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Dissertation Structure 

This dissertation is organized into 7 chapter. Chapter 1 introduces overarching goal and 

background of this project, along with a brief overview of the informatics methods used to 

explore the objective. Chapter 2 presents the data used in this dissertation, including how 

they were collected and processed. Chapter 3 presents the transcriptomics analysis 

workflow along with an exploration of the results. Chapter 4 introduces the multiomics 

strategy, using 3 omics datasets from the FR697 datasets and exploration of the results. 

Chapter 5 details the generation of the FR697 specific transcriptome. Chapter 6 introduces 

the development of interactive visualization methods for multiomics datasets. Chapter 7 

concludes this dissertation and presents the way forward and future directions. 
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Abstract 

Maize is one of the most important crops grown in the continental US and worldwide, and as such, 

major interest is directed towards understanding the impact of drought conditions on maize growth 

and development. Nodal roots, which develop from the base of the stem and produce the framework 

of the mature root system, can continue to grow under water stress conditions that inhibit the growth 

of the leaves and stem. To better understand the molecular mechanisms that led to this remarkable 

ability, we analyzed multiomics (transcriptome, proteome, metabolome) datasets generated from 

the growth zone of nodal roots collected from the reference inbred line B73 and from inbred line 

FR697, which exhibits a relatively greater ability to maintain root elongation under water-stressed 

conditions. We developed an informatics analytics pipeline consisting of a discriminatory 

multiomics data integration approach combining sparse Generalized Canonical Correlation 

Analysis (sGCCA) and generalized Partial Least Square analysis (PLS) to incorporate all datasets 

into one holistic global network and form clusters spanning all omics levels. Significant elements 

from these clusters were connected to various observations associated with water stress in the root 

tip samples and reinforced by their roles in biological pathways. We also generated an annotated 

“SuperTranscriptome” assembly from Pacbio Iso-Seq and RNA-Seq datasets to serve as a 

representative assembly for the FR697 genotype. The results were incorporated into the 

KBCommons maize database for storage and analysis from various viewpoints. To visualize 

interactions between the many elements, we are also developing a suite of 3D visualization, 

collectively called the “KBCommons Omics Studio”, integrated with the KBCommons framework. 

Using these methods, we showcase possible biomarkers related to drought stress and allied 

observations. Supported by NSF Plant Genome Program IOS #1444448. 
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Chapter 1: Introduction & Motivation 

 

1.1 Effects of drought on the maize plant 

Maize (Zea mays L.) is considered one of the most important food crops in the world, 

utilized not only as a food crop but also as feed for livestock, to produce various chemicals 

and to generate biofuels. Maize is grown in various countries, with up to 90 million acres 

of arable land utilized for maize cultivation in the United States alone[1]. In 2012, almost 

78% of maize growing areas in the US experienced drought conditions and in subsequent 

years, large regions have continued to face substantial drought events, resulting in lower-

than-expected harvest yields. The socio-economic costs of drought are well recognized, 

and various organizations closely monitor its effects on food shortages both country- and 

world-wide[2]. 

As such, there is a major interest in understanding the effects of drought on the maize plant, 

in particular the growth and functioning of the root system. The maize plant has a distinct 

root system, comprising of seminal roots which form during the germination phase; and 

nodal roots, which develop from the base of the stem and produce the framework of the 

mature root system, thus providing the bulk of water and nutrient uptake needed for the 

mature plants. Early studies reported that the nodal roots[3], can continue to grow under 

water stress conditions that inhibit the growth of the leaves and stem[4], [5]. This 

phenotype indicates an innate survival mechanism present in the maize plant. However 

very little is known about the underlying biological mechanisms and genetics associated 

with ability.  
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In plants, organ growth encompasses two types of cellular activity – cell division and cell 

expansion[6]. In primary and nodal roots of maize, cell division occurs in the apical 3 mm, 

whereas cell elongation occurs throughout the apical 10 mm[7]. The dynamics of both of 

these activities are altered in roots exposed to water stress[8]. Thus, to gain insights into 

the genetic mechanisms behind drought stress adaption or acclimation in maize nodal roots, 

apical 1-cm samples of the root tips were collected from B73 genotype plants grown under 

well-watered and water-stressed conditions in the field by the drought root team lead by 

the Sharp lab. Similar samples were also collected from maize inbred line FR697 plants 

grown alongside the B73 plants. Originally developed by Illinois Foundation Seeds Inc., 

the FR697 genotype exhibits a greater ability for root growth maintenance when compared 

to the reference inbred line B73 under similar water stress conditions[9]–[11].  

One issue while collecting samples from field grown plants is the effect of various 

environmental factors upon them. Major variation and batch effects are caused by factors 

as simple as amount of sunlight during sample collection, soil hardness, previous day’s or 

previous week’s weather[12]–[16]. With so many variables in play, a lot of unnecessary 

noise is added to expression and/or quantitative data, resulting in various issues during data 

harmonization and integration. To alleviate some of these issues, FR697 maize nodal root 

tip samples were also collected from plants grown under drought stress in the Sharp lab 

using their recently developed method called the “split root growth chamber system” [17]. 

This system grows maize nodal root samples in a controlled environment and at precise 

water deficit levels, greatly reducing environmental effects. These root tip samples from 

both field and lab plants were used to generate multiple replicates of RNA-Seq datasets. 

The lab samples were also pooled to produce proteomics and metabolite datasets as well. 
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These datasets form the core of several data mining strategies to detect key elements related 

to drought response signatures presented in this dissertation. 

1.2 Data mining strategies using omics datasets 

The overarching goal of this project is to understand the biochemical mechanisms related 

to root growth maintenance and survival adaptation of the maize plant in drought stress 

conditions. One way to gain insights into the mechanisms of an organism is by calculating 

and comparing the abundance of transcripts per gene present in the genome of a species. 

This gives a snapshot of gene transcription activity of an organism by quantifying the 

expression levels for the samples under study. These datasets can also be compared with 

each for differential gene expression patterns, detecting genes which are significantly 

expressed in one group or another.   

Significantly expressed genes can be organized into highly correlated clusters of interest, 

using unsupervised statistical tools like WGCNA[18] suggesting some sort of interaction 

or influence on each other. Genes coding for transcription factors within these correlated 

clusters can be highlighted and based upon protein interaction information taken from 

public databases such as STRINGdb[19], [20], be used to predict if any of the genes 

contribute to various observed phenotypes. Such results when overlayed over pathway 

information taken from public databases such as KEGG[21] or Reactome[22], has become 

a robust way to find unique interactions.  

Another strategy is to look at omics datasets from the same bio samples. Traditionally, for 

such an “multiomics” approach, each omics dataset is analyzed on its own. Studies start 

with taking the first omics dataset in the series, generating a subset of significant elements, 
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and moving onto the next omics level, where a smaller set of connected significant 

elements are selected[23]–[25]. This results in a filter-funnel down approach with each 

layer constrained to elements which have the support of known connections. Thus, many 

important and related elements are usually left out, especially elements directly correlated 

to a diseased state or mutation state of individuals[26]. These left out elements could be 

from alternative pathways[27] or connected to control mechanisms which are either 

activated or de-activated due to the changes in the state of the individual; and thus, of great 

interest for further exploration. 

Thus, the different omics layers need to be integrated and treated as larger global dataset, 

rather than split up into groups of local interactions, if we want to find these elements which 

act as nodes in the network of components. To integrate and analyze transcriptome, 

proteome and metabolite data, multiple strategies have been developed and used in the 

research community. Most integration methods focus on pairs of omics datasets[28], [29] 

such as transcriptomics and metabolomics, etc. Multivariate methods are usually the 

common feature detection method in such constrained cases, however where larger more 

complex datasets are to be analyzed; feature selection methods[30], [31] are employed to 

filter datasets down to key components.  
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1.3 De-novo Transcriptome assembly 

While a relatively high-quality reference genome is available for the maize plant, it is based 

upon the B73 genotype. This leaves the door open for the presence of unique genes or 

formation of isoforms unique to the FR697 genotype. A de-novo transcriptome assembly 

using RNA-Seq short reads produces contigs which represent the transcripts formed during 

gene expression and can be used an effective substitute for a genome assembly. Tools like 

the Trinity assembler[32] use a large number high-quality RNA-Seq datasets such as those 

from the FR697 field and lab samples to generate a collection of contigs. Many of these 

contigs might be repeats of the same expressed transcripts and are usually reduced by using 

dedicated clustering algorithms such as CD-HIT[33]. To confirm that these transcripts 

represent all or most of the expressed genes from the samples, they are annotated by 

predicting their translated proteins and matching them with a database of known proteins. 

Using an expanded proteome such as combination of multiple plant species or even an 

entire kingdom is a viable strategy to annotate unrecognized transcripts. 

1.4 Data Visualization 

One key aspect of such informatics studies is the reporting of results in an abstract but 

informative manner. Most results are reported in the form of 2 dimensional graphs[34]–

[37] such as PCA plots, Venn diagrams, heatmaps, etc. Since most of the observations in 

omics studies are expression based, PCA or correlation plots can visualize most of the 

observations as logical categories over multiple components. This however is severely 

limited in the context of systems biology and multiomics results, which by design have 

multiple dimensions representing the biological layers and observed physiological 



6 
 

information. There are methods which work with visualization tools such as 

Cytoscape[38], Gephi[39], etc. where users can upload datasets, along with edge and node 

information, to visualize 3-dimensional graphs. This requires significant experience to 

correctly build and visualize networks, including the steps of processing the datasets into 

feature coordinates suitable for the visualization tools. 

