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ABSTRACT 

While the genetic elements of many autoimmune conditions have been 

established, many environmental factors remain a mystery. Exposure to certain 

infections has been implicated as a possible explanation for the significantly 

different autoimmune disease rates in developing versus industrialized countries. 

In this manner, type II cytokines have been shown to play a role in peripheral 

tolerance. The full impact of these type II cytokines in central tolerance and 

autoimmunity has still yet to be explored. In chapter II, the data indicate that IL-4 

and IL-13, dominant type II cytokines, can indeed be found within the thymic 

microenvironment of healthy C57BL/6 mice.  IL-4/IL-13 signaling in ETPs that 

express the IL-4Rα/IL-13Rα1 heteroreceptor (HR) drives these progenitors to 

yield thymic resident DCs. These DCs aid in negative selection and the 

prevention of experimental allergic encephalomyelitis (EAE). In chapter III, the 

data presented shows that, in contrast to the C57BL/6 strain, HR+ETPs from the 

type one diabetes (T1D) susceptible NOD strain give rise to T cells. Notably, the 

NOD thymus shows a dramatic reduction in the steady-state level of IL-4. Indeed, 

increasing the availability of this cytokine can rescue the lineage fate of HR+ETPs 

and provide a new pool of thymic DCs. Restoration of NOD HR+ETP lineage fate 

can improve negative selection, alter the TCRβ repertoire, and ultimately prevent 

T1D onset. Thus, microenviromental changes within the thymus may be 

implicated in fine-tuning the balance that dictates the negative selection of 

autoreactive cells. From this, one may envision that environmental induction of 
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IL-4 and IL-13 may play a role in altering that balance and shifting the tables 

towards autoimmunity prevention. 

 

 

 

 

 

 

 

 

 

 

 



1 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER I: LITERATURE REVIEW 

 

 

 

  



2 
 
 

1. Overview of Autoimmune Diseases  

 

A. General Epidemiology   

The immune system's primary function is to protect the body from any damage 

incurred by invading pathogens. Autoimmunity arises when these protective 

measures incorrectly target self-tissues. This misdirection occurs when cells of 

the immune system cannot differentiate between self-antigen and foreign-antigen 

(1). In turn, these misguided responses can then lead to the destruction of 

various organs and tissues. Thus leaving the host unable to maintain normal 

homeostasis without intervention.  

 Under normal conditions, autoimmune responses are tightly controlled by 

two mechanisms: central and peripheral tolerance (2). However, neither of these 

processes are without flaw and may leave an individual susceptible to developing 

an autoimmune disease. Particular groups of people may be more likely to 

develop an autoimmune disease. For example, women represent over 78% of all 

cases of autoimmunity (2–4). While some autoimmune diseases show a strong 

gender bias (9 out of 10 systemic lupus erythematosus (SLE) patients are 

female), others exemplify an equal representation of genders, such as type one 

diabetes (T1D) (5). Additionally, individuals from industrialized countries are 

more susceptible to both allergic and autoimmune diseases (6). This imbalance 

continues to grow annually (7). 

B. Disease Models  

Identification of environmental circumstances and universal genetic factors that 

contribute to autoimmune disease is critical to advancing potential treatment 
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options. For this purpose, animal models have been used extensively to improve 

our understanding of disease pathogenesis mechanisms. This common use of 

animal models is valid for all immune-related conditions but especially so for 

autoimmune responses. 

 Murine models of disease have been extensively useful in immunology 

research, given the availability and ease with which model animals can be 

produced. Useful models often require the over-expression of a particular gene, 

complete knock out of a gene, or even the use of a cre-lox system to test the 

effects of a gene knock out in a specific cell subset (8, 9). Given the extensive 

utilization of mouse models in the history of research, murine-based reagents are 

in widespread use and, therefore, easier to come by than other species-based 

reagents (9). Additionally, the breeding and housing of mice is relatively 

undemanding when compared to animal models of greater size or with more 

extended reproduction intervals (10).  

However, as with any animal model, there are significant differences 

between the immune system of a mouse and the immune system of a human. 

Because of the innate differences between organisms, translatability to human 

medicine should always be considered. Essential differences in the overall 

composition of the immune response are important to note, such as the balance 

between myeloid and lymphoid cells in the blood. For example, under 

homeostatic conditions, lymphocytes are the predominant immune cell found in 

murine blood, while human blood is rich in neutrophils (11–13). Significant innate 

immune response disparities have been reported. These include unique 
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mediators of iNOS induction in macrophages, mucosal defensin expression in 

murine neutrophils, and the absence of the Ly49 family of proteins in humans 

which marks murine NK and NKT cell (14–18). Differences in the adaptive 

immune response are vast and extend to variances in Ig subtypes, cytokine 

induction of class switching, Th1/Th2 phenotype skewing, MHC class II 

expression, and others (19).  

 Nevertheless, an ever-growing body of research indicates the critical role 

that mouse models play in improving our treatment of disease. The value of 

these models is further understood when comparing the therapeutic timeline of 

human diseases for which a mouse model is unavailable. As a result, little 

progress has been made in understanding the mechanism of diseases without 

mouse models, such as the neuropsychiatric manifestation of SLE (20). 

Additionally, the applicability of these animals is continually improving with the 

surge in the use of humanized mice (mice that have been genetically 

transplanted with a human immune system) (21). Thus, for the time being, 

murine models often provide the best method for studying autoimmunity. 

There are three general types of mouse models available in terms of 

studying immune dysfunction: genetic models, inducible models, and 

spontaneous models. Genetic models of autoimmune diseases often include 

knocking out a specific gene or the insertion of transgenes, such as the amyloid 

P component knock out mouse and its use in SLE research (22). Models that 

require induction of disease have been useful (such as streptozotocin-induced 

diabetes) but often still require a particular genetic disposition, limiting what 
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mouse strains can be used (8). There is often predominant use of the SJL or 

C57BL/6 strains in experimental allergic encephalomyelitis (EAE), a mouse 

model for human multiple sclerosis (23). However, spontaneous autoimmune 

disease models are generally the first choice for researchers in autoimmunity. 

This preference for spontaneous models is because these models are the most 

reminiscent of human disease and thus serve as a better way to tease apart the 

cascade of events that leads to disease. Perhaps the best example of a 

spontaneous disease model is the commonly utilized non-obese diabetic (NOD) 

mouse, which is well-known for having a genetic predisposition to developing 

T1D (24–26). The NOD mouse's usefulness is further boosted by a strong 

environmental influence on disease penetrance, with individual research 

laboratories reporting widely different disease rates (27, 28). 

2. Autoimmune Type One Diabetes (T1D) 

A. Introduction to Type One Diabetes  

a. Disease Manifestation  

Type one diabetes, previously referred to as juvenile diabetes and additionally 

known as insulin-dependent diabetes mellitus, is an autoimmune disease that 

results from the targeted destruction of insulin-producing pancreatic β-cells by 

cells of the immune system (28). The disease is often diagnosed before 

adulthood and is one of the most common chronic conditions in children. 

However, the terminology has recently changed to acknowledge that T1D can be 

diagnosed at any age and with consideration to the fact that the condition is a 
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life-long diagnosis (29, 30). In contrast to the more prevalent type two diabetes 

(T2D), T1D accounts for less than 10% of worldwide cases of diabetes. However, 

the incidence of T1D is increasing annually (28).  

 Symptoms and complications of T1D occur when there is no longer 

enough insulin produced by β-cells within pancreatic islets to maintain normal 

blood glucose levels (normoglycemia). Increased blood glucose (hyperglycemia) 

leads to frequent urination, increased thirst, and diabetic ketoacidosis, among 

other symptoms. Long-term hyperglycemia can result in complications such as 

neuropathy, limb amputation, and blindness (31).   

b. Key Immune Cells 

The development of T1D is a complex multicellular inflammatory process. There 

is known involvement of T cells, B cells, and antigen presenting cells (APCs) 

such as macrophages and dendritic cells (DCs). Studies have shown that 

individual depletion of any of these cell types can prevent or delay diabetes 

development in NOD mice, further proving the complexity of the inflammatory 

response within the pancreatic islets (32–34).   

 T cells are vital to the onset of autoimmune diabetes in terms of both 

initiating and maintaining inflammation in the pancreas. The use of anti-CD3 

treatment to deplete T cells has shown to be effective in improving insulin 

production and delaying disease in NOD mice (34). Additionally, administration of 

anti-CD3 to relatives of T1D patients (deemed high-risk for developing diabetes 

by identification of two or more autoantibodies) can also significantly delay 
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disease onset (35). Interestingly, both CD4+ and CD8+ T cells are required for 

disease induction as the transfer of only one subset from a wild-type diabetic 

NOD into an immunocompromised host mouse may result in the recruitment of 

APCs to the pancreas, but full pancreatic infiltration is not induced (36, 37). It is 

currently thought that CD8+ T cells play an effector role within the pancreatic islet 

while CD4+ T cells serve to recruit APCs, support CD8+ T cell function, and 

ultimately aid B cells in the production of autoantibodies (38–40). In an opposing 

fashion, invariant natural killer T cells (iNKT) may operate in an anti-inflammatory 

manner given their known production of a classically anti-inflammatory cytokine, 

IL-4 (41, 42). The overall impact of T cells in the development of autoimmune 

diabetes is fundamental to the disease process.  

 B cells and associated autoantibodies represent not only a contributing 

factor to islet destruction but are also a prominent predictor of future disease. A 

patient who presents with two or more autoantibodies (antibodies specific for 

islet-associated antigens) is nearly guaranteed to develop T1D when followed for 

a decade (43, 44). On top of the classical function of antibodies in the immune 

response, B cells have been shown to act as APCs that display islet-associated 

antigens for autoreactive T cells (45, 46).  In addition, there is evidence to 

suggest that B cells produce pro-inflammatory cytokines, which, in turn, act in a 

feedback loop to activate T cells (47, 48). Studies using NOD mice deficient in B 

cells, and clinical trials with recently diagnosed patients treated long term with B 

cell depleting antibodies, have shown that removing B cells from the picture can 

delay the diabetogenic process (32, 49, 50).  
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 Subsets of innate immune cells, such as macrophages and DCs, stage a 

unique but central function in the targeted destruction of β-cells. Macrophages 

are considered one of the earliest cells to infiltrate the pancreatic islets (51, 52). 

Within the pancreas, macrophages can produce large amounts of pro-

inflammatory cytokines, such as IL-12, that prompt the activation of cytotoxic T 

cells (33). Circulating DCs may also produce large amounts of pro-inflammatory 

cytokines but, in contrast to macrophages, are vital to the insulitis stage of 

diabetes (53). Specifically, the CD11c+ CD11b+ CD8α- cDC2 subset is 

exceptionally efficient at presenting β-cell antigens to T cells within the pancreatic 

draining lymph node (33, 53). 

  Interestingly, DCs from NOD mice are more sensitive to stimulation than 

strains not prone to autoimmune diseases, such as the C57BL/6 strain, due to an 

inherent hyperactivation of the IL-12-inducing transcription factor NF-ϰB (54). 

The picture is complicated further as other studies have suggested some DC 

subsets may be protective. For example, plasmacytoid DCs (pDCs), in 

conjunction with NKT cells, can act in a tolerogenic style and thwart T1D in NOD 

mice (55). In sum, the overall microenvironment of the pancreas and the 

associated lymph node is the crucial deciding factor that determines if APCs will 

promote or block the autoimmune process.  
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c. Antigen Targets  

The identification of autoantibodies in insulin-dependent diabetic patients was 

crucial in determining that the condition was an overt autoimmune disease (56). 

This discovery eventually led to autoantibody presence/absence as a way to 

determine future disease risk in the relatives of T1D patients. Indeed, a patient 

with two or more diabetes-associated autoantibodies is in stage 1 of the disease 

(57–59).  This knowledge is vital as those that test positive may be included in 

clinical trials to prevent or delay disease (60, 61).  

 On a larger scale, commonly detected autoantibodies represent shared 

antigen targets involved in disease development. These antigens are not only 

targeted by B cells but by both CD4+ and CD8+ T cells. The most pervasive of 

islet-associated autoantigens are crucial in both NOD mice and human patients 

(62). Some of the top antigens associated with T1D are derived from insulin, 

glutamic acid decarboxylase, and insulinoma antigen 2 (57, 63). 

 Insulin is often thought of as the foremost diabetes-associated antigen. 

The primary role of β-cells is to produce insulin, so it is no wonder why insulin-

specific lymphocytes target β-cells. Tolerance to amino acids 9-23 of the insulin 

B chain (Insulin B:9-23) in NOD mice prevents diabetes, while the exclusion of 

other well-known autoantigens cannot always afford the same protection (64–

67). Insulin is also unique as it is the only islet-associated autoantigen exclusively 

expressed in β-cells (68–70). An inflammatory response to insulin may often be 

the first antigenic trigger in β-cell autoimmunity because of these important 
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details. This idea is further supported by studies showing that T cells reactive to 

another autoantigen, islet-specific glucose-6-phosphatase catalytic subunit-

related protein, cannot be found in the absence of insulin reactive T cells (66). 

However, while it is confirmed that insulin is an essential autoantigen, it is still 

unclear if treatments targeting insulin-reactive cells alone would be sufficient to 

prevent or cure T1D in humans.  

 Glutamic acid decarboxylase (GAD) is commonly known as a central 

nervous system enzyme that converts glutamic acid into the neurotransmitter 

gamma-amino butyric acid. GAD can also be found in the pancreatic islets where 

the functional role is less clear (71).  GAD has both a 67 kDa (GAD67) and 65 

kDa (GAD65) isoform, with GAD65 being a dominant autoantigen (72). While the 

exact role of GAD in the pancreas is unclear, it is important to note that increased 

insulin production is positively correlated with an increase in GAD expression by 

β-cells (73). While 8 out of 10 newly diagnosed patients will have GAD 

autoantibodies, 20% of T1D patients will remain negative; which indicates that it 

is unlikely reactivity to GAD alone that induces full insulitis (74, 75). However, the 

use of GAD in tolerance inducing treatments has shown success. In mice, Ig-

GAD2 alone, which contains GAD amino acid sequences 206-220 incorporated 

into an immunoglobulin molecule, can successfully treat the disease in its early 

stages (76). GAD-alum, a GAD65 and aluminum hydroxide tolerogenic vaccine, 

has previously shown positive results in extending β-cell function in humans 

when used in early diagnosis (77, 78).  
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 Like GAD, insulinoma antigen 2 (IA-2) is found in both the central nervous 

system and pancreatic islets (79). IA-2 in β-cells is thought to operate as an 

anchor for intracellular insulin secretory granules that aid in the release of the 

hormone (65, 79). Because IA-2 autoantibodies most often target the protein's 

intracellular domain, it is thought that reactivity to the antigen is most commonly 

induced after β-cell damage (80). Therefore, it is not clear if IA-2 represents a 

direct target or if the antigen is merely exposed due to cellular damage initiated 

by other autoreactive cells. Regardless of this, IA-2 autoantibodies are a crucial 

marker in determining T1D risk in first degree relatives (81).  

