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DYNAMIC ANALYSIS OF COMPLEX PANEL COUNT

DATA

Yuanyuan Guo

Dr. (Tony) Jianguo Sun, Dissertation Supervisor

ABSTRACT

Panel count data occur in many fields including clinical, demographical and in-

dustrial studies and an extensive literature has been established for their regression

analysis. However, most of the existing methods apply only to the situations where

both covariates and their effects are constant or one of them may be time-dependent.

In the first part of this dissertation, we consider a situation where both covariates and

their effects may be time-dependent and an estimating equation-based approach is

developed for estimating those time-varying effects. In the method, B-spline functions

are employed to approximate time-dependent coefficients and the asymptotic prop-

erties of the proposed estimators are established. To assess the performance of the

proposed approach, an extensive simulation study is conducted and suggests that it

works well in practical situations. An application to the China Health and Nutrition

Survey (CHNS) study is provided.

In practice, there could exist more than one type of event of interest, such as

two types of tumor recurrence, leading to multivariate panel count data. The second

part of this dissertation considers marginal mean model for multivariate panel count

data with time-dependent coefficient and covariate effects, which has limited previous

xi



research. Based on the conditional estimating equation method developed for time-

dependent covariates, we approximate the coefficients by B-splines, hence allow both

coefficients and covariates to be time-dependent. Simulation studies show that the

proposed estimation procedures work well for practical situations. The methodology

is again applied to the China Health and Nutrition Survey (CHNS) study.

When we consider time-varying covariates and coefficients effects, most of the pre-

vious study focused on the proportional mean model because the likelihood function

under the rate model involves intractable integration. However, the rate model is

more realistic and efficient. Hence, in the third part of this dissertation, we pro-

pose a semi-parametric MLE method under the rate model for panel count data

with time-dependent covariates and time-varying effects. B-spline functions are em-

ployed again to approximate time-dependent coefficients and an efficient Expectation-

Maximization-type algorithm is developed to overcome the computational difficulty.

The resulting estimators are shown to be consistent and asymptotically efficient.

Monte Carlo simulation studies demonstrate that the proposed method enjoys desir-

able finite-sample properties. An application to The Young Women’s Project (YWP)

is provided.
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Chapter 1

Introduction

1.1 Introduction to Panel Count Data

Event history studies concerning some recurrent events are often conducted in many

fields, including clinical, demographical and industrial studies. For the situation, two

types of data commonly occur, recurrent event data and panel count data (Cook and

Lawless (2007); Sun and Zhao (2013)). The former means that all study subjects

can be observed or followed continuously and thus one has complete data on the

occurrences of the event of interest. In contrast, the latter means that study subjects

can be observed only at discrete time points and only incomplete information is

available on the occurrences.

A large literature has been established for the analysis of panel count data and

in particular, the pseudo-likelihood approach is often used for their regression anal-

ysis. For example, Zhang (2002), Wellner and Zhang (2007) and Zhu et al. (2017)

1



developed such procedures under the nonhomogeneous Poisson process assumption

for the underlying point process. Zhang and Jamshidian (2004) considered the same

problem with the use of the spline-based approach. Also Hua et al. (2014) proposed a

sieve maximum likelihood method under the Gamma-Frailty nonhomogeneous Pois-

son process assumption for the underlying point process.

1.2 Time-varying Coefficients and Covariates

In reality, it is apparent that one may face the situation that involves time-dependent

covariates and in which there also exist some time-varying covariate effects. A com-

mon example is that treatment effects may take some time to be effective and then

gradually disappear after some time. We can identify the similar pattern from the

China Health and Nutrition Survey (CHNS), in which it is naturally to assume that

mothers’ fertility desire may be affected by their income, locations, education levels

and health statues. Furthermore, those effects may change with ages of mothers and

may disappear after a certain age.

Although some estimation procedures have been developed for either time-varying

coefficients or covariates, they mainly focus on failure time data situations. For exam-

ple, Perperoglou (2013) and Perperoglou (2012) gave some B-spline-based methods,

and Tian et al. (2005), Cai et al. (2007), Yu and Lin (2010) and Lin et al. (2015)

proposed some kernel-weighted likelihood methods. In addition, Sun et al. (2009) dis-

cussed regression analysis of multivariate recurrent event data with time-dependent

covariate effects. Both Zhao et al. (2018) and Wang and Yu (2021b) considered the

situation of time-varying coefficients and proposed some pseudo-likelihood methods

2



for estimation for panel count data. In their methods, the former used B-spline

function approximation and the latter employed local polynomials.

One drawback of these methods is that they only apply to the situation where ei-

ther covariates or their effects are constant. To address this, in this dissertation,

we will discuss regression analysis of panel count data that involves both time-

dependent covariates and time-varying covariate effects and propose some spline-

based approaches.

1.3 Multivariate Panel Count Data

Multivariate panel count data arise in studies involving several types of recurrent

events in which patients are examined only at periodic follow-up assessments. In

such settings, observations are taken at several distinct time points and only the

number of different events that occur between observation times is known; no infor-

mation is available on subjects between the observation time points. This frequently

happens in prospective cohort studies, population-based epidemiological studies, re-

liability studies, and tumorigenicity experiments, in which, it is either impossible or

not practical to maintain continuous observation of subjects. The second part of this

dissertation discusses analysis of multivariate panel count data.

An common example arises in tumorigenicity experiments when several types of

tumors can occur together and are of interest. In He et al. (2007), they consid-

ered another example arising from a cohort study of patients with psoriatic arthritis

conducted at the University of Toronto Psoriatic Arthritis Clinic where the event of

interest is the development of joint damage. Clinicians are interested in damage as

3



measured by radiographic changes as well as loss in function as detected by functional

examination, and these constitute the 2 types of events. We consider a third example

arising from the China health and nutrition study(CHNS), which is an international

collaborative project between the Carolina Population Center at the University of

North Carolina at Chapel Hill and the National Institute for Nutrition and Health

at the Chinese Center for Disease Control and Prevention (CCDC). The number

of pregnancy and marriage are recorded for each patient longitudinally, which yield

multivariate panel count data.

Futhermore, as mentioned before, the time-varying coefficient and covariate effects

situation should be considered. Still take the CHNS data as the example, when we

estimate the effect of mothers’ education levels, they would change with age of the

mother, and their effects may disappreare after some ages. To deal with this problem,

we develop a marginal mean model of multivariate panel count data to involve time-

dependent covariates and in which there also exist some time-varying covariate effects,

which will be introduced in Chapter 3 in detail. By results in Section 3.6, we can

found the effect of locations and education levels are varying with age of mothers,

and their covariate effects disappeared after some ages.

For univariate panel count data, as introduced before, a more comprehensive re-

view of the existing statistical methods for panel count data can be referred to the

book of Sun and Zhao (2013). Recently, more models and estimation procedures

have been developed including Lu et al. (2007); Lu et al. (2009); He et al. (2008);

Zhao et al. (2013); Zhao et al. (2012). For multivariate panel count data, He et al.

(2007) presented a class marginal mean models and developed estimating equation

methods. Li et al. (2011) developed semiparametric transformation models for mul-

4



tivariate panel count data with dependent observation process. Zhao et al. (2013)

considered regression analysis of such multivariate data in the presence of a terminal

event. Futhermore, Zhang et al. (2013) proposed a robust joint model for multivari-

ate panel count data with informative observation processes. Besides, nonparametric

comparison procedures of multivariate panel count data were developed by Zhao et al.

(2014).

However, the aforementioned approaches for panel count data are based on con-

stant coeffcients and covariates assumption. As mentioned before, this assumption

may be often unrealistic in practice. To deal with such problems, for univariate

panel count data, He et al. (2017) developed a semiparametric partially linear vary-

ing coeffcient models. Zhao et al. (2018) and Wang and Yu (2021b) analyzed the

time-varying coeffcient model by B-splines and local linear expansion respectively.

To our best knowledge, there exists no related literature about both time-varying

coeffcients and covariates situation for multivariate panel count data. Thus, it is

necessary to develop a B-spline approximation based method for multivariate panel

count data in Chapter 3.

1.4 Two Different Fomulations: Mean Model vs

Rate Model

Statistical methods for panel count data usually focus on studying the relationship of

covariates and the underlying recurrent event processes N (t), which represents the

cumulative number of events occurrence up to time t. Many studies considered a

semi-parametric proportional model of the mean function of N (t) conditionally on a

5



p-dimensional possibly time-dependent covariates X (t) as

E [N (t) |X (t)] = Λ (t) exp
(
βTZ

)
. (1.1)

In the above, β is a p-dimensional vector of regression coefficients, and Λ (t) is an

unspecified increasing function. As introduced before, Hu et al. (2003) and Sun

and Wei (2000) proposed to estimate β by an estimating equation method based on

model (1.1). Lu et al. (2009) used the monotone B-spline as basis to estimate Λ (t) by

the two likelihood-based methods proposed in Wellner and Zhang (2007). He et al.

(2017) discussed nonlinear interactions between covariates, which is in the form of

the possibly varying coefficients for the mean function of the counting processes.

Futhermore, as claimed in Sections 1.2 and 1.3, all the studies mentioned above

are based on mean model assumed that covariates and/or their corresponding effects

are time-independent. Nevertheless, it is possible that they vary along with time. For

example, there exist interactions between time and baseline covariates or biomarkers

as covariates change over time, and their effects may vary over time, too. Based on

model (1.1), Li et al. (2010) and Li et al. (2013) considered a semi-parametric trans-

formation model with time-dependent covariates and proposed estimating equation

methods; both Zhao et al. (2018) and Wang and Yu (2021b) considered the situation

of time-varying coefficients in panel count data and proposed some pseudo-likelihood

methods for estimation. In their methods, the former used B-spline function approx-

imation and the latter employed local polynomials.

To the best of our knowledge, all methods analyzing panel count data with time-

dependent effects are based on model (1.1). However, one drawback of model (1.1)

is that, when β or Z fluctuate, it is hard to satisfy the non-decreasing property

6



of the mean function in model (1.1). Moreover, even though the valid statistical

methods can always induce estimates of β and µ such that the left hand side of

model (1.1) is non-decreasing, when we predict the mean function of a new subject,

there is no guarantee that the predicted mean function is non-decreasing if β or Z is

time-dependent. Therefore, we consider an alternative similar semi-parametric model

based on the rate or intensity function of N (t), that is

E [dN (t) |W (t) , Z (t)] = exp
(
γTW (t) + βT (t)Z (t)

)
dΛ (t) . (1.2)

Here, Λ (t) is an unspecified non-decreasing function , γ = (γ1, ..., γp1)
T and β(t) =

(β1(t), ...,

βp2(t))
T represent constant and time-dependent coefficient effects, respectively. Model

(1.2) only requires its right hand side to be positive. Hence it is a more flexible and

realistic model to incorporate time-dependent effects in inference. Model (1.1) and

model (1.2) are equivalent when covariates and their effects are time-independent

over time while they are generally different when covariates and/or their effects are

time-varying.

To efficiently estimate γ and β, in the third part of this dissertation, we consider

a maximum likelihood estimation method under the rate model (1.2). B-spline func-

tions are used again to approximate time-varying coefficient effects β(t). Here, to

overcome difficulties in calculation and maximize the likelihood function efficiently,

we develop an Expectation-Maximization (EM) algorithm (Dempster et al., 1977)

which circumvents the direct integration and reduces computational burden.

7



1.5 Outline of the Dissertation

The remainder of this dissertation will be organized as follows. In Chapter 2, we

consider the estimating equation method with B-spline approxiamtion to deal with

the time-varying coefficients and covariates for univariate panel count data. We first

introduce model and notation for the proposed method. Then we will introduce the

detailed estimation procedure. As discussed above, most previous methods cannot be

directly applied to the desired case. We therefore propose a B-spline approximation

based estimating equation method to enable estimation. We rigorously establish the

consistency, rate of convergence and asymptotic normality of the proposed method. A

simulation study shows the performance of the proposed method. An application to

the China Health and Nutrition Survey(CHNS) study illustrates the proposed method

in practice.

Chapter 3 still considers the time-varying coefficient and covariates, but for mul-

tivariate panel count data. Similarly to the method in Chapter 2 for univariate

panel count data, an marginal estimating equation is constructed to combine with

the B-spline approximation, which can be used to infer the dynamic feature of the

multivariate panel count data. The consistency, rate of convergence and asymptotic

normality of the proposed method are provided. Besides, numerical studies are car-

ried out to illustrate the finite-sample properties of the proposed method. We then

discuss the application of the proposed method to the CHNS.

Chapter 4 discusses the time-varying coefficient and covariate effects situation.

However, we utilize a more flexible and efficient semi-parametric MLE method for

inference. We develop the asymptotic properties of the estimators from the proposed

method. An extensive simulation shows the finite-sample properties of the estima-

8



tors. An application to The Young Women’s Project (YWP) demonstrates that the

proposed method works well in practice.
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Chapter 2

Dynamic Analysis of Univariate
Panel Count Data with Mean
Model

2.1 Introduction

As described in Section 1.2, panel count data are common in many areas. However,

there exists little research on the estimation of both time-varying coefficients and

covariates. Most previous research on time-varying effects mainly focus on failure

time data situations. For example, Perperoglou (2013) and Perperoglou (2012) gave

some B-spline-based methods, and Tian et al. (2005), Cai et al. (2007), Yu and Lin

(2010) and Lin et al. (2015) proposed some kernel-weighted likelihood methods. For

panel count data, both Zhao et al. (2018) and Wang and Yu (2021b) considered the

situation of time-varying coefficients and proposed some pseudo-likelihood methods

for estimation. In their methods, the former used B-spline function approximation

10



and the latter employed local polynomials.

One drawback of these methods is that they only apply to the situation where

either covariates or their effects are constant. To address this, in this chapter, we will

discuss regression analysis of univariate panel count data that involves both time-

dependent covariates and time-varying covariate effects and propose some spline-

based approaches.

The remainder of this chapter is organized as follows. After introducing some

notation and the assumptions that will be used throughout the chapter, an estimating

equation procedure is proposed in Section 2.2 for estimation of covariate effects. In the

method, the conditional mean model is employed for the underlying recurrent event

process and B-spline functions are used to approximate time-varying covariate effects.

The asymptotic properties of the proposed estimators, including the consistency and

asymptotic distribution, are established in Section 2.3. Section 2.4 presents some

results obtained from an extensive simulation study conducted to assess the finite

sample performance of the proposed method and they suggest that it works well for

practical situations. In Section 2.5, we apply the proposed approach to the data

arising from the aforementioned China Health and Nutrition Survey(CHNS), and

Section 2.6 gives some discussions and concluding remarks.

2.2 Estimation of Time-varying Covariate Effects

Consider a recurrent event study consisting of n independent subjects and let Ni(t)

denote the underlying recurrent event process representing the total number of the

occurrences of the recurrent event of interest up to time t for subject i. Assume that

11



Ni(t) is potentially observed only at 0 < ti,1 < · · · < ti,mi < τ and define H∗i (t) =∑mi
j=1 I(ti,j≤t), the underlying observation process. In practice, for each subject, there

usually exists a following or stopping time Ci. Define Hi(t) = H∗i {min(Ci, t)}, the

real observation process on the ith subject. That is, we only have panel count data

and Ni(t) is observed only at the time points where Hi(t) jumps, i = 1, ..., n.

For each subject, suppose that there exist two vectors of covariates denoted by

Wi = (Wi1, ...,Wip1)
T and Zi = (Zi1, ..., Zip2)

T , which may be time-dependent. The

former represents the covariates that only have constant effects, while the latter de-

notes the covariates that may have time-varying effects. To describe the covariate

effects, we assume that given Wi and Zi, the recurrent event process Ni(t) follows

the conditional multiplicative mean model

E {Ni(t)|Wi(t),Zi(t)} = Λ(t) exp
{
γTWi(t) + βT (t)Zi(t)

}
. (2.1)

In the above, Λ(t) denotes an unknown baseline mean function, and γ = (γ1, ..., γp1)
T

and β(t) = (β1(t), ..., βp2(t))
T represent constant and time-dependent coefficients,

respectively. In the following, we will assume that given Wi and Zi, Ni(t) and Hi(t)

are independent and some comments on this will be given below.

For estimation of γ and β(t), let B and Mj denote the parameter spaces for γ

and βj, respectively, j = 1, . . . , p2, and assume that B is a compact subset of Rp1

and M0j ⊆ L2 ([0, τ ]). Define M =
∏p2

j=1M0j and Θ = B ×M. Note that due

to the dimension of M, the estimation may not be easy and to deal with this, by

following others, we propose to employ the sieve approach to first approximate β(t)

by B-spline functions. Specifically, let T = {tj}mn+2l
j=1 with 0 = t1 = · · · = tl < tl+1 <

· · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ being a sequence of knots that partition
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[0, τ ] into Kn + 1 subintervals [tl+j, tl+j+1] for j = 0, . . . , Kn with Kn = O (nν) and

max0<j<mn |tj+1 − tj| = O (n−ν) for ν ∈ (0, 0.5). Define

Mnj =

{
βnj (t) = αj0 +

qn∑
k=1

αjkBk (t) = BT
n (t)αj, ‖αj‖1 < Mn

}
,

the class of B-splines of order l with the knots sequence T . In the above, Mn is some

large number with Mn →∞ as n→∞, qn = Kn+ l, Bn (t) = {1, B1 (t) , . . . , Bk (t)}T

is a class of B-spline basis, and αnj = (αnj0, αnj1, . . . αnjqn). DefineMn =
∏p2

j=1Mnj.

Then Θn = B ×Mn is a sieve space for the original parameter space Θ.

Under the sieve space Θn, by replacing β(t) by βn(t), model (2.1) can be rewritten

as

E {Ni(t)|Wi(t),Zi(t)} = Λ0(t) exp

{
γTWi(t) +

p2∑
j=1

(
BT
n (t)αnj

)
Zij(t)

}
= Λ0(t) exp

{
γTWi(t) +αTn Z̃i(t)

}
= Λ0(t) exp

{
θTXi (t)

}
. (2.2)

Here,

Z̃i(t) =
(
Zi1(t)BT

n (t) , Zi2(t)BT
n (t) , ..., Zip2(t)B

T
n (t)

)T
,

αn = (αTn1,α
T
n2, ...,α

T
np2

)T , Xi (t) =
(
WT

i (t) , Z̃T
i (t)

)T
, and θ = (γ,αn)T . Note that

model (2.2) involves only time-independent covariate effects. Thus for estimation of

θ, motivated by Hu et al. (2003), we propose to employ the estimating equation

1

n

n∑
i=1

∫ τ

0

Yi(t)Ni(t)
{
Xi (t)− X̄(t;θ)

}
dHi(t) = 0 . (2.3)

In the above, Yi(t) = I(Ci ≥ t) is the at-risk indicator and X̄(t;θ) = S1(t;θ)/S0(t;θ),
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where

Su(t;θ) =
1

n

n∑
i=1

Yi(t)X
⊗u
i (t) exp

(
θTXi(t)

)
dHi (t) ,

u = 0, 1, 2 for 0 ≤ t ≤ τ , with a⊗0 = 1, a⊗1 = a and a⊗2 = aaT for some vector a.

Let θ̂n denote the estimator of θ given by the solution to the equation (2.3). Then

one can estimate βj (t) by β̂j (t) = BT
n (t) α̂nj. In practice, sometimes one may also be

interested in estimating the baseline mean function Λ (t) and for this, it is apparent

that one natural estimator is given by the Breslow-type estimator

Λ̂(t, θ̂n) =
n∑
i=1

Yi(t)Ni(t)dHi(t)

nS0(t; θ̂n)
.

2.3 Asymptotic Properties

Now we will establish the asymptotic properties of the estimators proposed in the

previous section, including the consistency, convergence rate and asymptotic nor-

mality. For this, let ϑ = (γ,β,Λ) and ϑ0 = (γ0,β0,Λ0) denote the true value of ϑ.

Based on θ̂n, the estimator for ϑ is ϑ̂n =
(
γ̂, β̂n, Λ̂

)
. Also for convenience, let V (t) =(

WT (t) ,ZT (t)
)T

and redefine the parameter space Θ = A×M×F , where F denotes

the parameter space of Λ. Let Bd denote the collection of Borel sets in Rd and L2 [0, τ ]

the collection of Borel sets in L2 on [0, τ ]. Define B1 [0, τ ] = {B ∩ [0, τ ] : B ∈ B1},

Bd = B1 [0, τ ] × . . . ×B1 [0, τ ] and Ld2 [0, τ ] = L1 [0, τ ] × . . . × L1 [0, τ ]. Also define

the measure

υ1 (B1 ×B2 ×B3) =

∫
B3×B2

∫
B1

dE [Y (t)H (t)] dµZdµW
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for B1 ∈ B1 [0, τ ], B2 ∈ Lp22 [0, τ ] and B3 ∈ Lp12 [0, τ ], where µW and µZ are the

measures for W and Z; and µ1 (B1 ×B2) = υ1 (B1 ×B2 × Lp22 [0, τ ]). Alternatively,

let µV = µZ × µW , we can rewrite υ1 (B1 ×B2 ×B3) as

υ1 (B1 ×B4) =

∫
B4×B1

dE [Y (t)H (t)] dµV

for B1 ∈ B1 [0, τ ] and B4 ∈ Lp2 [0, τ ]; and µ1 (B) = υ1 (B × Lp2 [0, τ ]). Define the L2

metric d (ϑ1,ϑ2) on Θ as

d (ϑ1,ϑ2) =

(
‖γ1 − γ2‖

2
2 +

∫
‖β1 (u)− β2 (u)‖2

2 dµ1 (u) + ‖Λ1 − Λ2‖2
L2(µ1)

)1/2

.

To establish the asymptotic results, we need the following regularity conditions.

(C1) The observation process has the rate function E [dH∗ (t) |W(t),Z(t), C] = ω (t)

dt, where ω (t) is a bounded, nonnegative and continuous function on [0, τ ].

There exists a positive integer M0 such that Pr (H (τ) < M0) = 1. That is, the

total observation number is finite. Moreover, the support of ω (t) is [τ0, τ ] with

τ0 > 0 and Λ0 (τ0) > 0 for some constant τ0.

(C2) The measure µ1×µV is absolutely continuous with respect to υ1 and µ1 ({τ}) >

0.

(C3) The parameters space of Λ, F , consists of bounded non-decreasing functions in

L2 over [0, τ ].

(C4) The parameters space of β, M, is bounded and convex in L2([0, τ ]). Each

component of the true value of β (t), denoted by β0j (t), j = 1, . . . , p2, is con-

tinuously rth differentiable in [0, τ ].
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(C5) The parameter space of γ, A, is bounded and convex in Rd.

(C6) The covariate vector V (t) =
(
WT (t) ,ZT (t)

)T
is uniformly bounded over [0, τ ]

with the distribution µV .

(C7) Given V (t), t ∈ [0, τ ], C and N are independent. Besides, with probability 1,

inf
V(t),t∈[0,τ ]

Pr (C ≥ τ |V (t) = v (t) , t ∈ [0, τ ])

= inf
V(t),t∈[0,τ ]

Pr (C = τ |V (t) = v (t) , t ∈ [0, τ ]) > 0.

(C8) If γTW(t) +βT (t)Z(t) ≡ 0, t ∈ [0, τ ] with probability 1 for some γ and β, then

γ = 0 and β (t) = 0 for t ∈ [0, τ ].

(C9) The function M0 (V) =
∫
N (t) log (N (t)) dH (t) satisfies PM0 (V) <∞.

(C10) E [exp (C0N (t))] is bounded in [0, τ ] for some constant C0.