Another example of a visualization method which can cover elements from multiple 

datasets and their relationships is a Circos plot[40]. It does an efficient job of generating 

an abstract view of relationships, however too many interconnections can distort the 

visualization, rendering it unusable. In recent years, some specialized biological databases 

have integrated various sources to annotate specific biomolecule interactions, such as 

STRING[19], [20] and STITCH[41], [42], for protein-protein and protein-chemical 

interactions respectively, display their interaction information in a pseudo 3D network 

visualization, with nodes being either proteins or chemicals and different categories of 

connections according to the score assigned to their connection. This serves as an 

inspiration for a proposed development of a multilayer PCA/correlation plot based 3-

dimensional interactive plot based on a simple RGL based visualization method called 

Grimons[43]. Built upon the database backend of a KBCommons[44]–[46] framework, the 

interactive visualization will have multiple interactive elements to highlight relationships 

along with annotations from different layers.  
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Chapter 2: Maize nodal root samples collection and omics 

dataset generation 

 

2.1 RNA-Seq Sample Collection and Sequencing 

Maize nodal root tip samples (node 2) were collected from plants 

grown in two experiments – in the field (B73 and FR697) or in 

controlled-environment growth chambers (FR697). Samples 

collected from both experiments were sectioned into three regions 

(Figure 1) at the following distances from the root apex: Region A, 

0-3.5 mm (including the root cap); Region B, 3.5-6.5 mm; Region 

C, 6.5-10 mm. 

Field experiments were performed at the Bradford Research Center, 

University of Missouri, Columbia, MO in 2017 using a protocol 

developed and implemented by the Sharp lab. This consisted of 

B73 and FR697 seeds planted at 12 seeds/m in 4.57 m plots, 4 

rows wide with 0.76 m row spacing in a randomized complete 

block design with six replications. Plants were grown to 

Vegetative-stage 3, which was 16 days after planting, equating to 

33.2 growing degree days (GDD) [47] after which they were harvested and root tips 

samples collected. The experiment was conducted under a rainout shelter, which allowed 

control over water availability by excluding precipitation. Well-watered plots were 

Figure 1: Maize nodal 
root tip structure, 
divided into three 
sections: Region A, 0-
3.5 mm; Region B, 
3.5-6.5 mm; Region C, 
6.5-10.5 mm 
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irrigated at regular intervals while water-stressed plots received no water after germination.  

Campbell Scientific 229-L Soil Matric Potential sensors were placed at 5-15 cm into the 

soil in four replications to monitor soil matric potential and temperature throughout the 

experiment. Relevant weather data was collected from the Bradford Research Center 

weather station. 

Growth chamber experiments were conducted in a split root system[9], [17] that was also 

developed by the Sharp lab at the University of Missouri. This system consists of two 

concentric tubes that are used as inner and outer chambers to separate the seedling (primary 

and seminal) root system from the nodal root system, respectively, together with the 

substrate (PRO-MIX HP; Premier Tech, Québec, Canada) the roots are growing in. The 

substrate water potentials in each chamber were independently controlled by addition of 

pre-calibrated amounts of water. This system was used to sample nodal root tips from 

FR697 plants, with the intention of analyzing biochemical responses to two water stress 

levels: severe stress (-0.9 MPa outer chamber, -0.4 MPa inner chamber) and moderate 

stress (-0.9 MPa outer chamber, well-watered inner chamber [≤-0.1 MPa]), together with 

a control treatment in which the substrate in both chambers was well-watered. Samples 

were collected 19 days after planting and germination.   

The nodal root tip sections were pooled into six biological replicates for field samples and 

five biological replicates for growth chamber samples. Each replicate contained a 

minimum of eight root sections representing a minimum of four plants. Root tips were 

taken from Field and lab samples if their nodal root 2 lengths were measured to be within 

1 (one) Standard deviation of the mean nodal root 2 length within the batch from each 

treatment and genotype. Root tips were frozen in liquid nitrogen and ground using a 
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Qiagen/Retsch tissuelyser II bead-beater with 1/8" stainless steel beads from union process 

(part#0070-01). Root tip homogenate was then isolated using the RNeasy Plant Mini Kit 

(Qiagen). Isolated RNA was DNAse-treated with TURBO™ DNase (Thermo Fisher). 

DNAse-treated RNA quality was assessed using the 2100 Bioanalyzer (Agilent 

Technologies Inc.). RNA samples were then sent to Novogene (Sacramento, CA) for 

library preparation and sequencing, producing high quality paired-end 150 bp RNA-Seq 

libraries. In total 69 RNA-Seq datasets, 34 from field-grown samples and 45 from growth 

chamber-grown samples were generated as summarized in table 1. 

 

2.2 Metabolite samples’ quantification  

Metabolite samples were generated from the same set of well-watered and severe stress 

treatment FR697 maize root tip biological samples. These samples were processed and 

quantified by an outside company, Metabolon, Inc. – resulting in a dataset containing 570 

quantified metabolites with three replicates per condition. 

Samples were prepared using the automated MicroLab STAR® system from Hamilton 

Company. Several recovery standards were added prior to the first step in the extraction 

process for QC purposes.  Extraction was performed with methanol under vigorous shaking 

Table 1: Distribution of RNA-Seq samples replicates per 
phenotype and tip region for each genotype. 
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for 2 min (Glen Mills GenoGrinder 2000) to precipitate protein and dissociate small 

molecules bound to protein or trapped in the precipitated protein matrix, followed by 

centrifugation to recover chemically diverse metabolites. The resulting extract was divided 

into five fractions: two for analysis by two separate reverse phases (RP)/UPLC-MS/MS 

methods using positive ion mode electrospray ionization (ESI), one for analysis by 

RP/UPLC-MS/MS using negative ion mode ESI, one for analysis by HILIC/UPLC-

MS/MS using negative ion mode ESI, and one reserved for backup. Samples were placed 

briefly on a TurboVap® (Zymark) to remove the organic solvent. The sample extracts were 

stored overnight under nitrogen before preparation for analysis. 

The sample extracts were dried then reconstituted in solvents compatible to each of the 

four methods as described. Each reconstitution solvent contains a series of standards at 

fixed concentrations to ensure injection and chromatographic consistency.  One aliquot 

was analyzed using acidic positive ion conditions, chromatographically optimized for more 

hydrophilic compounds.  In this method, the extract is gradient-eluted from a C18 column 

(Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 

0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).  A second aliquot was 

also analyzed using acidic positive ion conditions but is chromatographically optimized for 

more hydrophobic compounds.  In this method, the extract is gradient eluted from a C18 

column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA, and was operated 

at an overall higher organic content.  A third aliquot was analyzed using basic negative ion 

optimized conditions using a separate dedicated C18 column. The basic extracts were 

gradient-eluted from the column using methanol and water, with 6.5mM Ammonium 

Bicarbonate at a pH of 8. The fourth aliquot was analyzed via negative ionization following 
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elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using a 

gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8. 

The MS analysis alternates between MS and data-dependent MSn scans using dynamic 

exclusion.  The scan range varies slightly between methods, but covers approximately 70-

1000 m/z.  These methods produced raw peak files which were analyzed using the 

company’s own in-house informatics protocol supported by their own LIMS software and 

database of mass spectral entries to identify the concentration of biochemicals, identifiable 

as metabolites. Peaks are quantified as area-under-the-curve detector ion counts.  For 

studies spanning multiple days, a data adjustment step is performed to correct block 

variation resulting from instrument inter-day tuning differences, while preserving intra-day 

variance. Following median scaling, then imputation of missing values, if any, with the 

minimum observed value for each compound, the data were transformed to the natural log 

for statistical analysis. The raw area count and normalized imputed datasets were reported 

for the 3 replicates per condition. 

2.3 Representative phenotypic observations for FR697 Samples  

Various measurements were also collected along with the FR697 plant tissue samples at 

the end of the growth cycle of the maize plants to serve as phenotypic observations. 

Phenotypic records taken from the plant samples consisted of multiple measurements – 

Total Area, Total Mature Area, Total Immature Area, N1_Avg_Length (Nodal Root 1 

Average Length), N2_Avg_Length (Nodal Root 2 Average Length), Total Plant Mass (mg), 

Total Shoot Mass (mg), Total Root Mass (mg), Nodal Root Mass (mg) and Seedling Root 

Mass (mg). These records were collected from a total of 294 severe stressed and 308 well-

watered plants.  
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Using the processing steps as described in Figure 1, the phenotypic measurements were 

reduced to a representative set of phenotypic observations to be used as part of the 

multiomics data integration study. However not all plants had their measurements recorded 

in full and as such not all observations are statistically useful. We started by removing the 

plant individuals which had records of less than half of their observations. Concurrent 

filtering steps retained samples within ±2 standard deviations of the median value of 

measured Nodal root 2 lengths. At the end of the workflow (Figure 2), we amassed a set 

of phenotypic observations which correspond to biological replicates from other omics 

datasets and can be used for downstream multiomics analysis. We collected measurements 

for an average of 12 plants per replicate for the severe stress treatment and average of 8 

Figure 2: Workflow to reduce plant-wise phenotypic 
recorded measurements to a representative set of 
observations. 
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plants per well-watered replicate, organized into 3 replicates (Figure 3). The rationale 

behind this workflow is that biomatter from multiple plant samples were combined to 

create biological replicates for transcriptomics RNA sequencing and metabolite 

quantification.   

