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ABSTRACT 

The mainstream smart wearable products used for activity trackers have 

experienced significant growth recently. Among the older population, collecting long 

periods of activity data in a real-life setting is challenging even with wearable devices. 

Studies have found inconsistent and lower accuracies when older adults use these smart 

devices [1], [2],[2],[3]. As a person ages, many have lower daily levels of activity and 

their dynamic functional patterns, such as gaits and sit-to-stand transitional movements 

vary throughout the day. This thesis explores wearable health-tracking applications by 

evaluating daytime and nighttime pattern metrics calculated from continuous 

accelerometer signals. These signals were collected externally from the upper trunk of the 

body in an independent-living environment of 30 elderly volunteers. Our gold standard to 

validate the metrics from the accelerometer signals were similar metrics calculated from 

an in-home sensor network [4]. This thesis first developed an algorithm to count steps 

and another algorithm to detect stand-to-sit and sit-to-stand (STS) to demonstrate the 

importance of considering differences in daily functional health patterns when creating 

algorithms. Next, this thesis validates that accelerometer data can show similar motion 

density results as motion sensor data. And thirdly, this thesis proposes an updated 

vacancy algorithm using a new motion sensor system that detects when no one is in the 

living space, compared against the current algorithm.
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1 INTRODUCTION 

1.2 Motivation 

At the beginning of the year 2030, all the baby boomers born between 1946-1964 

will be older than 65, which accounts for 73.1 million Americans and they make up 21 

percent of the United States population [5]. The rapid aging population versus the slow-

growing population is causing healthcare system challenges. This is where using 

technology to monitor health changes over time to learn aging-related health patterns can 

proactively intervene to help mitigate or decrease the typical decline of aging. The goal is 

to increase the quality of life and maintain independence [4], [6]. Within the last decade, 

the popularity of wearable devices has emerged. These devices monitor activity, as well 

as log biometric health metrics like heart rate, respiration, and much more. It is important 

to accurately measure health and understand the information obtained because inaccurate 

results can lead to irreversible consequences.  

The in-home network systems installed in several apartments around Columbia, 

MO captures senior resident’s daily patterns representing their health and identifies when 

activity patterns start to deviate from the norm [7].  The motivation for this research was 

to perform metric validations for independent living applications and analyze the effects 

of daily activity and functional health patterns from elderly adults.  

1.3 Problem Statement 

The research and development of these current activity tracking devices lack the 

understanding of older adult daily activity levels and conditions in a real-living 

environment using these devices. As a person ages, their gait patterns and daily activity 

fluctuates depending on how they feel, the time of day, and their medications [8]. Also, 



2 

 

slower movement and the use of assistive devices reduce the accuracy of these current 

activity monitoring systems. Continuous monitoring of older adult health using wearable 

devices has been a challenge due to several factors including battery life, device 

comfortability, and ineffective long-term methods to validate the results from these 

wearables. For example, relying on self-reports for this age group is risky due to memory 

loss [9] and people with cognitive disabilities may remove the recording device early. 

This occurred a few times during the data collection phase for this study and their data 

had to be excluded. Fortunately, this study had the resources to use an in-home sensor 

network system consisting of multiple ambient sensors installed in independent and 

assistive living homes at the same time using an externally fixed-worn accelerometer. 

1.4 Contributions 

It is important to test algorithms in environments where they are intended to be 

used. This thesis provides an analysis of a few different algorithms that were developed 

to monitor activity levels and individual transitional body movements using data 

collected from older adults over a 24-hour or 48-hour period in a real living environment. 

The data was collected from a research-based accelerometer fixed to the upper trunk and 

validated against an in-home sensor network system. The goal of this study was to take a 

more technical approach and analyze how older adults fluctuating daily living patterns 

and functional health differences affect these algorithms. Based on the broad range of 

differences, can we find an algorithm that works well for this population?  

As mentioned before, this thesis developed a step detection algorithm and a sit-to-

stand (STS) algorithm to look at the effects of various functional mobility differences 

within the older adult population. The next algorithm computes motion density based on 
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the ActiGraph accelerometer signals and compares it to existing motion sensor data. And 

lastly, a current vacancy detection algorithm is compared to a proposed vacancy 

algorithm using a new system. These accelerometer-based algorithms are potentially 

intended to be used in a single low powered device in the future. Some technical 

specifics, such as the filter design and details about the algorithm development for 

proprietary reasons. This research is a continuum of monitoring health long-term to 

detect changes from the norm.   

1.5 Thesis Structure 

The structure of this thesis first explains the types of sensors used in this study, 

the placement of the accelerometer, and information about the subjects and how they are 

split into two datasets. Dataset 1 subjects were used individually for algorithm 

development and dataset 2 was used as validation and testing. The main body of this 

thesis is organized into four different algorithms; step detection, sit-to-stand, motion 

density, and vacancy detection algorithm. Each section discusses the background, 

methods, and conclusion related to the algorithm. At the end, the conclusion summarizes 

this study and suggests areas for future work. Lastly, the appendix provides additional 

results about the algorithms and more in-depth detail about the participants, their living 

spaces, and individual results. 
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2 Sensors and Dataset 

2.1 Environmental Sensors 

The in-home network system used in this study was developed by years of work 

from researchers and graduate students from the University of Missouri. They were 

installed in assistive living and independent living apartments around Columbia, MO like 

TigerPlace, an aging in place facility [4],[10]. The sensors include Zigbee PIR motion 

sensors, depth sensors, and a bed sensor. The combination of these sensors collects 

important biometrics and information to assess a person’s health over time. Currently, 

there are four Zigbee motion sensors strategically placed in the living room, bedroom, 

bathroom, and above the front door. These motion sensors simulate the old x10 motion 

sensor system that fires every 7 seconds if there is motion near. Also, to active the Zigbee 

motion sensors a large gross movement must be detected, such as walking by or someone 

continuously waving their arms. Small movements like turning pages in a book rarely are 

detected. 

The bed sensor monitors heart rate, respiration, and restlessness. The depth sensor 

has a low average frame rate of 5 Hz to protect people's identity within the apartment. It 

only captures data when detected motion is within the view range of the sensor. For this 

study, the main use of the depth sensor was to validate activities while the participant was 

in view, such as counting the number of steps or walking times between different rooms. 

The database stores and applies algorithms, in which the results are displayed on an 

interface for evaluation. 
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2.2 Wearable Sensors 

There are many types of wearable sensors, such as watches, rings, belts, clothes, 

and/or shoes. These wearable devices have some type of pressure sensor, optical sensor, 

accelerometer, or gyroscope sensor. Accelerometers, which are widely used for assessing 

physical activity and health monitoring. This study used the research-grade accelerometer 

device called ActiGraph GT9X Link (3.5 mm x 3.5 mm x 1 mm), a lightweight (20 g) 

triaxial accelerometer device. One unit was attached to the upper trunk to collect raw 3-

axis acceleration signals. All the ActiGraph units were calibrated in all 6-orthogonal x-

axis, y-axis, z-axis positions as shown in Figure 2.2-1. The data was sampled at 100 Hz, 

except for 01BLO1L, 02BCO1L, and 03BHO1L were sampled at 50 Hz due to change in 

protocols. The raw (unfiltered) 3-axis accelerometer signals were recorded 

simultaneously with an in-home sensor network. 

 
Figure 2.2-1 ActiGraph GT9X Link device orientation with respect to the X-axis, Y-axis, and Z-axis. 

2.3 Accelerometer Placement 

The placement of the accelerometer is important for activity recognition because 

it determines the classification accuracy. The wrist, hip, and lower back are popular 

placements for these monitoring devices, but may not be the most ideal places for older 
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adults. The wrist is difficult because of the multiple degrees of freedom at the wrist. Also, 

older adults may forget to wear a wrist-worn device or remove it before taking a shower. 

According to research, the most optimal placement for accelerometers is near the center 

of gravity and a place with stability, such as around the hip region [11]. But the 

placements at the hip or lower back tend to be uncomfortable. 

The latest recording from 2011, published in the Journal of American Geriatrics 

Society reported mobility device usage was 24% or 8.5 million adults age 65 and older in 

the U.S. Assistive devices, includes canes, walkers, and wheelchairs, which affects the 

accuracy of monitoring health and 74% of the participants within this study used some 

form. There is evidence of improper use of assistive device [12], which was also 

observed amongst the participants in this study. These participants tended to lean forward 

more than without an assistive device. The angle at which the participant was leaning 

forward could be seen in the accelerometer signal in this location. 

For this study, the ActiGraph GT9X Link device was placed externally on the 

upper trunk region, as seen in Figure 2.3-1. Before attaching the ActiGraph to the body, 

an initial Tegaderm patch was placed over the device making sure to cover the backside. 

Then a piece of medical tape was placed over the back of the device to cover the 

electrodes. This added an extra layer of protection between the participant’s skin and the 

device. A second adhesive Tegaderm patch was used to attached the ActiGraph device to 

the body. These patches were particularly selected by nursing staff because they were 

gentler on the skin. This was important because older adult skin is typically easier to tear 

and more sensitive. 
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Figure 2.3-1: Placement and orientation of the ActiGraph GT9X Link devices on the participants. 

 

2.4 Dataset 

This study was approved by the University of Missouri Institutional Review 

Board (MUIRB) and all volunteers signed consent forms before collecting data. Data 

were collected at TigerPlace and other independent or assistive living facilities around 

Columbia, MO between November 2018 and September 2019. Thirty elderly volunteers 

who were at least 60 years old, lived on their own with an in-home sensor network and 

were ambulatory when recruited. They took part in this study over a 24 or 48 period. 

There were 22 females and 8 males aged 66-96 years old. Table 2.4-1 proves average 

biometric information for the volunteers. More details and additional information for 

each subject are shown in Appx. Table  D-1.  

Table 2.4-1 Average biometric data for 30 volunteers. 

  GENDER (F:M) AGE (years) 
HEIGHT 

(in) 

WEIGHT 

(lbs.) 

BUILD 

(E:M:EN) 

Volunteers 22:8 84.97 ± 15 64.13 ± 10.5 
154.73 ± 

78.5 
5:10:15 

   Females 22 84.95 ± 15 61.82 ± 8.5 141.82 ± 55 4:6:12 

   Males 8 85 ± 12.5 70.5 ± 3 190.25 ± 39 1:4:3 
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During the data collection, specific procedures were followed: 

• Documented when the participant had visitors in the apartment.   

• Recording day(s) were selected when the fewest visitors and the least time out of 

the apartment were expected.  Such as not on days with regularly scheduled house 

cleaners or family visitors. 

• Ask participants and document if they changed the position (e.g. removed) of the 

ActiGraph. 

This validation study used participants 1-3 and 5-11 for dataset 1 for algorithm 

development. And participants 12-13, 15-20, 22-25, and 27-34 for dataset 2 for validation 

and testing. Participants 4, 14, 21, and 26 were unable to complete the data collection and 

were excluded from the study. Lastly, participant 13 had two data collection sessions due 

to the ActiGraph falling off while sleeping. The first data collection 13JAO1L and second 

data collection 13JAO2L. The full list of the participants (along with complete participant 

identifiers) is referenced in Appendix C, along with additional information about the 

participant and their living space in Appendix E. 
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3 Step Detection Algorithm 

3.1 Background 

Count steps is a common way to assess physical activity in clinical settings and 

real-life environments. Accelerometers have been proven to be a reliable device. 

Compared to other measuring methods, they are low cost and portable due to their small 

size. However, lower accuracies have been reported for low walking speeds and with 

older adults. Based on previous step detection algorithm studies, a large number of data 

collections were performed in controlled experimental settings using treadmills or short 

walking periods a few meters long. Also, few datasets include a reasonable amount of 

data from older adults and people with gait impairments [11]. Collecting data in a 

controlled environment does not represent the subject’s natural behaviors.  

3.1.1 Step Counting Devices 

There are various step counting devices using cameras, mechanical pedometers, 

electronic accelerometers, and cell phones with both accelerometers and gyroscopes 

embedded. Pedometers were one of the earliest inventions that originally used a 

mechanical spring system with a balancing arm attached to a gear counting mechanism 

[13]. The electronic accelerometers used today are more accurate and use piezoelectric 

ceramic plates that register electrical charges to determine the acceleration changes in 

different directions. 

3.1.2 Gait Patterns 

There is a lot that involves a person’s gait pattern. Elderly adult walks are 

typically slower, increase in variability, have a lower step length, and often use an 

assistive walking device (i.e. cane, walker) [14]. Gait patterns are especially important 
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with this age group when considering step detecting devices because of the significant 

number of older adults that experience uneven gait patterns. Their gaits are strongly 

influenced by physical ability, personality, and mood [8]. It can vary throughout the day 

due to medications, pain, or the time of day (i.e. morning, night).  

When analyzing a gait, a physical therapist may consider a person’s base of 

support (BOS), walking speed, the dynamic range of motion (i.e. leg swing, arm swing), 

and gait cycle. The base of support has been defined as the horizontal stride width during 

the double-support phase when both feet are in contract with the ground and the whole-

body center of gravity remains within the BOS [15]. One gait cycle (stride) is from the 

heel strike of one leg to the next heel strike of the same leg. Heel strike is when one of 

the heels touches the ground and toe-off is the moment the toe takes off the ground. 

These are usually described together as heel-strike and toe-off phases and are evaluated 

to see if the right and left side foot placements are symmetric.  

This study also correlated the heel-strike and toe-off with whether a person 

shuffled their feet or not. Someone who barely had a distinct heel-strike and toe-off, 

where the foot lifts off the ground might be considered as a shuffle. According to the 

book Clinical Neuroscience, shuffling is dragging the person’s feet and might have a 

shorter stride length with a reduced arm swing [16]. Next, a person’s posture was 

observed. A forward posture often causes a flat-foot gait reducing heel-strike and toe-off 

phases. A normal posture for this study is considered a straight upright position measured 

perpendicular to the ground at 90 degrees. The posture angle was measured from the hip 

to the head like in Figure 3.1-1.  
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Figure 3.1-1 Measuring posture angle. The left shows a forward-leaning posture and the right shows a 

straight posture at 90 degrees. 

3.2 Dataset Gait Patterns 

Below in Table 3.2-2 and Table 3.2-3, shows dataset 1 and dataset 2 gait patterns 

for each subject. The posture angle was the only gait pattern measured quantitatively 

from the depth sensor videos. All the other gait patterns were measured qualitatively 

relative to all the subjects in this study by watching the depth sensor videos. For example, 

the walking speed, most subjects walked about the same moderate pace. Subject 

06DHO1L significantly walked faster and subjects like 33BEO1L walked extremely 

slower than the others. For dataset 1, no one walked with a shuffle. There were only four 

people from dataset 2 that periodically shuffled while walking. People that used a walker 

or an assistive walking device did not have an arm swing due to the nature of the devices 

restricting arm movement. Some individuals occasionally used their assistive device and 

some used multiple devices throughout the day like a walker, cane, or pushing a 

wheelchair. 

Also, listed in the tables below are the walking speeds calculated from the depth 

sensor [17],[18]. These were compared to the observed gait speeds that were qualitatively 

measured. The average gait speed from the 30 subjects was 40 cm/s. Several calculated 
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gaits speeds were different from the observed gaits. The differences are notated in the 

fourth column and indicate what the observed gait speeds should have been. For example, 

the step detection algorithm categorized subject 03BHO1L as a slow walker (S) based on 

the observed gait speeds, but based on the depth sensor calculated gait speed of 46 cm/s, 

he should have been considered a moderate-paced walker. Most of the differences were 

boarder lined in the next category as seen with subject 19VBO1L. Subject 20JJO1L gait 

speed calculated by the depth sensor was the only one that seems on the higher side. 