(C11) The true baseline mean function Λ0 is differentiable in [τ0, τ ]. Moreover, its first

order derivative has a positive and finite lower and upper bound in [τ0, τ ].

(C12) There exist η1 ∈ (0, 1) such that

aTVar (V (U) |U) a ≥ η1a
TE
(
VT (U) V (U) |U

)
a,

a.s. for all a ∈ Rp1+p2 , where (U,V) has distribution ν1/ν1 (R+ × V).

Note that conditions (C1) and (C7) are common on the observation schemes and

similar to the combination of C8, C10 and C11 in Lu et al. (2009). Condition (C2)

comes from the condition in Theorem 1 of Wellner and Zhang (2007) and Theorem
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1 of Lu et al. (2009), ensuring Λ̂ is bounded, and conditions (C6)-(C11) are common

assumptions in the semiparametric estimation. Also conditions (C2) and (C8) ensure

the identifiability of the semiparametric model and conditions (C9), (C10) and (C11)

are from conditions C4, C10 and C12 in Wellner and Zhang (2007). Condition (C12)

is needed to prove the convergence rate and can be justified by the arguments similar

to those in Wellner and Zhang (2007).

Theorem 1 (Consistency). Assume that the regularity conditions (C1)-(C9) given

above hold. Then we have that d
(
ϑ̂n,ϑ0

)
→ 0 in probability as n→∞.

Theorem 2 (Rate of Convergence). Assume that the regularity conditions (C1)-(C12)

given above hold. Then we have that

n
min

{
n

1−ν
3 ,nrν

}
d
(
ϑ̂n,ϑ0

)
= Op (1)

with the optimal rate Op(n
−r/(3r+1)) achieved at ν = 1/ (1 + 3r).

Note that the order of the optimal rate n−r/(3r+1) is slower than n−r/(2r+1) in Lu

et al. (2009) because the nonparametric parameter Λ is estimated by a step function

though β(t) is estimated by B-splines. Nevertheless, we can still derive the asymptotic

distribution of γ̂ with rate of convergence n−1/2. The next theorem establishes the

asymptotic normality of θ̂ in the form similar to He et al. (2017).

Theorem 3 (Asymptotic Normality). Assume that the regularity conditions (C1)-

(C12) given above hold and also (4r)−1 < ν < 2−1 with r > 1. Define H1 = {h1 :

h1 ∈ A, ‖h1‖ ≤ 1}, H2 = {h2 : h2 ∈ M, each component of h2 is of bounded total

variation.}, and H3 = {h3 : h3 is a fucntion with bouned total variation in [0, τ ] and
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h3(0) = 0} Then for some (h1,h2, h3) ∈ H1 ×H2 ×H3, we have that

√
n (γ − γ0)T h1 +

√
n

∫ τ

0

(β (t)− β0 (t))T dh2 (t)

+
√
n

∫ τ

0

(Λ (t)− Λ0 (t)) dh3 (t)→d N
(
0, σ2

)
,

where σ2 is given in the Appendix.

The proof of the results above is sketched in the Appendix. Note that similar to He

et al. (2017), we cannot find the explicit form of the asymptotic distribution because

the explicit forms of (h1,h2, h3) cannot be solved though exist. On the other hand,

by following Amorim et al. (2008), we can have the following ad hoc estimators for

the asymptotic covariance matrix of γ̂ and the pointwise asymptotic variance of β(t)

in t ∈ [0, τ ]. First the asymptotic covariance matrix of γ̂ − γ0 can be consistently

estimated by Âγ̂(t)−1B̂γ̂(t)Âγ̂(t)−1. Here Âγ̂(t) and B̂γ̂(t) are the top-left p1 × p1

sub-matrices of

Â(t) =
∂
∑n

i=1

∫ τ
0
Yi(t)Ni(t)

{
(X (t))− X̄(t;θ)

}
dHi(t)

∂θ

=
n∑
i=1

∫ τ

0

Yi(t)Ni(t)

{
−∂X̄(t;θ)

∂θ

}
dHi(t) ,

and

B̂(t) =

[
n∑
i=1

∫ τ

0

Yi(t)
(
Ni(t)− µ0(t) exp(θTXi (t))

) {
(X (t))− X̄(t;θ)

}
dHi(t)

]⊗2

,

18



respectively, where

∂X̄(t;θ)

∂θ
=
∂S̃1(t;θ)/S̃0(t;θ)

∂θ
= S̃2(t;θ)/S̃0(t;θ)− (S̃1(t;θ)/S̃0(t;θ))2 .

Furthermore, the asymptotic variance of β̂(t)− β0(t) for a given t can be estimated

by

Ω̂(t) = BT (t)
(
Âα̂(t)−1B̂α̂(t)Âα̂(t)−1

)
B(t),

where Âα̂(t) and B̂α̂(t) are the bottom-right p2 × p2 sub-matrices of Â(t) and B̂(t),

respectively. The numerical study in the next Section shows that these variance

estimators work well.

2.4 A Simulation Study

In this section, we present some results obtained from an extensive simulation study

conducted to evaluate the finite sample performance of the estimation procedure

proposed in the previous sections. In the study, we consider the situation of four

covariates with two having constant effects and two having time-varying effects. That

is, we have that p1 = p2 = 2. More specifically, we assume that W1(t) and Z1(t) are

time-dependent variables and generate them independently by setting them equal to

B1I(t ≤ V ) + B2I(t > V ). Here B1, B2 and V are generated independently from

the uniform distributions over (0, 0.5), (0.5, 1) and (0, τ) with τ = 1, respectively.

Furthermore, W2(t) and Z2(t) are assumed to be time-independent and generated

from the uniform distribution over (0, 1) independently.

To generate the observed panel count data, we first generate the observation times
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ti,j’s from the non-homogeneous Poisson process with the mean function 3 t + 4 and

the follow-up times Ci’s from the uniform distribution over (0.9τ , τ). Then given the

covariates and the real observation times, the observed data is generated by assuming

that

Ni (ti,j) = N∗i (ti,1) +N∗i (ti,2 − ti,1) + · · ·+N∗i (ti,j − ti,j−1) ,

where N∗i (ti,1) and N∗i (ti,j − ti,j−1) follow the Poisson distributions with the means

vi Λ0 (ti,1) e(γ
TWi(ti,1)+βT (ti,1)Zi(ti,1)) ,

and

vi Λ0 (ti,j) e
(γTWi(ti,j)+β

T (ti,j)Zi(ti,j)) − vi Λ0 (ti,j−1) e(γ
TWi(ti,j−1)+βT (ti,j−1)Zi(ti,j−1)) ,

respectively. In the above, the vi’s are assumed to follow the gamma distribution with

mean 1 and variance σ2. That is, Ni(t)’s are mixed Poisson processes. The results

given below are based on n = 300 with 1000 replications.

Table 2.1 presents the results on estimation of two time-independent coefficient

effects γ1 and γ2 obtained with Λ0(t) = 2t + 3, the use of cubic B-splines with 3

interior knots, and σ2 = 0 or 1. Here for the time-dependent coefficient effects, we

considere two settings with setting 1 being β1(t) = t and β2(t) = t2 and setting 2

being β1(t) = (sin(4πt)+4πt)/12 and β2(t) = (cos(4πt)+4πt)/12. The results include

the empirical bias (BIAS) given by the average of the estimates minus the true value,

the sampling standard deviation (ESD), the average of the estimated standard errors

(SE) and the 95% empirical coverage probability (CP). One can see that they suggest

that the proposed estimators seem to be unbiased and the variance estimates also
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appear to be appropriate. In addition, the results on CP indicate that the normal

approximation to the distribution of the proposed estimator γ̂ seems to be reasonable

too. Figure 2.1 gives the averages of the estimated β1(t) and β2(t) over 1000 equal-

spaced grid points on the time axis for the situation of σ2 = 1. For comparison, the

true curves are presented too and the results indicate that the proposed procedure

seems to yield unbiased estimates again. Furthermore, Figure 2.2 shows the average

of the estimated point-wise standard errors along with the point-wise sample standard

errors and indicates that the proposed method appears to give reasonable variance

estimates.

To assess the possible effects of the baseline mean function on the proposed es-

timation procedure, we repeat the study with σ2 = 0 except assuming setting 3

Λ0(t) =(sin(4πt) + 4πt)/2 or setting 4 Λ0(t) =(cos(4πt) + 4πt)/2, and the results

obtained on estimation of the two time-independent covariate effects γ1 and γ2 are

given in Table 2.2. Figures 2.3 and 2.4, similar to Figures 2.1 and 2.2, display the av-

erages of the estimated β1(t) and β2(t) and the estimated point-wise standard errors,

respectively, along with the true curves and the point-wise sample standard errors.

Again they suggest that the proposed estimation procedure seems to work well. We

also consider other set-ups, including different degrees of B-spline functions, different

numbers of interior knots and other types of covariates, and obtain similar results.
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2.5 Analysis of China Health and Nutrition Sur-

vey

In this section, we apply the methodology proposed in the previous sections to the

China Health and Nutrition Survey (CHNS), an international collaborative project

between the Carolina Population Center at the University of North Carolina at Chapel

Hill and the National Institute for Nutrition and Health at the Chinese Center for

Disease Control and Prevention (CCDC). Initiated in 1985, the survey was conducted

every 2 to 4 years and designed to examine the effects of the health, nutrition, and

family planning policies and programs implemented by national and local govern-

ments and to see how the social and economic transformation of Chinese society was

affecting the health and nutritional status of its population. The survey took place

over a 7-day period using a multistage, random cluster process to draw a sample of

over 11000 households with over 42,000 individuals participated in 15 provinces and

municipal cities that vary substantially in geography, economic development, pub-

lic resources, and health indicators. Villages and townships within the counties and

urban/suburban neighborhoods within the cities were selected randomly.

One objective of the survey is to assess the relationship between the number of

children and parents’ long-term income and wealth (Tian (2018); Oliveira (2016)).

For this, the information on the pregnancy of the female participants, that is, the

number of pregnancy, was collected. It is easy to see that due to the periodic follow-

up nature of the survey, only panel count data are available on the pregnancy process.

In addition, the information is available on four factors or covariates: whether the

mother came from urban or rural areas (urban = 0, rural = 1), the average monthly

wage last year, the completed years of formal education in regular school (0: No school
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- 36: 6 yrs. college or more), and the current health status (1 - Excellent, 2 - Good, 3 -

Fair, 4 - Poor). For the analysis below, we will focus on the 2537 female participants

with complete information on the four covariates described above, after removing

some subjects with apparent record errors. Among them, the average pregnancy

count is 1.416.

To apply the proposed estimation procedure, we first assume that all of the four

covariates have time-varying effects and Figure 2.5 presents the estimated covariate

effects with the use of 3 interior knots. The results suggest that the mothers’ location

seems to have a significantly positive relationship with the fertility and the effect

appears to increase along with the mothers’ age. In other words, the mothers from

rural areas are more likely to have more children compared to those from urban

areas. On the average monthly wage, the effects seem to change directions along

with or depend on the age of a mother. Specifically, it appears to have positive

effects on the fertility for young mothers but has no significant effects on middle age

mothers and then seems to have significantly negative effects on the fertility of old

mothers. In contrast, the mother’s education level and health status seem to have no

significant or only constant effects on the fertility. Note that one may not want to

pay much attention to the estimated effects at the end of study due to the sparsity

of the observed data.

Now we assume that only the location and average monthly wage have time-

varying effects, while the education level and health status have constant effects on

the fertility, based on previous results. Table 2.3 gives the estimated covariate effects

for the education level and health status with the use of 3, 5 or 7 interior knots.

The estimated time-dependent effects of the location and the average monthly wage
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based on 3 interior knots are presented in Figure 2.6 and the results with the use

of 5 or 7 interior knots are similar. One can see from Table 2.3 that the mothers’

education levels are significantly negatively correlated with the fertility rate and the

mothers with lower education levels tend to have more children. In contrast, the

health status level has positive effects on the fertility rate, and these results are

consistent with respect to the number of interior knots. The results given in Figure

2.6 are apparently similar to those given in Figure 2.5 and again indicate that the

mothers at rural areas have a higher fertility rate than those at urban areas and the

effect of the average monthly wage the fertility depend on the age of a mother.

2.6 Discussions and Concluding Remarks

In this chapter, we discussed regression analysis of panel count data with both time-

dependent covariates and time-varying covariate effects. For the problem, a spline-

based estimating equation procedure was developed and the asymptotic properties

of the proposed estimators were established. In the method, B-splines functions

were used to approximate the time-varying covariate effects and the method can be

easily implemented. An extensive numerical study was conducted and suggested that

the proposed method works well in practical situations. Also the usefulness of the

proposed estimation procedure was illustrated by applying it to the China Health and

Nutrition Survey through identifying some time-varying covariate effects.
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Table 2.1: Simulation results on estimation of γ1 and γ2 with Λ0(t) = 2t+ 3.
Setting Parameters True value BIAS ESD SE CP
σ2 = 0

Setting 1 γ1 0.5 -0.0001 0.0506 0.0481 0.945
γ2 0.5 0.0013 0.0529 0.0481 0.917

Setting 2 γ1 0.5 0.0011 0.0491 0.0450 0.921
γ2 0.5 0.0005 0.0489 0.0450 0.926

σ2 = 1
Setting 1 γ1 0.5 0.0094 0.2279 0.2086 0.931

γ2 0.5 0.0096 0.2366 0.2092 0.917
Setting 2 γ1 0.5 -0.0008 0.2188 0.2091 0.940

γ2 0.5 0.0032 0.2261 0.2090 0.914

Table 2.2: Simulation results on estimation of γ1 and γ2 with σ2 = 0.
Parameters True value BIAS ESD SE CP

Λ0(t) =(sin(4πt) + 4πt)/2
γ1 0.5 -0.0052 0.2514 0.2223 0.917
γ2 0.5 -0.0025 0.2537 0.2210 0.911

Λ0(t) =(cos(4πt) + 4πt)/2
γ1 0.5 0.0094 0.2407 0.2252 0.929
γ2 0.5 0.0116 0.2468 0.2238 0.925

# of interior knots Parameter Estimated effect SD 95% CI
3 γ1 -0.0211 0.0018 (-0.0246,-0.0177)

γ2 0.0322 0.0117 (0.0093. 0.0551)
5 γ1 -0.0208 0.0018 (-0.0243,-0.0173)

γ2 0.0330 0.0117 (0.0101, 0.0558)
7 γ1 -0.0209 0.0018 (-0.0244,-0.0174)

γ2 0.0330 0.0117 (0.0102, 0.0559)

Table 2.3: Estimated constant effects of the education level and health status for
CHNS.
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Figure 2.1: Simulation results on estimation of β̂1(t) and β̂2(t) with Λ0(t) = 2t+3 and
σ2 = 1, where, setting 1: β1(t) = t, β1(t) = t2; setting 2: β1(t) = (sin(4πt) + 4πt)/12,
β2(t) = (cos(4πt) + 4πt)/12.
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Figure 2.2: Simulation results on standard error estimation with Λ0(t) = 2t + 3 and
σ2 = 1, where, setting 1: β1(t) = t, β1(t) = t2; setting 2: β1(t) = (sin(4πt) + 4πt)/12,
β2(t) = (cos(4πt) + 4πt)/12.
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Figure 2.3: Simulation results on estimation of β̂1(t) and β̂2(t) with σ2 = 0, where,
setting 3: Λ0(t) =(sin(4πt) + 4πt)/2; setting 4: Λ0(t) =(cos(4πt) + 4πt)/2.
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Figure 2.4: Simulation results on standard error estimation with σ2 = 0, where,
setting 3: Λ0(t) =(sin(4πt) + 4πt)/2; setting 4: Λ0(t) =(cos(4πt) + 4πt)/2.
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Figure 2.5: Estimated time-varying effects of all four covariates (solid curves) and
corresponding pointwise 95% confidence intervals (grey curves).
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Figure 2.6: Estimated time-varying effects of the location and average monthly wage
(solid curves) and corresponding pointwise 95% confidence intervals (grey curves).
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Chapter 3

Dynamic Analysis of Multivariate
Panel Count Data with Mean
Model

3.1 Introduction

Multivariate panel count data arise in studies involving several types of recurrent

events in which patients are examined only at periodic follow-up assessments. This

chapter will discuss analysis of multivariate panel count data. Futhermore, as men-

tioned in chapter 2, the time-varying coefficient and covariate effects situation would

also be considered.

The remainder of this chapter is organized as follows. After introducing some

notation and the assumptions that will be used throughout this chapter, an estimat-

ing equation procedure is proposed in Section 3.3 for estimation when coefficients

and covariates effects are time-dependent simultanously for multivariate panel count
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data. In particular, marginal mean models are employed for the underlying counting

processes that characterize multivariate panel count data. B-spline functions are used

to approximate time-varying covariate effects. The corresponding asymptotic results

are established in Section 3.4. Section 3.5 presents some results obtained from an

extensive simulation study conducted to assess the finite sample performance of the

proposed method and they suggest that it works well for practical situations. In Sec-

tion 3.6, we apply the proposed approach to the data arising from the aforementioned

China Health and Nutrition Survey(CHNS), and Section 3.7 gives some discussions

and concluding remarks.

3.2 Model and Notation

Consider a recurrent event study that involves n independent subjects and suppose

that each subject may experience K different types of events. For subject i , let Nik(t)

denote the total number of type k events that have occurred up to time t, 0 ≤ t ≤ τ ,

where τ denotes a known constant representing the study length, i = 1, ..., n, k =

1, ..., K. Assume that Nik(t) is potentially observed only at 0 < ti,1 < · · · < ti,mi < τ

and defineH∗ik(t) =
∑mi

j=1 I(ti,j,k≤t), the underlying observation process. Also for each

i, suppose that there exists a positive random variable Ci representing the censoring

or follow-up time on subject i. Define Hik(t) = H∗ik{min(Ci, t)}, the real observation

process on the ith subject. That is, we only have multivariate panel count data and

Nik(t) is observed only at the time points where Hik(t) jumps, i = 1, ..., n, k = 1, ..., K.

For each subject, suppose that there may exist vectors of covariates denoted by

Wi = (Wi1, ...,Wip1)
T and Zi = (Zi1, ..., Zip2)

T which may be time-dependent. The
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former represents the covariates that only have constant effects, while the latter de-

notes the covariates that may have time-varying effects. They may affect the rate of

occurrence of type k events. Here, for the simplicity of presentation, we assume that

the follow-up time or observation period and the covariates that may affect Nik(t) are

the same for different types of recurrent events. The inference approach presented

below can be easily generalized to situations where Ci, Wi and Zi may differ for

different types of recurrent events. Define Yi(t) = I(t ≤ Ci), indicating if subject i is

at risk of experiencing the recurrent events at time t, i = 1, ..., n.

3.3 Estimation

For the effects of covariates on Nik(t), we assume that given Wi(t) and Zi(t) , the

marginal mean function of Nik(t) has the form

E {Nik(t)|Wi(t),Zi(t)} = Λk(t)exp
(
γTWi(t) + βT (t)Zi(t)

)
(3.1)

In the model above, Λk(t) is an unknown continuous baseline mean function, γ =

(γ1, ..., γp1)
T and β(t) = (β1(t), ..., βp2(t))

T represent constant and time-dependent

coefficients, respectively. In the following, we will assume that given Wi and Zi,

Nik(t) and Hik(t) are independent and some comments on this will be given below.

By following He et al. (2007), model (3.1) assumes that the baseline mean functions

can be different for different types of recurrent events, but the effects of covariates on

different types of recurrent events are common. The goal here is to estimate regression

parameters γ and β(t).

For estimation of γ and β(t), let B and Mj denote the parameter spaces for γ
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and βj, respectively, j = 1, . . . , p2, and assume that B is a compact subset of Rp1

and M0j ⊆ L2 ([0, τ ]). Define M =
∏p2

j=1M0j and Θ = B ×M. Note that due

to the dimension of M, the estimation may not be easy and to deal with this, by

following others, we propose to employ the sieve approach to first approximate β(t)

by B-spline functions. Specifically, let T = {tj}mn+2l
j=1 with 0 = t1 = · · · = tl < tl+1 <

· · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ being a sequence of knots that partition

[0, τ ] into Kn + 1 subintervals [tl+j, tl+j+1] for j = 0, . . . , Kn with Kn = O (nν) and

max0<j<mn |tj+1 − tj| = O (n−ν) for ν ∈ (0, 0.5). Define

Mnj =

{
βnj (t) = αj0 +

qn∑
k=1

αjkBk (t) = BT
n (t)αj, ‖αj‖1 < Mn

}
,

the class of B-splines of order l with the knots sequence T . In the above, Mn is some

large number with Mn →∞ as n→∞, qn = Kn+ l, Bn (t) = {1, B1 (t) , . . . , Bk (t)}T

is a class of B-spline basis, and αnj = (αnj0, αnj1, . . . αnjqn). Then βj (t) can be

approximated by βnj (t). Define Mn =
∏p2

j=1Mnj. Then Θn = B ×Mn is a sieve

space for the original parameter space Θ.

Under the sieve space Θn, by replacing β(t) by βn(t), model (3.1) can be rewritten

as

E {Nik(t)|Wi(t),Zi(t)} = Λk(t) exp

{
γTWi(t) +

p2∑
j=1

(
BT
n (t)αnj

)
Zij(t)

}
= Λk(t) exp

{
γTWi(t) +αTn Z̃i(t)

}
= Λk(t) exp

{
θTXi (t)

}
. (3.2)

Here,

Z̃i(t) =
(
Zi1(t)BT

n (t) , Zi2(t)BT
n (t) , ..., Zip2(t)B

T
n (t)

)T
,
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αn =
(
αTn1,α

T
n2, ...,α

T
np2

)T
, Xi (t) =

(
WT

i (t) , Z̃T
i (t)

)T
and θ = (γ, α)T . Note that

this model does not include time-dependent coefficients now.

Thus for estimation of θ, motivated by Hu et al. (2003) and He et al. (2007), we

propose to employ the estimating equation

UT (θ) =
1

n

K∑
k=1

n∑
i=1

∫ τ

0

Yi(t)Nik(t)
{
Xi (t)− X̄k(t;θ)

}
dHik(t) = 0 . (3.3)

In the above, Yi(t) = I(Ci ≥ t) is the at-risk indicator and

X̄k(t;θ) = S1k(t;θ)/S0k(t;θ),

where

Suk(t;θ) =
1

n

n∑
i=1

Yi(t)X
⊗u
i (t) exp

(
θTXi(t)

)
dHik (t) ,

u = 0, 1, 2 for 0 ≤ t ≤ τ , with a⊗0 = 1, a⊗1 = a and a⊗2 = aaT for some vector a.

Let θ̂n denote the estimator of θ given by the solution to the equation (3.3). Then

one can estimate βj (t) by β̂j (t) = BT
n (t) α̂nj. In practice, sometimes one may also be

interested in estimating the baseline mean function Λk (t) and for this, it is apparent

that one natural estimator is given by the Breslow-type estimator

Λ̂k(t, θ̂n) =
n∑
i=1

Yi(t)Nik(t)dHik(t)

nS0k(t; θ̂n)
.
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3.4 Asymptotic Results

In this section, we establish the asymptotic properties of the proposed estimator,

namely, the consistency, rate of convergence and asymptotic normality. For conve-

nience, let

(N·k(t), H·k(t),W(t),Z(t))

be the population version of (Nik(t), Hik(t),Wi(t),Zi(t)) for k = 1, . . . , K. Let

Λ = (Λ1,Λ2, . . . ,ΛK) denote the K−tuple of all K baseline functions. Then let

ϑ = (γ,β,Λ) and ϑ0 = (γ0,β0,Λ0) denote the true value of ϑ with Λ0 = (Λ01,

Λ02, . . . ,Λ0K). Based on θ̂n, the estimator for ϑ is ϑ̂n =
(
γ̂, β̂n, Λ̂

)
where Λ̂ =(

Λ̂1(t, θ̂n), . . . , Λ̂K(t, θ̂n)
)

. Also for convenience, let V (t) =
(
WT (t) ,ZT (t)

)T
and

redefine the parameter space Θ = A×M×F , where F = F1×· · ·×FK denotes the

parameter space of Λ with Fk being the parameter space for Λk.

