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BAYESIAN SMOOTHING SPLINE WITH DEPENDENCY MODELS

Benqian Zhang

Dr. Dongchu Sun and Dr. Zhuoqiong He, Dissertation Supervisors

ABSTRACT

The smoothing spline model is widely used for fitting a smooth curve because

of its flexibility and smoothing properties. Our study is motivated by estimating

the long-term trend of the U.S. unemployment level. In this dissertation, a class of

Bayesian smoothing spline with dependency models is developed.

The unemployment level and other labor-force time series, which are often used

to analyze market and economic conditions, are strongly influenced by seasonality, as

well as irregular or short-term fluctuations. We apply the basic Bayesian smoothing

spline model to obtain the smooth estimation of the trend from a time series, which

captures the fundamental tendency of general economic expansions and contractions.

We further generalize the basic Bayesian smoothing spline model with dependence

structure. This generalization significantly improves the boundary performance and

elevates the overall accuracy and precision by borrowing information from different

cycles. Finally, we construct the multivariate Bayesian smoothing spline with de-

pendency model, which enables us to estimate the trends of the unemployment and

employment level simultaneously. The accuracy and precision are improved by the

joint model.

xii



Chapter 1

Introduction

The smoothing spline model is widely used for fitting a smooth curve because of

its flexibility and smoothing properties. Given the time series data y with time t =

(t1, . . . , tn)′, the smoothing spline model can be used to enhance the visual appearance

of the scatterplot of y = (y1, . . . , yn)′ vs t, and to estimate the trend in the plot

objectively.

The univariate smoothing spline problems have been thoroughly studied from the

frequentist perspective. Consider the univariate nonparametric regression model,

yi = f(ti) + εi, i = 1, . . . , n, (1.1)

where εi
iid∼ N(0, δ0), f(t) is an unknown smooth function of time t, and a ≤ t1 <

· · · < tn ≤ b. The unknown smooth function f(t) could be estimated by minimizing

the penalized least squares,

n∑
i=1

[yi − f(ti)]
2 + η

∫ b

a

[f (k)(t)]2dt, (1.2)

1



where f (k)(t) = dk

dtk
f(t), and η > 0 is a smoothing parameter that balances the trade-

off between goodness-of-fit and smoothness of the estimate. The cross-validation

method is often used to choose the smoothing parameter η. See, for example, Hastie

and Tibshirani (1990) and Gu (2013) for a comprehensive review. From the Bayesian

perspective, certain forms of smoothing spline correspond to Bayesian estimates under

a class of improper Gaussian prior distributions on function spaces, which is fully

explained in Wahba (1990). Sun, Tsutakawa, and Speckman (1999) first introduced

the Partially Informative Normal (PIN) prior, which lays the foundation for this work.

See Speckman and Sun (2003) and Cheng and Speckman (2012) for full Bayesian

analysis.

In Chapter 2, we introduce a motivating example to estimate the long-term trend

of the U.S. unemployment level. We apply a Bayesian smoothing spline model to ob-

tain the smooth estimation of the trend from a time series to capture the fundamental

tendency of general economic expansions and contractions.

The Current Population Survey (CPS), conducted jointly by the U.S. Census

Bureau and the U.S. Bureau of Labor Statistics (BLS), provides numerous labor

force statistics for the U.S. population. For example, the unemployment level counts

all persons who had no employment with certain criteria, which is formally defined

in Current Population Survey Technical Paper 77.

Those labor-force time series, which are often used to analyze market and economic

conditions, however, are strongly influenced by seasonality, as well as irregular or

short-term fluctuations. Therefore we want to estimate the trend, which is the long

term movement in a time series without periodic related and irregular effects, as a

reflection of the underlying tendency.

Traditionally, people decompose a time series into a trend, a seasonal component,

and an irregular component. In order to obtain the seasonal effect and the long-term

2



trend of the unemployment level and other labor force time series, the original X-11

software was developed by the US Census Bureau in the 1960s, and later improved

by Statistics Canada (Dagum 1980). Subsequent software packages by the US Census

Bureau were called X-12-ARIMA (Findley et al. 1998) and X-13ARIMA-SEATS (or

X-13, for short) (Monsell 2007).

The most recent version X-13 offers two seasonal adjustment methods: X-11,

which is used as a name for filter-based seasonal adjustment methods, and SEATS

(signal extraction in ARIMA time series). Details can be found from Ladiray and

Quenneville (2012), and Dagum and Bianconcini (2016). We compare our result with

the current X-13 method.

In Chapter 3, we further generalize the Bayesian smoothing spline model with

dependence structure. We design a correlation matrix, see Appendix 3.10, as the

dependence structure for the seasonal pattern. This generalization significantly im-

proves the boundary performance and elevates the overall accuracy and precision by

borrowing information from different cycles. We develop an efficient MC sampling

for the posterior distribution with the bivariate ratio-of-uniform method.

In Chapter 4, we construct the multivariate Bayesian smoothing spline with de-

pendency model, which enables us to estimate the trends of the unemployment and

employment levels simultaneously. We are interested in the trend estimates of multi-

ple time series with the same period, which may or may not share a similar seasonal

pattern. We further improve the accuracy and precision with the joint model by

borrowing information across multiple series.

3



Chapter 2

Estimating the Long-term Trend of
Unemployment Level Using
Bayesian Smoothing Spline Model

2.1 Introduction

We often see economic time series like the unemployment rate being strongly influ-

enced by seasonality—periodic fluctuations associated with recurring calendar-related

events such as weather, holidays, and the opening and closing of schools. Tradi-

tionally, people decompose a time series into a trend, a seasonal and an irregular

component. In order to obtain the seasonal effect and the long-term trend of the

unemployment level and other labor force time series, the original X-11 software was

developed by the US Census Bureau in the 1960s, and later improved by Statistics

Canada (Dagum 1980). Subsequent software packages by the US Census Bureau

were called X-12-ARIMA (Findley et al. 1998) and X-13ARIMA-SEATS (or X-13,

for short) (Monsell 2007).

4



The most recent version X-13 offers two seasonal adjustment methods: X-11,

which is used as a name for filter-based seasonal adjustment methods, and SEATS

(signal extraction in ARIMA time series). Details can be found from Ladiray and

Quenneville (2012), and Dagum and Bianconcini (2016). X-13 procedures are based

on “filters” that successively average a shifting timespan of data, thereby providing

estimates of seasonal factors that change in a smooth fashion from year to year. To

seasonally adjust recent data, shorter filters with less desirable properties must be

used. Every time an observation is added, previous estimates will be revised. A final

adjustment may wait up to 5 years when standard options are used.

In this chapter, we propose a Bayesian smoothing spline model to estimate the

long-term trend of the U.S. unemployment level time series. In Section 2.2, we intro-

duce the model construction and computation. In Section 2.3, we show the Bayesian

smoothing spline trend estimation for our motivating application, compared with the

X-13 result. In Section 2.4.1, we discuss the unstable boundaries and improvement

procedures. In Section 2.4.2, we study the effect of newly added data to previous

trend estimates. We compare the stability of our Bayesian smoothing spline trend

estimates with the X-13 result, when new data are available. In Section 2.5, we es-

timate the changing points, where the trend switches from increasing to decreasing,

or vice versa, as well as the uncertainty of the estimated changing points. In Section

2.6, we perform a simulation study.

5



2.2 Bayesian Smoothing Spline Model

2.2.1 Smoothing Spline Model

We consider the univariate nonparametric regression model in Speckman and Sun

(2003)

yi = zi + εi, zi = f(ti), i = 1, . . . , n, (2.1)

where εi
iid∼ N(0, δ0), f(t) is an unknown smooth function of time t, and a ≤ t1 <

· · · < tn ≤ b. The unknown smooth function f(t) is estimated by minimizing the

penalized least squares

n∑
i=1

[yi − f(ti)]
2 + η

∫ b

a

[f (k)(t)]2dt, (2.2)

where f (k)(t) = dk

dtk
f(t), and η > 0 is a smoothing parameter that balances the trade-

off between goodness-of-fit and smoothness of the estimate.

When k = 2, equation (2.1) is the natural cubic smoothing spline. We consider

equally spaced knots at t = 1, 2, ..., n, and let Q = F ′0F
−1
1 F0, where the (n − 2) × n

matrix F0 and (n− 2)× (n− 2) matrix F1 are

F0 =



1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

...
...

...
... . . .

...
...

...

0 0 0 0 . . . 1 −2 1


, F1 =

1

6



4 1 . . . 0 0

1 4 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 4


. (2.3)

Let y = (y1, ..., yn)′, z = (z1, ..., zn)′, and ε = (ε1, ..., εn)′. We rewrite the model (2.1)

6



as

y = z + ε, ε ∼ Nn(0, δ0In). (2.4)

The solution to the minimization (2.2) is

µz = (In + ηQ)−1y. (2.5)

One major difficulty of the smoothing spline method is how to estimate the

smoothing parameter η. Wahba (1990) explains the generalized cross validation

(GCV) method and its limits. The GCV method is not reliable with small sam-

ple sizes. Even for large sample sizes, unwanted extreme estimates (η̂ = 0 or η̂ =∞)

may still occur.

Following Speckman and Sun (2003) and Cheng and Speckman (2012), we consider

the full Bayesian analysis of the smoothing spline model.

2.2.2 Bayesian Analysis and Computation

We apply the Partially informative Normal prior in Sun, Tsutakawa, and Speckman

(1999) for z = (z1, ..., zn)′,

p(z|δ1) ∝
( 1

δ1

)n−2
2 exp

(
− 1

2δ1
z′Qz

)
. (2.6)

Here δ1 = δ0/η for δ0 and η given in (2.1) and (2.2). For the following computation,

we re-parameterize the variance component as δ1 = δ0/η, where η = δ0/δ1 represents

the noise-signal ratio.

7



We choose the Jeffreys prior for δ0,

p(δ0) ∝
1

δ0
, (2.7)

and the scaled Pareto prior (Cheng and Speckman 2012) for η,

p(η) =
c

(c+ η)2
, η > 0. (2.8)

Its median is the scale parameter c. As c increases, the prior tends flatter and less

concentrated to 0. For the nonparametric model (2.4) with prior densities (2.6), (2.7)

and (2.8), we have the joint posterior for (z, δ0, η),

p(z, δ0, η|y) ∝ p(y|z, δ0, η)p(z|δ0, η)p(δ0)p(η)

∝ η
n−2
2

δn0

c

(c+ η)2
exp
[
− 1

2δ0
(z − µz)′(In + ηQ)(z − µz)

]
exp{− 1

2δ0
[y′y − µ′z(In + ηQ)µz]}, (2.9)

where µz = (In + ηQ)−1y, which is exactly the solution (2.4). Therefore we have the

fact as follows.

Fact 2.2.1. From the joint posterior density (2.9), we have the following results:

(a) The conditional distribution of z given (δ0, η;y) is

(z|δ0, η;y) ∼ Nn((In + ηQ)−1y, δ0(In + ηQ)−1). (2.10)

(b) The conditional distribution of δ0 given (η;y) is

(δ0|η;y) ∼ IG(
n

2
− 1,

1

2
ηy′(In + ηQ)−1Qy). (2.11)
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(c) The marginal posterior density of η given data y is

p(η|y) ∝ η
n−2
2

|In + ηQ| 12 [ηy′(In + ηQ)−1Qy]
n
2
−1

c

(c+ η)2
. (2.12)

The proof is omitted as this is a special case in Tong, He, and Sun (2018), which

has no replicates at each knot.

Based on the Fact 2.2.1, the Monte Carlo algorithm is as follows:

Algorithm 1 Posterior sampling of density (2.9)

1: Sample η given data y from density (2.12).

2: Sample δ0 given (η;y) from distribution (2.11).

3: Sample z given (δ0, η;y) from distribution (2.10).

For the choice of hyper-parameter c, we follow Cheng and Speckman (2012) that

c can be chosen based on a desirable prior degrees of freedom, which is defined as the

trace of the smoother matrix d(η) = tr((In + ηQ)−1). Here we take c = 10, and MC

result is pretty robust with different choice of c.

2.3 The Long-term Trend of Unemployment Level

We use the public data of the U.S. unadjusted unemployment level from January of

2004 to December of 2018. The length of the time series is 180 months. Following

the algorithm above, we draw 10,000 samples from the joint posterior distribution.

We show the posterior mean of z as the Bayesian smoothing spline trend estimates

in Figure 2.3. Compared with seasonal adjusted and trend estimates from X-13, our

trend estimation thoroughly removes the short-term fluctuations, and is considered a

better trend estimation in terms of smoothness.
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To access the uncertainty of our trend estimates, we show the 95% credible interval

of the trend estimates in Figure 2.1, and the posterior coefficient of variation in

Figure 2.2. We note that the uncertainty increases sharply as time approaches the

two boundaries. We will discuss this phenomenon in the following section.

2.4 Stability

2.4.1 Boundary Performance and Improvement

We have noticed that the estimates around the boundary are not stable. A simple

solution is to discard the two undesirable boundaries; i.e. if we are interested in the

trend within time (ta, tb), we first model the trend within a larger range (ta−c, tb+c),

and then keep the trend estimation in (ta, tb) as the final result.

The lower bound may not be an issue, as the historical data before the range of

interest are often available. For the upper bound, the estimate at the latest time

point is needed most often. Our method is to simulate some data for the future time

points.

2.4.1.1 Future Data Simulation

Note that we do not expect to achieve precise prediction for the future. Instead, we

just want the simulated data to have the similar seasonal pattern with real data. The

most similar ones available are the historical data. Thus, for the simulated data,

we would like to repeat the month-to-month changes from previous cycles, which

contain the pattern of seasonal effect. Considering the continuity, we may have a

class of simulators of ŷ(k) = (ŷ
(k)
n+1, . . . , ŷ

(k)
n+J)′ using the month-to-month changes at
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the same position in each cycle as

ŷ
(k)
n+j = ŷn+j−1 + (yn+j−ks − yn+j−ks−1), k = 1, 2, ...; j = 1, 2, ..., J. (2.13)

Note that y1, ..., yn are the real data used, and we would like to simulate additional J

months of data as ŷn+1, ..., ŷn+J . Given the period s = 12 months in a year, suppose

the real data contain at least k cycles, as n > ks.

The k-th simple simulator will use the month-to-month change (yn+j−ks−yn+j−ks−1)

from the real data k year(s) before. If the real series is long enough, eg. k > 3, we

may use the weighted average of those k simple simulators to achieve a better guess

of the real month-to-month difference.

We simulate the values of one month at a time, given the starting value ŷn = yn,

and generate the next one based on the real data and values simulated previously.

Depending on the length of data used, we may include one or two or more cycles in

the simulator. Here we generate J = 12 months’ data points out of the upper bound,

and propose four different simulators for comparison.

Simulator 1 borrows the information from one resent year of real data.Simulator 2

borrows the information from two resent years of real data.Simulators 3 & 4 borrow

the information from three resent years of real data.

Simulator 1: ŷn+j = ŷn+j−1 + (yn+j−s − yn+j−s−1), j = 1, 2, ..., 12.

Simulator 2: ŷn+j = ŷn+j−1+0.75(yn+j−s−yn+j−s−1)+0.25(yn+j−2s−yn+j−2s−1), j =

1, ..., 12.

Simulator 3: ŷn+j = ŷn+j−1 + 0.6(yn+j−s − yn+j−s−1) + 0.3(yn+j−2s − yn+j−2s−1) +

0.1(yn+j−3s − yn+j−3s−1), j = 1, ..., 12.

Simulator 4: ŷn+j = ŷn+j−1+
1
3
[(yn+j−s−yn+j−s−1)+(yn+j−2s−yn+j−2s−1)+(yn+j−3s−
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yn+j−3s−1)], j = 1, ..., 12.

The real data from 01/2006 to 01/2009 are used in Figures 2.4 and 2.5. In Figure

2.4, based on the real data from 01/2006 to 01/2009, we are interested in the trend

estimates between 01/2007 and 01/2009. The real data from 01/2006 to 01/2009, and

simulated data from 02/2009 to 01/2010 with different simulators are used. We also

plot the real data from 02/2009 to 01/2010, which are not used, just for reference.

The simulators copy both the long-term tendency and the short-term seasonal

pattern from previous cycles. When the long-term tendency itself changes rapidly

over time, the four simulators perform differently due to different numbers of cycles

involved for simulation, but we only want the simulated data to have a similar pattern

compared with real data. All four simulators serve this purpose, and the estimates

are almost identical.

In Figure 2.5, we show the posterior coefficient of variation of the four trend

estimates in Figure 2.4. As expected, we achieve the low and stable variation after

removing the lower and upper boundaries.

2.4.1.2 Predictive Posterior

We apply posterior predictive distribution to improve boundary performance. Given

the known real data y = (y1, ..., yn)′, we define y∗ = (ŷn+1, ..., ŷn+J)′ as the additional

J months data simulated. Let ñ = n + J , ỹ = (y′, y′∗)
′ = (y1, ..., yn, ŷn+1, ..., ŷñ)′,

z̃ = (z1, ..., zñ)′ , Q̃ = F̃ ′0F̃
−1
1 F̃0, which is the matrix Q in (2.3) with dimension ñ

instead of n.
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The full conditional distributions for Gibbs sampling are given by

(z̃|δ0, η, ν,y∗;y) ∼ Nñ((Iñ + ηQ̃)−1ỹ, δ0(Iñ + ηQ̃)−1),

(δ0|z̃, η, ν,y∗;y) ∼ IG(n− 1,
1

2
[(ỹ − z̃)′(ỹ − z̃) + ηz̃′Q̃z̃]),

(η|z̃, δ0, ν,y∗;y) ∼ Gamma(
n

2
, ν +

1

2δ0
z̃′Q̃z̃),

(ν|z̃, δ0, η,y∗;y) ∼ Gamma(2, c+ η),

(ŷi|z̃, δ0, η, ν;y) ∼ N(zi, δ0), i = n+ 1, ..., n+ J.

