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STRUCTURAL FEATURES OF PERSISTENT HOMOLOGY AND

THEIR ALGORITHMIC TRANSFORMATIONS

Andrei Pavlichenko

Dr. Jan Segert, Dissertation Supervisor

ABSTRACT

We re-examine the theory and orthodox methods that underlie the study of persis-

tent homology, particularly in its calculation of homological cycle representatives that

are associated to persistence diagrams. A common background to the subject covers

several aspects: schemes to process input data (embedding it in a low-dimensional

manifold), categorical descriptions of persistence objects, and algorithms by which

the barcode summarizing the homology is found.

We overview these aspects, focusing on filtered simplicial complexes, traditional

computation of persistent homology, and the stability theorem for barcodes. By refor-

mulating these notions in the language of category theory, we can speak more plainly

on some recurring notions that are relevant to our discussion. This ultimately sets up

for vector space filtrations that prove to be suitable tools for codifying the homology

of complexes, including the (co)images and (co)kernels arising from morphisms of

complexes.

The main body of work then presents an alternative approach to persistent homol-

ogy, based on filtrations of vector spaces. We elaborate with an interesting example

whose persistent homology is readily computed as a quotient of appropriate filtra-

tions; in the process, we produce a representative basis of homological cycles, a step

that is often overlooked in existing literature. The proposed algorithm is also notable

vii



in that it easily handles the calculation of (co)images and (co)kernels for persistent

morphisms, supplying us with the same level of detail; while other algorithms do

exist for computing the barcodes of these universal objects, such methods are not

easily generalizable. Finally, we compute appropriate homological cycles and use a

certain algorithmic matching scheme that both implies the usual barcode matching

and attempts to better interpret this interesting behavior.
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Chapter 1

Introduction

The purpose of this thesis is to reexamine and extend the computational foundation

of persistent homology, with primary focus on how this is used to figure out structural

components of geometric objects constructed from point cloud data as well as those

induced by their mappings. Persistent homology is generally considered to be an in-

tegral engine in the discipline of topological data analysis (TDA), a peculiar approach

to data analysis that has received judicious attention over the last decade from a

broad range of practitioners in data science. Some of the more recent studies that

have highlighted the use of TDA include [12], [29], [31], [33], [34], [45], [48], and [49].

A cursory of account of this setting is in order.

An inherent part of mastering a given subject is being able to construe its under-

lying principles and how they interplay with one another. We see this in well-posed

scientific theories which propose laws having the power to predict and explain certain

phenomena. This helps build better models and instruments for taking on tentative

problems, and improves our ability to compare things that adhere to the framework

of these laws. Furthermore, this lets us posit new (and possibly conflicting) direc-

tions for learning, for we acknowledge that the current body of knowledge may be

incomplete.
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In analyzing existing data, we typically express these underlying principles through

closest-fit continuous models and discrete classification schemes. As real-life data

contains stochastic effects (from lack of control on its environment, and possibly ex-

perimental error), the language for these principles must either gradually change or

become enriched with more degrees of freedom; for instance, linear regression may

be expanded to include higher-order effects such as correlation between independent

variables, while classification schemes tend to become finer. Still, it is imperative to

understand how reliable the predictors of these models presently are prior to deter-

mining vectors for their improvement. After all, a signature of a good model is the

strength with which the underlying principles are demonstrated to explain observed

phenomena, even while the model appears abbreviated for clear presentation and/or

computational efficiency.

Various methods of TDA have been shown to excel in extracting meaningful fea-

tures from noisy data. A notoriously complicated and dispersed task for various

machine learning disciplines, feature extraction/recovery aims to produce a model of

some system that (1) is supported by sample data (subject to some measure of inac-

curacy), while (2) using less resources to specify it (by analogy to data compression).

Among all approaches that are used to achieve this, TDA does this on the assumption

that continuous (homeomorphic) changes to the coordinate space used to specify our

data should not in general entail drastic changes to the totality of observed features.

This invokes the topological aspect of persistent homology, which can be summarized

as an interplay of its two underlying subjects, topology and homological algebra.

A rigorous treatise of topology can be traced back to work done on Euclidean
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tilings by Kepler in [35] and Euler’s combinatorial treatment of convex polytopes in

his famous paper [26]. The subject would steadily develop over the course of the

next few centuries, eventually formalizing the notions of “closeness” and “continu-

ity” for very abstract spaces. At the same time, the combinatorial treatment with

simplicial polytopes was successfully applied to understanding the structure of real

and complex manifolds, driven in the works by B. Riemann and H. Poincare. These

early developments culminated in a classification theory for manifolds and various

sheaves of functions, which today are widely-taught in courses on complex manifolds

and Riemannian geometry.

By early twentieth century, the subject has manifested into broader homology

theory. The idea is that geometric features on simplicial polytopes can in certain ways

be endowed with algebraic operations, by which they can be combined into complex

structures that may represent discernable “features” of a space. Going further, certain

classes of ordinary functions on spaces then give rise to operators on these algebras,

representable by matrices if the algebras are finitely-generated over the integers Z

(appealing to the combinatorial sense) or over over a field (allowing us to use linear

algebra, which is a well-understood subject). The original impetus for this was being

able to compute the “boundary” of geometric features, represented by a signed sum

of simplices; the process is reminiscent of ordinary matrix reduction.

As the theory of homological algebra developed, some have found it beneficial to

reinterpret all these elements in the language of category theory. One reason for this

is that categorical constructions, especially those adhering to a universal property

(associated to diagram limits and colimits), are ubiquitous in that they do well to
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handle abstraction and describe various mathematical constructions. This proves

useful for our purposes as well, when we transition between the various steps involved

in persistent and when we carry out similar calculation over different classes of objects.

The integral homology group contains all the information about a manifold in as

much as it can be described by inherent simplicial features; the universal coefficient

theorem further allows us to compute homology with values in any other ring (includ-

ing a field). Nonetheless, the complexity of freely-generated abelian group is often

superseded by the simplicity of vector space representations of homology, which it

often preferred in experiments. For example, the homological invariants in the latter

case are often trivial to capture, such as dimension and operator rank. Doing so with

the integers, requires use of factorization such as the Smith Normal Form, with only

very limited results about the invariants of abelian maps.

Now, although pure homology and topology are hardly the highlight of this report,

it is inevitable for these subjects to find their way into describing persistent homology.

It distinctly began to appear at around the start the early 1990s, with separate

attempts to recover some information about the homology of a space from either:

the sublevel sets of selected Morse functions, or a random point cloud sample; more

information can be found in the introduction to [21] and [10]. These attempts founded

a paradigm (formulated in [20])) that has been central to the subject ever since: the

goal is to reconstruct the homology of a space by enriching it with many “layers” that

consolidate into a filtration. Significant features of the space – those that point to

its connected components, holes, hollow regions (etc.) and indicative of their relative

“size” (within the space), are somehow expected to appear in many of these layers.
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That is, they “persist”.

A major breakthrough occurred in 2003 with the publication of a seminal algorithm

[60] for efficiently computing the summary of persistent homology, called the barcode

of complex. This was closely followed by the publication of the celebrated Stability

Theorem in [15] which ensured that this summary is robust to small changes in data

input. Throughout the following years these results have been reviewed and reimple-

mented, with various versions for both generalized and specialized uses appearing in

other prominent papers such as [16], [55], [4], and [9].

One component of homology that is often overlooked is calculating the actual

simplicial chain representatives, manifesting as subsets of the underlying simplicial

complex. The Carlsson-Zomorodian algorithm, which uses a matrix reduction pro-

cedure, does actually compute so-called “creators” and “destroyers” whose pairings

correspond to individual indecomposable objects in a barcode. But insofar as form-

ing a coherent basis for the chain complex or some of its important subspaces, these

creators and destroyers require additional work. For a large majority of applications,

this appears to be acceptable practice: just the barcode of the chain complex matters,

while inferential analysis on the cycle representative can be done later (if at all).

This is evident of ordinary homology and its applications as well; for instance, the

integral homology of a manifold may be described by “the greatest number” of non-

homotopic closed loops, while accounting for possible parity such as that witnessed

on a Klein bottle. There are several justifications for doing this; one has already

been mentioned, in that homology is often merely intended to classify geometric

structures, allowing us to distinguish a 2-torus and a 2-sphere, for example. Other
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reasons include computational difficulty, such as that involved in solving a differential

flow on a manifold to extract usable cycles; another problem is that invariants for

persistent homology with integral coefficients is very difficult to find. Finally, there is

an epistemic objection that simplicial chains are only representatives of a particular

homology class up to equivalence; as a consequence, this complicates the problem by

needing selecting “optimal” such representatives. All of this is generally true.

However, it shall be counter-challenged that in persistent homology not only is it

tractable to find appropriate simplicial chain representatives of barcode invariants,

but choosing to omit them from the final output of the calculation obstructs anyone

from many insights to be found in the studied data set via the explicit homology gen-

erators of the underlying complex. Moreover, this can be done via an algorithm that

is accessible to anyone with background material in familiar linear algebra (assum-

ing that a careful methodology was followed). Since the barcode of a filtered space

is a homological invariant, this procedure will also produce the expected barcode –

though it is interpreted somewhat differently from the usual Jordan-block pairing

that is present in the reduced form of the differential matrix.

This carries some other benefits. Not any less than the persistent homology of a

space, it is also interesting to compute the persistent homology of other objects that

are derived from it – such as the image of a map of chain complexes. Currently, this

leads practitioners to use heavy machinery from category theory (which however are

of rudimentary importance) in order to begin working the computation. Interpreting

this in terms of basic vector spaces operations alleviates this somewhat bulky bur-

den and allows us to use the algorithm directly. This method is also slightly more
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general than the usual algorithm in the sense that allows us to work with degenerate

filtrations. The Carlsson-Zomorodian algorithm requires us to select a basis of the

canonical filtration of the chain complex from the start, producing potentially varying

results. Again, this is not evident when one is simply looking to compute the and

birth/death time of a simplicial feature, which is invariant under filtration-preserving

changes of basis.

Hence the primary objective of this thesis is to establish an alternative persistent

homology algorithm based on filtration quotients and how it extends to algorithms for

the computation of (co)kernels and (co)images of maps. All the necessary background

material will be introduced and referenced as needed. Thus, chapter 2 will be com-

mitted to discussing the foundations of persistent homology, starting with ordinary

homology, the notion of filtrations and chains of vector spaces, and some commonplace

theorems in the subject. Chapter 3 will be spent on discussing the category-theoretic

background as it relates to the subject, closing off with some pertinent results to the

objects we are working with. All of this is to motivate the procedure that is stated

and performed on an interesting example in chapter 4.
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Chapter 2

Persistent Homology, and its
preliminaries

Computing the homology of a topological space requires executing three separate,

but equally important tasks:

• writing a finite combinatorial model of the space

• associating an algebraic complex to this model

• doing matrix operations to extract generators for the complex

Persistent homology, which is surveyed in section 2.3, has an additional compli-

cation in that the output of this procedure needs to be consistent across multiple

different “layers”. However, we’ll see that choosing our spatial model appropriately

(first task above) eventually allows us to perform a single matrix reduction (using field

coefficients) at a global level. This is a surprising feature of the subject, ultimately

contributing to its versatility and becoming the basis of our calculations in chapter 4.

We begin with core concepts from algebraic topology, for which one is only required

to have some prior exposure to Euclidean geometry/topology and linear algebra.
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2.1 Cursory intro to ordinary homology

A hands-on example of a topological space is the standard (Euclidean) n-simplex

∆n ⊂ Rn+1. Letting e1, . . . , en+1 denote unit vectors on the positive coordinate axis

of Rn+1, we define ∆n as the convex hull of the set {ei}n+1
i=1 ; that is

∆n =

{
t1 e1 + · · ·+ tn+1 en+1 : ti ∈ [0, 1],

n+1∑
i=1

ti = 1

}
This is a convex, compact subspace of Rn+1 whose elements are uniquely determined

by the “coordinates” (ti). In Rn+1, its interior consists of points where ti > 0 for

all 1 6 i 6 n + 1; the complement of its interior is the topological boundary of

∆n. Setting ti = 0 for a various subsets of i ∈ {1, . . . , n + 1} yields copies of lower-

dimensional simplices called faces of ∆n, whose union comprises its boundary. In

particular, the points positioned at each ei (ie, where ti = 1) are 0-simplices called

vertices. A thorough treatment of the topological qualities of standard n-simplices is

given in [52].

General topological spaces go beyond subsets of Rn+1, which are already abundant

with examples that aren’t easily represented using standard simplices. Nonetheless,

classical homology is meant to capture the degree to which the features of a topological

space are really embeddings of standard simplices and how well they “connect”. This

has been achieved through singular homology, based on looking at all (finite formal

sums of) continuous maps from standard n-simplices to the topological space. Good

classical reference texts that examine this approach include [46] and [58], as well as

[8] (the last one is recommended if one is interested in differential forms and singular

cohomology).

The pressing difficulty with accepting this approach here is computational unfea-
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sibility. The set of all continuous maps from ∆n to the topological space may be (and

for us, will be) uncountably infinite. As such, it is imperative to develop a proper un-

derstanding of simplicial complexes, which gives the ability to perform finitely many

calculations for completing future examples.

2.1.1 Simplicial Complexes

As shown by the previous discussion, the combinatorics of a standard simplex are

described entirely by specifying its set of vertices. In fact, two different embeddings

of a standard n-simplex may possibly be distinguished via their image of the vertices.

As far as computing homology goes, this distinction will be sufficient.

We start with a finite set, whose elements are understood to be vertices. An

(abstract) simplicial complex K is a collection of nonempty subsets from this set of

vertices, with the following property: if f ∈ K then any subset of f is also in K.

Appropriately, the elements of K will be referred to as faces. In this setup, the initial

set of vertices is sometimes denoted V (K). On occasion, we may take a subcollection

L ⊆ K that satisfies being an abstract simplicial complex; we then refer to L as a

subcomplex of K.

A geometric realization |K| of complex K is obtained from a one-to-one mapping of

V (K) to the vertices of ∆N , where N = |V (K)|. Every other f ∈ K is then identified

with a face of ∆N whose vertices are in the image of f under this map. The result is

a collection of simplices in bijective correspondence with K; this collection is closed

under non-empty intersections of its constituent simplices, as well as under inclusions

of every face of a simplex in the collection – these two properties are what merits a

collection to be a simplicial complex. Finally, taking the union of all the simplices in

10



K =
{
{1}, {2}, {3}, {4}, {5},

{1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 4},

{3, 4}, {4, 5}, {1, 2, 3}
}

the collection results in the space |K|, endowed with the subspace topology from RN .

It is readily verified that different selections of the vertex map result in homeomorphic

copies of |K|, so the latter is a well-defined space up to homeomorphism.

Example 2.1. The simplicial complex K specified above has the set of vertices

V (K) = {1, 2, 3, 4, 5}. It also has seven 1-simplices and one 2-simplex. Its geometric

realization is shown to the left, embedded linearly in R3.

Now given a topological space X, the first main task (if possible) is to choose a

complex K that will act as a “triangulation” (or “tesselation”) for X. To be more

specific, complex K is required to be such that |K| is homotopy equivalent to X,

denoted |K| ' X. Formally, a homotopy equivalence is given by the existence of

two continuous functions f : |K| → X and g : X → |K| such that f ◦ g and g ◦ f

can be continuously “deformed” to the identity functions X → X and |K| → |K|,

respectively. This homotopy of f ◦ g and g ◦ f to their respective identity functions

makes homotopy equivalence of X and |K| a weaker notion than that of a would-be

homeomorphism, where instead there is equality of f ◦ g and g ◦ f to the identity

functions; for more details, see section 19 of [46]. While most practical applications

proceed with spaces X having some homeomorphic “triangulation” anyway, the as-
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sumption that the weaker |K| ' X holds instead is necessary in general since X

may not possess some desirable properties – particularly that X is Hausdorff and

second-countable.

Over more than a century, much research effort has been devoted into obtaining

such combinatorial representations of X. The methods can generally be described

as inductive processes by which simplicial embeddings are assigned so as to “com-

plete” the space. An illustrative case is with CW-complexes (c.f. [32]) that can be

attempted on any Hausdorff space X: fundamentally, the method decomposes X into

“n-cells” (whose interior is homeomorphic to that of an n-simplex) satisfying some

local finiteness and closure properties. We remark that this way is known to be more

general than simplicial complexes, although its derivation for a generic manifold X

requires the use of discrete Morse theory (quite an elaborate subject, well surveyed

in [41]). Neither of these topics will be pursued henceforth.

In many cases, it is practical to describe a topological space by some choice of

an open cover. If U = {Ui}i∈I is an indexed collection of nonempty open sets such

that X ⊆
⋃
i∈I Ui then we may look for “spots” of X where the cover is redundant.

Specifically, the sets I0 = I and Ik ⊆ {J ⊂ I : |J | = k + 1} (for all k > 1) describe

combinations of indices where (k + 1)-wise intersections of open sets are nonempty:

{i1, . . . , ik+1} ∈ Ik ⇐⇒ Ui1 ∩ . . . ∩ Uik+1
6= ∅

Provided any such selection of k + 1 indices, any subset of them also implies a

nonempty intersection of the respective open sets. In particular, the collection I0 ∪

I1 ∪ · · · ∪ Ik is an abstract simplicial complex for any fixed k; for compact X, we may

select a finite cover U of X to get a maximal collection for some k > 1. The resulting
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finite complex KU is known as the nerve of the open cover U . The next example

demonstrates the well-known criterion of Leray: first recall that a topological space

is contractible if it is homotopy equivalent to a point. For example, any convex set is

contractible, including the standard simplices ∆n (but not necessarily their unions).

Theorem 2.2. Let U be an open cover for a compact set X. If every k-wise inter-

section of open sets in U is contractible, then |KU | ' X.

It is customary to refer to a cover U of X that satisfies the requirement of Theo-

rem 2.2 as a good cover. In [22], the authors arrive at a stronger conclusion when X

satisfies some additional properties – that |KU | and X are in fact homeomorphic.

Example 2.3 (1-sphere). Let S1 = {z ∈ C : |z| = 1}. Shown below are three open

covers of this: (a) by two open sets, (b) by three open sets, and (c) by ten open sets.

A greater grayscale intensity indicates nonempty intersections by more open sets.

(a) a “bad” cover (b) a good cover (c) an “uglier” good cover

Figure 2.1: The nerve of the open cover in (a) has two vertices (one for
each“hemisphere”) and an edge between them since the open sets have non-empty
intersection, so |KU | = ∆1. This is inadequate for homology, since ∆1 is contractible
whereas S1 is not. However, 2-wise intersections of the open sets in (b) are con-
tractible (each is homeomorphic to a 1-simplex) and Theorem 2.2 applies. Shown in
(c) is also a good cover, though a more complicated one – some 2-simplices are also
present in its nerve, corresponding to regions that are shared by three open sets. This
is also a more typical cover, owing to the apparent stochasticity of real data.
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The nerve of an open cover will be used in section 2.3 to give a description of the

C̆ech and the Vietoris-Rips filtrations, as used in persistent homology. Alternative

methods for generating simplicial complexes do exist however; a special mention is

given to the Delaunay triangulation. This method is based on looking at the cell

intersections of the Voronoi diagram (for a given vertex set in Rn), and is well-

renowned for providing a robust triangulation of the convex hull spanned by the,

potentially large, set of vertices. In persistent homology, this has been given rise to the

alpha filtrations and its C̆ech subfiltration; past work on witness complexes [54] has

also utilized this construction. Yet another approach is to take an existing simplicial

complex and to get a subdivision, thus obtaining another of which the former is a

subcomplex. Classically this was mainly associated with barycentric subdivision, by

which the barycenters of (selected) existing faces are added as vertices and the faces

that contain them are replaced with simplices induced by adjacencies of the new

vertices to the old ones. Naturally, this results in a larger simplicial complex that is

harder to work with, but is advantageous when two (or more) simplicial structures

based on point sets of X are considered.

2.1.2 Simplicial Chains, Cycles, and Boundaries

Having settled on abstract simplicial complexes as a suitable model for geometric

data, we can describe their homology. Intuitively, albeit somewhat erroneously, it

is to identify subcomplexes on the simplicial complex whose interior is empty (or

“hollow”). For instance, the simplicial complex representing the unit circle, as given

by the nerve induced from the open cover in (b) of Figure 2.1, is missing a 2-simplex

whose boundary is the union of the three edges; adding that to the simplicial collection
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gives a simplicial realization of the unit disc D2 = {z ∈ C : |z| 6 1}.

As shown eventually, this is done entirely through algebra – the trick, originally

due to Poincaré, is in how the topological boundary of a simplex is represented.

Recalling that the boundary of ∆n equals the union of its proper faces, we see that

its simplicial complex K (a collection that is closed under inclusion of faces) should

already encode some of that information. In fact, that union can be taken over faces

∆n−1
i = {(t1, . . . , tn+1) : ti = 0} for every 1 6 i 6 n+ 1, so we can write:

∂n(∆n) := ∆n−1
1 −∆n−1

2 + · · ·+ (−1)n∆n−1
n+1 =

n+1∑
i=1

(−1)i−1∆n−1
i (2.1)

This is a formal sum that includes all faces of ∆n having dimension (n − 1); it is

straightforward to define ∂j analogously for every j-simplex with j < n (and also

setting ∂0 ≡ 0). The coefficients (±1) have been chosen to highlight the follow-

ing property: after applying ∂j−1 to every summand of ∂j(∆
j) in equation 2.1 the

remaining sum should simplify to zero. That is, the topological boundary of a sim-

plicial boundary should be empty (as all points on the boundary of a closed set are

in its subspace-induced interior). The coefficients ±1 are interpreted to represent the

spatial orientations of each simplex, in the sense of classical differential calculus.

Abstract simplicial complexes K shall be treated similarly by considering formal

sums of faces in the collection. Traditionally, we assume that the vertices V (K) are

totally ordered and that this ordering extends to produce an ordered simplex for every

simplex contained in K. The notation [v1, . . . , vj+1] refers to an ordered j-simplex

whose vertices are v1, . . . , vn+1 in order from least to greatest; for each 1 6 i 6 j + 1,

the notation [v1, . . . , v̂i, . . . , vj+1] refers to the face of [v1, . . . , vj+1] that omits vertex
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vi. Following the trick above, we define the boundary of any ordered j-simplex:

∂j ([v1, . . . , vj+1]) :=
n+1∑
i=1

(−1)i−1[v1, . . . , v̂i, . . . , vj+1] (2.2)

Now for each 1 6 j 6 |V (K)|, define Cj = Cj(K) to be the set of all finite formal sums

of ordered j-simplices contained in K; its elements will simply be called j-chains of

K. The natural addition operation on formal sums makes each Cj a finitely-generated

Z-module, and the (jth) differential operator ∂j : Cj → Cj−1 (as given by equation

2.2 for pure j-simplices) extends to other j-chains by linearity. In the next section,

we begin seeing how these constructions can work over more general principal ideal

domains, particularly fields F. Now, letting Cj be zero unless 1 6 j 6 |V (K)|, this

results in the following diagram of Z-modules:

· · · Cj−1 Cj Cj+1 · · ·
∂j ∂j+1

This diagram is the chain complex of K; we sometimes speak of the graded algebra

C• =
⊕

j∈ZCj equipped with the graded differential operator ∂• : C• → C• having

degree−1. The chain complex reproduces that characteristic property where composi-

tion of the consecutive differential operators vanishes: ∂j◦∂j+1 = 0, for all j ∈ Z. This

property has an elementary consequence. Define sets Zj = ker (∂j : Cj → Cj−1) and

Bj = im (∂j+1 : Cj+1 → Cj), whose elements are the j-cycles and the j-boundaries,

respectively. Then we have Bj ⊆ Zj ⊆ Cj.

2.1.3 Computing Homology over the Integers and Fields

Following the discussion at the start of the last subsection, we can interpret (and

merely at that) the q-chains of a simplicial complex K to generalize some of its

subcomplexes; concretely, we can look at the subcomplex of K generated by the
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summands of any q-chain. In this interpretation, the q-cycles describe subcomplexes

possessing a (possibly empty) interior of dimension q + 1, while the q-boundaries

describe such subcomplexes that are contractible. Therefore, it is reasonable to define

the (jth) integral homology of K as the quotient of modules:

Hj(C•) = Zj/Bj = {ξ +Bj : ∀ξ ∈ Zj}

Recall: ξ + Bj = ζ + Bj iff ξ − ζ ∈ Bj. As finitely-generated Z-modules also, their

structure is well-understood by their fundamental theorem (see [37]): for each j there

exist natural numbers βj, θj2, θj3, . . . a finite number of which are non-zero, such that

Hj(C•) ∼= Zβj ⊕ (Z/2Z)θj2 ⊕ (Z/3Z)θj3 ⊕ . . . (2.3)

Most applications focus on the torsion-free component of homology Zβj , whose rank

βj is the jth Betti number. However, torsion is also prominently exhibited in several

spaces of interest.

Example 2.4. Revisit S1 in Example 2.1 and the nerve K of its cover in (b). Here,

C0 ' Z3, C1 ' Z3, and Cj = 〈0〉 for j > 2; the differential map has its components

∂j : Cj → Cj−1 all equal to zero maps for j 6= 1 and ∂1 : C1 → C0 is specified by

(c12, c13, c23) ∈ Z3 7→ (−c12 − c13, c12 − c23, c13 + c23) ∈ Z3. The nullspace of ∂0 is

Z0 = C0, the nullspace of ∂1 is Z1 ' 〈(1,−1, 1)〉, and for all the other maps the

nullspace is zero; hence Hj(S1) = 0 for j > 2. The range B0 of ∂1 is generated by the

elements specific to (−1, 1, 0), (−1, 0, 1), (0,−1, 1) in Z3, where the latter is a difference

of the previous two; replacing that with (1, 0, 0) gives a generating set of Z0 ' Z3.

Hence, H0(S1) = Z0/B0 = 〈(1, 0, 0) +B0〉 ' Z and H1(S1) = Z1/B1 = Z1/〈0〉 ' Z.

The 0th homology shows that S1 is a connected set, while the generator of H1(S1)

matches the “hollow loop” shape of the 1-sphere.
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C0 =
〈
[1], [2], [3], [4], [5], [6]

〉
=
{ 6∑
v=1

cv · [v] : cv ∈ Z
}

∂0([v]) = 0, ∀v = 1, . . . , 6

C1 =
〈
[v, w] : 1 6 i < j 6 6

〉
=
{∑
v,w

cvw · [v, w]
}

∂1([v, w]) = [w]− [v], ∀v < w

C2 =
〈
[1, 2, 5], [1, 2, 6], [1, 3, 4], [1, 3, 6], [1, 4, 5],

[2, 3, 5], [2, 3, 4], [2, 4, 6], [3, 5, 6], [4, 5, 6]
〉

∂2([u, v, w]) = [v, w]− [u,w] + [u, v]

Example 2.5. Let RP2 = D2/ ∼, where D2 ⊆ C is the closed unit disc with the

equivalence relation under which z ∼ w if and only if z = w or |z − w| = 2. It is

suitably represented by the simplicial complex presented above. Note that every 0-

boundary can be written as a sum in terms of ∂1([1, 2]), ∂1([2, 3]), . . . , ∂1([5, 6]); these

are independent generators of B0 ' Z5, and since Z0 = C0 then H0(RP2) = Z0/B0 is

given by 〈[1] +B0〉 ' Z. The j = 1 homology is more peculiar here; observe that

∂2([1, 2, 4]) , ∂2([1, 2, 6]) , ∂2([1, 3, 5]) , . . . , ∂2([2, 5, 6]) , ∂2([3, 4, 6]) , ∂2([4, 5, 6])

are all independent generators of B1 ' Z10, the signed sum of which (with +1 for

the last element or if [u, v, w] has [2] as a vertex, and −1 otherwise) has boundary

2 · ([1, 2]− [1, 3] + [2, 3]). However, the cycle σ = [1, 2]− [1, 3] + [2, 3] itself is not the

boundary of any 2-chain, so (σ+B1) ∈ H1(RP2) is non-trivial with
〈
σ+B1

〉
' Z/2Z.

Apparently Z1 = 〈σ〉+B1, so this completely describes the j = 1 homology of RP2.

Classically, one may calculate the jth homology of a complex by writing the dif-

ferential ∂• on C• (or at least its component Cj−1 ← Cj ← Cj+1) in matrix form, and

computing its Smith normal form. The resulting diagonal matrix provides a one-to-

18



one correspondence between generators for the image of ∂• (the boundary chains) and

generators for the coimage of ∂• (ie, those not in the kernel of ∂•), with the torsion

and free group coefficients expressed on the diagonal.

Among the greatest successes of integral homology is the ability to determine

the homology groups Hj(C•;R) with coefficients in any other abelian group R. Of

particular importance is when R is some field F, so the underlying complex is endowed

with vector space structure. The universal coefficient theorem (for homology, see [58])

allows us to compute these:

Theorem 2.6. For any Z-module R, there is a functorial short exact sequence

0→ Hj(C•)⊗Z R→ Hj(C•;R)→ Tor1(Hj−1(C•), R)→ 0

that splits for every chain complex C• (albeit not functorially).

In particular, when R = F is a field, the datum Hj(C•;F) is an F-vector space whose

basis consists of generators for Hj(C•;Z) in the torsion-free component, as well as in

any component (Z/kZ)θjk where k is divisible by the characteristic of F. In other uses,

the universal coefficient theorem allows one to find the cohomology of a topological

space in any coefficients from a ring R.

Example 2.7. For S1 in example 2.4 and any field F, we have Hj(S1;F) ' F if

j = 0, 1 and Hj(S1) ' 0 otherwise. For RP2 in example 2.5, we have H0(RP2;F) ' F,

for any field F; however H1(RP2;Z/2Z) is a vector space of dimension one, while

H1(RP2;Z/3Z) and H1(RP2;Q) are both zero vector spaces.

As we shall see, field-valued homology groups are generally preferred in practi-

cal calculations due to their simplicity, and hence are often calculated directly using
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methods of linear algebra. An often-taught method for computing homology in field

coefficients directly is by writing the differential matrix (or its appropriate compo-

nent) in Jordan canonical form; the 2× 2 Jordan blocks describe matchings between

generators of the image and coimage of the differential operator, while the 1× 1 Jor-

dan blocks point to generators of the F-valued homology group (larger Jordan blocks

do not exist here since ∂• ◦ ∂• = 0). Instead, however, we will be describing different

algorithms throughout that are more grounded in matrix reduction.