Based on observation, his gait speed seemed more comparable to subject 06DHO1L. 

Overall, the subjects observed gait speeds were similar to the ones calculated from the 

depth sensor.  

Table 3.2-1 Gait speeds calculated from the depth sensor. And gait speed ranges relative to the subjects. 

 

Table 3.2-2 Dataset 1 showing 10 subject gait patterns and other categories that affect gaits. 

**significantly different reported gait speed from the database due to tracking visitors. ***estimated gait 

speed from walk data scatter plot models. Fast = F, Moderate = M, Slow = S, Very Slow = VS 
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01BLO1L none 54  moderate no full full full symmetric normal 90 normal 

02BCO1L none 42  moderate no full full full symmetric normal 90 normal 

03BHO1L 
walker 

infrequent 
46 S -> M 

moderate / 
slow 

no medium 

Full (no 

walker),  
none 

(walker) 

Medium 

(no 
walker), 

minimal 
(walker) 

symmetric normal 90 normal 

05LBO1L walker 34  slow no medium none 
medium/ 

minimal 
symmetric forward 40 narrow 

06DHO1L none 58 F -> M 
fast/ 

moderate 
no full full full symmetric normal 90 normal 

07HRO1L walker ***30  slow no 
minimal/ 

none 

Full (no 

walker),  

none 
(walker) 

medium/ 

minimal 

asymmetric, 

right 

dominate 
forward 30 narrow 
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08DWO1L none 31 S 
moderate / 

slow 
no full medium 

full/ 

medium 

asymmetric, 

left 

dominate 

slightly 

forward, 

head,  

90 normal 

09HSO1L walker 26 S -> VS 
moderate / 

slow 
no full none medium symmetric forward 55 narrow 

10JBO1L walker 
infrequent 51  moderate no full full full symmetric normal 90 normal 

11ASO1L walker **29  very slow no minimal none minimal asymmetric forward 50 narrow 

Table 3.2-3 Dataset 2 showing 20 different subject gait patterns and other categories that affect 

gaits.*13JAO1L and 13JAO2L is the same person, but two separate data collection periods. **significantly 

different reported gait speed from the database due to tracking visitors. ***estimated gait speed from walk 

data scatter plot models. Fast = F, Moderate = M, Slow = S, Very Slow = VS 
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12ALO1L walker 
40 S -> M moderate / 

slow 
no minimal none minimal symmetric forward 50 narrow 

*13JAO1L walker 

41 S -> M 

slow no medium 

Full (no 

walker), 

none 
(walker) 

full 
fairly 

symmetric 

normal, 

head 

slightly 
forward 

45 normal 

*13JAO2L walker 

41 S -> M 

slow no medium 

Full (no 

walker), 
none 

(walker) 

full 
fairly 

symmetric 

normal, 

head 
slightly 

forward 

45 normal 

15LOO1L 
walker & 

cane 
29  

very slow yes minimal full minimal asymmetric forward 40 wide 

16NDO1L 
cane 

rarely 

38 S moderate / 

slow 
no full full full symmetric normal 90 normal 

17LPO1L walker 

36  

slow yes minimal none minimal symmetric 

head 
slightly 

forward 

(looks 
down) 

65 normal 

18RCO1L 
wheelchair 

infrequent 

55  
moderate no full 

minimal/ 

none 
full 

fairly 

symmetric 
normal 90 normal 

19VBO1L walker 
***31 VS -> S slow / 

very slow 
no full none full symmetric normal 90 normal 

20JJO1L walker 68 M -> F 
moderate no full none full symmetric forward 60 normal 

22NDO1L walker 40  
moderate no full none full 

fairly 

symmetric 
forward 60 narrow 

23JWO1L none 

***50  

moderate no full full full asymmetric 

backward

, head 
slightly 

forward 

93 narrow 

24SPO1L walker **30  slow no full none full symmetric forward 65 normal 

25EHO1L 
Cane 

infrequent 

50  
moderate no full full full 

asymmetric straight 

posture 
90 wide 

27CHO1L none 
50  

moderate no full full full 
asymmetric straight 

posture 
90 wide 

28JBO1L none **50  
moderate no full full full symmetric normal 90 normal 

29SSO1L 
cane, 

walker 
32  

slow no full none full symmetric forward 65 normal 

30WBO1L walker ***33  slow no full none full symmetric normal 90 normal 

31FSO1L 
cane, 

wheelchair

, walker 

*** 38 VS -> S 
slow / 

very slow 
no medium none 

minimal/ 

none 
asymmetric forward 80 normal 

32PKO1L walker 
29 S -> VS 

slow yes none none 
minimal/ 

none 
asymmetric forward 65 wide 

33BEO1L 
walker & 
wheelchair 

**25  
very slow yes 

minimal/
none 

none none asymmetric 
very 

forward 
50 narrow 

34REO1L 
walker, 

wheelchair 

infrequent 

***29 S -> M 

very slow no full none medium 
fairly 

symmetric 
forward 55 

very 

narrow 
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3.3 Method 

3.3.1 Step Detection Algorithm Development 

The main goal for this section was to develop a step detection algorithm and to 

see how the different gait patterns affect the results. This algorithm assumed there was a 

prior walking detection algorithm that found walking periods as the input then it used a 

peak detection method to count the individual steps. The algorithm developed for this 

study is comparable to several published step counting algorithms, but not limited to 

these listed [19],[20],[11]. The main difference for this algorithm was the placement of 

the accelerometer, a moving average filter, and then using a selection method to 

determine a single axis instead of the acceleration magnitude (vector magnitude). The 

filter that was used averaged the neighboring data points within the span of the signal, 

which is equivalent to lowpass filtering [21]. This smooths the noisy data from the 

sampled signal, as seen below. 

 
Figure 3.3-1 The original and filtered vector magnitude of acceleration. 

 Originally, both the vector magnitude method and a single axis was observed to 

compare the performance. The equation shows the acceleration vector magnitude 

calculation. 
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Equation 3.3-1 

‖𝑆‖ = √𝑆𝑥
2 + 𝑆𝑦

2 + 𝑆𝑧
2 

The first method used the vector magnitude. The vector magnitude of acceleration 

removed the directional components of the signal leaving only the intensity of the 

acceleration. Several values were calculated to determine the local maxima peaks from 

the filtered signal, including the minimum peak height, minimum peak width, and 

minimum peak prominence. The minimum peak prominence reflects the relative 

importance of a peak based on the height and location of other peaks [21]. 

For the axis selection method, it used a dynamic approach to find the best axis to 

detect peaks. First, the minimum peak height was determined. The axis with the largest 

minimum peak height was selected as the best axis. Also, it was used to calculate the 

minimum peak height, distance, and prominence to determine an appropriate threshold to 

count steps. 

Figure 3.3-2, shows two individual walking periods from 01BLO1L and 

11ASO1L, using the acceleration vector magnitude signal. 01BLO1L did not use an 

assistive device and generally had a normal gait. Full gait cycles with the heel-strike, toe-

off, and swing phases can be easily seen in the left figure. On the right, 11ASO1L used a 

walker and walked slower. For people with a slower walk and shuffling, the amplitude 

difference between the heel strikes and toe-off phases was reduced with additional noise. 

The false positives were caused by the additional noise, which are shown below by the 

red circles. This made it difficult to accurately detect steps. 
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Figure 3.3-2 shows the vector magnitude signal for two subjects. 01BLO1L walked normal, used no 

assistive walking device, and had a normal gait (left). 11ASO1L walked very slow with a walker and had 

minimal heel-strike and toe-off phases (right). The amplitude of signal decreased when using a walker. The 

false-positive step counts are indicated by the red circles. 

3.4 Results 

The depth sensor was used to label the ground truth step counts while the subject was 

in view of the depth sensor. The average relative error of the difference in step counts 

was used to measure the proposed algorithm performance and the effects of the different 

gait patterns[19]. It is common to measure the reliability of step counts and activity time 

by looking at the underestimation or overestimation of a cumulative total of steps [1].  

 Below in Figure 3.4-1, compares 01BLO1L ground truth number of steps shown 

in the top figures and the number of steps detected from the algorithm on the bottom in 

red. The main goal was to compare the representation of the results rather than focusing 

on single errors in the step count difference. The overall representation of the detected 

results matched the ground truth, even though the algorithm undercounted steps. 
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Figure 3.4-1 Subject 01BLO1L step count per day (left) and step count per hour (right). 

The results below show averages based on the errors from the two datasets. Figure 

3.4-2, shows the difference in performance between the vector magnitude versus 

individual axes. The acceleration in the x-axis (frontal/mediolateral axis) resulted in the 

least amount of error for both dataset 1 and dataset 2. The analysis from here on will 

focus on the algorithm using only the x-axis. Looking at dataset 1 for the x-axis, the step 

count algorithm underperformed and counted fewer steps than the ground truth. In 

Dataset 2 the algorithm detected slightly more steps. The remaining figures will help 

explain the reason for the negative results in dataset 1 in comparison to dataset 2. 
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Figure 3.4-2 Overall step detection results comparing the algorithm using the acceleration vector 

magnitude or a single axis for both dataset 1 and dataset 2. The x-axis resulted in the lowest errors. 

Now, we can look closer at how the different gait patterns affect the results. 

Figure 3.4-3, shows a broad overview of the different gait pattern categories. The top 

three categories that resulted in the largest error included the assistive device, walking 

pace, and posture. People using assistive walking devices typically slower with either a 

reduced or minimal heel-strike and toe-off phases. The participants in this study with an 

assistive device leaned forward more, mostly due to using the walker improperly. Also, 

the assistive device limits the horizontal trunk movement (side-to-side), which is seen 

when a person walks without assistance. 

 
Figure 3.4-3 Different gait pattern categories showing overall average results for the x-axis signal 

combining both datasets. 

Below in Figure 3.4-4, shows a similar overview of all the gait pattern results, but 

separated into subcategories per dataset. This also helped to see the relationship between 

the different gait patterns. To point out, there were no individuals for dataset 1 with a 

wide base-of-support (BOS). And for dataset 2, there were no individuals who walked at 

a fast pace. 

Looking closer at the postural relationships and different assistive device usage, 

people with a normal posture showed similar results to those that did not use a walker or 
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infrequently used an assistive device. Oppositely, the people with a forward posture 

showed similar results to those that did use a walker or multiple devices. It was common 

to see the people that used an assistive walking device to have an improved gait when 

they did not use their walker or cane. The individuals walked with a straighter posture 

and their gait symmetry, base-of-support, leg swing drastically improved.  

 
Figure 3.4-4 Overall gait pattern metric results in the x-axis direction for both dataset 1 and dataset 2. 

Figure 3.4-5, shows two individual walking periods from the same subjects 

01BLO1L and 11ASO1L as in Figure 3.3-2, but using only the x-axis. It is more difficult 

to visually determine a step looking at a single axis than with the acceleration vector 

magnitude signal. It is dependent on the orientation of the accelerometer.  

Subject 01BLO1L signal on the left represent people without an assistive walking 

device, normal posture, and moderate speed. Only half the steps were detected compared 

to the ground truth. On the right, subject 11ASO1L represents subjects that use a walker, 

forward posture, slower walk, and might occasionally shuffle. Almost all the steps were 
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detected compared to the ground truth. Also, the signal appears noisier with additional 

peaks that are mistaken for steps.  

Now, comparing the two datasets and reviewing Figure 3.4-4, we can get a better 

understanding of why dataset 1 resulted in negative errors, underperforming. From 

dataset 1, 60% of the subjects walked with a normal posture, walked slower, and used 

some type of assistive walking device. But 42.9% of dataset 2 had a normal posture and 

66.7% walked slow. With more than 80% of dataset 2 that uses some type of assistive 

walking device, this was a big reason why dataset 2 has had negative results. Also, out of 

the total 30 subjects, only four subjects from dataset 2 walked with a shuffle; barely 

picking their feet up. These details are also shown in Appx. Table  F-1. 

  
Figure 3.4-5 Shows the x-axis signals for the same subjects as above in Figure 3.3-2. Subject 01BLO1L 

had no assistive walking device (left) and subject 11ASO1L used a walker (right) 

 

The next two figures show the overall results from dataset 1 and dataset 2. Figure 

3.4-6, compares acceleration results in the x, y, and z-direction for each subject from 

dataset 1. Starting with the acceleration in the z-direction in green, subjects 02BCO1L 

and 06DHO1L were the only ones that had positive errors. Their gaits were significantly 
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different from the others. They walked with a more exaggerated heel-strike and had a 

larger vertical foot displacement. 

Next, the acceleration in the y-direction in orange, subjects 05LBO1L, 07HRO1L, 

and 11ASO1L walked slower, postures less than 50 degrees, and least amount of heel-

strike. These individuals periodically shuffled their feet.  

And, the acceleration in the x-direction in blue, all dataset 1 subjects had negative 

values except for subjects 07HRO1L and 08DWO1L. Subject 07HRO1L had the lowest 

posture angle of 30 degrees. Comparing the two subjects to the rest of dataset 1, there 

was not a lot that stood out. They did limp slightly with a more lateral side-to-side 

motion. 

 
Figure 3.4-6 Comparison of the average errors from dataset 1 using the x, y, and z acceleration. 

 Figure 3.4-7, shows the standard deviation of the step count errors, which 

indicates the amount of variance. The x-axis had the largest variance shown by all the 

blue and the y-axis had the least variance. Only subject 05LBO1L, 07HRO1L, 
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08DWO1L, and 11ASO1L step count errors varied the most in the y-direction. These 

subjects had the least amount of average error shown above in Figure 3.4-6. As stated 

before, they walked slowly with a forward posture.  

 
Figure 3.4-7 Dataset 1 overall standard deviation error. 

 Figure 3.4-8 shows dataset 1 average errors like the results shown previously in 

Figure 3.4-6. The graphs shown below include the error bars that indicate the minimum 

and maximum errors. Looking at subject 07HRO1L in the middle in the x-direction and 

y-direction, her results had the largest range of error. There was a lot of walking periods, 

which the step detection algorithm was not able to find peaks to count as steps. This 

resulted in a lot of negative errors. The subjects with positive errors shown previously 

had the largest range of errors indicated below. Overall, the x-axis had the least amount 

of variance compared to the y-axis and z-axis. 
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Figure 3.4-8 Dataset 1 average error with error bars showing the minimum and maximum errors. 

Figure 3.4-9 shows similar explanations as above, but for dataset 2. Starting with 

the acceleration in the z-direction in green, only subject 23JWO1L showed positive 

errors. Same as in dataset 1, she had a more exaggerated heel-strike and had a larger 

vertical foot displacement. Her walk especially resembled more of a marching style and 

she slightly leaned back with her legs more out front than any other subject. 

Looking at the acceleration in the y-direction in orange, only subject 29SSO1L 

showed positive errors. She walked with a straight poster, slow and usually with a cane. 

She had a full leg swing and executed a full heel-strike toe-off cycle. Occasionally, she 

would hold on to the wall or kitchen counter while walking.  

And lastly, the acceleration in the x-direction in blue, all the subjects showed 

positive results except for subjects 13JAO1L/13JAO2L, 18RCO1L, 25EHO1L, 

27CHO1L, and 31FSO1L. For all three axes, their results were negative. Comparing 

13JAO1L to 13JAO2L, his second data collection had less error using the x-axis signal.  
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Figure 3.4-9 Comparison of overall average errors from dataset 2 using the x, y, and z acceleration signal.  

