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ABSTRACT 

 
Neural engineering research has been rapidly growing in prominence in the past two decades, with 

‘reverse engineer the brain’ listed as one of the 14 grand challenges outlined by the National 

Academy of Engineering. The computational aspect of reverse engineering includes a study of 

how both single neurons and networks of neurons integrate diverse signals from both the 

environment and from within the animal and make complex decisions. Since there are many 

limitations on the experiments that can be performed in alive or isolated biological systems, there 

is a need of standalone computational models which can help perform ‘in silico’ experiments. This 

dissertation focuses on such ‘in silico’ neuronal models to predict underlying mechanisms of 

governing interactions and robustness.  

The first model investigated is that of a rodent perirhinal cortex area 36 (PRC), and its role in 

associative memory formation. A large-scale 520 cell biophysical model of the PRC was 

developed using biological data from the literature. We then used the model to shed light on the 

mechanisms that support associative memory in the perirhinal network. These analyses revealed 

that perirhinal associative plasticity is critically dependent on a specific subset of neurons, termed 

conjunctive cells. When the model network was trained with spatially distributed but coincident 

neocortical inputs, these conjunctive cells acquired excitatory responses to the paired neocortical 

inputs and conveyed them to widely distributed perirhinal sites via longitudinal projections. 

Ablation of conjunctive cells during recall abolished expression of the associative memory.  

The second model focuses on a model for crab cardiac system consisting of five Large Cells (LC) 

developed using firsthand biological data. The model is then used to study the features of its 

underlying oscillation in its membrane potential during a rhythm and to reverse engineer the 

experimentally discovered phenomenon related to network synchrony. The model predicted 
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multiple mechanisms of compensation to restore network synchrony based on compensatory 

intrinsic conductances.  

Finally, a third model, related to the second one, was of an improved three-compartmental 

biophysical model of an LC that is morphologically realistic and includes provision for inputs from 

the SCs. To determine viable LC models, maximal conductances in three compartments of an LC 

are determined by random sampling from a biologically characterized 9D-parameter space, 

followed by a three-stage rejection protocol that checks for conformity with features in 

experimental single cell traces. Random LC models that pass the single cell rejection protocol are 

then incorporated into a network model followed by a final rejection protocol stage. Using 

disparate experimental data, the study provides hitherto unknown structure-function insights 

related to the crustacean cardiac ganglion large cell, including the differential roles of active 

conductances in the three compartments. The novel morphological architecture for the large cell 

was validated using biological data and used to make predictions about function. A testable 

prediction related to function was that active conductances, specifically, the persistent sodium 

current, is required in the neurite to transmit the spike waveforms from the spike initiation zone to 

the soma. Another pertains to the co-variation of maximal conductances of the persistent sodium 

current with that of the leak current. 
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CHAPTER 1 

 

INTRODUCTION AND OBJECTIVES 

 

 
1.1. BACKGROUND AND MOTIVATION 

 As a kid, I had always wondered why babies start crying at birth. Why do they not smile 

or laugh. As I grew older, I realized that after birth, their brain starts acquiring data from the 

senses, and from interaction with people and objects. But still I did not get a clear answer to why 

they cry. When I started my undergraduate studies, I researched this further and found that some 

tiny area in their tiny brain makes them afraid or fearful of the sudden change in surrounding and 

probably the discomfort during birth, i.e., automatically they start to fear. After I started my 

Master’s degree, I was introduced to the world of computational neuroscience which has the 

power to provide answers to formerly difficult questions about the functioning of our brains. 

 Brain, a complex network of 100 billion neurons in humans, make us who we are. All our 

perceptions, experiences and senses are controlled by brain. Imagining what will happen if brain 

did not exist also requires the brain. Neuroscience, a study of the brain, is one of the fastest 

growing fields in the 21st century. Neuroscientists have been trying to study the brain since early 

20th century but have able to understand only a minuscule part of its mysterious workings. One 

of the main reasons for this slow pace in unraveling brain functions is lack of appropriate 

advanced technology. A host of new technological tools and techniques [1] are being introduced 

for finer level probing (e.g., multichannel microrecording arrays [2], brainbow [3], optogenetics 

[4], DREADD technology [5]) and this has resulted in large amounts of neurophysiological data 

being generated. With such advanced tools being introduced regularly, the study of the brains is 

being recognized as an important challenge even for engineers. Indeed, the National Academy of 
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Engineering has listed ‘reverse engineering the brain’ as one of the 14 grand challenges in 

engineering (NAS 2008). The time is thus ripe for further involvement by engineers in this area 

via the development of computational models as yet another ‘tool’ to probe brain functioning.  

 Computational neuroscience is the study of neurons and how they communicate with each 

other and control small robust systems as well as big mammalian brains with complex 

functionality. Neurons are typically individual ‘agents’ that interact with each other in well-

defined local and global networks. The functioning of individual neurons as well as their 

interactions are poorly understood presently. We reverse engineer these nonlinear circuits to 

understand neuro-computational and system level issues such as bifurcation, adaptation and 

learning (e.g., long term potentiation/depression), robustness, and control. The biophysical 

models used incorporate neurophysiological data, including current channels and synapses. We 

model neuron as a capacitance (cell membrane) and nonlinear resistors (voltage-gated channels). 

The software package NEURON is used to develop the models. Computational models allow 

neuroscientists to perform ‘model experiments’ which are presently not possible in in vitro or in 

vivo settings in the laboratory. For instance, we lack resolution in technology to measure changes 

at the synaptic levels in vivo, and the measurement problem becomes intractable as the numbers 

of neurons increases. Reliable computational models also have the potential to save costs, time 

and animal use. 

The process used in a computational neuroscience typically follows three steps: (i) Model 

development: Creating the model using existing biological data; (ii) Validation of the model: 

Here the model has to reproduce some biological observations and phenomenon which it was not 

specifically designed to reproduce; (iii) Predictions from the model: this is the most important 

part where the model can predict phenomena not yet observed in biology. 
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1.2 OVERVIEW OF DISSERTATION AND OBJECTIVES 

 This dissertation deals with three studies investigating neuronal function at both single cell 

and circuit levels, using biophysical computational models at both levels. All three projects are 

part of on-going collaborations with neuroscientists who provide both data as well as expertise 

from the biology side.  The core chapters (2-4) are written in the form of journal papers. 

Chapter 2. Mechanisms of memory storage in the perirhinal network: a biophysical modeling 

study. The perirhinal cortex supports recognition and associative memory. Prior unit recording 

studies revealed that recognition memory involves a reduced responsiveness of perirhinal cells to 

familiar stimuli whereas associative memory formation is linked to increasing perirhinal 

responses to paired stimuli. Both effects are thought to depend on perirhinal plasticity but it is 

unclear how the same network could support these two opposite forms of plasticity. However, 

the Pare Lab (our collaborator) recently showed that when neocortical inputs are repeatedly 

activated, depression or potentiation could develop, depending on the extent to which the 

stimulated neocortical activity pattern recruited intrinsic longitudinal perirhinal connections. We 

developed a biophysically realistic model of perirhinal area 36 that could reproduce the different 

responses to neocortical stimuli as shown by that study. We then used the model to shed light on 

the mechanisms that support associative memory in the perirhinal network. These analyses 

revealed that perirhinal associative plasticity is critically dependent on a specific subset of 

neurons, termed conjunctive cells. When the model network was trained with spatially 

distributed but coincident neocortical inputs, these conjunctive cells acquired excitatory 

responses to the paired neocortical inputs and conveyed them to widely distributed perirhinal 

sites via longitudinal projections. Ablation of conjunctive cells during recall abolished 

expression of the associative memory.  However, ablation of conjunctive cells during training 
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did not prevent associative memory formation because a new set of conjunctive cells emerged, 

revealing that competitive synaptic interactions within the perirhinal network governs the 

formation of conjunctive cell assemblies. 

Chapter 3. Intrinsic and gap junction compensation to preserve single cell and network 

properties: a computational model study of LC of crab. The crustacean cardiac ganglion (CG) 

network coordinates the rhythmic contractions of the heart muscle to control the circulation of 

blood. The network consists of nine cells, five large motor cells (LCs) and four small 

endogenous pacemaker cells (SCs). Previous studies have considered homeostatic compensation 

at either cellular or network levels, but not at both levels for the same preparation. Even with 

considerable variability in the intrinsic conductance between the five LCs in a cardiac network, 

they have synchronous output in the intact network.  To study why this might be so, we first 

developed a single cell model for an LC of the crab cancer borealis and then developed a 5-cell 

network model of its ganglion to study the potential role of co-regulation of intrinsic, and gap 

junction electrical conductances in restoring LC output as well as the synchronous LC network 

output. We used the model to predict roles the various intrinsic currents in shaping the output. 

The model also provides intrinsic correlations that might exist which can be tested in the 

biological systems. At a network level, the model suggests how intrinsic vs gap junction 

coupling compensation can help maintain the synchrony in the network. Compensation by 

increase in the potassium current A was not enough to fully restore the synchrony of the 

network, but additional compensation by gap junction coupling helped achieve full synchrony.  
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Chapter 4. Morphological crustacean cardiac ganglion cell model reveals differential roles of 

conductances in compartments. We developed an improved three-compartmental biophysical 

model of an LC that is morphologically realistic and includes provision for inputs from the SCs.   

We investigate how the distribution as well as potential covariations of conductances affect 

membrane potential response. A key prediction from this work was demonstrating the role of 

active conductances in neurite and predicting their specific functions. 
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CHAPTER 2 

MECHANISMS OF MEMORY STORAGE IN THE PERIRHINAL 

NETWORK: A BIOPHYSICAL MODELING STUDY 

 

2.1 BACKGROUND 

How do we recognize new things and how we associate things? 

Consider example of a beautiful flower which has a nice pleasant smell (e.g. Rose) and another 

flower which is beautiful but has no smell. Our brain associates the pleasant smell with the 

beautiful flower which makes us remember rose much better. What part of our brain does this? 

In mammals, Perirhinal cortex (PRC), a region with 40,000 neurons; is supposed to encode 

recognition and associative memories. 

Our collaborator has done experiments on rodent PRC to show how these memories are stored. 

Here we use this data to reverse engineer PRC to understand its working. 

Engineering relevance: a) Adaptive learning with potentiation and depression. 

     b) Architecture for memory storage. 

     c) Non-linear electrical systems. 

 

 

2.2 ABSTRACT 

The perirhinal cortex supports recognition and associative memory. Prior unit recording studies 

revealed that recognition memory involves a reduced responsiveness of perirhinal cells to 

familiar stimuli whereas associative memory formation is linked to increasing perirhinal 

responses to paired stimuli. Both effects are thought to depend on perirhinal plasticity but it is 

unclear how the same network could support these two opposite forms of plasticity. However, a 

recent study (Unal et al., 2012) showed that when neocortical inputs are repeatedly activated, 

depression or potentiation could develop, depending on the extent to which the stimulated 

neocortical activity pattern recruited intrinsic longitudinal perirhinal connections. Here, we 
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developed a biophysically realistic model of perirhinal area 36 that could reproduce these 

phenomena. We then used the model to shed light on the mechanisms that support associative 

memory in the perirhinal network. These analyses revealed that perirhinal associative plasticity 

is critically dependent on a specific subset of neurons, termed conjunctive cells. When the model 

network was trained with spatially distributed but coincident neocortical inputs, these 

conjunctive cells acquired excitatory responses to the paired neocortical inputs and conveyed 

them to widely distributed perirhinal sites via longitudinal projections. Ablation of conjunctive 

cells during recall abolished expression of the associative memory.  However, ablation of 

conjunctive cells during training did not prevent associative memory formation because a new 

set of conjunctive cells emerged, revealing that competitive synaptic interactions within the 

perirhinal network governs the formation of conjunctive cell assemblies. 

 

2.3 INTRODUCTION 

 

The perirhinal cortex occupies a strategic position among temporal lobe structures involved in 

declarative memory as it relays a large portion of neocortical sensory inputs to the entorhino-

hippocampal system and constitutes the main return path for hippocampo-entorhinal efferents to 

the neocortex (Deacon et al. 1983; Room and Groenewegen 1986; Witter et al. 1986; Insausti et 

al. 1987; Suzuki and Amaral 1994ab; Burwell and Amaral 1998ab).  In keeping with this, the 

perirhinal cortex plays a critical role in high-order perceptual and mnemonic functions. Indeed, 

perirhinal lesions lead to recognition memory impairments (Gaffan and Murray 1992; Meunier et 

al. 1993, 1996; Zola-Morgan et al. 1989; Suzuki et al. 1993) that compare to, or are more 

important than, those caused by hippocampal and entorhinal lesions (Aggleton et al.1986; 

Murray and Mishkin 1986; Meunier et al. 1993; Leonard et al. 1995; Murray et al. 2005). 

Moreover, perirhinal lesions cause a pronounced associative memory deficit within and across 
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sensory modalities (Murray et al. 1993; Higuchi and Miyashita 1996; Buckley and Gaffan 1998; 

Parker and Gaffan 1998; Goulet and Murray 2001). 

What are the perirhinal correlates of memory formation?  With respect to recognition memory, 

perirhinal neurons display reduced responses to visual stimuli that have been presented 

previously (Brown et al. 1987; Fahy et al. 1993; Li et al. 1993; Miller et al. 1993; Sobotka and 

Ringo 1993). These response attenuations develop rapidly (within a single training session), last 

a long time (>one day), and are far more common among perirhinal than hippocampal neurons 

(Rolls et al. 1993; Riches et al. 1991; Eichenbaum et al. 1996; Xiang and Brown 1998). In 

contrast, when monkeys are trained to form associations between two arbitrary visual stimuli, a 

different behavior emerges. As a result of training, many neurons that were only responsive to 

one of the stimuli acquire responses the paired stimulus (Messinger et al. 2001; Naya et al. 

2003a). Critically, the incidence of such pair coding neurons is much higher in area 36 than in 

neighboring neocortical regions (Naya et al. 2003a).     

On the surface, the familiarity-induced response depressions and the emergence of pair coding 

behavior seem contradictory because both result from repeated presentations of the same stimuli.  

However, a recent study in the whole brain in vitro (Unal et al. 2012) revealed how synaptic 

plasticity in the perirhinal network could support these two phenomena, depending on the extent 

to which the stimulated neocortical activity pattern recruited intrinsic longitudinal perirhinal 

connections.  

Here, we developed a biophysical model of perirhinal area 36 that could reproduce the findings 

of this in vitro study. We then challenged the model with various spatiotemporally distributed 

patterns of neocortical inputs to shed light on the mechanisms that support associative memory in 

the perirhinal network.  Our findings suggest that associative memory formation is dependent on 
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the emergence of a specific subset of conjunctive cells that acquire excitatory responses to 

coincident neocortical inputs and convey their influence to widely distributed perirhinal sites via 

longitudinal projections. 

 

 

2.4 METHODS 

Overview 

 

We first summarize the approach used to construct the model and then describe each aspect in 

detail below. Based on experimental data about the anatomical and physiological properties of 

the perirhinal cortex, we created a realistic biophysical model of perirhinal area 36.  When 

lacking relevant data to constrain a particular aspect of the model, we relied on findings obtained 

in different cortical areas.  We first built multi-compartment models of individual principal and 

local-circuit neurons based on previously published studies on the electroresponsive properties of 

perirhinal cells.  Next, principal and local-circuit neurons were distributed in a tri-dimensional 

space that reproduced the laminar organization of perirhinal area 36.  Then, we endowed the 

model with realistic intrinsic connectivity, including intra- and inter-laminar connections, long-

range rostro-caudal links as well as local circuit inhibitory connections, and finally, extrinsic 

inputs from the associative temporal neocortex. As ubiquitously found in the cerebral cortex, the 

inhibitory connections present in the model include GABA-A and B receptor-mediated 

components whereas excitatory synapses are dual glutamatergic AMPA/NMDA synapses.  In 

keeping with the extensive literature on perirhinal synaptic plasticity, excitatory synapses were 

modeled such that they could undergo activity-dependent plasticity under the control of group I 

mGlu receptors and NMDA receptors. In the following, we consider the experimental data 

supporting these properties and explain how they were implemented in the model. 
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Individual Cell Models 

 

Principal cell model. In the perirhinal cortex, three main types of principal neurons have been 

identified: regular spiking (RS), burst firing, and late spiking cells (Beggs and Kairiss 1994; 

Faulkner and Brown 1999; D'Antuono et al. 2001; Martina et al. 2001b; Moyer et al. 2002). The 

RS cell type is by far prevalent, except in layer VI where late spiking neurons are more common 

(Faulkner and Brown 1999; McGann et al. 2001). However, pilot simulations revealed that 

random synaptic activity in our model network depolarized late firing cells enough to inactivate 

the slow A-like current that underlies the late-firing behavior (Storm 1988), effectively 

transforming them into RS neurons.  Consequently, to accelerate the simulations, we only 

included principal cells of the RS variety.  

 The RS cell model has 5 compartments respectively representing the soma (includes 

axon), basal dendrites, apical trunk, from which emerge two apical dendrites. The dimensions of 

these compartments (Table 1) were selected to preserve biological realism and match passive 

properties (Table 2, Fig. 1A1; Bush et al. 1993; Moyer et al. 2002). The ionic currents inserted 

into each compartment were adapted from existing biophysical models of hippocampal and 

entorhinal neurons (Migliore et al. 1995, 1999; Dickson et al. 2000; Fransen et al. 2002, 2004, 

2006; Migliore 2003; Hemond et al. 2008). The ionic currents included in each compartment and 

their associated parameters are listed in Table 1.   

Interneuron models. Based on earlier studies in the cerebral cortex (Gupta et al. 2000; 

Kawaguchi and Kondo 2002; Klausberger and Somogyi 2008), perirhinal area 36 likely contains 

a wide variety of inhibitory local-circuit cells. However, since there is limited data about their 

connectivity and electroresponsive properties (Beggs and Kairiss 1994; Faulkner and Brown 

1999; Martina et al. 2001ab), we modeled the two types of interneurons that are prevalent in all 
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cortical regions: the fast-spiking subtype of parvalbumin-expressing (PV) and somatostatin-

expressing (SOM) interneurons, that together account for ~70% of cortical interneurons (Rudy et 

al. 2011). For both types of local-circuit cells, we developed three-compartmental models and 

endowed them with passive properties and voltage-gated-currents (Table 1) so that they could 

reproduce the electroresponsive properties described in prior experimental studies (Fig. 1A2,A3; 

Faulkner and Brown 1999; D'Antuono et al. 2001; Martina et al. 2001b; Moyer et al. 2002; Ma et 

al. 2006).  

Connectivity of the model 

The perirhinal network model consists of 400 RS, 60 PV and 60 SOM cells distributed in a two-

dimensional space with dimensions of 10 and 3 mm for the rostrocaudal and transverse axes, 

respectively. PV and SOM interneurons were placed at regular intervals along the rostrocaudal 

axis to ensure uniform inhibition throughout the network. RS cells were also distributed 

uniformly to make their placement symmetrical with respect to interneurons. 

  Perirhinal area 36 receives around half of its cortical inputs from a laterally adjacent strip 

of neocortex termed the ‘‘ventral temporal associative neocortex’’ (Burwell et al.1995; 

Burwell2000; Furtak et al.2007). Most of these neocortical inputs end at perirhinal sites 

rostrocaudally adjacent to their point of origin; only a minority of neocortical axons reach 

rostrocaudally distant perirhinal sites (Unal et al.2012). In contrast, the principal perirhinal 

neurons targeted by neocortical inputs, while also forming local (≤ 1.5 mm; hereafter termed 

short-range) connections, contribute a prominent system of long-range intrinsic connections that 

spans the entire rostrocaudal extent of the perirhinal cortex (Witter et al.1986; Burwell and 

Amaral1998a; Biella et al.2001,2002; Unal et al.2012). Long-range neocortical and perirhinal 

axons only form glutamatergic synapses, prevalently with principal perirhinal neurons (Unal et 
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al.2013). Also, short vs long-range axons form differential connections with local-circuit cells: 

the incidence of excitatory synapses onto local-circuit cells is ~ 2–3 times lower in long- than 

short-range connections (Unal et al.2013). Our perirhinal network model was structured to 

capture these various properties, as detailed below   

Neocortical inputs. Neocortical afferents were modeled with 201 neocortical input cells 

distributed along the rostrocaudal extent of the perirhinal network. Each neocortical input formed 

unique connections with perirhinal neurons and could be activated independently. Note that these 

‘‘input cells’’ are in fact just spike trains used for synaptic drive. To constrain the distribution of 

neocortical inputs to the model, we relied on data from previous physiological studies. In 

particular, patch recordings of perirhinal cells in horizontal slices kept in vitro have revealed that 

neocortically evoked EPSPs decrease in amplitude as the rostrocaudal distance between the 

neocortical stimulation site and the recorded cell increases (Martina et al.2001b). Furthermore, 

this reduction occurs at different distances from the stimulated neocortical site in RS (3 mm) and 

PV (1 mm) neurons. Thus, model neocortical connections were structured to reproduce these 

features. To ensure uniform neocortical activation of PV interneurons despite the low cell density 

compared to real cortex, neocortical connections were made to all PV interneurons within 1.0 

mm of the neocortical source in the rostrocaudal axis. Neocortical axons did not contact more 

distant PV cells, in keeping with prior electrophysiological findings (Martina et al.2001b). 

Short- and long-range horizontal connections. As mentioned above, a distinguishing property of 

the perirhinal cortex is the existence of a prominent system of intrinsic longitudinal connections 

that spans much of its rostrocaudal extent (Witter et al. 1986; Burwell and Amaral 1998a; Biella 

et al. 2001, 2002). Although these longitudinal axons arise from and terminate in all layers, cells 

contributing these intrinsic axons are most concentrated in layers II, V, and VI and they 
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terminate most heavily in superficial layers (Witter et al. 1986; Biella et al. 2001). In the model, 

these properties were implemented as follows. Long-range connections were made from RS cells 

to other RS cells located >1.5 mm from the source cell in the rostrocaudal dimension. Long-

range connections were not designed to be reciprocal.  That is, they were made along the random 

path of each source cell’s single axon. Each source cell formed 21 such connections along the 

path of its axon and each target RS cell received ≤20 such long-range inputs. This resulted in an 

RS-RS connection probability of approximately 7%. An RS cell also made long-range 

connections to SOM cells with a 5% connection probability if the latter was connected to a RS 

cell that received a long-range connection from the same source RS cell. For short-range 

connections between RS cells, a connection was made with 8% probability if the rostrocaudal 

distance between the cells was less than 1 mm.  

 Local circuit inhibitory connections. Lacking perirhinal data to constrain the connections 

between RS and PV cells, we adjusted these connections so as to reproduce the dramatic impact 

of feedforward and feedback inhibition on the responsiveness of perirhinal RS cells, as 

documented in previous electrophysiological studies (Biella et al. 2001; Martina et al. 2001b). In 

particular, excitatory connections to PV interneurons and inhibitory connections to RS cells were 

made with 100% probability within a radius of 0.75 mm, which ensured that all RS cells were 

within the inhibitory field of at least one interneuron. SOM cells inhibited all the RS cells within 

a rostrocaudal distance of 0.75 mm, as well as the PV cells within a rostrocaudal distance of 0.25 

mm. SOM cells did not receive inputs from nearby cells, RS or PV. 

In keeping with prior anatomical and electrophysiological observations (Fino et al. 2012; 

Adesnik et al. 2012; Pfeffer et al. 2013; Zhang et al. 2014), the two types of interneurons 

targeted different compartments of RS cells (PV, soma; SOM, dendrites), they formed 
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contrasting connections with each other (SOM cells inhibited PV cells but not the opposite), and 

they were differentially innervated by long-range cortical inputs (SOM received such inputs; not 

PV cells).  

 

Synaptic currents, short- and long-term synaptic plasticity 

 

Synaptic currents. As is the case throughout the cerebral cortex, including perirhinal area 36 

(Ziakopoulos et al. 2000; Martina et al. 2001a), inhibitory connections present in the model 

include GABA-A and B receptor-mediated components whereas excitatory synapses are dual 

glutamatergic AMPA/NMDA synapses. All synapses are assigned maximal and initial 

conductances (GAMPA, GNMDA, GGABAa, GGABAb). These values were uniform within each synapse 

type.  AMPA currents were further modified by a plastic weight Wi,j, as justified below. As is 

customary in the modeling literature (Dyhrfjeld-Johnsen et al. 2007), we compensated for the 

reduction in network size by increasing synaptic strengths. Conductance values and related 

details are in section S.3 of supplementary materials. 

Short-term synaptic plasticity. Because short-term synaptic depression is ubiquitous between 

principal cortical neurons, model RS to RS synapses were designed to reproduce this property, 

based on prior experimental data (Silberber et al. 2004).  We also modeled short-term facilitation 

at SOM to RS synapses, as seen in the visual cortex (Ma et al. 2012). See section S.4 of 

supplementary materials for how short-term synaptic plasticity was implemented in the model. 

Long-term synaptic plasticity. Glutamatergic synapses to principal perirhinal cells can undergo 

long-term activity-dependent changes in efficacy (McCaffery et al. 1999; Ziakopoulos et al. 

1999; Cho et al. 2000, 2001; Massey et al. 2001; Cho and Bashir 2002; Cho et al. 2002; Massey 

et al. 2004; Barker et al. 2006ab; Jo et al. 2008; Massey et al. 2008; Bang and Brown 2009). In 

contrast, to the best of our knowledge, there has been no report of long-term activity dependent 
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plasticity at connections formed by perirhinal inhibitory neurons. Accordingly, model 

glutamatergic (but not GABAergic) synapses were endowed with mechanisms allowing long-

term activity-dependent plasticity. 

