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ABSTRACT 

 With the explosion of ubiquitous continuous sensing, on-line streaming clustering 

continues to attract attention.  The requirements are that the streaming clustering algorithm 

recognize and adapt clusters as the data evolves, that anomalies are detected, and that new 

clusters are automatically formed as incoming data dictate.  In this dissertation, we develop 

a streaming clustering algorithm, MU Streaming Clustering (MUSC), that is based on 

coupling a Gaussian mixture model (GMM) with possibilistic clustering to build an adaptive 

system for analyzing streaming multi-dimensional activity feature vectors. For this reason, 

the possibilistic C-Means (PCM) and Automatic Merging Possibilistic Clustering Method 

(AMPCM) are combined together to cluster the initial data points, detect anomalies and 

initialize the GMM.  MUSC achieves our goals when tested on synthetic and real-life 

datasets. We also compare MUSC’s performance with Sequential k-means (sk-means), 

Basic Sequential Clustering Algorithm (BSAS), and Modified BSAS (MBSAS) where 

MUSC shows superiority in the performance and accuracy.   

The performance of a streaming clustering algorithm needs to be monitored over time to 

understand the behavior of the streaming data in terms of new emerging clusters and 

number of outlier data points. Incremental internal Validity Indices (iCVIs) are used to 

monitor the performance of an on-line clustering algorithm. We study the internal 

incremental Davies-Bouldin (DB), Xie-Beni (XB), and Dunn internal cluster validity 

indices in the context of streaming data analysis. We extend the original incremental DB 

(iDB) to a more general version parameterized by the exponent of membership weights. 

Then we illustrate how the iDB can be used to analyze and understand the performance of 

MUSC algorithm.  We give examples that illustrate the appearance of a new cluster, the 
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effect of different cluster sizes, handling of outlier data samples, and the effect of the input 

order on the resultant cluster history.   In addition, we investigate the internal incremental 

Davies-Bouldin (iDB) cluster validity index in the context of big streaming data analysis. 

We analyze the effect of large numbers of samples on the values of the iCVI (iDB).  

We also develop online versions of two modified generalized Dunn's indices that can be 

used for dynamic evaluation of evolving (cluster) structure in streaming data. We argue 

that this method is a good way to monitor the ongoing performance of online clustering 

algorithms and we illustrate several types of inferences that can be drawn from such 

indices. We compare the two new indices to the incremental Xie-Beni and Davies-Bouldin 

indices, which to our knowledge offer the only comparable approach, with numerical 

examples on a variety of synthetic and real data sets.  

We also study the performance of MUSC and iCVIs with big streaming data applications. 

We show the advantage of iCVIs in monitoring large streaming datasets and in providing 

useful information about the data stream in terms of emergence of a new structure, amount 

of outlier data, size of the clusters, and order of data samples in each cluster. We also 

propose a way to project streaming data into a lower space for cases where the distance 

measure does not perform as expected in the high dimensional space.  

Another example of streaming is the data acivity data coming from TigerPlace and other 

elderly residents’ apartments in and around Columbia. MO. TigerPlace is an eldercare 

facility that promotes aging-in-place in Columbia Missouri. Eldercare monitoring using 

non-wearable sensors is a candidate solution for improving care and reducing costs. 

Abnormal sensor patterns produced by certain resident behaviors could be linked to early 

signs of illness. We propose an unsupervised method for detecting abnormal behavior 
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patterns based on a new context preserving representation of daily activities. A preliminary 

analysis of the method was conducted on data collected in TigerPlace. Sensor firings of 

each day are converted into sequences of daily activities. Then, building a histogram from 

the daily sequences of a resident, we generate a single data vector representing that day. 

Using the proposed method, a day with hundreds of sequences is converted into a single 

data point representing that day and preserving the context of the daily routine at the same 

time. We obtained an average Area Under the Curve (AUC) of 0.9 in detecting days where 

elder adults need to be assessed. Our approach outperforms other approaches on the same 

datset. Using the context preserving representation, we develoed a multi-dimensional alert 

system to improve the existing single-dimensional alert system in TigerPlace. Also, this 

represenation is used to develop a framework that utilizes sensor sequence similarity and 

medical concepts extracted from the EHR to automatically inform the nursing staff when 

health problems are detected. Our context preserving representation of daily activities is 

used to measure the similarity between the sensor sequences of different days. The medical 

concepts are extracted from the nursing notes using MetamapLite, an NLP tool included in 

the Unified Medical Language System (UMLS). The proposed idea is validated on two 

pilot datasets from twelve Tiger Place residents, with a total of 5810 sensor days out of 

which 1966 had nursing notes. 
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Chapter 1: Introduction 

 Problem Statement 
 

This work encompasses several years of research into algorithms for temporal data 

stream analysis to produce decisions as data points evolve. It addresses the problem of 

streaming clustering of a temporal data stream where the data arrives one sample at a time. 

Streaming clustering algorithms need to be incremental, process each new arriving data 

points only once and discard it, adapt as data stream evolves, flag outliers, and most 

importantly, spawn new emerging structures. To make a decision from a streaming 

clustering algorithm’s output, the performance of the algorithm needs to be monitored in 

real time. The monitoring process should provide information about number and size of 

clusters in the data stream, amount of outlier data samples, streaming order of incoming 

data points, and emerging clusters in the data stream. Incremental Cluster Validity Indices 

(iCVIs) is one possible approach to monitor streaming clustering algorithms. Traditional 

cluster validity indices (CVIs) cannot be applied directly to work with streaming clustering 

algorithm because they require partitions produced from static datasets.  Therefore, CVIs 

must be extended to work online and incrementally as data samples evolve.  

Synthetic and real-life streaming datasets are used in this dissertation. The real-life 

datasets are: Weather dataset [1], heron Iceland dataset [2], and eldercare datasets from 

elderly residents’ apartments such as TigerPlace, an eldercare facility that promotes aging-

in-place, [3]. For the first two datasets, the data stream are numeric features which are used 

to test the streaming clustering and the iCVIs. TigerPlace data is a combination of motion 

sensors and bed sensor data. The existing alert system in TigerPlace is one dimensional, 

and hence, treats the data from each sensor independently. Our proposal is that by 
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combining more than one alert parameter, we can find more of the potential alerts we are 

missing; and by using streaming clustering, iCVIs, and other adaptive models, we can 

capture more predictive alerts and more customized alerts that can help us detect early 

signs of illness (health decline).  The idea is to develop a new representation on the sensor 

data to measure the similarity among different days and find days when the resident needs 

to be assessed. This data captures the resident activity, but it also captures the movement 

of care givers, family visits, and hardware issues. Therefore, these issues should be taken 

into account when developing the features representation. Streaming clustering and other 

adaptive models can be applied after coming up with a suitable distance measure.   

 

 Motivation  
 

In recent years, new ways of continuously collecting data have been introduced, in large 

part due to the advances in the field of hardware technology. Similarly, developments in 

information technology have allowed large flows of data across IP networks. Every day 

use of credit cards, phones or browsing the web lead to a large data volume that may be 

impossible to store on a disk. These kinds of online data are referred to as data streams or 

streaming data. Moreover, even if the data can be stored locally, the size of the incoming 

samples may be large which makes it impractical to process an individual record more than 

once. Therefore, traditional data mining algorithms such as classification, clustering, and 

frequent pattern mining become more challenging to apply in these situations. It can be 

even more difficult from an algorithmic and computational point of view in cases where 

the data patterns may evolve continuously [4]. Hence, it is crucial in the design of the 

mining algorithms to take into account changes in underlying structure of the data stream. 
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For streaming and temporal datasets, decisions need to be made in an online fashion as the 

data stream evolves with time.  

Clustering is a data mining technique that is commonly used to look for structure in an 

unlabeled dataset. Traditional clustering algorithms require access to the whole dataset to 

find prototypes. These algorithms normally iterate multiple times over the whole dataset to 

converge on stable cluster representation. Such approaches are infeasible for applications 

where size of a dataset is large either in size or dimension, or when it arrives in a streaming 

fashion.  

Streaming clustering is an approach that tackles the issue of large and streaming datasets. 

Traditional clustering algorithms must be modified, or new algorithms designed for use in 

streaming data applications. Online clustering algorithms can be subdivided into two 

groups. The first group is general online clustering algorithms which can be applied to any 

sequential dataset. Examples of algorithms in this group are sequential k-means (sk-means) 

[5] and sequential agglomerative clustering [6]. Batch clustering is another example in this 

category which uses a window of the data stream and clusters data samples in that window 

using traditional clustering algorithm. Clustering results of adjacent windows are combined 

to get the final clustering results [7, 8, 9]. These algorithms require the number of clusters 

to be specified a priori and do not assume any ordering (temporal behavior) in the data 

stream. The second group of online clustering algorithms assume some natural ordering in 

the data and rely on the assumption that close observations in time are closely related in 

the feature space, such as the case with time series. This assumption is used to dynamically 

create clusters in evolving data streams. Online clustering algorithms from the second 

category have two main parts: (1) a change detection mechanism that helps the algorithm 
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identify new emerging structures in the data, (2) an adaptive model for the clusters. The 

online clustering algorithm in this dissertation falls under the umbrella of the second 

category of online clustering algorithms. 

The behavior of streaming algorithms must be monitored as data samples evolve to track 

outliers and to create new structures. Even for low dimensional streaming datasets, the 

monitoring procedure is not feasible if data points arrive over a long period, or at a rapid 

rate. Therefore, coming up with techniques to monitor streaming clustering algorithms is a 

crucial part of streaming data analysis. In [10], the idea of incremental Cluster Validity 

Indices (iCVIs) was introduced using incremental cluster validity analysis. Davies-Bouldin 

(DB) [11] and Xie-Beni (XB) [12] indices were extended to work incrementally as data 

samples evolve. However, the interpretation of iCVIs results were not investigated in a 

way that could provide information about the streaming clustering algorithm. In other 

words, a basic question is whether the iCVIs values asses the clustering result quality or 

do they reflect the behavior of the algorithm. Furthermore, DB and XB indices were the 

only ones extended to work incrementally, whereas there are other indices that can be 

extended and studied, such as Dunn’s indices, the Partition Coefficient, and the 

Exponential Separation (PCAES) index.  

The second part of this research is to use the MUSC algorithm, iCVIs, and other adaptive 

models on activity data from TigerPlace to predict early signs of illness. Early detection of 

health changes is critical to promote health while controlling healthcare costs. Identifying 

and assessing problems early provides a window of opportunity for intervention to solve 

the problems before they become serious. To make it possible for elders to live 

independently at home and yet get help from health care providers when small changes in 
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health conditions take place, smart home technologies are developed to enhance safety and 

monitor health conditions via noninvasive sensors and other devices. TigerPlace is an 

example of smart home technologies in Columbia, Missouri. This environment is designed 

to help residents avoid expensive and debilitating hospitalizations and, for most residents, 

to avoid relocation to a nursing home. An integrated monitoring system has been developed 

to capture data about a resident using non-wearable, environmentally-mounted sensors. 

This system is now being tested with TigerPlace residents using very simple algorithms to 

generate alerts on health changes related to a single alert parameter and to capture the 

clinical relevance of the alerts through feedback from the clinical staff. Although evidence 

shows that early illness alerts do improve health outcomes [13], half of the alerts generated 

are false alarms due to the current one-dimensional strategy. Abnormal sensor patterns 

produced by certain resident behaviors are linked to early signs of illness. Each resident 

included in the study (around 100 as of January 2019) has a data logger in his/her apartment 

that collects data from a wireless sensor network. Each sensor network consists of several 

types of sensors mounted throughout the resident’s apartment, including motion and bed 

sensors. The health data for each resident is stored in a home-grown nursing EHR (see 

more details at http://eldertech.missouri.edu/papers).    

Our goal is that by combining more than one alert parameter, we can find more of the 

potential problems that we are missing; and by using more sophisticated temporal analysis 

method, we can capture more predictive alerts and more customized alerts that can help us 

detect more meaningful health changes before they become big problems. After looking at 

years of embedded sensor data, it is observed that feature vectors generated from normal 

days tend to form clusters in Euclidean feature space while abnormal days appear as 
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outliers or clusters in different locations (may be of smaller size) (Figure 1-1) [14]. Yet to 

determine the real health outliers can be complicated by noise in the sensor data caused by 

sensor failure, visitor activity or extended absence. Streaming clustering is a candidate for 

early illness recognition in elderly because of the continuous changing in their life patterns 

due to the fact normal and abnormal behaviors could form different clusters.  

 Contributions  
 

This dissertation is comprised of nine research papers. Each of the papers comprises a 

single chapter; starting with Chapter 2 and finishing with Chapter 10. These papers address 

the issues previously discussed, and develop and evaluate our streaming clustering 

algorithm, incremental cluster validity indices, and a novel representation of sensor data 

from TigerPlace activity dataset. 

 
Figure 1-1 Year and a half worth of data for a resident in TigerPlace 

Normal 
Days 
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The first paper (chapter two) [15], “Robust On-Line Streaming Clustering,” focuses on 

the streaming clustering algorithm, MU Streaming Clustering (MUSC) algorithm. It is an 

extension of our paper in [16] and it addresses the issue of clustering streaming data and 

building an adaptive model. MUSC uses Gaussian mixture model (GMM), coupled with 

possibilistic clustering to build an adaptive system for analyzing streaming multi-

dimensional activity feature vector with the goal of identifying signs of early diseases. The 

system is based on temporal analysis, including outlier detection, customization and 

adaption to new changes, together with the creation of new components for GMM in the 

case of emerging new normal patterns. Possibilistic C-Means (PCM) [17] and Automatic 

Merging Possibilistic Clustering Method (AMPCM) [18] are combined together to cluster 

the initial data points, detect anomalies and initialize the GMM.  Incoming vectors that 

match an existing mixture component are used to update that component’s parameters.  

Data points that do not fit in any of the existing clusters are flagged as anomalies. The 

points in the anomaly history may or may not indicate the emergence of a new cluster. We 

check the anomaly list in two different ways. First, we compute the Mahalanobis distance 

between the outliers and cluster centers. Points are assigned to their closest Gaussians if 

they are within a pre-specified threshold (the cluster has “grown” to encompass what was 

initially an anomaly). Second, we look for single or multiple emerging structures by 

clustering the outliers. It worth mentioning that our approach is incremental, wherein new 

data are used to update the clustering parameters and then removed from memory. We keep 

cluster representatives such as means, covariance matrices, cluster cardinalities, as well as 

the outlier data points. We show the superiority of MUSC over traditional streaming 

clustering algorithms on synthetic and real data sets.   
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To draw decisions from a streaming clustering output, we need to develop a real-time 

monitoring of the streaming clustering algorithm performance. Incremental Cluster 

Validity Indices (iCVIs) are used to assess the clustering results incrementally as data 

samples evolve. Daves-Buldin, Xie-Beni, and Dunn indices are among of these that were 

selected for investigation in this proposal. Incremental Validity Indices (iCVIs) employ the 

same formula of the traditional CVIs except all the calculations have to be computed 

incrementally and online as streaming data samples arrive over time.  

The second paper (chapter three) [19], “Analysis of Streaming Clustering Using an 

Incremental Validity Index,” studies the internal incremental Davies-Bouldin (iDB) cluster 

validity index in the context of streaming data analysis. We extend the original index [8] 

to a more general version parameterized by the exponent of membership weights. Then we 

illustrate how the iDB can be used to analyze and understand the performance of the MUSC 

algorithm.  We give examples that illustrate the appearance of a new cluster, the effect of 

different cluster sizes, handling of outlier data samples, and the effect of the input order on 

the resultant cluster history.    

Similar to the traditional CVIs, we need to develop several iCVIs and compare their 

performance, robustness, and sensitivity in monitoring a streaming clustering algorithm 

output and their ability to provide useful information about the streaming data. Therefore, 

the third paper (chapter four) [20], “Evaluating Evolving Structure in Streaming Data with 

Modified Dunn's Indices,” extends Dunn’s index [21] to be applicable in streaming 

clustering. Dunn's original internal cluster validity index was designed to assess partition 

quality and to identify a "best" crisp c-partition of n objects built from static data sets. This 

index is quite sensitive to inliers and outliers in the input data, so a subsequent study 
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developed a family of 17 generalized Dunn's indices that extended and improved the 

original measure in various ways [22]. We present online versions of two modified 

generalized Dunn's indices for use in dynamic evaluation of evolving (cluster) structure in 

streaming data. We argue that this method is a good way to monitor the ongoing 

performance of online clustering algorithms, and we illustrate several types of inferences 

that can be drawn from such indices. We compare the two new indices to the incremental 

Xie-Beni and Davies-Boudin indices, which to our knowledge offer the only comparable 

approaches, with numerical examples on a variety of synthetic and real data sets.  

The fourth paper (chapter five) [23], “Analysis of incremental cluster validity for big 

data applications,” employs our streaming clustering algorithm and iCVIs in the context of 

big streaming data analysis. We investigate the effect of large number of samples and high 

dimensions on the values of the iCVI (iDB). Finally, we propose a way to project streaming 

data into a lower space for cases where the distance measure does not perform as expected 

in the high dimensional space.  

The fifth paper (chapter six) [24], “a new incremental cluster validity index for streaming 

clustering analysis,” presents an incremental version of the Partition Coefficient and 

Exponential Separation (PCAES) cluster validity index in the context of streaming data 

analysis. Incremental PCAES (iPCAES) can be used to monitor evolving structures in 

streaming data.  We investigate the use of the proposed index to understand and analyze 

the performance of the MU Streaming Clustering (MUSC) algorithm. We compare the 

performance of iPCAES index with the incremental Davies-Boudin index (iDB) because 

iDB was found to be the most stable among other incremental indices that offer comparable 

approaches. 
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The above approaches are tested with synthetic datasets and real-life datasets. Another 

real-life streaming dataset comes from activity monitoring in elderly residents’ facilities 

such as TigerPlace in Columbia, Missouri. TigerPlace offers various kinds of services as 

needed, promoting independence and helping residents remain healthier and active longer 

by providing ongoing assessments for early illness recognition and health promotion 

activities. MUSC is used with a dataset from TigerPlace, part of the experiment in chapter 

5 [23]. We use multiple (30) features such as time in bed, time in each room, number of 

bathroom visits, etc. Due to having different types of features (ordinal, numerical, etc.) in 

this high dimensional space ( called the upspace), Euclidean distance measure did not 

perform as expected, resulting in clustering output that did not match the health record of 

the selected resident. Therefore, Random Projection [25] is used to map the data from 30-

dimensional space to 3-diminsional space. Since the data arrives in a stream (one data point 

per day), we use a small window (100 data points) to initialize the algorithm and find the 

projection matrix (R) to map the data. We generate multiple projection matrices and select 

the one that best preserves the pairwise distance.  The best projection matrix (R) is then 

used to project new arriving data points before passing through MUSC to either be assigned 

to one of the existing clusters or the anomaly list, or used to create a new cluster.  

To avoid losing some information about the resident’s behavior by projecting the data to 

a lower space, our goal is to develop a feature representation that can capture the resident’s 

daily activity because activity recognition is one possible approach to detect early signs of 

illness. The idea is to find the activities that an elderly would perform in normal days and 

when he or she deviates from these activities, an alert is generated. The sixth paper (chapter 

seven) [26], “Unsupervised Analysis of Activity Patterns in Eldercare Monitoring,” 
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investigates a new way to convert sensor data of residents in TigerPlace to a set of sub 

activities. For each day, the sensors firings are converted into sequences of discrete 

symbols where each symbol represents one sensor type. The idea is to consider the activity 

(behavior) of a resident represented by a sequence of sensor firings as it would be 

represented by his/her genome. We split the daily sensor sequence in subsequences using 

a separation threshold of 30 seconds, which provides enough granularity to capture daily 

activities. The resultant subsequences are of different lengths. Since it is unknown to us 

how many activities an elderly resident performs, an unsupervised approach is more 

suitable to our problem. Clustering is employed to find the number of activities for a 

specific resident using the sensor data. The distance measure between the subsequences is 

the key factor for finding and comparing daily activities. The Smith-Waterman algorithm 

[27] is used initially since we have symbolic sequences that mimic bioinformatics 

sequences. Since the sequences vary vastly in their length, standard hierarchical clustering 

does not accommodate sequences of the same activities into the same cluster. Therefore, 

the symbolic sequences are normalized to have the same length where each feature is one 

of the sensors reading (pulse, restlessness, bedroom motion etc.). We use a bag-of-words 

approach to map each sequence into an M-Dimensional (M is number of sensors) Euclidean 

space representing the percentage of each symbol in a sequence. After converting the 

symbolic sequences to numeric sequences, Euclidean distance is used, and any clustering 

algorithm can be applied on the data. To ground truth our approach, we employed a 

normal/abnormal labeling of each day based on clinically-validated health alerts from our 

EHR. Days on which a health alert was generated by a fall or other health event were 

labeled “abnormal”, while days on which no alert was generated were labeled “normal”. 
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The days preceding and following a health alert were excluded from analysis. To explore 

behavior patterns captured by our sensors, we clustered both the normal and the abnormal 

datasets using hierarchical clustering, and used the Calinski-Harabasz index to find the 

most probable number of clusters.  

From the approach in chapter 7, we end up with several hundreds of sequences per day 

for each resident. To measure the similarity/dissimilarity between different days, we need 

to combine the sequences of a day into a single feature vector that preserves the context of 

daily activities. The seventh paper (chapter eight) [28], “Context Preserving Representation 

of Daily Activities in Elder Care,” proposes an unsupervised method for detecting 

abnormal behavior patterns based on a new context preserving representation of daily 

activities. The daily numeric sequences are converted into single data point by 

concatenating a five-bin histogram on each feature together. Using the proposed method, 

a day with hundreds of sequences is converted into a single data point representing that day 

and preserving the context of the daily routine at the same time.  

The existing early illness alert system in TigerPlace is univariate, meaning it treats each 

sensor data stream as an independent variable. The alert system triggers an alert if there is 

an increase or decrease in the sensor data during a day as compared to the average and the 

standard deviation from W (a given window size) previous days. However, if there is an 

increase in multiple sensor values for a day but it is not significant to trigger an alert for 

any of the sensors, some health changes could potentially go undetected. It was 

demonstrated through a survey from our clinical team that some health issues (such as UTI 

and dementia) in older adults are captured by a combination of sensors. Therefore, we need 

an alert system that takes into account multiple sensor data changes at the same time to 
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detect early signs of illness. In chapter 9 (the eighth paper) [29], “an unsupervised 

framework for detecting early signs of illness in eldercare,” we use the representation 

developed in chapter 8 and we extend the idea in chapter 7 to introduce a novel multi-

dimensional alert system to detect (abnormal) days with early signs of illness based on 

daily activities.  

As we mentioned, abnormal sensor patterns produced by certain resident behaviors can 

be linked to early signs of illness. The ninth paper, (chapter 10) [30], “An Automatic 

Framework for Semantic Annotation of Eldercare Sensor Data,” introduces a framework 

for detecting health patterns based on non-wearable sensor sequence similarity and natural 

language processing (NLP). The proposed framework utilizes sensor sequence similarity 

and medical concepts extracted from the EHR to automatically inform the nursing staff 

when health problems are detected. The context preserving representation of daily 

activities is used to measure the similarity between the sensor sequences of different days. 

The medical concepts are extracted from the nursing notes using MetamapLite, an NLP 

tool included in the Unified Medical Language System (UMLS) 

(http://metamap.nlm.nih.gov/). The proposed idea is validated on two datasets from twelve 

Tiger Place residents, with a total of 5810 sensor days, out of which 1966 had nursing 

notes. 
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Abstract. With the explosion of ubiquitous continuous sensing, on-line streaming 

clustering continues to attract attention.  The requirements are that the streaming 

clustering algorithm recognize and adapt clusters as the data evolves, that anomalies 

are detected, and that new clusters are automatically formed as incoming data dictate.  

In this paper, we extend an earlier approach, called Extended Robust On-Line 

Streaming Clustering (EROLSC), which utilizes both the Possibilistic C-Means and 

Gaussian Mixture Decomposition to perform this task.  We show the superiority of 

EROLSC over traditional streaming clustering algorithms on synthetic and real data 

sets. 

Keywords: Streaming Clustering, Outlier Detection, Change Detection 

  Introduction 
Monitoring systems, the internet of things (IoT), and mining content from social media are 

new emerging applications that rely on processing large amounts of streaming data. For 

any data analytics technique to be applied on these applications, it has to be unsupervised, 

online and temporal, i.e., adaptive over time. Clustering is a data mining technique that 
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searches for specific structures on streaming data and detects abnormal patterns in the data 

[1]. To find clusters in a dataset, clustering algorithms usually require multiple runs over 

the data, which necessitates all of the dataset to be available before running the algorithm. 

In a streaming data problem, there is a desire to learn structure as the data arrives instead 

of waiting for processing by standard techniques. Therefore, developing efficient streaming 

(online) clustering algorithms is not an easy task. 

Online clustering algorithms can be divided into two groups [2]. The first group is general 

clustering algorithms which do not assume any ordering on the data stream and work on 

any streaming data, such as sequential k-means (sk-means) [3]. Algorithms of this group 

requires the number of clusters to be known in advance. On the other hand, the second 

group relies on the assumption that close observations in time are highly related. 

Consequently, online clustering algorithms from this group assume natural ordering on the 

data stream as in time series. These algorithms have a change detection technique to detect 

new emerging clusters in the streaming information. This paper is an extension of our 

previous work [4]. In that paper, we only tested the algorithm with synthetic datasets that 

mimic the behavior of elder adults. Here, we extend the original algorithm by first 

investigating the ability of our algorithm to detect multiple emerging structures at the same 

time, whereas in [4], we looked for one new cluster only. Also, we use only online 

incremental update for all the parameters on the algorithm. Consequently, new data points 

are used to update the parameters and then removed from memory, which makes our 

algorithm applicable for big data applications.  This new algorithm is called Extended 

Robust On-Line Streaming Clustering (EROLSC). Finally, we test EROLSC with synthetic 

and real-life datasets, and compare the clustering results with sk-means, Basic Sequential 
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clustering algorithm (BSAS) [5], and Modified Basic Sequential clustering algorithm 

(MBSAS) [6]. The next section describes background information and related work. In 

section 2.2, we present the datasets used on the evaluation process. In Section 2.3, we 

describe our online clustering algorithm and the other algorithms used in this paper. Section 

2.4 shows numerical evaluation of our method and comparisons to previous approaches. A 

summary and conclusions are given in Section 2.5. 

 Background  
There are two main categories to cluster streaming data [7]. The first category uses a 

window (S) of the data stream and clusters data points in S using batch-clustering 

techniques. Clustering results of adjacent windows are combined to get the final clustering 

results [8, 9, 10]. Computational complexity is one drawback of algorithms in this category 

due to the multiple passes over the data in each window.  The second category uses 

incremental learning techniques and are known as online clustering or streaming clustering 

algorithms [11, 12]. After initialization, data points are processed one at a time, which 

makes them good candidates for big data. Online clustering algorithms that assume natural 

ordering of the data streams have two main parts. The first part is a change detection 

mechanism that helps the algorithm in identifying new structures in the data. The second 

part is an adaptive model for the clusters [2].  

Change detection is a major part of the online clustering algorithm because it detects 

new emerging structures and finds outliers on the data streams. In [13], the change 

detection is based on the violation of the exchangeability condition using a randomized 

power Martingal that makes it unsuitable for time series.  

The detection mechanism used in this paper is based on possibilistic c-means clustering 

and cluster dispersion. To the best of our knowledge, all existing online clustering 
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algorithm look for one new structure at a time. However, EROLSC can detect multiple 

emerging structures at the same time because outliers are clustered with more than one 

cluster and only dense regions in the outlier set are flagged as new clusters.  

 Incremental Clustering Algorithms (Sequential Algorithms) 
Sequential clustering algorithms form one approach to produce a single clustering by 

iterating through subsets of the data once or a few times. In our evaluation, we examine sk-

means, BSAS, and MBSAS algorithms to compare with our algorithm. In the next section, 

we provide a brief overview of these incremental clustering algorithms. 

2.3.1 Extended Robust On-Line Streaming Clustering Algorithm  
 
In [4], we proposed a streaming clustering algorithm based on Gaussian Mixture Models 

(GMM) combined with possibilistic fuzzy clustering. The idea is to combine the 

Possibilistic C-Means (PCM) [14] and the Automatic Merging Possibilistic Clustering 

Method (AMPCM) [15] to initialize the cluster structure in a window S, initializing the 

GMM as can be seen in the initialization of figure 2-5. PCM is used to detect anomalies in 

that first window, S.  When a new data point 𝑥௡ାଵ arrives at time n+1, its Mahalanobis 

distance is computed to all Gaussians as in equation 1.  If the minimum distance falls within 

pre-specified threshold, 𝑥௡ାଵ is incorporated into the winning Gaussian. The mean and 

covariance of the winning Gaussian are incrementally updated using equations 2 and 3. 