B. Genetic Factors 

a. HLA Genes 

Among the genes linked to T1D, the human leukocyte antigen (HLA) region of 

chromosome 6 holds some of the strongest influence on an individual’s likelihood 

of developing the condition (82). The HLA region contains over 200 identified 

genes, with only some being determiners for T1D. These determiners include 

HLA class I and HLA class II. Gene products of these loci lead to the cellular 

expression of major histocompatibility complex (MHC) that allows for the 

demonstration of antigen peptides on the cell surface. These peptides are 

presented to immune cells, including T cells known for having a major role in T1D 

induction (83).  

Polymorphisms in the class II HLA genes, such as those which encode for 

DQ and DR, are considered the primary genetic determinate for T1D. The two 
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highest risk haplotypes include DRB1*04:01/02/04/05/08-DQA1*03:01-

DQB1*03:02/04 and DRB1*03:01-DQA1*05:01-DQB1*02:01 (84, 85). When a 

person is heterozygous for these two haplotypes, they are at an even higher risk 

for developing the disease (86). Roughly 30% of T1D patients are heterozygous 

for these two high risk haplotypes (87).  

Interestingly, this MHC-linked susceptibility to T1D is also found in the 

NOD mouse model. NOD mice express MHC class II molecules I-Ag7 which 

contains a polymorphism similar to that in human diabetics (84, 88).  Indeed, the 

substitution of a single amino acid in the beta chain of I-Ag7 leads to resistance to 

diabetes (88).  

While MHC haplotype is strongly tied to T1D incidence in both mice and 

humans alike, the mechanism behind this phenomenon is still being teased 

apart.  It is currently thought that the specific peptide-binding pockets of T1D-

associated MHC molecules are altered so that the size and composition of the 

binding pocket allow for altered interactions with self-peptide (89–91). It is 

important to note that MHC haplotype is not the only genetic component tied to 

the disease and, in fact, only makes up about 50% of the genetic risk (92).  

b. Non-HLA Genes 

Several other genes are known to play a role in diabetes susceptibility. These 

include both non-immune related genes, such as insulin, and those commonly 

associated with immune cell function, such as CTLA-4 and the IL-2 receptor (93, 

94). Interestingly, variations in the IL-4/IL-13 signaling pathway have been 
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associated with both increasing and decreasing T1D incidence, both in humans 

and mice (95, 96). Additionally, other candidate genes continue to be exposed 

regularly.  

Insulin, CTLA-4, and IL-2R are perhaps the most well studied non-HLA 

T1D-associated genes. For example, it is suggested that ~10% of genetic 

susceptibility originates from a polymorphic region flanking the gene for insulin 

(97). Additionally, as a negative regulator of T cell activation, it is not surprising 

that CTLA-4 polymorphisms are associated with T1D and other autoimmune 

diseases (98). The role of the IL-2 receptor in the development of T1D is more 

convoluted but thought to be due to the function of IL-2 in the normal 

development of T Regulatory (Tregs) cells, which are known to be anti-

inflammatory and thus protective (89, 90).  Together these genes make up a 

large part of non-HLA associated genetic susceptibility but certainly not all.  

Studies analyzing the role of the IL-4/IL-13 signaling pathway in 

autoimmunity have identified the impact of over 13 SNPs in the IL-4R coding 

region alone. Many of these polymorphisms result in amino acid substitutions 

that impact receptor protein function (99). This not only alters IL-4 signaling but 

IL-13 signaling as well, given that IL-13 signaling occurs via the IL-4/IL-13 

heteroreceptor (HR) (100). Specific haplotypes for these SNPs, as well as SNPs 

in the IL-4 and IL-13 coding regions themselves, have been linked to T1D (101). 

This link between the IL-4R/IL-4/IL-13 signaling pathways and T1D incidence is 

exciting as these cytokines are generally considered anti-inflammatory and 

therefore protective against autoimmune diseases (102).  
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C. Environmental Factors 

a. Hygiene Hypothesis  

While genetic factors have long been the established explanation behind T1D, it 

is becoming increasingly obvious that environmental factors, external to the 

individual, are equally important to consider. One of the best examples of 

environmental influence is found in the study of monozygotic twins in which one 

twin will develop the disease while the other is spared (103). Additionally, 

migration studies have shown that simply moving from one country to another 

can alter T1D rates to match that of the new host country (7, 103–106). Thus, 

one of the main goals of current research in T1D is to understand specific ways 

that the widely-defined environment impacts the development of the disease.  

The hygiene hypothesis was initially developed in 1958 to explain allergic 

diseases when scientists first noticed that having older siblings was a protective 

factor in developing hay fever (107). Further characterization of the epidemiology 

of autoimmune diseases led to the extension of the hygiene hypothesis to include 

both allergic and autoimmune disorders (108–112). The basic idea behind the 

hypothesis is that humans have co-evolved with other potentially infectious 

organisms, such as bacteria and parasites, to the extent that they play a 

protective role in our inherent biology and serve to keep the immune response in 

check. This idea is supported by striking epidemiologic evidence that shows 

declining infections are inversely correlated to rising allergic and autoimmune 

diseases (108–112).  
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 While prior studies showed purely correlative effects, recent epidemiologic 

studies have yielded a more direct link between hygiene and disease-specific 

individual risk. For example, studies have shown that having more siblings is 

positively correlated with a lower risk for T1D (108–112). Causal relationship 

studies have been done in varying faucets, including the use of parasitic 

infections and probiotics. These studies have consistently shown that these co-

evolved organisms offer at least some protection from autoimmunity in various 

forms, including T1D (108–112).  

b. Environmental Triggers and Protective Factors 

Host circumstances, which may be considered environmental factors, appear in 

many forms. The common denominator is that these external factors hold 

influence over the immune response of the whole organism. This manipulation of 

the host may be directly impacting an autoreactive response or acting in early life 

to shift the immune repertoire completely.  Environmental factors that have been 

shown to influence T1D incidence include viral infection, gut microbiota, and 

helminth infection (113–116).  

Viral infection has long been considered a potential trigger of T1D. While 

many viruses have been investigated, well-known enteroviruses, such as 

coxsackievirus B (CVB), are considered a chief candidate (117). Enteroviral 

infection has been tied to T1D both prenatally, with mothers of future diabetic 

children more likely to have elevated levels of enterovirus antibodies during 

pregnancy, as well as during the postnatal period, with diabetic children more 
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likely to have experienced recent enteroviral infection than their unaffected 

sibling (118). Interestingly, a Finnish study noted that, in genetically susceptible 

children, the first appearance of autoantibodies coincided with the seasonal 

uptick of enterovirus infections (119). A common enterovirus, coxsackievirus B 

(CVB), has been demonstrated to be infectious to pancreatic islet cells (120, 

121). Indeed, CVB infection of islet cells has been shown to increase these cells' 

susceptibility to apoptosis and to perhaps expose previously hidden diabetogenic 

antigens (122). A better understanding of how viruses, such as CVB, specifically 

aid or otherwise trigger immune cells in the targeted destruction of β-cells will be 

required before any possible prevention methods may be devised.  

Microbial colonization is a universal aspect of life on earth and is a core 

feature of research aimed at understanding how the host environment impacts 

disease. In fact, it is estimated that 20% of all small molecules found in human 

blood are actually of microbiota origin (123).  The immune system must regularly 

interact with these commensal microbes. The frequent cross-talk between 

microbe and host can train and modulate the immune system (123, 124). 

Research is still in the very early stages of deciphering the mechanisms involved 

in microbe influence over host and why some microbiomes, and the 

accompanying small molecules, may be protective while others increase the 

likelihood of disease. For example, mice housed under germ-free conditions 

remain resistant to EAE but become susceptible once again when recolonized 

with either diverse gut microflora or segmented filamentous bacteria alone  (125–

128). Interestingly, studies utilizing NOD mice have shown that the gender bias 
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associated with T1D in mice is nullified under germ-free conditions (129, 130). In 

contrast, the transfer of cecal microbiota from male mice into female NOD mice 

was protective by way of increased androgen signaling (129). Future research in 

this area will likely seek to understand the mechanisms by which various 

microbes influence T1D rates in humans.  

In line with theories envisioned by the hygiene hypothesis, parasitic 

infection is often considered to be a protective factor. The idea that helminths 

may be protective is strongly supported by data tying the global increase in T1D 

diagnosis with improving hygiene and overall reduction in the exposure to 

agriculture and animals (131, 132). Studies utilizing the NOD mouse as a model 

of autoimmunity have shown some helminths can delay disease (Schistosoma 

mansoni) while others provide complete protection from T1D (Heligmosmoides 

polygyrus) (133–135). This protection is due Th2 skewing of the immune 

response with associated type II cytokines, such as IL-4 and IL-13 (136, 137). 

Regarding the mechanism of action, it is widely accepted that these cytokines 

serve an anti-inflammatory function in peripheral tolerance, but little is known 

about their role in central tolerance, and as such further studies are required.  

c. Anti-Inflammatory IL-4 and IL-13 Cytokines  

 Type II cytokines IL-4 and IL-13 can be produced by many different cell 

types, including CD4+ T cells, iNKT cells, innate lymphoid cells, and myeloid cells 

such as eosinophils (138–140). IL-4 and IL-13 are classically induced during the 

host response to intestinal parasites.  IL-4 can signal via the IL-4R or the IL-
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4/IL-13 heteroreceptor (HR), while IL-13 can only signal through the HR (141). 

Because the two cytokines share a receptor, many of their functions intersect. 

Both are considered anti-inflammatory as they can both suppress the function of 

typically pro-inflammatory cytokines and lead to the induction of IL-10, another 

anti-inflammatory cytokine (142–144).  

 Many studies have shown a role for these two cytokines in preventing 

autoimmune diseases, including T1D. Interestingly, long term treatment of NOD 

mice with either IL-4 or IL-13 can delay or even prevent T1D onset (145, 146). 

When young NOD mice are treated with a GAD65 immunogen protocol to delay 

disease, -cell-targeted T cells maintained the expression of the HR (uncommon 

in mature T cells) and were therefore susceptible to signaling via either IL-4 or IL-

13 (147). Additionally, HR expression on APCs has also been shown to affect 

disease outcome in NOD mice (148). While the entire picture is unclear, it is 

evident that IL-4 and IL-13 have a unique role in autoimmune diseases such as 

T1D.  

3. Hematopoiesis & T cell Development  

A. Multipotent Progenitors  

 Hematopoiesis, or the development of blood cells, requires self-renewing 

stem cells (149). This process is initiated by dividing hematopoietic stem cells 

(HSC) in the bone marrow (150). HSCs are capable of giving rise to all 

hematopoietic lineages and are self-renewable (151). The lack of Flt3 expression 

separates HSCs from multipotent progenitors (MPPs) (152). MPPs which are 
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Flt3hi are considered to have lost their potential for giving rise to erythrocytes 

(153, 154). Additionally, MPPs can express the rag1 gene and are then 

considered primed for the lymphoid lineage and thus referred to as lymphoid-

primed multipotent progenitors (LMPP) (155). However, LMPPs retain some 

myeloid potential and are thought to be the last stage before the split between 

exclusively myeloid or lymphoid lineage.  

 It was previously presumed that the first divide between myeloid and 

lymphoid progenitors occurs at the common myeloid progenitor (CMP) and 

common lymphoid progenitor stage (CLP). CMPs remain in the bone marrow and 

give rise to macrophages, DCs, and granulocytes (156). CLPs are flexible and 

may remain in the bone marrow where they give rise to B cells, or they may 

migrate to the thymus where they give rise to T cells and, to some extent, thymic 

B cells (157, 158). CLPs may also give rise to NK cells of either bone marrow or 

thymic origin (159, 160).  

However, this black and white model of hematopoiesis has recently been 

brought to question. The presence of a thymic myeloid-T cell progenitor is 

supported by studies utilizing clonal expansion assays (161, 162). Additionally, 

IL-7R+ cells, which were initially thought to be only lymphoid progenitors, retain 

significant myeloid potential when cultured ex vivo (163). These assays showed 

that early thymic progenitors (ETPs) do maintain myeloid potential. This evidence 

gave rise to a new hematopoiesis model, deemed the myeloid-based model, as 

defined by the concept that myeloid lineage fate serves as the default setting and 

the lymphoid fate as specialized types (164).  
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This concept is further supported with consideration to the source of 

thymically derived DCs. T cell progenitors in the thymus robustly maintain DC 

potential until the late DN3 stage, immediately prior to rearrangement of the TCR 

(165–167). Further evidence that many thymic DCs arise from T cell progenitors 

is supported by the presence of CD8+ DCs which express mRNA for the 

subunit of the pre-TCR (168). Additionally, one study showed that T cell 

progenitors could efficiently give rise to DCs under lymphopenia conditions or 

after DC-deletion (169). Altogether, these results demonstrate the plasticity of the 

development of thymic DCs and, as a consequence, ETPs.  

B. T Cell Development 

T cell development, from thymic settling progenitor to mature T cell, occurs in 

distinct stages. The first stage is the CD4-CD8- double-negative (DN) 1 stage 

(170, 171). The DN1 stage is defined by the expression of CD44 and a distinct 

lack of CD25 expression (172). This subset also includes ETPs, which can be 

subdivided by their expression of the stem-like marker c-Kit (173). The ETP/DN1 

subset is highly proliferative. It is estimated that one progenitor can produce 

around one million progeny cells (174, 175). Expression levels of CD24 and c-Kit 

can further subdivide the DN1 stages DN1a, DN1b, DN1c, DN1d, or DN1e (175, 

176). Interestingly, it has been shown that thymically-derived DCs are sourced 

from the DN1c population (176, 177). However, this population does not give rise 

exclusively to DCs and has been shown to possess lymphoid potential as well 

(175, 177).  
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DN2 is the next stage of development and is defined by the co-expression 

of CD25 and CD44 (178). By the end of this stage, the cells have developed a 

high level of response to Notch1 signaling (179, 180). This Notch signaling is 

induced by near-constant contact with thymic stromal cells expressing Delta-like 

1 (a Notch ligand) (180). In addition, late DN2 cells will have no longer express c-

Kit and lose their capacity for the NK lineage fate (178).  

By the early DN3 stage (defined as CD44- and CD25+), the cells are no 

longer capable of rapid proliferation and are in cell cycle arrest (181). This stage 

marks the important step of RAG-mediated somatic recombination of the T cell 

receptor (TCR) (179). This step involves the expression of the constant (C) 

region, the selection of variable chain segments (V, D and J), and the insertion of 

random nucleotides within the TCR coding sequence (178, 179). This 

recombination results in a novel amino acid sequence that permits the TCR to 

bind MHC-bound antigen. In the case of the more common αβ TCR, cells can 

then be subdivided by pre- β (DN3a) and post- β (DN3b) selection (179, 182). 