It was assumed that activity-dependent changes at inputs to RS cells are expressed 

postsynaptically, by increases or decreases in AMPA receptor-dependent currents.  Based on 

earlier experimental evidence (Bilkey 1996; Ziakopoulos et al. 1999; Cho et al. 2000, 2001; Jo et 

al. 2008), these changes in AMPA currents were determined by the competing influence group I 

metabotropic glutamate receptors (mGluRs) and NMDA receptors. In particular, activation of 

mGluRs induced long-term depression (LTD) whereas moderate vs. strong activation of NMDA 

receptors induced LTD or long-term potentiation (LTP), respectively. This was implemented as 

follows. At each excitatory synapse, the AMPA current amplitude was modified by Wi,j, the 

plastic weight of the synapse between cell i to cell j. The initial weights of all the synapses are 

listed in table S.3 of supplementary materials. An increase or decrease in Wi,j from the initial 

value represented potentiation or depression of the synapse. Two Ca2+-dependent mechanisms 

determined the fate of synaptic weights. Accordingly, two separate Ca2+ sources were modeled 

for each synapse: one pool was supplied by NMDA receptors, and a second by Ca2+ release from 

intracellular stores, under the control of mGluRs. See section S.3 of supplementary materials for 

details. 

 

Model experiments 

 

To test the validity of the model, we examined whether it could reproduce the findings of Unal et 

al. (2012).  Thus, we used the same stimulation paradigms as in this prior study.  In all model 

experiments, the training protocol consisted of a testing phase (“pre-test”), a training phase 

(“training”), and a second testing phase after training (“post-test”). During both testing phases, 
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the neocortex was stimulated in the same manner: once at a series of rostrocaudal locations, from 

0–10 mm, activating 17 neighboring neocortical input neurons at each location (one ‘site’). 

Three seconds was allowed between the activation of different neocortical sites.  Each simulation 

was repeated five times from different random seeds and the results averaged. During training, 

various stimulating paradigms were tested. They will be described in detail in the corresponding 

results sub-sections.  However, one of these stimulation patterns is used in several simulations 

and provided here. To induce activity-dependent plasticity, neocortical inputs from one or more 

rostrocaudal levels were activated in the following manner: thirty 1-s trains repeated at 8 Hz, 

each followed by a 0.5-s gap. Below, this stimulation pattern will be termed “theta-frequency 

stimulation” (TFS).  For each modeling experiment, we ran the model five or six times from 

different random seeds and the data was averaged.  Data are expressed as averages ± SEM. All 

results are expressed as average ± SEM. Unless otherwise stated, we used paired t tests for 

statistical comparisons. However, before using this test, we verified that the data to be compared 

were normally distributed using a Kolmogorov–Smirnov test. 

 

2.5 RESULTS 

 

This study investigates the mechanisms of distributed synaptic plasticity underlying associative 

memory formation in the perirhinal cortex. To this end, guided by previous experimental studies, 

we developed a model of the perirhinal network that captures salient properties of this cortical 

region. We first provide a general description of the model’s features.  Then, to test the model’s 

validity, we examine whether it can reproduce the findings of a prior study on activity-dependent 
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plasticity in the perirhinal cortex (Unal et al. 2012). Finally, we use the model probe mechanisms 

of associative memory formation in the perirhinal network. 

 

Model overview 

 

The following summarizes the general properties of the model.  The reader is referred to the 

Methods section and appendices for details regarding the implementation of these properties and 

for references to the experimental reports used to constrain the model.  To minimize computation 

times while capturing the essence of the perirhinal network (Fig. 1), the number of perirhinal 

cells was reduced to 400 principal (glutamatergic, RS) and 120 local-circuit GABAergic neurons 

(60 PV and 60 SOM; Fig. 1B). Their passive properties as well as the density and distribution of 

voltage-dependent ionic conductances were adjusted to reproduce the electroresponsive 

properties of these cells (Fig. 1A1-3), as described experimentally.  In keeping with prior 

experimental reports, model PV and SOM cells target different compartments of RS cells (soma 

and dendrites, respectively), they form contrasting connections with each other (SOM cells 

inhibit PV cells but not the opposite), and they are differentially innervated by long-range 

cortical inputs (SOM but not PV cells receive such inputs Fig. 1B-C). The model features 

topographically organized glutamatergic inputs from associative temporal cortical areas, 

modeled with 201 input cells distributed along the rostrocaudal extent of the perirhinal network 

(Fig.1B). Note that these ‘‘input cells’’ are in fact just spike trains used for synaptic drive. The 

model also featured a prominent system of intrinsic longitudinal connections with realistic 

conduction delays. These long-range connections arise exclusively from principal neurons, they 

span the entire rostrocaudal extent of the network, and they end on other principal and SOM 

cells, but not PV neurons. The model also features short-term synaptic dynamics (e.g. synapses 

between RS cells exhibit short-term depression) and activity-dependent synaptic plasticity 
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(activation of group 1 mGluRs induces LTD; activation of NMDA receptors induces LTD or 

LTP depending on the level of postsynaptic depolarization).  Last, LTD and LTP are expressed 

postsynaptically, by changes in the AMPA conductance of individual synapses. 

 

Response of model neurons to neocortical inputs 

 

 Figure 2 shows the response of the model neurons to single neocortical stimuli delivered 

at the same rostrocaudal level as the recorded cells vs a longitudinally distant site. Responses are 

shown in two ways: at rest with the full complement of voltage-gated currents (left) or at three 

different membrane potentials (right). For the latter, the fast Na+ conductance of the target cells 

was set to zero, so the responses could be examined without contamination from spikes and 

afterhyperpolarizations.  

Single stimuli applied at a nearby neocortical site elicited EPSPs that triggered spikes in 45 ± 8% 

of RS cells (Fig. 2A, RS).  Whether or not a spike was elicited, these EPSPs were rapidly 

curtailed by a biphasic IPSP (Fig. 2C, RS) that was comprised of an early phase reversing at 

around –70 mV (GABA-A) and a longer-lasting component with a more negative reversal 

potential (GABA-B). These inhibitory potentials are due to the supra-threshold activation of 

many (50 ± 14%) nearby PV cells (Fig. 2A, PV) by excitatory inputs from RS cells and 

neocortical input neurons.  In contrast, SOM interneurons were never fired by nearby neocortical 

stimuli (Fig. 2A, SOM). Instead, they exhibited long-latency EPSPs (Fig. 2C, SOM) due to the 

activation of rostrocaudally-distant RS cells that contributed horizontal axons back to them. 

The responses elicited by rostrocaudally distant neocortical stimuli (Fig. 2B) differed drastically 

from those elicited by nearby stimuli (Fig. 2A).  First, RS cells rarely fired in response to distant 

neocortical stimuli.  Second, because the long-range horizontal axons of RS cells do not contact 

PV neurons, rostrocaudally distant RS cells displayed little or no inhibition (Fig. 2B,D, RS).  
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Yet, PV cells displayed long-latency IPSPs due to the activation of SOM cells by longitudinal 

inputs (Fig. 2B,D, PV). An additional difference between the impact of nearby vs. distant 

neocortical stimuli resided in the response of SOM cells.  Whereas these cells exhibited sub-

threshold EPSPs in response to nearby stimuli (Fig. 2A,C, SOM), they were strongly activated 

by distant stimuli (Fig. 2B,D, SOM), 47 ± 17% of them generating orthodromic action 

potentials.  This phenomenon resulted from their innervation by the long-range horizontal axons 

of RS cells. 

 

Dependence of perirhinal plasticity on the spatial distribution of neocortical inputs 

 

To test the model’s validity, we next examined whether it could reproduce the findings of a study 

on activity-dependent plasticity in perirhinal area 36 of the whole guinea pig brain kept in vitro 

(Unal et al. 2012).  This study examined the activity evoked by temporal neocortical inputs using 

optical measurements with voltage sensitive dyes and multiple simultaneous field potential 

recordings along the rostrocaudal extent of the perirhinal cortex. After obtaining control response 

amplitudes from each neocortical stimulation site, TFS was applied at one or two distant 

neocortical sites. Unal et al. (2012) reported that TFS at one neocortical site produced a LTD of 

optical and field potential responses evoked from the induction site but not from control 

(unstimulated) sites. In contrast, they observed that TFS simultaneously applied at two distant 

neocortical stimulation sites produced a LTP of perirhinal responses evoked from the induction, 

but not the control (unstimulated) sites.  Although the changes in perirhinal responsiveness 

induced by TFS at one or two neocortical stimulation sites were selective to the induction sites, 

the changes could be seen throughout the rostrocaudal axis of the perirhinal cortex.  

We first simulated TFS application at a single neocortical stimulation site using the perirhinal 

network model. Such a simulation is shown in Fig.3A where TFS was applied at neocortical site 
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5 (red). Before reporting the results of this simulation, we explain the approach used to construct 

Fig.3 as the same procedure will be used to illustrate the results of other simulations. The three 

histograms in Fig.3A1 plot the number of RS cells firing in response to single neocortical stimuli 

applied at site 1(left), site 5 (middle), or site 9 (right). A different color(red) is used for the site 5 

histogram because this site will receive TFS in subsequent panels. The x-axis of the three 

histograms shown in Fig.3A1 corresponds to the rostro-caudal or antero-posterior (AP) axis of 

the model. By comparing the distribution of activated cells in the three graphs, one can see that 

the AP level with the most activated cells is always at proximity of the neocortical stimulation 

site; as the neocortical stimulation site shifts caudally (from the left-most to the right-most 

histogram), the AP level with the most RS cells firing also shifts caudally. Note that these three 

histograms depict the control responsiveness of the model prior to single-site TFS at site 5. The 

same three histograms are shown with a compressed x-axis below in Fig.3A2 (oblique lines), 

along with histograms illustrating the model’s responses to other neocortical stimulation sites. 

Figure3A2 thus shows the control responsiveness of the model prior to single-site TFS at site 5. 

Figure3A3 is organized exactly as Fig.3A2 but it shows the responsiveness of the model after 

single-site TFS at site 5. Figure3A4 simply shows the difference between panels 3a3 and 3a4. 

Here, negative values mean that fewer RS cells respond after than before single-site TFS at site 5 

and thus, that TFS caused a response depression 

As seen experimentally (Unal et al. 2012), when we simulated TFS application at a single 

neocortical stimulation site, we observed that single-site TFS at site 5 caused a marked 

depression of RS responses evoked from the induction site (Fig.3A4; -39±4 % RS cells spiking; 

paired t test, p<0.0011; below, unless otherwise noted, we used paired t tests for all statistical 

comparisons). Further paralleling experimental observations, this depression was restricted to RS 
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cells located at proximity of the stimulation site. Responses to the other stimulation sites 

remained unchanged (2±1 %; p=0.31). 

In contrast with single-site TFS, simultaneous delivery of TFS at two distant neocortical sites 

(Fig.3B) produced a potentiation of responses evoked from those sites (32±3 % RS cells spiking; 

p=0.0002), as reported in Unal et al. (2012). Further paralleling experimental findings, the 

potentiation was seen at all rostrocaudal levels of the model network and was most pronounced 

for responses elicited from the paired sites; other sites showed only marginal changes (6±1%; 

p=0.23). In the Unal et al. (2012) study, it was further observed that delaying the stimulation of 

one of the two paired sites by half a theta cycle during TFS (or 65 ms) abolished the potentiation 

of responses elicited by the paired neocortical inputs. We simulated this experiment and obtained 

the same result (Suppl. Figure 2). 

The Unal et al. (2012) study also reported on the impact of several other manipulations such as 

inactivating long-range connections during two-site TFS as well as the effect of NMDA or group 

I mGluR antagonists on the activity-dependent plasticity induced by one- or two-site TFS. The 

model could reproduce the consequences of these various manipulations, as described in 

Supplementary Fig. 3–4.  

Unal et al. (2012) offered the following interpretation for their findings. It is entirely consistent 

with the phenomena observed in our model. With respect to perirhinal cells in transverse register 

with the stimulation site, neo-cortical inputs activate perirhinal PV interneurons, thus limiting the 

depolarization of principal cells by neocortical afferents. In these conditions, activation of group 

I mGluRs causes a response depression. In contrast, when these inputs coincide with the 

activation of a longitudinally distant group of neocortical neurons, responses are shifted toward 

excitation because long-range longitudinal pathways do not engage PV interneurons. By 
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removing the Mg2+ block of NMDA receptors, this stronger depolarization leads to the induction 

of NMDA-dependent LTP.  

Aspects of the model that are critical to reproduce the findings of Unal et al. (2012) 

 

When we developed the current model, we started with single compartment cell models using the 

Hodgkin-Huxley formulation for currents and matched their passive properties to prior 

experimental reports. When using these single compartment cell models in a network, the 

restriction of locating excitatory and inhibitory inputs on the same compartment turned out to be 

problematic. When trying to match the model’s behavior to the single- and paired-site TBS cases 

of Unal et al. (2012) with the same synaptic parameters, network interactions led to runaway 

excitation. It became apparent that this problem could be alleviated by spatially segregating 

excitatory and inhibitory inputs, as occurs in the real network. We reasoned that locating 

inhibitory synapses on somata and excitatory ones on dendrites would result in a relatively more 

potent inhibition and help control excitation. Implementing these features required the use of 

multi-compartmental RS cell models. With such multi-compartmental cell models and spatially 

segregated excitatory and inhibitory synapses, we were able to match the single-site and paired-

site results from Unal et al. (2012), but still could not guarantee stability in all cases. Also, 

reproducing the effects of group I receptor antagonists seen in Unal et al. (2012) remained 

impossible as it caused runaway excitation. We explored various ways to solve this problem and 

ultimately found that the most parsimonious approach was to add another type of inhibitory 

interneuron, this one dendrite-targeting (SOM cells), as present in the real network. This solved 

the problem of runaway excitation and ensured good qualitative, but not quantitative, matches to 

all the results in Unal et al. (2012). Adding inhibition from SOM to PV cells, as occurs in the real 
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network (Pfeffer et al.2013), helped overcome this problem, and provided both qualitative and 

quantitative matches with all the observations in Unal et al. (2012).  

 

Specific perirhinal cells are critical for associative learning: conjunctive cells 

 

 By comparing the responses of RS cells to different neocortical inputs before vs. after 

TFS, we noticed that two-site TFS led to the emergence of RS cells that fired in response to 

independent stimulation of the two paired neocortical inputs.  Because no RS cells exhibited this 

property prior to two-site TFS, we reasoned that these neurons might be more critical than others 

for the induction and expression of the associative plasticity induced by two-site TFS.  These 

cells, hereafter termed conjunctive cells were of two types.  Roughly half were located at the 

perirhinal levels adjacent to the paired neocortical stimulation sites (range: 14 to 20 per site; Fig. 

4A, red circles) and therefore received direct inputs from one of the two paired sites.  The rest 

(off-site conjunctive cells; range 30 to 44) were not located at perirhinal levels adjacent to the 

stimulated sites and thus did not receive direct inputs from the paired neocortical sites (Fig. 4A, 

black circles).   

Impact of ablating conjunctive cells  

To test whether conjunctive cells are more critical than others RS neurons for the associative 

plasticity induced by two-site TFS, we compared the effect of ablating conjunctive cells or an 

equal number of randomly selected RS cells during two-site TFS only (training phase), or after 

conditioning (testing phase).  These tests were performed separately for at-site vs. off-site 

conjunctive cells.   

Figure 4B-D contrasts the effects of ablating control RS cells (top, black) or conjunctive cells 

(bottom, red) during testing (Fig. 4B,C) or training (Fig. 4D,E) on the number of RS cells firing 
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in response to stimulation of neocortical stimulation sites 2 and 8 after conditioning.  Ablation of 

off-site or at-site conjunctive cells during testing (Fig. 4B,C) produced a significant reduction in 

the potentiation of responses elicited from the paired sites compared to that seen after removal of 

control cells at corresponding locations (paired t-tests: at-site p < 0.0001; off-site, p = 0.0008).  

Similarly, ablating at-site conjunctive cells during training (Fig. 4D) produced a significant 

reduction in the potentiation of responses produced by pairing relative to that seen after removal 

of at-site control cells (paired t-test, p = 0.0009).  In contrast, ablating off-site conjunctive cells 

during training had little effect (paired t-test, p = 0.17; Fig. 4D).  Further analyses revealed that 

this negative finding resulted from the fact that following ablation of off-site conjunctive cells, a 

new set of conjunctive cells emerged. For instance, in the particular simulation shown in Fig. 

4E2, 33 cells that were not conjunctive in the control case developed responses to both of the 

paired sites when training occurred after ablation of the original 40 off-site conjunctive cells.  

This phenomenon suggests that a form of synaptic competition (Kim et al. 2013) takes place 

between off-site RS cells. 

Connectivity of conjunctive cells 

To shed light on the properties that determined the emergence of conjunctive cells, we compared 

their inputs and outputs.  Overall, relative to other RS cells, there were no significant differences 

in the number of neocortical inputs they received, in the number of short- or long range input or 

output connections they formed with other RS cells or in their connections with PV or SOM 

interneurons. This was true for both at-site and off-site conjunctive cells. When we restricted the 

comparisons to neocortical inputs recruited by the pairing paradigm, we found that at-site 

conjunctive cells and control RS cells received a similar number of these inputs. Together, these 

negative findings indicate that there were no a priori differences in the connectivity of 
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conjunctive cells.  Rather, these results suggest that conjunctive cells emerge out of the specific 

network interactions that unfold when two groups of neocortical inputs neurons are repeatedly 

activated during paired-site TFS.  

In support of this contention, dramatic differences in the connectivity of conjunctive cells 

emerged when we examined their intrinsic connections with other RS cells that fired during 

pairing (Table 3).  Indeed, relative to control cells, at-site and of-site conjunctive cells received 

significantly more short- and long-range inputs from RS cells that fired during two-site TFS (for 

both: p<0.0001; unpaired t-tests).  Moreover, they contributed significantly more short- and 

long-range projections to RS cells that fired during two-site TFS (long range: p<0.0001; short 

range: p=0.0004; unpaired t-tests). 

 

Reactivation of conjunctive cells      

  

Overall, the above analyses suggest that conjunctive cells play a critical role in the acquisition 

and expression of associative plasticity.  Conceiving associative plasticity as a proxy for 

associative memory, we next asked: are conjunctive cells also involved in the recall of 

associative memories? In the real network, cells at different rostrocaudal levels of the perirhinal 

cortex receive different types of sensory information (Room and Groenewegen 1986).  Thus, 

when two sensory inputs are associated in the perirhinal cortex, an optimal storage strategy 

would be to selectively enhance the responsiveness of RS cells receiving the paired inputs and/or 

the connections between them.  However, this is not the behavior Unal et al. (2012) observed 

experimentally or seen in our simulations: the increase in perirhinal responsiveness produced by 
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paired-site TFS is not limited to cells receiving the paired inputs. It is observed throughout the 

perirhinal cortex (see Fig. 3B, red).  

Thus, when assessing how well (that is, with how much specificity) a ‘‘memory’’ is reactivated, 

it is important to take into consideration the type of RS cells responding to the reactivating 

stimulus. Accordingly, below we distinguish between RS cells that acquired new spiking 

responses to one ‘‘plastic cells’’ or both ‘‘conjunctive cells’’ of the paired neocortical inputs. 

Also, we will refer to cells that did not acquire new spiking responses as ‘‘non-plastic’’ cells. 

Finally, the qualifiers ‘‘at-site’’ or ‘‘off-site’’ will be used for the three terms to indicate whether 

the cells had access to neocortical inputs from one of the two paired sites during training.  

Table4 lists the relative incidence of at-site and off-site CCs, plastic cells, and non-plastic cells 

as seen across ten separate runs. Examination of this data reveals that there are nearly as many 

at-site and off-site cells whose responsive-ness to the paired stimuli increases after two-site TFS. 

On the surface, the diffuse distribution of cells responsive to the paired inputs seems 

incompatible with selective memory recall: how could an associative memory be retrieved with 

some measure of selectivity if independent activation of one of the two paired representations 

recruited so many cells that normally process other inputs. This paradox led us to con-sider the 

possibility that at-site or off-site CCs might have unique connections that could promote a more 

selective reactivation of network, or in other words, that they serve as memory retrieval cells. 

Here, it should be noted that reactivated at-site plastic cells and CCs, embody the ‘‘signal’’, and 

that off-site non-plastic cells, are considered ‘‘noise’’. 

To test this possibility, after two-site TFS, we simultaneously ‘‘reactivated’’ off-site or at site 

CCs (Fig.5A1, B1) and compared the impact of these manipulations to that obtained when 

stimulating an equal number of randomly picked plastic (Fig.5A2, B2) or non-plastic cells 
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(Fig.5A3, B3) at the same location. In these simulations (n=10 foreach of the 6 cases), random 

uncorrelated synaptic inputs were injected in all RS cells so that they would fire at an average of 

~0.6 Hz, as seen in vivo (Collins et al.1999). On this background, two spikes were elicited in all 

cells of interest by applying a brief intracellular current pulse (50 ms, 0.18 nA; random onset 

delay of 1–10 ms; Fig.5C1) and monitoring the responses elicited in target cells (Fig.5C2–5). 

This stimulus can be conceived of as roughly approximating the impact of extrinsic cortical 

inputs involved in memory retrieval. 

Chi square tests revealed a significant dependence in the number of reactivated plastic and CCs 

at-site and the identity of the stimulated cells (CCs, plastic cells, or control cells) whether the 

latter were off-site (Fig.5A; X2=348.4, p<0.0001) or at-site (Fig.5B; X2=115.8, p<0.0001). 

Expectedly, current-evoked firing in non-plastic cells (Fig.5A3, B3) reactivated very few at-site 

plastic cells or CCs (B9 % of total) relative to other types of input neurons. Therefore, the 

following will be restricted to comparisons between the impact of current-evoked firing in plastic 

cells vs CCs, off-site or at-site. 

To assess which of these two cell classes was most selective in reactivating the associative 

memory, we com-pared the incidence of reactivated at-site plastic cells and CCs, embodying the 

‘‘signal’’, and that of off-site non-plastic cells, considered as ‘‘noise’’, depending on the identity 

of the input cells. Although other off-site cells could be construed as noise (e.g., off-site plastic 

cells), we will not consider them below because they served as input cells for some of the 

stimulation and therefore were not available for recruitment. 

We found that whether the input cells were at-site or off-site CCs, they recruited more of the 

signal cells and less of the off-site non-plastic cells than when the input cells were plastic cells. 

In particular, when the input cells were off-site (Fig.5A), current-evoked firing in CCs (Fig.5A1) 
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recruited 33.4±5.8 % of at-site CCs and 23.1±4.8 % of at-site plastic cells compared to 23.1±6.1 

and14.8±2.9 % of the corresponding cells classes when the input cells were plastic cells 

(Fig.5A2). The difference in the combined incidence of at-site plastic cells and CCs as a function 

of the identity of the input cells was statistically significant (p=0.025). Even though off-site CCs 

were more effective in recruiting at-site signal cells, they recruited fewer off-site non-plastic 

cells (13.3±1.6 %) compared to the case when the input cells were off-site plastic cells (21.1±2.3 

%; p=0.0009). 

Similarly, when the input cells were at-site (site 2 in Fig.5B), current-evoked firing in CCs 

(Fig.5B1) recruited35.0±6.2 % of at-site CCs and 10.1±1.4 % of at-site plastic cells compared to 

15.8±3.7 and 6.1±0.6 % of the corresponding cells classes when the input cells were plastic cells 

(Fig.5B2). The difference in the combined incidence of at-site plastic cells and CCs as a function 

of the identity of the input cells was statistically significant(p=0.0013). As seen when the inputs 

cells were off-site, even though at-site CCs were more effective in recruiting at-site signal cells, 

they did not recruit more off-site non-plastic cells (11.3±1.3 %) compared to the case when input 

cells were at-site plastic cells (12.2±1.6 %; p=0.59). Overall, these results suggest that as a result 

of paired-site TFS and of the associated activity-dependent plasticity, CCs form a pattern of 

connections that allows them to preferentially recruit signal cells relative to off-site non-plastic 

cells. Nevertheless, the pattern of reactivation produced by CCs continued to lack specificity as 

some of the reactivated cells were not signal neurons. 

 

2.6 DISCUSSION 

 

To shed light on the mechanisms that support associative memory in the perirhinal network, we 

developed a reduced yet biophysically realistic model of perirhinal area 36. We first assessed the 

model’s validity by testing whether it could reproduce the findings of a recent study that 
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examined changes in perirhinal responses elicited by activation of neocortical inputs (Unal et al. 

2012). The model could reproduce the results of this study, including the observation that 

repeated activation of focal vs. distributed neocortical inputs alters perirhinal responsiveness in 

opposing directions (depression vs. potentiation, respectively).  We then used the model to 

examine the mechanisms that support associative plasticity. Our findings suggest that associative 

memory formation is dependent on a specific subset of perirhinal neurons, termed conjunctive 

cells, that acquire excitatory responses to coincident neocortical inputs and whose reactivation 

after learning contributes to memory retrieval. 