After updating the Gaussian parameters, 𝑥௡ାଵ is removed from the records. 

d =  ඥ(x −  μ)୘Σିଵ(x −  μ)  (1) 

μ௡௘௪ = μ୭୪ୢ +
௫೙శభ ି ஜ౥ౢౚ

|ஜ೙೐ೢ|
  (2) 

Σ௡௘௪ =  
(|ஜ೙೐ೢ|ିଵ) ∗ ஊ౥ౢౚ ା (௫೙శభ ି ஜ౥ౢౚ)౐(௫೙శభ ି ஜ౤౛౭)

|ஜ೙೐ೢ|
 (3) 
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where  |μ௡௘௪| is the cardinality of the winning cluster, μ and Σ are mean and covariance 

of the cluster.   

On the other hand, the new input vector is flagged as an outlier and saved on the anomaly 

list if it does not meet the threshold. The points in the anomaly history may or may not 

indicate the emergence of a new cluster. We check the anomaly list in two different ways. 

First, we compute the Mahalanobis distance between the outliers and cluster centers. Points 

are assigned to their closest Gaussians if they are within a pre-specified threshold as can 

be noticed on Figure 2-5 (the cluster has “grown” to encompass what was initially an 

anomaly). Second, we look for single or multiple emerging structures by clustering the 

outliers as shown in the pseudo code in Figure 2-1. See [4] for more detailed description of 

the basic algorithm, along with details on initialization and new cluster formation. One 

significant feature of EROLSC is that the PCM can be used with C = 1, or with a larger 

value of C causing co-incident clusters if there are fewer actual groups. It worth mentioning 

that our approach is incremental, wherein new data are used to update the clustering 

parameters and then removed from memory. We keep cluster representatives such as 

means, covariance matrices, cluster cardinalities, as well as the outlier data points.  
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Figure 2-1. Pseudo code of EROLSC  

2.3.2 Sequential k-means (sk-means) 
 
Sk-means is a well-known clustering algorithm, which was introduced by Macqueen [3] 

and the pseudo code can be seen in Figure 2-2. Different forms of sk-means have been 

introduced in the literature [9]. One drawback of sk-means is that number of clusters, k, 

needs to be stated in advance in Macqueen’s algorithm. It can be initialized in different 

ways: selecting the first k data points, randomly selecting k data points from a window of 

size S (S<N), or randomly selecting k data points from the whole dataset (size N). We use 

the second way to initialize the prototypes because we use a window size S to initialize 
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EROLSC, which leads to a fair comparison. After that, those k data points represent the 

cluster centers, 𝑉௞ = {𝑣ଵ, 𝑣ଶ, . . .,𝑣௞}, each with cluster cardinality of 1. When a new data 

point arrives at time n+1, its distance is computed to all k prototypes, and it is assigned to 

the closest cluster center. Then the parameters of winning cluster are updated as shown in 

the pseudo code in Figure 2-2.  

 

Figure 2-2. Pseudo code of sequential k-means algorithm ([20]) 

2.3.3 Basic Sequential Algorithm (BSAS) 
 
BSAS is a basic clustering technique where data points are presented to the algorithm only 

once and number of clusters is not known a priori [5]. Clustering results rely on the 

dissimilarity measure d (x, V), dissimilarity threshold Θ, and the number of maximum 

clusters allowed, q. The first data point is used to initialize the first cluster and it represents 

its cluster center 𝑣ଵ. When a new data point (𝑋௡ାଵ) comes in at time n+1, the algorithm 

computes the distance between the new data point and existing clusters prototypes. If the 

distance to the closest cluster is within the Θ and maximum number of clusters (q) is not 

met, the new data point is assigned to the closest cluster. Then, the parameters of winning 
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cluster are updated as can be seen in the pseudo code, shown in Figure 2-3 (a).  Otherwise, 

the new data point spawns a new cluster.   

2.3.4 Modified Basic Sequential Algorithm (MBSAS) 
 
MBSAS is a modified version of BSAS where it runs through the data samples twice [6]. 

It overcomes the drawback of BSAS where a sample is assigned to a cluster before all the 

clusters have been created. In the first phase, the clusters prototypes are determined by 

assigning only one data point to each cluster. The second phase of the algorithm assigns 

the remaining data samples to the nearest cluster center. The pseudo code of this algorithm 

is shown in Figure 2-3 (b).  

 

(a)                                                                  (b)  

Figure 2-3. Pseudo codes of: a) BSAS algorithm ([5]), b) MBSAS algorithm ([6]) 
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 Datasets  
Synthetic and real-life datasets are used in this paper, all of which are presented in a 

streaming on-line fashion. The first synthetic dataset, S1, has 490 instances in 2-

dimensional space, generated from five Gaussian distributions as in Figure 2-4 (a). S1 has 

five clusters (two with 100 samples each and 3 with 80 instances) and random noise (50 

samples). The first real-life dataset used in our evaluation is the LG dataset, which is a 

collection of weather station nodes in the Le Genepi (LG) region in Switzerland [16]. We 

use two weeks of data at node 18 starting from October 10, 2007. Average surface 

temperature (T) and humidity (H) readings over 10-minute intervals were used to create a 

two-dimensional feature vector {𝑥௜ =  {(𝑇௜ , 𝐻௜)}. The scatter plot of the data can be seen 

in Figure 2-4 (b). By looking at the scatter plot, it does not provide clear visual evidence 

about number of clusters in the LG data. Therefore, the imagery information from the site 

is used to show that there is a snowy day during the two-week period. A windy and cold 

day precedes the snow. For that reason, we consider the LG data to have three different 

events: sunny days before and after the snow, cold front moving in, and the snowy day as 

in the “ground truth” seen in Figure 2-4 (c). We use k = 3 as the number of clusters for sk-

means whereas EROLSC finds the expected number of clusters. BSAS and MBSAS on the 

other hand rely on the distance threshold to find clusters. We try multiple distance threshold 

values and select the best results (number of clusters) for comparative purposes.  

The second real-life dataset is the wine dataset from UCI [17]. These data are the results 

of a chemical analysis of wines grown in the same region in Italy but derived from three 

different cultivars. The analysis determined the quantities of 13 constituents found in each 

of the three types of wines. In the Wine data, the number of instances are 59, 71 and 48 in 
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classes 1, 2 and 3, respectively.  The third real-life dataset is the Iris dataset [17]. It has 

three classes with 50 instances each in 4-dimensional space. Table 2-1 shows a summary. 

Table 2-1. Summary characteristics of the datasets used in the evaluation. 

Dataset # 

instances 

# dimensions # clusters Noise Labeling 

S1 490 2 5 50 Exact 

Weather 1817 2 3 unknown Our Estimate 

Wine 178 13 3 none Exact 

IRIS 150 4 3 None Exact 

 

  
   (a)                                                         (b) 

 

  
Figure 2-4 Datasets used on the evaluation: a) S1, b) weather, c) weather with the expected 

number of clusters, d) Iris data 
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2.4.1 Evaluation 
 
During the evaluation process, we compare EROLSC with sk-means, BSAS, and MBSAS. 

The setting of each algorithm will be described first. Then, synthetic and real-life datasets 

are used to discuss the performance of the algorithms. Accuracy is used to compare the 

performance if class labels are available. Visual inspection in terms of finding the desired 

number of clusters and/or detecting outliers is used when there are no labels.  

2.4.2 Parameter Settings 
 
Sk-means is fed with number of clusters (K) expected in the dataset because it needs a 

priori knowledge of the number of clusters. We randomly select K data samples as the 

initial clusters centers from a window size S. BSAS and MBSAS are fed with the maximum 

number of desired clusters (K) and distance threshold, which we get by 3experimenting 

and selecting the best results. For EROLSC, we use a window of size S to initialize the 

algorithm and we rely on the recommended table in [4] to select the distance threshold. 

Similar window size is used for sk-means. 

2.4.3 Clustering Results   
 
To demonstrate the ability of EROLSC in detecting multiple clusters at the same time, we 

use S1 dataset. In S1, data points from cluster 1 come first then data points from cluster 2, 

3, and 4 arrive randomly. This enables us to evaluate the robustness of the algorithm to 

detect multiple structures at the same time. Figure 2-5 (a) shows the initialization of the 

algorithm where PCM is used to detect outliers (red points). When the outliers become 

dense enough as in Figure 2-5 (b), the algorithm in [4] detects only one cluster because it 

looks for one new emerging structure as in Figure 2-5 (c).  Clusters 2, 3, and 4 are merged 

into one cluster which could limit the ability of using the algorithm in real applications 

where multiple structures could emerge at the same time. EROLSC on the other hand 
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detects the three structures as can be seen in Figure 2-5 (d) because it takes into account that 

multiple clusters could happen a similar time.  

The clustering results on the first dataset S1 are shown in Figure 2-6. This dataset has five 

different clusters where it starts: with one cluster, three clusters form at the same time, the 

fifth cluster forms after that and outlier’s data points arrive in between. Result of our 

algorithm is shown in Figure 2-6 (a) where it detects all the clusters and finds 45 out of 50 

outliers. Sk-means result can be seen in Figure 2-6 (b) where 3 centers get trapped in the 

first cluster due to the initialization. BSAS and MBSAS have better clustering results 

compared to sk-means as can be noticed in Figure 2-6 (c) and Figure 2-6 (d). MBSAS detected 

all the 5 clusters correctly. However, it fails to detect outliers because each sample must be 

assigned to the nearest prototype.   

   

                                    (a)                                                                     (b) 
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                                     (c)                                                                    (d) 

Figure 2-5 Effect of detecting multiple clusters: a) EROLSC initialization, b)Outliers become 

dense enough to detect new cluster or clusters, c) Using our algorithm in [4] to look for new 

structures in the outliers, d) Using EROLSC to detect multiple structures in the outliers. 

   

                                    (a)                                                                      (b) 
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                                    (c)                                                                      (d) 

Figure 2-6. Final hardened clustering results on S1 dataset for: a) EROLSC, b) sk-means 

algorithm, c) BSAS algorithm, d) MBSAS algorithm.  

The weather dataset is more complicated and less obvious to cluster. EROLSC finds 

three clusters and matches the ground truth based on the explanation earlier. Figure 2-7 (a) 

shows the cluster structures of our algorithm, which follows the data evolution as time 

progresses. We notice that EROLSC flagged some of the sunny cluster data points as 

outliers due to the way the data is presented to the algorithm. The algorithm initialized 

itself at the “sunny days” cluster and new samples dragged the cluster center to the left. 

After that, these data points arrived and are flagged as outliers because they are far from 

the cluster center. Sk-means detects three clusters as well, but it tries to achieve good 

separation between clusters as can be seen in Figure 2-7 (b). The results of BSAS and 

MBSAS are not much different from sk-means, where they also look for separated clusters 

as in Figure 2-7 (c) and (d).  We conclude that only EROLSC finds the three expected 

clusters (sunny, windy and cold before snow, and snowy days).  

 

   

(a)                                                                      (b) 
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(c)                                                                      (d) 

Figure 2-7. Clustering results on weather dataset for: a) EROLSC, b) sk-means algorithm,        c) 

BSAS algorithm, d) MBSAS algorithm.  

Both the wine and Iris datasets are labeled, so accuracy can be used to evaluate the 

performance. EROLSC achieves the highest performance on the Iris dataset with 94% 

accuracy as in Table 2-2. The miss-assigned samples (around 9) are those which belong to 

one class, but they are closer to another, as depicted in Figure 2-4 (d). BSAS and MBSAS 

achieved better accuracy compared to sk-means due to the initialization, we think. 

Similarly, EROLSC has the highest accuracy in the Wine dataset where it finds the exact 

number of classes and misclassifies a few data points. This is normal for a clustering 

algorithm because our main goal is to detect the desired number of structures in the data. 

Sk-means, BSAS, and MBSAS do poorly on the wine dataset as expected, based on their 

performance on other datasets.  

Table 2-2 Accuracy of the final clusters to match classification labels. 

Dataset EROLSC Sk-means BSAS MBSAS 

Iris 94% 49% 67% 67% 

Wine 92% 51% 33% 33% 
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 Conclusion  
Streaming clustering, directed by change detection, can identify structures in online data 

whereas traditional batch approaches fail. General online clustering algorithms such as sk-

means, BSAS and MBSAS suffer from the same drawback of batch clustering due to their 

lack of having an effective change detection mechanism. Our approach in this paper, the 

Extended Robust On-Line Streaming Clustering Algorithm has a change detection 

mechanism by flagging data points that are far from the existing state or states, and 

monitors them over time. If the outliers become dense enough, they are added to the current 

states as new clusters. Otherwise, they are treated as anomalies unless they fall into one of 

the data structures over time. Having this property of dealing with outliers enables 

EROLSC to identify anomalies during the process of clustering. For instance, the S1 

dataset has multiple outliers, which was only detected by our algorithm. EROLSC detects 

the expected structures in the real-life datasets. In addition, it outperforms sk-means, BSAS 

and MBSAS in all datasets tested.  More research needs to be done to automatically 

determine correct parameter settings and to adapt EROLSC to Big Data applications. 
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Abstract — In this paper, we study the internal incremental Davies-Bouldin (iiDB) 

cluster validity index in the context of streaming data analysis. We extend the original 

index to a more general version parameterized by the exponent of membership 

weights. Then we illustrate how the iiDB can be used to analyze and understand the 

performance of the Extended Robust Online Streaming Clustering (EROLSC) 

algorithm.  We give examples that illustrate the appearance of a new cluster, the effect 
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of different cluster sizes, handling of outlier data samples, and the effect of the input 

order on the resultant cluster history.    

 

Keywords—Online clustering, incremental internal cluster validity, change detection, 

incremental Davies-Bouldin index 

 Introduction  
New emerging applications such as monitoring systems, the internet of things (IoT), and 

mining content from social media rely on processing large amounts of streaming data. For 

any data analytics method to be suitable for these applications, it has to be online, temporal 

and unsupervised. Clustering is an unsupervised method that looks for structure in the data 

and attempts to detect abnormal patterns [1]. Clustering algorithms usually involve multiple 

passes over the data to find cohesive groups in the data, which requires the existence of all 

data points before running the algorithm.  Developing efficient online clustering algorithms 

is not an easy task due to the desire of learning the structure as data vectors arrive, instead 

of processing by traditional techniques.  

Online clustering algorithms provide a way to analyze and extract knowledge from 

streaming data, which makes them desirable in applications such as environmental sensing 

and packet analysis [1, 2]. These applications involve massive data streams with high 

velocity, which makes processing a data point more than once infeasible. Sequential 

clustering is one category of online clustering where data points arrive one at a time, and 

the clustering parameters (such as cluster centers and covariance matrices) are updated with 

each sample [3, 4, 5].   
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Once the data are clustered and the partitions found, important questions arise: how good 

are the partitions? Are there better results?  Therefore, an important aspect of clustering is 

cluster validity, which determines the quality of the clustering results. Cluster validity 

indices (CVIs) are algorithms and computational models that search for the best clustering 

results for a dataset. Usually, CVIs are either max-optimal or min-optimal, which means the 

best partitions are those with smallest (largest) CVI value. In the literature, CVIs have been 

applied to batch clustering algorithms as well as to clustering results generated by different 

parameter settings of a particular clustering algorithm. 

In online clustering, each data point is processed only once and then removed, so that it 

is not available for later analysis. Therefore, it is more important to monitor the performance 

of the clustering algorithm at any point in time, and the response of the algorithm to 

emerging structure in the data. A wide range of cluster validity methods are available for 

analyzing clusters found by processing static data [7]. By contrast, only two cluster validity 

indices have been extended to online clustering [6]. Compactness and separation of the 

clusters are used by most of the batch indices to assess clustering results [7, 6].  Separation 

is usually measured using the distance between cluster centers, while compactness is usually 

some measure of the density of the data points in each cluster. Therefore, in an online 

scheme, an incremental approach for updating the compactness is required because each 

data point is processed only once.  

In this paper, we use one of the incremental internal cluster validity indices (iiCVIs) that 

were developed in [6], and investigate the relationship between the iiCVI output and the 

partitions produced by our online clustering algorithm. We perform this analysis using the 

Extended Robust On-Line Streaming Clustering (EROLSC) [8]. The derivations of 
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incremental compactness given in [6] fix the membership exponent (m) that weights 

  



xk  v i
2
to m=2. We show here that any value of m>1 can be used to good effect.  We will 

investigate the effective range of m with a numerical example. This paper has the following 

contributions: (1) we generalize the membership exponent value in the derivation of 

incremental compactness; (2) we show the relationship between the iiCVI and EROLSC 

clusters in the streaming data. Specifically, we show how to interpret the iiCVI results in 

terms of: when a new cluster is formed (sudden drop in the iiCVI value), the effect of 

different cluster sizes on the results, and the streaming process of data samples in each 

cluster; (3) we show the effect of different parameter settings for (m) on the iiCVI results 

(how to understand the knee points in the graph of the iiCVI). This is important for 

understanding large volume datasets in high dimensional spaces.   

 In section 3.2, a summarization of related work is given. Section 3.3 presents the 

EROLSC online clustering algorithm used in this paper. In section 3.4, background 

information and the definition of the Davies-Bouldin (DB) [9] index is provided. The 

problem statement is introduced in section 3.5. Section 3.6 shows the datasets used in the 

evaluation. In Section 3.7,  initialization of the parameters is discussed. Experimental results 

and discussion are shown in section 3.8. Finally, section 3.9 contains our conclusions.  

 Background 
In this section, we briefly describe related work in online clustering algorithms and 

cluster validation. It is important to define an online clustering algorithm as our goal is to 

validate the results of these algorithms using incremental cluster validity indices. 

Clustering in data streams can be divided into two main strategies [1]. The first category 

buffers a window of streamed inputs and clusters the data samples in the buffer by applying 
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traditional clustering algorithms such as the c-means algorithms. Then, clustering results of 

adjacent windows are merged to obtain a final clustering of the whole data stream [10, 11, 

12]. Due to multiple runs over the dataset in each window, computational complexity is one 

drawback of algorithms in this category. The second group uses incremental learning 

methods to find clusters in the growing data stream and are known as online or incremental 

clustering algorithms [8], [13], [14], [15], [16], [17]. Algorithms in the second category 

reduce the time complexity because after initializing the algorithm, data points are processed 

one at a time and then discarded, which makes them good candidates for big data streams.   

 Online clustering algorithms can be subdivided into two groups. General clustering 

algorithms can be applied to any sequence of data. Examples of algorithms in this group are 

sequential k-means (sk-means) and sequential agglomerative clustering [18]. These 

algorithms require the number of clusters to be specified a priori and do not assume any 

ordering in the data stream. The second group of online clustering algorithms rely on the 

assumption of some natural ordering in the data such as time-series, and depend on the 

assumption that close observations in time will be closely related. This assumption is used 

to dynamically create clusters in evolving data streams.  Online clustering algorithms that 

assume a natural ordering of the data streams have two main parts: (1) a change detection 

mechanism that helps the algorithm identify new emerging structures in the data, (2) an 

adaptive model for the clusters [13].  The cluster validation method in this paper applies to 

the second category of online clustering algorithms.  

 Cluster validity is a way to evaluate clustering results. For example, after getting a c-

partition from a clustering algorithm, is there a better partition that we didn't find? Cluster 

validity indices (CVIs) can be divided into two main categories. The first category is internal 
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indices, which use only the unlabeled data and information from the algorithm output. The 

second group is external CVIs, which require external information about the structure in the 

data. External CVIs are used to compare ground truth labels of the data to the partitions 

obtained by a clustering algorithm. Therefore, external CVIs can be used to correlate 

internal and external evaluations of labeled data, and from this comparison, a “good” 

internal CVI can be chosen [7]. 

 Comparison of internal CVIs (iCVIs) are well discussed in [7, 19]. Internal CVIs provide 

a non-parametric technique to assess the clustering result while most of the goodness-of-fit 

measures presented in [20], use parametric methods. In other words, the majority of iCVI 

models attempt to capture cohesion and separation of the clusters whereas goodness of fit 

indices typically evaluate the fit of a model to the data that generates it. Internal CVIs are 

grouped into two categories based on the way that they measure cohesion and separation. 

The first group determines the quality of the clustering using only the partitions generated 

by the algorithm. Indices in this category are often simply measures of fuzziness, such as 

the partition coefficient and partition entropy [21].  More generally, most iCVIs (such as the 

DB index) use the unlabeled data, the partition, and any auxiliary parameters produced by 

the clustering such as cluster centers to assess the quality of each partition. 

 In [6], two incremental internal CVIs, iiCVIs, are developed by deriving an incremental 

formula for the cohesion term of two well-known iCVIs viz. the Xie-Beni (XB, [22]) and 

Davies-Bouldin (DB, [9]). In their derivations, the exponent of the memberships in all 

equations is set to m=2,  as shown in equation (6). A careful look at the derivations in [6], 

however, reveals that the term 2( )iku can be replaced by ( )m
iku for any m>1. This adds a lot 

of flexibility to the iiCVIs presented in [6]. Here we investigate the relationship between 
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different values of m and the performance of the online DB index. We will investigate the 

relationship between the DB iiCVI and the Extended Robust On-Line Streaming Clustering 

(EROLSC) algorithm. More specifically, what can we learn about data streams in term of 

cluster sizes, how the input data are streamed, and the effect of the mechanism used by the 

EROLSC algorithm to create a new cluster.   

 Extended Robust On-Line Streaming Clustering Algorithm  
 This section briefly describes the EROLSC online clustering algorithm developed in [23] 

and extended in [8]. EROLSC is based on combining Gaussian Mixture Models (GMM) 

with possibilistic fuzzy clustering. GMMs are initialized by combining the Possibilistic C-

Means (PCM) [24] and the Automatic Merging Possibilistic Clustering Method (AMPCM) 

[25] in a window S of the streaming data. PCM is mainly used to detect outliers in the 

initialization window, S, and for creating a new cluster because of its tendency to look for 

dense regions in the dataset by generating coincidence clusters. We set the number of 

clusters that PCM looks for to a large number (for example if 100 data samples are in S, we 

look for 10 clusters). After removing data points with low typicalities to all existing 

prototypes, AMPCM is applied to the noise-free data in S and the final clustering result is 

used to initialize a GMM. When a new data point 1nx   arrives at time n+1, its Mahalanobis 

distance to the means in the GMM is computed as in (1).  If the minimum distance falls 

within pre-specified threshold (T), 1nx   is incorporated into the winning Gaussian cluster. 

The mean and covariance of the winning Gaussian are incrementally updated using (2) and 

(3). After updating the Gaussian parameters, 1nx   is discarded. 

1( ) ( )Td x x                                                            (1) 
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where new  is the new cardinality of the winning cluster, μ and Σ are mean and covariance 

matrix of the cluster.   

 

If the minimum distance exceeds the threshold, the new data point  1nx    is flagged as an 

outlier and saved in the anomaly list. The points in the anomaly history may or may not 

indicate the emergence of a new cluster. We track changes in the anomaly list in two 

different ways. First, we check if any point in the list could fit in one of the existing clusters 

by computing the Mahalanobis distance between the outliers and updated cluster centers. 

Points are assigned to their closest Gaussians if they are within a pre-specified threshold (T) 

(the cluster has “grown” to incorporate what was an outlier before). Second, we cluster the 

outliers following the same approach to initialize the GMM at the beginning, where we look 

for multiple emerging structures. See [23] for more detailed description of the basic 

algorithm, along with details on initialization, selecting the threshold values, and new cluster 

formation. The historical footprint of the evolving structure is represented by the means, 

covariance matrices, and cluster cardinalities, as well as outlier data points. 

 Davies-Bouldin Index  
In the case of streaming data, there is no ground truth, so external CVIs are not 

applicable.  Therefore, internal CVIs are the only choice to evaluate the evolving 

performance of online clustering algorithms. A well-known index is used in the evaluation, 
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which is suitable for both hard and soft partitions. The index is a relative of the Davies-

Bouldin (DB) index [9] introduced by Araki et al. [26] as in (4) below.  
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where k is number of clusters, iv  is the cluster center of cluster i, and ,i ju  is the membership 

of data sample j to cluster i.  

The DB index measures the overall average similarity between each cluster and its most 

similar neighbor, so smaller values indicate better partitions. A common factor in many 

validity indices is the way that the within-cluster dispersion is computed. Moshtaghi et al. 

[6] defined the fuzzy within cluster dispersion of cluster i at step n as 

22
, , ,

1

n

i n i j j i n
j

C u x v


                                                           (6) 

Equation (6) depends directly on the input data. In [6], an incremental calculation of the 

within-cluster dispersion was developed for the DB index (iiDB). Figure 3-1 shows the 

procedure for updating the parameters used to compute the iiDB index when data point 1nx 

arrives [6]. Let DB(n) represent the value of the Davies-Bouldin index after the n-th data 

sample. We want to compute incrementally updated values DB(n+1) when data sample 1nx 

arrives. The index DB(n + 1) at time step n+1 can be computed as  
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In ERLOSC [8], when a new data point arrives, its distance to all (K) prototypes is 

computed using (1), and its membership in the i-th cluster is computed using (10).  
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Figure 3-1 Pseudo code for updating the compactness parameters [6]. 

 Problem Statement  
In [6], an incremental DB (iiDB) index was proposed and the procedure to compute its 

parameters is shown in Figure 3-1. The exponent of the membership , 1i nu  was set to 2 as 
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shown in Figure 3-1 and in equations (6), (11), (12) and (13). It is easy to check that the 

exponent can actually take any value m≥1 without violating the constraints of the 

incremental derivation One question addressed here is what can be learned about the 

behavior of EROLSC by varying the membership exponent? 

2

, 1 , 1, 1
2

1( )i n ni n i nuA x v                                                    (11) 

2
, 1 , , , , ,1 ,1 1 1( ) ( )( )i n i n i n i n i n n i ni nG G M v v u x v                         (12) 

, 1
2

, 1, ( )i n i n i nuM M                                                             (13) 

where , 1i nu  is the membership of a new arriving data point ( 1nx  ) to cluster i, which is 

computed using (10), ,i nv  is the cluster center of cluster i after n inputs and , 1i nv  is the new 

cluster center of cluster i after data point 1nx  arrives, which is updated using (2) with v 

instead of μ.  

 The relationship between the iiDB and dataset variation is not discussed in [6]. More 

specifically, we address the questions. After spawning a new cluster (seen by an abrupt drop 

in the iiDB value), what is the relationship between the cluster size and the time it takes 

before it reaches the next knee point in the iiDB index graph. The knee point is the point in 

the iiDB graph where there is a sudden increase in the slope, as in Figure 3-4 (b). 

Furthermore, the relationship between the iiDB and the procedure followed by the online 

clustering algorithm to deal with new data samples in term of forming a new prototype can 

reveal interesting properties of the clustering algorithm.  
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 Datasets  
 In this section, we describe the datasets used in this paper. The first synthetic dataset is 

S1, which has 1100 instances in 2- dimensional space generated from 11 Gaussian 

distributions distributed along a line as in Figure 3-2 (a). S1 has 11 clusters (100 samples 

each) as can be seen in Table 3-1. The dataset is ordered such that data vectors from cluster 

1 arrive before data points from cluster 2 and so on.  

The second synthetic dataset is S2, which has 1100 data points with 11 clusters. Each 

cluster has 100 samples and the clusters are arranged in a circular shape with one cluster 

in the middle, as seen in Figure 3-2 (b). The data samples are ordered so that data points 

from cluster 1 arrive first. After that, 10 data points from the center cluster arrive, followed 

by vectors from cluster 2. A similar pattern is repeated for the remaining clusters. Data sets 

S1 and S2 are similar to two data sets used by the authors of [6]. 

 

Table 3-1. Summary characteristics of the datasets used in the evaluation. 

Dataset # 

instances 

# 

dimensions 

# 

clusters 

Labeling 

S1 1100 2 11 Exact 

S2 1100 2 11 Exact 
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    (a)                                                                (b)                                                                     

Figure 3-2 Synthetic datasets: a) S1 dataset, b) S2 dataset. 

 

 Initialization 
DB index computation requires the existence of at least two clusters. Therefore, in the 

ERLOSC cluster algorithm, computation of the iiDB begins after two clusters exist. After 

using data points in window size S to initialize the algorithm, the parameters in Figure 3-1 

are computed for each cluster after each data points arrives. However, iiDB is calculated 

once the second cluster is formed (after, say n data points have been processed). Each time 

a cluster is formed, its parameters are initialized with ,1 0iC  , ,1iM w  (number of elements 

in cluster i) and ,1 0iG 


(zero vector in p ). This initialization is repeated each time a new 

cluster is created. After initialization, the clustering algorithms and iiDB process the data 

one sample at a time. 
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 Experimental results 
 
 
3.8.1 Effect of Membership Exponent on iiDB  
 

The first experiment studies the effect of the membership exponent (m) on the DB index. 

Different values of m ∈ {1, 1.01, 1.1, 2, 2.5, 3} are used. Hardened clustering results of 

ERLOSC are shown in Figure 3-3 where we can see the algorithm detected all the clusters 

on the two datasets. Figure 3-4 (a) and Figure 3-5 (a) graph the iiDB values for different values 

of (m) on both datasets.  

