employing the empirical process theory

and nonparametric techniques. Define Pf =
∫
f(x)dP (x) and Pnf = n−1

n∑
i=1

f(Xi) for a

function f , a probability function P and a sample X1, . . . , Xn. For the proof, we need the

following regularity conditions.

(A1) Assume that Λ(τ1) < ∞, Λ(τ2) < ∞, and there exists a positive constant a such

that P (V − U > a) > 0. Also the union of the supports of U and V is contained in the

interval [r1, r2] with 0 < r1 < r2 < +∞.

(A2) The function Λ0 is continuously differentiable on [r1, r2], and satisfies M−1 <

Λ0(r1) < Λ0(r2) < M for some positive constant M .

(A3) The set of covariates (X,Z) has bounded support.

(A4) The conditional distribution f(Xmis
i |Xobs

i ; γ) is identifiable and has continuous

seconder-order derivatives with respect to γ, and −E0[∂2/∂γ2)logf(Xmis
i |Xobs

i ; γ0)] is pos-

itive definite.

(A5) For any (θ,Λ) near (θ0,Λ0), P0(logL(θ,Λ)− logL(θ0,Λ0) ≤ −K(||θ−θ0||2+ ||Λ−

Λ0||2) for a fixed constant K > 0.

First we will prove the consistency and for this, we will verify the conditions of Theorem

5.7 of Vaart (1998). Let BVω[r1, r2] denote the functions whose total variation in [r1, r2]

are bounded by a given constant. Then the class of functions

Fω =


Uk∫
0

exp{βTXi}dΛ(s) : Λ ∈ BVω[r1, r2]


is a convex hull of functions {I(Uk ≥ s)exp{βTXi} and thus it is a Donsker class. Further-
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more,

exp

− Uk∫
0

exp{βTXi}dΛ(s)

− exp

− Uk+1∫
0

exp{βTXi}dΛ(s)


is bounded away from zero. Therefore, l(θ, α̂|O) = logL(θ, α̂|O) belongs to some Donsker

class due to the preservation property of the Donsker class under Lipschitz-continuous

transformations. Then we can conclude that

supθ∈Θn |Pnl(θ, α̂|O)− Pnl(θ0, α̂|O)| converges in probability to 0 as n→ 0.

Now we verify that another condition of Theorem 5.7 of Vaart (1998) also holds. That

is, for any ε > 0, we have

sup
d(θ,θ0)>ε

Pl(θ, α̂|O) < Pl(θ0, α̂|O) .

Note that this condition is satisfied if we can prove the model is identifiable. According

to condition (A4) and similar arguments to the proof of Theorem 2.1 of Chang and Wu

(2007), we can show the identifiability of the model parameters. Now, by Theorem 5.7 of

Vaart (1998), we have d(θ̂n, θ0) = op(1), which completes the proof of consistency.

Before proving the asymptotic normality, we will need to establish the convergence rate.

For this, we will first define the covering number of the class L = {l(θ, α̂|O) : θ ∈ Θ} and

establish a needed lemma.

Lemma 1. Assume that Conditions (A1), (A3)-(A4) hold. Then the covering number

of the class L = {l(θ, α̂|O) : θ ∈ Θ} satisfies

N(ε,L, L2(P )) = O(ε−1).

Proof of Lemma 1: The proof is similar to that of Zeng et al. (2016) and Hu et al. (2017)

and thus omitted.

To establish the convergence rate, for any η > 0, define the class Fη = {l(θn0, α̂|O) −
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l(θ, α̂|O) : θ ∈ Θ, d(θ, θn0) ≤ η} with θn0 = (β0,Λn0). Following the calculation of Shen

and Wong (1994), P.597, we can establish that logN[](ε,Fη, ‖ . ‖2) ≤ CN log(η/ε) with

N = m + 1, where N[](ε,Fη, d) denotes the bracketing number (see the Definition 2.1.6 in

Vaart and Wellner, 1996) with respect to the metric or semi-metric d of a function class

F . Moreover, some algebraic calculations lead to ‖ l(θn0, α̂|O)− l(θ, α̂|O) ‖22≤ Cη2 for any

l(θn0, α̂|O) − l(θ, α̂|O) ∈ Fη. Therefore, by Lemma 3.4.2 of Vaart and Wellner (1996), we

obtain

Ep ‖ n1/2(Pn − P ) ‖Fη≤ CJη(ε,Fη, ‖ . ‖2){1 +
Jη(ε,Fη, ‖ . ‖2)

η2n1/2
}, (S)

where Jη(η,Fη, ‖ . ‖2) =
∫ η

0 {logN[](ε,Fη, ‖ . ‖2)}1/2dε. The right-hand side of (S) yields

φn(η) = Cη1/2(1+ η1/2

η2n1/2M1), where M1 is a positive constant. Then φn(η)/η is a decreasing

function, and n2/3φn(−1/3) = O(n1/2). According the theorem 3.4.1 of Vaart and Wellner

(1996), we can conclude that d(θ̂, θ0) = Op(n
−1/3).

Now we prove the asymptotic normality of β̂n. Following the proof of Theorem 2 in

Zeng et al. (2016), one can obtain that

√
n(β̂n − β0) = (E[{lβ − lΛ(s∗)}{lβ − lΛ(s∗)}T )−1Gn{lβ − lΛ(s∗)}+ op(1),

where lβ is the score function for β, lΛ(s∗) is the score function along this submodel

dΛε,s∗ = (1 + εs∗)dΛ. This implies that the influence function for β̂n is exactly the ef-

ficient influence function, so that
√
n(β̂n − β0) converges to a zero-mean normal random

vector whose covariance matrix attains the semiparametric efficiency bound.
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