It is worth mentioning that alternative homology theories (based on different

choices of combinatorial models of topological spaces) yield equivalent results. Sim-

plicial homology can be known as the first “successful” homology theory, in the sense

that it allowed one to fully, yet rigorously work out homological data for a wide

range of known compact spaces. Other formulations can be found to be more general

and/or more notationally brief. One is using CW-complexes and cellular homology;

for instance, the 1-sphere from example 2.4 can be merely encoded with a 0-cell and

a 1-cell, while the space RP2 only requires a specification of six cells (as opposed

to a total of 34 simplices as in example 2.5). Alternative homology theories can be

proposed for topological spaces, but as long as they adhere to a set of five Eilenberg-

Steenrod axioms (see [24]) then they yield consistent results as far as the theories are

applicable. To do this however, we would need to further pursue the notion of relative

homology, where a pair (X,A) of topological spaces X and A ⊂ X is considered; for

the interested reader, a discussion on this can be found in classical texts cited near

the beginning of this section.
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2.1.4 Morphisms of Complexes and their Homologies

Sometimes we are less interested in topological spaces themselves than characteristics

assigned to them by external functions. With the only relevant constraint being

continuity (though not always even that), we’d like to have a function Φ : X → X̂

between topological spaces be representable as a function between their respective

simplicial complexes K and K̂; we’ll suppose that X = |K| and X̂ = |K̂|. This

function φ : K → K̂ taking simplices to simplices should do so in a meaningful way.

We may attempt this by defining φ so that it preserves inclusions of simplices, that

is φ(f) ⊆ φ(g) in K̂ whenever f ⊆ g in K; it is also natural to assume that the

function φ restricts to a map of vertices V (K)→ V (K̂), thus mimicking the behavior

of continuous functions. In fact, a map of vertices V (K) → V (K̂) induces a map

φ : K → K̂ by setting φ(f) to the set-theoretic image of f ∈ K under the vertex

map, somewhat following the idea of embedding K → ∆|V (K)| in subsection 2.1.1.

This resulting φ is known as a simplicial map.

It begs the question whether a simplicial map (with its property that faces of K are

mapped to faces of K̂) is too restrictive, referring to how well it concurs with the actual

map Φ. A sensible demand is that φ(v) = Φ(v) for all vertices v in K; more broadly,

for any x ∈ |K| and any face f ∈ K containing x that Φ(x) is contained in face φ(f)

holds. If such a φ can be obtained, then it is a suitable simplicial approximation of

function Φ, though it is clear that these are very restrictive conditions imposed on

K and K̂ that already may not be satisfied by the triangulations. Nevertheless, L.

Brouwer (who was responsible for introducing the formal notion of a simplicial map

[17]) was able to prove the following result.
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Theorem 2.8. Given simplicial complexes K, K̂ and some function Φ : |K| → |K̂|

that is continuous, for some integer n > 0 there exists a simplicial approximation

φ : SdnK → K̂ of Φ, where SdnK is the simplicial complex obtained after n counts

of barycentric subdivision performed iteratively on K.

Evidently, simplicial maps take j-simplices to k-simplices, where j > k (equality

holds when a simplex’s vertices are mapped injectively). For each j > 0, define a

function φj on the j-simplices of K mapping to K̂ by:

φj([v1, . . . , vj+1]) =

{
0 , if φ(vs) = φ(vt) for some s 6= t
[φ(v1), . . . , φ(vj+1)] , otherwise

This definition implies we are only interested in simplices whose dimension is pre-

served under φ; indeed, mapping a simplex to a copy of its proper face is a deforma-

tion retract, which induces a homotopy equivalence. Now by linearity, this extends

to a homomorphism φj = Cj(φ) : Cj(K) → Cj(K̂) of j-chains, for all simplicial

dimensions j; together, these can be viewed as components of the graded homomor-

phism φ• = C•(φ) : C•(K)→ C•(K̂) that has degree 0, referred to as the chain map

(induced by φ). The complete picture is displayed on the following diagram.

· · · Ĉp−1 Ĉp Ĉp+1 · · ·

· · · Cp−1 Cp Cp+1 · · · .

φp−1 φp φp+1

Meanwhile, each chain complex is equipped with its own differential structure:

∂• for C•(K) and ∂̂• for C•(K̂), respectively. The chain map displays an important

property in that it commutes with the differential structures, in the following sense:

for every j > 1, ∂̂j ◦ φj ≡ φj−1 ◦ ∂j. Visually, any two homomorphisms obtained by
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composition of mappings between two fixed modules in the above diagram are equal.

An immediate consequence is the following:

• for any j-cycle c ∈ Zj(K), ∂̂j[φj(c)] = 0; that is, φj(Zj) ⊆ Ẑj

• if b = ∂j(c), then φj−1(b) = ∂̂j[φj(c)]; that is, φj(Bj) ⊆ B̂j .

Therefore, the induced quotient map

ξ +Bj ∈ Zj/Bj 7→ φj(ξ) + B̂j ∈ Ẑj/B̂j

is well-defined, and represents the jth component of Hj(φ•), the induced map of

homologies. Note that while the classification of individual spaces by their homology

is well-understood from Theorem 2.3, the classification of Z-module homomorphisms

is remarkably more difficult. Finally, for any field F, the map of homologies Hj(φ•)

defines an F-linear map Hj(C•(K);F)→ Hj(C•(K̂);F) by taking elements in a basis

of Hj(C•(K);F) to their images in Hj(C•(K̂);F).

As we revisit these concepts later, it is helpful to point out their functorial char-

acter. We began with simplicial complexes K and K̂, whose appropriate choice of

function is a simplicial map φ : K → K̂ between them. We proceeded to derive mod-

ules C•(K) and C•(K̂) with a corresponding homomorphism C•(φ•) between them,

which appropriately “preserved” their (differential chain) structure. This finally led to

producing nth homology modules Hn(C•(K)) and Hn(C•(K̂)), with an induced map

Hn(C•(φ)) acting between them. Going further, we can extract the nth homology in

chosen field coefficients:

Hn(C•(φ);F) : Hn(C•(K);F)→ Hn(C•(K̂);F)
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which are vector spaces, with a linear transformations between them. So real details

aside, the process can be summarized as transitioning K
φ→ K̂ along each step of the

computation. This kind of formalism will be more elaborated on in chapter 3, but is

useful to have when doing persistent homology.

Observe that while each “transition” produces compatible structures, some of their

familiar properties may not carry over well! For example, the inclusion Bd ∆2 → ∆2

(where Bd∆2 is the topological boundary of ∆2) produces an injective simplicial map,

whereas the induced homology map H1(C•(Bd ∆2))→ H1(C•(∆
2)) is surjective.

2.2 Persistence Vector Spaces

As mentioned earlier, persistent homology looks at all the previous constructions on

multiple levels, which somehow capture the relative and global distributions of the

given geometric data. We embed this new detail into our existing framework.

Let (T,6) be a partially-ordered set, here assumed to be either the integers T = Z

or the reals T = R.For a fixed field F, a persistence vector space •V is specified by a

collection of vector spaces {tV : t ∈ T} and also a linear map sV → tV for any s 6 t

(which is the identity map if s = t); these structure maps are required to preserve

composition, so if r 6 s 6 t then (sV → tV ) ◦ (rV → sV ) = (rV → tV ).

rV sV tV

Figure 2.2: The composition law can be observed on this commutative diagram.

In the case T = Z, we can distinguish tempered persistence (vector) spaces [43] for

which there exist only finitely-many s ∈ Z where the maps sV → s+1V are not vector
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space isomorphisms. These are well-behaved objects and are commonly encountered

in applications. A similar notion exists for the case T = R, whose associated objects

are defined as tame; see page 25 of [47] for details.

Remark 2.9. It is more common to refer to persistence vector spaces as persistence

modules. Indeed, a persistence vector space •V can be identified with a left R-

module M , whose abelian group structure is given by the direct sum of tV over

all t ∈ T . If T = Z, the ring R associated to the module is the polynomial ring

F[t]. Left multiplication of tn by any element of the module corresponds to the

pointwise action of the structure map •V 7→ •+nV and extends linearly to the whole

polynomial ring. Similarly, when T = R we associate the ring R = F〈tR〉, which

is F-spanned by all elements tα with α ∈ R. Left multiplication is defined similarly,

induced by the action of the structure map •V 7→ •+αV . For other choices of partially-

ordered sets T , corresponding persistence vector spaces can also be identified with

appropriate left R-modules – this is evident by the Freyd-Mitchell embedding theorem

(see Theorem 3.16). The ring R is to capture the graph structure of the set T , or

more precisely, the “transition” between its elements via the partial order relations.

Suppose that •W and •V are persistence vector spaces such that for every t ∈ T

there is an isomorphism tϕ : tW
∼→ tV . Then, every structure map sV → tV can be

“pulled back” to a map tϕ
−1 ◦ (sV → tV ) ◦ sϕ from sW to tW . If one can find these

isomorphisms •ϕ such that this pullback of sV → tV is identical to the structure map

sW → tW (for any s 6 t), then one has an isomorphism of persistent vector spaces

and is denoted •W ' •V . It is clear that any algebraic properties that apply to •V

will also apply to persistence vector spaces isomorphic to •W , via the pullback (and
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also its inverse, the pushforward).

Alternatively, we may consider a situation where every isomorphism to be replaced

by inclusion so that tW ⊆ tV for all t ∈ T . We then say that •W is a (persistence

vector) subspace of •V if a similar condition on the compatibility of the structure maps

holds: specifically that for all s 6 t, the map sV → tV is identical to sW → tW when

its domain and range is restricted to sW and tW , respectively. Note that subspaces of

tempered persistence spaces are also tempered. The trivial (persistence) vector space

•0, given by t0 = 0 with zero maps between them, is clearly a subspace of every •V ;

of course any persistent vector space •V is a subspace of itself.

For any two persistent vector spaces (•U and •W ) parametrized by the same set T ,

their direct sum •U ⊕ •W is given by the “pointwise” direct sum: take the collection

{tU ⊕ tW ) : t ∈ T} whose linear map associated to indices s 6 t is the direct sum of

(sU → tU) and (sW → tW ), having block matrix representation

(sU → tU)⊕ (sW → tW ) =

(
sU → tU 0

0 sW → tW

)

Any •V that can be written (up to isomorphism) as the direct sum of non-trivial

persistence vector spaces •U and •W is called decomposable; otherwise, •V is inde-

composable. When attempting to find a direct sum decomposition •V in terms of its

indecomposable summands, one must remember that such a decomposition cannot be

unique (even in linear algebra, any two-dimensional vector space can be spanned by

any pair of its independent vectors). However, direct sum decompositions are “essen-

tially” unique as a consequence of the famous Krull-Schmidt theorem (see Theorem

7.5 in [37]), a corollary of which for persistence vector spaces is stated below. We

shall later restate this as Theorem 3.8 to underline its categorical generality.
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Theorem 2.10 (see Theorem 4.2 in [36]). Take two finite series of indecomposable

tempered persistence vector spaces •V
′
1, . . . , •V

′
m and •V

′′
1, . . . , •V

′′
n such that

•V
′
1 ⊕ · · · ⊕ •V ′m ' •V ′′1 ⊕ · · · ⊕ •V ′′n

Then m = n, and there exists a permutation π of all indices such that •V
′
i ' •V ′′π(i).

It follows that a persistent vector space can be algebraically understood entirely

by its indecomposable summands. In fact, the Krull-Schmidt decomposition also

describes indecomposable persistence vector spaces – their set of endomorphisms has

the structure of a local ring. While this can be used to fully classify them (up to

isomorphism), another approach to do this will be overviewed in subsection 2.2.3.

2.2.1 Filtrations of a Vector Space

A particular example of a persistence vector space is a filtration of a fixed vector

space V . For each t ∈ T here, the pointwise elements tV are subspaces of V such that

sV ⊆ tV whenever s 6 t; the map sV → tV is then taken to be the inclusion map.

Provided that V is of finite dimension, it follows directly that any filtration tV

of V is a tempered persistence vector space. Generally, we also speak of exhaustive

filtrations (if there is an r ∈ T such that rV = sV for all r 6 s) and separated

filtrations (if there is an x ∈ T such that sV = 0 for all s 6 x) of V .

Subspaces of a filtration (as a persistence vector space) are usually called subfiltra-

tions. Now, for any two subfiltrations •U and •W of V we can define their intersection

and subspace sum as filtrations of V in a pointwise manner:

t( •U ∩ •W ) = tU ∩ tW and t( •U + •W ) = tU + tW
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Elsewhere, these special filtrations are referred to by their categorical terminology as

the pullback and pushforward, respectively.

Remark 2.11. If •U ∩ •W is trivial then •U + •W ' •U ⊕ •W (and also conversely).

Filtrations provide a natural setting for us to work beyond ordinary chain com-

plexes, in situations where they carry extra information about their “levels” (indexed

by the set T ). On the other hand, the generality of persistence vector spaces al-

lows us to speak of quotients, which provide a powerful and flexible framework for

representing the homology groups as we will show in chapter 4.

2.2.2 Morphisms of Persistence Vector Spaces

A morphism •φ of persistence vector spaces •U and •V is given pointwise by linear

maps tφ : tU → tV (for all t ∈ T ) that preserve composition with the structure maps

of •U and •V . That is (with focus on T = Z), the following diagram commutes:

· · · t−1V tV t+1V · · ·

· · · t−1U tU t+1U · · · .
t−1φ tφ t+1φ

We’ve already looked at some examples, notably subspace inclusions in the case

where tU ⊆ tV . As another instance, the canonical projection maps from the direct

sums tU ⊕ tW to components tU and tW (for all t ∈ T ) comprise morphisms

•U ⊕ •W → •U and •U ⊕ •W → •W

More generally, a monomorphism of persistence vector spaces •V and •W is a

morphism •φ : •V → •W such that every tφ is an injective map, while an epimorphism

of •V and •W is a morphism •φ such that tφ is surjective for all t ∈ T . More on this
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can be found in chapter 3; we leave off for now that these behave like one-to-one and

onto linear maps between vector spaces.

At each level t ∈ T , the map tφ : tW → tV has an associated kernel subspace

ker(tφ) ⊆ tW and image subspace im(tφ) = tφ (tW ) ⊆ tV . These form the sequence

· · · ker(t−1φ) ker(tφ) ker(t+1φ) · · ·

of kernels (to be denoted ker •φ), and the sequence

· · · im(t−1φ) im(tφ) im(t+1φ) · · ·

of images (to be denoted im •φ). Furthermore, the sequence coker •φ of cokernels

· · · coker(t−1φ) coker(tφ) coker(t+1φ) · · ·

with coker(sφ) = sV/ im(sφ), and the sequence coim •φ of coimages

· · · coim(t−1φ) coim(tφ) coim(t+1φ) · · ·

with coim(sφ) = sW/ ker(sφ)) are used; note that by the rank theorem for vector

spaces, coim(sφ) ' im(sφ). It is not explicitly obvious that there should be (horizon-

tal) structure maps in each one of these four diagrams, but these are fully described

by the following result.

Proposition 2.12. For any morphism •φ : •W → •V of persistence vector spaces

and any s 6 t in T , there are well-defined maps

ker(sφ)→ ker(tφ) im(sφ)→ im(tφ)

given by restricting the respective structure maps sW → tW and sV → tV to the

subspaces ker(sφ) and im(sφ). Furthermore, these commute with the inclusions of the

kernel and image into •W and •V , respectively.
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Likewise, there are well-defined quotient maps

coim(sφ)→ coim(tφ) coker(sφ)→ coker(tφ)

that are induced by the respective structure maps sW → tW and sV → tV . Further-

more, these commute with the canonical projections of •W and •V onto the coimage

and cokernel, respectively.

For details, see [53]. We’ll revisit this discussion when reestablishing the class of

persistence vector spaces as a category in Chapter 3.

2.2.3 The An quiver and indecomposable representations

A important factor for the surge of cultural enthusiasm around persistent homology

was the ability to predict meaningful constituents of complexes formed by data. This

came with the technical observation that indecomposables of persistent vector spaces

can be understood through the combinatorics of An-type quivers. In brief, these are

finite connected graphs with n vertices and n−1 directed edges such that each vertex

has at most 2 adjacent vertices. If no two edges share the same “head” or “tail”

vertex, then we call this a unidirectional An quiver ; by contrast, zigzag An quivers

only have vertices that act as a “sink” or a “source”. Many other quivers of outside

interest are associated with Dynkin diagrams, some of which are shown in figure 2.3.

A quiver representation is an assignment where a choice of vector space Vi is made

for every vertex i of the quiver and a choice of linear map Vi → Vj is made for every

edge from vertex i to vertex j. It should now be apparent that representations of

unidirected An quivers produce persistence vector spaces with T = {1, . . . , n}. This

will generalize to all tempered persistence vector spaces •V once a value n > 0 is
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(a) • • • • •

(b) • • • • •

(c) • • • • •

(d)
•

• • • • •

(e)
•

• • • • • ◦ ◦

Figure 2.3: (a) shows an A5 diagram. It is an underlying graph for its directed vari-
ants, (b) the unidirectional A5 quiver, and (c) the zigzag A5 quiver. Other significant
quivers include those of Dn-type and En-type; for example, (d) shows a D6 diagram
and (e) the E6, E7, E8 diagrams, whose number of vertices should match n = 6, 7, 8.

found large enough so that sV ' 1V (∀s 6 1) and tV ' nV (∀t > n). Furthermore,

it has already been established by theorem 2.10 that these can be uniquely written

(up to isomorphism) to a finite direct sum of some indecomposables.

We speak of indecomposable representations of An quivers while referring to inde-

composable persistence vector spaces with T = {1, . . . , n}. These are simple objects

to understand and interpret in applications. Typically, the following result is cited

when classifying quivers of “finite representation type”.

Theorem 2.13 (Gabriel). Let Q be a connected quiver.

1. Q has finitely-many (isomorphism classes of) indecomposable representations if

and only if Q is of type An, Dn, E6, E7, or E8.

2. If Q is of type A/D/E, then there exists a bijection from the (finite) set of

isomorphism classes of indecomposable representations of Q to the set of positive

roots of the Tits quadratic form associated with Q.

For proof and discussion, see pages 203-222 of [53].
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Corollary 2.14. Let •V be a tempered persistence vector space.

1. •V is indecomposable if and only if there exist i < j in Z such that

tV '
{

F , if i 6 t < j
0 , otherwise

, where iV → j−1V is the identity.

2. Otherwise •V is isomorphic to a finite direct sum of indecomposables, some of

which are possibly non-distinct up to isomorphism.

The indecomposable representations in corollary 2.14 are identified by the interval

[i, j), and the set of intervals (possibly with repeating elements) that determines the

direct sum decomposition of •V is called a barcode. Since direct sum decompositions

of persistence vector spaces are essentially unique by theorem 2.10, persistent vector

spaces have a unique barcode that stays invariant under isomorphism. This makes

them a central point for persistent homology.

Another consequence of Theorem 2.13 is for representations of zigzag quivers. Also

known as zig-zag modules, these sometimes arise when a dataset cannot be cleanly

modeled by a filtration. Applications of this arise in probability density estimation,

data subsampling, and during qualitative selection of persistent features; a good

overview of these applications as well as the theory itself can be found in [11]. More

generally, Gabriel’s theorem is responsible for identifying the stated quivers as “tame”;

the representation theory for these quivers is well-understood, as opposed to “wild”

quivers (for which persistent homology is still enigmatic).

2.2.4 The Isometry Theorem, and the Bottleneck Metric

The previous discussion suggests that a persistence vector space •V can be entirely

described by a unique barcode B(•V ), up to isomorphism (over a fixed field F). Each
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interval [i, j) in the barcode points to a particular indecomposable summand of •V

having the form in 2.14(1) – the only contribution of this summand to the direct sum

is a one-dimensional vector space for values of t ∈ T in the interval. The generator

of this one-dimensional vector space is a “feature” that seems to “persist” across

over the interval [i, j). It is why some might refer to these generators collectively as

persistent features.

The interpretation of persistent features in the context of topological data analysis

are best left to the next section. Also, the question of “how well” a persistence vector

space is described by its barcode will be deferred until section 2.3. For now, we turn

to our ability to capture “similarity” of different persistence vector spaces, and how

this reflects on their barcodes.

An intrinsic way to perturb a persistent vector space (using T = Z or R) is by

using ε-shifts. Given any such persistence vector space •V , a (left) ε-shift produces the

persistent vector space •+εV , whose data at any t ∈ T is t+εV and the structure map

corresponding to any s 6 t is s+εV → t+εV . Observe that there is a natural morphism

•V → •+εV (whose component at t ∈ T is just the structure map tV → t+εV ), and

that its composition with •+εV → •+ε+δV produces •V → •+ε+δV ; these are called

transition morphisms of •V .

The idea is to extend this notion on a pair of persistence vector spaces •U and

•W , which may or may not be possible. An ε−interleaving between them is a choice

of two morphisms •f : •U → •+εW and •g : •W → •+εU with the following property:

the compositions (•+εg) ◦ (•f) and (•+εf) ◦ (•g) produce the transition morphisms

•U → •+2εU and •W → •+2εW , respectively (where the definition of the morphisms
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•+εf : •+εU → •+2εW and •+εg : •+εW → •+2εU is naturally implied from •f and •g).

This can be viewed in figure 2.4.

· · · tW t+εW t+2εW t+3εW t+4εW t+5εW · · ·

· · · tU t+εU t+2εU t+3εU t+4εU t+5εU · · ·

Figure 2.4: Here, some components of the persistence vector spaces are shown, with
the initial value of parameter t chosen arbitrarily. The up-facing arrows represent
components of •f , while the down-facing arrows represent components of •g; when
the diagram is “shifted” to the left by ε, these arrows also describe •+εf and •+εg,
respectively. The definition of an ε-interleaving implies that this diagram is commu-
tative – in particular, the transition maps •U → •+2εU and •W → •+2εW can instead
be evaluated by “weaving through” •+εW and •+εU , respectively.

Needless to say, calculating these morphisms or even showing that they exist (for

some fixed ε > 0) stands as a significant challenge. The interleaving property does

however obey some rules of regularity. For example, if an ε-interleaving in terms of

•f : •U → •+εW and •g : •W → •+εU is given, then we can compose these with the

transition morphisms •U → •+δU and •W → •+δW to obtain an (ε+ δ)-interleaving.

Hence, this suggests the following:

Definition 2.15. The interleaving distance dI (•U, •W ) of two persistence vector

spaces •U and •W is the smallest ε > 0 for which there exists an ε-interleaving

between them. If such an ε > 0 doesn’t exist then dI (•U, •W ) =∞.

It is clear that dI (•U, •W ) = 0 if and only if •f and •g above are isomorphisms of

the persistence vector spaces. Thus, a positive interleaving distance indicates some

degree of dissimilarity between the chosen persistence vector spaces. In fact, the

following result suggests that dI is a suitable measure of “dissimilarity”.
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Lemma 2.16. The function dI( · , · ) is well-defined on equivalence classes of persis-

tence vector spaces, and obeys the following rules:

1. dI(•U, •W ) > 0, with equality iff •U ' •W

2. dI(•U, •W ) = dI(•W, •U)

3. dI(•U, •W ) 6 dI(•U, •V ) + dI(•V, •W )

In particular, dI is an extended pseudometric on persistence vector spaces.

On the other hand there are barcodes, which are efficient representations of persis-

tence vector spaces. It is good to be equipped with some metric to compare them, be

it related or not to the interleaving distance. An instinctual way to compare two sets

of intervals is by “matching” most-alike intervals from each barcode into pairs, while

keeping some intervals unmatched from both sets – we need to admit this possibility

at least because the barcodes may have a different number of intervals.

Let δ > 0 and denote by BU = B(•U) and BW = B(•W ) the respective barcodes

of •U and •W . A δ-matching is a partition of the sets BU and BW into some subsets

B2δ
U ∪ (BU − B2δ

U ) and B2δ
W ∪ (BW − B2δ

W ), respectively, such that:

• for every [i, j) in either B2δ
U and B2δ

W , we have i+ 2δ > j;

• there exists a bijection between (BU − B2δ
U ) and (BW − B2δ

W ), sending interval

[i, j) to interval [i′, j′) with [i′ + δ, j′ − δ) ⊆ [i, j) ⊆ [i′ − δ, j′ + δ).

These two different treatments for interval types are shown in figure 2.5. The prin-

ciple behind a δ-matching is that it should suffice to “discard” short intervals (from

both barcodes) for the remainder to somehow be matched based on the proximity of
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Figure 2.5: Following [4], here shown and detailed are sample barcodes BU (blue) and
BW (red), each with two intervals. On the left are emphasized the “short” intervals
of each B2δ

− , having length less than 2δ. The right figure emphasizes the remaining
“long” intervals, and depicts a matching of interval [i, j) ∈ BU − B2δ

U to an interval
[i′, j′) ∈ BW −B2δ

W such that their endpoints are within an error range of δ from each
other.

their endpoints. As with interleavings of persistence vector spaces, this is not guar-

anteed to exist for any δ > 0, but still obeys certain regularity. For one, BU and BW

are δ′-matched if they are δ-matched and δ 6 δ′. Hence:

Definition 2.17. The bottleneck distance dB (BU ,BW ) of two barcodes BU and BW

is the smallest δ > 0 for which there exists an δ-matching between them. If such a

δ > 0 does not exist then dB (BU ,BW ) =∞.

Similar to the interleaving distance, dB is an extended metric on the collection of

all barcodes (having countably-many intervals); in particular, two barcodes have a

bottleneck distance of zero if and only if they are identical.

Remark 2.18. An alternate description of a δ-matching uses a proper bijection γ

between certain multisets of R2 called persistence diagrams : each contains the set

of points (i, j) corresponding to the intervals [i, j) in one of either barcode (possibly

with multiplicity to account for repetition), as well as countably-many points (k, k)

on the diagonal corresponding to all “null” intervals [k, k) for k ∈ R. Then γ is a

δ-matching if sup‖x − γ(x)‖∞ < δ, where the supremum is taken over all points x

from the domain of γ and ‖a, b‖∞ := max{|a|, |b|} is the ordinary L∞ norm on R2. If
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γ is chosen such that it is the identity on a cofinite subset of null intervals, then this

notion of a δ-matching agrees with the one above. This was the original viewpoint of

persistence diagram matchings, made precise in [15].

Computing the bottleneck distance involves a finite optimization problem. A brute

force algorithm would run all permutations of intervals from one barcode to match

them with intervals from another, all to select a permutation minimizing the bottle-

neck distance. A more efficient (polynomial-time) algorithm that works iteratively is

outlined on page 241 of [18].

Of course, we are interested in finding the relationship between the two metrics.

The derivational similarities between the two functions are hard to miss, and if one is

a strong advocate for using category theory in this context then perhaps they would

anticipate some bounding inequality between them. The next result surprisingly

suggests something much stronger.

Theorem 2.19. For any two tempered persistence vector spaces •U and •W , having

barcodes BU and BW we have dI (•U, •W ) = dB (BU ,BW ).

This is the so-called “isometry theorem”, affirming that the barcode decomposition

(or equivalently, the persistence diagrams) of persistence vector spaces is not only a

convenient algebraic classification tool for these objects but also maintains enough

of the objects’ original data for their structural comparison. In particular, this is a

useful paradigm in applied persistent homology, where the interleaving distance and

its physical meaning for certain sequences of vector spaces can be computed directly

with the barcode distance.

In the original paper, the weaker algebraic stability theorem was stated where the
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equality was replaced with inequality bounding the interleaving distance from below.

This was a generalization of (and a nod to) the more widely-celebrated stability

theorem, to be discussed in the next section. Bubenik and Scott later realized in

[5] that this is in fact an isometry, the proof of which relies on using the interval

decomposition of each persistence vector space to construct an interleaving as a direct

sum of δ-shifts between interval-induced subspaces. The most recent rendition of the

proof [4], draws heavily from the categorical structure of the class of persistence vector

spaces and how it (nearly functorially) induces matchings between interval modules;

these concepts will be explored more later.

It is also worth mentioning that the isometry theorem (and the corresponding

stability theorem) can be stated for generalized persistence vector spaces – these are

objects where the index set T is only assumed to be a partially-ordered set. Here,

morphisms between two spaces are defined pointwise in a way that makes the resulting

diagram of vector spaces commutative; one may then proceed to define a generalized

notion of a shift or a transition morphism. For a background on these, the reader is

referred to [9] and [42].

2.3 A Summary of Persistent Homology

Persistent homology extends the theory of classical homology – not only does it

compute the homology of a graphical structure (with the goal of describing some

data set), but it ultimately allows us to compare representatives of the homology

(cycles) in terms of their “prominence”. As such, many principles and objects from

before remain important pieces in this method of analysis, only being extended to

include the notion of “scale”. Even then, the application of familiar elements and
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operations from linear algebra is prevalent when computing field homology.

Of note is the shift from working with vector spaces (or finitely-generated modules)

to persistence vector spaces that we have introduced just previously. It is thus suitable

to begin with the background of topological data analysis and how that motivates

the usage of persistence vector spaces.

2.3.1 Filtrations of Simplicial Complexes

We first lay out the setting of persistent homology. Let K be a simplicial complex, T

be a totally-ordered set (same as in section 2.2), and f : K → T be a function. If f is

order-preserving (ie, if σ ⊆ τ are simplices in K then f(σ) 6 f(τ)), then the resulting

preimage tK := f−1
(

(−∞, t]
)

is a simplicial complex itself for any t ∈ T . Clearly,

there is an inclusion morphism rK → sK for any r 6 s in T . Note also that since K

is a finite complex there exist values t−, t+ ∈ T such that rK = ∅ for all r 6 t− and

sK = K for all s > t+. The resulting sequence is denoted •K and is called a filtered

simplicial complex.

One way that these complexes are constructed is on top of existing discrete data

sets; note that T = R is predominantly used. Let X = {x1, . . . , xn} be a subset of Rd

and let K = K(X) be a complete simplicial complex with vertices in X (ie, it is an

affine image of the standard simplex ∆n with vertices identified to elements in X).