2.4 Iso-Seq transcript dataset generation  

A maize FR697 tissue collection was created using samples taken from various sections of 

plants grown under greenhouse conditions. These samples comprised: unpollinated silks, 

immature tassel, immature ear, kernels 14 days after pollination (DAP), kernels 21 DAP, 

whole germinated kernels, whole seedling at the 2-leaf stage, young leaf, ligule, mature 

leaf-base, mature leaf-mid section, mature leaf-tip, sheath, nodal root minus tip, and nodal 

root tip. RNA was extracted from these tissue samples using the RNeasy (Qiagen, Hilden, 

Germany) kit with RLC buffer following the manufacturer’s recommended protocol. The 

RNA samples were then pooled for subsequent amplification, from which Barcoded SMRT 

libraries were prepared and sequenced on the PacBio platform with X SMRT cells by 

Novogene Corporation Inc. (Sacramento CA). 

Figure 3: Phenotypic records and measurements of all plant 
samples were filtered down to average 12 plants per replicate for 
the severe stress treatment and average 8 plants for the well-
watered control. The final representative set of observations had 
values which were the mean of the 12 or 8 plants per replicate. 
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Resultant PacBio Iso-Seq reads were processed using the Iso-Seq 3 analysis pipeline 

(Pacific Biosciences) [48]. This included Circular Consensus Sequence (CCS) generation, 

full-length reads identification (“classify” step), clustering isoforms (“cluster” step), and a 

“polishing” step using Arrow consensus algorithm. At the end of this pipeline, a set of long 

read transcripts was generated to be used for further analysis. 
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Chapter 3: Gene expression analysis of maize drought stressed 

RNA-Seq samples 

 

Analyzing the gene expression patterns for a set of samples is a robust method to gain 

insights into the biological properties of an organism. Gene expression analysis can broadly 

be broken down into two types of transcript quantification – Relative and absolute. 

Absolute quantification looks at transcript abundance per gene across a genome for each 

sample of a certain phenotype. Relative quantification compares the expression levels 

between groups of samples for different phenotypes to predict which genes might have 

significantly active in each group. Significantly expressed genes are organized into highly 

correlated clusters based on their expression values which are linked to annotations terms 

related to drought, suggesting some involvement in the maize plant’s unique adaptation. 

The same expression datasets are used in combination with a list of known transcription 

factors to predict gene regulatory networks, by connecting significant transcription factors 

and genes.      

3.1 Quantifying gene expression for a set of samples  

Gene expression is a blanket term which covers the process by which information from a 

gene is used in the synthesis of a functional gene product through the process of translation 

and transcription (central dogma of biology)[49]. This results in various products such as 

proteins, housekeeping RNA, small non-coding RNAs (miRNAs, piRNA) and long non-

coding RNA. Proteins form the bulk of these products and many of them acting as 



16 
 

regulatory factors. Analyzing gene expression usually involves quantifying the direct 

product of transcription, i.e., transcripts. Various methods have been developed over the 

years ranging analyzing a single or a small group of genes using northern and western blots, 

fluorescent in situ hybridization, quantitative PCR, etc (Low/mid plex methods) to large 

datasets which cover a majority of genes present in a genome. This includes DNA 

microarrays[50], [51], serial analysis of gene expression (SAGE)[52], [53] and more 

recently using RNA-Seq libraries generated from cDNA sequences[54], [55].  

Absolute quantification of transcript abundance is conducted by interpolating the PCR 

amplification signal for a cDNA/RNA sequences onto a standard curve, and is usually 

presented as either a weight quantity, concentration, or the most used format – “copies” of 

the sequence amplified. This sort of quantification is generally used by quantitative PCR 

or real time PCR methods. 

For high-throughput absolute quantification, short read segments of transcripts are 

collected from tissue bio samples and amplified via PCR. Using dedicated high-

performance tools, these amplified sequences are aligned against reference gene sequences, 

and the expression levels are reported in terms of absolute numbers of these short reads per 

gene. Relative quantification involves comparing two or more sets of samples to contrast 

and highlight genes which have significant changes in their expression levels. Also called 

differential expression, results are usually reported in the form of observed log fold change 

in expression against the null hypothesis of no change[56]. According to the fold change, 

a gene is considered “upregulated” if its expression is higher in the treated samples vs. 

control samples; and “downregulated” if expression is higher in the control vs. treated 

samples. 
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3.2 Gene expression analysis for maize root RNA-Seq samples 

To quantify transcript abundance levels, the first step in the informatics pipeline is to 

process the raw fastq files generated from RNA sequencing. For this the Fastqc[57] tool is 

used to conduct a preliminary check and report any inconsistencies in the sequencing files. 

Erroneous adaptor sequences, and low-quality edges are removed from reads using 

trimmomatic[58]. The processed fastq files are then aligned to the B73 v4 maize reference 

genome[59] using the HISAT2[60] read aligner using its paired end alignment function. 

The aligned data is analyzed using Cufflinks[61] which measures the gene expression in 

Fragments Per Kilobase of transcript per Million (FPKM). 

RNA-Seq alignment rates for B73 field, FR797 field and FR697 lab were reported as 

89.29%, 80.43% and 80.97% respectively, for an average of 84.68% mapping rate.  

 

Figure 4: PCA plot for replicates’ FPKM values. 
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Figure 5: Hierarchical Clustering tree for replicate FPKM values. 

The aligned replicates were then quantified by the first part of our RNA-Seq pipeline by 

Cufflinks, which is a normalized method to calculate gene expression (FPKM) & htseq-

count, which is takes aligned reads to report gene expression (in terms of aligned read 

counts per gene). A PCA plot (Figure 4) and a hierarchical cluster dendrogram (Figure 5) 

show that the replicates clustered into groups, separating based on which region of the root 

tip the samples come from. Tip region A samples formed a separate cluster itself in both 

plots. Region B and C formed separate but slightly overlapping clusters, suggesting that 

many genes have similar expression levels, but there is still a small but significant group 

of genes expressed differently in each tip region. 
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3.3 Differential expression analysis 

Figure 6: Transcriptome analysis and Differential expression analysis pipeline. 
 

The differential expression part of the pipeline includes the cuffdiff method from the 

Tuxedo suite of tools; used to find transcript expression differences between multiple 

comparisons. It measures observed log fold change in its expression against the null 

hypothesis of no change[61]. This analysis was performed for multiple combinations – 

between stress levels, tip regions, and across genotypes as well. Cuffdiff already accounts 

for variation between replicates and batch effects, and as such no major normalization is 

required. Each comparison reported significant groups of up and down regulated genes, 

with some significant genes being conserved across the comparisons. A set of results are 

show in Table 2, 3& 4. Differentially expressed genes were considered significant if above 

a value of log fold change = 2 in either direction and p-value = 0.05. An observation was 
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made that several genes which code for transcription factors were shown to be differentially 

expressed, however were just below the fold value threshold of fold change of 2. The 

pipeline was updated so that such genes are retained in the results if their fold change is 

above 1.2 with the rationale that such gene are known to have lower than expected 

expression levels. 

Table 2: Numbers for significantly up and down regulated genes from field samples. 

Table 3: Numbers for significantly up and down regulated genes from lab samples.
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Table 4: Numbers for significantly up and down regulated genes for a set of cross genotype 
comparisons. 

3.4 Generating gene correlation clusters and annotation  

To find groups of genes with conserved expression levels over specific comparisons, we 

use Weighted gene correlation network analysis (WGCNA)[18]. It takes advantage of a 

graph theoretical approach to measure correlations amongst genes and then groups genes 

into modules which usually are associated with coordinated or related biological functions 

and regulatory mechanisms. The working of WGCNA can be summarized as: 

• Builds Weighted undirected gene networks with interconnected nodes 

• Nodes correspond to Gene expression profiles of significant genes – usually a list 

of genes from a differential expression analysis, like from the previous section 

• Relationship between nodes defined by pairwise correlation between profiles 

• Defined by a matrix X = [x il ]  

•  a ij = |cor(x i , x j)| β  (β ≥ 1 (soft threshold)) – Gives priority to highly correlated 

pairs 

From this a Hierarchical Tree is generated, and a “tree cutting” value is specified, which 

defines the clusters formed by the method. 

WGCNA is a classic dimension reduction method, as it takes expression values (FPKM or 

counts) for constrained list of differentially expressed genes from the various comparisons 
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and conducts a pairwise comparison to build clusters (referred to as modules as well) of 

co-expressed genes. This will essentially reduce a large differentially expressed gene list 

to smaller modules of co-expressed genes which when annotated, showing significant 

overlap with development terms related to root tip growth. This is important since it is 

hypothesized that a subset of expressed genes is conserved in the drought stressed samples, 

especially when comparing FR697 field and lab samples, and DE genes which are grouped 

into significant modules, can probably be linked to responses to other environmental 

factors, as candidates which can be filtered out.  

The input for WGCNA is a matrix of gene expression values filtered according to a 

combined DE gene lists from all three root tip region wherein duplicate names are removed. 

This aligns with the fact that while cell division occurs primarily in the A region, cell 

elongation occurs in all the three regions, and as such an interest is there to see if any unique 

clusters form with certain genes active over all the root tip regions. 

Modules are assigned a color value for easy identification. GO enrichment and KEGG 

pathway enrichment is conducted for each module, using the AgriGO v2[62] online tool 

and KEGGrest[63] function from Bioconductor respectively. An example of such GO 

annotation for all modules is shown in table 5 & figure 7 for the combined input from 

Severe Stressed vs Well Watered samples for Lab FR697; along with KEGG pathway 

annotation for two specific modules from this comparison. 
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Table 5: Significant Ontology terms associated with each WGCNA color module for SS vs 
WW FR697 lab samples. Blue, Green & Grey modules had “Response to stress” 
amongst the top 5 GO terms. 
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Figure 8: Two bar charts showing the distribution of WGCNA modules 
(clusters) of DE genes assigned to specific KEGG pathways. 
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3.5 Predicting Gene regulatory networks 

Another level of annotation is added by predicting gene regulatory networks. This involves 

finding correlations between various expressed transcription factors and genes, clustered 

to generate networks of TF-gene interactions. GENIE3[64], another unsupervised method 

is used to produce a directed graph of interactions between transcription factors and genes 

of interest, giving insights into which transcription factors might be controlling certain gene 

expression patterns. The main features and working of GENIE3 are: 

• Input is defined by a matrix X = [x il ] of expression values for genes. 