Let Bd denote the collection of Borel sets in Rd and L2 [0, τ ] the collection of Borel

sets in L2 on [0, τ ]. Define B1 [0, τ ] = {B ∩ [0, τ ] : B ∈ B1}, Bd = B1 [0, τ ] × . . . ×

B1 [0, τ ] and Ld2 [0, τ ] = L1 [0, τ ]× . . .×L1 [0, τ ]. For k = 1, . . . , K, define the measure

υ1k (B1 ×B2 ×B3) =

∫
B3×B2

∫
B1

dE [Y (t)H·k (t)] dµZ × µW

for B1 ∈ B1 [0, τ ], B2 ∈ Lp22 [0, τ ] and B3 ∈ Lp12 [0, τ ], where µW and µZ are the

measures for W and Z. Alternatively, let µV = µZ × µW , we can rewrite υ1k(B1 ×

B2 ×B3) as

υ1k (B1 ×B4) =

∫
B4×B1

dE [Y (t)H·k (t)] dµV

for B1 ∈ B1 [0, τ ] and B4 ∈ Lp2 [0, τ ]; and µ0k (B1) = υ1k (B1 × Lp2 [0, τ ]), k = 1, . . . K.
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We further define

υ̃1 (B1 ×B4) =

∫
B4×B1

K∑
k=1

Λ2
0k (u) dυ1k (u, v)

and correspondingly µ̃0 (B1) = υ̃1 (B1 × Lp2 [0, τ ]). Define the L2 metric d (ϑ1,ϑ2) on

Θ as

d (ϑ1,ϑ2) =

(
‖γ1 − γ2‖

2
2 + ‖β1 − β2‖

2
L2(µ̃0) +

K∑
k=1

‖Λ1k − Λ2k‖2
L2(µ0k)

)1/2

.

To establish the asymptotic results, we need the following regularity conditions.

(C1) The observation process has the rate function

E [dH∗·k (t) |W(t),Z(t), C] = ωk (t) dt,

where ωk (t) is a bounded, nonnegative and continuous function on [0, τ ], for

k = 1, . . . , K. There exists a positive integer M0 such that Pr (H·k (τ) < M0) =

1 for all k = 1, . . . , K. That is, the total observation number is finite. Moreover,

the support of all ωk (t), k = 1, . . . , K, is [τ0, τ ] with τ0 > 0 and Λ0k (τ0) > 0 for

some constant τ0.

(C2) The measure µ0k × µV is absolutely continuous with respect to υ1k as well as

µ0k({τ}) > 0, for k = 1, . . . , K.

(C3) The parameters space of Λk, Fk, consists of bounded non-decreasing functions

in L2 over [0, τ ], for k = 1, . . . , K.

(C4) The parameters space of β, M, is bounded and convex in L2([0, τ ]). Each
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component of the true value of β (t), denoted by β0j (t), j = 1, . . . , p2, is con-

tinuously rth differentiable in [0, τ ].

(C5) The parameter space of γ, A, is bounded and convex in Rd.

(C6) The covariate vector V (t) =
(
WT (t) ,ZT (t)

)T
is uniformly bounded over [0, τ ]

with the distribution µV .

(C7) Given V (t), t ∈ [0, τ ], C and N are independent. Besides, with probability 1,

inf
V(t),t∈[0,τ ]

Pr (C ≥ τ |V (t) = v (t) , t ∈ [0, τ ])

= inf
V(t),t∈[0,τ ]

Pr (C = τ |V (t) = v (t) , t ∈ [0, τ ]) > 0.

(C8) If γTW(t) +βT (t)Z(t) ≡ 0, t ∈ [0, τ ] with probability 1 for some γ and β, then

γ = 0 and β (t) = 0 for t ∈ [0, τ ].

(C9) The function M0k (V) =
∫
N·k (t) log (N·k (t)) dH·k (t) satisfies PM0k (V) < ∞,

for k = 1, . . . K.

(C10) E [exp (C0N·k (t))] is bounded in [0, τ ] for some constant C0 for k = 1, . . . K.

(C11) The true baseline mean function Λ0k is differentiable in [τ0, τ ] for k = 1, . . . , K.

Moreover, the first order derivative of Λ0k has a positive and finite lower and

upper bound in [τ0, τ ], k = 1, . . . , K.

(C12) There exist η1 ∈ (0, 1) such that

aTVar (V (U) |U) a ≥ η1a
TE
(
VT (U) V (U) |U

)
a,
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a.s. for all a ∈ Rp1+p2 , where (U,V) has distribution υ1k/υ1k (R+ × V), k =

1, . . . , K.

Note that conditions (C1) and (C7) are common on the observation schemes and

similar to the combination of C8, C10 and C11 in Lu et al. (2009) for univariate

case. Condition (C2) comes from the condition in Theorem 1 of Wellner and Zhang

(2007) and Theorem 1 of Lu et al. (2009), ensuring each Λ̂k is bounded, k = 1, . . . K.

Conditions (C6)-(C11) are common assumptions in the semiparametric estimation

with adpation to the multivariate panel count data. Also conditions (C2) and (C8)

ensure the identifiability of the semiparametric model and conditions (C9), (C10) and

(C11) are adapted from conditions C4, C10 and C12 in Wellner and Zhang (2007).

Condition (C12) is needed to prove the convergence rate and can be justified by

the arguments similar to those in Wellner and Zhang (2007) as it does not involve

the multivariate responses. Similar to Remark 3.4 in Wellner and Zhang (2007),

Condition (C8) and (C12) imply that E
(
VT (U) V (U) |U

)
and Var (V (U) |U) are

positive definite a.e. υ1k, which is crucial to establish the rate of convergence.

Theorem 4 (Consistency). Assume that the regularity conditions (C1)-(C9) given

above hold. Then we have that d
(
ϑ̂n,ϑ0

)
→ 0 in probability as n→∞.

Theorem 5 (Rate of Convergence). Assume that the regularity conditions (C1)-(C12)

given above hold. Then we have that

n
min

{
n

1−ν
3 ,nrν

}
d
(
ϑ̂n,ϑ0

)
= Op (1)

with the optimal rate Op(n
−r/(3r+1)) achieved at ν = 1/ (1 + 3r).

The metric d (ϑ1,ϑ2) in Theorems 4 and 5 has different measures for β and Λ.
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The convergence of Λk is characterized by the observation process H·k only while the

convergence of β are defined on a measure depending on both H·k and Λk. This

property of the estimator is different from the time-constant coefficient cases for the

panel count data.

Theorem 6 (Asymptotic Normality). Assume that the regularity conditions (C1)-

(C12) given above hold and also (4r)−1 < ν < 2−1 with r > 1. Define H1 = {h1 :

h1 ∈ A, ‖h1‖ ≤ 1}, H2 = {h2 : h2 ∈ M, each component of h2 is of bounded

total variation.}, and H3 = {h3 = (h31, . . . , h3K) : h3k is a fucntion with bouned

total variation in [0, τ ], and h3k(0) = 0, k = 1, . . . , K} Then for some (h1,h2, h3) ∈

H1 ×H2 ×H3, we have that

√
n (γ − γ0)T h1 +

√
n

∫ τ

0

(β (t)− β0 (t))T dh2 (t)

+
√
n

K∑
k=1

∫ τ

0

(Λk (t)− Λk0 (t)) dh3k (t)

→d N
(
0, σ2

)
,

where σ2 is given in the Appendix.

The proof of the results above are provided in the Appendix. Similar to He et al.

(2017), we cannot find the explicit form of the asymptotic distribution because the

explicit forms of (h1,h2, h3) cannot be solved though exist. On the other hand, by

following Amorim et al. (2008), we can have the following ad hoc estimators for the

asymptotic covariance matrix of γ̂ and the pointwise asymptotic variance of β(t)

in t ∈ [0, τ ]. First the asymptotic covariance matrix of γ̂ − γ0 can be consistently
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estimated by Âγ̂(t)−1B̂γ̂(t)Âγ̂(t)−1. Here Âγ̂(t) and B̂γ̂(t) are the top-left p1 × p1

sub-matrices of

Â(t) =
∂UT (θ)

∂θ
=
∂
∑K

k=1

∑n
i=1

∫ τ
0
Yi(t)Nik(t)

{
(X (t))− X̄k(t;θ)

}
dHik(t)

∂θ

=
K∑
k=1

n∑
i=1

∫ τ

0

Yi(t)Nik(t)

{
−∂X̄k(t;θ)

∂θ

}
dHik(t) ,

and

B̂(t)

=
n∑
i=1

[∫ τ

0

K∑
k=1

Yi(t)
(
Nik(t)− Λk(t) exp(θTXi (t))

) {
X (t)− X̄k(t;θ)

}
dHik(t)

]⊗2

,

respectively, where

∂X̄k(t;θ)

∂θ
=
∂S̃1k(t;θ)/S̃0k(t;θ)

∂θ
= S̃2k(t;θ)/S̃0k(t;θ)− (S̃1k(t;θ)/S̃0k(t;θ))2 .

Furthermore, the asymptotic variance of β̂(t)− β0(t) for a given t can be estimated

by

Ω̂(t) = BT (t)
(
Âα̂(t)−1B̂α̂(t)Âα̂(t)−1

)
B(t),

where Âα̂(t) and B̂α̂(t) are the bottom-right p2 × p2 sub-matrices of Â(t) and B̂(t),

respectively. The numerical study in the next section shows these variance estimators

work well.
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3.5 Simulation

3.5.1 Data Generation

To evaluate the operational characteristics of the proposed method, we conduct a

simulation study. In the simulation, we set K = 2. We first generate the follow-

up time Ci from the uniform distribution over (0.6τ , τ). The observation time tik’s

are generated from nonhomogeneous Poisson process with means Λ̃1(t) =3t + 4 and

Λ̃2(t) =2t + 3. We assume that baseline hazard functions Λ1(t) = 4t,Λ2(t) = 4t2.

The maximum follow-up time τ = 1.

For the degree of B-spline functions, three different setting are considered: linear or

piecewise B-spline basis, quadratic B-spline basis and the cubic B-spline models. For

each combination defined by the model complexity and the shape of the true coefficient

functions, 1000 samples of size 500 or 800 are generated. For each configuration, we

present the sampling bias, sampling/empirical standard deviation (ESD), standard

error (SE) and the coverage probability (CP) of the 95% confidence interval.

3.5.2 Simulation Results

We assume that p1 = 1, p2 = 1, γ1 = 1, 2. To generate covariate process, we assume

that W1(t) is time dependent variable and generate W1(t) by imitating two-stage

randomization:

W1(t) = B1I(t ≤ V ) +B2I(t > V ),

where B1 and B2 are independent U(0, 0.5) and U(0.5, 1), and V ∼ U(0, τ) with the

maximum follow up time τ = 1. We generate Z1(t) independently by the similar way.
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To make our methods more general, we add a frailty in our model to simulate a

mixed-Possion process. We still assume that

Nik (Tik,l) = N∗ik [Λk (Tik,1)] +N∗ik [Λk (Tik,2)− Λk (Tik,1)] + · · ·

+N∗ik [Λk (Tik,l)− Λk (Tik,l−1)] , (3.4)

l = 1, ...,mik, k = 1, 2, i = 1, ..., n, Tik,0 = 0. However, N∗ik [Λk (t)] and

N∗ik [Λk (Tik,l)− Λk (Tik,l−1)]

here are assumed to follow a distribution with the mean functions

QiΛk (ti,1) e(γ
TWi(t)+β

T (t)Zi(t))

and

QiΛk (ti,j) e
(γTWi(t)+β

T (t)Zi(t)) −QiΛk (ti,j−1) e(γ
TWi(t)+β

T (t)Zi(t))

respectively, where Qi is an unobserved random effect (or frailty), independent of

covariates, following a standard gamma distribution with mean 1 and variance σ2
Q = 1

or 2. Note that σ2
Q measures the correlation between the 2 recurrent processes Ni1

and Ni2.

Estimation of Coefficients

Under cubic B-splines models, Table 3.1 presents some important summary statistics

for γ with 3 interior knots, where setting 1: β1(t) = t/2; setting 2: β1(t) = t2/2 and
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setting 3: β1(t) = (sin(4πt) + 4πt)/24 under different samples sizes, real values of γ

and σ2
Q values. Figure 3.1 presents the true and the average estimated time-dependent

coefficients β(t) curves under σ2
Q = 1, sample sizes 800, over 1000 iterations, over

1000 equal-spaced grid points on the time axis under setting 1 and setting 2.

Figure 3.1 (a1) and (a2) show the true and the average estimated β(t) curves. The

estimated curve is generally close to the true curve. We present the variances of β(t)

and the ESD of β(t) under sample size 800 in Figure 3.1 (a3,a4). The figures shows

that empirical variance of β(t) is very close to the variance of β(t) by the asymptotic

result. The variations of spline estimators increase at the boundary.

Figure 3.2 presents time-dependent coefficients results for σ2
Q = 2, where other

settings are similar to Figure 3.1. Figure 3.2 (a1) and (a2) show that the average

curves for β(t) estimated under sample sizes 800 are close to the true curve, except

for a small bias near the end of the time window. The coverage probabilities of the

ad hoc confidence intervals are generally close to the nominal level. Similar to Figure

3.1, we also provide the variances of β(t) and the ESD of β(t) under sample size 800

in Figure 3.2 (a3,a4). The figures shows that the emprical standard deviation(ESD)

of β(t) is very close to standard error (SE) of β(t) .

In summary, the proposed estimation procedure produce unbiased estimators.

The asymptotic and empirical standard deviation estimates are quite similar. As

the theory indicate, the coverage probabilities of the 95% confidence intervals of

estimators approach its nominal level as the sample size increases.
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Diffrent Baseline Mean Function Λ(t) and Λ̃(t)

Here we consider different values of Λ(t) and Λ̃(t), Table 3.2 shows the estimation

results for γ’s under the same set-ups as for Table 3.1 under σ2 = 1 except that for

here, setting 4: Λ1(t) =(sin(4πt) + 4πt)/π and Λ2(t) =(cos(4πt) + 4πt)/π or setting

5: Λ̃1(t) =4t + 5 and Λ̃2(t) =3t + 4. The proposed methods are robust to different

Λ(t) and Λ̃(t) functions.

Degree of Splines

In this subsection, we provide the results for piecewise/linear, quadratic and cubic B-

splines models with sample sizes 800. We show the results for the simulation studies

considering the aforementioned B-splines models for γ1 and β1(t) under setting 1 in

Table 3.3. Over all, the estimation procedure has satisfying results under all spline

models.

3.6 An Application

In this section, we again apply the methodology proposed in the previous sections

to the previous CHNS data. The China Health and Nutrition Survey (CHNS) was

conducted from 1989 to 2015 for every 2-4 years. The pregnancy information and

number of marriage times of the participants was collected during this time points,

therefore, we only have incomplete panel count data over the whole follow-up period

or some follow-up periods. More details about this survey could be found in Section

2.5. Here we still focus on the four interesting variables: average monthly wage

last year, whether the mother came from urban or rural areas (urban = 0, rural
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= 1), the completed years of formal education in regular school (0: No school; 1:

Primary school; 2: Middle school; 3: Technical school; 4: College), and the current

health status (1: Excellent, 2: Good, 3: Fair, 4: Poor). Specifically, we will focus

on a subgroup of the female participants with the required covariate and response

information(n = 2402).

The final subgroup includes 2402 subjects. For the analysis, define Ni1(t) and

Ni2(t) as the cumulative numbers of pregnancy and marriage times up to time t for

patient i , respectively, i = 1, ..., 2402, k = 1, 2. γ and β(t) denote the corresponding

parameters. To decrease the effect of magnitude due to the covariate range, we

normalized the average monthly wage last year. For the observed data, the average

pregnancy counts are 1.4610, the average marriage times are 1.0190.

To apply the proposed estimation procedure, we first assume that all of the four

covariates have time-varying effects and Figure 3.3 presents the estimated covariate

effects with the use of 3 interior knots under multivariate analysis. Figure 3.4 and

Figure 3.5 presents the corresponding results under seperate univariate analysis of

pregnancy numbers and marriage times. The results based on the joint analysis

suggest that all 4 covariates have significant effects on the rates of both pregnancy

and marriage times, although the time-varying pattern of wage and current health

status seems to be not very obvious. Specifically, the mothers from rural areas with

higher salaries and lower education levels seem to have higher rates. The univariate

analyses gave similar conclusions for most of the covariates effects except that they

significantly underestimated the effect of wage on the rate of interested events. It

can be seen that the estimated effects of all covariates based on the joint analysis are

intermediate between those based on the 2 univariate analyses.
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We also consider the case when all covariates are assumed to be time-independent.

For comparison, we also perform univariate analyses which involves separate modeling

of covariate effects for pregnancy number and marriage counts and include the results

in Table 3.4. Table 3.4 shows the results of joint and univariate analysis results

for locations, wage, education levels and current health status, correspondingly for

γ1, γ2, γ3, and γ4. It still can be seen that the estimated effects of all covariates based

on the multivariate analysis are intermediate between those based on the 2 univariate

analyses. Futhermore, the joint analysis shows the education level is a significant

variable, which, didn’t be identified under univariate analysis for marriage times.

Last, according to our previous results, we assume that only the location and

education levels have time-varying coefficient effects, while the wage and health status

have constant effects on the events. Table 3.5 gives the estimated covariate effects

for the wage and current health status under multivariate and univariate analysis

with different number of knots. Figure 3.6 presents the corresponding results under

multivariate analysis of pregnancy numbers and marriage times with 3 interior knots.

The multivariate analysis results with the use of 5 interior knots are shown in Figure

3.7 and similar to Figure 3.6, which again shows the locations and education levels

have significant positive and negative effects on events.

3.7 Concluding Remarks

In this chapter, we have discussed regression analysis of multivariate panel count data

when both the covariates and their effects are varying with time. Such data naturally

occur when a recurrent event study involves several related types of recurrent events.
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The areas in which one often faces such data include clinical trials and medical or

social follow-up studies. For the problem, we presented a flexible marginal mean

model for the underlying recurrent event processes and an estimating equation-based

inference procedure was developed for estimation of regression parameters to combine

with the B-splines. Both finite sample and asymptotic properties of the proposed es-

timates have been established and the simulation results indicated that the procedure

work well for practical situations. The methodology was applied to a set of bivariate

panel count data arising from CHNS.
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Figure 3.1: Simulation results on estimation of β(t) with σ2 = 1, where, setting 1:
β(t) = t/2; setting 2: β(t) = t2/2.
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Sample Size Para Real Value Bias ESD SE CP
σ2
Q = 1

setting1 500 γ1 1 -0.0243 0.2200 0.2030 0.922
800 γ1 1 -0.0153 0.1765 0.1648 0.937
500 γ1 2 0.0044 0.2526 0.2234 0.948
800 γ1 2 0.0060 0.1801 0.1764 0.949

setting2 500 γ1 1 0.0034 0.2056 0.1982 0.937
800 γ1 1 0.0089 0.1827 0.1695 0.945
500 γ1 2 0.0141 0.2339 0.2197 0.933
800 γ1 2 -0.0030 0.1768 0.1760 0.968

setting3 500 γ2 1 -0.0308 0.2372 0.2126 0.961
800 γ1 1 -0.0004 0.1766 0.1671 0.921
500 γ2 2 0.0141 0.2339 0.2197 0.933
800 γ1 2 0.0356 0.1962 0.1859 0.950

σ2
Q = 2

setting1 500 γ1 1 0.0324 0.3097 0.2732 0.911
800 γ1 1 -0.0052 0.2364 0.2282 0.975
500 γ1 2 0.0493 0.3388 0.2942 0.907
800 γ1 2 -0.0108 0.2240 0.2402 0.973

setting2 500 γ1 1 0.0387 0.2581 0.2798 0.980
800 γ1 1 0.0151 0.2490 0.2226 0.926
500 γ1 2 -0.0157 0.3201 0.2957 0.917
800 γ1 2 -0.0169 0.2443 0.2456 0.946

setting3 500 γ2 1 0.0165 0.3021 0.2623 0.920
800 γ1 1 -0.0287 0.2236 0.2217 0.930
500 γ2 1 -0.0048 0.3179 0.2736 0.917
800 γ2 1 -0.0037 0.2537 0.2268 0.918
500 γ2 2 -0.0056 0.3283 0.2956 0.915
800 γ1 2 -0.0033 0.2674 0.2429 0.920

Table 3.1: Simulation results on estimation of γ for different sample sizes, β(t) func-
tions and σ2

Q’s wtih 3 knots.
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σ2
Q = 1 Sample Size Para Real Value Bias ESD SE CP

setting4 500 γ1 1 -0.0225 0.2295 0.1962 0.915
800 γ1 1 -0.0038 0.1675 0.1603 0.931

setting5 500 γ1 1 -0.0025 0.2233 0.2057 0.937
800 γ1 1 0.0027 0.1774 0.1686 0.939

Table 3.2: Simulation results on estimation of γ for different Λ and Λ̃ functions under
σ2
Q = 1 with 3 knots.

Spline Real Sample
Model value size BIAS ESD SE ECP

Piecewise/linear spline 1 800 -0.0013 0.1738 0.1667 0.936
Quadratic spline 1 800 -0.0061 0.1805 0.1684 0.935

Cubic spline 1 800 -0.0153 0.1765 0.1648 0.937

Table 3.3: Simulation results on estimation of γ for different degrees of spline.