The function f : K → R can be defined in several different ways. In the Vietoris-

Rips filtration, f = fRips assigns 1-simplices [xi, xj] to the Euclidean distance from

xi to xj, while 0-simplices of K are assigned to 0; proceeding recursively on simplex

dimension, f assigns an m-simplex to the maximum value of f over its proper faces,

for every m > 1. Alternatively, the C̆ech filtration assigns to each simplex σ ∈ K(X)
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the value fC̆ech(σ) = maxp∈|σ| ξσ(p); here, |σ| is the convex hull of the vertices in σ

and ξσ(p) is the minimum Euclidean distance of a point p ∈ |σ| to any of the vertices

of σ. Note that for any t ∈ T , f−1

C̆ech

(
(−∞, t]

)
is a C̆ech complex of the cover U(t)

whose elements are open d-spheres of radius t centered at points in X. These filtered

simplicial complexes are demonstrated in the short example below.

Figure 2.6: This example from [43] shows a four-step real filtration of a Delaunay
complex spanned by points 1, 2, 3, and 4 – here, progression from left to right is
triggered by increasing the parameter t > 0 (beyond one of several “critical” values).
The Voronoi cells that surround each point (whose boundaries are indicated on the
left-most image) determine the terminal structure of the complex on the right-most
image (including five 1-simplices and two 2-simplices). An allowed 1-simplex [i, j]
is then added to the complex when t equals half of the Euclidean distance between
vertices i and j; graphically, this is the minimum radius that two closed balls centered
at i and j must have to have non-empty intersection. Similarly, an allowed 2-simplex
[i, j, k] is added to the complex at the minimum value of t needed such that the
intersection of three balls centered at i, j, and k having this radius is non-empty.
This specifies the C̆ech filtration. We only need to note that the Rips filtration would
differ by assigning an lower value of the parameter t to the level when the 2-simplices
are added to the complex; here, the 2-simplices would be added in the second-to-last
image, instead of the last (right-most) image. Furthermore, the terminal complex in
the Rips filtration typically typically consists of simplices for every combination of
vertices; for example, here we would not omit the 1-simplex [3, 4] from the terminal
complex (albeit, it is added to the complex for a relatively large value of the parameter
t).

We can use any metric space X in place of subsets of the Euclidean space Rd. More

generally, we can begin by taking a function F : X → R, and consider the sublevel

sets tX := F−1
(

(−∞, t]
)

, with inclusion maps sX → tX between complexes for any

s 6 t. For how we calculate simplicial homology, we’d also need the assumption
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that X has a locally-finite triangulation, ie. there exists a triangulation of X such

that every element of X has an open neighborhood containing it that intersects a

finite number of simplices in the triangulation. Even under these assumptions, it

still remains to address whether the resulting filtration will give rise to a tractable

homology (that is tame, as discussed in Chapter 2 of [47]); fortunately, we have a

topological criterion [14] to test this:

Theorem 2.20 (also Proposition 2.3 in [47]). A continuous function f : X → R is

tame (ie, gives rise to a tame filtration) in any of the following cases:

1. the space X has a finite triangulation;

2. the space X has a locally-finite triangulation, the preimages of compact intervals

under f are compact subsets of X (i.e. f is proper), and f has a lower bound

on X.

A good example of a function that satisfies these conditions is a Morse function

on a compact X (which can be generically selected among all real-valued maps on

X). Then, the resulting filtration •X on X will possess a simple property that there

is a finite set of critical values c1, . . . , cm ∈ R such that sX → tX is a homotopy

equivalence unless s 6 c 6 t for one of the critical values c. One can see how the

theory of tempered persistence vector spaces becomes applicable in this setting.

2.3.2 The Standard Algorithm of Persistent Homology

In 2.1.3, we outlined some conventional methods by which the nth homology of trian-

gulizable space can be computed. Every practical method is based on working with

a matrix representation of the differential operator ∂•, and at minimum produces
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representative modules Bn of all boundary n-chains (ie, the range of ∂n+1) and Zn

of all n-cycles (ie, the nullspace of ∂n). A complete calculation would also provide a

function Bn → Zn that identifies boundaries as a subset of the set of cycles, relying

on the equation ∂2
• = 0 (nilpotency). Then, the nth homology with field coefficients

is just represented by those n-cycles which are not n-boundaries.

In persistent homology this is more complicated because the sets of cycles and

boundaries may vary between different levels of the filtration. Naively, this can be

resolved by doing above calculations inductively, where in each repetition the entire

complex gets restricted to a fixed level. However, this alone is insufficient to de-

scribe how the homology classes at each level “combine” into persistent features. The

goal here is to provide for each persistent feature a choice of n-cycle at each level

(representing a homology class at that level) such that the natural inclusions which

transition from lower to higher levels take one choice of cycle to another.

To do this, a method involving only one round of matrix reduction is used. Let

n be the value of the final critical level in the filtration. Take a basis of n-simplices

comprising the underlying simplicial complex, and let this basis be ordered consis-

tently with the filtration function applied to each simplex, the order by which the

simplices “appear” in the filtration; for simplices which have the same filtration level,

there is freedom in choosing their order in the basis (for example, if the simplices are

labelled alphabetically then the dictionary order can be used to break ties). This basis

spans the vector space Cn, and the same can be done for the spaces Cn−1 of (n− 1)-

simplices and Cn+1 of (n+1)-simplices. Then, the components ∂n+1 : Cn+1 → Cn and

∂n : Cn → Cn−1 of the differential operator ∂ can each be put into matrix form with
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respect to these bases. Observe that restricting these bases to elements having level

less than or equal to a fixed level t will produce bases for subspaces of Cn−1, Cn, Cn+1

that represent the (n − 1)-, the n-, and (n + 1)- chains of the filtration at level t,

respectively; we denote tCp to be the vector space generated by all p-chains having

a level in the filtration that is 6 t, and t∂p : tCp → tCp−1 to the restriction of ∂p to

this level in the filtration. In fact, these are represented by upper-left submatrices of

the given matrix representation of ∂n and ∂n+1.

This construction allows us to restate the problem that we have posed: while

the operators t∂n and t∂n+1 can be used to calculate the bases of n-cycles and n-

boundaries (resp.) up to a chosen level t, the resulting bases need to restrict to a

corresponding basis at every level s if s 6 t. It is therefore reasonable to work recur-

sively, beginning with reduction at the lower levers and proceeding towards higher

levels in the filtration. This can potentially be done in various ways (depending on

the complexity, or degeneracy, of the filtration), but we will prioritize one algorithm

that is straightforward in its execution for any such setup. Because we are working

inductively (where the initial step can be assumed to be null, as we’ll see shortly) and

the filtration is has a finite list of critical points, we begin by supposing that we have

have found bases of cycles and boundaries that have the desired consistency across

every level s < t up to (but not including) some fixed critical value t.

Write the matrix form of the linear operator t∂n : tCn → tCn−1, with respect to

the ordered bases of standard simplices. The column vectors of this matrix represent

the image of each basis element of tCn under the map ∂n. For each column, the non-

zero entries represent constituent (n − 1)-simplices in the boundary of the selected
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n-simplex, and the one closest to the bottom row of the matrix represents the one that

appears the latest in the filtration (in other words, the “youngest”); call this non-zero

entry the pivot of the given column. Perform a similar procedure and analysis on the

linear operator t∂n+1 : tCn+1 → tCn.

Now do the following in each matrix: for every column, starting with the left-most

one, check to see if the row that its pivot is in is different that the rows the pivots of

all columns to the left of it are in. If true (vacuously when working on the left-most

column), then repeat this for the column immediately on the right. But if you find

two columns whose pivots are on the same row, then subtract a constant multiple of

the left column from the right column so that the right column either becomes the

zero vector or has its pivot appear in a new row; replace the right column with this

new vector in the matrix and keep the left column as it was. Keep track of these

operations as you work through each column of either matrix.

This is fundamentally just matrix reduction with permitted column operations –

specifically those that adjust columns by linear combinations of columns on their left.

The first reduction produces a matrix form of t∂n with respect to a new (calculated)

basis of tCn and the old basis of tCn−1; the second reduction produces a matrix form

of t∂n+1 with respect to a new (calculated) basis of tCn+1 and the old basis of tCn.

Both matrices have the property that every non-zero column has its pivot in a distinct

row from the others. The zero columns in the resulting matrix form of t∂n correspond

to the new basis elements of tCn whose (n−1)-boundary is null; these form an ordered

basis of tZn. The nonzero columns in the resulting matrix form of t∂n+1 represent a

maximal set of elements in the image subspace of t∂n+1 that are linearly independent;
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these form an ordered basis of tBn.

It is also easy to see that this process produces consistent results across all critical

values of the parameter t ∈ R: if s < t, the image of any standard simplex for

the domain space sCp under the operators s∂p and t∂p has the same representation

in the basis of standard (p − 1)-simplices; in particular, the non-zero entries of its

corresponding column vectors in s∂p and t∂p are identical (the “longer” vector just

has a longer tail of trailing zero entries). Therefore, reduction of the matrix for

t∂p actually invokes the matrix reduction for s∂p (as an upper-left submatrix), with

identical column operations on the basis of sCp. This justifies the induction step.

Trivially, ∂n ◦ ∂n+1 = 0 implies that t∂n ◦ t∂n+1 = 0, and therefore it holds that

tBn ⊆ tZn for all values of the parameter t ∈ R. This does not mean that the selected

basis tBn will be a subset of the selected basis for tZn; however, certain (allowed)

linear combinations with basis elements of tZn do form the selected basis of tBn. A

crucial observation is that each basis element of tZn has a “youngest” n-simplex that

is distinct than that of other elements, all because of how this basis was calculated

using column operations. It then follows that for every basis element in tZn there

is at most one basis element of tBn whose youngest n-simplices match, due to the

uniqueness of row-positions for column pivots in the latter. In latter chapters this will

be used to derive the matrix representation of the inclusion map tBn ↪→ tZn, but it

suffices to say for now that this allows to establish the cycle-boundary correspondence

that defines the homology of the space.

Then to conclude the previous discussion, the homology (in field coefficients) of

the complex at a fixed level t ∈ R is given by the quotient tZn/ tBn, which is iso-
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morphic to a vector space that is generated by basis elements in tZn (cycles) with

no corresponding basis elements in tBn (boundaries). Clearly the homology of the

complex will vary across different values of t, but we can study its behavior by noting

that we have a persistence vector space of field homologies:

· · · ti−1
Zn/ ti−1

Bn ti
Zn/ tiBn ti+1

Zn/ ti+1
Bn · · ·

Here, the indicated values tj on the diagram above can be taken to be the critical

values of the filtration – only then can new cycle and boundary elements can form

in the complex. As discussed before, this persistence vector space has a barcode

decomposition – in this context, each interval [bk, dk) in the barcode is associated to

a distinct homology class that is born at t = bk and dies at t = dk (some homology

classes do not formally die, in which case dk =∞ by convention). But the output of

this algorithm above allows to compute these directly – the birth of a new homology

class is indicated by the addition of an element to the basis of cycles at t = bk,

and its death is indicated by the addition of a corresponding element in the basis

of boundaries at t = dk (deaths at t = ∞ occur exactly for cycles that have no

corresponding boundary even in the terminal level of the complex). Hence, simply

knowing the bases of tZn and tBn provides enough information to deconstruct the

persistent homology of the complex. This completes the intent of using the algorithm.

Finally, it should become apparent that the algorithm could have been performed

simply on the differentials ∂n and ∂n+1 (of the terminal complex) from the start to

produce the sought-after consistent results. This final remark, completely specifies

the algorithm and its correctness. We summarize it in pseudocode on the next page;

note that “partner” refers to the cycle-boundary correspondence.
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Data: an n× n (differential) matrix D = (D1 . . . Dn)
Result: returns array partner[•], upper uni-triangular n× n matrix U

1 procedure PairCells()
2 partner[n]=(0, . . . , 0) ; // row positions of each column pivot

3 U = In ; // change of basis, will satisfy D′ = DU is reduced

4 foreach 1 6 j 6 n do
5 EliminateBoundaries(j);

6 if DUj 6= ~0 then
7 i=Youngest(j);
8 partner[j]=i;

9 return ; // see output

10 procedure EliminateBoundaries(j)

11 while DUj 6= ~0 do
12 i=Youngest(j);
13 if partner[i] 6= 0 then Uj = Uj + Upartner[i];
14 else return; // pivot has been found

15 return ; // at this point, Us is a cycle

16 function Youngest(c)
17 p=“LastNonzeroPosition”(DUc) ;
18 return p ;

Algorithm 1: Modified ZC algorithm in matrix form (over Z2), from [60].

This powerful algorithm was originally published by Afra Zomorodian and Gunnar

Carlsson in their seminal paper [60]. Its original intent was to explicitly calculate the

barcode of the homology sequence for a complex and some of its representatives, but

has later been extended/included in other algorithms that require a consistent way

to work with bases across multiple levels in some filtration(s). Some of these will be

discussed in future chapters.

2.3.3 Stability in Persistence Homology

The purpose of the discussion up until now was to show how a persistence vector space

•V can be generated to abbreviate the structure of some point cloud data, followed

by how to calculate its unique barcode B(•V ) via a series of matrix operations – we
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already knew this was possible from the discussion in 2.2.3. This, in theory, should

allow us to extract distinguishable “patterns”, with certain “prominence” that can be

quantified using the barcode. In practice however, there are potential complications.

In the course of any experiment, the process of gathering data is naturally suscep-

tible to small perturbations, even in a controlled environment. This can be attributed

to various factors including instrumental error, imprecision in the model and hypothe-

ses used, and perhaps partially due to the nature of the experiment itself. As such,

different iterations of even the most well-executed experimental setups will produce

data sets with some degree of deviation from each other. Naturally, this carries over

to every step in the execution of persistent homology for each dataset resulting in two

barcodes, each an invariant of either set under vector space isomorphisms. It should

not be a surprise that the two barcodes in this setup are very likely to be different

– yet on the other hand, the expectation is that small perturbations in data sets

shouldn’t drastically affect their underlying homological structure, thus raising some

questions. Are intervals “stable” under continuous changes? Overall, are barcodes

“robust” when perturbed? How “much” perturbation in a data set can we reasonably

allow; and even then, how do we actually relate the barcodes of tightly-comparable

data sets? Ultimately, we come to realize that being able to produce an invariant like

this is a pretty low “benchmark” in practice.

Fortunately, the stability theorem puts these questions (about the validity of using

barcodes as meaningful predictors of data features) to rest. An inherent part of its

mechanism is the notion of distance – not only for measuring the deviation of data sets

(commonly via mean square error, or the chessboard metric), but also that of barcodes
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themselves. In previous sections we described something like this with the bottleneck

distance, in the process of calculating which we also find a “least-energy” matching

between intervals of the two barcodes. In particular, a small bottleneck distance

implies that any pair of matched intervals have their respective birth and death indices

be approximate to each other (while simultaneously discarding short intervals from

both sets as “insignificant”). So at the very least, complexes with similar barcodes

have relatable “prominent” homological features (associated to intervals of significant

length which are matched); as it also turns out, this relatability is made explicit via

induced morphisms of such complexes.

The crucial thesis of the stability theorem is that this relatability is tightly con-

trolled by the geometry of the complexes themselves. The original result [15] was ac-

tually stated primarily for filtrations of a topological space X induced by the level sets

of some continuous real-valued functions f and g; here the distance used was the L∞

norm on the function space ofX, defined by (f, g) 7→ ||f−g||∞ := supx∈X |f(x)−g(x)|.

Theorem 2.21. Let X be a triangulizable space and f, g : X → R be continuous

tame functions. Then:

dB(B(•F ),B(•G)) 6 ||f − g||∞

where •F and •G are the sequences of homology spaces induced by the filtration of

levels sets of f and g, respectively.

Theorem 2.21 was originally proved by carefully separating box-like sets out of

the persistence diagrams of •F and •G (whose bounds were subject to slight per-

turbations), from which inequalities could be produced that bound their cardinality

by each other; controlling the perturbation by the topological proximity of f to g
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(which involved convex approximations) then established the result. This idea was

further refined in [13] to introduce the notion of ε-interleavings of spaces that could

be interpolated, exhibiting a certain density with respect to the interleaving metric

(a detailed proof of which can be found in [14]); the paper also generalized the orig-

inal (“strong”) interleaving to “weak” interleavings (where index sets other than R

are considered), although utility of strong interleavings still gets greater attention in

practice.

A simple proof of Theorem 2.21 uses the Isometry Theorem. Letting ||f−g||∞ = ε,

it readily follows that the sublevel sets of f and g are ε-interleaved: for any t ∈ T :

f−1
(

(−∞, t]
)
⊆ g−1

(
(−∞, t+ ε]

)
and g−1

(
(−∞, t]

)
⊆ f−1

(
(−∞, t+ ε]

)
In [5], it is then shown that the homology spaces •F and •G are ε-interleaved and

hence dI (•F, •G) 6 ε. The statement of Theorem 2.19 then concludes the proof. It

should be noted that until recently [38], proofs of the stability theorem involved a

weaker form of the isometry theorem, the algebraic stability theorem: namely, the

1-Lipschitz continuity of the bottleneck metric with respect to interleaving distance.

While this can be used instead of Theorem 2.19, the latter result implores a deeper

categorical relation between persistence vector spaces and their persistence diagrams

by constructing an explicit correspondence between creator/destroyer pairs of interval

modules. This structural hallmark deserves to be fully disclosed, later.

It remains to apply Theorem 2.21 in the context of finite point cloud data –

specifically, those point clouds that are embedded in Euclidean space Rm and give

rise to either a Rips or a C̆ech filtration. In order to quantify the discrepancy between

two point clouds, one needs to use a metric on sets. The following is customarily used:
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recall that the Hausdorff distance dH(A,B) of two subsets A and B in a metric space

(with metric ρ) is defined as

dH(A,B) = max

{
sup
a∈A

inf
b∈B

ρ(a, b) , sup
b∈B

inf
a∈A

ρ(a, b)

}

This becomes zero if and only if A = B. Now suppose you have two point clouds

X and Y that are subsets of Rm, with ρ = ρ2 given by the Euclidean norm. if KX and

KY are their respective m-convex hulls, then the polarization identity on ρ2 implies

that dH(KX , KY ) = dH(X, Y ); in fact, if ρ is given by any other vector space norm

then from the basic methods of convex geometry one can show that the dH-distance

between X and Y is an upper bound for the dH-distance of their convex hulls. Since

the Rips and C̆ech schemes each produce filtrations of some triangulations on the

convex hulls of X and Y , this shows it is sufficient to continue using the measurement

dH(X, Y ) while working the simplicial complex at hand.

Suppose that X and Y have the same cardinality and that the Hausdorff dis-

tance between them is sufficiently small (ε > 0) for there to be an induced pairwise

bijection between points of X and of Y . Then a triangulation of KX induces a

corresponding triangulation of KY , and vice versa. Using a Rips or C̆ech filtration

scheme produces level functions λX and λY on respective simplicial complexes so

that the positive difference in the levels of corresponding 1-simplices is at most ε.

Higher-dimensional simplices behave similarly; the positive difference in levels of cor-

responding n-simplices is at most ε in the Rips scheme, and at most ε
√

2 in the C̆ech

scheme. For the purpose of simplicity, it is sensical to consider that the two filtered

complexes arise as filtrations (leveled by functions λX and λY ) of a single “common”

simplicial complex.
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The next result then allows us to view this setup in terms of sublevel set filtrations

on their “common” simplicial complex.

Lemma 2.22. Let K be a finite simplicial complex. Suppose that 1
•K and 2

•K are

two filtrations of K (over a discrete set T ⊂ R) with associated level functions

λ1, λ2 : K → T , given by λi(σ) = min{t ∈ T : σ ∈ i
tK} (for every face σ ∈ K). Then

there exist tame functions f1, f2 : |K| → R such that f−1
i

(
(−∞, t]

)
is homotopy-

equivalent to | itK| for all t ∈ T and maxc∈|K| |f1(c)−f2(c)| = maxσ∈K |λ1(σ)−λ2(σ)|.

Proof. Let K ′ be a subdivision of K that contains a 0-simplex sampled from the

interior of |σ| for every face σ of K, such as its barycenter. Then λ1 and λ2 each induce

(trivially) a unique map l1, l2 : V (K ′)→ T , where V (K ′) is the vertex set of K ′. Let

f1 : |K ′| → R and f2 : |K ′| → R be the affine extensions of each respective V (K ′)→ T

to the geometric realization |K ′| of K ′; that is, fi(x) =
∑

v∈V (σ) τv(x)li(v) where

x =
∑

v∈V (σ) τv(x)v for some x ∈ σ ∈ K ′ and
∑

v∈V (σ) τv(x) = 1 (this assignment is

well-defined since K ′ is a simplicial complex).

It is straightforward to verify that each fi is continuous on |K ′| ' |K| and is thus a

tame function by Theorem 2.20(1). The homotopy equivalence between f−1
i

(
(−∞, t]

)
and | itK| holds since the natural embedding of the latter into |K ′| is a deformation

retract of the former – it is possible to “retract” the points on the topological boundary

of f−1
i

(
(−∞, t]

)
to “adjacent” points on the boundary of | itK| by a collection of

uniformly-parametrized paths in f−1
i

(
(−∞, t]

)
.

Finally, the max and min values of f1(x) − f2(x) =
∑

v∈V (σ) τv(x)
(
l1(v) − l2(v)

)
on |σ|, for any face σ of K ′, occur at V (σ). Hence, maxc∈|K′| |f1(c) − f2(c)| equals

maxc∈V (K′) |f1(c)− f2(c)|, which is trivially equal to maxσ∈K |λ1(σ)− λ2(σ)|. Result
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follows since |K ′| ' |K|.

This leads us to arrive at two conclusions. Firstly, we can settle the pressing

question on the stability of persistent homology when working with some common

filtrations in Euclidean space – at least, when some conditions are met. Specifically,

for N -point clouds X and Y whose Hausdorff distance dH(X, Y ) = ε is sufficiently

small, Theorem 2.21 guarantees that for a chosen filtration scheme the bottleneck

distance between the barcodes associated withKX andKY is a robust metric; recalling

the discussion in section 2.2.4, there exist ε-matchings of barcodes under the Rips

scheme and ε
√

2-matchings of barcodes under the C̆ech scheme.

If this (conceivably stringent) requirement on the point clouds X and Y is not

met, one may perform additional preprocessing of the data by available techniques.

When X and Y are not of the same size, one may attempt to construct witness

complexes of X and Y , whereby the datasets are resampled to reduce clustering of

entries; see [54] for the original paper. On the other hand, when working with noisy

data X and/or Y it is generally allowable to perform techniques by which the data

is “smoothed out”, typically by statistical kernels; see [6] for a recent study of this

approach. Another issue to be wary of is the sensitivity of the triangulations used

on KX and KY to small perturbations overall. In particular, it is known that the

Delaunay triangulation (which is often used in practice) may change considerably

even for small perturbations of a dataset; some proposals [7] attempt to resolve this

currently.

Secondly, Lemma 2.22 shows that the level functions λ associated with (tame)

filtered spaces carry enough information to produce meaningful summaries (barcodes)
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of topological data. So, we shall set the geometrical aspects of these structures aside

and refocus on them as tempered persistent vector spaces – with a heavy emphasis

on concrete vector space computations.

54



Chapter 3

Category Theory

So far in our overview, we were able to derive notions from persistent homology via

rigorous calculations, going through many constructions before finally obtaining a

summary of the data as a barcode. Category theory allows us to then speak of these

constructions in general terms, with special focus given to how they compare to each

other. Classical texts on the subject include [40] and [1].

An archetypical category is Set, a proper collection consisting of all conceivable

sets and a collection of all ordinary functions/maps between them. With this minimal

description, we will see that many common set operations can be established including

products, isomorphisms, and equivalence relations. However, normally when invoking

sets, we exercise these operations on its individual elements or subsets; in category

theory, there is no natural notion of “elements” that “belong” to a set.

3.1 General Introduction

Formally, a category C consists of a collection of objects and a collection of morphisms

between each ordered pair of objects. By analogy of objects to sets and morphisms

to functions, a morphism f going from A to B will be denoted as f : A → B, with

HomC(A,B) often used to denote the collection of all such morphisms. Consecutive
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morphisms may be composed : given objects A,B,C and morphisms f : A → B ,

g : B → C, composition gives a unique morphism (g ◦ f) : A → C. We only require

that the composition law obeys the associativity property: (h ◦ g) ◦ f = h ◦ (g ◦ f),

for any morphisms f : A→ B , g : B → C , and h : C → D. Finally, we assume that

every object admits a unique identity morphism 1 = 1A : A→ A such that: f ◦1 = f

and 1 ◦ g = g, for any morphisms f : A→ B, g : C → A. This is generally as far as

the ongoing analogy extends.

Categories can be constructed from an existing category C. One elementary way

involves taking a category D whose objects form a subcollection of objects in C, and

whose every morphism f : A → B also appears as a morphism in C. Then D is a

subcategory of C (written D ⊂ C) if the composition law of D is also consistent with

the composition law of C. Many categories can be formed this way; for instance, one

may take the subcategory set of Set consisting of finite sets as its objects. Another

category that is naturally constructed from C is the opposite (or dual) category Cop,

containing all the objects of C and “reversing” every morphism f : A → B in C to

get f op : B → A in Cop; however, this will not be used in our discussion.

The intention here is to restate mathematical notions solely using the above lan-

guage of objects and morphisms; such notions are then “categorical”. For instance,

with allusion to injective and surjective set functions, we define monomorphisms (or

simply, monics) and epimorphisms (or simply epics). We say f : A→ B is monic if

the equation f ◦ g = f ◦h only holds when g = h (given any g, h : C → A). Similarly,

we say f : A → B is epic if the equation g ◦ f = h ◦ f only holds when g = h

(given any g, h : B → C). In a related vein, some morphisms f : A→ B admit some
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g : B → A such that g ◦ f = 1A and f ◦ g = 1B; this f is called an isomorphism,

and g is its inverse (it is in fact unique). This allows us to talk about isomorphic

objects within a category. We remark that any isomorphism is both monic and epic,

although (outside of Set) the converse may be false.

Another example concerns the existence of certain initial and terminal objects.

Given any object A in category C, an initial object X admits exactly one morphism

X → A, and a terminal object Y admits exactly one morphism A→ Y . In Set, the

empty set ∅ = {} is the only initial object with the morphism being set inclusion.

On the other hand, any set with just one element in Set is a terminal object; given

a set A, we define the morphism to be the map sending every element of A to the

only value of the singleton set. By contrast, take a look at the category Vect(F)

consisting of all conceivable vector spaces (objects) and all the linear maps between

them (morphisms), over some fixed field F. Every vector space has a unique zero-

dimensional subspace 〈0〉; this subspace acts as both an initial and a terminal object

for vect(F), since 〈0〉 → V and V → 〈0〉 are clearly unique! An object acting both

as an initial and a terminal object in a category is rightfully called a zero object.

One might be lightly stricken by this contrast between Set and Vect(F) upon the

realizing that the latter is a subcategory of the former. Indeed, one might elaborate

that Set has “more morphisms” than Vect(F), ensuring that its terminal and initial

objects are “distinct enough” (while it’s also true that the empty set is not an object

of Vect(F) to begin with). This should highlight the benefit of considering these two

as separate categories, in order to emphasize particular facts about each.

Many other advanced notions can be described in more or less the same manner
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by which some special objects and morphisms can be canonically identified in C, after

satisfying some existence and uniqueness conditions. Commonly, diagrams are em-

ployed to demonstrate these notions in a neat and minimal way, by focusing attention

to some subcategory of C whose objects and morphisms can be indexed by proper sets

(what is called a small category). If the index sets are finite (or at least countable),

then the diagram may be represented by a graph. For example, the following diagram

describes a zero object and zero morphisms 0V,W : V → W in Vect(F):

V W

Z

!

0V,W

!

Figure 3.1: Here, V andW are any two vector spaces, Z is a representative zero object,
and the composition law defines 0V,W . The exclamation signs are conventionally used
to indicate the uniqueness of the given morphism.

A word of caution is due, however – our ability to do prescribe uniqueness of

objects has an inherent limitation. Namely, a categorical property that is satisfied

by some object will also be satisfied by all other objects isomorphic to it; for this

reason, it is common to clarify that the existence and uniqueness of a certain object

holds up to isomorphism. For example, note that every vector space (over F) has a

zero-dimensional subspace but not all vector spaces are generated by elements from

the same universal space; that is to say that a zero object 0 does not have some

singular presence among all objects of Vect(F), and can only be represented by a

selection of some zero-dimensional vector space (among all its isomorphic copies).

We’d prefer to avoid this technicality with morphisms, which is possible in many

cases where the category can be shown to be locally small – that is, for any two
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objects A and B the collection Hom(A,B) is a proper set. This allows to refer to

morphisms as concrete elements, and for any two isomorphic objects A and B we

derive natural bijections in Hom(A,C) ' Hom(B,C) and Hom(C,A) ' Hom(C,B)

(for any object C). Indeed, it is especially evident with zero objects as every vector

space V admits unique maps 〈0〉 → V and V → 〈0〉.

The ability to declare that some prescribed morphisms in a diagram are unique is a

crucial component for stating universal morphisms that exhibit a universal property.

These will be important later for defining several familiar objects such as kernels,

cokernels, pullbacks, and direct sums of mathematical objects.

3.1.1 Functors and Equivalences

A functor F between two categories C and D (written F : C → D) assigns to every

object X from C an object F(X) of D. Every functor F : C → D is assumed to

be one of these two types: covariant functors assign to every morphism A → B

a morphism F(A) → F(B), while contravariant functors assign the morphism to

some F(B) → F(A). Furthermore, the composition laws need to be compatible: if

f : A→ B and g : B → C, then g ◦f is assigned to F(g)◦F(f) by covariant functors

and to F(f) ◦ F(g) by contravariant functors. Lastly, a functor F must preserve

identity morphisms: for any object A ∈ C, if 1A : A → A and 1F(A) : F(A) → F(A)

are identity morphisms then F(1A) = 1F(A).

The presence of a functor allows us to speak of comparable structures within

separate categories. In our case, covariant functors shall be predominantly used.

Example 3.1. Consider Vect(F) → Set, assigning any given vector space to its

underlying set and every linear map to its underlying function. It is readily verified
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that this seemingly natural operation is a covariant functor, which we refer to as the

forgetful functor between Vect(F) and Set.

More generally, a category C is called concrete if there exists a covariant function

C → Set such that such that any two distinct morphisms in f, g : A → B in C are

assigned to distinct morphisms in Set (that is, the functor maps the Hom-sets of C

injectively to the Hom-sets of Set); the functor between them can be referred to as

a faithful embedding. Thus, the objects of a concrete category are endowed with an

underlying set structure and its morphisms behave like functions on the set.