   

Relation between activity-dependent plasticity and perirhinal contributions to memory 

 

Depending on stimulation parameters, the perirhinal cortex could exhibit activity-dependent LTP 

or LTD, as in other cortical regions. For instance, repeated high-frequency (100 Hz) bursts of 

afferent activity elicit a NMDA-dependent potentiation of perirhinal responses in vitro (Bilkey 

1996; Ziakopoulos et al. 1999) and in vivo (Cousens and Otto 1998). Also, low frequency 

stimulation produces a Ca2+-dependent LTD or LTP depending on the holding potential during 

induction (LTD at –70 mV; LTP at –10 mV) (Cho et al. 2001).  

The idea emerged that this form of LTD might underlie perirhinal contributions to recognition 

memory. Indeed, many perirhinal neurons exhibit attenuated responses to previously presented 

visual stimuli (Brown et al. 1987; Fahy et al. 1993; Li et al. 1993; Miller et al. 1993; Sobotka and 

Ringo 1993). Supporting the notion that LTD, the familiarity-induced response depression, and 

perirhinal contributions to recognition memory are functionally related, several studies reported a 

correlation between the effects of various drugs on recognition memory and LTD induction in 

vitro (Warburton et al. 2003; Wan et al. 2004; Seoane et al. 2009). In contrast, associative 

memory formation depends on a potentiation of perirhinal responses to paired stimuli. Indeed, 
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when monkeys are trained to associate two visual stimuli, perirhinal neurons that were initially 

responsive to only one of the two stimuli develop excitatory responses to the paired stimulus 

(Messinger et al. 2001; Naya et al. 2003a). These findings raise the question of how can repeated 

stimulus presentations lead the same network to express pair-coding behavior or familiarity-

induced response depression?   

It was proposed that the solution resides in the differential relation between neocortical vs. 

perirhinal longitudinal axons with fast-spiking interneurons (Martina et al. 2001b; de Curtis and 

Pare 2004). Indeed, electrophysiological studies have revealed that when a point source is 

stimulated in the neocortex, the volley propagates via perirhinal longitudinal axons through the 

entire rostrocaudal expanse of the perirhinal cortex (Biella et al. 2001, 2010; Martina et al. 

2001b; Unal et al. 2012). Importantly, principal perirhinal cells respond differently to neocortical 

inputs depending on their rostrocaudal position relative to the activated neocortical site, as 

reproduced by the present model. Cells in transverse register with the stimulation site show 

mixed excitatory-inhibitory responses, whereas cells distant from the stimulation site lack the 

inhibitory component (Biella et al. 2001; Martina et al. 2001b).  This difference arises because 

neocortical axons form strong connections with fast-spiking inhibitory interneurons whereas 

perirhinal longitudinal axons do not (Martina et al. 2001b; Unal et al. 2013). 

This organization would explain why repeated activation of neocortical inputs induces opposite 

forms of plasticity depending on their spatial distribution.  For perirhinal cells in transverse 

register with the neocortical stimulation site, activation of perirhinal inhibitory interneurons 

limits the depolarization of principal cells by neocortical afferents, favoring LTD. By contrast, 

when these inputs coincide with the stimulation of a rostrocaudally distant group of neocortical 

cells, the consequent activation of long-range perirhinal axons shifts the balance toward 
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excitation. This increased depolarization, by removing the Mg2+ block of NMDA receptors, then 

promotes the induction of NMDA-dependent LTP.  This explanation found strong support in the 

findings of Unal et al. (2012) who reported that the polarity and pharmacological dependence of 

perirhinal plasticity varies depending on the spatial distribution of neocortical inputs. The ability 

of the current model to reproduce their findings further reinforces this hypothesis. 

   

Synaptic mechanisms of activity-dependent potentiation and depression 

 

The main advantage of biophysical models is that they allow manipulations and measurements 

that would be experimentally impossible or impractical.  For example, in the Unal et al. (2012) 

study, the identity of the synapses supporting the plasticity induced by single- or paired-site TFS 

remained unclear.  In contrast, we could readily examine the impact of these manipulations on 

the weight of all model synapses.  This analysis revealed that the response depression induced by 

single-site TFS was mainly due to a decrease in the weight of neocortical inputs to RS cells in 

transverse register with the neocortical stimulation site. Intrinsic perirhinal connections were 

barely altered.  In contrast, for paired site TFS, both neocortical and intrinsic glutamatergic 

synapses supported the response potentiation.  Interestingly, there was much heterogeneity in the 

impact of two-site TFS on the weight of neocortical synapses with roughly equal proportions 

being potentiated or depressed.  This contrasted with the weights of short- and long-range 

glutamatergic connections, most of which were increased or did not change.  

A second example of experimentally impossible manipulation allowed by the model are 

simulations where one retroactively manipulates the properties of specific cells, in this case 

conjunctive cells.  Indeed, we noticed that two-site TFS caused some principal cells to acquire 

supra-threshold responses to independent stimulation of the two paired neocortical inputs.  Using 

the model, we could go back in time to probe the role of these cells by ablating them during 
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training or testing. During testing, ablation of off-site or at-site conjunctive cells largely reduced 

the potentiation of responses elicited from the paired sites relative to that seen after removal of 

control cells.  In contrast, during training, ablation of conjunctive cells had little or no effect 

because a new set of conjunctive cells emerged after ablation, suggesting that a form of synaptic 

competition (Kim et al. 2013) takes place between RS cells. 

Significance of memory retrieval 

 

While the perirhinal system of longitudinal connections allows linkage of spatially distributed 

input patterns, it also poses a challenge for the specificity of stored representations. In the actual 

network, cells at different rostrocaudal levels of the perirhinal cortex receive different types of 

sensory information (Room and Groenewegen1986). However, as seen experimentally (Unal et 

al.2012) and in the present simulations, repeated paired activation of dis-tant neocortical inputs 

not only increased the responsive-ness of RS cells receiving the paired inputs but also that of 

other rostrocaudally distant cells. As a result, subsequent activation of a potentiated neocortical 

input not only recruits cells receiving the paired inputs, but also other cells that normally process 

different types of information.  

In an attempt to address this conundrum, we considered the possibility that specific types of 

principal cells might, as a result of associative plasticity, develop patterns of connections that 

allow a more selective reactivation of associative memories. To this end, we compared the 

identity of cells reactivated by current-evoked firing in conjunctive, plastic, and control cells. 

Relative to other cell types, CCs tended to recruit more of the cells primarily responsible for 
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storing associative memories and less of the ones inadvertently linked to the stored 

representation. Yet, the reactivation patterns were far from specific.  

Together, these observations suggest that the perirhinal network is dependent on its targets to 

increase the specificity of stored representations. A prime candidate for this function is the 

entorhinal cortex, a major recipient of perirhinal axons (Witter et al.1986; Insausti et al.1987; 

Suzuki and Amaral1994; Burwell and Amaral1998 a,b).Indeed, considerable experimental and 

computational evidence supports the notion that increases in the specificity of stored 

representations could be produced by attractor states within populations of entorhinal neurons for 

instance (see Akrami et al.2009). Clues as to how entorhinal neurons might fulfill this role come 

from the dependence of TBS-induced changes in perirhinal responsiveness on rostro-caudal 

distance from the paired neocortical sites: the increase in responsiveness was more pronounced 

at perirhinal sites receiving the paired inputs and at immediately adjacent rostrocaudal levels 

than at more distant sites. Thus, it is possible that the entorhinal network enhances the 

rostrocaudal differentiation in perirhinal activation patterns. Consistent with this suggestion, 

prior physiological studies have emphasized that perirhinal-entorhinal interactions are regulated 

by a powerful inhibitory system, allowing for a selection of relevant inputs (deCurtis and 

Pare2004). Thus, an important question for future investigations will be to analyze how 

interactions among the rhinal cortices participate in the formation and recall of associative 

memories.   
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2.7 CONCLUSIONS 

 

Our modeling experiments predict that the formation and reactivation of associative memories in 

the perirhinal cortex are critically dependent on a subset of principal neurons, termed CCs.  

When associative plasticity is induced, these cells acquire supra-threshold response to 

independent stimulation of the paired inputs. Although CCs are required for the post-learning 

reactivation of the activity patterns that subtend associative memories, this property is not due to 

a priori differences in their connectivity. Rather, our results suggest that CCs emerge from 

competitive synaptic interactions that unfold during the induction protocol. In keeping with this, 

pre-learning ablation of CCs do not prevent associative plasticity as the original CCs are replaced 

by new ones. While the retroactive manipulations we used to demonstrate this will never be 

possible experimentally, post-learning treatments aiming at selectively reducing or enhancing the 

activity of CCs are theoretically possible. Such manipulations should respectively interfere with 

vs enhance associative memory recall.  Given recent progress in genetic engineering methods for 

selectively manipulating specific subtypes of neurons, we are confident that our predictions will 

soon be tested.   
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2.8 TABLES 

 

Table 1. Model parameters for RS, PV, and SOM cells. 

 

 RS Cells PV Cells SOM Cells 

 Soma Apical 

Trunk/ 

Apical/ Basal 

Dendrites 

Soma Dendrites Soma Dendrites 

Length (µm) 20 400/300/400 10 150 10 150 

Diameter 

(µm) 

10 5/3.5/5 10 5 10 5 

Eleak (mV) -78 -78 -82.6 -82.6 -67 -67 

ENa 55 55 55 55 55 55 

EK -90 -90 -90 -90 -90 -90 

EH -20 -- -- --   

Cm (µF) 0.9 0.9 1.2 1.2 1.6 1.6 

gleak (S/cm2) 1.585e-5 1.585e-5 5.7e-5 5.7e-5 5e-5 5e-5 

gKd (S/cm2) 0.0001 0.00129 

0.00131 (for 

Basal) 

0.002 0.002 0.002 0.002 

gNa (S/cm2) 0.8 0.028 0.1 0.05 0.005 0.0042 

gCaL (S/cm2) 0.029 0.0005 -- -- -- -- 

Additionally, soma had gAHP =0.00028; gC=0.0108; gH=1.1e-5; and gA=0.0001 

 

 

 

 

 



37 

 

Table 2. Summary of intrinsic membrane properties of RS, PV and SOM cell types. 

 
Biological Model 

RS cell PV cell SOM+ cell RS cell PV cell SOM cell 

Resting membrane 

potential (mV) 
-77.8 ± 0.7 -82.6 ± 1.7 -67.1 ± 2.5 -77.62 -82.6 -67 

Input resistance 

(MΩ) 
300.5 ± 26.3 339.3 ± 47.3 403 ± 39 311.9 351.5 400.4 

Membrane time 

constant (ms) 
52.8 ± 2.6 24.3 ± 5.7 33.9 ± 4.1 53.1 21 32 

 

 

Table 3 Intrinsic connectivity (mean ± SEM) comparison between CCs and control cells with 

other RS cells that fired during paired TFS.  
 

  
  

Cell type and total 

#  

# short range 

conn. recd. from 
spiking RS 

cells  

# long range 

conn. recd.  
from spiking RS 

cells  

# short range 

conn. made 
to spiking RS 

cells  

# long range 

conn. made 
to spiking RS 

cells  

CCs at-site (2 and 
8 mm sites) - 40  

5.65 ± 0.4  9.95 ± 0.34  5.4 ± 0.35  8.2 ± 0.53  

CCs off-site - 44  2.98 ± 0.3  10.84 ± 0.42  2.34 + 0.3  9.86 ± 0.53  

Control Cells at-
site (2 and 8 mm 

sites) - 120  
3.76 ± 0.17  5.84 ± 0.21  4.74 ± 0.21  6.06 ± 0.3  

Control Cells off-

site - 196  
1.53 ± 0.11  7.3 ± 0.21  1.49 ± 0.1  7.43 ± 0.27  

 

Table 4. Incidence of CCs, plastic cells, and non-plastic cells   

with respect to the paired neocortical sites.  

  

  CCs  Plastic  Non-plastic  Total  

At-Site  34.5 ± 2.12  71.6 ± 2.05  53.09 ± 1.66  159.19 ± 5.83  

Off-Site  42.1 ± 3.6  53.4   ± 3.61  144.5  ± 6.56  240  ± 13.77  
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2.9 FIGURES 

 

 
 

Figure 1. Physiological properties of model neurons and connectivity of the model. (A) Voltage 

responses of regular spiking (RS, A1), parvalbumin (PV, A2), and somatostatin (SOM, A3) cells 

to hyperpolarizing and depolarizing current pulses. All negative current pulses have the same 

amplitude (-100 pA). Positive current pulses from top to bottom are (in pA): RS, 230 and 122; 

FS, 330, 230; SOM. 400, 67. Inset between A2 and A3 plots firing rate as a function of injected 
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current in the three cell types. (B) Overall connectivity of perirhinal network model. The model 

received topographically organized inputs from the neocortex (top). Neocortical connections 

were strongest to the perirhinal levels in rostrocaudal register (to 62% of RS cells) and decayed 

exponentially with distance such that beyond 3 mm, only 2% of RS cells were contacted by 

neocortical inputs. In contrast, RS perirhinal neurons contacted a similar proportion of RS cells 

irrespective of rostrocaudal distance to their targets. Note that there were no spatial 

discontinuities (boundaries) in the perirhinal model. The gray ellipses are used for illustration 

purposes only. (C) Local connectivity of the model. RS cells, gray triangles; PV interneurons, 

black circles; SOM interneurons, white circles. 

 

 

  

 
 

Figure 2. Response of model neurons to neocortical stimuli applied at nearby and distant 

neocortical sites.  (A,C) Nearby neocortical stimulus. (B,D) Distant neocortical stimulus.  Top to 

Bottom: principal regular spiking (RS) neuron, parvalbumin (PV) interneuron, somatostatin 

(SOM) interneuron. (A,B) Neocortical stimulus applied while neurons were at rest. (C,D) 

Neocortical stimulus applied while the membrane potential of the depicted cells was set to -60, -

75, or -90 mV by simulated direct current injection. In C and D, the voltage-dependent Na+ 

conductance was set to zero so that synaptic responses could be examined without the 
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contaminating influence of spikes and afterhyperpolarizations.  Inset at top of C: expanded 

depiction of RS response to nearby neocortical stimuli. 

 

 
 

Figure 3. Contrasting effects of one- and two site TFS. (A) One-site TFS.  (B) Two-site TFS.  (A) 

Number of RS cells firing (y-axis) in response to different neocortical stimulation sites (x-axis) 

before (A1) and after (A2) TFS.  (A3) Difference between A1 and A2.  At each stimulation site, 

there is a ten-bin histogram, one for each target location in the perirhinal cortex.  Each target 

location contains 80 RS cells. The numbers (0,5,10) at the top of A1 refer to these ten target 

locations and apply to all graphs below. (B) Difference between the number of RS cells firing in 

response to neocortical stimuli before vs. after TFS. Red indicates responses elicited by neocortical 

stimuli where TFS was applied.    
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Figure 4. CCs play a critical role in the induction and expression of plasticity induced by two-

site TFS.  (A) Location of at-site (red) and off-site (black) CCs. CCs were defined as RS cells that 

responded to independent stimulation of both paired sites after two-site TFS. (B-E) Histograms 

showing differences in the number of RS cells spiking (y-axis) after vs. before two-site TFS in 
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response to stimulation of site 2 (NC-2) or site 8 (NC-8). Randomly selected RS cells (panels 1, 

black) or an equal number of CCs (panels 2, red) were ablated only during testing (B,C) or training 

(D,E). Ablated cells were either located at the same rostrocaudal level as the paired neocortical 

stimulation sites (B,D) or not (C,E)  

 

 
Figure 5. Firing in CCs after training reactivates plastic neurons. (A) Location of RS cells 

activated by current-evoked spiking in off-site CCs (A1), in an equal number of off-site plastic 

cells (A2), or off-site control cells (A3). The meaning of the symbols is indicated at the top of the 

figure. (B) Location of RS cells activated by current-evoked spiking in CCs at-site 2 (B1), in an 

equal number at-site plastic cells (B2), or at-site control cells (B3). (C) Examples 

of voltage responses in the various conditions illustrated in A and B. In these simulations, 

random uncorrelated synaptic inputs were injected in all cells so that they would fire at an 

average of ~0.6 Hz, as seen in vivo. (C1) Current-evoked spiking in CCs. (C2) Response of at-
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site CCs to current-evoked spiking in off-site CCs. (C3) Response of at-site plastic (non-

conjunctive) cells to current-evoked spiking in off-site CCs. (C4) Response of off-site CCs to 

current-evoked spiking in at-site CCs. (E5) Response of at-site plastic (non-conjunctive) cells to 

current-evoked spiking in at-site CCs.   
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2.11 SUPPLEMENTARY MATERIALS 

Here we list additional information related to methods, including mathematical equations, and 

parameter values. All model runs were performed using parallel NEURON (Carnevale and 

Hines, 2006) running on a Beowulf supercluster with a time step of 10 µs. Simulation output was 

analyzed using MATLAB.  

 

S.1. Mathematical equations for voltage-dependent ionic currents   

  The equation for each compartment (soma or dendrite) followed the Hodgkin-Huxley 

formulation (Byrne and Roberts, 2004; Li et al. 2009; Kim et al. 2013) in eqn. S1, 

              𝐶𝑚𝑑𝑉𝑠/𝑑𝑡 = −𝑔𝐿(𝑉𝑠 − 𝐸𝐿) − 𝑔𝑐(𝑉𝑠 − 𝑉𝑑) − ∑𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 − ∑ 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
+ 𝐼𝑖𝑛𝑗      (S1) 

where 𝑉𝑠/𝑉𝑑 are the somatic/dendritic membrane potential (mV), 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡  and 𝐼𝑐𝑢𝑟,𝑠

𝑠𝑦𝑛
 are the intrinsic 

and synaptic currents in the soma, 𝐼𝑖𝑛𝑗 is the electrode current applied to the soma, 𝐶𝑚 is the 

membrane capacitance, 𝑔𝐿 is the is the conductance of leak channel, 𝑔𝑐 is the coupling 

conductance between the soma and the dendrite (similar term added for other dendrites 

connected to the soma), and EL is the leak reversal potential. Eqn. S1 represents a current 

balance, with the sum of all currents being equal to the injected current. The term on the left 

represents the capacitance current. The intrinsic current 𝐼𝑐𝑢𝑟,𝑠
𝑖𝑛𝑡 , was modeled as 𝐼𝑐𝑢𝑟,𝑠

𝑖𝑛𝑡 =

𝑔𝑐𝑢𝑟𝑚
𝑝ℎ𝑞(𝑉𝑠 − 𝐸𝑐𝑢𝑟), where 𝑔𝑐𝑢𝑟 is its maximal conductance, m its activation variable (with 

exponent p), h its inactivation variable (with exponent q), and 𝐸𝑐𝑢𝑟 its reversal potential (a 

similar equation is used for the synaptic current 𝐼𝑐𝑢𝑟,𝑠
𝑠𝑦𝑛

 but without m and h). The kinetic equation 

for each of the gating variables x (m or h) takes the form 

                                        
𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎
2+]

𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎
2+]𝑖)

                                                   (S2) 
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where 𝑥∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and 𝜏𝑥  is the 

voltage- and/or Ca2+- dependent time constant. The equation for the dendrite follows the same 

format with ‘s’ and ‘d’ switching positions in eqn. S1. Details related to the individual currents 

are listed tables S1.  

 

S.2. Mathematical equations for synaptic currents  

 Excitatory transmission was mediated by AMPA/NMDA receptors, and inhibitory 

transmission by GABAA and GABAB receptors. The corresponding synaptic currents were 

modeled by dual exponential functions (Durstewitz et al. 2000), as shown in eqns. S3-5, 

𝐼𝐴𝑀𝑃𝐴 = 𝑤(𝑡) ∗ 𝐺𝐴𝑀𝑃𝐴 ∗ (𝑉 − 𝐸𝐴𝑀𝑃𝐴)  

𝐺𝐴𝑀𝑃𝐴 = 𝑔𝐴𝑀𝑃𝐴,𝑚𝑎𝑥 ∗ 𝑆𝑇𝑃𝐴𝑀𝑃𝐴 ∗ 𝑟𝐴𝑀𝑃𝐴      

𝑟𝐴𝑀𝑃𝐴 =  𝛼𝑇𝑚𝑎𝑥𝐴𝑀𝑃𝐴 ∗ 𝑂𝑁𝐴𝑀𝑃𝐴 ∗ (1 − 𝑟𝐴𝑀𝑃𝐴 ) − 𝛽𝐴𝑀𝑃𝐴 ∗ 𝑟𝐴𝑀𝑃𝐴               (S3) 

𝐼𝑁𝑀𝐷𝐴 = 𝑤 ∗ 𝐺𝑁𝑀𝐷𝐴 ∗ (𝑉 − 𝐸𝑁𝑀𝐷𝐴)  

𝐺𝑁𝑀𝐷𝐴  = 𝑔𝑁𝑀𝐷𝐴,𝑚𝑎𝑥 ∗ 𝑆𝑇𝑃𝑁𝑀𝐷𝐴 ∗ 𝑠(𝑉) ∗ 𝑟𝑁𝑀𝐷𝐴      

𝑟𝑁𝑀𝐷𝐴 = 𝛼𝑇𝑚𝑎𝑥𝑁𝑀𝐷𝐴 ∗ 𝑂𝑁𝑁𝑀𝐷𝐴 ∗ (1 − 𝑟𝑁𝑀𝐷𝐴 ) − 𝛽𝑁𝑀𝐷𝐴 ∗ 𝑟𝑁𝑀𝐷𝐴         (S4) 

𝐼𝐺𝐴𝐵𝐴𝑎 = −𝑊𝑏𝑎𝑠𝑒𝐺𝐺𝐴𝐵𝐴𝑎(𝐵𝐺𝑎 − 𝐴𝐺𝑎)(𝑉 − 𝐸𝐺𝐴𝐵𝐴𝑎)     

𝐼𝐺𝐴𝐵𝐴𝑏 = −𝑊𝑏𝑎𝑠𝑒𝐺𝐺𝐴𝐵𝐴𝑏(𝐵𝐺𝑏 − 𝐴𝐺𝑏)(𝑉 − 𝐸𝐺𝐴𝐵𝐴𝑏)   

𝜏𝐺𝑎1
𝑑𝐴𝐺𝑎

𝑑𝑡
= −𝐴𝐺𝑎;  𝜏𝐺𝑎2

𝑑𝐵𝐺𝑎

𝑑𝑡
= −𝐵𝐺𝑎  

𝜏𝐺𝑏1
𝑑𝐴𝐺𝑏

𝑑𝑡
= −𝐴𝐺𝑏; 𝜏𝐺𝑏2

𝑑𝐵𝐺𝑏

𝑑𝑡
= −𝐵𝐺𝑏       (S5) 

where V is the membrane potential (mV) of the compartment (dendrite or soma) where the 

synapse is located and 𝑤 is the adjustable synaptic weight for the synapse (w was variable for 

AMPA synapses, but fixed for NMDA and GABA synapses). The synaptic reversal potentials 

were EAMPA = ENMDA = 0 mV, EGABAa = -75 mV and  EGABAb = -92 mV (Durstewitz et al. 2000; 
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Martina et al. 2001a). The terms ONNMDA  and ONAMPA are set to 1 if the corresponding receptor is 

open, else to 0. The receptor opening duration is determined by Cdur_NMDA for NMDA 

receptors and Cdur_AMPA for AMPA receptors. The kinetics for the synaptic receptors were 

determined from Mahanty and Sah (1998) and Weisskopf and LeDoux (1999). Values for the 

specific parameters are listed in table S3. 

 

 

S.3. Long-term synaptic plasticity   

 

 Long term synaptic plasticity in AMPA synapses was implemented using the model in Eq. 

S6. 

 

𝑊𝑖,𝑗 𝐴𝑀𝑃𝐴 = 𝑊𝑛𝑖,𝑗 + 𝑊𝑚𝑖,𝑗    , 𝑤ℎ𝑒𝑟𝑒

𝑑𝑊𝑛𝑖,𝑗

𝑑𝑡
= 𝜂([𝐶𝑎2+]𝑁𝑀𝐷𝐴) (λ1Ω1([𝐶𝑎

2+]𝑁𝑀𝐷𝐴) − λ3(𝑊𝑖,𝑗 −𝑊𝑖𝑛𝑖𝑡))

𝑑𝑊𝑚𝑖,𝑗

𝑑𝑡
= 𝜂([𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅) (λ2Ω2([𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅) − λ3(𝑊𝑖,𝑗 −𝑊𝑖𝑛𝑖𝑡))

𝜂([𝐶𝑎2+]) = 0.001(0.1(1 × 10−5 + [𝐶𝑎2+]3)−1 + 1)−1

Ω1([𝐶𝑎
2+]𝑁𝑀𝐷𝐴) =

{
 
 

 
 0, [𝐶𝑎2+]𝑁𝑀𝐷𝐴 < 𝜃𝑑

−√(
𝜃𝑝−𝜃𝑑

2
)
2

+ (
[𝐶𝑎2+]𝑁𝑀𝐷𝐴−(𝜃𝑝+𝜃𝑑)

2
)
2

, 𝜃𝑑 < [𝐶𝑎
2+]𝑁𝑀𝐷𝐴 < 𝜃𝑝

(1 + exp(−50([𝐶𝑎2+]𝑁𝑀𝐷𝐴 − 𝜃𝑝))), 𝜃𝑝 < [𝐶𝑎
2+]𝑁𝑀𝐷𝐴

Ω2([𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅) = {

0, [𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅 < 𝜃𝑚
−(1 + exp(−50([𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅 − 𝜃𝑚))), 𝜃𝑚 < [𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅

  (S6) 

The first term of the right side of the first equation controlled NMDAR-dependent plasticity 

(Shouval et al. 2002b, Castellani et al. 2005), and the second term controlled Group I mGluR-

dependent plasticity. The η function controls the rate of synaptic plasticity; i.e., higher Ca2+ 

concentration results in faster weight changes. The functions Ω1 and Ω2 determine the Ca2+-

dependent amplitude and sign of change in weight. While Ω1 is taken directly from previous 
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studies (Shouval et al. 2002b), Ω2 was designed to simulate Group I mGluR-LTD, and was based 

on the assumption that increasing Ca2+ release from the endoplasmic reticulum (ER) will result 

in increasing LTD.  The term (Wi,j–Winit) ensured that over time and in the absence of significant 

inputs, the weights would eventually return to their initial values. However, this process was 

exceptionally slow compared to the length of the simulation protocol, and could thus model the 

decay of memory in these connections over the course of a few days. The factors λ1 and λ2 

controlled the relative strengths of NMDAR- and Group I mGluR-dependent plasticity, 

respectively. 

