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Regression Analysis of Correlated Interval-censored

Failure Time Data with a Cured Subgroup

Dian Yang

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Interval-censored failure time data commonly occur in many periodic follow-up studies

such as epidemiological experiments, medical studies and clinical trials. By interval-

censored data, we usually mean that one cannot observe the failure time of interest

and instead we know that it belongs to a time interval. Correlated failure time

data commonly occur when there are multiple events on one individual or when

the study subjects are clustered into some small groups. In this situation, study

subjects from same subgroup or the failure events from same individuals are usually

regarded as dependent, but the subjects in different clusters or failure events from

different individuals are assumed to be independent. Besides the correlation between

the cluster, sometimes the cluster size may be informative or carry some information

about the failure time of interest. Cured subgroup is another interesting topic that

has been discussed by many authors. For this situation, unlike the assumptions in

traditional survival model that all study subjects would experience the failure event

of interest eventually if the follow-up time is long enough, some subjects may never

experience or not be susceptible to the event. Such subjects are treated as cured and

assumed to belong to a cured subgroup in a study population.
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The research in this dissertation focuses on regression analysis of correlated interval-

censored data with a cured subgroup via different approaches based on different data

structures. In the first part of this dissertation, we discuss clustered interval-censored

data with a cured subgroup and informative cluster size. To address this, we present a

within-cluster resampling method and in the approach, the multiple imputation pro-

cedure is applied for estimation of unknown parameters. To assess the performance

of the proposed method, a simulation study is conducted and suggests that it works

well in practical situations. Also, the method is applied to a set of real data that

motivated this study.

In the second part of this dissertation, we consider the clustered interval-censored

data with a cured subgroup via a non-mixture cure model. We present a maxi-

mum likelihood estimation procedure under the semiparametric transformation non-

mixture cure model. To estimate the unknown parameters, an expectation maximiza-

tion (EM) algorithm based on an augmentation of Poisson variable is developed. To

assess the performance of the proposed method, a simulation study is conducted and

suggests that it works well in practical situations. An application to a study con-

ducted by the National Aeronautics and Space Administration that motivated this

study is also provided.

In the third part of this dissertation, we investigate the bivariate interval-censored

data with a cured subgroup. A sieve maximum likelihood estimation procedure un-

der the semiparametric transformation non-mixture cure model based on Bernstein

polynomials is presented. A simulation study is conducted to assess the finite sample

performance of the proposed method and suggests that the proposed model works

well. Also, a real data application from the study of AIDS Clinical Trial Group 181

vii



is provided.

viii



Chapter 1

Introduction

1.1 Regression Analysis of Univariate

Interval-Censored Data

The analysis of failure time event data with different censoring has been widely stud-

ied by many authors. Right censoring, the most common type of censoring, occurs

frequently in many areas such as epidemiological studies, psychological experiments

and clinical trials. For such situation, the failure time of interest is either observed

exactly or known to be greater than the censoring time. Many authors have investi-

gated different analyses of right-censored data. Kaplan and Meier (1958) presented

a non-parametric estimator, product limit estimator or Kaplan-Meier estimator, to

estimate the survival function of failure event of interest. Mantel (1966) developed a

logrank test to compare the survival distributions of two samples. Cox (1972) pro-

posed the proportional hazards model with partial likelihood approach for estimation
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of covariate effects. Kalbfleisch and Prentice (2002) and Lawless (2011) provided

extensive illustrations and examples and discussed various statistical models and es-

timation approaches for right-censored data.

Interval-censored data commonly occur in many areas including demo-graphical, epi-

demiological, medical and sociological studies, and have received increasing attention

in the literature. By interval censoring, we mean that the failure time of interest is

not under continuous observation. Let T denote the failure time, the exact failure

time T cannot be observed exactly and is only known to belong to a time interval

(L,R], where L ≤ R. Also, right-censored data and left-censored data could be

treated as special cases of interval censoring, where R = +∞ and L = 0, respec-

tively. Meanwhile, when only one observation is observed, the failure time is either

left- or right-censored, and the data is referred to as Case I interval-censored data

or current status data. The case with more than 2 examination times is usually

called case-2 or case-k interval censored data. The analysis of interval-censored data

is more challenge than that of right-censored data, since the data structure of the

former is more complicated than the latter. As a consequence, the typical methodol-

ogy for right-censored data including counting process and martingale theory cannot

be applied to interval-censored data directly. Also, for regression analysis under the

proportional hazards model, the partial-likelihood-based inference cannot be used for

interval-censored data.

Many methods have been developed on the analysis of univariate interval-censored

failure time data. For nonparametric maximum likelihood estimator(NPMLE) of sur-
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vival function with case-2 interval-censored data, Turnbull (1976) and Groeneboom

and Wellner (1992) proposed a self-consistency algorithm and an iterative convex mi-

norant algorithm, respectively. Later, Wellner and Zhan (1997) developed a hybrid

algorithm combining the self-consistency and expectation maximization (EM) algo-

rithm together, which showed a more rapid convergence speed. For current status

data, the NPMLE could be obtained by the isotonic regression via max-min algorithm

or pool adjacent violators algorithm (Sun, 2006). Another class of methods to esti-

mate survival function or hazard functions is smoothing estimation approach. The

commonly used methods are kernel-based approach using kernel smoothing functions

and spline-based approach via maximizing log-likelihood or penalized log likelihood

function with different spline basis (Sun, 2006). For the comparison of survival func-

tions among different groups, such as groups with different treatments in clinical

studies, many authors discussed different methods including the rank-based test and

the testing based on survival function. Zhao and Sun (2004) extended the log-rank

test for right-censored data to a generalized log-rank test for a mixed interval-censored

data. Petroni and Wolfe (1994) considered a class of asymptotically nonparametric

tests for two sample discrete case-2 interval-censored data based on survival func-

tions. Fang et al. (2002) developed a class of test statistics for general types of

case-2 interval-censored data based on integrated weighted differences between two

estimated survival functions. For current status data, the common test procedure is

also either based on rank statistics modified from log-rank test or a generalization

of the weighted Kaplan-Meier procedure under the assumption that observation time

follows the same distribution (Sun, 2006). Sun (1999) considered the test procedure

focusing on the situation where the censoring distributions may be different for sub-
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jects in different treatment groups.

Regression analysis is of most interest in survival analysis. Many authors have dis-

cussed regression analysis of interval-censored data under the proportional hazards

model

S(t) = exp(−Λ(t)eX
T β).

In the above, S(t) denotes the survival function at time t, Λ(t) is a non-decreasing

baseline cumulative hazard function, and X and β represents the covariates and un-

known parameters, respectively. Finkelstein (1986) discussed regression analysis of

case-2 interval-censored data and developed estimation procedure based on full likeli-

hood. This approach requires estimation for both regression parameter and baseline

hazards function with Newton-Raphson algorithm, which is computationally intensive

when the sample size increases. Satten (1996) and Goggins et al. (1998) both pro-

posed the estimation procedures for case-2 interval-censored data without estimating

baseline hazard function. The former considered a Gibbs sampling procedure for gen-

erating rankings and used a stochastic approximation for solving the score functions,

while the latter developed a Monte Carlo EM algorithm to implement the estimation

procedure of regression parameters. Another type of approach is based on smoothing

functions, which transfers the infinite-dimensional parameters to finite-dimensional

parameters via different smoothing functions like splines (Cai and Betensky, 2003).

For current status data, Huang (1996) consider a maximum likelihood estimation

procedure based on the convex minorant algorithm. However, for large data sets, the

required computation could become intensive.
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Proportional odds model is another commonly used semiparametric model, which

has the form

logit
[
S(t)

]
= logit

[
S0(t)

]
−XTβ,

where S0(t) is the baseline survival function, and logit(x) = log( x
1−x). Huang and

Wellner (1997) discussed the maximum likelihood approach for case-2 interval-censored

data and provided the efficient score function for β. Huang and Rossini (1997a) and

Shen (1998) proposed the sieve maximum likelihood estimation procedure for case-2

interval-censored data with piece-wise linear function and spline functions, respec-

tively. In terms of current status data, Huang (1995) and Rossini and Tsiatis (1996)

studied the nonparametric maximum likelihood estimation and sieve maximum likeli-

hood estimation respectively. Rabinowitz et al. (2000) used the conditional likelihood

approach based on a conditional logistic regression without estimating baseline func-

tion for both case-1 and case-2 interval-censored data.

Since the late 20th century, the transformation model has been introduced for sur-

vival analysis (Chen and Little, 2001; Chen et al., 2002). The survival function under

such model takes the form

S(t) = exp

{
−G

[
Λ(t) eX

T β
]}

. (1.1)

In the above, G(t) is a specific transformation function that is strictly increasing. The

choices of G(x) = x and G(x) = log(1+x) yields the proportional hazards model and

proportional odds model, respectively. One should notice that model (1.1) could be
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written as the linear transformation model

log[Λ(T )] = −XTβ + ε, (1.2)

where ε follows a specific distribution function Fε = 1− exp[−G{exp(x)}]. Many au-

thors have investigated the transformation model for interval-censored data. Zhang

et al. (2005) and Sun and Sun (2005) proposed the estimation procedures based on

estimation equation for case-2 interval-censored data and current status data, re-

spectively. Zhang and Zhao (2013) developed the empirical likelihood (EL) inference

approaches for the regression parameters based on the generalized estimating equa-

tions. Gu et al. (2006) considered the rank-based approach via Markov Chain Monte

Carlo stochastic approximation. However, all the methods mentioned above are com-

putationally demanding or statistically inefficient. Zeng et al. (2016) proposed the

nonparametric maximum likelihood estimation procedure with Poisson random vari-

able data augmentation via an EM algorithm, which could also handle time-dependent

covariates for interval-censored data. One advantage of this method is that it gives a

closed-form solution for estimating baseline hazard function and reduces the compu-

tation cost.

Besides the approaches directly applied to interval-censored data, imputation-based

method is another popular approach. Multiple imputation is a general method to

handle missing data (Rubin, 1987). By multiple imputation, we mean that the im-

putation procedure should be carried out for multiple times. Therefore, multiple

imputation leads to a multiple imputed data sets, which could be analyzed by a stan-

dard model. If we treat interval-censored data as missing data and impute a possible
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survival time from the time interval, then we could apply the typical statistical anal-

ysis for right-censored data to analyze the imputed data. Pan (2000) discussed the

multiple imputation approach for interval-censored data under the proportional haz-

ards model and provided two types of data augmentation. The estimation procedure

is easy to implement, and as a consequence, multiple imputation approach has been

widely applied to some more complex problem with interval-censored data.

1.2 Regression Analysis of Correlated

Interval-censored Failure Time Data

Correlated failure time data commonly occur when there are multiple events on one

individual or when the study subjects are clustered into some small groups. In this

situation, the study subjects from same subgroup or the failure events from same

individuals are usually regarded as dependent, but the subjects in different clusters

or failure events from different individuals are assumed to be independent. When

dealing with such data, the typical survival models assuming independence among

all the subjects are inappropriate. Hougaard (2012) discussed the different types of

multiple-event or clustered failure time data and gave a comprehensive review of most

commonly used models for such problem. One of the most commonly used methods

is marginal approach, which estimates covariate effects based on the marginal distri-

butions with working independence assumption (Lin, 1994; Liang et al., 1995; Clegg

et al., 1999). Jianwen and Prentice (1995) considered the weighted partial likelihood

estimating equations which gains important efficiency when there exists a strong de-

pendency among the failure times events. The working independence model may loss

7



some efficiency when driving estimates under an incorrect model.

Some authors suggested a combination of marginal approach and copula models,

which connect the two marginal distributions through a copula function to construct

the joint distribution and use the copula parameter to determine the dependence

(Genest and Rivest, 1993; Glidden and Self, 1999). As a consequence, we could

model the margins separably from the copula function, which leads to a good way to

interpret both covariate effects and dependence relationship.