                

                     (a)                                                                     (b)                                  

Figure 3-3 Clustering results of a) S1 dataset, b) S2 dataset where the red dots are the cluster 

centers and the red squares are outliers flagged by the algorithm. 

As the exponent (m) of the membership increases, the overall (trend) value of the DB 

index decreases (this index is min-optimal). As shown in Figure 3-4 (a), selecting an exponent 

value greater than or equal to 2 is sufficient to meet the min-optimal DB requirement for 

these two data sets. Whether this is always true is an open question.  

The ERLOSC algorithm performs very well at detecting those times when new 

distributions are created in both datasets. Sudden changes in in iiDB index indicate changes 
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in the cohesion and separation of the clusters being produced by the clustering algorithm. 

More generally, a sudden change in an online validity index usually can be associated with 

the appearance of a new cluster in the streaming data.  The red vertical lines in Figure 3-4 (a) 

and Figure 3-5 (a) indicate the times where the algorithm detects a new emerging cluster in 

the S1 and S2 datasets. The graphs in Figure 3-4 (a) and Figure 3-5 (a) have initial vertical 

lines when two clusters have formed. The first vertical line to the right of the origin 

corresponds to the third cluster detected. We notice that there is a sudden drop in the value 

of the index after each new cluster appears in the data stream when the algorithm learns the 

prototype that represents the new emerging cluster. Then, new data are grouped in the latest 

cluster structure so the index value is almost constant until data points from the next cluster 

start accumulating. EROLSC flags data points from a new structure as outliers until they 

are dense enough to be designated as a new cluster.  

This increases the index value starting from the knee point as shown in Figure 3-4 (b). 

Figure 3-5 shows the DB index for dataset S2. In this dataset, there is a cluster in the center, 

which is indexed so that 10 data points are added to it before each of the surrounding clusters 

appears in the stream. EROLSC detects the central cluster right after the sixth cluster, which 

can be seen in Figure 3-5 (b) where there is a close line pair corresponding to clusters 5 and 

6.   All the clusters have almost similar knee point locations and similar distances from the 

knee point to the next solid line (the start of a new cluster) except the cluster at the center, 

as shown in Figure 3-5 (b).  This is because of the way the data stream is fed to the algorithm.  

The surrounding clusters are presented sequentially, whereas data points in the center cluster 

are fed 10 data samples at a time after each cluster. This can be useful to understand the data 

stream, especially in real applications such as activity recognition.   
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Figure 3-4 a) Effect of membership exponent on DB index on S1 dataset and knee location where the 

arrow pointing up is the increasing trend as m→1 and the arrow pointing down is the decreasing 

trend for m ≥ 2, b) Exploded view of (a) from time 480 to time 700. 
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Figure 3-5 a) Effect of membership exponent on DB index on S2 dataset where the arrow pointing up 

is the increasing trend as m→1 and the arrow pointing down is the decreasing trend for m ≥ 2, (b) 

Zoom of the region containing the line pair 

3.8.2 Effect of Cluster size in the Knee Location   
 

To study the time elapsed when EROLSC starts a new cluster to the appearance of the 

next knee point, we set the m = 2 and vary the cluster sizes. Instead of having 100 

samples/cluster in the two datasets, the clusters sizes are modified to [100, 75, 100, 200, 

100, 75, 100, 200, 100, 75, 100]. The last cluster in modified S2 is the one at the center. 

Figure 3-6 shows the iiDB for the modified S1 and S2 datasets where the arrows show the 

time between consecutive clusters and the numbers show the cluster sizes, keeping in mind 
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the calculation of the index started from cluster 2.  We notice that it takes longer to reach 

the knee point for larger clusters because more data points fall into the larger clusters before 

EROLSC triggers a new cluster. This keeps the iiDB value from increasing. This 

observation is true for both datasets, as shown in Figure 3-6 (a) and Figure 3-6 (b). 

However, the distance between the knee point and the next vertical line (time when the next 

cluster is detected by the algorithm) is almost constant for both datasets. This reflects the 

anomaly detection procedure that the online clustering algorithm follows to detect new 

emerging structure in the data stream. In addition, this might tell us that the clusters are 

coming from the same Gaussian distribution and/or the data streams are in an ordered 

fashion. We can see the case of S2 dataset where the middle cluster has shorter duration 

between the knee point and the next cluster due to the location of its data samples in the 

streaming data. This suggests that a different change detection mechanism could change the 

knee location as will be shown in the next section. While we can directly observe the 

behavior on these 2-D datasets, we note that the patterns shown in Figure 3-4 hold for 

similar datasets of high dimension that we tested, allowing us to understand the cluster 

formation in data that cannot be visualized. 
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  (a) 

 

     (b) 

Figure 3-6 Effect of different cluster sizes on DB index, a) modified S1, b) modified S2. Compare 

these to Fig. 4(a) and Fig. 5(a). 

3.8.3 Effect of Detection Mechanism in Knee Location 
 

To study the starting time of the knee point and how long it takes to reach the sudden 

drop in the iiDB value (formation of next cluster), the procedure of spawning a new cluster 

at the data point is changed in three different ways. The original S1 and S2 datasets are used 

in this experiment, where all clusters have the same size. To create a new cluster in 
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EROLSC, the dispersion of the candidate cluster, which is a group of data points from the 

anomaly list, is computed. If the dispersion value of the candidate cluster is less than a scaled 

version of the maximum dispersion of the existing clusters, it is accepted as a new emerging 

structure. The scale value used in EROLSC is set to 3. Three different dispersion scales (1.5, 

2 and 3) are used in this experiment, shown in Figure 3-7 and Figure 3-8.   

Figure 3-7 (a) shows the results on the S1 dataset where the distance between the knee 

point and the beginning of the next cluster is larger for a smaller dispersion scale. The reason 

is that the tolerance of the algorithm to create a new cluster compared to the existing 

prototypes increases as the dispersion scale increases because it accepts less compact 

clusters. However, for small values of the dispersion scale, the algorithm requires clusters 

with smaller dispersion, and hence, it takes a longer time accumulating data points to create 

the new cluster. This is particularly clear for the case with a dispersion of 1.5 in Figure 3-7 

(b). We can notice the same relationship in the S2 dataset for all clusters except the middle 

cluster, as in Figure 3-8.  Figure 3-8 (b) shows an exploded view of the knee point locations 

of the middle cluster where there is a noticeable time difference between them for each 

dispersion scale value.  
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Figure 3-7 a) Effect of dispersion scale on the formation of the knee point for S1 dataset, b) 

Exploded view of (a) from time 110 to time 300 which shows the effect of dispersion scale on the 

formation of the knee point. 
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Figure 3-8 a) Effect of dispersion scale on the formation of the knee point for S2 dataset, b) 

Exploded view of (a) from time 350 to time 625 which shows the effect of dispersion scale on 

detecting the middle cluster. 

 The same thing holds for higher dimensions datasets. The iiDB behaves in the same 

manner regardless of the dataset dimension where it shows the times where new cluster is 

detected by the algorithm, the distance to the knee location refers to cluster size [27].  

 Conclusions  
 

In this paper, we analyzed the information that an incremental form of a relative of the 

DB index could provide about the behavior of the EROLSC online clustering algorithm. 
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First, we demonstrated that the version of the iiDB exhibited in [6] at m=2 could be 

generalized to any value of m≥1. To avoid the increasing trend in the min-optimal index 

(DB), the exponent of the membership value should be greater than or equal to 2. We 

discussed how incremental iCVIs can be used to understand the performance of online 

clustering algorithms with respect to: (i) the appearance of new emerging clusters; (ii) how 

the clustering algorithm reacts to outlier data samples and evolving clusters, and (iii) the 

effect of clusters size on the iiCVIs results. The knee point is the point when EROLSC starts 

accumulating data points for a possible new cluster, but the cluster has yet to be detected by 

the algorithm. The duration between the knee point and the next cluster is related to the 

anomaly mechanism used by the online clustering algorithm to detect new emerging 

structures. In addition, the longer the duration between the cluster detection and the next 

knee point, the larger the cluster size. The way that data samples in each cluster are streamed 

has a direct effect on the cluster detection and the knee point location. Clusters that form 

intermittently along with other clusters are more difficult to see with an iiCVI until before 

the algorithm detects it (middle cluster in S2 dataset). Therefore, if the source of the data is 

known a priori (domain knowledge), one can understand the order of the data stream with 

respect to the clusters. This can be important for applications such as activity recognition or 

elder adult monitoring.  
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Chapter 4: Evaluating Evolving Structure in Streaming Data with 

Modified Dunn's Indices 

Omar A. Ibrahim, student member, IEEE, James M. Keller, life fellow, IEEE, and James 
C. Bezdek, life fellow, IEEE 

Abstract—Dunn's internal cluster validity index is used to assess partition quality 

and to identify a "best" crisp c-partition of n objects built from static data sets. This 

index is quite sensitive to inliers and outliers in the input data, so a subsequent study 

developed a family of 17 generalized Dunn's indices that extend and improve the 

original measure in various ways. This article presents online versions of two modified 

generalized Dunn's indices that can be used for dynamic evaluation of evolving 

(cluster) structure in streaming data. We argue that this method is a good way to 

monitor the ongoing performance of streaming clustering algorithms and we 

illustrate several types of inferences that can be drawn from such indices. Streaming 

clustering algorithms are incremental, process incoming data points only once and 

then discard them, adapt as the data stream evolves, flag outliers, and most 

importantly, spawn new emerging structures. We compare the two new indices to the 

incremental Xie-Beni and Davies-Boudin indices, which to our knowledge offer the 

only comparable approach, with numerical examples on a variety of synthetic and 

real datasets.  

 

Index Terms—internal cluster validity, Dunn's index, generalized Dunn's indices, streaming clustering, 

incremental modified Dunn's indices, incremental Xie-Beni index, incremental Davies-Bouldin index. 
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 Introduction 
Cluster analysis has a long history in pattern recognition.  The goal is to find 

meaningful structure within a group of objects.  The ambiguity of the terms “find”, 

“meaningful”, “structure” and “objects” have given rise to many hundreds (probably 

thousands) of approaches to address this problem. The traditional view of clustering is that 

the entire group of objects is available for analysis.  Most approaches utilize this fact in 

their search for structure.  With the river of continuous information generated through the 

internet, or more importantly for us, the ubiquity of low-cost sensors, an alternate view of 

clustering has appeared, one that acknowledges the temporal aspect of data collection and 

strives to build and interpret structure as the data arrives.  We call this mode streaming 

clustering.  Again, multiple algorithms have been developed to search for evolving 

structure [1-3], but this paper deals with an emerging topic relative to streaming clustering. 

What do we mean by streaming cluster analysis? Data, usually vectors in p-dimensional 

Euclidian space, arrive sequentially.  Time should matter, as well as spatial location.  For 

the most part, structure must be formed on the fly as data arrives.  This limits the use of 

classical iterative algorithms where data is revisited. This happens for two reasons. First, 

decisions need to be made in a timely fashion.  In trying to monitor elderly residents, for 

example, you can’t wait until all the data is available to determine if the resident is behaving 

in a normal manner or if there is a problem developing.  Secondly, in the era of Big Data, 

it becomes impossible to store all the data for a given problem.  Hence, streaming cluster 

analysis must take on a new and different meaning.  So, cluster structure, such as the 

parameters that define a cluster, must be incrementally updated, outliers/anomalies must 

be identified, and emerging clusters need to be recognized and formed, all without keeping 

the data for iterative processing.   
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Traditional cluster analysis consists of three problems [4]: (i) pre-clustering 

assessment of tendency (do the data have clusters? If yes, at what value of c, the number 

of clusters?); (ii) partitioning the data (finding the c clusters?); and (iii) post-clustering 

cluster validity (are the c clusters found useful?).  There are a plethora of papers that deal 

with the questions for traditional cluster analysis [4, 5-7].  Do these questions apply to the 

streaming case?  If so, have they been addressed?  If not, what takes their place? 

Problem (ii) is the “easy” part, the energetic activity – find the structure.  This is 

what essentially all of the work on streaming clustering focuses on.  It’s what we like to do 

– build algorithms that produce a partition of the data.  We will focus on one such algorithm 

here [8-9] for illustration, but there are several in the literature. Just as we can’t (by 

definition) keep all the data, we also can’t keep the partitions, i.e., the crisp or soft 

assignment of data to the existing clusters.  If the premise is that these approaches must 

scale to big data, then the partition assignments also may be too large to hold and 

manipulate.   

In our opinion, question (i) is moot. How can we predetermine if there is cluster 

structure in the data, with a guess as to how many, if the data are arriving and must be 

processed sequentially?  The only apriori help for a streaming clustering technique would 

be problem specific knowledge, but even that should be limited in unsupervised settings.   

For a streaming clustering algorithm, here are some new questions that we believe must be 

addressed in problem (ii): 

A. How do you start the process? 

Initialization takes on a different meaning. 

B. How much of the stream do you need in memory? 
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Could limit application to big data. 

C. Do “soft” partition assignments make sense? 

Are they useful? 

D. Can you deal with outliers? 

Can explode the number of clusters; otherwise 

one man’s (cluster’s) outlier is another man’s prototype. 

E. How are new clusters recognized and formed?  

This requires a change detection mechanism 

F. Should you merge existing clusters 

In feature space? and In time? 

G. What about cluster “drift”? 

Data comes in sequentially and original cluster can move around. 

H. Should we call this type of processing “clustering”? 

No groups of data points are saved, so there are no clusters to evaluate. The only remnants 

of streaming clustering are the entities retained in a cluster footprint. 

All streaming clustering algorithms address these questions somehow, many times 

implicitly. 

The real problem is defining a sensible notion to replace problem (iii).  How do you 

tell if the streaming process is working when the input data lie in a high dimensional vector 

space?  This is known for traditional cluster analysis of batch input data as the cluster 

validity problem. And in traditional clustering, there are many approaches to view the 

results of a run of your favorite algorithm to determine if a given partition is “good”.  But 

they all require the partition information, and in many cases, the data itself, to be available. 
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Our axioms for streaming clustering prohibit this situation.  What we study in this paper is  

a new approach to problem (iii), development and analysis of streaming “equivalents” to a 

class of cluster validity measures. While they don’t, and can’t really, directly answer 

question (iii) in a traditional sense, we show that these incremental measures can provide 

a unique view of the online clustering process and give new insights into the evolving 

structure seen by the processing algorithm. 

Here is an outline of the rest of this article. Section 4.2 discusses the background. 

Section 4.3 displays related work, which is almost exclusively confined to evaluation in 

the static data case. Dunn's index and its generalizations are defined and discussed in 

Section 4.4.  Section 4.5 describes the incremental update formula for within cluster 

dispersion that is essential to Section 4.6, which presents incremental versions of modified 

forms of 43 53DI and DI . Section 4.7 describes the streaming clustering algorithm we will use 

in this study. Section 4.8 is devoted to computational protocols and the data sets used for 

the numerical experiments that are presented in Section 4.9. Section 4.10 offers our 

conclusions, and some suggestions for further research. 

 Background 
In order to be complete, we first discussed the need for streaming clustering and 

incremental cluster validity indices as an emerging topic in computational intelligence 

field. Now we discuss the background information about traditional clustering and cluster 

validity indices.  

Let 1 nO {o , ,o }   denote n objects (soccer teams, boats, cancer patients, credit reports, etc.). 

Two kinds of numerical data are used to represent O. Numerical object data (feature vector 

data) p
1 nX { , , }   x x , where the coordinates of xi are feature values or attributes (e.g., 
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weight, length, intensity, etc.) describing various properties of object oi, 1 ≤ i ≤ n. A second 

form of data is relational data, viz., pair-wise dissimilarities represented by values in an 

n n  matrix ij i jD [d ] diss(o ,o ) :1 i, j n      .   

Partitions of the objects are built from sets of label vectors. Let integer c be the number 

of classes, 1 < c < n. The crisp, fuzzy/probabilistic, and possibilistic label vectors in c  

are:  

c
pc i iN { : y [0,1] i; y 0 i}     y      ; (possibilistic)               (1a) 

c

fc pc i
i 1

N { N : y 1 }


  y
             

; (fuzzy/probabilistic) (1b) 

hc fc iN { N : y {0,1} i}   y                              ;(crisp)               (1c) 

 

Crisp (or hard) c-partitions of n objects are represented as c n  matrices whose kth 

column ( (k )U ) comes from hcN  in (1c). Specifically, the hard c-partitions of O are: 

 

cn (k)
hcn hc

c n

ik ik
i 1 k 1

M {U : N ,1 k n;

             ; u 1 k ; u 0 i}
 

    

    

U

.                                (2) 

For feature vector data, we will use an equivalent way to represent a partition hcnU M  

of X in terms of the c crisp subsets p
i{X }   that form the partition, written as 

c

i i j
i 1 i j

U X X  ; X X
 

     . The cardinalities (sizes) of the c clusters are i i| X | n , i 1,..., c  , 

so that i
1 i c

n n
 

 . 

We identify a "best partition" U using values of scalar measures of partition quality called 

cluster validity indices (CVIs). The most important distinction for CVIs is whether the 
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index is internal (uses only the information available from the algorithmic clustering 

outputs and possibly the input data); or external (uses the algorithmic clustering outputs, 

the input data, plus additional "outside" information such as a ground truth partition that 

labels subsets in the data). Dunn's index (DI, [10]) and the generalized Dunn's indices, 

(GDIs, [11]) are internal CVIs designed to select a best partition amongst a set of candidate 

partitions,  

 

hcn m MCP {U M : c c c }     (3) 

where cm and cM are the minimum and maximum values of the integer c associated with 

partitions in CP. Let hcn: M V denote any crisp, internal CVI. Each element of CP is 

evaluated byV , resulting in the set of values  

 

CP { (U) : U CP}  V V  (4) 

 

The "best" partition in CP in the sense of measure V  is the one that yields the maximum 

or minimum value in C PV , according as V  is max-optimal or min-optimal. There are some 

CVIs that operate a bit differently by instead indicating a preferred partition with a "jump" 

in successive values, but these are not used in the sequel. 

Many clustering algorithms produce soft clusters that in the most general case are 

possibilistic c-partitions, which are c n  matrices in 

 

cn (k)
pcn pc

c n

ik ik
i 1 k 1

M {U : N ,1 k n;

             ; u c k ; u 0 i}
 

    

    

U

 (5) 
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The fuzzy/probabilistic c-partitions are a subset of pcnM  

 

c

fcn pcn ik
i 1

M {U M : u 1 k}


     .            (6) 

 

Evidently hcn fcn pcnM M M  . The set CP in (2) and the domain of CVIs in (3) for the 17 

GDIs is hcnM , the set of crisp c-partitions of n objects.  

 Related Work 
Many books on cluster analysis contain at least one chapter on static cluster validity [4, 5-

7]. Dunn's index [10] is an internal CVI for assessing cluster validity for crisp c-partitions 

of a data set X. Surveys on crisp cluster validity indices (CVIs) that compare various 

validation schemes in one way or another began to appear in the 1980s [12]. Milligan and 

Cooper [13] compared 30 validity tests using partitions generated by four hierarchical 

clustering methods, and their paper is considered the classic reference on "best-c" studies 

of internal CVIs. Gurrutxaga et al. [14] present a very thorough critique of Milligan and 

Cooper's "best c" methodology. 

Dimitriadou et al. [15] presented a survey of 15 internal CVIs in 2002.  Arbelaitz et al. [16] 

published a very ambitious comparison of 30 internal CVIs for crisp c-partitions that 

channels the Milligan-Cooper style. Three crisp clustering algorithms were used to 

populate CP in their study.   Hubert and Arabie [17] initiated the standardization of classical 

paired-comparison indices for external validation of crisp clusters. This seminal work also 

provides a general introduction to statistical normalization of CVIs to remove bias 

Nguyen et al. [18] presented a "best-c" study of similarity measures and distance-based 
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functions that compare pairs of crisp partitions using external information-theoretic CVIs. 

They identify a total of 26 measures that are subdivided into 10 similarity measures and 16 

distance measures.  

Dunn's index has been related to visual assessment methods such as the improved visual 

assessment of tendency (iVAT) algorithm in [18]. A recent study using neuron spike data 

relates Dunn's index to both iVAT and SL [19]. And various commercial software packages 

such as the spike extraction and sorting software (Offline Sorter, Plexon Inc, Dallas, TX) 

report Dunn's index as part of their default cluster validity statistics [20]. 

The use of any of the 17 GDIs is restricted to hindsight processing of partitions built from 

static data sets. While the recent trend towards online cluster analysis in data streams to 

detect anomalies, drift, and evolving cluster structure has led to many streaming clustering 

algorithms [1], there has been very little work in developing strategies that parallel this 

growth in the area of cluster validity.  Reference [21] is a recent paper that develops the 

theory and some numerical examples that illustrate incremental versions of the Davies-

Bouldin [DB, 22] and Xie-Beni [XB, 23] validity indices. In [24], the authors extended the 

incremental DB (iDB) index to a more general version and illustrated how the iDB can be 

used to analyze and understand the performance of a streaming clustering algorithm. 

Recently, the use of iCVIs with big data was introduced in [25] which show the need of 

iCVIs for high dimensional streaming data monitoring. These incremental CVIs can be 

used to monitor cluster formation and algorithmic performance of streaming algorithms. 

This article develops a similar method for modifications of two of the GDIs, viz.,

43 53DI and DI , and compares their performance to the existing incremental CVIs discussed 

in [21].  
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 Generalized Dunn's Indices 
Dunn's index is based on the geometrical premise that "good" sets of clusters are compact 

and well separated. To quantify this index Dunn let i jX and X  be non-empty subsets of p

, and let p pd :     be any metric on p p  .  Dunn based his index on the standard 

definitions of the diameter (dia)  of kX  and the set distance ( between i jX and X .  

  
k

k
, X

dia(X | d) max d( , )



x y

x y

          
              

                       
(7) 

i

j

i j SL i j
X
X

(X , X | d) (X , X | d) min{d( , } 



 
x
y

x y

                        

(8) 

 

The notation (*|d) for   and dia  indicate that these depend only on d. For any partition

1 i cU X X X X    , Dunn defined the separation index of U as follows:  

 



 

i j
i j

k
1 k c

min{ (X ,X | d)}

DI(U | d, ,dia)
max dia(X | d)


 

 

   . (9) 

 

So DI depends on three functions, {d, ,dia} .  The most common metric for (d) in the 

numerator and denominator of DI ~ i.e., in (7), (8) and (9) ~ is Euclidean distance dE, but 

Dunn formulated his theory for an arbitrary metric on the input space. The diameter 

kdia(X | d)  at (6) which appears in the denominator of (8) is a measure of scatter volume 

for cluster kX .  Compact clusters will have smaller diameters than ones that are more 

dispersed about their mean vectors. A set of clusters is relatively compact when the largest 

of its c diameters and hence, the denominator in (7), is small.   
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The set distance i j(X , X | d )  shown in equation (7) between the crisp clusters i jX and X  

in U is used by the hierarchical single linkage (SL) clustering algorithm [4-5], so is often 

called the single linkage set distance.  The larger i j(X , X | d )  is, the better separated are 

i jX and X . Taking the double minimum in the numerator identifies the pair of clusters that 

are least well separated so as the c clusters become more separated, the numerator in (4) 

grows. 

So, the geometric objective of Dunn's index is to maximize intercluster distances (big 

numerators = good separation) whilst minimizing intracluster distances (small 

denominators = compact clusters).   Larger values of DI intuitively correspond to better 

clusters in the sense of this measure. The partition U* that maximizes DI over a set of 

candidate partitions in CP is taken as the (Dunn's index) optimal set of clusters. 

Consequently, DI is called a max-optimal internal CVI. The range of DI is (0, ) , and DI is 

undefined when c = 1 ( 1 n nU   1 ) and c = n ( n n nU I  ).  

  Figure 4-1 depicts the classical meaning of equations (6) and (7) when d is chosen as 

Euclidean distance, d = dE.  

 

(a) The classical diameter kdia(X )  of  Xk 
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(b) The classical (SL) distance i j(X , X )  between Xi and Xj 

 

Figure 4-1. SL set distance and classical diameter for d = dE 

 

Dunn's index has a well-known flaw, viz., sensitivity to anomalies, which can render it 

ineffective when clusters have outliers and/or inliers. Figure 4-1 (a) illustrates that the 

addition of the point z to Xk can double its diameter, k kdia(X { }) 2dia(X ) z .  Similarly, 

adding inlier w to iX  in Figure 4-1 (b) significantly decreases the distance between iX  and

jX . Thus, a single anomaly can alter the numerator and/or denominator of Dunn's index by 

orders of magnitude.  

To address this issue, a family of 17 generalized Dunn's indices (GDIs) were defined and 

analyzed in [11]. These indices take the general form 

  



 

a i j
i j

ab a b
b k

1 k c

min{ (X ,X | d)}

GDI (U | d, ,dia ))
max dia (X | d)


 

 

 , (10) 

 

where a {1,..., 6}, b {1, 2, 3}  . Generally speaking, the geometric objective the 17 GDIs is 

preserved by the definition at (10). Our notation for the 17 indices represented by (10) is 

abGDI (U | d) . Equation (10) reduces to (9) when a = b = 1, i.e., 11DI GDI .  

Some of the crisp GDIs have done well in comparative studies [7, 18, 19]. For example, 
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the study in [17] ranked 33GDI  8-th among 40 competing internal CVIs, scoring 389 correct 

instances in 432 clustering scenarios, whereas 11GDI  (the original Dunn's index at (9)) was 

ranked 29 out of 40 in this same study. The indices that are the object of this investigation 

are 43 53GDI and GDI , which ranked 10th and 12th in [19]. These are the only two GDIs that 

have a term which is similar to the core equation for cluster dispersion (equation (21) 

below). 

43 53GDI and GDI are selected in this paper because they can be extended to the incremental 

fashion. The indices 43 53GDI and GDI  are defined by the following set distances and diameter 

function: 

 

4 i j i j(X , X ) d( , )  v v                                                                   (11) 

i j

i j
X X

5 i j
i j

d( , ) d( , )

(X , X )
n n


 






 
x y

x v y v

                                 (12) 

    

k

k
X

3 k
k

2 d( , )

dia (X )
n



 
 

  
 
 


x

x v

                                                         (13) 

 

In (11), (12) and (13), 
k

k k
X

k : n


  
x

v x , are the means of the crisp clusters. The diameter 

at (13) is, for Euclidean distance, the diameter of a hyperball centered at the mean vector 

of kX  whose length is the average distance between the points in kX  and its cluster center.  

The common factor in these choices for and dia is the term for the sum of distances 
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between the points in a cluster and its cluster center,
k

k
X

d( , )



x

x v , or, when d is a norm 

metric,  
k

k
X


x

x v . This is almost the key term for incremental updates of the Xie-Beni 

and Davies-Bouldin CVIs that was derived in [2]. The formulation in [2] was based on the 

squares of Euclidean distances, 
k

2
k 2

X


x

x v . To accommodate this difference, we will use 

Euclidean distance in (10), and we replace the distances shown in (12) and (13) with 

squared Euclidean distances. For convenience, we drop the subscript "2" which indicates 

this as the Euclidean norm. We call the new CVIs based on these modifications modified 

Dunn's indices (MDIs), notated as 43 53MDI and MDI : 

  

4 i j i j(X , X )  v v                                                 (14) 

i j

22
i j

X X
5 i j

i j

M (X , X )
n n


 

  




 
x y

x v y v

                ; (15) 

k

2
3 k k k

X

dia(M (X )) 2 n


 
  
 
 


x

x v                    ; (16) 

The modified Dunn's indices corresponding to these choices for set distance and diameter 

are 





4 i j
i j

43
3 k

1 k c

min{ (X ,X )}

MDI
max{dia(M (X ))}




 


                                

;  (17) 

 





5 i j
i j

53
3 k

1 k c

min{ M (X ,X )}

MDI
max{dia(M (X ))}




 

                                .  (18) 
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Indices 43 53MDI and MDI  are new internal validity indices for crisp clusters. The only 

difference between these two MDIs and the original GDIs that precede them is the squaring 

of distances between the input data and the cluster centers. We believe ~ but will not test 

here ~ that evaluation of any set of crisp partitions of static data made by 43 53MDI and MDI  

will almost always be identical to results obtained with 43 53GDI and GDI . The main objective 

of this article is the adaptation of (17) and (18) for incremental evaluation of evolving 

cluster structure in streaming data. Our notation for the incremental versions will be 

43 53iMDI and iMDI (the "i" meaning "incremental," so that iMDI stands for incremental 

modified Dunn's index). 