Example 3.2. Let vect(F) be a subcategory of Vect(F) whose objects are finite-

dimensional vector spaces with linear maps as morphisms between them. Then we

have an “inclusion” functor vect(F)→ Vect(F), mapping objects and morphisms of

the subcategory to themselves as constituents of the larger category. This is clearly

a covariant functor that maps Hom-sets in vect(F) surjectively to their respective

Hom-sets in Vect(F). However, there is no functor Vect(F)→ vect(F) that doesn’t

assign all objects to 〈0〉.

In the last example, it can be said that vect(F) is a full subcategory of Vect(F),

since the Hom-sets in vect(F) are identical to their assigned Hom-sets in Vect(F).

The functor between them can be referred to as a full embedding.

Every category C always admits an identity functor 1C : C → C that simply assigns

every object A to A and every morphism A→ B to itself. Composition of two functors

is also defined in a natural manner. With these notions, it is possible to describe the

notion of functor “invertibility” – specifically, two functors F : C → D and G : D → C

are inverses of each other if their composition yields G ◦ F = 1C and F ◦ G = 1D. In
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that case, the functors F and G are both isomorphisms of categories C and D, which

themselves are simply referred to as isomorphic categories.

An isomorphism of categories implies that both categories are indistinguishable

by the behavior of their objects and morphisms. It is a very strong condition that

is often unnecessarily restrictive. In particular, one often doesn’t need the ubiquity

of isomorphisms that any given object has within a category (as hinted at in the

introduction), for any one of those representatives is all it takes to demonstrate a

property of interest. This leads us to adopt instead the concept of “equivalence” as

a more effective concept of categorical similarity.

Example 3.3. Let E1 be a category with one object C and one morphism 1C : C → C;

let E2 be a category with two objects A and B, whose morphisms include the identity

morphisms 1A, 1B as well as some f : A → B and g : B → A – necessarily, it must

hold that g ◦ f = 1A and f ◦ g = 1B (that is, A and B are isomorphic in E2).

E1 =
{

C 1C

}
, E2 =

{
A B1A

f

1B

g

}

There are only two choices of functors E1 → E2, which assign C to either A or

B. On the other hand, there is only one functor E2 → E1, assigning A and B

to C and all four morphisms of E2 to 1C . In either case, it does not hold that

(E1 → E2) ◦ (E2 → E1) = 1E2 . Hence the two categories are not isomorphic.

First, let us revisit categorical diagrams. Let J be a small category, meaning that

its objects are elements of some set J and ∀x, y ∈ J the collection Jx,y = Hom(x, y)

of morphisms also is a set; when J and all the Hom-sets of J are finite (or at least

countable) it is common to represent J as a directed graph (whose nodes represent
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objects and vertices represent edges). A diagram of shape J in a category C is then

a choice of a covariant functor J → C. For example, the diagram in figure 3.1 has

(that is, indexed by) a shape with three objects J = {1, 2, 3} and three morphisms

{1→ 2, 1→ 3, 2→ 3} while the function maps 2→ 〈0〉 and maps 1, 3 to a choice of

two vector spaces V,W .

What if there are two such diagrams in a category? That is, when J is a small

category and there are two functors F ,G : J → C, it is of interest to determine

whether the induced diagrams in C are “consistent”; a reasonable way to estab-

lish this is by seeking a natural transformation between F and G, a sort of “mor-

phism” F ⇒ G between objects of one diagram to those of the other. Concretely,

the transformation assigns to every object x ∈ J a morphism ηx : F(x) → G(x)

in C such that: for all morphisms x → y in J , we have the commutation relation

ηy ◦ F(x→ y) = G(x→ y) ◦ ηx. This definition easily extends to the definition of a

natural transformation η between functors F ,G : C → D of any two categories, and

can be denoted η : F ⇒ G.

F(x) F(y)

G(x) G(y)

ηx ηy

Figure 3.2: For any morphism x→ y in a category C, there is a commutation relation
that a natural transformation η : F → G must satisfy, which is depicted in the
diagram above.

A natural isomorphism between functors F and G is a natural transformation

F ⇒ G that induces an isomorphism F(x) ' G(x) for all objects x in the source

category; one then typically writes F ≈ G. It is quick to verify that this is symmetric

relation, i.e. F ≈ G if and only if G ≈ F .
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We can now talk about equivalence, as opposed to strict isomorphism, between

categories. Two functors F : C → D and G : D → C are equivalences of categories if

G ◦F ≈ 1C and F ◦G ≈ 1D. This is a weakening of categorical isomorphism, because

we only require that the composition of functors C → D → C and D → C → D

can be (naturally) transformed to the respective identity functors 1C : C → C and

1D : D → D, and vice versa.

Indeed, consider again the categories E1 and E2 in Example 3.3. For any choice of

functor E1 → E2 we have that (E2 → E1)◦(E1 → E2) = 1E1 , while (E1 → E2)◦(E2 → E1)

assigns both A and B to either A or B; suppose it’s the former. Then by assigning

ηA = 1A and ηB = f , we get a transformation η between (E2 → E1)◦(E1 → E2) and 1E1 ;

moreover, these functors are naturally isomorphic since ηA and ηB are isomorphisms.

Hence, E1 and E2 equivalent categories. This may have already been expected after

our previous discussion, since both categories essentially describe a singleton object

equipped with the identity map – only E2 includes two isomorphic copies of it. In fact,

it is readily verified that E1 is not equivalent to any subcategory of E2 that contains

both A and B but excludes any (or both) morphisms f and g.

Example 3.4. Consider Hom(•,F) : vect(F) → vect(F), where a vector space

V over field F is assigned to its dual space Hom(V,F) = V ∗ (the space of lin-

ear functionals V → F) and morphisms φ : V → W are taken to their adjoint

Hom(φ,F) = φ∗ : W ∗ → V ∗ (defined by setting φ∗(g) = g ◦ φ for any g : W → F).

This is readily verified to be a contravariant functor, and may be composed with itself

to obtain the assignment of every finite-dimensional vector space V with its double

dual V ∗∗ = (V ∗)∗. It is known from basic linear algebra that V ' V ∗∗, via the map
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x ∈ V 7→ Φx ∈ V ∗∗ where Φx(f) := f(x) for any f ∈ V ∗. This induces an equivalence

of vect(F) to its opposite category, a phenomenon known as dual equivalence.

Oftentimes, another criterion is used to establish equivalence of categories C and

D. Recall that a functor F : C → D is faithful if for any two objects A,B ∈ C

the assignment HomC(A,B) → HomD(F(A),F(B)) is an injective map, and that F

is full if HomC(A,B) → HomD(F(A),F(B)) is a surjective map. Furthermore, we

define a functor F : C → D to be dense if every object D ∈ D is isomorphic to an

object of the form F(C) for some object C ∈ C.

Theorem 3.5. A functor F : C → D induces and equivalence of categories if and

only if F is faithful, full, and dense.

While this is a convenient criterion when we are solely interested in demonstrating

that two categories are equivalent, because it only requires to demonstrate the exis-

tence of one functor with the properties in Theorem 3.5. At other times though, it is

worthwhile to specify a complementary functor G : D → C for transferring diagrams

in one category to another in explicit form.

3.1.2 Notable Categorical Properties and Elements

With the ability to declare diagrams in any given category, we can easily describe

several other properties and constructs in category theory. As before, these will be

motivated by familiar constructions from the categories Set or vect(F), while keeping

in mind that some of these constructions may or may not exist in a given category.

The notion of a zero object 〈0〉 has already been described. Furthermore, for

any objects A,B in a category C with a zero object we have unique zero morphisms
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0A,B : A → B and 0B,A : B → A given by the compositions A → 〈0〉 → B and

B → 〈0〉 → A (see figure 3.1). It should readily follows (from the commutativity of

diagrams) that composition with a zero morphism produces another zero morphism;

that is, (B → C) ◦ 0A,B = 0A,C and 0B,C ◦ (A → B) = 0A,C for any objects A,B,C

and some morphisms A→ B and B → C. When no ambiguity occurs, we will simply

write 0 = 0A,B any two objects A and B. This immediately allows one to speak of

kernels and cokernels associated to morphisms in C.

The notion of a kernel is common to categories whose objects possess an algebraic

structure, via some binary operation. In vect(F), the kernel of a linear map f :

V → W is typically defined as the subspace f−1(0) = {x ∈ V : f(x) = 0} of V ;

equivalently, it is the largest subspace of V on which the map f and the zero map

0V,W : V → W coincide. Drawing from this, the kernel of a morphism f : V → W

can be described categorically as an object K outfitted with a morphism i : K → V

such that f ◦ i = 0 and also: for any other choice of K ′ and i′ : K ′ → V such that

f ◦ i′ = 0, there is a unique morphism u : K ′ → K such that i′ = i ◦ u. See the

commutative diagrams below.

K V

W

i

0
f

K ′

K V

W

i′

0

!u

i

0
f

Figure 3.3: The term “kernel” refers to the object-morphism pair (K, i), not just K
itself. The left diagram demonstrates the basic categorical function of the kernel,
while the right diagram portrays the universal property that this pair satisfies.

The universal property essentially guarantees that the kernel is uniquely defined
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up to isomorphism. Indeed, the existence of u : K → K ′ and u′ : K ′ → K would

imply that i = i◦(u◦u′) and i′ = i′◦(u′◦u), while the uniqueness of such maps implies

u ◦ u′ = iK and u′ ◦ u = iK′ ; the two objects K and K ′ are canonically isomorphic, as

u and u′ are the “preferred” morphisms between them. Furthermore, the universal

property can be used to show that the morphism i : K → V is monic, and may thus

be understood as akin to the inclusion f−1(0) ⊆ V of vector spaces.

Similarly, cokernels manifest in a category as object-morphism pairs that get as-

sociated to morphisms. The cokernel of a linear map f : V → W is defined as the

quotient vector space W/f(V ), where f(V ) ⊆ W is the image of f ; recall that there

is a canonical projection x ∈ W 7→ x + f(V ) ∈ W/f(V ). So in categorical terms,

the cokernel of a morphism f : V → W consists of an object C and a morphism

q : W → C such that q ◦ f = 0 and also: for any other morphism q′ : W → C ′ such

that q′ ◦ f = 0, there is a unique morphism v : C → C ′ such that q′ = v ◦ q. See the

commutative diagrams below.

As is the case with the kernel, the universal property guarantees the cokernel to be

unique up to isomorphism, and in fact there is a canonical isomorphism between any

representative objects C and C ′ of a cokernel. Furthermore, the universal property

C W

V

q

f
0

C ′

C W

V

!v

q

q′

f
0

0

Figure 3.4: Again, “cokernel” refers to the object-morphism pair (C, q), not just C
itself. The left diagram demonstrates the basic categorical function of the cokernel,
while the right diagram portrays the universal property that it satisfies.
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can be used to show that the morphism q : W → C is epic, and may thus be

understood as akin to the canonical projection W � W/f(V ) of a vector space onto

its quotient.

Some authors define the kernel and cokernel of a morphism by means of equalizers

and coequalizers, respectively. To summarize, given a morphism f : V → W , its

kernel is a morphism i : K → V with f ◦ i = 0V,W ◦ i satisfying a universal property;

the cokernel of f is morphism q : W → C with q ◦ f = q ◦ 0V,W satisfying its own

universal property. Generally, (co)equalizers may not all exist even if (co)kernels do.

We move on to products and coproducts of objects – these are ubiquitous opera-

tions that have recognizable analogs even in the category Set.

∏
i∈I Xi

Xk

πk

∏
i∈I Xi

U Xk

πk!f

fk

Figure 3.5: The term “product” includes the object
∏

i∈I Xi and all the canonical
projections πk. On the left diagram is the basic categorical structure of the product,
while on the right diagram is its universal property.

For two sets A and B, their product customarily refers to the Cartesian product

A × B = {(a, b) : a ∈ A, b ∈ B}; here, recall that there exist so-called coordinate

maps (a, b) ∈ A×B 7→ a ∈ A and (a, b) ∈ A×B 7→ b ∈ B and that any two functions

C → A and C → B can equivalently be specified as a unique function C → A × B.

To generalize, products
∏

i∈I Xi can be defined for any arbitrary collection {Xi}i∈I

of sets (while quietly putting down oppositions to the axiom of choice), which owns

the same properties. This can be interpreted into categorical language, so the product

of a collection of objects {Xi}i∈I is defined to be an object
∏

i∈I Xi that is equipped
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with morphisms πk :
∏

i∈I Xi → Xk (∀k ∈ I) called canonical projections such that:

for any object U and a collection of morphisms fk : U → Xk there exists a unique

morphism f : U →
∏

i∈I Xi such that fk = πk ◦ f . See Figure 3.5.

∐
i∈I Xi

Xk

ιk

∐
i∈I Xi

V Xk

!g

gk

ιk

Figure 3.6: The “coproduct” includes the object
∐

i∈I Xi and all the canonical inclu-
sions ιk. On the left diagram is the basic categorical structure of the coproduct, while
on the right diagram is its universal property.

The coproduct of a collection of sets {Xi}i∈I nominally refers to their disjoint union∐
i∈I Xi = {(i, x) : x ∈ Xi}; here, there exist maps (sometimes called embeddings)

Xk →
∐

i∈I Xi simply taking x 7→ (k, x). Categorically then, the coproduct of a

collection of objects {Xi}i∈I is defined to be an object
∐

i∈I Xi that is equipped with

morphisms ιk : Xk →
∐

i∈I Xi called canonical inclusions (∀k ∈ I) such that: for any

object V and a collection of morphisms gk : Xk → V there exists a unique morphism

g :
∐

i∈I Xi → V such that gk = g ◦ ιk. See Figure 3.6.

Similarly to the case with kernels and cokernels, the universal properties of prod-

ucts and coproducts necessarily guarantee that their underlying objects are uniquely

identifiable via a canonical isomorphism. In some categories, the canonical morphisms

πk and ιk are actually epics and monics (respectively).

There is a parallelism in the way that these constructs have been defined. We

begin with a diagram D in our category C, then introduce an object Z with selected

morphisms ϕ = {ϕX}X∈D such that the resulting diagram commutes. In two cases

of interest, where the morphisms in ϕ are all either of the form ϕX : Z → X or
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ϕX : X → Z, we denote the resulting diagrams as D�(Z, ϕ) or D�(Z, ϕ) respectively,

which are usually called the cone or co-cone of Z to/from D; these describe the basic

structure and function of the selected object Z with respect to D.

The exceptionalism of one of these diagrams D�(Z, ϕ) or D�(Z, ϕ) over the others

is then warranted in the following way: for any other cone D�(Z ′, ϕ′) (or co-cone

D�(Z ′, ϕ′)) that there exists a unique morphism u : Z ′ → Z (or u : Z → Z ′)

such that ϕ′X = ϕX ◦ u (or ϕ′X = u ◦ ϕX) for all X ∈ D; equivalently, there is

a unique natural transformation D�(Z ′, ϕ′) ⇒ D�(Z, ϕ) or D�(Z, ϕ) ⇒ D�(Z ′, ϕ)

that restricts to the identity transformation on subdiagram D to itself. This property

that holds for an exceptional cone D�(Z, ϕ) or co-cone D�(Z, ϕ) is what is usually

meant by a universal property, and the object Z with morphisms ϕ is called the limit

or colimit of D, respectively.

Thus kernels and products can be defined by limits, while cokernels and coprod-

ucts can be defined by colimits. Example 3.6 suggests another example of common

constructs from categorical theory that can be defined this way.

Example 3.6. For a pair of morphisms f : A → C and g : B → C we define their

pullback P̂ to be the limit of the diagram D = {A f→ C
g← B}; of the diagrams below,

the left portrays D�(P̂ , ·) and the right portrays the universal property of P̂ .

P̂ A

B C

f

g

P̂ ′

P̂ A

B C

!u

f

g

Similarly, for a pair of morphisms f : A → B and g : A → C we define their
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pushout P̌ to be the colimit of the diagram D = {B f← A
g→ C}; of the diagrams

below, the left portrays D�(P̌ , ·) and the right portrays the universal property of P̌ .

A B

C P̌

f

g

A B

C P̌

P̌ ′

f

g

!u

The last topic to cover here doesn’t involve the existence of certain constructs

within a category, but rather constructing novel categories altogether. One may

already recall from the beginning of the introduction some methods for constructing

categories from existing ones.

Given a (locally small) category C, suppose that for any two objects X and Y

there is a congruence relation ∼ on the morphism set HomC(X, Y ); that is, ∼ is

reflexive (f ∼ f , ∀f : X → Y ), ∼ is symmetric (if f, g : X → Y satisfy f ∼ g then

g ∼ f), and transitive (if f, g, h : X → Y satisfy f ∼ g and g ∼ h then f ∼ h).

Each of these relations define equivalence relations on every Hom-set of C, but they

won’t be accordant to the overall structure of C unless they satisfy the following: if

f, g : X → Y and h, k : Y → Z are any morphisms such that f ∼ g (in HomC(X, Y ))

and g ∼ h (in HomC(Y, Z)), then f ◦ h ∼ g ◦ k in HomC(X,Z). Then the relations ∼

define a (categorical) congruence relation on C.

The quotient category of C with respect to ∼ (denoted C/ ∼) is a category whose

objects are exactly the objects of C and whose morphisms are equivalence classes

[f ]∼ : X → Y for every f : X → Y in C. In essence, we are erasing the distinction

between some morphisms if they are equivalent with respect to ∼. As an immediate
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effect, one may verify that X ' Y in C only if X ' Y in C/ ∼ (but not vice versa).

A way to obtain such a category from C is to apply a functor F : C → D. Then

one may declare that f ∼ g in HomC(X, Y ) if and only if F(f) = F(g); one readily

checks that this is a congruence relation on HomC(X, Y ) and that the equivalence

relation preserves the composition law on C. Moreover, every congruence relation ∼

on C may be obtained in such a way: there is a functor C → C/ ∼ that sends objects

X 7→ X and sends morphisms f 7→ [f ]∼. This will be utilized in section 3.3.2.

3.1.3 Relevant Examples, as used in literature

In this section, we describe some of the more common categories that occur in dis-

cussions on persistent homology.

The category Set has already been mentioned as a template for understanding

the very notion of a category. Morphisms are given by functions beween sets, with

monomoprhisms and epimorphisms described exactly by injective and surjective maps

(respectively); going further, isomorphisms are given by bijection between sets. The

product of sets A and B is represented by the usual Cartesian product A × B with

canonical projections given by the coordinate functions of A × B onto A and B; on

the other hand, the coproduct of A and B is represented by their disjoint union AtB

whose canonical inclusions are given by a ∈ A 7→ (a, 1) ∈ AtB and b ∈ B 7→ (b, 2) ∈

AtB. But otherwise, this category lacks many other important notions discussed in

section 3.1.2 and so we shall seldom consider it further.

Another category, of which Set is a subcategory, is Rel whose objects are also the

objects of Set but with (binary) relations between sets as morphisms. Recall that a

relation ρ on sets A and B is a subset of A×B, and we may write a
ρ∼ b if and only
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if (a, b) ∈ ρ; it has a domain dom(ρ) and a range ran(ρ):

dom(ρ) ={a ∈ A : a
ρ∼ b, for some b ∈ B}

ran(ρ) ={b ∈ B : a
ρ∼ b, for some a ∈ A}

Composition of relations ρ : A→ B and τ : B → C is given by: a
τ ◦ ρ∼ c if and only

if ∃b ∈ B with a
ρ∼ b and b

τ∼ c. The identity morphism 1A on any object A is in fact

the identity relation a
1A∼ a. An interesting property apparent in Rel is that every

morphism f : A→ B naturally induces an opposite morphism f op : B → A, given by

f op = {(b, a) ∈ B × A : a
f∼ b}.

Category Rel has several important features that Set does not possess. Notably,

the empty set ∅ in this category behaves both as an initial and a terminal object, so

Rel comes with a zero object; the induced zero morphisms 0A,B : A → B are then

just null relations (a ∼ b doesn’t hold for any a ∈ A and b ∈ B). Monomorphisms

ρ : A→ B in this category satisfy dom(ρ) = A and that every b ∈ B admits at most

one a ∈ A such that a
ρ∼ b holds; epimorphisms τ : A → B satisfy ran(τ) = B and

that every a ∈ A admits at most one b ∈ B such that a
τ∼ b holds. Since isomor-

phisms are necessarily both monic and epic, these are given by bijections between

sets. Otherwise, note that f : A→ B is monic if and only if f op is epic.

The kernel of a morphism f : A→ B is given by i : K → A, where K = A\dom(f)

and i expresses the set inclusion relation K ⊆ A; this i : K → A is actually an

injective function. Similarly, the cokernel of f : A→ B is given by q : B → C, where

C = B \ ran(f) and q is the relation where b
q∼ b for all b 6∈ ran(f).

Since Set is a subcategory of Rel, it sounds sane at first to declare the product

of objects A and B to be their Cartesian product A × B and their coproduct to be
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the disjoint union A t B, with the same canonical morphisms as in Set. However,

this causes a problem: the canonical morphisms ιA : A→ AtB and ιB : B → AtB

from Set have opposite morphisms ιopA and ιopB in Rel, yet there are several morphisms

A t B → A × B that make the diagram in Figure 3.5 commute, contradicting the

uniqueness part of the universal property. As it turns out, for a finite collection of

objects {Xi}i∈I in Rel, their disjoint union
∐

i∈I Xi appears in both the product

and the coproduct of the collection! The canonical inclusions of the coproduct are

the morphisms ιk and canonical projections of the product are the morphisms ιopk .

The property that the product and coproduct are isomorphic will play a large role in

section 3.2.

Now, there is a particular subcategory of Rel that has been shown to be relevant to

persistent homology. The category Mch of partial matchings between sets originally

appeared in [19] and [4] showed that it has a connection to the calculation of the

bottleneck distance between barcodes.

Define the objects of Mch to be all conceivable sets whose morphisms are relations

ρ : X → Y such that dom(ρ) → ran(ρ) is a bijection. After careful inspection, it is

evident that Mch does not possess all products and coproducts, as per [5]. However,

similar to Rel, it does contain a zero object (the empty set), zero morphisms between

all objects, and every morphism f : X → Y has a kernel and a cokernel (which are

the same as in Rel).

Since our discussion of persistent homology began with geometric considerations,

it is reasonable to speak some about the categories that inscribe them. There is the

category SCpx that contains finite simplicial complexes K as objects which, from
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section 2.1.1, are given by a finite set V (K) and an inclusion-preserving collection F

of subsets in V (K), and with simplicial maps as morphisms between objects. There

is the forgetful functor SCpx → Set (that assigns a complex K to its vertex set

V (K)), which by Theorem 3.5 induces an equivalence between: the subcategory of

all simplicial complexes K that are isomorphic to standard simplices in SCpx, and

the full subcategory containing all finite sets in Set. Otherwise, SCpx doesn’t greatly

differ from the bigger category in terms of properties discussed thus far. Note that

the product of K and L has vertex set V (K × L) = V (K) × V (L), whose faces are

subsets f ⊂ σ × τ where σ is any face of K and τ is any face of L; the coproduct of

K and L has vertex set V (K tL) = V (K)tV (L), whose collection of faces is simply

given by the disjoint union of the collection of faces for each complex.

While methodologies differ on the subject, we have seen in the last chapter that it

is convenient to have an ordering of the elements in V (K) – the category of simplicial

complexes with totally-ordered vertices and whose simplicial morphisms are order-

preserving can then be denoted SSet. There is a forgetful functor SSet → SCpx,

but a functor in the reverse direction does not exist – simply choosing an arbitrary

order on V (K) of every complex K in SCpx will not preserve morphisms between

objects for as simple as those isomorphic to ∆1. The difference between the two

categories is also reflected in that the notion of a product in SSet is more “refined”;

for any K and L in SSet, we have V (K ×L) = V (K)×V (L) and the faces of K ×L

are subsets f ⊂ σ× τ (for simplices σ in K and τ in L) such that there is an induced

total order on the elements of f via (a, x) 6 (b, y) in f if and only if a 6 b and x 6 y.

Of course, there is also the prominent category Top, containing all conceivable
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topological spaces as objects with continuous functions between them as morphisms.

Just like in Set, the initial object is given by the empty set ∅ and the terminal object

given by a singleton space; the product and coproduct of a family of top. spaces is

are also defined, represented by the Cartesian product (with the Tychonoff topology)

and the disjoint union (the final topology with respect to its canonical inclusions),

respectively. In other applications, it is also notable that Top also contains pushouts

for any diagram X
f← A → Y of topological spaces – the resulting object is usually

denoted X ∪f Y when A → Y is subspace inclusion, representing the outcome of

“attaching” Y to X along A.

There are functors SCpx → Top and SSet → Top that send a complex K

to its geometric realization |K|, but they are defined differently. For simplicial

sets, we can identify the vertices of K with vertices on ∆N (where N is number

of vertices of K); then |K| can be defined as in section 2.1.1, while simplicial maps

ϕ : K → L are identified to the continuous functions |ϕ| : |K| → |L| that preserve

convex combinations when restricted to faces of the complexes. On the other hand,

the geometric realization of K in SCpx may be defined by taking function spaces

Conv(f) = {p : f → [0, 1]|
∑

x∈f p(x) = 1} for every face f, and endowing them with

the L∞-norm topology (or any other equivalent norm); with the obvious inclusions on

Conv(f) induced by inclusions of faces, we may attach them along common subspaces

via the pushout to form the topological space |K|. A simplicial map ϕ : K → L

produces a continuous function |ϕ| : |K| → |L| that assigns p : f→ [0, 1] to the map

x ∈ g 7→
∑

a∈ϕ−1(x) p(a) where ϕ is restricted to a map of faces f→ g.

It should be noted that the geometric realization functor behaves oddly with re-
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spect to (seemingly harmless) categorical products of simplicial complexes. Indeed,

the product ∆1 × ∆1 of standard 1-simplices has four vertices and its faces are in

one-to-one correspondence with faces in ∆3; however the topological product [0, 1]2

of two intervals is only two-dimensional! We have the formula ∆N×∆M ' ∆N+M+NM

in SCpx so |∆N | × |∆M | ' |∆N ×∆M | only when N = 0 or M = 0. Nonetheless, for

general simplicial complexes K and L the universal property of products allows for a

naturally-defined map:

|K × L| → |K| × |L|

which is generally surjective. On the other hand, the product K ⊗ L in SSet can

be shown to be well-behaved with respect to the geometric realization; that is,

|K ⊗ L| ' |K| × |L| (via the map shown above). See Proposition 1.25 of [51] for

proof and discussion.

Now, some of the most highly-studied categories in this subject are categories of

modules. In particular, we have the category Mod(R) consisting of all conceivable

(left) R-modules over a fixed ring R and all R-homomorphisms f : M → N between

any modules M and N . In this category, we re-encounter many of the constructions

from section 3.1.2. There is always a zero R-module 0 (similar to the zero vector

space), which is the zero object of Mod(R). For an R-homomorphism f : M → N ,

the kernel ker(f) is given by the submodule f−1(0) ⊆ M (equipped with the appro-

priate inclusion) and the cokernel coker(f) given by the quotient module N/f(M)

(equipped with the appropriate quotient map). Recall that an R-homomorphism

f is injective if and only if ker(f) ' 0 (as objects) and surjective if and only

if coker(f) ' 0; these are respectively the monomorphisms and epimorphisms of
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Mod(R). Moreover, every monic ϕ : K → M represents the kernel of some R-

homomorphism (given by M → M/ϕ(K)) and every epic ψ : N → C represents the

cokernel of some R-homomorphism (given by the inclusion ψ−1(0)→ N).

The product and coproduct in Mod(R) of any two modules M and N exist and

are isomorphic – both are given by the direct sum M ⊕ N of the modules. The

underlying set structure of the direct sum is the Cartesian product M × N , whose

canonical projections πM and πN are the same ones for the product in Mod(R); on the

other hand, the canonical inclusions of the coproduct as given by ιM : m 7→ m⊕0 and

ιN : n 7→ 0⊕n. It is also possible to define the span of submodules N1, N2 ⊆M to be

the subspace N1 +N2 = {a+b : a ∈ N1, b ∈ N2} of M ; note that N1⊕N2 ' N1 +N2 if

and only if N1∩N2 = 0. As a special case, consider these constructions when R = F,

a field; this is just the category Vect(F) of vector spaces over F.

It is also understood that all finitely-generated (left) R-modules form a full subcat-

egory mod(R) of Mod(R), just like vect(F) is a full of Vect(F). This subcategory

enjoys all the properties mentioned above, and is a better setting for the examples to

be discussed further.

The category Rep(Q) is closely knit to some categories of left modules (at least as

far as persistent homology goes). One may recall from section 2.2.3 that a quiver Q

possesses the structure of a directed graph, specified by some data (V,E, h, t) where

V and E are its sets of vertices and edges and h, t : E → V assign the head vertex

and tail vertex to every edge; a quiver representation X assigns a vector space X(i)

for every i ∈ V and a linear map X(e) : X(te) → X(he) for every e ∈ E, with the

resulting diagram of vector spaces commuting. Morphisms of two representations are
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natural transformations from one such diagram to another. The subcategory rep(Q)

contains finite-dimensional quiver representations. See [53] for additional details.

Example 3.7. Given a quiver Q, define an abelian group consisting of k-linear com-

binations of paths in Q, which are finite associative strings with characters in E

modulo the rules: 0e = 0 = e0, and ee′ = 0 unless te = he′; including the trivial

paths ai for all i ∈ V (with tai = i = hai) in the k-linear span and letting associative

multiplication of strings be given by their concatenation, a ring R = kQ is obtained

called the path algebra.

• Functor Rep(Q) → Mod(kQ) assigns quiver representations X of Q to the

module M spanned by the vectors of all the X(i), i ∈ V ; the ring kQ acts

on M by consecutively applying linear transformations X(ek) taken from non-

vanishing stings en · · · e1 when read right-to-left. Assign morphisms accordingly.

• Functor Mod(kQ)→ Rep(Q) assigns left kQ-modules M to Q-representations

X given by data X(i) = ai ·M for each vertex i and X(e) : X(te) → X(he)

given by x 7→ e · x for every edge e. Assign morphisms accordingly.

The two functors above yield an equivalence of categories Mod(kQ) and Rep(Q);

moreover, the two restrict to equivalences of subcategories rep(Q) and mod(kQ).