Another popular approach for correlated failure time data is the frailty model, which

considers a random effects with a specified distribution to stably estimate the depen-

dency (Clayton, 1978; Hougaard, 1986). The conditional cumulative hazard function

Λ(t) under a commonly used frailty model has the form

Λ(t) = η ×G[Λ0(t)e
XT β].

In the above, G(.) is a prespecified strictly increasing transformation function, Λ0(.)

is an unknown baseline cumulative hazard function and η is a frailty variable follow-

ing a specific distribution with unknown parameters such as gamma distribution or

log-normal distribution. This model could estimate the dependency and covariate

effects simultaneously, but may require a larger computation. Another interesting

method for clustered data is the approach based on within cluster resampling proce-

dure, which repeats to create independent resampled data by choosing one subject

from each cluster to estimate the parameters (Williamson et al., 2008; Cong et al.,

2007). It’s easy to see that this method could avoid modeling the dependence among
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subjects and be easy to implement.

Multivariate or bivariate interval-censored data have also been widely studied in liter-

ature. For the analysis of multivariate interval-censored data, one should face to the

challenge for analyzing interval-censored data as well as considering the correlation

structure between correlated failure times. Goggins and Finkelstein (2000), Chen

et al. (2007), Tong et al. (2008), Chen et al. (2013) considered the marginal approach

for multivariate interval-censored data based on the working independence assump-

tion under the proportional hazards model, proportional odds model, additive hazards

model and linear transformation model. These approaches are commonly based on

estimation equation, which leads to a direct estimation procedure. However, as men-

tioned before, the estimates under an incorrect working correlation matrix may be

inaccurate. One of the popular methods to consider the estimation of dependence is

copula-based approach. Wang et al. (2008) and Hu and Xiang (2013) proposed the

sieve maximum likelihood estimation under proportional hazards model and semi-

parametric transformation model with different copula functions for bivariate current

status data. Sun and Ding (2019) developed a computationally efficient sieve maxi-

mum likelihood estimation procedure for the unknown parameters with a generalized

score test for the regression parameter.

Another popular method for estimating both covariate effects and dependence is the

frailty model. Chen et al. (2009), Wang et al. (2015) and Wen and Chen (2013) fitted

the frailty proportional hazards model to multivariate or bivariate current status data

and interval-censored data. Zhou et al. (2017) and Zeng et al. (2017) developed the
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frailty-based transformation models for bivariate and multivariate interval-censored

data. The former applied the sieve maximum likelihood estimation for regression

analysis, while the latter considered a nonparametric maximum likelihood estimation

procedure.

For clustered interval-censored data, frailty model is the most commonly used method.

Chang et al. (2007); Wen and Chen (2011) proposed the profile likelihood inference

and nonparametric maximum likelihood estimation for clustered current status data,

respectively, under the gamma-frailty proportional hazards model. Li et al. (2012)

considered the frailty additive hazards model with estimation-equation based estima-

tion procedure for clustered interval-censored data. Besides frailty model, copula-

based marginal approach and multiple imputation method have also been studied by

many authors. Cook and Tolusso (2009) and Kor et al. (2013) considered the copula

proportional hazards model with a piecewise-constant baseline hazard function for

clustered current-status and interval-censored data, respectively. Lam et al. (2010)

proposed a multiple imputation approach with EM algorithm under the gamma frailty

proportional hazards model.

1.3 Regression Analysis of Failure Time Data with

a Cured Subgroup

In traditional survival analysis, the typical assumption is that all the study subjects

will experience the failure events of interest eventually if the follow-up time is long

enough. However, this assumption may not hold when some of the subjects may not
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experience or be susceptible to the failure event(Pierce et al., 1979). Farewell (1982)

first considered such subjects as a long-term survival and proposed a mixture model

combining logistic model and parametric survival model with Weibull distribution.

The survival function under mixture model usually takes the form

S(t) = π + (1− π)Su(t) . (1.3)

In the above, π denotes the probability for a subject to be cured, and Su(t) is the sur-

vival function for uncured population which could follow a traditional survival model

involving parametric model and semiparametric model.

For right-censored data, Kuk and Chen (1992) combined logistic regression with the

proportional hazards model and estimated regression parameters based on marginal

likelihood with Monte Carlo approximation. Lu and Ying (2004) considered the

semiparametric transformation cure model and constructed generalized estimating

equations for estimating regression parameters. Ma (2009) and Lam and Xue (2005)

proposed the semiparametric AFT model and proportional hazards model for current

status data, respectively. For interval-censored data, Ma (2010) and Zhou et al. (2016)

considered the mixture proportional hazards cure model. The former proposed the a

maximum likelihood estimation procedure, while the latter used multiple imputation

approach to obtain parameter and variance estimates. The mixture model models

the effects of covariate on the cure rate and the failure time of interest separately. As

a consequence, we could assume different covariate effects for cure rate and failure

risk. When analyzing correlated survival data, one needs to consider both correlation

between some subjects and the cure rate. It’s natural to consider the approaches
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mentioned in Section 1.2 with a mixture cure model. Peng et al. (2007), Niu et al.

(2018), Chen and Lu (2012) and Yu and Peng (2008) discussed estimating equation

approaches under mixture cure model for multivariate right-censored and interval-

censored data. Su and Lin (2019) considered a copula-based approach under the Cox

and ACT mixture cure model for clustered right-censored data. Peng and Taylor

(2011), Li and Ma (2010) and Lam and Wong (2014) proposed the maximum likeli-

hood estimation under the mixture cure model by using a frailty variable to measure

the correlation for multivariate right-censored data and clustered interval-censored

data.

The non-mixture cure model is another approach commonly used for cure sub-

group. Chen et al. (1999) pointed that the mixture cure model has some drawbacks

from both a frequentist and Bayesian perspective. For example, mixture cure model

does not appear to have the traditional survival model structure and describe the un-

derlying biological process generating the failure time. Also, the mixture cure model

can yield improper posterior distributions for many non-informative improper priors.

To overcome these drawbacks, a non-mixture cure model was studied by many au-

thors (Tsodikov, 1998; Chen et al., 1999; Tsodikov et al., 2003). The ideal behind

the non-mixture cure model is that we assume that the cumulative hazard function

is bounded and usually replaced by a cumulative distribution function. The survival

function under the non-mixture proportional hazards cure model takes the form

S(t) = exp

{
− F (t) eX

T β

}
. (1.4)

where F (t) is a prespecified distribution function and β denotes the unknown pa-

rameter. The probability for regarding a subject as cured is the asymptotic value
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of survival function when t → ∞, which is exp{−eXT β} under model (1.4). Since

the model only involves a single uniform model for covariates, the estimation pro-

cedure is usually easy to implement. The study of non-mixture cure rate models

for interval-censored data has also been investigated by several authors. Hu and

Xiang (2013) and Li et al. (2019) considered the semiparametric transformation non-

mixture cure model for interval-censored data, while Diao and Yuan (2019) used the

same model for current status data. For multivariate survival data, the combina-

tion of frailty variable and non-mixture cure model is of most interest for the reason

that there is only one frailty variable in the model. Diao and Yin (2012) and Yin

(2008) discussed a semiparametric transformation non-mixture cure frailty model for

multivariate right-censored data. The former proposed the nonparametric maximum

likelihood estimation procedure, while the latter considered the estimation procedure

in Bayesian paradigm. In terms of interval-censored data with repeated measure-

ments, Thompson and Chhikara (2003) considered a non-mixture cure frailty model

by assuming parametric models for both survival function and cumulative distribution

function.

1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

In Chapter 2, we will discuss clustered interval-censored data with a cured sub-

group and informative cluster size. To address this, we present a within-cluster re-

sampling method and in the approach, the multiple imputation procedure is applied

for estimation of unknown parameters. To assess the performance of the proposed
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method, a simulation study is conducted and suggests that it works well in practical

situations. Also, the method is applied to a set of real data that motivated this study.

In Chapter 3, we will consider the clustered interval-censored data with a cured

subgroup via a non-mixture cure model. We present a maximum likelihood estimation

procedure under the semiparametric transformation non-mixture cure model. To es-

timate the unknown parameters, an expectation maximization (EM) algorithm based

on an augmentation of Poisson variable is developed. To assess the performance of

the proposed method, a simulation study is conducted and suggests that it works well

in practical situations. An application to a set of real data that motivated this study

is also provided.

In Chapter 4, we will investigate the bivariate interval-censored data with a cured

subgroup. We present a sieve maximum likelihood estimation procedure under the

semiparametric transformation non-mixture cure model based on Bernstein polyno-

mials. A simulation study is conducted to assess the finite sample performance of the

proposed method, and the result suggests that the proposed model works well. Also,

a real data application is provided.

Several directions for future research will be discussed in Chapter 5.
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Chapter 2

Regression Analysis of Clustered
Interval-censored Failure Time
Data under the Proportional
Hazards Mixture Cure Model

2.1 Introduction

This chapter discusses regression analysis of clustered interval-censored failure time

data with cure fraction and informative cluster size. Clustered interval-censored fail-

ure time data occur in many areas and many methods have been proposed for their

analysis. For the situation, one needs to deal with two general issues and they are

correlated failure time variables and interval censoring. In practice, in addition to

them, one may also have to deal with two other issues, cure fraction and informa-

tive cluster size. In the following, we will discuss regression analysis of failure time

data for which all of these issues may exist and present a within-cluster resampling
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estimation approach.

The failure time data with interval censoring naturally occurs in many areas such

as epidemiological and medical studies as well as animal carcinogenicity experiments

or more generally periodic follow-up studies (Finkelstein (1986); Sun (2006)). For

the situation, one cannot observe the exact value of the failure time of interest and

instead, can only know that it belongs to an interval. It is easy to see that interval

censoring includes right and left censoring as special cases. As we mentioned in

Section 1.1, Many authors have investigated the analysis of interval-censored data.

The existence of a cure fraction or cured subgroup in a study population has

been discussed by many authors under different set-ups (Kuk and Chen, 1992; Ma,

2010; Zhou et al., 2016). For the situation, unlike the standard or traditional failure

time study where it is assumed that all study subjects would experience the failure

event of interest eventually if the follow-up time is long enough, some subjects may

never experience or not be susceptible to the event. It is well-known that with a

curd subgroup, the regular or usual failure time model and approach will not be

appropriate, and one type of commonly used methods is the two-component mixture

model approach that models the cure rate and the failure risk separately. For example,

one such approach is the combination of the logistic and Cox models for the cure rate

and the failure risk, respectively.

Clustered failure time data arise in a failure time study when some failure times of

interest are correlated due to some common features such as genetic traits or shared

environmental factors. For the situation, the study population consists of a number

of clusters where the subjects in the same cluster may be related but the subjects in

different clusters can be treated to be independent. In addition to the correlation,
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another complicated issue that may occur is that the cluster size may be informative

or carry some information about the failure time of interest. One such example

was given by Williamson et al. (2003) about a study of factors associated with the

periodontal disease. In the data, the cluster size, the number of teeth of a subject, and

the disease status of teeth may be related with each other even given covariates. The

references that discussed this issue include Williamson et al. (2008) and Cong et al.

(2007), who proposed a weighted estimating equation (WEE) approach and a within-

cluster resampling (WCR) procedure, respectively, for right-censored data. Following

them, Chen et al. (2016), Zhang and Sun (2010) and Zhao et al. (2018) generalized

the WEE and WCR methods to interval-censored data under different models. In

this chapter, we will develop a WCR approach for such data in the presence of a

cured subgroup.