We implement J = 12 new time points for the Posterior Predictive Distribution.

We also consider the influence of different initial values. In Figure 2.6, the initial

values are borrowed from Simulators 1, 2, and 3 from the previous section.

We also explore the difference between different length of simulation. In Figure

2.7, we take J = 4, 6, 8, 12, and the initial values are shared from the initial values

(2) in the previous example. The estimates don’t change much.

2.4.2 Revisions as New Data are Available

The unemployment level and other labor force data are collected monthly by the

Census Bureau, and we may obtain new trend estimates for the previous time points

each time when new data are available. Our question is whether the current trend

estimates will coincide with the previous one.

Note that the boundary improvement discussed in the previous section is an at-

tempt to reduce the model uncertainty. Because we have to borrow information from

all the series to estimate the trend at each time point, adding new data will inevitably

affect the previous estimates. The current X-13 method also has this issue, and it is

a common practice to revise the estimates after new data are collected.
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In this section, we study the stability in terms of adding new data of Bayesian

smoothing spline trend estimation and compare it with the X-13 method.

In Figures 2.8 and 2.9, we denote the non-revision trend estimates as lag 0. For

lag 0, we first perform analysis with 01/2004 - 12/2008 data, and record the result

for the time point of 12/2008 only. Then we perform analysis with 02/2004 - 01/2009

data, and record the result for the time point of 01/2009 only, and so on.

The 3-month revised trend is denoted as lag 3. For lag 3, we first perform analysis

with 04/2004 - 03/2009 data, and record the result for the time point of 12/2008 only.

Then we perform analysis with 05/2004 - 04/2009 data and record the result for the

time point of 01/2009 only, and so on.

Similarly, we construct the 6-month, 12-month, 24-month and 36-month revised

trends, which are shown as lag 6, lag 12, lag 24 and lag 36 respectively. We keep

the estimation window, or the range of data used, as 60 months for each estimate for

consistency.

Ideally, we wish to see that all trend estimates overlap each other. However, by

comparing the revised and non-revised trend estimates, it is clear that the revision

is necessary for both our Bayesian smoothing spline method and the X-13 method.

But our method is more stable and requires less correction as new data are added.

To better illustrate our strength, we calculate the relative correction between each

revised trend estimation. For example, the relative correction between the 3-month

revised trend (lag 3) and the 6-month revised trend (lag 6) is defined as:

Relative correction3,6 =

∣∣∣∣Trendlag3 − Trendlag6Trendlag3

∣∣∣∣ . (2.14)

We summarize the relative correction for all the time points from 12/2008 to 12/2013

with Histograms 2.10 - 2.13.
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For the comparison between the 3-month revised trend (lag 3) and the 6-month re-

vised trend (lag 6) in Histogram 2.10, the relative correction with Bayesian smoothing

spline (mean = 0.4325%) is smaller than the one with X-13 (mean = 0.5138%).

For the comparison between the 6-month revised trend (lag 6) and the 12-month

revised trend (lag 12) in Histogram 2.11, the relative correction with Bayesian smooth-

ing spline (mean = 0.3296%) is smaller than the one with X-13 (mean = 0.6886%).

For the comparison between the 12-month revised trend (lag 12) and the 24-

month revised trend (lag 24) in Histogram 2.12, the relative correction with Bayesian

smoothing spline (mean = 0.2996%) is smaller than the one with X-13 (mean =

0.6589%).

For the comparison between the 24-month revised trend (lag 24) and the 36-

month revised trend (lag 36) in Histogram 2.13, the relative correction with Bayesian

smoothing spline (mean = 0.1970%, median = 0.1558%, quantile0.95 = 0.4949%)

is much smaller than the one with X-13 (mean = 0.5816%, median = 0.4263%,

quantile0.95 = 1.486%). We also notice that relative correction of X-13 has a much

larger discrepancy in Figures 2.11, 2.12 and 2.13.

From Histograms 2.10 - 2.13, with equally added data, the Bayesian smoothing

spline method requires much less amount of revision than X-13. As more data are

available, the amount of revision with Bayesian smoothing spline model decreases

significantly. From the 24-month revised trend (lag 24) to the 36-month revised

trend (lag 36), more than 95% of time points require correction that is smaller than

0.5%. The majority have almost no revision, which can be hardly identified from

those Histograms.
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2.5 Changing Point Detection

In this section, we would like to explore at which time point the unemployment ten-

dency is changed, i.e. the unemployment level switches from decreasing to increasing

or vice versa, which may be considered as an indicator of the economic crisis’ coming

or leaving.

Recall the smoothing spline model (Fessler 1991),

f(t) =


z0 + b0(t− t0), t ∈ [t0, t1),

zi + bi(t− ti) +
ci
2

(t− ti)2 +
di
6

(t− ti)3, t ∈ [ti, ti+1),

zn + bn(t− tn), t ∈ [tn, tn+1].

(2.15)

After we obtain the estimate of z = (z1, ..., zn)′ = (f(t1), ..., f(tn))′ from MCMC,

with the following equations, we calculate the parameters for the natural cubic spline

smoothing curve (2.15),

c = (c2, ..., cn−1)
′ = F−11 F0z, c1 = 0,

di−1 = ci − ci−1,

bi−1 = (zi − zi−1)−
ci + 2ci−1

6
, bn = bn−1 + cn−1 +

dn−1
2

.

Here we are interested in the bi’s, which are the values of the first derivative of the

smoothing spline at each time point ti, because they quantify the increasing/decreasing

rates at those points. The changing points where the unemployment rate turns to be

increasing from decreasing or vice versa, which are the indications of the top or bot-

tom of economic cycles, are achieved by continuity approximately at the time when

the curve of bi crosses the horizontal line. In addition, our method is able to access

the uncertainty of bi efficiently with the posterior samples.
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In Figure 2.14, we compute the point estimates of bi’s with respect to the trend

estimates in Figure 2.1, along with the 95% credible interval. Figure 2.14 shows two

changing points. In December of 2006, the unemployment level began to increase,

indicating the coming of the recession. In February of 2010, the unemployment level

started to decrease, indicating the ending of the recession period.

Note that, from the previous section, the boundary issue cannot be avoided for

the estimation of the unemployment level, and this is also true for the estimation of

b’s. We expect larger variation here as they are the estimation of first derivatives.

2.6 Simulation

In this section, we explore the accuracy of our Bayesian smoothing spline method and

compare it with the X-13 Program.

Here we use a simple additive model to simulate the data of 48 time points with

1 observation at each time.

yi = f(ti) + S(ti), i = 1, 2, ..., 48,

where f(ti)’s are the fixed true trend which are defined as

f(t) =


0.2(t− 15)2 + 1000, t ∈ [1, 15),

− 2/3(t3 − 58.5t2 + 1080t) + 5275, t ∈ [15, 24),

− 0.2(t− 24)2 + 1243, t ∈ [24, 48].

The above function is manually created to simulate the tendency during economic

crisis.
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Following Pfeffermann (1991), the seasonal effect S(tij)’s are simulated by

St = −
t−1∑

j=t−s+1

Sj + ωt, ωt ∼ N(0, δ),

where the number of seasons s = 12, and variance δ = 100.

Figure 2.15 shows the true trend and the estimates, along with the simulated data.

Our method overall performs better.

2.7 Comments

Our Bayesian smoothing spline model provides a method to remove the seasonal fluc-

tuations thoroughly, achieves the smooth estimates from a time series, and captures

the fundamental tendency of general economic expansions and contractions.

We propose a new procedure, which borrows the pattern of historical data to

reduce the model uncertainty of estimates on the boundary, and to achieve the overall

stable estimates. Compared with X-13, the method currently applied by BLS, our

method obtains the desired continuity properties and produces efficient uncertainty

assessment.

When new data are available, the previous trend estimates may need to be revised.

Compared with the X-13 method, the Bayesian smoothing spline trend estimation

requires less correction with equally added data. As more data are added, the amount

of revision of the Bayesian smoothing spline estimates reduces sharply, whereas the

X-13 result is revised slowly. Therefore, in terms of adding new data, our method is

more stable and reliable than X-13.

Also, the continuity properties help us to further study the changing rate of a

trend as well as the uncertainty, and to detect the changing point, where the trend
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switches from increasing to decreasing, or vice versa.

In addition, our method does not require the data to be at least 3 year-long (36

observations) for monthly series. 13 months (observations) is the minimum for our

boundary improvement procedure.
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2.8 Figures

Figure 2.1: 95% credible interval of Bayesian Smoothing Spline Estimates

Figure 2.2: Posterior Coefficient of Variation of Bayesian Smoothing Spline Estimates
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Figure 2.3: Unemployment Level: BSS Trend estimates compared with X-13 trend

Figure 2.4: Boundary Improved BSS Trend Estimates with Simulators
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Figure 2.5: Posterior Coefficient of Variation of Bayesian Smoothing Spline Trend
Estimates with Simulators

Figure 2.6: Comparison of Estimates with Predictive Distribution and Different Initial
Values
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Figure 2.7: Comparison of Estimates with different length of simulation

Figure 2.8: Comparison of Revised Bayesian Smoothing Spline Trend Estimates
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Figure 2.9: Comparison of Revised X-13 Trend Estimates

Figure 2.10: Relative correction between 3-month revised trend (lag 3) and 6-month
revised trend (lag 6)
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Figure 2.11: Relative correction between 6-month revised trend (lag 6) and 12-month
revised trend (lag 12)

Figure 2.12: Relative correction between 12-month revised trend (lag 12) and 24-
month revised trend (lag 24)

Figure 2.13: Relative correction between 24-month revised trend (lag 24) and 36-
month revised trend (lag 36)
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Figure 2.14: Detection of Changing Points

Figure 2.15: Simulation: Bayesian Smoothing Spline Compared with X-13
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Chapter 3

Bayesian Smoothing Spline with
Dependency Model

3.1 Introduction

The Bayesian smoothing spline model in Chapter 2 provides the long-term trend of

the unemployment level with good properties. In the previous Chapter, we apply the

basic Bayesian smoothing spline model to estimate the U.S. unemployment level from

January of 2004 to December of 2018. To review the example 2.3, we analyze the

residuals, which are defined in (3.1).

Residual = Unadjusted unemployment level − Trend estimate. (3.1)

Figure 3.1 shows the residuals of 180 months from 01/2004 to 12/2018. Then we

represent the 15 years’ residuals in the domain of 12 months in a year in Figure 3.2.

It is clear that a seasonal pattern of period T = 12 exists in the residuals. Thus

it is reasonable to assume that the residuals of all Januaries are correlated, and the
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residuals of all Februaries are correlated, etc.

In this chapter, we are interested in generalizing the basic model we use in Chapter

2, and propose a dependence structure to improve accuracy, precision and stability.

In Section 3.2, we introduce the generalized model with the dependence structure

adapted to the seasonal pattern, which we discovered in Figures 3.1-3.2. Section

3.3 explores the sampling procedure for the posterior distribution of our Bayesian

smoothing spline with dependency (BSSD) model. In Section 3.4, we revisit the

example 2.3, and the comparison shows that for real data, our new model has much

better boundary performance than the basic model. Also the BSSD trend estimation

is more stable than the result from the X-13 method. Section 3.5 and 3.6 discuss the

model selection with DIC. In Section 3.7, we perform three simulation studies with

different combinations of tendency and periodic errors. In this chapter, we refer to

the univariate model, when the Bayesian smoothing spline with dependency (BSSD)

model is mentioned without specification, and we will discuss the multivariate BSSD

model in Chapter 4.

3.2 Bayesian smoothing spline with dependency

The basic Bayesian smoothing spline model consider the nonparametric regression

model (Speckman and Sun 2003),

yi = zi + εi, zi = f(ti), (3.2)
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where εi
iid∼ N(0, δ0), i = 1, ..., n. Let y = (y1, ..., yn)′, z = (z1, ..., zn)′, and ε =

(ε1, ..., εn)′. We rewrite (3.2) as

y = z + ε, ε ∼ Nn(0, δ0In). (3.3)

Following the dependence assumption, we generalize the fully independent struc-

ture In to a specified dependent structure RRR. Model (3.3) is generalized to

y = z + ε, ε ∼ Nn(0, δ0RRR), (3.4)

where RRR = (rij)n×n is the correlation matrix. Assuming the period is T , the upper-

triangular elements (1 ≤ i ≤ j ≤ n) are

rij =


1, i = j,

ρ, j = i+ T × k, k = 1, 2, 3, ...,

0, otherwise.

(3.5)

For example, we take three full years’ data, the length of which is n = 36 (months),

and the period is T = 12 (months). It is convenient to construct the correlation

matrix as

RRR =


IT ρIT ρIT

ρIT IT ρIT

ρIT ρIT IT

 . (3.6)

In the case that the length of data n is not an integer multiple of T , for example

n = 32, it is also easy to obtain the correlation matrix RRR by taking the sub-matrix of

the matrix (3.6), which keeps the first 32 columns and rows.
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Formally, suppose univariate observations y = (y1, ..., yn) are taken at points

t = (t1, · · · , tn)′, where −∞ < a ≤ t1 < · · · < tn ≤ b <∞. An unknown function f(t)

is estimated to minimize the generalized loss function with a penalty on smoothness,

(y − z)′RRR−1(y − z) + η

∫ b

a

[f (2)(t)]2dt, (3.7)

where z = (f(t1), . . . , f(tn))′, f (2)(t) is the second derivative, for Cubic natural

smoothing spline. For equal spaced knots at t = 1, 2, ..., n, as a special case in Fessler

(1991), the smoothness penalty term can be rewrite as ηz′Qz, where

Q = F ′0F
−1
1 F0, (3.8)

and the (n− 2)× n matrix F0 and (n− 2)× (n− 2) matrix F1 are

F0 =



1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

...
...

...
... . . .

...
...

...

0 0 0 0 . . . 1 −2 1


, F1 =

1

6



4 1 . . . 0 0

1 4 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 4


. (3.9)

The minimizer (3.7) can be written as

(y − z)′RRR−1(y − z) + ηz′Qz. (3.10)

The solution to (3.10) can be found by taking the first derivative with respect to z

and set it to zero.

µz = (RRR−1 + ηQ)−1RRR−1y. (3.11)
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3.2.1 Choice of Priors

Following Sun, Tsutakawa, and Speckman (1999), we use partially informative Normal

prior for z = (z1, ..., zn)T , zi = f(ti),

[z|δ1] ∝
( 1

δ1

)n−2
2 exp

(
− 1

2δ1
z′Qz

)
. (3.12)

The variance component is δ1 = δ0/η, where η = δ0/δ1 represents the noise-signal

ratio.

We choose the Jeffreys prior for δ0,

[δ0] ∝ δ−10 . (3.13)

For the choice of prior of ρ, given the assumption of positive correlation, we use

[ρ] ∝ (1− ρ)−
1
2 , 0 < ρ < 1, (3.14)

with our belief that the correlation parameter ρ is closer to 1 than 0. We may also

consider a class of priors

[ρ] ∝ (1− ρ)−
1
2 (1 +

ρ

k − 1
)−

1
2 , 0 < ρ < 1, k = 2, 3, . . . (3.15)

We choose scaled Pareto prior (Cheng and Speckman 2012) for η

[η] =
c

(c+ η)2
, η > 0. (3.16)

Its median is the scale parameter c. As c increases, the prior tends flatter and less

concentrated to 0.
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Following White (2006), we choose the hyper-parameter c based on the effective

degrees of freedom. In Hastie and Tibshirani (1990), the degrees of freedom of a

smoother is defined as the trace of the smoother matrix, i.e.

e.d.f = tr(Sη), (3.17)

where Sη = (In − ηRRRQ)−1 for our BSSD model. Different from the discussion in

White 2006 and Yue, Speckman, and Sun 2012, there is another unknown parameter

ρ existing in the smoother matrix. We find that the choice of c and the performance

of prior (3.16) are not very sensitive to different values of ρ. We select the value c

that sets trace tr(Sc) equal to a desired prior degrees of freedom and correlation ρ.

3.2.2 Posterior

For the nonparametric model (3.4) with prior densities (3.12), (3.13), (3.14) and

(3.16), we have the joint posterior density of (z, δ0, ρ, η)

[z, δ0, ρ, η|y] ∝ [y|z, δ0, η][z|δ0, η][η][δ0][ρ]

∝ [ρ]
η

n−2
2

δn0 |RRR|
1
2

c

(c+ η)2
exp
{
− 1

2δ0
(z − µz)′(RRR−1 + ηQ)(z − µz)

}
exp
{
− 1

2δ0
[y′RRR−1y − µ′z(RRR−1 + ηQ)µz]

}
, (3.18)

where µz = (RRR−1 + ηQ)−1RRR−1y, given in (3.11).