• The matrix comprised of expression levels for differentially expressed genes with 

2-fold log change and Q-value = 0.05 

• A list of genes differentially expressed with 1.2-fold log change and coding for 

transcription factors are used as seeds. 

• A Random forest Method implementation (Regression Trees) predicts target of 

these Seed TFs. 

• Generates a ranked list based upon the strength of putative regulatory links between 

a target gene and the expression pattern of TFs. 

• i.e – TF_1  Gene_1, TF_1  Gene_2, TF_2  Gene_1… TF_n  Gene_n 

The top 1000 or 2000 interactions from the ranked list are considered significant, with 

lower ranked predicted interactions usually have very low support. This results in a small 

set of high confidence elements to form a directed network of possible TF to gene 

interactions. This network is visualized in Cytoscape, as described in the next section. 
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3.6 Visualizing the combined network in Cytoscape 

Cytoscape[65] is visualization tool for biomolecular networks. It does not contain any data 

of its own, instead provides a unified framework where various datasets of biomolecular 

interactions can be loaded onto and using a set of unique identifiers common across these 

datasets, overlay the information on top of each. These integrated networks can be queried, 

and interactions can be highlighted to showcase interesting connections. The Cytoscape 

application is also extended by various plugins, which allow it to directly query various 

databases and automatically annotate networks, along with network specific visualization 

colors and themes.  

A filtered maize protein – protein interaction network obtained from STITCHdb is first 

loaded in the Cytoscape application. Both clustering results – from WGCNA and GENIE3 

are then added as annotation layers on this network, along with a list of transcription 

factors. Genes are color coded according to their WGCNA clusters and transcription factors 

are assigned a different shape (triangle). The connections between TF and genes are 

changed to directional as well. Users can select specific interactions along with predicted 

enriched annotations and highlight the genes with their expression levels. This allows the 

interrogation of the large dataset in a quick and informative manner, highlighting unique 

clusters if they form. An example for an interesting cluster formed around the gene 

Zm00001d038746: Heat stress transcription factor A-4a, is shown in the figure 9 along 

with table 6 showing the rank of the transcription according to the number of connections, 

along with table 7 showing genes interacting with this example. It reports that our TF of 

interest interacts with 4 expansin protein encoding genes. Expansin is found in plant cell 
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walls and has important functions in cell growth and is a good candidate to explore if 

influenced by drought stress. 

 

Figure 9: Network visualized in cytoscape with details from Genie3 and WGCNA for 
SS_vs_WW_Lab_FR697 comparison. One interesting cluster is highlighted and zoomed 
in the insert. Shows transcription factor coding gene Zm00001d038746 interaction with a 
set of genes mostly from the red WGCNA cluster. The second insert shows that most of 
the genes in the shown cluster are annotated with GO terms related to “response to stress”. 
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Table 6: Table showing a ranked list of TFs with gene interactions shown in the cytoscape 
network for SS_vs_WW_Lab_FR697. Highlighted is TF:Zm00001d038746, a highly 
ranked transcription factor found interacting with a number of genes annotated for stress 
response. 

 

 

Table 7: This table shows the list of genes interacting with TF:Zm00001d038746 with their 
functional annotations. Four of them highlighted as extensin like protein coding along with 
which root tip region they come from. 

Genes which are interacting with TF: Zm00001d038746 Tip Region 

Zm00001d014493 Wound-responsive family protein B & C 

Zm00001d053562 Probable F-box protein  A, B & C 

TF 
genes 

connected Annotation by MaizeGDB 

Zm00001d048352 23 IQ-domain 20 

Zm00001d033602 21 Nuclear transcription factor Y subunit A-9 

Zm00001d039510 21 IQ-domain 25 

Zm00001d052087 21 Ethylene-responsive transcription factor RAP2-2 

Zm00001d002630 17 Calmodulin binding protein 

Zm00001d022613 17 Delayed flowering1 

Zm00001d030532 15 Homeobox-leucine zipper protein ATHB-6 

Zm00001d051509 15 Putative HLH DNA-binding domain superfamily protein 

Zm00001d030232 14 Transcription factor bHLH18 

Zm00001d036418 13 dbb9; double B-box zinc finger protein9: 

Zm00001d015521 12 Two-component response regulator ARR12 

Zm00001d021946 12 unknown 

Zm00001d050018 12 ABSCISIC ACID-INSENSITIVE 5-like protein 5 

Zm00001d012401 11 prh4; protein phosphatase homolog4: 

Zm00001d017606 11 Transcription repressor OFP6 

Zm00001d038746 11 Heat stress transcription factor A-4a 

Zm00001d044940 11 Putative bZIP transcription factor superfamily protein 

Zm00001d017831 10 AT-rich interactive domain-containing protein 3 

Zm00001d031451 10 SBP-domain protein 5 

Zm00001d038221 10 NAC domain containing protein 32 

Zm00001d038397 10 
nfy2;NF-YB homolog: single PCR-isolated sequence 

with strong homology to CCAAT-box binding protein subunit 

Zm00001d050404 10 G2-like transcription factor 
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Zm00001d002721 extensin-like protein A & B 

Zm00001d044950 
Ethylene-responsive  

transcription factor ERF014 
A, B & C 

Zm00001d020071 Sugar transport protein 14 A, B & C 

Zm00001d046537 ABC transporter G family member 26 A, B & C 

Zm00001d029907 Expansin-B4 A, B & C 

Zm00001d053562 Probable F-box protein  A, B & C 

Zm00001d012957 Expansin-A6 A, B & C 

Zm00001d043024 Unknown A 

Zm00001d014875 
 ago1d; argonaute1d:  

Ortholog of Arabidopsis ago1 
B & C 

Zm00001d026171 Expansin-B4 B & C 

 

3.7 Conclusion 

This chapter detailed the rationale and use cases of the informatics tools in the data mining 

pipeline used to tease out important patterns from RNA-Seq datasets generated from 

drought stressed maize nodal root samples. All the results and data tables generated from 

the gene expression analysis study along with their annotations are submitted to a maize 

nodal root specific database in the KBCommons website. This provides users a suite of 

interactive options to explore the large datasets along with various informative plots and 

visualizations to help with interpretation. As more batches of RNA-Seq datasets are 

expected to be included in the study, possible changes, and modification to the pipeline is 

discussed in Chapter 7. This is to account for batch effects which inadvertently occur in 

such scenarios.  
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Chapter 4: Multiomics analysis for FR697 omics datasets 

 

Genes, proteins, and compounds do not work independently in their own bubble, instead 

they are all interconnected and work as a large complex system. With the decrease in cost 

of data collection we are now able to explore the relationships of elements from multiple 

omics datasets and their effects on each other in a systems biology manner. By treating 

multiple omics datasets as one large wholistic network, multivariate multiomics integration 

methods can find unique and significant biomarkers which discriminate between various 

phenotypes under observation [66], [67]. These elements, when annotated and presented 

with accompanying predicted or previously analyzed regulatory information, give insights 

into the molecular mechanisms behind such observed phenotypes.  

This chapter presents the development and implementation of a multiomics data integration 

strategy to find unique biomarkers associated with drought stress for maize nodal root tips. 

The  pipeline includes a framework which incorporates a duo of multivariate methods – 

sparse Generalized Canonical Correlation Analysis (sGCCA)[68] and generalized Partial 

Least Square Discriminant Analysis (PLS-DA)[69]. The method is on a sample dataset of 

phenotypic measurements, gene expression levels and metabolite quantification, with the 

further intent to integrate protein expression levels as they become available in future. 

4.1 Multivariate methods for multiomics data integration 

Multivariate methods, both supervised and unsupervised have been used to tease out 

significant elements from large, interconnected omics datasets[70]–[75]. These methods 

use a set of datasets that are heterogenous but generated from the same biological samples. 
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These elements have the potential to generate new connections between pathways and 

groups to serve as biomarkers related to specific phenotypic change, also called “features” 

in the context of statistical algorithms. Use of support vector machine-based algorithms, 

partial least square discriminant analysis and Random forest methods are popular feature 

selection methods being employed. The advantage of such algorithms is the inclusion of 

multiple independent variables and the influence they exert on dependent variables. 

However, large high-quality datasets are required to accurately predict the relationships 

between the variables, but this also comes with the risk of overfitting. To overcome this 

drawback frameworks incorporating multiple algorithms reduce large datasets down to 

select features, with the models being built over multiple steps. Frameworks like this also 

include tools to help disseminate the results generated. The Mixomics package[76] is one 

such framework, it incorporates multiple algorithms, both supervised and unsupervised to 

work with several datasets, with the actual number and quality (i.e. sparse or not) of the 

datasets determining which combination of algorithms are to be used. It is implemented in 

the R programming language and part of its Bioconductor suite of bioinformatics packages. 