The remainder of the chapter is organized as follows. In Section 2.2, we will first

introduce some notation and the assumptions that will be used throughout the chap-

ter and then discuss the resulting likelihood functions. Section 2.3 will present the

proposed WCR approach (Hoffman et al. (2001)) and in the method, by following

Zhou et al. (2016), the multiple imputation approach will be employed for the esti-

mation of parameters and their covariance. One advantage of the method is that it

can be easily implemented. Some results from a simulation study conducted to assess

the finite sample properties of the presented method will be provided in Section 2.4

and suggest that the proposed method works well in practical situations. Section 2.5

applies the approach to a set of real data that motivated this study, and Section 2.6

includes some discussion and concluding remarks.
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2.2 Notation, Assumptions and Likelihood Func-

tion

Consider a failure time study that consists of N independent clusters with ni subjects

in the ith cluster. Let Tij denote the failure time of interest for the jth individual in

the ith cluster, j = 1, . . . , ni, i = 1, . . . , N , and suppose that for Tij, only an interval

(Lij, Rij] is observed such that Lij < Tij ≤ Rij. Also suppose that for subject (i, j),

there exist two vectors of covariates Xij and Zij to be described below, and define the

indicators δLij = I(Lij = 0), δRij = I(Rij = ∞) and δIij = I(0 < Lij < Rij < ∞)

with I denoting the indicator function. Then we have that δLij + δRij + δIij = 1

and the observed data have the form OF = { (Lij, Rij, δLij , δRij , δIij , Xij, Zij, ni); j =

1, . . . , ni, i = 1, . . . , N }.

In the following, we will assume that there may exist a cured subgroup in the

study population. Let uij denote the cured indicator for the jth individual in the ith

cluster such that uij = 0 if a subject belongs to the cured subgroup and 1 otherwise.

Also let π(Zij) = P (uij = 1|Zij) and assume that π(Zij) satisfies

logit(π(Zij)) = γTZij .

Furthermore, let Su(t|Xij) denote the survival function of an uncured subject with

covariates Xij and assume that Su(t|Xij) can be characterized by the proportional

hazards model as

Su(t|Xij) = Su0(t)
exp(βTXij) ,

where Su0(t) denotes the baseline survival function and β a vector of regression pa-
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rameters. Then the survival function of a study subject can be written as

S(t|Xij, Zij) = {1− π(Zij)}+ π(Zij)Su(t|Xij) , (2.1)

That is, we assume that the cure rate can be described by the logistic model and the

failure time of interest can be described by the two component mixture cure model.

Also X and Z represent the covariates that may affect the cure rate and the failure

risk, respectively, and it will be assumed that they can be completely different, share

some components or be the same.

For inference about β, γ and Su0(t), first assume that there is only one subject in

each cluster or ni = 1 for all i. In this case, it is apparent that a natural approach

would be to base the inference on the full likelihood function L(β, γ, Su0|OF ) given

by

N∏
i=1

π(Zi)
1−δLi

[
1− Su0(Ri)

exp(βTXi)
]δLi [

Su0(Li)
exp(βTXi) − Su0(Ri)

exp(βTXi)
]δIi

×
[
1− π(Zi) + π(Zi)× Su0(Li)exp(β

TXi)
]δRi

.

On the other hand, the maximization of the likelihood function above may not be

straightforward and to deal with this, one can notice that if the ui’s were known, we

would have the pseudo likelihood function L(β, γ, Su0|ui’s,OF ) given by

N∏
i=1

{
π(Zi)

1−δLi
[
1− Su0(Ri)

exp(βTXi)
]δLi [

Su0(Li)
exp(βTXi) − Su0(Ri)

exp(βTXi)
]δIi

× [1− π(Zi)]
(1−ui)×δRi

[
π(Zi)Su0(Li)

exp(βTXi)
]ui×δRi }

. (2.2)
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Furthermore one can decompose it into two parts as

L(β, γ, Su0|ui’s,OF ) = L1(γ)× L2(β, Su0) ,

where

L1(γ) =
N∏
i=1

π(Zi)
ui(1− π(Zi))

1−ui ,

and

L2(β, Su0) =
∏
ui=1

[
1− Su0(Ri)

exp(βTXi)
]δLi [

Su0(Li)
exp(βT xi)

]δRi
[
Su0(Li)

exp(βTXi) − Su0(Ri)
exp(βTXi)

]δIi
.

This suggests that if the ui’s were known, one could maximize L by maximizing L1

and L2 separately and some imputation methods could be used (Zhou et al., 2016).

In general, for interval-censored data with informative cluster size, the main diffi-

culty is not the specification of the joint distribution of the failure times but the joint

distribution of failure times and the cluster size. We will develop a within-cluster

resampling procedure that does not need this in the next section.

2.3 Within-cluster Resampling Estimation

Note that in the second step, we will iteratively update the parameter estimators

and their variance estimators under the scenario that there is only one subject in

each cluster. Specifically, in each iteration, we will do multiple imputation m times

to obtain the new estimators based on the estimators in the previous iteration. The

details of algorithm are described as follows.
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Step 1. For the selection of initial estimates, first we set the initial cured indicator

u
(0)
i to be 1− δRi and the failure time T

(0)
i to be the midpoint of (Li, Ri) for uncured

subjects and Li for cured subjects. Then we generate initial estimates of regression

parameters by fitting the logistics model with u
(0)
i and Zi to get γ̂(0) and Σ̂

(0)
γ and

fitting the Cox model for the uncured patients with {T (0)
i , 1−δRi , Xi} to get β̂(0), Σ̂

(0)
β

and Ŝ
(0)
u0 .

Step 2. For (l + 1)th iteration, where l = 0, 1, . . . , we impute the cure indicator

ui and the survival time Ti m times based on the results from the lth iteration

(γ̂(l), Σ̂
(l)
γ , β̂(l), Σ̂

(l)
β , Ŝ

(l)
u0). Specifically, in the kth imputation (k = 1, . . . ,m),

Step 2.1. Sample β and γ from the normal distributions N(β̂(l), Σ̂
(l)
β ) and N(γ̂(l), Σ̂

(l)
γ )

and denote them as β̃
(l+1)
(k) and γ̃

(l+1)
(k) .

Step 2.2. Update the conditional probability of being uncured as

w
(l+1)
(k),i = E(ui|β̃(l+1)

(k) , γ̃
(l+1)
(k) , Ŝ

(l)
u0 , O

(l)
(k))

= 1− δRi + δRi
π̂(Zi)(Ŝ

(l)
u0(T

(l)
(k),i))

exp(β̃
(l+1)
(k)

TXi)

1− ˆπ(Zi) + π̂(Zi)(Ŝ
(l)
u0(T

(l)
(k),i))

exp(β̃
(l+1)
(k)

TXi)
,

where π̂(Zi) = exp(γ̃
(l+1)
(k)

TZi)/[1+exp(γ̃
(l+1)
(k)

TZi)] , and T
(0)
(k),i = T

(0)
i , for k = 1, . . . ,m .

Step 2.3. Based on w
(l+1)
(k),i , sample u

(l+1)
(k),i ∼ Ber(w

(l+1)
(k),i ).

Step 2.4. Let the censoring indicator δ
(l+1)
(k),i = 1− δRi , and generate the failure time

T
(l+1)
(k),i for each subject i as follows: if subject i is right-censored (Ri =∞), let T

(l+1)
(k),i =

Li; otherwise sample T
(l+1)
(k),i from Ŝ

(l)
u0(t)exp(β̃

(l+1)
(k)

Xi) conditional on T
(l+1)
(k),i ∈ (Li, Ri].

Step 2.5. Fit the logistic model with u
(l+1)
(k),i in (Step 2.3) and Zi to get estimators

γ̂
(l+1)
(k) and Σ̂

(l+1)
γ(k) , where γ̂

(l+1)
(k) denotes the maximum likelihood estimate and Σ̂

(l+1)
γ(k)

the inverse of the Fisher information matrix calculated based on the second order
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partial derivatives of the log-likelihood function.

Step 2.6. Fit the Cox model for the uncured patients (u
(l+1)
(k),i = 1) with {T (l+1)

(k),i , δ
(l+1)
(k),i , Xi}

and get β̂
(l+1)
(k) , Σ̂

(l+1)
β(k)

and Ŝ
(l+1)
u0(k), where β̂

(l+1)
(k) denotes the partial likelihood estimates,

Σ̂
(l+1)
β(k) the inverse of Fisher information matrix calculated based on the second order

partial derivatives of the logarithm of the partial likelihood function, and Ŝ
(l+1)
u0(k) the

Breslow estimator.

Step 3. At the end of each iteration, update the estimates as follows

1. β̂(l+1) = 1
m

m∑
k=1

β̂
(l+1)
(k) ,

2. γ̂(l+1) = 1
m

m∑
k=1

γ̂
(l+1)
(k) ,

3. Σ̂
(l+1)
β = 1

m

m∑
k=1

Σ̂
(l+1)
β(k)

+ (1 + 1
m

)

m∑
k=1

(β̂
(l+1)
(k)

−β̂(l+1))(β̂
(l+1)
(k)

−β̂(l+1))T

m−1 ,

4. Σ̂
(l+1)
γ = 1

m

m∑
k=1

Σ̂
(l+1)
γ(k) + (1 + 1

m
)

m∑
k=1

(γ̂
(l+1)
(k)

−γ̂(l+1))(γ̂
(l+1)
(k)

−γ̂(l+1))T

m−1 ,

5. Ŝ
(l+1)
u0 = 1

m

m∑
k=1

Ŝ
(l+1)
u0(k).

Step 4. Repeat Steps 2 and 3 until max{((β̂(l) − β̂(l−1)) � (β̂(l) − β̂(l−1)), (γ̂(l) −

γ̂(l−1)) � (γ̂(l) − γ̂(l−1)))} < 0.001, where � denotes the element-wise multiplication,

or l > 500.

Note that in the above, to accomplish the sampling procedure in Step 2.4, we

can first denote the ordered and distinct time points of all finite Li’s and Ri’s as

t(1) < t(2) < · · · < t(v). Then there will be vi time points from {t(.)} between (Li, Ri] for

each subject i and Li = t∗0 < t∗1 < · · · < t∗vi = Ri. Next we calculate the corresponding

probability mass {p1, . . . , pni}, where ps = Ŝ
(l)
u0(t∗s−1)

exp(β̃
(l+1)
(k)

Xi) − Ŝ(l)
u0(t∗s)

exp(β̃
(l+1)
(k)

Xi).
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At last we sample T
(l+1)
(k),i from {t∗1, . . . , t∗ni} based on the probabilities {p1, . . . , pvi}. If

there is no other time points from {t(.)} between (Li, Ri] (vi = 1), we sample T
(l+1)
(k),i

from U(Li, Ri). For the estimation of the baseline cumulative hazard function, the

Breslow’s method can be used, and the regression parameters are estimated by the

average of the estimates from the m imputations. For the variance estimation, one can

employ the weighted average of within imputation variance and between imputation

variance with an additional weight 1/m used to take into account of the finite number

of imputations. Note that for the size of multiple imputations m, it does not need to

be very large and by following the suggestion of Zhou et al. (2016), we use m = 10

in the numerical study below.

Let Q be an integer, representing the number of the resampling processes in the

first step. In other words, we repeat the resampling process Q times to generate

Q resamples. More specifically, in the qth resampling (1 ≤ q ≤ Q), we draw a

subject randomly from each cluster, giving a sample of independent observations

Oq = { (Lqi , R
q
i , δ

q
Li
, δqRi , δ

q
Ii
, Xq

i , Z
q
i ), i = 1, . . . , N }. Then one applies the estimation

procedure described in the second step to Oq and obtain the estimators of β and γ,

denoted by β̂q and γ̂q, along with the associated covariance estimators Σ̂q
β and Σ̂q

γ,

respectively. The final WCR estimators are given by

β̂WCR =
1

Q
×

Q∑
q=1

β̂q, γ̂WCR =
1

Q
×

Q∑
q=1

γ̂q ,

with their covariance matrices estimated by

Σ̂β
WCR =

1

Q
×

Q∑
q=1

Σ̂q
β −

1

Q− 1
×

Q∑
q=1

(β̂q − β̂WCR)(β̂q − β̂WCR)T ,
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and

Σ̂γ
WCR =

1

Q
×

Q∑
q=1

Σ̂q
γ −

1

Q− 1
×

Q∑
q=1

(γ̂q − γ̂WCR)(γ̂q − γ̂WCR)T ,

respectively. One can expect that the proposed estimators are consistent and their

distributions can be asymptotically approximated by the normal distributions.