 Incremental form of Cluster Dispersion 
Suppose we have streaming vector data inputs, say p

k , k 1, 2, , n   x , beginning at k=1 

(e.g., time 1), and we have chosen Euclidean distance for the norm metric in the input 

space.  As each kx  arrives, let us assume that a streaming clustering algorithm assigns 

crisp membership labels to it in c clusters, ( k )
i ,k hc{u : 1 i c} N   U .  After n inputs, we 

have:  

 

(i) c, the number of current crisp clusters;  (19a) 

(ii) Cluster prototypes p
n 1, n c ,nV { , , }   v v ;  (19b) 

(iii)  a c c  distance matrix n in jnD(V ) [ ] v v ; (19c) 

(iv) cardinalities, i i| X | n , i 1,..., c  ; i
1 i c

n n
 

 ; (19d) 

(v) current values of 43,n 53,niMDI and iMDI . (19e) 
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We do NOT retain the historical input data. After observing n 1x , we update the current 

values of 43,n 53,niMDI and iMDI  by finding incremental changes,   

43,n 1 43,n 43,niMDI iMDI (iMDI )    ;  (20a) 

53,n 1 53,n 53,niMDI iMDI (iMDI )    ;  (20b) 

We will find the increments in (20) using a method developed by Moshtaghi et al. [2]. 

They defined the fuzzy within cluster dispersion of the i-th cluster in fuzzy partition 

fcnU M  after n streaming inputs as 

n 22
i,n ij j i,n

j 1

C (u )


  x v


.  (21) 

The quantity in (21) appears in many objective functions and CVIs. It is a measure of the 

compactness of the i-th fuzzy cluster about its centroid. Ibrahim et al. [24] noticed that the 

factor 
2

ij(u )  in (21) behaves like a constant in the derivation given in [21], i.e., it factors out 

of all terms in the derivation. Consequently, they demonstrated that a more general form 

of (21), viz.,  

n 2m
i,n ij j i,n

j 1

C (u ) ; m 1


   x v .  (22) 

could be used in Algorithm 2 of [21]. We will use this more general form of the update 

method in our Algorithm 1 by specifying its pseudocode for any value of m ≥ 1.  

Mostaghi et al. [21] wrote the incremental form of the compactness function at (21) as 

i , n 1 i ,n i , nC C C   
   . We reproduce their algorithm (with the modification that m ≥ 1) as our 

Algorithm 1, which yields, for all i, the updated value of the function i ,n 1C   in (22) as a 

function of n 1x . After processing the data points in the initial wondow S, we have (m), 
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the number of clusters c, a label vector (1)
hcNU  and initial prototypes 1 1,1 c,1V { , , } v v . 

First, we compute initial values for three quantities needed to initialize Algorithm 1:   

 

Input: (1)
1, V , m [1, ); c {1, , n}   U  

For i =1 to c 
T p

i,1G (0, 0, , 0 )      

i,1 1,iM v  

    i ,1C 0  

Next i 
 

Beginning with the new arriving data point, streaming inputs can be sent to Algorithm 1, 

which uses n 1x  to produce the inputs shown: 

 

Data: (n 1)
n n 1m, c, V , , V

U , i,1 i,1 i,1i : G , M , C  
Input: i,n i,n i,ni : G , M , C  

Output: i,n 1 i,n 1 i,n 1i : G , M , C    

For i = 1 to c 
   T

i,n 1 i ,n i ,n 1 i ,nQ ( ) G  v v  

   
2

i,n 1 i,n i,n 1B   v v  

   
2m

i,n 1 i,n 1 n 1 i,n 1A (u )    x v  

   i,n 1 i,n i,n 1 i,n i,n 1 i,n 1C C A M B 2Q        

  m
i,n 1 i ,n i , n i ,n i ,n 1 i ,n 1 n 1 i ,n 1G G M ( ) (u ) ( )        v v x v  

   m
i,n 1 i ,n i ,n 1M M (u )  

 Next i 
 

Algorithm 1. Incremental compactness for xn+1 [2] 
 

In the next section we develop incremental versions of the two iMDIs that were in (20).  

 Incremental Modified Dunn Indices 
If the label vectors formed by the streaming clustering algorithm are crisp as in equation 

(1c), every value of m in (22) will result in the same weights, so there is no loss in using 

the generalized form of the modified indices. After n inputs have been processed, 

producing the current (not ordinarily saved, but it could be) partition n hcnU M  and current 
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prototypes nV , we have, substituting (22) into (17) and (18) the values: 





i,n j,n
i j

43,n
k,n

k,n1 k c

min{ }

iMDI
2C

max
n



 




  
 
  

v v

                    (23)  





i,n j,n

i,n j,ni j

53,n
k,n

k,n1 k c

C C
min

n n

iMDI
2C

max
n



 

  
   


  
 
  

                                             (24) 

 We don't have the matrix nU  nor the data 1 n{ , , }x x , but we do have the current 

prototypes nV , and the current values of 43,n 53,niMDI and iMDI  at (23) and (24). Now n 1x  

arrives. Without loss of generality, assume that the online clustering algorithm produces a 

crisp label vector (n 1)
hcnM U . Suppose j,n 1u 1  ; then j,n j,n 1 v v is updated, and the other c-

1 prototypes are unchanged, resulting in the new prototypes n 1V  . This is the case, for 

example, in hard c-means (aka k-means, [4]). Algorithm 1 provides us with, i,n 1{C :1 i c}  

. This set, along with Vn+1, is all we need to compute the incremental updates to (23) and 

(24):  





i,n 1 j,n 1
i j

43,n
k ,n 1

k ,n 11 k c

min { }

(iMDI )
2C

max
n

 




 



 
  
 
  

v v

                    (25) 





i,n 1 j,n 1

i,n 1 j,n 1i j

53,n
k,n 1

k,n 11 k c

C C
min

n n

(iMDI )
2C

max
n

 

 



 

  
   

 
  
 
  

                              (26) 

Combining (20a) and (25) yields the incremental form of 43,n 1iMDI  ; combining (20b) with 

(26) yields 53,n 1iMDI   . We will compare the performance of these two max-optimal iMDIs 
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to the incremental min-optimal DB and max-optimal XB indices developed in [21]: 



j,n 1i,n 1

c
i,n 1 ij,n 1

n 1 2
j, j ii 1 i,n 1 j,n 1

CC

M M1
iDB max

c v v



 


  

 
 

   
 
  



               

 (27) 



c

i,n 1
i 1

n 1
i,n 1 j,n 1

i j

C

iXB
(n 1) min{ }





 




 


v v

. (28)

 

The incremental updates shown at (27) and (28) depend on i ,n 1C   at (22) extracted from 

Algorithm 1. While the authors of [21] used i , n 1C 
  , m=2 as in (21), we will use the more 

general form of C  in (22) in our experiments. In the next section we describe the online 

clustering algorithm used for the experiments.  

 The streaming clustering algorithm 
 

This section briefly describes the MUSC online clustering algorithm developed in [8] and 

extended in [9]. The main idea of MUSC is based on combining possibilistic and fuzzy 

clustering and Gaussian Mixture Models (GMM). The Possibilistic C-Means (PCM) [26] 

and the Automatic Merging Possibilistic Clustering Method (AMPCM) [27] are combined 

to cluster the buffered data stream in a window S to initialize the GMMs. Due to the 

tendency of PCM to search for a dense region in the dataset by producing coincident 

clusters, it is mainly employed in MUSC to detect outliers in the initialization window, S, 

and for creating a new cluster. The number of clusters that PCM looks for is set to a large 

number (for example if 100 data samples are in S, we look for 10 clusters). Data points 

with low typicalities to all existing prototypes are moved to the anomaly list and AMPCM 

is applied to the noise-free data in S. The clustering result of AMPCM is used to initialize 
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a GMM. When a new data point n 1x   arrives at time n+1, its Mahalanobis distance to the 

means in the GMM is computed as in (29).  If the minimum distance falls within a pre-

specified threshold (T), n 1x   is incorporated into the winning Gaussian cluster. The mean 

and covariance of the winning Gaussian are incrementally updated using (30) and (31).  

 

T 1d (x ) (x )                                                         (29) 

n 1 old
new old

new

x 
 


 

                                                      (30) 

T
new old n 1 old n 1 old

new
new

( 1)* (x ) (x )  

     

            (31) 

where n ew  is the new cardinality of the winning cluster, μ and Σ are mean and covariance 

matrix of the cluster.   

If the minimum distance exceeds the threshold, the new data point  n 1x    is flagged as 

an outlier and saved in the anomaly list. The points in the anomaly history may or may not 

indicate the emergence of a new cluster. We track changes in the anomaly list in two 

different ways. First, we check if any point in the list could fit in one of the existing clusters 

by computing the Mahalanobis distance between the outliers and updated cluster centers. 

Points are assigned to their closest Gaussians if they are within a pre-specified threshold 

(T) (the cluster has “grown” to incorporate what was an outlier before). Second, we cluster 

the outliers following the same approach to initialize the GMM at the beginning, where we 

look for multiple emerging structures. See [8] for a more detailed description of the basic 

algorithm, along with details on initialization, selecting the threshold values, and new 

cluster formation. The historical footprint of the evolving structure is represented by the 
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means, covariance matrices, and cluster cardinalities, as well as outlier data points. After 

updating the Gaussian parameters, n 1x  is discarded. 

 Data, Protocols, and Numerical Experiments 
 
Synthetic and real-life datasets are used in the evaluation, all of which are presented in a 

streaming on-line fashion. The first synthetic dataset is S1, which has 1100 instances in 2-

dimensional space generated from 11 Gaussian distributions distributed along a line as in 

Figure 4-2 (a). The static version of S1 has 11 clusters (100 samples each) as can be seen 

in Table 4-1. The dataset is ordered such that data vectors from cluster 1 arrive before data 

points from cluster 2 and so on. The second synthetic dataset is S2, which (in batch form) 

has 1100 data points with 11 clusters. Each cluster has 100 samples and the clusters are 

arranged in a circular shape with one cluster in the middle, as seen in Figure 4-2 (b). The 

data samples are ordered so that data points from cluster 1 arrive first. After that, 10 data 

points from the center cluster arrive, followed by vectors from cluster 2. A similar pattern 

is repeated for the remaining clusters. Data sets S1 and S2 are similar to two data sets used 

by the authors of [21, 24]. 
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The first real-life dataset used in our evaluation is the LG dataset, which is a collection of 

weather station nodes in the Le Genepi (LG) region in Switzerland [28]. We use two weeks 

of data at node 18 starting from October 10, 2007. Average surface temperature (T) and 

humidity (H) readings over 10-minute intervals were used to create a two-dimensional 

feature vector dataset {𝑥௜ =  {(𝑇௜ , 𝐻௜)}. The scatter plot of the data can be seen in Figure 4-2 

(c). The scatter plot does not provide clear visual evidence of clusters in the static, batch 

form of the LG data. But, the imagery information from the site shows that there is a snowy 

day during the two-week period. A windy and cold day precedes the snow. For that reason, 

we consider the LG data to have three different events: sunny days before and after the 

snow, cold front moving in, and the snowy day. We try multiple distance threshold values 

 
 

Figure 4-2. Scatter plots of four datasets: a) S1, b) S2, c) Le Genepi weather data, and d) 
Heron Island weather data 

(a)                                                      (b)                                                

(c)                                                                                                            (d)           
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and select the best results (number of clusters) for comparative purposes.  The last dataset 

is the Heron Island Weather station dataset. This is a real-life dataset collected from the 

Heron Island weather station on the Great Barrier Reef, Australia [29]. The Heron Island 

data has three features: air temperature (T), air humidity (H), and air pressure (P). The data 

were collected every 10min from 9:00 am to 3:00 pm each day for the 30 days beginning 

21-Feb-2009 and ending 22-Mar-2009. This Heron Island dataset was studied in [29] using 

ellipsoidal chains for anomaly detection. In this dataset, there are two (visual) abnormal 

patterns (small clusters). The first abnormal cluster occurs from data points 445 to 476 (5th 

March 9.00 AM to 2.10 PM) and the second cluster starts from data points 593 to 629 (9th 

March). The anomalous data for March 9 correspond to the weather event "Cyclone 

Hamish" . The smaller anomalous cluster on March 5 is due to an unusual weather variation 

in T and H having regular P. The three-dimensional scatter plot in Figure 4-2 (d) shows the 

Heron Island dataset. It is possible that some observers would identify four visual clusters 

in this static view of the Heron Island data, where two of the four clusters represent the 

normal pattern and the other two (small clusters) represent the abnormal weather patterns. 

Table 1 summarizes the four datasets. The value of m used in (22) is m=2 except in the last 

experiment, where we vary it as m ∈ {1, 1.01, 1.1, 2, 2.5, 3} to study its effect on the iCVIs 

involved. 

 Numerical Experiments 
 
Rapid changes in the iCVIs are related to variations in the separation and cohesion of the 

clusters produced by the clustering algorithm because they measure cohesion and 

separation. Therefore, an abrupt change in the value of an iCVI value usually relates to the 

appearance of a new cluster in the streaming data. The behavior of the iCVI can be used 
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for change-point detection in the streaming data. An iCVI monitors the labels produced by 

the online clustering algorithm each time a new data point arrives, and when the algorithm 

detects a new structure (significant change in the cohesion-separation values), the value of 

the iCVI spikes, indicating a change-point in the data stream. Due to the variation in the 

values of the four iCVIs, we display each index in a different figure where we highlight 

two aspects of the values. The first trait relates to the appearance of a new structure (cluster) 

in the data stream (sudden increase or decrease in the index value). The second aspect is 

the performance of the clustering algorithm after detecting the new cluster (the reduction 

of the index value after the abrupt increase).  

 

 

Table 4-1. Summary characteristics of the datasets used in the evaluation. 

Dataset n p c 
# labeled subsets 

 

S1 1100 2 11 11 

S2 1100 2 11 11 

Weather 1817 2 3 Our Estimate 

Heron 1110 3 4 Our Estimate 
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The online clustering result of S1 dataset is shown in Figure 4-3 (a) where MUSC detects 

the static clusters correctly. In all views of MUSC clusters, the red dots are the cluster 

centers, and the red squares are residual anomalies from MUSC processing (there are 9 

hard to see anomalies in Figure 4-3 (a).  Figure 4-3 (b, c, d, e, and f) and Figure 4-4 (b, c, 

d, e, and f) show the values of the four iCVIs on sequentially inputted data from the S1 and 

S2 datasets based on MUSC processing outputs. The red vertical lines indicate the times 

when the distribution of samples changes. There is usually a sudden jump in the indices at 

these times. There is a double vertical red line at the midpoint of the views in Figure 4-4 

which corresponds to the creation of the cluster in the center of the ring in data set S2. 

Excluding iMDI43, there is usually a spike before the detection of a new cluster (red 

vertical lines) which is most pronounced in Figure 4-3 and Figure 4-4, (b) and (e). After 

the MUSC algorithm learns the prototype of the new structure, the iCVIs tend to decrease 

 
 

 
 

Figure 4-3. Results of the iCVIs on S1 dataset: a) MUSC hardened clustering result, b) 
iMDI53, c) iMDI43, d) Zoomed version of iMDI43, e) iDB, and f) iXB. 
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in value, even though only iDB is min-optimal. This is due to the saturation of the iCVI 

values as more and more points are processed. We know from experiments described in 

[2] that this effect can be overcome by adding a forgetting factor to the iCVIs. When online 

processing of many inputs is anticipated, it is important to add this correction to any iCVI. 

We omitted this while developing the new iMDI43 and iMDI53 indices here, but deem it 

an essential addition to these new indices for online deployment.  The value of iMDI43 

does not increase before the detection of a new cluster because its numerator (closest 

clusters) is not affected when creating a new cluster.  

In iDB, and iMDI53, the increase in the iCVI value before the detection of a new cluster 

starts at the knee point before the vertical line. At the time of the knee location, data from 

the next cluster (next vertical line) start to arrive. These data are flagged as anomalies by 

MUSC until they become dense enough to form a new cluster. After a prototype of the 

anomaly data points is created, the iCVI value decreases sharply at the vertical line.  

 
 

Figure 4-4. Results of the iCVIs on S2 dataset: a) MUSC hardened clustering result, b) 
iMDI53, c) Exploded view of (b) from t=300 to t=550, d) iMDI43, e) iDB, and f) iXB. 
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Since the data points from the middle cluster of S2 arrive in a non-sequential manner 

compared to the other clusters, this structure is detected right after the sixth cluster. The 

time at which MUSC detects this cluster can be clearly seen in the zoomed view of iMDI53 

in Figure 4-4 (b) that is shown in Figure 4-4 (c). The index iMDI43 fails to show this in 

Figure 4-4 (d). iDB and iXB both detect the time where the middle cluster is formed: see 

Figure 4-4 (e) and Figure 4-4 (f).    

After investigating the iCVIs performance on synthetic datasets, we turn to the real data 

sets. The first dataset is the LG weather dataset, which has three distinct event regimes as 

described earlier. The results of MUSC are shown in Figure 4-5 (a) where three possible 

clusters are detected. The iCVIs values are displayed in Figure 4-5 (c-f). All four iCVIs 

show the time when the third cluster is formed which is the cluster on the left. The third 

cluster is detected after the middle (small) cluster is formed, which makes it easier for the 

iCVIs to catch due to the rapid change in the cluster centers and the new cluster size 

compared to previous cluster. All the four iCVIs in views (c)-(f) indicate two changes in 

the streaming data because we need to have two clusters to compute the iCVI values. 

Therefore, in the display, we see only 2 structures, but MUSC detected all the three 

structures.  

The results of MUSC on the Heron datset are displayed in Figure 4-5 (b) where four 

clusters are detected. Only iMDI53 and iDB show the time where the new structures (third 

and fourth clusters) are detected as in Figure 4-5 (g) and Figure 4-5 (i) because of the 

small size and short distance of the third and fourth clusters from others, which makes it 

harder for iMDI43 and iXB to detect the times when they are formed. This shows that 

various change detection metrics have different sensitivity to changes in the data stream, 
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which is another clear indication of the need for multiple iCVIs just like the case of 

traditional CVIs.  

Finally, we study the effect of the membership exponent (m) in equation (22) on two of 

the iCVIs used in this paper with the S1 and S2 datasets. The iXB index is not shown in 

the interests of brevity, and also because it was, in our experiments, the least reliable of the 

four indices tested. Please refer to [24] for the effect of the membership exponent on iDB. 

Different values of m ∈ {1, 1.01, 1.1, 2, 2.5, 3} are used in this experiment. Figure 4-6 (a-

b) display the values of the two iCVIs for different values of (m) on S1, and Figure 4-6 (c-

d) show the same thing for S2. From [20] and Figure 4-6, it is clear that changes to m do 

alter the values of all of the iCVIs. The families of graphs obtained with iMDI53 and iDB 

consistently show the same behavior and change detection capabilities for all values of m. 

The index iMDI43 is also consistent in the sense that it has the same shapes for S1 and S2 

at all values of m, but this index flattens out more rapidly than the other two, and is less 

able to detect changes in the data stream. In [20], we concluded that m needs to be greater 

than or equal to 2. However, iMDI53 seems robust against the variations in its membership 

exponent.  

 Conclusions and Discussion 
Incremental cluster validity indices provide an unsupervised method for monitoring the 

performance of online clustering algorithms. This paper presents online incremental 

versions of two new modified generalized Dunn's indices (iMDI43 and iMDI53) that can 

be used for dynamic evaluation of evolving cluster structure in streaming data. We used 

MUSC as our online clustering algorithm, and found that it provides a very reasonable 

cluster footprint for the four data sets used in our tests. The performance of the two new 

indices is compared with the incremental Xie-Beni (iXB) and Davies-Boudin (iDB) 



 

93 
 

indices, which to our knowledge offer the only comparable approach, with numerical 

examples on a variety of synthetic and real data sets.  

We investigated how these indices can be used to understand the performance of online 

clustering algorithms with respect to the appearance of new clusters; and how the clustering 

algorithm reacts to evolving clusters. We demonstrated that iCVIs could be used to send 

distress signals about evolving clusters to real time monitors. Our experiments indicate that 

iMDI53 is more reliable than iMDI43 and has comparable performance to iDB. We 

concluded that iMDI53 is robust against any value of the membership exponent (m). 

From the results of the Heron Island dataset, only iMDI53 and iDB shows the times when 

the small clusters are detected. This is a clear reason for the need of multiple iCVIs similar 

 
Figure 4-5. Results of the iCVIs on the LG and Heron datasets: a) MUSC hardened clustering 

result on the LG datset: b) MUSC hardened clustering result on the Heron Island dataset, c) 
iMDI53 on LG, d) iMDI43 on LG, and e) iDB iXB on LG, (f)  iXB on LG, g) iMDI53 on Heron, h) 

iMDI43 on Heron, i) iDB on Heron, and i) iXB on Heron. 
 

(c)                                        (d)                                       (e)                                     (f) 

(g)                                 (h)                             (i)                                        (j) 

(a)                                                                             (b)   
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to the case of best use of traditional CVIs. Our next technical step is to derive other 

incremental validity indices and conduct comparative studies among different types of 

indices. 

Finally, during the course of this work, we have come to believe that much of the 

terminology associated with classical batch clustering is very confusing and somewhat 

misleading when used in the streaming data context. Although we have shown scatterplots 

of batch clusters in Figure 4-3 (a), Figure 4-4 (a), and Figure 4-5 (a-b), these figures were 

built in hindsight. This type of visualization and the information about clusters it bears 

would not ordinarily be available in the online streaming environment, since neither the 

data nor the aggregated partition of it would be retained. Moreover, the classical meaning 

of cluster validity as described in equations (3) and (4) doesn't make much sense in the 

streaming case, since no partitions are retained to evaluate. We assert that some new 

terminology if needed for the streaming data case. Streaming clustering algorithms do not 

produce clusters in the sense of partitions in hcnM as defined in equation (2). Instead, such 

algorithms produce cluster footprints: in the case of MUSC, the footprint will be a sequence 

of times of creation, size of "clusters" built, the cluster centers, and the covariance matrices. 

This is not "clustering", it is much more understandably called something like change 

detection with a cluster footprint. We will devote a forthcoming paper to the ideas advanced 

in this paragraph in the near future. 
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Figure 4-6. Effect of membership exponent for S1and S2 datasets on: a) iMDI53-S1, b) 

iMDI43-S1, c) iMDI53-S2, d) iMDI43-S2. 
  

(a)                                                                        (b)                                                                                              

(c)                                                                         (d)                                                                                              
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Chapter 5: Analysis of incremental cluster validity for big data 

applications  

Omar A. Ibrahim, Yiqing Wang , James M. Keller 

 

Abstract- Online clustering has attracted attention due to the explosion of 

ubiquitous continuous sensing. Streaming clustering algorithms need to look 

for new structures and adapt as the data evolves, such that outliers are 

detected, and that new emerging clusters are automatically formed. The 

performance of a streaming clustering algorithm needs to be monitored over 

time to understand the behavior of the streaming data in terms of new 

emerging clusters and number of outlier data points. Small datasets with 2 or 

3 dimensions can be monitored by plotting the clustering results as data 

evolves. However, as the size and dimensions of streaming data increase, 

plotting the clustering result becomes unfeasible. Therefore, incremental 

internal Validity Indices (iCVIs) could be applied for monitoring the 

performance of an online clustering algorithm. In this paper, we study the 

internal incremental Davies-Bouldin (iDB) cluster validity index in the context 

of big streaming data analysis. Also, we study the effect of large number of 

samples on the values of the iCVI (iDB). Finally, we propose a way to project 

streaming data into a lower space for cases where the distance measure does 

not perform as expected in the high dimensional space. 

Keywords: Big Data, Streaming Clustering, Change Detection, Incremental 

Cluster Validity. 
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 Introduction 
Processing large amount of streaming data has gained more attention with the 

emergence of new applications such as the internet of things (IoT), monitoring systems, 

and mining content from social media. Data analytics methods need to be online, 

unsupervised, and adaptive with time (temporal) to be suitable for such applications.  

Clustering is an unsupervised technique that searches for structures in the dataset and 

could be applied to detect anomalies in the dataset [1]. In most cases, all of the dataset 

should be available in the memory before running clustering algorithms because they 

require several iterations over the data to compute dissimilarity between data samples. 

Developing streaming clustering algorithms is a challenging task because the algorithm 

has to search for new structures as data evolves instead of waiting for the whole data points 

to apply traditional clustering algorithms.  

Online clustering algorithms provide a way to analyze and extract knowledge from 

streaming data, which makes them desirable in applications such as environmental sensing 

and packet analysis [1, 2] and can be categorized into two groups [3]. The first category 

includes algorithms that do not rely on the assumption of any ordering in the data and can 

be applied to any streaming data. The number of clusters should be defined for such 

algorithms; an example of this category is sequential k-means (sk-means) [4]. The second 

group of algorithms assume temporal ordering on the streaming data where consequent 

data samples are highly related, such as time series [5, 6, 7, 8]. An algorithm of this 

category does not require number of clusters to be defined in advance. Therefore, a change 

detection mechanism must be developed to detect new structures in the streaming data. The 

algorithm studied here, based on possibilistic clustering and Gaussian mixtures, is an 

example of the second category. 



 

101 
 

Cluster validity analysis is an important aspect of clustering because it determines the 

quality of the clustering results. Cluster Validity Indices (CVIs) are computational models 

and algorithms that look for the best clustering results for a dataset. CVIs can be applied to 

clustering results of an algorithm by varying specific parameters (number of clusters) and 

selecting the best results among them. In online clustering, a data point is processed once 

to update the model and subsequently removed. Thus, monitoring the performance of the 

algorithm over time is more important in this case. There are several CVIs for static data 

[9]. However, only four CVIs have been extended for application to streaming data [3, 10]. 

Separation and compactness of the clusters are normally used in many CVIs [9]. 

Compactness is usually computed from the density of data points in each cluster, whereas 

the separation is measured using the distance between the clusters. Therefore, an 

incremental update needs to be developed for the streaming case because data points are 

processed only once.    

In our previous work, the algorithm and the incremental cluster validity indices (ICVIs) 

were not tested with big datasets (high dimensions and/or large number of samples) [8, 10, 

11]. In this paper, we analyze the performance of MU streaming clustering algorithm 

(MUSC) and iCVIs on big datasets. Also, we study the effect of large number of samples 

on the values of the iCVI. Finally, we propose a way to project streaming data into a lower 

space for cases where the distance measure does not perform as expected in the original 

high dimensional space (upspace).  The next section describes background information and 

related work. In section 5.3, we describe our online clustering algorithm. Section 5.4 

introduces the definition of Davies-Bouldin (DB) CVI. Random Projection formulation is 

discussed in section 5.5. Section 5.6 shows the datasets used in the evaluation process. The 
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experimental results are presented in section 5.7. A summary and conclusions are given in 

Section 5.8. 

 Background 
Clustering streaming data can be divided into two main categories [1]. The first group 

buffers a window of the streaming data and apply traditional clustering algorithms on that 

set of the data. After that, the clustering results of adjacent windows are combined to get 

the final clustering results [12, 13, 14]. The second group applies incremental learning 

methods and are known as incremental, online or streaming clustering algorithms [7, 15, 

16, 17, 18, 19]. Algorithms of the second category process one data point at a time which 

reduces the complexity and makes them good candidates for big data applications. Online 

cluster algorithms that assume temporal order in the streaming data have two main parts. 

The first section is the change detection technique that is used to find new structures in the 

streaming data. The other part is the adaptation mechanism as new vectors arrive [7].  

Cluster Validity Indices (CVIs) can be grouped into two main categories. The first group 

is the external CVIs. Indices in this group require external information about the data such 

as assessing the clustering results in comparison with ground truth labels of the data. The 

second category is internal CVIs (iCVIs) which use the unlabeled data and the clustering 

results of the algorithm.  Comparison between iCVIs is investigated in [9, 20]. Most of 

iCVI models try to compute separation and cohesion of the clusters.  

Internal CVIs (iCVIs) can also be divided into two groups based on the method of 

measuring the cohesion and separation. Indices in the first category assess the quality of 

the clustering produced by the algorithm using the partitions only. Partition entropy and 

partition coefficient are examples of measures in this group [21] where such indices appear 

in fuzzy clustering validity. The second category has most of the iCVIs where they use 
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both the partition information and the data itself to evaluate the clustering result. In general, 

the majority of iCVIs assess the quality of each partition using the partition, the unlabeled 

data, and external parameters produced by the clustering algorithm, such as cluster centers.  

In [3], two incremental internal CVIs (iiCVIs) are developed for two well-known iCVIs, 

the Xie-Beni (XB, [22]) and Davies-Bouldin (DB, [23]). In [11], these indices are 

generalized and used to study the relationship between the iiCVIs and cluster size as well 

as the effect of different change detection mechanisms on the index value. It was shown in 

[11] that incremental DB is more stable than incremental XB. Therefore, incremental DB 

(iDB) is used in this article as the iiCVI. Here, we test the ability of MUSC and incremental 

DB on big datasets (high dimensions and large number of samples. Furthermore, if the 

distance measure fails to perform reasonably in the upspace, we propose a way to project 

the streaming data to a lower space and perform the clustering in the lower space as data 

evolves.  