Theorem 1. Suppose the length of data n > T , where integer T is the period. Con-

sider the nonparametric model (3.4) with prior distribution [z, δ0|η] given by (3.12),

(3.13). Assume the correlation matrix RRR is positive definite(p.d.). Then we have the

following results:
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(a) The joint posterior (z, δ0, ρ, η|y) is proportion to

[z, δ0, ρ, η|y] ∝ [ρ][η]
η

n
2
−1

δn0 |RRR|
1
2

exp
{
− 1

2δ0
(z − µz)′(RRR−1 + ηQ)(z − µz)

}
exp
{
− 1

2δ0

[
ηy′Q(RRR−1 + ηQ)−1RRR−1y

]}
, (3.19)

where µz = (RRR−1 + ηQ)−1RRR−1y, given in (3.11).

(b) The conditional posterior of (z|δ0, ρ, η;y) is

(z|δ0, ρ, η;y) ∼ Nn

(
µz, δ0(RRR−1 + ηQ)−1

)
. (3.20)

(c) The conditional posterior of (δ0|ρ, η;y) is

(δ0|ρ, η;y) ∼ IG
(n

2
− 1,

η

2
y′Q(RRR−1 + ηQ)−1RRR−1y

)
. (3.21)

(d) The joint posterior p(ρ, η|y) is proportional to

[ρ, η|y] ∝ [ρ][η] |In + ηRRRQ|−
1
2 [y′Q(RRR−1 + ηQ)−1RRR−1y]1−

n
2 . (3.22)

(e) The marginal likelihood of (ρ, η)

L(ρ, η) =

∫
[y|z, δ0, ρ][z, δ0|η]dzdδ0

∝ |In + ηRRRQ|−
1
2 [y′Q(RRR−1 + ηQ)−1RRR−1y]1−

n
2 . (3.23)

is upper-bounded, i.e. there exists some constant C < +∞ such that L(ρ, η) ≤

C. The joint posterior is proper, given proper priors [ρ] and [η].
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Proof of Theorem 1. From (3.18), the joint posterior density of (z, δ0, ρ, η|y) is

[z, δ0, ρ, η|y] ∝ [ρ][η]
η

n
2
−1

δn0 |RRR|
1
2

exp
{
− 1

2δ0
(z − µz)′(RRR−1 + ηQ)(z − µz)

}
exp
{
− 1

2δ0

[
ηy′Q(In + ηRRRQ)−1y

]}
,

where µz = (RRR−1 + ηQ)−1RRR−1y, which gives (3.19).

From (3.19), the conditional posterior of (z|δ0, ρ, η;y) is

[z|δ0, ρ, η;y] ∝ exp{− 1

2δ0
[(z − µz)′(RRR−1 + ηQ)(z − µz)]}, (3.24)

which proves part (b).

We integral (3.19) over z, and obtain

[δ0, ρ, η|y] ∝ [ρ][η]
η

n
2
−1

δ
n
2
0 |RRR|

1
2

∣∣RRR−1 + ηQ
∣∣ 12 exp

{
− 1

2δ0

[
ηy′Q(RRR−1 + ηQ)−1RRR−1y

]}

∝ η
n
2
−1 [RRR] [η]

|In + ηRRRQ|
1
2

δ
−n

2
0 exp

{
− 1

δ0

[η
2
y′Q(RRR−1 + ηQ)−1RRR−1y

]}
, (3.25)

which gives the conditional distribution of (δ0|y, ρ, η),

[δ0|ρ, η;y] ∝ δ
−n

2
0 exp

{
− 1

δ0

[η
2
y′Q(RRR−1 + ηQ)−1RRR−1y

]}
, (3.26)

which implies part (c).

We integral (3.25) over δ0, and obtain (3.22) as follows

[ρ, η|y] ∝ [ρ][η] |In + ηRRRQ|−
1
2 [y′Q(RRR−1 + ηQ)−1RRR−1y]1−

n
2 .

The likelihood of (ρ, η) as L(ρ, η) =
∫

[y|z, δ0, ρ][z, δ0|η]dzdδ0 is proportional to (3.23)
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as

L(ρ, η) ∝ |In + ηRRRQ|−
1
2 [y′Q(RRR−1 + ηQ)−1RRR−1y]1−

n
2 .

As the precision matrix Q in prior (3.12) has the rank n − 2. There exists an

orthogonal matrix Γ such that Q = ΓΛΓ′ , Λ = Diag(0, 0, λ3, . . . , λn), 0 < λ3 ≤

· · · ≤ λn are the non-zero eigenvalues of Q. Λ and Γ are known given data.

Given RRR is p.d. and symmetric. There exists an orthogonal matrix P such that

RRR = PDP ′, D = Diag(d1, . . . , dn), 0 < d1 ≤ · · · ≤ dn are the eigenvalues of RRR. Let

P = (p1, . . . ,pn), RRRpi = dipi. The pi, i = 1, . . . , n does not depend on parameter ρ.

(see Appendix: 3.10)

Let Λ+ = diag(λ3, . . . , λn), Λ∗ = diag(I2,Λ+). Then Λ−1∗ = diag(I2,Λ
−1
+ ),

ΛΛ−1∗ = diag(02, In−2), and

Q(RRR−1 + ηQ)−1RRR−1 = ΓΛΓ′(In + ηRRRΓΛΓ′)−1ΓΓ′

= ΓΛ(In + ηΓ′RRRΓΛ)−1Γ′

= ΓΛΛ−1∗ Λ∗(In + ηΓ′PDP ′ΓΛ)−1Γ′

= Γ

02 0

0 In−2


Λ−1∗ + ηΓ′PDP ′Γ

02 0

0 In−2



−1

Γ′. (3.27)

Let

Γ′PDP ′Γ =

 B2×2 E2×(n−2)

E′(n−2)×2 H(n−2)×(n−2)

 > 0, (3.28)

then H > 0 by Lemma 3.10.5. Then there exists orthogonal matrix U(n−2)×(n−2),

D∗ = diag(d∗3, . . . , d
∗
n), such that H = UD∗U

′.
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By Lemma 3.10.10,

di−2 ≤ d∗i ≤ di. (3.29)

The (3.27) can be written as

Q(RRR−1 + ηQ)−1RRR−1 = Γ

02 0

0 In−2



I2 0

0 Λ−1+

+ η

0 F

0 H



−1

Γ′

= Γ


02 0

0 In−2


I2 ηF

0 Λ−1+ + ηH


−1Γ′

= Γ


02 0

0 In−2


I2 −ηF (Λ−1+ + ηH)−1

0 (Λ−1+ + ηH)−1


Γ′

= Γ

0 0

0 (Λ−1+ + ηH)−1

Γ′

= Γ

02×(n−2)

In−2

 (Λ−1+ + ηH)−1
(

0(n−2)×2 In−2

)
Γ′. (3.30)

As Λ−1+ = diag(λ−13 , . . . , λ−1n ) and H are symmetric and positive definite, Λ−1+ + ηH

is also symmetric and positive definite.

λ−1n I + ηH ≤ Λ−1+ + ηH ≤ λ−13 I + ηH . (3.31)

By Lemma 3.10.7,

(λ−13 I + ηH)−1 ≤ (Λ−1+ + ηH)−1 ≤ (λ−1n I + ηH)−1. (3.32)
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Let v =
(
0(n−2)×2 In−2

)
Γ′y, which is known given data,

y′Q(RRR−1 + ηQ)−1RRR−1y = v′(Λ−1+ + ηH)−1v

≥ v′(λ−13 I + ηH)−1v

= λ3(U
′v)′(I + ηλ3D∗)

−1(U ′v), (3.33)

and

y′Q(RRR−1 + ηQ)−1RRR−1y ≤ λn(U ′v)′(I + ηλnD∗)
−1(U ′v). (3.34)

Let v∗ = U ′v = (v∗3, . . . , v∗n), then v′∗v∗ = v′v,

y′Q(RRR−1 + ηQ)−1RRR−1y ≥ λ3v
′
∗(I + ηλ3D∗)

−1v∗

= λ3

n∑
i=3

v2∗i
1 + ηλ3d∗i

≥ λ3

n∑
i=3

v2∗i
1 + ηλ3di

, (3.35)

y′Q(RRR−1 + ηQ)−1RRR−1y ≤ λn

n∑
i=3

v2∗i
1 + ηλnd∗i

≤ λn

n∑
i=3

v2∗i
1 + ηλndi−2

. (3.36)

By Lemma 3.10.4,

d−11 d−12

n∏
j=3

(d−1j + ηλj) ≤ |RRR−1 + ηQ| ≤
[n−2∏
j=1

(d−1j + ηλn−j+1)
]
d−1n−1d

−1
n . (3.37)

Since |RRR| =
∏n

j=1 dj,

n∏
j=3

(1 + ηdjλj) ≤ |RRR||RRR−1 + ηQ| ≤
n−2∏
j=1

(1 + ηdjλn−j+1). (3.38)
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Therefore

|In + ηRRRQ|−
1
2 ≤

[ n∏
j=3

(1 + ηλjdj)
]− 1

2 ≤
[ n∏
j=3

(1 + ηλ3dj)
]− 1

2 , (3.39)

and

|In + ηRRRQ|−
1
2 ≥

[n−2∏
j=1

(1 + ηdjλn−j+1)
]− 1

2 . (3.40)

We now prove that the likelihood of (η, ρ) is upper-bounded in two separated cases.

Case 1. First we consider the simple case that n = mT , where integer m ≥ 2

and T is the period. The eigenvalues of RRR defined in (3.5) have the close form as (see

Appendix 3.10)

di =


1− ρ, i = 1, . . . , (m− 1)T,

1− ρ+mρ, i = (m− 1)T + 1, . . . , n.

(3.41)

For eigenvalues of H , the n− 2 order principal submatrix of RRR, by (3.29)

d∗3 = · · · = d∗(m−1)T = 1− ρ = d3 = · · · = d(m−1)T . (3.42)

By Lemma 3.10.11, the corresponding eigenvectors ξi, i = 3, . . . , (m−1)T only depend

on the first (m − 1)T − 2 = n − T − 2 columns Γ′P . P does not depend on ρ.(see

Appendix 3.10) Then the first n−T−2 columns ofU also do not depend on parameter

ρ. For v∗ = U ′[0(n−2)×2 In−2]Γ
′y = (v∗3, . . . , v∗n), the (v∗3, . . . , v∗(m−1)T ) is known

given data.
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Let C1 =
∑(m−1)T

i=3 v2∗i > 0, and C2 = v′v =
∑mT

i=3 v
2
∗i > 0. The upper bound is

∣∣∣∣In + ηRRRQ

∣∣∣∣− 1
2

[y′Q(RRR−1 + ηQ)−1RRR−1y]1−
n
2

≤
[ n∏
j=3

(1 + ηλ3dj)

]− 1
2
[
λ3

n∑
i=3

v2∗i
1 + ηλ3di

]1−n
2

= (λ3)
−n−2

2

{
[1 + ηλ3(1− ρ)]n−T−2[1 + ηλ3(1− ρ+mρ)]T

}− 1
2

{[ (m−1)T∑
i=3

v2∗i
1 + ηλ3(1− ρ)

+
mT∑

i=(m−1)T+1

v2∗i
1 + ηλ3(1− ρ+mρ)

](n−T−2)+T}− 1
2

= (λ3)
−n−2

2

{[ (m−1)T∑
i=3

v2∗i +
mT∑

i=(m−1)T+1

v2∗i
1 + ηλ3(1− ρ)

1 + ηλ3(1− ρ+mρ)

]n−T−2}− 1
2

{[ (m−1)T∑
i=3

v2∗i
1 + ηλ3(1− ρ+mρ)

1 + ηλ3(1− ρ)
+

mT∑
i=(m−1)T+1

v2∗i

]T}− 1
2

. (3.43)

Furthermore, the upper bound is less than

(3.43) ≤ (λ3)
−n−2

2

{[ (m−1)T∑
i=3

v2∗i

]n−T−2}− 1
2
{[ (m−1)T∑

i=3

v2∗i +
mT∑

i=(m−1)T+1

v2∗i

]T}− 1
2

= (λ3)
−n−2

2

(
Cn−T−2

1 CT
2

)− 1
2

, (3.44)

which is a constant given data y.

Note that by (3.43),

|In + ηRRRQ|−
1
2 [y′Q(RRR−1 + ηQ)−1RRR−1y]1−

n
2

≤ (λ3)
−n−2

2

{[ (m−1)T∑
i=3

v2∗i

]n−T−2}− 1
2
{[ (m−1)T∑

i=3

v2∗i
κ2
κ1

+
mT∑

i=(m−1)T+1

v2∗i

]T}− 1
2

= (λ3)
−n−2

2 C
−n−T−2

2
1

[
C1
κ2
κ1

+ (C2 − C1)

]−T
2

, (3.45)

39



where κ1 = 1 + ηλ3(1− ρ), κ2 = 1 + ηλ3(1− ρ+mρ).

Let

g(η, ρ) =
1 + ηλ3(1− ρ+mρ)

1 + ηλ3(1− ρ)
, (3.46)

h(η, ρ) = (λ3)
−n−2

2 C
−n−T−2

2
1 [C1g(η, ρ) + (C2 − C1)]

−T
2 . (3.47)

Then

∂g

∂ρ
=

ηλ3(m− 1)[1 + ηλ3(1− ρ)] + ηλ3
[1 + ηλ3(1− ρ)]2

> 0, (3.48)

∂g

∂η
=

λ3mρ

[1 + ηλ3(1− ρ)]2
> 0. (3.49)

When η → +∞, ρ→ 1, we have g(η, ρ)→ +∞ and h(η, ρ)→ 0.

Thus, the likelihood of (η, ρ) is upper-bounded as in (3.44), but does not have

positive lower bound.

Case 2. We consider the case that n 6= mT . There exists an integer m ≥ 2,

1 ≤ l ≤ T − 1 such that n = mT − l. The eigenvalues of RRR defined in (3.5) have the

close form as (see Appendix 3.10)

di =


1− ρ, i = 1, . . . , (m− 1)T − l,

1− ρ+ (m− 1)ρ, i = (m− 1)T − l + 1, . . . , (m− 1)T,

1− ρ+mρ, i = (m− 1)T + 1, . . . , n.

(3.50)

For eigenvalues of H , the n− 2 order principal submatrix of RRR, by (3.29)

d∗3 = · · · = d∗(m−1)T−l = 1− ρ = d3 = · · · = d(m−1)T−l. (3.51)
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By Lemma 3.10.11, the corresponding eigenvectors ξi, i = 3, . . . , (m − 1)T − l only

depend on the first (m−1)T−l−2 = n−T−2 columns of Γ′P . P does not depend on

ρ. (See Appendix 3.10.) Then the first n−T −2 columns of U also do not depend on

parameter ρ. For v∗ = U ′[0(n−2)×2 In−2]Γ
′y = (v∗3, . . . , v∗n), the (v∗3, . . . , v∗(m−1)T−l)

is known given data.

Thus the upper bound is

|In + ηRRRQ|−
1
2 [y′Q(RRR−1 + ηQ)−1RRR−1y]1−

n
2 ≤

[ n∏
j=3

(1 + ηλ3dj)
]− 1

2
[
λ3

n∑
i=3

v2∗i
1 + ηλ3di

]1−n
2

= (λ3)
−n−2

2

{
[κ1]

n−T−2[κ3]
l[κ2]

T−l}− 1
2

[n−T∑
i=3

v2∗i
κ1

+

(m−1)T∑
i=n−T+1

v2∗i
κ3

+
n∑

i=(m−1)T+1

v2∗i
κ2

]−n−2
2

= (λ3)
−n−2

2

[n−T∑
i=3

v2∗i +

(m−1)T∑
i=n−T+1

v2∗i
κ1
κ3

+
n∑

i=(m−1)T+1

v2∗i
κ1
κ2

]−n−T−2
2

[n−T∑
i=3

v2∗i
κ3
κ1

+

(m−1)T∑
i=n−T+1

v2∗i +
n∑

i=(m−1)T+1

v2∗i
κ3
κ2

]− l
2

[n−T∑
i=3

v2∗i
κ2
κ1

+

(m−1)T∑
i=n−T+1

v2∗i
κ2
κ3

+
n∑

i=(m−1)T+1

v2∗i
]−T−l

2 , (3.52)

where κ1 = 1 + ηλ3(1− ρ), κ2 = 1 + ηλ3(1− ρ+mρ), κ3 = 1 + ηλ3(1− ρ+ (m− 1)ρ).

Furthermore, the upper bound is less than

(3.52) ≤ (λ3)
−n−2

2

[ n−T∑
i=3

v2∗i

]−n−T−2
2
[
m− 1

m

n∑
i=3

v2∗i

]− l
2
[ n∑
i=3

v2∗i

]−T−l
2

= (λ3)
−n−2

2

(m− 1

m

)− l
2
(
Cn−T−2

1 CT
2

)− 1
2 , (3.53)

which is a constant given data y, where C1 =
∑(m−1)T−l

i=3 v2∗i =
∑n−T

i=3 v2∗i > 0, and

C2 = v′v =
∑n

i=3 v
2
∗i > 0. The inequality in (3.53) is given by 1+ηλ3(1−ρ+(m−1)ρ)

1+ηλ3(1−ρ+mρ) ≥
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m−1
m

as follows. Let

g∗(η, ρ) =
1 + ηλ3(1− ρ+ (m− 1)ρ)

1 + ηλ3(1− ρ+mρ)
. (3.54)

Then

∂h

∂ρ
=

−ηλ3 − η2λ23
[1 + ηλ3(1− ρ+mρ)]2

< 0, (3.55)

∂h

∂η
=

−λ3ρ
[1 + ηλ3(1− ρ+mρ)]2

< 0. (3.56)

Thus g∗(η, ρ) ≥ lim
η→+∞,ρ→1

g∗(η, ρ) = m−1
m

.