2.4 A Simulation Study

In this section, we present some results obtained from a simulation study conducted to

assess the finite sample performance of the estimation procedure proposed in the pre-

vious sections with the focus on the estimation of the regression parameters β and γ.

First we assumed that the covariates Xi’s and Zi’s are either one- or two-dimensional

and generated them in two different ways for each situation. More specifically, for

the one-dimensional situation, we assumed that X = x1 and Z = (z0, z1) with set-

ting z0 = 1 and either generating both x1 and z1 independently from the Bernoulli

distribution with the probability of success 0.5 (Case 1) or generating x1 in the same

way as above but taking z1 = x1 (Case 2). For the two-dimensional situation with

the covariates (X,Z) = (x1, x2, z0, z1, z2), we also set z0 = 1 and either generated

(x1, x2) and (z1, z2) independently from the uniform distribution over U(0, 2) and the

Bernoulli distribution with the probability of success 0.5 (Case 1) or only generated

(x1, x2) in the same way as above but taking (z1, z2) = (x1, x2) (Case 2).

To generate the underlying data, given covariates, we first generated the cured

indicators ui’s based on the logistic model

π(Z) = p(u = 1) =
exp(Z ′γ)

1 + exp(Z ′γ)
.
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Then for the generation of the cluster size ni and the true failure time Tij for uncured

subjects, we first generated the latent variables {wi = (δi/Ei)
(1−α)/α, i = 1, .., N}.

Here Ei denotes a random number following the exponential distribution with mean

1, α is a positive constant between 0 and 1, and

δi =

[
sin(αUi)

sin(Ui)

] 1
1−α sin[(1− α)Ui]

sin(αUi)

with Ui being generated from the uniform distribution over (0, π). Given wi, we

generated ni from either the Binomial distribution B(5, 0.75) if wi is less than or

equal to the median of the positive stable distribution or the Binomial distribution

B(5, 0.25) otherwise. If a zero was generated, a new number was generated.

For the generation of the observed data, we assumed that the marginal survival

function of Tij has the form

Su(tij|wi, X, Z) = Su0(tij)
wi×exp(β∗TX)

given wi, Xi and Zi, which gives

Su(tij|Xi, Zi) = Su0(tij)
exp(βTXi)

with β = β∗×α after integrating out wi. In the above, we took Su0(t) to be the Weibull

survival distribution with the shape parameter of 2 and the scale parameter of 1. To

generate the censoring interval for Tij, we considered the sequence of the observation

times 0 < Yij < Yij + τ < ... < Yij + p× τ <∞ with Yij generated from the uniform

distribution over (0, v) and v, τ and p being some constants chosen to give the desired
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censoring percentages. If uij = 0, we set (Lij, Rij) = (Yij + p× τ,∞). For the subject

with uij = 1, we set (Lij, Rij) = (0, Yij), (Yij+p×τ,∞), or (Yij+t×τ, Yij+(t+1)×τ)

if Tij < Yij, Tij > Yij +p× τ , or Yij + t× τ < Tij < Yij +(t+1)× τ for t ∈ (1, .., p−1),

corresponding to the left-censored, right-censored or interval-censored observation,

respectively. The results given below are based on N = 400 and Q = 100 with 1000

replications.

Table 2.1 presents the results obtained based on the simulated data for the es-

timation of β and γ for the one-dimensional situation with the true values of the

parameters being β∗1 = 1.25, α = 0.8 and γ = (0, 1) along with τ = 0.2 and p = 10,

In the table, we calculated the estimated bias given by the average of the estimates

minus the true value (Bias), the sample standard error (SSE), the average of the esti-

mated standard errors (ASE) and the 95% empirical coverage probability (CP). One

can see that the proposed estimators seem to be unbiased and the estimated standard

error appears to be reasonable. Also, the results on the coverage probabilities indicate

that the normal approximation to the distribution of the proposed estimators seems

to be appropriate.

The simulation results on the estimation of β and γ for the two-dimensional situ-

ation are given in Table 2.2 with the true values of the parameters β∗, α and γ being

(1.25, 1.25), 0.8 and (0, 1, 1), respectively. Also, here we set τ = 0.2 and p = 5. It

seems that they gave similar conclusions as above and again suggest that the proposed

estimation approach appears to work reasonably well for the situations considered.

For the assessment of the normal approximation to the distributions of the proposed

estimators of the regression parameters, we studied the quantile plots of the standard-

ized estimates against the standard normal random variables and Figure 2.1, Figure
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2.2, Figure 2.3 display them corresponding to the results given in Table 2.1 and Table

2.2 under Case 2, respectively. They suggest that the approximation seems to be

reasonable. We also considered other set-ups and obtained similar results.

2.5 An Application

Now we apply the estimation procedure proposed above to a set of clustered interval-

censored failure time data, the hypobaric decompression sickness data (HDSD) aris-

ing from a study conducted by the National Aeronautics and Space Administration

(Conkin et al. (1992)). In the study, the volunteers were recruited and measured

at different time points for their times to onset of the grade IV VGE, a high level

of venous gas emboli that can be treated as a marker of the decompression sick-

ness. Furthermore, each volunteer could take part in the study more than once and

thus we have clustered interval-censored data with the cluster size being the number

of experiments in which each volunteer participated in, which ranges from 1 to 13.

The air bubble in venous blood could cause the decompression sickness in hypobaric

environments.

The data set includes 548 records in total arising from 238 volunteers with ages be-

tween 20 and 54. In addition, there exists some information on three other covariates,

Genders with 1 denoting males and 0 for females, TR360 measuring the decompres-

sion stress, and NOADYN indicating by 1 if the individual was ambulatory. To see if

there may exist a cured subgroup, we obtained the Kaplan-Meier estimator by assum-

ing that all observations were independent and present it in Figure 2.4. One can see

from the figure that the right-censoring rate is over 70%, indicating the possible exis-
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tence of a cured fraction. Figure 2.5 gives the percentage or the rate of the observed

grade IV VGE within each cluster against the cluster size and indicates that it seems

that the two were negatively correlated. In other words, we may have informative

cluster size and it is better to apply the proposed estimation approach to determine

the covariate effects on the time to onset of the grade IV VGE.

For the analysis, we considered different set-ups in terms of selecting X and Z

among the four covariates and also tried different numbers of resamples and multiple

imputations. Based on the similarities of the results, we present in Table 2.3 the

estimation results obtained from three set-up with m = 10 and Q = 100. In the first

set-up, all of the four variables were assumed to have some possible effects on the

failure time, and only Age and Gender were considered possibly to have some effects

on the cure risk. In the second set-up, based on the results from the first set-up, we

removed Age and Gender from the failure time model and kept the other the same

but added the interaction between TR360 and MOADYN by following the suggestion

of Lam and Wong (2014) to the failure time model. The third set-up is the same as

the first one except that the covariate TR360 was added to the cure risk model. We

considered other values for m and Q and obtained similar conclusions.

The analysis results indicate that Age seems to have some mild effects on the cure

risk and so does Gender if not considering TR360. When TR360 was considered for

the cure risk, Gender’s effect disappeared and the results suggest that the environment

with more decompression stress may lead to a high probability for the onset of grade

IV VGE. With respect to the onset risk of grade IV VGE for uncured subjects, among

all covariates, only NOADYN seems to have some significant effects, and the subject

who was ambulatory had higher risk of developing grade IV VGE, which are similar
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to those obtained by Lam and Wong (2014). Unlike Lam and Wong (2014) who

assumed the independent cluster size, however, the results indicate that it seems that

there was no significant interaction effect between TR360 and NOADYN.

2.6 Concluding Remarks

In this chapter, we discussed regression analysis of clustered interval-censored failure

time data in the presence of a cured fraction and informative cluster size, and for

the problem, a WCR-based multiple imputation approach was developed and investi-

gated. Unlike the existing methods, the presented approach can deal with all of four

issues together and can be easily implemented. The simulation study was performed

and suggested that the approach seems to work well for practical situations. Also,

the method was applied to a real set of clustered interval-censored data.

Note that for the multiple imputation, we employed the asymptotic normal data

augmentation (ANDA) in the proposed approach. Instead, one may use the Poor

man’s data augmentation (PMDA). On the other hand, Pan (2000) pointed out that

the result from the PMDA is asymptotically equivalent to that based on the ANDA

but the PMDA can underestimate the variance when data have a relatively large

proportion of right-censored observations, which is usually the case when there exists

a cured subgroup.
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Table 2.1: Simulation results with one-dimensional covariates based on N=400,
Q=100 and replication=1000.

β1 γ0 γ1
Case 1: True 1.25*0.8 0 1

Bias 0.0034 -0.0014 0.0082
SSE 0.0916 0.0912 0.1463
ASE 0.0896 0.0946 0.1432
CP 0.925 0.947 0.943

β1 γ0 γ1
Case 2: True 1.25*0.8 0 1

Bias 0.0009 -0.0037 0.0115
SSE 0.0924 0.0976 0.1437
ASE 0.0917 0.0926 0.1414
CP 0.926 0.940 0.938
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Table 2.2: Simulation results with two-dimensional covariates based on N=400,
Q=100 and replication=1000.

β1 β2 γ0 γ1 γ2
Case 1 True 1.25*0.8 1.25*0.8 0 1 1

Bias 0.0029 0.0051 0.0019 0.0194 0.0097
SSE 0.0867 0.0983 0.1806 0.1649 0.1961
ASE 0.1101 0.1134 0.1766 0.1610 0.1837
CP 0.976 0.969 0.936 0.940 0.933

β1 β2 γ0 γ1 γ2
Case 2 True 1.25*0.8 1.25*0.8 0 1 1

Bias 0.0071 0.0035 0.0207 0.0100 0.0133
SSE 0.0944 0.0960 0.1919 0.1604 0.1902
ASE 0.1123 0.1173 0.1603 0.1567 0.1783
CP 0.968 0.972 0.854 0.936 0.910

Table 2.3: Estimated treatment effects for the HDSD.
Set-up Model Covariate Estimated effects SD p-value

1 Cure Age 0.0451 0.0249 0.0701
Gender 1.1746 0.4608 0.0108

Survival Age -0.0085 0.0233 0.7140
Gender -0.2869 0.4689 0.5406
TR360 0.3609 0.3053 0.2372

NOADYN 1.4307 0.5926 0.0157

2 Cure Age 0.3374 0.1751 0.0540
Gender 1.1533 0.4616 0.0124

Survival TR360 -0.0747 0.5390 0.8897
NOADYN 1.2555 0.6274 0.0354

TR360NOADYN 0.6005 0.6448 0.3516

3 Cure Age 0.3767 0.2130 0.0769
Gender 0.9074 0.6056 0.1340
TR360 0.9912 0.3041 0.0011

Survival Age -0.0428 0.1771 0.8089
Gender 0.0109 0.5652 0.9845
TR360 0.0413 0.3321 0.9010

NOADYN 1.7504 0.6150 0.0044
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Figure 2.1: Quantile plots of the standardized β̂ and γ̂ for the one-dimensional co-
variate situation
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Figure 2.2: Quantile plots of the standardized β̂ for the two-dimensional covariate
situation

33



−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3
γ1

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

γ2

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Figure 2.3: Quantile plots of the standardized γ̂ for the two-dimensional covariate
situation
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Figure 2.4: KM estimate of the survival function for the HDSD
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Figure 2.5: The observed onset rate of grade IV VGE against the cluster size
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Chapter 3

Regression Analysis of Clustered
Interval-censored Failure Time
Data under the Semiparametric
Transformation Non-mixture Cure
Model

3.1 Introduction

In this chapter, we focus on regression analysis of clustered interval-censored failure

time data in the presence of a cured subgroup or fraction under a semiparametric

transformation non-mixture cure model. In the following, we will discuss the proposed

model and present a maximum likelihood estimation procedure with a developed EM

algorithm.