4.2 Selecting features of interest using a discriminant analysis method 

The DIABLO method is a supervised N-integration framework, part of the Mixomics 

package. N-integration combines multiple datasets from the same individuals but with 

varying number of observations per set. It conducts a discriminant analysis to find clusters 

of significant elements spanning the multiple omics layers under study. It builds on two 

main regression analysis methods – Sparse Generalized Canonical Correlation Analysis 

(sGCCA)[77] and Partial Least Squares – Discriminant Analysis (PLS-DA)[69], [78].  
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The method accepts N X pn datasets where N is the same set of samples, and pn is the set 

of elements in each omics level (can be different number). The main feature of this method 

is the ability to predefine a bias in terms of L1 score penalty design matrix (also called 

design matrix) to simulate the level of “interconnection” between omics datasets i.e., the 

biological relationships between the layers. It extends sparse generalized canonical 

correlation analysis (sGCCA) for classification and uses PLS-DA which tunes Parameters 

for the Design Matrix. Discriminant analysis builds a predictive model for group 

membership (Equation 1). The model is composed of a discriminant function (or, for more 

than two groups, a set of discriminant functions) based on linear combinations of the 

predictor variables that provide the best discrimination between the groups. Specifically, 

sGCCA reduces dimensions to finds clusters of highly correlated elements on each omics 

layer, and PLS-DA maximizes the correlation between each of these reported clusters – 

finding the best possible overlap and assigning specific elements from each dataset. 

Equation 1: Description of the optimization function for DIABLO method. The equation 
calculates the covariance between Omics datasets X, from k to j, with their associated 
coefficient 'a', shrinkage controlled by λ. Relationship level between omics layers and 
components defined by Cjk. 
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Figure 10 shows the workflow applied using DIABLO as the main component in the 

multiomics analysis strategy, using the transcriptome, metabolite, and phenome datasets 

generated from the maize root samples, as detailed in chapter 2. Initial checks are 

performed to determine the presence of same number of individuals (i.e. same number of 

replicates for each treatment), and then set up a design matrix to define the relationships 

between the omics layers. The main function in its R method – “sgccda.res” is tuned by 

first running the function and reporting the distance, which is essential in reducing the error 

rate of assigning elements to clusters; and maximizing the number of clusters allowed, 

Figure 10: Workflow for using DIABLO with Plant drought root data – including tuning 
parameters and data compatibility checking. 
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before error rates increase. Then the “keep.x” function is used to report back a small range 

of numbers for elements allowed to be selected from each omics level in each cluster – 

such that the computation time is reasonable and viable enough to be distinct. Once the 

parameters were identified, “sgccda.res” is run again with the new parameters and set 

number of fold validation steps. This results in the formation of a few clusters of elements 

(also called components) which are candidates for biomarkers to distinguish between 

specific comparisons.  

4.3 Test run using maize nodal root datasets 

Following the steps in the workflow described in Figure 10, a sanity check was conducted 

on all three datasets. This was followed by assigning values of 0.1 to the design matrix, 

maximizing the relationship between the datasets as they were all from the same 

representative biological samples. The global performance was assessed and the best 

Figure 11: Plot showing all three measured distance metrics. Centroid distance has the 
least error rate and plateaus out at 3 components suggesting that either 2 or 3 components 
would capture the most significant elements. 
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distance metric was selected = “centroids.dist” and number of components set to 3 based 

upon the results shown in the plot in Figure 11. 

The intervals for keepX and set the number of folds at 5-fold since we were dealing with 

small datasets. Once tuned, the DIABLO function - tune.block.splsda was run to perform 

discriminatory analysis. The method ran for ~ 72 minutes on a workstation pc with 8 cores 

and 16 gb ram, returning two components separating out significant elements connected to 

two dimensions (or observations).  

Component 1 was reported as a cluster of 50 elements spread across the 3 omics layers, 

separating out on elements which contributed to discriminating between well-watered or 

severe stress samples; 26 elements were shown to positively correlate to the well-watered 

treatment, while remaining 24 highly correlated to the severe stress treatment. Component 

2’s elements separated out between Root Tip A region vs. B & C, with 47 elements highly 

correlated to Tip A region, and 5 elements negatively to B & C. (Figure 12). The plot shows 

elements correlated to specific observations in both components – specifically 6 phenotypic 

observations – Total_Plant_Mass, N2_Avg_Length, Total_Root_Length, 

Total_Shoot_Length, Nodal_Root_Mass and Seedling_Root_Mass.  This indicated that 

these elements were influenced by elements from both clusters.  
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Figure 12: Cluster Plot: Showing the two components. Half of Component 1’s elements 
showing strong positive correlation to Well-watered samples and the other half to Severe 
Stressed Samples. Component 2’s elements all are strongly correlated to Root Tip Region 
A samples, and negatively to Region B & C. 
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The filtered correlated genes became candidates for exploration for if they are connected 

to any known biochemical pathways or annotated in anyway. Correlated metabolites were 

also connected to genic pathways and checked to determine if any were associated with 

specific annotations. Figure 13 exhibits a correlation circos plot for Component 1, filtered 

above 0.9 correlation “r” value. Some genes were highly correlated to N2_Avg_Length 

(Nodal Root 2 Average Length), however the stringent cutoff levels filtered out most of the 

results related to this observation. This was expected and considered an indication of the 

fact that plants struggle to grow under drought stress and do not allow for a significant 

number of phenotypic measurements to be collected from such plants. 

Figure 13: Circos Correlation Plot for component 1: Cutoff set at r=0.9, i.e., showing highly 
negative or positive correlations. Purple elements are gene ids, red elements are metabolite 
ids and green elements are phenotypic observations. (High resolution version: 
https://git.io/JkHnT)  
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As an alternative, the correlation matrix was reduced to elements highly correlated to 

nodal_root_mass (Table 8), with the rationale that if any significant number of root 

samples were collected from a plant, the recorded mass would be an indicator. 

N2_avg_length also seemed to have a decent correlation (r ~ 0.69) to the filtered elements. 

Specifically, to the predicted gene Zm00001d035612, which is annotated in maizeGDB[79] 

as a putative “inositol polyphosphate phosphatase family protein”, predicted to be part of 

the phosphatidylinositol metabolic pathway by Reactome[22]. This pathway has known 

effects in several plant cellular processes, including cell growth and proliferation. Another 

predicted gene - Zm00001d00228, which was negatively correlated to N2_avg_length, was 

predicted to be part of the MAPK signaling pathway, which is involved in signal 

transduction, suggesting that the gene may be involved in relaying drought stress signals. 

These two predicted genes were found to be highly expressed across the replicates, 

suggesting that they may play an important role in drought stress adaptation. 

 

Table 8: Correlation matrix filtered for nodal_root_mass for component 1. 
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Component 2, as mentioned before, separated into the root tip region A vs. tip regions B & 

C. Only one phenotypic observation – Total_plant_mass was reported to be significantly 

correlated, when correlation measure “r” was dropped to 0.7 (Figure 14). A set of 6 genes 

were found to be negatively correlated to plant mass. Zm00001d002546 was predicted to 

code for Histone H4, which is connected to transcription regulation and DNA repair. 

Zm00001d011642, Zm00001d014756, Zm00001d022226, Zm00001d048299, 

Zm00001d052749 are all predicted proteins and no major annotation is associated with 

them (Table 9). Uniprot only reported predicted protein chains, assigning them the lowest 

annotation score:1 out of 5, i.e., only having assembled transcript evidence. This 

preliminary exploration of the highly correlated genes showed that that the multiomics 

pipeline worked as intended and returned actionable results. Genes from component 1 were 

very promising for candidate biomarkers. 

Table 9: Correlation matrix filtered for Total_plant_mass for component 2. 

 

COMP_ids Total.Plant N2_Avg_length Total.Shoot Nodal.Root Seedling.Root

C00078 0.74827989 -0.105733812 -0.421284715 -0.126022848 -0.117088992

C02350 0.74482975 -0.105246299 -0.419342271 -0.125441787 -0.116549123

C00407 0.741482664 -0.104773347 -0.417457848 -0.124878082 -0.116025379

C00037 0.739749893 -0.104528503 -0.416482291 -0.124586254 -0.11575424

~ ~ ~ ~ ~ ~

Zm00001d002546 -0.758667134 0.107201556 0.427132777 0.127772234 0.118714363

Zm00001d011642 -0.760481401 0.107457916 0.428154217 0.128077787 0.118998255

Zm00001d014756 -0.764180343 0.107980586 0.430236736 0.12870075 0.119577056

Zm00001d022226 -0.76309289 0.107826926 0.429624496 0.128517605 0.119406894

Zm00001d048299 -0.762634993 0.107762224 0.429366698 0.128440488 0.119335243

Zm00001d052749 -0.764868509 0.108077825 0.430624177 0.128816649 0.119684739
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Figure 14: Circos Correlation Plot for component 2: Cutoff set at r=0.7, Only one major 
phenotype observation – total_plant_mass, is connected to other elements. Purple elements 
are gene ids, red elements are metabolite ids and green elements are phenotypic 
observations. (High resolution version: https://git.io/JkHnn) 

4.4 Conclusions 

This chapter describes the development and testing of an informatics strategy to integrate 

and mine the various omics datasets generated from the FR697 drought stressed maize 

nodal root samples. This includes using the DIABLO integration method from the 

Mixomics package to find clusters of significant elements. The pipeline was tested using 

the available FR697 gene expression, metabolite, and phenotypic observation datasets, 

generating significant results which correlated to annotation terms and pathways associated 

with cell growth and cell development. The pipeline was designed with the intent to 

incorporate proteomics data from the FR697 biosamples and which will be integrated when 

the samples are processed and ready to use. The results also served as inspiration for some 

of the visualization application developments detailed in chapter 6.   
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Chapter 5: De-novo transcriptome assembly for the FR697 

genotype 

 

As part of the effort to understand the maize plant’s remarkable ability to maintain root 

growth under drought stress, RNA-Seq samples from drought stressed B73 and FR697 

nodal root tips were previously aligned to the B73 reference genome as part of a gene 

expression study. Certain genes showed significantly different expression levels in FR697 

compared to their B73 counterparts. However, an average of 10% difference in alignment 

rates was observed between the two sets of RNA-Seq reads. Some of these unaligned reads 

were found to be associated with proteins from the plantae proteome. It was concluded that 

a FR697 specific transcriptome would be useful in not only characterizing any unique 

transcripts or genes specific to the nodal roots but also as a future resource for drought 

related studies. 