Similar to Case 1, the upper bound (3.52) goes to 0 as (η, ρ) approaches (+∞, 1).

Thus the likelihood of (η, ρ) is upper-bounded as in (3.53), but does not have positive

lower bound.

Therefore for both cases, the likelihood of (ρ, η) is upper-bounded by some con-

stant. If the priors for ρ, η are proper, then the joint posterior will be proper as

well.

3.3 Calculation and Sampling method

Based on the posterior distributions derived in the previous section, we draw posterior

samples and obtain the trend estimates z with Algorithm 2 as follows.

3.3.1 Simplify the matrix calculation

We want to simplify the calculation because a large amount of numerical matrix

inversion is time consuming and will lower the accuracy.
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Algorithm 2 Posterior sampling of density (3.18)

1: Given data y, sample (ρ, η) from density (3.22).

2: Given (ρ, η;y), sample δ0 from distribution (3.21).

3: Given (ρ, η, δ0;y), sample z from distribution (3.20).

Note that both determinant and inverse for n dimensional matrix RRR−1 + ηQ is

needed in (3.20), (3.21), and (3.22). Given Q = F ′0F
−1
1 F0,

by the matrix determinant lemma,

∣∣RRR−1 + ηQ
∣∣ = ηn−2

|η−1F1 + F0RRRF
′
0|

|F1| |RRR|
, (3.57)

and by the Sherman–Morrison–Woodbury formula,

(RRR−1 + ηQ)−1 = RRR−RRRF ′0(η
−1F1 + F0RRRF

′
0)
−1F0RRR. (3.58)

Thus

|RRR|−
1
2

∣∣RRR−1 + ηQ
∣∣− 1

2 = η1−
n
2

[
|F1|

|η−1F1+F0RRRF ′0|

] 1
2

, (3.59)

(RRR−1 + ηQ)−1RRR−1 = In −RRRF ′0(η
−1F1 + F0RRRF

′
0)
−1F0. (3.60)

The n× n Correlation matrix RRR is defined in (3.5), and nonsingular matrices F0,F1

are defined in (2.3). By using (3.59) and (3.60), we reduce the numbers of matrix

inverse calculation and compute the inverse for a n − 2 dimensional matrix instead

of a n dimensional matrix.
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3.3.2 Sample (ρ, η)

We choose prior for ρ as

[ρ] ∝ (1− ρ)−
1
2 , (3.61)

and use the multivariate ratio-of-uniform method (Wakefield, Gelfand, and Smith

1991) to sample from the marginal joint posterior density,

[ρ, η|y] ∝ f(ρ, η) =
(1− ρ)−

1
2

|RRR|
1
2

∣∣RRR−1 + ηQ
∣∣ 12 (c+ η)2

[y′Q(RRR−1 + ηQ)−1RRR−1y]1−
n
2 . (3.62)

Based on equations (3.59) and (3.60),

logf(ρ, η) = −2log(c+ η)− 1

2
log(1− ρ) +

1

2
[log |F1| − log

∣∣η−1F1 + F0RRRF
′
0

∣∣]
+(1− n

2
)log(y′Q[In −RRRF′0(η−1F1 + F0RRRF′0)−1F0]y). (3.63)

Note that if (u,v) are uniform on

A =
{

(u,v) : v = (v1, v2) ∈ R2, 0 < u < [f(µ+ v/ur)]
1

2r+1

}
, (3.64)

for some µ = (µ1, µ2) ∈ R2, then θ = µ+ v/ur has the density p(ρ, η|y) ∝ f(ρ, η).
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We first construct the minimal bounding rectangle for uniform sampling

a+ = sup
(

[f(ρ, η)]
1

2r+1

)
, (3.65)

b+1 = sup
(

(ρ− µ1)[f(ρ, η)]
r

2r+1

)
, (3.66)

b−1 = inf
(

(ρ− µ1)[f(ρ, η)]
r

2r+1

)
= − sup

(
(µ1 − ρ)[f(ρ, η)]

r
2r+1

)
, (3.67)

b+2 = sup
(

(η − µ2)[f(ρ, η)]
r

2r+1

)
, (3.68)

b−2 = inf
(

(η − µ2)[f(ρ, η)]
r

2r+1

)
= − sup

(
(µ2 − η)[f(ρ, η)]

r
2r+1

)
. (3.69)

We take r = 1, which yields the standard ratio-of uniform method.

The sampling algorithm is as follows.

Algorithm 3 Bivariate ration-of-uniform sampling of ρ, η

1: Independently sampling u from Unif(0, a+), v1 from Unif(b−1 , b
+
1 ), v2 from

Unif(b−2 , b
+
2 ).

2: If 0 < µ1+v1/u
r < 1, µ2+v2/u

r > 0, and 0 < u < (f(µ1+v1/u
r, µ2+v2/u

r))
1

2r+1 ,
report (ρ, η) = (µ1 + v1/u

r, µ2 + v2/u
r); otherwise return to Step 1.

3.3.2.1 Computing the minimal bounding rectangle without relocation

We take (µ1, µ2) = (0, 0). As f(ρ, η) is bounded over the domain of (ρ, η), b−1 = b−2 =

0. We compute a+, b+1 , b
+
2 as follows.

(1) Calculation the mode of logf(ρ, η) as (ρ∗, η∗).

(2) a+ = [f(ρ∗, η∗)]
1

2r+1 .

(3) Numerically search b∗+1 = supρ≥ρ∗
[
logρ+ r

2r+1
logf(ρ, η)

]
from initial value (ρ∗, η∗).

(4) Numerically search b∗+2 = supη≥η∗
[
logη + r

2r+1
logf(ρ, η)

]
from initial value (ρ∗, η∗).
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(5) b+1 = exp(b∗+1 ), b+2 = exp(b∗+2 ).

We take the unemployment level data from 01/2004 to 12/2008 for example. The

acceptance rate is 4.971%, and the accepted points are plotted in Figure 3.5.

3.3.2.2 Computing the minimal bounding rectangle with relocation

We take (µ1, µ2) = (ρ∗, η∗), where (ρ∗, η∗) is the mode of f(ρ, η). We compute

a+, b+1 , b
−
1 , b

+
2 , b2 as follows.

(1) Calculation the mode of logf(ρ, η) as (ρ∗, η∗).

(2) a+ = [f(ρ∗, η∗)]
1

2r+1 .

(3) Numerically search b∗+1 = supρ>ρ∗
[
log(ρ− ρ∗) + r

2r+1
logf(ρ, η)

]
from initial

value ((ρ∗ + 1)/2, η∗).

(4) Numerically search b∗−1 = supρ<ρ∗
[
log(ρ∗ − ρ) + r

2r+1
logf(ρ, η)

]
from initial

value (ρ∗/2, η∗).

(5) Numerically search b∗+2 = supη>η∗
[
log(η − η∗) + r

2r+1
logf(ρ, η)

]
from initial

value (ρ∗, η∗ ∗ 2).

(6) Numerically search b∗−2 = supη<η∗
[
log(η∗ − η) + r

2r+1
logf(ρ, η)

]
from initial

value (ρ∗, η∗/2).

(7) b+1 = exp(b∗+1 ), b−1 = −exp(b∗−1 ), b+2 = exp(b∗+2 ), b−2 = −exp(b∗−2 ).

We take the unemployment level data from 01/2004 to 12/2008 for example, just as

in the previous section. The acceptance rate rises to 36.34%, and the accepted points

are plotted in Figure 3.6.

We have shown that the sampling with relocation is much more efficient than that

without relocation. Then we further explore the quality of the sampling.
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In Figure 3.7, we show the contour plot of the joint marginal posterior density

f(ρ, η), compared with the 2-d histogram of the posterior samples of (ρ, η) with

relocation and those without relocation. We use the same dataset as in the previous

section, the unemployment level data from 01/2004 to 12/2008. 10,000 samples are

taken for each sampling procedure.

Both sampling methods work well and match the contour plot of density. The

samples with relocation contain fewer extreme values. Considering both the perfor-

mance and efficiency, we recommend to choose the ratio-of-uniform sampling with

relocation.

3.4 Trend Estimation of Unemployment Level

We use the public data of the unadjusted unemployment level from 01/2004 to

12/2018. The length of the time series is 180 months. Following the algorithm

above, we draw 10,000 samples from the joint posterior distribution.

We show the posterior mean of z as the trend estimates with the 95% credible

intervals in Figure 3.8. Compared with the X-13 trend, our Bayesian smoothing spline

estimation throughly removes the short-term fluctuations.

3.4.1 Comparison with Basic Model

We compare the posterior coefficient of variation (CV) between the generalized Bayesian

smoothing spline model and the basic model in Figure 3.9. Note that the posterior CV

is directly related to the divergence of data y from the trend estimates z. Thus the

posterior CV are similar at the majority of knots. However, our generalized Bayesian

smoothing spline model performs much more precisely at the boundaries than the
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basic model.

3.4.2 Stability

The unemployment level and other labor force data are collected monthly by the

Census Bureau, and we may obtain new trend estimates for the previous time points

each time when new data are available. Our question is whether the current trend

estimates will coincide with the previous one.

As previously discussed, because we have to borrow information from all the series

to estimate the trend at each time point, adding new data will inevitably affect the

previous estimates. The current X-13 method also has this issue, and it is a common

practice to revise the estimates after new data are collected.

In this section, we study the stability in terms of adding new data of Bayesian

smoothing spline trend estimation, and compare it with X-13 method and the basic

model.

In Figures 3.10, 3.11 and 3.12, we denote the non-revision trend estimates as lag

0. For lag 0, we first perform analysis with 01/2004 - 12/2008 data, and record the

result for the time point of 12/2008 only. Then we perform analysis with 02/2004 -

01/2009 data, and record the result for the time point of 01/2009 only, and so on.

The 3-month revised trend is denoted as lag 3. For lag 3, we first perform analysis

with 04/2004 - 03/2009 data, and record the result for the time point of 12/2008 only.

Then we perform analysis with 05/2004 - 04/2009 data, and record the result for the

time point of 01/2009 only, and so on.

Similarly, we construct the 6-month, 12-month, 24-month and 36-month revised

trends, which are shown as lag 6, lag 12, lag 24 and lag 36 respectively.
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3.5 Alternative of matrix Q

Following Speckman and Sun (2003), another choice of matrix Q is constructed by

the approximation of the smoothing penalty term in (3.7) as below.

For cubic spline p = 2, and equal spaced knots at t = t1, t2, ..., tn, h = tk − tk−1,

f (2)(tk) ≈ h−2∇2f(tk), where

∇2f(tk) =
2∑
i=0

(−1)iC2
i f(tk−i) = zk−2 − 2zk−1 + zk

is the second order backward difference operator. Then the penalty structure is

approximately

∫
[f (2)(t)]2dt ≈

n∑
k=3

h[h−2∇2f(tk)]
2 = h−3

n∑
k=3

[∇2f(tk)]
2. (3.70)

Let zk = f(tk), (3.70) can be written as z′Qz = (F0z)′(F0z), where F0 is defined in

(3.9), and

F0z =



1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

...
...

...
... . . .

...
...

...

0 0 0 0 . . . 1 −2 1


(n−2)×n



z1

z2
...

zn


=


...

∇2zk
...


n−2

.

Thus Q = F ′0F0, which is an n× n second order operator matrix of rank n− 2.

We compare the performance of Q1 = F ′0F
−1
1 F0 and Q2 = F ′0F0.

Figures 3.13 and 3.14 compare the posterior samples of η and ρ. There is no

obvious difference for η and ρ between different choice of Q.

Figure 3.15 shows the trend estimates with different Q, and they are almost

identical. Figure 3.16 further shows the relative difference between the trend estimates
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with different Q, which is mostly under 0.2%. The relative difference is defined as

(Trend 1− Trend 2) / Trend 1.

Figure 3.17 values the uncertainty of the trend estimates with different Q. The

model with Q1 = F ′0F
−1
1 F0 performs a little more precisely in terms of posterior

coefficient of variation. Thus we prefer to use Q = F ′0F
−1
1 F0 for the approximation

of the penalty term.

3.6 Model comparison with DIC

We compare models using the deviance information criterion (DIC). Following Gel-

man et al. (2013),

DIC = −2logp(y|θ̂Bayes) + 2pDIC ,

where, with the posterior mean θ̂Bayes, the effective number of parameters pDIC is

defined as:

pDIC = 2
(
logp(y|θ̂Bayes)− Epost(logp(y|θ))

)
. (3.71)

Given the posterior samples θs, s = 1, ..., S, (3.71) is computed as:

pDIC = 2

(
logp(y|θ̂Bayes)−

1

S

S∑
s=1

(logp(y|θs))

)
. (3.72)

We use data from 01/2004 to 12/2018. From model (3.4), given the log-likelihood

logp(y|z, δ0, ρ) = −n
2
log(2π)− 1

2
log(|δ0RRR|)−

1

2
(y − z)′(δ0RRR)−1(y − z). (3.73)
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Table 3.1: DIC with different h, Q
Q = Q1 Q = Q2

h=1 2441.239 2437.465
h=1/n 2441.77 2438.826

Table 3.2: DIC with different length, Q
Length of data 36 48 60 120 180
Q = Q1 549.5731 706.8194 831.9119 1643.99 2441.77
Q = Q2 550.0193 707.0836 831.6877 1640.148 2438.826

we compute the DICnew = −668.1519. Compared with the basic model (3.3),

DICbasic = −329.2693, our generalized Bayesian Smoothing Spline model with de-

pendency is preferred.

3.7 Simulation Study

In this section, we demonstrate the accuracy and precision of our BSSD trend esti-

mation through three simulation studies and compare it with the X-13 Program.

3.7.1 Simulation 1

To generate data, we first specify a ”true” trend mt, and then apply this trend to the

basic structure model (Pfeffermann 1991),

yt = mt + st + et, et ∼ N(0, σ2
1), t = 1, . . . , n, (3.74)

where the seasonal component st follows

st = −
t−1∑

j=t−12+1

sj + εt, εt ∼ N(0, σ2
2). (3.75)
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We use two trends with different shapes. For each trend, 1000 series are generated.

After we obtain the estimates of trend m̂t at knot t for every series, we evaluate the

precision by calculating the mean squared deviation (MSD) for each model M as,

MSEM
t =

1

1000

1000∑
iter=1

(m̂M
t −mt)

2. (3.76)

Trend 1. The true trend is set as:

mt = 9000exp

{
−(t− 20)2

2× 102

}
+ 6000. (3.77)

We take t = 1, ..., 60, σ2
1 = 4096, σ2

2 = 40000, and we generate a monthly series

of 5 years through (3.77),(3.74),(3.75). We denote the time as 01/2020,...,12/2024.

Note that the time label will not affect our Bayesian smoothing spline model, but it

is required by the X-13 program. The X-13 trends are obtained by the R Package

Seasonalview (Sax 2017). For our BSSD method, the prior (3.14) for ρ is used, and

we select the hyper-parameter for the prior of η as c = 50.

In Figure 3.18, we show the simulated data, the true trend, and our Bayesian

smoothing spline trend estimate, compared with the X-13 trend estimate for one of the

series. To see the overall performance over 1000 simulations, we first show the relative

bias in Figure 3.19. At each knot, the relative bias is defined as 1
1000

∑1000
i=1

Ei−T
T

. We

also compare the relative standard deviation of the trend estimates between the two

methods in Figure 3.20. The variation of our BSSD method is uniformly smaller than

that of X-13.

We further show the relative root mean squared deviation of the trend estimates

between the two method in Figure 3.21. Compared with the X-13 method, our BSSD

is much more accurate at the boundaries. Also at the majority knots, our generalized
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Bayesian smoothing spline with dependency model uniformly outperforms the X-13

method.

3.7.2 Simulation 2

In this section, we use trigonometric functions to construct seasonal patterns, instead

of (3.75).

st =
K∑
k=1

Aksin(2π
k

T
t− µk), µk

iid∼ unif(0, 2π). (3.78)

Given the period T = 12, in order to create a harmonic series, we take K = T/2 = 6.

The amplitudes are selected as A1 = 1000, Ak ∼ N(0, ( k
K
A1)

2), k = 2, . . . , K. The

data are still generated from the additive model (3.74) for 1000 times. For each time,

the µk and Ak are randomly selected, and we take t = 1, ..., 60, σ2
1 = 10000 to simulate

a series of length 60.

Trend 2. The true trend is set as,

mt = 5000sin(
π

60
t) + 10000. (3.79)

Figure 3.22 shows one simulated series with the true trend and trend estimates. Note

that for different series, the simulated seasonal pattern will be different.

After we obtain the trend estimates for 1000 simulated series. We compare the

relative bias of the average of 1000 trend estimates from the true trend for the two

methods: BSSD and X-13. Generally our model outperforms the X-13 method.

We also compare the relative standard deviation of the trend estimates between

two methods in Figure 3.24. The variation of our BSSD method is uniformly smaller

than that of X-13.
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In Figure 3.26, we compare the relative root mean squared deviation of the trend

estimates between two methods. Note that the majority of the RMSD comes from

the variation. Our BSSD model outperforms X-13 uniformly.

3.7.3 Simulation 3

In this section, we use trigonometric functions to construct seasonal patterns,

st =
K∑
k=1

Aksin(2π
k

T
t− µk). (3.80)

Given the period T = 12, in order to create a harmonic series, we take K = T/2 = 6.

The amplitudes are selected as Ak ∼ N(0, 160000), k = 1, . . . , K. The phase shift in

each function is selected as µk
iid∼ unif(0, 2π), k = 1, . . . , K.