Clustered interval-censored failure time data arise when some failure times of inter-
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est are correlated and clustered into small groups due to some common characteristics

such as clinical sites or environmental factors. In this situation, the subjects from the

same cluster are usually related, but the subjects in different clusters can be treated

as being independent. Among others, Kor et al. (2013) and Lam et al. (2010) dis-

cussed regression analysis of clustered interval-censored data under the framework of

the proportional hazards model. Chen et al. (2016) and Zeng et al. (2017) also consid-

ered the same problem but under the additive hazards model and the semiparametric

transformation model, respectively.

An underlying assumption behind all of the methods described above is that all

study subjects are supposed to eventually experience the failure event of interest if the

follow-up time is long enough. However, as discussed by many authors, this assump-

tion may not hold sometimes since some study subjects may never experience or not

be susceptible to the failure event of interest, and the methods that do not take this

into account would not be valid (Hu and Xiang, 2013; Kuk and Chen, 1992). These

subjects are usually considered as cured and to belong to a cured fraction or sub-

group. An example of such situations is given by a study conducted by the National

Aeronautics and Space Administration on the time to onset of the grade IV venous

gas embolism. Due to the nature of the study, only clustered interval-censored data

are available with 77% right-censored observations, indicating the possible presence

of a cured subgroup. To further see this, Figure 1 presents the estimated survival

functions and again suggests that there may exist a cured friction. More details and

discussion on this will be given below.

To deal with the existence of a cured subgroup, two types of approaches are com-

monly used. One is the two-component mixture cure model-based approach and the
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other is the non-mixture cure model-based approach. The former models the effects of

covariate on the cure rate and the failure time of interest separately and thus does not

have the typical structure of traditional survival models like the proportional hazards

or proportional odds model (Kuk and Chen, 1992; Ma, 2010; Zhou et al., 2016). In

contrast, the latter employs a single, uniform model for covariate effects (Chen et al.,

1999; Hu and Xiang, 2013; Li et al., 2019). Several authors have investigated regres-

sion analysis of clustered interval-censored data with a cured fraction (Lam et al.,

2010; Lam and Wong, 2014; Xiang et al., 2011) but all under two-component mix-

ture cure models. In the following, we will propose a maximum likelihood estimation

approach under a class of semiparametric transformation non-mixture cure models.

The remainder of this chapter is organized as follows. In Section 3.2, we will first

introduce some notation and assumptions used throughout the chapter and then dis-

cuss the resulting likelihood function. The proposed maximum likelihood estimation

approach is described in Section 3.3 along with a novel EM algorithm with the use

of the Poisson variable-based data augmentation. Some results from a simulation

study conducted to assess the finite sample properties of the proposed method are

presented in Section 3.4 and they indicate that the approach works well in practice.

Section 3.5 applies the approach to the National Aeronautics and Space Administra-

tion study described above that motivated this investigation, and Section 3.6 provides

some discussion and concluding remarks.
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3.2 Notation and Assumptions

Consider a failure time study that consists of N independent clusters with ni subjects

in the ith cluster. For j = 1, . . . , ni, i = 1, . . . , N , let Tij denote the failure time

of interest for the jth individual in the ith cluster and Xij a vector of associated

covariates. Suppose that for Tij, only an interval (Lij, Rij] is observed such that Lij <

Tij ≤ Rij and the Ti’s within the same cluster may be correlated. Then the observed

data have the form OF = { (Lij, Rij, δij, Xij, ni); j = 1, . . . , ni, i = 1, . . . , N }. In the

following, we will assume that the censoring is independent (Sun, 2006).

To describe the covariate effects, suppose that there exists a vector of latent vari-

ables with mean zero denoted by bi and given Xij and bi, the survival function of Tij

has form

S(t|Xij, bi) = exp

{
−G

[
F (t) eX

T
ijβ+Z

T
ijbi
]}

. (3.1)

In the above, G(·) denotes a prespecified increasing transformation function, Zij could

be same as or part of Xij, F (·) is an unknown cumulative distribution function, and

β is a vector of regression parameters. Also, suppose that given bi, the Tij’s within

the ith cluster are independent. Then under the independent censoring assumption,

the observed data likelihood function has the form

L(β, F ) =
n∏
i=1

{∫ ∞
−∞

ni∏
j=1

[
exp

{
−G[F (Lij) e

XT
ijβ+Z

T
ijbi ]
}
−

δij ∗ exp
{
−G[F (Rij) e

XT
ijβ+Z

T
ijbi ]
} ]
× fb(bi) dbi

}
, (3.2)

where δij = I(Rij < ∞) and fb (bi) denotes the density function of the bi’s. In the

following, we will assume that fb is the multivariate normal density function with the
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covariance matrix Σ(η) depending on the unknown parameter η and some comments

on this will be given below.

As mentioned above, both Lam et al. (2010) and Chen et al. (2016) discussed the

problem considered here under the two-component mixture cure model. The former

proposed a multiple imputation procedure and the latter gave a resampling method.

Both methods simply the problem by removing either interval censoring or clustering,

respectively. In the following, we will develop a maximum likelihood approach that

directly maximizes the likelihood function (3.2). In particular, for the maximiza-

tion, an EM algorithm will be developed that employs the Poisson variable-based

data augmentation and gives a closed-form solution for estimation of the cumulative

distribution function F .

3.3 Maximum Likelihood Estimation

Before discussing the maximization of the likelihood function L(β, F ) given in (3.2),

first note that one can rewrite the transformation function G(·) as

G(t) = − log

∫ ∞
0

exp(−ξt) fξ(ξ) dξ

with respect to the density function fξ(·) of a frailty variable ξ with the support on

[0,+∞). In particular, by letting fξ(·) be the gamma density function with mean 1

and variance r, we obtain the class of logarithmic transformations G(x) = log(1 +

rx)/r, which gives the proportional odds model and the proportional hazards model

with r = 1 and r = 0, respectively. In consequence, the likelihood function L(β, F )
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can be rewritten as

L(β, F ) =
n∏
i=1

∫ ∞
−∞

{ Ji∏
j=1

∫ ∞
0

{
exp

[
−F (Lij)e

XT
ijβ+Z

T
ijbi × ξij

]
−

δij ∗ exp
[
−F (Rij)e

XT
ijβ+Z

T
ijbiξij

] }
∗ fξ(ξij)dξij

}
× fb(bi) dbi . (3.3)

For the maximization, we will take the nonparametric approach with respect to F

by treating it as a step function with jump pk at the time point tk. Here t1 < ... < tK

denote the ordered distinct observation times of the Lij’s and Rij’s with Rij <∞ and

it is assumed that
∑K

k=1 pk = 1. Then we can rewrite the likelihood function above

as

L(β, F ) =
n∏
i=1

∫ ∞
−∞

{ Ji∏
j=1

∫ ∞
0

[
exp

(
−
∑
tk≤Lij

pke
XT
ijβ+Z

T
ijbi × ξij

)
−

δij ∗ exp

(
−
∑
tk≤Rij

pk e
XT
ijβ+Z

T
ijbi ξij

)]
∗ fξ(ξij) dξij

}
× fb(bi) dbi . (3.4)

In the following, we will develop an EM algorithm for maximizing the likelihood

function above.

To describe the EM algorithm, let Wijk denote the Poisson variable with mean

pk exp(XT
ijβ+ZT

ijbi) ξij and define Aij =
∑

tk≤Lij Wijk and Bij = δij
∑

Lij≤tk≤Rij Wijk.

Then one can easily show that given ξij and bi, the joint probability of Aij = 0 and

Bij > 0 is given by

exp

− ∑
tk≤Lij

pk e
XT
ijβ+Z

T
ijbi × ξij

− δij ∗ exp

− ∑
tk≤Rij

pk e
XT
ijβ+Z

T
ijbiξij

 ,

the term inside the likelihood function given in (3.4). In other words, the likelihood
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function given in (3.4) can be written as the function of the joint probability of

(Aij = 0, Bij > 0). This suggests that for the EM algorithm, we can treat the Wijk’s,

ξij’s and bi’s as the complete data and the resulting complete-data log likelihood has

the form

lc(β, F ) =
n∑
i=1

{ Ji∑
j=1

[ K∑
k=1

{
Wijk ∗ (log(pk) +XT

ijβ + ZT
ijbi + log(ξij))

− pk eX
T
ijβ+Z

T
ijbiξij − log(Wijk!)

}
+ log(fξ(ξij))

]
+

{
− d

2
− 1

2
log(|Σ|)− bTi Σ−1bi

2

}}
(3.5)

with Aij = 0, Bij > 0 and
∑K

k=1 pk = 1.

In the M-step of the EM algorithm, we need to maximize lc(β, F )−λ (
∑K

k=1 pk−1),

where λ is the Lagrange multiplier. For this, one can derive and solve the following

score equations

Sβ =
n∑
i=1

Ji∑
j=1

{
− Ê(eX

T
ijβ+Z

T
ijbiξij)Xij +

K∑
k=1

Ê(Wijk)Xij

}
= 0, (3.6)

Spk =
n∑
i=1

Ji∑
j=1

{
− Ê(eX

T
ijβ+Z

T
ijbiξij) + Ê(Wijk)

1

pk

}
− λ = 0, (3.7)

Sλ =
K∑
k=1

pk − 1 = 0, (3.8)

with respect to β, pk and λ, where Ê(·) denotes the conditional expectation given
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the observed data. In particular, by combining the equations (3.7) and (3.8), we can

obtain a closed-form solution for pk as

p̂k =

∑n
i=1

∑Ji
j=1 Ê(Wijk)∑n

i=1

∑Ji
j=1

∑K
k=1 Ê(Wijk)

.

For the covariance matrix Σ, one can simply use the nonparametric estimator given

by Σ̂ = n−1
∑n

i=1 Ê
(
bib

T
i

)
.

In the E-step of the EM algorithm, one needs to calculate the conditional expecta-

tions Ê[ξije
XT
ijβ+Z

T
ijbi ], Ê[Wijk] and Ê[bTi bi] given the observed data. For this purpose,

one can employ the following two facts. One is that the joint density function of ξij

and bi given the observed data is proportional to

{ Ji∏
j=1

{
exp[−

∑
tk≤Lij

pke
XT
ijβ+Z

T
ijbi × ξij]− δij ∗ exp[−

∑
tk≤Rij

pke
XT
ijβ+Z

T
ijbiξij]

}
∗ fξ(ξij)

}

× (2π)−d/2 |Σ|−1/2 exp

{
−b

T
i Σ−1bi

2

}
. (3.9)

The other is the conditional expectation of Wijk given bi, ξij and observed data

E(Wijk|bi, ξij) = δijI(Lij < tk ≤ Rij)
pke

XT
ijβ+Z

T
ijbiξij

1− exp{−
∑

Lij<tl<Rij
pke

XT
ijβ+Z

T
ijbiξij}

+ δij ∗ I(tk > Rij)pke
XT
ijβ+Z

T
ijbiξij + (1− δij) ∗ I(tk > Lij)pke

XT
ijβ+Z

T
ijbiξij . (3.10)

By combining the steps above, the EM algorithm can be summaried as follows.