Multivariate analysis γ̂ SE(γ̂) CI(γ̂)
location 0.0924 0.0120 (0.0689,0.1158)

wage -0.0119 0.0062 (-0.0240,0.0003)
education level -0.0851 0.0070 (-0.0988,-0.0713)

current health status 0.0181 0.0068 (0.0049,0.0314)
Univariate analysis - pregnancy number γ̂ SE(γ̂) CI(γ̂)

location 0.1638 0.0210 (0.1226,0.2050)
wage -0.0227 0.0135 (-0.0491,0.0038)

education level -0.1503 0.0123 (-0.1744,-0.1262)
current health status 0.0269 0.0119 (0.0035,0.0503)

Univariate analysis - marriage number γ̂ SE(γ̂) CI(γ̂)
location 0.0018 0.0039 (-0.0059,0.0095)

wage -0.0005 0.0007 (-0.0018,0.0008)
education level -0.0032 0.0021 (-0.0074,0.0010)

current health status 0.0079 0.0029 (0.0023,0.0135)

Table 3.4: When considering all coefficients to be time-independent. Results of joint
and univariate analyses of pregnancy and marriage numbers from CHNS data.
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nknots Multivariate analysis γ̂ SE(γ̂) CI(γ̂)
3 wage -0.0118 0.0062 (-0.0240,0.0004)
3 current health status 0.0170 0.0068 (0.0036,0.0304)
5 wage -0.0118 0.0062 (-0.0238,0.0004)
5 current health status 0.0170 0.0068 (0.0036,0.0303)
7 wage -0.0118 0.0062 (-0.0240,0.0004)
7 current health status 0.0170 0.0068 (0.0036,0.0304)

Univariate analysis
nknots pregnancy number γ̂ SE(γ̂) CI(γ̂)

3 wage -0.0228 0.0137 (-0.0496,0.0040)
3 current health status 0.0257 0.0120 (0.0022,0.0492)

Univariate analysis
nknots marriage number γ̂ SE(γ̂) CI(γ̂)

3 wage -0.0004 0.0007 (-0.0017,0.0009)
3 current health status 0.0078 0.0029 (0.0021,0.0134)

Table 3.5: When considering the coefficients of location and education levels to be
time-dependent. Results of joint and univariate analyses of pregnancy and marriage
numbers from CHNS data under different numbers of knots.
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Figure 3.2: Simulation results on estimation of β(t) with σ2 = 2, where, setting 1:
β(t) = t/2; setting 2: β(t) = t2/2.
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Figure 3.3: To consider all coefficients to be time-dependent. Multivariate analysis of
pregnancy numbers and marriage times. Estimated time-varying effects (solid curves)
and corresponding pointwise 95% confidence intervals (grey curves).
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Figure 3.4: To consider all coefficients to be time-dependent. Univariate analysis of
pregnancy numbers. Estimated time-varying effects(solid curves) and corresponding
pointwise 95% confidence intervals (grey curves).
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Figure 3.5: To consider all covariates to be time-dependent. Univariate analysis
of marriage times. Estimated time-varying effects(solid curves) and corresponding
pointwise 95% confidence intervals (grey curves).
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Figure 3.6: To consider the coefficients of location and education level to be time-
dependent. 3 interior knots. Multivariate analysis of pregnancy numbers and mar-
riage times. Estimated time-varying effects(solid curves) and corresponding pointwise
95% confidence intervals (grey curves).
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Figure 3.7: To consider coefficients of location and education level to be time-
dependent. 5 interior knots. Multivariate analysis of pregnancy numbers and mar-
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Chapter 4

Dynamic Analysis of Univariate
Panel Count Data with Rate
Model

4.1 Introduction

Statistical methods for panel count data usually focus on studying the relationship

of covariates and the underlying recurrent event processes N (t). To the best of our

knowledge, all methods analyzing panel count data with time-dependent effects are

based on mean model, like we did in Chapters 2 and 3. However, as claimed in Section

1.4, one drawback of mean model is that, when coefficients or covariates fluctuate,

it is hard to satisfy the non-decreasing property of the mean function. Moreover,

when we predict the mean function of a new subject, there is no guarantee that

the predicted mean function is non-decreasing if coefficients or covariates are time-

dependent. Therefore, we consider an alternative semi-parametric model based on
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the rate or intensity function in this chapter, which is a more flexible and realistic

model to incorporate time-dependent effects in inference.

The rest of this chapter is organized as follows. Section 4.2 presents the proposed

likelihood-based method with the proposed B-spline approximation and the EM algo-

rithm to maximize the log-likelihood function. Section 4.3 proves that the estimators

are consistent, efficient and asymptotically normally distributed. A simulation study

illustrates the finite sample properties of the proposed method is provided in Section

4.4. In Section 4.5, we apply the proposed approach to the data arising from The

Young Women’s Project (YWP). Some concluding remarks are given in Section 4.6.

4.2 Estimation Method

4.2.1 Spline Approximation

As introduced in Section 1.4, here we consider a semi-parametric model based on the

rate or intensity function of N (t), that is

E [dN (t) |W (t) , Z (t)] = exp
(
γTW (t) + βT (t)Z (t)

)
dΛ (t) . (4.1)

Here, Λ (t) is an unspecified non-decreasing baseline function , γ = (γ1, ..., γp1)
T

and β(t) = (β1(t), ..., βp2(t))
T represent constant and time-dependent coefficients,

respectively.

For estimation of γ and β(t), let A and Bj denote the parameter spaces for γ

and βj, respectively, j = 1, . . . , p2, and assume that A is a compact subset of Rp1

and B0j ⊆ L2 ([0, τ ]). Define B =
∏p2

j=1 B0j and Θ = A × B. Note that due to the
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dimension of B, the estimation may not be easy and to deal with this, by following

others, we propose to employ the sieve approach to first approximate β(t) by B-

spline functions. Specifically, let T = {tj}mn+2l
j=1 with 0 = t1 = · · · = tl < tl+1 <

· · · < tmn+l < tmn+l+1 = · · · = tmn+2l = τ being a sequence of knots that partition

[0, τ ] into Kn + 1 subintervals [tl+j, tl+j+1] for j = 0, . . . , Kn with Kn = O (nν) and

max0<j<mn |tj+1 − tj| = O (n−ν) for ν ∈ (0, 0.5). Define

Bnj =

{
βnj (t) = αj0 +

qn∑
k=1

αjkBk (t) = BT
n (t)αj, ‖αj‖1 < Mn

}
,

the class of B-splines of order l with the knots sequence T . In the above, Mn is some

large number with Mn →∞ as n→∞, qn = Kn+ l, Bn (t) = {1, B1 (t) , . . . , Bk (t)}T

is a class of B-spline basis, and αnj = (αnj0, αnj1, . . . αnjqn). Then βj (t) can be

approximated by βnj (t). Define Bn =
∏p2

j=1 Bnj, then Θn = A × Bn is a sieve space

for the original parameter space Θ.

Under the sieve space Θn, by replacing β(t) by βn(t), model (4.1) can be rewritten

as

E [dN (t) |Wi (t) , Xi (t)] = exp
(
γTWi (t) + βT (t)Zi (t)

)
dΛ (t)

= exp
{
γTWi(t) + αTn Z̃i(t)

}
dΛ (t)

= exp
{
θTXi (t)

}
dΛ (t) . (4.2)

Here,

Z̃i(t) = (Zi1(t)BT
n (t) , Zi2(t)BT

n (t) , ..., Zip2(t)B
T
n (t))T ,

αn = (αTn1, α
T
n2, ..., α

T
np2

)T , Xi (t) =
(
W T
i (t) , Z̃T

i (t)
)T

and θ = (γ, α)T . Note that this
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model does not include time-varying coefficients now.

4.2.2 Likelihood Function

For subject i, i = 1, . . . , n, the underlying counting process is denoted by

Ni (t) =
∞∑
k=1

I(Rik ≤ t),

where {Rik}∞k=1 are event occurrence times before the censoring time Ci. However,

one cannot observe {Rik}∞k=1 directly and can only observe Ni (t) at 0 < Ti1 < . . . <

TiJi = Ci. Let Xi (t) denote the time-dependent covariates mentioned before for

subject i. The rate function λi (t) of Ni (t) conditional on Xi (·) follows

λi (t) dt = exp
(
θTXi (t)

)
dΛ (t) ,

where Λ (t) is an unknown non-decreasing function.

Let ∆Nij = Ni (Tij) − Ni

(
Ti(j−1)

)
denote the total number of event occurrence

between Tij and Ti(j−1) for subject i with Ti0 = 0. Let ∆i (t) = I (Ci > t) denote the

censoring indicator. Let 0 = t0 < t1 < . . . < tK denotes the ordered unique values of

Tij for all i and j. We assume that Ni (t) follows a Poisson process given covariates

Xi (t). Then the likelihood function is
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L (θ,Λ) =
n∏
i=1

Ji∏
j=1

1

∆Nij!
exp

(
−
∫ Tij

Ti(j−1)

exp
(
θTXi (t)

)
dΛ (t)

)

×

{∫ Tij

Ti(j−1)

exp
(
θTXi (t)

)
dΛ (t)

}∆Nij

. (4.3)

In (4.3), the integral
∫ Tij
Ti(j−1)

exp
(
θTXi (t)

)
dΛ (t) cannot be calculated easily because

we do not know the exact form of Λ (t). Many numerical integration methods, such as

Gaussian quadrature, require a certain degree of smoothness of integrands. However,

in practice, the form of Xi (t) could be very rough leading to inaccuracy of numerical

integration results. These difficulties in calculation complicates the maximization of

(4.3).

To make the integration in (4.3) tractable, we assume the estimator of Λ to be a

step function with nonnegative jump size λk at tk with λ0 = 0. Hence, we maximize

L (θ,Λ) =
n∏
i=1

Ji∏
j=1

1

∆Nij!
exp

− ∑
Ti(j−1)<tk≤Tij

exp
(
θTXi (tk)

)
λk


 ∑
Ti(j−1)<tk≤Tij

exp
(
θTXi (tk)

)
λk


∆Nij

(4.4)

=
n∏
i=1

Ji∏
j=1

Pr

 ∑
Ti(j−1)<tk≤Tij

Wik = ∆Nij

 . (4.5)

In the above, Wik’s are independent Poisson random variables with means exp(θT

Xi(tk))λk for all i and k. The maximization of (4.5) is still not straightforward but

63



(4.5) can be regarded as a likelihood function based on Wik given that one can only ob-

serve
∑

Ti(j−1)<tk≤Tij
Wik = ∆Nij for all i, j, k. Hence, we can develop the following EM

algorithm to maximize (4.5) by treating Wik as missing data and
∑

Ti(j−1)<tk≤Tij
Wik

as observed data.

4.2.3 The EM Algorithm

Let λ = (λ1, λ2, . . . , λK). The complete-data likelihood based on Wik can be written

as

LC (θ, λ) ∝
n∏
i=1

K∏
k=1

exp
(
− exp

(
θTXi (tk)

)
λk
) {

exp
(
θTXi (tk)

)
λk
}WikI(tk≤TiJi) ,

and the complete-data log-likelihood is then

lC (θ, λ) =
n∑
i=1

K∑
k=1

I (tk ≤ TiJi)
{
Wik

(
θTXi (tk) + log (λk)

)
− exp

(
θTXi (tk)

)
λk
}
.

(4.6)

In the E-step, we need to find the posterior expectation of Wik given the observed data

and the last iteration of estimators for θ and λ. Let jik be the observation time index

for subject i such that Ti(j−1) < tk ≤ Tij for any k and Aik =
{
l : Ti(jik−1) < tl ≤ Tijik

}
.

Denote the qth iteration of θ and λ as θ(q) and λ(q) =
(
λ

(q)
1 , . . . , λ

(q)
K

)
. In the qth
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iteration, the posterior mean of Wik is

Ê
[
Wik|θ(q), λ(q)

]
= E

Wik|
∑

T
i(jik−1)<tk≤Tijik

Wik = ∆Nijik , θ
(q), λ(q)


=

exp
(
θ(q)>Xi (tk)

)
λ

(q)
k∑

l∈Aik exp (θ(q)>Xi (tk))λ
(q)
l

∆Nijik .

Clearly, Ê
[
Wik|θ(q), λ(q)

]
can be interpreted as a weighted mean of 4Nijik.

In the M-step, we update λ by

λ
(q+1)
k =

∑n
i=1 ∆ikÊ

[
Wik|θ(q), λ(q)

]∑n
i=1 ∆ik exp (θ(q)>Xi (tk))

, (4.7)

for k = 1, . . . , K. Plugging in (4.7) into the posterior expectation of (4.6) given the

observed data, we update θ by solving the following equation

U (q) (θ) =
n∑
i=1

K∑
k=1

∆ikÊ
[
Wik|θ(q), λ(q)

]{
Xi (tk)−

S(1) (tk, θ)

S(0) (tk, θ)

}
= 0.

Here,

S(u) (t, θ) =
n∑
i=1

Xl (t)
⊗u I (Ci > t) exp

(
θ>Xi (t)

)
,

where a⊗0 = 1, a⊗1 = a and a⊗2 = aa> for a vector a. To ease computational burden,

we can update θ by one-step Newton-Raphson at each M-step as

θ(q+1) = θ(q) −
[
U̇ (q)

(
θ(q)
)]−1 [

U (q)
(
θ(q)
)]
,
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where

U̇ (q)
(
θ(q)
)

= −
n∑
i=1

K∑
k=1

∆ikÊ
[
Wik|θ(q), λ(q)

]{S(2) (tk, θ)

S(0) (tk, θ)
−
[
S(1) (tk, θ)

S(0) (tk, θ)

]⊗2
}
.

We then iterate between the E- and M-steps until a stopping criterion is met.

One example criterion is that the sum of the relative differences of two consecutive

iterations of estimates is smaller than 10−4. The resulting estimators are denoted by(
θ̂n, Λ̂

)
. The proposed EM algorithm enjoys some advantages. First, we can avoid the

intractable integration in (4.3). This fills the gap that model (1.2) has not been widely

used and investigated. Second, we only need the values of Xi (t) at t1, . . . , tK instead

of the whole trajectories of covariates Xi (t) over time which are usually unavailable

in practice. Finally, as pointed by Zeng et al. (2017), we can avoid inversion of high-

dimensional matrices since we can update the high-dimensional parameters λ by one

explicit formula.

4.2.4 Estimation of Variance of θ̂n

To perform hypothesis testing and construct confidence intervals of θ̂n, we also need

to estimate the variance of θ̂n. Zeng et al. (2017) proposed to use Corollary 3 in

Murphy and Vaart (2000) to estimate the variance of θ̂n. By following them, we

define the profile log-likelihood

pl (θ) = max
Λ∈C

logLn (θ,Λ) ,

where C is the set of step functions with nonnegative jumps at tk. Then, the covariance

matrix of θ̂n is estimated by the negative inverse of a matrix whose (j, k)th element
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is

pln

(
θ̂n

)
− pln

(
θ̂n + hnek

)
− pln

(
θ̂n + hnej

)
+ pln

(
θ̂n + hnek + hnej

)
h2
n

. (4.8)

where ej is the jth canonical vector in Rp and hn is a constant of order n−1/2. This is

to estimate the Hessian matrix of pln (θ) at θ̂n. The profile log-likelihood pln (θ) can

calculated by reusing the EM algorithm to update λ with θ held fixed.

However, Zeng et al. (2017) argued that the estimated Hessian matrix of pln (θ)

at θ̂n may be negative definite, especially in small samples. They then proposed to

estimate the covariance matrix of θ̂n by
(
nV̂
)−1

with

V̂n = n−1

n∑
i=1

[{
∂

∂θ
li

(
θ, Âθ

)∣∣∣∣
θ=θ̂n

}⊗2
]
,

where Âθ = arg maxA logLn (θ,A) for θ ∈ Θ and li (θ,A) is the log-likelihood function

for the ith subject. Here, nV̂ is actually the empirical covariance matrix of the

gradient of li

(
θ, Âθn

)
. This gradient is approximated by a first-order numerical

difference of li

(
θ, Âθ

)
as

li

(
θ, Âθ

)∣∣∣
θ=θ̂n+hnek

− li

(
θ, Âθ

)∣∣∣
θ=θ̂n

hn
, (4.9)

for the kth component of the gradient. In this study, we found the Hessian matrix

of pln (θ) at θ̂n calculated by the first method through (4.8) is sometimes negative-

definite in the simulation study. Thus we adopt (4.9) to calculate the variance esti-

mation.
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4.3 Asymptotic Properties

Now we will establish the asymptotic properties of the estimators proposed in the

previous section, including the consistency, convergence rate and asymptotic normal-

ity. For this, let ϑ = (γ, β,Λ) and ϑ0 = (γ0, β0,Λ0) denote the true value of ϑ.

We denote the estimator for ϑ to be ϑ̂n =
(
γ̂, β̂n, Λ̂

)
. Also for convenience, let

V (t) =
(
W T (t) , ZT (t)

)T
and redefine the parameter space Θ = A × B × F , where

F denotes the parameter space of Λ.

Let Bd denote the collection of Borel sets in Rd and L2 [0, τ ] the collection of Borel

sets in L2 on [0, τ ]. Define B1 [0, τ ] = {B ∩ [0, τ ] : B ∈ B1}, Bd = B1 [0, τ ] × . . . ×

B1 [0, τ ] and Ld2 [0, τ ] = L1 [0, τ ]× . . .× L1 [0, τ ]. Also define the measure

υ1 (B1 ×B2 ×B3) =

∫
B3

∫
B2

∫
B1

dE [Y (t)H (t)] dµZdµW

for B1 ∈ B1 [0, τ ], B2 ∈ Lp22 [0, τ ] and B3 ∈ Lp12 [0, τ ], where µW and µZ are the

measures for W and Z; and µ1 (B1 ×B2) = υ1 (B1 ×B2 × Lp22 [0, τ ]). Alternatively,

let µV = µZ × µW , we can rewrite υ1 (B1 ×B2 ×B3) as

υ1 (B1 ×B4) =

∫
B4

∫
B1

dE [Y (t)H (t)] dµV

for B1 ∈ B1 [0, τ ] and B4 ∈ Lp2 [0, τ ]; and µ1 (B) = υ1 (B × Lp2 [0, τ ]). Define the L2

metric d (ϑ1,ϑ2) on Θ as

d (ϑ1,ϑ2) =
(
‖γ1 − γ2‖2

2 + ‖β1 − β2‖2
L(µ̃0) + ‖Λ1 − Λ2‖2

L(µ0)

)1/2

.

We need the following conditions for prove the consistency and convergence rate
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of ϑ̂n as well as the asymptotic normality of β̂.

(C1) The true value of β (t), denoted by β0 (t), lies in the interior of the compact set

B such that βj (t) ∈ B is rth differentiable. The true value of Λ ∈ F , denoted

by Λ0, is a continuously differentiable with positive and bounded derivative ΛT
0

in some interval O [T ] = [ξ, τ ] where Pr
(
∩Jj=1 {T·j ∈ [ξ, τ ]}

)
= 1.

(C2) The covariates W (t) and Z (t) are uniformly bounded with uniformly bounded

total variation over [ξ, τ ], and its left limit exists for any t.

(C3) If there exists some vector β such that γ> (t)W (t) + β> (t)Z (t) = a (t) for

some deterministic function a (t) on t ∈ [ξ, τ ] with probability 1, then β (t) = 0

and a (t) = 0.

(C4) The number of observation times, J , is positive and finite with probability one.

In addition, ν3 ({τ}) > 0.

(C5) The observation times are s0-separated, that is, there exist a constant s0 > 0,

such that Pr
(
T·j − T·(j−1) ≥ s0|J,X

)
= 1 for all j = 1, . . . J . In addition, µ1 is

absolutely continuous with respect to Lebesgue measure on [0, τ ]2.

(C6) The function m0 =
∑J

j=1 ∆N·j log {∆N·j} satisfies Pm0 < 0.

(C7) For some η ∈ (0, 1),

a>Cov (V (t) , V (s) |U1, U2) a ≥ ηa>E
[
V (t)V > (s) |U1, U2

]
a

a.s. for all a ∈ Rp and t, s ∈ [0, τ ] where (U1, U2, V ) has distribution ν1/ν1(R+

× R+ ×X ).
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(C8) For some c0 ∈ (0,∞), the function V → E [exp (c0N (τ)) |V ] uniformly bounded

for V ∈ X .

We establish the weak consistency of ϑ̂n by the next theorem.

Theorem 7 (Consistency). Under regularity conditions (C1)-(C6), d
(
ϑ̂n,ϑ0

)
→ 0

in probability as n→∞.

One concern in construction of the proposed EM algorithm is that we impose the

Poisson assumption on the underlying counting process which may be often violated

in practice. However, the proof of Theorem 7 does not actually require the Poisson

assumption. This implies that we can obtain consistent estimators from the EM

algorithm as long as (1.2) holds, indicating the generality of the proposed method.

Theorem 8 (Rate of Convergence). Assume that the regularity conditions (C1)-(C8)

given above hold. Then we have that

n
min

{
n

1−ν
3 ,nrν

}
d
(
ϑ̂n,ϑ0

)
= Op (1)

with the optimal rate Op(n
−r/(3r+1)) achieved at ν = 1/ (1 + 3r).

Next theorem shows the asymptotic normality of ϑ̂.

Theorem 9 (Asymptotic Normality). if 1/ (4r) < ν < 1/4, under regularity condi-

tions (C1)-(C8), we have

√
n (γ̂ − γ0)T h1 +

√
n

∫ τ

0

(
β̂n (t) β0 (t)

)T
dh2 (t) +

√
n

∫ τ

0

(
Λ̂ (t)− Λ0 (t)

)
dh3 (t)

→dN
(
0, σ2

)
.
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where σ2 is given in the appendix.

The proofs of Theorem 7 - 9 are provided in the appendix.

4.4 A Simulation Study

To investigate the finite sample properties of the proposed method, we carry out

a simulation study. We consider the underlying recurrent process follows a non-

homogeneous Poisson process with the rate function

λ (t) exp (γ1W1 + γ2W2 + β1Z1 + β2Z2) dΛ (t) .

We set the maximum follow-up time τ = 2. We generate the piecewise time-dependent

covariate W1 (t) by

W1 (t) = W11I (t ≤ U1) +W12I (t ≥ U1) ,

where W1j ∼ Unif (0, 1), U1 ∼ Unif (0, τ) and generate Z1 in the similar way. We

consider time-independent covariates for W2 and Z2, where W2 ∼ Unif (0, 1) and

Z2 ∼ Bern (0.5).

We set γ1 = 1, γ2 = −1 and consider the following two scenarios for β1(t) and

β2(t):

Scenario 1 β1(t) = t and β2(t) = t2/2;

Scenario 2 β1(t) = (sin (4πt) + 4πt) /6 and β2(t) = (cos (4πt) + 4πt) /6.
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We consider two cases of λ as λ (t) = 4/ (1 + t) or λ (t) = 4 log (t+ 1). We assume that

the censoring time C ∼ Unif (0.9τ, τ). The total number of observation is generated

from a zero-truncated Poisson distribution with mean 4. Next, the observation times

are generated as sorted uniform random variables on (0, C). Simulated observation

times are then rounded to two decimals so that they could be tied. We set the sample

size n = 200 and 400, and simulate 1000 replicates for each sample size. To estimate

the variance of β̂, we use hn = 5n−1/2 as recommended by Zeng et al. (2017). We set

the maximum number of iterations to 10000 and the convergence threshold to 10−5.

The nominal level of the confidence intervals is 95%. In practice, we use a cubic

nature spline, because it is visually smooth, and the shape beyond the two end knots

is constrained to be linear, precluding any erratic tail behavior. We set the number

of knots as 3 and the degree as 3.

Table 4.1 shows the summary statistics of the Monte Carlo simulation results for

the two scenarios. In Table 4.1, the biases of γ̂1 and γ̂2 are all very small. The

standard errors of γ̂1 and γ̂2 decreases when n increases and the estimators of the

standard errors are closed to the true standard errors. The coverage probabilities

of the confidence intervals constructed from the variance estimators are close to the

nominal level 95%. The biases and standard errors of γ̂1 are larger than those of

γ̂2. One possible reason is that the change in W1 (t) induces more variation to the

estimation of γ̂1.

Figure 4.1 summarizes the simulation results under Scenario 1, the estimation

of β̂1 (t) = t and β̂2 (t) = t2/2 under λ0(t) = 4/(1 + t). For comparison, the true

curves are presented too and the results indicate that the proposed procedure seems

to yield unbiased estimates again. It also shows the average of the estimated point-
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wise standard errors along with the point-wise sample standard errors and indicates

that the proposed method appears to give reasonable variance estimates.

Furthermore, Figure 4.2 shows the simulation results under scenario 2, the esti-

mation of β1(t) = (sin (4πt) + 4πt) /6 and β2(t) = (cos (4πt) + 4πt) /6 when λ (t) =

4/ (1 + t) and indicates that the proposed method appears to give similar reasonable

estimation and vaiance estimates.