After the seasonal pattern st been chosen, we generate data of length 60 from the

additive model

yt = mt + st + et, (3.81)

mt = 5000sin(
π

60
t) + 10000. (3.82)

for 500 times, where et ∼ N(0, 40000).

Figure 3.25 shows the seasonal pattern, one simulated series with the true trend

and trend estimates. Note that the true trend and seasonal pattern remain the same

in all 500 simulation series.

After we obtain the trend estimates for 500 simulated series, we compare the

relative bias of the average of 500 trend estimates from the true trend for the two

methods: BSSD and X-13. Generally our model outperforms the X-13 method.

We also compare the relative standard deviation of the trend estimates between
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the two methods in Figure 3.28. The variation of our BSSD method is uniformly

smaller than that of X-13.

In Figure 3.29, we compare the relative root mean squared deviation of the trend

estimates between two methods. Note that the majority of the RMSD comes from

the variation. and our BSSD model outperforms X-13 uniformly.

Sometimes, we are interested in obtaining the one number summary to quantify

and compare the performance of the BSSD and X-13 method. One way is to use the

Frechet distance, which calculates the farthest that the curves separate. However, in

the simulation studies, even though we observe that the trend estimates at the two

end points have large uncertainty, there is no guarantee and it is obviously not the

case that the largest bias occurs at the same single point for 1000 times. Thus we

obtain the maximum deviation of the average bias or, to remove the effect of scale,

use the maximum deviation of the average relative bias (MDRB). For the Simulation

3, the MDRB for the BSSD trend is 0.00315, whereas the MDRB for the X-13 trend

is as large as 0.01497, almost three times greater than the deviation of the BSSD

method. Another way is to compute the sum of squares of the relative bias (SSRB)

for all knots. The SSRB for the BSSD trend is 2.57 × 10−5, whereas the SSRB for

the X-13 trend is as large as 1.49× 10−3, 58 times greater than the deviation of the

BSSD method.

3.8 Comments

In this chapter, we generalize the Bayesian smoothing spline model with dependence

structure. The correlation matrix as the dependence structure, which is specially

designed for the seasonal variation, is easily interpreted and computationally efficient.

This generalization significantly improves the boundary performance and elevates the
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overall accuracy and precision by borrowing information from different cycles.

We develop an efficient MC sampling for the posterior distribution. The bivariate

ratio-of-uniform method with relocation is preferred, with the sampling performance

compared in Figure 3.5 and 3.6. The MC sampling method we propose can be natu-

rally programed by parallel computing. In each step of the Algorithm 2, the param-

eters can be sampled simultaneously. It saves tremendous time of computation to

process long series. Besides efficiency, the MC method draws samples from the exact

posterior distribution, and avoids the convergence issue in MCMC sampling.

We conduct simulation studies with different types of trends and seasonal variation

components, and our Bayesian smoothing spline with dependency model outperforms

the X-13 method in terms of both accuracy and precision.
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3.9 Figures

Figure 3.1: Relative residuals from 01/2004 to 12/2018

Figure 3.2: Residuals by month
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Figure 3.3: The Contour Plot of Effective Degrees of Freedom

Figure 3.4: The Histogram of Posterior Samples of η
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Figure 3.5: Scatter plot of (v1, v2), (u, v1) and (u, v2) without relocation

Figure 3.6: Scatter plot of (v1, v2), (u, v1) and (u, v2) with relocation

Figure 3.7: Contour plot of posterior density f(ρ, η), 2-d histograms of the posterior
samples of (ρ, η) with and without relocation
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Figure 3.8: Bayesian Smoothing Spline Trend with 95% credible interval Compared
with X-13 Trend

Figure 3.9: Posterior Coefficient of Variation of Trend Estimate
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Figure 3.10: Comparison of Revised Trend Estimates of Bayesian Smoothing Spline
with Dependency

Figure 3.11: Comparison of Revised Trend Estimates of Basic Bayesian Smoothing
Spline
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Figure 3.12: Comparison of Revised X-13 Trend Estimates

Figure 3.13: Histogram of posterior samples η with different Q
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Figure 3.14: Histogram of posterior samples ρ with different Q

Figure 3.15: Comparison of Trend Estimates with different Q
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Figure 3.16: Relative Difference between the Trend Estimates with different Q

Figure 3.17: Comparison of posterior coefficient of variation with different Q
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Figure 3.18: One Series of Simulated Data with Trend Estimates Compared with
True Trend

Figure 3.19: Comparison of the Relative Bias of the Trend Estimates
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Figure 3.20: Comparison of the Relative Standard Deviation of the Trend Estimates

Figure 3.21: Comparison of the Relative RMSD of the Trend Estimates
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Figure 3.22: One Series of Simulated Data with Trend Estimates Compared with
True Trend

Figure 3.23: Comparison of the Relative Bias of the Trend Estimates
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Figure 3.24: Comparison of the Relative Standard Deviation of the Trend Estimates

Figure 3.25: One Series of Simulated Data with Trend Estimates Compared with
True Trend
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Figure 3.26: Comparison of the Relative RMSD of the Trend Estimates

Figure 3.27: Comparison of the Relative Bias of the Trend Estimates
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Figure 3.28: Comparison of the Relative Standard Deviation of the Trend Estimates

Figure 3.29: Comparison of the Relative RMSD of the Trend Estimates
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3.10 Appendix

3.A Lemmas

To begin with, we introduce the following Lemmas.

Lemma 3.10.1 (Corollary 18.1.2 (Harville 2008)). For any n×m matrix A and any

m× n matrix B, |In +AB| = |Im +BA|.

Lemma 3.10.2 (Theorem 18.1.6 (Harville 2008)). For any n×n symmetric positive

definite matrix A and any n×n symmetric nonnegative definite matrix B, |A+B| ≥

|A|.

Lemma 3.10.3 (Theorem 1.7 (Schott 1996)). Suppose Am×m and Bn×n are non-

singular matrices. For any matrices Cm×n and Dn×m, if A+CBD is nonsingular,

then (A+CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1.

Lemma 3.10.4 (Marshall, Olkin, and Arnold (2011)). Assume that two n× n sym-

metric matrices S1 and S2 are both non-negative definite. Let λ1(Si) ≤ λ2(Si) ≤

· · · ≤ λn(Si) be the eigenvalues of Si for i = 1, 2. Then

n∏
j=1

[λj(S1) + λj(S2)] ≤ |S1 + S2| ≤
n∏
j=1

[λj(S1) + λn−j+1(S2)] .

Lemma 3.10.5 (Theorem 9.1.6 (Albert 1972)). Let A be symmetric and the partition

A =

A11 A12

A21 A22

 .

Then A > 0 if and only if (1) A22 > 0, and (2) A11 > A12A
−1
22A21.
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Lemma 3.10.6 (Theorem A.9 (Schur complement) (De Klerk 2002)). Let the parti-

tion

M =

A B

B′ C

 .

If A is positive definite and C is symmetric, then the following are equivalent.

(1) M is positive (semi)definite,

(2) C −B′A−1B is positive (semi)definite.

If C is positive definite and A is symmetric, then the following are equivalent.

(1) M is positive (semi)definite,

(2) A−B′C−1B is positive (semi)definite.

Lemma 3.10.7. Let An×n,Bn×n be positive definite and symmetric. If A ≤ B, then

A−1 ≥ B−1.

Proof. Let the partition

M =

B I

I ′ A−1

 .

As B −A ≥ 0 and A > 0, by Lemma 3.10.6, M ≥ 0. Also A−1 > 0, and by Lemma

3.10.6, A−1 −B−1 ≥ 0

Lemma 3.10.8 (Theorem 21.11.1 (Harville 2008)). Let λ represent an eigenvalue of

matrix Am×m with the corresponding eigenvector x. Let τ represent an eigenvalue

of matrix Bp×p with the corresponding eigenvector y. Then λτ is an eigenvalue of

A⊗B with the corresponding eigenvector x⊗ y.
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Lemma 3.10.9 (Corollary 21.11.5 (Harville 2008)). Suppose that Am×m has m (not

necessarily distinct) eigenvalues, say d1, . . . , dm, and Bp×p has p (not necessarily dis-

tinct) eigenvalues, say f1, . . . , fp. Then A ⊗ B has mp (not necessarily distinct)

eigenvalues: difj (i = 1, . . . ,m; j = 1, . . . , p).

Lemma 3.10.10 (Eigenvalue Interlacing Theorem, See Hwang (2004), and Theorem

4.3.28 (Horn and Johnson 2012)). Suppose An×n is Hermitian. Let Bm×m, m < n,

be a principal submatrix of A. Suppose A has eigenvalues λ1 ≤ · · · ≤ λn and B has

eigenvalues β1 ≤ · · · ≤ βm. Then

λk ≤ βk ≤ λk+n−m, k = 1, . . . ,m. (3.83)

WOLG, let A be partitioned as

A =

 Bm×m Cm×(n−m)

C∗(n−m)×m D(n−m)×(n−m)

 .

In (3.83), the equality in the lower bound for some i if and only if there is a nonzero

vector ξ such that Bξ = βiξ and C∗ξ = 0; equality in the upper bound occurs for some

i if and only if there is a nonzero vector ξ such that Bξ = βi+n−mξ and C∗ξ = 0.

If i ∈ {1, . . . ,m}, 1 ≤ r ≤ i, and

λi−r+1 = · · · = λi = βi, (3.84)

then βi−r+1 = · · · = βi and there are orthonormal vectors ξ1, . . . , ξr such that Bξj =

βiξj and C∗ξj = 0 for each j = 1, . . . , r.
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If i ∈ {1, . . . ,m}, 1 ≤ r ≤ m− i+ 1, and

βi = λi+n−m = · · · = λi+n−m+r−1, (3.85)

then βi = · · · = βi+n−m+r−1 and there are orthonormal vectors ξ1, . . . , ξr such that

Bξj = βiξj and C∗ξj = 0 for each j = 1, . . . , r.

Lemma 3.10.11. Let An×n be Hermitian, partitioned as

A =

 Bm×m Cm×(n−m)

C∗(n−m)×m D(n−m)×(n−m)

 .

Suppose A has eigenvalues λ1 ≤ · · · ≤ λn, and B has eigenvalues β1 ≤ · · · ≤ βm.

If for some K ∈ {1, . . . ,m}, {i1, . . . , iK} ⊆ {1, . . . , n}, {j1, . . . , jK} ⊆ {1, . . . ,m},

and

λi1 = · · · = λiK = βj1 = · · · = βjK . (3.86)

Then there exist corresponding orthogonal eigenvectors xi1 , . . . ,xiK of B of A,

and corresponding orthogonal eigenvectors ξj1 , . . . , ξjK of B, satisfying that

xik =

ξjk
0

 k = 1, . . . , K. (3.87)

Proof. By Lemma 3.10.10, there are orthonormal vectors ξj1 , . . . , ξjK such thatBξjk =

βξjk andC∗ξjk = 0 for each k = 1, . . . , K, and β = βj1 = · · · = βjK = λi1 = · · · = λiK .
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ThenB C

C∗ D


ξjk

0

 =

Bξjk
C∗ξjk

 =

βξjk
0

 = β

ξjk
0

 k = 1, . . . , K (3.88)

Thus the eigenvector xik of A corresponding to λik and the eigenvector ξjk of B

corresponding to βjk satisfy that:

xik =

ξjk
0

 , k = 1, . . . , K.

3.B Correlation Matrix

We introduce an efficient way to generate the correlation matrix RRR defined in (3.5),

and compute the eigenvalues of RRR.

Case 1. n = mT

We first consider the case that the length of series n = mT , where T is the period,

and the integer m > 1.

We define T × T identity matrix IT , and m×m matrix Am as

Am = (1− ρ)Im + ρ1′m1m =



1 ρ . . . ρ

ρ 1
. . .

...

...
. . . ρ

ρ . . . ρ 1


,
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where 1′m = (1, . . . , 1)′ is a vector of length m. Then the correlation matrix RRR is

RRR = Am ⊗ IT =



IT ρIT . . . ρIT

ρIT IT
. . .

...

...
. . . ρIT

ρIT . . . ρIT IT


. (3.89)

The eigenvalues of Am can be obtained by

|λI −Am| = (λ− 1 + ρ)m−1(λ− 1 + ρ−mρ) = 0. (3.90)

λi(Am) =


1− ρ, i = 1, . . . ,m− 1,

1− ρ+mρ, i = m.

(3.91)

The corresponding eigenvectors vi are:

v1 = (1,−1, 0, . . . , 0)′,

v2 = (1, 1,−2, 0, . . . , 0)′,

v3 = (1, 1, 1,−3, 0, . . . , 0)′,

. . .

vm−1 = (1, 1, . . . , 1,−(m− 1))′,

vm = (1, 1, . . . , 1)′.

76



i.e.

vi =


(1′i,−i, 0, . . . , 0)′, i = 1, . . . ,m− 1,

1m, i = m.

(3.92)

Note that all vi’s are orthogonal with each other and linear independent. Also, the

vi’s do not depend on the parameter ρ.

Let Pm = ( v1|v1| , . . . ,
vm
|vm|), and Dm = diag(λ1(Am), . . . , λm(Am)). Pm is an or-

thogonal matrix and Am is diagonalized as Am = PmDmP
′
m.

Then, by Lemma 3.10.9, Suppose RRR = Am ⊗ IT has eigenvalues d1 ≤ · · · ≤ dmT ,

di =


1− ρ, i = 1, . . . , (m− 1)T,

1− ρ+mρ, i = (m− 1)T + 1, . . . ,mT.

(3.93)

Let D = diag(d1, . . . , dmT ), and P = Pm ⊗ IT . By Lemma 3.10.8, the spectrum

decomposition of RRR is RRR = PDP ′, where the orthogonal matrix P does not depend

on parameter ρ.

Case 2. n 6= mT

We consider the case that n 6= mT . There exist integers m > 1 and 1 ≤ l ≤ T −1,

such that n = mT − l. We first construct the mT × mT correlation matrix RRR0 =

Am ⊗ IT . Then RRR is the leading principal submatrix of order n of RRR0. Suppose RRR0

has eigenvalues r01 ≤ · · · ≤ r0mT and RRR has eigenvalues d1 ≤ · · · ≤ dn. Then

r0i =


1− ρ, i = 1, . . . , (m− 1)T,

1− ρ+mρ, i = (m− 1)T + 1, . . . ,mT.

(3.94)
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By Lemma 3.10.10,

r0k ≤ dk ≤ r0k+l, k = 1, . . . , n. (3.95)

Meanwhile, if we construct a (m − 1)T × (m − 1)T correlation matrix RRR1 =

Am−1 ⊗ IT . Then RRR1 is the leading principal submatrix of RRR, by removing the last

T − l rows and columns. Suppose RRR1 has eigenvalues r11 ≤ · · · ≤ r1(m−1)T . Then

r1i =


1− ρ, i = 1, . . . , (m− 2)T, if m ≥ 3,

1− ρ+ (m− 1)ρ, i = (m− 2)T + 1, . . . , (m− 1)T.

(3.96)

By Lemma 3.10.10,

dk ≤ r1k ≤ dk+T−l, k = 1, . . . , (m− 1)T. (3.97)

Therefore, by (3.94), (3.95), (3.96), (3.97), the eigenvalues of RRR

di =


1− ρ, i = 1, . . . , (m− 1)T − l,

1− ρ+ (m− 1)ρ, i = (m− 1)T − l + 1, . . . , (m− 1)T,

1− ρ+mρ, i = (m− 1)T + 1, . . . , n.

(3.98)

Let pi be the eigenvector corresponding to di. By Lemma 3.10.10, the pi havs the

close form as follows.

Let the partitions of RRR0 and RRR be

RRR0 =

 RRR B(mT−l)×l

B′l×(mT−l) Il

 , RRR =

 RRR1 E(m−1)T×(T−l)

E′(T−l)×(m−1)T IT−l

 . (3.99)
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Note that

d1 = · · · = d(m−1)T−l = r01 = · · · = r0(m−1)T−l, (3.100)

d(m−1)T−l+1 = · · · = d(m−1)T = r1(m−1)T−l+1 = · · · = r1(m−1)T , (3.101)

d(m−1)T+1 = · · · = dn = r0(m−1)T+1 = · · · = r0n. (3.102)

By Lemma 3.10.11, let IT = [e1 . . . eT ], n×mT matrix Γ1 = [In 0], n× (m− 1)T

matrix Γ2 = [I(m−1)T 0]′, and vi be defined as (3.92), then

p1 = Γ1(v1 ⊗ e1),
...

pT = Γ1(v1 ⊗ eT ),

pT+1 = Γ1(v2 ⊗ e1),
...

p(m−1)T−l = Γ1(vm−1 ⊗ eT−l),

p(m−1)T−l+1 = Γ2(1m−1 ⊗ eT−l+1),

...

p(m−1)T = Γ2(1m−1 ⊗ eT ),

p(m−1)T+1 = Γ1(vm ⊗ e1),
...

pn = Γ1(vm ⊗ eT−l).

Note that all pi’s are orthogonal with each other and linear independent. Also, the

pi’s do not depend on the parameter ρ. Thus let the spectrum decomposition of RRR

be RRR = PDP ′, and the orthogonal matrix P does not depend on parameter ρ.

79



3.C Calculation for Programs

As the precision matrix Q in prior (3.12) has the rank n− 2. There exists a matrix

G(n−2)×n with rank n − 2, such that Q = G′G. Note that Q = F ′0F
−1
1 F0. Let the

LU decomposition F1 = LL′, where L is a (n− 2)× (n− 2) lower triangular matrix.