The action of NMDA receptors in activity-dependent LTP and LTD was captured by a model of 

plasticity that represents the phosphorylation and dephosphorylation of AMPA receptors by Ca2+ 

and Ca2+-calmodulin dependent protein kinase and phosphatase cascades (Castellani et al. 2001; 

Shouval et al. 2002a; Shouval et al. 2002b; Yeung et al. 2004; Castellani et al. 2005; Aslam et al. 

2009; Castellani et al. 2009; Shouval et al. 2010). In short, Ca2+ influx through synaptic NMDA 

receptor channels controls plasticity; a moderate Ca2+ influx triggers LTD, while a large Ca2+ 

influx instead triggers LTP. The equation governing Ca2+influx through NMDA receptors are 

shown in Eq. S7. In this set of equations, the Ca2+ concentration is governed by Ca2+ influx 

through NMDA receptors (JNMDA, which was determined by the reversal potential of Ca2+ rather 

than that of total NMDA current) as well as by three pumps: an equilibration pump that ensured 

that the resting [Ca2+]NMDA stayed near 50 nM (Jeq), a low-affinity pump that extruded Ca2+ 

outside of the plasma membrane (JPMCA,N), and a high-affinity Na+- Ca2+ exchanger (JNCX,N) (De 

Young and Keizer, 1992; Li and Rinzel, 1994; Li et al. 1997; Blackwell, 2005; Fletcher and Li, 

2009).    
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 𝑑[𝐶𝑎2+]𝑁𝑀𝐷𝐴
𝑑𝑡

= 𝐽𝑁𝑀𝐷𝐴 + 𝐽𝑒𝑞 − 𝐽𝑃𝑀𝐶𝐴,𝑁 − 𝐽𝑁𝐶𝑋,𝑁     (S7) 

Following the example of this Ca2+-dependent plasticity model, a model of Group I mGluR-

dependent LTD was developed based on the Gq protein-dependent release of Ca2+ from the ER 

via IP3 activation (De Young and Keizer, 1992; Li and Rinzel, 1994; Li et al. 1994; Li et al. 

1997; Fletcher and Li, 2009).  In this model, the accumulation of Ca2+ from ER release due to 

Group I mGluR activation causes LTD of AMPA receptor currents through a PKC-dependent 

process (Jo et al. 2008). Equation S8 shows the model used to control [Ca2+]mGluR (flux equations 

are listed in table S2). According to this equation, [Ca2+]mGluR flowed to and from both the 

extracellular region and the ER. Jin was the sum of Ca2+ entering through L-type voltage-gated 

Ca2+ channels (JVGCC) and through a store-operated Ca2+ pump (JSOC), which ensured that 

[Ca2+]mGluR was not depleted entirely. Jout was the sum of Ca2+ extruded through two pumps 

(JPMCA,M and JNCX,M) as was the case with [Ca2+]NMDA. Ca2+ flow to and from the ER was 

controlled by the action of IP3R-dependent channels (JIP3R) on the ER membrane and by a pump 

(JSERCA) that refilled the ER from [Ca2+]mGluR (Fletcher and Li, 2009).  

 𝑑[𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅
𝑑𝑡

= 𝐹𝛽(𝐽𝑖𝑛 − 𝐽𝑜𝑢𝑡) + 𝐹𝑐𝑦𝑡(𝐽𝐼𝑃3𝑅 − 𝐽𝑆𝐸𝑅𝐶𝐴)    (S8) 

The kinetics of the IP3 receptor-dependent Ca2+ release from the ER were modeled in a manner 

similar to both active and passive Hodgkin-Huxley dynamics, where the activation and 

inactivation of the IP3R channels is dependent upon [IP3], [Ca2+]mGluR, and [Ca2+]ER rather than 

membrane voltage, as shown in Eq. S9. The equations for m and h are provided in table S2 

(Koch and Segev, 1989, Li and Rinzel, 1994, Fletcher and Li, 2009). 

 𝐽𝐼𝑃3𝑅 = (𝑉𝑅𝑚
3ℎ3 + 𝑉𝐿)([𝐶𝑎

2+]𝐸𝑅 − [𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅)    (S9) 
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The dynamics of [Ca2+]ER were controlled as in Eq. S10, where the IP3R-dependent flow is 

removed from the ER, and it is refilled by the SERCA pump (Fletcher and Li, 2009).   

                          𝑑[𝐶𝑎2+]𝐸𝑅
𝑑𝑡

= 𝐹𝐸𝑅(𝐽𝑆𝐸𝑅𝐶𝐴 − 𝐽𝐼𝑃3𝑅)   (S10) 

IP3 accumulation was assumed to be triggered by Group I mGluR activation in response to 

presynaptic spikes in a manner similar to that of the binding and unbinding dynamics of synaptic 

receptor channels. Accordingly, the concentration of IP3 was calculated as [𝐼𝑃3] = 𝜐𝐼𝑃3(𝐵𝐼𝑃3 −

𝐴𝐼𝑃3), where BIP3 and AIP3 were calculated as for synaptic currents. The parameter values used in 

the equations controlling synaptic plasticity are provided in the table S3.  

 

S.4. Short-term presynaptic plasticity  

Short term plasticity was implemented as follows (Varela et. al 1997; Li et al. 2011; Hummos et 

al. 2014): For facilitation, the factor F was calculated using eqn. S11.  

𝜏𝐹 ∗
𝑑𝐹

𝑑𝑡
= 1 − 𝐹; 𝐹(0) = 1, and it was constrained to be ≥ 1      (S11) 

After each stimulus, F was multiplied by a constant f (≥ 1) representing the amount of 

facilitation per pre-synaptic action potential, and updated as 𝐹 → 𝐹 ∗ 𝑓. Between stimuli, F 

recovered exponentially back to 1. A similar scheme was used to calculate the factor D for 

depression,  

𝜏𝐷𝑖 ∗
𝑑𝐷𝑖

𝑑𝑡
= 1 − 𝐷𝑖; 𝐷𝑖(0) = 1, and it was constrained to be ≤ 1     (S12) 

Where i varied from 1 to the number of depression factors, permitting use of different time 

constants. After each stimulus, Di was multiplied by a constant di (≤ 1) representing the amount 

of depression per pre-synaptic action potential, and updated as 𝐷𝑖 → 𝐷𝑖 ∗ 𝑑𝑖. Between stimuli, Di 

recovered exponentially back toward 1. We modeled depression using two factors d1 and d2 with 

d1 being fast and d2 being slow subtypes.  The parameters for the short-term plasticity models 
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used were: RS-RS connections: d1 = 0.5, d2 = 0.5, 𝜏𝑑1= 25 ms and 𝜏𝑑2= 25 ms; SOM to RS 

connections: f = 1.2, 𝜏𝑓= 20 ms and Fmax = 3. 

 

 

S.5. Interaction between NMDAR and Group I mGluR mechanisms 

It has been reported that Group I mGluR activation results in increase in the NMDA current 

through G-protein mediated mechanisms and this interaction is blocked by Group I mGluR 

antagonists (Krieger et al. 2000). To incorporate this, the increase in NMDA current was 

modeled as an increase in maximal conductance of NMDA (GNMDA) as shown in equation S13,  

𝐺𝑁𝑀𝐷𝐴 = 
1.2

1+1.4∗exp (−0.4∗[𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅  )
  nS       (S13)  

For the Group I mGluR blocking case this equation was further modified as follows, to 

incorporate the change in NMDA conductance, 

𝐺𝑁𝑀𝐷𝐴 = 
1.05

1+1.4∗exp (−0.4∗[𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅  )
  nS        (S14)   

We also assumed an interaction in the reverse direction with NMDAR activation resulting in 

increases in the level of Group I mGluR calcium pool concentration [Ca2+]mGluR, by adding 0.6% 

of  [Ca2+]NMDA to the mGluR pool. 

 

 

S.6. Neocortical connectivity 

The probability of neocortical connections to RS cells was computed as 

 𝑃𝑅𝑆(𝑑𝑥) = 100%× (0.02 + 0.62exp(−𝑑𝑥2 2⁄ ))     (S15) 

The latency of neocortically-evoked responses is known to depend on the rostrocaudal distance 

between the neocortical stimulation site and the recorded cell (Martina et al. 2001b). When the 
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two are in rostrocaudal register, the latency is shortest (around 3-4 ms). Thus, in the model, 

synaptic delays (Δt) were determined according to the absolute distance R between the 

neocortical source and the target perirhinal cell as 

∆𝑡(𝑅) = (9.5 − 5.5 cos (
𝜋𝑅

𝑅𝑚𝑎𝑥
)) × 𝑟𝑎𝑛𝑑   (msec)      (S16) 

where Rmax = 10.63 mm is the maximum possible distance between source and target (measured 

diagonally), and rand is a random number selected uniformly between 0.5 and 1.5 to produce 

appropriate variability in response latencies. 

Thus, in the model, neocortical connections were made with perirhinal cells based on a Gaussian 

distribution with peak probability at dx = 0, where dx is the rostrocaudal distance between the 

target perirhinal cell and the neocortical source. The parameters chosen result in peak and 

minimum probabilities of 62% and 2% for connections to RS cells   

 

S.7. Synaptic delays 

 

Previous electrophysiological analyses (Pelletier et al. 2002) indicate that in the perirhinal cortex, 

conduction delays increase linearly with rostrocaudal distance between the source and target 

neurons. Accordingly, all synaptic delays in the model were calculated according to absolute 

distance R between the source and target cells using the formula  

∆𝑡(𝑅) =1.0 + 2.5𝑅 + 𝑟𝑎𝑛𝑑 × (1 − exp  (− 𝑅2/3)) (in ms). A random value 𝑟𝑎𝑛𝑑 × (1 −

exp  (−𝑅2/3)) was chosen with rand between -0.1 and 0.1 to produce appropriate variability in 

intrinsic synaptic delays. The delay from SOM to PV cell was a constant 2 ms. 

 

S.8. Model Setup 
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Our group has worked with different types of firing rate models (Ball et al. 2012). Initially, we 

used the firing rate formulation for the present model but encountered various problems, 

including the following: (i) developing different types of single cell firing rate models that 

matched experimentally observed passive and active properties was a challenge (Ball et al. 

2012); (ii) implementing the NMDAR and mGluR-based plasticity mechanisms was problematic 

since they depend on the membrane potential of the cell rather than its firing rate; and (iii) the 

spatially segregated inhibition, via different types of interneurons could not be implemented in 

this framework. Also, we planned on adding the effects of neuromodulators into the next version 

of the model and since neuromodulators are known to affect single channel properties, firing rate 

models would have been inadequate. Although some of these issues can be solved, for instance, 

by integrating firing rate to get membrane potential (as we did in Ball et al. 2012), these steps 

increase the complexity of the single cell model. We have also developed Izhikevich-type cells, 

another class of simplified models, to analyze pattern separation/completion dynamics in 

hippocampal networks (Hummos et al. 2014). We had difficulty incorporating NMDAR-based 

plasticity mechanisms, neuromodulator effects and spatially segregated inhibition into that 

model. For all these reasons, we chose the Hodgkin-Huxley formulation for modeling single 

cells in the present research. With the availability of fast computing platforms, adding 

compartments to the single cell model was not an issue at all, compared to the realism it 

provided. 

 

S.9. Model Validation 

S.9.1. Network mechanisms underlying the contrasting effects of TFS at one vs. two distant 

neocortical sites  
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Unal et al. (2012) proposed that the contrasting effects of TFS at one vs. two neocortical sites 

depend on the extent to which the stimulated neocortical activity pattern recruited longitudinal 

perirhinal connections. This idea is based on earlier observations indicating that the long-range 

horizontal pathways that convey neocortical influences to rostrocaudally distant perirhinal levels 

do not engage presumed PV interneurons, whereas short-range connections do (Martina et al. 

2001b). As a result, RS cells would respond differently depending on their position relative to 

the neocortical stimulation site. For RS cells in transverse register with the stimulation site, 

neocortical inputs would recruit PV neurons, thus limiting the depolarization elicited by 

neocortical afferents. When these inputs are paired with the activation of a rostrocaudally distant 

group of neocortical neurons, this would shift the balance toward excitation because long-range 

longitudinal pathways do not engage PV interneurons. By removing the Mg2+ block of NMDA 

receptors, this increased depolarization would lead to the induction of NMDA-dependent LTP.  

To test these ideas, we ran simulations where longitudinal perirhinal pathways were transiently 

“inactivated” during two-site TFS but were functional in the control and post-TFS test phases 

(Suppl. figure 3). This was achieved by setting transmitter release probability to zero for all 

longitudinal connections to distant sites, but only during two-site TFS. These connections were 

functional during the pre- and post-tests. Consistent with the interpretation put forward by Unal 

et al. (2012), inactivating long-range connections during two-site TFS eliminated the response 

potentiation normally elicited from the paired sites (Control, 32 ± 3% increase), and instead 

caused a response depression (-31 ± 4% decrease, paired t-test, p < 0.001). Responses elicited 

from the other neocortical stimulation sites did not change significantly (-0.2 ± 0.4 %, p = 0.72). 

Thus, inactivating long-range connections effectively made paired application of two-site TFS 

equivalent to single-site training (Supplementary figure 3). 
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S.9.2. Involvement of NMDA and group I mGluRs in activity-dependent plasticity 

 

Next, we analyzed the dependence of the plasticity induced by TFS on NMDA and group I 

mGluR receptors (Suppl. Figs. 4-5). Unal et al. (2012) suggested that competition between 

NMDA receptor-mediated LTP and group I mGluR-dependent LTD had a determining influence 

on the outcomes of TFS. Indeed, they observed that while NMDA receptor blockade with AP5 

during one-site TFS did not prevent the response depression, group I mGluR blockade with 

AIDA transformed the response depression into a potentiation. Conversely, while group I mGluR 

blockade during two-site TFS did not prevent the response potentiation, NMDA receptor 

blockade transformed the potentiation of responses into a depression. 

The model could reproduce these experimental observations. When the action of group I mGluRs 

was blocked (Suppl. Fig. 4A; by setting νIP3, a model parameter proportional to the degree of 

mGluR activation. to 0), TFS of neocortical inputs from site 5 mm, instead of causing a response 

depression, increased RS spiking to test stimuli applied at the induction site (increase of 23 ± 

3%; p=0.0009), with little change in the response of RS cells to stimuli applied at the control 

sites (0.2 ± 0.2%, p = 0.82). In contrast, blocking NMDA receptors (Suppl. Fig. 4A) during one-

site TFS (by setting GNMDA = 0), increased the amount of depression induced by TFS application 

at one site (Control -39±4%; AP5, -62 ± 3%, p=0.001). Minimal changes were seen in the 

responses elicited by the control sites (-3 ± 1%; p =0.27). 

The impact of NMDA or group I mGluR blockade on the potentiation seen following paired TFS 

at two neocortical sites (Suppl. Fig. 4B) was also consistent with the findings of Unal et al. 

(2012). When NMDA receptors were blocked during two-site TFS, this manipulation, instead of 
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causing a response potentiation, decreased orthodromic spiking to test stimuli applied at the 

induction sites (-62 ± 2%; p = 0.0001), with much smaller changes in the responses elicited from 

the control neocortical sites (–3 ± 1%; Suppl. Fig. 4B). In contrast, blockade of group I mGluRs 

(by setting vIP3 = 0) produced an insignificant increase in the potentiation seen for the paired sites 

(37 ± 2%; Suppl. Fig. 4B) relative to the control case (32 ± 3%; p =0.057) with negligible 

changes in the responses elicited from the other neocortical sites (1 ± 1%; p =0.78). 

 

S.10. Details related to evolution of the model 

Single site training (performed only at the 5 mm site, as in Unal et al. 2012) 

• Stimulation of a particular NC site causes the adjoining RS cells to spike once per NC spike. 

Inhibition in the system ensured that the PRC responses were transient and not sustained beyond 

30-40 ms after NC stimulation. With just one spike/stimulation continued for 2-3 stimulations 

(the exact number depends on the # of NC connections to the RS cell), the calcium influx is 

sufficient to cause LTD of the NC-RS synapses. This is because activation of IP3 receptors 

requires a minimum amount of calcium via ICaL. With just one spike over a period of say 400 ms, 

there is not enough calcium influx to cause LTD. In contrast, every RS cell spike does cause LTP 

in the NC-RS synapses, but the level is miniscule. However, with the second spike of the second 

stimulation of the theta burst, the LTD level is much higher than the resultant LTP, causing LTD 

to dominate. With successive trials, LTD causes some cells to stop spiking. Note that since long 

range connections are not active, an RS cell does not spike twice with one NC stimulation. 

• Short-range RS-RS activity does not seem to play a major role, but it has not yet been 

investigated fully.  
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• During pre-tests we find that spikes at rostro-caudal locations other than the stimulated site 

are very rare. This means that the baseline long-range connection weights and connectivity 

cannot pesently cause a spike at locations beyond 1.5 mm of the cell. 

 

Paired site training (at 2 and 8 mm sites as in Unal et al. 2012) 

• Compared to the single site case, paired site stimulation results in considerably more activity 

at both the stimulated sites, and throughout the rostro-caudal axis. This is primarily due to long-

range connections. Note that the growth in this activity occurs continuously through the training 

process. What causes this increase in activity? 

• RS cells that receive sufficient NC connections (e.g., at the 2 mm site) fire once, typically 10-

15 ms after NC stimulation. The membrane potential depolarization resulting from this spike 

lasts about 70-80 ms. 

• If these RS cells also receive sufficient active long-range RS connections from the other site 

(e.g., 8 mm) they fire again after about 30 – 40 ms. 

• The second RS cell spike coming about 30-40 ms after NC stimulation effectively doubles the 

duration of depolarization in these RS cells, resulting in increased influx of NMDAR calcium 

causing significantly larger LTP. In contrast, LTD is at the same level as in the single site case, 

for the second spike also. This differential expression of the growth mechanisms results in a net 

potentiation of the NC-RS connections.  

• In parallel, due to the mechanisms discussed, RS-RS connections also potentiate. For these 

connections, the learning factors for LTP and LTD were adjusted so that it favored LTP (note 

that this is same as in single site case, i.e., the overall model has this consistently for all cases). 
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• With continued potentiation of both NC-RS and RS-RS connections at the two stimulated 

sites during the trials, several additional RS cells begin responding to NC stimulation.  

• After paired site training, during tests at single sites, some cells near the stimulation site spike 

twice, if they receive enough NC and long-range connections. The first spike is due to input from 

NC and the second due to return of the signal after traveling to distant site via strong long range 

two-way connections. However, such spikes are few in number, compared to spikes of 

potentiated cells. Just an observation. 

SOM+ cells which receive long-range connections cause termination of activity at all locations, 

typically 40 ms after NC stimulation.” 

 

S.11. SOM+ cells are critical for containing activity 

SOM+ cells receive excitatory connections from long-range RS cells, and play a major role in 

terminating activity after paired site TFS by inhibiting RS cells in their vicinity. During paired 

site TFS, RS cells spike once due to NC input. If the same RS cells receives enough long-range 

connections, it will spike a second time after a delay of 10 to 15 ms. Since SOM+ cells connected 

to this particular RS cell will also receive long-range inputs, the SOM+ cells will also spike. 

Coming about 2 ms after arrival of long-range activity at the RS cell, this SOM+ inhibition is 

unable to stop the second RS cell spike. However, this inhibition effectively counters any 

residual short- or long-range PSPs at the site after the second RS spike. Activity at the stimulated 

sites during paired site TFS lasts only for about 30 to 40 ms from NC stimulation due to 

inhibition by SOM. This SOM inhibition also ensures that the activity does not spread to other 

areas in the network, ensuring that the network does not have a tendency to ‘run away’. 
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S.12. Model limitations 

Our model is an approximation, admittedly imperfect, of area 36. First, it includes a much lower 

number of neurons than present in area 36. This reduction, needed to keep computation times 

practical, likely makes the model’s behavior less graded and alters its dynamic range along many 

dimensions. Second, our model only includes PV and SOM interneurons, when others types are 

known to exist (Witter et al. 2000; Uva et al. 2004). Third, in the absence of relevant data in the 

perirhinal literature, short-term synaptic dynamics and interneuronal connectivity were based on 

findings obtained in different cortical areas. Fourth, for the same reason, connectivity estimates 

were based on the model’s ability to reproduce synaptic responses described in prior perirhinal 

recordings, not on actual quantifications of axonal convergence and divergence. Fifth, model 

neurons do not exhibit the oscillatory activity known to be present in the perirhinal cortex 

(Collins et al. 1999).  Nevertheless, the model could reproduce the findings of Unal et al. (2012). 

These include (1) the opposite polarity and contrasting pharmacological dependence of the 

plasticity induced by repeated activation of focal vs. distributed neocortical inputs, (2) the fact 

that no response potentiation develops when distant neocortical inputs are activated 

asynchronously, as well as (3) the observation that interrupting long-range connections during 

paired-site TFS transforms the response potentiation into a response depression. The model’s 

ability to reproduce these findings suggests that despite its shortcomings, it captures critical 

aspects of the perirhinal network. 

  



69 

 

 

S.13. Supplementary Tables  

 

Table S1. Kinetics of Hodgkin-Huxley type currents. V is specified in mV, [Ca2+] is specified in 

μm. ICa,L was calculated as 𝐼𝐶𝑎,𝐿 = 𝐺𝐶𝑎,𝐿 ×𝐷𝑖𝑓 × 𝑚
2ℎ, where Dif accounts for the reversal 
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Table S2.  Mathematical details of parameters used to implement synaptic plasticity. 
Primary Variable                  Equations 

[Ca2+]NMDAR 

𝐽𝑁𝑀𝐷𝐴 = −𝐹𝑁𝑀𝐷𝐴𝐺𝑁𝑀𝐷𝐴𝑆(𝑉)(𝐵𝑁 − 𝐴𝑁)(𝑉 − 𝐸𝐶𝑎)

𝐽𝑒𝑞 =
𝜐𝑒𝑞[𝐶𝑎

2+]𝑟𝑒𝑠𝑡
4

[𝐶𝑎2+]𝑟𝑒𝑠𝑡
4 + 𝐾𝑒𝑞4

𝐽𝑃𝑀𝐶𝐴,𝑁 =
𝜐𝑃[𝐶𝑎

2+]𝑁𝑀𝐷𝐴
4

[𝐶𝑎2+]𝑁𝑀𝐷𝐴
4 + 𝐾𝑃

4

𝐽𝑁𝐶𝑋,𝑁 =
𝜐𝑁[𝐶𝑎

2+]𝑁𝑀𝐷𝐴
2

[𝐶𝑎2+]𝑁𝑀𝐷𝐴
2 + 𝐾𝑁

2

 

[Ca2+]mGluR 

𝐽𝑖𝑛 = 𝑎(𝐽𝑉𝐺𝐶𝐶 + 𝐽𝑆𝑂𝐶) 𝐽𝑜𝑢𝑡 = 𝑏(𝐽𝑃𝑀𝐶𝐴,𝑀 + 𝐽𝑁𝐶𝑋,𝑀)

𝐽𝑉𝐺𝐶𝐶 = −𝐹𝑚𝐺𝑙𝑢𝑅𝐼𝐶𝑎,𝐿 𝐽𝑆𝐸𝑅𝐶𝐴 =
𝜐𝑆𝐸𝑅𝐶𝐴[𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅
2

[𝐶𝑎2+]𝑚𝐺𝑙𝑈𝑅
2 +𝐾𝑆𝐸𝑅𝐶𝐴

2

𝐽𝑃𝑀𝐶𝐴,𝑀 =
𝜐𝑃[𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅
4

[𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅
4 +𝐾𝑃

4 𝐽𝑁𝐶𝑋,𝑀 =
𝜐𝑁[𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅
2

[𝐶𝑎2+]𝑚𝐺𝑙𝑈𝑅
2 +𝐾𝑁

2

𝐽𝑆𝑂𝐶 = −
𝜐𝑆𝑂𝐶𝐾𝑆𝑂𝐶

4

[𝐶𝑎2+]𝐸𝑅
4 +𝐾𝑆𝑂𝐶

4
(𝑉 − 𝐸𝐶𝑎)

 

JIP3R 

𝜏𝑚([𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅)

𝑑𝑚

𝑑𝑡
= −𝑚+𝑚∞([𝐼𝑃3], [𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅)

𝜏ℎ([𝐼𝑃3], [𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅)

𝑑ℎ

𝑑𝑡
= −ℎ + ℎ∞([𝐼𝑃3], [𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅)

𝑚∞([𝐼𝑃3], [𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅) = (

[𝐼𝑃3]

[𝐼𝑃3] + 𝑑𝐼𝑃3
)(

[𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅
[𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅 + 𝑑𝑎𝑐𝑡

)

ℎ∞([𝐼𝑃3], [𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅) =

𝑄([𝐼𝑃3])

𝑄([𝐼𝑃3]) + [𝐶𝑎2+]𝑚𝐺𝑙𝑢𝑅

𝜏𝑚([𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅) = (𝑏𝐼𝑃3 + 𝑎𝐼𝑃3[𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅)
−1

𝜏ℎ([𝐼𝑃3], [𝐶𝑎
2+]𝑚𝐺𝑙𝑢𝑅) = (𝑎𝑖𝑛ℎ(𝑄([𝐼𝑃3]) + [𝐶𝑎

2+]𝑚𝐺𝑙𝑢𝑅))
−1

𝑄([𝐼𝑃3]) = 𝑑𝑖𝑛ℎ
[𝐼𝑃3] + 𝑑𝐼𝑃3
[𝐼𝑃3] + 𝑑𝑑𝑖𝑠
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Table S3. Parameters valued used in the synaptic plasticity equations. 
 