We proceed to formalize some of these notions present in categories of modules

(and their equivalent variants) further in the next section.

3.2 Abelian Categories

Quite a few of the examples that were discussed in section 3.1.3 had a common set

of desirable properties that prove to be useful in describing and computing persistent
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homology. The purpose of this section is to give a quick introduction to such categories

and some other of their known properties. For general reference, [27] is considered a

classical text on the subject, while [59] offers a more modern take.

Historically, a precursor concept for developing this was that of an enriched cate-

gory. The idea is to take a locally small category C, and reconsider each Hom-set as

an object in some other category S. This can be done to further develop the language

used to describe morphisms in a category C, and allow one to do more operations with

diagrams in C and establish its inherent properties perhaps more naturally.

While this can be a useful accompaniment, these overt constructions will be

avoided in favor of clearer exposition. An interested reader may further consult

chapter 3 of [50] for the exact details of categorical enrichment, and also [23] and

chapter 2 of [25] for a more focused discussion on monoidal categories.

3.2.1 Basics and important properties

Suppose that C is a category enriched over vect(F) in the following sense:

1. For any pair of its objects X and Y , the set Hom(X, Y ) of morphisms X → Y

is a finite-dimensional F-vector space.

2. The composition map ◦ : Hom(Y, Z)×Hom(X, Y )→ Hom(X,Z) is F-bilinear;

that is, for any constants α, β ∈ F, we have

(α · f1 + β · f2) ◦ g = α · f1 ◦ g + β · f2 ◦ g

f ◦ (α · g1 + β · g2) = α · f ◦ g1 + β · f ◦ g2

We then call C an F-linear (additive) category if C contains a zero object 0 and for

any finite collection X1, . . . , Xn of objects their product and coproduct exist and are
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isomorphic in C: this biproduct of X1, . . . , Xn will be denoted X1 ⊕ · · · ⊕Xn. Some

authors use Vect(F) to enrich C in the above definition; we won’t use that here.

More generally, C is called an additive category if condition (1) is replaced to say

that Hom(X, Y ) is Z-module and (2) only requires the equations to hold for α, β ∈ Z.

By definition, the biproduct (or direct sum)
⊕

iXi = X1⊕· · ·⊕Xn of a collection

of objects X1, . . . , Xn has both canonical inclusions ιk : Xk →
⊕

iXi and canonical

projections πk :
⊕

iXi → Xk. In a category that has all zero morphisms (such as

when they are given by a zero object), it is easy to show from the universal properties

of product and coproduct that the following relations hold:

πj ◦ ιi =

{
1 , if i = j
0 , otherwise

(3.1)

Moreover, the above relations can be used to show that: ι1 ◦ π1 + · · · + ιn ◦ πn = 1,

the identity map on the biproduct.

Morphisms f :
⊕n

i=1 Xi →
⊕m

j=1 Yj induce morphisms fij = πYj ◦f ◦ιXi of Xi → Yj;

this allows us to write f as an m×n block matrix whose block component in position

(i, j) is given by the morphism fij. Of course, if we have a collection of morphisms

g1 : X1 → Y1, . . . , gn : Xn → Yn then this induces a morphism g :
⊕n

i=1 Xi →
⊕n

j=1 Yj

that can be represented by an n × n block diagonal matrix whose component in

position (k, k) is simply gk; we write g = g1 ⊕ · · · ⊕ gn. Also, note that:

(f1 + f2)⊕ (g1 + g2) = f1 ⊕ g1 + f2 ⊕ g1 + f1 ⊕ g2 + f2 ⊕ g2

where X1

f1, f2

⇒ X2 and Y1

g1, g2

⇒ Y2. In an F-linear category, it also holds

(λ · f)⊕ g = f ⊕ (λ · g) = λ · f ⊕ g , ∀λ ∈ F
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The existence of such as a well-behaved construct for objects X and Y (par-

ticularly that X
∏
Y ' X

∐
Y ) is not too idiosyncratic. If C has all zero mor-

phisms, the universal property of the coproduct (if it exists) would produce mor-

phisms πX : X
∐
Y → X and πY : X

∐
Y → Y , which uniquely correspond to mor-

phisms i : X → X, i : Y → Y , 0 : X → Y , 0 : Y → X. Then immediately, the uni-

versal property of the product (if it exists) will produce a unique morphism

X
∐

Y → X
∏

Y

such that each ιk is uniquely determined by πk. That the biproduct exists just means

that this is an isomorphism.

That C is enriched over abelian groups (or vector spaces) can also be used to show

the existence of biproducts. Assuming that objects X and Y have a product X
∏
Y

in C, we can obtain the coproduct by taking morphisms (1⊕0) : X⊕0 ' X → X⊕Y

and (0 ⊕ 1) : 0 ⊕ Y ' Y → X ⊕ Y to be the canonical inclusions, where 1 is the

identity morphism; likewise, the product can be obtained from the coproduct X
∐
Y

in a similar fashion. Necessarily, these morphisms would satisfy the equations 3.1,

and the allow us to take a morphism f ◦(X
∏
Y → X)+g◦(X

∏
Y → Y ) to represent

X
∏
Y → Z for any diagram X

f→ Z
g← Y . That is, the existence of a product or

coproduct in an abelian-enriched category guarantees the corresponding biproduct.

Conversely, given a category C where biproducts X ⊕ Y exist for all objects X

and Y , we can actually specify a binary operation on HomC(X, Y ) so that C is an

enriched category! Note that the universal properties of the product and coproduct

(respectively) produce unique morphisms ∆X : X → X⊕X and ∆̌Y : Y ⊕Y → Y such

that (X⊕X → X)◦∆X = 1X and ∆̌Y ◦(Y → Y ⊕Y ) = 1Y ; ∆Z and ∆̌Z are called the
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diagonal and codiagonal morphisms of Z. Then for any f, g : X → Y we can define

f+g := ∆̌Y ◦(f⊕g)◦∆X . This operation is associative, commutative, and with respect

to which composition of morphisms is bilinear. However, it doesn’t quite make each

Hom-set into a Z-module (or an F-vector space), since it isn’t certain that the binary

operation + is invertible (or that composition commutes with scalar multiplication).

Hence, categorical enrichment is not necessarily a redundant assumption.

The significance of having biproducts in a category was also underscored in sec-

tion 2.2.3, where objects could be written (in some sense, uniquely) as direct sums of

indecomposable objects which are classifiable. We shall borrow this terminology for

the categorical setting. In an additive (or F-linear) category, an object X shall be

called decomposable if it is isomorphic to a direct sum Y ⊕Z of two nonzero objects Y

and Z; an indecomposable (object) is then a nonzero object that is not decomposable.

We would like to be able to express any object X as a direct sum of some collection

of indecomposables – provided that such a decomposition does exist. In addition,

we also need to be able to classify all indecomposables as well as know the extent to

which such direct sum decompositions are unique.

The “uniqueness” of the decomposition in Theorem 2.10 from section 2.2 is a

special case of the following general result for Krull-Schmidt categories:

Theorem 3.8 (see Theorem 4.2 in [36]). Let X be an object in an additive category,

and suppose there are two finite decompositions

X1 ⊕ · · · ⊕Xm = X = Y1 ⊕ · · · ⊕ Yn

into (nonzero) objects each having local endomorphism rings. Then m = n, and there

exists a permutation π of all indices such that X ′i ' X ′′π(i).
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Recall from algebra that a local ring is a ring R that has a unique maximal ideal.

For an object X in an additive category C, the endomorphism ring is the module

HomC(X,X) with multiplication given by function composition. It can be shown

that HomC(X,X) is local if and only if: for every f : X → X, either f is an iso or

1X − f is an iso. Because of this theorem, we will refer to an additive (or F-linear)

category C as a Krull-Schmidt category if every object X in C satisfies the hypotheses

of Theorem 3.8.

An additive (or F-linear) category C is called a pre-abelian category if every mor-

phism f : X → Y admits a kernel K → X and a cokernel Y → C in C. We have an

immediate result:

Proposition 3.9. Let f : X → Y be a morphism in a pre-abelian category.

1. f is a monomorphism if and only if ker(f) = (0→ X).

2. f is an epimorphism if and only if coker(f) = (Y → 0).

Note that in a pre-abelian category, all equalizers and coequalizers exist: the

equalizer of two morphisms f, g : X → Y equals ker(f − g) and their coequalizer

equals coker(f − g). This is important, due to the following profound theorem:

Theorem 3.10 (see Exercise C, Chapter 3 in [27]). A category C has a limit of every

finite diagram D if and only if for any objects A and B it possesses their product

A
∏
B and all f, g ∈ HomC(A,B) have an equalizer. Dually, C has a colimit of every

finite diagram D if and only if it for any objects A and B it possesses their coproduct

A
∐
B and all f, g ∈ HomC(A,B) have a coequalizer.

This should serve the argument that pre-abelian categories C admit a lot of struc-
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ture; any conceivable finite diagram in C will have a limit and colimit (which by

definition are unique, up to isomorphism). Before we get into discussing their rela-

tionship, first note that the operations ker(•) and coker(•) behave “orderly”. Clearly,

for any f : X → Y , the kernel of ker(f) and the cokernel of coker(f) are just zero

moprhisms from/to 0. The next result extends this further – note that equality (=)

may mean “equality up to isomorphism of objects”.

Proposition 3.11. Let f : X → Y be a morphism in a pre-abelian category C.

1. The kernel p : K → X of f satisfies p = ker(f) = ker(coker(p)).

2. The cokernel q : Y → C of f satisfies q = coker(f) = coker(ker(q)).

Generally, we have that f : X → Y is a kernel of some morphism in C if and only

if f = ker(coker(f)); dually, f : X → Y is a cokernel of some morphism in C if and

only if f = coker(ker(f)).

For a morphism f : X → Y , define its image im(f) = ker(coker(f)) and its coimage

coim(f) = coker(ker(f)). These constructs are aptly named; for any morphism f :

M → N in Mod(R), the image f(M) ⊆ N is clearly the kernel of the quotient map

N → N/f(M), while the coimage manifests as M →M/f−1(0).

We can then use the universal property of the cokernel (as in coim(f)) and the

kernel (as in im(f)) to obtain a unique natural map f̃ : coim(f)→ im(f), such that

the morphism f : X → Y factors as:

X −→ coim(f)
f̃−→ im(f) −→ Y (3.2)

In fact, this f̃ is a natural isomorphism in some categories, making the underlying

(universal) objects of the coimage and image indistinguishable. Think to vect(F),
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where for any linear map f : V → W the range f(V ) ⊆ W is isomorphic to the

quotient V/f−1(0) by the rank-nullity theorem.

Finally, we call C an abelian category if C is pre-abelian and for every morphism

f : X → Y the natural map f̃ : coim(f) → im(f) in the factorization described by

diagram 3.2 is an isomorphism. From this it immediately follows that every morphism

f : X → Y in an abelian category has a factorization f = m ◦ e, where m : X → I

is a monic map and e : I → Y is an epic map; this factorization is unique up to

isomorphism of object I.

The fact that the image and coimage are thusly related in a category has a number

of other useful properties.

Lemma 3.12. Let f : X → Y be a morphism in an abelian category C.

1. f is a monomorphism if and only if it is the kernel of some Y → Z.

2. f is an epimorphism if and only if it is the cokernel of some Z → X.

3. f is an isomorphism if and only if it is both monic and epic.

Moreover, a pre-abelian category is abelian if both criteria 1 and 2 hold in it (also

known as normality conditions).

Our primary interest will be in F-linear abelian categories, for which there is

another result essentially guaranteeing all objects to have a unique direct sum de-

composition. Generally, the well-known Atiyah’s criterion (see Theorem 5.5 in [36])

provides a very useful criterion for verifying the Krull-Schmidt property of an abelian

category. Separately, the Hom-sets in this type of category satisfy a certain bi-chain

condition, which when combined Atiyah’s criterion produces the following result:
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Theorem 3.13 (Atiyah). A linear abelian category C is Krull-Schmidt; that is:

1. Every object in C admits a finite decomposition as a sum of indecomposables.

2. Every indecomposable has a local endomorphism ring.

The proof (see [2]) of Atiyah’s criterion however is nonconstructive. It neither

provides an algorithm to decompose a given object as a direct sum of indecomposables,

nor a classification of indecomposables.

3.2.2 Short Exact Sequences in Abelian Categories

In abelian categories, many notions are drawn by means of special important diagrams

D called chain complexes ; this construction requires that if f : A → B and g : B →

C are morphisms in D then g ◦ f = 0. Such diagrams arise in many practical

considerations.

For example, recall that (differential) chain complexes from section 2.1.2 are rep-

resented by diagrams of modules C• which have the form:

· · · Cj−1 Cj Cj+1 · · ·
∂j ∂j+1

The fact that ∂j ◦ ∂j+1 = 0 for all indices j implies that im(∂j+1) ⊆ ker(∂j) on

their underlying objects, from which we can calculate the homology of the complex

at position j by taking the quotient of modules. In categorical terms, a pair of

morphisms A
f→ B

g→ C in an abelian category can be factored as:
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Coim(f) Im(f)

A B C

Ker(g)

'

im(f)coim(f)

f g

ker(g)

If A
f→ B

g→ C is a chain complex, then g◦ im(f) = 0 (since coim(f) is an epic and

Coim(f)→ Im(f) is an iso) and by the universal property of the kernel ker(g) there

exists a morphism x : Im(f)→ Ker(g) such that im(f) = ker(g)◦x; this morphism is

necessarily monic since im(f) is. Hence, we may treat Im(f) as a subobject of Ker(g)

in any abelian category under this scenario. In a sense, taking “homology” in position

of object B will result in coker(x : Im(f)→ Ker(g)).

Another example is obtained just by considering a single morphism f : A → B.

Find ker(f) and coker(f):

0 Ker(f) A B Coker(f) 0
ker(f)

f

coker(f)

The zero objects were added in to emphasize that this is a chain complex. In fact:

• The kernel of ker(f) is zero, i.e. the morphism 0→ Ker(f);

• The cokernel of coker(f) is also zero, given by Coker(f)→ 0.
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Furthermore, we can find im(f) = ker(coker(f)) and coim(f) = coker(ker(f)):

0 Im(f)

0 Ker(f) A B Coker(f) 0

Coim(f) 0

im(f)

coim(f)

f

Again, it readily follows that:

• The kernel of im(f) is the morphism 0→ Im(f);

• The cokernel of coim(f) is the morphism Coim(f)→ 0.

Lastly, it follows from Proposition 3.11 that the cokernel of ker(f) is isomorphic

to coim(f) and the cokernel im(f) is isomorphic to coker(f). So to interpret this

in more familiar terms, at the position of every object in each of the two sequences

(after removing f itself), the image of the incoming morphism is equal to the kernel

of the outgoing morphism!

Example 3.14. Consider the morphism x ∈ Z 7→ 2 · x ∈ Z of Z-modules. Since this

is monic, its kernel is zero and hence the image is Z/0 = Z.

0→ Ker(f)→ A→ Coim(f)→ 0 = 0→ 0→ Z→ Z→ 0

On the other hand, the cokernel of the morphism is given by the quotient Z/2Z and

the image is 2Z ⊆ Z. The sequence 0→ Im(f)→ B → Coker(f)→ 0 becomes:

0→ Z ' 2Z→ Z→ Z/2Z→ 0
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Sequences 0→ Ker(f)→ A→ Coim(f)→ 0 and 0→ Im(f)→ B → Coker(f)→ 0

will be called the canonical short exact sequences associated with f : A→ B. In gen-

eral, a short exact sequence is a diagram:

0 A B C 0
f g

such that the image of every morphism is isomorphic to the kernel of the immediate

morphism after. We may equivalently describe it as: f is monic, g is epic, and

im(f) = ker(g).

Many other short exact sequences are famously used in literature. Another exam-

ple that exists in Mod(R) arises from the direct sum of two submodules P,N ⊂M .

Recalling from section 3.1.3 the construction of submodules P+N and P∩N , the uni-

versal property of P⊕N ensures maps P∩N → P⊕N and P⊕N → P+N correspond-

ing to: the inclusion x ∈ P∩N 7→ x ∈ P , the negative inclusion x ∈ P∩N 7→ −x ∈ N ,

and inclusions P,N ⊆ P +N . It is not hard to show that P ∩N → P ⊕N → P +N

is a complex (a diagram-chasing argument that uses equation 3.1), which explicit

computations show the following to be a short-exact sequence:

0 P ∩N P ⊕N P +N 0
(ιP ,−ιN ) πP+πN

This sequence is the foundation for the Mayer-Vietoris formula, a celebrated result

in homology theory. We will also briefly revisit this sequence in section 4.1.3.

Two short exact sequences are said to be isomorphic if there is an isomorphism

from one diagram to another. Given fixed objects A and C, the short exact sequences

of the form 0→ A→ B → C → 0 can all be classified, up to isomorphism, in certain

abelian categories – in fact, all such sequences form the set Ext1(C,A) that is an
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abelian group with respect to the Baer sum. The group is tedious to compute,

requiring the existence of projective resolutions of objects in an abelian category;

see chapter 3 of [30] for more details.

For every two objects A and C in an abelian category, there is a distinguished short

exact sequence 0→ A→ B → C → 0 that splits ; here, the sequence is isomorphic to

one where B = A ⊕ C with A → B being a canonical inclusion and B → C being

a canonical projection. If Ext1(C,A) can be defined, a split short exact sequence

corresponds to the identity element of this group.

The second sequence in example 3.14 splits, while the first one doesn’t. Generally,

the following lemma proves useful for characterizing split short exact sequences.

Lemma 3.15 (Splitting Lemma). Suppose you are given a short exact sequence below.

0 A B C 0
f g

Then the following are equivalent:

1. the sequence splits, so B ' A⊕ C;

2. there is a morphism h : B → A such that h ◦ f = 1A is the identity morphism;

3. there is a morphism k : C → B such that g ◦ k = 1C is the identity morphism.

3.2.3 Relevant Examples, revisited

The category Set possesses product and coproducts, which are usually different, for

any pair of objects A and B. The canonical projections A
πA← A × B

πB→ B are

surjective maps (epics), while the canonical inclusions A
ιA→ AtB ιB← B are injections

(monics). There is an initial object (∅) and terminal objects (sets of cardinality 1),
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which are different; there is no notion of zero morphisms in Set, although one could

try to define “right” zero morphisms ζA : ∅ → A that satisfy certain commutative

relations, namely that (A → B) ◦ ζA = ζB for all objects A and B. Nonetheless,

kernels and cokernels cannot be defined for general f : A → B. So Set does not

satisfy most axioms of an additive category.

Category Rel (of sets as objects and set relations as morphisms) was shown to

possess a zero object (∅), and for any two objects A and B their disjoint union

A t B with canonical maps A
πA← A t B πB→ B and A

ιA→ A t B ιB← B (where the

π• are epic and the ι• are monic) forms a biproduct of A and B. Every morphism

f : A → B also has a kernel p : K → A and a cokernel q : B → C, where p

and q induce bijective functions after restriction to their domain and range; since

monomorphisms and epimorphisms are generally not bijections (after restriction), the

normality conditions stated in Lemma 3.12 do not hold. Furthermore, the additive

operation (induced by the product and coproduct) on each set Hom(A,B) in Rel is

not invertible, given by + : (f, h) 7→ f ∪ g ∈ Hom(A,B) for any f, g ∈ Hom(A,B).

In particular, Rel is not an additive (or linear additive) category.

The subcategory Mch (in Rel) of partial matchings inherits a zero object, all

zero morphisms, and all kernels and cokernels from Rel. In addition, the normality

conditions stated in Lemma 3.12 are satisfied: if f : A→ B is a monomorphism then

it is a kernel of B → (B \ ran(f)), and if f : A → B is a epimorphism, then it is a

cokernel of (A \ dom(f))→ A. We also have that the underlying objects behind the

image and coimage of any morphism f : A → B are given by ran(f) and dom(f),

respectively, and f restricts to an isomorphism between them. However as per [5],
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products and coproducts may not be defined in this category. Hence, Mch is not

Abelian (or even additive) but rather a Puppe-exact category.

By the same reasoning as we did for Set, categories SCpx and SSet are not

additive. An interested reader is encouraged to study [28] for an interesting survey

on the categorical properties of simplicial sets, including a simplicial set structure

on their Hom-sets. Category Top is also not additive, although it should be said

that some full subcategories of Top are pre-abelian; prominent examples include the

category of Banach spaces and the category of compact Hausdorff abelian topological

groups.

Perhaps the most well-known example of an abelian category (and its conceptual

origin) is Mod(R) of all left R-modules. It “internalizes” its Hom-sets, meaning that

every Hom(M,N) is an abelian group over R itself. The biproducts in Mod(R) are

given by the direct sum, equipped with the canonical projections and inclusions that

satisfy equation 3.1. Every morphism f : M → N admits a kernel and a cokernel;

moreover, every monic K →M induces an isomorphism between K and a submodule

of M , and every epic M → C induces an isomorphism between C and a quotient of

M by some subspace (following the first fundamental theorem on homomorphisms).

Therefore, monics K → M are the kernel of M → M/K and epics M → C are the

cokernel of some inclusion of a subspace into M ; by lemma 3.12, this is sufficient to

show that Mod(R) to be abelian.

A special case of abelian categories, the category vect(F) = Mod(F) of vector

spaces over field F has an additional property in that every short exact sequence

splits. Indeed, given a short exact sequence 0→ U
f→ W

g→ V → 0 of vector spaces,
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we have that the injectivity of f implies the range f(U) is generated by the set

β = {f(x) : x ∈ βU}, given any basis βU of U . Basis β can then be extended to

a basis βW of all of W (something that isn’t generally possible with R-modules),

allowing us to define a linear map W → U that takes f(x) ∈ β 7→ x ∈ βU and

otherwise y ∈ βW is assigned to 0. By lemma 3.15, this sequence splits; furthermore,

it is basic to show that the subspace of W spanned by the basis βW \β is the coimage

of the surjective map W → V .

The reasoning is similar that mod(R) is also abelian. It is notable that for any

objects M and N in this category, any f : M → N may be represented by a matrix

with coefficients in R, provided that an ordered set of generators is picked for each

object. Likewise, vect(F) = mod(F) is an exact category, with every linear map

f : V → W having a matrix representation with coefficients in F – provided that

some bases of V and W have been pre-selected.

Peculiarly, the Freyd-Mitchell embedding theorem (first mentioned in section 2.2)

suggests that all abelian categories can be thought of as categories of modules (over

some ring). For proof and discussion, see Theorem 7.34 in [27].

Theorem 3.16 (Freyd-Mitchell). If A is a small abelian category, then there is a

ring R and an exact, full, faithful functor F : A → Mod(R). In particular, A is

equivalent to a full subcategory of Mod(R).

Our main focus now will be to discuss the category vectT (F) of persistent vector

spaces indexed by T , and some of its subcategories. This will be done in section 3.3.1.

93



3.3 Pertinent Results

We focus here on the category of persistence vector spaces, which were introduced

in section 2.2, as this will be the setting of explicit homological calculations in the

next chapter. The terminology and properties of the objects discussed have been

introduced in [43], which the reader is implored to review for some of the more

explicitly constructive proofs.

Recall that a persistence vector space •V over a totally-ordered set T is a collection

{tV : t ∈ T} of finite-dimensional vector spaces together with linear (transition) maps

sV → tV such that s 6 ∀r 6 t we have sV → tV = (rV → tV ) ◦ (sV → rV ). One

can equivalently restate this in categorical terms: treating T as a category whose

objects are elements of T and whose relation 6 determines what morphisms exist

between them, a persistence vector space •V is simply a functor V : T → vect(F). A

morphism •f : •V → •W is a collection of linear maps {tf : tV → tW : t ∈ T} that

commute with the transition maps of tV and tW , as seen in the diagram below.

· · · t−1W tW t+1W · · ·

· · · t−1V tV t+1V · · · .
t−1f tf t+1f

Equivalently, a morphism •f : •V → •W is a natural transformation from functor

V : T → vect(F) to functor W : T → vect(F). The objects •V together with

morphisms •f constitute the category vectT (F).

Note 3.17. We shall restrict to the case where T = (Z,6) or T = {1 6 · · · 6 n}.

The zero persistence vector space is the sequence •0, with t0 = 0 for all t ∈ T . For

any two persistence vector spaces •V and •W , their direct sum is given by •V ⊕ •W ,
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where the object at level t is just tV ⊕ tW and for s 6 t the transition map is

simply (sV → tV ) ⊕ (sW → tW ). Recall that there are morphisms •V ⊕ •W → •V

and •V → •V ⊕ •W , given by the level-wise projection and injection to the first

coordinate respectively; similar maps exist for •W .

Following Proposition 2.12, to every morphism f : •V → •W there are associated

persistence vector spaces ker(•f) and coker(•f); similarly, there are persistence vector

spaces im(•f) and im(•f). Note that ker(•f) and im(•f) are subobjects of respective

•V and •W , while coker(•f) and coim(•f) are quotients of respective •W and •V .

We distinguish [43] tempered persistence vector spaces •V , where all but finitely-

many of the structure maps sV → tV are linear isomorphisms. These objects form a

full subcategory vectT? (F) in vectT (F). One reason that this subcategory is important

is because of Corollary 2.14, which guarantees that every object can be written as a

direct sum of a finite number of indecomposable objects, each of which has a simple

form. Every indecomposable object can be described by an interval I, which is a

subset of T such that t ∈ I whenever i 6 t < j for some i, j ∈ I. To be concrete, an

interval I ⊆ T specifies an interval persistence vector space (or interval complex ) •I,

defined by

tI =

{
F , if t ∈ I
0 , otherwise

where every arrow F→ F is the identity morphism 1F. Ordinary interval notation is

used to denote intervals I; for example, the interval persistence vector space •[1, 4) is

the diagram of vector spaces

· · · 0 F F F 0 · · ·

t = 0 t = 1 t = 2 t = 3 t = 4

1 1

Another reason for the importance of category vectT? (F) is that it includes several
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types of vector space diagrams as objects that are important to persistent homology.

A filtered persistence space •F is a persistence vector space such that sF → tF is

given by subspace inclusion sF ⊆ tF for every s 6 t; that is,

· · · j−1F jF j+1F · · ·

Provided that for a large enough level m+ ∈ T the sequence “stabilizes” in the sense

of tF ' pF if t > m+, then we have that •F is tempered. In our usage, filtered

objects will also be required to satisfy sF = 0 for any s 6 m−, for some m− ∈ T .

Another example, chain complexes are diagrams of form C• = (Ck, ∂k), where

· · · Cj−1 Cj Cj+1 · · ·
∂j ∂j+1

and ∂j ◦ ∂j+1 = 0 for all j. Recalling that vect(F) is equivalent to its dual (see

example 3.4), we can use the opposite functor vect(F)→ vectop(F) on this diagram

to obtain a persistence vector space (C∗• , ∂
∗
•) with the condition ∂∗j+1 ◦∂∗j = 0 for all j;

usually, (C∗• , ∂
∗
•) is called a cochain complex. Provided that there exist m−,m+ ∈ T

such that C∗s ' C∗m− and C∗t ' C∗m+ for all s 6 m− 6 m+ 6 t, then we have that this

persistence vector space is tempered. One may note from section 2.1 that typically

Cm− ' 0 in classical computations of homology.

Note that since tempered persistence vector spaces can be represented by finite di-

agrams in vect(F), which is abelian, then Theorem 3.10 shows that tempered objects

have limits and colimits. These are actually pretty simple to describe: the limit of •V

is represented by m−V for a sufficiently small m− ∈ T , while its colimit is represented

by m+V for a sufficiently large m+ ∈ T . Strictly speaking (going by the discussion in

section 3.1.2), these are the underlying objects of the categorical limit and colimit of

the diagram •V in vect(F).
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3.3.1 Categories of Persistence Vector Spaces

Let •V and •W be objects in vectT (F). Given morphisms •f, •g : •V → •W and

scalars α, β ∈ F, it is elementary to verify that α · •f + β · •g is a morphism of

•V → •W and that composition in vectT (F) is bilinear (since composition is a bilinear

operation in the category of vector spaces). Hence, vectT (F) is an enriched category

over Vect(F); it is generally not true that Hom(•V, •W ) is finite-dimensional. It

possesses a zero object represented by •0.

For any •V, •W , the category also possess a biproduct given by •V ⊕ •W and every

morphism •f : •V → •W has a kernel ker(•f)→ •V and a cokernel •W → coker(•f).

To see this, note that for these objects to satisfy the required universal properties it is

necessary (and sufficient) that the universal properties hold true for every level t ∈ T ,

allowing us to derive these properties from vect(F). Lastly, the objects coim(•f) and

im(•f) are isomorphic, since the canonical morphism •f̌ : coim(•f)→ im(•f) restricts

to an isomorphism at every t ∈ T . This proves the following:

Proposition 3.18. The category vectT (F) is abelian.

By Theorem 3.13, objects in vectT (F) have a finite direct sum decomposition in

terms of objects that have local endomorphism rings; however, these indecomposable

objects are hard to classify.

In vectT (F), we can look at the full subcategory that contains only tempered

persistence objects. It inherits a zero object from vectT (F) and is closed with respect

to finite direct sums. It is also closed with respect to the taking of kernels and

cokernels; to see this, note that the equation tf ◦ (sV → tV ) = (sW → tW ) ◦ sf for

morphisms implies that sf and tf uniquely determine each other when the structure
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maps of •V and •W are isomorphisms between levels s 6 t. We then have the

following:

Proposition 3.19. The category vectT? (F) of tempered persistence vector spaces is

linear abelian. This category is Krull-Schmidt: every object has a unique (up to iso-

morphism) direct sum decomposition in terms of a finite collection of interval com-

plexes.

Of course, the last statement is a direct consequence of Theorem 3.13 and Corol-

lary 2.14. Recall that the set of intervals determining the interval decomposition of

•V is called its barcode and is denoted BV .

Filtered persistence spaces •F whose colimit is a finite-dimensional vector space

pF = F (for some p ∈ T ) comprise a strictly full subcategory filt(T,F) = filt(T )

of the tempered persistence objects; note that the colimit of •F is 0. Note that any

summand of a filtered object is necessarily isomorphic to a filtered object. Combining

these facts with Proposition 3.19 yields:

Lemma 3.20. The category filt(T,F) of (tempered) filtered objects is Krull-Schmidt.