Figure 3.4-10 shows an example of the filtered ActiGraph accelerometer signal in 

the x, y, and z-direction. It demonstrates the y-axis had the most defined signal compared 

to the acceleration in the z-direction and x-direction used in this study. However, in other 

published work, the y-axis (vertical) is used for step and activity detection [20], [21]. For 

younger healthy people, the y-axis shows significant vertical displacements while 

walking. In other adults, the vertical displacement is possibly reduced due to shuffling 

and smaller steps. People walk in the mediolateral axis (x-axis) and sagittal plane, which 

shows more flexion and extension motion [23]. Healthy adults walk with a straight 

posture with their shoulders and truck moving at the same level. As seen in this study, 

older adults tend to have an increase in forward flexion of the truck around the 

mediolateral axis. Also, an increase in lateral motion leaning side-to-side. But a decrease 

in vertical displacement, due to shuffling and slower walks. 
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Figure 3.4-10 Subject 01BLO1L filtered accelerometer signal in the x, y, z-direction. 

 Lastly, centering the acceleration signals in the x, y, and z-direction to zero prior 

to applying the filter and processing the data improved the accuracy of the step counts, as 

seen below in Figure 3.4-11 and Figure 3.4-12. Subtracting the mean of the signal from 

the original signal will remove the effects of gravitational body forces [22]. This 

decreases the range of acceleration, which helps when finding peaks based on the 

minimum peak heights.  

 
Figure 3.4-11 Dataset 1 average step count error based on the original algorithm without centering (zero 

mean) the accelerometer signal versus applying zero mean. 
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In Figure 3.4-12, the x-axis had the lowest errors without centering the 

accelerometer data, but when applying zero mean to the data, the y-axis resulted in the 

lowest errors. The errors for dataset 1 still were in the negative direction, meaning the 

step detection algorithm undercounted the steps. Dataset 2 results are shown in Appendix 

F. 

 
Figure 3.4-12 Overall average error for dataset 1. The y-zeroMean resulted in the lowest error. 

3.5 Summary and Discussion 

The step detection algorithm section further demonstrated the complexity of gait 

patterns, but the need for considering them for future devices older adults will use. 

Overall, the step count algorithm had high errors, but this thesis helped to understand the 

effects of different gaits. It was able to detect a similar cumulative step count per day and 

per hour as the ground truth. However, using a customized filter more appropriate to 

older adults would give better results. A few different lowpass filters were tested along 

with the filter discussed in this thesis, such as a 3rd-order median filter, 3rd-order elliptical 

filter, 3rd-order Butterworth filter, and 4th- order Butterworth filter with different cutoff 

frequencies ranging from 0.25 Hz to 20 Hz [23],[24], [25]. But the filter chosen 

performed best overall for both datasets.  
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Using the vector magnitude would be a good alternative to using only a single axis. 

However, for small wearable devices using a single axis is best for simplicity to minimize 

battery consumption. The x-axis showed the least amount of error for this age group in 

this study. However, the y-axis is used is typically used in practice with younger healthy 

adults. Future studies will be needed to validate if the x-axis should be used instead of the 

vertical y-direction with older adults in real-living environments. 

4 Stand-to-sit / sit-to-stand (STS) 

4.2 Background 

Observing stand-to-sit and sit-to-stand is a common metric when assessing older 

adults' functional capabilities. Going from sit-to-stand requires a significant amount of 

muscle power and balance, which starts to decline in older adults [26]. Sometimes they 

will rock back and forth to gain momentum before attempting to stand. Also, it may take 

several attempts for them to fully stand. Just like we saw in the previous section with 

walks and steps, STS postural transitions vary a lot with older adults. But over time, 

detecting changes in the duration of STS may indicate health issues.  

In this study, most of the participants fell into their seats after starting to descend 

from the standing position. It also took several attempts for them to fully stand. This is 

commonly seen with older adults. The stand-to-sit transition was shorter than the sit-to-

stand transition. The sit-to-stand transition approximately took 3 seconds to 5 seconds for 

a person to stand. The STS average durations are compared in Figure 4.4-1 to the number 

of observed STS(s) in Figure 4.4-2. The number of STS data for this research was 

imbalanced with less than 1.5% of the data was either stand-to-sit or sit-to-stand, 

compared to 98.5% that was labeled as other. The other class label included walking, 
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standing, sitting, lying down, and step times. The spatial representation of the three 

classes is shown below in Figure 4.3-1. 

4.3 Method 

4.3.1 Training Data and Testing Data 

For the STS classification section, all ten subjects from dataset 1 were used for 

training with a total of 101,018 samples. Eighteen subjects from dataset 2 were used to 

test the performance of the quadratic discriminate analysis (QDA) and RUSBoost 

classification models. Dataset 2 had 241,918 samples. Also, for a more realistic test, each 

subject was tested since the classification of STS would only be applied to a single 

person. On average there were about 10,000 samples per subject for testing. 

There were two subject’s data excluded from this section. Subject 17LPO1L only 

sat or laid in bed, therefore there is no STS ground truth data. Also, subject 20JJO1L did 

not have ground truth for STS because his main chair was not visible to the depth sensor. 

4.3.2 Principle Component Analysis 

The 3D principal component analysis (PCA) was performed to visually see the 

spatial representation of the three different classes reduced from the thirty-three features. 

The boundaries are difficult to identify because the hollow spherical shape has a few 

overlapping clusters. The black circle defines a separate cluster of data inside the sphere. 

It visually blended into the cluster behind it on the left. The yellow stand-to-sit (standSit) 

and cyan sit-to-stand (sitStand) were sparsely located within the black circle and scattered 

around the inside perimeter of the sphere. Overall, the 3D PCA shows there is a lot more 
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of the other class. The standSit and sitStand classes relatively clustered in a similar 

feature space. 

 
Figure 4.3-1 (left) A 3D PCA visualization of the thirty-three features of the three classes. (right) 3D PCA 

visualization of just the standSit and sitStand classes. 

 

4.3.3 Ground Truth Labels 

A window of 5-seconds was used to label the ground truth as either stand-to-sit 

(standSit), sit-to-stand (sitStand), or other. The other category as mentioned before 

included all the other activity times, such as walking, standing, steps, or lying down. The 

standSit was defined as the initial second the person started descending to sit in their 

chair until they sat down. And the sitStand was the initial second the person started to 

stand up. The depth sensor occasionally missed the sitStand due to not detecting the 

minimal movement or limited visibility. Also, for some subjects, the visibility of either 

sit-to-stand or stand-to-sit was limited due to low video resolution or the depth sensor 

missing the full postural transitions. 
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The windows were labeled either stand-sit or sit-stand if there were at least one of 

these states, else the window was labeled as the most frequent state. The time vectors 

were resized based on if the time was at the beginning STS, else the most frequent time 

was labeled. And for all the other states, the most frequent time was labeled. 

4.3.4 Signal Processing and Feature Extraction 

The raw (unfiltered) tri-axis accelerometer data collected at either 50 Hz or 100 

Hz was filtered using a digital fourth-order Butterworth filter with a recommended cutoff 

frequency [27] for postural transition movements. The filter smooths the noise from the 

unfiltered signal shown in Figure 4.3-2. This figure also, shows the postural transition 

events between sitting and standing. It is easy to see the start and end of a standSit or 

sitStand, where there is a large decrease in amplitude. The signals shown below were 

from subject 23JWO1L. She sat down at a normal pace, which was a gradual descend 

before fully sitting. However, the large narrow peak indicates when she stood up fast. 
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Figure 4.3-2 Subject 23 unfiltered ActiGraph accelerometer signal in the x, y, and z-direction showing 

transitional states between sitting and standing. 

 Next, the filtered signal was sampled over a 5-second window to extract thirty-

three time-domain features. These sets of descriptive features for STS detection were also 

reported in [28][29]–[31]. The features used in this study are shown in the table below. 

Jerk is the first time derivative of acceleration and velocity is the first integral of 

acceleration with respect to the change in time. 

 Table 4.3-1 List of features calculated from several statical estimations. 
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4.3.5 Machine Learning Classifier 

The supervised learning classification process used labeled ground truth data to fit a 

model to identify stand-to-sit and sit-to-stand transitional periods from the ActiGraph 

accelerometer data. A 5-fold cross-validation was used to ensure proper separation of 

training and validation data to limit overfitting. The training data was split into five 

equally sized random subsets, leaving one for validation and the remainder for training. 

From the five rounds of training, the average accuracy was computed.  

The first classifier model was performed using quadratic discriminate analysis (QDA) 

that can handle multiple classes and creates nonlinear boundaries. It uses density 

estimation (δk) based on a multivariant Gaussian distribution that assumes variance of the 

means and covariances for each class. The centered covariances (Σ𝑘) can be estimated 

using singular value decomposition (SVD) shown in  Equation 2, which is based on the 

general eigen decomposition transformation. Where (X𝑘) is the input and (U𝑘) and (V 𝑘
𝑇) 

are identity matrices, which leaves the diagonal of (Σ𝑘) as the estimated covariances. 

Equation 2  

X𝑘  = U𝑘Σ𝑘V 𝑘
𝑇 

For each kth class the prior probability (π𝑘), mean (μ𝑘), and covariances (Σ𝑘) are 

used to calculate the estimated discriminate score in Equation 3. Then then the classifier 

assigns the maximum score to the kth class. In general, the QDA uses a distance metric 

from the means of each class after applying a transformation [32]. 

Equation 3 

δk(x) = −
1

2
log|Σ𝑘| −

1

2
(x − μ𝑘)𝑇Σ𝑘

−1(x − μ𝑘) + logπ𝑘 
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The second classifier model was performed using a random under-sampling boost 

(RUSBoost). This hybrid model uses two techniques, data sampling and boosting to 

reduce the effects of imbalanced data. It resamples the data by taking the class with the 

lowest number of observations and under samples the class with the highest number of 

observations [21], which would be the Other class in this study. The AdaBoost ensemble 

adds the weak weighted models sequentially attempting to correct errors to create a 

stronger classifier. This is where RUSBoost can be computationally expensive more than 

QDA. However, both models do not have hyperparameters, which keeps the 

computational costs lower than other popular models like support vector machine (SVM). 

4.4 Overall Results 

For each subject, the average standSit and sitStand ground truth durations were 

totaled and compared to the ground truth number of instances observed during their data 

collection. Subjects 09HSO1L and 33BEO1L took the longest to stand up and sit down. 

Based on Figure 4.4-1, most of the subjects took 1 to 2 seconds to either standSit or 

sitStand. Subject 33BEO1L, STS durations varied a lot between 1 second to 30 seconds. 

Overall, sitStands took about the same time as standSit, if not longer. A full table of STS 

average durations can be seen in Appendix G. 
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Figure 4.4-1 Ground truth STS average durations for each subject. 

 Figure 4.4-2 shows the ground truth number of STS instances observed. The other 

class is not shown below because it would outweigh the small number of STS that would 

barely be visible. However, the variation between the standSit and sitStand categories can 

be seen below. Subject 24SPO1L and 25EHO1L had the largest contrast, with hardly any 

sitStand. There were a few that had more standSits like 03BHO1L, 07HRO1L, 

13JAO1L/13JAO2L, 16NDO1L, 30WBO1L,32PKO1L, and 33BEO1L. 

 
Figure 4.4-2 Ground truth total number of STS observed for each subject. 
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 Next, the validation accuracies from the trained QDA and RUSBoost models are 

shown in Table 4.4-1. The confusion matrix shows the results as percentages instead of 

the number of observations. The percentages were calculated by taking the number of 

observed over the total number from the true class. Also, the true positive rates are 

shaded in green separate from the misclassifications. The darker green indicates a higher 

percentage of a class being classified correctly. For the misclassifications, a darker red 

indicates a higher percentage of a class being misclassified. Also, the class other, 

misclassifications are shaded relative to each other separate from the STS because of 

weighted differences. Out of the few misclassifications, the QDA training model 

misclassified both the other and sitStand class as standSit. Even though the percentages 

are relatively low, they are shaded dark red to indicate the maximum misclassified class.  

 Based on the results the training validation accuracy for both QDA and RUSBoost 

was about 93% . The QDA model mostly was confused with the standSit class and 

RUSBoost confused the sitStand class, shown in red.  

Table 4.4-1 The validation accuracy from QDA and RUSBoost using dataset 1. 

 

From dataset 2 the test accuracy for the QDA model was 92.33% and 91.3% 

accuracy for RUSBoost. This is only about a 1.5% decrease from the validation accuracy. 

Even with high accuracy, there was still a lot of confusion between standSit and sitStand. 

other 93.54% 4.82% 1.64% 93.53% 1.28% 5.19%

stand-sit 8.68% 79.16% 12.16% 1.48% 67.44% 31.08%

sit-stand 7.61% 24.95% 67.44% 1.74% 5.96% 92.31%

QDA 93.40% other stand-sit sit-stand other stand-sit sit-stand

RUS 93.20%

RUSBoost

T
R
U
E

Predicted

QDA
Dataset 1 - Validation Accuracy
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The RUSBoost misclassified the standSit and other classes with the sitStand more than 

the QDA model. And the sitStand class was mostly misclassified as standSit. 

Table 4.4-2 The test accuracy from QDA and RUSBoost using dataset 2. 

 
Figure 4.4-3 below shows the individual test accuracies for each subject.  

The QDA shown in blue and RUSBoost shown in orange showed similar 

performance. The overall average was about 90%, except for subjects 07HRO1L, 

10JBO1L, 13JAO1L/13JAO2L, 29SSO1L, and 31FSO1L who underperformed. These 

individuals' results are explained more in-depth in the case study section. If these five 

individuals' results were excluded from this graph, there would not be large peaks if the 

y-axis limits were not scaled the same, else the graph would look smoother. 

 
Figure 4.4-3 STS QDA and RUSBoost test accuracies for each subject. 

other 92.69% 2.01% 5.31% 91.59% 1.43% 6.98%

stand-sit 26.09% 43.11% 30.80% 21.92% 40.43% 37.65%

sit-stand 18.28% 28.32% 53.41% 6.45% 18.52% 75.03%

QDA 92.33% other stand-sit sit-stand other stand-sit sit-stand

RUS 91.30%

RUSBoost

T
R
U
E

Predicted

QDA
Dataset 2 - Testing Accuracy
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In addition to looking at the overall test accuracies, evaluating the true positive 

rates shown in Table 4.4-3 and Table 4.4-4 were used to get a better understanding of the 

different classes' performance for each subject. The higher the true positive rate means 

the model was able to predict the correct class. A low true positive rate indicates a high 

number of misclassified classes. Based on both the QDA and RUSBoost results shown 

below, 07HRO1L, 09HRO1L, and 10JBO1L had low StandSit true positive rates. And 

08DWO1L had low SitStand true positive rates. Overall, the QDA model misclassified 

the StandSits, which the RUSBoost model results said the same. Since the other class is 

weighted higher due to a larger number of observations, 07HSO1L and 10JBO1L lower 

true positive rates lowered the overall test accuracy as indicated above in Table 4.4-3. 

Table 4.4-3 The true positive rates from dataset 1. 