4.5 An Application

The Young Women’s Project (YWP) is a longitudinal, observational study conducted

during 1999-2009 to study factors of sexually transmitted pathogens such as Chlamy-

dia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis. A convenience

sample of young women aged 14 to 17 were identified by clinic schedule and those

who were eligible and agreed to participate were enrolled at the current or subsequent

clinical visit. The eligibility was irrelevant to sexual experience, and the maximum

follow-up length was 8.2 years. Baseline demographic, family and sexual behavioral

information were collected at enrollment. At each quarterly follow-up visit, par-

ticipants completed face-to-face interviews and the summaries of sexual behaviors

during the previous 3 months were recorded. Cervical and vaginal specimens were

collected by a research nurse practitioner for testing sexually transmitted infection

(STI), which was treated by antibiotic medication once detected. Besides, the ex-

act STI onset times were interval-censored between the quarterly visits and panel

count data arose. Repeated infections may occur before a woman was re-interviewed;

however, STI was rarely noticed or self-treated for the minor symptoms were almost
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unnoticeable. Therefore, in this research, STI detected at each visit will be treated

as a new infection since last tested.

We focus on 271 young women who provided at least one complete quarterly

interview, and our primary objective is to study the association between STI and

possible impacts from social, family relationships and risky behaviors represented by

use of marijuana. Let Ni(t) represents the cumulative infection number of Chlamydia

trachomatis (CT), Neisseria gonorrhoeae (NG), or Trichomonas vaginalis (TV) at

time t based on model 4.1. Our covariates of interest consist of number of sexual

partners in the last quarter (NSP), living with parents (1) or not (0) (LWP), use of

marijuana (THC) and having or not received sex education from parents (EDP) (1

for yes, 0 for no).

We assume that all four covariates have time-varying coefficients. We implement

the proposed methods to do analysis for all three responses. Figure 4.3, Figure

4.4, and Figure 4.5 present the corresponding results for the cumulative infection

number of Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), or Trichomonas

vaginalis (TV) with 2 interior knots. Our analytical results show that for CT, NSP

appears to have significant positive effect in the early stage; in contrast, LWP and

EDP have significant negative effects in the early stage. However, THC do not have

significant effect over the whole time period. As for NG, NSP and THC are identified

to have significant positive effects in the early and late time periods, respectively.

One comment here is that the relatively large coefficient effects of THC under NG

may come from the sparsity of observation points in the end of study. Last, for TV,

only NSP is identified to have significant positive effects. This suggests that for young

women with larger number of sexual partners, the risk of infection of TV increases
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than those with a lower number of NSP.

4.6 Discussions

In this chapter, we proposed a likelihood-based method based on the semi-parametric

rate model with time-dependent covariates and time-varying effects. The advantage

of this model avoids the unrealistic monotonicity of the mean model. The B-spline

allows the coeffecients to vary with time and the EM algorithm provides an efficient

way to maximize the log-likelihood function. The simulation and the application

show that the proposed method works very well in practice.
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Scenario I Scenario II
Bias SE SDE CP Bias SE SDE CP
(×10−3) (×10−3)

λ0 (t) = 4/ (1 + t)
n = 200 β1=1 11.7016 0.0823 0.0852 96.1 0.9969 0.0724 0.0729 95.0

β2=-1 -0.8000 0.0759 0.0788 96.2 -1.5073 0.0661 0.0672 95.2

n = 400 β1=1 12.7960 0.0568 0.0576 93.9 -1.7134 0.0511 0.0489 94.1
β2=-1 0.0096 0.0526 0.0532 95.7 2.1053 0.0460 0.0452 94.0

λ (t) = 4 log (t+ 1)
n = 200 β1=1 13.4114 0.0592 0.0616 95.6 15.0466 0.0510 0.0524 94.7

β2=-1 -0.4376 0.0570 0.0597 95.5 -2.4870 0.0500 0.0503 95.0

n = 400 β1=1 10.0640 0.0429 0.0417 93.0 14.8291 0.0367 0.0353 94.6
β2=-1 -1.1485 0.0403 0.0402 95.0 -2.8583 0.0357 0.0340 93.8

Table 4.1: The summary statistics of the simulation results, including the biases of
the point estimators (Bias), standard errors of the point estimators (SE), empiri-
cal average of the standard deviation estimators (SDE) and the empirical coverage
probabilities of the confidence intervals with the nominal level 95%.
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Figure 4.1: Simulation results on estimation of β̂1(t) and β̂2(t) with λ0(t) = 4/(1 + t),
where, β1(t) = t, β1(t) = t2/2.
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Figure 4.2: Simulation results on estimation of β̂1(t) and β̂2(t) with λ0(t) = 4/(1 + t),
where, β1(t) = (sin (4πt) + 4πt) /6 and β2(t) = (cos (4πt) + 4πt) /6.
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Figure 4.3: To consider all coefficients to be time-varying. Estimated time-varying ef-
fects (solid curves) and corresponding pointwise 95% confidence intervals (grey curves)
for the cumulative infection number of Chlamydia Trachomatis (CT).
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Figure 4.4: To consider all coefficients to be time-varying. Estimated time-varying ef-
fects (solid curves) and corresponding pointwise 95% confidence intervals (grey curves)
for the cumulative infection number of Neisseria Gonorrhoeae (NG).
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Figure 4.5: To consider all coefficients to be time-varying. Estimated time-varying ef-
fects (solid curves) and corresponding pointwise 95% confidence intervals (grey curves)
for the cumulative infection number of Trichomonas Vaginalis (TV).
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Chapter 5

Future Research

5.1 Dynamic Analysis of Panel Count Data with

Mean Model

In chapters 2 and 3, we focused on the situation where both coefficients and covari-

ates are varying with time for univariate and multivariate panel count data under

mean model. We utilized the conditional estimating equation method with B-spline

approximation.

There exist several directions for future research for univariate panel count data.

One is that in the proposed method, we have assumed that the observation process

does not depend on covariates and is also independent of the underlying recurrent

event process of interest. In practice, it is apparent that this may not be true (Sun and

Zhao (2013)). To develop a valid estimation procedure, one may need to model the

three processes together. Also in the previous chapters, we have assumed that the un-
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derlying recurrent event process follows the proportional mean model, meaning that

the mean functions associated with any two sets of covariate values are proportional

over time. Sometimes this may be too restrictive (Lin et al. (2001)) and correspond-

ingly, one may want to consider other models such as the class of semiparametric

transformation mean models and develop some estimation procedures.

A third assumption behind the proposed estimation procedure is that one knows

which covariates have time-varying effects and which covariates have constant effects.

It is clear that this is generally not true and a simple approach is to try different

combinations as shown in the application in Chapters 2 and 3. On the other hand, it

would be useful to develop a data-driven procedure for the separation of the different

types of covariates.

There also exist several other directions for future research under multivariate

panel count data. One is that in the proposed methodology, a semi-parametric pro-

portional model of the mean function of Nk(t) was utilized. However, one drawback

of model (3.1) is that, when β or Z fluctuates, it is hard to satisfy the non-decreasing

property of the mean function. Therefore, we considered an alternative similar semi-

parametric model based on the rate or intensity function of Nk(t) in Chapter 4.

In addition, for Chapter 3, it is worth noting that model (3.1) is the marginal

model and we took the marginal approach for the problem considered here, as the

main focus of the chapter was on estimation of covariate effects. An advantage of

the proposed approach, as many other marginal approaches for multivariate data, is

that it leaves the correlation between different types of recurrent events arbitrary. An

alternative is to directly model the correlation structure, which would be appealing

if the correlation is of main interest.
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Another direction is again the selection of the time-varying coefficient under the

multivariate panel count data. In Chapter 3, the analysis of the CHNS data showed

that locations and education levels may have time-varying effects (see Section 3.6).

In such a modeling context, all of the existing methods require analysts to pre-specify

each variable either as time-varying or time-invariant. Misspecification could result

in biased estimation or reduced efficiency (Xie et al. (2019)). We could consider data-

driven approaches for determining a covariate effect as ”no effect”, ”time constant

effect”, or ”time-varying effect”.

5.2 Dynamic Analysis of Panel Count Data with

Rate Model

In chapter 4, we discussed the semiparametric maximul likelihood method for univari-

ate panel count data with time-varying coeffficients and time-dependent covariates.

There exist several directions for future research. As discussed in chapter 3, multi-

variate panel count data is of interest. A likelihood function could also be constructed

similarly with a shared frailty model based on model (4.1).

Besides, another assumption behind the proposed estimation procedure is that one

knows which covariates have time-varying effects and which covariates have constant

effects. It is clear that this is generally not true and a simple approach is to try

different combinations as shown in the application above. On the other hand, it

would be useful to develop a data-driven procedure for the separation of the two

types of covariates. Also, under the semiparametric MLE method, we could consider

some penalized methods that could select between time-independent and time-varying
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specifications of their presence in the model (Xie et al., 2019; Yan and Huang, 2012).

Last, note that all the above methods assumed the parametric covariate effect on

the mean or rate function for panel count data, which may not be realistic in some

studies. For example, in the China Health and Nutrition Survey mentioned above in

Chapters 2 and 3, the education level was assessed as having a significant effect on

marriage times and pregnancy numbers (see Section 3.6). Furthermore, its effect was

not linear and cannot be analyzed appropriately using existing methods. Hence, it is

crucial to explore the nonlinear effects of covariates (Wang and Yu, 2021a). A model

with nonparametric covariate functions for panel count data may reveal the nonlinear

effects of the education level at young ages of mothers, thereby facilitate our analysis.

Therefore, statistical methods that can deal with nonlinear covariate effects of panel

count data are desired.
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Appendix A

Theoretical Proofs

A.1 Proofs of Theorems 1, 2, and 3

In this Section, we will sketch the proofs of the consistency and asymptotic properties

of the proposed estimator ϑ̂ described in Theorems 1, 2, and 3 of Chapter 2.

It is not straightforward to study the the asymptotic properties of ϑ̂n based on the

sieve estimating equation (2.3). We will show that solving (2.3) is equivalent to

maximize

ln (ϑ) =
1

n

n∑
i=1

∫ τ

0

Yi(t)(Ni(t) log (Λ (t)) +Ni(t)θ
T (t) Vi(t)

− exp
(
θT (t) Vi(t)

)
Λ (t))dHi(t) (A.1)

with respect to ϑ over Θn = A × Mn × F . With slight abuse of notation, here

θT (t) Vi(t) = γTWi(t) + βT (t)Zi(t) and θ (t) = (γ,β (t)). Let Pn be the empirical
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measure and P be the true measure. Let Mn (ϑ) = ln (ϑ) = Pnmϑ (V) and M (ϑ) =

Pmϑ (V), where

mϑ (O) =

∫ τ

0

Y (t)(N(t) log (Λ (t)) +N(t)θT (t) V(t)−

exp
(
θT (t) V(t)

)
Λ (t))dH(t) (A.2)

and O = (V, H, Y ).

Let

Λ̂(t,θ (t)) =

∑n
j=1 Yj(t)Nj(t)dHj (t)∑n

j=1 Yj(t) exp
(
θT (t) Vj(t)

)
dHj (t)

.

We first show Λ̂(t,θ (t)) maximizes ((A.1)) for a fixed θ(t). After some algebra,

Mn (θ,Λ)−Mn

(
θ, Λ̂

)
=

1

n

n∑
i=1

∫ τ

0

Yi(t)Λ̂(t,θ (t)) exp
(
θT (t) Vi(t)

)
×

(
Ni(t)

Λ̂(t,θ (t)) exp
(
θT (t) Vi(t)

) log

(
Λ (t)

Λ̂(t,θ (t))

)
− Λ (t)

Λ̂(t,θ (t))
+ 1

)
dHi(t).
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Plug in Λ̂(t,θ (t)), and by Fubini’s theorem, we have

1

n

n∑
i=1

∫ τ

0

Yi(t)Λ̂(t,θ (t)) exp
(
θT (t) Vi(t)

)( Λ (t)

Λ̂(t,θ (t))
− 1

)
dHi(t)

=
1

n

∫ τ

0

(
1− Λ (t)

Λ̂(t,θ (t))

)(
n∑
j=1

Yj(t)Nj(t)dHj (t)

)

×
n∑
i=1

Yi(t) exp
(
θT (t) Vi(t)

)
dHi(t)∑n

j=1 Yj(t) exp
(
θT (t) Vi(t)

)
dHj (t)

=
1

n

∫ τ

0

n∑
j=1

Yj(t)Nj(t)

(
1− Λ (t)

Λ̂(t,θ (t))

)
dHj (t) .

Therefore, since log (x)− x+ 1 ≤ − (x− 1)2 for all positive x and the equality holds

iff x = 1,

Mn (θ,Λ)−Mn

(
θ, Λ̂

)
=

1

n

n∑
i=1

∫ τ

0

Yi(t)Ni(t)

{
log

(
Λ (t)

Λ̂(t,θ (t))

)
− Λ (t)

Λ̂ (t)
+ 1

}
dHi(t)

≤− 1

n

n∑
i=1

∫ τ

0

Yi(t)Ni(t)

(
Λ (t)

Λ̂(t,θ (t))
− 1

)2

dHi(t)

≤0

This implies Mn (θ,Λ) ≤ Mn

(
θ, Λ̂

)
for any θ. The equality holds iff Λ (t) =

Λ̂(t,θ (t)) at points where
∑n

i=1 Yi(t)Hi(t) jumps. Since ln (ϑ) are only determined

by the value of Λ̂(t,θ (t)) at points where
∑n

i=1 Yi(t)Hi(t) jumps, Λ̂ (t,θ (t)) is the

unique maximizer of ln (θ,Λ) with respect to Λ. Then, to maximize ln

(
θ, Λ̂(t,θ)

)
with respect to θ over A×Mn, by the idea of profile likelihood in Wellner and Zhang

(2007), we need to maximize ln

(
θn, Λ̂(t,θn)

)
with respect to θn. After some algebra,
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∂ln

(
θn, Λ̂(t,θn)

)
/∂θn equals the left hand side of (2.3). Obviously, ln

(
θn, Λ̂(t,θn)

)
is convex with respect to θn, implying maximizing ln (ϑ) overA×Mn×F is equivalent

to solving (2.3).

After showing the equivalence of solving the estimating equation and maximiz-

ing ln (ϑ), the estimator is actually an M-estimator and its (asymptotic) behavior of

the estimator can be investigated though mθ (O) with the empirical process theory.

Moreover, (A.1) coincides the pseudo-likelihood function for panel count data pro-

posed in Wellner and Zhang (2007) which has been extensively investigated, similar to

He et al. (2017). We can then use many conclusions in existing literature to facilitate

our theoretical justification.

A.1.1 Proof of Consistency

We can prove the consistency of θ̂n by Theorem 3.1 and Remark 3.1 in Chen (2007).

We first show ϑ0 is the unique maximizer of M (ϑ). After some calculation based

on the conditional expectation on V, we have

M (ϑ) =

∫
exp

(
θT (t) v(t)

)
Λ (t)

{
log (Λ (t)) + θT (t) v(t)− 1

}
dυ1 (t, v) .

and therefore

M (ϑ0)−M (ϑ) =

∫
Λ (u) exp

(
θT (u) v(u)

)
h

{
Λ0 (u) exp

(
θT0 (u) v(u)

)
Λ (u) exp

(
θT (u) v(u)

) } dυ1 (t, v)

(A.3)

where h (x) = x log (x) − x + 1. Note that h (x) ≥ 0 for all x > 0 and the equality

holds only when x = 1. Therefore, by similar argument in Wellner and Zhang (2007),

under condition (C2) and (C8), M (ϑ0) = M (ϑ) if and only if θ (t) = θ0 (t) and
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Λ (t) = Λ0 (t) a.e. with respect to µ1. In this manner, ϑ0 is the unique maximizer of

M (ϑ).

By the similar arguments used in Wellner and Zhang (2007), by condition (C1)-

(C5), we can show that Λ̂ (t) is uniformly bounded in probability for t ∈ [0, τ ] with

µ1 ({τ}) > 0.

By Helly-Selection Theorem and compactness ofΘn, it follows that ϑ̂n =
(
γ̂, β̂n, Λ̂

)
has a subsequence ϑ̂nk converging to ϑ+ =

(
γ+,β+,Λ+

)
with ϑ+ ∈ Θ. By the com-

pactness of Θn as well as the fact that mϑ (O) is upper semicontinuous in ϑ for almost

all O. Furthermore, mϑ ≤M0 <∞ with PM0 (V) <∞ by (C9). Thus, by Theorem

A.1 of Wellner and Zhang (2007), we have

lim sup
n→∞

sup
ϑ∈Θn

(Pn −P)mϑ (V) ≤ 0 (A.4)

almost surely. By the Dominated Convergence Theorem and (C9), M (ϑ) is contin-

uous in ϑ. By the Corollary 6.21 of Schumaker (1981), there exists a spline approxi-

mation βn0j (t) ∈Mnj to β0j such that

sup
t∈[0,τ ]

|β0j (t)− βn0j (t)| = O
(
K−rn

)
= O

(
n−vr

)
(A.5)

for j = 1, . . . , p2. Therefore, for any ε > 0, there exists β∗0 ∈Mn such that

M (ϑ0)− ε ≤M (γ0,β
∗
0,Λ0)

with maxj=1,...,p2

∥∥β0j (t)− β∗0j (t)
∥∥
∞ = o (1). Also by the similar argument in Lu et
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al. (2009), we have

Mn (γ0,β
∗
0,Λ0)−M (γ0,β

∗
0,Λ0) = op (1)

and

Mn (γ0,β
∗
0,Λ0) ≤Mn

(
γ̂, β̂n, Λ̂

)
.

Then by (A.4) and the arguments similar to those used in Lu et al. (2009), we can

show that M (ϑ0) = M
(
ϑ+
)
, implying β+ = β0 and Λ+ = Λ0 a.e. with respect to

µ1. Since this holds for any convergent subsequence, we conclude that all the limits

of subsequence of ϑ̂nk are ϑ0. Therefore, due to the uniform boundedness of Λ̂ (t),

we obtain the weak consistency of ϑ̂n in the metric d.

A.1.2 Proof of the Rate of Convergence

In (A.3), since h (x) ≥ (1/4) (x− 1)2 for 0 ≤ x ≤ 5, for θ in a sufficiently small

neighborhood of θ0

M (ϑ0)−M (ϑ) (A.6)

≥1

4

∫
Λ (u) exp

(
θT (u) v(u)

){Λ0 (u) exp
(
θT0 (u) v(u)

)
Λ (u) exp

(
θT (u) v(u)

) − 1

}2

dυ1 (u, v)

≥C
∫ {

Λ (u) exp
(
θT (u) v(u)

)
− Λ0 (u) exp

(
θT0 (u) v(u)

)}2
dυ1 (u, v) (A.7)

Let ρ (u, z) = Λ (u) exp
(
βT (u) z (u)

)
and ρ0 (u, z) = Λ0 (u) exp

(
βT0 (u) z (u)

)
. We

also define ρs = sρ + (1− s) ρ0, Λs = sΛ + (1− s) Λ0, γs = sγ + (1− s)γ0, βs =
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sβ + (1− s)β0, θs = sθ + (1− s)θ0 for s ∈ (0, 1). Then let

g (s) = ρs (U,Z) exp
(
γTs W (U)

)
.

and clearly

Λ (U) exp
(
θT (U) V(U)

)
− Λ0 (U) exp

(
θT0 (U) V(U)

)
= g (1)− g (0) .

By the mean value theorem, there exists a 0 ≤ ξ ≤ 1 such that g (1)− g (0) = g′ (ξ)

where

g′ (ξ)

= exp
(
γTξ W(U)

){
(ρ− ρ0) (U,Z) + (ξρ+ (1− ξ) ρ0) (U,Z) (γ − γ0)T W(U)

}
= exp

(
γTξ W(U)

){
(ρ− ρ0) (U,Z)

{
1 + ξ (γ − γ0)T W(U)

}
+ ρ0 (U,Z) (γ − γ0)T W(U)

}

From (A.6), we have

M (ϑ0)−M (ϑ)

≥C
∫ {

(ρ− ρ0) (u, z)
{

1 + ξ (γ − γ0)T w(u)
}

+ ρ0 (u, z) (γ − γ0)T w(u)
}2

× dν1 (u, z, w)

=Cν1 {g1h+ g2}2
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where g1 (U,V) =
(

(γ − γ0)T W(U)
)
ρ0 (U,Z), g2 (U,Z) = (ρ− ρ0) (U,Z) and

h (U,Z) = 1 + ξ (ρ− ρ0) (U,Z) /ρ0 (U,Z) .

By the similar method in Wellner and Zhang (2007) and He et al. (2017), under

condition (C12)

M (ϑ0)−M (ϑ) ≥ Cν1 {g1h+ g2}2

≥ C1

{
ν1

(
g2

1

)
+ ν1

(
g2

2

)}
.

Similarly, by the mean value theorem and condition (C12),

ν1

(
g2

2

)
= ν1

(
(h2g3 + g4)2)

≥ C2

{
ν1

(
g2

3

)
+ ν1

(
g2

4

)}
where g3 (U,Z) =

(
(β − β0)T (U) Z(U)

)
Λ0 (U), g4 (U) = (Λ− Λ0) (U) and h2 (U) =

1 + ζ (Λ− Λ0) (U) /Λ0 (U) for some ζ ∈ (0, 1). Therefore,

M (ϑ0)−M (ϑ) ≥ C2

{
ν1

(
g2

1

)
+ ν1

(
g2

3

)
+ ν1

(
g2

4

)}
= C2

(
‖γ − γ0‖2

2 +

∫
‖β (u)− β0 (u)‖2

2 dµ1 (u) + ‖Λ− Λ0‖2
L2(µ1)

)
& d (ϑ0,ϑ) .

Next, we need to find ϕn (δ) such that

E

[
sup

d(ϑ,ϑ0)<δ

√
n |(Pn −P) (mϑ (O)−mϑ0 (O))|

]
≤ cϕn (δ) .
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Let

Fδ = {mϑ (O)−mϑ0 (O) : d (ϑ,ϑ0) ≤ δ}

From the result of Theorem 2.7.5 of (van der Vaart and Wellner, 1996) and Lemma

A.2 of Lu et al. (2009), for any ε ≤ δ, we have

logN[]

(
ε,Fδ, ‖·‖P,B

)
≤ c

(
1

ε
+ (p1 + p2qn) log

(
δ

ε

))
,

where ‖·‖P,B is the Bernstein norm defined as ‖f‖P,B =
{

2P
(
e|f | − 1− |f |

)}1/2
by

(van der Vaart and Wellner, 1996, page 324). Similar to the argument in Lu et al.

(2009) and Wellner and Zhang (2007), under conditions (C6) and (C10), we have

‖mϑ (O)−mϑ0 (O)‖2
P,B ≤ cδ2,

for any mϑ (O) −mϑ0 (O) ∈ Fδ. Therefore, by Lemma 3.4.3 in (van der Vaart and

Wellner, 1996), we can show a maximal inequality

E
∥∥√n (Pn −P)

∥∥
Fδ
≤ cJ[]

(
δ,Fδ, ‖·‖P,B

)1 +
J[]

(
δ,Fδ, ‖·‖P,B

)
δ2n1/2


where

J[]

(
δ,Fδ, ‖·‖P,B

)
=

∫ δ

0

{
1 + logN[]

(
ε,Fδ, ‖·‖P,B

)}1/2

dε

≤ c1q
1/2
n

∫ δ

0

{
1 +

1

ε
+ log

(
δ

ε

)}1/2

dε

≤ q1/2
n δ1/2
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Thus,

ϕn(δ) = q
1
2
n δ

1
2

(
1 +

q
1/2
n δ1/2

δ2n1/2

)
= q

1
2
n δ

1
2 +

qn
δn1/2

.