• Step 1: Choose initial values for β, pk and Σ,

• Step 2: Calculate Ê[ξije
XT
ijβ+Z

T
ijbi ], Ê[Wijk] and Ê[bTi bi] with the Gaussian quadra-

ture method.
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• Step 3: Update β, pk and Σ by using the closed-form estimator given above for

the pk’s and one-step Newton-Raphson method for β and Σ, respectively.

• Step 4: Repeat Steps 2–3 until the convergence is achieved.

Let θ denote all parameters in β and Σ and θ̂ the estimator of θ given by the

approach proposed above. Then one can expect that asymptotically, θ̂ is unbiased

and its distribution can be approximated by the normal distribution. For estimation

of the covariance matrix of θ̂, by following Zeng et al. (2017), we suggest to use

the profile likelihood approach. More specifically, define F̂θ = arg maxF logL(θ,F),

which could be determined by the EM algorithm above with only updating F in the

M-step. Also define

V̂n = n−1
n∑
i=1

[
{ ∂
∂θ
li(θ, F̂θ)|θ=θ̂}

⊗2
]
,

an estimator of the information matrix of θ, where li(θ, F̂θ) denotes the part of the

log-likelihood function logL(θ,F) corresponding to the ith cluster. Here ∂li(θ, F̂θ)/∂θ

could be estimated by the first-order numerical difference with a perturbation constant

hn, which could be set to be a constant of order n−1/2 by following the suggestion of

Zeng et al. (2017). Then one can estimate the covariance matrix of θ̂ by (nV̂n)−1.

3.4 A Simulation Study

In this section, we present some results obtained from a simulation study conducted

to assess the finite sample performance of the proposed estimation procedure with

the focus on the estimation of regression parameters. In the study, we considered the

situation with two covariates X1ij and X2ij generated independently from the uniform
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distribution over U(0, 1) and the Bernoulli distribution with the probability of success

0.5, respectively. For the cluster size ni, two set-ups were used with the first one being

to generate the ni’s from the set of {1, 2, 3} with the probability {0.1, 0.7, 0.2} and the

second being to generate them from the uniform distribution over the set of {1, .., k}.

To generate the true failure times, we first generated the latent variables bi’s from

the normal distribution with mean zero and variance σ2 = 0.5. Given the Xij and

bi’s, the failure times Ti’s were assumed to follow model (1) with the logarithmic

transformation G(x) = log(1+rx)/r, F (t) = 1−exp(−t), and setting the Zij to be 1.

For the generation of interval-censored observations, it was supposed that each subject

potentially had 10 observation times with the first being generated from the uniform

distribution over (0, 0.3) and the gap time between any two successive observation

times being generated from the same distribution plus 0.1. For all subjects, the length

of study was assumed to be 3. The results given below are based on the number of

clusters N = 200 or 400 with 1000 replications.

Table 3.1 presents the results obtained on estimation of the regression parameter

β as well as σ2 with the true value β = (β1, β2)
T = (−0.5, 0.5)T , r = 0, 1 or 1.5 for

the logarithmic transformation, and the cluster size generated under the first set-up.

They include the estimated empirical bias (Bias) given by the average of the obtained

estimates minus the true value, the sample standard error (SSE) of the estimates,

the average of the estimated standard errors (ASE) and the 95% empirical coverage

probability (CP). One can see from the table that the proposed estimator seems to

be unbiased and the estimated standard error appears to be in agreement with the

sample standard error. Also, the results on the 95% empirical coverage probabilities

indicate that the normal approximation to the distribution of the proposed estimators
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seems to be reasonable.

To assess the possible effect of the cluster size on the estimation, we repeated

the study above except generating the cluster size by using the second set-up. The

obtained results with k = 3 or 10, n = 200, and the true value β = (β1, β2)
T =

(0.5,−0.5)T are presented in Table 3.2 and they seem to give the same conclusions

as with Table 3.1. In other words, the proposed estimators seem to be robust with

respect to cluster sizes. We also considered other set-ups, including different distri-

butions for the latent variables bi’s, and obtained similar results.

3.5 An Application

Now we apply the maximum likelihood estimation approach proposed in the previous

sections to the study conducted by the National Aeronautics and Space Administra-

tion (NASA) on the hypobaric decompression sickness data mentioned above (Conkin

et al., 1992; Lam and Wong, 2014). In hypobaric environments, a high grade of ve-

nous gas embolism (VGE), an abnormal collection of air, may form a bubble in venous

blood and cause serious decompression sickness. To assess and measure the decom-

pression sickness, the time to the onset of the grade IV VGE, a high level of venous

gas embolism, is often used and was recorded for volunteers in the study. However,

the exact onset time is not available and instead, only interval-censored observations

were obtained. Furthermore, since each individual could take part in the experiment

more than once, we face clustered interval-censored data on the time to the onset of

the grade IV VGE.

More specifically, the observed data set consists of 548 records or observations
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from 238 volunteers, and among the observations, 124 are interval-censored and the

remaining 424 are right-censored. In other words, the right-censored rate is about

77%, indicating that there may exist a cured subgroup. As mentioned above, this

can be further seen from Figure 3.1, which gives two Kaplain-Meier (KM) estimates,

obtained by assuming all observations being independent and setting Tij to be equal

to Lij or Rij, respectively, if Rij <∞ or treating Tij to be right-censored if Rij =∞,

of the survival function of the time to the onset of the grade IV VGE. For each

subject, there exist four covariates and they are the age ranging from 20 to 54, the

gender with 0 denoting females and 1 males, TR360 measuring the decompression

stress, and NOADYN with 1 indicating if the individual was ambulatory.

Table 3.3 presents the analysis results given by the application of the estimation

approach proposed in the previous sections. Here for the transformation function

G and the covariate Zij, as in the simulation study, we considered the logarithmic

transformation with different values for r and set Zij = 1. Since they are quite

similar, we only provide the results obtained with r = 0 or 1, corresponding to

the proportional hazards model and the proportional odds model, respectively. For

the analysis, we considered two types of models or two set-ups. One is to include

only the four covariates, and the other is first to include both four covariates and

their interactions and then perform a backward variable selection based on Akaike

information criterion. The latter results in the inclusion of the two interactions of

NOADYN with the gender and TR360, respectively. In particular, the age did not

seem to have interaction with other covariates.

Without considering any interaction, the analysis indicates that except gender,

all of three other covariates had significant effects on the onset of grade IV VGE.
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More specifically, it seems that the subjects with younger age, more decompression

stress or being in ambulatory tend to have significantly higher risks for the onset

of grade IV VGE. By including the interaction, the analysis suggests that one only

needs to consider the interaction of NOADYN with gender or TR360 and both seems

to be significant. In particular, they indicate that among the individuals who were

ambulatory, males had a higher risk for the onset of the grade IV VGE than females,

and otherwise, females seem to have a higher risk than males. Also, it is interesting

to note that the analysis suggests that TR360 seems to have significant effects on the

onset of the grade IV VGE for ambulatory subjects but have no effects otherwise.

Lam and Wong (2014) analyzed the same data set under a mixture cure model and

suggested that only NOADYN and the interaction between NOADYN and TR360

had signifiant effects on the onset time.

3.6 Discussion and Concluding Remarks

In this chapter, we discussed semiparametric regression analysis of clustered interval-

censored failure time data in the presence of a cured fraction or subgroup, and for

the problem, a class of semiparametric transformation non-mixture cure models was

presented. For estimation, the maximum likelihood estimation procedure was derived

and in particular, an EM algorithm that employed the Poisson variable-based data

augmentation was developed for the implementation of the approach. To assess the

finite sample performance of the proposed method, a simulation study was performed

and suggested that the approach seems to work well for practical situations. Also,

the method was applied to the hypobaric decompression sickness data that motivated
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this study.

Note that for the variance estimation, the proposed method depends on the selec-

tion of perturbation constant hn. In the simulation study, we followed the suggestion

from Zeng et al. (2017) and tried several different values of hn of order n−1/2, and

the results are similar. Also in EM algorithm, we used ”mvQuad” Package for the

calculation of Gaussian quadrature and chose the number of nodes to be 5. Based on

our simulation results by using 10 and 20 as the number of nodes with n = 200 in the

first set-up, the choice of the number of nodes did not significantly affect the result.
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Figure 3.1: KM estimates of the survival function for the time to the onset of
the grade IV VGE

Table 3.1: Simulation results on estimation of β and σ2

r n β1 β2 σ2 n β1 β2 σ2

0 200 True -0.5 0.5 0.5 400 True -0.5 0.5 0.5
Bias 0.0030 0.0091 0.0182 Bias 0.0048 0.0009 0.0503
SSE 0.1593 0.2780 0.2411 SSE 0.1331 0.2306 0.1783
ASE 0.1601 0.2747 0.2479 ASE 0.1310 0.2251 0.1676
CP 0.956 0.949 0.930 CP 0.949 0.950 0.955

1 200 True -0.5 0.5 0.5 400 True -0.5 0.5 0.5
Bias 0.0188 0.0320 0.0407 Bias 0.0054 0.0085 0.0221
SSE 0.2234 0.3849 0.3247 SSE 0.1582 0.2558 0.2254
ASE 0.2244 0.3878 0.3571 ASE 0.1519 0.2629 0.2265
CP 0.944 0.954 0.960 CP 0.946 0.954 0.942

1.5 200 True -0.5 0.5 0.5 400 True -0.5 0.5 0.5
Bias 0.0427 0.0370 0.0124 Bias 0.0414 0.0318 0.0047
SSE 0.2143 0.3721 0.3151 SSE 0.1997 0.3258 0.2322
ASE 0.2177 0.3763 0.3312 ASE 0.1897 0.3278 0.2465
CP 0.957 0.951 0.940 CP 0.933 0.958 0.958
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Table 3.2: Simulation results on estimation of β and σ2 based on n=200 and
replication=1000 with different cluster size k.

r k β1 β2 σ2 k β1 β2 σ2

0 3 True 0.5 -0.5 0.5 10 True 0.5 -0.5 0.5
Bias 0.0076 -0.0034 0.0408 Bias 0.0001 0.0027 0.0106
SSE 0.1921 0.3275 0.2150 SSE 0.0901 0.1563 0.1053
ASE 0.1987 0.3456 0.2272 ASE 0.0876 0.1534 0.1333
CP 0.949 0.951 0.959 CP 0.946 0.942 0.976

1 3 True 0.5 -0.5 0.5 10 True 0.5 -0.5 0.5
Bias 0.0025 0.0036 0.0431 Bias 0.0175 -0.0185 0.0057
SSE 0.2676 0.4883 0.3003 SSE 0.1346 0.2218 0.1325
ASE 0.2740 0.4784 0.3017 ASE 0.1295 0.2236 0.1404
CP 0.934 0.941 0.962 CP 0.934 0.946 0.937

1.5 3 True 0.5 -0.5 0.5 10 True 0.5 -0.5 0.5
Bias 0.0370 0.0367 -0.0112 Bias 0.0429 0.0439 0.0243
SSE 0.2899 0.5051 0.2929 SSE 0.1353 0.2166 0.1235
ASE 0.2872 0.5001 0.3265 ASE 0.1356 0.2344 0.1471
CP 0.945 0.937 0.970 CP 0.936 0.958 0.942

Table 3.3: Estimated covariate effects for the NASA study.