 

In Table 4.4-4, the QDA results either had low StandSit or SitStand true positive 

rates under 60% except for 13JAO2, 29SSO1L, and 27CHO1L. For the RUSBoost 

model, only 13JAO1L, 23JWO1L, 25EHO1L, and 32PKO1L had a low true positive rate 

for sitStand. The standSit class results were like the QDA model. For the other class, 

13JAO1L/13JAO2L, 29SSO1L, and 31FSO1L had the lowest true positive rates, which 

Other StandSit SitStand Other StandSit SitStand

01BLO1L 94.85% 75.00% 94.12% 95.21% 70.83% 100.00%

02BCO1L 91.93% 88.00% 94.12% 93.47% 72.00% 94.12%

03BHO1L 95.11% 80.23% 96.23% 95.51% 75.58% 96.23%

05LBO1L 94.99% 59.09% 81.63% 91.89% 74.24% 79.59%

06DHO1L 94.53% 75.36% 92.42% 95.11% 56.52% 93.94%

07HRO1L 75.38% 50.00% 92.31% 71.02% 53.33% 94.87%

08DWO1L 93.56% 95.65% 33.33% 90.29% 82.61% 77.78%

09HSO1L 91.08% 52.08% 70.45% 93.42% 39.58% 97.73%

10JBO1L 70.62% 21.43% 82.35% 71.55% 14.29% 100.00%

11ASO1L 95.68% 65.08% 71.79% 95.37% 90.48% 82.05%

True Positive Rates

D1 - RUSD1 - QDA
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caused a lower overall test accuracy. Again, this is consistent with Table 4.4-3, which 

showed large spikes for these three subjects. 

Table 4.4-4 The true positive rates for dataset 2. 

  

4.5 Case Study – STS 

4.5.1 07HRO1L 

For subject 07HRO1L, both models QDA and RUSBoosts showed almost 

identical results. Her normal stand-to-sit and sit-to-stand she leaned forward more than 

other subjects with her chest down. She also used her arms to help her slowly sit down or 

assist herself up. She would stand up straight before sitting or after standing up before 

starting to walk. On average it took her 3 seconds to sit down or stand up.  

Other StandSit SitStand Other StandSit SitStand

12ALO1L 91.06% 60.00% 80.00% 89.22% 53.33% 90.00%

13JAO1L 70.36% 100.00% 33.33% 57.70% 100.00% 33.33%

13JAO2L 63.48% 80.00% 90.91% 65.25% 80.00% 90.91%

15LOO1L 87.03% 50.79% 52.54% 81.46% 47.09% 80.23%

16NDO1L 96.27% 31.71% 47.27% 96.30% 29.27% 78.18%

18RCO1L 86.06% 39.39% 81.82% 86.65% 42.42% 78.79%

19VBO1L 97.23% 56.86% 72.92% 98.41% 27.45% 93.75%

22NDO1L 96.44% 25.00% 42.86% 95.42% 29.17% 78.57%

23JWO1L 94.32% 74.36% 31.58% 93.79% 64.10% 47.37%

24SPO1L 90.63% 10.38% 77.27% 91.81% 10.85% 86.36%

25EHO1L 90.23% 50.88% 42.86% 89.34% 49.12% 39.29%

27CHO1L 95.90% 37.50% 64.10% 95.78% 45.00% 84.62%

28JBO1L 88.71% 19.35% 50.00% 88.96% 19.35% 72.73%

29SSO1L 78.21% 62.50% 66.67% 48.37% 50.00% 66.67%

30WBO1L 93.67% 59.72% 56.82% 94.78% 51.39% 87.50%

31FSO1L 74.82% 73.91% 54.17% 75.59% 30.43% 79.17%

32PKO1L 94.04% 48.68% 53.41% 91.80% 60.53% 56.82%

33BEO1L 93.33% 55.07% 32.47% 81.54% 62.32% 76.62%

34REO1L 88.12% 62.50% 44.12% 89.24% 56.25% 70.59%

True Positive Rates

D2 - QDA D2 - RUS
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For the other class and standSit class, they were mostly misclassified as sitStand, 

shaded dark red in Table 4.5-1. Before sitting she leaned forward holding on to her 

walker or reaching down to hold on to her chair. In extreme cases, the angle of her chest 

was parallel to the floor. Before sitting down, her chest would already be at an angle 

instead of starting from a vertical standing position. Another example, she held onto her 

walker right before she sat down by falling into her seat.  

The one instant when the QDA model misclassified sitStand as standSit, occurred 

when she reached down on the floor right before she began to stand up. The other times 

when the model misclassified sitStand, she never fully stood up before starting to walk. 

She either reached forward to grab her walker or reach over to hold on to furniture and 

continue to walk with her chest down. Overall, both models were able to identify the STS 

transitional periods, but difficulties were classifying the standSit events.  

Table 4.5-1 Subject 07HRO1L ground truth average duration and a number of observations. 

 

Table 4.5-2 Subject 07HRO1L prediction results from testing the QDA and RUSBoost model. 

 
 

4.5.2 10JBO1L 

Subject 10JBO1L had the lowest standSit true positive rates for both models. 

Looking at subject 10JBO1L predicted results, both QDA and RUSBoost model found all 

StandSit SitStand Other Stand-Sit Sit-Stand

0:00:03 0:00:03 2567 30 39

Avg GT Duration Number of Observations

other 75.38% 3.27% 21.35% 71.02% 3.35% 25.63%

stand-sit 16.67% 50.00% 33.33% 10.00% 53.33% 36.67%

sit-stand 5.13% 2.56% 92.31% 5.13% 0.00% 94.87%

QDA 75.34% other stand-sit sit-stand other stand-sit sit-stand

RUS 71.17% Predicted

07HRO1L

QDA RUS

T
R
U
E
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the same STS transitions, except for a few instances that are shown in Figure 4.5-1 and 

Figure 4.5-2. These two figures, only show the standSit and sitStand misclassifications. 

The GT are shown in blue and the QDA results in orange. 

Table 4.5-3 Subject 10JBO1L ground truth average duration and number of observations 

 

Table 4.5-4 Subject 10JBO1L  prediction results from testing the QDA and RUSBoost model. 

 

Looking at the first figure, the three GT large blue peaks (sitStand = 2) are where 

the QDA model misclassified the sitStand (2) as standSit (1), in which the blue peak is 

covering the short orange peak. The RUSBoost model classified these correctly, therefore 

not seen in Figure 4.5-2. At the first blue peak, she slightly rocked back and forth twice to 

gain momentum before standing. She normally does not rock back and forth but uses just 

her arms to help herself up. One of the last two peaks, she leaned forward more when she 

stood up from sitting on a couch. The couch was lower than the hard chair she normally 

sat in. Another time she stood up with her upper body slightly turned to look over her 

shoulder and start walking right after.  

Next, the short blue GT peaks (standSit = 1) are where the QDA model 

misclassified the standSit (1) as sitStand (2), which was the lowest true positive rate out 

of dataset 1 subjects. She did sit in a hard chair compared to a couch or a recliner like the 

other subjects. She also sat down with a straighter posture, using more of her leg muscles 

StandSit SitStand Other Stand-Sit Sit-Stand

0:00:02 0:00:02 1940 14 17

Number of ObservationsAvg GT Duration

other 70.62% 3.45% 25.93% 71.55% 1.34% 27.11%

stand-sit 7.14% 21.43% 71.43% 0.00% 14.29% 85.71%

sit-stand 0.00% 17.65% 82.35% 0.00% 0.00% 100.00%

QDA 70.37% other stand-sit sit-stand other stand-sit sit-stand

RUS 71.39% Predicted

10JBO1L
QDA RUS

T
R
U
E
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than the other subjects. All, but one standSit was misclassified. The states prior to her 

sitting down varied more than others. For example, she would reach forward over the 

table and continue to lean forward before sitting, when normally she had a straight 

posture. Another time she took steps sideways and sat down without pausing to stand.  

 
Figure 4.5-1 Subject 10JBO1L predicted QDA sitStand and standSit compared to the GT. 

The RUSBoost model misclassified three standSits different from the QDA 

model. There is one on the left located by the arrow and the two on the right that has the 

same time. This is possible because the 5-second window was labeled as sitStand or 

standSit if either was present. In one of these instances, she leaned forward and quickly 

yank the chair closer to her. Another time she took a step while leaning forward and 

pulling the chair towards her. Once again, the prior events make a difference. 
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Figure 4.5-2 Subject 10JBO1L predicted RUSBoost sitStand and standSit results compared to the GT. The 

times are relative to the larger number of misclassifications found using the RUSBoost model than QDA. 

4.5.3 13JAO1L / 13JAO2L 

Subject 13JAO1L / 13JAO2L had the second to lowest overall test accuracy about 

70% for QDA and about 65% for the RUSBoost model. Both data collection session 

results are shown below for comparison. For his first session, 13JAO1L was the only 

subject that had a 100% true positive rate for standSit class, but there were only two 

standSits ground truths observed. The two out of three sitStands were misclassified as 

standSits, which resulted in the lowest true positive rate of 33.33%. And the other class 

commonly had a few instances misclassified as sitStand. The confusion matrices are 

shown in Appendix G.2. Instead, the QDA and RUSBoost misclassification results are 

shown below for both 13JAO1L and 13JAO2L. 

Table 4.5-5 Subject 13JAO1L and 13JAO2L ground truth average duration and number of observations. 

 

 Subject 13JAO1L normally sat in his recliner chair that was out of the depth 

sensor’s view. When he sat down and stood up, he typically had a moderate forward lean, 
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used both hands on his knees for assistance, or held onto something for stability like a 

table. The sitStand and standSits observed during the first data collection were from two 

different chairs. The first one was from when he sat at his dining table in a hard leather 

chair with wheels. As mentioned above for both the QDA and RUSBoost model, the 

sitStands were misclassified as standSits indicated by the large blue GT peaks. Before 

standing he rolled counter-clockwise 90 degrees, leaned forward, and held on to the 

kitchen counter close by. The second chair was a leather reclining chair, but different 

from his main chair. He did not recline back, but it took two attempts to stand up by 

leaning forward and using his arm to push off his knees. 

 
Figure 4.5-3 Subject 13JAO1L QDA misclassified sitStand and standSit. See Appendix G.2 for more detail 
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Figure 4.5-4 Subject 13JAO1L QDA misclassified sitStand and standSit. See Appendix G.2 for more detail. 

For his second session, the STSs were only observed when he sat in the leather 

rolling chair at the kitchen table. The standSit class showed a slightly lower true positive 

rate of 80%, but a 90.91% rate for the sitStand class. That is almost a 60% increase from 

his first data collection session for the sitStand class. Both the QDA and RUSBoost 

misclassified two standSits located by the GT peaks below. In the first two instances, he 

took a side step, leaned extremely far forward with his chest about parallel to the floor, 

and the chair rolled slightly. The last instant is where the models misclassified one 

sitStand as standSit. Here his chest was forward, but he twisted his upper body and held 

onto the table for support. After standing he continued to lean forward. Overall, both 

models were able to identify the STS periods even with a limited number of observations.  
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Figure 4.5-5 Subject 13JAO2L QDA misclassified sitStand and standSit. See Appendix G.2 for more detail. 

 
Figure 4.5-6 Subject 13JAO2L RUS misclassified sitStand and standSit. See Appendix E.4 for more detail. 

4.5.4 29SSO1L 

Subject 29SSO1L sitStand and standSits were difficult to view from the depth 

sensor due to low visibility. She sat in a gliding rocking chair that moved forward and 

backward. There were only two times she sat on the couch. One of them the RUSBoost 

model misclassified a sitStand as standSit. Oddly, this looks like a normal sitStand. She 

leaned forward and stood up with a moderate speed. But the other sitStand that was 

classified correctly, she sat on the rocking chair and stood up with a normal forward lean.  
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From the RUSBoost model, half the standSit class was classified as sitStand. The 

other half was correctly identified. During these times she moderately leaned forward and 

sat down quickly causing the rocker to move after sitting. This was also seen with the 

QDA model, where only two standSits were misclassified as sitStand or the other class. 

Overall subject 29SSO1L had some of the lowest true positive rates, especially seen with 

the RUSBoost model. The common cause was the rocking chair, which moved forward 

and back after sitting. 

Table 4.5-6 Subject 29SSO1L ground truth average duration and the number of observations. 

 
 

Table 4.5-7 Subject 29SSO1L prediction results from testing the QDA and RUSBoost model. 

 
 

4.5.5 31FSO1L 

Subject 31FSO1L sits in a recliner chair that also rocks. He normally leans 

forward before sitting and standing. To stand, he uses his cane and one armrest to help 

stand or sit down. The results between the QDA model and the RUSBoost model vary 

more than the previous four subjects. The RUSBoost had a higher sitStand true positive 

case than the QDA model that had a rate of 54.17%. Oppositely, the QDA model had a 

higher standSit true positive rate than the RUSBoost model that had a rate of 30.43%.  

StandSit SitStand Other Stand-Sit Sit-Stand

0:00:01 0:00:01 1042 8 3

Avg GT Duration Number of Observations

other 78.21% 2.69% 19.10% 48.37% 9.02% 42.61%

stand-sit 12.50% 62.50% 25.00% 0.00% 50.00% 50.00%

sit-stand 33.33% 0.00% 66.67% 0.00% 33.33% 66.67%

QDA 78.06% other stand-sit sit-stand other stand-sit sit-stand

RUS 48.43%

T
R
U
E

Predicted

29SSO1L
QDA RUS
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The sitStands for the QDA model were misclassified as either the other class or 

standSit class. At these instances, he either leaned forward more than usual or took 

multiple attempts to try to stand up which caused the same sitStand to show up twice. 

This was previously seen with subject 10JBO1L. The standSit class was mostly 

misclassified by the RUSBoost model as sitStands. He either turned his upper body to 

look behind him to check where he was going to sit or reach down to hold on to the 

armrest for support along with his cane. Occasionally, he would fall into his recliner 

chair, which caused it to rock back and forth, which is a similar motion to how some 

older adults stand up. 

Table 4.5-8 Subject 31FSO1L ground truth average duration and the number of observations. 

 
 

Table 4.5-9 Subject 31FSO1L prediction results from testing the QDA and RUSBoost model. 

 
 

4.6 Summary and Discussion 

Reviewing other studies, there is a wide range of accuracies being reported. The 

higher accuracies are typically conducted in a research or clinical environment with 

younger subjects [33],[34], [35]. The lower accuracies were conducted in real living 

environments [27], [28], [31]. One study that was performed in a real living environment, 

used a hip-worn accelerometer and trained their model using a random forest classifier. 

StandSit SitStand Other Stand-Sit Sit-Stand

0:00:02 0:00:03 1561 23 24

Avg GT Duration Number of Observations

other 74.82% 3.07% 22.10% 75.59% 0.51% 23.89%

stand-sit 8.70% 73.91% 17.39% 13.04% 30.43% 56.52%

sit-stand 20.83% 25.00% 54.17% 20.83% 0.00% 79.17%

QDA 74.50% other stand-sit sit-stand other stand-sit sit-stand

RUS 75.00%

T
R
U
E

Predicted

31FSO1L

QDA RUS
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They reported accuracies for sit-to-stand 52% and stand-to-sit 51% [27]. Another study 

used an accelerometer and gyroscope placed on the lower back. They used a combination 

of signal processing techniques to identify STS, which includes analyzing the signals 

using a discrete wavelet transformation (DWT), a six-degrees-of-freedom fusion 

algorithm, and vertical displacement estimation. They reported overall accuracies of 85% 

for older adults used the combination of title angle estimation.[26]. 