This transition also coincides with the down-regulation for IL-7 signaling in 

exchange for an increase in Notch signaling (180, 184). CD27 expression can be 

used to define those cells which are post- β selection and can begin to divide 

rapidly once again (182, 183).  

Following the successful rearrangement of the β chain, the TCR pairs with 

the germline pre-Tα and CD3 to form what is referred to as the pre-TCR complex 

(185). Signaling through the pre-TCR induces the downregulation of CD25, 

leading the cells to the DN4 stage (CD44-CD25-), and allows for the TCRα 
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chain's rearrangement, which only requires V and J segment rearrangement 

(186, 187). It is at this stage when cells may become double positive (DP) for 

CD4 and CD8 (187). These cells continue to express rag and rearrange the 

TCRα chain until the point of positive selection (188).  

C. Central Tolerance ` 

a. Positive Selection 

T cells must react to a cognate antigen and, as such, they must be able to bind 

MHC complexes. The process of positive selection ensures that mature T cells 

can bind MHC appropriately. Developing T cells require contact with cortical 

thymic epithelial cells (cTECs), which express both MHC class I and MHC class 

II. When cells cannot form sufficient TCR-MHC interactions, they will undergo a 

process known as “death by neglect.” Counterintuitively, death by neglect is a 

rather active process that involves signaling from glucocorticoid hormones and 

macrophages (189).  

 cTECs possess unique machinery that allows them to express an 

exclusive library of peptides (190).  These peptides are partial TCR agonists or 

altered peptides that are unique but structurally similar to peptides that can 

activate peripheral T cells (190, 191). The generation of these peptides is likely 

due to multiple different mechanisms. For example, cTECs utilize special 

proteases and cathepsins, such as cathepsin L, to generate a unique peptide 

library (192, 193). In addition, cTECs are known to execute efficient 

macroautophagy, a process that sanctions the non-canonical delivery of 
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intracellular peptides and allows for their presentation on MHC class II molecules 

(192, 194).   

 The CD8 versus CD4 fate of developing T cells is determined by the 

recognition of antigen bound to either MHC class I or II, respectively. This TCR 

stimulation results in the upregulation of the activation marker CD69, which can 

be used to identify those cells that could successfully interact with positively-

selecting cTECs (195, 196). However, the vast majority of cell death within the 

thymic cortex can be attributed to developing T cells that did not pass the positive 

selection test (197). 

b. Negative Selection  

The process of central tolerance, or selection, proceeds as the immature T cells 

travel to the thymic medulla. The thymic medulla is rich in APCs, including both 

medullary thymic epithelial cells (mTECs) and DCs (198, 199). These cells are 

the major mediators of the next selection process, known as negative selection. 

mTECs offer a unique ability to express antigens not typically found in the 

thymus (199, 200). These antigens include tissue-specific antigens, such as 

insulin or MOG. mTECs are able to produce these peptides given their near-

exclusive production of the transcription factor AIRE (autoimmune regulator) 

(201, 202). The AIRE gene has proven to be vital to the process of negative 

selection. AIRE knock-out mouse models are susceptible to multiple autoimmune 

disorders (203). The same is true for human patients with AIRE gene mutations 

(204).  
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While there have been some reports of DCs expressing AIRE, most DCs 

can present these specific tissue-specific antigens by sourcing them from surface 

MHC on mTECs (205). The majority of the thymic DCs with this ability are of the 

CD8α+ variety and referred to as cDC1s. These are DCs are most frequently 

sourced from ETPs and are non-migratory as determined by their lack of SIRPα 

expression (206). 

Together mTECs and DCs can process and negatively select up to 5 x 105 

T cells in a single 24 hour period (207). T cells that too strongly interact with 

peptide-MHC complexes on these cells will undergo apoptosis, receptor 

rearrangement, or even diversion to the Treg linage fate (208). The determination 

of strong versus weak TCR signaling is due to TCR affinity, essentially for how 

long the interaction occurs. This increased affinity induces a signaling threshold 

involving enhanced concentrations of signaling mediators such as ZAP-70 and 

the translocation of these mediators to different organelles (209).  

After the process of both negative and positive selection, only 5% of 

developing thymocytes survive. Ultimately, negative selection serves to limit the 

number of autoreactive cells that reach the periphery. This process is vital to 

creating a functional immune system and prevent autoimmunity.  
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1. Abstract 

Early thymic progenitors (ETPs) are bone marrow–derived hematopoietic stem 

cells that remain multipotent and give rise to a variety of lineage-specific cells. 

Recently, we discovered a subset of murine ETPs that expresses the IL-4Rα/IL-

13Rα1 heteroreceptor (HR) and commits only to the myeloid lineage. This is 

because IL-4/IL-13 signaling through the HR inhibits their T cell potential and 

enacts commitment of HR+ETPs to thymic resident CD11c+CD8α+ dendritic cells 

(DCs). In this study, we discovered that HR+ETP–derived DCs function as APCs 

in the thymus and promote deletion of myelin-reactive T cells. Furthermore, this 

negative T cell selection function of HR+ETP–derived DCs sustains protection 

against experimental allergic encephalomyelitis, a mouse model for human 

multiple sclerosis. These findings, while shedding light on the intricacies 

underlying ETP lineage commitment, reveal a novel, to our knowledge, function 

by which IL-4 and IL-13 cytokines condition thymic microenvironment to rheostat 

T cell selection and fine-tune central tolerance.  
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2. Introduction 

Early thymic progenitors (ETPs), the bone marrow (BM)–derived stem cells that 

settle in the thymus are pluripotent (1, 2) and give rise to myeloid as well as 

adaptive and innate lymphoid cells (3–6). Recently, we demonstrated that ETPs 

expressing the IL-4Rα/IL-13Rα1 heteroreceptor (HR) give rise only to myeloid 

cells (7). This is because endogenous IL-4 and IL-13 use the HR to activate 

STAT1 and STAT6 and inhibit the ETPs’ T cell potential, leading to commitment 

to myeloid cells, the majority of which are dendritic cells (DCs) (8, 9). The 

biological significance of cytokine-driven maturation of HR+ETPs to DCs remains 

a puzzle. 

The thymus is the site for T cell development, a process that involves 

positive selection of maturing thymocytes and negative selection of self-reactive 

T cells (10). Both positive and negative selection of T cells require presentation 

of self-peptides by APCs (10). It is now clear that cortical thymic epithelial cells 

(cTEC) are the main APCs involved in positive selection, whereas medullary 

thymic epithelial cells (mTECs) and DCs are responsible for negative selection of 

self-reactive lymphocytes (11, 12). It is also known that mTECs sustain optimal 

expression of self-Ags in the thymus (13, 14), whereas DCs present self-peptides 

to the target T lymphocytes (15–17). This peptide presentation function has 

always been attributed to DCs generated from BM stem cells in sites peripheral 

to the thymus (18). The question that arises in this study is whether cytokines 

divert ETP maturation toward DCs to yield local APCs that would monitor 

developing thymocytes for self-reactivity and tighten negative selection and 
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elimination of potentially harmful autoreactive T cells. To test this postulate, we 

developed animal models defective for T cell selection and used these tools to 

interrogate cytokine-induced ETP-derived APCs for restoration of central 

tolerance. The findings indicate that ETP-derived APCs, although unable to 

contribute to positive selection of maturing T cells, are effective in carrying out 

negative selection of self-reactive T cells and lessening the clinical signs of 

experimental autoimmune encephalomyelitis (EAE) in an autoimmune regulator 

(aire) gene (13, 14)–dependent fashion. These previously unrecognized 

observations suggest that IL-4 and IL-13 serve as pillars for control of ETP 

commitment and fine-tuning of central tolerance. 
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3. Materials and Methods 

Mice 

All animal experiments were done according to protocols approved by the 

University of Missouri Animal Care and Use Committee. C57BL/6, Aire−/− 

C57BL/6 mice, and OT-1 and OT-II TCR-transgenic C57BL/6 mice were 

purchased from The Jackson Laboratory (Bar Harbor, ME). IL-13Rα1+/+-GFP and 

IL-13Rα1−/− C57BL/6 mice were previously described (7). CT2Akd/IRES/Ly5.1 

mice deficient for MHC class II (MHCII) expression in mTECs were previously 

described (19). MHCII−/− and MHC I−/−/II−/− C57BL/6 mice were purchased from 

Taconic (Hudson, NY). 2D2 C57BL/6 mice carrying the transgenic TCR specific 

for myelin oligodendrocyte glycoprotein (MOG) were previously described (20). 

Only 6- to 8-wk-old mice were used throughout the study. 

Ags 

MOG peptide (MOGp) corresponding to MOG 35–55 peptide and MOGp 

tetramer (MOGtet) were previously described (21). Chicken OVA (OVA) aa 257–

264 (SIINFEKL) and 323–339 (SQAVHAAHAEINEAGR) (OVAp) peptides were 

purchased from EZbiolab (Carmel, IN). Ig-OVA is an Ig chimera carrying OVAp 

(22), and Ig-p79 is carrying p79 peptide (23). 

Flow cytometry 

Abs were purchased from BD Biosciences (San Jose, CA), eBioscience (San 

Diego, CA) BioLegend (San Diego, CA) or Vector Laboratory (Burlingame, CA) 

and used according to the manufacturer. Sample reading used a Beckman 



63 
 
 

Coulter CyAn (Brea, CA) and data were analyzed using FlowJo version 10 (Tree 

Star). Dead cells were excluded using 7-aminoactinomycin D (7AAD; EMD 

Biosciences) or Fixable Viability Dye (FVD) eFluor 780 (eBioscience). 

Cell sorting 

ETPs. 

ETPs were isolated as previously described (7). In brief, thymic cells were 

depleted of Lin+ thymic cells and the HR+ETPs (cKit+CD44+CD25−) were sorted 

from IL-13Rα1+/+-GFP reporter mice on the basis of GFP (IL-13Rα1) expression. 

HR−ETPs were sorted from Lin− thymic cells of IL-13Rα1−/− mice on the basis of 

CD44, cKit, and CD25 (cKit+CD44+CD25−). 

CD4+CD8+ thymocytes. 

Thymi were harvested, and CD3+CD4+CD8+ cells were sorted from either 2D2 

TCR-transgenic or MHCII−/− C57BL/6 mice to isolate monoclonal and polyclonal 

double-positive (DP) thymocytes. 

Thymic epithelial cells. 

Thymic epithelial cells (TECs) were isolated from the thymus as described (24) 

with a slight modification. Briefly, thymi from 6- to 8-wk-old MHCII+/+ C57BL/6 

mice were treated with 0.005% (weight/volume) Liberase TH and 100 U/ml 

DNase I (Roche Diagnostics, Indianapolis, IN) to release epithelial cells from the 

thymi. cTECs were sorted as CD45−EpCAM+MHCII+UEA−Ly51+ cells, whereas 

mTECs were isolated as CD45−EpCAM+MHCII+UEA+Ly51− cells. 
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HR+ETP-derived CD11c+ cells. 

Sorted ETPs were cultured on OP9 stromal cells as previously described (25) 

with 10 ng of IL-4, and myeloid progeny were sorted on day 7 as CD45+CD11c+. 

Sorting was performed on a Beckman Coulter MoFlo XDP (Brea, CA) cell sorter. 

Only sorts with a purity of ˃95% were used in this study. 

Intrathymic injections 

ETPs, DP thymocytes, cTECs, and mTECs were resuspended in 30 μl of PBS 

and injected into isoflurane-anesthetized mice through the skin between the third 

and fourth rib of the thoracic cavity using a 0.3-ml, 31-gauge, 8-mm insulin 

syringe. 

ETP maturation in vivo 

HR+/+ C57BL/6 mice (CD45.1) were given (intrathymically [i.t.]) HR+ETPs (5 × 104 

cells per mouse) from HR+/+ C57BL/6 donors (CD45.2), and thymic cells were 

harvested on day 12 or 16 posttransfer. The day 12 cells were used to analyze 

expression of CD11b, CD11c, and CD8α on CD45.2 gated cells, whereas the 

day 16 cells served to analyze expression of CD11b, CD11c, and CD3 markers. 

Thymic-positive selection assay 

HR+/+ C57BL/6 mice deficient for MHCII (MHCII−/−) or MHC class I and MHCII 

(MHC I−/−II−/−) were given (i.t.) HR+ETPs (15 × 103 cells per mouse), or cTECs 

(10 × 103 cells per mouse) twice (7 d apart). The hosts were sacrificed at 

different time points, and their thymic and peripheral blood cells were assessed 
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for single-positive (SP) CD4 and CD8 T cells. Negative control mice received 

PBS with no cells (NIL).  

Thymic-negative selection assay 

Chimeric mice. 

C2TAkd mice (CD45.1) were lethally irradiated (900 rad) and given BM cells (10 

× 106 cells per mouse) from MHCII−/− mice. After 2 wk of reconstitution, the mice 

were injected (i.t.) with unselected DP CD4+CD8+ monoclonal 2D2 TCR-

transgenic or polyclonal (CD45.2) MHCII−/− thymocytes. In parallel, the hosts 

were given HR+ETPs (12 × 103 cells per mouse) from MHCII+/+ mice and 

negative selection was measured at different time points by assessing the 

number of SP CD4+ T cells by flow cytometry. 

Aire−/− C57BL/6 mice. 

The mice were given (i.t.) HR+ETPs (15 × 103 cells per mouse) from aire+/+ 

C57BL/6 mice twice, 7 d apart. Thymic cells were harvested at different time 

points, and the number of SP CD4+ or CD8+ T cells were analyzed by flow 

cytometry. Positive control mice were given (i.t.) mTECs (15 × 103 cell per 

mouse) from aire+/+ C57BL/6 mice, and the number of SP CD4+ and CD8+ T cells 

in thymus were analyzed on day 6 posttransfer by flow cytometry. 

Induction of EAE 

Mice were induced for EAE with 60 μg of MOGp, as previously described (21). 

The mice were scored daily for clinical signs of EAE as follows: 0, no clinical 
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signs; 1, loss of tail tone; 2, hind limb weakness; 3, hind limb paralysis; 4, 

forelimb weakness; 5, forelimb paralysis; and 6, moribund or death. The 

cumulative disease score was calculated by adding the daily scores that the mice 

received during the monitoring period divided by the number of mice per group. 

The mean maximal disease score (mmds) represents the average of the highest 

score received by each mouse during the monitoring period. 