The processed FR697 RNA-Seq paired-end samples generated from nodal root samples as 

previously as described in chapter 3 were combined with Iso-Seq transcript sequences 

obtained from an independent set of FR697 maize tissue samples to generate a de-novo 

transcriptome assembly, described in chapter 2. This assembly was clustered with 

transcripts from a B73 reference genome guided assembly using the same set of RNA-Seq 

samples and the Viridiplantae proteome, to generate a consensus annotated set of 

“SuperTranscripts”, collectively called a “SuperTranscriptome” [80]. This dataset can be 

used as a surrogate for a FR697 reference genome, enabling various comparative studies 

with the reference genotype B73 and the nested association mapping (NAM) founder lines 
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designed to explore the underpinning genetic networks that control nodal root growth 

responses under drought conditions. 

5.1 Assembling a de-novo transcriptome  

De-novo transcriptome assembly attempts to reconstruct a complete set of transcripts 

present in a dataset of reads without the aid of a reference genome.[81] Most assembly 

projects align together high quality RNA-Seq short read datasets to identify all possible 

expressed transcripts, with lengths as close to full length mRNA sequences as possible. 

Assembly tools where first designed with pairwise overlap alignment algorithms, however 

as RNA short read sequencing become more cost effective, larger datasets were used to try 

and capture transcripts with low levels of expression. As such the assembly tools have 

evolved to use greedy path[82], [83]; overlap, layout, and consensus (OLC)[84]–[86], or 

K-mer[87]–[89] based graph algorithms to efficiently map and build transcripts. This 

renders these tools computationally efficient, but results in the generation of fragments due 

to variation in supporting read evidence cover. Transcriptome assemblers try and overcome 

these by implementing a combination of these techniques. 

The Trinity assembler[32] uses de Bruijn based K-mer graphs to process large number of 

RNA-Seq reads to build a high-quality transcriptome capturing a majority of transcripts 

present in the samples. Datasets are partitioned into multiple graphs to represent the 

transcriptional complexity for each gene or locus. Each graph is processed individually, 

and clusters of similar sequences are reported as unique transcripts. The size of the cluster 

usually represents if the reported transcript is the main isoform or not. This is reported in 

the unique annotation number Trinity assigns to each sequence in the output file. The 
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Trinity assembler has recently been updated to utilize long read sequencing evidence such 

as Pacbio iso-seq transcripts to resolve complex transcripts and improve on spliced 

isoforms, essentially filling in gaps and connecting split transcripts. 

5.2 Organizing transcripts into SuperTranscripts 

SuperTranscripts are an alternative representation of genes in the context of de-novo 

transcriptome assemblies. Redundant transcripts are collapsed together and connected 

using common sequence regions from spliced isoforms into a single sequence, comparable 

to gene’s coding sequence structure. SuperTranscripts can be combined into a 

“SuperTranscriptome”, to serve as a surrogate for a reference genome in studies that 

include gene expression analyses and to identify polymorphisms. 

The process starts with building a directed graph for each base in a transcript’s sequence. 

The BLAT UCSC tool’s offline implementation is used to align sequences to each other, 

and shared bases are merged. If any forks appear after merging, they are simplified by 

insertion by the Lace tool between the merged/shared node bases. This usually results in 

extended sequences with large areas of merged bases and with small sections of inserted 

nodes, comparable in quality to genes. 

SuperTranscriptome assembly is simplified by the Necklace pipeline[90] which combines 

the usage of multiple alignment and reconciliation tools to build SuperTranscripts, This 

includes generating a reference guided transcriptome assembly using a closely related 

reference genome, and finding consensus between actual genes and SuperTranscripts, 

supported by protein sequence evidence from a related proteome. A slightly modified 
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implementation of the Necklace pipeline was used to generate the FR697 de-novo 

SuperTranscriptome assembly, which is detailed in the next section. 

5.3 SuperTranscriptome assembly pipeline 

 

Figure 15: Overview of the steps to assemble the FR697 transcriptome. The first part 
consists of the Iso-Seq pipeline to generate a set of long read transcripts from Iso-Seq reads. 
These transcripts were used along with the RNA-Seq short read samples for a trinity 
transcriptome assembly. The trinity assembly along with a reference guided transcriptome 
assembly and the Viridiplantae proteome is combined by the Necklace pipeline, which 
generates a consensus “SuperTranscriptome” assembly, with the final output being a 
transcriptome fasta file with annotations. 

FR697 SuperTranscripts were generated using the Necklace pipeline[90]. The pipeline 

consisted of three major steps, as follows: 1) a De-novo transcriptome assembly with 

Trinity (v. 2.7.0)[32] with “longreads” option to include the Iso-Seq transcripts; 2) a 

reference genome guided transcriptome assembly using the B73 v4 reference maize 

genome; and 3) the Viridiplantae clade proteome dataset to annotate the transcripts not 
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included in the provided reference gtf/gff3 files. The fully modified pipeline used is 

presented in Figure 3. The CD-HIT-EST program (v. 4.8.1) [33] was used for three 

iterations with default parameters (similarity 95%) to reduce transcript redundancy in the 

Trinity assembly and to compare with the results of the Necklace pipeline. 

5.4 SuperTranscript annotation & verification 

The intermediate trinity de-novo transcriptome assembly was generated with an ExN50 

maximum value of 2173 at Ex = 95 and transcripts = 38512. The intermediate genome 

guided transcriptome assembly, using HISAT2, reported an alignment rate of 84.08% for 

the RNA-Seq reads to the maize genome. Finally, the Necklace pipeline produced 47915 

unique SuperTranscripts. Of the total, 42612 were assigned unique maize reference gene 

IDs by the pipeline. Of the remaining 5303 SuperTranscripts, 1592 were annotated as 

tRNAs, 325 as a combination of mitochondrial and chloroplast genes, 3258 as novel 

unknown transcripts, and 128 IDs that were predicted to transcribe for proteins found in 

the Viridiplantae proteome, suggesting they were FR697 genotype-specific novel genes 

(Figure 4). The N50 of the assembled SuperTranscripts was significantly improved 

compared to trinity transcripts, from 1589 to 3152, which was close to the average size of 

maize genes of 4 Kb. The number of redundant transcripts was significantly reduced when 

compared to the original trinity assembly and the results of CD-HIT-EST after three 

iterations (Table 1).  

Blastn[91], [92] was used to compare the maize gene id annotated SuperTranscripts to the 

actual coding region sequences of maize genes in the B73 genome. All annotated 

SuperTranscripts were found to be in the top three blastn hits and within 93% identity 
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threshold of maize genes with the same IDs. We then used HISAT2 to align a representative 

subset of the nodal root RNA-Seq samples against the assembled SuperTranscriptome. The 

alignment rate averaged at approximately 85% for all samples. This was a significant 

increase from an average of an 80% alignment rate when the same samples were aligned 

against the reference B73 v4 genome. 

Table 10: Various metrics for the FR697 SuperTranscriptome assembly compared to three 
maize reference genotypes and the improvement of annotation over the initial trinity 
assembly 

 

 

Figure 16: Venn Diagram showing that 42612 SuperTranscripts identified and annotated 
with corresponding maize reference gene ids. Of the remaining 5303, 128 SuperTranscripts 
were predicted to be coding for certain proteins from the Viridiplantae proteome, 1592 
were annotated as tRNAs, 325 were annotated as either mitochondrial or chloroplast genes, 
and the remaining 3258 were unidentified.  

MaizeMo17_CAU_scaffoldsMaizeB73_v4_scaffoldsMaizeW22_NRgene_conTrinity Transcripts Trinity with cd-hit 3 timesFR697 SuperTranscripts

Number of scaffolds 2560 596 306 720299 540032 47935

Total size of scaffolds 2182615441 2134339606 2133868603 587326543 402421838 98256966

Total scaffold length as percentage of assumed genome size99.20979277 97.01543664 96.99402741 24.47193929 16.76757658 4.09404025

useful amount of scaffold sequences (>=25K nt) 2166421525 2134248774 2132523330 58570 58570 0

% of estimated genome that is useful 98.47370568 97.01130791 96.93287864 0.002440417 0.002440417 0

Longest scaffold 32176138 39317442 83688764 29921 29921 22234

Shortest scaffold 1007 5568 711 176 182 32

Number of scaffolds > 1K nt 2560 596 305 149963 97893 31091

Number of scaffolds > 10K nt 2216 591 291 510 320 271

Number of scaffolds > 100K nt 475 366 130 0 0 0

Number of scaffolds > 1M nt 304 296 97 0 0 0

Number of scaffolds > 10M nt 69 69 62 0 0 0

N50 10204498 10679169 35520101 1589 1336 3152

L50 69 62 19 95173 72937 9621

NG50 9989738 10214929 33636442 0 0 0

LG50 70 66 20 0 0 0

%A 26.16202361 26.17515251 26.11362927 24.76932496 24.77012567 24.91816509

%C 23.04310739 23.08858481 22.92158314 25.33622867 25.32836998 24.42904761

%G 23.03462569 23.10360491 22.93553555 25.01578785 24.9863945 24.9521983

%T 26.15118015 26.1942841 26.12596901 24.87865851 24.91510985 25.70053812

Total Number of Ns 35119661 30699779 40613559 0 0 50

%N 1.609063161 1.438373674 1.90328303 0 0 5.09E-05
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5.5 GO annotation for SuperTranscripts coding for Viridiplantae proteins  