A filtered object •F is indecomposable if and only if its colimit F is indecomposable

object in vect(F).

This is important because the category filt(T ) is not abelian; in particular, the

kernel/cokernel of morphisms in vectT? (F) may not be filtered objects. This forbids

us from simply using Theorem 3.13 to claim the second statement of Lemma 3.20,

despite it being true.

One needs to remember that we are tasked with computing the homology of these

objects, which requires some differential structure inherent to these objects. It thus
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becomes necessary to look at a slight generalization of these results. First note that

chain complexes C• = (Ck, ∂k) comprise a category that is dually equivalent to the

full subcategory of cochain complexes in vectT? (F), which is abelian [59]. Following

the simple observation that a category is abelian if and only if its opposite category

is abelian, we arrive at the following result.

Proposition 3.21. The category of tempered chain complexes is linear abelian, and

therefore Krull-Schmidt. A complex is indecomposable if and only if it is isomorphic

to an interval complex.

Now, a filtered chain complex •C• is a diagram of tempered chain complexes:

· · · (t−1C•, t−1∂•) (tC•, t∂•) (t+1C•, t+1∂•) · · ·

that is indexed over T and every arrow is monic; in particular, at every position

(degree) k ∈ Z:

• the range of the filtration on Ck+1 under the map ∂k+1 : Ck+1 → Ck is a is a

subfiltration of the filtration on Ck, and

• the diagram restricts to a filtered persistence space •Ck.

Every filtered chain complex •C• has a colimit – a chain complex, denoted C•,

where the vector space having degree k ∈ Z is the colimit of that particular filtration,

and the differential map ∂k is obtained from the commutative squares formed by a pair

of “adjacent” filtrations in the diagram (it is well-defined since the filtrations mutually

stabilize for a large enough level in T ). Recalling the discourse in section 2.1, we can

compute the kth homology of this complex by finding the quotient of the subspace

ker(∂k) by the range im(∂k+1). However, the filtration also induces a filtered basis on
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each vector space Ck, and as per section 2.3.2 we can compute the generators of the

homology that are consistent across all levels in T (aka, the persistent features).

There are several different ways to perform operations with differential matrices

that take into account organization both with respect to the Z-degree (in the chain

complex) and T -level (in the filtration) of the bases. One can simply take a basis β of⊕
k∈ZCk whose elements are ordered lexicographically first by the filtration level and

then by their degree, then write the differential matrix D with respect to this basis;

this “prioritizes” the (filtration) level over the (complex) degree. Another way was

described in section 2.3.2, where the separate matrices Dk are used to represent the

differential operators ∂k with respect to bases ordered by the T -level. These matrices

represent blocks in the block-superdiagonal differential matrix D representing the

boundary operator ∂• =
⊕

k∈Z ∂k with respect to a basis β that prioritizes degree of

the elements over their filtration level. We focus here on the second approach.

Call a filtered chain complex basic if its colimit C• is isomorphic to an interval

complex; equivalently, a filtered complex is basic if its boundary operator ∂• can be

represented by differential matrix consisting of a single 2 × 2 Jordan block. Then,

Theorem 1.6 in [43] states the following:

Theorem 3.22 (Categorical Structural Theorem). The category of filtered chain com-

plexes is Krull-Schmidt. A filtered complex is indecomposable iff it is basic.

The proof involves nonconstructive categorical methods similar to those used in the

analysis for Lemma 3.20. The main difference is a generalization of Proposition 3.19,

where the tempered diagrams are considered in any linear abelian category, not just

vect(F). However, the authors in [43] also provide a constructive proof of this result
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via the Matrix Structural Theorem (not stated here); in fact, the two theorems are

shown to be equivalent.

The importance that is given to filtrations and filtered complexes becomes unveiled

in the next section.

3.3.2 Categorical Factorization of Persistent Homology

Categorically, the procedure that calculates the nth-degree homology of a complex

with coefficients in the field F can be described as a functor Hn from the category

of chain complexes to vect(F). To be specific, any chain complex C• = (Ck, ∂k) is

assigned to the vector space Hn(C•) = ker(∂n)/ im(∂n+1), and any chain morphism

f• : C• → C ′• is assigned to the induced quotient map Hn(f•). More generally,

when chain complexes and chain morphisms are only assumed to be Z-linear, the

functor Hn assigns to objects in mod(Z). This finally elaborates on the closing idea

of section 2.1.4.

In the persistent setting, these objects possess an intrinsic filtration. Let P =

vectT? (F) be the category of tempered persistence vector spaces and F = filt(T ) be

the category of filtered chain complexes, with level indices in T . Here, the nth-degree

persistent homology functor Pn : F → P assigns

(•F •, •∂•) 7→ Pn(•F •) = ker(•∂n)/ im(•∂n+1)

whose structure maps are induced by canonical inclusions ker(s∂n) → ker(t∂n) and

im(s∂n+1) → im(t∂n+1), while morphisms •f • : •F • → •G• between complexes are

assigned to morphisms Pn(•F •)→ Pn(•G•) given by induced quotient maps at every

level t ∈ T .
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The standard framework for studying the persistent homology functors Pn : F → P

is clarified by the structural theorem for the category P , Proposition 3.19. It suf-

fices to work with an appropriate Krull-Schmidt subcategory of the Krull-Schmidt

category P . A filtered chain complex •F • is studied by decomposing the persistence

vector space Pn(•F •) as a sum of indecomposables. Note that in our usage of filtra-

tions, there is a level q ∈ T such that the diagram qF n
= 0, so qth level of the diagram

Pn(•F •) is zero; it follows necessarily that all of its indecomposables •I must satisfy

qI = 0. Denote by imPn the full subcategory of P consisting of persistence vector

spaces that satisfy this property.

The notation for the category imPn is slightly misleading for it doesn’t really

depend on n; it is always the same subcategory of P . Anyhow, it is easy to verify

that imPn is a linear abelian subcategory of P , which completes the proof of the

following:

Theorem 3.23. The persistent homology functor Pn : F → P factors as

F → imPn → P

The category imPn is Krull-Schmidt. An object in imPn is indecomposable if and

only if it is isomorphic to a interval complex •[i, j) for some i 6= −∞.

This result may be strengthened by factoring F → imPn further. To do so, we will

work with an appropriate quotient category of the Krull-Schmidt category F ; recall

the notion of quotient categories from section 3.1.3. Define the category coimPn to

be be quotient of F subject to the following equivalence relation on morphisms: two

morphisms f and f ′ in F are equivalent iff the morphisms Pn(f) and Pn(f ′) in P
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are equal. Initially, it begs to question whether if the tools of abelian categories that

were used so far are still applicable here. Firstly, we have:

Lemma 3.24. A quotient of a Krull-Schmidt category C is Krull-Schmidt.

Proof. Since every object X has a finite direct sum decomposition in C, the same is

clearly true for the quotient category. Suppose then that X is indecomposable in the

quotient category. As an indecomposable object in C, it is either a zero object or has

a local endomorphism ring in C. It follows that one of these must also be true in the

quotient category; see e.g. page 431 of [39].

The classification of indecomposables in category coimPn now easily follows from

the Categorical Structural Theorem. This is independent of the well-known classifi-

cation of indecomposables in vectT? (F), a la Theorem 3.19. Using the classification of

indecomposables in both (Krull-Schmidt) categories coimPn and imPn, it becomes

easy to verify that the functor coimPn → imPn is full, faithful, and dense. Invoking

Theorem 3.5, we obtain the following result (Theorem 3.3 in [43]):

Theorem 3.25. The persistent homology functor Pn : F → P factors as

F → coimPn → imPn → P

where the functor coimPn → imPn is an equivalence of categories.

Note that (unlike the case with imPn) the category coimPn now does depend on

the integer n; each coimPn is a different quotient category of F . Nonetheless, it is

striking that the equivalence of categories holds, suggesting that it is possible to solely

work in the category of filtered complexes to obtain information about their barcode

decomposition. One may argue that we actually obtain more information this way.
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The implicit role of filtrations in computing homology will be thoroughly explained

in chapter 4, where a variant persistent homology algorithm is proposed operating on

forthright methods of working with (tempered) filtrations.

3.3.3 Induced Matchings of Indecomposables

Following the discussion in this section, a full categorical understanding of persistence

vector spaces is achieved if we have a description of how morphisms between them

behave. Specifically, we are interested in knowing whether morphisms •f : •V → •W

somehow “associate”, or perhaps “match”, persistent features of the source space •V

with those of the target space •W . Since persistent features of a space are associated

to intervals in the barcode decomposition of a space, this settles down to whether •f

induces some kind of a “function” BV → BW .

This inquiry is the stepping stone to uncovering the Isometry Theorem (see Theo-

rem 2.19) and the mechanism behind it. A concise categorical approach is outlined in

a recent paper [4], whose main results are briefly summarized below, in the language

of persistence vector spaces.

Given a morphism of persistence vector spaces •f : •V → •W , begin by writing

•V and •W in terms of their interval decompositions:

•V =
⊕
I∈BV

•I and •W =
⊕
J∈BW

•J

Here, BV and BW are the barcodes of •V and •W (respectively), and are treated as

objects in the category Mch; note that barcodes are represented as sets in a way that

allows each to contain multiple isomorphic copies of an interval. The idea is then to

produce a partial matching χf : BV → BW for the morphism •f , which is a type of

relation on sets that was defined in section 3.1.3.
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Noting that the category vectT (Z) is abelian, we can factor the morphism •f as

•V
•e→ •R

•m→ •W for some monic •m and epic •e. Bauer and Lesnick found the

following for any monic •m and any epic •e:

1. There exists a partial matching χm : BR → BW such that if χm

(
[b, d)

)
= [b′, d′)

then d = d′ and b > b′.

2. There exists a partial matching χe : BV → BR such that if χe

(
[b, d)

)
= [b′, d′)

then b = b′ and d 6 d′.

This can also be interpreted by using the framework in [57], where Skraba and

Vejdemo-Johansson study the computational aspects of persistent homology using

techniques from commutative algebra – particularly the existence of explicit presen-

tations for persistence modules in terms of free generators, calculated by reducing

graded matrices to find their Smith normal form.

These are referred to as canonical matchings assigned to m and e, respectively.

The matching χm is constructed by first partitioning each barcode BR and BW into

subsets 〈·, d〉 of intervals with the same “death” time d. Then, χm is defined to be

the union of the partial matchings 〈·, d〉R → 〈·, d〉W where every ith-longest interval

in 〈·, d〉R is assigned to the ith-longest interval in 〈·, d〉W . Similarly, the matching χe

is constructed by: partitioning each barcode BV and BR into subsets 〈b, ·〉 of intervals

with the same “birth” time b, taking partial matchings 〈b, ·〉R → 〈b, ·〉W where every

ith-longest interval in 〈b, ·〉R gets assigned to from the ith-longest interval in 〈b, ·〉V ,

and finally defining χe to be the union of all these matchings. Bauer and Lesnick

show that χm is necessarily monic and χe is necessarily epic in Mch.

The partial matching χf for the morphism •f is then defined as χf = χm ◦ χe.
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Following the description above, we have χf

(
[b, d)

)
= [b′, d′) only if b > b′ and d > d′;

furthermore, there has to exist an interval [b, d′) in BR such that χe

(
[b, d)

)
= [b, d′)

and χm

(
[b, d′)

)
= [b′, d′). That is, a partial matching χf : BV → BW is determined

constructively by BV , BW , BR (since BR is the barcode of Im(•f) ' Coim(•f), with

canonical morphisms from/to •V and •W ), and vice versa.

Example 3.26. The following is a simple example used by the authors of [4] to

calculate the induced matching from a morphism of persistence modules.

Let •M = •[1, 2)⊕ •[1, 3) and •N = •[0, 2)⊕ •[3, 4). Let •f : •M → •N be a morphism

which maps the summand •[1, 2) injectively into the summand •[0, 2) and maps the

summand •[1, 3) to •0. Then Im(•f) ' •[1, 2). The barcodes BM , BIm(f), and BN are

plotted. We have χf : [1, 3) 7→ [0, 2).

In more concrete terms, we have •f = im(•f) ◦ (•f̌) ◦ coim(•f) for the image

morphism im(•f) : Im(•f)→ •W , the coimage morphism coim(•f) : •V → Coim(•f),

and the canonical isomorphism •f̌ : Coim(•f)
∼→ •Im(•f). Since •f̌ is both monic

and epic it induces an identity matching on BCoim(f) ' BIm(f), while m = im(•f) and

e = coim(•f) behave in the same manner as prescribed above.
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A note of caution should be taken, as the authors of [4] trustily point out. It

may naively appear that assigning any •f : •V → •W to a matching χf : BV → BW

specifies a functor vectT? (F)→Mch, but this is not the case; the authors give a short

example showing that this assignment does not preserve compositions of morphisms.

In fact, the authors of [4] prove that there cannot exist a functor vectT? (F) →Mch

sending every object •V to its barcode BV , generalizing on a simpler claim where

T = {1}; further examples will be shown in chapter 4. Nonetheless, the assignment

•V 7→ BV and •f 7→ χf does characterize a functor on two specific subcategories of

vectT? (F), namely: (1) the subcategory whose morphisms are monics, and (2) the

subcategory whose morphisms are epics.

The Induced Matching Theorem of [4] then states that the kernel and cokernel of

•f : •V → •W allow to assess the size of the matching χf as well as restrictions on

any pair intervals for which χf : [b, d) 7→ [b′, d′), summarized by the following points.

• If Coker(•f) is ε-trivial and |b′ − d′| > ε, then χf matches some [b, d′) ∈ BIm(f)

to [b′, d′) ∈ BW with b′ 6 b 6 b′ + ε.

• If Ker(•f) is ε-trivial and |b − d| > ε, then χf matches [b, d) ∈ BV to some

[b, d′) ∈ BCoim(f) with d′ − ε 6 d 6 d′.

Referring to section 2.2.4, the kernel and cokernel of an ε-interleaving are necessarily

2ε-trivial, which by the Induced Matching Theorem guarantees that the matching

rε ◦ χf : BV → BW is an ε-matching; here, rε : [b, d) 7→ [b− ε, d− ε) is a iso matching

between BW and a multiset of intervals formed from BW by shifting the intervals

endpoints by ε to the left. This establishes the Algebraic Stability Theorem (part of

the Isometry Theorem 2.19), whose converse is also proved near the end of [4].
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These appear to have some connection to the canonical short exact sequences of

•f , shown below; a similar observation is made by Skraba and Turner in [56].

•0 Ker(•f) •V Coim(•f) •0

•0 Im(•f) •W Coker(•f) •0

coim(•f)

im(•f)

The morphisms Ker(f) → V and W → Coker(f) are monic and epic, respectively,

which thus induce a monic partial matching BKer(f) → BV and an epic partial match-

ing BW → BCoker(f). Likewise, morphisms Im(f) → W and V → Coim(f) induce

respective monic and epic matchings BIm(f) → BW and BV → BCoim(f) ' BIm(f).

Thus, we produce diagrams:

∅ BKer(f) BV BIm(f) ∅

∅ BIm(f) BW BCoker(f) ∅

χcoim(f)

χim(f)

However, since the assignment vectT? (F) → Mch is not a functor, we should not

expect that these diagrams of partial matchings are complexes, let alone short exact

sequences. Indeed, we shall see an explicit example later for which these sequences

exhibit this behavior, showing that the category Mch cannot be entirely used to

represent the structure of objects in vectT? (F)→Mch.

Hence, it is not so straightforward that the Induced Matching Theorem (and so

by extension, the Isometry Theorem) should follow from considerations of barcode

matchings alone, suggesting that reference to the original structure of persistence

vector spaces is necessary to arrive at the desired results. In the next chapter, we

discuss how induced matchings may be derived from explicit manipulations of filtered

objects in coimPn, by which the persistent homology of complexes and their map-
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pings shall be computed. This can be called algorithmic matching procedure and is

contingent on the proposed variant of the persistent homology algorithm (as outlined

in section 4.2).
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Chapter 4

Calculating Persistent Homology
with Filtration Quotients

This chapter demonstrates an algorithm by which persistent homology can be com-

puted by filtration quotients, primarily based on the work in [44] by Killian Meehan,

Andrei Pavlichenko, and Jan Segert. Ultimately, it allows transparent extension to

(co)kernel and (co)image of a persistence map of filtered chain complexes.

Fundamentally, it works by looking at inclusions of some of naturally-induced fil-

trations by filtered chain complexes; a background on these notions was previously

developed in section 3.3 and more broadly in the paper [43]. In particular, the cal-

culation involves using reduction to find bases of vector spaces that “trivialize” the

inclusion map for a pair of filtered spaces, leading to a well-defined matching of gen-

erating bases for these filtrations, not unlike how this was done with creator and

destroyers of persistent features in section 2.3.2.

A related approach was demonstrated by Skraba and Vejdemo-Johansson in [57].

Here, persistence vector spaces •V are viewed as quotients of finitely-generated free

modules by some submodule of “relations” among the selected generators, and per-

sistent homology is then calculated by finding the graded version of the Smith normal

form for that inclusion. This viewpoint and ours both enable to formulate an alge-
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braic treatment of (co)kernels and (co)images assigned to morphisms via universal

constructions and decomposition results that exist in the category vectT? (F). How-

ever, our approach using filtration quotients allows everything to be handled the same

way: persistent homology of a complex is stated by Proposition 4.12, while (co)kernels

and (co)images are defined by diagrams in Propositions 4.16 and 4.17.

Both approaches differ from the conventional way by which persistent homology

is computed, where reduction is used to “trivialize” adjacent blocks matrices from

the representation of the differential map •C•. While this is an efficient procedure for

finding the creator-destroyer pairs whose birth-death times are summarized by the

barcode of the complex, it does not easily generalize to a method for finding out the

persistent homology of other data associated with the complexes. Of note, morphisms

•f • between filtered chain modules are not so easily described; finding the interval de-

composition associated to the kernel, image, and cokernel persistence vector spaces of

•f • require the construction and reduction of matrices whose meaning is not immedi-

ately clear. This is evident by studying the elaborate and well-defined algorithm that

is presented in [16] by Cohen-Steiner, Edelsbrunner, Harer, and Morozov. Note that

it only works with certain types of morphisms – namely, those induced by inclusions

of simplicial filtrations.

Nevertheless, all of the algorithms are rooted in elementary linear algebraic opera-

tions, where matrix reduction is used to compute appropriate bases of vector spaces.

Ultimately, the main distinction between the two is which class of vector space dia-

grams in vectT (F) are to be used, on which the construction of representative matrices

depends. It is also germane to note that whichever algorithm is used, an important
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principle to adhere to is for these constructions and the ensuing reduction(s) to be

performed in way independent of the choice of vector space basis.

4.1 Elementary notions and operations

In this short section, we briefly discuss some linear-algebraic properties of column-

reduction. Doing column-reduction easily yields ordered bases for the kernel and

also the image of a matrix. Another common form of matrix reduction is Gaussian

elimination, which by contrast easily yields a basis for the image a matrix, but requires

additional back-substitution to produce a basis for the kernel. Column-reduction

algorithms are therefore a convenient alternative to Gaussian elimination for matrix

computations in general. Perhaps this fact seems to be generally underappreciated.

4.1.1 Column Reduction and Bruhat Factorization

Let f : X → Y be a linear map between finite-dimensional vector spaces (over some

fixed field F). We can select a basis βX and βY for respective X and Y . Recall that

any other basis for X (resp. Y ) can be found from β = βX (resp. β = βY ) by a

sequence of elementary operations, which consist of:

• swapping the positions of two elements zi and zj in β;

• replacing any zk ∈ β by α · zk, where α ∈ F is nonzero;

• replacing any zi ∈ β by zi + α · zj, where zj is in β and α ∈ F.

For each zi ∈ βX , the element f(zi) can be written as a linear combination of elements

in βY ; recall that these equations are unique due to linear independence. The matrix

representation of the map f is a matrix M = [f ]βYβX whose column (in position) k
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consists of coefficients appearing in the linear combination of f(zi) (including all

zero entries) with respect to the ordered basis βY ; these are ordered from top of the

column downwards. For any z ∈ X, this determines the unique linear combination of

elements in βY needed to produce f(z) by taking appropriate linear combinations of

the columns in its matrix.

Applying a sequence of elementary operations on βX is equivalent to applying

column operations on M :

[Type 1 ] some columns i and j of M are swapped;

[Type 2 ] some column k of M is multiplied by a nonzero scalar;

[Type 3 ] add a scalar multiple of some column l to some column k.

Concretely, if elementary operations are used to transform βX into a basis β′X then M

transforms into a matrix M ′ = [f ]βYβ′X
such that M ′ = M · [1V ]

β′X
βX

, where 1X : X → X

is the identity map. Because the same column operations are used to compute both

M ′ and [1X ]
β′X
βX

, it is efficient to apply them on the augmented matrix
[
M
I

]
to get the

result (where I = [1X ]βXβX is the identity matrix).

Similarly, applying a sequence elementary basis operations on βY is equivalent

to doing row operations on M ; infer these from above. Concretely, the elementary

operations used to transform βW into β′′W also transform M into a matrix M ′′ = [f ]
β′′Y
βX

such thatM ′′ = [1Y ]
β′′Y
βY
·M . It is efficient to apply the row operations on the augmented

matrix [I|M ] to get the result.

A major technique that uses column (and/or row) operations is matrix reduction.

In section 2.3.2, it was already shown how find the column-reduced form of the matrix
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for the differential map can be used to compute the persistent homology associated

with a filtration. Building on that, our usage shall be restricted to elementary column

operations of Type 3 where a scalar multiple of column l can be added to column k

only if l < k. It readily follows that this transforms basis βV to a basis β′X such that

the change-of-basis matrix V = [1X ]
β′X
βX

is upper triangular.

Column reduction is an inductive procedure: start at column i = 1, and follow the

inductive step, which goes as follows:

(1) Check if current column i has only zero entries; if yes, go to (4).

(2) If no, find the ‘‘lowest’’ row p where column i has a nonzero

entry; entries in rows p+ 1, p+ 2, . . . of column i should be zero.

(3) Check if there is some column j to the left of column i such that

their lowest nonzero entries are in the same row.

(3a) If yes, subtract a multiple of column j from column i so that

updated column i has a zero entry in row p; then go to (1).

(3b) If no, declare column i to have a pivot in row p.

(4) Continue to column i+ 1 and repeat.

The resulting matrix M ′ will have the property that every column is either a zero

column or a pivoted column, and each pivot entry lies in a unique row of M ; we thus

proclaim M ′ to be a reduced matrix.

Example 4.1 (see Appendix B in [43]). Let M be a matrix given by

M =
1 −2 0 −8
2 −4 6 2
1 −2 2 −2

 
We reduce the matrix by applying the inductive algorithm detailed above. We will

work with the augmented matrix
[
M
I

]
, but only consider the nonzero entries from top
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three rows (ie., those in M itself) to answer conditional statements in the algorithm.

For emphasis, all column pivots will boldened.

M

I
=

1 −2 0 −8
2 −4 6 2
1 −2 2 −2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




7→

1 0 −2−6
2 0 2 6
1 0 0 0
1 2 −2 2
0 1 0 0
0 0 1 0
0 0 0 1




7→

1 0 −2 0
2 0 2 0
1 0 0 0
1 2 −2 8
0 1 0 0
0 0 1 −3
0 0 0 1




=
R

V

Clearly, we have R = M · V or equivalently M = R · V −1. Furthermore, we can

reduce the rows of R. The nonzero entries of every column in R (except for its pivot)

can be eliminated by Type 3 row operations using the row that contains its pivot.

Working from the bottom-most row upwards, this results in the following equation:

[I|R] = 1 0 0 1 0 −2 0
0 1 0 2 0 2 0
0 0 1 1 0 0 0

  7→ 1 1 −3 0 0 0 0
0 1 −2 0 0 2 0
0 0 1 1 0 0 0

  = [W |Q]

Hence, Q = WR or R = W−1Q = UQ. Combining these results together:

M =
1 −2 0 −8
2 −4 6 2
1 −2 2 −2

  =
1 −1 1
0 1 2
0 0 1

  · 0 0 0 0
0 0 2 0
1 0 0 0

  · 1 −2 2 −2
0 1 0 0
0 0 1 3
0 0 0 1


 = U ·Q ·V −1

Alternatively, equation R = W−1Q can be found by “re-shuffling” pivoted columns

of R so their pivots lie on the diagonal of an upper triangular matrix.

The process can be repeated for any matrix M , resulting in the equation

M = UQV −1 (4.1)

where U, V are (upper) uni-triangular and Q is a quasi-monomial matrix – that is,

U and V are upper-triangular with 1 on their diagonal, and Q is such that each row

and column has at most one non-zero entry. The change-of-bases matrices U and V
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are generally non-unique in this factorization. However, the matrix Q is essentially

unique as the following quick lemma suggests:

Lemma 4.2 (see Lemma A.1 in [43]). Suppose MV = UN , where M and N are

quasi-monomial and U and V are upper uni-triangular. Then M = N .

Proof. It suffices to show that every nonzero entry of N is also an entry of M ; it will

follow that every nonzero entry of M is also an entry of N by rewriting the matrix

equation as U−1M = NV −1. Since U is uni-triangular, the nonzero entries of N are

exactly the (column) pivots of UN , and hence the pivots of MV . On the other hand,

since V is uni-triangular, every nonzero entry of M is its row’s “leading” nonzero

entry in MV ; in particular, the leading nonzero entries of rows in MV lie in distinct

columns. We claim: every pivot of S = UN is also its row’s leading entry in S = MV ,

thus proving the initial proposition.

This is proved by contradiction. Suppose (to the contrary) that the pivot of some

column j1 of S is not the leading nonzero entry of its row i1 in S. Then there exists

an entry in column j2 < j1 of row i1; since (column) pivots are in distinct rows of

S, then column j2 has a pivot in row i2 > i1. The argument repeats: this nonzero

entry cannot be the leading one of row i2 (since row i1 already has a leading entry

in column j2), hence there a column j3 < j2 where that leading entry is; but then,

there must be a row i3 > i2 where the pivot of column j3 is located (since column j2

already has a pivot in row i2). It follows that there is an infinite sequence of pivots

in matrix S, which contradicts its finite dimensionality.

When M is invertible, equation 4.1 can be called the Bruhat factorization of M .

In this case, it is necessarily true that Q is invertible, and can be obtained from a
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permutation matrix P by multiplying its columns by appropriate nonzero scalars.

Actually, equation 4.1 can be rewritten to reflect this if we admit Type 2 column

operations into our repertoire, although this comes at the cost of the matrices V and

W no longer being uni-triangular.

4.1.2 Filtrations and Adapted Bases

Filtrations of vector spaces were previously introduced in section 3.3, with Lemma 3.20

covering the importance of their colimit. A filtration •U specifically refers to a filtra-

tion of subspaces tU ⊆ F , for some finite-dimensional vector space F and index set

T = Z; the space F can be called a reference vector space for the filtration •U . To

any such filtration •U , we associate the •U -level λ(z) = λ(z, •U) for any z ∈ F that

is defined via the set q(z) = {s ∈ Z|z ∈ sU}:

• λ(z) = j if q(z) is nonempty and has smallest element j ∈ Z.

• λ(z) =∞ if q(z) is empty.

• λ(z) = −∞ if q(z) is nonempty and has no smallest element.

We now discuss how to represent filtrations by adapted bases of F .

Definition 4.3. Let •U be a filtration of an n-dimensional reference vector space F .

A basis β = {zj}nj=1 of F is adapted to the filtration •U if for every t ∈ Z the subspace

tU equals the span of {z1, . . . , zdim tU}.

Given an basis β of F adapted to a filtration •U , we can easily construct other bases

adapted to •U ; we can do this by performing a sequence of any Type 3 elementary

operations on β where zk ∈ β is replaced by zk + α · zj such that λ(zj) 6 λ(zk). It
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is also clear that Type 2 operations can be used to “modify” an adapted basis, while

Type 1 operations can only be used with basis elements that the same •U -level.

Conversely, a choice of basis β of F and a choice of level λ(v) for all v ∈ β together

naturally specify a filtration •U to which β is adapted; for every t ∈ Z, tU is the span

of the set {v ∈ β : λ(v) 6 t}. This suggests a slightly more general definition, yet

one that proves very crucial.

Definition 4.4. Given a filtration •U of an n-dimensional reference vector space F

with limit 0 and colimit F , a basis β of F is almost-adapted to filtration •U if every

subspace tU is spanned by the set of elements in β that are contained in tU .

Equivalently, there exists a permutation π of {1, . . . , n} such that every tU equals

the span of {zπ(j)}dim tU
j=1 . So an almost-adapted basis is adapted if and only if the

level λ(vk) is a nondecreasing function of the index variable k.

Take any two bases β and µ of F , such that µ is adapted to a filtration tU on F .

The identity function 1F : F → F has a matrix representation M = [1F ]µβ with respect

to these bases; then calculate the Bruhat factorization of M (refer to section 4.1.1).

The upper uni-triangular matices establish bases β′ and µ′ of F , with µ′ being adapted

to •U . Of interest however is that the quasi-monomial matrix [1F ]µ
′

β′ , transforming β′

into µ′ by reordering the basis (and possibly applying Type 2 elementary operations

on its elements), results in an almost-adapted basis β′ to •U .

Remark 4.5. In finding the almost-adapted basis β′ for •U it suffices to perform

column reduction on M , which already describes the transformation of β into β′.

Now if β was adapted to another filtration •W of vector space F , then β′ is also

adapted •W by construction. That is, the basis β′ is simultaneously (!) almost-
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adapted to both filtrations •U and •W . This simple observation is nonetheless a

grand underpinning of things to come, so it is restated separately below:

Lemma 4.6. Given two filtrations •U and •U
′ of a reference vector space F , there

exists a basis β of F that is almost-adapted to both.

Alternatively, one may view Lemma 4.6 as a geometric manifestation of Bruhat

factorization: this represents every action g ∈ G of (complete) flags F . For more

discussion about the induced action by the general linear group G on flags, see section

5 of [3]. On another note, there generally do not exist bases that are adapted to

more than any chosen two filtrations of a reference vector space, as calculations in

section 4.3 demonstrate.

4.1.3 Elementary Operations on Filtrations

In a given vector space, there are many useful operations that can be performed on

its linear subspaces; many of which can be performed on filtrations of the vector

space. These were first presented in section 2.2.2, which we will briefly describe here.

Throughout, let F and G be finite-dimensional vector spaces.