 

 MU Streaming Clustering   
The streaming clustering algorithm used this study is based on possibilistic fuzzy 

clustering with a combination of Gaussian Mixture Models (GMM) is known as MU 

Streaming Clustering (MUSC) [8, 15].  Possibilistic C-Means (PCM) [24] and the 

Automatic Merging Possibilistic Clustering Method (AMPCM) [25] are used at the 

beginning to initialize the cluster system with a window size S of the streaming data. When 

a new data sample 1nx arrives into the algorithm, the Mahalanobis distance to each cluster 

at that time is calculated using equation 1. The new data point 1nx will be assigned to the 
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closest cluster if it falls with the predefined threshold. The mean and covariance matrices 

of the winning cluster are incrementally updated using equation 2 and equation 3.  

 

1( ) ( )    Td x x                                                        (1) 
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                                                          (2) 

1 1( 1) * ( ) ( )  


     
 

T
new old n old n old

new
new

x x
                         (3) 

 

where new is the cardinality of the winning cluster, μ and Σ are mean and covariance of 

the cluster. 

If the minimum distance does not fall within the predefined threshold, it is identified as 

an outlier and saved in an anomaly list. Data points in the anomaly list may or may not 

form a new structure. Therefore, the anomaly list is checked in two ways. First, the 

Mahalanobis distance between data samples in the anomaly list and the current clusters is 

computed. Data points are incorporated in their closest cluster if they are now within the 

predefined threshold (as the clusters evolve). Second, MUSC looks for multiple or single 

emerging structures from the anomaly list. See [8, 15] for more detailed description of the 

basic algorithm, along with details on initialization and new cluster formation. MUSC uses 

an incremental update, such that a new arriving data point is used to update the clustering 

parameters and then removed from memory. Only Cluster representatives such as means, 

covariance matrices, cluster cardinalities, as well as the outlier data points are kept. 
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 Davies-Bouldin Index 
For streaming data, internal CVIs are the only choice to assess the performance of online 

clustering algorithm because usually, there is no ground truth associated with the streaming 

data.  The Davies-Bouldin (DB) index [23] is a well-known index which is applicable for 

both soft and hard partitions. The index is a relative of the Davies-Bouldin (DB) index 

introduced by Araki et al. [26]. Equations 4 and 5 below show the mathematical 

representation of DB index.  
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where k is number of clusters, iv  is the cluster center of cluster i, and ,i ju  is the 

membership of data sample j to cluster i.  

The way of computing the within-cluster dispersion is usually a common factor between 

many indices. The fuzzy within cluster dispersion of cluster i at step n is calculated directly 

on the input streaming data as: 

22
, , ,

1
 

n

i n i j j i n
j

C u x v                                                             (6) 

An incremental update of the within-cluster dispersion was proposed in [7] for the 

incremental DB index (iDB). The procedure followed to update the parameters used to 

compute iDB each time new data point 1nx arrives is shown in figure 5-1 [7]. If DB(n) is 
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the value of the Davies-Bouldin index after the n-th data sample, the incremental update 

values DB(n+1) when data sample 1nx arrives is shown in equation 7.   
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In MUSC, when a new data point ( 1nx  ) arrives, its distance to all clusters at the time is 

calculated using (1). The membership between the i-th cluster and 1nx  is computed using 

(10).  
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The procedure to perform this incremental calculation is shown in Figure 5-1, 
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 Random Projection Formulation 
Johnson – Lindenstrauss (JL) introduced the idea of random projection [27]. According 

to the JL lemma, with a predefined probability, a set of n samples p
1 2 nX {x , x ,..., x } R  (in 

the upspace) can be projected to the downspace q
1 2 nY {y , y ,..., y } R   where the pairwise 

distances from the upspace (X) is nearly preserved in the downspace (Y).  It is assumed 

that q p .  

There are different random projection variations produced [28] by varying the degree 

of approximation, the probability selection bounds, and the choice of the projection matrix 

R, but they are all based on the JL lemma. In this paper, we use the approach proposed by 

Achlioptas [29] and defined as follow: 

Theorem 1. Assume X (n x p) is a set of n data samples in p-dimensional space. Given      

, 0   , let 

2 30 / 2 /3

4 2
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 
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Figure 5-1. Incremental compactness for xn+1 [7] 
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For integers 0q q , let R be a p x q random matrix with ijR (i, j) {r }  are independent 

random variables generated from the following probability distribution: 

 1 with P 1/2
ij 1 with P 1/2r  

                                                            (12) 

The projected data in the downspace is qY XR / q R  . With a probability

p 1 n , i, j [1, n]    , the pairwise distances in the downspace q(R ) are within 1   from 

the distances in the upspace p(R ) as follow: 

 

2 2 2

i j i j i j(1 ) x x y y (1 ) x x                                                (13) 

 

We have found [30] that good conformance to the approximate isometry given in (13) 

can be achieved in downspaces well below that specified by the J-L Lemma. 
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 Datasets  
Synthetic and real-life datasets are used in the evaluation process, all of which are 

presented in a streaming on-line fashion. The datasets in this paper are divided into three 

categories. The first category has 7 datasets used to evaluate the performance of MUSC 

and iCVIs (iDB) on high-dimensional (d) datasets [31]. All the first six datasets in this 

category have 1024 instances generated from 16 Gaussian distributions, while the numbers 

of dimensions are varied. Dim032 is in 32-dimensional space, dim064 is in 64-dimensional 

space, dim128 is in 128-dimensional space, dm256 is in 256-dimensional space, dim215 is 

in 512-dimensional space, and dim1024 is in 1024-dimensional space, as shown in table 5-

1. The last dataset in this category is the Synthetic Control Chart Time Series Dataset from 

[31] which has 600 samples in 60-diminsional space with six different categories: normal, 

 
 

Figure 5-2. Synthetic Control Chart Time Series Dataset where we show a sample from each 
class [32]. 
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cyclic, increasing trend, decreasing trend, upward shift, and downward shift. Figure 5-2 

displays one-time series from each class.  

The second group has 7 datasets that are used to test MUSC and ICVIs (iDB) on datasets 

with large samples (n). The first six datasets in this category have five clusters from 

Gaussian distributions in 2-diminsional space as displayed in figure 5-3 (a). The number 

of instances in each cluster is varied in each dataset. The datasets are ordered such that data 

vectors from cluster 1 arrive before data points from cluster 2 and so on. BD200, BD5000, 

BD10000, BD20000, and BD50000 have 200, 5000, 10000, 20000, and 50000 instances 

in each cluster respectively.  The last dataset in this group is D31 which has 31 clusters in 

2-diminsional space with 100 samples each [32] as seen in figure 5-3 (b).  

The third group has a real-life dataset extracted from sensor recordings for a resident in 

TigerPlace [33]. The dataset has 476 instances in 30-diminsional space which is around 1.5 

years of data. Based on the health record of the resident, we believe that the dataset has 6 

clusters. Figure 5-3 (c) shows a 3-diminsional projection of the dataset.   

Table 5-1 Datasets description 

Dataset n d c # labeled subsets 

dim032 1024 32 16 16 

dim064 1024 64 16 16 

dim128 1024 128 16 16 

dim256 1024 256 16 16 

dim512 1024 512 16 16 

dim1024 1024 1024 16 16 

BD200 1000 2 5 5 

D31 3100 2 31 31 

Control 
Chart 

Dataset 
600 60 6 6 

Eldercare 476 3 6 Our Estimate 
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 Experimental Results  
The experimental results are divided into three categories. The first category is for 

datasets with high dimension (d). The second group is for datasets with large number of 

samples (n). The last category is for applying random projections on datasets with high d.   

5.7.1 High dimensions (d) 
In this section, we test the algorithm performance and the iCVIs sensitivity to detect 

clusters in high dimensional datasets. High dimensional datasets can be more challenging 

for streaming clustering due to the issues with the distance measure as dimensionality 

 
Figure 5-3. Scatter plots of three datasets: a) DB with 5000 samples in each cluster, b) D31 

datasets, c) TigerPlace resident data. 

 

(a)                                                     (b)                                           

(c)            
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increases. Also, the sensitivity of the iCVIs can be affected with the increase in the data 

dimensionality.  

The first dataset is the dim032 in table 5-1 which is in the 32-dimensional space. MUSC 

detected all the clusters correctly with an accuracy of 99%. The iDB result is displayed in 

figure 5-4 (a). It can be noticed that iDB value changes each time MUSC detects a new 

structure in the data stream. The remaining datasets are dim064, dim128, dim256, dim512, 

and dim1024 from table 5-1. The iDB results are displayed in figure 5-4  (b, c, d, e, and f) 

which shows that iDB correctly determines the time when MUSC detects a new cluster for 

all datasets. For such high dimensional dataset, iDB can be used to monitor the 

performance of the online clustering algorithm since data visualization is not possible. The 

iDB values in figure 5-4 (d, e, f) look similar which indicates that the dataset distribution 

in the upspace is similar. It is possible to lose some of the properties of the iCVIs as 

dimensionality (d) increases due to the effect of large d on the distance measure.  
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The next experiment examines the ability of MUSC and iCVIs to detect normal trends, 

shifts, and cyclic behaviors in the data stream from [31]. Each time series in this dataset is 

in 60-diminsional space. Looking at figure 5-2, we can see the structures of this dataset are 

Figure 5-4. Results of the iCVIs on dim datasets: a) iDB on dim032 , b) iDB  on dim064, c) iDB 
dim128, d) iDB dim256,  e) iDB on dim 512, and f) iDB on dim1024. 

 

(a)                                            (b)

(c)                                                     (d)

(e)                                                    (f)
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quite close to each other, which makes it more difficult for the algorithm to cluster them. 

MUSC detected all the six clusters with an accuracy of 98%. Figure 5-5 displays the iDB 

values where we can notice the times when MUSC spawns a new cluster in the data stream. 

 

5.7.2 Large number of samples (n) 
In this experiment, we consider the effects of large number of samples (n). The first dataset 

used in this experiment is D31. This dataset has 31 clusters in 2-dimensional space. From 

figure 5-3 (b), we can notice that the clusters are close to each other which increases the 

chance for a clustering algorithm to merge relatively close clusters. MUSC clustering 

results are displayed in figure 5-6 (a) where it detected all the clusters with an accuracy of 

 
Figure 5-5. Results of the iDB index on Synthetic Control Chart Time Series Dataset. 
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96%. The iDB values are displayed in figure 5-3 (b) where it shows the times when MUSC 

(correctly) detects new structure in the streaming data.  

The second part is to use the BD dataset in table 5-1 where we vary number of samples 

in each cluster to test the performance of MUSC and iDB as number of samples increases. 

In the first case, we set number of samples in each cluster to 200. MUSC clustering results 

and iDB values are displayed in figure 5-3 (a-b). After that, the number of samples in each 

cluster is increased to 5000, 10000, 20000, 50000, and 250000. The clustering results and 

iDB values are shown in figure 5-3 where MUSC clusters the data correctly in all cases. 

iDB values show the times when MUSC creates a new structure in all cases, and the value 

of the iCVI behaves consistently. Even though, these datasets can be visualized, monitoring 

such larger number of streaming data is not possible. Therefore, iDB can be used to monitor 

such type of datasets. Also, all the iDB values look almost identical which indicates that 

number of data points has no influence on the iCVI value.  
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Figure 5-6. Results of the iCVIs on D31 dataset: a) MUSC hardened clustering result, b) 

results of the iDB index. 

(a)
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Figure 5-7. Results of the iCVIs on BD datasets: a) MUSC result on BD 200, b) iDB on BD200,  

c) MUSC result on BD5000, d) iDB on BD5000, e) MUSC result on BD10000, f) iDB on BD10000, 
g) MUSC result on BD20000, h) iDB on BD20000, i) MUSC result on BD50000, j) iDB on 

BD50000, k) MUSC result on BD250000, l) iDB on BD250000. 
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5.7.3 Random projection of streaming data 
The Eldercare dataset in table 5-1 is used for this experiment. The dataset has 476 samples 

in 30-diminsional space. The features of this data are of different types. For example, the 

bathroom visit feature counts the number of bathroom visits per day (ranges from 2 to 20) 

while total bedroom activity counts the total bedroom motion sensor hits (ranges from 100-

1000s). Having features of different types makes our distance measure (Mahalanobis 

distance) not to perform as required. As a result, the clustering results in the upspace did 

not match the health record history of the resident. Therefore, we need to either use a 

different distance measure or project the data to a lower space and compare with health 

record to make sure it matches.  

We selected the second approach to deal with high dimensional datasets by projecting it to 

a lower space to avoid the issues with distance measures behaving strandely in the upspace. 

Methods such as PCA or random projection can be used to project the data to a lower space. 

The challenge with the data stream is that the whole dataset is not available in the memory 

at any point of the time. Therefore, PCA is not a viable approach. MUSC uses a window 

size of S (sxd) data points as an initialization process. Random projection is used as our 

dimensionality reduction technique. We use the initialization window S of MUSC to build 

the projection matrix (R) to project the data from d-space (sxd) to 3-space (sx3). Once the 

projection matrix is generated, we use it to project the remaining data stream using the 

following equation:   

'
n 1 n 1x x * R  , where d

n 1x R  , ' 3
n 1x R  and dx3R R  

We select a projection matrix, from a selection, that best preserves the pairwise distance in 

the downspace compared to the upspace. We generated multiple projection matrices and 

selected the one that best preserves the pairwise distances on the initial window. Figure 5-



 

119 
 

8 (a) shows the clustering results where MUSC detected all the possible clusters in the 

dataset. The iDB values are plotted in figure 5-8 (b) and it shows the times where a new 

structure is detected in the streaming data.    

 
Figure 5-8. Results of the iCVIs on the eldercare dataset: a) MUSC hardened clustering result, 

b) results of the iDB index. 

(a)

(b)
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 Conclusions  
In this paper, we examined the ability of incremental internal cluster validity measures to 

monitor the process of a streaming clustering algorithm to correctly identify new structures, 

and to properly handle outliers, in data under situations with large dimensionality and large 

number of samples.  The extremely good performance of both the MUSC algorithm and 

the iiCVI to correctly monitor conditions in controlled environments give us confidence to 

utilize them in truly unsupervised Big Data streaming data scenarios.  Random projections 

are shown to provide an additional tool to ameliorate the problems caused by distance 

calculations in very high dimensional spaces.  Clearly more work needs to be done to 

exploit this capability.   
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Abstract — In this paper, we present an incremental version of the Partition 
Coefficient and Exponential Separation (PCAES) cluster validity index in the context 
of streaming data analysis. Incremental PCAES (iPCAES) can be used to monitor 
evolving structures in streaming data.  We investigate the use of the proposed index 
to understand and analyze the performance of the MU Streaming Clustering (MUSC) 
algorithm. Synthetic and real-life streaming datasets are used to demonstrate the 
benefits that can be drawn from such indices such as the appearance of a new 
structure in the data stream, handling of outlier data samples, and the effect of the 
streaming sample order on the resultant cluster history. We compare the 
performance of iPCAES index with the incremental Davies-Boudin index (iDB) 
because iDB was found to be the most stable among other incremental indices that 
offer comparable approaches.  
 

Keywords—Online clustering, change detection, incremental internal cluster validity, 
incremental Partition Coefficient and Exponential Separation index, incremental 
Davies-Bouldin index 
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 Introduction  
 Developments in information technology have allowed large flows of data across IP 

networks. Some of these flows are time critical so that it is impossible to wait for the data 

to be available as a single file. These kinds of online data are referred to as data streams or 

streaming data. Moreover, even if the data can be stored locally, the size of the incoming 

samples could be large which makes it impractical to process individual record more than 

once. It is even more difficult from an algorithmic and computational point of view when 

data patterns evolve with time. Hence, it is crucial in the design the mining algorithms to 

take into account changes in underlying structure of the data stream [1]. Online clustering 

algorithms provide a way to study and mine streaming data. One type of online clustering 

is sequential clustering where data samples arrive one at a time, and the clustering 

representatives (means and covariance matrices) are updated with each sample [2, 3, 4].

 One important problem in clustering is to assess the clustering output of a clustering 

algorithm. Cluster validity Indices (CVIs) are a scalar measure used to identify the best 

clustering results U (partition matrix) or C (number of cluster). For traditional CVIs [5], the 

clustering results (partitions) must be obtained from static datasets. Recently, many 

streaming clustering algorithms have been proposed in the literature to detect anomalies, 

drift, and evolving cluster structure in streaming data [6]. However, there has been very 

little work in developing cluster validity indices for streaming clustering algorithms. In [7], 

incremental versions of the Davies-Bouldin (DB) [8] and Xie-Beni (XB) [9] validity indices 

are developed. These incremental CVIs (iCVIs) can be used to with streaming clustering 

algorithms to monitor the algorithm performance and cluster formation.  

In this article, we develop an incremental formula for the Partition Coefficient and 

Exponential Separation (PCAES) [10] to be used with streaming clustering algorithms. We 
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investigate the relationship between the iCVI output and the partitions produced by our 

MU Streaming Clustering algorithm (MUSC) [11, 12]. We compare the performance of 

the proposed iCVI with the incremental DB (iDB) index because it is the most stable among 

other iCVIs [7, 13]. This paper has the following contributions: (1) we develop an 

incremental version of PCAES index (iPCAES); (2) we show the relationship between the 

iCVIs and MUSC in terms of: when a new cluster is formed (sudden drop in the iCVI 

value); and how to use the knee points in the graph of the iCVI to conclude information 

about the data stream with regard to clusters size, and streaming order of the data samples, 

(3) we show the robustness and stability of iPCAES compared to iDB. This is particularly 

important for large volume streaming datasets in high dimensional spaces.   

The paper is organized as follow. In section II, a summarization of related work is given. 

MUSC online clustering algorithm used in this paper is discussed in section III. In section 

IV, background information and the definition of the PCAES index is provided. In Section 

V, derivation of an incremental form of cluster compactness is discussed. Incremental 

PCAES (iPCAES) is introduced in section VI. The datasets used in the evaluation is 

introduced in section VII. Section VIII shows initialization of the parameters. Experimental 

results and discussion are shown in section IX. Our conclusions are given in section X. 

 Background 
 In this section, we briefly describe related work in cluster validity analysis. We also, 

review related work in iCVIs. To validate the results of a clustering algorithm, many static 

cluster validity indices have been proposed in the literature [6, 8-9]. Internal CVIs are 

divided into two categories based on the measure of cohesion and separation. The first 

category uses only the partitions generated by the algorithm to assess the clustering quality 

such as the partition coefficient and partition entropy [6].  Most internal CVIs belong to the 
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second category which assess the quality of each partition using the unlabeled data, the 

partition, and any secondary parameters produced by the clustering, such as cluster centers. 

In [14], a comparison was made between 30 different internal CVIs using four hierarchical 

clustering methods. A survey of 15 internal CVIs was presented in [15]. Another 

comparison of 30 internal CVIs for crisp clustering was investigated in [5]. Partition 

Coefficient and Exponential Separation (PCAES, [10]) index, Dunn's index (DI, [16]), 

Davies-Bouldin (DB) [8] and Xie-Beni (XB) [9] are internal CVIs designed to select a best 

partition amongst a set of candidate partitions.  

 With the rich literature in static cluster validity analysis, there has been little work in 

developing cluster validity indices from streaming clustering algorithms. In [7], incremental 

versions of two internal CVIs, the Xie-Beni (XB) and Davies-Bouldin (DB), were proposed 

by deriving an incremental formula for the cohesion term. In [13], the authors extended the 

incremental DB (iDB) index to a more general version and illustrated how the iDB can be 

used to analyze and understand the performance of a streaming clustering algorithm. The 

use of iCVIs with big data was introduced in [17] which show the advantage of iCVIs for 

high dimensional streaming data. Recently, an incremental version of two modified Dunn’s 

indices was developed in [18].  

 MU Streaming Clustering Algorithm  
 
 In this section, we briefly describe the MUSC online clustering algorithm developed in 

[11] and extended in [12]. MUSC combines Gaussian Mixture Models (GMM) and 

possibilistic fuzzy clustering. Possibilistic C-Means (PCM) [19] and the Automatic Merging 

Possibilistic Clustering Method (AMPCM) [20] are used to initialize the GMMs in a 

window S of the streaming data. The reason behind using PCM is to detect anomalies in the 
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initialization window (n-data points), S, and for spawning a new cluster due to its tendency 

to look for dense regions in a dataset. After removing outlier data samples in S (data points 

with low typicalities to all existing clusters), the remaining data samples are clustered using 

AMPCM, and the clustering result is used to initialize a GMM.  

 When a new data point n 1x   arrives at time n+1, its Mahalanobis distance is computed 

to the existing prototypes using equation (1). Then, n 1x   is assigned to the closest Gaussian 

cluster if the distance is within a pre-specified threshold (T). The mean and covariance of 

the winning Gaussian are incrementally updated using (2) and (3). After updating the 

Gaussian parameters, n 1x   is discarded. 

T 1d (x v) (x v)                                                            (1) 

  new old n 1 old newv v x v v                                             (2) 

T
new old n 1 old n 1 old

new
new

( v 1) * (x v ) (x v )

v
     

                 (3) 

where 
newv  is the new cardinality of the winning cluster, v and Σ are mean and covariance 

matrix of the cluster.   

If the distance to the closest prototype exceeds the threshold (T), the new data point  n 1x    

is saved in the anomaly list. The points in the anomaly history may or may not indicate the 

emergence of a new cluster. We follow two ways to monitor changes in the anomaly list. 

First, we compute the Mahalanobis distance between anomaly data points and existing 

prototypes to check if any of the clusters has grown to contain what was an anomaly data 

point before. Points are incorporated in their closest Gaussians if their distance are within a 

pre-specified threshold (T). Second, we follow the same procedure to initialize the GMM at 

the beginning by clustering the outliers to look for one or multiple emerging structures. For 
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detailed description about MUSC and details on initialization, and threshold values, one can 

refer to [11, 12]. Means, covariance matrices, cluster cardinalities, and outlier data points 

are used to represent the historical footprint of the evolving structure. 

 Partition Coefficient and Exponential Separation Index  
 
PCAES index was proposed in [10] for fuzzy clustering. Suppose, we have a dataset

  p
1 2 nX x , x , ..., x   . Let  (1) (2) (c)U U ,U ,...,U be a fuzzy c-partition from a fuzzy 

clustering algorithm such as FCM. Each cluster is validated based on two factors: a 

normalized partition coefficient and an exponential separation measure. These two terms 

are combined together to get the index value called a partition coefficient and exponential 

separation (PCAES) index. PCAES for the i-th cluster is computed as follows:  

2n i kij k i
i

j 1 M T

min{ v v )}u
PCAES exp

 




  
   
 
 

                         (4) 

n
2

M ij1 i c
j 1

min u
 



 
   

 
                            (5) 

2c

l
l 1

T

v v

c



 


                            (6) 

where iv is the cluster center of cluster i and v is average of all c-clusters.   

A normalized portion coefficient (equation 7) is used to measure the compactness of cluster 

i relative to the most compact cluster (equation 5). An exponential-type separation measure 

(equation 8) computes the separation between cluster-i and its closest cluster relative to T  

(equation 6) which is the total average distance measure for all clusters.  

2n
ij

j 1 M

u


                               (7) 
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i k
k i

T

min{ v v )}
exp 

  
 
  

                           (8) 

The compactness and separation values for each cluster are restricted between 0 and 1 as 

shown in equations (9) and (10).  Therefore, iPCAES is limited between 1 and -1 as in 

equation (11).  

2n
ij

j 1 M

u
0 1



 
                             (9) 

i k
k i

T

min{ v v )}
0 exp 1

  
   
  

                       (10) 

i1 PCAES 1                             (11) 

From the cluster compactness and separation formulas, larger iPCAES index value 

indicates that cluster i is compact and separated from other clusters.  On the other hand, 

small or negative value means that the cluster is not well compact or separated. The total 

PCAES index for all clusters is found by adding iPCAES values for all c-clusters as in 

equation (12). Larger PCAES(c) value indicates better clustering results (compact and 

separated clusters).  

c

i
i 1

2c n
ij

i 1 j 1 m

c i k
k i

i 1 T

PCAES(c) PCAES

u
               

min{ v v )}
                    - e xp



 










  
 
  







                      (12) 

 

 Incremental Form of Cluster Compactness  
Consider we have streaming vector data inputs, for example p

k , k 1, 2, , n  x , where k=1 

is at time 1. Euclidean distance is chosen as our distance measure in the input space.  
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Assume that a streaming clustering algorithm assigns crisp or fuzzy membership labels to 

kx in c clusters, (k)
ik{u :1 i c}  U .  After n inputs, we have:  

 

I. (i) c, the number of current clusters;        (13a) 

II. (ii) Cluster prototypes p
n 1,n c,nV { , , }  v v ;             (13b) 

III. (iii)  a c c  distance matrix n i,n j,nD(V ) [ ] v v ; (13c) 

IV. (iv) cardinalities, i i| v | n , i 1,..., c  ; i
1 i c

n n
 

 ;  (13d) 

V. (v) current value of nPCAES .  (13e) 

  

Historical input data are not kept in memory. After observing n 1x , we update the current 

value of nPCAES  by finding incremental changes,   

 

n 1 n nPCAES PCAES (PCAES )                              (14) 

 

We will find the increments in (14) by computing equations (5)-(8) incrementally. The first 

part is the cluster compactness defined in function (7) which measures of the compactness 

of the i-th fuzzy cluster using its memberships. The numerator is the sum of the squared 

memberships of cluster i which can be computed incrementally using equations (15)-(16), 

where i,nM is the value after processing n data samples and i,n 1M  is an updated value after 

n 1x processed by the algorithm. The initialization and incremental computation of i,nM is 

shown in algorithm 1 and algorithm 2. The denominator M,n  is the most compact cluster 

among the existing c-clusters, which can be computed incrementally using the i,nM and 
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i,n 1M  as in equations (18)-(19).  

 

i,n 1 i,n i,nM M M               (15) 

2
i,n 1 i,n i,n 1M M (u )             (16) 

i,n 1 2c
n 1 i m 1

n 1 ll 1

1
u ;1 i c;m 1

d(x ,v )
( )
d(x ,v )


 



   


        (17) 

 
n

M,n i,n1 i c
min M
 

             (18) 

 
n

M,n 1 i,n 11 i c
min M  

             (19) 

 

After processing the data points in the initial window S, we have the number of clusters 

c, a label vector (1)U  and initial prototypes 1 1,1 c,1V { , , } v v . From this configuration, we 

compute initial values as in algorithm 1 to initialize algorithm 2, where we use part of 

the initialization process proposed in [7]:   

 

Algorithm 1: Parameters initialization  

 

 

 

Input: (1)
1, V , c {1, , n} U  

For i =1 to c 

i,1 1,iM v , number of data points in cluster i 

Next i 
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Beginning with the newly arriving data point, streaming inputs can be sent to algorithm 

2, which uses (n 1)U   to produce the inputs shown, also similar to part of the algorithm in [7]: 

Algorithm 2: Incremental compactness for xn+1  

In the next section we develop incremental versions of the PCAES index.  

 Incremental Partition Coefficient and Exponential Separation Index 
Since the data vectors are arriving in a streaming fashion, the iCVI needs to be computed 

incrementally. After n data samples have been processed, producing the current (not 

necessarily saved, but it could be) partition nU , current prototypes nV , sum of squared 

memberships of each cluster nM , and total average of current clusters nv  which are 

substituted into (23) as follows: 

 

i,n k,ni,n k i
i,n

M,n T,n

min{ v v )}M
iPCAES exp 

 
   
  
 

                  (20) 

 

  

2c

l,n n
l 1

T,n

v v

c



 


                         (21) 

 

c

i,n
i 1

n

v

v
c




                     (22) 

Data: (n 1)c, U , i,1i : M  

Input: i,ni : M  

Output: i,n 1i : M   

For i = 1 to c 
   2

i,n 1 i,n i,n 1M M (u )    

Next i 
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c c i,n k,ni,n k i
n

i 1 i 1M,n T,n

min{ v v )}M
iPCAES exp 

 

 
   
  
 

          (23) 

 

We do have the current prototypes nV , and the current values of niPCAES at (23), but not 

the data samples 1 n{ , , }x x and the membership matrix nU . Now n 1x  arrives. Suppose that 

the online clustering algorithm generates a label vector (n 1)U . Then, the prototypes n v are 

updated to n 1 v using (2). The average of the updated prototypes is computed using 

equation (27). Algorithm 2 provides us with i,n 1{M :1 i c}   . i,n 1M  and n 1 v are all we need 

to compute the incremental updates to (23) as in equation (24):  

 

c
i,n 1

n
i 1 M,n 1

c i,n 1 k ,n 1
k i

i 1 T,n 1

M
(PCAES )

min{ v v )}
                     exp



 

 

 

 


 
  
 
 




        (24) 

 

 M,n 1 i,n 11 i c
min M  

             (25) 

 

2c

l,n 1 n 1
l 1

T,n 1

v v

c

 





 


           (26) 

c

i,n 1
i 1

n 1

v

v
c




 


            (27) 

 

Combining (14) and (24) produces the incremental form of n 1PCAES  . We will compare the 
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performance of this max-optimal iPCAES to the incremental min-optimal iDB developed 

in [7] and generalized in [13]: 

 



j,n 1i,n 1

c
i,n 1 ij,n 1

n 1 2
j, j ii 1 i,n 1 j,n 1

CC

M M1
iDB max

c v v



 


  

 
 

   
 
  



              

 (28) 

where i,n 1C   is the dispersion of cluster i after the arrival of data sample  n 1x .  