Statistical analysis 

Data were analyzed using either an unpaired, two-tailed Student t test, one-way 

ANOVA, or Mann–Whitney U test as indicated. All statistical analyses were 

performed using Prism software version 4.0c (GraphPad). 
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4. Results  

HR+ETPs give rise to myeloid cells in vivo, most of which belong to the 

CD8α+ DC subset 

In earlier studies, we have shown that HR+ETPs cultured in vitro on OP9 stromal 

cells in the presence of IL-4 or IL-13 cytokines give rise to CD11c+ DCs (9). In 

this study, we asked whether these HR+ETP–derived DCs can function as APCs. 

The results show that DCs derived in vitro from HR+ETP by culture on OP9 

stromal cells in the presence of IL-4 function present Ag on MHC class I and 

MHCII molecules (Fig. 1). Indeed, the DCs were able to present free Kb-

restricted SIINFEKL peptide to OT-I CD8 T cells as measured by CFSE dilution 

(Fig. 1A). Moreover, the DCs are able to cross-present whole-OVA protein and 

induced CFSE dilution of OT-1 CD8 T cells when the native OVA was loaded into 

the DCs by osmotic shock in hypertonic but not isotonic media (Fig. 1A). 

Similarly, the HR+ETP–derived DCs were able to present class II–restricted free 

OVAp to OT-II CD4 T cells (Fig. 1B). In addition, when OVAp was delivered to 

the DCs in the form of Ig-OVA, endocytic presentation was operative and the T 

cells were able to proliferate and dilute CFSE (Fig. 1B). The control p79 peptide 

and Ig-p79 did not induce proliferation of OT-II CD4 T cells. In all, DCs derived 

from HR+ETPs by stimulation with IL-4 function as APCs in vitro.  

The CD11c+ DCs derived from ETPs comprise CD8α+DCs that express 

IRF-8 but not SIRPα markers (9). These nonmigratory CD8α+SIRPα- DCs are 

commonly found in mice sufficient for the HR (9) perhaps because IL-4 is readily 

available in the thymic environment (26). To ensure that HR+ETP maturation is 
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restricted to the myeloid lineage and give rise to DCs in vivo, the cells were 

sorted from the thymi of CD45.2 IL-13Rα1+/+GFP reporter donor C57BL/6 mice, 

transferred i.t. into CD45.1 IL-13Rα1+/+ C57BL/6 hosts and their in vivo 

maturation to both myeloid and lymphoid lineages was analyzed. The results 

show that HR+ETPs do not give rise to T cells but rather to myeloid CD11c+cells 

that would include both CD11c+CD11b+ and CD11c+CD11b− cells (Fig. 1C). Data 

compiled from several experiments show that the findings are statistically 

significant despite that the incubation period was extended to 16 d, an optimal 

time point for CD3 expression (27). Myeloid cells are diverse in nature and can 

be broadly classified into CD11b+ monocyte/macrophage cells or CD11c+ DCs. 

Because conventional DCs are specialized APCs and contribute to thymic T cell 

selection (10) we determined the cellular make-up of the in vivo ETP-derived 

myeloid population. The results show that 17.7 ± 1.2% of the CD45.2 cells 

expressed only CD11b, a profile for monocyte/macrophage cells (Fig. 1D). 

However, 61.9 ± 2.7% of the cells had CD11c but not CD11b phenotype, which 

represents a conventional DC phenotype (Fig. 1D). Interestingly, most of the DCs 

(78.7 ± 2.7) expressed the CD8α DC subset–specific marker. In terms of cell 

number, data collected from several experiments indicated that 50 × 103 

HR+ETPs gave rise to 400 × 103 myeloid cells on average. Of these myeloid 

cells, 70.8 × 103 (17.7%) were CD11b+ CD11c− cells and 247.6 × 103 (61.9%) 

were CD11b− CD11c+ DCs. Of these CD11b-CD11c+ cells, 193 × 103 (78%) were 

CD8α+ DCs. Overall, HR+ETPs give rise to myeloid but not T cells in vivo and a 

significant number of these cells are CD8α+CD11c+ DCs. 
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Figure 1. HR+ early thymic progenitors generate APCs which are 

predominately thymic resident dendritic cells 
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(A, B) Shows dilution of CFSE staining by either CD8 OT-I (A) and CD4 OT-II (B) 

T cells (1 x 105 cell/ well) upon stimulation with in vitro cultured IL-4-guided ETP-

derived DCs that were pre-loaded with Ag. (A) For Class I classical presentation 

the DCs (5 x 103 cells/well) were loaded with free SIINFEKL (1µM) or control p79 

(10 µM) peptide (left panel) and for class I cross-presentation, the DCs were 

loaded with soluble OVA (70 µM) after osmotic shock in hypertonic  (Hyper.OVA) 

or isotonic (Iso.OVA) media (right panel) as described (40). (B) For class II 

classical presentation, the DCs were loaded with 10 µM free OVAp or negative 

control p79 peptide (left panel) and for endocytic presentation the DCs were 

loaded with 1 µM Ig-OVA or negative control Ig-p79 (right panel). This is 

representative of 3 experiments.  (C) Thymic cells from CD45.2 IL-13Rα1-GFP 

reporter mice were depleted of Lin+ cells and the Lin CD4-CD8- cells were 

stained with antibodies to CD25, CD44, and c-Kit. The CD25-CD44+c-Kit+GFP+ 

(HR+ETPs) were sorted and injected i.t. (50 x 103 cells/mouse) into congenic 

(CD45.1) hosts. The thymic cells were stained with anti-CD45.1, CD45.2, CD11b, 

CD11c, and CD3ε antibodies and evaluated for CD11b, CD11c, and CD3 

expression by CD45.2+ cells on day 16 after transfer.  The contour plots show a 

representative experiment while the bar graph shows data compiled from 3 

independent experiments. *** p< 0.001 as determined by a two-tailed unpaired 

Student t-test. (D) CD45.2 HR+ETPs were injected i.t. (50 x 103 cells/ mouse) into 

CD45.1 hosts and the thymic cells harvested on day 12 post-transfer were 

stained with anti-CD45.1, CD45.2, CD11b, CD11c, and CD8α antibodies. The 

CD45.2+ cells were evaluated for CD11b, CD11c, and CD8α expression.  The 
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contour plots show a representative experiment while the bar graphs show the 

mean ± SD of cell percentage compiled from 3 independent experiments. 



72 
 
 

B. HR+ETP–derived APCs contribute to thymic T cell selection 

Because BM-derived DCs migrate to the thymus and participate in thymic 

selection of T cells (18, 28, 29), one would envision that HR+ETPs give rise to 

CD8α+SIRPα− thymic resident DCs to assist in T cell development. To test this 

premise, experimental models were set up to assess the contribution of 

HR+ETP–derived APCs to positive, as well as negative, T cell selection. 

Accordingly, MHCII−/− mice, in which CD4 T cell selection is not operative, were 

given i.t. HR+ETPs and analyzed for development of CD4+ SP T cells in the 

thymus and the periphery. The result shows that the frequency of CD4+ T cells 

did not increase in either the blood or thymus 15 d postintrathymic injection, as 

the numbers of cells were similar to mice that did not receive HR+ETPs  (Fig. 

2A). In contrast, MHCII−/− mice recipient of MHCII+ cTECs that support positive T 

cell selection (10) showed an increase in the percentage of CD4+ SP T cells in 

both the thymus and in the periphery (Fig. 2B, upper panels). Data compiled from 

several experiments show that the increases in CD4+ SP T cells were statistically 

significant (Fig. 2B, lower panels). Furthermore, when MHCI−/−/II−/− mice were 

given HR+ETPs and tested for positive selection of both CD4 and CD8 T cells, 

there was no significant increase of either T cell type in the thymus (Fig. 3A). 

Again, mice recipient of MHCI+II+ cTECs had significantly increased percentages 

of both CD4 and CD8 T cells in the blood and thymus (Fig. 3B, 3C). Data 

compiled from several experiments show that the increases in CD4+ and CD8+ 

SP T cells were statistically significant (lower panels in Fig. 3B, 3C). Overall, 
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these findings indicate that HR+ETP–derived APCs are unable to support thymic-

positive selection of T cells. 

The fact that HR+ETPs do not contribute to positive selection of T cells 

does not necessarily preclude contribution to negative T cell selection. To test 

this premise, we set up a chimeric mouse model suitable for this investigation as 

illustrated in Fig. 4A. Accordingly, C2TAkd mice (19), which lack MHCII on 

mTECs but not cTECs, were lethally irradiated and reconstituted with BM from 

MHCII−/− mice yielding a chimeric host devoid of MHCII expression in APCs and 

mTECs but not cTECs. The thymic configuration in this host supports positive but 

not negative selection. This chimera was then given HR+ETPs from MHCII+/+ 

mice to provide thymic resident MHCII-sufficient APCs that could serve in 

negative selection. The hosts were then given unselected CD4+CD8+ DP 2D2 

TCRMOGp monoclonal (20) or CD45.2 C57BL/6 polyclonal thymocytes to serve 

as targets for negative selection. After 7–21 d the thymi were analyzed for 

CD4+CD8− SP T cells as a measure of thymic-negative T cell selection. The 

results show that both monoclonal (MOGtet+) and polyclonal (CD3+) CD4+ SP T 

cells were significantly lower in number in mice recipient of DP thymocytes and 

HR+ETPs relative to those given DP thymocytes alone (Fig. 4B, 4C). 

Furthermore, when the polyclonal CD45.2 CD4+ SP T cells were stained with 

Nur77 Ab and FVD, there was a gradual increase over time in the number (Fig. 

4D) and percentage (Fig. 4E) of cells binding FVD, a marker for apoptosis, and 

expressing Nur77, a marker for negatively selected thymocytes (30), in the mice 

recipient of DP thymocytes and HR+ETPs relative to those given the DP 
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thymocytes alone. These results indicate that HR+ETP–derived APCs support 

negative selection of CD4 T cells. HR+ETP–derived APCs were not tested for 

negative selection of CD8 T cells because a similar animal model could not be 

devised because of the lack of mice with MHC class I deficiency in mTECs. 
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Figure 2. HR+ETPs do not support thymic positive selection of CD4 T cells. 
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(A, B) MHC Class II-/- C57BL/6 mice were given two i.t. injections (7 days apart) 

of (A) HR+ETPs (12 x 103 cells/mouse) or (B) cTECs (10 x 103 cells/mouse) from 

MHCII+/+ C57BL/6 mice and the percentage of CD3+CD4+ T cells were 

determined in both the thymus and blood at the indicated time points. A group of 

mice that received PBS with no cells (NIL) was included in each experiment to 

serve as negative control. The contour plots show representative experiments for 

the indicated days. The bar graphs in (B) show the mean cell percentage ± SD 

compiled from 2 independent experiments. Each experiment included 5 mice per 

group that were tested individually. **p<0.01 as determined by two-tailed, 

unpaired Student’s t-test. 
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Figure 3. HR+ETPs do not support thymic positive selection of CD8 T cells. 
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(A) MHCI-/- II-/- C57BL/6 mice were given 2 i.t. injections (7 days apart) of 

HR+ETPs (12 x 103 cells/mouse) from MHCI+/+II+/+ C57BL/6 GFP reporter mice. A 

group of mice that received no cell transfer (NIL) was included in each 

experiment to serve as negative control. The bar graphs show the percentages of 

CD3+ CD4+ (left panel) and CD3+CD8+ (right panel) T cells in the thymus. In (B 

and C) the MHCI-/- II-/- C57BL/6 mice were given i.t. cTECs (10 x 103 cells/mouse) 

from MHCI+/+II+/+ C56BL/6 mice instead of HR+ETPs or PBS with no cell transfer 

(NIL) and the frequency of single positive T cells was measured on day 9 post 

transfer in the blood (B) and thymus (C). The contour plots are representative 

experiments showing the percentage of CD3+CD4+ and CD3+ CD8+ T cells while 

the bar graphs show the mean cell number ± SD compiled from 3 independent 

experiments. Each experiment included 3 mice that were tested individually. 

*p<0.05 and **p<0.01 as determined by two-tailed, unpaired Student’s t-test. 
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FIGURE 4. HR+ETP–derived thymic APCs support thymic-negative T cell 

selection.  
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(A) C2TAkd mice that specifically lack MHCII expression in mTECs but not 

cTECs, which can partially drive negative T cell selection, were lethally irradiated 

(990 rad) and given BM cells (10 x 106 cells) from MHCII-/- mice. Positive but not 

negative thymic T cell selection is functional in these chimeric mice. The 

chimeras were then given i.t. unselected DP monoclonal (B) or polyclonal 

(CD45.2) thymocytes from 2D2 TCR-MOG–transgenic and normal C57BL/6 

mice, respectively (C–E), and HR+ ETPs (from MHCII+/+ mice) and used to 

measure thymic-negative T cell selection. (B and C) Thymi were harvested on 

day 21 and used to assess for negative T cell selection. (B) The bars represent 

the mean ± SD of the absolute number of MOG Tet+ CD4 SP 2D2 T cells. Data 

are representative of two independent experiments in which seven mice were 

tested individually. (C) shows the absolute number of CD45.2+ CD3+ polyclonal 

CD4 SP T cells. (D) and (E) show the number (D) and percentages (E) of 

CD45.2+ CD3+ polyclonal CD4 SP FVD+ Nur77+ T cells undergoing negative 

selection. *p<0.05, **p<0.01 as determined by two-tailed, unpaired Student t test. 
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C. HR+ETP–derived APCs support protection against EAE 

HR+ETP–derived APCs contribute negative selection of self-reactive T cells and 

reduce the frequency of myelin-specific T lymphocytes in the periphery. This 

process likely impacts autoimmunity and impedes the development of EAE. To 

test this premise, HR−/− mice in which the frequency of thymic resident 

CD8α+SIRPα− DCs is diminished (9), and negative T cell selection would be less 

effective, were induced for EAE with MOGp and their daily disease severity 

scores were compared with HR+/+ mice. Indeed, the results show that HR−/− mice 

begin to develop signs of clinical EAE on day 5 post-disease induction, whereas 

HR+/+ mice had the initial disease scores on day 9 (Fig. 5A, left panel). Also, the 

pattern of paralysis was more severe in HR−/− relative to HR+/+ mice (Fig. 5A, 

right panel). Furthermore, the mmds was 4.0 ± 0.0 in HR−/− mice compared with 

2.8 ± 0.4 in HR+/+ animals. The cumulative disease score was 43.8 ± 2.7 in HR−/− 

mice which is much higher than the 24.4 ± 1.8 in HR+/+ mice. These observations 

suggest that the increased frequency of ETP-derived DCs plays a critical role in 

the development of EAE. This statement is supported by data showing that HR−/− 

recipients of HR+ETPs develop milder EAE relative to HR−/− mice that did not 

receive HR+ETPs prior to disease induction (Fig. 5B). Indeed, although the onset 

of EAE was similar in both experimental groups, the pattern of paralysis is milder 

in the mice recipient of HR+ETPs. In fact, the mmds decreased from 4.0 ± 0.0 in 

HR−/− mice with no ETP transfer to 3.0 ± 0.0 in HR−/− mice recipient of HR+ETPs. 