It is not hard to show that ϕn(δ)/δ is decreasing in δ and therefore

r2
nϕn

(
1

rn

)
= r3/2

n q1/2
n + r3

nqnn
−1/2 . n1/2

if rn = min
{
n

1−ν
3 , nrν

}
and 0 < ν < 1/2.

Moreover, using similar argument in Lu et al. (2009), we can show Mn

(
ϑ̂n

)
−

Mn (ϑ0) > −Op (n−2rν) ≥ Op (r2
n) . Then, by Theorem 3.2.5 of Wellner and Zhang

(2007), we have rnd (ϑ,ϑ0) = Op (1). If ν is chosen as 1/ (3r + 1), we obtain the

optimal rate nr/(3r+1) because (1− ν)/3 = rν.

A.1.3 Proof of the Asymptotic Normality

We mainly use the method in He et al. (2017). We define a sequence of maps

Sn mapping a neighborhood of ϑ0, denoted by U , in the parameter space for ϑ into

l∞ (H1 ×H2 ×H3) as

Sn (ϑ) [h1,h2, h3] =
d

dε
ln (γ + εh1,β + εh2,Λ + εh3)|ε=0

=n−1

n∑
i=1

∫ τ

0

Yi(t)

{
Ni(t)

Λ (t)
h3 (t) +Ni(t)

(
hT1 Wi(t) + hT2 (t) Zi(t)

)
−
(
hT1 Wi(t) + hT2 (t) Zi(t)

)
exp

(
γTWi(t) + βT (t) Zi(t)

)
Λ (t)

− exp
(
γTWi(t) + βTZi(t)

)
h3 (t)

}
dHi(t)

=An1 (ϑ) [h1] + An2 (ϑ) [h2] + An3 (ϑ) [h3]

=Pnψ (ϑ) [h1,h2, h3] ,
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where

An1 (ϑ) [h1] =

n−1

n∑
i=1

∫ τ

0

Yi(t)h
T
1 Wi(t)

{
Ni(t)− exp

(
γTWi(t) + βT (t) Zi(t)

)
Λ (t)

}
dHi(t),

An2 (ϑ) [h2] =

n−1

n∑
i=1

∫ τ

0

Yi(t)h
T
2 (t) Zi(t)

{
Ni(t)− exp

(
γTWi(t) + βT (t) Zi(t)

)
Λ (t)

}
dHi(t),

and

An3 (ϑ) [h3] = n−1

n∑
i=1

∫ τ

0

Yi(t)h3 (t)

{
Ni(t)

Λ (t)
− exp

(
γTWi(t) + βTZi(t)

)}
dHi(t).

Correspondingly, we define the limit map S : U → l∞ (H1 ×H2 ×H3) as

S (ϑ) [h1,h2, h3] = A1 (ϑ) [h1] + A2 (ϑ) [h2] + A3 (ϑ) [h3]

where

A1 (ϑ) [h1] = P

∫ τ

0

Y (t)hT1 W(t)
{
N(t)− exp

(
γTW(t) + βT (t) Z(t)

)
Λ (t)

}
dH(t),

A2 (ϑ) [h2]

= P

∫ τ

0

Y (t)hT2 (t) Z(t)
{
N(t)− exp

(
γTW(t) + βT (t) Z(t)

)
Λ (t)

}
dH(t),
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and

A3 (ϑ) [h3] = P

∫ τ

0

Y (t)h3 (t)

{
N(t)

Λ (t)
− exp

(
γTW(t) + βTZ(t)

)}
dH(t).

To derive the asymptotic normality of ϑ̂n, we need to verify the following five

conditions in He et al. (2017).

(a1)
√
n (Sn − S)

(
ϑ̂n

)
−
√
n (Sn − S) (ϑ0) = op (1).

(a2) S (ϑ0) = 0 and Sn

(
ϑ̂n

)
= op

(
n−1/2

)
.

(a3)
√
n (Sn − S) (θ0) converges in distribution to a tight Gaussian process on l∞(H1×

H2 ×H3).

(a4) S (ϑ) is Fréchet-differentiable at ϑ0 denoted by Ṡ (ϑ0).

(a5) S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
.

Using similar argument in Lu et al. (2009), it is not hard to show

{ψ (ϑ) [h1,h2, h3]− ψ (ϑ0) [h1,h2, h3] : d (ϑ,ϑ0) < δ, (h1,h2, h3) ∈ H1 ×H2 ×H3}

is a Donkser class for some δ. Therefore,

sup
(h1,h2,h3)∈A×M×F

P
{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ (ϑ0) [h1,h2, h3]

}2

→ 0

as d
(
ϑ̂n,ϑ0

)
→ 0 in probability and thus (a1) holds.

For (a2), clearly, S (ϑ0) = 0. For h2 ∈ H2, let h2n be the B-spline function

approximation of h2 with maxj=1,...,p2 ‖h2j − h2nj‖∞ = O (n−νr) by (A.13). Then we
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have Sn

(
ϑ̂n

)
[h1,h2, h3n] = 0. Thus,

Sn

(
ϑ̂n

)
[h1,h2, h3] =

√
nPnψ

(
ϑ̂n

)
[h1,h2, h3]−

√
nPψ

(
ϑ̂n

)
[h1,h2, h3n]

= In1 − In2 + In3 + In4

where

In1 =
√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ (ϑ0) [h1,h2, h3]

}
In2 =

√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2n, h3]− ψ (ϑ0) [h1,h2n, h3]

}
In3 =

√
nPn {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

and

In4 =
√
nP
{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ

(
ϑ̂n

)
[h1,h2n, h3]

}
.

From (a1), we have In1 = op (1) and In2 = op (1). Next we need to show In3 = op (1)

and In4 = op (1). Note that

In3 =
√
n (Pn −P) {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

+
√
nP {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

=In31 + In32.

Similarly to proving (a1), In31 = op (1) and In32 = 0 since S (ϑ0) = 0 for any h2,h2n ∈
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H2. For In4,

|In4| ≤
√
nd
(
ϑ̂n, θ0

)(
max

j=1,...,p2
‖h2j − h2nj‖∞

)
= Op

(
max

{
n−(1−ν)/3, n−rν

}
n−rv+1/2

)
= op (1)

if 1/ (4r) < ν < 1/2. Thus (a2) holds.

Condition (a3) holds because H1×H2×H3 is a Donsker class and the functionals

A1 (ϑ) [h1], A2 (ϑ) [h2] and A3 (ϑ) [h3] are bounded Lipschitz functions with respect

to H1 ×H2 ×H3 due the compactness of H1 ×H2 ×H3.

For (a4), by the smoothness of S (ϑ) the Fréchet differentiability holds and the

derivative of S (ϑ) at ϑ0, denoted by Ṡ (ϑ0) is a map from the space {ϑ− ϑ0 : ϑ ∈ U}
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to l∞(H1 ×H2 ×H3). Now we calculate Ṡ (ϑ0) as

Ṡ (ϑ0) (ϑ− ϑ0) [h1,h2, h3]

=
d

dε
{A1 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

+
d

dε
{A2 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

+
d

dε
{A3 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

=−P

∫ τ

0

Y (t)hT1 W(t) exp
(
γTW(t) + βT (t) Z(t)

)
×
{(

(γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)
)

Λ0 (t) + (Λ (t)− Λ0 (t))
}
dH(t)

−P

∫ τ

0

Y (t)hT2 (t) Z(t) exp
(
γTW(t) + βT (t) Z(t)

)
×
{(

(γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)
)

Λ0 (t) + (Λ (t)− Λ0 (t))
}
dH(t)

−P

∫ τ

0

Y (t)h3 (t) exp
(
γTW(t) + βTZ(t)

)
×
{

Λ (t)− Λ0 (t)

Λ0 (t)
+ (γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)

}
dH(t).

Thus, we have

Ṡ (ϑ0) (ϑ− ϑ0) [h1,h2, h3]

= (γ − γ0)T Q1 (h1,h2, h3)

+

∫ τ

0

(β (t)− β0 (t))T dQ2 (h1,h2, h3) (t)

+

∫ τ

0

(Λ (t)− Λ0 (t)) dQ3 (h1,h2, h3) (t)
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where

Q1 (h1,h2, h3) = −P

∫ τ

0

W(t)Y (t)
(
hT1 W(t)Λ0 (t) + hT2 (t) Z(t)Λ0 (t) + h3 (t)

)
× exp

(
γTW(t) + βT (t) Z(t)

)
dH (t) ,

dQ2 (h1,h2, h3) (t) = −PZ(t)Y (t)
(
hT1 W(t)Λ0 (t) + hT2 (t) Z(t)Λ0 (t) + h3 (t)

)
× exp

(
γTW(t) + βT (t) Z(t)

)
dH (t) ,

and

dQ3 (h1,h2, h3) (t) = −P
Y (t)

Λ0 (t)

(
hT1 W(t)Λ0 (t) + hT2 (t) Z(t)Λ0 (t) + h3 (t)

)
× exp

(
γTW(t) + βT (t) Z(t)

)
dH (t) .

We can also show Q = (Q1, Q2, Q3) is one-to-one by the similar method in He et al.

(2017).

For (a5), we have

S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= Bn1 +Bn2 +Bn3

where

Bn1 = A1

(
ϑ̂n

)
[h1]− d

dε

{
A1

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h1]

}∣∣∣∣
ε=0

,

Bn2 = A2

(
ϑ̂n

)
[h2]− d

dε

{
A2

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h2]

}∣∣∣∣
ε=0

,
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and

Bn3 = A3

(
ϑ̂n

)
[h3]− d

dε

{
A3

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h3]
}∣∣∣∣

ε=0

.

It is not hard to see

Bn1 = P

∫ τ

0

Y (t)hT1 W(t) exp
(
γT0 W(t) + βT0 (t) Z(t)

)
Λ0 (t)

× q1

(
(γ̂ − γ0)T W(t)−

(
β̂n (t)− β0 (t)

)T
Z(t)

)
dH(t),

where q1 (x) = 1 − exp (y) (1− y) and q1 (x) ≤ x2 when x is in a neighborhood of 0.

Thus

Bn1 ≤P

∫ τ

0

Y (t)hT1 W(t) exp
(
γT0 W(t) + βT0 (t) Z(t)

)
Λ0 (t)

×
{

(γ̂ − γ0)T W(t)−
(
β̂n (t)− β0 (t)

)T
Z(t)

}2

dH(t).

=O
(
d2
(
ϑ̂n,ϑ

))
.

Similarly, we can show Bn2 ≤ O
(
d2
(
ϑ̂n,ϑ

))
and Bn3 ≤ O

(
d2
(
ϑ̂n,ϑ

))
and hence

S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
≤ O

(
d2
(
ϑ̂n,ϑ

))
.

Since n1/2d2
(
ϑ̂n,ϑ

)
= Op

(
n1/2 max

{
n−2(1−ν)/3, n−2rν

})
= op (1) if 1/ (4r) < v <

1/4, we can conclude that S
(
ϑ̂n

)
−S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
and (a5)

holds.

If (a1)-(a5) hold, according to He et al. (2017), we have

−
√
nṠ (ϑ0)

(
ϑ̂n − ϑ0

)
[h1,h2, h3] =

√
n (Sn − S) (ϑ0) [h1,h2, h3] + op (1) ,
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uniformly in h1,h2, h3. For each (h1,h2, h3) ∈ H1 ×H2 ×H3, Q is invertible by the

similar arguement in He et al. (2017). Then there exists (h1,h2, h3) ∈ H1×H2×H3

such that

Q1 (h1,h2, h3) = h1, Q2 (h1,h2, h3) = h2, Q3 (h1,h2, h3) = h3.

Therefore, we have

(γ̂ − γ0)T h1 +

∫ τ

0

(
β̂n (t)− β0 (t)

)T
dh2 (t) +

∫ τ

0

(
Λ̂ (t)− Λ0 (t)

)
dh3 (t)

=
√
n (Sn − S) (ϑ0) [h1,h2, h3] + op (1)→d N

(
0, σ2

)
where σ2 = E [ψ2 (ϑ0) [h1,h2, h3]] because of (a3).

To find the asymptotic distribution of γ only, we can find h1, h2 and h3 as a

solution of Q2 = 0 and Q3 = 0. Unfortunately, we cannot find the explicit forms of

h1, h2 and h3 as He et al. (2017). Hence, we adopt the variance estimation method

in the Chapter 2.

A.2 Proofs of Theorems 4, 5, and 6

In this section, we will sketch the proofs of the consistency, rate of convergence, and

asymptotic normality of ϑ̂n described in Theorems 4 - 6.

When splines are involved in estimating equation-based methods, a more straight-

forward method to derive the asymptotic properties of ϑ̂n is to find a equivalent

optimization problem to solving equation (3.3) and follow the M-estimator theory
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(van der Vaart and Wellner, 1996). We will show that solving (3.3) is equivalent to

maximize

ln (ϑ) =
1

n

n∑
i=1

K∑
k=1

∫ τ

0

Yi(t)

(
Nik(t) log (Λk (t)) +Nik(t)θ

T (t) Vi(t)− exp
(
θT (t) Vi(t)

)
Λk (t)

)
dHik(t) (A.8)

with respect to ϑ over Θn = A×Mn×F . Here θT (t) Vi(t) = γTWi(t) +βT (t)Zi(t)

and θ (t) = (γ,β (t)). Let Pn be the empirical measure and P be the true measure.

Let Mn (ϑ) = ln (ϑ) = Pnmϑ (V) and M (ϑ) = Pmϑ (V), where

mϑ (O) =
K∑
k=1

∫ τ

0

Y (t)
(
N·k(t) log (Λk (t)) +N·k(t)θ

T (t) V(t)

− exp
(
θT (t) V(t)

)
Λk (t)

)
dH·k(t)

and O denotes the data.

Follow the definition Λ̂k(t, θ̂n), we define

Λ̂k(t,θ (t)) =

∑n
j=1 Yj(t)Njk(t)dHjk (t)∑n

j=1 Yj(t) exp
(
θT (t) Vj(t)

)
dHjk (t)

.

First, we show Λ̂k(t,θ (t)) is a unique maximize of (A.8) when θ(t) is given. After
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some calculation,

Mn (θ,Λ)−Mn

(
θ, Λ̂

)
=

1

n

n∑
i=1

K∑
k=1

∫ τ

0

Yi(t)Λ̂k(t,θ (t)) exp
(
θT (t) Vi(t)

)
×

{
Nik(t)

Λ̂k(t,θ (t)) exp
(
θT (t) Vi(t)

) log

(
Λk (t)

Λ̂k(t,θ (t))

)

+

(
1− Λk (t)

Λ̂k(t,θ (t))

)}
dHik(t).

Focusing on the the second term in the bracket, by plugging in Λ̂k(t,θ (t)), Fubini’s

theorem yields that

1

n

n∑
i=1

K∑
k=1

∫ τ

0

Yi(t)Λ̂k(t,θ (t)) exp
(
θT (t) Vi(t)

)(
1− Λk (t)

Λ̂k(t,θ (t))

)
dHik(t)

=
1

n

K∑
k=1

∫ τ

0

(
1− Λk (t)

Λ̂k(t,θ (t))

)(
n∑
j=1

Yj(t)Njk(t)dHjk (t)

)
(A.9)

×
n∑
i=1

Yi(t) exp
(
θT (t) Vi(t)

)
dHik(t)∑n

j=1 Yj(t) exp
(
θT (t) Vi(t)

)
dHjk (t)

=
1

n

∫ τ

0

K∑
k=1

n∑
j=1

Yj(t)Njk(t)

(
1− Λk (t)

Λ̂k(t,θ (t))

)
dHjk (t) . (A.10)

The last equation holds because

n∑
i=1

Yi(t) exp
(
θT (t) Vi(t)

)
dHik(t)∑n

j=1 Yj(t) exp
(
θT (t) Vi(t)

)
dHjk (t)

=

∑n
i=1 Yi(t) exp

(
θT (t) Vi(t)

)
dHik(t)∑n

j=1 Yj(t) exp
(
θT (t) Vi(t)

)
dHjk (t)

= 1.
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Hence, by (A.10), Mn (θ,Λ)−Mn

(
θ, Λ̂

)
reduces to

1

n

K∑
k=1

n∑
i=1

∫ τ

0

Yi(t)Nik(t)

{
log

(
Λk (t)

Λ̂k(t,θ (t))

)
− Λk (t)

Λ̂k (t)
+ 1

}
dHik(t).

Then, since log (x) − x + 1 ≤ − (x− 1)2 for all positive x and the equality holds iff

x = 1,

Mn (θ,Λ)−Mn

(
θ, Λ̂

)
=

1

n

K∑
k=1

n∑
i=1

∫ τ

0

Yi(t)Nik(t)

{
log

(
Λk (t)

Λ̂k(t,θ (t))

)
− Λk (t)

Λ̂k (t)
+ 1

}
dHik(t)

≤− 1

n

n∑
i=1

K∑
k=1

∫ τ

0

Yi(t)Nik(t)

(
Λk (t)

Λ̂k(t,θ (t))
− 1

)2

dHik(t)

≤0

as Yi(t) and Nik(t) are all nonnegative. This suggested Mn (θ,Λ) ≤ Mn

(
θ, Λ̂

)
for

arbitrary θ and the equality holds iff Λk (t) = Λ̂k(t,θ (t)) a.e. on µ0k, k = 1, . . . , K.

Thus, Λ̂k (t,θ (t)) is the unique maximizer of ln (ϑ) = ln

(
θ, Λ̂(t,θ)

)
for given θ.

Then, to maximize ln (ϑ) over A × Mn × F , by the idea of profile likelihood in

Wellner and Zhang (2007), we need to maximize ln

(
θn, Λ̂(t,θn)

)
with respect to θn.

After some algebra, ∂ln

(
θn, Λ̂(t,θn)

)
/∂θn = 0 is equivalent to (3.3). Obviously,

ln

(
θn, Λ̂(t,θn)

)
is convex with respect to θn, implying maximizing ln (ϑ) over A×

Mn ×F is equivalent to solving (3.3).

Since ϑ̂n = arg maxϑ∈A×Mn×F ln (ϑ), the the asymptotic properties of estimator

ϑ̂n can be investigated through mϑ (O) with the empirical process theory. An insight

from this equivalence is that (A.8) can be regarded as an extension of the pseudo-
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likelihood function for panel count data proposed in Wellner and Zhang (2007) to the

multivariate case. We can then use many conclusions regarding the pseudo-likelihood

function in existing literature to facilitate our theoretical justification.

A.2.1 Proof of Consistency

We first show ϑ0 is the unique maximizer of M (ϑ) which concerns the identifia-

bility of the parameter. After some calculation based on the conditional expectation

on V, we have

M (ϑ) =
K∑
k=1

∫
exp

(
θT (t) v(t)

)
Λk (t)

{
log (Λk (t)) + θT (t) v(t)− 1

}
dυ1k (t, v) .

and therefore

M (ϑ0)−M (ϑ) =
K∑
k=1

∫
Λk (u) exp

(
θT (u) v(u)

)
× h

{
Λ0k (u) exp

(
θT0 (u) v(u)

)
Λk (u) exp

(
θT (u) v(u)

) } dυ1k (t, v) (A.11)

where h (x) = x log (x) − x + 1. Note that h (x) ≥ 0 for all x > 0 and the equality

holds only when x = 1. Therefore, by similar argument in Wellner and Zhang (2007),

under conditions (C2) and (C8), M (ϑ0) = M (ϑ) if and only if θ (t) = θ0 (t) and

Λk (t) = Λ0k (t) a.e. with respect to υ1k, for k = 1, . . . , K. In this manner, ϑ0 is the

unique maximizer of M (ϑ).

By the similar arguments used in Wellner and Zhang (2007), by conditions (C1)-

(C5), we can show that Λ̂k (t), k = 1, . . . , K, is uniformly bounded in probability

for t ∈ [0, τ ] with µ0k ({τ}) > 0. By Helly-Selection Theorem and compactness
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of Θn, it follows that ϑ̂n =
(
γ̂, β̂n, Λ̂

)
has a subsequence ϑ̂nl converging to ϑ+ =(

γ+,β+,Λ+
)

with ϑ+ ∈ Θ. By the compactness of Θn as well as the fact that mϑ (O)

is upper semicontinuous in ϑ for almost all O. Furthermore, mϑ ≤
∑K

k=1M0k < ∞

by condition (C9). Thus, by Theorem A.1 of Wellner and Zhang (2007), we have

lim sup
n→∞

sup
ϑ∈Θn

(Pn −P)mϑ (V) ≤ 0 (A.12)

almost surely. By the Dominated Convergence Theorem and (C9), M (ϑ) is contin-

uous in ϑ.

By the Corollary 6.21 of Schumaker (1981), there exists a spline approximation

βn0j (t) ∈Mnj to β0j such that

sup
t∈[0,τ ]

|β0j (t)− βn0j (t)| = O
(
K−rn

)
= O

(
n−vr

)
(A.13)

for j = 1, . . . , p2. Therefore, for any ε > 0, there exists β∗0 ∈Mn such that

M (ϑ0)− ε ≤M (γ0,β
∗
0,Λ0)

with maxj=1,...,p2

∥∥β0j (t)− β∗0j (t)
∥∥
∞ = o (1). Also by the similar argument in Lu et

al. (2009), we have

Mn (γ0,β
∗
0,Λ0)−M (γ0,β

∗
0,Λ0) = op (1)

and

Mn (γ0,β
∗
0,Λ0) ≤Mn

(
γ̂, β̂n, Λ̂

)
.
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Then by (A.12) and the arguments similar to those used in Lu et al. (2009), we can

show that M (ϑ0) = M
(
ϑ+
)

, that is β+ = β0 and Λ+
k = Λ0k a.e. with respect to

υ1k as ϑ0 is the unique maximizer of M (ϑ) for k = 1, . . . , K. Since this holds for

any convergent subsequence, we conclude that all the limits of subsequence of ϑ̂nl are

ϑ0. Therefore, due to the uniform boundedness of Λ̂k (t), k = 1, . . . , K, we obtain

the weak consistency of ϑ̂n in the metric d.

A.2.2 Proof of the Rate of Convergence

In (A.11), since h (x) ≥ (1/4) (x− 1)2 for 0 ≤ x ≤ 5, for θ in a sufficiently small

neighborhood of θ0

M (ϑ0)−M (ϑ) ≥1

4

K∑
k=1

∫
Λk (u) exp

(
θT (u) v(u)

)
(A.14)

×

{
Λ0k (u) exp

(
θT0 (u) v(u)

)
Λk (u) exp

(
θT (u) v(u)

) − 1

}2

dυ1k (u, v)

≥C
∫ {

Λk (u) exp
(
θT (u) v(u)

)
(A.15)

− Λ0k (u) exp
(
θT0 (u) v(u)

)}2
dυ1 (u, v) (A.16)

Let ρk (u, z) = Λk (u) exp
(
βT (u) z (u)

)
and ρ0k (u, z) = Λ0k (u) exp

(
βT0 (u) z (u)

)
.

We also define ρsk = sρk + (1− s) ρ0k, Λsk = sΛk + (1− s) Λ0k, γs = sγ + (1− s)γ0,

βs = sβ + (1− s)β0, θs = sθ + (1− s)θ0 for s ∈ (0, 1). Then let

gk (s) = ρsk (U,Z) exp
(
γTs W (U)

)
.
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and clearly

Λk (U) exp
(
θT (U) V(U)

)
− Λ0k (U) exp

(
θT0 (U) V(U)

)
= gk (1)− gk (0) .