Set-up Model Covariate Estimated effects SD p-value

Age -0.0699 0.0080 <0.0001
1 Proportional Gender -0.0724 0.3403 0.8314

Hazards TR360 0.9705 0.1880 <0.0001
NOADYN 0.8077 0.3373 0.0166

Age -0.0651 0.0087 <0.0001
Proportional Gender 0.0684 0.3639 0.8507

Odds TR360 1.0584 0.2063 <0.001
NOADYN 0.8730 0.3743 0.0196

Age -0.0221 0.0070 0.0018
Gender -1.6785 0.6111 0.0060

2 Proportional TR360 -0.4460 0.3129 0.1540
Hazards NOADYN -1.4727 0.4273 0.0005

Gender*NOADYN 2.4738 0.7543 0.0010
TR360*NOADYN 1.7618 0.4129 <0.0001

Age -0.0188 0.0096 0.0500
Gender -1.8553 0.7111 0.0009

Proportional TR360 -0.4937 0.3878 0.2030
Odds NOADYN -1.5308 0.4998 0.0022

Gender*NOADYN 2.7473 0.8840 0.0018
TR360*NOADYN 2.0891 0.4930 <0.0001
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Chapter 4

Regression Analysis of Bivariate
Interval-censored Failure Time
Data under the Semiparametric
Transformation Non-mixture Cure
Model

4.1 Introduction

In this chapter, we consider a semiparametric transformation non-mixture cure model

for bivariate interval-censored failure time data in the presence of a cured subgroup.

In the following, we propose a sieve maximum likelihood estimation procedure and

conduct a series of numeric studies.

Bivariate interval-censored failure time data commonly occur in clinical trials and

biomedical studies. There exist several approaches for regression analysis of bivari-
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ate interval-censored failure time data. Goggins and Finkelstein (2000), Chen et al.

(2007), Tong et al. (2008), Chen et al. (2013) fitted various marginal models for gen-

eral multivariate interval-censored data based on the working independence assump-

tion. Wang et al. (2008) and Sun and Ding (2019) considered different copula-based

models for bivariate current status data and interval-censored data, respectively. Also,

the frailty model has been widely studied by many authors (Chen et al., 2009; Wang

et al., 2015; Wen and Chen, 2011, 2013; Zhou et al., 2017; Zeng et al., 2017).

The existence of cured subgroup in a study population has been discussed by

many authors under different set-ups. To address the existence of cured subgroup,

one type of commonly used methods is the two component mixture model approach,

which models the cure rate and the failure risk separately (Kuk and Chen, 1992; Ma,

2010; Zhou et al., 2016; Niu et al., 2018; Peng and Taylor, 2011). Another popular

approach is based on the non-mixture cure model, which builds a uniform model for

covariate effects and therefore, has the typical structure of traditional survival model

like proportional hazards model or proportional odds model(Chen et al., 1999; Hu and

Xiang, 2013; Li et al., 2019; Yin, 2008; Castro et al., 2014). In terms of multivariate or

bivariate interval-censored data with a cured subgroup, several authors discussed the

estimation under the mixture cure model (Kim, 2017; Yu and Peng, 2008; Lam et al.,

2010; Lam and Wong, 2014; Li and Ma, 2010). For non-mixture cure frailty model,

Thompson and Chhikara (2003) assumed the parametric models for both survival

function and cumulative distribution function. In the following, we will propose

a sieve maximum likelihood estimation approach under a class of semiparametric

transformation non-mixture cure models by using a frailty variable to model the

correlation within same subjects.
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The remainder of the chapter is organized as follows. In Section 4.2, we will in-

troduce some notation, assumptions and models used throughout the chapter and

then discuss the resulting likelihood functions. Details of the proposed sieve max-

imum likelihood estimation approach will be described in Section 4.3. Specifically,

Bernstein polynomials are employed to approximate the unknown baseline cumulative

distribution functions and it can be relatively easy to implement. Section 4.4 provides

some numerical results from a simulation study conducted to assess the finite sample

properties of the proposed method. Section 4.5 applies the approach to a real data

example and Section 4.6 includes some discussion and concluding remarks.

4.2 Notation and Assumptions

We now consider a bivariate interval-censored data framework. Suppose that there

are two related failure times of interest denoted as T1 and T2 among n independent

subjects. Let Tij, j = 1, 2; i = 1, ..., n denote the failure time for the jth event in the

ith subject. Let Zi denote the p-dimensional covariates which may affect two failure

times for ith subject. We assume that there exists a latent variable η with mean 1

and unknown variance γ > 0, and given Zi and ηi, the conditional cumulative hazard

function of Tij has the form

Λ(tij|Zi, ηi) = ηi ×Gj[Fj(t)e
ZTi β]. (4.1)

In the above, Gj(.) is a prespecified strictly increasing transformation function, and

Fj(.) is an unknown cumulative distribution function, so that we allow a cure pro-

portion which is exp{−ηi ×G[eZ
T
i β]}. Furthermore, we assume that given Zi and ηi,
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Ti1 and Ti2 are independent.

Note that model (4.1) provides a class of flexible models including many commonly

used models. For example, by letting G(x) = x and G(x) = log(1 + x), model

(4.1) becomes the proportional hazards model and proportional odds model. By

using different transformation function Gj, this model allows T1 and T2 to follow

different survival models. This model has been discussed by Castro et al. (2014),

which assumed that the covariate effects are different among different failure events

of interest. Here, for simplicity, we assume that the covariate effects on two failure

times are same in model (4.1). Zhou et al. (2017) also used a similar model without

assuming a cure subgroup, which replaced Fj(t) with Λ0j(t), where Λ0j(t) is a baseline

cumulative hazard function. One should also notice that model (4.1) is similar but

not same to the model used in Yin (2008), which takes the form Λ(tij|Zi, wi) =

G[wi × F (t)eZ
T
i β], where wi is a frailty variable. It’s not hard to see that the frailty

we used here is outside of the transformation function, which gives a closed form

likelihood function after integrating ηi when ηi follows a gamma distribution.

Next we suppose that the failure time Tij cannot be observed exactly, and instead

we only know that it fall in the interval (Lij, Rij], where Lij < Rij. If Rij = ∞, the

subject is either cured or experience the failure after last examination time. Define

a censoring indicator δij = I(Rij < ∞), where I denotes the indicator function. In

the following, we assume that the joint distribution of the Lij, Rij and Zi does not

involve unknown parameters in model (4.1) and define θ = (β, γ, F1, F2). Then the
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observed likelihood function could be written as

L(θ) =
n∏
i=1

{∫ ∞
−∞

2∏
j=1

[
exp{−η ∗G[F (Lij)e

ZTi β]}−

δij ∗ exp{−η ∗G[F (Rij)e
ZTi β]}

]
× fη(η) ηbi

}
, (4.2)

where fη(η) is the density function of η. If we assume that η follows a gamma

distribution as one usually does, we obtain that

L(θ) =
n∏
i=1

{
S(Li1, Li2|Zi)− δi2S(Li1, Ri2|Zi)− δi1S(Ri1, Li2|Zi)

+ δi1 ∗ δi2S(Ri1, Ri2|Zi)
}
, (4.3)

where S(t1, t2|Zi) = [1 + γG1{F1(t1)e
ZTi β} + γG2{F2(t2)e

ZTi β}]−1/γ. In next section,

we will propose a sieve maximum likelihood estimation procedure focusing on the

situation that η follows the gamma distribution.

4.3 Sieve Maximum Likelihood Estimation Proce-

dure

In this section, we consider a sieve maximum likelihood estimation procedure to

estimate the unknown parameters θ ∈ Θ

Θ = {θ = (β, γ, F1, F2) ∈ B ⊗M1 ⊗M2}.
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Here B = {(β, γ) ∈ Rp×R+, ||β||+||γ|| ≤M} with p denoting the dimension of β and

M denoting a positive constant, andMj is the collection of all distribution functions

over the interval [cj, uj], where 0 ≤ cj < uj < ∞, j = 1, 2. In practice, [cj, uj]

is usually taken as the range of Lij’s and finite Rij’s. Then it’s natural to obtain

the MLE for θ by maximizing log(L(θ)). Following Huang and Rossini (1997b), we

consider the sieve maximum likelihood estimation method and define the sieve space

as

Θn = {θn = (β, γ, F1n, F2n) ∈ B ⊗M1
n ⊗M2

n}.

In the above,

M j
n = {Fnj(t) =

m∑
k=0

φjkBk(t,m, cj, uj) :
∑

0≤k≤m

|φjk| ≤Mn, 0 ≤ φj0 ≤ φj1 ≤ ... ≤ φjm = 1}.

with Bk(t,m, cj, uj) being Bernstein basis polynomial as

Bk(t,m, cj, uj) =(
m

k
)(
t− cj
uj − cj

)k × (1− t− cj
uj − cj

)m−k , k = 0, . . . ,m,

where m = o(nv) for some v ∈ (0, 1), j = 1, 2. Then the sieve maximum likelihood

estimator can be defined as θ̂n = (β̂n, γ̂n, F̂1n, F̂2n), the value of θ that maximizes the

log-likelihood function ln(θ) = log(Ln(θ)) over Θn.

By using Bernstein polynomials, we transfer the estimation problem with both

finite-dimension and infinite-dimension parameters into an estimation problem only

involving finite-dimension parameters. Comparing to other smoothing functions like

B-splines, Bernstein polynomial has a benefit that we don’t need to specify the in-

terior knots, which makes the estimation based on Bernstein polynomial more flexi-
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ble. Meanwhile, the Bernstein polynomial has the optimal shape preserving property

among all approximation polynomials (Carnicer and Peña, 1993). To estimate θ, we

should first notice that there are some restriction for parameters of φ due to the prop-

erty of F1 and F2 including nonnegativity, monotonicity and boundedness on [0, 1].

The restriction that 0 ≤ φj0 ≤ φj1 ≤ ... ≤ φjm could guarantee the nonnegativity

and monotonicity of F1 and F2 (Chak et al., 2005). Also, by letting φjm = 1, F1 and

F2 will go to 1 when t → ∞. To obtain the maximum likelihood estimation, several

existing constrained nonlinear optimization methods including the method of moving

asymptotes (MMA) and augmented Lagrangian algorithm could be considered (Svan-

berg, 2002; Birgin and Mart́ınez, 2008). For the numerical study in Section 4.4 and

4.5, we use the nloptr function, which is a built-in function in R package ”nloptr”.

In addition, for the implementation of the estimation approach proposed above,

we still need to consider the selection of m and two transformation function G1

and G2. For this, we suggest to consider several different values of m and various

transformation functions, and choose the combination of (m,F1, F2) that minimizes

the Akaike information criterion (AIC),

AIC = −2ln

(
θ̂n

)
+ 2(p+ 1 + 2(m+ 1)).

In summary, the estimation procedure could be organized as follows:

1. Choose m, G1 and G2 and obtain the maximum likelihood estimator θ̂ by max-

imizing the likelihood function.

2. Calculate AIC based on θ̂ obtained in step 1.

3. Repeat step 1-2 for all combination of m, G1 and G2. Choose the combination
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that gives the smallest AIC and record the corresponding estimator.

For the estimation of covariance matrix of parameter θ1 = (β, γ), following Zeng

et al. (2017), we suggest to use the profile likelihood approach. More specifically,

define F̂θ1 = arg maxF logL(θ1,F), which could be determined by keeping θ1 fixed

and estimate F1 and F2 via maximizing the log-likelihood function. Also define

V̂n = n−1
n∑
i=1

[
{ ∂
∂θ1

li(θ1, F̂θ1)|θ1=θ̂1}
⊗2
]
,

an estimator of the information matrix of θ1, where li(θ1, F̂θ1) denotes the part

of the log-likelihood function logL(θ1,F) corresponding to the ith cluster. Here

∂li(θ1, F̂θ1)/∂θ1 could be estimated by the first-order numerical difference with a per-

turbation constant hn, which could be set to be a constant of order n−1/2 by following

the suggestion of Zeng et al. (2017). Then one can estimate the covariance matrix of

θ̂1 by (nV̂n)−1.