To further annotate the 128 SuperTranscripts identified to code for Viridiplantae proteins, 

we used Blast2GO software [93] to associate GO annotations to them. The top blast hits 

were selected for each SuperTranscript (blast E-value very close to 0), and the 

corresponding distributions of annotations for biological processes, molecular function and 

cellular components are reported in Figure 5. The top terms from all three GO categories 

point to these new sequences having some connection to oxidoreductase activity in the 

cellular membrane. A broad literature search for this family of enzyme suggested that it is 

integrated with many cellular pathways[94] related to root activity, along with some studies 

suggesting a connection to stress responses[95], [96]. However, a deeper exploration 

including biological validation will be required to confirm a direct role in the drought stress 

response. In addition, some of the SuperTranscripts were assigned GO terms related to 

heme binding, which might reflect the fact that iron rich water was used to saturate the soil 

in chambers used in the lab method i.e., the split root system. A smaller group of 

SuperTranscripts were assigned terms related to biological processes related to responses 

to heat and cold, and stimulus to light.  
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5.6 BUSCO analysis & Alignment check 

To test the SuperTranscriptome assembly for completeness, we used the GenomeQC[97] 

web application’s Benchmarking Universal Single-Copy Orthologs (BUSCO)[98] 

implementation to search for conserved orthologous genes. GenomeQC was set to use the 

BUSCO dataset embryophyte_odb9(plants) along with AUGUSTUS[99] species “maize”, 

and the option to compare the results against the precomputed results of three maize 

reference genomes – “MaizeB73_v4_scaffolds”, “MaizeMo17_CAU_scaffolds”, and 

“MaizeW22_NRgenes_con”. We also compared the BUSCO results for the initial trinity 

transcript assembly, and the results of transcript redundancy reduction by CD-HIT-EST. 

As the goal was to determine if any unique genes or transcripts were present in the FR697 

genotype compared to B73, we replaced the maize ID annotated SuperTranscripts with 

their respective complete maize genes. This dataset was analyzed by genomeQC, and the 

generated BUSCO results compared to the previous datasets, as presented in Figure 6. This 

dataset contained 42612 full maize genes in place of their corresponding annotated 

SuperTranscripts from the assembly along with the 5303 assembled transcripts, resulting 

in the “FR697 combined SuperTranscriptome”. This dataset will be a valuable resource to 

understand the unique ability of maize roots to keep growing under drought stress, and to 

gain insights into the mechanisms of such adaptation in other plant species. 

To check if the original goal of gaining a similar alignment rate of 90% for B73 RNA-Seq 

samples to the B73 reference genome had been met, a sample set of RNA-Seq reads from 

the FR697 dataset was aligned to the “merged” supertranscriptome. The results are shown 

in table 11revealing that the alignment improved and matched that for B73, thus indicating 

a successful assembly and that this dataset can be used for further downstream.  
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Figure 18: BUSCO analysis of merged SuperTranscriptome (full maize gene sequences 
replacing their annotated SuperTranscriptome counterparts) compared against the 
unmerged SuperTranscriptome, Trinity assembly and 3 maize reference genome datasets. 

Table 11: Comparing alignments rates of merged supertranscriptome (here labelled as 
"FR697 Final Assembly") vs. B73 (labelled with it's genome version "AGPv4.47"). Also 
included are the alignment rates for the test trinity assembly only (“FR697 Test Assembly”) 
and the original alignment rates of all the samples to an older version of B73 genome 
(“AGPv4.38”), used for the transcriptome analysis in chapter 2. 
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5.7 Conclusion 

This chapter detailed the assembly of a FR697 transcriptome using the concept of 

assembling and merging transcripts into sequences comparable to gene structures, called 

supertranscripts. The pipeline involved used a combination of FR697 RNA-Seq datasets 

from nodal root samples along with a dataset of iso-seq long reads. The resultant 

supertranscriptome reported the presence of 5303 new assembled sequences 

(supertranscripts), of which 128 were shown to code for proteins from the Viridiplantae 

proteome, thus becoming candidates for new “genes” or unknown isoforms. A sample set 

of RNA-Seq samples aligned to the new assembly demonstrated that the alignment rate for 

FR697 samples was similar to that of B73 samples aligned to the reference B73 genome. 

This dataset will be used to reanalyze all FR697 samples for gene expression and 

multiomics studies in the future.  
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Chapter 6: Developing visualization methods for multiomics 

data 

 

The core idea behind systems biology is to incorporate all known information from 

interacting biological systems. Reduction strategies are designed to help researchers make 

sense of the massive amounts of information resulting from the marriage of so many 

datasets; however, this comes with the risk of missing key unknown elements. One way to 

overcome this is to use visualizations connected to such database frameworks which can 

not only utilize stored information gleaned from experimental data, but also incorporate 

publicly available datasets and annotations to add value to such information. 

Such visual representations help generate new hypothesis by leveraging the experience and 

knowledge of researchers to quickly identify elements of interest. Interactive options also 

allow for interesting elements to be selected and their interconnection information to be 

downloaded for further investigation or to even conduct completely new studies which can 

be incorporated back into the databases. Prototypes build with two selected visualization 

methods in Rshiny and along with initial scripts 

6.1 Collect analyzed data in an integrated database with annotations 

KBCommons[46] is a unique online platform which allows users to deposit and store omics 

datasets generated from various experiments. It also incorporates some various 

bioinformatics tools to either generate new figures and charts, or to re-analyze the datasets 

by conducting new experiments such as differential expression analysis, etc. Specific 
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visualizations can also be used to download information about interactions along with lists 

of interesting elements. These features provide users the ability interrogate the datasets 

they upload and connect to public information such as annotations from databases like 

STRING, STITCH and KEGG. KBCommons is also extensible, i.e., species-specific 

information can be added as annotations which can be used to generate either another layer 

of visualization or highlight specific elements. 

The datasets generated from the informatics studies conducted in chapter 3 and 4, have 

been uploaded to a specific database in the KBCommons website. The FR697 de-novo 

transcriptome assembly generated from the pipeline described in chapter 5 has been 

depThis is to allow for quick interrogation of the large number of results generated from 

the experiments (Figure 19). Users can query the database to filter the information based 

upon various parameters. This will help support their needs and questions and be used to 

generate new hypothesis. It also allows for the data to be reused in studies other than those 

Figure 19: Multiomics datasets uploaded to a KBcommons database, such that the 
interactions and relationships that can be analyzed and visualized by various modules. 
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related to drought stress, expanding the scope of information that can be gleaned from these 

results.  

6.2 Three-dimensional visualization for multiomics datasets 

The Mixomics framework discussed in chapter 4 has the option to generate multiple types 

of visualizations. These include figures such as circle plots, Circos plots, clustered image 

maps (heatmaps), and even some basic 3D PCA plots which can showcase the relationships 

between the various elements. However, these do not allow for incorporation of external 

annotations without significant changes to the programming code.  Even then, these 

changes can only be made for specific conditions or with limited scope. This is a major 

impediment for a broad examination of how the major elements contribute to drought stress 

related adaption. Thus, the results generated from multiomics pipeline were incorporated 

as features in the KBCommon database backend, to allow users to query and visualize 

based upon the components or clusters generated by the DIABLO method. Based upon 

these annotations, elements can be mapped to multiple pathways, which suggest that these 

pathways, or at least part of were active during root elongation specific processes. 

To help interrogate this new type of information, a collection of RGL based 

visualization[43], [100] functions is being used as the base for a suite of new interactive 

visualization tool, called the “KBCommons Omics Studio”. RGL visualizations are 

designed to work with processed datasets such as the ones we generated from differential 

expression and multiomics analysis. This also simplifies the method’s extensible features, 

by building upon functions which are already designed to talk to similar datasets, allowing 

the easy addition of new visualization layers of by converting the results of any new 



56 
 

analysis to coordinate based datasets which can easily interact with existing ones. This also 

includes the option of connecting biological evidence or updated annotations provided by 

community databases such as MaizeKB, Phytozome, Gramene[101], etc. 

The user accessible layer of visualization is implemented using the three.js[102] 

webGL[103] interface library to plot the 2d coordinates which extended to 3D space. The 

interconnections between these layers will take the information from the one-to-one 

mapping tables. Coordinates for the current visualization will be held in a node.js based 

database being used a temporary storage, which when saved by the user, will be offloaded 

onto the server backend of KBCommons which is deployed on the Laravel PHP web 

framework (Figure 20). This is technically a scale free network, so scores which define the 

distance between the layers will not be included. However, if certain elements from 

Figure 20:  A schematic of how information from the multiomics analysis and annotation 
information contribute to the visualization method and are organized within the 
KBCommons database. 
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background annotations are to be included in the visualization and were not present during 

the initial correlation/PCA plot generation, they will be added on to their connected 

element via Force directed topology[104]. 

The front end would allow for specific interactions to be highlighted, based upon what 

background information is available. For e.g., highlight only elements of DIABLO 

component 2 over the omics layers. This will highlight connections with respect to the 

position of the component over various annotations and subnetworks. Users also have the 

option to select specific elements and directly view their properties, it is expression values 

for a gene in a genotype layer. Suggested unique feature will include functions to select 

unconnected elements and add user annotations.  

6.3 Selecting backend software and visualization packages  

Various bioinformatics specific applications have been built using Rshiny. Some of these 

applications allow users to upload RNA-Seq datasets and perform simple gene expression 

analysis on them, like the START application[105]. A more advanced tool - IDEP 9.1[106] 

also incorporates some clustering algorithms for expanded usability. DEBrowser[107] is 

another such tool implemented in Rshiny and is essentially a plotting application for 

analyzed data. However, none of these applications are designed to handle and visualize 

multiple omics datasets and do not persistently store the analyzed datasets. 