Here, we will be using our extended definition of level (including −∞ and ∞) as

it is necessary to discuss range and preimage filtration. Equivalently, the colimit of

the range may not by given by F while the limit of the preimage filtration may not

be given by 0. Because the level λ of a basis element in a filtration is conventionally

stated by a function into T , this is presumably the reason these objects are not

generally discussed in most sources.

Suppose that h : F → G is a linear map. If there exists a filtration •U on F , then

we have the range filtration h (•U) whose reference vector space is G. An adapted
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basis of this filtration can be found via the following procedure.

1. Find bases β of F and γ of G such that β is adapted to •U.

2. Apply h to every element zk in β, and write matrix representation

[h]γβ: every column k represents element h(zk) with respect to γ.

3. Do the reduction procedure on this matrix; the pivoted columns of

the reduced matrix represent elements in the basis, denoted ρ×, of

the range subspace h(F ) ⊆ G.

4. Extend ρ× to a basis ρ of G by appending elements gk of γ to ρ×
for any row k of the reduced matrix that does not contain any

column pivots.

It checks out that the h (•U)-level of any element in ρ× equals the •U -level of

zk ∈ β, where k is the column in the reduced matrix that contains the γ-representation

of ρ0. By definition, elements in ρ \ ρ× have h (•U)-level equal to ∞.

On the other hand, if there exists a filtration •V on G, then we have the preim-

age filtration h−1 (•V ) whose reference vector space is F . An adapted basis of this

filtration can be found via a modification of the previous procedure.

1. Find a bases β of F and γ of G such that γ is adapted to •V .

2. Apply h to every element zk in β, and write the matrix [h]γβ.

3. Do the reduction procedure on this matrix; the change-of-basis

matrix transforms β into basis κ of F.

Denote the set of elements w ∈ κ such that h(w) 6= 0 by κ×. It checks out that the

h−1 (•V )-level of any element w ∈ κ× equals the •V -level of h(w), while (by definition)

elements in κ \ κ× have h−1 (•V )-level equal to −∞.
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Lemma 4.7. The bases κ of F and ρ of G produced by the procedures above are

almost-adapted to the preimage filtration h−1 (•V ) and adapted to the range filtration

h (•U), respectively. Therefore, reordering the basis with respect to the associated

filtration level makes it adapted to the filtration.

Proof. It is a well-known fact from linear algebra that the column space of a matrix

generates the range of its operator; column reduction merely uncovers a linearly

independent subset ρ× of these elements. The range-level of elements in G is trivial

to determine.

On the other hand, basis κ was constructed such that κ \ κ× is a basis for h−1(0)

and the ordered set {h(w) : w ∈ κ×} is a basis of h(F ) that is almost-adapted to

the range filtration h (h−1 (•V )). By definition of the preimage, the basis κ is almost-

adapted to h−1 (•V ).

Therefore, computing adapted bases of the preimage and range filtrations for linear

map h : F → G involves the reduction of the matrix [h], whose pivots then specify

finite levels for the range (determined from their column index) and the preimage

(determined from their row index). Specifically, one just needs to do a look-up of the

filtration level using these indices.

We also have operations for working with filtrations •U and •V of a single reference

space F . Here we can take their sum filtration •U + •V and intersection filtration

•U ∩ •V . The adapted bases for these filtrations can be easily found, as the next

lemma demonstrates.

Lemma 4.8. If basis β of F is simultaneously almost-adapted to filtrations •U and

•V , then β is almost-adapted to •U + •V and •U ∩ •V . The level of an element z ∈ β
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with respect to these filtrations is determined by its •U-level u(z) and •V -level v(z):

• the (•U + •V )-level of z equals min (u(z), v(z));

• the (•U ∩ •V )-level of z equals max (u(z), v(z)).

Proof. It is readily follows that for any t ∈ Z, the subspaces tU + tV and tU ∩ tV are

spanned by some elements of β. Conversely, the criteria for determining the level of

a basis element ensure that z ∈ β is in tU + tV only if z ∈ tU or z ∈ tV , and similarly

for the intersection.

Remark 4.9. A classical way to find the basis of the sum and intersection subspaces

is by considering the short exact sequence involving the direct sum of submodules

in section 3.2.2. Simply put, we take an matrix M whose columns consist first of

elements in the basis adapted to subspace U ⊆ F and then elements in the basis

adapted to subspace V ⊆ F ; the columns are then reordered so that those at level

∞ (in their respective subspace) are put at the end. Matrix M represents the linear

operator F ⊕ F → F + F = F with respect to these adapted bases. After reducing

this matrix, we look at the pivoted columns and the kernel of the matrix – the pivoted

columns determine a basis adapted to the sum U + V , while the kernel helps find a

basis adapted to the intersection U ∩V . The last step is slightly involved, which may

appear discouraging for those attempting explicit calculations.

Another important operation, quotients of filtrations, deserves its own section.
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4.1.4 Quotients of Filtered Spaces

Suppose •U ⊆ •W are filtrations of the reference vector space F . The quotient

•W/ •U is the persistence vector space

· · · t−1W/ t−1U tW/ tU t+1W/ t+1U · · ·

where each arrow sW/ sU → s+1W/ s+1U is the map induced from the identity F → F .

Such a quotient is a tempered persistence vector space. The type and multiplicity of

indecomposable summands in persistent homology are commonly described in terms

of the barcode invariant(s).

Now, let’s consider the decomposition of the filtration quotient •W/ •U . For s ∈ Z,

an element of any quotient vector space sW/ sU is represented as an equivalence class

of a vector w ∈ sW ,

s[w] := w + sU = {w + u ∈ sW |u ∈ sU}

where s[w
′] = s[w] if and only if w′ − w ∈ sU . We will extend this notation to any

z ∈ F by defining s[z] := 0 ∈ sW/ sU whenever z 6∈ sW . Then to any z in the

reference vector space F we associate the persistence vector space 〈•[z]〉 defined by

the diagram of vector spaces

· · · 〈t−1[z]〉 〈t[z]〉 〈t+1[z]〉 · · ·

where each span 〈s[z]〉 is a subspace of sW/ sU and each arrow between (nonzero)

vector spaces is induced from the identity F → F .

Proposition 4.10. Suppose •U ⊆ •W are filtrations of the reference vector space F

and z ∈ F is nonzero. Let u(z) denote the •U-level of z, and let w(z) denote the

•W -level of z. Then w(z) 6 u(z), and exactly one of the following cases holds:
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1. If w(z) < u(z), then 〈•[z]〉 is isomorphic to the interval persistence vector space:

〈•[z]〉 '
•

[
w(z), u(z)

)
2. If w(z) = u(z), then 〈•[z]〉 is the zero persistence vector space •0.

Proof. It is necessarily true that w(z) 6 u(z), for otherwise the inclusion relation

•U ⊆ •W would be violated. The case w(z) = u(z) is trivial, so assume w(z) < u(z).

For every s ∈ Z, the vector space 〈s[z]〉 is at most 1-dimensional; one can check that

this happens precisely when w(z) 6 s < u(z).

For the case when w(z) = u(z) = p, the zero persistence vector space is often

denoted by an “empty interval” •[p, p) := •0. Note that provided a filtration •U

satisfies m−U = 0 for some m− ∈ Z, the level of a nonzero vector cannot be −∞.

Following Lemma 4.6, we obtain a clean decomposition result for filtration quo-

tients.

Theorem 4.11. Suppose •U ⊆ •W are filtrations of the reference vector space F .

Suppose a basis β = {zk|1 6 k 6 dimF} of F is simultaneously almost-adapted to

•U and to •W . Then:

•W/ •U =
dimV⊕
k=1

〈•[z
k]〉

where the zero summands may be discarded.

Proof. The fact that β is almost adapted to both filtrations ensures that for each

s ∈ Z the quotient sW/ sU is isomorphic to the span of some subset of β. But then,

the transition maps of •W/ •U simply take elements of β to themselves.

Considering that the interval decomposition of a persistence vector space is what

allows us to find persistent homology, this theorem is a crucial component of our
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calculations. One must again point out that this is possible in part due to Bruhat

factorization, given by equation 4.1.

4.2 Homology of Filtered Complexes

We now demonstrate our algorithm to explicitly compute persistent features of filtered

chain complexes based on the mechanics of simultaneously almost-adapted bases.

Sections 4.2.1 and 4.2.2 each contain an example of a filtered chain complex for

which the H1 homology is computed. Then, in section 4.3 we explore the persistent

homology of a morphism between them.

Recall filtered chain complexes (•C•, •∂•), which were discussed formally in sec-

tions 3.3.1 and 3.3.2, and let (C•, ∂•) be its colimit complex. These come equipped

with what we call canonical filtrations, given by the filtration specified for each vector

space Ck in the complex. We further define:

• The preimage-canonical filtration on Ck is the preimage •P k = ∂−1
k (•Ck−1) of

the canonical filtration on Ck−1 under the differential ∂k : Ck → Ck−1.

• The range-canonical filtration on Ck is the range •Rk = ∂k+1(•Ck+1) of the

canonical filtration on Ck+1 under the differential ∂k+1 : Ck1+1 → Ck.

A computation with a filtered chain complex •C• starts by identifying bases

adapted to the canonical filtrations of the relevant vector spaces Ck. An intrinsic

basis is chosen that is adapted to the canonical filtration: it is necessary to choose an

ordering of the simplices such that the filtration level is nondecreasing. The choice

of an intrinsic basis is not unique, except in the special case where each k-simplex

has a distinct filtration level. Note that any ordering of the k-simplices of a filtered
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complex yields a basis of Ck that is almost-adapted to the canonical filtration.

Now, we utilize the machinery we developed in section 4.1 to explain the variant

persistent homology algorithm. Given a filtered chain complex C• • , let •Z be the

restriction of Z = ker(∂n) to the canonical filtration on Cn and •B is the restriction

of of B = im(∂n+1) to the range-canonical filtration on Cn.

Proposition 4.12. With the filtrations •Z and •B of reference vector space Z as de-

scribed above, the persistent homology of a filtered chain complex C• • can be expressed

as the quotient of filtrations:

Hn(•C•) = •Z/ •B

The algorithm is based on factorizing the differential ∂n+1 to provide an alternative

description of the filtration •B. Let in : Z → Cn be the subspace inclusion of

Z = ker(∂n) ⊆ Cn. Since ∂n ◦ ∂n+1 = 0 and in : Z → Cn is a categorical kernel of

∂n : Cn → Cn−1, its universal property ensures that there exists a unique linear map

δn+1 : Cn+1 → Z

that satisfies ∂n+1 = in ◦ δn+1. Consequently, we have the following:

Lemma 4.13. The range filtration of the canonical filtration on Cn+1 under the linear

map δn+1 : Cn+1 → Z produces exactly the filtration •B on Z ⊆ Cn.

The variant persistent homology (PH) algorithm can be summarized in two steps:

PH1: Express δn+1 as a matrix ∆n+1 relative to appropriately adapted bases.

PH2: Apply matrix reduction to ∆n+1 to obtain a basis of Z that is adapted to •B and

simultaneously almost-adapted to •Z.
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We draw attention to the fact that reduction of the single matrix ∆n+1 outputs

the desired simultaneously almost-adapted basis. But before this step, additional

computation is required to construct the matrix ∆n+1. By contrast, the standard

algorithm achieves better computational efficiency by cleverly combining the outputs

from reduction of the two matrices, the expressions of ∂n and of ∂n+1, to construct a

simultaneously almost-adapted basis.

Remark 4.14. In what follows, elements of a given basis β will be denoted eλ
k.

Here, k is the order of e within β, while λ refers to the level λ(e) of e in the filtration

to which β is adapted. This filtration should be inferred from context.

4.2.1 First computation

This is a detailed demonstration of the variant persistent homology algorithm, applied

to compute the dimension n = 1 persistent homology of the filtered simplicial complex

shown in Figure 4.1. See sections 2.1.1 and 2.3.1 for the necessary background.

p = 0 p = 1 p = 2 p = 3

C0 =
〈
a0 , b0 , c0 , d0

〉
C1 =

〈
ab1 , ac1 , bc1 , ad2 , bd2 , cd2

〉
C2 =

〈
acd2 , abd3

〉

Figure 4.1: Shown on the right are the intrinsic bases of C0, C1, C2; the prescript on
the elements denotes their level in the canonical filtration.

PH1a: Construct a basis p1,p2, . . . ,pdimZ of Z ⊆ C1 that is adapted to the restriction

•Z of the canonical filtration on C1.

To do this, we reduce the matrix D1 representing the differential operator

∂1 : C1 → C0 relative to intrinsic bases of C0 and C1. Doing so constructs
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a basis c1, c2, . . . , cdimC1 of C1 that is simultaneously: adapted to the canonical

filtration C• 1 and almost-adapted to the preimage-canonical filtration P• 1 .

Having the background on differential operators of simplicial complexes as es-

tablished in section 2.1.2, construct matrix D1 with reference to Figure 4.1:

D1 =
−1 −1 0 −1 0 0
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1




ab1 ac1 bc1 ad2 bd2 cd2

a0
b0
c0
d0

Reduce D1 according to the procedure in section 4.1.1. This yields the reduced

matrix D1 and the upper uni-triangular change of basis matrix V1 such that

D1 = D1 V1. The prescript λ of ckλ denotes its C• 1 -level.

D1 =
−1 −1 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




c1
1 c2

1 c3
1 c4

2 c5
2 c6

2

a0
b0
c0
d0

V1 =

1 0 1 0 1 0
0 1 −1 0 0 1
0 0 1 0 0 0
0 0 0 1 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1





c1
1 c2

1 c3
1 c4

2 c5
2 c6

2

ab1
ac1

bc1
ad2

bd2
cd2

Let ρ be the level function on C1 with respect to filtration P• 1 . For each basis

element c1, c2, . . . , cdimC1 we can read off the P• 1 -level from the rows of D1:

ρ( c1
1 ) = 0, ρ( c2

1 ) = 0, ρ( c3
1 ) = −∞, ρ( c4

2 ) = 0, ρ( c5
2 ) = −∞, ρ( c6

2 ) = −∞.

Since the basis c1, c2, . . . , cdimC1 is almost-adapted to P• 1 , discarding elements

that do not have P• 1 -level −∞ yields a basis p1,p2, . . . ,pdimZ of Z = P−∞ 1 :

p1
1 = c3

1 , p2
2 = c5

2 , p3
2 = c6

2 .

The prescript λ of pkλ denotes its C• 1 -level, same as of cλ (adapted to C• 1),

maintaining that •Z is the restriction of Z ⊆ C1 to canonical filtration •C1.
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We otherwise discard unused columns of the matrix V1, yielding a matrix P

that expresses each basis element p in terms of the intrinsic basis of C1:

P =

1 1 0
−1 0 1
1 0 0
0 −1 −1
0 1 0
0 0 1





p1
1 p2

2 p3
2

ab1
ac1

bc1
ad2

bd2
cd2

The basis p1,p2, . . . ,pdimZ is adapted to the canonical filtration •Z on Z.

Remark 4.15. The equations

q1
−∞ = c3

1 , q2
−∞ = c5

2 , q3
−∞ = c6

2 , q4
0 = c1

1 , q5
0 = c2

1 , q6
0 = c4

2

determine a basis of C1 adapted to the preimage filtration, where we simply re-

order the almost-adapted basis c1, c2, . . . , cdimC1 with respect to the level func-

tion ρ. The permutation matrix Y below describes these equations. A neat way

to construct this matrix is by taking the reduced matrix D1, removing any rows

that have no (column) pivot entry, and row-completing it to a square permuta-

tion matrix by adding rows at the top (appropriately-chosen from the identity

matrix). The elements q1,q2, . . . ,qdimC1 can be represented by the intrinsic

basis by multiplying the inverse of Y on the left by V1.

Y=

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0




c1
1 c2

1 c3
1 c4

2 c5
2 c6

2

q1
−∞

q2
−∞

q3
−∞

q4
0
q5

0
q6

0

V1YT=

1 1 0 1 0 0
−1 0 1 0 1 0
1 0 0 0 0 0
0 −1 −1 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0




q1
−∞ q2

−∞ q3
−∞ q4

0 q5
0 q6

0

ab1ac1
bc1
ad2
bd2
cd2

Matrix completion techniques shall be revisited later in section 4.3.1.
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PH1b: Express δ2 : C2 → Z as a matrix ∆2 relative to bases adapted to the canonical

filtrations: the intrinsic basis of C2 and the basis pk of Z found in PH1a.

Recall that δ2 is a unique linear map that satisfies the equation i1 ◦ δ2 = ∂2,

where i1 is the inclusion Z ⊆ C1. Hence, the goal is to find the unique solution

to the matrix equation:

P ·∆2 = D2

where matrix D2, representing the differential operator ∂2 with respect to in-

trinsic bases of C1 and C2, is constructed with reference to Figure 4.1:

D2 =

0 1
1 0
0 0
−1 −1
0 1
1 0





acd2 abd3

ab1
ac1

bc1
ad2
bd2
cd2

.

This constitutes a system of linear equations that is conventionally solved by

Gaussian elimination. However, the calculation is made simple by the fact that

P is already reduced. In particular, it suffices to solve the equation

P′ ·∆2 = D′2

where the matrices

P′ =
1 0 0
0 1 0
0 0 1

 
p1

1 p2
2 p3

2

bc1
bd2
cd2

D′2 =
0 0
0 1
1 0

 
acd2 abd3

bc1
bd2
cd2

are obtained from P and D2 respectively by removing like-indexed rows which

contain no (column) pivots in P; here, those would be rows 1, 2, and 4 from
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both. But this makes P′ an invertible matrix, so the solution is:

∆2 = (P′)
−1

D′2 =
0 0
0 1
1 0

 
acd2 abd3

p1
1
p2

2
p3

2

.

This completes Step PH1, and we proceed to Step PH2.

PH2: Reduce the matrix ∆2 to construct a basis b1,b2, . . . ,bdimZ of Z ⊆ C1 that is

simultaneously: adapted to the restriction •B of the range-canonical filtration

and almost-adapted to the restriction •Z of the canonical filtration. Then read

off the barcodes and persistent homology cycles.

Generally, matrix reduction of ∆2 in this step will produce the reduced matrix

∆2 and a upper triangular change-of-basis matrix V2, such that ∆2 = ∆2 V2;

the change-of-basis V2 specifies a basis akλ of C2, where λ denotes its C• 2 -level.

In this case, reduction is trivial:

∆2 =
0 0
0 1
1 0

 
a1

2 a2
3

p1
1
p2

2
p3

2

V2 = 1 0
0 1

[ ]a1
2 a2

3

acd2
abd3

The basis b1,b2, . . . ,bdimZ of Z should be adapted to the range-canonical fil-

tration of C2; this is equivalent to finding a basis of Z adapted to range filtra-

tion induced by δ2 of the canonical filtration. This is neatly done by working

with the reduced matrix ∆2; namely, we complete ∆2 to a square matrix by

columns. After removing any zero columns (none in this case), we append

columns (appropriately-chosen from the identity matrix) to get an invertible

square matrix S. The columns of S that came from ∆2 retain their levels (in
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C• 2), while the columns that were appended are assigned level ∞.

S =
0 0 1
0 1 0
1 0 0

 
b1

2 b2
3 b3

∞

p1
1
p2

2
p3

2

N =
0 0 1
0 1 0
1 0 0

 
b1

2 b2
3 b3

∞

z1
1
z2

2
z3

2

Also exhibited above is the pivot matrix N of S; that is, every column pivot of

S is replaced with 1 and every other (nonzero) entry with 0. This makes N a

permutation matrix because S is reduced and invertible, and it represents the

identity map 1Z : Z → Z with respect to basis bk adapted to •B and some basis

zk (given by the columns of S) adapted to •Z. Here it happens that N = S and

zk = pk, although this is generally not the case.

The significance of the permutation matrix N is that it cleanly encodes the

barcodes of the simplicial complex. Following Theorem 4.11, because the basis

b1,b2, . . . ,bdimZ of Z is simultaneously almost-adapted to •B and •Z the inter-

val indecomposables of the complex can be represented by 〈•[bk]〉. It remains to

measure the •Z-level of each element bk, which is exactly what N does: letting

ζ be the level function of filtration •Z, we see from the pivot entries of N:

ζ( b1
2 ) = 2, yielding interval [2, 2) with cycle b1

2 = ac− ad+ cd;

ζ( b2
3 ) = 2, yielding interval [2, 3) with cycle b2

3 = ab− ad+ bd;

ζ( b3
∞ ) = 1, yielding interval [1,∞) with cycle b3

∞ = ab− ac+ bc.

The corresponding persistent cycles (written as combination of the intrinsic

basis of C1) themselves were determined by transforming bk to basis pk, which is

quickly done by calculating the matrix B = PS. Concurrently, we can calculate

the matrix Z = BNT representing the basis zk in terms of the intrinsic basis;
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however, this step is not necessary.

B =

0 1 1
1 0 −1
0 0 1
−1 −1 0
0 1 0
1 0 0





b1
2 b2

3 b3
∞

ab1
ac1

bc1

ad2
bd2
cd2

Z =

1 1 0
−1 0 1
1 0 0
0 −1 −1
0 1 0
0 0 1





z1
1 z2

2 z3
2

ab1
ac1

bc1
ad2

bd2
cd2

The algorithm deduces ζ(bj) directly from B, as the prescript of the intrinsic

basis element corresponding the pivot entry of the column. We choose to take

the extra step of constructing the permutation matrix N in order to retain the

flexibility to work with filtrations other than canonical filtrations.

This completes Step PH2 and thus finishes the computation of persistent ho-

mology, which is summarized below.

H1( C• • ) ' [1,∞)⊕ [2, 3)

p = 0 p = 1 p = 2 p = 3

Figure 4.2: The barcode invariants corresponding to the decomposition of the per-
sistent homology H1( C• •) as computed in this section.

4.2.2 Second computation

We repeat the variant persistent homology algorithm to compute the dimension n = 1

persistent homology of the filtered simplicial complex shown in Figure 4.3. Because

the steps are identical, less detail is presented for brevity.
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p = 0 p = 1 p = 2 p = 3

Ĉ0 =
〈
â0 , b̂0 , ĉ0 , d̂0

〉
Ĉ1 =

〈
âĉ0 , âd̂0 , b̂ĉ0 , b̂d̂0 , âb̂1

〉
Ĉ2 =

〈
âb̂d̂2 , âb̂ĉ3

〉

Figure 4.3: Shown on the right are the intrinsic bases of Ĉ0, Ĉ1, Ĉ2; the prescript on
the elements denotes their level in the canonical filtration.

PH1a: Construct a basis p̂1, p̂2, . . . , p̂dim Ẑ of Ẑ ⊆ Ĉ1 that is adapted to the restriction

•Ẑ of the canonical filtration on Ĉ1.

Construct matrix D̂1 with reference to Figure 4.3:

D̂1 =
−1 −1 0 0 −1
0 0 −1 −1 1
1 0 1 0 0
0 1 0 1 0




âĉ0 âd̂0 b̂ĉ0 b̂d̂0 âb̂1

â0
b̂0
ĉ0
d̂0

Reduce D̂1 according to the procedure in section 4.1.1. This construct a basis

ĉ1, ĉ2, . . . , ĉdimC1 of Ĉ1 that is simultaneously adapted to the canonical filtration

Ĉ• 1 and almost-adapted to the preimage-canonical filtration P̂• 1 .

D̂1 =
−1 −1 1 0 0
0 0 −1 0 0
1 0 0 0 0
0 1 0 0 0




ĉ1
0 ĉ2

0 ĉ3
0 ĉ4

0 ĉ5
1

â0
b̂0
ĉ0
d̂0

V̂1 =

1 0 −1 1 −1
0 1 0 −1 0
0 0 1 −1 1
0 0 0 1 0
0 0 0 0 1




ĉ1
0 ĉ2

0 ĉ3
0 ĉ4

0 ĉ5
1

âĉ0

âd̂0

b̂ĉ0

b̂d̂0
âb̂1

Let ρ̂ be the level function on Ĉ1 with respect to filtration P̂• 1 . For each basis

element ĉ1, ĉ2, . . . , ĉdim Ĉ1 , read off the P̂• 1 -level from the rows of D̂1:

ρ̂( ĉ1
0 ) = 0, ρ̂( ĉ2

0 ) = 0, ρ̂( ĉ3
0 ) = 0, ρ̂( ĉ4

0 ) = −∞, ρ̂( ĉ5
1 ) = −∞.
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Discarding basis elements that do not have P̂• 1 -level equal to −∞ yields a basis

p̂1, . . . , p̂dim Ẑ of Ẑ = P̂−∞ 1 :

p̂1
0 = ĉ4

0 , p̂2
1 = ĉ5

1 .

The prescript λ of p̂kλ denotes its Ĉ• 1 -level, same as of ĉλ (adapted to Ĉ• 1).

We otherwise discard unused columns of the matrix V̂1, yielding a matrix P̂

that expresses each basis element p̂ in terms of the intrinsic basis of Ĉ1:

P̂ =

1 −1
−1 0
−1 1
1 0
0 1




p̂1
0 p̂2

1

âĉ0

âd̂0

b̂ĉ0
b̂d̂0
âb̂1

This basis is adapted to the canonical filtration •Ẑ on Ẑ.

PH1b: Express δ̂2 : Ĉ2 → Ẑ as a matrix ∆̂2 relative to bases adapted to the canonical

filtrations: the intrinsic basis of Ĉ2 and the basis p̂k of Ẑ found in PH1a.

The goal is to find the unique solution to the matrix equation:

P̂ · ∆̂2 = D̂2

where matrix D̂2, representing the differential operator ∂̂2 with respect to in-

trinsic bases of Ĉ1 and Ĉ2, is constructed with reference to Figure 4.3:

D̂2 =

0 −1
−1 0
0 1
1 0
1 1




âb̂d̂2 âb̂ĉ3

âĉ0

âd̂0
b̂ĉ0
b̂d̂0
âb̂1
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Since P̂ is already reduced, it suffices to solve the equation

P̂′ · ∆̂2 = D̂′2

where the matrices

P̂′ = 1 0
0 1

[ ]p̂1
0 p̂2

1

b̂d̂0
âb̂1

D̂′2 = 1 0
1 1

[ ]âb̂d̂2 âb̂ĉ3

b̂d̂0
âb̂1

are obtained from P̂ and D̂2 respectively by removing like-indexed rows which

contain no (column) pivots in P̂; here, those would be rows 1, 2, and 3 from

both. Since P̂′ an invertible matrix, the solution is:

∆̂2 =
(
P̂′
)−1

D̂′2 = 1 0
1 1

[ ]âb̂d̂2 âb̂ĉ3

p̂1
0
p̂2

1

This completes Step PH1, and we proceed to Step PH2.

PH2: Reduce the matrix ∆̂2 to construct a basis b̂1, b̂2, . . . , b̂dim Ẑ of Ẑ ⊆ Ĉ1 that is

simultaneously: adapted to the restriction •B̂ of the range-canonical filtration

and almost-adapted to the restriction •Ẑ of the canonical filtration. Then read

off the barcodes and persistent homology cycles.

Matrix reduction of ∆̂2 yields the reduced matrix ∆̂2 and the upper triangular

change of basis matrix V̂2, where ∆̂2 = ∆̂2 V̂2:

∆̂2 = 1 −1
1 0

[ ]â1
2 â2

3

p̂1
0

p̂2
1

V̂2 = 1 −1
0 1

[ ]â1
2 â2

3

âb̂d̂2

âb̂ĉ3

To calculate b̂1, b̂2, . . . , b̂dimZ , we find a basis of Ẑ adapted to range filtration

induced by δ̂2 of the canonical filtration on Ĉ2. Complete ∆̂2 to a square matrix
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by columns: remove any zero columns (none in this case), and append columns

(appropriately-chosen from the identity matrix) to get an invertible square ma-

trix Ŝ. Let N̂ be the pivot matrix of S: all nonzero entries of Ŝ are set to 0,

except for the (column) pivots which are set to 1.

The columns of Ŝ that came from ∆̂2 retain their levels (in Ĉ• 2), while the

columns that were appended are assigned to level ∞. The resulting basis

b̂1, b̂2, . . . ,bdimZ of Ẑ is then adapted to the range filtration •B̂, and simul-

taneously almost-adapted to the canonical filtration •Ẑ; on the other hand,

basis ẑ1, ẑ2, . . . , ẑdim Ẑ of Ẑ is adapted •Ẑ.

Ŝ = 1 −1
1 0

[ ]b̂1
2 b̂2

3

p̂1
0

p̂2
1

N̂ = 0 1
1 0

[ ]b̂1
2 b̂2

3

ẑ1
0
ẑ2

1

The matrices B̂ = P̂Ŝ and Ẑ = B̂N̂T represent their respective adapted bases

b̂1, b̂2, . . . , b̂dim Ẑ and ẑ1, ẑ2, . . . , ẑdim Ẑ of Ẑ as linear combinations of the intrin-

sic basis elements in Ĉ1. Technically, calculating matrix Ẑ is unnecessary.

B̂ =

0 −1
−1 1
0 1
1 −1
1 0




b̂1
2 b̂2

3

âĉ0

âd̂0
b̂ĉ0
b̂d̂0

âb̂1

Ẑ =

−1 0
1 −1
1 0
−1 1
0 1




ẑ1
0 ẑ2

1

âĉ0

âd̂0

b̂ĉ0

b̂d̂0
âb̂1

Following Theorem 4.11, the interval indecomposables of the complex can be

represented by 〈•[b̂k]〉. The •Ẑ-level ζ̂ of each basis element b̂1, b̂2, . . . , b̂dim Ẑ

is the level of the pivot entry of the corresponding column of N̂:

ζ̂( b̂1
2 ) = 1, yielding interval [1, 2) with cycle b̂1

2 = −âd̂+ b̂d̂+ âb̂;

ζ̂( b̂2
3 ) = 0, yielding interval [0, 3) with cycle b̂2

3 = −âĉ+ âd̂+ b̂ĉ− b̂d̂.
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This completes Step PH2 and thus the computation of persistent homology.

H1( Ĉ• • ) ' [0, 3)⊕ [1, 2)

p = 0 p = 1 p = 2 p = 3

Figure 4.4: The barcode invariants corresponding to the decomposition of the per-
sistent homology H1( Ĉ• •) as computed in this section.