Overall, both the QDA and RUSBoost model in this study performed well with an 

average test accuracy computed from each subject of 89% for dataset 1 and 86% for 

dataset 2. The QDA had slightly higher accuracies and it was quicker to train, which was 

about 11 seconds. Even though RUSBoost only took about 40 seconds to train, a simpler 

and quicker model is best for low powered accelerometers to minimize battery 

consumption. The other category typically had high performance around 90%. There 

were significantly more observations for this class. Most of these other activities were 

either sitting or walking. Sitting is easier to classify since it is a stationary activity that 

produces a constant signal and normally has longer durations. Walks are non-stationary 

but also are longer in duration than STS. As seen in the step detection section, walks and 

steps have a unique cyclic pattern, but with older adults, their gaits vary a lot.  

Both models were able to find almost all the sit-to-stands and stand-to-sit events. 

These postural transitions had a unique waveform in the accelerometer signal different 

from other class activities. However, comparing stand-to-sit to sit-to-stand the 

accelerometer signals were similar. Most of the misclassifications were between the two 

classes. For example, the stand-to-sit were misclassified as sit-to-stand and vice versa. 

Earlier shown, subject 07HRO1L extremely leaned forward and subject 10JBO1L had a 
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straighter posture during these STS transitions. Occasionally the way they sat down or 

stood up changed causing misclassification. The stand-to-sit class was the hardest to 

classify. The most variation occurred prior to sitting. This indicates the importance of 

identifying the preceding events.  

For future work, implementing different features like angular velocity correlated 

with the duration of continuous states may increase the performance of finding the STS 

periods [36], [37],[9]. Another improvement to the STS algorithm may use a post 

validation process using a steady-state machine that defines states based on an event or a 

sequence of events before sit-to-stand or stand-to-sit. The order of when the person sits is 

an important feature because the sitting time is typically longer than these postural 

transitional movements. For evaluation, considering which subject rocks back and forth 

or takes several attempts to stand up could help understand the results from the model for 

each person. And lastly, computing several different output features such as the total STS 

durations, trunk angles, and angular velocity would be valuable information to detect 

changes over time.  
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5 Motion Density – Accelerometer Based 

5.2 Background 

Monitoring physical activity is a common way to get insight into a person’s 

overall level of health. As stated in an article in a sports medicine section of the Springer 

Journal, physical activity is movement, and energy expenditure is defined as “a reflection 

of gender, age, and body mass, in addition to movement and efficiency of movement [7]. 

Sensors can provide continuous monitoring of various health information that can give 

insight into daily functional patterns. The current in-home systems at facilities like 

TigerPlace captures motion density using four motion sensors to track activity level over 

time [7]. And motion density is a set of motion over a unit of time. To accurately measure 

activity density in a home, the time the home was vacant was detected. Further details of 

how time away from home (TAFH) was determined is explained in the next section. 

An in-home motion sensor network is not able to identify individual activity 

levels when there are multiple people living in the same space or visitors. And activity 

outside of the home can only be tracked using personal activity trackers or mobile 

devices that can track activity. However, there are several limitations to using a mobile 

device, such as the person must always have it with them. For this study, we used the 

ActiGraph to capture motion density. The overall goal is to determine a person’s daily 

level of activity and detect any changes from the norm. The data collected for this 

research is not long enough to determine significant changes. This thesis uses the current 

motion sensor system and ground truths obtained from the depth sensor videos to 

compare the motion density computed using the ActiGraph accelerometer signals.  
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5.3 Method 

The depth sensor was used to classify stationary versus non-station events. From 

the short amount of daily physical activity among elderly adults, the non-stationary 

events captured from the ActiGraph accelerometer in the z-direction were mostly walking 

events. Also, the non-stationary events had to be at least 10 seconds or more to be 

detected by the ActiGraph. The ground truths were labeled as walking times when the 

subject was in view of the depth sensor. Walking events were counted when a person 

took three or more steps. Again, these are non-stationary events that were used to 

calculate motion density.  

Motion density calculated from the ActiGraph was based on the number of active 

instances over a unit of time. For example, each hour the person was in view of the depth 

sensor the number of active minutes was totaled. The ground truth was calculated 

similarly but with the total number of labeled walking instances every hour. At 

mentioned before, the motion sensor density was computed as the number of all motion 

sensor hits during an hour divided by the time at home during that hour [38]. 

The ground truth of only walking periods was compared to the ActiGraph motion 

density. Also, the ground truth is compared to the density motion computed from the 

Zigbee motion sensors. Below is the table, which shows an outline of the data used in this 

section. 

Table 5.3-1 A list of motion density data used for comparison. 

Data Motion Density Metric 

Ground Truth (labeled data) Labeled walking instances (events) 

ActiGraph Accelerometer Detected activity instances 

Motion Sensor (Zigbee) Detected motion hits every 7 seconds 
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5.4 Overall Results 

The results in this section compare daily motion density from the ground truth and 

ActiGraph data to the motion sensor density. First looking at dataset 1 in Figure 5.4-1, the 

top three subjects 02BCO1L, 03BHO1L, and 06DHO1L had the highest amount of 

activity detected from the ActiGraph and GT. But looking at Figure 5.4-2, the motion 

sensors detected the least amount of motion for these three individuals. Subject 

03BHO1L sat in the living room or would walk to the kitchen, but his living room motion 

sensor was not working at the time. Therefore, the motion sensor density did not 

accurately show his level of activity. Now looking at the motion sensor results first, 

05LBO1L, 07HRO1L, and 11ASO1L had the highest densities, while looking at the GT 

and ActiGraph they had some of the lowest densities.  

Overall the ActiGraph accelerometer resulted in lower densities than the GT in 

dataset 1, but relatively the moving average was similar. There were a few exceptions, 

such as 07HRO1L and 09HSO1L had significantly lower ActiGraph densities than the 

GT. And comparing the GT and ActiGraph, there were a few major differences in the 

moving averages caused by the six subjects previously mentioned. 
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Figure 5.4-1 Dataset 1 overall motion density per day from the GT and ActiGraph accelerometer. GT and 

ActiGraph has a similar trend. 

 
Figure 5.4-2 Dataset 1 overall motion density per day from in-home motion sensors that fire every 7 

seconds (sensor hits) when it detects movement. The blue circles show the motion sensors have high density 

motion vs GT & ActiGraph. Subject 03BHO1L had inactive bedroom and living room motion sensor. 

 From dataset 2 in Figure 5.4-3, looking at both the GT and ActiGraph, subjects 

13JAO1L and 27CHO1L had a higher density than detected from the motion sensors. 

There were a few cases where the ActiGraph showed higher densities than the GT, such 

as 13JAO1L, 18RCO1L, 25EHO1L, and 27CHO1L. Oppositely, there were cases where 

the Actigraph showed significantly lower densities than the GT, such as with 15LOO1L, 
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31FSO1L, and 33BEO1L. Overall the moving averages were similar between the GT and 

motion sensors but slightly less similar compared to the ActiGraph.   

 
Figure 5.4-3 Dataset 2 overall motion density per day from the GT and ActiGraph accelerometer. The 

orange arrows show higher ActiGraph motion than GT. And the brown arrow show the ActiGraph lower 

than the GT 

 
Figure 5.4-4 Dataset 2 overall motion density per day from in-home motion sensors that fire every 7 

seconds (sensor hits) when it detects movement. 
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5.5 Case Study – Motion Density 

The case studies shown below looks at the motion density on an hourly precision. 

The subjects chosen were based on the special cases mentioned above to represent similar 

situations.  

5.5.1 Case 1: Subject 05BLO1L 

Subject 05BLO1L showed high motion sensor density compared to the GT and 

ActiGraph results. The GT and ActiGraph accelerometer motion densities were similar, 

but the ActiGraph was still slightly less dense. Looking closer at the individual hours, the 

ActiGraph there was one significantly higher density on the second day at 9:00 located by 

the red arrow. The ground truth reported no motion and the motion sensor detected some 

motion, but not the highest. The reason for the large differences was caused by her doing 

sit-to-stand and stand-to-sit exercises consecutively. Even though individually these 

movements are only a few seconds, as a set of events the ActiGraph and living room 

motion was able to detect the movements. Now, the reason for the motion sensors having 

a higher density was caused by the visitors. She had a person with her during the day to 

help and there were multiple staff entering and exiting for short periods. 
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Figure 5.5-1 Subject 05LBO1L motion density results per hour from the motion sensors (left – green), GT 

(top right - blue), and ActiGraph accelerometer (bottom right – red).  

 

5.5.2 Case 2: Subject 33BEO1L  

Subject 33BEO1L had very low ActiGraph motion density and a relatively large 

difference between the Actigraph and GT. The ActiGraph density was very sparse, also 

observed from 15LOO1L and 31FSO1L who were mentioned earlier. Most likely the 

ActiGraph did not detect activity because her slow walks were not considered at least 10 

seconds. She took only a few steps at a time before taking more. Throughout the day she 

sat in her chair or got up to either go to the bathroom or to leave for a meal. 

The motion sensors detected more activity than both the GT and ActiGraph. This 

was partly due to the bedroom and bathroom motion not being filtered out. There were a 

few times when there was only a visitor in the apartment when she left. For example, on 

the first day at 14:00 located by the red arrow.  

Looking at the third day at 7:00 located by the dashed green arrow, the ActiGraph 

had a higher motion density than the GT. Only one walking event was labeled as GT and 

was about 10 seconds. However, the ActiGraph was most likely detected when she sat in 

her wheelchair and she was being pushed by the nurse. The nurse repeatedly started to 
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push the wheelchair for a few seconds then stopped about four times before they both left 

the apartment. Overall, the few hours the ActiGraph detected active events there was GT 

and the motion density. 

 
Figure 5.5-2 Subject 33BEO1L motion density results per hour from the motion sensors (left – green), GT 

(top right - blue), and ActiGraph accelerometer (bottom right – red). 

5.5.3 Case 2: Subject  27CHO1L  

Subject 27 was mostly in bed for all three days. She had most of her meals 

brought to her apartment, except in the morning. The times she was out of bed, included 

walking to the bathroom or in the living room to get the food that was delivered. The first 

night at 20:00 located by the red arrow, she was in bed the entire hour. Based on 

watching the depth sensor videos, she moved the most during the beginning of this hour. 

She leaned over to reach something a few times and switched sides she was laying on 

several times. The bedroom motion sensor across the room was able to detect motion. 

During this hour there was no GT recorded and the ActiGraph motion density was low. 

All the blue dotted circles identify the times when she was in bed and there was motion 

density for the bedroom motion sensor and ActiGraph. But again, there was a lack of GT 

recorded.  
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The last two hours located by the red circle showed similar motion densities for 

the ActiGraph and motion sensors. Looking at the last hour, the motion sensor density 

was higher because she had a visitor. The ActiGraph was mostly higher because she 

performed a few sit-to-stands consecutively and exercises in the bed by rolling side to 

side. Overall, 27CHO1L motion densities produced by the ActiGraph and motion sensors 

were similar. 

 
Figure 5.5-3 Subject 27CHO1L motion density results per hour from the motion sensors (left – green), GT 

(top right - blue), and ActiGraph accelerometer (bottom right – red). 

5.6 Summary and Discussion 

Overall, the ActiGraph showed similar levels of motion density as the GT, but most 

importantly the in-home motion sensors. However, the results showed that if there is 

more motion caused by the visitor, the motion sensor density would not be a good 

representation of their overall activity levels as seen with 05BLO1L and 33BEO1L. 

Therefore, a wearable sensor would provide a better option for environments with 

multiple people or frequent visitors. 

For all subjects in dataset 1, the ActiGraph resulted in lower densities than the 

ground truth. This was not a surprise because the ActiGraphs are sensitive to activity 
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produced at least 10 seconds, which were mostly walking events. For dataset 2, 

13JAO1L, 17LPO1L, 18RCO1L, 25EHO1L, and 27CHO1L had slightly higher motion 

densities from the ActiGraph than the ground truth. As explained by the three cases, it is 

possible to produce activities that are non-walking events. Specifically, the ActiGraph 

had a higher motion density when subject 05LBO1L and 27CHO1L performed short 

consecutive movements like sit-to-stand and stand-to-sits. 

For future work, the motion sensor density should be computed in a related way to 

the ActiGraph for a better comparison. The motion sensor hits should be added each 

hour, but only during the time, the subject was in view of the depth sensor divided by the 

time they were in view during that hour. 
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6 Vacancy Detection 

6.2 Background 

Detecting vacancy along with capturing motion density helps estimate a person’s 

daily level of activity. It has been estimated that older adults spend 60% of their day 

sitting [7]. If the subjects in this study were not sitting in their favorite chair, they left 

their apartment to eat a meal or attend an activity. Most of the apartments were studios or 

one-bedroom that did not allow for a lot of room to walk around. There were four motion 

sensors. One placed in the bathroom, bedroom, living room, and on the ceiling above the 

front door.  

The current vacancy algorithm developed by S.Wang uses the motion sensor data 

was based on the old x10 motion sensor system that fired every 7 seconds [7]. This 

algorithm tracks whether each sensor event is a front door sensor or another sensor like a 

bedroom or bathroom. The time away from home (TAFH) is the entire duration of 

continuous chronological front door sensor events. The final decision uses a fuzzy logic 

system to calculate confidence when the apartment was vacant. Ideally, the duration of 

the door sensor events before leaving and after returning should be a lot shorter than the 

duration of no sensor events to be call TAFH.   

In the future, the goal is to use the true firing of the Zigbee motion sensor system 

that only captures the start time when motion is first detected and end time when there is 

no motion without the extended firings in between. No motion is when there is no 

differential change between the two IRs embedded in the Zigbee sensors, such as heat 

given off from a person’s body. There have been concerns with the accuracy of the 

current system since switching to a new one. Along with the motion density, the vacancy 
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algorithm can give insight into ambiguous sensor-based parameters. For example, when 

motion density decreases within the apartment during the day, it may look like a person is 

less active. In facilities like TigerPlace, the caveat could be fewer caregivers entering 

because the person started feeling better. 

6.3 Method 

The vacancy algorithm proposed in this thesis uses crisp decision results with a 

steady-state machine approach to determine the start and ending TAFH periods. Figure 

6.3-1 illustrates the three main states for motion sensor events; front door, no motion, and 

other motion that includes bedroom and living room motion events. There can be 

continuous motion sensor events, such as if a person continuously stands in the doorway 

or walks around in their apartment a lot. 

 
Figure 6.3-1 Steady-state diagram shows the three main motion sensor events in an apartment.  

The proposed vacancy algorithm is described in Figure 6.3-3. For the purpose of 

testing, the algorithm was tested offline using motion sensor data between each subject’s 

data collection. The Figure 6.3-2 shows an example of a vacancy detection sequence 

from subject 01BLO1L.The TAFH for this proposed algorithm is the duration between 

the end time of the first front door motion event and the start time of the next front door 

No 

Motion 

Front 

Door 
Other 

Motion 

Resting / Sleeping 
Enter / Exit 

Walking to / away 
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motion event, shown by the short orange bracket. There must be prior other motion 

before exiting and other motion after returning, shown by the green brackets. Also, the 

apartment must be vacant for at least a threshold of 1.5 minutes. This threshold is longer 

than if someone steps out of the apartment for a few seconds. Also, the time between the 

last front door motion event right before exiting and entering, must be greater than the 

threshold. This reduces short front door motion events that cause false positives.  