Eq. Family Parameters 

IAMPA 
GAMPA = 1 nS Cdur_ampa = 1.421 ms β_ampa  = 0.1429 ms-1 

EAMPA = 0 mV αTmax_ampa = 3.8142 ms-1  

INMDA 
GNMDA = Eq. S13,S14 Cdur_nmda= 16.765 ms β_ampa  = 0.008 ms-1 

ENMDA = 0 mV αTmax_nmda = 0.2659 ms-1  

IGABAa 
GGABAa = 100 nS τ1 = 2 msec  

EGABAa = -75 mV, τ2 = 25 msec τD = 250 msec 

IGABAb 
GGABAb = 2 nS τ1 = 50 msec  

EGABAb = -92 mV τ2 = 500 msec τD = 250 msec 

𝑑𝑊𝑖,𝑗

𝑑𝑡
⁄  

NC→RS:   λ1 = 2 µM λ2 = 0.1 µM λ3 =  0.5 µM 

RS→RS:   λ1 = 9 µM λ2 = 0.005 µM λ3 =  0.25 µM 

θd = 0.7 µM θp = 0.5 µM θm = 1.5 µM 

[Ca2+]NMDAR 

FNMDA = 0.14 µM/nA-msec [Ca2+]rest = 0.05 µM 

νeq = 0.1 µM/msec νn = 0.04 µM/msec νp = 0.04 µM/msec, 

Keq = 0.1 µM Kn = 1.0 µM Kp = 0.1 µM 

[Ca2+]mGluR 

Fβ = 0.0095 mM/nA-msec Fcyt = 0.002809 pL-1 

a = 0.00412* b = 1* FmGluR = 6 x 105 mM-cm2/nA-msec 

νsoc = 0.03 mM/msec νp = 0.04 mM/msec νn = 0.04 mM/msec νS = 13 mM/msec 

Ksoc = 100 mM Kp = 0.1 mM Kn = 1.0 mM KS = 0.2 mM 

IP3→[Ca2+]ER↔[Ca2+]mGluR 

νR = 15 pL/msec νL = 0.0021 pL/msec FER = 0.015873 pL-1 

ainh = 0.005 (µM-msec)-1 aIP3 = 0.42 (µM-msec)-1 dinh = 0.525 µM, 

dIP3 = 0.13 µM bIP3 = 0.0001msec-1 dact = 0.6 µM ddis = 0.47 µM 

νIP3 = 0.25 µM/msec τ1 = 100 msec τ2 = 400 msec 

 

     Initial Weights*                NC → RS = 1.15; NC → PV= 0.35; RS → RS (Short) = 1;RS → RS (Long) = 1.2 

                                        RS → PV = 0.08;RS → SOM+ = 0.75;PV → RS = 0.05;SOM+ → RS = 0.025;SOM+ → PV = 0.15 

*Parameter is unitless. 
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S.14 Supplementary Figures 

 

Suppl. Figure 1. Response of model neurons to train of neocortical stimuli applied at nearby and 

distant neocortical sites. (A,C) Nearby neocortical stimuli. (B,D) Distant neocortical stimuli. Top 

to Bottom: principal regular spiking (RS) neuron, parvalbumin (PV) interneuron, somatostatin 

(SOM) interneuron. (A,B) Train of neocortical stimuli applied while neurons were at rest. (C,D) 

Train of neocortical stimuli applied while the membrane potential of the cells was set to -60, -75, 

or -90 mV by simulated direct current injection. In C and D, the voltage-dependent Na+ 

conductance was set to zero so that synaptic responses could be examined without the 

contaminating influence of spikes and afterhyperpolarizations. Inset at top of C: expanded 

depiction of RS responses to nearby neocortical stimuli (first three stimuli). 
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Suppl. Figure 2. Potentiation induced by two-site TFS depends on input synchrony. (A) 

Difference in the number of RS cells spiking (y-axis) in response to neocortical stimuli (x-axis) 

applied before vs. after two-site TFS. During TFS, neocortical stimuli were either applied 

simultaneously (black lines) or separated by half a theta cycle (65 ms, red) at sites 2 and 8. 

 

 

 
Suppl. Figure 3. Potentiation induced by two-site TFS depends on recruitment of longitudinal 

connections. Difference in the number of RS cells spiking (y-axis) in response to neocortical 

stimuli (x-axis) applied before vs. after two-site TFS. Two-site TFS was either applied with all 

connections functional (black) or with the weight of long-range connections set to zero (red; only 

during TFS).   
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Suppl. Figure 4. Dependence of activity-dependent plasticity on the activation of NMDA 

and group I mGluRs. Percent change in the number of RS cells spiking in response to neocortical 

stimuli applied before vs. after TFS at one (A) vs. two (B) neocortical sites in control conditions 

(empty bars), and after simulating pharmacological block of group I mGluRs (gray bars) or 

NMDA receptors (black bars). The left and right bar clusters show data elicited from the TFS or 

control sites, respectively.  
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CHAPTER 3 

INTRINSIC AND GAP JUNCTION COMPENSATION TO 

PRESERVE SINGLE CELL AND NETWORK PROPERTIES: A 

COMPUTATIONAL MODEL STUDY OF LC OF CRAB 

 
3.1 BACKGROUND  

 

What computer controls heartbeat of single muscle crab heart? 

How do groups of neurons maintain synchrony to drive the muscle? 

If this rhythm is disturbed due to injury, these group of neurons automatically regain the 

synchronous rhythm after time. 

How does this compensation occur to restore electrical activity in neurons? 

Engineering relevance:  a) Robustness of system. 

     b) Non-linear electrical system. 

     c) Compensation mechanisms. 

 

3.2 ABSTRACT 

 

The crustacean cardiac ganglion (CG) network coordinates the rhythmic contractions of the heart 

muscle to control the circulation of blood. The network consists of 9 cells, 5 large motor cells 

(LCs) and 4 small endogenous pacemaker cells (SCs). Previous studies have looked into 

homeostatic compensation at either cellular or network levels, but not at both levels for the same 

preparation. There is variability in the intrinsic conductance for the five LCs in the cardiac 

network. In spite of this variability, they have synchronous output in the intact network. Our 

main objective is to understand how cells with different intrinsic make up work together to 

maintain the cardiac rhythm of cancer borealis. Here we first develop a single cell model using 

first-hand recordings of intrinsic currents from LC of crab and then develop the complete five 
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LC model to study the network dynamics. On a network level, model shows how intrinsic vs gap 

junction coupling compensation can help maintain the synchrony in the network. 

3.3 INTRODUCTION  

 

Neurons are endowed with a rich and complex set of intrinsic and synaptic conductances that 

control its electrical activity (Marder 2011; Prinz et al. 2004). Although the role of such a varied 

set of conductances is not fully understood, it is natural to expect that neurons of the same cell 

type would possess similar membrane properties, especially within the same animal. However, 

experimental findings are beginning to reveal that maximal conductance levels can vary two- to 

six-fold among same cell types (Goaillard et al. 2009; McLean et al. 2005; Khorkova and 

Golowasch 2007; Schulz et al., 2007, 2006) and that different combinations of conductances 

preserve activity at the single cell level (Swensen and Bean 2005; Marder et al. 2006; Nerbonne 

et al. 2008). Also, different sets of ionic conductances (Khorkova and Golowasch, 2007) and ion 

channel mRNA levels (Schulz et al., 2007; Tobin et al., 2009) can be correlated with one another 

in different classes of identified neurons, suggesting an on-going, rather than developmentally 

fixed, regulation of specific sets of conductances. These findings were from investigations 

related to the robustness of cellular output, either via artificial perturbation of a single 

conductance or injury (McLean et al. 2005; Swensen and Bean 2005; Marder and Goaillard 

2006; Nerbonne et al. 2008; McLean et al. 2003). Would such a variation in intrinsic properties 

also exist in the unperturbed native network? Although computational models have predicted this 

possibility, only recently has it been shown experimentally that intrinsic membrane properties of 

individual neurons do indeed vary widely among neurons of the same cell type even, within 

networks in their natural state (Ransdell et al., 2012).  
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Computational modeling has revealed that exclusive reliance of mean data may be misleading 

(Golowash et al. 2002), and that populations of model neurons need to be developed to capture 

the biological variability in underlying properties (Marder et al., 2007). Concurrent with 

experiments, such computational models have continued to explore potential roles of the 

different conductances in conserving cellular output such as spike and burst characteristics 

(Goldman et al. 2001; Prinz et al. 2003, 2004; Tobin and Calabrese 2006; Olypher and Calabrese 

2007; Gunay et al. 2008; Marder Taylor et al. 2009; Ball et al. 2010; Franklin et al. 2010; 

Olypher and Prinz 2010). For instance, Prinz et al. (2003) explored the maximal conductance 

space of a single-compartment model neuron to quantify the numerous types of spiking and 

bursting models and showed that similar patterns of activity could be produced by many different 

parameter sets, both for single neurons (Prinz et al., 2003) and within small networks (Prinz et 

al., 2004). An interesting study using a multicompartment model of a lateral pyloric neuron 

recently suggested that correlated levels of multiple conductances are not necessary to maintain 

output (Taylor et al., 2009).  

 

Ball et. al. (2010) developed a model for the large cell (LC) of the cardiac ganglion of the crab 

Portunus sanguinolentus and used it to predict that coregulation of two currents could preserve 

key characteristics of motor neuron activity, the duration and peak of the excursion of the 

synaptically driven regenerative membrane potential above its resting value. Such an underlying 

oscillation determines the number of spikes per burst for such cells, which in turn affects 

outputs downstream, such as muscle actuation. Franklin et al. (2010) generalized the finding by 

showing that the coregulation did hold for underlying oscillations in bursting cells in general by 

considering the same large cell of portunus, an anterior burster cell of the crab stomato-gastric 

ganglion (STG) and an aplysia R15 cell. Furthermore, the model helped hypothesize three phases 
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associated with the underlying oscillation: generation, maintenance, and termination, and 

provided testable predictions about potential current “modules” involved in maintaining the 

robustness of the underlying oscillation. Due to lack of data, as happens with typical neuronal 

models, parameters for the Portunus LC currents in the models cited were borrowed from the 

STG literature (Prinz et al. 2003). In the present study, we study a different crab species Cancer 

borealis and develop a model for its LC from first hand biological data from our Lab. The model 

is then used to study the features of its underlying oscillation, using for the first time a model of 

the LC informed completely by measured properties of the same cell. This integrated 

experimental-computational approach is used to investigate how intrinsic properties might shape 

the underlying oscillation for the cancer LC, using a multi-dimensional parameter search. The 

model was then used to reverse engineer the experimentally discovered phenomenon in the 

Schulz Lab where network synchrony among LCs that is lost after application of TEA, is 

recovered after passage of time (about 1 hour) by intrinsic compensation among the LC current 

channels. This compensation is supposed to involve mechanisms at both single cell and network 

levels, and the model is used investigate their relative contributions in maintaining synchrony.  

 

 

3.4 METHODS 

 

 

Detailed Model 

 

A detailed model was created with all 8 active channels and a passive leak channel. A single 

compartment model with biological dimensions for soma was created in NEURON and its 

Capacitance (Cm) and Leak Conductance (Gleak) were tuned to match the observed biological 

membrane time constant (τ) and input resistance (Rin). After addition of 9 channels, their 

maximal conductances were tuned to match three biological properties observed i.e. a) Total 
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outward current b) Response to synaptic drive and c) Response to synaptic drive in presence of 

TEA. All these three results were obtained by performing the experiments on ligatured soma of 

LC of Cancer Borealis by Schulz Lab. For the network studies another compartment for Spike 

Initiation Zone (SIZ) was added to the model. This compartment consisted of only 3 channels, 

sodium, potassium and a passive leak channel.  

 

C 
𝒅𝑽

𝒅𝒕
    = - IA - IKd2-INap- ICaPQ- ICal - ICAN- ISKKCa - IBKKCa - ILeak+ Iinj (Soma) 

C 
𝒅𝑽

𝒅𝒕
    =  -INa- IKdr - ILeak+ Iinj                             (SIZ)                                (1)         

 

The 8 active channels installed in soma were fitted using biological measurements for these 

currents in cardiac ganglion of cancer borealis. These currents were fitted in following way: 

Voltage clamp data obtained with Clampfit were imported into MATLAB and fit using the 

MATLAB curve-fitting toolbox. Current data was converted to conductance data by dividing by 

(Vm – Erev), where Erev was assumed to be -60 mV for K+ currents, +55 mV for Na+ currents, 

and +45 mV for Ca2+ currents. The time data obtained was converted from sec to msec by 

multiplying it with 1000. Also the time axis was adjusted to start from 0 for the beginning of the 

clamp .The obtained conductance data was fitted using Eq. 2. In this equation, 𝐀𝐢 = 𝐆𝐢,𝐦𝐚𝐱 ×𝐦𝐢 

was the maximal conductance of the current i multiplied by its voltage-dependent steady-state 

activation (mi), hi was the steady-state inactivation value, and τm,i and τh,i were the time constants 

with which activation and inactivation reached steady-state, respectively. This fitting procedure 



83 

 

assumed that ion currents were completely deactivated m=0 and deinactivated (h=1) prior to the 

onset of the voltage clamp. 

 
𝒈(𝒕) =∑𝑨𝒊 (𝟏 − 𝐞𝐱𝐩 (

−𝒕
𝝉𝒎,𝒊⁄ )) (𝒉𝒊

𝒏

𝒊=𝟏

− (𝒉𝒊 − 𝟏) 𝐞𝐱𝐩 (
−𝒕

𝝉𝒉,𝒊⁄ )) 

               (2) 

 

Equation 2 was fit to each trace in voltage clamp experiment, giving values of each of the four 

parameters for each test clamp voltage (Vc). These values were then fit for each current as 

functions of Vc using the general forms of Eq. 3. This procedure yielded equations for the 

currents recorded in voltage clamp that could be used in simulations according to the Hodgkin-

Huxley mathematical formalism. 

 𝑨(𝑽𝒄) = 𝑮𝒎𝒂𝒙 ×𝒎(𝑽𝒄) = 𝑮𝒎𝒂𝒙 × (𝟏 + 𝐞𝐱𝐩((𝑽𝒄 − 𝑽𝒎,𝟏/𝟐) 𝒌𝒎⁄ ))
−𝟏

𝒉(𝑽𝒄) = (𝟏 + 𝐞𝐱𝐩((𝑽𝒄 − 𝑽𝒉,𝟏/𝟐) 𝒌𝒉⁄ ))
−𝟏

𝝉𝒎(𝑽𝒄) = 𝝉𝒃𝒂𝒔𝒆,𝒎 + 𝝉𝒂𝒎𝒑,𝒎(𝐞𝐱𝐩((𝑽𝒄 − 𝑽𝝉𝟏,𝒎) 𝒌𝝉𝟏,𝒎⁄ ) + 𝐞𝐱𝐩((𝑽𝒄 − 𝑽𝝉𝟐,𝒎) 𝒌𝝉𝟐,𝒎⁄ ))
−𝟏

𝝉𝒉(𝑽𝒄) = 𝝉𝒃𝒂𝒔𝒆,𝒉 + 𝝉𝒂𝒎𝒑,𝒉(𝐞𝐱𝐩((𝑽𝒄 − 𝑽𝝉𝟏,𝒉) 𝒌𝝉𝟏,𝒉⁄ ) + 𝐞𝐱𝐩((𝑽𝒄 − 𝑽𝝉𝟐,𝒉) 𝒌𝝉𝟐,𝒉⁄ ))
−𝟏

  

 

All the maximal counductances (Gi,max) were in µS, Time Constants in ms and Voltages in mV. 

 

 

 

Calcium Dynamics 

 

Intracellular calcium modulates the conductance of the calcium-activated potassium currents 

(BKKCa and SKKCa), calcium-activated nonselective cation current (CAN), and influences the 

magnitude of the inward calcium current in the LC (Tazaki and Cooke, 1990). A calcium pool 
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was modeled in the LC with its concentration governed by the first-order dynamics (Prinz et al., 

2003; Soto-Treviño et al., 2005) below: 

 

𝜏𝐶𝑎
𝑑[𝐶𝑎2+]

𝑑𝑡
=  −𝐹 × 𝐼𝐶𝑎 − ([𝐶𝑎

2+] −  [𝐶𝑎2+]𝑟𝑒𝑠𝑡) 

 

where F = 0.256 μM/nA is the constant specifying the amount of calcium influx that results per 

unit (nanoampere) inward calcium current; τCa represents the calcium removal rate from the 

pool; and [Ca2+]rest = 0.5 μM. Voltage-clamp experiments of the calcium current (Ransdell et 

al., 2013b) showed the calcium buffering time constant to be around 690 ms (τCa).  

 

Searching for LC Neurons within the Model Parameter Space 

After creating a nominal LC model (Tables 1,2), we wanted to search the conductance space for 

other possible conductance combinations that might exhibit appropriate LC output. The 

properties that had to be maintained were; a) Input Resistance (Rin) and Resting Membrane 

Potential, b) Pre-TEA and Post TEA response to current injection c) Response to Synaptic drive 

obtained from biological cell. 

  The rules used to select the potential parameters were as follows (based on biological 

recordings): Synaptic Drive response should have an R2 value of at least 0.8 or higher when 

compared to biological Synaptic Drive response. The duration of the pre-TEA response to a 6 

nA, 50 ms current injection should be less than 120 ms. Also the peak should be less than -22 

mV. The duration of the post-TEA (GBKKCa and GKd reduced by 90%) response should be 

between 255-667 ms and its peak should be greater than -15 mV. A 9-D max conductance 

parameter space (5-fold variation over each conductance except GLeak) was searched randomly 
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for sets that satisfied the constraints above. We searched 20,000 different combinations of 

parameter sets with these criteria, and most of those which passed did not have a proper 

termination of activity following current injection (i.e., did not return to Vrest). We concluded 

this was due to an inappropriate relationship between ICAN and ISKKCa. Subsequent trials 

revealed that a given ratio range (~1:0.83 respectively) of these two currents was necessary for 

proper termination of activity. Larger ratios cause Vrest to be higher due to the reversal potential 

(-30 mV) of CAN current. A higher fraction of ISKKCa (reversal potential -80mV) caused a 

large AHP after termination and reduced the duration of the post-TEA response. Using the 

updated selection criteria with a ratio ICAN to ISKKCa, we found 180 parameter sets that 

passed. Of these 180 potential model sets, we selected only the ones that had Synaptic Drive 

response R2 value > 0.9 compared to the biological Synaptic Drive response. This resulted in 49 

potential parameter sets. 

 Biological data showed that IA and IBKKCa had a negative correlation in their 

magnitudes in LCs (Ransdell et al., 2012). We added this to our criteria for screening potential 

parameter sets for the network studies. We converted biological IA-IBKKCa current data into 

factor data by dividing IA and IBKKCa by their respective factor average. GA and GBKKCa 

values of passed parameters were similarly divided by its average to get its factor data. The 

biological data was fit using a linear polynomial from 95% to 70% confidence intervals, in steps 

of 10%. For network studies we used a 70% confidence interval, which left us with 14 potential 

parameter sets that represented LC model neurons for use in modeling studies.   

 

Development and Validation of a Population of Conductance-Based Model Networks for 

Studying Mechanisms Restoring Network Synchrony 
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Our results demonstrate that intact cardiac ganglia are able to compensate for the loss of high-

threshold K+ currents and restore both excitability and synchrony within one hour of TEA 

blockade. We next set out to explore the mechanisms by which excitability and synchrony could 

be restored in this network. To maximize our ability to interrogate multiple parameters that may 

be responsible for compensation in this system, we constructed a population of conductance-

based biophysical models of the CG network. This allowed us to simulate the TEA conductance 

blockade and then manipulate individual conductances, both voltage-gated and synaptic, to 

examine their effects on network excitability and synchrony.  

Our 14 parameter sets for LCs were used to create 50 random 5-cell networks of LCs, ensuring 

that the same model LC never appeared twice in the same network. The five cells within a 

network were then electrically coupled using conductance values tuned to reflect experimental 

observations of coupling coefficients. Small cell (SC) pacemaker drive was simulated as 

excitatory synapses via the NetStim function in NEURON. Parameters for the model of the 

synaptic drive onto LCs were tuned to get 6 to 9 spikes in the nominal LC model. It was 

observed biologically that frequency of SC firing increases within the slow wave oscillation 

cycle of LCs. Based on these recordings, the model SC burst initially fired at 18 Hz for first 440 

ms and then increased to 25 Hz for 560 ms, with the burst terminating at 1000 ms.  

Our experimental TEA block was simulated in these networks by reducing GBKKCa and GKd 

conductances by 90% in the 3 anterior LCs (Ransdell et al., 2013a). We imposed a final set of 

selection criteria on the randomly generated model networks, rejecting networks that increased 

synchrony or decreased the total number of spikes after the simulated TEA block, as this was 

never observed in biological networks. This left 27 networks that reproduced the biological 
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trends and these were used in subsequent analyses to explore potential conductance changes that 

could restore network synchrony.  

Somatic burst potentials drive action potentials in LC axons, so divergent burst waveforms 

would be expected to cause desynchronized spiking. Our biological data qualitatively agreed 

with this, but a precise quantification of synchrony for all spikes within a burst is subject to many 

ambiguities. Our model networks easily provided precise spike times for each cell in the 

network, so we chose to examine actual spike synchrony in the model to complement the burst 

waveform analysis in the biological preparation. Our analysis considered synchrony for paired 

anterior LCs with a nominal coupling conductance of 0.0182 S using a 25 ms bin width for 

spike-times (Wang and Buzsáki, 1996). Spikes occurring in both cells during the same bin were 

considered synchronized, while spikes that did not bin together were tallied as desynchronized. 

Using this metric, these randomly generated model networks exhibited “control” synchrony 

scores ranging from 0.642 to 1.000 with a median value of 0.915, where 1.000 represents perfect 

spike synchrony.  

 

Calculating Synchrony for Network models  

In the models, synchrony between two cells was calculated based on spike times (Wang and 

Buzsáki, 1996). Spike times were recorded from each LC’s Spike Initiation Zone (SIZ). The 

simulation time was divided into 25 ms bins. After initializing all bins to zero, each cell spike 

was added to the corresponding bin. Synchrony (SY) between two cells A and B was calculated 

using following equation: 

𝑆𝑌𝐴𝐵 =  
∑ 𝐴(𝑙) ∗ 𝐵(𝑙)𝑘
𝑙=1

√∑ 𝐴(𝑙)𝑘
𝑙=1 ∗  ∑ 𝐵(𝑙)𝑘

𝑙=1
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where l is the current bin and k is the maximum number of bins. Spikes occurring in both cells 

during the same bin were considered synchronized, while spikes that did not bin together were 

tallied as desynchronized. Using this metric, these randomly generated model networks exhibited 

“control” synchrony scores ranging from 0.642 to 1.000 with a median value of 0.915, where 

1.000 represents perfect spike synchrony. 

 

3.5 RESULTS 

 

 

Model Predicts Multiple Mechanisms of Compensation based on Intrinsic Conductances 

 

TEA exposure reduces LC synchrony and induces hyperexcitability. Our model development and 

selection criteria resulted in a population of 27 model CG networks with variable underlying 

conductances of the constituent neurons that successfully recapitulated the biological data 

observed in TEA (see Methods, Supplemental Information). Our previous results identified an 

approximate 2.2 ± 0.8-fold change in IA in LCs as a result of 60 minutes of TEA exposure 

(Ransdell et al. 2012). Therefore, we used the model networks to explore potential mechanisms 

of compensation by first increasing and decreasing each individual maximal membrane 

conductance by a similar factor of 2.  We searched for changes that would increase LC spike 

synchrony while countering the hyperexcitability induced by TEA. To easily visualize the trends, 

each network was normalized to its initial value for spike synchrony. These data are shown for 

all conductances in Figure 1. 