4.3 Homology of Filtered Chain Maps

The framework of our algorithm has an advantage that it can be readily adapted to

study (co)kernels and (co)images of filtered chain maps. This is demonstrated on the

example in Figure 4.5, originally from [44]; the interval decompositions of C• • and

Ĉ• • were already found in section 4.2.

Ĉ• •

C• •

f• •

p = 0 p = 1 p = 2 p = 3

f0 • f1 • f2 • f3 •

Figure 4.5: The morphism f• • will be called the filtered folding map, and is defined
by the action on 0-simplices given by: a 7→ â, b 7→ b̂, c 7→ ĉ, d 7→ ĉ.
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The practical importance of knowing the kernel and cokernel was already seen in

section 3.3.3; namely, in [4] the authors show that the ε-triviality of the kerHn( f• • )

and cokerHn( f• • ) leads to ε-tight bounds on the endpoints of the matched intervals to

the coimage coimHn( f• • ) and image imHn( f• • ), thus establishing the algebraic sta-

bility theorem. Knowing the interval decomposition of coimHn( f• • ) ' imHn( f• • ) is

itself a crucial component in some other applications, such as computing the localized

persistent homology [61].

One of the earliest attempts to provide an explicit algorithm for calculating these

was conferred in [16] by Cohen-Steiner, Edelsbrunner, Harer, and Morozov. In this

setting, L ⊂ K are filtered simplicial complexes, each having a level function f : K →

R and g : L → R such that f 6 g on L; although by means of a mapping cylinder

construction, the authors were able to reduce their problem to the case where f = g

on L. This an important historical precedent for the manual presented further, and

their algorithm will briefly be analyzed in the Appendix. However, this algorithm

relies on the rigidity of the inclusion L ⊆ K to arrive at a consistent basis between

these complexes on which the rigorous matrix constructions are based. On the other

hand, the algorithm presented further functions in a basis-invariant way to provide

such a consistent basis, which easily allows to generalize the results to the case where

L → K is not monic. Ultimately, a more flexible picture began to develop with

the presentation in [57] of a theory on persistent (co)kernels and (co)images based on

their categorical foundations, where the main computational device used is the graded

Smith Normal Form representation of inclusion maps. We continue this development

by suggesting a uniform language for expressing all these objects’ persistent homology.

139



Our variant algorithm demonstrated ahead is founded on the following reason-

ing, familiar to anyone with a background in linear algebra. Recall that the kernel

and image of a morphism φ : P → P̂ of R-modules are given by φ−1(0) ⊆ P and

φ(P ) ⊆ P̂ , respectively; their quotients are the coimage P → P/φ−1(0) and cokernel

P̂ → P̂ /φ(P ). In our setup we are working the quotient modules P = Z/B and

P̂ = Ẑ/B̂ with φ = Hn(f) being the quotient morphism induced by f : Z → Ẑ; the

kernel and image of φ are represented by inclusions M = K ∩Z ⊆ Z (modulo B) and

M̂ = K̂ + B̂ ⊆ Z (modulo B̂), where

K = f−1(B) and K̂ = f(Ẑ)

The third isomorphism theorem from algebra then allows us to represent the coimage

and cokernel as P → Z/M and P̂ → Ẑ/M̂ . This is further underscored by the

nature of the canonical short exact sequences associated to the morphism Hnf , which

Propositions 4.16 and 4.17 will demonstrate for the case of filtered complexes.

As before, we will use a basis notation that is elaborated by Remark 4.14.

4.3.1 Restriction to a Map of n-Cycles

Because of our focus on homology of dimension n = 1, we begin by expressing the

linear map f1 : C1 → Ĉ1 in Figure 4.5 as a matrix F1 with respect to the intrinsic

bases on C1 and Ĉ1:

F1 =

0 1 0 1 0 0
0 0 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0




ab1 ac1 bc1 ad2 bd2 cd2

âĉ0

âd̂0
b̂ĉ0
b̂d̂0
âb̂1
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Going further, the property f1(Z) ⊆ Ẑ allows us to restrict to f : Z → Ẑ. Our

immediate goal is to express that as a matrix relative to previously-constructed bases.

Specifically, the morphism will be represented by a matrix F relative to bases

z1, . . . , zdimZ of Z and b̂1, . . . , b̂dim Ẑ of Ẑ. Recall from section 4.2 that the matrices

Z and B̂ each express these elements in terms of the intrinsic bases on C1 and Ĉ1,

shown below:

Z =

1 1 0
−1 0 1
1 0 0
0 −1 −1
0 1 0
0 0 1





z1
1 z2

2 z3
2

ab1
ac1

bc1
ad2

bd2
cd2

B̂ =

0 −1
−1 1
0 1
1 −1
1 0




b̂1
2 b̂2

3

âĉ0

âd̂0
b̂ĉ0
b̂d̂0

âb̂1

Then the sought-for matrix F can be found as the the unique solution of the

following matrix equation:

B̂ · F = F1 · Z.

Once again, we are presented with a system of linear equations that can be quickly

solved by using the fact that B̂ is reduced. Remove all the like-indexed rows of B̂

and F1 that do not contain a column pivot in B̂; here, that constitutes rows 1-3 of

both matrices. Then the original equation reduces to B̂′F = F′1Z, where:

B̂′ = 1 −1
1 0

[ ]b̂1
2 b̂2

3

b̂d̂0

âb̂1

F′1 = 0 0 0 0 0 0
1 0 0 0 0 0

[ ]ab ac bc ad bd cd

b̂d̂
âb̂

The invertibility of B̂′ then allows us to finally solve for F as:

F =
(
B̂′
)−1

F′1Z = 1 1 0
1 1 0

[ ]z1
1 z2

2 z3
2

b̂1
2
b̂2

3
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Now, we apply the usual reduction procedure on matrix F to obtain F = F W,

where F is a reduced matrix and W is a upper uni-triangular change-of-basis matrix,

shown below:

F = 1 0 0
1 0 0

[ ]z1
1 + z2

2 + z3
2 +

b̂1
2
b̂2

3

W =
1 −1 0
0 1 0
0 0 1

 
z1

1 + z2
2 + z3

2 +

z1
1

z2
2
z3

2

The matrix F represents the linear map f : Z → Ẑ with respect to a basis

z1
+, . . . , z

dimZ
+ of Z (adapted to the •Z filtration) and basis b̂1, . . . , b̂dim Ẑ of Ẑ (adapted

to the •B̂ filtration). Recalling Lemma 4.7, we can use F to compute bases adapted

to the range filtration •K̂ := f(•Z) and the preimage filtration •K := f−1(•B̂).

• Remove any zero columns from F, and append columns (appropriately-chosen

from the identity matrix) to get an invertible square matrix K̂. the kept columns

retain their level in •Z, while the appended columns get level ∞.

• Remove any rows from the pivot matrix of F that do not contain a (column)

pivot, and prepend columns (appropriately-chosen from the identity matrix) to

get an invertible square matrix K+; the kept rows retain their level in •B̂, while

the prepended rows get level −∞. Then calculate K = WKT .

We thus procure:

K̂ = 1 1
1 0

[ ]k̂1
1 k̂2

∞

b̂1
2
b̂2

3

K =
−1 0 1
1 0 0
0 1 0

 
k1

−∞ k2
−∞ k3

3

z1
1
z2

2
z3

2

The matrix K̂ represents some basis k̂1, . . . , k̂dim Ẑ relative to basis b̂1, . . . , b̂dim Ẑ ;

the basis k̂j is adapted to the range filtration f(•Z) by construction, and is almost-

adapted to filtration •B̂ (since K̂ is reduced). The matrix K represents some basis
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k1, . . . ,kdimZ relative to the basis z1, . . . , zdimZ ; the basis kj is adapted to the preim-

age filtration f−1(•B̂) by construction, and is almost-adapted to filtration •Z.

We can draw a parallel between the utility of the matrix F and the matrices ∆2, ∆̂2

from section 4.2. In both cases we represent a linear operator in matrix form relative

to a choice of bases on the source and target reference vector spaces, so as to prepare

for finding an almost-adapted basis for either: its induced range filtration and the

chosen filtration on the target space, or its induced preimage filtration and the chosen

filtration on the source space. In this case, we are able to achieve both.

4.3.2 Image and Cokernel

Following the discussion in the introduction, we have the following proposition that

allows us to calculate the image and cokernel of the morphism f• • .

Proposition 4.16 (see [44]). Let •M̂ := •B̂ + •K̂ be the sum of filtrations •B̂ and

•K̂ := f(•Z) of Ẑ. Then •B̂ ⊆ •M̂ ⊆ •Ẑ as filtrations of Ẑ, and:

1. The map •M̂/ •B̂ → •Ẑ/ •B̂ induced from the identity Ẑ → Ẑ is the categorical

image, imHn(•f •)→ Hn(•Ĉ•).

2. The map •Ẑ/ •B̂ → •Ẑ/ •M̂ induced from the identity Ẑ → Ẑ is the categorical

cokernel, Hn(•Ĉ•)→ cokerHn(•f •).

Proof. This readily follows from the fact that these relations hold at every s ∈ Z.
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The following diagram summarizes the short exact sequence of vector spaces arising

from quotients of filtrations •B̂ ⊆ •M̂ ⊆ •Ẑ of the reference vector space Ẑ:

•B̂ •B̂ •B̂ •M̂ •Ẑ

•B̂ •M̂ •Ẑ •Ẑ •Ẑ

•0 imHn(•f •) Hn(•Ĉ•) cokerHn(•f •) •0

∼ ∼

∼ ∼

The key ingredient is the basis k̂1, . . . , k̂dim Ẑ given by matrix K̂, which was found

to be almost-adapted to each of the filtrations •B̂ and •K̂ = f(•Z). This basis is

therefore also almost-adapted the sum of the filtrations •M̂ = •K̂ + •B̂; letting µ̂

denote the level function of •M̂ , we have

µ̂( k̂1
1 ) = min(1, 3) = 1, µ̂( k̂2

∞ ) = min(∞, 2) = 2

Hence we have the basis m̂1, . . . , m̂dim Ẑ of Ẑ that is adapted to the •M̂ filtration:

m̂1
1 = k̂1, m̂2

2 = k̂2

which we represent by columns of the matrix M̂.

M̂ = 1 0
0 1

[ ]m̂1
1 m̂2

2

k̂1
0
k̂2

1

, M̂− = K̂M̂ = 1 1
1 0

[ ]m̂1 m̂2

b̂1
2
b̂2

3

, M̂+ = N̂M̂− = 1 0
1 1

[ ]m̂1 m̂2

ẑ1
0
ẑ2

1

.

Following Proposition 4.16 and Theorem 4.11, finding the image requires calculat-

ing a basis m̂1
−, . . . , m̂

dim Ẑ
− that is adapted to •M̂ and simultaneously almost-adapted

to •B̂, while finding the cokernel requires calculating a basis m̂1
+, . . . , m̂

dim Ẑ
+ that is

adapted to •M̂ and simultaneously almost-adapted to •Ẑ.
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Since basis m̂k is simultaneously almost-adapted to •M̂ and •B̂ (by construction),

it suffices to set m̂1
1 − = m̂1

1 and m̂2
2 − = m̂2

2 . Their •B̂-levels are inferred from the

pivots of the (already reduced) matrix M̂− above. Hence:

Image cycle m̂1
1 − = −âĉ+ b̂ĉ+ âb̂, representing interval [1, 3);

Image cycle m̂2
2 − = −âd̂+ b̂d̂+ âb̂, representing interval [2, 2).

Respectively, basis m̂k
+ of Ẑ is found by working with the matrix M̂+ above; generally,

this will actually require a round of reduction.

M̂+ = 1 −1
1 0

[ ]m̂1
+ m̂2

+

ẑ1
0

ẑ2
1

, Û = 1 −1
0 1

[ ]m̂1
+ m̂2

+

m̂1

m̂2

The •Ẑ-levels are inferred from the pivots of M̂+ above, and so we summarize:

Cokernel cycle m̂1
1 + = −âĉ+ b̂ĉ+ âb̂, representing interval [1, 1);

Cokernel cycle m̂2
2 + = âĉ− âd̂− b̂ĉ+ b̂d̂, representing interval [0, 2).

Figure 4.6 represents the (image-cokernel) canonical short exact sequence ofH1( f• • )
by morphisms of filtered complexes, in the category coimP1. This sequence necessar-
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ily does not split, since the sequence of induced matchings is not short exact.

0

cokerH1(•f) ' [0, 2)

H1(•K) '[0, 3)⊕ [1, 2)

imH1(•f) ' [1, 3)

0

p = 0 p = 1 p = 2 p = 3

Figure 4.6: Note that the filtered complexes in the top two rows have non-intrinsic
2-simplices (relative to •Ĉ) to emphasize their homology, while the filtered complexes
in the bottom two rows are subcomplexes of •Ĉ•.

4.3.3 Kernel and Coimage

Following the discussion in the introduction, we have the following proposition that

allows us to calculate the image and cokernel of the morphism f• • .

Proposition 4.17 (see [44]). Let •M := •Z ∩ •K be the intersection filtration of •Z

and K := f−1(•B̂) be the preimage of •B̂ ⊆ •Ẑ. Then •B ⊆ •M ⊆ •Z as subspaces

of Z, and:
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1. The map •M/ •B → •Z/ •B induced from the identity Z → Z is the categorical

kernel, kerHn(•f•)→ Hn(•C•).

2. The map •Z/ •B → •Z/ •M induced from the identity Z → Z is the categorical

coimage, Hn(•C•)→ coimHn(•f•).

Proof. This readily follows from the fact that these relations hold at every s ∈ Z.

The following diagram summarizes the short exact sequence of vector spaces arising

from quotients of the subspaces •B ⊆ •M ⊆ •Z of the reference vector space Z:

•B •B •B •M •Z

•B •M •Z •Z •Z

•0 kerHn(•f•) Hn(•C•) coimHn(•f•) •0

∼ ∼

∼ ∼

The key ingredient is the basis k1, . . . ,kdimZ given by matrix K, which was found

to be almost-adapted to each of the filtrations •Z and •K = f−1(•B̂). This basis is

therefore also almost-adapted the intersection of the filtrations •M = •K∩•Z; letting

µ denote the level function of •M , we have

µ( k1
−∞ ) = max(−∞, 2) = 2, µ( k2

−∞ ) = max(−∞, 2) = 2, µ( k3
3 ) = max(3, 1) = 3

Hence we have the basis m1, . . . ,mdimZ of Z that is adapted to the •M filtration:

m1
2 = k1, m2

2 = k2, m3
3 = k3
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represented by columns of the matrix M. We also find M+ = KM and M− = NTM+.

M =
1 0 0
0 1 0
0 0 1

 
m1

2 m2
2 m3

3

k1
−∞

k2
−∞

k3
3

, M+ =
−1 0 1
1 0 0
0 1 0

 
m1 m2 m3

z1
1
z2

2
z3

2

, M− =
0 1 0
1 0 0
−1 0 1

 
m1 m2 m3

b1
2
b2

3
b3
∞

.

Following Proposition 4.16 and Theorem 4.11, finding the coimage requires cal-

culating a basis m1
+, . . . ,m

dimZ
+ that is adapted to •M and simultaneously almost-

adapted to •Z, while finding the kernel requires calculating a basis m1
−, . . . ,m

dimZ
−

that is adapted to •M and simultaneously almost-adapted to •B.

Since basis mk is simultaneously almost-adapted to •M and •Z (by construction),

it suffices to set: m1
2 + = m1

2 , m2
2 + = m2

2 , and m3
3 + = m3

3 . Their •Z-levels are

inferred from the pivots of the (already reduced) matrix M̂+ above. Hence:

Coimage cycle m1
2 + = ac− bc− ad+ bd, representing interval [2, 2);

Coimage cycle m2
2 + = ac− ad+ cd, representing interval [2, 2).

Coimage cycle m3
3 + = ab− ac+ bc, representing interval [1, 3).

Respectively, basis mk
− of Z is found by working with the matrix M− above; generally,

this will actually require a round of reduction.

M− =
0 1 0
1 0 1
−1 0 0

 
m1
− m2

− m3
−

b1
2
b2

3

b3
∞

, U =
1 0 1
0 1 0
0 0 1

 
m1
− m2

− m3
−

m1

m2

m3

The •B-levels are inferred from the pivots of M− above, and so we summarize:

Kernel cycle m1
2 − = ab− ac+ bd− cd, representing interval [2,∞);

Kernel cycle m2
2 − = ab− ac+ bc, representing interval [2, 2);

Kernel cycle m3
3 − = ab− ad+ bd, representing interval [3, 3).
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Figure 4.6 represents the (coimage-kernel) canonical short exact sequence ofH1( f• • )
by morphisms of filtered complexes, in the category coimP1. This sequence necessar-
ily does not split, since the sequence of induced matchings is not short exact.

0

coimH1(•f) ' [1, 3)

H1(•L) ' [1,∞)⊕ [2, 3)

kerH1(•f) ' [2,∞)

0

p = 0 p = 1 p = 2 p = 3

Figure 4.7: Note that the filtered complexes in the top two rows have non-intrinsic
2-simplices (relative to •C) to emphasize their homology, while the filtered complexes
in the bottom two rows are subcomplexes of •C•.
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4.4 Algorithmic Matching of Cycles and Barcodes

In section 3.3.3 we discussed the work of Bauer and Lesnick [4] on their “canonical”

and “induced” matchings of barcodes. Their work elucidates the discussion of the

fundamental stability and isomorphism theorems of persistent homology. It suffices

to look into barcode invariants, which are entirely independent of the choices of

decompositions into indecomposable summands, that is choices of a “persistent cycle”

corresponding to each indecomposable summand.

Because our algorithm for (co)kernels and (co)images produces such representative

cycles (not necessarily independent of the original choice of basis), it is good to elabo-

rate on how barcode matchings behave in this formulation of persistent homology. We

will make a distinction between the canonical matching scheme that was studied in

[4] (which is purely combinatorial in nature) and an “algorithmic” matching scheme

that hinges on the mechanics of how filtrations can be made conformal with respect

to an almost-adapted choice of basis. A preliminary concept for discussion is that of

an overlap matching, taken from [44].

Definition 4.18. Suppose vi− and vj+ are bases of a vector space F . We say that

the basis vi− overlaps with basis vi+ if the change of basis matrix between them is

(upper) triangular. In this case, the term overlap matching can be used to describe

the following bijection of these ordered basis elements:

v1
− ↔ v1

+ , v2
− ↔ v2

+ , . . . , vdimV
− ↔ vdimV

+

Because invertible upper-triangular matrices form a multiplicative group, overlap

matching is an equivalence relation on the set of all bases of F . Fundamentally, an
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overlap matching between bases vi− and vj+ is determined from the pivots of the

change-of-basis matrix [1F ]
vj+
vi−

located on its diagonal.

In our case, we use ordered bases adapted to filtrations on F so we are interested

in how an overlap matching conforms to that notion.

Lemma 4.19. Suppose that vi− and vj+ are bases of a vector space F that overlap,

and let •U be a filtration on F with level function u.

1. If vj+ is adapted to a filtration •U , then u(vk+) = u(vk−) for all k. In particular,

vi− is also adapted to •U .

2. If vj+ is almost-adapted to a filtration •U , then u(vk+) 6 u(vk−) for all k.

Proof. Let M be the change of basis matrix from vi− to vj+; it is upper-triangular by

hypothesis, so every vk− is generated by {v1
+, . . . ,v

k
+}.

If vj+ is almost-adapted to •U , then tβ = {vj+ : u(vj+) 6 t} is a basis for tU ;

note that t = maxv∈tβ u(v). Clearly vk− ∈ tU if and only if {v1
+, . . . ,v

k
+} ⊆ tβ, so

t > max{u(vj+) : j = 1, . . . , k} > u(vk+). This proves the second statement.

If vj+ is adapted to •U , then u(v1
+) 6 · · · 6 u(vdimF

+ ); hence, any element v in

the span of {v1
+, . . . ,v

k
+} must satisfy u(v) 6 u(vk+). Setting v = vk−, equality in the

first statement follows since vj+ is (trivially) almost-adapted to •U .

As a direct consequence, we have the following inequalities that play a role in

describing barcode matchings arising from overlap matchings of cycles.

Corollary 4.20. Suppose •B ⊆ •M ⊆ •Z are filtrations of the vector space Z, with

filtration levels denoted by λB, λM , and λZ respectively.

151



1. Let bi and bj− be overlapping bases of Z. If bi is almost-adapted to •Z, then

λZ(bk) 6 λM(bk−) for each k.

2. Let zi and zj+ be overlapping bases of Z. If zi+ is almost-adapted to •M , then

λM(zk+) 6 λB(zk) for each k.

Proof. The first statement follows since Lemma 4.19 implies λZ(bk) 6 λZ(bk−) and

Proposition 4.10 implies λZ(bk−) 6 λM(bk−). The second statement is similar.

4.4.1 Overlap Matching for Image and Cokernel

Recall from section 4.2.2 the derivation of the following matrices.

N̂ = 0 1
1 0

[ ]b̂1
2 b̂2

3

ẑ1
0
ẑ2

1

, N̂T = 0 1
1 0

[ ]ẑ1
0 ẑ2

1

b̂1
2
b̂2

3

Also recall from section 4.3.1 the following change-of-basis matrices.

M̂− = 1 1
1 0

[ ]m̂1
1 − m̂2

2 −

b̂1
2
b̂2

3

, M̂+ = 1 −1
1 0

[ ]m̂1
1 + m̂2

2 +

ẑ1
0

ẑ2
1

.

These display the representation of bases m̂i
− and m̂j

+ with respect to the basis b̂i

adapted to the range-canonical filtration and the basis ẑj adapted the the preimage-

canonical filtration. Use M̂− to find a basis b̂i− adapted to •B̂ by looking at the

matrix pivots and assigning levels appropriately:

b̂1
2 − = m̂2

−, b̂2
3 − = m̂1

−

Use M̂+ to find a basis ẑi− adapted to •Ẑ by looking at the matrix pivots and

assigning levels appropriately:

ẑ1
0 + = m̂2

+, ẑ2
1 + = m̂1

+

152



Induced matching of imH1(•f •)→ H1(•Ĉ•) is achieved via the overlap matching

b̂i− ↔ b̂i (where the one on the left is almost-adapted to •M̂ and the one on the right

is almost-adapted to •Ẑ). This induces a matching of interval complexes 〈•[b̂i−]〉 ↔

〈•[b̂i]〉, corresponding to an interval matching

[
λM̂(b̂i−), λB̂(b̂i−)

)
←→

[
λẐ(b̂i), λB̂(b̂i)

)
which by Corollary 4.20 specifies a monic matching of barcodes:

[2, 2)↔ [1, 2), representing the overlap b̂1
− ↔ b̂1

[1, 3)↔ [0, 3), representing the overlap b̂2
− ↔ b̂2

Induced matching of H1(•Ĉ•)→ cokerH1(•f •) is achieved via the overlap match-

ing ẑi ↔ ẑi+ (where the one on the left is almost-adapted to •B and the one on

the right is almost-adapted to •M). This induces a matching of interval complexes

〈•[ẑi]〉 ↔ 〈•[ẑi+]〉, corresponding to an interval matching

[
λẐ(ẑi), λB̂(ẑi)

)
←→

[
λẐ(ẑi+), λM̂(ẑi+)

)
which by Corollary 4.20 specifies an epic matching of barcodes:

[0, 3)↔ [0, 2), representing the overlap ẑ1 ↔ ẑ1
+

[1, 2)↔ [1, 1), representing the overlap ẑ2 ↔ ẑ2
+

4.4.2 Overlap Matching for Kernel and Coimage

Recall from section 4.2.1 the derivation of the following matrices.

N =
0 0 1
0 1 0
1 0 0

 
b1

2 b2
3 b3

∞

z1
1
z2

2
z3

2

, NT =
0 0 1
0 1 0
1 0 0

 
z1

1 z2
2 z3

2

b1
2
b2

3
b3
∞
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Also recall from section 4.3.2 the calculation of the following change-of-basis matrices.

M+ =
−1 0 1
1 0 0
0 1 0

 
m1

2 + m2
2 + m3

3 +

z1
1
z2

2
z3

2

, M− =
0 1 0
1 0 1
−1 0 0

 
m1

2 − m2
2 − m3

3 −

b1
2
b2

3

b3
∞

.

These display the representation of bases mi
+ and mj

− with respect to the basis zi

adapted to the preimage-canonical filtration and the basis b̂j adapted the the range-

canonical filtration. Use M− to find a basis bi− adapted to •B by looking at the

matrix pivots and assigning levels appropriately:

b1
2 − = m2

−, b2
3 − = m3

−, b3
∞ − = m1

−

Use M+ to find a basis zi+ adapted to •Z by looking at the matrix pivots and

assigning levels appropriately:

z1
1 + = m̂3

+, z2
2 + = m̂1

+, z3
2 + = m̂2

+

Induced matching of kerH1(•f •)→ H1(•C•) is achieved via the overlap matching

bi− ↔ bi (where the one on the left is almost-adapted to •M and the one on the right

is almost-adapted to •Z). This induces a matching of interval complexes 〈•[bi−]〉 ↔

〈•[bi]〉, corresponding to an interval matching

[
λM(bi−), λB(bi−)

)
←→

[
λZ(bi), λB(bi)

)
which by Corollary 4.20 specifies a monic matching of barcodes:

[2, 2)↔ [2, 2), representing the overlap b1
− ↔ b1

[3, 3)↔ [2, 3), representing the overlap b2
− ↔ b2

[2,∞)↔ [1,∞), representing the overlap b3
− ↔ b3
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Induced matching of H1(•C•)→ coimH1(•f •) is achieved via the overlap matching

zi ↔ zi+ (where the one on the left is almost-adapted to •B and the one on the right

is almost-adapted to •M). This induces a matching of interval complexes 〈•[zi]〉 ↔

〈•[zi+]〉, corresponding to an interval matching

[
λZ(zi), λB(zi)

)
←→

[
λZ(zi+), λM(zi+)

)
which by Corollary 4.20 specifies an epic matching of barcodes:

[1,∞)↔ [1, 3), representing the overlap z1 ↔ z1
+

[2, 3)↔ [2, 2), representing the overlap z2 ↔ z2
+

[2, 2)↔ [2, 2), representing the overlap z3 ↔ z3
+

4.4.3 Matchings Compatible with the Canonical Isomorphism

The isomorphism coimH1(•f •) → imH1(•f •) is induced by the morphism f : •Z →

•M̂ that restricts to •M → •B̂. Since we used the same reduced matrix for coimage

and image, the decompositions of the coimage and image into (appropriately) adapted

bases are compatible via the canonical isomorphism.

Recall section 4.3.1 the matrix F, which represents the chain map f1.

F = 1 0 0
1 0 0

[ ]z1
1 + z2

2 + z3
2 +

b̂1
2
b̂2

3

It sends m3
3 + = k3

3 = z1
1 ∈ Z to m̂1

1 − = k̂1
1 = b̂1

2 + b̂2
3 ∈ Ẑ.

The factorization of the morphism through coimage and image is

[1,∞)⊕ [2, 3)→ [1,3)→ [1,3)→ [0,3)⊕ [1, 2)

The (nontrivial) matching of the epic coimage map is the epic [1,∞) → [1, 3). The
nontrivial matching of the monic image map is the monic [1, 3) → [0, 3). These
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pairwise matchings are indicated in the above diagram in bold, where the matching
in the middle is an isomorphism and is shown below:

H1(•K) ' [0, 3)⊕ [1, 2)

imH1(•f) ' [1, 3)

coimH1(•f) ' [1, 3)

H1(•L) ' [1,∞)⊕ [2, 3)

'

p = 0 p = 1 p = 2 p = 3

0f 1f 2f 3f

Figure 4.8: The canonical factorization of the original persistence vector space map
H1(•f) : H1(•C) → H1(•Ĉ) through its coimage and image can also be described as
the homology of a grid diagram of filtered chain complexes. Note that each row is a
filtered complex, but a column is not a filtered complex in general.

Note that the nonempty overlap necessarily satisfies:

[1, 3) = [1,∞) ∩ [0, 3).

If the map Hn(f) of persistence vector spaces is monic, then the coimage map is the

identity and the image map is Hn(f). So the matched cycles have same deaths. By

permutation of bases, one recovers the existence of the canonical matching for monic

barcodes as given in [4].

If the map Hn(f) of persistence vector spaces is epic, then the coimage map is

Hn(f) and the image map is the identity. So the matched cycles have the same
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births. By permutation of bases, one recovers the existence of the canonical matching

for epic barcodes as given in [4].

This shows that the properties of the algorithmic matching scheme are consistent

with the those exhibited by canonical matchings originally presented in [4]. Every

cycle matching induces a barcode matching in the obvious way by forgetting the cycles

but remembering their barcodes.

Then these induce a matching of barcodes as an association of barcodes of C and

Ĉ via the isomorphism matching of the coimage to image. Some intervals are not

matched, represented by an overlap matching of v1
− ↔ v1

+ where at least one of

the elements belongs to the trivial class in the quotient of filtrations. The induced

matching in [4] is an “optimal” matching of barcodes of C and Ĉ, ultimately giving

the proof of the algebraic stability theorem. Note that this is purely combinatorial,

independent of any choices of cycles/indecomposables on C or Ĉ.

Any decomposition of C and Ĉ as well as image and coimage of Hn(f), such

as those provided by our variant algorithm, can be used to do an algorithmic cycle

matching. Of course we can rearrange orders of bases and get different results, so

in general these representative bases are not unique. Then our algorithmic cycle

matching algorithm produces these cycle matchings via the composition of morphisms

in C → coim •f • → im •f • → Ĉ, resulting in a cycle matching from C to Ĉ.

An algorithmic matching exists by default, after choices of interval representatives

for C and Ĉ have been made – this matching is procedurally generated using the

mechanics of overlap matchings stated in this section. We can state it as an immediate

corollary of the existence of algorithmic cycle matchings guarantees the existence
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of an “optimal” barcode matching, which may be the induced barcode matching

of [4]. Additionally, our stated algorithmic cycle matching results, together with

the inequalities of Corollary 4.20, yield an alternate proof of the canonical barcode

matchings of Theorem 4.2 in [4].

However, algorithmic cycle matchings do not in general agree with canonical bar-

code matchings: it is not too arduous to devise examples of some monic or epic map

Hn(•C•)→ Hn(•C•) such that the induced barcode matching from overlapping bases

is not a canonical matching.
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[17] Jean Dieudonné. “A History of Algebraic and Differential Topology, 1900–
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