 
Figure 6.3-2 Example of proposed vacancy detection sequence from subject 01BLO1L. The green brackets 

show there was other motion prior to exiting and after entering her apartment. The long orange bracket is 

the duration between the predicted enter and initial front door motion event. The short orange bracket is 

the duration between the enter and exit times. 
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Figure 6.3-3 Proposed vacancy algorithm using Zigbee start and end motion sensor events only. 

The current S.Wang algorithm and the proposed algorithm results were compared 

to the ground truth labels that were manually recorded from the depth sensor videos. 

These labels consisted of times when the resident entered and exited their apartment. Any 

ground truth times or times detected from the current algorithm under the minimum 

threshold were eliminated. 

Proposed Vacancy Algorithm:  

For k = BeginDetection : EndDetection 

1) Find other motion prior to exitTime. OtherMotion = k 

2) Find the initial front door event with the ON status. fr1 = k.  

3) Find the front door event (k) with the OFF status. fr2 = k. This is the possible 

exitTime. 

a. If the next (k+2) motion even is the front door and the status is ON 

i. If there are continuous front door motion hits find the last front 

door event in sequence. Then fr3 = k. This is the possible 

enterTime. 

ii. If there is NOT continuous front door motion hits. fr3 = k. This 

is the possible enterTime. 

b. If the duration proposed enterTime (fr3) – initial front door (fr1) and 

proposed enterTime(fr3) – exitTime(fr2) are greater than the threshold 

(TR). Then record enterTime (fr3) and exitTime (fr2).  

i. proposed enterTime (fr3) – initial front door (fr1), this avoids 

short front door hits. And calculate the duration. 

4) Check for other motion event hits prior to exitTime 

a. If there is no motion prior to exitTime, Then  remove the predicted 

exitTime and associated enterTime 

5) Check for other motion event hits after exitTime 

a. If there is motion after exitTime, Then remove the predicted exitTime 

and associated enterTime 

End 
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Table 6.3-1 Vacancy detection algorithm dataset and ground truth metrics. 

Data Metric 

Ground Truth Labeled Exit/Enter Times 

S.Wang Vacancy (current) Motion sensor hits every 7 seconds 

Proposed Vacancy (Zigbee) Motion sensor start time & end time 

 

A few subjects, unfortunately, had technical difficulties with their motion sensors 

during the collection periods. For the vacancy section, the individuals without motion 

sensor data were not included. From dataset 1, only subject 02BCO1L  had missing data. 

For dataset 2, subject 13JAO1L/13JAO2L, 15LOO1L, and 33BEO1L.   

6.4 Results 

Figure 6.4-1 and Figure 6.4-2 demonstrates an overall performance of both the 

current algorithm and proposed algorithm against the ground truth. The average TAFH 

durations below were calculated from each subject’s total TAFH per hour. If the 

algorithms had a perfect performance the durations would match, like 05LBO1L, 

07HRO1L, and 32PKO1L. For dataset 1, 03BHO1L, 06DHO1L, 08DWO1L, and 

11ASO1L had the largest differences from the ground truth. The details of these specific 

cases are discussed in the case study section 6.5. 
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Figure 6.4-1 Dataset 1: Average TAFH durations with respect to hourly precision. 

 For dataset 2, 18RCO1L, 19VBO1L, 20JJO1L, 22NDO1L, 25EHO1L, 28JBO1L, 

and 34REO1L had the largest differences compared to the ground truth. Some of the 

common pitfalls were visitors interrupting the common TAFH sequences or inefficient 

motion sensor placements. Also, another weakness of the proposed algorithm is that it 

would record the enter time as the last front door motion sensor in series right before it 

detected other motion in the apartment. Most of the time this occurred when there was 

continuous front door motion due to someone standing in the doorway or frequently 

walked past the door without triggering other motion sensors. 

The residents from dataset 2 that had several visitors include, 18RCO1L and 

19VBO1L. Subject 20JJO1L main rolling desk chair is right by the front door, where he 

spends a lot of time. Sometimes it was difficult to tell if he left his apartment because the 

front door was not in view of the depth sensor frame. For subject 34, two out of four 

TAFH were interrupted by a visitor entering the apartment from the patio door without a 

motion sensor.  
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Figure 6.4-2 Dataset 2: Average TAFH durations with respect to hourly precision. 

6.5 Case Study – Vacancy Detection 

6.5.1 Case 1: 03BHO1L 

Subject 03BHO1L unfortunately only had the front door and bathroom motion 

sensors active during the data collection period. Therefore, an exitTime or enterTime was 

only counted if there was prior bathroom motion or post bathroom motion after he 

entered. If he did not go to the bathroom after entering the apartment, the vacancy 

algorithms both would miss the times he entered his apartment. This is seen in Figure 

6.5-1, where both the current algorithm is shown in blue and the proposed algorithm is 

shown in orange are missing TAFH durations at hours 15:00 and 17:00 on December 

10th, 14:00 and 15:00 on December 11th, and 13:00 on December 12th. For the proposed 

algorithm where the durations were significantly longer at 10-Dec 17:00, 11-Dec 18:00, 

and 12-Dec 8:00 the algorithm searched for the next motion other than the front door, 

which was only the bathroom. Sometimes 03BHO1L would not enter the bathroom hours 

after entering his apartment. Also, the proposed algorithm’s recorded the last front door 

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

1:55:12

D
u

ra
ti

o
n

s 
(h

h
:m

m
:s

s)

Dataset 2: Average TAFH Durations

GT S.Wang(x10) Proposed (Zigbee)

visitors
visitors

Sat by door
No other 
motion after 
enter

No other 
motion after 
enter

Sat on 
patio



67 

 

event in series right before the other motion sensors were detected rather than recording 

the first front door event. 

 
Figure 6.5-1 Subject 03BHO1L hourly TAFH durations. 

6.5.2 Case 2: 06DHO1L 

Subject 06DHO1L has a larger apartment, shown in Figure 6.5-3. He mainly left 

his apartment for dinner and rarely there were visitors. The proposed algorithm found 

almost all the same enter times that the current algorithm detected, but the exit times are 

sometimes detected earlier. Opposite from before, the proposed algorithm would record 

the first exit time in series instead of the last exit time. Both the current and proposed 

algorithms detected more TAFH than the ground truth, as seen in Figure 6.5-2. The 

proposed algorithm did detect a similar exit time as the ground truth on 12-Feb 18:00. 

The entered time was not detected because there were no other motion sensors detected 

except for the front door. This also explains the large time difference on 12-Feb 21:00 

because the TAFH continued. Another reason for the false positives was because he 

frequently walked past the front door into the kitchen and would stay there for long 

periods of time, which looked like he left. 
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Figure 6.5-2 Subject 06DHO1L hourly TAFH durations. Only four ground truth TAFH. 

Occasionally, after he entered his apartment, the living room motion sensor did 

not detect movement. Instead, the first bedroom motion sensor was the second motion 

sensor triggered after entering his apartment. Oddly, a few times after he entered his 

apartment the first motion sensor triggered was the bedroom door other than the front 

door was the bedroom. The battery level was even reported as 2.6 V, which is considered 

good. 

 
Figure 6.5-3 06DH1OL apartment layout. The ‘X’ represents the motion sensors placements and the star 

represents the placement of the depth sensor. 
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6.5.3 Case 3: 08DWO1L 

Subject 08DWO1L was the only resident with a cat that would occasionally 

produce motion sensor events when jumping on to the bathroom counter. This caused 

both the current and proposed algorithm to not detect a vacant period as seen in Figure 

6.5-5 at 16-Feb 18:00. Another significant difference occurred between 15-Feb 10:00 and 

15-Feb 11:00. The proposed algorithm detected the same exit time as the ground truth but 

missed the time she entered her apartment. There was no other motion detected until after 

11:00 am, which caused the proposed algorithm TAFH duration to be extended.  

Next, the current and proposed algorithm detected vacancy at 16-Feb 16:00, when 

it should have not. In this case, 08DWO1L left the apartment, but there was a visitor still 

in the apartment cleaning in a room without motion sensors. The apartment was large 

enough that when the visitor walked into the common area, they walked to the front door 

without producing a living room motion event. Soon after, they walked into the bedroom, 

which triggered the correct series of events to look like someone entered the apartment. 

The path the visitor took after 08DWO1L left is shown in Figure 6.5-4 with red arrows. 

 
Figure 6.5-4 Subject 08DWO1L apartment layout. The ‘X’ represents the motion sensors placements and 

the star represents the placement of the depth sensor. The red arrows were the path the visitor took that 

avoided triggering the living room motion sensor. 
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Figure 6.5-5 Subject 08DWO1L hourly TAFH durations. 

6.5.4 Case 4: 11ASO1L 

Subject 11ASO1L had a very small apartment that was only 340 square feet, 

shown in Figure 6.5-6. She typically would rest on the couch, which was right next to the 

front door. When she sat down or stood up from the couch, it triggered the front door 

motion rather than the living room. To trigger the living room motion sensor, she had to 

get up and take a few steps towards it. This confusion and the handful of visitors entering 

and exiting created several false positives, which can be seen below in Figure 6.5-6. Also, 

the differences in the current algorithm and the proposed algorithm were due to the 

proposed algorithm recording the enter times at a later time or the exit time early like 

mentioned before. Overall, both the algorithms detected similar vacancy periods as the 

ground truth. 
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Figure 6.5-6 Subject 11ASO1L apartment layout. The ‘X’ represents the motion sensors placements and the 

star represents the placement of the depth sensor. 

 

 
Figure 6.5-7 Subject 11ASO1L hourly TAFH durations. 

6.6 Summary and Discussion 

Overall, the proposed algorithm performed well even with several weaknesses 

recording exit times early or enter times late, visitors, pets, and times when the resident 

leaves the apartment using the patio door. The methodology of this new proposed 
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algorithm has a high potential over the old algorithm because it minimizes the need to use 

the simulated firing of 7-second motion. Instead, the proposed algorithm in this thesis 

focused on the true Zigbee motion sensor events that only fire at the beginning of a 

motion event and the end of a motion event. 

The case studies further stress that the arrangement of the motion sensors should 

be strategically placed. For many of these small apartments, having a centralized living 

room motion sensor far enough away from the front door is critical, along with the front 

door motion sensor for the vacancy algorithm to work properly. For example, 03BHO1L 

only had the bathroom motion sensor other than the front door motion sensor. This 

specific case was an example of what happens when there is a sparse number of motion 

sensors. And where 11ASO1L sat during the day was close to the front door motion 

sensor caused a lot of false positives.  

For future work, the algorithm could look at other thresholds to find one that 

works better to eliminate short continuous front door motion events. Also, the algorithm 

could check for the other in-home sensors to verify a person is not in the bed or the living 

space during the predicted TAFH duration. A person sitting still or sleeping for a long 

time, motion sensors might falsely detect the apartment as vacant. The depth sensor could 

be used to validate the living room for walking periods. The last suggestion would be to 

test the S.Wang algorithm using the true Zigbee motion sensor events for an equal 

comparison to the proposed algorithm. 
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7 Conclusion 

In this study, several algorithms were developed and assessed to understand how 

different functional abilities and health may affect the results. These algorithms can be 

used as a continuum of monitoring health to identify early health problems. All the 

results were compared to the ground truth labels that were created from watching depth 

sensor videos.  

In chapter 3, the step detection algorithm used a signal processing approach to 

counting steps from walking periods using the ActiGraph x-axis accelerometer signals. 

The different gait patterns that were looked at included a person’s posture, walking 

speed, base-of-support, and gait cycles. This thesis explained the complexity of older 

adults' gait patterns and how they vary depending on how a person feels, time of day, or 

physical ability. It showed that a person with a forward posture and uses an assistive 

device greatly reduced the accuracy of counting steps. An assistive walking device 

produces additional noise in the accelerometer signal that resulted in a lot of false 

positives. And using the x-axis accelerometer signal was difficult to accurately count 

steps, but had the best results for the older adults in this study. The step detection 

algorithm was able to count individual steps but undercounted steps for a person with an 

average gait pattern, a straight posture, and no assistive device. Future studies will need 

to improve the accuracy along with combining a walking detection algorithm. 

In chapter 4, the stand-to-sit and sit-to-stand classifier (STS)  using the quadratic 

discriminate analysis (QDA) and random under-sampling boost (RUSBoost) based 

algorithms to identify postural transitions. Almost all the sit-to-stands and stand-to-sits 

were found separate from other activities. The case studies demonstrated different 
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instances where the models misclassified the three classes. It also determined that prior 

events to a stand-to-sit are important to identify to accurately classify it separate from sit-

to-stands. Overall, the validation and test accuracy were over 90%.  

In chapter 5, this thesis provided another method to identify motion density using 

accelerometers. The results were compared to the ground truth and the current motion 

density results that used in-home motion sensor data. The accelerometer eliminates the 

concern with visitors creating additional activity. But there were times when it showed 

higher motion density than the GT that indicated stationary activities like sitting or lying 

down. The ActiGraph accelerometer data produced less motion density than the ground 

truth. But overall, it provided similar results relative to the in-home motion sensors data.  

In chapter 6, a proposed vacancy detection algorithm was developed to use Zigbee 

motion sensor data instead of the simulated x10 that fired every 7 seconds. The algorithm 

found almost all the time periods when the subject was away from home, but produced a 

lot of false-positive results as well. When someone used the patio door to exit or enter, 

the algorithm did not detect the apartment was vacant. Also, visitors sometimes confused 

the vacancy detection sequence. The placement of the motion sensors is important as we 

saw with subject 11ASO1L, who sat close to the front door motion sensor. For future 

work, the number of false-positive events needs to be reduced. 
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Appendix 

 Step Detection Program List 

Directory: ILA_LiaHowe/StepDection_LH 

Input: raw accelerometer data, timestamps, GT walk times 

1. Vector Magnitude Step Detection 

a. stepDetection_vecMag_LH.mat 

i. output: vector magnitude step counts 

2. Dynamic Axis Selection Step Detection 

a. stepDetection_selection_LH.mat 

i. output: step counts based on optimal axis per window 

3. Single Axis Step Detection (x, y, or z) 

a. stepDectection_All3axes_LH.mat 

i. output: step counts based on chosen axis (x, y, or z) 

 STS Program List 

Directory: STS_LH 

Input: raw accelerometer data, timestamps, GT walk times 

1. standSit_formatGT.m – formats the STS timestamps & finds matching raw data index 

a. input: original Timestamps, STS GT labeled times 

b. output: GT begin times & GT end times 

c. Additional functions: 

i. importStandSit.m 

ii. datetime2datestr.m 

iii. datetime2duration.m 

2. preproces_standSit.m 

a. input: raw accelerometer data, timestamps, STS GT labeled times 

b. output: xdata (features), ydata (labels), userIDs, whole D1 xdata & ydata, 

whole D2 xdata & ydata  

c. Additional Functions: 

i. windowingFeatures.m 

3. standSitclassifier.m 

a. input: xdata (features), ydata (labels), userIDs, whole D1 xdata & ydata, 

whole D2 xdata & ydata  

b. output: predicted QDA and predicted RUS labels 

c. Additional functions: 

i. confusionMatrix.m 

ii. charLabels2Num.m 
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 Vacancy Program List 

Directory: Zigbee_LH 

testScript_HourlyDaily.m – main script used to run the vacancy algorithm 

1. sampleFiles.m – loads info 

a. file input: motion sensor filenames, vacancy data collection range 

2. vacancyStartEndTimes.m 

a. OOAformat.m 

i. formats the Zigbee motion sensor data & removes the simulated x10 

motion sensor hits every 7 secs 

ii. input: filename 1, filename 2, filename 3, startTime, endTime, rootdir, 

relativefolder 

iii. output: data 

b. getOldVacancyData.m 

i. connects to the db.adl and fetches the predicted enterTime & exitTime 

for TAFH (S.Wang vacancy algorithm) 

ii. map of the original residentIDs associated to the userIDs used for this 

study 

iii. **CHANGE** : user path to dbConnection 

c. importZigbee.m – imports Zigbee motion sensor data 

d. importGT.m – imports ground truth labels 

i. input: filename 

ii. output: GTExit, GTEnter 

3. cmstats.m 

a. input: groundtruthTAFH, predictedTAFH 

b. output: accuracy,sensitivity, specificity, precision, recall, FScore 

 Participant Information 

Appx. Table  D-1 Average biometric data for dataset 1 (10 volunteers) and dataset 2 (20 volunteers). 