Then G = L−1F0.

Given RRR is p.d. and symmetric, and GWRRRWG′ = (GW )RRR(GW )′ is also

p.d. and symmetric. There exists an orthogonal matrix P such that PDP ′ =

GWRRRWG′, D = Diag(d1, . . . , dn−2), 0 < d1 ≤ · · · ≤ dn−2 are the eigenvalues of

GWRRRWG′.

By Lemma 3.10.1 ,

|In + ηWRRRWQ| = |In + ηRRRWG′GW |

= |In + ηGWRRRWG′|

= |In + ηPDP ′|

= |In + ηD|

=
n−2∏
j=1

(1 + ηdj). (3.103)

By Lemma 3.10.3,

[(WRRRW )−1 + ηQ]−1 = [(WRRRW )−1 +G′(ηI)G]−1

= (WRRRW )− (WRRRW )G′(η−1I +G(WRRRW )G′)−1G(WRRRW ). (3.104)
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Thus

Q((WRRRW )−1 + ηQ)−1(WRRRW )−1

= G′G[(WRRRW )− (WRRRW )G′(η−1I +G(WRRRW )G′)−1G(WRRRW )](WRRRW )−1

= G′G−G′G(WRRRW )G′(η−1I +G(WRRRW )G′)−1G

= G′[I −G(WRRRW )G′(η−1I +G(WRRRW )G′)−1]G

= G′[I − PDP ′(η−1I + PDP ′)−1]G

= G′P [I −D(η−1I +D)−1]P ′G. (3.105)

Let v = (v1, . . . , vn−2) = P ′Gy, B = I − D(η−1I + D)−1 = Diag(b1, . . . , bn−2),

bi = 1− di
η−1+di

= 1
1+ηdi

, then

y′Q((WRRRW )−1 + ηQ)−1(WRRRW )−1y = v′Bv

=
n−2∑
i=1

biv
2
i =

n−2∑
i=1

v2i
1 + ηdi

. (3.106)

Therefore p(RRR, η|y) has the closed form as

p(RRR, η|y) = C[RRR][η]

[
n−2∏
j=1

(1 + ηdj)

]− 1
2
[
n−2∑
i=1

v2i
1 + ηdi

]1−n
2

= C[RRR][η]

{
n−2∏
j=1

[
n−2∑
i=1

v2i
1 + ηdj
1 + ηdi

]}− 1
2

. (3.107)
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Chapter 4

Multivariate Bayesian Smoothing
Spline with Dependency Model

4.1 Introduction

In the real world, we would like to estimate the trend of both the unemployment

and the employment level simultaneously, because although the unemployment and

the employment level tend to have a negative correlation, there is no determinative

relation between these two values. Another example that we are interested in is the

developmental tendency of the Covid-19 epidemic, given the daily case data from

multiple states in the US.

Many authors have studied the multivariate Bayesian smoothing spline models

with independent error assumption. However, for the data with seasonal fluctuations,

the results are not stable and have unpleasant boundary performance, which happens

in the univariate case as well. In this chapter, we construct the multivariate Bayesian

smoothing spline with dependency (MBSSD) model to borrow information across all

series and to improve the performance of accuracy and stability. In section 4.2, we
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provide the full Bayesian analysis of the MBSSD model, explore the sampling method,

and conduct the model selection with the deviance information criterion (DIC). In

section 4.4, we present two simulation studies to evaluate the performance of our

MBSSD model. In section 4.5, we apply the MBSSD model with real datasets and

compare with the results from the univariate BSSD model in Chapter 3.

4.2 Multivariate Bayesian smoothing spline model

We consider a nonparametric regression model with p spline curves,

yij = zij + εij, zij = fj(ti), (4.1)

at knots ti, where i = 1, . . . , n, j = 1, . . . , p, and −∞ < a ≤ t1 < · · · < tn ≤ b <∞.

We denote Y = (yij)n×p, yj = (y1j, . . . , ynj)
′, y = vec(Y ) = (y′1, . . . ,y

′
p)
′, Z =

(zij)n×p, zj = (z1j, . . . , znj)
′, z = vec(Z), f(t) = (f1(t), . . . , fp(t))

′.

The randoms errors ε = (ε11, . . . , εn1, . . . , ε1p, . . . , εnp)
′ ∼ Nnp(0,Σ00 ⊗ Σ01), where

Σ00 is a p× p covariance matrix, and Σ01 is a n× n covariance matrix.

To estimate the unknown function vector f(t), we minimize a squared error loss

function with a penalty on smoothness,

(y − z)′(Σ00 ⊗Σ01)
−1(y − z) +

∫ b

a

(
f (k)(s)

)′
Σ−11

(
f (k)(s)

)
ds, (4.2)

where f (k)(t) is the kth derivative. We take k = 2 for Cubic natural smoothing spline.

The smoothness penalty term can be rewrite as

tr

[
Σ−11

∫ b

a

(
f (2)(s)

) (
f (2)(s)

)′
ds

]
= tr

(
Σ−11 Z

′QZ
)

= z′(Σ−11 ⊗Q)z. (4.3)
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The problem of multivariate smoothing splines with unrestricted covariance struc-

ture has not been fully studied in the past. Wang, Guo, and Brown (2000) restricted

Σ1 to be diagonal, and Sun, Ni, and Speckman (2014) proposed a full Bayesian analy-

sis with general Σ00,Σ1. However in these papers, the random errors εij were assumed

be independent for different i’s.

In this chapter, we are interested in the series with seasonal effects. We assume

that random errors εij are correlated at different knots but are independent over

different series. Considering the identifiable issue that kΣ00 ⊗Σ01 = Σ00 ⊗ kΣ01 for

any constant k > 0, we let

Σ00 = diag(δ1, . . . , δp), Σ01 = D∗RRR0D
∗, (4.4)

where the correlation RRR0 describes the seasonal dependency (see Appendix 4.8), and

the weight matrix D∗ = diag(d∗1, . . . , d
∗
n) is considered to be known. We usually take

D∗ = In.

For equal spaced knots at t = 1, 2, ..., n, as a special case in Fessler (1991), the

smoothness structure matrix Q can be defined as

Q = F ′0F
−1
1 F0, (4.5)

where the (n− 2)× n matrix F0 and (n− 2)× (n− 2) matrix F1 are

F0 =



1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

...
...

...
... . . .

...
...

...

0 0 0 0 . . . 1 −2 1


, F1 =

1

6



4 1 . . . 0 0

1 4 . . . 0 0

...
... . . .

...
...

0 0 . . . 1 4


. (4.6)
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Then (4.2) can be written as

(y − z)′(Σ−100 ⊗Σ−101 )(y − z) + z′(Σ−11 ⊗Q)z. (4.7)

The solution of z to minimize (4.7) is

µz =
[
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
y. (4.8)

4.3 Bayesian analysis

The density of y given z, Σ00 and Σ01 based on model (4.1) is

f(y | z,Σ00,Σ01) = (2π)−
np
2 |Σ00|−

n
2 |Σ01|−

p
2 etr

[
−1

2
Σ−100 (Y −Z)′Σ−101 (Y −Z)

]
= (2π)−

np
2 |Σ00|−

n
2 |Σ01|−

p
2

exp
[
−1

2
(y − z)′

(
Σ−100 ⊗Σ−101

)
(y − z)

]
. (4.9)

4.3.1 Fixed (Σ00,Σ01,Σ1)

Following Sun, Ni, and Speckman (2014), we consider the partially improper prior

for z

f(z | Σ1) ∝ |(Σ−11 ⊗Q)|1/2+ exp
[
− 1

2
z′(Σ−11 ⊗Q)z

]
, (4.10)

where |A|+ is the product of positive eigenvalues of a nonnegative definite matrix A.

For the n× n matrix Q defined in (4.5), Q has 2 eigenvalues as 0, and n− 2 positive
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eigenvalues. Then the prior (4.10) can be written as

f(z | Σ1) ∝ |Σ1|−
n−2
2 exp

[
−1

2
z′(Σ−11 ⊗Q)z

]
. (4.11)

Theorem 2. Consider model (4.9) with prior (4.10). For fixed (Σ00,Σ01,Σ1), the

conditional posterior distribution of z given y is

(z | Σ00,Σ01,Σ1;y) ∼ Npn(µz,Ω
−1), (4.12)

where µz =
[
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
y and Ω = Σ−100 ⊗Σ−101 + Σ−11 ⊗Q.

Proof. Given (Σ00,Σ01,Σ1),

[z | Σ00,Σ01,Σ1;y] ∝ [y | z,Σ00,Σ01][z | Σ1]

∝ (2π)−
np
2 |Σ00|−

n
2 |Σ01|−

p
2 exp

[
−1

2
(y − z)′

(
Σ−100 ⊗Σ−101

)
(y − z)

]
|Σ1|−

n−2
2 exp

[
−1

2
z′(Σ−11 ⊗Q)z

]
= (2π)−

np
2 |Σ00|−

n
2 |Σ01|−

p
2 |Σ1|−

n−2
2

exp
[
−1

2
(z − µz)′

(
Σ−100 ⊗Σ−101 + Σ−11 ⊗Q

)
(z − µz)

]
exp
{
−1

2
y′
(
Σ−11 ⊗Q

) [
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
y
}
, (4.13)

where µz =
[
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
y.

4.3.2 Joint likelihood of (Σ00,Σ01,Σ1)

We consider the joint likelihood of (Σ00,Σ01,Σ1 | y) from (4.9) and (4.11)

L(Σ00,Σ01,Σ1 | y) =

∫
Rnp

f(y | z,Σ00,Σ01)f(z | Σ1)dz, (4.14)
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L(Σ00,Σ01,Σ1 | y)

∝ |Σ00|−
n
2 |Σ01|−

p
2 |Σ1|−

n−2
2 exp

{
−1

2
y′
(
Σ−11 ⊗Q

) [
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
y
}∫

Rnp

exp
[
−1

2
(z − µz)′

(
Σ−100 ⊗Σ−101 + Σ−11 ⊗Q

)
(z − µz)

]
dz

∝ |Σ00|−
n
2 |Σ01|−

p
2 |Σ1|−

n−2
2 exp

{
−1

2
y′
(
Σ−11 ⊗Q

) [
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
y
}

|Σ−100 ⊗Σ−101 + Σ−11 ⊗Q|−
1
2 . (4.15)

4.3.3 Re-parameterization of (Σ00,Σ1)

Note that in (4.13) and (4.15), the matrix

(
Σ−11 ⊗Q

) [
Inp + (Σ00Σ

−1
1 )⊗ (Σ01Q)

]−1
= Σ−100 ⊗Σ−101 − (Σ−100 ⊗Σ−101 )(Σ−100 ⊗Σ−101 + Σ−11 ⊗Q)−1(Σ−100 ⊗Σ−101 ) (4.16)

is symmetric, because the matrices Σ00,Σ01,Σ1,Q are all symmetric.

However, matrices Σ00Σ
−1
1 ,Σ01Q are asymmetric. Thus we apply the following

re-parameterization for efficient computation and model interpretation.

We decompose the matrix Σ1 with the corresponding correlation matrix RRR1, which

will be discussed later, as

Σ1 = ∆RRR1∆, (4.17)

where ∆ = diag(σ1, . . . , σp) describes the prior variation for each carve. We consider

the smoothing parameter, as the noise-to-signal ratio between model variation over

time Σ00 = diag(δ1, . . . , δp) and ∆, to be

H = diag(η1, . . . , ηp) = diag(δ1/σ
2
1, . . . , δp/σ

2
p). (4.18)
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For notation, We define D
1
2 = diag(d

1
2
1 , . . . , d

1
2
p ), for any diagonal matrix D =

diag(d1, . . . , dp).

Let Ξ = H
1
2 RRR−11 H

1
2 . Clearly, Ξ is symmetric, and |Ξ| = |RRR1|−1

∏p
j=1 ηj. Then

Σ00 = Σ
1
2
00Σ

1
2
00, Σ−11 = Σ

− 1
2

00 ΞΣ
− 1

2
00 . (4.19)

For the smoothing structure matrix Q defined in (4.5), which has the rank n− 2,

there exists a matrix G(n−2)×n with rank n − 2, such that Q = G′G. Note that

Q = F ′0F
−1
1 F0. Let the LU decomposition F1 = LL′, where L is a (n− 2)× (n− 2)

lower triangular matrix. Then G = L−1F0.

Thus the matrix (4.16) can be rewritten as

(
Σ
− 1

2
00 ΞΣ

− 1
2

00 ⊗G′G
) [
Inp + (Σ

1
2
00ΞΣ

− 1
2

00 )⊗ (Σ01G
′G)
]−1

=
(
Σ
− 1

2
00 Ξ⊗G′

)(
Σ
− 1

2
00 ⊗G

)
[
Inp −

(
Σ

1
2
00Ξ⊗Σ01G

′
)

(I(n−2)p + Ξ⊗GΣ01G
′)−1

(
Σ
− 1

2
00 ⊗G

)]
= (Ip ⊗G)′

(
Σ
− 1

2
00 ⊗ In−2

)
W
(
Σ
− 1

2
00 ⊗ In−2

)
(Ip ⊗G), (4.20)

where, by Lemma 4.8.1, the symmetric matrix W is

W = Ξ⊗ In−2 −
(
Ξ2 ⊗GΣ01G

′) (I(n−2)p + Ξ⊗GΣ01G
′)−1

= (Ξ⊗ In−2)
(
I(n−2)p + Ξ⊗GΣ01G

′)−1
=

(
Ξ−1 ⊗ In−2 + Ip ⊗GΣ01G

′)−1
=

(
H−

1
2 RRR1H

− 1
2 ⊗ In−2 + Ip ⊗GΣ01G

′
)−1

. (4.21)

Let the spectral decompositions that H−
1
2 RRR1H

− 1
2 = P1D1P

′
1, GΣ01G

′ = P0D0P
′
0.
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Note that P1P
′
1 = Ip, P0P

′
0 = In−2. From (4.21),

W = (P1D1P
′
1 ⊗ In−2 + Ip ⊗ P0D0P

′
0)
−1

= (P1 ⊗ P0) (D1 ⊗ In−2 + Ip ⊗D0)
−1 (P1 ⊗ P0)

′. (4.22)

Therefore, from (4.15), the joint likelihood of (Σ00,Σ01,RRR1,H | y) is

L(Σ00,Σ01,RRR1,H | y)

∝ C0 exp
[
−1

2
y′(Ip ⊗G)′

(
Σ
− 1

2
00 ⊗ In−2

)
W
(
Σ
− 1

2
00 ⊗ In−2

)
(Ip ⊗G)y

]
, (4.23)

where

C0 = |Σ00|−
n
2 |Σ01|−

p
2 |Σ−

1
2

00 ΞΣ
− 1

2
00 |

n−2
2 |Σ−100 ⊗Σ−101 + Σ

− 1
2

00 ΞΣ
− 1

2
00 ⊗G′G|−

1
2

= |Σ00|−
n−2
2 |Ξ−1 ⊗ In−2 + Ip ⊗GΣ01G

′|−
1
2

= |Σ00|−
n−2
2 |D1 ⊗ In−2 + Ip ⊗D0|−

1
2 . (4.24)

4.3.4 Structure of Correlation Matrix RRR1

To simplify the model, we choose the exchangeable structure for correlation matrix

RRR1,

RRR1 =



1 ρ1 . . . ρ1

ρ1 1
. . .

...

...
. . . ρ1

ρ1 . . . ρ1 1


p×p

. (4.25)
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Note that, in order to guarantee that the correlation matrix RRR1 is positive definite,

ρ1 should satisfy that

− 1

p− 1
< ρ1 < 1. (4.26)

4.3.5 Posterior density

We choose the independent Jeffreys prior for Σ00 = diag(δ1, . . . , δp)

[δj] ∝ δ−1j , j = 1, . . . , p. (4.27)

We consider the independent scaled Pareto prior (Cheng and Speckman 2012) for

H = diag(η1, . . . , ηp),

[ηj] =
c

(c+ ηj)2
, ηj > 0, j = 1, . . . , p. (4.28)

We use constant prior for correlation parameters ρ0, ρ1

[ρ0] ∝ 1, 0 < ρ1 < 1. (4.29)

[ρ1] ∝ 1, − 1

p− 1
< ρ1 < 1. (4.30)

With the likelihood (4.23), and priors (4.27), (4.28), (4.29), (4.30), the joint posterior

density of parameters (Σ00,Σ01,RRR1,H) is

[Σ00,Σ01,RRR1,H | y]

∝
p∏
j=1

(c+ ηj)
−2|Σ00|−

n
2 |D1 ⊗ In−2 + Ip ⊗D0|−

1
2

exp
{
−1

2
y′(Σ

− 1
2

00 ⊗G′)W (Σ
− 1

2
00 ⊗G)y

}
. (4.31)
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4.3.6 Sampling method for (Σ00,Σ01, RRR1,H)

As defined in (4.4) and (4.18), (Σ00,Σ01,RRR1,H) are uniquely determined by k =

2p + 2 parameters (δ1, . . . , δp, η1, . . . , ηp, ρ0, ρ1). We use the multivariate ratio-of-

uniform method (Wakefield, Gelfand, and Smith 1991) to sample from the marginal

joint posterior density (4.31), which is denoted as unnormalized density f(θ), where

θ = (θ1, . . . , θk) = (δ1, . . . , δp, η1, . . . , ηp, ρ0, ρ1).