 

For more details about the incremental computation of iDB, one can refer to [7, 13].   

 

 Datasets 
Synthetic and real-life datasets are used in the evaluation, all of which are presented in a 

streaming on-line manner. The first synthetic dataset is S1. It has 1100 data samples in 2-

dimensional space generated from 11 Gaussian distributions distributed along a line as 

shown in the scatter plot in Fig. 6-1-a. The static version of S1 has 11 clusters with 100 

samples each as shown in table I. The dataset is ordered such that instances from cluster 1 

arrive before instances from cluster 2 and so on. The second synthetic dataset is S2, which 

has 1100 data points generated from 11 Gaussian distributions.  In the static version, S2 

contains 11 clusters (with 100 samples each) arranged in a circular shape with one cluster 

in the middle, as seen in Fig. 6-1-b. The data samples are ordered so that data points from 

cluster 1 arrive first. After that, 10 data points from the center cluster arrive, followed by 

vectors from cluster 2. A similar pattern is repeated for the remaining clusters. Datasets S1 

and S2 are similar to two data sets used by the authors of [7, 13]. 
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The first real-life dataset used in our evaluation is the LG dataset. It is a collection of 

weather station nodes in the Le Genepi (LG) region in Switzerland [21]. Two weeks’ worth 

of data is selected from node 18 starting from October 10, 2007. Average humidity (H) and 

surface temperature (T) readings over 10-minute intervals were used to produce a two-

dimensional feature vector dataset i i ix {(T ,H )} . Fig. 6-1-c displays the scatter plot of the 

data which does not provide clear visual evidence of clusters in the static, batch form of 

the LG data. However, the imagery information from the site shows that there is a windy 

and cold day that precedes snowy day during the two-week period. Therefore, we assume 

the LG data to have three different events: sunny days before and after the snow, cold front 

moving in, and the snowy day. Different distance threshold values are used in the 

experiment and the best results (number of clusters) are selected for comparative purposes. 

The last real-life dataset is the Heron Island Weather station dataset, which is collected 

from the Heron Island weather station on the Great Barrier Reef, Australia [22]. The Heron 

Island data has three features: air temperature (T), air humidity (H), and air pressure (P). 

The data were collected every 10 minutes from 9:00 am to 3:00 pm each day for the 30 

days beginning 21-Feb-2009 and ending 22-Mar-2009. In [22], ellipsoidal chains for 

anomaly detection was used to study Heron Island dataset. There are two (visual) abnormal 

patterns (small clusters) in this dataset where the first abnormal cluster occurs from data 

points 445 to 476 (5th March 9:00 AM to 2:10 PM) corresponding to the weather event 

"Cyclone Hamish". The second abnormal cluster starts from data points 593 to 629 (9th 

March) which is due to an unusual weather variation in T and H having regular P. Fig. 6-

1-d displays a scatter plot of the Heron Island dataset. We can notice four visual clusters in 

this static view of the Heron Island data, two of which represent the normal pattern and the 
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other two (small clusters) represent the abnormal weather patterns. Table 6-1 summarizes 

the four datasets.  

Table 6-1. Summary characteristics of the datasets used in the evaluation. 

Dataset # samples  # dimensions  # clusters  
# labeled 
subsets 

 

S1 1100 2 11 11 

S2 1100 2 11 11 

LG Weather 1817 2 3 Our Estimate 

Heron Island 1110 3 4 Our Estimate 

 
Figure 6-1. Scatter plots of four datasets: a) S1, b) S2, c) Le Genepi weather data, d) Heron 

Island weather data 

 

(a)         (b)                                                                                       

(c)                                 (d)                                                                                       
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 Initialization 
Computation of the iPCAES and iDB indices requires the existence of at least two clusters. 

Therefore, these indices start after MUSC finds the second cluster in the data stream. 

However, the parameters are initialized in the window size S (algorithm 1) and updated for 

each cluster after each data points arrives (algorithm 2). Each time MUSC forms a new 

cluster, its parameters are initialized with
i ,1 newM c  (number of elements in the new cluster) 

as can be seen in algorithm 1. This initialization is repeated each time a new cluster is 

created. After initialization, MUSC and iCVIs use each new data sample only once and 

removes it from memory.  

 Experimental results 
S1and S2 datasets are used to test the performance of the iPCAES index in monitoring the 

MUSC algorithm. Hardened clustering results of MUSC are shown in Fig. 6-2-a and Fig. 

3-a where the algorithm detected all the clusters in both datasets. The graphs in Fig. 6-2-b 

and Fig. 6-3-b show the values of iPCAES index for S1 and S2 datasets where the red 

vertical lines indicate the times when the algorithm detects a new emerging cluster. The 

iPCAES has an increasing trend in both S1 and S2 datasets, which satisfies the requirement 

of being max-optimal index. Sudden drop in the index value usually is associated with 

changes in the cohesion and separation of the clusters being produced by the clustering 

algorithm. In general, a sudden change in an online validity index is an indication that a new 

structure has appeared in the data stream (the algorithm learns the prototype that represents 

the new emerging cluster). The iDB values are shown in Fig. 6-2-c and Fig. 6-3-c for S1 

and S2 datasets respectively. iDB is the most stable among existing iCVIs indices [13, 17-

18] and both indices behave in a similar manner. Taking a closer look at the iPCAES graphs, 

we can see the index value decreases after formation of a new emerging cluster because the 
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new coming data samples fall in the new cluster until we see a knee point in the graph (data 

point from the new cluster start to arrive as outliers). Before MUSC detects a new structure 

in the data stream, it flags its new arriving data points as outliers until they are dense enough 

to be designated as a new cluster (time from the knee point to the next red line). The distance 

between the red line and the next knee point is almost constant for both iDB and iPCAES, 

indicating that the dataset has clusters of similar size coming from the same distribution as 

shown in Fig. 6-4, a zoomed section of Fig. 6-2-b. 

Fig. 6-3-d and Fig. 6-3-e are an exploded view of iPCAES and iDB for the middle cluster 

detection in S2. The middle cluster is the hardest one to be detected among other clusters 

because portion of its data samples (10) arrive after each other cluster. iPCAES detects the 

middle cluster correctly as in Fig. 6-3-d. 

 
Figure 6-2. Clustering results on S1 dataset: a) MUSC hardened clustering results, b) iPCAES 

index, c) iDB index  
 

 

(a) (b)                   (c) 
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After investigating the performance of the proposed iCVI on synthetic datasets, we test it 

with two real datasets: LG and Heron. The LG weather dataset has three different events. 

MUSC (hardened) clustering results are displayed in Fig. 6-5-a where it detects all the event 

regimes. As we mentioned earlier, computations of iPCAES and iDB require the existence 

of two clusters. Therefore, we see only 2 structures (red lines) in Fig. 6-5-b and 6-5-c, but 

MUSC detected all the three structures (Fig. 6-5-a). iPCAES and iDB indicate the time when 

the third cluster is formed (cluster on the left). As we noticed earlier in the S1 and S2 

datasets, the iPCAES value decreases after the formation of a new cluster (red lines in Fig. 

6-2 and Fig. 6-3) while iDB stays constant. We see the same performance for iPCAES on 

the LG weather dataset (Fig. 6-5-b) compared to S1 and S2, but iDB appears to have an 

increase in its value after the second red line (Fig. 6-5-c). This could indicate that the new 

proposed index is more stable and consistent than iDB.  

 
Figure 6-3. Clustering results on S2 dataset: a) MUSC hardened clustering results, b) iPCAES 

index, c) iDB index, d) Zoom of the region containing the line pair in (b), e) Zoom of the region 
containing the line pair in (c) 
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[30] The results of MUSC on the Heron dataset are shown in Fig. 6-5-d where all the 

possible events (four clusters) are detected. Both iCVIs show the time when each new 

structure detected on the data stream. The clusters are streamed in the order shown in Fig. 

6-5-d where clusters 3 and 4 are smaller in size compared to 1 and 2. We can see that there 

is no drop in the iPCAES value after detecting the third cluster (second red line in Fig. 6-

5-e). The reason behind that is the cluster is only detected after all of its points have arrived.  

Then the newly arriving data fits into clusters 1 and 2. The cardinality of cluster 4 is larger 

than the cardinality of cluster 3 which allows some newly arriving data points to fit into 

this cluster after it is formed. Therefore, we see a drop in the index value after cluster 

formation (last red line) in Fig. 6-5-e. However, the index value rises after the drop because 

data samples after that belong to cluster 1 and 2. Therefore, based on this observation, using 

iPCAES index can provide more information about the data stream order which cannot be 

noticed from iDB (Fig. 6-5-f). Furthermore, iPCAES has an increasing trend in both 

synthetic and real-life datasets, which meets the requirements of max-optimal index and 

proves the robustness of the proposed measure. On the other hand, iDB is supposed to have 

a decreasing trend (min-optimal) which has not achieved in the real-life datasets.   

 

 
Figure 6-4 Exploded view of Fig. 2-b (iPCAES index on S1 dataset) from time 450 to time 

900 which shows similar distance from the knee point and the next red line 
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 Conclusions  
Incremental cluster validity indices can be employed as an unsupervised approach to 

monitor the performance of online clustering algorithms as a data stream evolves. In this 

article, we developed an online incremental version of the Partition Coefficient and 

Exponential Separation (PCAES) index. iPCAES can be used for dynamic assessment of 

evolving structures in streaming data. The MUSC algorithm was used as our online 

clustering algorithm, which performs well on all the four datasets used in this paper.  The 

proposed iCVI was compared with the incremental Davies-Boudin (iDB) index because it 

has been the most stable among other iCVIs, and hence, it offers a comparable approach.  

We investigated how iPCAES can be used to monitor the performance of online 

clustering algorithms with respect to the appearance of new emerging structures in the data 

stream, outlier data points and evolving clusters, and the effect of clusters size and 

 
Figure 6-5 Clustering results on real-life datasets: a) MUSC hardened clustering results on weather 

dataset, b) iPCAES index on weather dataset, c) iDB index on weather dataset, d) MUSC hardened 
clustering results on Heron dataset, e) iPCAES index on Her 

(d)                        (e)              (f)  

(a)                     (b)                           (c)  
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streaming data order in the iCVIs value. We also studied the knee points in the iCVIs 

graphs, which indicates the time when MUSC starts accumulating data points for a possible 

emerging structure. We conclude that iCVIs are effective in real time monitoring of data 

stream, for example, to send distress signals. 

From the results of the real-life datasets, iPCAES provides more information about the 

data samples streaming order and clusters size than does iDB, which is a clear reason for 

the need of multiple iCVIs.  This is similar to the case of best use of traditional CVIs. Also, 

iPCAES satisfies the requirements of increasing trend in both synthetic and real-life 

datasets indicating the robustness of the proposed iCVI as compared to iDB.  

In a current project, funded by the National Library of Medicine, we use sensor data to 

infer change of health status of elderly living alone in their home [23]. Using streaming 

clustering together with an incremental CVIs could help us detect a new health pattern and 

provide early illness recognition. 
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Chapter 7: Unsupervised Analysis of Activity Patterns in Eldercare 

Monitoring 

 
Omar Ibrahim, Mihail Popescu, PhD, James Keller, PhD 

University of Missouri, Columbia, MO 

Abstract- Eldercare monitoring using non-wearable sensors is an emerging 

solution for improving care and reducing costs. Abnormal sensor patterns 

produced by certain resident behaviors could be linked to early signs of 

illness. We propose an unsupervised method for detecting abnormal sensor 

patterns based on a sensor sequence clustering approach. A preliminary 

analysis of the method was conducted on data collected in TigerPlace, an 

eldercare facility that promotes aging-in-place. 

 Introduction 
Sensor networks have emerged in the last decade as a possible solution to reducing cost 

and improving quality of eldercare. Tiger Place is an aging-in-place facility for seniors 

located in Columbia, Missouri1. Each resident included in the study (37 as of March 2017) 

has a data logger in his/her apartment that collects data from a wireless sensor network. 

Each sensor network consists of several types of sensors mounted throughout the resident’s 

apartment, including motion and bed sensors. The health data for each resident is stored in 

a home-grown nursing EHR (see more details at http://eldertech.missouri.edu/papers).   
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Figure 7-1. 3D visualization of abnormal (a) and normal (b) days using t-SNE projection; time 
histogram for occurrence of bed restlessness in normal days (c), abnormal days (d).  

 Methods  
For each day, the sensors firings were converted into sequences of discrete symbols where 

each symbol represents one sensor type. The idea is to consider the activity (behavior) of 

a resident represented by a sequence of sensor firings as it would be represented by his/her 

genome. In this study, we used 11 different bed and motion sensors. We split the daily 

sensor sequence in subsequences using a separation threshold of 30 seconds which would 

provide enough granularity to capture daily activities. We used a bag-of-words approach 

to map each sequence into an 11-D Euclidean space representing the percentage of each 

symbol in a sequence. Our pilot dataset consisted of 28 days of resident sensor data. To 
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ground truth our approach, we employed a normal/abnormal labeling of each day based on 

clinically-validated health alerts from our EHR. Days on which a health alert was generated 

by a fall or other health event were labeled “abnormal”, while days on which no alert was 

generated were labeled “normal”. The days preceding and following a health alert were 

excluded from analysis. To explore behavior patterns captured by our sensors, we clustered 

both the normal and the abnormal datasets using hierarchical clustering and used Calinski-

Harabasz index to find the most probable number of clusters.  

 Results 
In figure 7-1, we show the clusters obtained for normal (1.a) and abnormal (1.b) days 

projected in 3D using t-SNE2. First, there are more clusters (activities) on normal days (21 

clusters) than on abnormal days (17). Second, the cardinality of some clusters, such as bed 

restlessness (figure 7-1 (c and d)) and bathroom visits is greater on abnormal days, while 

the cardinality of living room activity is greater on normal days. Finally, after generating 

the time histogram for each cluster, the timing of activity on normal days seems to be more 

consistent than that of abnormal days. We will use all above observations to differentiate 

normal from abnormal days and produce more meaningful health alerts. 
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Abstract— Eldercare monitoring using non-wearable sensors is a candidate solution 

for improving care and reducing costs. Abnormal sensor patterns produced by 

certain resident behaviors could be linked to early signs of illness. We propose an 

unsupervised method for detecting abnormal behavior patterns based on a new 

context preserving representation of daily activities. A preliminary analysis of the 

method was conducted on data collected in TigerPlace, an eldercare facility that 

promotes aging-in-place. Sensors firings of each day are converted into sequences of 

daily activities. Using the proposed method, a day with hundreds of sequences is 
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converted into a single data point representing that day and preserving the context of 

the daily routine at the same time. We obtained an average Area Under the Curve 

(AUC) of 0.9 in detecting days where elder adults need to be assessed.  

.Keywords— Eldercare monitoring; Wireless sensor networks; Early illness 

recognition.  

 Introduction 
Elderly population of aged 65 and older is increasing from 13% in 2010 to 19% in 2030 

whereas population of age 15- 65 is decreasing [1]. Usually, older adults prefer to live 

independently as long as they can despite serious conditions such as risk of falling, 

dementia, which makes eldercare more challenging. The fear of being institutionalized leads 

to late health assessments [2], which, in turn, could lead to poor quality of life [3].  

Automatic health monitoring systems are a solution to preventing unreported health 

complications in independently living older adults.  

Sensor networks have emerged in the last decade as a possible solution to reducing cost 

and improving quality of eldercare by monitoring the decline in their functional abilities as 

well as improving health care of housing, healthcare and social services [4, 5]. MIT's 

PlaceLab, Georgia Tech's Aware House, Honeywell's Independent Lifestyle Assistant, and 

University of Missouri’s TigerPlace are examples of monitoring environments [6, 7, 8, 9]. 

Different approaches for detecting activity and evaluate medication compliance have been 

reported in the literature [10, 11, 12, 13, 14]. Some illness recognition approaches are 

focused on either the detection of outliers such as too many bathroom visits [15] or the 

detection of a set of activities such as walks or falls [16]. Figure 8-1 (solid line) shows the 

trajectory of typical functional decline in elderly [17]. The typical decline has quasi-plateaus 
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followed by sharp step-downs due to loss of functional ability such as ability to dress, ability 

to walk, etc. Some of the step-downs are temporary (that is why we used the term “quasi-

plateau” above) such as the ability to walk after having a leg injury, before they become 

permanent. We believe that using sensor-based health assessment and early recognition 

and/or prediction of health problems we can reduce the functional decline (dotted line curve) 

and improve the quality of life.  

 

Figure 8-1. Trajectory of typical functional decline the goal with early illness recognition 

 

In our previous work [18], we proposed an unsupervised approach to identify different 

daily activities. In this paper, we describe a context preserving technique to represent daily 

activities of older adults. This paper is organized as follows. In Section 8.2, we describe the 

system architecture and available sensors data. The background is discussed in section 8.3. 

Section 8.4 presents our method to represent each day in a single data point. Section 8.5 

shows experiments and results. Finally, in section 8.6, we give conclusions and future work.  

 System Architecture 
Tiger Place is an aging-in-place facility for seniors located in Columbia, Missouri [18] 

where sensor technology is utilized to help elderly manage their illness and stay as healthy 
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and independent as possible. An integrated monitoring system was installed in 47 

TigerPlace apartments with the University of Missouri IRB approval. Only non-wearable 

sensors were used for monitoring because they are more acceptable by older adults and 

unobtrusive [14, 17]. The monitoring started in fall 2005 with an average of two years’ 

worth of data for each resident.  

Figure 8-2 shows the architecture of our monitoring system. The main components of 

the monitoring system are a sensor network, a data logger, a reasoning system for decline 

detection and recognition, an electronic health record (EHR) system, an alert manager to 

inform clinicians of possible problems, and a secure Web-based interface to display the data 

for the clinicians and researchers. Each sensor network consists of several types of sensors 

mounted throughout the resident’s apartment, including motion (PIR), a Microsoft Kinect 

and a bed sensor. In this paper, only bed PIR sensor data is used. Each PIR sensor sends an 

X10 signal that is logged together with a time stamp in our sensor database as can be seen 

in table 1.  Similarly, the bed sensor used in this paper sends abnormal pulse, breathing and 

restlessness X10 signals. Each resident included in the study has a data logger in his/her 

apartment that collects data from the wireless sensor network. The computer from each 

apartment sends data to a main storage server via a secure wired network connection.  
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Figure 8-2. Tiger Place Sensor Network Architecture 

 

Figure 8-3 displays a floor map of a typical TigerPlace apartment that shows the 

locations of some of the sensors, which are motion and bed sensors in this case. 

 Background  
Imbalanced data is a common problem in many application domains. When data points 

of one class in a training data set extremely exceed data points of the other class or classes, 

traditional classifications algorithms tend to create a biased performance toward the 

dominant class or classes. To overcome this problem, several techniques have been 

introduced in the literature such as data sampling and boosting [19].  

Oversampling and undersampling are two different ways of data sampling where they 

balance the class distribution by either adding more data points to the outnumbered class 

or removing data points from the dominant class. Random undersampling (RUS) is one 

technique to perform undersampling. RUS has the advantage of reducing the training time 

due to the reduction in the data size. However, removing data points from the dominant 

class leads to loss of information [20].  



 

157 
 

 

Figure 8-3. Typical apartment sensor layout in TigerPlace 

 

Boosting is designed to improve the performance of weak learners. AdaBoost is the most 

common boosting techniques. Weights of each data point are adjusted in each iteration to 

correctly classify data points who were incorrectly classified in that iteration. After 

training, all weak learners participate in classifying new data points using a weighted vote. 

Boosting may improve imbalanced data classification because data points of the minority 

class could be assigned high weights if they were misclassified in previous iterations [21].  

In this paper, we use RUSBoost,a combination of data sampling (RUS) and boosting 

(AdaBoost) algorithm, to improve the performance of models trained on imbalanced data 

[22] . Figure 8-4 shows the pseudo code of the RUSBoost algorithm. D(i)t is the weight of 

the i-th data point on iteration t and data points are removed from the dominant class until 

N% of the temporary training data set belongs to the outnumbered class. For instance, if 
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the desired class ratio is 50:50, then the dominant class data points are randomly eliminated 

until majority and minority classes have equal number of data points. 

 Method 
Table 8-1 shows the set of sensors in the resident's apartment that are used in this paper 

where (12-14) are coming from the bed sensors [10] and the rest are from motion sensors 

mounted in different places of the apartment. For each day, the sensor firings are converted 

into sequences of discrete symbols where each symbol represents one sensor type. The idea 

is to consider the activity (behavior) of a resident represented by a sequence of sensor 

firings as it would be represented by his/her genome. We split the daily sensor sequence in 

subsequences using a separation threshold of 30 seconds, which provides enough 

granularity to capture daily activities. Using a small separation threshold would break the 

activities into smaller sub activities, which is not of our interest. In addition, using a large 

separation threshold results in merging different activities into a single activity, also not 

desired for our approach. Therefore, 30 seconds worked best for our case after trying 

different thresholds. 
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Figure 8-4. RUSBoost Algorithm [22] 

 Table 8-2 shows a snippet of the sensor firing data recorded in the log file for a resident 

of TigerPlace on September 27, 2005, around 01:45 pm where the person had most of the 

sensors firings on the living room. Sensor ids 1, 3 and 4 are motion sensors on the living 

room, bathroom and bedroom respectively. Note that the data in Table 3 is a sensor sequence 

of length 16. Using our threshold separation of 30 seconds (determined empirically) to break 

the sequence into subsequences of activities, we get three sub sequences of different length 

('LLLL', 'LDT', and ‘DLLLLLL’) where L, D and T are symbols annotation of sensors ids 

1, 4 and 3 respectively.  The first sub sequence 'LLLL' represents a living room activity and 

'LDT' is a bathroom visit, which represent a walk from living room to bathroom going 

through the bedroom. Finally, ‘DLLLLLL’ represents a living room activity after finishing 
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the bathroom visit. In our experiment, sequences of length 2 symbols or less and those of 

length 50 symbols or more are pruned from each day because they are either not long enough 

to represent an activity or very long and could be due to nurses or staff visits.  

Table 8-1. List of sensors and their IDs used in this paper 

ID. Sensor name 6. Patio Motion 11. Breathing 

1. Living room 

Motion 

7. Closet 

Motion 

12. Bed 

Movement 

2. Front Door 

Motion 
8. Den Motion 

13. Shower 

Motion 

3. Bathroom 

Motion 

9. Office 

Motion 
14. Pulse 

4. Bedroom Motion 
10. Kitchen 

Motion 
 

 

 We used a bag-of-words approach to map each sequence into an M-Dimensional 

Euclidean space representing the percentage of each symbol in a sequence, where M 

represents the number of sensors in a particular apartment. For example, the sequences 

('LLLL', 'LDT', and ‘DLLLLLL’) would be mapped to [1 0 0 0 0], [1/3 0 1/3 1/3 0], and 

[6/7 0 0 1/7 0]) if we assumed that there are five sensors in our system. Using this 

representation, all sensor sequences will have the same length, M.  
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Table 8-2. A sensor sequence snippet for TigerPlace resident #1 

Year Month Day Hour Minute Second Sensor 

ID 

Sequences 

2005 9 27 13 44 9 1  

Sequence 1  2005 9 27 13 44 15 1 

2005 9 27 13 44 22 1 

2005 9 27 13 44 32 1 

2005 9 27 13 52 35 1  

Sequence 2 2005 9 27 13 52 40 4 

2005 9 27 13 52 45 3 

2005 9 27 13 54 51 3 Not a valid 

sequence  2005 9 27 13 54 54 4 

2005 9 27 13 55 30 4  

 

 

Sequence 3 

2005 9 27 13 55 36 1 

2005 9 27 13 55 46 1 

2005 9 27 13 55 53 1 

2005 9 27 13 56 1 1 

2005 9 27 13 56 9 1 

2005 9 27 13 56 16 1 

 

To explain the proposed method, we will use an example from table 8-2. Let day 09-27-

2005 have three sequences from five different sensors as in table 3. We first generate the 

histogram for each feature using 5 bins, that is (0 - 0.2, 0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 

- 1) as in Table 8-3. Then, the histograms of all features were concatenated together to 

generate a single feature vector representing the entire day. Using this representation, we 
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preserve activity context since the histograms are based on the sequences (activities) 

performed that day.  

Table 8-3. Example explaining the process of converting sequences of a day into a single data point 

Day X Numeric Data Representation 

Feature 1 (L) Feature 2 Feature 3 (T) Feature 4 (D) Feature 5 

1 0 0 0 0 

1/3 0 1/3 1/3 0 

6/7 0 0 1/7 0 

Histogram 1 Histogram 2 Histogram 3 Histogram 4 Histogram 5 

0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 

Concatenated Histograms to Get a Single Data Point Representation  

0 1 0 0 20 0 0 0 00 1 0 0 01 1 0 0 00 0 0 0 0 

 

 The ground truth was provided by labeling each day as normal/abnormal based on 

clinically validated health alerts from our EHR. Days on which a health alert was generated 

by a fall or other health event were labeled “abnormal”, while days on which no alert was 

generated were labeled “normal”. The days preceding and following a health alert were 

excluded from analysis.  
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 Using single data representation for each day enables us to use existing (numeric) 

classification algorithms. RUSBoost is used to validate the proposed representation by 

computing the area under the receiver operating characteristic (ROC) curve.  

 Experimental Results 
 To validate our approach, we used three different residents with different number of 

normal and abnormal day as shown in table 8-4. We conducted three separate experiments 

on each resident to test the performance of our algorithms for finding abnormal days. The 

reason behind person-based experiments is that, typically, mathematical models (such as 

classifiers, algorithm parameters, etc.) for early illness recognition based on non-wearable 

sensors are not transferrable from one person to another, due to different disease-behavior 

associations that could be quite different between people. For each resident, sensors firings 

were converted into sequences then into a single data vector representing that day. Then, 

RUSBoost was used with 10-fold cross validation to generate the ROC curves.   

Table 8-4. Dataset used in this paper 

Resident Number of 

Sensor Days 

Number of 

Alert Days 

1 440 81 

2 745 35 

3 500 335 

 

Figure 8-5 shows the results in terms of ROC curves. The area under the curve (AUC) 

for our approach is shown in table 8-5 with an average AUC of 0.9. Resident 3 has the 

lowest AUC because most of his data has consecutive abnormal days, which makes it harder 
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to detect some of them. However, resident 1 is the youngest and the healthiest of the three, 

which makes detection of his abnormal days easier due to the large change in activity as 

compared to normal days. Furthermore, resident 1 does not use walker, which makes his 

routines different between normal and abnormal days. On the other hand, residents 2 and 3 

use walkers that affect their walking, and hence, reducing the variety of their routines. Our 

detection of abnormal days outperforms [23] where they used the same dataset and achieved 

an average AUC of 0.79. In addition, these results show a great improvement over our 

previous approach where each day was represented using the sum of the firings of each 

sensor during the entire day. The resulting representation was also a vector of size M. 

However, in that representation, the identity of the daily activities was not preserved [15, 

24 and 25]. 

Table 8-5. Area under the curve of the three residents 

Technique AUC 

# 1 

AUC 

# 2 

AUC 

# 3 

Our 

approach  
91 90  89  

Approach 

[23] 
79 78 79 
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 Conclusion  
Our proposed computational algorithm successfully detected abnormal days of three 

TigerPlace residents by applying a new context preserving representation of daily activities. 

RUSBoost was used for training and testing abnormal day detection due to the issue of our 

imbalanced dataset. Our average, the detection rate on the three residents was around 80% 

with a false positive rate of 20%, which is an improvement over previous approaches. Our 

approach tackles the problem of data inhomogeneity associated with in-home monitoring 

Figure 8-5 ROC Results for a) Resident 1, b) Resident 2, c) Resident 3 
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systems, by converting a day with hundreds of sequences into a single data point 

representing that day and preserving the context of daily routine at the same time.  The 

proposed algorithm will be integrated into the existing alert system in TigerPlace to detect 

abnormal days by identifying early functional changes reflected in deviations from daily 

routines. 
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Abstract—Using non-wearable sensors in eldercare monitoring is a promising solution for 
improving care and reducing healthcare costs. Abnormal sensor patterns produced by 
certain resident behaviors can be linked to early signs of illness. We propose an 
unsupervised framework for detecting abnormal sensor patterns based on clustering 
activity sensor sequences. We use a 30-day normal window to build a baseline model of 
an elderly resident by clustering the activity sequences from these days. Each cluster 
represents different daily activities that are performed in most (normal) days and 
correspond to normal routines. If a new day contains fewer routine activities, we flag it as 
abnormal and label the day as one with a possible sign of early illness. A preliminary 
analysis of the method was conducted on data collected in TigerPlace, an eldercare facility 
that promotes aging-in-place, with information from our electronic health records (EHR). 
On a pilot sensor dataset from three residents, with a total of 1902 days, we achieved an 
average abnormal events prediction of 0.75. 
 