  
GENDER 

(F:M) 

AGE 

(years) 

HEIGHT 

(in) 

WEIGHT 

(lbs.) 

BUILD 

(E:M:EN) 

Dataset 1 - 

Average 
8:1 87.5 ± 7.5 64.3 ± 7 148 ± 57 2:3:5 

Dataset 1 - Female 8 87.86 ± 7.5 62.63 ± 5 137.63 ± 35 1:3:4 

Dataset 1 - Male 2 85 ± 5 71 ± 3 
189.5 ± 

30.5 
1:0:1 

Dataset 2 - 

Average 
14:6 83.7 ± 15 64.05 ± 9.5 

158.1 ± 

78.5 
3:7:10 

Dataset 2 - Female 14 83.14 ± 15 61.36 ± 7 144.21 ± 55 3:3:8 

Dataset 2 - Male 6 85 ± 12.5 70.33 ± 1.5 
190.5 ± 

37.5 
0:4:2 
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Appx. Table  D-2 Dataset 1 subject information and data collection information 

 

Dataset 1 - Subject Information

ID Name Facility
Time 

Range

Sampling 

Rate (Hz)

Motion 

Sensor 

Status G
e

n
d

e
r

Age
Physiological 

Build

Height 

(inches)

Weight 

(lbs)

Assistive 

Devices

Assistive 

Device 

during 

Calibration

Orientation 

attach 

Actigraph

Orientation 

remove 

Actigraph

01BLO1L TigerPlace 48 50 F 84 Endomorph 63 172 none none sat in chair sat in chair

02BCO1L TigerPlace 24 50
no front, 

vaccant
F 89 Ectomorph 61 106 none none

lying in 

bed*
standing

03BHO1L TigerPlace 48 50

no 

bedroom, 

living

M 90 Endomorph 74 220 walker exit none standing standing

05LBO1L TigerPlace 48 100 F 94 Endomorph 70 176 walker walker lying in bed lying in bed

06DHO1L TigerPlace 48 100 M 80 Ectomorph 68 159 none none standing standing

07HRO1L Bluff Creek 48 100 F 92 Endomorph 62 130 walker walker sat in chair sat in chair

08DWO1L TigerPlace 48 100 F 88 Mesomorph 61 124 none none sat in chair sat in chair

09HSO1L
Colony 

Pointe
48 100 F 89 Mesomorph 62 113 walker walker sat in chair sat in chair

10JBO1L TigerPlace 48 100 F 79 Endomorph 62 147
walker 

infrequent
none

sat in hard 

chair
sat in chair

11ASO1L Hartmann 48 100 F 90 Mesomorph 60 133 walker walker lying in bed lying in bed
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Appx. Table  D-3 Dataset 2 subject information and data collection information 

 
* Orientations are reported to the best of our knowledge; however, there is some 

uncertainty. 

Dataset 2 - Subject Information

ID Name Facility
Time 

Range

Sampling 

Rate (Hz)

Motion 

Sensor 

Status G
e

n
d

e
r

Age
Physiological 

Build

Height 

(inches)

Weight 

(lbs)

Assistive 

Devices

Assistive 

Device 

during 

Calibration

Orientation 

attach 

Actigraph

Orientation 

remove 

Actigraph

12ALO1L Hartmann 48 100 F 83 Endomorph 60 178 walker walker lying down* lying down

13JAO1L TigerPlace 34 100
No front, 

vaccant
M 85 Mesomorph 72 165 walker walker

s i tting / 

recl ining in 

chair

n/a

13JAO2L TigerPlace 24 100
No front, 

vaccant
M 85 Mesomorph 72 165 walker walker lying sit/recline*

15LOO1L Hartmann 48 100

No front , 

vaccant 

(front 15 

min 

precision

)

F 92 Ectomorph 67 165
walker, 

cane

start: 

walker, 

end: cane

lying in bed sat in chair

16NDO1L
Ashland 

Villa
48 100 F 79 Endomorph 62 185 cane rarely none lying in bed lying in bed

17LPO1L
Ashland 

Villa
48 100 M 71 Endomorph 69 237 walker none lying in bed sitting*

18RCO1L
Ashland 

Villa
48 100 M 87 Endomorph 70 193

wheelchair 

infrequent

none, end: 

wheelchair 

infrequent

sat in 

wheelchair
sat in bed

19VBO1L TigerPlace 48 100
no living 

room
F 90 Ectomorph 57 80 walker walker

lying back 

in recliner
sat in chair

20JJO1L TigerPlace 48 100 M 91 Mesomorph 70 162 walker walker lying down sat in chair

22NDO1L
Colony 

Pointe
48 100

front 15 

min 

precision

F 90 Endomorph 60 130 walker walker sat in chair lying down

23JWO1L
Colony 

Pointe
48 100

front 

hourly 

precision

F 74 Ectomorph 63 114 none none sat in chair sat in chair

24SPO1L TigerPlace 48 100 F 92 Mesomorph 64 130 walker walker lying in bed sat in chair

25EHO1L Bluff Creek 48 100 F 71 Endomorph 53 130 cane
start: cane, 

end: none
lying in bed sat in bed

27CHO1L TigerPlace 48 100 F 66 Endomorph 64 181 none none lying in bed sat in chair

28JBO1L
Colony 

Pointe
48 100 F 79 Endomorph 55 110 none none lying in bed lying in bed

29SSO1L TigerPlace 48 100 F 81 Endomorph 65 175 cane none lying down sat in chair

30WBO1L Churchill 48 100 M 96 Mesomorph 70 181 walker
none, end: 

walker
sat in chair sat in chair

31FSO1L Churchill 48 100 M 80 Mesomorph 71 205

cane, 

wheelchair, 

walker

cane, end: 

walker
sat in chair sat in chair

32PKO1L Churchill 48 100 F 78 Endomorph 65 190 walker

start: none, 

except a 

walker during 

depth 

calibration, 

end: none

lying down sat in chair

33BEO1L TigerPlace 48 100
no front, 

vaccant
F 93 Mesomorph 62 135 walker walker lying down sat in chair

34REO1L TigerPlace 48 100 F 96 Mesomorph 62 116
walker, 

sometimes  

wheelchair

walker lying down lying down
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 Subject Living Space Information 

Appendix E contains information about the subject’s living space, such as the layout, 

pets, and additional notes about the subject. 

Index
Resident 

ID
ILA ID

Collection 

start DATE

ACTIGRAPH 

INITIAL TIME

ACTIGRAPH 

Attachment 

Time

Collction 

end DATE

ACTIGRAPH 

Removal Time

ACTIGRAPH 

END Date

ACTIGRAPH 

Stop Time

1 3089 01BLO1L 11/29/2018 12:22:00 PM 12:22:00 PM 12/1/2018 1:13:18 PM 12/2/2018 2:00:00 PM

2 3125 02BCO1L 12/2/2018 11:19:00 AM 11:20:00 AM 12/3/2018 11:31:14 AM 12/3/2018 1:00:00 PM

3 3054 03BHO1L 12/10/2018 3:15:00 PM 3:17:05 PM 12/12/2018 3:12:25 PM 12/12/2018 4:00:00 PM

4 3026 05LBO1L 12/14/2018 1:10:00 PM 1:13:20 PM 12/16/2018 1:07:38 PM 12/16/2018 2:00:00 PM

5 3102 06DHO1L 2/12/2019 2:00:00 PM 2:01:00 PM 2/14/2019 2:08:35 PM 2/14/2019 3:00:00 PM

6 6103 07HRO1L 2/15/2019 10:00:00 AM 10:03:00 AM 2/17/2019 10:09:17 AM 2/17/2019 10:00:00 AM

7 3038 08DWO1L 2/15/2019 9:00:00 AM 9:36:00 AM 2/17/2019 11:06:00 AM 2/17/2019 12:00:00 PM

8 6304 09HSO1L 2/18/2019 1:00:00 PM 1:23:00 PM 2/20/2018 1:18:25 PM 2/20/2019 2:00:00 PM

9 3085 10JBO1L 2/23/2019 10:00:00 AM 10:00:00 AM 2/25/2019 10:28:47 AM 2/25/2019 11:00:00 AM

10 6417 11ASO1L 3/21/2019 3:33:00 PM 3:40:45 PM 3/23/2019 3:40:48 PM-3:41:00 PM3/23/2019 5:00:00 PM

11 6408 12ALO1L 3/21/2019 4:09:00 PM 4:15:10 PM 3/23/2019 4:23:00 PM 3/23/2019 6:00:00 PM

12 3107 13JAO1L 4/1/2019 1:09:00 PM 1:19:00 PM 4/3/2019 N/A 4/3/2019 1:20:00 PM

13 3107 13JAO2L 4/3/2019 1:25:00 PM 1:27:18 PM-1:31:05 PM4/4/2019 3:56:30 PM 4/4/2019 4:00:00 PM

14 6405 15LOO1L 4/5/2019 3:49:00 PM 3:51:34 PM 4/7/2019 3:41:40 PM 4/7/2019 5:00:00 PM

15 6003 16NDO1L 4/12/2019 11:27:00 AM 11:33:47 AM 4/14/2019 11:59:24 AM 4/14/2019 1:00:00 PM

16 6013 17LPO1L 4/12/2019 12:53:00 PM 12:55:44 PM 4/14/2019 12:50:55 PM 4/14/2019 2:00:00 PM

17 6018 18RCO1L 4/12/2019 1:16:00 PM 1:16:38 PM 4/14/2019 1:09:50 AM 4/14/2019 3:00:00 PM

18 3082 19VBO1L 7/18/2019 11:52:00 AM 11:56:29 AM 7/20/2019 11:46:44 AM 7/20/2019 12:30:00 PM

19 3129 20JJO1L 7/19/2019 1:01:00 PM 1:08:27 PM 7/21/2019 1:16:10 PM 7/21/2019 2:00:00 PM

20 44107 22NDO1L 7/22/2019 1:33:00 PM 1:42:15 PM 7/24/2019 2:07:06 PM 7/24/2019 2:30:00 PM

21 6325 23JWO1L 7/22/2019 2:15:00 PM 2:17:34 PM 7/24/2019 1:29:23 PM 7/24/2019 3:00:00 PM

22 3130 24SPO1L 8/13/2019 10:45:00 AM 10:53:00 AM 8/15/2019 10:19:50 AM 8/15/2019 4:00:00 PM

23 6123 25EHO1L 8/13/2019 7:18:00 PM 7:24:00 PM 8/15/2019 7:13:40 PM 8/15/2019 11:00:00 PM

24 3132 27CHO1L 8/17/2019 9:46:00 AM 9:53:50 AM 8/19/2019 9:28:38 AM 8/19/2019 11:00:00 PM

25 6311 28JBO1L 8/19/2019 1:28:00 PM 1:36:50 PM 8/21/2019 1:07:00 PM 8/21/2019 11:00:00 PM

26 3134 29SSO1L 8/20/2019 12:23:00 PM 12:30:00 PM 8/22/2019 12:26:17 PM 8/22/2019 11:00:00 PM

27 6207 30WBO1L 8/28/2019 2:07:00 PM 2:27:23 PM 8/30/2019 2:18:00 PM 8/30/2019 11:00:00 PM

28 6219 31FSO1L 8/28/2019 3:22:00 PM 3:29:16 PM 8/30/2019 3:16:07 PM 8/30/2019 11:00:00 PM

29 6215 32PKO1L 8/28/2019 4:15:00 PM 4:40:00 PM 8/30/2019 3:41:20 PM 8/30/2019 11:00:00 PM

30 3027 33BEO1L 9/3/2019 1:00:00 PM 1:45:00 PM 9/5/2019 1:45:00 PM 9/6/2019 11:00:00 PM

31 3140 34REO1L 9/3/2019 1:00:00 PM 3:40:00 PM 9/5/2019 3:14:00 PM 9/6/2019 11:00:00 PM

Index
Resident 

ID
ILA ID

Collection 

start DATE

ACTIGRAPH 

INITIAL TIME

ACTIGRAPH 

Attachment 

Time

Collction 

end DATE

ACTIGRAPH 

Removal Time

ACTIGRAPH 

END Date

ACTIGRAPH 

Stop Time

n/a 3115 04RKO1L 12/10/2018 4:08:00 PM 4:10:00 PM 12/12/2018 N/A 12/12/2018 5:00:00 PM

n/a 6409 14ERO1L 4/5/2019 3:15:00 PM 3:18:00 PM 4/7/2019 N/A 4/7/2019 5:00:00 PM

n/a 3127 21JSO1L 7/20/2019 2:33:00 PM 2:42:00 PM 7/22/2019 4:01:55 PM 7/22/2019 3:30:00 PM

n/a 3128 26BTO1L 8/16/2019 4:30:00 PM 4:35:49 PM ~8/17/2019 ~21:10 8/19/2019 10:00:00 PM
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Appx. Table  E-1 Dataset 1 living space information. 

 

Dataset 1 - Living Space Information

ID Name
Room 

Layout

Bed Tilt 

(degrees)
# Pillows Pets

Bed in 

view

Bedroom 

Depth 

Sensor

Chair 

Sensor
Notes

01BLO1L
1 bed, 784 

sqft
0 1 head 0 no no 0

no Actigraph + 

Depth sensor 

ca l ibration 

reference activi ty

02BCO1L
1 bed, 784 

sqft
0 1 head dog no no 0

03BHO1L

1 bed, 

rectangle 

648 sqft

0 1 head / 1 feet 0 yes yes 0

05LBO1L
2 bed, 

1064 sqft
0 1 head 0 no no 0

lega l ly bl ind, da i ly 

morning helper

06DHO1L
2 bed, 972 

sqft
30 2 head 0 no no 0

07HRO1L
studio 232 

sqft
0 1 head 0 partial no 0

08DWO1L
2 bed, 

1064 sqft
0 1 head / 1 knee cat no no 0

09HSO1L

1 bed, with 

kitchenette 

499 sqft

0 1 head / 1 knees 0 partial no 0

10JBO1L
2 bed, 

1064 sqft
0 1 head 0 no no 0

11ASO1L
studio, 

340 sqft
0 1 head 0 partial no 0
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Appx. Table  E-2 Dataset 2 living space information. Resident 29SSO1L low visiblity due to a large 

apartment. Resident 30WBO1L depth sensor resolution was very grainy. 