Note that if (u,v) are uniform on

A =
{

(u,v) : v = (v1, . . . , vk) ∈ Rk, 0 < u < [f(µ+ v/ur)]
1

rk+1

}
, (4.32)

for some µ = (µ1, . . . , µk) ∈ Rk, then θ = µ + v/ur has the density p(θ|y) ∝ f(θ).

Usually we take the posterior mode of f(θ) as µ to maximize the acceptance rate.

We first construct the minimal bounding rectangle for uniform sampling

a+ = sup
(

[f(θ)]
1

rk+1

)
, (4.33)

b+l = sup
(

(θl − µl)[f(µ1)]
r

rk+1

)
, l = 1, . . . , k, (4.34)

b−l = inf
(

(θl − µl)[f(µ1)]
r

rk+1

)
, l = 1, . . . , k. (4.35)

We take r = 1, which yields the standard ratio-of uniform method.

The sampling algorithm is as follows.

Algorithm 4 Multivariate ration-of-uniform sampling of θ =
(δ1, . . . , δp, η1, . . . , ηp, ρ0, ρ1)

1: Independently sampling u from Unif(0, a+), vl from Unif(b−l , b
+
l ), l = 1, . . . , k;

2: If 0 < u < (f(µ+ v/ur))
1

rk+1 , report θ = µ+ v/ur; otherwise return to Step 1.
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4.3.7 Efficient conditional distribution of z

In the previous chapter, we obtain the posterior sample of , and we may directly

sample the trend estimates from Theorem 2. However, in order to reduce the com-

putation load, we introduce the following efficient sampling method for z, which is

inspired by Sun, Ni, and Speckman (2014).

With the re-parameterization (4.19) and decomposition H−
1
2 RRR1H

− 1
2 = P1D1P

′
1,

where D1 = diag(d11, . . . , d1p), estimator (4.8)

ẑ =
[
Inp + (Σ

1
2
00H

1
2 RRR−11 H

1
2 Σ
− 1

2
00 )⊗ (Σ01Q)

]−1
y

=
[
Inp + (Σ

1
2
00P1D

−1
1 P

′
1Σ
− 1

2
00 )⊗ (Σ01Q)

]−1
y

= (Σ
1
2
00P1 ⊗ In)(Inp +D−11 ⊗Σ01Q)−1(P ′1Σ

− 1
2

00 ⊗ In)y. (4.36)

Let Ψ = Σ
1
2
00P1, (Ψ−1 ⊗ In)ẑ = vec(ẐΨ−>), (Ψ−1 ⊗ In)y = vec(YΨ−>),

vec(ẐΨ−>) = (Inp +D−11 ⊗Σ01Q)−1vec(YΨ−>). (4.37)

Let V̂ = ẐΨ−> = [v̂1 · · · v̂p], U = YΨ−> = [u1 · · ·up],

v̂j = (In + d−11j Σ01Q)−1uj. (4.38)

The precision matrix in (4.12)

Ω = Σ−100 ⊗Σ−101 + Σ−11 ⊗Q

= (Σ
− 1

2
00 P1 ⊗ In)(Ip ⊗Σ−101 +D−11 ⊗Q)(P ′1Σ

− 1
2

00 ⊗ In)

= (Ψ−> ⊗ In)(Ip ⊗Σ−101 +D−11 ⊗Q)(Ψ−1 ⊗ In). (4.39)
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Note that the matrices Inp+D−11 ⊗Σ01Q and Ip⊗Σ−101 +D−11 ⊗Q are block diagonal.

Thus, the conditional distribution (4.12) is equivalent to

((Ψ−1 ⊗ In)z | Σ00,Σ01,Σ1;y)

∼ Nnp((Ψ
−1 ⊗ In)ẑ, (Ψ−1 ⊗ In)Ω−1(Ψ−> ⊗ In)), (4.40)

or

(vj | Σ00,Σ01,Σ1;y)
indep.∼ Nn(v̂j,Ω

−1
j ), j = 1, . . . , p, (4.41)

where v̂j = (In + d−11j Σ01Q)−1uj, and Ωj = (Σ−101 + d−11j Q).

Algorithm 5 Sampling z given y, θ = (δ1, . . . , δp, η1, . . . , ηp, ρ0, ρ1)

1: Given y,θ, obtain uj, v̂j,Ωj, j = 1, . . . , p;

2: Sample V = [v1 · · ·vp] from independent multivariate normal distribution
(4.41);

3: Z = VΨ′, z = vec(Z).

4.3.8 Model Selection

Our full model is flexible and easy to interpret. However we are also interested in the

possibility to simplify the model and to reduce the number of parameters.

We consider two reduced models, which are simplified from the full model:

Reduced Model 1. Let

RRR1 = Ip, (4.42)

which is equivalent to apply the univariate smoothing spline model for each series.
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Reduced Model 2. Let

H = ηIp, (4.43)

which assumes the p splines share the same smoothness.

We compare the full model with the two reduced models using the deviance in-

formation criterion (DIC). Following Gelman et al. (2013),

DIC = −2logp(y|θ̂Bayes) + 2pDIC ,

where, with the posterior mean θ̂Bayes, the effective number of parameters pDIC is

defined as

pDIC = 2
(
logp(y|θ̂Bayes)− Epost(logp(y|θ))

)
. (4.44)

Given the posterior samples θs, s = 1, ..., S, (4.44) is computed as

pDIC = 2

(
logp(y|θ̂Bayes)−

1

S

S∑
s=1

(logp(y|θs))

)
. (4.45)

We use the Covid-19 daily data in chapter 4.5.2 to compute the DIC for each

model. DICFull = −423.6028, DICReduceModel1 = −372.5568, DICReduceModel2 =

−229.715, which suggests that the full model is preferred.

4.4 Simulation Study

In this section, we evaluate the performance of our multivariate Bayesian smoothing

spline with dependency model through two simulation studies. In the first simulation
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study, we are interested in the accuracy of estimating the trend. In the second

simulation study, we are interested in the accuracy of recovering the model parameters

Σ00,Σ01 in (4.1).

4.4.1 Simlulation 1

We generate data from the basic structure model (Pfeffermann 1991),

yt = mt + st + et, et ∼ N(0, σ2
1), t = 1, . . . , n, (4.46)

where the seasonal component st follows

st = −
t−1∑

j=t−12+1

sj + εt, εt ∼ N(0, σ2
2). (4.47)

We simulate two series of data for multivariate analysis, and apply the univariate

Bayesian smoothing spline with dependency model to each series for comparison. For

each series, we take 20 knots with the period 5.

For Series 1, we specify the ”true” trend mt in (4.46) as

Trend 1:

mt = 10× exp
{
−(t− 16)2

2× 102

}
. (4.48)

The variation parameters are σ2
1 = 0.01, σ2

2 = 0.04, which are select to obtain the

reasonable signal-noise ratio. Figure 4.1 shows one of the 1000 simulated data with

the true trend and estimation.

For Series 2, we specify the ”true” trend mt in (4.46) as

95



Trend 2:

mt = 10× exp
{(t− 16)2

2× 102

}
. (4.49)

The variation parameters are σ2
1 = 1, σ2

2 = 1. Figure 4.2 shows one of the 1000

simulated data with the true trend and estimation.

In Figure 4.3, we compare the relative bias (rBias) of trend estimation between

the multivariate method with univariate method. At each knot i with the estimate

m̂i and true trend mi, the relative bias at the knot i is defined as

rBias =
1

1000

1000∑
iter=1

m̂i −mi

mi

. (4.50)

The multivariate method improves the trend estimation accuracy, the average bias is

smaller compared with the univariate method. We also show the standard deviation

of estimates in Figure 4.4. In Figure 4.5, we compare the root-mean-square devia-

tion (RMSD) of trend estimation between the multivariate method with univariate

method. At each knot i with the estimate m̂i and true trend mi, the relative bias at

the knot i is defined as

RMSE =

√√√√ 1

1000

1000∑
iter=1

(m̂i −mi)2. (4.51)

Figure 4.5 and Figure 4.4 are almost identical, because for the MSD, the contri-

bution from bias is one order smaller than the contribution from standard deviation.

For almost all knots, the multivariate BSSD model outperform the univariate BSSD

model.

96



4.4.2 Simlulation 2

In the second simulation study, we are interested in the accuracy of recovering the

model parameters Σ00,Σ01 in (4.1). We define the same two true trends as

Trend 1:

mt = 10× exp
{
−(t− 16)2

2× 102

}
.

Trend 2:

mt = 10× exp
{(t− 16)2

2× 102

}
.

The seasonal patterns, which are the random component, are simulated from normal

distribution

ε = (ε11, . . . , εn1, . . . , ε1p, . . . , εnp)
′ ∼ Nnp(0,Σ00 ⊗Σ01). (4.52)

We take n = 20, p = 2. The Σ00 = diag(δ1, δ2), and Σ01 is only depend on correlation

parameter ρ0. We simulate 1000 datasets for each case, and show the averaged bias

and root-mean-square deviation (RMSD) in Table 4.1. For different combinations

of variation parameter Σ00 and correlation parameter ρ0, the estimated parameters

from the multivariate BSSD model have smaller bias and RMSD compared with the

univariate model.
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Table 4.1: Comparison of model parameter estimation

True Model
Multivariate

Univariate
Series 1 Series 2

Bias RMSD Bias RMSD Bias RMSD
Case 1
ρ0 = 0.9 -0.07561 0.12048 -0.09514 0.16930 -0.09449 0.15271
δ1 = 1 -0.17270 0.37077 -0.13155 0.38160
δ2 = 4 0.02647 2.18356 0.36921 2.42706
Case 2
ρ0 = 0.8 -0.07381 0.13943 -0.08381 0.16533 -0.08992 0.17743
δ1 = 1 0.04246 0.44531 0.11306 0.53739
δ2 = 4 0.37871 2.12850 0.77972 2.60481
Case 3
ρ0 = 0.9 -0.05915 0.09872 -0.09107 0.14970 -0.07157 0.13461
δ1 = 2 -0.16159 0.89638 -0.17332 0.95827
δ2 = 6 0.27714 3.34669 0.96570 4.25412

4.5 Applications

4.5.1 U.S. Unemployment and Employment Levels

We are interested in modeling the trends for both the unemployment and employment

levels simultaneously. For the data between 01/2007 to 12/2010, which is shown in

Figure 4.7, the Pearson correlation coefficient (-0.95) between the two series of raw

data suggests that we expect a strong negative correlation between the trends of the

Unemployment and Employment Levels.

We compare our multivariate estimation with the univariate estimation for each

series. In Figure 4.9, the mean estimates from the two methods are very close. How-

ever, Figure 4.10 shows that the variation differs. For the posterior standard devi-

ation (Post. SD) of the employment level, the multivariate BSSD model uniformly

outperforms the univariate model. For the unemployment level, the Post. SD of the

multivariate BSSD model is smaller than the Post. SD of the univariate BSSD model

at most knots. We also notice that the Post. SD of the unemployment trend tends
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to be stable, whereas the Post. SD of the employment trend seems to fluctuate with

a periodic pattern. We further show the comparisons of the signal variation and the

noise variation for the unemployment case and the employment case in Figure 4.11

and 4.12 respectively. The posterior standard deviation, which indicates the signal

variation for the trend, is plausibly stable for each case given the scale of the noise

variation. Thus the patterns in Figure 4.10 are reasonable.

4.5.2 Covid-19 daily confirmed new cases in FL and NY

We are interested in the recent development of U.S. Covid-19 cases. We often use

daily (confirmed new) cases to describe the tendency of the disease’s progression .

For the daily cases reported in the U.S., nationwide or statewide, we often observe

a seven-day pattern, which is due to the testing and reporting procedure. In order

to capture the development tendency of the epidemic, we want to estimate the trend

with our multivariate smoothing spline model instead of the moving average, which

presents the delayed information. In Figure 4.13, we obtain the data of Florida

and New York from 10/14/2020 to 11/17/2020, and compare the trend estimation

from both the multivariate model and the univariate model. Figure 4.14 shows the

comparison between our trend estimation and the moving average, along with the

Florida data.

In Figure 4.15, we compare the posterior standard deviation between the multi-

variate model and the univariate model. By modeling jointly, we obtain a smaller

estimation variation.
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4.6 Comments

In this chapter, we constructed the multivariate Bayesian smoothing spline with de-

pendency model, which enables us to estimate the multiple trends with seasonal errors

of the same period simultaneously. We used the multivariate ratio-of-uniform method

to sample from the joint posterior distribution of the smoothing, correlation and vari-

ation parameters, and proposed an efficient sampling algorithm for trend estimates.

We performed the simulation studies with different types of seasonal variation

components. The accuracy and precision are improved by the joint model. The

performance of recovering the simulation parameter, in terms of unbiasedness and

deviation, is also elevated by modeling simultaneously. For the real data application,

the multivariate Bayesian smoothing spline with dependency model achieves the trend

estimations with smaller variation, compared with the univariate BSSD model.
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4.7 Figures

Figure 4.1: Simulation 1: Data of series 1 with true trend and estimation

Figure 4.2: Simulation 1: Data of series 2 with true trend and estimation
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Figure 4.3: Simulation 1: Comparison of the relative bias

Figure 4.4: Simulation 1: Comparison of the standard deviation
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Figure 4.5: Simulation 1: Comparison of the root-mean-square deviation

Figure 4.6: Simulation 1: Comparison of the relative root-mean-square deviation
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Figure 4.7: U.S. Unemployment and Employment Level from 01/2007 to 12/2010

Figure 4.8: U.S. Unemployment and Employment Level with Trend Estimation from
01/2007 to 12/2010

104



Figure 4.9: Comparison of Trend Estimation

Figure 4.10: Comparison of Posterior Standard Deviation

105



Figure 4.11: Comparison of signal variation and noise variation for unemployment

Figure 4.12: Comparison of signal variation and noise variation for employment
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Figure 4.13: Covid-19 daily increased cases in FL and NY from Oct 14 to Nov 17

Figure 4.14: Comparison of MBSSD trend with Moving average
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Figure 4.15: Comparison of Posterior Standard Deviation

4.8 Appendix

4.A Lemmas

To begin with, we introduce the following Lemmas.

Lemma 4.8.1 (Theorem 1.7 (Schott 1996)). Suppose Am×m and Bn×n are nonsin-

gular matrices. For any matrices Cm×n and Dn×m, if A + CBD is nonsingular,

then

(A+CBD)−1 = A−1 −A−1C(B−1 +DA−1C)−1DA−1.

Lemma 4.8.2 (Theorem 16.2.1 (Harville 2008)). For any m × n matrix A, n × p

matrix B, p× q matrix C,

vec(ABC) = (C ′ ⊗A)vec(B).
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Lemma 4.8.3 (Theorem 16.2.2 (Harville 2008)). For any m × n matrix A, m × p

matrix B, p× q matrix C, and n× q matrix D

tr(A′BCD′) = (vecA)′(D ⊗B)vecC.

4.B Correlation Matrix

We introduce two kinds of correlation matrices in the multivariate Bayesian smoothing

spline model. The correlation matrix over time RRR0 is defined similar as the RRR in

Chapter 3, see Appendix 3.B. Another prior correlation RRR1 over splines is defined in

Section 4.3.4.

4.C Alternative Re-parameterization of Σ00,Σ1

We consider another re-parameterization of Σ00,Σ1 to explore the possibility of re-

ducing the model. We decompose the matrix Σ1 with the corresponding correlation

matrix RRR1, as in (4.17) and the smoothing parameter (4.18). Σ00 is re-parameterized

as

Σ00 = diag(η1σ
2
1, . . . , ηpσ

2
p) = H diag(σ2

1, . . . , σ
2
p). (4.53)

The joint likelihood (4.23) is rewritten as

L(Σ1,H,Σ01 | y)

∝ C0 exp{−1
2
y′(Ip ⊗G)′[Σ1 ⊗ In−2 + Σ00 ⊗GΣ01G

′]−1(Ip ⊗G)y}, (4.54)
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where

C0 = |Σ1 ⊗ In−2 + Σ00 ⊗GΣ01G
′|−

1
2 . (4.55)

We define S = diag(s1, . . . , sp) as the ratio of signal variation, where σj = sjσ, j =

1, . . . , p, and s1 = 1. Often the S is considered known. We consider the reduced

model,

Σ1 = σ2SRRR1S, Σ00 = σ2diag(η1s
2
1, . . . , ηps

2
p). (4.56)

We choose the independent Jeffreys prior for (σ2
1, . . . , σ

2
p)

[
σ2
j

]
∝ (σ2

j )
−1, j = 1, . . . , p. (4.57)

For reduced model we choose the Jeffreys prior for σ2

[
σ2
]
∝ (σ2)−1. (4.58)

For notation, We define D
1
2 = diag(d

1
2
1 , . . . , d

1
2
p ), for any diagonal matrix D =

diag(d1, . . . , dp).