In addition, the cumulative disease score, which was 45.0 ± 2.4 in HR−/− mice, 

decreased to 30.3 ± 1.2 in the mice recipient of HR+ETPs. In all, the data 
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indicates that HR+ETP–derived APCs support thymic-negative selection of self-

reactive T cells leading to reduced susceptibility to EAE induction. 
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Figure 5. HR+ETP–derived APCs support protection against EAE.  
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(A) HR+/+ and HR-/- C57BL/6 mice (six to eight per group) were induced for EAE 

with MOGp and monitored daily for disease severity for 20 d. The graphs show 

the mean ± SD clinical scores during disease onset (left panel) and progression 

(right panel). (B) HR-/- mice (six to eight per group) were given i.t. HR+ ETPs 

(15,000 cells per mouse) or saline with no cells (NIL) twice (7 d apart) and 2 wk 

later were induced for EAE with MOGp. The hosts were monitored daily for 

disease severity for 20 d. The graphs show the mean 6 SD clinical scores during 

disease onset (left panel) and progression (right panel). *p<0.05, **p<0.01 as 

determined by Mann–Whitney U test. 
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D. Aire gene function in mTECs is required for cooperation with HR+ETP–

derived APCs and protection against EAE 

Thymic-negative T cell selection relies on the expression of the aire gene by 

mTECs (13, 14) and their cooperation with thymic APCs (10). Thus, we sought to 

determine whether HR+ETP–derived APCs would require the function of aire 

gene to contribute negative T cell selection and protect against EAE. To this end, 

aire−/−HR+/+ hosts were given HR+ETPs or mTECs from aire+/+ mice and then 

tested for negative selection of T cells and resistance to EAE induction. The 

results show that the hosts, in which both endogenous mTEC and HR+ETPs lack 

aire expression, had no significant decrease in numbers of either CD4 or CD8 SP 

T cells when given aire+HR+ETPs or PBS (NIL) (Fig. 6A). In contrast, hosts 

recipient of aire+mTECs showed significant reduction in both frequency and 

numbers of CD4 or CD8 SP T cells relative to NIL hosts (Fig. 6B, 6C), indicating 

cooperation between endogenous aire−HR+ETP–derived APCs and exogenous 

aire+mTECs. These findings parallel with data presented in Fig. 4 showing 

cooperation between HR+ETP–derived APCs and MHCII-aire+mTECs of the 

C2TAkd hosts. In addition, given that APCs derived from HR+ETPs, whether in 

vitro or in vivo, have little aire mRNA relative to mTECs (Fig. 6D), these results 

suggest that negative selection of T cells mediated by HR+ETP–derived APCs 

require aire expression in mTECS. This statement is supported by findings 

showing that HR+ETPs are able to lessen the clinical signs of EAE in HR−/− mice 

sufficient for aire (Fig. 6E). Indeed, the clinical signs EAE in HR−/−Aire−/− mice 

were similar whether the hosts are given HR+ETP or PBS (NIL) control (Fig. 6E, 
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left panel). However, the severity of EAE was significantly lower in HR−/−Aire+/+ 

hosts given HR+ETP in comparison with HR−/−Aire+/+ mice given PBS (NIL) (Fig. 

6E, right panel). Given that the host mice are deficient for the HR and do not 

have endogenous HR+ETPs, the differential patterns of EAE is because of 

cooperation between aire and the transferred HR+ETPs. In all, HR+ETP–derived 

APCs require the function of aire gene to contribute central tolerance and impact 

the development of autoimmunity. 
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Figure 6. HR+ ETP-derived APCs rely on aire gene expression to support 

protection against EAE  
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 (A) Aire-/- C57BL/6 hosts were given (i.t.) PBS (NIL) or HR+ETPs (15 x 103 

cells/mouse) twice (7 days apart) and thymic SP CD4 and CD8 T cells were 

analysed at the indicated day post transfer.  The bars show the mean absolute 

number of cells ± SD compiled from 3 independent experiments. Each 

experiment included 5 mice per group that were tested individually.  (B and C) 

Aire-/- C57BL/6 hosts were given (i.t.) PBS (NIL) or aire-sufficient mTECs (15 x 

103 cells/mouse) once and thymic SP CD4 and CD8 T cells were analysed on 

day 6 post transfer.  The bars show the mean percentage (B) and absolute 

number (C) of cells ± SD compiled from 3 independent experiments. *p<0.05 and 

**p<0.01 as determined by two-tailed unpaired Student t-test. (D) mTECs, thymic 

CD11c+, and HR+ETP derived CD11c+ cells were sorted and assessed for aire 

gene expression by RT-PCR. ***p<0.001 as determined by one-way ANOVA. (E) 

HR-/- Aire-/- and HR-/- Aire+/+ C57BL/6 mice were given (i.t.) HR+ETPs (15,000 

cells/mouse) twice (7 days apart) and two weeks later induced for EAE with 

MOGp. The mice were monitored daily for disease severity for 11 days. The 

graphs show the mean ± SD clinical scores. **p<0.01 as determined by Mann-

Whitney U test.  
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5. Discussion  

To our knowledge, this study reports new insights on the function of IL-4 and IL-

13 in ETP maturation and its significance to central T cell tolerance and the 

development of CNS autoimmunity. IL-4/IL-13 were primarily identified as major 

players in allergic reactions and parasite immunity (31). The cytokines can also 

play anti-inflammatory functions against autoimmunity by promoting peripheral 

tolerance (32, 33). Recently we reported that IL-4/IL-13 signaling through the HR 

guides ETP maturation toward myeloid cells, the majority of which belong to the 

DC population (9). This previously unappreciated function positions the cytokines 

as factors that assist ETP commitment to a specific lineage and reinforce the 

contribution of the thymic microenvironment to ETP fate decision (34, 35). 

The other intriguing aspect in the process of cytokine guided ETP 

maturation relates to the biological significance associated with the shifting of 

ETP maturation toward myeloid cells, specifically DCs. It is well known that DCs 

are professional APCs specialized in induction of immunity as well as peripheral 

tolerance (36). Lately, it has been reported that a specific population of BM-

derived DCs, namely the CD8α+CD11c+ subset is specialized in thymic selection 

of T cells (18, 28). Interestingly, IL-4/IL-13 driven signaling supports HR+ETPs to 

give rise to DCs that are able to function as APCs and present Ag via MHC class 

I and MHCII classical pathways. The ETP-derived DCs are also able to cross-

present Ag to CD8 T cells, a functional attribute of CD11c+CD8α+ DCs that 

contribute to thymic-negative T cell selection. These observations prompted us to 

test whether the APC function of HR+ETP–derived DCs contribute to thymic T 
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cell selection (10). The findings indicate that HR+ETP–derived APCs, although 

unable to support positive selection of T cells because this is a defined function 

for cTECs (10), were able to negatively select self-reactive T cells including 2D2 

TCR-transgenic myelin-specific T lymphocytes. In fact, HR+ETP–derived APCs 

were able to lessen severity of EAE as the mice had milder clinical signs of 

disease when compared with animals in which negative selection is not 

operative. In addition, both negative selection of T cells and lessening of EAE by 

HR+-derived APCs were dependent on the function of the aire gene (14), 

suggesting that the DCs present self-peptide generated from mTECs as was 

previously defined (13). Although it has been reported that EAE severity is 

slightly reduced in young aire−/− mice compared with their wild-type counterparts 

(37), this was not the case in young aire−/− HR−/− mice, and the disease pattern 

was similar to young aire+/+ HR−/− mice, further supporting our prior observation 

that HR deficiency increases susceptibility to EAE (32). These observations point 

to new attributes for IL-4 and IL-13 whereby signaling through the HR guides 

ETPs to give rise to APCs that tighten negative selection of self-reactive T cells 

and reduce susceptibility to autoimmunity. The significance of these findings is 2-

fold. On one hand, stimulators of IL-4 and IL-13 secretion would be able to 

influence ETP maturation and impact central tolerance as well as autoimmunity. 

On the other hand, the environment would also control this process under 

circumstances that could favor or deter the development of autoimmunity. For 

instance, parasitic infections and allergens that stimulate type II cytokines would 

support the generation of ETP-derived APCs, which foster negative T cell 
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selection and limit the generation of self-reactive T cells yielding a lymphocyte 

repertoire devoid of self-reactivity and thus, beneficial against autoimmunity. 

From this perspective, a clean environment would foster susceptibility to 

autoimmunity (38, 39). In all, these observations add insight as to the 

environmental factors that would control the development of autoimmune 

diseases and assert the hygiene hypothesis (40). 
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1. Abstract 

From an autoimmunity perspective, type II cytokines, such as IL-4 and IL-13, are 

anti-inflammatory because of their ability to foster peripheral tolerance. The full 

impact of IL-4 and IL-13 is still yet to be explored in central tolerance. Recently it 

has been shown that IL-4/IL-13 signaling in ETPs that express the IL-4Rα/IL-

13Rα1 heteroreceptor (HR) primes these progenitors to become thymic resident 

DCs. These DCs aid in negative selection and the prevention of autoimmunity. In 

chapter III, the data presented shows that, in contrast to the C57BL/6 strain, 

HR+ETPs from the type one diabetes (T1D) susceptible NOD strain give rise to T 

cells. Notably, the NOD thymus shows a dramatic reduction in the steady-state 

level of IL-4, likely due to diminished iNKT cell populations. Indeed, increasing 

the availability of either cytokine can rescue the lineage fate of HR+ETPs. 

Restoration of NOD HR+ETP fate improves negative selection, alters the TCRβ 

repertoire, and prevents diabetes onset. Thus, IL-4 fitness within the thymus may 

be implicated in fine-tuning negative selection of T cells. From this, one may 

envision that the lack of IL-4/IL-13-inducing infections may tip that table in favor 

of autoimmunity in developed nations.  
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2. Introduction 

Bone marrow (BM)-derived multipotent progenitors travel through the blood to 

the thymus where they proliferate at extraordinary rates. Upon reaching the 

thymus, these multipotent cells are referred to as early thymic progenitors (ETPs) 

and give rise to multiple cell fates. Recently, it has been shown that ETPs which 

express the IL-4Rα/IL-13Rα1 heteroreceptor (HR) yield exclusively myeloid cells 

(1, 2).  IL-4 and IL-13 cytokines signal through the HR to induce STAT signaling, 

limiting the T cell lineage while simultaneously inducing the myeloid fate. 

HR+ETPs, manipulated by cytokine exposure, give rise to DCs that can perform 

negative T cell selection (3). These ETP-derived DCs can tighten negative 

selection to such an extent that the severity of experimental allergic 

encephalomyelitis (EAE) is greatly dampened in animal recipients of HR+ETPs. 

However, this phenomenon's biological significance is yet to be determined in 

other autoimmune diseases, such as type one diabetes (T1D).  

The non-obese diabetic (NOD) mouse is the model of choice for studying 

the pathogenesis of T1D. Many defects in peripheral tolerance have been heavily 

investigated utilizing the NOD mouse. Type II cytokines, such as IL-4 and IL-13, 

are known modulators of peripheral tolerance in the NOD model. These 

cytokines reduce the effect of pro-inflammatory mediators and induce other anti-

inflammatory cytokines, such as IL-10 (4, 5).  However, the current 

understanding of NOD-specific defects in central tolerance likely reflects only the 

tip of the iceberg. While IL-4 and IL-13 are found in the thymus, their role in T cell 

selection in the NOD mouse is unknown. Herein, we show that there is a reduced 
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fitness of IL-4 in the NOD thymic microenvironment. As a consequence, NOD 

HR+ETPs do not give rise to DCs but rather to T cells. The question that then 

arises in this study is whether a lack of thymic DCs results in a defective T cell 

selection process. The findings indicate that thymic enrichment with IL-4 induces 

HR+ETP-derived DCs and blocks the T cell lineage fate. These HR+ETP-derived 

DCs can perform negative selection and shift the TCR repertoire in IL-4-enriched 

NOD mice. This tightening of negative T cell selection results in the prevention of 

T1D in mice recipients of thymic IL-4.   These previously unrecognized findings 

suggest that type II, or environmental cytokines, may sustain central tolerance 

and, as such, a deficit in their fitness may predispose the host to the 

development of an autoimmune disease. 
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3. Materials and Methods 

Mice 

All animal experiments were done according to protocols approved by the 

University of Missouri Animal Care and Use Committee. C57BL/6, NOD (H-2g7), 

NOD BDC2.5, and NOD MHC I-/-II-/- mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME). IL-13Rα1+/+-GFP C57BL/6 were previously 

described (1). The IL-13Rα1+/+-GFP NOD mice were generated by breeding IL-

13Rα1+/+-GFP C57BL/6 mice onto the NOD background via speed congenic 

technology based on 58 microsatellite markers on sequences between the 

C57BL/6 donor strain and NOD recipient strain. A total of eight backcrosses with 

wild-type NOD mice were performed to ensure homozygosity of NOD alleles.  Only 

6-8 week old female mice were used throughout the study unless otherwise noted. 

All animals were maintained under specific pathogen-free conditions in individually 

ventilated cages and kept on a 12 h light-dark cycle with access to food and water 

ad libitum.  

 

Flow Cytometry  

 

Antibodies and Tetramers. Anti-IL-4 (11B11), anti-CD3 (145-2C11), anti-CD4 

(RM4-5), anti-CD8 (53-6.7), anti-CD11b (M1/70), anti-CD11c (HL3), anti-CD25 

(7D4), anti-CD44 (IM7), anti-CD45 (30-F11), anti-CD45.1 (A20), anti-CD117 (2B8) 

were purchased from BD Biosciences (San Jose, CA). Anti-CD45.2 (104) was 

purchased from eBioscience (San Diego, CA). Anti-ICOS (C398.4A), anti-TCRβ 
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(H57-597), anti-CD122 (TMβ1) were purchased from Biolegend (San Diego, CA). 

PBS57-CD1d1 and diabetes-associated tetramers were obtained from the 

National Institutes of Health Tetramer Core Facility.  

 

Lineage (Lin) depletion antibodies.  Depleting antibodies were purchased from 

Miltenyi Biotech (San Diego, CA) as a kit that includes antibodies against CD8α 

(Ly-2), CD11b (Mac-1), CD11c, CD19, B220(CD45R), CD49b(DX5), CD105, 

MHCII+, Ter-119+, and TCRɣ/δ. Anti-CD4 microbead antibody (L3T4) was also 

used in the lineage depletion experiments. 