Keywords— Eldercare monitoring, Wireless sensor networks; Activity recognition, Early illness detection. 

 

  Introduction 
The elderly population is growing rapidly in America, which causes concern for health 

care providers. The number of people aged 65 and older is increasing from 13% in 2010 to 

19% in 2030 whereas the population of age 15 - 65 is decreasing [1]. Since older adults 

prefer to live independently, many of the health changes go undetected, such as dementia, 

frailty and urinary tract infections (UTI) [2]. As average life span in US is about 80 years, 
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most people will live 15 years or more after retirement. A typical functional decline in 

elderly is shown in figure 9-1 (solid line curve) [3]. The solid line includes plateaus followed 

by precipitous step-downs due to the loss of functional ability such as ability to dress, ability 

to walk, etc. The goal of proactive care is to detect and predict health problems early, which 

could reduce the decline of the functional ability, extend the length of the plateaus and 

reduce the depth of the steps (dotted line curve in figure 9-1). 

 

Detecting health changes early is crucial for promoting health and controlling healthcare 

costs. On the other hand, late health assessments or unreported problems can lead to poor 

quality of life [4]. Therefore, automatic health monitoring systems are a possible solution to 

identify and assess problems in their early stages, which could give more time for the 

intervention to solve the problems before they become serious. 

To promote this model for independent living, sensor networks have been used as a 

possible solution [5, 6]. MIT's PlaceLab, Georgia Tech's Aware House, Honeywell's 

Independent Lifestyle Assistant, and University of Missouri’s TigerPlace [7, 8, 9, 10] are 

 
Figure 9-1 Trajectory of typical functional decline the goal with early illness recognition 
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few examples of technological solutions for aging-in-place. Different methods for assessing 

daily activities, walking patterns and medication compliance have been associated with 

these projects [11, 12, 13, 14, 15,16, 17].  

The existing early illness alert system in TigerPlace is univariate, which means that it 

treats each sensor data stream as an independent variable. The alert system triggers an alert 

if there is an increase or decrease in the sensor data during a day as compared to the average 

and the standard deviation from W (a given window size) previous days. However, if there 

is an increase in multiple sensor values for a day but it is not significant to trigger an alert 

for any of the sensors, some health changes could potentially go undetected. In [18], it was 

demonstrated through a survey from our clinical team that some health issues (such as UTI 

and dementia) in older adults are captured by a combination of sensors. Therefore, we need 

an alert system that takes into account multiple sensor data changes at the same time to 

detect early signs of illness. Some illness recognition techniques are focused on either the 

detection of a set of activities such as walks or a fall [19] or the detection of anomalies such 

as too many bathroom visits [20]. These techniques are limited to detect abnormal days who 

have problems associated to these activities.  In our previous work [21], we introduced a 

context preserving measure using daily sequences of activities, which is extended in [22] to 

annotate days with different health issues. In [23], we used an unsupervised approach to 

identify different daily activities. In this paper, we extend the idea in [23] and introduce a 

novel approach to detect (abnormal) days with early signs of illness based on daily activities.  

This paper is organized as follows. In Section II we describe the monitoring system 

architecture and available sensors data. Section III presents our method to detect abnormal 

days. Section IV shows the metrics that are used to evaluate our approach. Section V 
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describes the clustering results. In Section VI, we describe the experimental results. Finally, 

in section VII, we give conclusions and future work. 

 System Architecture 
 
TigerPlace is an eldercare facility that promotes aging-in-place located in Columbia, 

Missouri [10].  Sensor technology is applied to help elderly residents manage their illness 

and stay as healthy and independent as possible. After several focus groups with TigerPlace 

residents in 2004, a decision was made to use only non-wearable sensors in the monitoring 

process because they are unobtrusive and more acceptable by older adults [15, 3]. With the 

University of Missouri IRB approval, our monitoring system was installed in 47 TigerPlace 

apartments.   Data collection has started since fall 2005 with an average of two years’ worth 

of data for each resident. 

 

 

 

Figure 9-2. Tiger Place Sensor Network Architecture. 
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The architecture of our monitoring system is displayed in figure 9-2. Our monitoring 

system has the following components: a sensor network, a data logger, a reasoning system 

for decline detection and recognition, an electronic health record (EHR) system, an alert 

manager to notify the clinical staff of possible health issues, and a secure Web-based 

interface to display the data for the researchers and clinicians. Sensor network contains 

various types of sensors mounted in the resident’s apartment, which includes motion, bed, 

and depth-based video sensors. Each sensor sends a firing with the sensor ID and a 

timestamp that is logged in our sensor database as can be seen in table 9-2 below. A logger 

is assigned to each resident included in the study in his/her apartment to collect data from a 

wireless sensor network. The computer from each apartment is connected to a main storage 

server via a secure wired network connection. Sensor data of all apartments in TigerPlace 

are received, stored, and monitored for research purposes. In this study, we use motion and 

bed (pulse, breathing, and restlessness) sensor data. A typical TigerPlace apartment layout 

is shown in figure 9-3, which shows the locations of some of the sensors. 

 
Figure 9-3. Typical apartment layout in TigerPlace 
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 Method 
The set of sensors used in this paper are displayed in table 9-1 where these sensors are 

invasive and placed in the resident's apartment. Sensor readings (1-3) are computed using 

the bed sensor [11], and the remaining are from motion sensors. The idea is to capture the 

resident’s daily activities by converting the sensor hits (sensor ID and a timestamp) into a 

sequence of sensor firings, similar to the representation of his/her genome. Therefore, the 

sensors readings of each day are converted into discrete symbols where each symbol 

represents one sensor type. The daily sequence needs to be split into subsequences of 

different activities using a separation threshold. A small separation threshold results in 

breaking activities into smaller sub-activities, which is not desirable. Conversely, a large 

separation threshold merges different activities into a single activity, which is not desired 

for our approach. Therefore, after trying different thresholds, a 30-second separation 

provides enough granularity to capture daily activities as demonstrated in [21, 22].  

Table 9-1 List of sensors in the resident's apartment 

VI. ID. | 
Sensors 

VII. firings 
VIII. 5. Patio Motion 

IX. 10. Living 
room Motion 

X. 1. 
Breathing 

XI. 6. Closet Motion 
XII. 11. Front 

Door Motion 

XIII. 2. Bed 
Movement 

XIV. 7. Den Motion 
XV. 12. 

Bathroom 
Motion 

XVI. 3. Pulse XVII. 8. Office Motion 
XVIII. 13. 
Bedroom Motion 

XIX. 4. Shower 
Motion 

XX. 9. Kitchen Motion XXI.  

 

A snippet of the sensor firings for a resident in TigerPlace is shown in table 9-2 on 

September 27, 2005, around 01:45 pm where the person had most of the sensor’s firings in 

the living room. Sensor ids 10, 12, and 13 are motion sensors in the living room, bathroom, 
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and bedroom, respectively. The data in table 9-3 shows a sensor sequence of length 16. 

Applying our threshold separation of 30 seconds to break the sequence into subsequences 

of activities, we end up with three sub-sequences of different length ('LLLL', 'LDT', and 

‘DLLLLLL’) where L, D, and T are symbols annotation of sensors ids 10, 13 and 12 

respectively.  First subsequence 'LLLL' represents activity in the living room area and 'LDT' 

is a bathroom visit, which is a walk from living room to bathroom going through the 

bedroom whereas ‘DLLLLLL’ represents a living room activity after finishing the bathroom 

visit. Sequences of length 2 or less and those of length 50 or more are removed from each 

day because they are treated as noise (not long enough to represent an activity or very long 

and could be due to nurses or staff visits).  

 

Due to the vast variation in activity sequence length, sequence-based similarity measures, 

such as Smith-Waterman (SWM) [24], will be affected by different sequence lengths. 

Therefore, we used a bag-of-words approach to map each sequence into an N-dimensional 

Euclidean space representing the percentage of each symbol in a sequence, where N 

represents the number of sensors. To explain the proposed method, we use the example from 

table 9-2. Assume day 09-27-2005 has three sequences from five different sensors as in 

table 9-3. Each sequence is mapped into a 5-dimensional space (N=5), where each 

component is the percentage of the occurrence of that symbol in the sequence. Thus, 

sequences ('LLLL', 'LDT', and ‘DLLLLLL’) are transformed to [1 0 0 0 0], [1/3 0 1/3 1/3 

0], and [6/7 0 0 1/7 0]) as shown in table 9-3. After this process, all the sequences will have 

the same length. This representation enables us to preserve the activity context because it 

relates to the sequences (activities) on that day. In addition, this sequence mapping enables 

us to apply Euclidean distance or other measures to compute similarity/dissimilarity 
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between sequences, which is a key point in any clustering algorithm. Also, dimensionality 

reduction techniques can be applied directly to the mapped sequences, which makes it easier 

to visualize the clustering results.   

Our goal is to use the activities from normal days to build a base model, which can be 

used to find the number of activities performed by an elderly resident on normal days. We 

are looking for two things in a new day: the existence of a specific activity and the frequency 

of this activity on that day. One month of normal days is used to build the model by 

concatenating all the sequences together and clustering them using hierarchical clustering 

with the Ward distance. Calinski-Harabasz cluster validity index [25] is used to find the best 

number of clusters for our model where each cluster represents a specific activity of the 

elderly’s daily routine. On this approach, the model is updated daily if the new arriving day 

is determined to be normal, which allows for maintaining the temporal information of the 

resident because it is expected that behaviors of elderly people change with time according 

to their health conditions. For example, routines before leg surgery are different from those 

after the surgery due to the limitations in movement.  

Table 9-2. A sensor sequence snippet for a TigerPlace resident  

Year Month Day Hour Minute Second 
Sensor 

ID 
Sequences 

2005 9 27 13 44 9 10 

 
Sequence 1 

2005 9 27 13 44 15 10 

2005 9 27 13 44 22 10 

2005 9 27 13 44 32 10 

2005 9 27 13 52 35 10 
 

Sequence 2 
2005 9 27 13 52 40 13 

2005 9 27 13 52 45 12 

2005 9 27 13 54 51 12 Not a valid 
sequence 2005 9 27 13 54 54 13 

2005 9 27 13 55 30 13  
 2005 9 27 13 55 36 10 
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2005 9 27 13 55 46 10  
Sequence 3 

2005 9 27 13 55 53 10 

2005 9 27 13 56 1 10 

2005 9 27 13 56 9 10 

2005 9 27 13 56 16 10 
 

Table 9-3. Example explaining the process of converting sequences of a day into a fixed-length data 
vector 

 
Sequences 

Day X Numeric Data Representation 

Feature 1 (L) Feature 2 Feature 3 (T) Feature 4 (D) Feature 5 

'LLLL' 1 0 0 0 0 

'LDT' 1/3 0 1/3 1/3 0 

'DLLLLLL' 6/7 0 0 1/7 0 

 
For each resident, the sensor firings of each day are converted into normalized sequences 

as depicted in table 9-3 (steps 1-2 in figure 9-4). Our approach requires the existence of X 

normal days (in this case we selected 30) to build the base model which captures number of 

activities and their frequences performeddaily for each resident as in figure 9-4-step 3. From 

the histogram of each cluster, the mean (m) and standard deviation (std) of the number of 

sequences in each cluster of the model (from each day) is computed to provide an idea of 

how many different activities are performed by that person usually in a normal day (see step 

3-a, b, and c of the algorithm from figure 9-4). After a 30 day model is computed, the data 

from new days is fed in a streaming fashion. To flag a day as abnormal, sequences of that 

day are mapped to the clusters of the model by computing the Euclidean distance between 

the normalized sequences of that day and model cluster centers.  A rule is built based on the 

results shown in figure 9-7.  If a new day has total number of sequences in any cluster less 

than (mean - standard deviation) of the members of that cluster generated from the normal 

period of time, that cluster is flagged as a violated cluster (activity), which means the 

resident has not performed such activity enough compared to his routine on a normal day. 
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Also, if the sequences in any cluster are greater than (mean + standard deviation) of the 

members of that cluster generated from the normal period of time, that cluster is flagged as 

a violated cluster (activity), which means the resident has performed too many of such 

activity compared to his routine on a normal day.   Furthermore, when a day has two violated 

clusters or more, it is flagged as an abnormal day (possible early illness) as displayed in step 

7. A day that is labeled as normal is swapped with the oldest day (LIFO) in the model and 

the clustering step (figure 9-4-step 3) is repeated to update our model to adapt the recent 

resident’s health changes (step 8 in figure 9-4).   

 

 

 

Algorithm: Abnormal day detection using unsupervised approach. 
Input: sensor hits of a new arriving day (day-i) and the previous 30 normal days 
Output: Label of day-i as normal or abnormal. 
Steps: 

1- Convert the sensor firings and time stamps into discretized sequences following the procedure 
in table 2.  

2- Generate the normalized sequences of all days following the approach in table 3. 
3- Build the model: 

a- Cluster the concatenated sequences of the 30 normal days using Ward Clustering 
Algorithm (number of clusters and Cluster representative). 

 Find Best number of Clusters (activities) using Calinski-Harabasz index.   
 Find Cluster representatives 

b- Compute the histogram of number of sequences from each day in each cluster.  
c- From the histogram in (b), find the mean (m) and std for each cluster.  

4- Compute the Euclidean distance between the clusters representatives and the new day’s 

sequences, 
 ij i 1,...,n, j 1,...,k

D d
 


 

5- Map the sequences to their closest clusters  
6- Cluster i is flagged as a violated cluster if number of mapped sequences is 1-std from its mean 

i i(mean std )  
7- If there are 2 or more violated clusters, day-i is labeled as Abnormal, otherwise label it as 

normal. 
8- Model Update:  

If day-i is labeled as normal: 
Swap it with the oldest day in the model  
Else:  
 Keep the same days for the model 
 
 

 

Figure 9-4 Abnormal day’s detection algorithm 
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To ground-truth our approach, we employed a normal/abnormal labeling of each day 

based on clinically validated health alerts and nursing notes from our EHR. Days on which 

a health alert was generated by a fall or other health event or if a nursing note is found, were 

labeled “abnormal”, while days with no alert or nursing note were labeled “normal”.  

 Dataset and Evaluation Metrics  
 In this section, we discuss the dataset used to evaluate our approach in detecting days 

where the resident needs to be assessed (referred as abnormal days) along with the 

evaluation metrics employed. We used three different residents with different number of 

normal and abnormal days, as shown in table 9-4, resulting in a total of 1403 sensor days.  

 Our goal is to detect days referred to as “abnormal” during which a resident need to be 

assessed. Considering a day as abnormal is a subjective matter that varies between elderly 

residents. Therefore, an event that is treated as abnormal for one resident could be a normal 

day for another resident. For instance, multiple bathroom visits during night for a resident 

who regularly sleeps soundly during the night is considered as an abnormal event, whereas 

for another resident, several midnight bathroom visits are considered normal. For these 

reasons, labeling of normal/abnormal events relies on the functional ability of residents, 

their health status, medication taken, etc. We use sensitivity and specificity to evaluate our 

proposed method as defined bellow.  

 Sensitivity = TP/(TP+FN), 

 Specificity = TN/(TN+FP). 

where TP is the number of true positives, TN is the number of true negatives, FP is the 

number of false positives, and FN is the number of false negatives. 
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Table 9-4. Pilot dataset of three residents from TigerPlace 
Resident ID Number of Sensor Days Number of Abnormal Days 

1 351 249 

2 628 488 

3 424 241 

 

 Clustering Results 
 

As discussed earlier, our goal is to cluster the sequences in a window of 30 normal days 

(no health alerts were reported) to build the baseline model for each resident. Two 

approaches are applied to measure the distance between the sequences and find the possible 

clusters (activities): the first approach is to use SWM as a distance measure between the 

symbolic sequences (as in table 9-2), and the second approach is to map the sequences into 

the Euclidean space (as in table 9-3) and use Euclidean distance. Ward Hierarchical 

clustering is employed to cluster the data in both cases along with Calinski-Harabasz 

validity index [25] to find the best number of clusters (set of activities). 

As an example of the effect of the two choices for determining distance, cluster 

distributions and histograms are shown in figure 9-5 for the case of using SWM as our 

distance measure on clustering 14 normal days of resident 1 in table 9-4. Figure 9-5-a (left 

graph) shows the distribution of the sensors in cluster 1, which is the percentage of each 

sensor in the sequences of that cluster. The x-axis of the distributions (numbers 1:11) 

corresponds to Front Door, Living Room, Closet, Kitchen, Patio, Shower, Bedroom, 

Bathroom, Office, Den, and Restlessness sensors and the y-axis is a percentage between 0 

and 1. Figure 9-5-a (right graph) displays the histogram of the sequences in cluster 1, which 

can be used to differentiate between activities performed on daytime from those performed 

on nighttime. The x-axis of the histograms is a 24-hours period of the day, which 

corresponds to the occurrence of the sequences of each cluster during the day, while the y-
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axis is number of sequences in each hour. Cluster 1 in figure 9-5-a has sequences generated 

from front door, living room, closet, and kitchen sensors performed on the period 5:00 am 

– 7:00 pm. From the distribution of cluster 2 in figure 9-5-b (left graph), we can see that the 

sequences are from multiple activities such as bathroom, office, bedroom, shower, etc. It 

can be noticed from the cluster distributions in figure 9-5-c, d, and e that the clusters do not 

represent specific activity (sequences from different activities are grouped in the same 

cluster) except the cluster in figure 9-5-f which represents bathroom activity at night. 

Restlessness, an important activity that is usually monitored by our healthcare team to detect 

different health conditions, is missing in this case. The reason behind such poor clustering 

performance is the difference in sequence length, which makes it not feasible for SWM to 

generate a meaningful distance between sequences of the same type but with different 

length.  

Therefore, we normalize the above sequences by mapping them to the N-dimensional 

space as in table 9-3 where N is total number of used sensors (11 in this example). Figure 

9-8 shows the cluster distributions and histograms for clustering the same 14 normal days 

of resident 1, where we can clearly see similar activities are grouped in the same cluster 

because one or two sensors have the highest percentage in the distribution of each cluster. 

For example, bathroom visits sequences are grouped together (figure 9-8-b), and bed 

restlessness sequences are grouped in the same cluster as in figure 9-8-a. A tSNE projection 

[26] of the sequences is depicted in figure 9-6, which shows that sequences of the same 
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activity are grouped in the same cluster. Therefore, we chose this approach in the next 

experiment to detect abnormal days.  

 Experimental Results  
We tested the performance of our algorithm for detecting abnormal days using the data 

shown in table 9-4. The idea is that, in normal days, elderly people do similar activities 

within the same period. On the other hand, in days where they are sick, either they do not 

do some activities as much compared to normal days such as living room activity, or they 

do them more, for example, bathroom visits.   

For each resident, the sensor firings of each day are converted into normalized sequences, 

as depicted in table 9-3. The new data is fed in a streaming fashion. In order to decide the 

 
Figure 9-5. Cluster distributions and histograms when using SWM as the distance measure to 

compute the distance between symbolic sequences for 14 normal days of resident 1 in table 4 . 
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number of violated clusters required to flag a day as abnormal, we vary number of violated 

clusters for resident 1 in table 9-4 and compute the accuracy for each choice of this 

parameter. As it can be seen in figure 9-7, 2 violated clusters gives the best performance 

and, hence, it is set at 2 for all experiments. 

We run three separate experiments on each resident in table 9-4. Table 9-5 displays the 

results in terms of sensitivity/specificity with an average sensitivity of 75% and 70% of an 

average specificity. Our results suggest that, for residents with rigid routines such as resident 

# 1 and #2, the proposed methods provide good detection of abnormal days. Also, for 

younger residents, the detection of abnormal days is easier due to the large change in their 

activity on abnormal days compared to their normal routines. The result shows a significant 

improvement over our previous approaches [20, 27].  One possible reason behind 

misdetecting some of the abnormal days is due to the actual problem at that day where 

medications could help to reduce its effect on the resident’s activity. In addition, a day with 

a health issue that is not reported in the nursing notes could lead not only to misclassification 

 
Figure 9-6. t-SNE of 14 normal days projected in 3-d space 
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of that day but also misclassification of that “normal” day (because it is actually an abnormal 

day and flagged as abnormal by our algorithm).   

In [20], the authors used bathroom visits as parts of the older adult’s daily routine in their 

approaches, which simplifies the problem and detect abnormal days with problems 

associated with such activities only. However, our approach is unsupervised, where we do 

not use specific activities but rather, a general approach that depends dynamically on the 

resident’s daily activities. Also, this approach enables us to detect abnormal days with 

different problems that affect the resident’s daily patterns. In [27], the daily representation 

was a sum of total sonsor firings where the identity of the daily activities was not preserved 

compared to our approach. Our average accuracy is around 0.75 versus 0.84 in [20] and 

0.70 in [27], which is comparable in performance, considering the generalization of our 

method. Our next step is to evaluate our approach with more residents and deploy it as part 

of our alert system in TigerPlace.   

 
Figure 9-7. Selecting the best number of violated clusters to flag a day as abnormal 
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Table 9-5. Abnormal Day Detection Performance 

Resident ID 1 2 3 

Sensitivity 75 80 70 

specificity 70 72 68 

 

 Conclusion  
Our computational algorithm successfully detected abnormal days of three TigerPlace 

residents utilizing a completely unsupervised approach based on the resident’s daily 

activities. Ward hierarchical clustering was used together with the Calinski-Harabasz index 

 
Figure 9-8. Cluster distribution and histograms when using Euclidean distance measure to 

compute the distance between normalized sequences for 14 normal days of resident 1 in table 
9-4. 
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to build a base model for an elderly resident for normal activity. The mean (m) and standard 

deviation (std) of number of sequences in each cluster of the model (from each day) were 

computed, which provides the frequency of each activity performed in a normal day. The 

sequences of a new day were mapped to the clusters of the model. If a new day has total 

number of sequences in any cluster that are more than or less than one standard deviation 

from the mean (m ± std) of the cluster, we assign that as a violated cluster for that day. 

Furthermore, when we have two or more violated clusters in a day, we flag it as abnormal. 

Our average detection rate was around 75%, which is very good, particularly given behavior 

variations after recovering from illness. Our approach is completely unsupervised where we 

do not search for known activities but, rather a general approach that relies on a resident’s 

daily activities. Furthermore, this method allows us to detect abnormal days with different 

health issues that affect the resident’s daily routine. The proposed algorithm will be 

integrated into the existing alert system in TigerPlace to detect abnormal days by identifying 

early functional changes reflected in deviations from daily routines. 
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Abstract— Automatic health monitoring systems are a candidate solution to 

preventing health issues in independently living older adults by detecting and 

reporting signs of early illness. Abnormal sensor patterns produced by certain 
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resident behaviors could be linked to early signs of illness. In this paper, we propose 

a framework for detecting health patterns based on non-wearable sensor sequence 

similarity and natural language processing (NLP). In TigerPlace, an eldercare facility 

that promotes aging-in-place in Columbia, MO, we deployed 47 sensor networks 

along with a nursing electronic health record (EHR) system. The proposed 

framework utilizes sensor sequence similarity and medical concepts extracted from 

the EHR to automatically inform the nursing staff when health problems are detected. 

A context preserving representation of daily activities is used to measure the 

similarity between the sensor sequences of different days. The medical concepts are 

extracted from the nursing notes using MetamapLite, an NLP tool included in the 

Unified Medical Language System (UMLS). The proposed idea is validated on two 

pilot datasets from twelve Tiger Place residents, with a total of 5810 sensor days out 

of which 1966 with nursing notes. 

Keywords— Eldercare monitoring; Wireless sensor networks; Early illness recognition; 

NLP; Sensor annotation. 

 Introduction 
In 1996, the American Academy of Nursing asked researchers to find new ways to 

modify and improve the standards of eldercare services [1]. The rapid aging of the society 

gained extra attention from the healthcare industry in developed countries. Published 

statistics show that elderly population of age 65 and older will increase from 13% in 2010 

to 19% in 2030 whereas the ratio between the population of age 15 to 65 (working age) and 

the elderly population is decreasing from 4.3 to 2.3 [2]. On one hand, elderly favor living 

independently despite complex conditions such as dementia, the risk of falling and frailty.  
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Independent living could potentially lead to poor long-term health outcomes due to delayed 

health assessments which might be due to lack of monitoring [3]. The late health assessment 

is an aggravating risk factor that typically happens due to the fear of being institutionalized 

and the lack of physician’s assessments [4]. Automatic health monitoring systems are a 

candidate solution to managing health issues in independent living of older adults by 

detecting and reporting signs of early illness. 

In the last decades, ubiquitous sensor networks have been deployed as a possible solution 

to improving quality and reducing the cost of eldercare by monitoring the decline in their 

functional abilities as well as improving the management of housing, healthcare, and social 

services [4, 5]. MIT's PlaceLab, Georgia Tech's Aware House, Honeywell's Independent 

Lifestyle Assistant, and University of Missouri’s TigerPlace are examples of monitoring 

environments [5]–[8]. Fig. 10-1 shows the trajectory of typical functional decline in older 

adults (solid line) [9]. The typical decline has quasi-plateaus followed by sharp step-downs 

due to acute events such as falls that lead to loss of some functional ability such as dressing, 

walking, etc. Some of the step-downs are temporary (that is why we used the term “quasi-

plateau” above) such as the ability to walk after having a leg injury, before they become 

permanent. We believe that using sensor-based health assessment and early recognition 

and/or prediction of health problems we can reduce the functional decline (dotted line curve) 

and improve the quality of life as in Fig. 10-1 (figuratively denoted as “squaring the life 

curve”). 
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Figure 10-1 Trajectory of typical functional decline the goal with early illness recognition. 

A variety of activity recognition (AR) approaches and medication compliance methods 

have been introduced in the literature [9]–[12]. Some AR methodologies are either detecting 

a specific set of known activities such as walking or falling [13] or looking for outliers such 

as too many bathroom visits [14]. Major differences in the proposed AR approaches are due 

to the machine learning models, the sensing technology, and the experimental setup [15, 

16]. Despite these differences, most of AR methods are performed on known or scripted 

sequences of activities. One of the strengths of this paper is that it uses data collected in a 

real living environment for a relatively long period of time (5810 days) where the activities 

are not known and not scripted, hence requiring an unsupervised learning approach.  

An important property of our health-monitoring system is the ability to unobtrusively 

and continuously collect activity data. The system processes the collected sensor data, 

detects activities such as taking a shower, “bathroom visit” or “out of the apartment,” and 

looks for changes in the behavior of the monitored older adults. Behavior changes could 

result from early signs of an imminent illness or an exacerbation of an existing chronic 

condition. The relationship between health patterns and behavior variations is based on the 
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assumption that, for a specific resident, similar medical conditions lead to similar abnormal 

behaviors which result in similar sensor patterns. Hence, if a sensor pattern is not similar to 

the previous one in a similar context (location, time of the day), it is assumed that the 

patterns are generated due to some unknown health problem. These assumptions, in general, 

have a certain degree of validity for elderly whereas they might not generally be true for a 

more mobile, younger people [14, 17, 18]. Various sensors such as motion, depth camera, 

sound, radar, etc. have been deployed to capture people’s behaviors [8]. In eldercare 

applications, the sensors are mounted in the living environment to capture the resident’s 

behavior.  These sensors produce multi-attribute time series datasets (MATS). Computing 

the similarity between these MATS is the basis for assessing the similarity of behavior 

patterns based on sensor data. Calculating MATS similarity is a challenging task which 

depends on the application and the type of the attribute (continuous or discrete). The first 

approach is the Euclidean-based distance measure for continuous MATS with equal length 

[20]. The drawback of this measure is that it is sensitive to outliers, cannot capture time and 

is not applicable for sequences that represent the same behavior but have different length 

(i.e., same action but performed slower). The second common approach is a non-Euclidean 

metric such as dynamic time warping (DTW) and longest common subsequence (LCSS) 

which are applied on sequences of different lengths [21]-[25]. Also, Symbolic Aggregate 

Approximation (SAX) can be applied for MATS dimensionality reduction [26]. If an entire 

MATS is converted to a series of symbols (symbolic data) similar to protein sequences in 

bioinformatics, then Smith-Waterman (SW) is another possible similarity measure that can 

be applied [27]. However, measuring the similarity of mixed sequences (some attributes are 

discrete such as motion sensor hits and others are continuous such as heart rate values) in 
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eldercare mentoring systems is a challenging task that is still an open research question. 

Discrete data measures such as SW and LCSS [27] can be applied to continuous sequences 

by modifying them [20] or changing all the discrete sequences to continuous and applying 

the modified measures [14, 24, 28, 29]. In our previous work [30], we introduced an 

unsupervised approach to segment different daily activities. Also, we developed a context-

preserving technique to represent daily activities of older adults such that it can be used to 

compute the similarity between different days of a specific resident [31]. 