Our initial goal with the model was to determine whether changes in single conductances were 

sufficient to elicit compensatory changes in output that help restore both excitability and 

synchrony. While it is not difficult to conceive of a change in multiple aspects of the parameter 

set that could achieve restoration of output, it is perhaps not as intuitive – but presumably the 
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most parsimonious solution – for a single conductance to have such an impact. True to this 

expectation, while various manipulations of Gmax values improved either excitability or 

synchrony, very few conductance changes improved both. The optimal solution of significantly 

improving spike synchrony and also decreasing the total number of action potentials was 

achieved in only one case: 2-fold increase in GA resulted in a mean synchrony score that was 

significantly different from the TEA case (P < 0.05, paired t-test) but not significantly different 

from control (P = 0.157). Not every model cell or networked improved uniformly with this 

conductance change.  Therefore, while these results do not rule out a contribution for other 

conductances, they do suggest that an increase in GA, as seen in previous experimental studies 

on isolated LCs (Ransdell et al., 2012), may be the most likely candidate for a change in intrinsic 

conductance promoting synchrony at the network level. These data suggest that while a single 

conductance change (increased GA) can help restore both excitability and synchrony, variations 

in a single voltage-dependent conductance may not be sufficient to account for the full 

compensation response. In addition to perturbing only individual conductances, we also varied 

current kinetics and activation parameters (half-activation voltage V1/2,  +/- 10 mV, and slope 

factor k, by 0.5 and 2 (Ballo et al., 2012) and time constant by +/10 ms) for all the cell currents 

individually, and found that no changes in parameters for a single current could simultaneously 

restore excitability at the single cell level, and synchrony at the network level (data not shown). 

While the analysis has focused only on the parameters of a single current, simultaneous changes 

in parameters of multiple currents could also potentially provide similar compensation, and that 

remains to be explored. However, our analysis does reveal the substantial contribution of 

changing a single parameter – GA – on multiple aspects of network compensation, to an extent 

that is beyond simple intuition. Importantly, the model also extends the biological data by 
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demonstrating that waveform synchrony can translate into spike synchrony. Because of the 

electrotonic distance between the somata and axons of LCs, we cannot measure spike synchrony 

directly in this preparation. The model allows us to infer that waveform synchrony (and loss of 

synchrony) can indeed translate to the level of the most proximal cellular output – spiking. 

 

 

Increased Electrical Synaptic Conductance Helps Restore Synchrony 

 

If intrinsic compensation does not fully restore synchrony, another mechanism must be present to 

explain the results observed during network compensation. LCs receive common excitatory 

inputs from the pacemakers and one hypothesis is that changing the strength of these chemical 

synapses might help to restore LC firing to appropriate levels. LCs in the network are also 

electrically coupled to one another via gap junctions which presumably promotes synchrony, 

although clearly the native coupling is not able to maintain LC synchrony in TEA (Hagiwara et 

al., 1959; Tazaki and Cooke, 1983; Cooke, 2002). A second hypothesis is that increased 

electrotonic coupling between LCs could buffer against disparate output and help to restore 

synchrony. 

Using our set of model networks, we increased and decreased the strength of chemical 

synapses in 10% increments to test the effects on excitability and synchrony. We then did the 

same with model electrical synapses. We found that increasing the strength of either chemical or 

electrical synapses increased both synchrony and excitability (Figure 2 left). However, 

increasing the chemical synaptic conductance in conjunction with TEA blockade also increases 

spiking of the LCs ~25-30% in contrast with the biological decrease in excitability relative to the 

acute TEA exposure seen with compensation. Conversely, only a small change in LC spiking 

occurs with an increase in electrical coupling (~9%, Figure 2 left). Reducing the strength of 
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either chemical or electrical synapses decreased overall spike synchrony (Figure 2 right), 

violating the assumptions of compensation based on the biological data. Reducing chemical 

synaptic strength eventually ceased LC firing altogether. 

 

 

Interaction of Intrinsic and Electrical Synaptic Compensation 

 

Our modelling results suggest that although an increase in GA is able to counter the increase in 

excitability of LCs in TEA in a compensatory fashion, as well as promote restoration of 

synchrony, such an intrinsic compensation was insufficient to restore synchrony fully. 

Additionally, our results suggest that an increase in coupling among LCs can greatly promote 

synchrony with only a modest effect on excitability. Therefore, we next used our model networks 

to investigate how GA and GC might interact to promote synchrony by calculating synchrony 

scores as conductances of all 27 model networks were adjusted. First we increased GA alone in 

10% increments up to a 100% increase (Figure 3). Increasing GA up to +40% promoted greater 

synchrony after TEA blockade but was unable to fully restore synchrony even with increasing 

conductance levels. Increasing GA beyond +40% did not further improve synchrony (Figure 3), 

and ultimately caused LCs to cease firing altogether. We also increased model GC incrementally 

(from +10% to +150%) and found that electrical coupling alone was capable of restoring 

synchrony fully, but this required a 140% increase in its value (Figure 3A). Finally, we 

increased both GA and GC together in 10% increments, revealing a potentially synergistic 

relationship: a smaller increase of 70% in each conductance was able to produce spike synchrony 

that was indistinguishable from control (Figure 3A, 3B). 
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3.6 DISCUSSION 

 

Multi-component Compensation Can Synergistically Restore Network Output 

 

Previous modeling studies found that K+ currents can increase or help restore synchrony 

between electrically coupled neurons (Pfeuty et al., 2003), so we first hypothesized that a 

compensatory increase in A-Type K+ membrane conductance could be a mechanism underlying 

both restored excitability and resynchronization.  Over the course of 30-60 minutes, increased IA 

was associated with decreasing cellular excitability [see also (Golowasch et al., 1999)] and 

improvement of coordinated motor neuron firing. However, intrinsic compensation alone was 

insufficient to fully restore synchrony across LCs. A concomitant increase in electrotonic 

coupling ensured virtually complete resynchronization. Our results suggest that although a 

sufficient increase in electrical coupling alone could restore full synchrony (140% increase), it 

could not simultaneously restore the original level of excitability. Only a 70% increase was 

necessary when accompanied by a concomitant increase in GA. Therefore, we conclude that 

multi-component mechanisms are not only necessary for full compensation, but also that their 

synergistic action is potentially more efficient than either mechanism operating in isolation. 

Physiological Regulation of Coupling Conductance 

 

The speed (within 30 minutes) and magnitude (up to a doubling of effective coupling) of 

physiological changes seen in electrical coupling was remarkable. Although electrical coupling 

has long been known to promote synchrony in many systems, including the CG (Tazaki, 1972; 

Bennett and Zukin, 2004), the physiological interaction of electrical coupling with intrinsic 

conductances to affect a compensatory output has not been examined. Previous work in the 

crustacean STG has demonstrated how synchronized activity of pacemaker cells is dependent on 

an interaction of intrinsic conductances and electrical coupling (Szücs et al., 2000, 2001; Soto-
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Treviño et al., 2005), and that distinct circuits can be brought into synchrony via manipulations 

of electrical and chemical synapses (Elson et al., 1998; Szücs et al., 2000, 2009). But none of 

these studies have addressed the interaction of membrane conductance and electrical coupling in 

a compensatory context. Similarly, plasticity of electrical synapses has drawn considerable 

attention after being discovered in the mammalian central nervous system, including the thalamic 

reticular nucleus (Landisman and Connors, 2005; Haas et al., 2011), inferior olive (Lefler et al., 

2014; Mathy et al., 2014), and retina (Kothmann et al., 2009; Völgyi et al., 2013). Studies in the 

thalamic reticular nucleus have suggested that potentially compensatory changes in coupling are 

important to maintain network stability as large changes in intrinsic excitability occur across 

development (Parker et al., 2009). These discoveries increased awareness of the complex 

functional roles and plasticity of coupling (Pereda et al., 2013; O’Brien, 2014; Haas, 2015), and 

also spurred research to identify molecular mechanisms that underlie plasticity and maintenance 

of these structures (Flores et al., 2012; Li et al., 2012; Turecek et al., 2014). Our study adds to 

this growing appreciation for plasticity of electrical synaptic connections in the context of 

homeostatic plasticity. 
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3.7 TABLES  

 

Table 1. Nominal model conductance values: 

 

Conductance Value (S/cm2) 

Leak 2e-4 

A 6e-4 

BKKCa 7.3e-3 

g1_Kd2 3e-4 

g2_Kd2 3.5e-5 

CaL 1.7e-4 

CAN 1.06e-4 

SKKCa 8.79e-5 

CaPQ 1.5e-4 

NaP 3.06 e-4 
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Table 2. Model current parameters. 
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F = Faradays constant 

R = Gas constant 

V = Membrane voltage 
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3.8 FIGURES 

 

 
   

 

Figure 1. Effects of increasing and decreasing individual ionic conductances on excitability and 

synchrony in model CG networks. (A) Schematic representation of model network organization 

and connectivity. Five large cell (LC) motor neurons are innervated via excitatory synapses from 

a common small cell pacemaker input (SCs). LC model neurons consist of two compartments - 

soma and axon - of which only the somata are pictured. Somata contain 9 conductances: GCaS, 

GCaT, GLEAK, GCAN, GA, GBKKCa, GSKKCa, GKd, and GNaP. Paired LCs (1+2, 4+5) 

have stronger local coupling (black resistor symbols), and all 5 LCs are reciprocally electrically 

coupled via weaker gap junctions (gray resistor symbols). An example of LC3 and LC4 model 

output within a network burst activity is shown in the red and blue traces under both control and 

TEA (90% reduction in both GKdand GBKKCa) conditions. Graphical representations of spike 

synchrony (raster plots) and waveform synchrony are shown for the model neurons, 

demonstrating that both measures reflect the loss of LC synchrony as a result of TEA. (B) 

Measurements of both output variables (# of spikes and spike synchrony) were made under three 
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model conditions: control, TEA, and TEA + either a 2x increase (G") or 2x decrease (G#) in a 

given conductance. N = 27 distinct model networks. All output measurements are normalized to 

their initial (control) conditions. Red lines represent the mean for a given group. Dashed line 

represents the 1.0 value (baseline) for a given measure. Compensatory responses that restore 

excitability and synchrony will tend to move the mean towards baseline 

 

 

 
Figure 2. Effects of increased or decreased strength of chemical synapses and electrical coupling 

on excitability and synchrony in model CG networks. Measurements of two output variables (# 

of spikes and synchrony) were made under three model conditions: control, TEA (90% reduction 

in both GKdand GBKKCa), and TEA + an incremental increase or decrease (up to 100% by 10% 

increments) for both chemical (pacemaker to LC) or electrical (LC to LC) connections. N = 27 

distinct model networks. All output measurements are normalized to their initial (control) 

conditions to visualize trends. Dashed line represents the 1.0 value (baseline) for a given 

measure. Red lines represent the mean for each group. Each different color and shape for points 

corresponds to one model network, and the same networks are shown across conductance levels. 

P-values in each plot refer to the results of a one-way ANOVA across all groups. Asterisks (*) 

denote groups in each plot that were significantly different from the TEA group via Holm-Sidak 

post-hoc tests. 
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Figure 3. Increased GA and coupling conductance (GC) among LCs act in concert to help 

restore synchrony across LCs in model networks. (A) Voltage response of a typical network LC3 

(gray) and LC4 (black) cells under three model conditions: control, TEA (90% reduction in both 

GKd and GBKKCa), TEA+ 70% increase in GA, and TEA + 70% increase in GA and GC. (B) 

Effects of increasing GA alone, GC alone, or both GA and GCon synchrony in model networks. 

Dashed lines represent simple linear regression fits to the points for each condition. Black line 

represents the change in synchrony from control to TEA. Points shown are the average values for 

N = 27 networks. (C) Summary of Synchrony Score shown for all 27 model networks. Stepwise 

changes are shown from Control, TEA, TEA + increasing GA by 70%, and TEA + increasing 

both GA and GC by 70% (the point at which maximal synchrony is restored as per the analysis 

in panel B). Individual points correspond to those used to generate averages in panel A at the 

70% level to give an idea of the variability in the data set. Individual preparations are connected 

with lines to show trends across networks 
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CHAPTER 4  

MORPHOLOGICAL CRUSTACEAN CARDIAC GANGLION 

CELL MODEL REVEALS DIFFERENTIAL ROLES OF 

CONDUCTANCES IN COMPARTMENTS 
 

4.1 INTRODUCTION 

Neurons are endowed with a rich and complex set of intrinsic and synaptic conductances that 

control their electrical activity [1; 2]. Although the role of such a varied set of conductances is 

not fully understood, it is natural to expect that neurons of the same cell type would possess 

similar membrane properties, especially within the same animal. However, experimental findings 

suggest that maximal conductance levels of individual currents can vary two- to six-fold among 

same cell types, even within the same animal [3-7] and that different combinations of 

conductances preserve activity at the single cell level [8; 9]. Computational modeling continues 

to shed light on the role of such conductance variations in conserving cellular output such as 

spike and burst characteristics [2; 12-20]. For instance, Prinz et al. [2] explored the maximal 

conductance space of a single-compartment model neuron to quantify the numerous types of 

spiking and bursting models and showed that similar patterns of activity could be produced by 

many different parameters sets, both for single neurons [2] and within small networks [21].  

Beyond the broad range of conductance combinations that are associated with convergent 

outputs among neurons of the same type, there is also substantial reports that among populations 

of neurons different sets of ionic conductances [5] and ion channel mRNA levels [7; 10] can be 

correlated with one another in different classes of identified neurons. This suggests that an on-

going, rather than developmentally fixed, regulation of specific sets of conductances may be 

necessary to provide stable output of neurons and networks over the lifetime of an animal. These 
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correlated mRNA and conductance levels can arise from a relatively simple set of feedback 

control algorithms in computational models. However, there have been few studies that directly 

demonstrate that these conductance or mRNA relationships are necessary to generate 

appropriate, ongoing neuronal activity in biological neurons. Indeed, compelling computational 

work has demonstrated that – at least theoretically – such relationships are not necessary to 

generate robust output in a population of model neurons. For example, previous studies have 

demonstrated that using a model selection methodology focused on single-cell output in a multi-

compartment model results in a population of cells with only weak or no correlations among 

conductances. However, most studies to date have focused on selecting models based on isolated 

neuron activity. Therefore, to further extend these analyses, we performed multiple levels of 

selection that included generating model networks with multiple neurons of a given type, and 

only selecting cells that perform within biological parameters of the full network output for 

inclusion in our population. We then looked for conductance correlation relationships among the 

populations of neurons in our simulated model networks. 

 For this work, we use a computational model of the crustacean cardiac ganglion (CG) 

network, based on the crab, Cancer borealis. These simple networks consist of 4 pacemaker 

neurons and 5 Large Cell (LC) motor neurons that innervate the heart muscle. The present study 

extends previous computational investigations that focused on single compartment cardiac 

ganglion LCs by considering the potential role of conductances in multiple compartments of an 

LC on its output. Specifically, we investigate how the distribution as well as potential 

covariations of conductances affect soma membrane potential response (output), using a 

morphologically realistic three-compartment LC model of Cancer borealis that incorporates 

first-hand biological data. Using a rejection sampling approach with a 9-D parameter space of 
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maximal conductances, we report, as in previous studies, an unbiased approach to determine the 

role of various conductances in shaping cellular and network function. We extend previous 

studies by performing model neuron selection in complete CG networks, with constraints drawn 

from intact network activity as well as single cell input-output functions. A population of model 

LCs generated by such an approach then provided predictions of the differential roles of 

conductances in the soma vs. neurite in shaping neuronal output. Further, this population of 

neurons allowed us to look for emergent conductance relationships both within and across these 

compartments.  Finally, we compare conductance relationships uncovered through the model 

selection process with a comprehensive set of single-cell mRNA relationships for channels 

underlying these membrane conductance relationships.  

 

4.2 METHODS 

 

Experimental data to constrain single cell and network models. 

The biological data used to constrain both the model parameters (e.g., membrane currents) and 

outputs (both isolated and intact) were ultimately collected under the auspices of previously 

published work as follows.  

Membrane currents were made in two-electrode voltage clamp while the network activity was 

silenced either with tetrodotoxin (TTX) or by severing the CG nerve trunk to remove the small 

cell (SC) inputs. The inward currents ICaS, ICaT, INaP, and ICAN were based on recordings and 

data as described in Ransdell at el. 2013. The outward currents IA, IKd, IBKKCa were based on 

recordings made in Ransdell et al. 2012. No biological characterization of SKKCa has been 

performed in crabs, and this work carries over SKKCa model currents as described in our 

previous CG modeling efforts (Lane et al. 2016). Intracellular voltage follower recordings of 
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ongoing network activity were made in all the above studies, and from these we generated the 

biological parameters to constrain model network output.  

Synaptic inputs (chemical) and connections (electrical) were characterized from these recordings 

as well. EPSPs were characterized by measuring the amplitude and time constant characteristics 

from intracellular LC recordings in intact networks. Single SC action potentials that yielded clear 

(non-summating) EPSPs were used to generate a population of post-synaptic potential 

measurements that constrained the chemical synapse inputs. Electrical coupling was measured 

directly in two-electrode current clamp as described in Lane et al. 2016.    

To characterize isolated LC soma responses with and without TEA, we used a current clamp 

protocol designed to emulate SC synaptic inputs. These chemical synapse stimulus protocols are 

described in detail in Ransdell et al. 2013.   

Finally, mRNA levels for ion channels were taken from previously published work by Northcutt 

et al. 2019 and analyzed and formatted for use towards the experimental goals in this study. 

 

Development of biophysical single cell models   

 

The single cell model had three compartments: soma, neurite (neu) and spike-initiation-zone 

(SIZ). The soma compartment had a length of 120 µm and a diameter of 90 µm and contained 9 

currents. The neurite had a length of 1380 µm, and a diameter of 12 µm, and contained 5 

currents. The SIZ had a length of 108 µm, and a diameter of 20 µm, and contained 3 currents. 

The Na and K channels in the SIZ were given fixed conductances of 0.2 and 0.4 S/cm2, 

respectively, and we assumed a specific capacitance of 1.5 F/cm2 for all three structures. The 

model for currents for each compartment followed the Hodgkin-Huxley equation formulation 

(Eqn. 1)  
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𝐶𝑠𝑜𝑚𝑎
𝑑𝑉

𝑑𝑡
= −𝐼𝐴 − 𝐼𝐾𝑑 − 𝐼𝑁𝑎𝑝 − 𝐼𝐶𝑎𝑆 − 𝐼𝐶𝑎𝑇 − 𝐼𝐶𝐴𝑁 − 𝐼𝑆𝐾𝐾𝐶𝑎 − 𝐼𝐵𝐾𝐾𝐶𝑎  − 𝐼𝑙𝑒𝑎𝑘 − 𝐼𝑠𝑜𝑚𝑎−𝑡𝑜−𝑛𝑒𝑢 

          (Soma) 

𝐶𝑛𝑒𝑢
𝑑𝑉

𝑑𝑡
= −𝐼𝐶𝑎𝑇 − 𝐼𝐶𝑎𝑆 − 𝐼𝐵𝐾𝐾𝐶𝑎 − 𝐼𝑁𝑎𝑃 − 𝐼𝑙𝑒𝑎𝑘  − 𝐼𝑛𝑒𝑢−𝑡𝑜−𝑠𝑜𝑚𝑎  (Neurite) 

𝐶𝑠𝑖𝑧
𝑑𝑉

𝑑𝑡
= −𝐼𝑁𝑎 − 𝐼𝐾𝑑𝑟 − 𝐼𝑙𝑒𝑎𝑘 − 𝐼𝑠𝑖𝑧−𝑡𝑜−𝑛𝑒𝑢       (SIZ)                  (1) 

where the currents on the right-hand side of the first equation are: A-type potassium (IA), delayed 

rectifier (IKd), persistent sodium (INap), slow persistent calcium (ICaS), transient calcium (ICaT), 

calcium-dependent non-selective cation (ICAN), two calcium-dependent potassium currents 

(ISKKCa and IBKKCa), leak (ILeak) and the injected current (Iinj). The individual currents were 

modeled as 𝐼𝑐 = 𝑔𝑚𝑎𝑥,𝑐𝑚
𝑝ℎ𝑞(𝑉 − 𝐸𝑐), where 𝑔𝑚𝑎𝑥,𝑐 is its maximal conductance, m its 

activation variable (with exponent p), h its inactivation variable (with exponent q), and 𝐸𝑐  its 

reversal potential (a similar equation is used for the synaptic current but without m and h). The 

kinetic equation for each of the gating functions x (m or h) takes the form 

                                        
𝑑𝑥

𝑑𝑡
=

𝑥∞(𝑉,[𝐶𝑎
2+]

𝑖
)−𝑥

𝜏𝑥(𝑉,[𝐶𝑎
2+]𝑖)

                                                    

where 𝑥∞ is the steady state gating voltage- and/or Ca2+- dependent gating variable and 𝜏𝑥  is the 

voltage- and/or Ca2+- dependent time constant. The equations for the active channels in the soma 

compartment were fit using biological recordings for these currents from our Lab from the cardiac 

ganglion of Cancer borealis. These currents were fit as follows: Voltage clamp data obtained with 

Clampfit were imported into MATLAB and fit using the MATLAB curve-fitting toolbox. Current 

data were converted to conductance data by dividing by (Vm – ERev), where ERev was as follows: 

ENa = +55 mV, EK = -80 mV, ECa = +45 mV, ELeak = -50 mV, and ECAN = -30 mV. The time axis 

was adjusted to start from 0 for the beginning of the clamp. The following parametrization was 

used: 
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𝑔(𝑡) =∑𝐴𝑖 (1 − exp (
−𝑡

𝜏𝑚,𝑖⁄ )) (ℎ𝑖 − (ℎ𝑖 − 1) exp (
−𝑡

𝜏ℎ,𝑖⁄ ))

𝑛

𝑖=1

 

In this equation, Ai = Gi,max ×mi was the maximal conductance of the current i multiplied by its 

voltage-dependent steady-state activation (mi), hi was the steady-state inactivation value, and τm,i 

and τh,i were the time constants with which activation and inactivation reached steady-state, 

respectively. This fitting procedure assumed that ionic currents were completely deactivated m=0 

and deinactivated (h=1) prior to the onset of the voltage clamp. This was fit to each trace in 

voltage clamp experiment, giving values of each of the four parameters for each test clamp 

voltage (Vc). These values were then fit for each current as functions of Vc using the general 

forms as stated below. This procedure yielded equations for the currents recorded in voltage 

clamp that could be used in simulations according to the Hodgkin-Huxley formalism. 

 𝐴(𝑉𝑐) = 𝐺𝑚𝑎𝑥 ×𝑚(𝑉𝑐) = 𝐺𝑚𝑎𝑥 × (1 + exp((𝑉𝑐 − 𝑉𝑚,1/2) 𝑘𝑚⁄ ))
−1

ℎ(𝑉𝑐) = (1 + exp((𝑉𝑐 − 𝑉ℎ,1/2) 𝑘ℎ⁄ ))
−1

𝜏𝑚(𝑉𝑐) = 𝜏𝑏𝑎𝑠𝑒,𝑚 + 𝜏𝑎𝑚𝑝,𝑚(exp((𝑉𝑐 − 𝑉𝜏1,𝑚) 𝑘𝜏1,𝑚⁄ ) + exp((𝑉𝑐 − 𝑉𝜏2,𝑚) 𝑘𝜏2,𝑚⁄ ))
−1

𝜏ℎ(𝑉𝑐) = 𝜏𝑏𝑎𝑠𝑒,ℎ + 𝜏𝑎𝑚𝑝,ℎ(exp((𝑉𝑐 − 𝑉𝜏1,ℎ) 𝑘𝜏1,ℎ⁄ ) + exp((𝑉𝑐 − 𝑉𝜏2,ℎ) 𝑘𝜏2,ℎ⁄ ))
−1

  

   

All the maximal conductances (Gi,max) were in µS, time constants in ms and voltages in mV.  

Calcium dynamics. Intracellular calcium modulates the conductance of the calcium-activated 

potassium currents (BKKCa and SKKCa), calcium-activated nonselective cation current (CAN) 

and influences the magnitude of the inward calcium current in the LC [1]. A calcium pool was 

modeled in the LC with its concentration governed by the first-order dynamics [2; 3] below: 

 

𝜏𝐶𝑎
𝑑[𝐶𝑎2+]

𝑑𝑡
=  −𝐹 × 𝐼𝐶𝑎 − ([𝐶𝑎

2+] − [𝐶𝑎2+]𝑟𝑒𝑠𝑡) 
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where F = 0.256 μM/nA is the constant specifying the amount of calcium influx that results per 

unit (nanoampere) inward calcium current; τCa represents the calcium removal rate from the pool; 

and [Ca2+]rest = 0.5 μM. Voltage-clamp experiments of the calcium current in the our lab showed 

the calcium buffering time constant to be around 690 ms (τCa).  

 

Searching for LC neurons within the model parameter space 

 

We used a three-stage rejection protocol to select viable networks with five distinct LC cells, 

with each LC satisfying biological single cell and current injection responses. For the single cell 

model search, we started with a set 100,000 three-compartment cell models with the 14 

conductances and the small cell frequency selected randomly from uniform distributions of 

values between their respective minimum and maximums given in Table 3. The SC frequency 

range of 16-32 Hz was determined from SC recordings from our lab (Table 1). The recordings 

showed that the combined small and medium spike frequency averages had minimum and 

maximum frequency of 16 Hz and 32 Hz, respectively.  