4.4 A Simulation Study

In this section, we conduct a simulation study to evaluate the finite sample perfor-

mance of the proposed estimation procedure. We focus on the estimation of regression

parameters under different transformation functions. In the study, we only consid-

ered a one-dimensional covariate Zi, which is generated independently from Bernoulli

distribution with the probability of success being 0.5. To generate the true failure

times, we first generated the latent variables ηi’s from a gamma distribution with

mean 1 and variance γ = 0.5. Given the Zi and ηi’s, the failure times Ti’s were
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assumed to follow model (1) with F1(t) = F2(t) = 1− exp(−t) and β = 0.5 or −0.5.

For transformation function, we use a class of logarithmic transformation functions

with form

G(x) = log(1 + rx)/r, r ≥ 0, (4.4)

which includes the proportional hazards model and proportional odds model with

r = 0 and r = 1, respectively. Specifically, we consider 4 different combinations of

transformation functions G1 and G2: (1) G1(x) = G2(x) = x; (2)G1(x) = G2(x) =

log(1 + x); (3) G1(x) = x;G2(x) = log(1 + x); (4)G1(x) = log(1 + r1 ∗ x)/r1 G2(x) =

log(1 + r2 ∗ x)/r2, where r1 = 0.5, r2 = 1.5. In terms of choice of m, we used

m = dn1/4e = 4, the smallest integer larger than n1/4. And we set the end of study

to be 3 and used [0, 3] for [cj, uj], j = 1, 2 in Bernstein polynomial.

For the generation of interval-censored observations, it was supposed that each

subject will be examined at 10 equally spaced time points over (0.01, 2.99). At each

time point, a subject was examined for the occurrence of the failure events with

probability 0.5. Then for each subject, Lij and Rij were defined as the last exact

observation time before Tij and the first exact observation time after Tij, j = 1, 2 and

i = 1, . . . , n. The results showed below are based on n = 200 with 500 replications.

The results in Table 4.1 include the estimated empirical bias (Bias) given by

the average of the obtained estimates minus the true value, the sample standard

error (SSE) of the estimates, the average of the estimated standard errors (ASE)

and the 95% empirical coverage probability (CP). One can see that the proposed

estimator seems to be unbiased and the estimated standard error appears to be in

agreement with the sample standard error. Also, the results on the 95% empirical

coverage probabilities indicate that the normal approximation to the distribution of
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the proposed estimators seems to be reasonable.

4.5 An Application

Now we apply the proposed sieve maximum likelihood estimation procedure to a real

data set from the study of AIDS Clinical Trial Group 181 (ACTG181), which concerns

the time to the shedding of opportunistic infection cytomegalovirus in the urine and

blood of an HIV-infected individual (Goggins and Finkelstein, 2000). The patients

in the study were examined for the presence of CMV shedding at their discrete clinic

visits, so that the times to CMV shedding were interval-censored. In particular,

some patients had already had the positive results for a blood test or urine test,

which leading to a left-censored data. Some patients had not yet started shedding by

the end of the study and yielded right-censored observations. Among the total 204

patients, 174 patients have right-censored observations for CMV shedding in blood,

and 88 individuals have right-censored records for both events. Therefore, there may

exist a subgroup of patients who are not susceptible to the CMV shedding. This can

be further seen from Figure 4.1, which provides the Kaplain-Meier (KM) estimates

for CMD shedding in blood and urine, respectively, obtained by setting Tij to be

equal to Lij or Rij if Rij <∞ or treating Tij to be right-censored if Rij =∞.

The main purpose for this study is to analyze the effect of baseline CD4 cell

counts on the presence of CMD shedding in patient’s urine and blood. In particular,

the patients were classified into two groups based on the CD4 cell counts. Let T1

and T2 denote the CMV shedding time in the blood and urine, respectively. Define

Z = 1 if the baseline CD4 count was less than 75 cells/mul, and Z = 0 otherwise. For
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[cj, uj], we set the cj = 0 and use the end time of study 24 for uj. For the analysis,

we considered several combination of different m and G1 and G2 and calculated the

AIC defined in Section 4.3 for each combination. In particular, we chose m from

{3, 4, 5} following Zhou et al. (2017). For the transformation functions G1 and G2,

we considered a series of logarithmic transformation functions with different values

of r in model (4.4). We first try a large window by choosing the equally spaced grid

points of r ranging from 0 to 20 with increments of 1, and further set a small window

for r1 ranging from 14 to 16 with increments of 0.1.

Table 4.2 presents the estimation results of two models including the one with

smallest AIC and the one considering the proportional odds model for T1 and the

proportional hazards model for T2 under different m. We can see that the combination

of a large value for r1 around 15 and 0 for r2 gave the smallest AIC value. This result

indicates that the probability of CMD shedding occurrence in the urine is higher than

that in the blood for the same individual, while the probability that a patient was

not susceptible to CMD shedding in blood, which is (1 + eZ
T
i β ∗ 15)−ηi/15, is higher

than that in urine, which is exp{−ηi × eZ
T
i β}. Zhou et al. (2017) showed that the

different choices of G1 and G2 didn’t affect the estimation results and AIC values.

In our situation, a preference for a larger r1 and smaller r2 may be caused by the

consideration of cure rate. Since the right censored rate of the time to CMD shedding

in blood is higher than that in urine, it’s natural to choose the models providing a

larger cure rate for T1 and a smaller cure rate for T2. In addition, the result that the

AIC values with different m and same transformation functions are similar shows a

robustness to the choice of the degree of Bernstein polynomials m when it’s around

n−1/4.
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For testing of covariate effect, the parameter estimates under the model with

smallest AIC is 1.8044, which leading to a p-value much smaller than 0.05. This

result indicates that the subjects whose baseline CD4 count were lower than 75 had

a significantly higher risk for CMV shedding in the blood and urine than those whose

baseline CD4 count were above 75. Thus, the baseline CD4 count seems to have the

effect of predicting the occurrence of CMV shedding. This result is in agreement with

Kim (2017), where they considered a copula-based mixture cure model and showed

that the patients with lower CD4 cells tended to have a higher chance to shed both

on urine and blood. If we choose m=3, G1 = log(1 + x) and G2(x) = x, the estimate

of β is 1.4189 with estimated standard error equal to 0.2682, yielding a score statistic

equal to 5.2904, is similar to those obtained by Zhou et al. (2017), which gave the

estimates β̂ = 1.5039 yielding a score statistic equal to 4.68.

4.6 Discussion and Concluding Remarks

In this chapter, we discussed regression analysis of bivariate interval-censored failure

time data in the presence of a cured fraction or subgroup. We presented a class of

semiparametric transformation non-mixture cure models with a frailty variable. To

obtain the estimates of regression parameters, a sieve maximum likelihood estimation

procedure based on Bernstein Polynomial was derived. A simulation study was per-

formed to evaluate the finite sample performance of proposed method and suggested

that the approach worked well for practical situation. Also the method was applied

to a real set from a AIDS study.
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Table 4.1: Simulation results with one covariate with n=200 and replication=500.

Para. True Bias SSE ASE CP
G1(x) = x, G2(x) = x

β 0.5 0.0194 0.1619 0.1607 0.946
γ 0.5 0.0467 0.1686 0.1673 0.944
β -0.5 0.0351 0.1413 0.1489 0.954
γ 0.5 0.0587 0.1918 0.1912 0.946
G1(x) = log(1 + x), G2(x) = log(1 + x)

β 0.5 0.0200 0.2214 0.2142 0.934
γ 0.5 0.0479 0.1983 0.1916 0.964
β -0.5 0.0152 0.1822 0.1926 0.950
γ 0.5 0.0573 0.2469 0.2315 0.940

G1(x) = x, G2(x) = log(1 + x)
β 0.5 0.0194 0.1667 0.1701 0.962
γ 0.5 0.0271 0.1726 0.1724 0.954
β -0.5 0.0415 0.1547 0.2184 0.950
γ 0.5 0.0395 0.1645 0.2050 0.936

G1(x) = log(1+0.5∗x)
0.5

, G2(x) = log(1+1.5∗x)
1.5

β 0.5 0.0345 0.2037 0.2044 0.934
γ 0.5 0.0341 0.1925 0.1899 0.944
β -0.5 0.0339 0.1784 0.1880 0.960
γ 0.5 0.0599 0.2308 0.2282 0.956
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Table 4.2: Estimated covariate effects and AIC value.
m=3 Para. Est SE P-value AIC

G1(x) = log(1 + x ∗ 15.2)/15.2 β 1.8062 0.2921 < 0.0001 879.7528
G2(x) = x γ 1.3685 0.4329

G1(x) = log(1 + x) β 1.4189 0.2682 < 0.0001 954.4004
G2(x) = x γ 0.9596 0.2458

m=4 Para. Est SE P-value AIC
G1(x) = log(1 + x ∗ 15)/15 β 1.8044 0.2931 < 0.0001 877.0185

G2(x) = x γ 1.2994 0.3262
G1(x) = log(1 + x) β 1.3393 0.2409 < 0.0001 949.4478

G2(x) = x γ 0.6321 0.2209
m=5 Para. Est SE P-value AIC

G1(x) = log(1 + x ∗ 14.9)/14.9 β 1.7518 0.2899 < 0.0001 877.465
G2(x) = x γ 1.2608 0.3854

G1(x) = log(1 + x) β 1.2662 0.2464 < 0.0001 947.4579
G2(x) = x γ 0.5881 0.2458
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Figure 4.1: KM estimate of the survival function for CMD shedding in blood and
urine
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Chapter 5

Future Research

For regression analysis of correlated interval-censored failure time data with a cured

subgroup, a number of issues remain unsolved and need further investigation. In this

chapter, we will briefly discuss and point out several directions for future research.

5.1 Regression Analysis of Clustered

Interval-censored Failure Time Data under the

Proportional Hazards Mixture Cure Model

For the topic in Chapter 2, one direction for future research is that here we have

assumed that it is known which covariates may have the effects on the cure risk or

the failure risk and it is apparent that this may not be true. In practice, as in the

application discussed above, one could try different set-ups for the selection of X and

Z and compare the obtained results. However, it is clear that it would be helpful if a

data-driven approach can be developed for this. Another direction is that it would be
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useful to provide a rigorous justification for the asymptotic normality of the proposed

estimators of the regression parameters as well as other asymptotic properties. Also,

for the uncured subjects, instead of the proportional hazards model, one may consider

the use of some other models such as the additive hazards model to model the failure

time of interest.

5.2 Regression Analysis of Clustered

Interval-censored Failure Time Data under the

Semiparametric Transformation Non-mixture

Cure Model

For the problem in Chapter 3, there exist several directions for future research. One is

that the focus in Chapter 3 has been on the situation where both covariates and their

effects are time independent. It is apparent that sometimes this may not be true and

it would be useful to generalize the proposed method to the situation where either co-

variates or their effects or both are time-dependent. Another direction is that, for the

selection of the parameter r in the logarithmic transformation or the transformation

function G in model (3.1), we took the trying and comparison approach. It is clear

that it would be helpful if a data-driven approach for this could be developed. Also,

it would be useful to provide a rigorous justification for the asymptotic properties of

the proposed estimator.
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5.3 Regression Analysis of Bivariate

Interval-censored Failure Time Data under the

Semiparametric Transformation Non-mixture

Cure Model

For the topic in Chapter 4, one could extend it in several parts. In the estimation

procedure, we only focused on gamma frailty. It’s natural to consider a frailty variable

following different distribution like log-normal distribution. Also, in model (4.1),

we assumed that the covariate effects for both two failure events were same. This

assumption may be invalid in some situation, so that one may consider a more general

model

S(tij|Zi, η) = exp
{
− η ×Gj[Fj(t)e

ZTi βj ]
}
.

In addition, for the selection of transformation functions G1 and G2, we chose them

based on AIC criterion. One may put some assumptions on the form of Gj like

the logarithmic transformation function and develop some estimation procedures to

determine them. Another direction is that our discussions were focused on time-

independent covariates and their effects. It will be useful to extend the proposed

model and estimation procedure to time-dependent covariates or coefficients.
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