Let Ξ = H
1
2 RRR−11 H

1
2 . Clearly, Ξ is symmetric, and |Ξ| = |RRR1|−1

∏p
j=1 ηj. Then

Σ00 = Σ
1
2
00Σ

1
2
00, Σ−11 = Σ

− 1
2

00 ΞΣ
− 1

2
00 (4.59)

For the smoothing structure matrix Q defined in (4.5), which has the rank n− 2,

there exists a matrix G(n−2)×n with rank n − 2, such that Q = G′G. Note that

Q = F ′0F
−1
1 F0. Let the LU decomposition F1 = LL′, where L is a (n− 2)× (n− 2)

lower triangular matrix. Then G = L−1F0.
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Thus the matrix (4.16) can be rewritten as

(
Σ
− 1

2
00 ΞΣ

− 1
2

00 ⊗G′G
) [
Inp + (Σ

1
2
00ΞΣ

− 1
2

00 )⊗ (Σ01G
′G)
]−1

=
(
Σ
− 1

2
00 Ξ⊗G′

)(
Σ
− 1

2
00 ⊗G

)
[
Inp −

(
Σ

1
2
00Ξ⊗Σ01G

′
)

(I(n−2)p + Ξ⊗GΣ01G
′)−1

(
Σ
− 1

2
00 ⊗G

)]
= (Ip ⊗G)′

(
Σ
− 1

2
00 ⊗ In−2

)
W
(
Σ
− 1

2
00 ⊗ In−2

)
(Ip ⊗G), (4.60)

where, by Lemma 4.8.1, the symmetric matrix W is

W = Ξ⊗ In−2 −
(
Ξ2 ⊗GΣ01G

′) (I(n−2)p + Ξ⊗GΣ01G
′)−1

= (Ξ⊗ In−2)
(
I(n−2)p + Ξ⊗GΣ01G

′)−1
=

(
Ξ−1 ⊗ In−2 + Ip ⊗GΣ01G

′)−1
=

(
H−

1
2 RRR1H

− 1
2 ⊗ In−2 + Ip ⊗GΣ01G

′
)−1

. (4.61)

Let spectral decomposition that H−
1
2 RRR1H

− 1
2 = P1D1P

′
1, GΣ01G

′ = P0D0P
′
0. Note

that P1P
′
1 = Ip, P0P

′
0 = In−2. From (4.61),

W = (P1D1P
′
1 ⊗ In−2 + Ip ⊗ P0D0P

′
0)
−1

= (P1 ⊗ P0) (D1 ⊗ In−2 + Ip ⊗D0)
−1 (P1 ⊗ P0)

′. (4.62)

Therefore, from (4.54), the joint likelihood of (Σ00,Σ01,RRR1,H | y) is

L(Σ00,Σ01,RRR1,H | y)

∝ C0 exp
{
−1

2
y′(Ip ⊗G)′

(
Σ
− 1

2
00 ⊗ In−2

)
W
(
Σ
− 1

2
00 ⊗ In−2

)
(Ip ⊗G)y

}
, (4.63)
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where

C0 = |Σ00|−
n
2 |Σ01|−

p
2 |Σ−

1
2

00 ΞΣ
− 1

2
00 |

n−2
2 |Σ−100 ⊗Σ−101 + Σ

− 1
2

00 ΞΣ
− 1

2
00 ⊗G′G|−

1
2

= |Σ00|−
n−2
2 |Ξ−1 ⊗ In−2 + Ip ⊗GΣ01G

′|−
1
2

= |Σ00|−
n−2
2 |D1 ⊗ In−2 + Ip ⊗D0|−

1
2 . (4.64)

Joint posterior density

[Σ00,Σ01,RRR1,H | y]

∝
p∏
j=1

(c+ ηj)
−2|Σ00|−

n
2 |D1 ⊗ In−2 + Ip ⊗D0|−

1
2

exp
{
−1

2
y′(Σ

− 1
2

00 ⊗G′)W (Σ
− 1

2
00 ⊗G)y

}
, (4.65)

Let ỹ = (ỹ1, . . . , ỹ(n−2)p)
′ = (Ip ⊗ G)y = vec(GY ), Ỹ = diag(ỹ1, . . . , ỹ(n−2)p);

δ = (δ1, . . . , δp)
′. We employ the trick that

(
Σ
− 1

2
00 ⊗ In−2

)
(Ip ⊗G)y = Ỹ (δ−

1
2 ⊗ 1n−2), (4.66)

and rewrite the likelihood (4.63) as

L(δ,Ξ,Σ01 | y) ∝ C0 exp
{
−1

2
(δ−

1
2 ⊗ 1n−2)

′
(
Ỹ W Ỹ

)
(δ−

1
2 ⊗ 1n−2)

}
(4.67)

Let the partition of the (n− 2)p× (n− 2)p matrix Ỹ W Ỹ be

Ỹ W Ỹ =


W ∗

11 · · · W ∗
1p

...
...

W ∗
p1 · · · W ∗

pp

 , (4.68)
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with each submatrix W ∗
ij to be a (n − 2) × (n − 2) matrix, and W ∗

ij = W ∗′
ji . Let

w̃ij = 1′n−2W
∗
ij1n−2 be the summation of all elements of W ∗

ij, 1 ≤ i, j ≤ p. Define the

matrix W̃ = (w̃ij)p×p, and the matrix W̃ is symmetric.

The likelihood (4.67) can be written as

L(δ,Ξ,Σ01 | y) ∝ C1

[
p∏
j=1

δ
−n−2

2
j

]
exp{−1

2
(δ−

1
2 )′W̃δ−

1
2}, (4.69)

where C1 = |D1 ⊗ In−2 + Ip ⊗D0|−
1
2 .

4.C.1 Conditional distribution of δ and joint likelihood of Ξ,Σ01

We choose the independent Jeffreys prior for δ

[δ] ∝
p∏
j=1

δ−1j (4.70)

From likelihood (4.67) and prior (4.58), the conditional distribution of δ given Ξ and

Σ01 is,

[δ | y,Ξ,Σ01] ∝ [δ]L(δ,Ξ,Σ01 | y)

∝

[
p∏
j=1

δ
−n

2
j

]
exp{−1

2
(δ−

1
2 )′W̃δ−

1
2} (4.71)

The joint likelihood of Ξ,Σ01 is

L(Ξ,Σ01 | y) =

∫
Rp
+

[δ]L(δ,Ξ,Σ01 | y)dδ. (4.72)

L(Ξ,Σ01 | y) ∝ C1

∫
Rp
+

[
p∏
j=1

δ
−n

2
j

]
exp{−1

2
(δ−

1
2 )′W̃δ−

1
2}dδ, (4.73)
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where C2 =
∫
Rp
+

[∏p
j=1 δ

−n
2

j

]
exp{−1

2
(δ−

1
2 )′W̃δ−

1
2}dδ is dependent on Ξ,Σ01,y.

4.C.2 Structure of RRR0,RRR1

Assuming the period of seasonal effect is T , we define the correlation matrix RRR0 =

(rij)n×n with the upper-triangular elements (1 ≤ i ≤ j ≤ n) that

rij =


1, if i = j,

ρ0, if j = i+ T × k, k = 1, 2, 3, . . . , ρ0 ∈ (0, 1),

0, otherwise.

(4.74)

If n = mT for some m ∈ N,

RRR0 = [(1− ρ0)Im + ρ01
′
m1m]⊗ IT . (4.75)

If n < mT , RRR0 is obtain by the first n columns and rows from matrix (4.75) of order

mT .

For the case that p = 2, we define that

RRR1 =

 1 ρ1

ρ1 1

 , ρ1 ∈ (−1, 1). (4.76)

4.C.3 Prior and posterior of H, ρ0, ρ1

We consider the case that p = 2. For H = ( η1 η2 ), we consider the independent scaled

Pareto prior (Cheng and Speckman 2012) for ηj, j = 1, 2

[ηj] =
c

(c+ ηj)2
, ηj > 0, (4.77)
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For ρ0 ∈ (0, 1), we consider prior 1

[ρ0] ∝ (1− ρ0)−
1
2 , 0 < ρ0 < 1, (4.78)

or prior 2

[ρ0] ∝ 1, 0 < ρ < 1. (4.79)

For ρ1 ∈ (−1, 1), we consider constant prior

[ρ1] ∝ 1, −1 < ρ < 1. (4.80)

4.C.4 Semi-correlated mulitivariate gamma distribution

We define that the p× 1 vector δ = (δ1, . . . , δp)
′ follows semi-correlated mulitivariate

gamma distribution, denoted as

δ ∼ SGam(Ω, k), (4.81)

where Ωp×p is symmetric and positive definite, integar k > 2, δj > 0, j = 1, . . . , p; if

the density is

[δ | Ω, k] ∝ fδ(δ | Ω, k) =

[
p∏
j=1

δ
− k

2
j

]
exp
{
−1

2
(δ−

1
2 )′Ωδ−

1
2

}
. (4.82)

We are interested in the quantity m =
∫
Rp
+
fδ(δ | Ω, k)dδ, and the sampling

procedure for δ. Notice that m is the multivariate integration over hypercubes. There

exist efficient methods to obtain numerical results. See Clenshaw and Curtis (1960)

and Narasimhan et al. (2020).
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For small p, we may to integral by substitution. Let τ = δ−
1
2 = (δ

− 1
2

1 , . . . , δ
− 1

2
p )′,

J(δ → τ ) = (−2)p
∏
τ−3j . Then

fτ (τ | Ω) = 2p
(∏

τ k−3j

)
exp
{
−1

2
τ ′Ωτ

}
. (4.83)

Let the the Cholesky decomposition Ω = LL′, Lp×p = (lij), l11 > 0. Let ς = L′τ .

Then τ = L−>ς, J(τ → ς) = |L|−1.

fς(ς | L) = 2p|L|−1
(∏

τj(ς)
)k−3

exp
{
−1

2
ς ′ς
}
. (4.84)

We consider the case that p = 2. Denote ς = (ς1, ς2)
′ and L =

(
l11 0
l21 l22

)
. The

density (4.84) is

fς(ς | L) =
22

(l11l22)k−2

(
ς1ς2 −

l21
l22
ς22

)k−3
exp
{
−1

2
(ς21 + ς22 )

}
, (4.85)

We take the polar coordinates mapping ς = (ς1, ς2)
′ = (r cosφ, r sinφ)′,

J(ς → (r, φ)) = r. Note that τj > 0, then ς1 >
l21
l22
ς2, ς2 > 0, i.e. r > 0, 0 < φ < φ0 <

π, where cotφ0 = l21
l22

. The density (4.85) is transformed to

fr,φ((r, φ) | L)

=
22

(l11l22)k−2

(
cosφ sinφ− l21

l22
sin2 φ

)k−3
r2(k−3) exp

{
−1

2
r2
}
r. (4.86)
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Then the normalizing constant

m =
2

(l11l22)k−2

∫ φ0

0

(
cos(2φ− φ0)− cosφ0

2 sinφ0

)k−3
dφ

∫ +∞

0

(r2)k−3 exp
{
−1

2
r2
}
dr2

=
2k−2Γ(k − 2)

(l11l22)k−2

∫ φ0

−φ0

(
cosψ − cosφ0

2 sinφ0

)k−3
dψ

=
22(l221 + l222)

k−3
2 Γ(k − 2)

lk−211 l2k−522

∫ φ0

0

(cosψ − cosφ0)
k−3 dψ. (4.87)
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Chapter 5

Future Study

The studies in this dissertation are on-going. The univariate Bayesian smoothing

spline with dependency model discussed in Chapter 3 has great advantages over the

X-13 method and the basic Bayesian smoothing spline model for the trend estima-

tion. The accuracy, precision, and boundary performance are all elevated by borrow-

ing information from different cycles. However, the multivariate BSSD model needs

improvement.

First, if the number of knots or series is large, the number of parameters sam-

pled from Algorithm 4 increases dramatically, which requires a significant burden of

computation. Even though, theoretically, we may borrow more information from a

larger number of knots or series, the multivariate ratio-of-uniform sampling makes the

model much less efficient compared with the univariate BSSD model. Currently, we

choose the MC sampling method instead of MCMC, due to the convergence problem

and nonstandard densities.

Second, we would like to find some priors for the correlation parameter to sim-

plify the posterior distribution and improve the computational efficiency. Also, with
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another choice of re-parameterization and appropriate priors, efficient MC or MCMC

sampling methods may be possible.

Third, the current dependence structure is designed for the time series with pe-

riodic variation. This can be generalized to other time dependent structures, which

may have broader applications. For example, with more ancillary information of

time dependency, more complex structures may be designed instead of using just one

correlation parameter. Non-periodic variations may also be modeled.

119



Bibliography

Albert, Arthur (1972). Regression and the Moore-Penrose Pseudoinverse. ISSN. El-

sevier Science. isbn: 9780080956039. url: https://books.google.com/books?

id=-kOivHeTIWQC.

Cheng, Chin-I and Paul L Speckman (2012). “Bayesian smoothing spline analysis of

variance”. In: Computational Statistics & Data Analysis 56.12, pp. 3945–3958.

Clenshaw, Charles W and Alan R Curtis (1960). “A method for numerical integration

on an automatic computer”. In: Numerische Mathematik 2.1, pp. 197–205.

Dagum, Estela Bee (1980). The X-11-ARIMA seasonal Adjustment Method, statistics

Canada.

Dagum, Estela Bee and Silvia Bianconcini (2016). “Seasonal Adjustment Based on

ARIMA Model Decomposition: TRAMO-SEATS”. In: Seasonal Adjustment Meth-

ods and Real Time Trend-Cycle Estimation. Springer, pp. 115–145.

De Klerk, Etienne (2002). Aspects of semidefinite programming: interior point algo-

rithms and selected applications. Vol. 65. Springer.

Fessler, Jeffrey A (1991). “Nonparametric fixed-interval smoothing of nonlinear vector-

valued measurements”. In:

Findley, David F et al. (1998). “New capabilities and methods of the X-12-ARIMA

seasonal-adjustment program”. In: Journal of Business & Economic Statistics

16.2, pp. 127–152.

120



Gelman, Andrew et al. (2013). Bayesian data analysis. CRC press.

Gu, Chong (2013). Smoothing spline ANOVA models. Vol. 297. Springer Science &

Business Media.

Harville, David A. (2008). Matrix Algebra from a Statistician’s Perspective. Springer.

Hastie, Trevor J and Robert J Tibshirani (1990). Generalized additive models. Vol. 43.

CRC press.

Horn, R.A. and C.R. Johnson (2012). Matrix Analysis. Cambridge University Press.

isbn: 9781139788885. url: https://books.google.com/books?id=O7sgAwAAQBAJ.

Hwang, Suk-Geun (2004). “Cauchy’s Interlace Theorem for Eigenvalues of Hermitian

Matrices”. In: The American Mathematical Monthly 111.2, pp. 157–159. issn:

00029890, 19300972. url: http://www.jstor.org/stable/4145217.

Labor Statistics, U.S. Bureau of and U.S. Census Bureau (2019). “Current Population

Survey Technical Paper 77”. In:

Ladiray, Dominique and Benoit Quenneville (2012). Seasonal adjustment with the

X-11 method. Vol. 158. Springer Science & Business Media.

Marshall, Albert W, Ingram Olkin, and Barry Arnold (2011). “Inequalities: Theory

of Majorization and Its Applications”. In:

Monsell, B (2007). “The X-13A-S seasonal adjustment program”. In: Proceedings of

the 2007 Federal Committee On Statistical Methodology Research Conference. URL

http://www. fcsm. gov/07papers/Monsell. II-B. pdf.

Narasimhan, Balasubramanian et al. (2020). “Package ‘cubature’”. In:

Pfeffermann, Danny (1991). “Estimation and seasonal adjustment of population means

using data from repeated surveys”. In: Journal of Business & Economic Statistics

9.2, pp. 163–175.

121



Sax, Christoph (2017). seasonalview: Graphical User Interface for Seasonal Adjust-

ment. R package version 0.3. url: https://CRAN.R-project.org/package=

seasonalview.

Schott, James R. (1996). Matrix analysis for statistics. John Wiley & Sons.

Speckman, Paul L and Dongchu Sun (2003). “Fully Bayesian spline smoothing and

intrinsic autoregressive priors”. In: Biometrika 90.2, pp. 289–302.

Sun, Dongchu, Shawn Ni, and Paul L Speckman (2014). “Bayesian Analysis of Mul-

tivariate Smoothing Splines”. Manuscript.

Sun, Dongchu, Robert K Tsutakawa, and Paul L Speckman (1999). “Posterior distri-

bution of hierarchical models using CAR (1) distributions”. In: Biometrika 86.2,

pp. 341–350.

Tong, Xiaojun, Zhuoqiong Chong He, and Dongchu Sun (2018). “Estimating Chinese

Treasury yield curves with Bayesian smoothing splines”. In: Econometrics and

statistics 8, pp. 94–124.

Wahba, Grace (1990). Spline models for observational data. Vol. 59. Siam.

Wakefield, JC, AE Gelfand, and AFM Smith (1991). “Efficient generation of ran-

dom variates via the ratio-of-uniforms method”. In: Statistics and Computing 1.2,

pp. 129–133.

Wang, Yuedong, Wensheng Guo, and Morton B Brown (2000). “Spline smoothing for

bivariate data with applications to association between hormones”. In: Statistica

Sinica, pp. 377–397.

White, Gentry (2006). “Bayesian semiparametric spatial and joint spatio-temporal

modeling”. PhD thesis. University of Missouri–Columbia.

Yue, Yu Ryan, Paul L Speckman, and Dongchu Sun (2012). “Priors for Bayesian

adaptive spline smoothing”. In: Annals of the Institute of Statistical Mathematics

64.3, pp. 577–613.

122



VITA

Benqian Zhang was born on January 20, 1989 in Jinan City, Shandong Province of

China. He graduated with a Bachelor of Science in Information & Computing Science

from the Department of Mathematics, Beijing Institute of Technology in 2013 with a

second degree of economics. Then he received a Master in Statistics from University

of Missouri-Columbia in 2015. He began his doctoral studies in August 2015.

123