By the mean value theorem, there exists a 0 ≤ ξ ≤ 1 such that gk (1)− gk (0) = g′k (ξ)

where

g′k (ξ)

= exp
(
γTξ W(U)

){
(ρk − ρ0k) (U,Z) + (ξρk + (1− ξ) ρ0k) (U,Z) (γ − γ0)T W(U)

}
= exp

(
γTξ W(U)

)
×
{

(ρk − ρ0k) (U,Z)
{

1 + ξ (γ − γ0)T W(U)
}

+ ρ0k (U,Z) (γ − γ0)T W(U)
}

From (A.16), we have

M (ϑ0)−M (ϑ)

≥C
K∑
k=1

∫ {
(ρk − ρ0k) (u, z)

{
1 + ξ (γ − γ0)T w(U)

}
+ρ0k (u, z) (γ − γ0)T w(u)

}2

dυ1k (u, z, w)

=C
K∑
k=1

υ1k {g1khk + g2k}2

where g1k (U,V) =
(

(γ − γ0)T W(U)
)
ρ0k (U,Z), g2k (U,Z) = (ρk − ρ0k) (U,Z) and

h (U,Z) = 1 + ξ (ρk − ρ0k) (U,Z) /ρ0k (U,Z) .

By the similar method in Wellner and Zhang (2007) and He et al. (2017), under
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condition (C12),

M (ϑ0)−M (ϑ) ≥ C

K∑
k=1

υ1k {g1khk + g2k}2

≥ C1

K∑
k=1

{
υ1k

(
g2

1k

)
+ υ1k

(
g2

2k

)}
.

Similarly, by the mean value theorem and condition (C12),

K∑
k=1

υ1k

(
g2

2k

)
=

K∑
k=1

υ1k

(
(h2kg3k + g4k)

2)
≥ C2

K∑
k=1

{
υ1k

(
g2

3k

)
+ υ1k

(
g2

4k

)}

where g3k (U,Z) =
(

(β − β0)T (U) Z(U)
)

Λ0k (U), g4k (U) = (Λk − Λ0k) (U) and

h2k (U) = 1 + ζ (Λk − Λ0k) (U) /Λ0k (U) for some ζ ∈ (0, 1). Specifically,

K∑
k=1

υ1k

(
g2

3k

)
=

K∑
k=1

∫ (
(β − β0)T (u) Z(u)

)2

Λ2
0k (u) dυ1k (u, v)

=

∫ (
(β − β0)T (u) Z(u)

)2
K∑
k=1

Λ2
0k (u) dυ1k (u, v)

=

∫ (
(β − β0)T (u) Z(u)

)2

υ̃1 (u, v) .
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Therefore, under conditions (C8) and (C12), since K ≥ 1,

M (ϑ0)−M (ϑ) ≥ C2

K∑
k=1

{
υ1k

(
g2

1k

)
+ υ1k

(
g2

3k

)
+ υ1k

(
g2

4k

)}
≥ C3

(
K ‖γ − γ0‖2

2 + ‖β1 − β2‖2
L2(µ̃0) +

K∑
k=1

‖Λk − Λ0k‖2
L2(µ0k)

)

≥ C3

(
‖γ − γ0‖2

2 + ‖β1 − β2‖2
L2(µ̃0) +

K∑
k=1

‖Λk − Λ0k‖2
L2(µ0k)

)

& d2 (ϑ0,ϑ) .

Next, we need to find ϕn (δ) such that

E

[
sup

d(ϑ,ϑ0)<δ

√
n |(Pn −P) (mϑ (O)−mϑ0 (O))|

]
≤ cϕn (δ) .

Let

Fδ = {mϑ (O)−mϑ0 (O) : d (ϑ,ϑ0) ≤ δ}

By the result of Theorem 2.7.5 of van der Vaart and Wellner (1996) and Lemma A.2

of Lu et al. (2009), for any ε ≤ δ, after some calculation, we have

logN[]

(
ε,Fδ, ‖·‖P,B

)
≤ c

(
K

ε
+ (p1 + p2qn) log

(
δ

ε

))
,

where ‖·‖P,B is the Bernstein norm defined as ‖f‖P,B =
{

2P
(
e|f | − 1− |f |

)}1/2
by

van der Vaart and Wellner (1996, page 324). Similar to the argument in Lu et al.

(2009) and Wellner and Zhang (2007), under conditions (C6) and (C10), we have

‖mϑ (O)−mϑ0 (O)‖2
P,B ≤ cδ2,
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for any mϑ (O)−mϑ0 (O) ∈ Fδ. Therefore, according to Lemma 3.4.3 in van der Vaart

and Wellner (1996), we can show a maximal inequality

E
∥∥√n (Pn −P)

∥∥
Fδ
≤ cJ[]

(
δ,Fδ, ‖·‖P,B

)1 +
J[]

(
δ,Fδ, ‖·‖P,B

)
δ2n1/2


where

J[]

(
δ,Fδ, ‖·‖P,B

)
=

∫ δ

0

{
1 + logN[]

(
ε,Fδ, ‖·‖P,B

)}1/2

dε

≤ c1q
1/2
n

∫ δ

0

{
1 +

K

ε
+ log

(
δ

ε

)}1/2

dε

≤ q1/2
n δ1/2

Thus,

ϕn(δ) = q1/2
n δ1/2

(
1 +

q
1/2
n δ1/2

δ2n1/2

)
= q1/2

n δ1/2 +
qn
δn1/2

.

Obviously, ϕn(δ)/δ is decreasing in δ as the leading term is δ−1/2. Therefore

r2
nϕn

(
1

rn

)
= r3/2

n q1/2
n + r3

nqnn
−1/2 . n1/2

if rn = min
{
n

1−ν
3 , nrν

}
and 0 < ν < 1/2. Moreover, using similar argument in Lu

et al. (2009), we can show Mn

(
ϑ̂n

)
−Mn (ϑ0) > −Op (n−2rν) ≥ Op (r2

n) . Then, by

Theorem 3.2.5 of Wellner and Zhang (2007), we have rnd (ϑ,ϑ0) = Op (1). If ν is

chosen as 1/ (3r + 1), we obtain the optimal rate nr/(3r+1) because (1− ν)/3 = rν.

A.2.3 Proof of the Asymptotic Normality

We mainly use the method in He et al. (2017). We define a sequence of maps Sn
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mapping a neighborhood of ϑ0, denoted by U , in the parameter space for ϑ into

l∞ (H1 ×H2 ×H3) as

Sn (ϑ) [h1,h2, h3]

=
d

dε
ln (γ + εh1,β + εh2,Λ + εh3)|ε=0

=n−1

K∑
k=1

n∑
i=1

∫ τ

0

Yi(t)

{
Nik(t)

Λk (t)
h3k (t) +Nik(t)

(
hT1 Wi(t) + hT2 (t) Zi(t)

)
−
(
hT1 Wi(t) + hT2 (t) Zi(t)

)
exp

(
γTWi(t) + βT (t) Zi(t)

)
Λk (t)

− exp
(
γTWi(t) + βTZi(t)

)
h3k (t)

}
dHik(t)

=An1 (ϑ) [h1] + An2 (ϑ) [h2] + An3 (ϑ) [h3]

=Pnψ (ϑ) [h1,h2, h3] ,

where

An1 (ϑ) [h1] = n−1

K∑
k=1

n∑
i=1

∫ τ

0

Yi(t)h
T
1 Wi(t) {Nik(t)

− exp
(
γTWi(t) + βT (t) Zi(t)

)
Λk (t)

}
dHik(t),

An2 (ϑ) [h2] = n−1

n∑
i=1

K∑
k=1

∫ τ

0

Yi(t)h
T
2 (t) Zi(t) {Nik(t)

− exp
(
γTWi(t) + βT (t) Zi(t)

)
Λk (t)

}
dHik(t),
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and

An3 (ϑ) [h3] =

n−1

n∑
i=1

K∑
k=1

∫ τ

0

Yi(t)h3k (t)

{
Nik(t)

Λk (t)
− exp

(
γTWi(t) + βTZi(t)

)}
dHik(t).

Correspondingly, we define the limit map S : U → l∞ (H1 ×H2 ×H3) as

S (ϑ) [h1,h2, h3] = A1 (ϑ) [h1] + A2 (ϑ) [h2] + A3 (ϑ) [h3]

where

A1 (ϑ) [h1]

= P
K∑
k=1

∫ τ

0

Y (t)hT1 W(t)
{
N·k(t)− exp

(
γTW(t) + βT (t) Z(t)

)
Λk (t)

}
dH·k(t),

A2 (ϑ) [h2] = P
K∑
k=1

∫ τ

0

Y (t)hT2 (t) Z(t)

{
N·k(t)− exp

(
γTW(t) + βT (t) Z(t)

)
Λk (t)

}
dH·k(t),

and

A3 (ϑ) [h3] = P
K∑
k=1

∫ τ

0

Y (t)h3k (t)

{
N·k(t)

Λk (t)
− exp

(
γTW(t) + βTZ(t)

)}
dH·k(t).

To derive the asymptotic normality of ϑ̂n, we need to verify the following five condi-

tions in He et al. (2017).
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(a1)
√
n (Sn − S)

(
ϑ̂n

)
−
√
n (Sn − S) (ϑ0) = op (1).

(a2) S (ϑ0) = 0 and Sn

(
ϑ̂n

)
= op

(
n−1/2

)
.

(a3)
√
n (Sn − S) (θ0) converges in distribution to a tight Gaussian process on l∞(H1×

H2 ×H3).

(a4) S (ϑ) is Fréchet-differentiable at ϑ0 denoted by Ṡ (ϑ0).

(a5) S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
.

Using similar argument in Lu et al. (2009), it is not hard to show

{ψ (ϑ) [h1,h2, h3]− ψ (ϑ0) [h1,h2, h3] : d (ϑ,ϑ0) < δ, (h1,h2, h3) ∈ H1 ×H2 ×H3}

is a Donkser class for some δ. Therefore,

sup
(h1,h2,h3)∈A×M×F

P
{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ (ϑ0) [h1,h2, h3]

}2

→ 0

as d
(
ϑ̂n,ϑ0

)
→ 0 in probability and thus (a1) holds.

For (a2), clearly, S (ϑ0) = 0. For h2 ∈ H2, let h2n be the B-spline function

approximation of h2 with maxj=1,...,p2 ‖h2j − h2nj‖∞ = O (n−νr) by (A.13). Then we

have Sn

(
ϑ̂n

)
[h1,h2n, h3] = 0. Thus,

Sn

(
ϑ̂n

)
[h1,h2, h3] =

√
nPnψ

(
ϑ̂n

)
[h1,h2, h3]−

√
nPψ

(
ϑ̂n

)
[h1,h2n, h3]

= In1 − In2 + In3 + In4
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where

In1 =
√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ (ϑ0) [h1,h2, h3]

}
In2 =

√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2n, h3]− ψ (ϑ0) [h1,h2n, h3]

}
In3 =

√
nPn {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

and

In4 =
√
nP
{
ψ
(
ϑ̂n

)
[h1,h2, h3]− ψ

(
ϑ̂n

)
[h1,h2n, h3]

}
.

From (a1), we have In1 = op (1) and In2 = op (1). Next we need to show In3 = op (1)

and In4 = op (1). Note that

In3 =
√
n (Pn −P) {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

+
√
nP {ψ (ϑ0) [h1,h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

=In31 + In32.

Similarly to proving (a1), In31 = op (1) and In32 = 0 since S (ϑ0) = 0 for any h2,h2n ∈

H2. For In4,

|In4| ≤
√
nd
(
ϑ̂n, θ0

)(
max

j=1,...,p2
‖h2j − h2nj‖∞

)
= Op

(
max

{
n−(1−ν)/3, n−rν

}
n−rv+1/2

)
= op (1)

if 1/ (4r) < ν < 1/2. Thus (a2) holds.

Condition (a3) holds because H1×H2×H3 is a Donsker class and the functionals
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A1 (ϑ) [h1], A2 (ϑ) [h2] and A3 (ϑ) [h3] are bounded Lipschitz functions with respect

to H1 ×H2 ×H3 due the compactness of H1 ×H2 ×H3.

For (a4), by the smoothness of S (ϑ) the Fréchet differentiability holds and the

derivative of S (ϑ) at ϑ0, denoted by Ṡ (ϑ0) is a map from the space {ϑ− ϑ0 : ϑ ∈ U}

to l∞(H1 ×H2 ×H3). Now we calculate Ṡ (ϑ0) as

Ṡ (ϑ0) (ϑ− ϑ0) [h1,h2, h3]

=
d

dε
{A1 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

+
d

dε
{A2 (ϑ0 + ε (ϑ− ϑ0)) [h2]}|ε=0

+
d

dε
{A3 (ϑ0 + ε (ϑ− ϑ0)) [h3]}|ε=0

=−P
K∑
k=1

∫ τ

0

Y (t)hT1 W(t) exp
(
γTW(t) + βT (t) Z(t)

)
×
{(

(γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)
)

Λ0k (t) + (Λk (t)− Λ0k (t))
}
dH·k(t)

−P
K∑
k=1

∫ τ

0

Y (t)hT2 (t) Z(t) exp
(
γTW(t) + βT (t) Z(t)

)
×
{(

(γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)
)

Λ0k (t) + (Λk (t)− Λ0k (t))
}
dH·k(t)

−P
K∑
k=1

∫ τ

0

Y (t)h3k (t) exp
(
γTW(t) + βTZ(t)

)
×
{

Λk (t)− Λ0k (t)

Λ0k (t)
+ (γ − γ0)T W(t) + (β (t)− β0 (t))T Z(t)

}
dH·k(t).

118



Thus, we have

Ṡ (ϑ0) (ϑ− ϑ0) [h1,h2, h3]

= (γ − γ0)T Q1 (h1,h2, h3)

+

∫ τ

0

(β (t)− β0 (t))T dQ2 (h1,h2, h3) (t)

+
K∑
k=1

∫ τ

0

(Λk (t)− Λ0k (t)) dQ3k (h1,h2, h3) (t)

where

Q1 (h1,h2, h3)

= −P
K∑
k=1

∫ τ

0

W(t)Y (t)
(
hT1 W(t)Λ0k (t) + hT2 (t) Z(t)Λ0k (t) + h3k (t)

)
× exp

(
γTW(t) + βT (t) Z(t)

)
dH·k (t) ,

dQ2 (h1,h2, h3) (t) =

−P
K∑
k=1

Z(t)Y (t)
(
hT1 W(t)Λ0k (t) + hT2 (t) Z(t)Λ0k (t) + h3k (t)

)
× exp

(
γTW(t) + βT (t) Z(t)

)
dH·k (t) ,

119



and

dQ3k (h1,h2, h3) (t) =

−P
Y (t)

Λ0k (t)

(
hT1 W(t)Λ0k (t) + hT2 (t) Z(t)Λ0k (t) + h3k (t)

)
× exp

(
γTW(t) + βT (t) Z(t)

)
dH·k (t) .

We can also show Q = (Q1, Q2, Q3) is one-to-one by the similar method in He et al.

(2017).

For (a5), we have

S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= Bn1 +Bn2 +Bn3

where

Bn1 = A1

(
ϑ̂n

)
[h1]− d

dε

{
A1

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h1]

}∣∣∣∣
ε=0

,

Bn2 = A2

(
ϑ̂n

)
[h2]− d

dε

{
A2

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h2]

}∣∣∣∣
ε=0

,

and

Bn3 = A3

(
ϑ̂n

)
[h3]− d

dε

{
A3

(
ϑ0 + ε

(
ϑ̂n − ϑ0

))
[h3]
}∣∣∣∣

ε=0

.

It is not hard to see

Bn1 = P
K∑
k=1

∫ τ

0

Y (t)hT1 W(t) exp
(
γT0 W(t) + βT0 (t) Z(t)

)
Λ0k (t)

× q1

(
(γ̂ − γ0)T W(t)−

(
β̂n (t)− β0 (t)

)T
Z(t)

)
dH·k(t),
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where q1 (x) = 1 − exp (y) (1− y) and q1 (x) ≤ x2 when x is in a neighborhood of 0.

Thus

Bn1 ≤P
K∑
k=1

∫ τ

0

Y (t)hT1 W(t) exp
(
γT0 W(t) + βT0 (t) Z(t)

)
Λ0k (t)

×
{

(γ̂ − γ0)T W(t)−
(
β̂n (t)− β0 (t)

)T
Z(t)

}2

dH·k(t).

=O
(
d2
(
ϑ̂n,ϑ

))
.

Similarly, we can show Bn2 ≤ O
(
d2
(
ϑ̂n,ϑ

))
and Bn3 ≤ O

(
d2
(
ϑ̂n,ϑ

))
and hence

S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
≤ O

(
d2
(
ϑ̂n,ϑ

))
.

Since n1/2d2
(
ϑ̂n,ϑ

)
= Op

(
n1/2 max

{
n−2(1−ν)/3, n−2rν

})
= op (1) if 1/ (4r) < v <

1/4, we can conclude that S
(
ϑ̂n

)
−S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
and (a5)

holds.

If (a1)-(a5) hold, according to He et al. (2017), we have

−
√
nṠ (ϑ0)

(
ϑ̂n − ϑ0

)
[h1,h2, h3] =

√
n (Sn − S) (ϑ0) [h1,h2, h3] + op (1) ,

uniformly in h1,h2, h3. For each (h1,h2, h3) ∈ H1 ×H2 ×H3, Q is invertible by the

similar arguement in He et al. (2017). Then there exists (h1,h2, h3) ∈ H1×H2×H3

such that

Q1 (h1,h2, h3) = h1, Q2 (h1,h2, h3) = h2, Q3k (h1,h2, h3) = h3k.
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Therefore, we have

√
n (γ̂ − γ0)T h1 +

√
n

∫ τ

0

(
β̂n (t)− β0 (t)

)T
dh2 (t)

+
√
n

K∑
k=1

∫ τ

0

(
Λ̂k (t)− Λ0k (t)

)
dh3k (t)

=
√
n (Sn − S) (ϑ0) [h1,h2, h3] + op (1)→d N

(
0, σ2

)
where σ2 = E [ψ2 (ϑ0) [h1,h2, h3]] because of (a3). To find the asymptotic distribution

of γ only, we can find h1, h2 and h3 as a solution of Q2 = 0 and Q3 = 0. Unfortunately,

we cannot find the explicit forms of h1, h2 and h3 as He et al. (2017). Hence, we

adopt the variance estimation method in the main body.

A.3 Proofs of Theorems 7, 8, and 9

In this section, we will sketch the proofs of the consistency and asymptotic properties

of the proposed estimator ϑ̂ described in Theorems 7, 8, and 9 of Chapter 4.

A.3.1 Proof of Consistency

We first prove that the true parameter ϑ0 = (γ0, β0,Λ0) is the unique maximizer

of M (ϑ). From the definition of M (ϑ),

M (ϑ0)−M (ϑ) =

∫ ∫ u2

u1

exp
(
γ>w (t) + β> (t)x (t)

)
dΛ (t)

h

[∫ u2
u1

exp
(
γ>0 w (t) + β>0 (t)x (t)

)
dΛ0 (t)∫ u2

u1
exp

(
γ>0 w (t) + β> (t)x (t)

)
dΛ (t)

]
dν1 (u1, u2, x)

where h (z) = z log z − z + 1. The function h (z) is nonnegative for all z > 0 with
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equality holding only at z = 1. Therefore, M (ϑ0) ≥ M (ϑ) and M (ϑ0) = M (ϑ) if

and only if

∫ u2

u1

exp
(
γ>0 w (t) + β>0 (t)x (t)

)
dΛ0 (t) =

∫ u2

u1

exp
(
γ>w (t) + β> (t)x (t)

)
dΛ (t)

(A.17)

almost everywhere (a.e.) with respect to ν1. Under condition (C1), (A.17) is equiva-

lent to

∫ ∫ u2

u1

exp
(
γ>0 w (t) + β>0 (t)x (t)

)
Λ′0 (t) dtdν1 (u1, u2, x) =∫ ∫ u2

u1

exp
(
γ>w (t) + β> (t)x (t)

)
Λ′ (t) dtdν1 (u1, u2, x)∫

exp
(
γ>0 w (t) + β>0 (t)x (t)

)
Λ′0 (t) dν2 (t, x) =∫

exp
(
γ>w (t) + β> (t)x (t)

)
Λ′ (t) dν2 (t, x)

that is

exp
(
γ>0 w (t) + β>0 (t)x (t)

)
Λ′0 (t) = exp

(
γ>w (t) + β> (t)x (t)

)
Λ′ (t)

a.e. with respect to ν2. By the similar argument in Wellner and Zhang (2007, page

2123), we have

{
1− exp

(
(γ0 − γ)>w (t) + (β0 (t)− β (t))> x (t)

)}2

=

(
Λ′ (t)

Λ′0 (t)
− 1

)2

a.e. with respect to ν2. This leads to γ0 = γ, β0 (t) = β (t) and Λ′0 (t) = Λ′ (t) in

light of (C3) a.e. with respect to ν2. The latter equality also implies Λ0 (t) = Λ (t)
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a.e. with respect to ν2. Hence, we can conclude that ϑ0 = (γ0, β0,Λ0) is the unique

maximizer of M (ϑ).

Next, we need to show Λ̂ (t) is uniformly bounded almost surely for t ∈ [0, τ ]. For

any given ε > 0, let ϑ̃ε =
(
γ̂, β̂, (1− ε) Λ̂ + εΛ0

)
= ϑ̂+ ε

(
0,Λ0 − Λ̂n

)
. Since ϑ̂n max-

imizes Mn, we have Mn

(
ϑ̂
)
≥Mn

(
ϑ̃ε

)
= Mn

(
ϑ̂+ ε

(
0, 0,Λ0 − Λ̂n

))
. Therefore,

0 ≥ lim
ε→0

Mn

(
ϑ̂+ ε

(
0, 0,Λ0 − Λ̂n

))
−Mn

(
ϑ̂
)

ε

= Pn
J∑
j=1

 ∆N·j∫ T·j
T·(j−1)

exp
(
γ̂>W (t) + β̂> (t)X (t)

)
dΛ̂ (t)

− 1

∫ T·j

T·(j−1)

exp
(
γ̂>W (t) + β̂> (t)X (t)

)
d
(

Λ0 − Λ̂
)

(t) .

This implies, by conditions (C1), (C2) and (C4),

Pn
J∑
j=1

∆N·j
∫ T·j
T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ0 (t)∫ T·j

T·(j−1)
exp

(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ̂ (t)

+

∫ T·j

T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ̂ (t)

}

≤Pn
J∑
j=1

{
∆N·j +

∫ T·j

T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ0 (t)

}

≤CPn
J∑
j=1

{
∆N·j + Λ0 (T·j)− Λ0

(
T·(j−1)

)}
=CPn

{
J∑
j=1

∆N·j + Λ0 (T·J)

}
→a.s. CP

{
J∑
j=1

∆N·j + Λ0 (T·J)

}

for some finite constant C. The limit on the right hand is finite under conditions
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(C1), (C2) and (C4). On the other hand,

lim sup
n→∞

Pn
J∑
j=1

∆N·j
∫ T·j
T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ0 (t)∫ T·j

T·(j−1)
exp

(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ̂ (t)

+

∫ T·j

T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ̂ (t)

}

≥ lim sup
n→∞

Pn
J∑
j=1

∫ T·j

T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ̂ (t)

= lim sup
n→∞

Pn
∫ T·J

0

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ̂ (t) .