Fluorochromes. Antibodies were directly conjugated to fluorescein isothiocyanate 

(FITC), phycoerythrin (PE), PE-Cy5, PE-Cy5.5, peridinin-chlorophyll-protein 

complex (PerCP)-Cy5.5, PE-Cy7, allophycocyanin, allophycocyanin-Cy7 (or 

allophycocyanin eFluor780), or biotin. Biotinylated antibodies were revealed with 

Streptavidin PE or allophycocyanin.  

Sample reading. This used a Beckman Coulter CyAn (Brea, CA) and data were 

analyzed using FlowJo version 10 (Tree Star). Dead cells were excluded using 7-

aminoactinomycin D (7AAD; EMD Biosciences). 

 

Cell sorting 

ETPs. ETPs were isolated as previously described (1). In brief, thymi were 

harvested from either IL-13Rα1+/+-GFP NOD or C57BL/6 mice after perfusion with 

PBS, and the CD4+ cells were eliminated by MACS using anti-CD4 microbeads. 

The ETPs were then isolated after depletion of Lin+ (CD8α+, CD11b+, CD11c+, 
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CD19+, B220+, CD49b+, CD105+, MHCII+, Ter-119+, TCRɣ/δ+) thymic cells. 

HR+ETPs (cKit+CD44+CD25-GFP+) were sorted from Lin- thymic cells of IL-

13Rα1+/+-GFP reporter mice on the basis of GFP (IL-13Rα1) expression. HR+ 

ETPs represent the GFP+ cells, and HR- ETPs represent the GFP- cells of the lin-

cKit+CD44+CD25- thymic cells.  

αβ T cells. Cells were isolated from either the SP or PLN. Cells were isolated after 

perfusion with PBS. Cells were then stained with anti-TCRβ chain, sorted, and 

stored in RNAprotect Cell Reagent (Qiagen).  

Sorting was performed on a Beckman Coulter MoFlo XDP (Brea, CA) cell sorter. 

Cell purity was routinely checked, and only sorts with a purity of ˃95% were used 

in this study. 

 

Intrathymic Injections 

ETPs or cytokine was diluted in 30μl PBS and injected into isoflurane-anesthetized 

mice through the skin between the 3rd and 4th rib of the thoracic cavity using a 0.3-

ml, 31-gauge, 8-mm insulin syringe.  Control mice received PBS injection alone. 

Intrathymic cytokine treated mice and PBS controls received injections once a 

week for two weeks between 4-6 weeks of age.  

 

ELISA 

IL-4 and IL-13 production was measured using anti-cytokine Abs and following 

standard BD Biosciences (San Jose, CA) protocol. The OD450 was read on a 

SpectraMax 190 counter (Molecular Devices, Sunnyvale, CA) and analyzed using 
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Softmax Pro 3.1.1 software. Cytokine concentrations were then extrapolated from 

the linear portion of a standard curve generated by graded amounts of the 

respective recombinant cytokine. 

Sequencing of the αβ T cell repertoire  

2 x 105 sorted TCRβ+ cells per sample were stored RNAprotect Cell Reagent 

(Qiagen) and shipped overnight to iRepertoire (iRepertiore, Inc). RNA isolation was 

performed using an RNeasy Mini Kit (Qiagen). Multiplexed cDNA Libraries were 

created by iRepertoire by first using a set of nested primers for different variable 

and constant portions of the TCRβ chain and followed by a second amplification 

using communal primers according to the manufacturer’s protocol. Sequencing 

was done on the Illumina Miseq system (250 PER). Samples included pooled (4 

mice per group, 4 groups) SP and PLN T cells from both treated and control mice 

were from both “healthy” (9 weeks) and “pathogenic” (12 weeks) repertoires for a 

total of 8 cDNA libraries.  The CDR3 of the TCRβ chain was sequenced at a read 

depth of 1 million per library.   

RT-PCR 

Bulk thymocytes were isolated by perfusion with PBS and ETPs were sorted as 

described above. These cells were then used to isolate RNA by Trizol extraction 

and isopropanol precipitation. RT-PCR was performed on a StepOnePlus 

Instrument cycler using Power SYBR Green RNA-to-CT 1-Step Kit (Applied 

Biosystems) according to the manufacturer’s instructions. RT-PCR was done with 

primers specific for:  
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GAPDH  

Sense: 5’-AACTTTGGCATTGTGGAAGG-3’  

Antisense:  5’-GGATGCAGGGATGATGTTCT-3’ 

C/EBPα  

Sense:5′-AGCAACGAGTACCGGGTACG-3′ 

Antisense: 5′-GTTTGGCTTTATCTCGGCTC-3′ 

Notch1 

Sense:5′-GGACATGCAGAACAACAAGG-3 

Antisense: 5′-CAGTCTCATAGCTGCCCTCA-3′ 

IL-7Rα 

Sense:5′-AGTCCGATCCATTCCCCATAA-3 

Antisense: 5′-ATTCTTGGGTTCTGGAGTTTCG-3′ 

IL-4 

Sense: 5’-GGAGATGGATGTGCCAAACG-3’ 

Antisense: 5’-GCACCTTGGAAGCCCTAC-3’ 

IL-13 

Sense: 5’-GTGTCTCTCCCTCTGACCCT-3’ 
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Antisense: 5’-GGGGAGTCTGGTCTTGTGTG-3’ 

Relative transcript abundance was determined by using the comparative threshold 

cycle method using the StepOne software (Applied Biosystems) normalization with 

GAPDH. All samples were run in triplicate. 

OP9 and OP9-DL1 cell culture 

OP9 and OP9-DL1 cultures were used as previously described (2), with slight 

modifications. Briefly, OP9 and OP9-DL1 stromal cells were plated 2d before 

initiation of cultures at a concentration of 20,000 cells/ml in 24-well plates. 

Progenitors were added at 3,000 per well. IL-7 was used at a final concentration 

of 1 ng/ml, Flt3 ligand (Flt3L) was used at 5 ng/ml, GM-CSF, and IL-4 were used 

at 10 ng/ml, and IL-13 was used at 20 ng/ml. Under these conditions, the lymphoid 

progeny was most evident at day 10 of OP9-DL1 cell culture and myeloid progeny 

was evident as early as day 3 of OP9 cell culture. Experiments designated as “co-

culture” utilized a 1:1 seeding of OP9 and OP9-DL1 cells in combination with both 

pro-myeloid (GM-CSF) and pro-lymphoid (IL-7 and Flt3) growth factors.  

Measurement of STAT activation 

HR+ETPs were sorted as previously indicated. ETPs were either immediately 

stained for pSTATs or pre-treated ex vivo with IL-4, IL-13, or both in media for 3 

hours. Cells were fixed, permeabilized, and stained with anti-pSTAT1 (S727), anti-

pSTAT1 (S701), or anti-pSTAT6 (Y641).  
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Detection of IL-4/IL-13 secretion  

Thymic Cells. Thymic cells were harvested, by PBS perfusion, from the thymi of 

individual C57BL/6 or NOD mice (6-8 weeks of age). Thymic cells were stimulated 

with PMA and ionomycin for 6 hours. The supernatant was then used for ELISA.  

iNKT cells. Thymi of individual mice were harvested and total thymic cells were 

isolated. Cells stained with allophycocyanin-labeled PBS57-CD1d1 tetramer 

(iNKT-tet). After thorough washing, the cells were incubated with anti-

allophycocyanin microbeads, and the samples were run on MACS columns to 

isolate iNKT cells. iNKT cells were incubated for 72 hours with or without the 

presence of anti-CD3 (10µg/ml) and anti-CD28 (1µg/ml). BFA (10µg/ml) was 

added to the culture 2 hours prior to harvest. iNKT cells were then stained I.C for 

IL-4. 

 

ETP maturation in vivo 

C57BL/6 (CD45.1) or NOD (CD45.2) mice were given (i.t.) HR+ETPs (5 x 104 

cells/per mouse) from C57BL/6 (CD45.2) or NOD (CD45.1) donors, respectively, 

and thymic cells were harvested on days 12 or 16 post-transfer.  The day 12 cells 

were used to analyze the expression of CD11b, CD11c, and CD8α on congenically 

marked cells, while the day 16 cells served to analyze the expression of CD11b, 

CD11c, and CD3 markers.   
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Thymic negative selection assay 

NOD mice deficient for MHC I & II were given (i.t) either IL-4 pre-treated HR+ ETPs 

or untreated HR+ ETPs (12 x 103 cells/mouse). After two weeks, the hosts were 

given CD45.2+ CD69+ double positive (DP) CD4+CD8+ thymocytes. Negative 

selection was then measured by the number of SP transferred cells in the thymus 

at two weeks post-transfer, as well as the number and percent of FVD+ Nur77+ 

cells in the thymus. 

Statistical Analysis 

Data were analyzed using either an unpaired, two-tailed Students t-test, one-way 

ANOVA, or Mann–Whitney U test as indicated. All statistical analyses were 

performed using Prism software version 4.0c (GraphPad).  
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4. Results 

 

A. NOD HR+ETP potential is biased towards an early T cell lineage in 

contrast to myeloid-restricted C57BL/6 HR+ETPs 

Previous studies have shown that ETPs which express the HR are 

restricted to the myeloid lineage and give rise to primarily thymic resident DCs, 

which can serve as antigen-presenting cells (APCs) (3, 4) . Additionally, these 

ETP-derived APCs can aid in negative T cell selection and reduce the severity of 

EAE (5).  Given the impact these cells have on the disease course of EAE, we 

sought to determine if this phenomenon was present and functional in a 

spontaneous model of autoimmunity, such as diabetes in the NOD mouse. To 

first address this question, the fate potential of HR+ETPs from either the C57BL/6 

mouse strain or the NOD mouse strain was compared. Using the in vitro OP9 

culture system to test for myeloid fate potential, the results show that ETPs from 

the C57BL/6 or NOD strain can both give rise to myeloid cells (Fig. 1A). We next 

sought to utilize the OP9-DL1 culture system to test NOD HR+ETPs for T cell 

potential. As expected, HR+ETPs from the C57BL/6 strain could not yield T cell 

progenitors (Fig. 1B). Strikingly, however, HR+ETPs from NOD mice efficiently 

yield T cells in vitro (Fig. 1B). While HR+ETPs from both strains are more efficient 

than their HR- counterparts at generating myeloid cells (top panel), the number of 

T cells recovered from the OP9-DL1 culture was significantly, and dramatically, 

different between NOD and C57BL/6 HR+ETPs (bottom panel) (Fig. 1C). This 

was particularly interesting as, like their C57BL/6 counterparts, NOD HR+ETPs 
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are predominately found in the DN1c subset, which is known for being a major 

source of thymically-derived DCs (Fig. 2) (6). Since HR+ETPs from the NOD 

strain appear to give rise to multiple lineage fates, we performed experiments 

utilizing a co-culture of OP9/OP9-DL1 cells to determine true lineage preference. 

The co-culture was comprised of a 1:1 ratio of OP9/OP9-DL1 cells and contained 

all growth factors and cytokines needed to stimulate the development of various 

myeloid cells (D6) or T cells (D10). The results show that the majority of the 

HR+ETPs from the C57BL/6 strain give rise to CD11c+ DCs both at D6 and by 

D10 of culture (Fig. 1D, left panel). However, while there was some live myeloid 

progeny present at D6 in the NOD culture, by D10 all detectable live cells are 

exclusively early T cells (Fig. 1D, right panel). These results were statistically 

significant (Fig. 1E) and indicated that, while C57BL/6 HR+ETPs are restricted to 

the myeloid fate, HR+ETPs from the NOD thymus preferentially give rise to T 

cells. This deviation of lineage fate was not merely due to reduced receptor 

expression, or increased expression of the competitive receptor IL-13Rα2, as HR 

expression on ETPs is significantly increased in the NOD strain, and expression 

of IL-13Rα2 is unchanged (Figure 3).  
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Figure 1. Differential fate decision among NOD and C57BL/6 HR+ETPs.  
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NOD and C57BL/6 HR+ and HR- ETPs were sorted from the thymus of either 

strain and cultured on OP9 (A) or OP9-DL1 (B) cells. The contour plots illustrate 

a representative experiment showing commitment to myeloid (CD11b/CD11c) 

and lymphoid (CD25) lineages as measured by flow cytometry. (C) Shows the 

number of myeloid (CD11b/CD11c, top panel) and lymphoid (CD25, bottom 

panel) cells. Each bar graph represents the mean ± SD of data compiled from 

four different experiments. (D and E) HR+ETPs from both strains were cultured 

on mixtures of OP9/OP9-DL1 (1:1) stromal cells in the presence of GM-CSF, IL-

7, and Flt3. (D) Shows a representative experiment illustrating commitment of the 

ETPs to myeloid (CD11b), DC (CD11c), and lymphoid (CD25) lineages at six (top 

panel) and ten (bottom panel) days of culture. (E) Shows the percentage of 

different cell lineages compiled from 4 experiments. ***p < 0.001 as determined 

by two-tailed, unpaired Student t test. 
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Figure 2. NOD HR+ETPs belong to the DN1c subset.  
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Thymic cells from NOD IL-13Rα1–GFP reporter mice were depleted of Lin+ cells, 

and Lin−CD4−CD8− cells were analyzed for CD25 and CD44 expression. 

CD25−CD44+ cells (DN1 cells) were further assessed for c-Kit and CD24 

expression to distinguish the different subsets within the DN1 population. (A) The 

left panel shows the different DN1 subsets on the basis of expression of CD24+c-

Kithi (DN1a,b), CD24+c-Kitint (DN1c), CD24+c-Kit− (DN1d), and CD24−c-Kit− 

(DN1e). The right panel shows expression of IL-13Rα1 (HR) on the different 

subsets.  (B)  Shows HR expression data on the different subsets complied from 

four experiments. ***p < 0.001 as determined by two-tailed, unpaired Student t 

test. 
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Figure 3. NOD ETPs express higher levels of the heteroreceptor in 

comparison to C57BL/6 ETPs.  
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HR+ETPs from C57BL/6 and NOD mice were analyzed for receptors expression 

by both flow cytometry and RT-PCR. (A) Shows surface HR expression from data 

compiled from 5 experiments. *p < 0.05 as determined by two-tailed, unpaired 

Student t test. (B) Shows IL-13R1 gene expression while (C) shows IL-4R gene 

expression. (D) Shows IL-13R2 gene expression.  **p < 0.01 as determined by 

two-tailed, unpaired Student t test. 
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B. NOD HR+ETPs give rise to T cells in vivo at the expense of thymic 

resident DCs 

To further expand on the fate of NOD HR+ETPs in a more physiologically 

relevant in vivo system, HR+ETPs were injected intrathymically (i.t) into 

respective CD45 congenic hosts from both strains, and their maturation potential 

was analyzed at 16 days post-transfer. The transferred cells were first probed for 

expression of CD11b, CD11c, or CD3 to resolve their general classification as 

either macrophage/monocytes (CD11b+CD11c-), conventional DCs (CD11c+), or 

T cells (CD3+). The results show that while C57BL/6 HR+ETPs give rise to both 

CD11b+ and CD11c+ cell types, NOD HR+ETPs exclusively give rise to CD3+ T 

cells (Fig. 4A). Data combined from several experiments confirmed that these 

observations were statistically significant (Fig. 4B). Further examination of 

transferred cells from NOD mice revealed that NOD HR+ETPs could give rise to 

either CD4+ or CD8+ T cells but not iNKT or B cells (Fig. 4C & D). Upon repeat 

experiments, CD4+ T cells were more predominant among HR+ ETP-derived T 

cells (Figure 4C, right bar graph). Together the results indicate that HR+ETPs 

yield T cells when exposed to the native NOD thymic microenvironment.  