KBCommons Omics studio is being implemented using Rshiny, which helps build stand-

alone web applications and imbed plots from R packages. A RShiny app consists of two 

code blocks, usually called the User Interface block (UI) and server block. As the name 

suggests, the server code block usually works on the server side of the webpage, and 
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generally most of the instructions for heavy computations are included in this section. It 

also controls the flow of data, including code segments which communicate with SQL 

databases. The UI block contains code blocks which define the characteristics of various 

interactive elements for e.g., slider bars, check boxes, search boxes, etc. The UI block also 

includes instructions on where to place these interactive elements on the screen and gives 

options for multi-tab webpages as well. Essentially, it is the section which defines how the 

webpage will look, while the server block handles all the heavy computing. 

To implement the layers of interconnected plots, the GRIMONS package[43] was chosen 

and subsequently modified to work with Rshiny, by using R’s RGL package. The efficacy 

of this application was tested using a sample set of gene expression datasets. The 

Figure 21: Basic Rshiny application with an implementation of the modified 3D plot. 
Layers correspond to differential expression comparisons made with Severe stressed vs 
Well watered plants (all tip regions merged) as listed in the options panel in the figure. A 
truncated list of 1000 genes were used to generate this plot. The genes were enriched with 
GO terms. The first layer shows GO terms, which were assigned X and Y coordinates by 
calculating the median of X-Y coordinates for genes associated with the term. 
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application was initialized within R as a standalone plot, and then imbedded in an Rshiny 

application. GRIMONS accepts a matrix of X and Y coordinates as input, where the row 

names define the interconnections. Columns are in pairs – denoting X and Y coordinates 

for each layer of the plot. The number of pairs determines how many layers are visualized. 

For e.g., in figure xx an example matrix – containing up to a thousand genes, and their log 

fold change values taken as X coordinates for each layer and Q-value (or FDR) as Y 

coordinates. If the element does not exist in a certain layer, NA values are assigned to the 

X and Y columns. 

Since the intention is to make KBCommons Omics Studio a comprehensive suite of 

interactive visualizations for multiomics datasets, other similar interactive plot packages 

were also considered for inclusion. One promising package is called the Volcano3D [108], 

[109]. It consists of a 3-dimensional plotting device, which projects differentially expressed 

genes from 3 experiments, and gives users the ability to select clusters in the plot. The 

functions are built into the plotting device and do not need any Rshiny control widgets to 

interact with them.  

6.4 Application prototypes and preprocessing 

The implementation and functionality of GRIMONS and Volcano3D with the multiomics 

datasets was tested by building prototypes of Rshiny applications. A set of R scripts were 

also made to process the datasets into data frames compatible with the functions of 

GRIMONS and Volcano3D. These processed datasets are used as inputs for the prototype 

applications. Figure 22 showcases the prototype of a GRIMONS based implementation, 

including multiple filter options. Options includes remove or adding layers of omics 
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datasets, filtering out not significantly expressed genes from selected layer, highlighting 

genes which map to certain KEGG pathways and coloring according to groups of 

significantly expressed genes. The application seemed to get slower as more options were 

being selected. This was found to be a major issue through out the development of these 

prototypes. This is mainly because the input data frames started to become exponentially 

larger as more options were selected, resulting in more interconnections being processed  

and added to these data frames. Potential solutions are to use an SQL or SQL like database 

and implement SQL queries directly into the processing code. This will allow the back-end 

code (the “server” section of Rshiny scripts) to build the data frames in real time, instead 

of relying of large data frame with redundant data, reducing overheard in processing time.  

Figure 23 shows a prototype of Volcano3d with basic Rshiny options. It includes the option 

to visualize the 3 different differential expression datasets as individual volcano plots, 

Figure 22:Screenshot of GRIMONS Rshiny prototype with multiple interactive options.
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along with the combined 3D version. It also shows a combined box plot for the expression 

levels of any gene selected on the 3D visualization section. Options to select datasets, 

change color scheme, filter out not-significant genes and change the plot structures 

according to selected values such as fold change, q-value, Z-score, etc. So, no major issue 

was found while implementing this function, as it is a dedicated to showcase interactions 

between 3 DE datasets.   

F
ig

ur
e 

23
: 

S
cr

ee
ns

ho
t 

of
 V

ol
ca

no
3D

 R
sh

in
y 

pr
ot

ot
yp

e 
al

on
g 

w
it

h 
st

an
da

rd
 2

d 
vo

lc
an

o 
pl

ot
s 

fo
r 

ea
ch

 d
at

as
et

 a
lo

ng
 a

nd
 e

xa
m

pl
e 

bo
xp

lo
t 

sh
ow

in
g 

th
e 

ex
pr

es
si

on
 le

ve
ls

 o
f 

se
le

ct
ed

 
ge

ne
 o

ve
r 

th
e 

3 
da

ta
se

ts
. 



62 
 

6.5 Challenges and future directions for method implementations 

The development of KBCommons omics studio faces many challenges, primary of which 

is dealing with the large sizes of the datasets created by the addition of various annotation 

information. While KBCommons does have a SQL database to help manage and store the 

data, including access to SQL queries for quick information retrieval, there is still a 

considerable delay while processing the datasets into a format recognizable by the various 

3D packages being tested. Some of the packages being tested also have random bugs and 

visualization errors due to incompatibility with the newer RGL display package. Different 

solutions are being evaluated, including building a brand new package dedicated to 

visualizing multilayered plots similar to GRIMONS, but with much more extended 

functionality, possibly using the rayshader[110] and rayrender[111] packages. 

Eventually the Omics studio will go live and will include the multiomics data from chapters 

3 and 4, presenting unique opportunities to generate more novel hypothesis based on the 

various new plots and images. Omics studio will also work with other datasets including 

raw RNA-Seq data, with the pre-processing being carried by a gene expression analysis 

PGen pipeline, which is part of the KBCommons suite of tools. 
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Chapter 7: Summary and way forward 

 

7.1 Updating gene expression results 

The RNA-Seq data used in Chapter 3 was generated from maize plant samples grown in 

the year 2017 as part of the drought root project by the Sharp lab. This project included 

plans to generate 2 more batches of data over the next two years, and both have been 

collected and processed. This gives the unique opportunity to not only add more replicates 

to the differential gene expression study, but also to compare between results between the 

3 batches. However, to do this the informatics pipeline will have to be updated to use a 

software package which accounts for the variability in expression levels which 

inadvertently is always introduced when using samples generated in different batches. The 

effect is known as “batch effect” and various methods have been designed to reduce 

variation across samples and tease out the most significant differentially expressed genes 

from these studies. 

EdgeR is a differential gene expression analysis tool which estimates dispersion of counts 

of aligned RNA-Seq reads per gene over replicates and normalizes them over the entire 

dataset of genes[112]. EdgeR also implements a generalized linear model[113] tuned by a 

design matrix, to normalize across multiple groups between batches, usually to account for 

different observations or phenotypes, such as in the case of the nodal root samples – 

replicates from either A, B or C root tip region, or if from B73 or FR697 genotype samples. 

This makes edgeR a suitable replacement for cuffdiff which unfortunately is not suited for 

dealing with batch effects in samples. EdgeR accepts a matrix of absolute counts of RNA-
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Seq reads aligned to gene models. For this the samples will have to be realigned using a 

counts specific tool such as HT-seq[114] which reports how many reads align to a genomic 

feature.   

This also opens up the opportunity to update the alignments, i.e., use a newer version of 

the reference B73 genome along with the FR697 de-novo transcriptome assembly, detailed 

in chapter 5. This will not only enable an accurate comparison of gene expression patterns 

across genotypes but will also update the multiomics analysis with a more robust set of 

significant genes. The WGCNA clustering and TF-gene relationships will also be 

recalculated using the new datasets.   

7.2 Incorporate protein quantification datasets into the multiomics study 

As mentioned before the FR697 nodal root samples were collected with the intent of 

generating proteomics samples as well. These samples are in the process of being 

quantified and analyzed to reveal proteins which are differentially accumulated in these 

samples. The multiomics analysis pipeline was developed with the intention of using this 

dataset as well, i.e, a total of four FR697 specific datasets – phenotypic observations, gene 

expression values, protein quantification levels and metabolite quantities. The design 

matrix will be updated to reflect the relationship between the 4 datasets and the method 

will have to be retuned, along with selecting a new distance penalty. 

7.3 Merge results from both exploratory strategies  

To gain deeper insights into the mechanisms behind the adaptation for drought stress, the 

significant elements from the multiomics study will be marked on the network visualized 

in Cytoscape with the TF-gene interactions. This merged network can showcase systemic 
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links and when connected to biochemical pathways generate unique candidates. The 

connected dataset will also be uploaded to KBCommons studio with options to filter 

according to various pathways and cutoff values according to expression levels. Other 

method’s such as the IMPres-Pro dynamic programming-based tool[27] will also be 

explored to determine optimum links between various TF-Gene pairs to add more support 

to the results of the exploratory analysis. 

Figure 24: Example of connecting significant elements from both exploratory pipelines. 

7.4 Conclusion 

The exploratory strategies discussed in this dissertation were developed to explore maize 

samples, however they can also be used in conjunction with datasets from other projects as 

well. This is dependent upon processing the samples into the accepted input formats for 

each type of analysis. The significant elements detected at the end of these strategies will 

be validated and explored with laboratory methods such as qRT-PCR and hopefully reveal 

insights into the unique drought adaptation of maize roots.   
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