 In stage 1 of the rejection protocol, ligated soma (soma + neurite) models were tested for 

passive properties of resting membrane potential, time constant and input resistance. Cells for 

which these values were within ranges in Table 4 were retained. In stage 2, SIZ was added to the 

passing cells and a synaptic input (spike train mimicking SC input) was provided. Based on 

biological recordings from our Lab, on average, the average values for an SC burst were as 

follows: period was 1000 ms, and the synaptic input consisted of two added waveforms, a higher 

frequency for the entire duration of 1000 ms, and a lower frequency for 600 ms. The initial SC 

burst was for 300 ms, and this was followed with a higher frequency for 600 ms, i.e., till 900 ms, 

after which it fell back to the original frequency and terminated at 1000 ms. The synapse had a 

fixed gain of 0.07017S. The frequency of SC input is randomly picked as two numbers whose 
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sum is in the biological range of 16-32 Hz. For example, the two could be 22 and 7, and this 

would be implemented as follows: the first spike train would be at 22 Hz for the entire 1000 ms 

duration, and the second one will be added to it from 300 ms to 900 ms, to provide 29 Hz during 

the 300-900 ms duration. Then run all the networks with this SC input. Then select two other 

number and repeat the process. 

 Both control and post-TEA case are considered and intact cells whose resulting membrane 

potential waveform characteristics were within the ranges shown in Table 5 were retained. In a 

third stage, we assemble networks and select viable ones as described next.  

Development of conductance-based model networks  

First, we randomly selected five distinct LCs for the network from the pool of intact LCs that 

pass Stage 2. Then we connected the SIZ with synapse to the distal end of the neurite for each 

LC, and connected LC4-5 and LC1-2 somas with separate gap junction values that were 

determined experimentally in our lab (Table 3). The SC pacemaker drive was delivered as a 

spike train to the five excitatory synapses. It was observed biologically that frequency of SC 

firing increases within the slow wave oscillation cycle of LCs.  

 Experimental TEA block was simulated by reducing the conductances GBKKCa, GKd and GA by 

97% in the LCs and neurite (Ransdell et al., 2013a). Synchrony scores were computed by using 

the R^2 between all the large cells. To determine the range for synchrony scores, we examined 

five experimental recordings for LC3 and LC5. Taking the first two minutes of TEA exposure 

(acute), we measured the R^2 between LC3 and LC5 recordings. We chose the maximum of 

TEA synchrony to be the lowest control synchrony score minus 1.5 times the control 

interquartile range. The lowest control synchrony score was 0.9425, and the control interquartile 

range was 0.0318, therefore the maximum of TEA synchrony was taken to be 0.8948. The cells 
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were considered desynchronized if the synchrony score was below 0.9425. For the synchrony 

score between LC3 and LC5, we considered anything below 0.89 to be asynchronous, and 

anything above 0.9425 to be demonstrating synchrony. The average synchrony score (not used 

for rejection, but for other calculations in Results) is compared with the maximal conductance 

averages and SC frequency. The average synchrony score is the mean synchrony score between 

all LC’s (10 combinations per network) in the pre- and post-TEA case. 

 After performing control and TEA runs using these networks, in the third stage, we rejected 

networks that had waveform characteristics outside the ranges shown in Table 6. We rejected 

networks that showed increased TEA synchrony between LC3 and LC5, or decreased spikes per 

burst since neither behavior was observed in biological traces. This left 27 networks that 

reproduced the biological trends, and these were used in subsequent analyses to explore potential 

conductance changes that could restore network synchrony.  

 

4.3 RESULTS 

 

Morphologically realistic LC model and SC stimulus design reproduces experimental 

profiles 

 

Building on our previous two-compartment LC model [17; 18; 22] we added morphological 

realism to the LC by adding a third compartment, the neurite (Fig 1). We first matched passive 

properties (see methods) and waveform data from intact cells LC3 and LC4 (Fig. 1A; [22]). We 

note that among the five LCs, only LC3-5 are easily accessible, and LC4 is gap-junction coupled 

strongly to LC5 [11]. Accordingly, our biological data are from LCs 3-5, while our model 

predicts network performance for all five LCs, assuming LCs1-2 have similar gap junction 

coupling as LC4-5 (Fig. 1A). 
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Developing rejection protocol criteria from experimental data: We briefly describe the key 

characteristics of a modified version of our previous rejection protocol to select model LCs that 

match experimental data [22]. In the first stage, we sampled a 9-D parameter space of maximal 

conductance to generate a pool of ligated LCs (soma + neurite with passive conductances) for 

which the passive properties of resting potential and input resistance were within biological 

ranges measured in our Lab [11]; this relaxed some of the constraints in our previous protocol 

(see methods) and permitted more cells to pass this stage. To the cells that passed, we then added 

a neurite (with conductances picked randomly – see below) and an SIZ (with fixed 

conductances) in stage 2, and then provided synaptic input from the SC between the 

experimentally observed range of 16-32 Hz and retained only cells that had at least one spike 

with a small cell spike train input. This ensured that stage 2 did not pass cells that only had 

membrane depolarizations but no spikes, reducing the load on the computationally intensive 

stage 3. In a third stage, we combine five viable randomly selected single cells into a network. 

The network itself is deemed viable if it satisfied the two experimental data for LC3 and LC5: (i) 

a synchrony value between LC3 and LC5 >0.95 in control (Pearson’s R-squared); and (ii) 

synchrony between LC3 and LC5 <0.89 in TEA. Results from each of these stages are discussed 

next. 

 

Membrane potential responses of ligated cells: The ligated cell (soma + neurite) model was 

tested for passive properties based on experimental data from our Lab [11]. From among 150,000 

ligated model cells with random conductances selected from the 9-D parameter space (see 

methods), 100,000 passed stage 1 of the rejection protocol. Figure 1B shows a representative 

experimental (left) and model (right) membrane potential responses of a ligated cell to an 

experimentally determined input (termed ‘stimulus protocol’; [11]; see methods) in control and 
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post-TEA conditions. After finding viable ligated cells (soma and passive neurite), we attached 

an SIZ to each cell in the pool for testing in stages 2 and 3. For this, we designed an SC input to 

represent experimentally determined SC input characteristics as described next. 

 

Designing the SC input to the LC network: The five-cell LC network receives input from a 

cluster of four small cells, and we assumed that all five LCs receive a common synchronized 

input from this SC cell cluster. We designed the SC input as a spike train to a synapse on the 

SIZ, the properties of which are tuned to mimic experimental voltage responses [23]. 

Experimental recordings from the Schulz Lab (see Suppl Matls.) showed that SC input frequency 

varied between 16 and 32 Hz. Also, it appeared to have two components over a typical period of 

1000 ms, a steady one that continued over the entire duration, and a second one that lasted for 

600 ms, starting from 300 ms and ending at 900 ms. As described in methods, we designed SC 

inputs with the two components, after randomly picking a frequency within the rage of 16-32 Hz. 

 

Network Responses - matching responses of intact single cells: The SC input we designed was 

then used in the next stage to provide input to intact cells formed by adding an SIZ and synapse 

to the ligated cell model. Figure 1C shows the experimental recording for an intact LC4 cell (left 

panel leftmost is control). A typical response from the model intact cell is shown in the right 

panel. To make the analysis tractable, we considered the case where the intact cells in a network 

did not receive input from the other four LCs, i.e., all gap junction coupling between the LCs 

were disconnected. We will consider the SIZ gap-junction coupled case in a later section. 

 For such intact single LCs, we initially assumed passive neurites, i.e., only leak 

conductance in the neurite. So, to the model cells that passed stage 1, we connected an SIZ and 

synapse, and used the SC spike train input described in the previous section. Interestingly, none 

of the 100,000 cells passing stage 1 were able to pass stage 2. This was because the cells had a 
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spiking frequency above 8 Hz in control and did not exhibit a TEA response. However, the SIZ 

responses did match biological reports. Specifically, the biological membrane potential responses 

at the soma had a depolarization of 10 mV for 1000 ms, and with spikes on top of the 

depolarization that reached 20 mV in height. This response matched the soma membrane 

potential response characteristics from our lab that had a depolarization bump of 10 mV for 1000 

ms, and spike height of 15 mV (Fig. 1C1). Additionally, the model SIZ spike height attenuated 

by a factor of 3.5 (70 to 20 mV) at the soma, matching the corresponding biological recordings 

from our Lab which had an attenuation factor of 3.66 (55 to 15 mV) (unpublished data; also 

matched experimental SIZ recording in [23]). 

   The functional reason for the cells failing in stage 2 was determined to be the excessive 

leak through the neurite, i.e., although sufficient current entered the neurite from the SIZ, 

leakage diminished the amount that reached the soma for raising the response in TEA. Reducing 

the diameter, and therefore surface area, was found to decrease leakage, but the neurite diameter 

had to be 5 m, which was unrealistic compared to biological data that had a minimum of 10 

m. As a next step we considered active conductances.   

 

Active conductances necessary in neurite to reproduce experimental network responses 

 

The presence or role of active conductances in the neurite of the CG LC is unknown. For 

instance, although our mRNA studies suggest the presence of Nap in the LC, the morphological 

specificity of location is unknown.  Similarly, although Ca2+ currents are thought to be present 

in the neurite, their localization is not fully understood.  

 

Role of individual conductances: We adopted a systematic procedure to determine a 

parsimonious set of active conductances in the neurite. For this, we first we inserted only Nap in 
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the neurite, and this helped counter the excessive leakage cited in the previous section, enabling 

the soma to elicit a TEA response with spiking in SIZ (Fig. 2A, B). With Nap in the neurite, for 

every 1000 cells that passed stage 1, about 35 passed stage 2. Fewer cells passed because the 

spike height and LC spike frequency were both found to exceed the upper bounds in the control 

case. For instance, for a case with SC frequency of 22 Hz (low in experimental traces of SC 

spikes), the soma spike height was above the upper bound of 30 mV (Table 5) as was the spike 

frequency, in many of the control cases. The reason for this was that the cell was already close to 

excitable in the control case with the passive neurite. The key attribute that Nap provided was a 

TEA response that met the requirements of increased spike frequency and amplitude (Fig 2B) in 

nearly all cells. So, we considered current channels to reduce the depolarization caused by Nap 

in the control case while retaining the TEA response. This led to the addition of I_BKKCa but 

that worked only for some models (Fig 2C), even with maximal conductance of I_BKKCa 

exceeding the upper bound (Table 2). Furthermore, this manipulation did not provide the 

variability in TEA responses seen in experimental traces (Fig.1D). Since I_Nap by itself was not 

sufficient, we then explored whether I_CaT and I_CaS channels could substitute for I_Nap. Even 

with values of conductances beyond the upper bounds for CaS and CAT channels, the TEA 

response was inadequate (Fig 2D), and the peak spike height in the control case was also too 

high. So, we added I_BKKCa to this set of I_CaT and I_CaS, without Nap. Although this 

reduced the peak spike height to within permissible ranges, the TEA response was still 

inadequate (Fig 2E).  

   To gain insights into the process, we investigated the mechanism by which I_BKKCa 

improved the TEA response together with I_Nap (Fig 2C), and produced variable TEA 

responses seen in experiments, without disturbing the control responses. First, we found that 
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I_BKKCa helped reduce the spike amplitude (compare Fig. 2F and 2G). However, there was 

little variability in TEA response waveforms of different cells. To explore why, we investigated 

the underlying current waveforms (Fig 2H). For this cell, I_CaT and I_CaS in the neurite less 

than 50% of what I_Nap does to the TEA response. The waveform of I_BKKCa corresponds 

closely in time with those of leak and Nap currents, all of which also closely follow the voltage 

waveform. This suggests that I_BKKCa has a greater impact on the voltage waveform than did 

I_CaT and I_CaS. However, the slow wave amplitude could, in general, be modified by I_CaT 

and I_CaS, allowing the model to exhibit varied TEA waveforms. With all 5 channels present, 

the waveform criteria for control and TEA case are met by larger numbers of cells (Fig 2G), and 

there is greater variability in the range of TEA responses. A typical set of TEA responses for five 

intact cells with all channels present is shown in Fig 2I. In summary, I_BKKCa (with I_CaT and 

I_CaS) reduced peak spike height and frequency in the control case. Although I_BKKCa did 

reduce the increased control response caused by I_Nap, it did not affect I_Nap’s facilitation of 

the TEA response. Furthermore, CaS and CaT channels were found to be important for the 

generation of varied TEA responses.   

 

Random sampling of neurite conductances: Based on the systematic hand-tuned analysis of the 

role of conductances in the neurite discussed in the previous section, we decided to add the 

following current channels to the neurite: CaS, CaT, NaP, BKKCa. The reader is reminded that 

maximal conductances of the soma currents were finalized in stage 1, and so stage 2 considers 

only the random selection of maximal conductances for the channels added to the neurite, i.e., 

stage 2 rejection protocol focused only on conductances in the neurite. Of the100,000 intact cells 

that passed stage 1, the total number passing stage 2 increased to 18,000, with an active neurite 

in the model. 
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Validation check: In our prior experiments with the ligated soma, Ransdell et al.[24] recorded 

from intact networks and developed a current trace termed ‘stimulus protocol’ that, when 

injected into a ligated soma, resulted in a membrane potential profile that matched those from 

intact network recordings. As a validation experiment, we found that the model current entering 

the soma from the neurite mimicked the ‘stimulus protocol’ waveform with active, but not a 

passive dendrite (Fig.2J2 vs 2J3). 

 

Network responses with gap-junction coupling among SIZs 

  

The cells from a sample network that passed this final rejection criteria involving networks 

(Stage 3) are shown in Figure 3 (right panel, top right). Of the18,000 model cells that passed 

stage two, a total of 515 passed stage 3 (103 networks). The dissimilar individual responses of 

LCs to the SC frequency of 25 Hz became highly synchronized when placed in a network with 

gap-junction connectivity (Fig. 3A1,2). The reader is reminded that a pronounced TEA response 

is one of the rejection criteria used in Stages 2 and 3 (see methods). We explored the mechanism 

by which the gap-junction couplings between soma compartments of LCs1-2 and LCs4-5, and 

between the SIZ compartments (Fig. 1A) ensured synchrony among the LCs in the network.  

For this we considered the cells in the example network in Figure 3 that passed stage 3 of the 

rejection protocol, with the same SC input of 25 Hz used for each cell in Fig. 3A. In this 

network, we found that the gap junction current between soma compartments of LCs1-2 or 

between LCs4-5 was seven- to ten-fold smaller in magnitude than the synaptic current due to the 

SC drive. Focusing on one cell, LC1, Fig. 3B1 provides a comparison of the sum of the gap 

junction current from soma of LC2 to soma of LC1 and from the various SIZ compartments to 

the SIZ of LC1, labeled as ‘gap junction current’, to the synaptic current into the SIZ of LC1 due 
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to SC input spikes. As can be seen from the traces, the magnitude of the total gap junction 

current into LC1 was found to be more than seven-fold smaller than that of the synaptic current 

into LC1. Also, a comparison of traces in Fig. 3A and B shows that the soma membrane 

potential response of LC1 is primarily due to the input from SC rather than from input via gap 

junctions. The total gap junction current is also phase shifted compared to the synaptic current. 

This sheds light on the role of the synaptic current which is to raise the SIZ membrane potential 

to spike threshold in ~900 ms (Fig. 3B). Once the threshold is reached in the SIZ and spiking is 

initiated, the gap junction currents ensure that the spikes are synchronized among the cells, and 

so the phase shift of ~500 ms between the peak of the depolarization due to the synaptic current 

and the first peak in gap junction current profiles. Since LCs1-2 and LCs 4-5 have gap junction 

coupling at the soma, in addition to at the SIZs, the gap junction currents between them at the 

SIZs is expected to be smaller than the others, for example between LC1 and LC3, as seen in 

Fig. 3B2. As the figures illustrate, the soma voltages can be different, but the gap junction 

currents between SIZs ensure that their membrane potentials are very close. In summary, the 

analysis also delineates the primary functions of the two current types: synaptic (to increase SIZ 

and soma membrane potential to threshold) and gap junction (to synchronize spikes).    

These two observations, i.e., the total gap junction current being considerably smaller than the 

synaptic current, and the soma waveform almost entirely resembling the synaptic current 

waveform, also justify the use of intact single cells in stage 2 of the rejection protocol, without 

considering the gap-junction interaction effects from other cells.  

Conductance parameter space following three levels of selection on model neurons 

  

Following each of the stages of selection, we examined the overall distribution of membrane 

conductances in the soma and neurite compartments in the remaining neurons to determine 
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whether each selection criterion limited any conductance to a particular portion of the parameter 

space (Figure 4). We visualize this in two distinct ways. Figure 4A uses a density plot to 

describe the conductances that passed a given level of selection. As selection continued, some 

conductances were more and more limited to a portion of the parameter space, while others 

maintained a broader range of viable conductances. For example, selection stages 2 and 3 result 

in a restricted range of distribution of NaPSOMA, NaPNEURITE, LeakSOMA, and LeakNEURITE. 

Further, as Vrest was a free parameter in the selection process, we see the strongest selection 

pressure on this feature, where selection levels 2 and 3 result in a narrow distribution of 

acceptable values near the high end of the range (Figure 4A).  The other active conductances 

maintained a broad range of acceptable values through all levels of selection. However, these are 

not normally distributed. Rather, multiple peaks around conductance ranges that enriched for 

successful models can be seen in most of the conductances (Figure 4A). Finally, because Figure 

4A scales each level of selection independently to maximize the opportunity to see variations in 

the range of conductance values after each selection level, we have also plotted these data in a 

nested format using a stacked density plot (Figure 4B). This provides the opportunity to see the 

full parameter space (level 0, purple) and then each round of selection as a subset of the 

remaining parameter space. 

Intrinsic conductance covariations in the network model 

Biological studies have suggested that it is important and/or necessary for pairs of “modules” of 

conductance to work in concert to control appropriate physiological output. Therefore, we looked 

for relationships among all of the membrane conductances in our model – across two 

compartments (soma and neurite) – at all three levels of selection.  
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 Figure 5 describes membrane conductance relationships in the soma. Correlograms 

(Figure 5, top) demonstrate that there is a general strengthening of conductance correlations [as 

evidenced by increasing absolute value of rho()-value] across the levels of selection. To better 

visualize individual relationships, we have plotted each pairwise correlation coefficient at each 

level of selection as a barplot matrix (Figure 5, bottom). We see several correlations that 

become apparent as network level selection of model neurons progresses. However, overall, the 

rho-values for any correlation remain relatively low, with the highest correlation coefficient 

approaching 0.2. Nevertheless, 5 conductance relationships emerge across the selection levels. 

The most substantial relationship is seen for Leak versus NaP in the soma (Figure 5), and this 

emerges as a fairly notable positive correlation. Two other positive correlations of some note are 

detected in the soma (Figure 5): SKKCa versus Kd2, and SKKCa versus Leak. Furthemore, 

three negative correlations become apparent in the soma as well: CaT versus A, CaT versus 

BKKCa, and Leak versus A.   

  Figure 6 describes the same conductance relationship analyses for the neurite 

compartment. Again, we can see relationships emerging and strengthening across the levels of 

selection (Figure 6, top). Two relationships appear more prominently in the neurite: a positive 

correlation between Leak and NaP, and a negative correlation between the two calcium 

conductances – CaS and CaT (Figure 6, bottom). Of note, Leak and NaP emerges as the 

strongest relationship in both the neurite and the soma compartments.  

  Finally, we comprehensively compare conductance relationships across 

compartments, to determine whether there may be co-regulation of membrane conductances 

between the soma and neurite. Figure 7 shows a comprehensive view of the conductance data in 

both compartments at selection level 3. In this visualization, we can see the distribution of each 
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conductance along the diagonal, as well as the raw scatterplots of the 515 neurons at this level of 

selection.  In addition to visualizing the raw data for the relationships in Figures 5 and 6, we see 

two strong relationships emerge across compartments: NaPSOMA versus NaPNEURITE, and 

LeakSOMA versus LeakNEURITE. 

 

Ion Channel mRNA correlations relative to model relationships 

To determine whether the relationships seen among model neuron conductances may have 

independently arisen as necessary for appropriate output, we wanted to compare these results 

with a biological data set. Because it is difficult or impossible to comprehensively measure 

membrane conductances in biological neurons, we performed an analysis on levels of the 

mRNAs that encode the channels most directly responsible for membrane conductances that are 

represented in our model neurons. Using single-cell qPCR, we quantified 12 different channel 

mRNAs from 40 individual crab LC motor neurons (Figure 8).  

  While we are unable to disentangle mRNAs for channels that will be localized to 

the soma versus those that will be in the neurite, we feel the mRNA data are best compared with 

the somatic conductances in the model. The channel mRNAs reveal some very intriguing 

relationships. First, there is widespread correlation among mRNAs, and of considerably high 

correlation coefficients (Figure 8). Further, every correlation is a positive correlation. However, 

some of the most profound relationships bear striking similarity to those seen in the model. For 

example, NALCN and IRK are putatively related to the model conductances NaP and Leak 

respectively. NaP and Leak was the strongest correlation seen in the soma compartment and is a 

very tight correlation in biological cell mRNA as well (Figure 8). Furthermore, the four other 

strongest correlations found in the soma compartment of the model (CaT/A, Leak/A, 
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SKKCa/Kd2, and SKKCa/Leak) reflect some of the strongest mRNA correlations in their 

biological channel counter parts as well (see Figure 8; CaV2/Shaker, IRK/Shaker, SKKCa/Shab-

Shaw1-Shaw2, and SKKCa/IRK respectively). Thus, while the overall quantitative level of 

correlation differs, it is striking that the most tightly correlated mRNA relationships correspond 

well to the strongest model conductance correlations in the soma. 

 

4.4 DISCUSSION 

 

We report a morphologically enhanced biophysical model of the LC of Cancer Borealis that is, 

for the first time, informed completely by measured properties of the same cell. Consistent with 

available biological data from our Lab and the literature, we propose a three-compartment model 

of the LC that, for the first time, includes an SIZ compartment. The study also provides hitherto 

unknown structure-function insights related to the functioning of the crustacean cardiac ganglion, 

including the differential roles of active conductances in the three compartments. 

 

An intact model network generated from consistent experimental data 

 

Computational models of the crustacean cardiac ganglion rely on experimental data from 

multiple organs (e.g., stomatogastric ganglion) and species (e.g., lobster) for passive properties 

and conductance ranges. For the present model, the experimental data were obtained from the 

LCs of intact networks recorded from the Schulz lab, as well as SIZ recordings to first match our 

model with the known data, and then to explore the functional characteristics in search of an 

explanation for the preservation of output across a wide variation range. We started with a 

prediction of the intact single cell morphology that integrates information about structure and 

proposed a methodology to validate it. Specifically, although an SIZ has been conjectured as the 

source of SC input into the cardiac ganglion reported single cell models have not explicitly 
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considered such morphology. For instance, models of single LCs have typically considered only 

the soma compartment and possible a neurite attached to it. To validate our expanded three-

compartmental that includes an SIZ, we estimated the SC frequency ranges from intact 

recordings and then found that a model that accounted for the biological data was able to 

successfully reproduced intact single cell responses (Fig.2G). 

Model predicts active conductances in neurite and their specific functions 

 

The proposed intact LC single cell model structure with a neurite and SIZ that received the SC 

input provided a framework to integrate experimental data related to LC input and output and 

explore underlying mechanisms. Specifically, the input to the LC arrived at the SIZ and were 

ranges of frequency and temporal profiles of SC spike trains delivered at the SIZ via synapses 

(Fig. 1), and the output was the membrane potential fluctuation of the LC soma that in turn 

controlled the synchronization of spikes at the SIZ. Using a three-stage rejection protocol to 

select the conductances in an unbiased manner, the procedure predicted that active conductances 

were necessary in the neurite to reproduce experimental input-output data for an LC.  

 The observation that excessive leak in the neurite was the cause of a passive neurite causing 

reduction in depolarization of the soma membrane potential, led to the consideration of Nap 

and/or CaS and CaT channels to counter the leakage. As shown in results, I_Nap and not I_CaS 

or I_CaT helped offset the effects of leak current in the neurite (Fig. 2B, D). An analysis of the 

time constants of the currents revealed that I_Nap had a time constant that was at least four-fold 

lower than that of I_CaT and at least 14-fold lower than that of I_CaS in the -50 to -20 mV range 

(Fig. 6). Since the membrane voltage of the soma never exceeded 0 mV, the time constant 

(during all model runs) of the I_CaT was always at least twice as large as that of I_Nap, and that 
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of I_CaS was always larger than of I_CaT. However, I_CaT and I_CaS were continuously active 

and strengthened I_BKKCa as seen by comparing the traces in Fig. 2D, E.  

Emergent conductance correlations in the multicompartmental network model 

 

One of the key hypotheses that this work tests is whether network level selection criteria will 

result in a population of models in which conductance correlations emerge. The collective 

literature in two similar crustacean networks (stomatogastric and cardiac ganglia) are somewhat 

inconsistent in this result. Previous work of the Nair Lab in the cardiac ganglion LCs (Ball, 

Franklin) with a similar rejection sampling approach yielded strong correlations in the LC soma 

among two pairs of conductances: CaS-A and CaT-Kd. These data reveal that such relationships 

can emerge naturally from a selection process focused on output characteristics informed by 

biological data. However, those results were limited to models of the soma only and based on a 

different species and different mode of activity (driver potentials) than the cells modeled in our 

study. Further, there was relatively little biological data available at the time for those 

experiments, and so ultimately our interpretation of these first models is that such relationships 

are theoretically possible to detect and quantify – but further study was needed, including more 

thorough grounding in biological data as well as model neurons that better reflect the 

morphological complexity (i.e., multiple compartments) of biological neurons.  