 Given that HR+ETPs in the C57BL/6 strain provide a pool of thymic 

resident DCs, we hypothesized that NOD thymi might be deficient in this cell type 

compared to their non-autoimmune counterparts. Indeed, the frequency of CD8α+ 

CD11c+ DCs, among total thymic APCs, was significantly reduced in 6-8 week 

old NOD mice when compared to C57BL/6 mice of the same age (Fig. 4E, left 

panel). This result is noteworthy as CD8α+ CD11c+ DCs are specifically known 
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for their contribution to thymic negative selection. Additionally, the frequency of 

these DCs is diminished in older mice (12-14 weeks) of both strains, but still 

significantly higher in C57BL/6 mice (Fig. 4E, right panel). When younger NOD 

mice are compared to their older counterparts, the population of CD8α+ CD11c+ 

DCs is condensed further (Fig. 4F). Taken together, this data shows that NOD 

HR+ETPs are diverted to the T cell lineage, rather than the myeloid fate, in vivo. 

In addition, CD8α+ CD11c+ DC numbers (cells which may be derived from 

HR+ETPs in the C57BL/6 strain) are severely lacking in the NOD thymus.  This 

skewing of the thymic APC population may be due to the divergence of NOD 

HR+ETPs from the myeloid fate to the T cell lineage. This reconfirms the 

importance of investigating what drives the perplexing lineage fate of NOD 

HR+ETPs.  
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Figure 4. NOD HR+ETP fate decision is restricted to T cells in vivo.  
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CD45.1 NOD and CD45.2 C57BL/6 HR+ETPs were injected intrathymically into 

CD45.2 NOD and CD45.1 C57BL/6 recipients, respectively. After 16 days, thymi 

were harvested and HR+ETP-derived cells were analyzed for lineage phenotype. 

(A) Shows representative contour plots for expression of CD11b, CD11c, and CD3 

markers. (B) Shows the frequency of CD11c+ DCs (top panel) and CD3+ T cells 

(bottom panel). Each bar graph represents the mean ± SD of data compiled from 

four different experiments. ***p < 0.001 as determined by two-tailed, unpaired 

Student t test. (C) Illustrates a representative experiment analyzing expression of 

other lymphoid lineage phenotypes including Tet+ iNKT cells (left panel) and 

CD19+ B cells (right panel). (D) Contour plot (left panel) shows a representative 

experiment for CD4 and CD8 expression on NOD HR+ETP-derived T cells. The 

bar graph shows CD4 and CD8 expression results compiled from four 

experiments. (E and F) CD3- thymocytes from C57BL/6 and NOD mice were 

stained for CD11b, CD11c, CD8, and SIRPα at the age of 6-8 and 12-14 weeks. 

(E) Shows the frequency of SIRPα-CD11c+CD8+ thymic resident DCs from 

C57BL/6 relative to NOD mice. (F) Shows a comparison of the frequency of SIRPα-

CD11c+CD8+ thymic resident DCs among 6-8 week versus 12-14 week old NOD 

mice. **p < 0.01 as determined by two-tailed, unpaired Student t test from five 

experiments. 
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C. Reduced cytokine in the NOD thymic microenvironment leads to 

inefficient STAT signaling  

Previous studies in our lab have shown that HR+ETPs from C57BL/6 mice 

require endogenous IL-4 or IL-13 signaling through the HR to induce STAT 

activation. These signaling mediators trigger the expression of pro-myeloid genes 

(STAT1(S701)) or restrict the expression of pro-T cell lineage genes (STAT6(Y641)) 

(3, 4). Given that NOD HR+ETPs default to the T cell lineage, we sought to 

determine if signaling via the HR was inducing activation of STAT transcription 

factors. Indeed, both pSTAT1(S701) and pSTAT6(Y641) are significantly reduced in 

NOD HR+ ETPs in comparison to their C57BL/6 counterparts (Fig. 5A, middle 

and right panel). Given that active STAT1(S701) and STAT6(Y641) are required to 

drive HR+ETPs towards the myeloid lineage, and away from the T cell lineage, it 

was likely that downstream signaling mediators for these two opposing lineage 

fates would be inverted in NOD HR+ETPs.  Indeed, IL-7R and Notch1 

transcripts, early T cell lineage markers, are significantly upregulated in NOD 

HR+ETPs (Fig. 5B, top and middle graphs).  Similarly, CEBP/transcriptan 

early myeloid marker, was significantly reduced in NOD versus C57BL/6 

HR+ETPs (Fig. 5B, bottom graph). When taken together, these results indicate 

that cytokine signaling through the HR was insufficient and unable to induce 

STAT signaling. As a result, HR+ETPs express markers that are consistent with 

the T cell lineage fate.  

Given there is minimal signaling through the HR, there may be insufficient 

cytokine available in the thymus. We next sought to determine the steady-state 
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level of both intrathymic IL-4 and IL-13 in NOD mice. Transcriptional levels of 

both cytokines were compared using qPCR. The results show that IL-4 mRNA 

levels in the NOD thymus is significantly reduced compared to age-matched 

C57BL/6 mice (Fig. 5C). Protein expression of both cytokines was also analyzed 

by ELISA. Strikingly, NOD thymocytes produced dramatically low levels of IL-4 in 

comparison to C57BL/6 thymocytes (Fig. 5D, left panel). Interestingly, there was 

also a modest reduction in NOD thymocyte production of IL-13 (Fig 5D, right 

panel). Given that IL-4 mRNA and protein are severely reduced in the NOD 

thymus, while IL-13 is only moderately reduced upon stimulation, it is likely that 

insufficient IL-4 is the primary cause of reduced HR signaling. This idea aligns 

well with the fact that IL-4 is a predominant cytokine with many functions in the 

mouse thymus (7-9)  

D. The scarcity of intrathymic IL-4 is likely due to thymic deficiency of IL-4-

producing iNKT cells 

Determining which cell type is responsible for the reduced thymic IL-4 fitness in 

the NOD strain is vital.  Previous studies have shown that iNKT cells are a large 

source of thymic IL-4 (10, 11). Given this, we hypothesized that perhaps the 

NOD mouse has insufficient numbers of thymic iNKT cells, which results in low 

levels of IL-4 production. To test this premise, thymocytes were stained using the 

CD1d:αGlaCer tetramer (or iNKT tet) to mark iNKT cells. Strikingly, both the 

frequency (Fig. 5E) and number (Fig. 5F) of iNKT-tet+ cells were significantly 

reduced in the NOD thymus compared to the C57BL/6 thymus. In fact, C57BL/6 

mice had, on average, more than double the number of iNKT cells when 



125 
 
 

compared to age-matched NOD mice (Fig. 5F). We next sought to determine if 

NOD thymic iNKT cells could be compensating for their reduction in population 

size by producing an excess of IL-4 upon stimulation. The results show that NOD 

iNKT cells are, in fact, even less efficient at producing IL-4 than their C57BL/6 

counterparts (Fig 5G). Recently it has been shown that iNKT cells may be 

categorized into subsets, like CD4+ helper T cells, with iNKT2 cells primarily 

producing IL-4 (12). Given that NOD thymic iNKT cells produce less IL-4 on a per 

cell basis, there is likely a specific reduction in the iNKT2 cell population. To test 

this notion, thymic iNKT cells were used to analyze the expression of markers 

associated with the three subsets. Indeed, while iNKT1 and iNKT17 cell 

frequency is increased, the iNKT2 frequency in NOD mice is drastically reduced 

(Fig. 5H). Indeed, the average frequency of iNKT2 cells among total thymic iNKT 

cells was 42% for the C57BL/6 stain but a mere 23% for the NOD strain (Fig 5H). 

These results indicate that iNKT cells are reduced in the NOD thymus and 

produce less IL-4. Together, these findings suggest that sufficient levels of IL-4 

are not available to induce HR signaling in ETPs.  
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Figure 5. Diminished IL-4 in the NOD thymus parallels with a lower 

frequency of iNKT cells. 
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(A) HR+ETPs from C57BL/6 and NOD mice were analyzed ex vivo for 

phosphorylation of different isoforms of STAT1 and STAT6 transcription factors. 

The histograms show a representative experiment, while the bar graphs show 

results compiled from three experiments. (B) Shows  mRNA expression for  IL-

7Rtop panel),  Notch1 (median panel) and CEBP/bottom panel) in 

HR+ETPs(C and D) Total thymocytes from 6-8 week old mice were used to extract 

RNA (C) or stimulated with PMA/Ionmycin (D).  mRNA expression was analyzed 

by RT-PCR while IL-4 and IL-13 secretion were determined by ELISA. Each bar 

represents data compliled form three experiments. *p < 0.05, ***p < 0.001 as 

determined by two-tailed, unpaired Student t test.  (E and F) Show the percentage 

(E) and the number of cells (F) that stain for CD3 and αGlaCer tetramer (iNKT-tet) 

among fresh CD8 depleted thymocytes. ***p < 0.001 as determined by two-tailed, 

unpaired Student t test from four experiments. (G) The contour plots show 

intracellular IL-4 production by sorted iNKT cells that were stimulated with anti-

CD3/anti-CD28. The bar graph shows the number of cells staining for intracellular 

IL-4. **p < 0.01 as determined by two-tailed, unpaired Student t test from four 

experiments. (H) Shows the frequency of different subsets of iNKT cells including 

iNKT1 (CD122+ CD4+/- ICOS-), iNKT2 (CD122- CD4+ ICOS+), and iNKT17 (CD122- 

CD4- ICOS+) cells. The bar graphs show data compiled from four experiments. *p 

< 0.05, **p < 0.01, ***p < 0.001 as determined by two-tailed, unpaired Student t 

test. 
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E. Cytokine treatment restores STAT signaling in HR+ETPs and drives the 

development of thymic DCs  

Since the NOD thymus is lacking in IL-4 and IL-13, we sought to determine if 

treatment with either cytokine may rescue ETP lineage fate. To test this, NOD 

HR+ETPs were cultured on OP9-DL1 cells with the addition of cytokine 

treatment. Without cytokine treatment, 90% of HR+ ETPs yield CD25+ T cells 

(Fig. 6A). However, upon treatment with either cytokine, HR+ETPs were less 

efficient in producing T cells (Fig. 6A). This influence of the cytokines on lineage 

fate was statistically significant for both IL-4 and IL-13 (Fig. 6B). However, it is 

interesting to note that IL-4 appeared to be much more efficient at diverting ETP 

lineage fate than IL-13. On average HR+ETP affinity for the T cell fate was 

reduced by 20% for IL-13 treatment versus 39% for IL-4 treatment, compared to 

untreated controls (Fig 6B). We next wanted to confirm that the cytokines were 

diverting HR+ETP fate by restoring STAT signaling. To test this premise, NOD 

HR+ETPs were treated ex vivo with either IL-4, IL-13, or IL-4 + IL-13. Cells were 

then immediately analyzed for STAT activation. The results show that IL-4 

induces pSTAT6(Y641) and pSTAT1(S701) expression (Fig. 6C & D). However, IL-13 

treatment alone was less efficient and did not significantly increase the 

expression of pSTAT6(Y641) (Fig. 6D). This result further confirms the idea that IL-

4 is likely the main cytokine responsible for inducing HR signaling in ETPs. 

 Given that IL-4 treatment ex vivo can induce STAT signaling and restore 

NOD HR+ETP lineage fate, it is likely that treating NOD mice with intrathymic IL-4 

will drive these cells toward the DC lineage fate. To this end, 4 week old NOD 
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mice received IL-4 (i.t) once per week for two weeks. Following treatment, 

HR+ETPs were sorted and tested for lineage potential on OP9-DL1 cultures. The 

results show that, upon exposure to IL-4 in vivo, HR+ETPs are sufficiently 

restricted from the T cell lineage (Fig. 6E). To confirm that this change was due 

to HR signaling in ETPs and not due to unanticipated effects of the intrathymic 

IL-4, we utilized the congenic transfer model. Prior to transfer, sorted HR+ETPs 

were stimulated with IL-4 ex vivo. The results show that pre-treating HR+ETPs 

with IL-4 enables these cells to readily give rise to myeloid cells, particularly 

CD11c+ DCs (Fig. 6F). In contrast, IL-4 treatment strongly blocks T cell potential 

(Fig. 6G). These results were statistically significant (Bottom panels of Fig. 6F & 

6G). Together these results indicate that intrathymic IL-4 treatment can 

specifically target HR+ETPs and drive these cells towards the DC lineage fate. 
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Figure 6. IL-4/IL-13 reverse NOD HR+ETP fate decision towards myeloid cells. 
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(A and B) NOD HR+ETPs were cultured on OP9-DL1 + IL-7/Flt3 in the absence 

(NIL) or presence (treated) of IL-4 or IL-13 for 10d. (A) The contour plot shows a 

representative experiment illustrating reduction in fate decision towards the T cell 

lineage. (B) The bar graphs show the frequency of lymphoid lineage cells complied 

from four experiments. (C and D) The HR+ETPs were stimulated with IL-4, IL-13, 

IL-4 + 13, or NIL (PBS) and phosphorylation of STAT6 and STAT1 transcription 

factors were analyzed by flow cytometry.  (C) The histograms show a 

representative phosphorylation experiment. (D) The bar graphs show MFI data 

compiled from three experiments. (E) Four week old IL-13Rα1+/+-GFP reporter 

NOD mice were given intrathymic IL-4 weekly for two weeks. Seven days later, 

HR+ETPs were sorted and cultured on OP9-DL1 stromal cells for 10d. The contour 

plots show a representative experiment illustrating the frequency of CD25+ 

lymphoid lineage cells. The bar graph shows compiled results from three 

experiments. (F and G) HR+ETPs sorted from CD45.1 NOD mice were stimulated 

with IL-4 ex vivo and injected i.t into a congenic host (CD45.2). On day 16 after 

transfer, thymic cells were analyzed for lineage commitment. (F) The contour plots 

show a representative experiment illustrating expression of CD11b and CD11c 

markers on ETP-derived cells. The bar graphs shows the frequency of CD11b+, 

CD11c+, and CD11b/CD11c+ cells of data compiled from three experiments. (G) 