To predict early illness, the sensor data can be combined with medical concepts extracted 

from nursing notes by employing a Natural Language Processing (NLP) method [32]. There 

are several challenges in this research that we would like to address. Identifying the 

similarity measure is the first challenge, with the second being the use of the  Unified 

Medical Language System (UMLS) concepts to extract meaningful semantic types and 

medical and behavioral terms. In [32], all the terms were extracted without type constraints 

which resulted in, among other, trivial terms such as “the”, “a”, “an”, which do not convey 

meaningful information for behavior inference. In this paper, we use the measure in [31] to 

determine the similarity between sensor sequences. To extract only medical and behavior 

related terms from the nursing notes, we parse each note and the ULMS concepts using 

semantic type constraints. Finally, we employ an aggregation technique to infer the most 

probable health concepts associated to an unknown sensor sequence. 

There are two main aspects that distinguish our work from other related ideas: the dataset 

and the unsupervised machine learning methodology. The dataset used in this paper consists 

of real-world living environments with no prescripted scenarios. Elderly adults live in their 

personal apartments where they conduct their daily routines naturally without any 
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constraints from researchers. Therefore, our dataset reflects the complexity of unrestricted 

real-world scenario and it allows for testing of the robustness of our activity recognition 

method. The second aspect is the machine learning approach to measure the similarity for 

discrete time series in eldercare applications. Our unsupervised approach discovers the most 

frequent activities (as sensor sequences) of daily living without knowing their identity. We 

combine all these sensor sequences (activities) that a resident performed in a specific day 

and we generate a single vector representing that day. We test our approach on two datasets 

from Tiger Place: one with three residents and another one with 9 residents, each resident 

having around two years worth of data.  

This paper is organized as follows. In section 8.2, we describe the monitoring system 

architecture and available sensor data. The proposed method of illness prediction based on 

UMLS medical concepts and sensor data similarity is presented in section 8.3. The dataset 

description is presented in section 8.4. The evaluation metrics used in the experiment is 

discussed in section 8.5. In section 8.6, we show extensive experiments to validate our 

approach. Finally, in the last section, we provide conclusions and future work. 

 System Architecture  
TigerPlace is an aging-in-place facility in Columbia, MO, USA, where, with the 

University of Missouri IRB approval, we implemented our integrated monitoring system. 

Only no wearable sensors are used for the monitoring process based on the 

recommendations from multiple focus groups in 2004 with elderly residents of TigerPlace 

[8, 33, 34]. The monitoring started in the fall of 2005. Currently, we have 50 apartments 

online where sensors are installed and data is collected. There are two datasets used in this 

paper. The first dataset is for three residents from 2005 to around 2007 with the old data 
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acquisition system as in Fig. 10-2. The second dataset was obtained from 9 residents during 

2015 using our new (updated) data acquisition system (see Fig. 10-3) where an alert 

manager, depth sensors (Kinect) and updated (hydraulic) bed sensors were added. The main 

components of the monitoring system are a sensor network, a data logger, a reasoning 

system for decline detection and recognition, an electronic health record (EHR) system, an 

alert manager to inform clinicians of possible problems, and a secure Web-based interface 

to display the data for clinicians and researchers. 

Various motion passive infrared (PIR) sensors are mounted in different locations of a 

TigerPlace apartment: bathroom, living room, den, bedroom, and kitchen. The PIRs and the 

pneumatic bed sensor send X10 signals that are logged together with a time stamp in our 

sensor database as shown in Fig. 10-2. All the residents who are part of the study have logger 

computers in their apartments that capture the data from each wireless sensor network. Then, 

the data from these computers are sent to the main secure storage server via a secure wired 

network connection. Fig. 10-4 shows a floor map of a typical TigerPlace apartment with the 

locations of some of the sensors. 

 
 

Figure 10-2 Old TigerPlace sensor network architecture. 
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The sensors used in this paper along with their identifier are shown in Table 10-1. The 

X10 motion sensors capture the residents’ activity in their environment using PIR sensing 

(ID 1-10). The bed sensor is used to measure bed movements (ID 11–14), breathing (ID 15–

17), and pulse (ID 18–20). The bed sensor uses pneumatic pressure to capture movement 

(restlessness), respiration, and the resident’s ballistocardiogram as the mechanical effect of 

the heartbeat [23]. On the old system in Fig. 10-2, the discretization of the bed sensor is 

performed in hardware by the bed sensor system as described in [11]. However, on the new 

bed sensors showed in Fig. 10-3, the hydraulic bed sensor provides continuous signals for 

all three previously mentioned quantities without artificial quantization [9]. 

 

 

 

 

 
 

Figure 10-3 Updated TigerPlace sensor network architecture. 
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Table 10-1 Sensor identifiers used in this paper 

Sensor ID Sensor Type Sensor ID Sensor Type 

1 Front-door Motion  11 Bed Movement 1 

2 Living-room Motion  12 Bed Movement 2 

3 Closet Motion  13 Bed Movement 3 

4 Kitchen Motion 14 Bed Movement 4 

5 Patio Motion 15 Breathing 1 (low) 

6 Shower Motion  16 Breathing 2 (ok) 

7 Bedroom Motion  17 Breathing 3 (high) 

8 Bathroom Motion  18 Pulse 1 (low) 

9 Office Motion  19 Pulse 2 (fine) 

10 Den Motion  20 Pulse 3 (high) 

 

 

Figure 10-4 Typical apartment layout in TigerPlace. 
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Table 10-2 shows a snippet of the sensor firing data recorded in the log file for a resident 

of TigerPlace on November 19, 2006, around 08:0 pm where the person had most of the 

sensors firings in the living room and the office. Sensor ids 2, 4 and 9 are motion sensors in 

the living room, kitchen, and office respectively. Note that the data in Table 10-2 is a sensor 

sequence of length 10. 

Table 10-2 Snippet of the log file of a resident in TigerPlace 

Year Month Day Hour Minute Second Sensor ID Year 

2006 11 19 19 7 56 2 2006 

2006 11 19 19 8 3 2 2006 

2006 11 19 19 8 10 2 2006 

2006 11 19 20 18 50 2 2006 

2006 11 19 20 18 53 9 2006 

2006 11 19 20 18 56 4 2006 

2006 11 19 20 19 4 9 2006 

2006 11 19 20 31 35 9 2006 

2006 11 19 20 32 26 9 2006 

2006 11 19 20 32 41 9 2006 

 

 Method  
 Our goal is to evaluate the similarity between resident’s days based on the sensor data, 

and to use that information for annotation. After finding the set of most similar days {Di}, 

to a target day T, we transfer the set of UMLS concepts {Ci} associated with {Di} to T. 

These concepts, {Ci}, can then be used to describe the behavior of the resident on day T 

and, possibly, predict his or her health status. For each day, the sensor firings in Table 10-1 

are converted into subsequences of discrete symbols where each symbol represents one 
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sensor type. The idea is to represent the activity (behavior) of a resident by a sequence of 

sensor firings as it would be represented by his/her genomic sequences. The daily sensor 

sequence is split into subsequences using a separation threshold of 30 seconds, which 

provides enough granularity to capture daily activities [31]. Too small of a separation 

threshold would break the activities into smaller sub-activities, which is not of our interest. 

Too large of a separation threshold results in merging different activities into a single 

activity, which is also not desired for our approach. After investigating different threshold 

values, we concluded that a 30 seconds threshold worked best for our problem. In [31], we 

developed a measure to find the similarity between a resident’s days using his/her sensor 

data and showed that it produces better results than a string based measure (Smith-

Waterman). 

We will explain the process of generating the sequence features through an example. In 

Table 10-3, we display a snippet of the motion sensor firing data recorded in the log file for 

a resident of TigerPlace on September 27, 2005, around 01:45 pm where the person had 

most of the sensors firings in the living room. Sensor ids 2, 7 and 8 are motion sensors in 

the living room, bedroom, and bathroom respectively. The data in Table 10-3 is a sensor 

sequence of length 16 and when using our 30 second separation threshold to divide the 

sequence into subsequences of activities, we get three subsequences of different lengths. 

The resulting subsequences are ('LLLL', 'LDT', and ‘DLLLLLL’) where L, D and T are 

symbols annotation of sensors ids 2, 7 and 8 respectively. The sequence 'LLLL' represents 

a living room activity, 'LDT' is a bathroom visit, which is a walk from living room to 

bathroom going through the bedroom, and ‘DLLLLLL’ represents a living room activity 

after finishing the bathroom visit. In our experiment, sequences of length 2 or less and those 
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of length 50 or more are pruned from each day because they are either not long enough to 

represent an activity, or very long due to nurses, staff or other visitors. We mention that 

having a depth camera in each apartment allowed us to inspect some unclear aspects of our 

dataset. 

 Employing a bag-of-words approach, each sequence is mapped into an M-Dimensional 

Euclidean space representing the percentage of each symbol in a sequence, where M 

represents the number of sensors in a particular apartment. To map a sequence of a specific 

resident to the M-Dimensional space, each dimension is assigned to one symbol (sensor) 

and the sum of the similar symbols are divided by the length of the sequence in each of the 

M features. For example, assuming that the sensor positions in the feature vector are [L, F, 

D, T, P], the sequences ('LLLL', 'LDT', and ‘DLLLLLL’) are mapped to [1 0 0 0 0], [1/3 0 

1/3 1/3 0], and [6/7 0 0 1/7 0]) assuming that there are five sensors in our system. Using this 

representation, all sensor sequences will have the same length, M. 
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Table 10-3 A sensor sequence snippet for a TigerPlace resident 

Year Month Day Hour Minute Second Sensor ID Sequences 

2005 9 27 13 44 9 2 

Sequence 1 
2005 9 27 13 44 15 2 

2005 9 27 13 44 22 2 

2005 9 27 13 44 32 2 

2005 9 27 13 52 35 2 

Sequence 2 2005 9 27 13 52 40 7 

2005 9 27 13 52 45 8 

2005 9 27 13 54 51 8 Not a valid 

sequence 2005 9 27 13 54 54 7 

2005 9 27 13 55 30 7 

Sequence 3 

2005 9 27 13 55 36 2 

2005 9 27 13 55 46 2 

2005 9 27 13 55 53 2 

2005 9 27 13 56 1 2 

2005 9 27 13 56 9 2 

2005 9 27 13 56 16 2 

 

To explain the process of generating a single data point representation for a day using 

the sequences in the M-Dimensional space, we extend the example from Table 10-3 by 

considering three sequences in the same day (see Table 10-4). First, we generate the 

histogram for each feature using 5 bins, that is (0 - 0.2, 0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8, and 0.8 

- 1). Then, we concatenate the histograms of all features to generate a single feature vector 

representing the entire day. Note that using this representation, we preserve the activity 

context since the histograms are based on the sequences (activities) performed that day. 
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Table 10-4 Example explaining the process of converting sequences of a day into a single data point 

Selected Day Numeric Data Representation 

Feature 1 (L) Feature 2 (F) Feature 3 (T) Feature 4 (D) Feature 5 (P) 

1 0 0 0 0 

1/3 0 1/3 1/3 0 

6/7 0 0 1/7 0 

Histogram 1 Histogram 2 Histogram 3 Histogram 4 Histogram 5 

0 1 0 0 2 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 

Concatenated Histograms to Get a Single Data Point Representation  

0 1 0 0 20 0 0 0 00 1 0 0 01 1 0 0 00 0 0 0 0 

 

The complete sequence annotation system (SAS) is shown Fig. 10-5. Our goal is to 

annotate a day (target day) by using all related UMLS terms from the most similar days in 

the database. The SAS system processes the sensor sequence of each day to find a single 

vector representation and uses it to detect the most similar sensor vectors to this pattern, and 

selects the top N. Then, SAS extracts the nursing notes from the days associated with the 

sensor representations selected by our measure. For these notes, SAS applies MetaMapLite 

(https://metamap.nlm.nih.gov/MetaMapLite.shtml) from UMLS to convert raw text 

(nursing notes) to a set of semantic types and concepts unique identifiers of the medical 

(CUI) terms. MetaMapLite is an NLP software made available by National Library of 

Medicine as part of the UMLS tools. As opposed to generic NLP tools, MetaMapLite uses 

a medical ontology (UMLS) and it is aware of problems specific to medical domain such as 

medical abbreviations, medical noun phrases and medical negation. Finally, SAS suggests 
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the possible problem that generate the behavior of the target day based on the annotated 

CUI terms and their semantic types. For example, if an alarm is generated in the target day, 

the email message to the caregiver could read: “Abnormal patient sleep pattern, possibly 

due to pain”. SAS uses all the available sensor history for each resident such that the search 

is conducted among the days with and without nursing notes. If no nursing note is found, 

we add a term ‘normal’ for days where there is no comment.  

 

Figure 10-5 Sensor data annotation system (SAS) diagram. 
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As MetaMapLite extracts the UMLS terms from the nursing notes, it may display 

duplicate terms due to their membership in different semantic classes. Hence SAS has to 

first, filter out the duplicate terms, and second, if a CUI term belongs to multiple semantic 

types then we use a priority of semantic types to make sure it belongs to only one that is the 

most related to our desired category. The reason behind the second decision is that we would 

like to have more symptoms or behaviors than clinical attributes. Out of the 128 UMLS 

semantic types, we only selected 32 that we believed could be linked to monitoring elderly. 

The selected UMLS semantic types together with their UMLS abbreviations We focus on 

‘sosy: Sign or Symptom’, ‘dsyn: Disease or Syndrome’, ‘acty: Activity’, ‘menp: Mental 

Process’,’bdsu: Body Substance’, and ‘bhvr: Behavior’ as the highest priority. For example, 

‘sosy’ and ‘dysn’ denote a disease, while ‘acty’, ‘bhvr’, ‘menp’ and ‘blor’ can easily show 

the physical and mental activity of the resident.  
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Table 10-5 Selected ULMS semantic types 

 

 

 Dataset  
The pilot sensor datasets used in the paper are shown in Table 10-6 (the data from the 

old system) and Table 10-7 (the data from the new system). There is a total of 5810 sensor 

days with more than 5 million sensor hits, collected from twelve residents of TigerPlace.  

The content of the nursing notes is about various physical, social and mental health 

complaints included by the onsite nursing personnel in the resident’s EHR. From Tables 10-

6 and 10-7, we see that there are fewer days with notes than the total number of days 
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because, for some days, there were no nursing comments. On the other hand, some residents 

may have multiple comments per day depending on their health conditions. In this case, we 

merged all extracted terms for that day. 

Table 10-6 Dataset of the residents from our old system in Fig. 10-2 

Resident ID 1 2 3 

Total # Days  441 744 498 

# Days with Notes 38 21 135 

 

Table 10-7 Dataset of the residents from our new system in Fig. 10-3 

Resident ID 1 2 3 4 5 6 7 8 9 

Total # Days  599 164 478 349 592 406 423 533 583 

# Days with Notes 30 20 120 137 392 268 133 418 254 

 
 
 
 

 Evaluation Metrics and Experiment Setup 
Our goal is to detect days (events) in which the residents need to be assessed (referred to 

as an abnormal day). For each resident, we build a machine learning model because disease 

behavior is a subjective matter that differs from resident to resident. For instance, for some 

residents, several nighttime bathroom visits are considered normal whereas multiple 

bathroom visits during the night for some residents who have more sound sleep patterns 

during the night are considered as an abnormal event. We used the extracted terms from the 

nurses’ notes, and we impute the term normal for all days with no notes found. We 

performed two types of experiments: one in which we try to predict the semantic type of the 

annotation (e.g., is this a symptom or a medication change?) and another in which we try to 
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predict the exact UMLS terms (e.g., pain, Lisinopril). Then, we compute the precision and 

recall using (1) and (2). The following evaluation metrics are applied in our experiments: 

p

p p

t
Precision

t f



                                                     (1) 

Re
p

p n

t
call

t f



                                                                   (2) 

where, tp is the number of true positives, tn is the number of true negatives, fp is the number 

of false positives, and fn is the number of false negatives. 

To explain the process of computing the precision and recall from the semantic type or 

the terms, we present an example. Assume day 1 has the following terms: Day1= {T7, T9, 

T17, T17, T22, T33, T33, and day X (or a group of days where their terms concatenated 

together) has the following terms: Day X= {T18, T22, T26, T26, T28, T33, T33, T34, T35, 

T35, T35, T35, T35}. Using Table 10-8 below and equation 1 and equation 2, we get the 

following:  

Precision: 3/ (3+10) =3/13 

Recall: 3/ (3+4) =3/7 

Table 10-8. fp, tn, and fn calculation 

 10(FP) 

4(FN) 3(TP) 

 

 Experimental Results  
To investigate the performance of the proposed sensor data annotation methodology 

(SAS), we use the two TigerPlace datasets shown in Table 10-6 and Table 10-7. We mention 

that the fact that the dataset are quite different shows that our methodology is robust. We 
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compare the results to the approach in [35] that uses a 48-dimensional vector to represent 

the sensor sequence of a day. The first 24 dimensions are the hourly accumulated motion 

sensor hits and the other 24 dimensions are the hourly sum of the restlessness (in seconds) 

from the bed sensor. We conducted a separate experiment on each resident to test the 

performance of our algorithms for annotating a day with UMLS concepts from the nursing 

notes. The reason behind resident-based experiments is that, typically, mathematical models 

(such as classifiers, algorithm parameters, etc.) for behavior recognition based on non-

wearable sensors are not transferrable from one person to another, due to different disease-

behavior associations that could be quite different between individuals.  

To shed more light into our methodology, we examine some case studies. The first case 

is from resident 8 in Table 10-7. On 12/18/2015 the resident has the following nursing note: 

“The resident wasn't feeling well last night and complaining of SOB. He/she did not want 

to go to the ER last night. He/she is feeling better this morning. He/she received some 

guidelines from cardiologist's nurse regarding when to go to the ER if necessary: 1) HR 

120+, 2) SOB, and 3) chest pain. His/her cardiology appointment is Wed. Feels he/she went 

into A. Fib. and recovered. Resident has nitro tabs; will take if experiencing chest pain. I 

assisted him/her with putting on compression hose, pants and socks/shoes”. After parsing 

the note, we get the following semantic types and CUI’s: “menp:Feeling; sosy:Chest Pain; 

clna:Chest pain; sosy:SOB;”. The most similar day has the following comment: “Resident 

just came back from VA ER following assessment for fluid in legs, especially thighs, 

weakness, joint pain. ER told the resident he/she is having SE of Tamiflu he took for 2 days. 

ER told him he/she would recover better at home due to so many people with flu, pneumonia, 

etc in hospital and sent home with Tylenol and Guifenasin. Assisted to BR and back to bed. 
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Started to undress. Nurse came in to finish undressing. Had only gotten his/her coat off and 

shirt off. Very slow and weak.” The semantic types and the CUI’s are: “bpoc:Legs; 

sosy:weak; bdsu:FLUID; sosy:joint pain; sosy:weakness; acty:assessment; blor:back; 

blor:thighs; dsyn:flu; bpoc:coat”. We can see that both notes convey a medical situation 

where the resident needs to be assessed. Therefore, inferring sosy (Sign or Symptom), dsyn 

(Disease or Syndrome) in general or pain in particular, would be a good annotation for the 

12/18/2015 day. 

The second case is from resident 1 in Table 10-7 on 01/11/2014 where he/she had the 

following nurse comment: “came to nurse station wanting something for cough. said didn’t 

sleep well, slept in chair because every time he/she laid down, he/she would have a coughing 

fit. I called Nurse and she said he/she can go to urgent care if he/she likes to make sure 

he/she doesn't have pneumonia”. The parsed semantic types and the extracted terms are: 

{acty:Fit; sosy:fit; dsyn:Pneumonia; orgf:Sleep; sosy:Coughing; sosy:Cough}. The most 

similar days have the following notes along with their semantic types and ULMS terms: 1) 

“Pt states he/she is feeling better. Lungs CTA. Productive cough, sputum clear. Afebrile” 

and {sosy:Productive cough; fndg:Clear;} 2) “Pt states he/she has had a nasal cold for 

approx 1 week. Lungs CTA. Afebrile. Denies SOB. Pt may take Guafenesin for drainage. 

Instructed pt to return to clinic if worsens.” and {bdsu:Drainage; bpoc:Nasal; dsyn:Cold; 

bdsu:drainage; fndg:worsens}; 3) “having a temp during night and cough worse. I requested 

nurse make SNV to assess him/her. He/she is up and dressed. States she/he had to sleep on 

three pillows last night to keep from coughing and had temperature. States had several 

coughing episodes that just couldn't stop coughing. L lung clear but has rhonchi and slight 

wheeze throughout R lung fields today which had been clear. SN called Dr. X office to try 
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to get an appointment with Someone there today” and {fndg:worse; sosy:wheeze; 

topp:TEMP; acty:stop; bpoc:lung; blor:back; sosy:coughing; sosy:cough; fndg:clear}. It is 

clear that all the most similar days have similar note content about cough and that can be 

inferred from both semantic types (sosy and dsyn) or from the CUI terms (“cough” and 

“cold”). 

The third case is from resident 6 in Table 10-7 on 09/25/2014 with the following note, 

semantic types and the CUI terms: “Pt states the resident fell outside church on sidewalk, 

face first 2 days ago. States he/she is very sore in R rib area and it hurts when he coughs. 

States it is not difficult to breathe.  Vision clear and unchanged. Denies headache. Very 

small bruise on R mid rib area. Small scabs present on chin, lip and R forehead. Alert and 

oriented. Walking as usual. Took Ibuprofen this am with min results. Appt set up today with 

Dr. X at Y Clinic at 2:20pm for assessment. Pt will ride TP van. DON notified.” and 

extracted terms {sosy:headache; fndg:fall; fndg:church; acty:assessment; sosy:sore; 

blor:chin; bpoc:rib; fndg:bruise; fndg:clear; bpoc:lip; blor:forehead; fndg:alert; 

fndg:difficult; clna:alert; sosy:sore; fndg:present; blor:face; fndg:green; fndg:unchanged; 

fndg:very small}. The most similar day has the following note along with the semantic types 

and the CUI terms: “resident came by office following fall yesterday while out to Mass for 

wife at X Center. Has scab over several small lacerations, one on R side of eye temple area, 

one on R side of lower lip and one on R side of nose.” and extracted terms {bpoc:eye; 

sosy:mass; fndg:center; blor:temple; bpoc:nose; blor:temple; fndg:fall; bpoc:lower lip}. In 

this case we can see that both days are related to the resident condition after a fall which can 

be inferred to the target day. Fall detection is one of our top priority alerts in our monitoring 
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system, as many falls are not reported or detected, so when one of the inferred CUI terms is 

“fall”, an alert could be generated to monitor the resident’s activity in more detail. 

After presenting three case studies that explain our approach, we run the proposed system 

on each resident in Table 10-6 and Table 10-7. For each day in each column in Table 10-6 

and Table 10-7, we find the K most similar days. We compare the semantic types and the 

CUI terms of the target day with the sematic types and the CUI’s of the K most similar days 

by measuring the precision and recall (PR) values using formulas (1) and (2). After 

computing the PR values for all the days, we find the average values which represents one 

point in the PR curve. Then, we vary K and find the average PR value for all possible K 

values to generate the graphs in Fig. 10-6. High precision means you found most of the 

semantic types (terms) in the target day from the K nearest days with less false positives 

(requires fewer neighbors). High recall means you matched most of the semantic types of 

the target day (requires more neighbors). 

The PR curves for the residents in Table 10-6 are shown in Fig. 10-6 where semantic 

types are used in computing the PR values. The PR curves of the resident in Table 10-7 are 

displayed in Fig. 10-7. We can see that as number of neighbors increases, the precision 

decreases and the recall increases because the true positive increases (matching more 

semantic types of the target day) and the false positive increases (inferring terms that do 

not match the target day’s terms). Resident 3 in Fig. 10-6 has the lowest PR values 

compared to residents 1 and 2 because most of his data has consecutive days with nursing 

notes, which makes it harder to annotate them with high PR values. In addition, resident 3 

uses a walker which reduces the variety between his routines in normal days and days 

where there are health-related issues.  
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Fig. 10-7 displays the results of the residents in Table 10-7. The youngest, and more 

active, resident has more variation among his/her daily routines, which makes it easier for 

our system to find a meaningful annotation. It can be noticed that our measure outperforms 

the measure in [35] in all the residents in Fig. 10-6 and Fig. 10-7. These results show a 

great improvement over the approach in [35] where each day was represented using the 

hourly sum of the firings of sensors hits during the entire day, and hence, where the identity 

of the daily activities was not preserved.  

 

 

Figure 10-6 Precision-Recall curves using the semantic types of the residents in Table 10-6: a) 

resident 1, b) resident 2, and c) resident 3, where measure 1 is the measure in [35] and our measure. 
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In Fig. 10-6 and Fig. 10-7, the semantic types are used to measure the PR values. Using 

the CUI terms to annotate a day leads to more precise description. Therefore, we run the 

same experiment on some of the residents in Table 10-7. Fig. 10-8 shows the PR curves 

for residents 1, 2, 3, 4, 7, and 8. Comparing them with the curves in Fig. 10-7, we see a 

decrease in the PR values due to the variety of the CUIs as compared to the semantic types, 

which represents the main categories. If the resident notes include enough clinical 

information, then annotating with CUI terms makes more sense. However, for a resident 

with multiple health issues and a variety of less specific nursing notes, annotating with 

semantic types makes more sense.  
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 Conclusion  
In this paper, we presented a framework for health pattern (illness or activity) prediction 

using sensor networks in eldercare employing a context-preserving measure. The health 

patterns were described by UMLS concepts that were extracted from nursing notes using 

MetaMapLite, an NLP tool provided by National Library of Medicine. Our unique nursing 

EHR that captures both sensor and nursing clinical information for TigerPlace residents 

 
Figure 10-7 Precision-Recall curves using the semantic types of the residents in Table 10-7: a) resident 1, 

b) resident 2, c) resident 3, d) resident 4, e) resident 5, f) resident 6, g) resident 7, h) resident 8, and i) 

resident 9, where measure 1 is the measure in [35] and our measure is the measure. 
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made possible the association of nursing notes to sensor sequences. We presented three case 

studies where our system annotated the days with ULMS concepts (semantic types and CUI 

terms) that convey the same information as the available nursing notes on those days. 

Comparing the system annotation with the available nursing notes shows the effectiveness 

of our system in informing clinical personnel of resident medical problems. Also, we tested 

our framework on two datasets that consisted, overall, of 5810 days of sensor data with 1966 

days with nursing notes. We compared our results with an approach that uses the hourly 

accumulated motion sensor hits and the hourly sum of the restlessness (in seconds) from the 

bed sensor. PR curves were used as the evaluation metric where our measure outperforms 

an earlier measure because it preserves the context of daily routines. The proposed 

framework will be integrated into the existing alert system in TigerPlace to detect abnormal 

days by identifying early functional changes reflected in deviations from daily routines. 
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Figure 10-8. Precision-Recall curves using the CUI terms of the residents in Table 10-7: a) resident 
2, b) resident 1, c) resident 3, d) resident 7, e) resident 4, and f) resident 8, where measure 1 is the 

measure in [35] and our measure is the measure 
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Chapter 11: Conclusions and Future Work  

Streaming clustering, directed by change detection, can identify structures in online data 

whereas traditional batch approaches fail. Two versions of streaming clustering algorithms 

(MUSC1 and MUSC2) are developed and tested with synthetic and real-life datasets. 

Incremental cluster validity indices (iCVIs) provide an unsupervised method for 

monitoring the performance of online clustering algorithms. We discussed how iCVIs can 

be used to understand the performance of online clustering algorithms with respect to: (i) 

the appearance of new emerging clusters; (ii) how the clustering algorithm reacts to outlier 

data samples and evolving clusters, and (iii) the effect of clusters size on the iCVIs results. 

We also examined the ability of iCVIs to monitor the process of a streaming clustering 

algorithm to correctly identify new structures, and to properly handle outliers, in data with 

large dimensionality and large number of samples. We also showed that Random 

projections can be applied on the data in a streaming fashion to ameliorate the issues caused 

by distance calculations in very high dimensional spaces.   

The data collected from in-home sensors in 110 elderly residents’ apartments as part of 

an NIH-NLM project are another example of streaming data where the activity of the 

residents are captured temporally using motion and bed sensors. The goal here is to apply 

temporal data analysis techniques to capture early signs of illness. We developed a novel 

sequence-based representation to model daily activity of a resident. Then, we normalized 

the sequences and built a histogram to represent the daily activity of each resident. This 

representation enabled us to measure the similarity between different days. Using the 

similarity between previous days of a resident and his/her EHR data, we developed an 

annotation framework, which provides reasons why a specific day is abnormal from the 



 

227 
 

correlation between current sensor and EHR data. We implemented our annotation system 

in 110 elderly residents’ apartments as part of an NIH-NLM project to produce annotations 

for each day with a health alert. It has been running in our database for around one year 

and a half.  

Our immediate next step is to investigate whether the annotation framework can help 

the nurses in monitoring the in-home sensor data. To this end, we are working to develop 

a deep learning-based annotation system and to compare the performance with our existing 

annotation system. We are also planning to make the multi-dimensional alert system in 

Chapter (9) live in our server and compare its performance with the existing one-

dimensional alert system. For the streaming clustering, another Ph.D student at the lab is 

already using it for early warning alert system, which is a suitable application for it.
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