Because ∆N·j and
∫ T·j
T·(j−1)

exp
(
γ̂TW (t) + β̂> (t)X (t)

)
dΛ0 (t) are both nonnegative.

Under conditions (C1), (C2) and (C4), for any 0 < ξ < τ ,

lim sup
n→∞

Pn
∫ T·J

0

exp
(
γ̂TW (t) + β̂>(t)X (t)

)
dΛ̂ (t)

& lim sup
n→∞

Pn
∫ T·J

0

dΛ̂ (t)

= lim sup
n→∞

PnΛ̂ (T·J)

≥ lim sup
n→∞

PnI {ξ ≤ T·J ≤ τ} Λ̂ (T·J)

≥ lim sup
n→∞

Λ̂ (ξ)PnI {ξ ≤ T·J ≤ τ}

= lim sup
n→∞

Λ̂ (ξ) ν3 ([ξ, τ ]) .

The right hand side of the last equality is obviously finite and hence Λ̂ (t) is uniformly

bounded almost surely for t ∈ [0, τ ] if ν3 ({τ}) > 0 from (C4).

Since Λ̂ (t) is non-decreasing, Λ̂ (t) is also of totally bounded variation. Then, by

the Helly selection theorem and the compactness of B×F , for any subsequence of ϑ̂,
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there exists a further subsequence ϑ̂nl such that ϑ̂nl converges to ϑ+ = (γ+, β+,Λ+)

as l→∞, where Λ+ is an nondecreasing bounded function defined on [0, τ ].

Under (C6), mϑ (O) ≤ m0 (O) with Pm0 < ∞. Moreover, mϑ is upper semi-

continous in F for each O and B × F is compact. Therefore, by the one-sided

Gilvenko-Cantelli theorem in Wellner, Zhang, et al. (2000),

lim sup
n→∞

sup
ϑ∈B×F

(P−P)mϑ ≤ 0.

almost surely. This inequality implies, with probability 1,

lim sup
nl→∞

Mn

(
ϑ̂nl

)
≤ lim sup

nl→∞
M
(
ϑ̂nl

)
= M

(
ϑ+
)

by the continuity of M in ϑ and the Dominated Convergence Theorem. By the law

of large numbers, Mn (ϑ0)→M (ϑ0) a.s. and by the fact that Mn (ϑ0) ≤Mn

(
ϑ̂
)

, we

have, with probability 1,

M (ϑ0) ≤ lim inf
n→∞

Mn

(
ϑ̂
)

≤ lim inf
n→∞

Mn

(
ϑ̂nl

)
≤ lim sup

nl→∞
Mn

(
ϑ̂nl

)
≤M

(
ϑ+
)
.

However, M (ϑ0) ≥M (ϑ+) implying M (ϑ0) = M (ϑ+). By the uniqueness of ϑ0, we

can deduce γ0 = γ+, β0 = β+ and Λ0 = Λ+ a.e. on ν2. Since this is true for any

convergent subsequence of ϑ̂, we conclude that all the limits of subsequence of ϑ̂nl are

equal to ϑ0. This also implies the pointwise convergence of Λ̂ (t) to Λ0 (t) for t ∈ [0, τ ]
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a.s.. Due to the uniform boundedness of Λ̂, the Dominated Convergence Theorem

yields the strong consistency of ϑ̂ in the metric d (·, ·).

A.3.2 Proof of Convergence Rate

We mainly use Theorem 3.2.5 of van der Vaart and Wellner (1996) to derive the

convergence rate of ϑ̂. We first verify M (ϑ0) −M (ϑ0) & d2 (ϑ, ϑ0). Since h (z) ≥

(1/4) (z − 1)2 for z in a small enough neighborhood of 1, for any ϑ in a sufficiently

small neighborhood of ϑ0,

M (ϑ0)−M (ϑ) ≥
∫ ∫ u2

u1

exp
(
γ>w (t) + β>(t)x (t)

)
dΛ (t){∫ u2

u1
exp

(
γ>0 w (t) + β>0 (t)x (t)

)
dΛ0 (t)∫ u2

u1
exp (γ>w (t) + β>(t)x (t)) dΛ (t)

− 1

}2

dν1 (u1, u2, v)

&
∫ {∫ u2

u1

exp
(
γ>0 w (t) + β>0 (t)x (t)

)
dΛ0 (t)

−
∫ u2

u1

exp
(
γ>w (t) + β>(t)x (t)

)
dΛ (t)

}2

dν1 (u1, u2, v)

by (C1) and (C2).

Let g (ξ) =
∫
I (U1 < t < U2) exp

(
γ>ξ W (t) + β>ξ X (t)

)
dΛξ (t) where γξ = ξγ +

(1− ξ) γ0, βξ = ξβ + (1− ξ) β0 and Λξ = ξΛ + (1− ξ) Λ0. Then

∫
I (U1 < t < U2) exp

(
γ>0 W (t) + β>0 (t)X (t)

)
dΛ0 (t)−∫

I (U1 < t < U2) exp
(
γ>0 W (t) + β>0 (t)X (t)

)
dΛ (t) = g (1)− g (0) .

By the mean value theorem, there exist ξ∗ ∈ [0, 1] such that g (1) − g (0) = g′ (ξ∗).
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Since

g′ (ξ) =

∫ U2

U1

(
1 + ξ (γ − γ0)>W (t) + ξ (β − β0)> (t)X (t)

)
exp

(
(ξ (γ − γ0) + γ0)>W (t) + (ξ (β − β0) + β0)> (t)X (t)

)
d (Λ (t)− Λ0 (t))

+

∫ U2

U1

(
(γ − γ0)>W (t) + (β − β0)> (t)X (t)

)
exp

(
(ξ (γ − γ0) + γ0)>W (t) + (ξ (β − β0) + β0)> (t)X (t)

)
dΛ0 (t) .

we have

M (ϑ0)−M (ϑ)

&ν1

({∫ U2

U1

(
1 + (γ − γ0)>W (t) + ξ (β − β0)> (t)X (t)

)
d (Λ (t)− Λ0 (t))

+

∫ U2

U1

(
(γ − γ0)>W (t) + (β − β0)> (t)X (t)

)
dΛ0 (t)

}2
)

=ν1 {g1h1 + g2}2

where g1 (U1, U2, V ) =
∫ U2

U1

(
(γ − γ0)>W (t) + (β − β0)> (t)X (t)

)
dΛ0 (t),

g2 (U1, U2) = Λ (U2)− Λ0 (U2)− (Λ (U1)− Λ0 (U1))

and

h1 (U1, U2, V ) = ξ


∫ U2

U1

(
(γ − γ0)>W (t) + (β − β0)> (t)X (t)

)
dΛ (t)∫ U2

U1

(
(γ − γ0)>W (t) + (β − β0)> (t)X (t)

)
dΛ0 (t)

+ 1− ξ,
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in the notation of Lemma 8.8 in van der Vaart (2002). Our goal is to show

ν1 {g1h1 + g2}2 & ν1

(
g2

1

)
+ ν1

(
g2

2

)
by using Lemma 8.8 in van der Vaart (2002). For convenience, we write the expecta-

tion under ν1 as E1 Then, for η ∈ (0, 1), we need to verify

{E1 [g1g2]}2 ≤ (1− η)E1

[
g2

1

]
E1

[
g2

2

]
to apply Lemma 8.8 in van der Vaart (2002). By the Cauchy–Schwarz inequality, we
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have

{E1 [g1g2]}2

= {E1 [g2E1 [g1|U1, U2]]}2

≤E1

[
g2

2

]
E1

[
{E1 [g1|U1, U2]}2]

=E1

[
g2

2

]
E1

[{∫ U2

U1

E1

[(
(γ − γ0)>W (t) + (β − β0)> (t)X (t)

)
|U1, U2

]
dΛ0 (t)

}2
]

=E1

[
g2

2

]
E1

[∫ ∫
I (U1 < t < U2) I (U1 < s < U2){

E1

[
(β − β0)> (t)X (t) + (γ − γ0)>W (t) |U1, U2

]
× E1

[
X> (s) (β − β0) (s) + (γ − γ0)>W (s) |U1, U2

]}
dΛ0 (t) dΛ0 (s)

≤ (1− η)E1

[
g2

2

]
E1

[∫ ∫
I (U1 < t < U2) I (U1 < s < U2)

×
{

(β − β0)> (t)E1

[
X (t)X> (s) |U1, U2

]
(β − β0) (s)

+ (γ − γ0)>E1

[
W (t)W> (s) |U1, U2

]
(γ − γ0)

}
dΛ0 (t) dΛ0 (s)

= (1− η)E1

[
g2

2

]
E1

[
g2

1

]
.

The last inequality is due to Condition (C7). Consequently, Lemma 8.8 in van der

Vaart (2002) yields ν1 {g1h1 + g2}2 & ν1 (g2
1) + ν1 (g2

2). For ν1 (g2
1), by Jensen’s in-
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equality,

ν1

({∫ U2

U1

(β − β0)> (t)X (t) dΛ0 (t)

}2
)

=ν1

(∫ U2

U1

∫ U2

U1

{
(β − β0)> (t)X (t)X (s) (β − β0) (s)

+ (γ − γ0)>W (t)W> (s) (γ − γ0)
}
dΛ0 (t) dΛ0 (s)

)
& ‖β − β0‖2

L(µ̃0) + ‖γ − γ0‖2
2

by ν1

(∫ U2

U1

∫ U2

U1
dΛ0 (t) dΛ0 (s)

)
> 0 because of the positive Λ′0 under (C1). Therefore,

M (ϑ0)−M (ϑ) & d (ϑ, ϑ0).

Next, we need to derive φn (η) such that

E sup
d(ϑ,ϑ0)<η

|Gn (mϑ (O)−mϑ0 (O))| . φn (η) .

Define classes Bη = {mϑ (O)−mϑ0 (O) : d (ϑ, ϑ0) < η, ϑ ∈ A× Bn ×F}. By the sim-

ilar argument in (Lu et al., 2009), this shows that ε-bracketing number for Bη under

the Bernstein norm ‖f‖P,B =
{

2P
(
e|f | − 1− |f |

)}1/2
(Wellner and Zhang, 2007) will

be of the order

exp

{
c

(
1

ε
+ (p1 + p2qn) log

(
δ

ε

))}
for some constant η > ε and c. Hence

logN[]

(
ε,Bη, ‖·‖P,B

)
. c

(
1

ε
+ (p1 + p2qn) log

(
δ

ε

))
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and then by Lemma 3.4.3 of van der Vaart and Wellner (1996),

E
∥∥√n (Pn −P)

∥∥
Fδ
≤ cJ[]

(
δ,Fδ, ‖·‖P,B

)1 +
J[]

(
δ,Fδ, ‖·‖P,B

)
δ2n1/2


where

J̃[]

(
η,Bη, ‖·‖P,B

)
=

∫ η

0

√
1 + logN[]

(
ε,Bη, ‖·‖P,B

)
dε

. q1/2
n δ1/2.

Thus,

ϕn(δ) = q1/2
n δ1/2

(
1 +

q
1/2
n δ1/2

δ2n1/2

)
= q1/2

n δ1/2 +
qn
δn1/2

.

Obviously, ϕn(δ)/δ is decreasing in δ as the leading term is δ−1/2. Therefore

ρ2
nϕn

(
1

ρn

)
= ρ3/2

n q1/2
n + ρ3

nqnn
−1/2 . n1/2

if ρn = min
{
n

1−ν
3 , nrν

}
and 0 < ν < 1/2.

Moreover, using similar argument in Lu et al. (2009), we can show Mn

(
ϑ̂n

)
−

Mn (ϑ0) > −Op (n−2rν) ≥ Op (r2
n) . Then, by Theorem 3.2.5 of Wellner and Zhang

(2007), we have ρnd
(
ϑ̂n, ϑ0

)
= Op (1). If ν is chosen as 1/ (3r + 1), we obtain the

optimal rate nr/(3r+1) because (1− ν)/3 = rν.

A.3.3 Asymptotic Normality

We mainly use the method in He et al. (2017). We define a sequence of maps Sn

mapping a neighborhood of ϑ0, denoted by U , in the parameter space for ϑ into
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l∞ (H1 ×H2 ×H3) where H1 = {h1 : h1 ∈ A} and

H2 = {h2 (t) = (h21 (t) , . . . , h2p2 (t)) :

h2k is a function with bounded total variation in [0, τ ], k = 1, . . . p2}

as

Sn (ϑ) [h1, h2, h3] =
d

dε
ln (γ + εh1, β + εh2,Λ + εh3)|ε=0

=
1

n

n∑
i=1

Ji∑
j=1

∆Nij

∫ Tij
Ti(j−1)

exp
(
γ>Wi (t) + β> (t)Zi (t)

)
∫ Tij
Ti(j−1)

exp (γ>Wi (t) + β> (t)Zi (t)) dΛ (t){(
h>1 Wi (t) + h>2 (t)Zi (t)

)
dΛ (t) + dh3 (t)

}
−

{∫ Tij

Ti(j−1)

exp
(
γ>Wi (t) + β> (t)Zi (t)

)
{(
h>1 Wi (t) + h>2 (t)Zi (t)

)
dΛ (t) + dh3 (t)

}}
=An1 (ϑ) [h1] + An2 (ϑ) [h2] + An3 (ϑ) [h3]

=Pnψ (ϑ) [h1, h2, h3] ,

where Ank (ϑ) [hk] = Pnak (ϑ) [hk] for k = 1, . . . , 3, and

ψ (ϑ) [h1, h2, h3] =
3∑

k=1

ak (ϑ) [hk]
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. Here

a1 (ϑ) [h1] =
J∑
j=1

∆N·j

∫ T·j
T·(j−1)

exp
(
γ>W (t) + β> (t)Z (t)

)
h>1 W (t) dΛ (t)∫ T·j

T·(j−1)
exp (γ>W (t) + β> (t)Z (t)) dΛ (t)

−

{∫ T·j

T·(j−1)

exp
(
γ>W (t) + β> (t)Z (t)

)
h>1 W (t) dΛ (t)

}

a2 (ϑ) [h2] =
J∑
j=1

∆N·j

∫ T·j
T·(j−1)

exp
(
γ>W (t) + β> (t)Z (t)

)
h>2 (t) (t)Z (t) dΛ (t)∫ T·j

T·(j−1)
exp (γ>W (t) + β> (t)Z (t)) dΛ (t)

−

{∫ T·j

T·(j−1)

exp
(
γ>W (t) + β> (t)Z (t)

)
h>2 (t)Z (t) dΛ (t)

}

and

a3 (ϑ) [h3] =
J∑
j=1

∆N·j

∫ T·j
T·(j−1)

exp
(
γ>Wi (t) + β> (t)Zi (t)

)
dh3 (t)∫ T·j

T·(j−1)
exp (γ>Wi (t) + β> (t)Zi (t)) dΛ (t)

−

{∫ T·j

T·(j−1)

exp
(
γ>Wi (t) + β> (t)Zi (t)

)
dh3 (t)

}

Correspondingly, we define the limit map S : U → l∞ (H1 ×H2 ×H3) as

S (ϑ) [h1, h2, h3] = A1 (ϑ) [h1] + A2 (ϑ) [h2] + A3 (ϑ) [h3]

where Ak (ϑ) [hk] = Pak (ϑ) [hk].

To derive the asymptotic normality of ϑ̂n, we need to verify the following five

conditions in He et al. (2017).

(a1)
√
n (Sn − S)

(
ϑ̂n

)
−
√
n (Sn − S) (ϑ0) = op (1).
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(a2) S (ϑ0) = 0 and Sn

(
ϑ̂n

)
= op

(
n−1/2

)
.

(a3)
√
n (Sn − S) (θ0) converges in distribution to a tight Gaussian process on l∞(H1×

H2 ×H3).

(a4) S (ϑ) is Fr̈ı¿œchet-differentiable at ϑ0 denoted by Ṡ (ϑ0).

(a5) S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
.

Using similar argument in Lu et al. (2009), it is not hard to show

{ψ (ϑ) [h1, h2, h3]− ψ (ϑ0) [h1, h2, h3] : d (ϑ, ϑ0) < δ, (h1, h2, h3) ∈ H1 ×H2 ×H3}

is a Donkser class for some δ. Therefore,

sup
(h1,h2,h3)∈A×B×F

P
{
ψ
(
ϑ̂n

)
[h1, h2, h3]− ψ (ϑ0) [h1, h2, h3]

}2

→ 0

as d
(
ϑ̂n, ϑ0

)
→ 0 in probability and thus (a1) holds.

For (a2), clearly, S (ϑ0) = 0. For h2 ∈ H2, let h2n be the B-spline function

approximation of h2 with maxj=1,...,p2 ‖h2j − h2nj‖∞ = O (n−νr) (Schumaker, 2007).

Then we have Sn

(
ϑ̂n

)
[h1,h2n, h3] = 0. Thus,

Sn

(
ϑ̂n

)
[h1, h2, h3] =

√
nPnψ

(
ϑ̂n

)
[h1, h2, h3]−

√
nPψ

(
ϑ̂n

)
[h1,h2n, h3]

= In1 − In2 + In3 + In4

where

In1 =
√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1, h2, h3]− ψ (ϑ0) [h1, h2, h3]

}
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In2 =
√
n (Pn −P)

{
ψ
(
ϑ̂n

)
[h1,h2n, h3]− ψ (ϑ0) [h1,h2n, h3]

}
In3 =

√
nPn {ψ (ϑ0) [h1, h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

and

In4 =
√
nP
{
ψ
(
ϑ̂n

)
[h1, h2, h3]− ψ

(
ϑ̂n

)
[h1,h2n, h3]

}
.

From (a1), we have In1 = op (1) and In2 = op (1). Next we need to show In3 = op (1)

and In4 = op (1). Note that

In3 =
√
n (Pn −P) {ψ (ϑ0) [h1, h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

+
√
nP {ψ (ϑ0) [h1, h2, h3]− ψ (ϑ0) [h1,h2n, h3]}

=In31 + In32.

Similarly to proving (a1), In31 = op (1) and In32 = 0 since S (ϑ0) = 0 for any h2,h2n ∈

H2. For In4,

|In4| ≤
√
nd
(
ϑ̂n, θ0

)(
max

j=1,...,p2
‖h2j − h2nj‖∞

)
= Op

(
max

{
n−(1−ν)/3, n−rν

}
n−rv+1/2

)
= op (1)

if 1/ (4r) < ν < 1/2. Thus (a2) holds.

Condition (a3) holds because H1×H2×H3 is a Donsker class and the functionals

A1 (ϑ) [h1], A2 (ϑ) [h2] and A3 (ϑ) [h3] are bounded Lipschitz functions with respect to

H1 ×H2 ×H3 due the compactness of H1 ×H2 ×H3.

For (a4), by the smoothness of S (ϑ) the Fr̈ı¿œchet differentiability holds and the
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derivative of S (ϑ) at ϑ0, denoted by Ṡ (ϑ0) is a map from the space {ϑ− ϑ0 : ϑ ∈ U}

to l∞(H1 ×H2 ×H3). Now we calculate Ṡ (ϑ0) as

Ṡ (ϑ0) (ϑ− ϑ0) [h1, h2, h3]

=
d

dε
{A1 (ϑ0 + ε (ϑ− ϑ0)) [h1]}|ε=0

+
d

dε
{A2 (ϑ0 + ε (ϑ− ϑ0)) [h2]}|ε=0

+
d

dε
{A3 (ϑ0 + ε (ϑ− ϑ0)) [h3]}|ε=0

=−P
J∑
j=1

∫ T·j

T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
×
((
h>1 W (t) + h>2 (t)Z (t)

)
dΛ0 + dh3 (t)

)
/

{∫ T·j

T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
dΛ0

}
{∫ T·j

T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
×
[(

(γ − γ0)> (t)W (t) + (β − β0)> (t)Z (t)
)
dΛ0 + d (Λ− Λ0)

]}
= (γ − γ0)>Q1 (h1, h2, h3) +

∫ τ

0

(β − β0)> (u) dQ2 (h1, h2, h3, u)

+

∫ τ

0

Q3 (h1, h2, h3, u) d (Λ− Λ0)

where

Q1 (h1, h2, h3) = −P
J∑
j=1

∫ T·j
T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
∫ T·j
T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
dΛ0((

h>1 W (t) + h>2 (t)Z (t)
)
dΛ0 + dh3 (t)

){∫ T·j

T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
W (t) dΛ0

}
,
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dQ2 (h1, h2, h3, t) = −P
J∑
j=1

∫ T·j
T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
∫ T·j
T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
dΛ0((

h>1 W (t) + h>2 (t)Z (t)
)
dΛ0 + dh3 (t)

)
I
(
T·(j−1) < u < T·j

)
exp

(
γ>0 W (u) + β>0 (u)Z (u)

)
Z (u) dΛ0 (u) ,

and

Q3 (h1, h2, h3, t) = −P
J∑
j=1

∫ T·j
T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
∫ T·j
T·(j−1)

exp
(
γ>0 W (t) + β>0 (t)Z (t)

)
dΛ0((

h>1 W (t) + h>2 (t)Z (t)
)
dΛ0 + dh3 (t)

)
I
(
T·(j−1) < u < T·j

)
exp

(
γ>0 W (u) + β>0 (u)Z (u)

)
We can also show Q = (Q1, Q2, Q3) is one-to-one by the similar method in He et al.

(2017).

Last for (a5), by using the mean value theorem twice, we can show under condi-

tions (C1), (C2), (C4) and (C8),

∣∣∣S (θ̂)− S (θ0)− Ṡ (θ0)
(
θ̂ − θ0

)∣∣∣ . O
(
d2
(
θ̂, θ
))

.

Since n1/2d2
(
ϑ̂n, ϑ

)
= Op

(
n1/2 max

{
n−2(1−ν)/3, n−2rν

})
= op (1) if 1/ (4r) < ν <

1/4, we can conclude that S
(
ϑ̂n

)
− S (ϑ0)− Ṡ (ϑ0)

(
ϑ̂n − ϑ0

)
= op

(
n−1/2

)
and (a5)

holds.

If (a1)-(a5) hold, according to He et al. (2017), we have

−
√
nṠ (ϑ0)

(
ϑ̂n − ϑ0

)
[h1, h2, h3] =

√
n (Sn − S) (ϑ0) [h1, h2, h3] + op (1) ,
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uniformly in h1, h2, h3. For each (h1, h2, h3) ∈ H1 ×H2 ×H3, Q is invertible by the

similar arguement in He et al. (2017). Then there exists (h1, h2, h3) ∈ H1 ×H2 ×H3

such that

Q1 (h1, h2, h3) = h1, Q2 (h1, h2, h3) = h2, Q3k (h1, h2, h3) = h3k.

Therefore, we have

√
n (γ̂ − γ0)T h1 +

√
n

∫ τ

0

(
β̂n (t)− β0 (t)

)T
dh2 (t)

+
√
n

∫ τ

0

(
Λ̂ (t)− Λ0 (t)

)
dh3 (t)

=
√
n (Sn − S) (ϑ0) [h1, h2, h3] + op (1)→d N

(
0, σ2

)
where σ2 = E [ψ2 (ϑ0) [h1, h2, h3]] because of (a3). To find the asymptotic distribution

of γ only, we can find h1, h2 and h3 as a solution of Q2 = 0 and Q3 = 0. Unfortunately,

we cannot find the explicit forms of h1, h2 and h3 as He et al. (2017). Hence, we adopt

the variance estimation method in the main body.
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