The contour plots show a representative experiment illustrating expression of CD3 

on ETP-derived cells. The bar graph represents the average frequency of CD3+ 

cells as compiled from three different experiments. *p < 0.05, **p < 0.01, ***p < 

0.001 as determined by two-tailed, unpaired Student t test. 
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F. IL-4-Treated HR+ETP-derived DCs can perform negative selection and 

delay diabetes onset 

In the healthy C57BL/6 mouse strain, IL-4 is readily available in the thymus and 

serves to drive HR+ETPs towards the DC lineage. Importantly, these ETP-

derived DCs can perform negative selection and provide protection against 

experimental allergic encephalomyelitis (5). Given this, it is possible that upon 

treatment with IL-4 the NOD thymus is repopulated with ETP-derived DCs and, 

therefore, negative T cell selection will become more efficient. To test this 

premise, we devised an experimental model to test the contribution of IL-4-

treated HR+ETPs to negative selection (Fig. 7A). Accordingly, HR+ETPs were 

sorted, briefly stimulated ex vivo with IL-4, and then injected (i.t) into hosts 

lacking MHC class I and II. This setup provided that only ETP-derived APCs 

would express MHC and were, therefore, the only cells that could induce 

negative selection. Two weeks later, host mice received (i.t) CD4+CD8+ (double 

positive) positively selected (CD69+) thymocytes. The results show that mice 

recipients of IL-4-treated ETP-derived DCs had fewer thymic single positive (SP) 

T cells compared to control mice (Fig. 7B). In addition, SP donor cells were 

stained for Nur77, a marker for negative selection, and 7-AAD, a viability stain, to 

confirm that these cells are undergoing negative selection. Indeed, the 

percentage of SP cells from mice recipients of the IL-4-treated ETP-derived DCs 

that were undergoing negative selection was significantly increased compared to 

controls (Fig. 7C). The results indicate that intrathymic IL-4 increases the 

population of thymic DCs and allows for efficient negative selection of T cells.   
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As a result, fewer autoreactive clones would reach the periphery which could 

result in the delayed onset of T1D.  To test this hypothesis, NOD mice were 

given intrathymic IL-4 or saline and monitored for disease progression. Strikingly, 

while control mice become diabetic by 14 weeks of age, none of the mice 

recipients of intrathymic IL-4 developed diabetes until after 18 weeks of age (Fig. 

7D). Indeed, at peak disease, 80% of control mice are diabetic while only 28% of 

treated mice are diabetic (Fig.7D). The results indicate that intrathymic IL-4 

delays T1D likely by increasing the population of thymic DCs. These DCs can 

induce negative selection of T cells which may lead to a less pathogenic TCR 

repertoire.  
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Figure 7. Intrathymic IL-4 tightens T cell negative selection and delays the 

onset of T1D.  
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(A) Shows a schematic representation of the animal model used to determine the 

effect of IL-4 on negative selection of T cells. In this model, NOD HR+ETPs (50 x 

103) were treated with IL-4 ex vivo and injected i.t NOD MHC I-II- mice. Two weeks 

later, the hosts were given i.t positively selected CD69+ double positive 

(CD4+CD8+) thymocytes from  MHC I+II+  congenic (CD45.2) mice. After two 

weeks, thymi were harvested and analyzed for live CD4 and CD8 single positive 

(SP) T cells. (B) Shows the total number of CD4 (left) and CD8 (right) SP CD3+ T 

cells. (C) Shows the percentage of donor T cells undergoing apoptosis (7-AAD) 

and expressing Nur77, a marker for negative selection. *p < 0.05, **p < 0.01 as 

determined by two-tailed, unpaired Student t test from three experiments. (D) 4 

week old NOD mice were given i.t IL-4 once a week for two weeks and then 

monitored for blood glucose level (BGL) starting at 12 weeks of age. **p < 0.01 as 

determined by Mann-Whitney U test. 
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G. Supplementation of the NOD thymus with IL-4 alters the T cell repertoire 

An overabundance of peripheral T cells with a high affinity for self-antigens may 

result from a defective thymic negative selection. Thus, tightening the thymic 

negative T cell selection process may be directly reflected in the peripheral T cell 

receptor (TCR) repertoire. Given that IL-4 treatment delays T1D and improves 

negative selection, we sought to determine if intrathymic IL-4 treatment would 

alter the TCR repertoire. To first test this premise, NOD mice were treated with 

intrathymic IL-4 and sacrificed at 9 weeks of age (before developing overt 

disease). TCRβ+ T cells from the spleen and pancreatic lymph node were sent to 

iReperotire (iRepertiore, Inc) for TCRβ sequencing. The results showed that 

spleen samples from both treated and control mice had comparable usage of V-J 

genes (Fig. 8A, upper graphs). Strikingly, however, T cells from the PLN of IL-4 

treated mice showed a vastly altered V-J gene usage (Fig. 8A, lower graphs). 

Indeed, PLN T cells from IL-4 treated mice utilized many V-J combinations that 

were unexpressed or only expressed at a low level in control mice (Fig. 8A, lower 

graphs). The usage of specific V genes can be enriched under various disease 

conditions. One such incidence is the overabundant usage of Vβ13 in T1D (13, 

14). Interestingly, we found that there was indeed an overabundant use of Vβ13 

among both SP and PLN T cells in untreated mice (Fig. 8B). However, when 

mice received intrathymic IL-4 treatment, the overall frequency of Vβ13 usage 

was dramatically lower in both organs (Fig. 8B).  

The complementarity-determining region 3 (CDR3) of the TCRβ chain is 

critical for determining antigen specificity. In T1D, patient T cells have shorter 
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CDR3 regions with fewer random nucleotide insertions than healthy patients 

matched for MHC haplotype (15). Given this, we sought to determine if 

intrathymic IL-4 treatment would affect average CDR3 length and number of 

insertions. SP T cells from treatments showed a distinct pattern of longer CDR3 

length than the untreated control (Fig. 8C, upper panel). However, the opposite is 

true of samples from the PLN (Fig. 8C, lower panel). This inverse relationship 

between SP and PLN samples was similar when analyzing the total number of 

random nucleotide insertions (Fig. 8D).  We next sought to determine the overall 

diversity of the TCR repertoire by comparing the usage of the most common 

CDR3s among all CDR3s. This data acts as a readout for clonal expansion of 

diabetogenic T cells. Indeed, both treated and control samples from the SP 

lacked diversity and showed a high amount of clonal expansion (Fig. 8E, upper 

panel). However, PLN T cells from treated mice were highly diverse and the 

population sizes of the top clones were significantly reduced compared to PLN T 

cells from control mice (Fig. 8E, lower panel). This data indicates that intrathymic 

IL-4 treated mice have an altered TCR repertoire prior to disease onset. 

Specifically, SP T cells from treated mice have longer CDR3s and more random 

nucleotide insertions, while the opposite is true in the PLN. However, PLN T cells 

from treated mice are highly diverse and lack the signs of large clonal 

expansions.  

 Around 12-14 weeks of age NOD mice begin to become overt diabetic 

(BGL ≥ 300mg/dl). Given that recipients of the IL-4 treatment do not develop the 

disease until much later, we sought to determine how the pathogenic repertoire 
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of control mice might vary from treated mice of the same age. For these 

experiments, mice were allowed to age out to 12 weeks of age. The results 

showed a very diverse use of V-J genes in the SP samples from both the treated 

and control mice (Fig. 9A, upper graphs). Again, the V-J gene usage pattern was 

similar between the treatment and control PLN samples but was generally a 

more restrictive repertoire than was found in the SP (Fig. 9A, lower graphs). 

Interestingly, the IL-4 treatment group saw a drop in diabetes-associated Vβ13 

usage, similar to the healthy repertoire (Fig. 9B). However, in this pathogenic-

aged group, the effect was only seen in the PLN (Fig. 9B, bottom panel).  

Given that, in the healthy repertoire control mice had shorter CDR3s with 

fewer random insertions, we hypothesized that this would also be the case in the 

pathogenic repertoire. Results show that, in the SP, CDR3 length is similar 

between treated and control mice (Fig. 9C, upper panel). Strikingly, however, the 

average CDR3 length from treated mice PLN samples was dramatically longer 

than that of controls (with all treated mouse T cells having a CDR3 length of 37 

nucleotides or greater) (Fig. 9C, bottom panel). This trend was reflected in the 

number of random nucleotide insertions. Indeed, while the number of insertions 

in SP treated versus SP control samples were nearly identical, T cells from the 

PLN of treated mice had significantly more insertions (Fig. 9D). Interestingly, 

diversity in the SP of these aged mice was similar in both the control and treated 

groups (Fig. 9E, upper panel). However, in the PLN, diversity was limited in both 

groups, especially in the IL-4 treated group (Fig. 9E, lower panel).  Together 

these results show that the intrathymic IL-4 treatment can noticeably alter the 
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TCR repertoire at the pathogenic stage. Interestingly, while the effects of IL-4 

treatment on the CDR3 region were mostly seen in the SP at the healthy stage 

(Fig. 8), the opposite is true at the pathogenic stage (Fig. 9), where the significant 

effects of treatment can be seen within the PLN samples.  
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Figure 8. Intrathymic IL-4 influences the diversity of the TCRVβ repertoire 

prior to onset of T1D.  
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Four week old NOD mice (4 per group) were treated with intrathymic IL-4 or PBS 

once per week for two weeks. At 9 weeks of age priror to disease onset, the SP 

and PLN were harvested and used to sort TCRβ+ T cells. RNA isolated from T cells 

was utilized to generate cDNA libraries and  the variable region of the TCRβ chain 

was sequenced by iRepertoire Inc. (A) Shows 2D heat maps of the relative 

frequency of V (y-axis) and  J (x-axis) segments of TCRβ chain. V-J heat maps 

from the SP (top panels) and PLN (bottom panels) are illustrated. (B) Shows the 

frequency of Vβ13 usage in IL-4 versus PBS treated mice from SP and PLN T 

cells. (C and D) CDR3s were normalized such that each unique CDR3 is equal to 

a count of 1, regardless of total number of identical CDR3s. (C) Individual CDR3s 

were grouped on the basis of nucleotide numbers (length). The bars show the 

frequency of a particular CDR3 length among total number of CDR3s. (D) Shows 

the percentage of T cells with CDR3s encompassing different ranges of ‘N’ 

addtions. (E) Shows the percentage of cells with the 10 most frequent CDR3s 

among the total number of CDR3s read. 
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Figure 9. Intrathymic IL-4 has a differential influence on the diversity of the 

TCRVβ repertoire at the onset of T1D.  

Four week old NOD mice (4 per group) were treated with intrathymic IL-4 or PBS 

once per week for two weeks. At the onset of diabetes (12 weeks of age), the SP 

and PLN were harvested and used to sort TCRβ+ T cells. RNA isolated from T cells 

was utilized to generate cDNA libraries and the nucleotide sequence of variable 

region of the TCRβ chain was determined by iRepertoire Inc. (A) Shows 2D heat 

maps of the relative frequency of V (y-axis) and J (x-axis) segments of TCRβ chain. 

V-J heat maps from the SP (top panels) and PLN (bottom panels) are illustrated. 

(B) Shows the frequency of Vβ13 usage in IL-4 versus PBS treated mice from SP 

and PLN T cells. (C and D) CDR3s were normalized such that each unique CDR3 

is equal to a count of 1, regardless of total number of identical CDR3s. (C) 

Individual CDR3s were grouped on the basis of nucleotide numbers (length). The 

bars show the frequency of a particular CDR3 length among total number of 

CDR3s. (D) Shows the percentage of T cells with CDR3s encompassing different 

ranges of ‘N’ additions. (E) Shows the percentage of cells with the 10 most frequent 

CDR3s among the total number of CDR3s read. 
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5. Discussion 

In this chapter, the data shows that IL-4 fitness in the thymic microenvironment 

can have significant systemic effects on the host immune system. Specifically, in 

the diabetes-susceptible NOD mouse, scarcity of IL-4 can influence thymic 

multipotent progenitors, or ETP, lineage fate. The results herein indicate that it is 

the lack of thymic IL-4 in NOD mice that fails to drive HR signaling in ETPs, 

resulting in an increased thymic output of T cells progenitors at the expense of 

APCs.   

The data indicates that this reduction in thymic IL-4 is likely due to a deficiency of 

iNKT2 cells in the NOD thymus. Interestingly, NOD-specific defects in the iNKT 

cell compartment is not a new concept. It has been shown that there is a 

systemic deficiency of this cell type near the onset of diabetes (20). In fact, 

stimulation of NOD iNKT cells with their cognate antigen can delay and reduce 

the incidence of T1D (21). Recent studies have shown that APCs are key cells in 

stimulating IL-4 production from thymic iNKT cells (22). This is an interesting 

concept as the presented study indicates that the NOD thymus is deprived of 

HR+ETP-derived APCs. This phenomenon could represent a double-edged 

sword that leads to an endless cycle of fewer APCs and reduced functionality of 

iNKT cells.  

An additional consequence of diminished thymic IL-4 fitness may be the reduced 

efficiency of negative T cell selection. Given that HR+ETPs from the C57BL/6 

strain yield myeloid cells with the capacity to drive negative selection, NOD mice, 

which lack this ETP-derived population, would likely have reduced selection 
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capabilities. The current interpretation of NOD-specific central tolerance deficits 

is ambiguous. Studies have shown that the NOD mouse thymus is profoundly 

disorganized and medullary thymic epithelial cells (mTECs) show phenotypic 

changes associated with diabetes onset (23, 24). Meanwhile, other studies 

suggest that NOD T cells can be successfully driven towards apoptosis during 

clonal deletion (25). Data presented herein supports both sides of the coin and 

indicates that the flaw in NOD central tolerance may be due to changes in the 

APC population that drives negative selection, rather than a defect in T cells 

themselves.  

 When the NOD thymus is supplemented with IL-4, HR+ETPs give rise to 

myeloid cells which can contribute to negative selection, alter the T cell 

repertoire, and prevent the development of T1D. It is unlikely that this protective 

mechanism is due to the parallel reduction in T cell progenitors as HR+ETPs only 

reflect a small portion of the total thymic progenitor pool. These observations 

lead to new conclusions about the role of the environment in central tolerance.  

Indeed, production of IL-4 likely plays a major role in shaping the T cell 

repertoire. This then leads to the question: how can environmental circumstances 

contribute to type II cytokine production within the thymus? Perhaps interplay 

between host microbiota and helminths can regulate a complex network cellular 

players that, in turn, alters the thymic microenvironment. Given this idea, one 

may envision that the influence of the host environment on central tolerance may 

represent newly exposed mechanism of environmental influence in 

autoimmunity.   
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