 Conversely, a thorough and extensive analysis of a multicompartment model employing a 

large population of LP neurons from the crustacean stomatogastric ganglion yielded a different 

outcome. Taylor et al. (2009) utilized a large population selection approach, in a 

multicompartment model, and selected based on output characteristics that focused both on the 

single cell excitability as well as some features reminiscent of network level function (i.e., output 

as a result of synaptic input currents). In this study, they found only weak correlations among 
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conductances – both within and across the compartments (Taylor et al. 2009). Thus, our current 

work employs a much more similar approach to Taylor et al., but in the system originally 

modeled by previous Nair Lab members – the cardiac motor neurons – in which we had seen 

such correlations. When we combined a multicompartmental model, far more extensive firsthand 

biological data, and a more developed network level selection process, our results in this study 

were largely consistent with those of Taylor et al. (2019).  That is, while we could detect some 

emergent correlations within and across model neuron compartments, these were overall weaker 

correlations (rho-values between -0.2 and +0.2).  

 There are (at least) two overall interpretations of these results. First, that the intrinsic 

conductance correlations found in biological neurons across a wide range of nervous systems are 

not fundamentally necessary to generate baseline functional output of neurons. In other words, 

while these relationships may confer some adaptive advantage to neuron and network stability, 

and implicate compensatory relationships involved in homeostatic regulation they are not in and 

of themselves fundamental to the solutions capable of producing a given output of a neuron in a 

network. However, we also interpret these results from a cautionary perspective. Taken together, 

the work of the Nair Lab shows that conductance correlations emerge in more narrowly 

constrained models with clear input-output relationships (Ball, Franklin). However, as we add 

more free parameters to the system for which we have less knowledge of biological constraints – 

in this case multiple compartments and conductances therein, as well as synaptic inputs and 

network connectivity – we may lose the ability to detect fundamental relationships in biological 

neurons. If this is the case, then we predict that as more complex models become better informed 

by biological data, the possibility to recapitulate and interrogate these relationships may be more 

robust. 
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 A more generous interpretation of the correlations found in the model would be that it is 

significant that such relationships can be detected at all given the conditions of the model 

experiment. Given that we had no biological data from which to inform the neurite compartment 

modeling, that the input-output relationships of LCs across individuals can be highly variable in 

biology, and that the network connectivity and synaptic drive from the pacemaker neurons had to 

be entirely inferred from the literature, we might predict that such levels of uncertainty would 

make it nearly impossible to expect biological relationships to emerge. Yet even though the 

correlation coefficients are somewhat weak, there is a clear constraint on conductances that 

emerge towards their correlated levels and several relationships are detectable as “signal above 

the noise.” Most provocative is the fact that the model conductance relationships we detect most 

clearly are reflected as some of the most strongly correlated biological relationships at the level 

of channel mRNAs. While it would be inappropriate to overinterpret such disparate modalities of 

data (biological channel mRNAs are a long way removed from model membrane conductances), 

this provides some encouragement that better biological constraints to inform models going 

forward may recapitulate more strongly the relationships seen in biology. This will further allow 

computational modeling to be a critical test bed for the nature of these relationships and how 

they influence output and stability in neural networks.  

 

4.5 CONCLUSION 

We utilized a novel three-compartmental biophysical model of an LC that is morphologically 

realistic and includes provision of inputs from the SCs. The proposed single cell model 

facilitated incorporation of additional experimental observations related to both the SIZ 

compartment responses and to the presence of active conductances in the neurite compartment. 
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Furthermore, the overall network model provided a framework to integrate this single cell 

information into a network and explore how it impacted and reproduced experimental 

observations at the network level. The model provided novel predictions of the differential roles 

of conductances in the neurite and the soma, and insights into the role of specific current 

channels in the neurite. The model also reproduced the varied responses seen experimentally and 

predicted the calcium currents in the neurite to be the underlying cause. Finally, we investigated 

whether conductance relationships would emerge from the selection process that would give 

insight into the biological function of these interactions, as well as allow us to make inferences 

about the fundamental nature of such relationships in biological neurons. While we did detect 

some correlations among conductances within and across compartments, these were overall 

weaker relative to our previous work and that reported in the biological literature. We suggest 

that either such conductance relationships are not fundamentally necessary to generate a given 

output, or that much greater constraints on the free model parameters are needed to recapitulate 

these biological relationships. Overall, these predictions and the reasons why the LCs exhibit 

varied TEA responses are topics for future research. 
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4.6 TABLES 

 

Table 1. Ranges of properties for selecting valid LCs 

 

Parameter Min Max 

Vrest -53 mV -39 mV 

Rin 0.852 MΩ 13.3 MΩ 

Tau 7.3 ms 24.5 ms 

VPeak_PreTEA 7.95 mV 33.76 mV 

Area_PreTEA 2867 mV.ms 18373 mV.ms 

Area_PostTEA 5178 mV.ms 36853 mV.ms 

 
 

Table 2. Maximal conductance ranges 

 

Current G_min (S/cm2) G_max (S/cm2) 

CaT 0.00016 0.00031 

CaS 6.50E-05 0.00013 

CAN 7.00E-05 1.50E-04 

NaP 3.50E-05 2.30E-04 

Leak (All Segments) 6.20E-05 9.70E-04 

KA 0.000172 0.0019 

Kd (Kd1) 0.000165 0.00127 

KCa 0.00079 0.0061 

SKKCa 0.00088 0.002 

Kd2 0.000091 0.0005 

 
Table 3. Ranges of connective and input parameters used in Stage 2&3 rejection 

 

Parameter Min Max 

Exp2Syn Tau1 10 ms 

Exp2Syn Tau2 60 ms 

Exp2Syn reversal potential -15 mV 

NetCon weight 0.01 0.1 

NetStim spiking frequency 16Hz 32Hz 

NetStime noise level 0.8 
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LocalGap R 1 MΩ 

InterGap R 1MΩ 15 MΩ 

 

Table 4. Model Current Parameters 
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Table 5. Ranges of waveform properties for selecting valid intact cells 

 

Parameter Min Max 

Spike number per burst 4 8 

Avg LC spiking frequency 4 Hz 8 Hz 

VPeak_PreTEA 7 mV 30 mV 

Area_PreTEA 2867 mV.ms 18373 mV.ms 

Spike number per burst Post TEA 
>1.13 x PreTEA 

SPB 
none 

AVG LC spiking frequency 
>1.21x PreTEA 

frequency 
none 

VPeak Post TEA 
>1.3x PreTEA 

Vpeak 
none 

R2 synchrony LC3 to LC5 control 0.95 1.0 

R2 synchrony LC3 to LC5 in TEA 0 0.89 

 
Table 6. Ranges of waveform and synchrony properties for selecting valid networks 

 

Parameter Min Max 

Spike number per burst 4 8 

Avg LC spiking frequency 4 Hz 8 Hz 

VPeak_PreTEA 7 mV 30 mV 

Spike number per burst Post TEA 
>1.13 x PreTEA 

SPB 
none 

AVG LC spiking frequency 
>1.21x PreTEA 

frequency 
none 

VPeak Post TEA 
>1.3x PreTEA 

Vpeak 
none 

R2 synchrony LC3 to LC5 control 0.95 1.0 

R2 synchrony LC3 to LC5 in TEA 0 0.89 
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4.7 FIGURES 

 

 

 
 

Figure 1. Morphologically realistic model of intact LC reproduces experimental data. (A) Model 

network. Gap Junctions are formed between LC1-2 and LC4-5. Gap Junctions modeled between 

SIZs using the same fixed conductance value with SC input to each SIZ. (B) Variability in 

experimental TEA responses from our lab. (C) Experimental stimulus protocol response of 

ligated cell in control and TEA conditions. Corresponding model responses are shown below the 

plots. (D) Same plots as in panel C, but for intact cells. 
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Figure 2. Model predicts presence and roles of active conductances in neurite.  

 

 
 

Figure 3. Voltage traces from the somas of each cell before and after being placed in the 

network. (B1) Current traces of the total synaptic current and the total Gap junction current. (B2) 

Soma voltage(top) and SIZ currents (bottom) between LC1-LC2 (left panel), and LC1-LC3 

(right panel). These voltage and current traces show that the soma voltages can be different while 

the SIZ voltages can be the same, because the gap junctions in the SIZ are not the only gap 

junctions in the network; the soma gap junctions also allow compartment equilibrium to be 
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established between two somas. (C) Voltage traces showing the attenuation in spike amplitude 

for the control case. This is from LC6, from the network in 5A, and the SIZ membrane potentials 

for all the cells in the network, which are identical. 

 

 
Figure 4. Conductance distributions after selection of soma and neurite model conductances.  

A.) Distribution of the conductances of models spared each level of selection; those selected on 

by the next level’s criteria. Each selection level (0, 1, 2, 3) represents the conductances that 

passed that level with the level 0 being those that were initially generated and level 3 being those 

which satisfied all criteria. Each level’s density plot is scaled independently. Because selection 

level 0 is performed on isolated somata, there are no conductances represented at this level for 

the neurite compartment. B.) Stacked density plots showing the subset of filtered at each level of 

selection. Four different levels of selection are shown (purple = 0, blue = 1, green = 2, yellow = 

3). Each selection level (0, 1, 2, 3) represents the conductances of models that passed that level 

of selection, but not the subsequent – with the exception of level 3, which shows those that were 

preserved through all levels of selection. This indicates for a given conductance value which 

level of selection is most frequent. 

 

 

 

 

 



135 

 

 

 
Figure 5. Conductance correlations in the soma compartment of model neurons across selection 

levels.  TOP) Correlograms for four levels of selection (0-3) conductances in the somatic 

compartment of selected model neurons. Each pairwise correlation was calculated using 

Spearman’s correlation and reported as rho values. These plots demonstrate that correlations 

become more pronounced across subsequent levels of selection.   BOTTOM) Bar plot showing 

the rho-value of each pairwise correlation across levels of selection. These are the same data 

plotted in the top row but allow for more precise determination of the more pronounced 

correlations. 
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Figure 6. Conductance correlations in the neurite compartment of model neurons across 

selection levels. (TOP) Correlograms for three levels of selection (1-3) conductances in the 

neurite compartment of selected model neurons as described in the previous figure.  (BOTTOM) 

Bar plot showing the rho-value of each pairwise correlation across levels of selection. These are 

the same data plotted in the top row but allow for more precise determination of the more 

pronounced correlations. 
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Figure 7. Scatterplots for pairwise relationships among soma, neurite, and across compartment 

conductances in models of selection level 3.  Each dot represents a single model and its values 

for a given pair of conductances. Along the diagonal are curves that represent the distribution of 

values for a given conductance as keyed along the bottom axis. Stronger correlations are noted 

by the increasing intensity of background color for each pairwise relationship. 
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Figure 8. Scatterplots for pairwise relationships among channel mRNAs in biological LC motor 

neurons.  Each dot represents a single model and its values for a given pair of channel mRNAs. 

Along the diagonal are curves that represent the distribution of values for a given conductance as 

keyed along the top axis. Stronger correlations that were identified in selection levels 2 and 3 in 

the soma of model neurons are noted by the colored box corresponding to the channel mRNAs 

most likely to encode those conductances. 
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APPENDIX 

A.1 Computational model of a rodent Central Amygdala network 

Amygdala is a key site of plasticity in auditory fear conditioning and plays an important role in 

both the acquisition and storage of fear and extinction memories (LeDoux 2000; Maren 

2001; Pape and Pare 2010). The role of the amygdala in fear has been studied using a Pavlovian 

fear conditioning paradigm for rodents where a neutral stimulus (conditioning stimulus, CS), 

such as a tone, is paired with an aversive one (unconditioned stimulus, US), such as a foot shock. 

After only a few pairings, the previously neutral stimulus becomes aversive and can itself evoke 

an emotional reaction typically resulting in a freezing behavior. Even though there is consensus 

that the amygdaloid complex is a critical component of the mammalian fear circuit, the relevant 

interconnections among the amygdalar nuclei and their contributions to the acquisition and 

storage of fear and extinction memories are not well understood.  

Our previous computational models investigated how different types of experimentally observed 

‘fear’ cells emerge in the lateral amygdala (LA, the input station of the amygdala) after fear 

conditioning (Li et al., 2009; Kim et al., 2013). The present study investigates how 

experimentally reported fear responsive cells emerge in the output station of the amygdala, the 

Central amygdaloid nucleus (Ce), after fear conditioning.  Specifically, we developed a 

biologically realistic computational model of the Ce region to reverse engineer its functioning, 

including how it integrates various inputs from other amygdalar nuclei and generates fear 

responses during a Pavlovian fear conditioning paradigm.   

  

Single cell models 
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Biological information related to single cell models were obtained from the following 

sources:  Currents – from our past models; Passive properties – Amano et al. (2012); Current 

injection plots - Amano et al. (2012)  

  

Network Structure  

  

The Ce network had 500 model cells distributed between CeL and CeM regions, as follows:   

CeL: 240 cells [54% (RF), 34% (LTB) and 12% (LF)] and CeM: 260 cells [27% (RS), 71% 

(LTB) and 2% (LF)] (Duvarci et al., 2011) CeL cells were further divided into two populations: 

PKCδ- (96 cells) and PKCδ+ (144 cells) (Haubensak et al., 2010).  

  

Inputs  

LA inputs to CeL: Modeled based on tone response data obtained from models and biology (Li et 

al., 2011). Spontaneous frequency of LA pyramidal cells (Fig. 2): 0.5 Hz (Habituation), 1 Hz 

(Post-FC), and 0.5 Hz (Ext). Six different LA cell responses each, for Fear, extinction-resistant 

and unresponsive cell types were modeled and used as inputs to the Ce network. BA inputs were 

created using experimental tone response data (Herry et al., 2008). Six different BA cell 

responses each for Fear, extinction resistant and no-response cell type were modeled and used as 

inputs to the Ce network. Inputs from ITC clusters: ITCv and ITCd inputs were modeled using 

data from Li et al. (Li et al., 2011). Six different ITCv and ITCd cells were modeled to provide 

input to the Ce network.   

Connectivity  

  

Lacking information about extrinsic and intrinsic connectivity for the model, for extrinsic 

connectivity, we started with 5% for connections from LA, ITC and BL inputs to CeL. This 

means, for instance, that an LA input had a 5% probability of connecting to a selected post-

synaptic cell. For intrinsic connectivity, we started with 20% connectivity reported for ITC-ITC 
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connections (Li et al., 2011).  Both extrinsic and intrinsic connectivity numbers were then tuned 

to match the experimental responses and percentages of CeL-Off and CeL-On cells (Duvarci et 

al., 2011). For intrinsic probabilities, 85% of CeM projecting neurons in CeL were reported to be 

SOM- (PKCδ+) (Li et al., 2013). So, we assumed the connection probability from PKCδ+ 

to CeM to be 80% and from PKCδ- to CeM to be 1%. Since intrinsic connectivity within CeM is 

unknown, for simplicity, we have assumed no connectivity in the present version. Li et al. (2013) 

reported that EPSC amplitudes evoked by stimulation of LA were larger in SOM- (PKCδ+) cells 

compared to those in SOM+ (PKCδ-) cells. Thus, the weights for LA, BA inputs to PKCδ+ were 

higher than PKCδ-. All the connection probabilities and weights are summarized in Table 1.  

  

Neuromodulation  

  

Neuromodulation receptors (NM, presently only dopamine) were placed randomly 

on PKCδ+, PKCδ- and CeM cells, respectively, in the following percentages: 50%, 25% and 

25%. Neuromodulators were present only during conditioning and extinction trials, at the 

following levels: none for 1st, ‘low’ for 2nd, and ‘moderate’ for conditioning trials 3-5; and 

‘moderate’ for trials 1-2 of extinction.   

  

Activity dependent synaptic plasticity   

  

Long term synaptic plasticity was modeled using a Hebbian learning rule that used NMDA-

based post-synaptic calcium concentration levels to implement LTP and LTD (Li et al., 2009). 

LA-CeL synapse has been reported to potentiate after fear conditioning (Li et al., 2013). Also, 

intrinsic plasticity has been hypothesized in connections from CeL-On to CeL-Off cells. 

Accordingly, the model presently has plasticity only in LA-CeL connections, and in connections 

from PKCδ- to both PKCδ+ and to PKCδ- cells, but not in the reverse direction. Short-term 
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facilitation and depression were modeled in all extrinsic excitatory and inhibitory connections, 

respectively, based on information from other brain regions. Intrinsic connections did not 

possess any short-term plasticity. We used the synaptic thresholds from our previous models 

(e.g., Li et al., 2011) and adjusted them appropriately.  

  

The iterative process  

  

The connection probabilities, initial synaptic weights and thresholds for plasticity were tuned to 

reproduce the experimental observations related to (i) the number of CeL-On, CeL-Off cells and 

the increased firing seen in CeM cells after fear conditioning (Duvarci et al., 2011), (ii) the tone 

responses of CeL and CeM cells during the various phases (Duvarci et al., 2011), and (iii) 

potentiation of LA afferents to CeL-On cells (Li et al., 2013).  

First, we varied connectivity, synaptic weights and plasticity thresholds, starting with the values 

indicated to match the number of CeL-On and CeL-Off cells.  For tuning the number of CeL-Off 

cells during habituation, we focused on the fact that the number of CeL-Off cells do not change 

between habituation and conditioning. We tried to match the proportions of CeL-Off cells during 

habituation but doing so caused the number of CeL-On cells to increase during habituation and 

stay the same at the end of conditioning.  

  

Key Findings 

  

Baseline model  

  

The baseline model reproduced biologically observations, as expected; spontaneous frequency 

for model cells was 2.34 ± 1.48 Hz for CeL and 1.43 ± 0.86 Hz for CeM. The model also 

reproduced the biologically observed proportions of cell types after fear conditioning. During 

habituation model exhibited 5% (12/240) CeL-Off cells as compared to 11% in biology. All the 
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cells were of the PKC δ+ type. For CeL-On cells, model exhibited 5% (12/240) as compared to 

6% seen in biology. Here nine cells were of PKC δ- type and three were of PKC δ+ type. At 

the end of conditioning, model had 6.25% (15/240; all PKC δ+) CeL-Off cells as compared to 

9% seen in biology and 12.5% (30/240; 24 PKC δ- and 6 PKC δ+) CeL-On cells compared to 

15% seen in biology. The model also exhibited 46.5% (121/260) of active CeM cells (z>1.96) as 

compared to 47% seen in biology. The model was then used to explore other characteristics that 

it was not tuned to reproduce. Remaining cells classification is provided in Table 2.  

  

Relative contributions of amygdalar inputs to CeL and CeM  

  

We wanted to see the individual roles of extrinsic input on the responses of Ce neurons. For this, 

we disconnected each of the inputs inputs one at a time and analyzed the responses in 

Ce (Table3). We found that removing LA connections changed the number of CeL-On and CeL-

Off cells and reduced the number of potentiated CeM cells. Removal of all connections from BA 

did not have much effect on the responses of either CeL or CeM. Removing ITC connections had 

the largest effect on CeL responses (Table3). Inhibition from ITCd was essential for the 

formation of CeL-Off cells, since removal of ITCd inputs eliminated all CeL-Off cells.   

  

Role of intrinsic connections from CeLPKCδ+ cells to CeM cells.  

   

Experimental findings have shown that, inactivation of CeL; induced freezing (Ciocchi et al., 

010) and silencing PKCδ+ neurons increased CeM activity (Haubensak et al., 2010) . To test 

this, we selectively removed a random 25%, 50% and 100% of PKCδ+ cell connections onto 

the CeM cells and tested the effect on CeM responses. Table 4 lists the firing rates of CeM cells 

during CS-Off and CS-On periods for Habituation and Conditioning phases for the four 
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conditions cited. CeM responses increased as more and more connections were removed. This 

result was expected and CeL inhibits CeM.  

  

Table 1. Probabilities and initial weights for different connections in the Ce network model.  

  

Type  Connection Name  Connection Probability  Initial Weight  

Intrinsic  

CeLPKCδ- to CeLPKCδ-  20%  3  

CeLPKCδ+ to CeLPKCδ+  15%  2  

CeLPKCδ- to CeLPKCδ+  30%  2  

CeLPKCδ+ to CeLPKCδ-  10%  2  

CeLPKCδ+ to CeM  80%  2  

CeLPKCδ- to CeM  1%  2  

CeM-CeM  No connections  --  

CeM to CeLPKCδ+  No connections  --  

CeM to CeLPKCδ-  No connections  --  

Extrinsic  

LA to CeLPKCδ-  5%  2.3  

BA to CeLPKCδ-  5%  2.7  

LA to CeLPKCδ+  1%  2.7  

BA to CeLPKCδ+  1%  2.7  

ITCd to CeLPKCδ-  25%  1  

ITCd to CeLPKCδ+  55%  6  

Shock to CeLPKCδ-  55%  8  

BA to CeM  25%  2.5  

ITCv to CeM  15%  1  

LA to CeM  No connections  --  

Shock to CeM  No connections  --  

Shock to CeLPKCδ-  No connections  --  

  

  

Table 2. Proportions of CeL cell types based on activity in the model network.  

  

  Cell Types  # of cells / %  

HAB  

CeL-On  12 (9 PKCδ- , 3 PKCδ+) / 6%  

CeL-Off  12 (all PKCδ+) / 5%  

CeL-Unresponsive  216 / 89%  

Potentiated CeM  4 / 1.5%  

Depressed CeM  0 / 0%  

CeM-Unresponsive  255 / 98.5%  

COND  
CeL-On  30 (24 PKCδ- , 6 PKCδ+) / 12.5%  

CeL-Off  15 (all PKCδ+) / 6.2%  
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CeL-Unresponsive  195 / 81.3%  

Potentiated CeM  121 / 46.5%  

Depressed CeM  0 / 0%  

CeM-Unresponsive  139 / 43.5%  

  

  

Table 3. Effect of disconnection of LA, BA and ITCd inputs on activity in Ce.  

  

Input Blocked    Cell Types  # of cells / %  

LA  

HAB  
CeL-On  10 (7 PKCδ- , 3 PKCδ+) / 4%  

CeL-Off  10 (all PKCδ+) / 4%  

COND  

CeL-On  
29 (23 PKCδ- , 6 PKCδ+) / 

12%  

CeL-Off  15 (all PKCδ+) / 6.25%  

Potentiated CeM  53 / 20%  

BA  

HAB  
CeL-On  6 (4 PKCδ- ,2 PKCδ+) / 2.5%  

CeL-Off  14 (1 PKCδ- , 13 PKCδ+) / 6%  

COND  

CeL-On  
29 (24 PKCδ- , 5 PKCδ+) / 

12%  

CeL-Off  10 (all PKCδ+) / 4%  

Potentiated CeM  86 / 33%  

ITC  

HAB  
CeL-On  4 (3 PKCδ- , 1 PKCδ+) / 2%  

CeL-Off  0 / 0%  

COND  

CeL-On  7 (all PKCδ-) / 3%  

CeL-Off  0 / 0%  

Potentiated CeM  67 / 26%  

 

  

Table 4. Average frequency of CeM cells.  

% connections removed      Average firing frequency (Hz)  

0% (Control)  

HAB  
CS-On  1.64  

CS-Off  1.43  

COND  
CS-On  2.27  

CS-Off  1.48  

25%  

HAB  
CS-On  2.64  

CS-Off  2.31  

COND  
CS-On  3.34  

CS-Off  2.48  

50%  

HAB  
CS-On  3.66  

CS-Off  3.40  

COND  
CS-On  4.35  

CS-Off  3.60  
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100%  

HAB  
CS-On  6.06  

CS-Off  6.01  

COND  
CS-On  6.60  

CS-Off  6.20  

  

  

Figure 1. Details of the Ce network model: (A) Response of model Regular Spiking (RS, 

Left), Late Firing (LF, Middle) & Low Threshold Bursting (LTS, Right) cells to different current 

injection magnitudes (0.08, 0.045 and -0.1 nA for RS; 0.11, 0.1 and -0.1 nA for LF & 0.1, 0.06 

and -0.1 nA for LTB). (B) Schematic of the 500-cell Ce model with 260 CeM cells (Red) & 
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240 CeL cells (Blue). Cells were randomly populated in specific regions identified 

as CeM and CeL/CeC in stereotactic coordinates. The three types of cells are randomly 

distributed in each region based on biological proportions. (C) Fear training protocol used in the 

model.   

  

  

Figure 2. Tone responses of Ce afferents: (A) LAf; (B)  LAer; (C) BAf, and (D) BAer cells 

during Habituation (1st-5th trials), Conditioning (4th & 5th trials) and Extinction (1st-5th & 16th-

20th trials) phases. Responses shown as average of 5 sec bins, with -5 to 0 s bin response shown 

at 0, and so on.   
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Figure 3. Model tone responses: Post-conditioning tone responses for CeL-Off (A) and (B) CeL-

On cells, and of (C) potentiated CeM cells.  
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A.2 Amygdala Models, Chapter in Computational Models of Brain and Behavior 

This chapter in John Wiley and Sons book, talks about the different computational models related 

to amygdala focusing on acquisition and expression of fear. Here, we suggest a way for creating 

biologically realistic models which can be used to complement experimental investigations and 

help in reverse engineering the mammalian fear circuit. We also provided a step-by-step guide to 

develop biologically based computational model using three different model types; a) Integrate 

and Fire, b) Izhikevich based and c) Hodgkin-Huxley based. My contribution to this chapter was 

in coming up with the step-by-step guide and also developing the LA modes using Izekevich 

equations. You can refer this chapter in the published version of the book Amygdala Models (pg. 

285-301). 
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