 

Dataset 2 - Living Space Information

ID Name
Room 

Layout

Bed Tilt 

(degrees)
# Pillows Pets

Bed in 

view

Bedroom 

Depth 

Sensor

Chair 

Sensor
Notes

12ALO1L

1 bed, with 

kitchenette 

499 sqft

0 1-2 head 0 no no 0 felt sick 3/22/2019

13JAO1L
1 bed,784 

sqft
0 1 head 0 no no 0 part 1, no final calibration activities

13JAO2L
1 bed,784 

sqft
0 1 head 0 no no 0 part 2

15LOO1L
studio, 

340 sqft
0 1 head 0 partial no 0

16NDO1L
studio, 

260 sqft
0 1 head 0 partial no 0

17LPO1L
studio, 

260 sqft
0 1 head 0 barely no 0 only used bed, no chair

18RCO1L
studio, 

260 sqft
0 1 head 0 barely no 0

frequent friend visits & sometimes stays the 

night

19VBO1L
2 bed, 

1064 sqft
20 1 head/ 1 knees 0 no no 0

chair sensor s toped early, one of the 2 

daughters , s tayed ful l  time during the data  

col lection period

20JJO1L

1 bed, 

rectangle 

648 sqft

0 1 head 0 no no 0 rolling desk chair (main)

22NDO1L
studio, 

273 sqft
0

1 head, sometimes 

no pil low
0 partial no 1

23JWO1L
studio, 

414 sqft
0 2 head

small 

dog
yes no 1 frequently goes outside

24SPO1L
2 bed, 

1064 sqft
0 1 head 0 no no 1

depth sensor videos very grainy, l iving room 

mostly black

25EHO1L
studio, 

232 sqft
0

2 head / 

sometimes 1 back
0 yes no 0

27CHO1L

1 bed, 

rectangle 

648 sqft

0 2-3 head 0 yes yes 1 felt sick during data collection period

28JBO1L

1 bed, 

kitchenette 

499 sqft

0 1 head 0 no no 1

during ini tia l  ca l ibration, depth sensor had 

technica l  di fficul ties  and s topped recording 

for a  few minutes . Leaves  front door open, 

goes  in/out of room a  lot, twice the front door 

didn't catch exi t time

29SSO1L
1 bed, 

1080 sqft
0

1 head & 1 small 

knees
dog no no 1

30WBO1L
studio, 

245 sqft
0 1 head 0 yes no 1 chair with sensor is out of view

31FSO1L
1 bed, 463 

sqft
0 1 head 0 no no 1

32PKO1L
studio, 

245 sqft
0 1 head 0 yes no 1

shoulder immobility, therefore wasn't able to 

lay on right or left side

33BEO1L
2 bed,  972 

sqft
0 1 head 0 no no 1 legally blind

34REO1L
1bed, 540 

sqft
0 1 head 0 no no 1
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 Step Detection Additional Information 
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Appendix F.1. Gait Patterns 

Appx. Table  F-1 Weighted percentage of subjects for each gait pattern category. 

 

Appx. Table  F-2 Additional weighted percentage of subjects for gait pattern categories leg swing, arm 

swing, and gait symmetry. 
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Appx. Figure  F-1, shows the results separated into the different assistive devices 

people used in dataset 1. The first four subjects shaded in blue did not use a walker. The 

next two, 03BHO1L and 10JBO1L shaded in orange both infrequently used a cane. Next, 

four subjects shaded in green used walkers. And lastly, there were no subjects in dataset 1 

that used multiple assistive devices. This supports the earlier results shown in Figure 

3.4-3, that the walker caused a significant error. Interestingly, subjects 06DHO1L and 

08DWO1L had the lowest error because  

 
Appx. Figure  F-1 Individual results from dataset 1 looking at the effects of different assistive devices. 
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Appx. Figure  F-2 Using a dynamic axis selection method, this table shows which axis is best for each 

subject based on the results 

 Overall STS Additional Results 

Appx. Table  G-1 Ground truth number of STS observations 
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Appx. Figure  G-1 Ground truth maximum STS durations 

 
Appx. Figure  G-2 Ground truth minimum STS durations. 
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Appendix G.1. Individual STS Additional Results – Dataset 1 
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Sensitivity 78.95% 81.29% 65.68% 68.61%
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RUS 93.32%

02BCO1L
QDA RUS

Predicted

T
R
U
E

other 95.11% 1.03% 3.87% 95.51% 0.28% 4.21%

stand-sit 2.33% 80.23% 17.44% 3.49% 75.58% 20.93%

sit-stand 2.83% 0.94% 96.23% 0.94% 2.83% 96.23%

QDA 95.06% other stand-sit sit-stand other stand-sit sit-stand

RUS 95.43% Predicted

T
R
U
E
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other 94.99% 0.95% 4.06% 91.89% 2.04% 6.06%

stand-sit 10.61% 59.09% 30.30% 0.00% 74.24% 25.76%

sit-stand 12.24% 6.12% 81.63% 2.04% 18.37% 79.59%

QDA 94.37% other stand-sit sit-stand other stand-sit sit-stand

RUS 91.53%

05LBO1L

T
R
U
E

QDA RUS

Predicted

other 94.53% 0.94% 4.54% 95.11% 0.38% 4.51%

stand-sit 0.00% 75.36% 24.64% 0.00% 56.52% 43.48%

sit-stand 3.03% 4.55% 92.42% 1.52% 4.55% 93.94%

QDA 94.43% other stand-sit sit-stand other stand-sit sit-stand

RUS 94.92%

06DHO1L
QDA RUS

Predicted

T
R
U
E

other 75.38% 3.27% 21.35% 71.02% 3.35% 25.63%

stand-sit 16.67% 50.00% 33.33% 10.00% 53.33% 36.67%

sit-stand 5.13% 2.56% 92.31% 5.13% 0.00% 94.87%

QDA 75.34% other stand-sit sit-stand other stand-sit sit-stand

RUS 71.17% Predicted
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07HRO1L - RUSBoost
Only sitStand and standSit Misclassified Classes

RUS GT

other 93.56% 2.95% 3.49% 90.29% 2.05% 7.66%

stand-sit 0.00% 95.65% 4.35% 0.00% 82.61% 17.39%

sit-stand 22.22% 44.44% 33.33% 0.00% 22.22% 77.78%

QDA 93.47% other stand-sit sit-stand other stand-sit sit-stand

RUS 90.24%

QDA RUS

Predicted

08DWO1L

T
R
U
E

other 91.08% 1.93% 6.99% 93.42% 0.33% 6.25%

stand-sit 18.75% 52.08% 29.17% 2.08% 39.58% 58.33%

sit-stand 29.55% 0.00% 70.45% 2.27% 0.00% 97.73%

QDA 90.75% other stand-sit sit-stand other stand-sit sit-stand

RUS 93.14%

09HSO1L
QDA RUS

Predicted

T
R
U
E

other 70.62% 3.45% 25.93% 71.55% 1.34% 27.11%

stand-sit 7.14% 21.43% 71.43% 0.00% 14.29% 85.71%

sit-stand 0.00% 17.65% 82.35% 0.00% 0.00% 100.00%

QDA 70.37% other stand-sit sit-stand other stand-sit sit-stand

RUS 71.39% Predicted

10JBO1L
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Appendix G.2. Individual STS Additional Results – Dataset 2 
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10JBO1L - RUSBoost
Only sitStand and standSit Misclassified Classes

RUS GT

other 95.68% 1.71% 2.60% 95.37% 2.72% 1.91%

stand-sit 15.87% 65.08% 19.05% 0.00% 90.48% 9.52%

sit-stand 12.82% 15.38% 71.79% 0.00% 17.95% 82.05%

QDA 95.57% other stand-sit sit-stand other stand-sit sit-stand

RUS 95.34% Predicted

11ASO1L
QDA RUS

T
R
U
E
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other 91.06% 1.31% 7.64% 89.22% 1.66% 9.12%

stand-sit 6.67% 60.00% 33.33% 6.67% 53.33% 40.00%

sit-stand 0.00% 20.00% 80.00% 0.00% 10.00% 90.00%

QDA 90.89% other stand-sit sit-stand other stand-sit sit-stand

RUS 89.06%

T
R
U
E

Predicted

12ALO1L

QDA RUS

other 70.36% 14.77% 14.87% 57.70% 2.11% 40.19%

stand-sit 0.00% 100.00% 0.00% 0.00% 100.00% 0.00%

sit-stand 0.00% 66.67% 33.33% 0.00% 66.67% 33.33%

QDA 70.34% other stand-sit sit-stand other stand-sit sit-stand

RUS 57.71% Predicted
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other 63.48% 4.66% 31.86% 65.25% 1.77% 32.98%

stand-sit 0.00% 80.00% 20.00% 0.00% 80.00% 20.00%

sit-stand 0.00% 9.09% 90.91% 0.00% 9.09% 90.91%

QDA 63.75% other stand-sit sit-stand other stand-sit sit-stand

RUS 65.50% Predicted
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other 87.03% 4.10% 8.87% 81.46% 3.51% 15.03%

stand-sit 13.23% 50.79% 35.98% 6.35% 47.09% 46.56%

sit-stand 16.95% 30.51% 52.54% 3.95% 15.82% 80.23%

QDA 86.48% other stand-sit sit-stand other stand-sit sit-stand

RUS 81.17% Predicted

15LOO1L
QDA RUS

T
R
U
E

other 96.27% 1.15% 2.58% 96.30% 0.96% 2.74%

stand-sit 9.76% 31.71% 58.54% 0.00% 29.27% 70.73%

sit-stand 10.91% 41.82% 47.27% 1.82% 20.00% 78.18%

QDA 96.08% other stand-sit sit-stand other stand-sit sit-stand

RUS 96.16% Predicted

16NDO1L
QDA RUS

T
R
U
E

other 86.06% 2.28% 11.66% 86.65% 0.71% 12.64%

stand-sit 3.03% 39.39% 57.58% 3.03% 42.42% 54.55%

sit-stand 3.03% 15.15% 81.82% 3.03% 18.18% 78.79%

QDA 85.84% other stand-sit sit-stand other stand-sit sit-stand

RUS 86.43% Predicted

18RCO1L
QDA RUS

T
R
U
E

other 97.23% 0.31% 2.47% 98.41% 0.03% 1.55%

stand-sit 9.80% 56.86% 33.33% 3.92% 27.45% 68.63%

sit-stand 10.42% 16.67% 72.92% 2.08% 4.17% 93.75%

QDA 96.95% other stand-sit sit-stand other stand-sit sit-stand

RUS 98.09% Predicted

19VBO1L
QDA RUS

T
R
U
E

other 96.44% 1.27% 2.29% 95.42% 1.23% 3.34%

stand-sit 16.67% 25.00% 58.33% 0.00% 29.17% 70.83%

sit-stand 25.00% 32.14% 42.86% 7.14% 14.29% 78.57%

QDA 96.30% other stand-sit sit-stand other stand-sit sit-stand

RUS 95.34% Predicted

22NDO1L
QDA RUS

T
R
U
E
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other 94.32% 2.01% 3.67% 93.79% 0.48% 5.74%

stand-sit 12.82% 74.36% 12.82% 12.82% 64.10% 23.08%

sit-stand 0.00% 68.42% 31.58% 0.00% 52.63% 47.37%

QDA 94.19% other stand-sit sit-stand other stand-sit sit-stand

RUS 93.66% Predicted

23JWO1L
QDA RUS

T
R
U
E

other 90.63% 2.44% 6.92% 91.81% 2.51% 5.68%

stand-sit 82.08% 10.38% 7.55% 80.19% 10.85% 8.96%

sit-stand 9.09% 13.64% 77.27% 4.55% 9.09% 86.36%

QDA 88.35% other stand-sit sit-stand other stand-sit sit-stand

RUS 89.54% Predicted

24SPO1L
QDA RUS

T
R
U
E

other 90.23% 2.74% 7.03% 89.34% 2.54% 8.12%

stand-sit 25.44% 50.88% 23.68% 25.44% 49.12% 25.44%

sit-stand 3.57% 53.57% 42.86% 1.79% 58.93% 39.29%

QDA 89.76% other stand-sit sit-stand other stand-sit sit-stand

RUS 88.85% Predicted

25EHO1L
QDA RUS

T
R
U
E

other 95.90% 1.15% 2.95% 95.78% 0.28% 3.94%

stand-sit 2.50% 37.50% 60.00% 0.00% 45.00% 55.00%

sit-stand 5.13% 30.77% 64.10% 2.56% 12.82% 84.62%

QDA 95.78% other stand-sit sit-stand other stand-sit sit-stand

RUS 95.70% Predicted

27CHO1L

QDA RUS

T
R
U
E

other 88.71% 2.47% 8.81% 88.96% 2.26% 8.78%

stand-sit 0.00% 19.35% 80.65% 0.00% 19.35% 80.65%

sit-stand 13.64% 36.36% 50.00% 18.18% 9.09% 72.73%

QDA 87.66% other stand-sit sit-stand other stand-sit sit-stand

RUS 88.08% Predicted

28JBO1L
QDA RUS

T
R
U
E
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other 78.21% 2.69% 19.10% 48.37% 9.02% 42.61%

stand-sit 12.50% 62.50% 25.00% 0.00% 50.00% 50.00%

sit-stand 33.33% 0.00% 66.67% 0.00% 33.33% 66.67%

QDA 78.06% other stand-sit sit-stand other stand-sit sit-stand

RUS 48.43% Predicted
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29SSO1L - RUSBoost
Only sitStand and standSit Misclassified Classes

RUS GT

other 93.67% 1.73% 4.60% 94.78% 0.37% 4.85%

stand-sit 4.17% 59.72% 36.11% 2.78% 51.39% 45.83%

sit-stand 6.82% 36.36% 56.82% 5.68% 6.82% 87.50%

QDA 93.47% other stand-sit sit-stand other stand-sit sit-stand

RUS 94.64% Predicted

30WBO1L

QDA RUS
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other 74.82% 3.07% 22.10% 75.59% 0.51% 23.89%

stand-sit 8.70% 73.91% 17.39% 13.04% 30.43% 56.52%

sit-stand 20.83% 25.00% 54.17% 20.83% 0.00% 79.17%

QDA 74.50% other stand-sit sit-stand other stand-sit sit-stand

RUS 75.00% Predicted
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 Motion Density Additional Details 

other 94.04% 1.49% 4.47% 91.80% 1.74% 6.46%

stand-sit 14.47% 48.68% 36.84% 11.84% 60.53% 27.63%

sit-stand 28.41% 18.18% 53.41% 13.64% 29.55% 56.82%

QDA 93.76% other stand-sit sit-stand other stand-sit sit-stand

RUS 91.59% Predicted

32PKO1L

QDA RUS

T
R
U
E

other 93.33% 1.84% 4.83% 81.54% 3.85% 14.61%

stand-sit 21.74% 55.07% 23.19% 1.45% 62.32% 36.23%

sit-stand 61.04% 6.49% 32.47% 9.09% 14.29% 76.62%

QDA 91.25% other stand-sit sit-stand other stand-sit sit-stand

RUS 81.05%

T
R
U
E

Predicted

33BEO1L

QDA RUS

other 88.12% 3.30% 8.58% 89.24% 3.62% 7.14%

stand-sit 3.13% 62.50% 34.38% 6.25% 56.25% 37.50%

sit-stand 32.35% 23.53% 44.12% 17.65% 11.76% 70.59%

QDA 87.86% other stand-sit sit-stand other stand-sit sit-stand

RUS 89.05%

34REO1L

QDA RUS

T
R
U
E

Predicted
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 Vacancy Algorithm Additional Details 

Appx. Table  I-1 Missing motion sensor data during the data collection periods. 

Subject 
Last recorded time in 

database 

First recorded time in 

database after missing 

02BCO1L 11/5/2018  10:29:33 AM 2/8/2019  12:55:33 PM 

13JAO1L/13JAO2L 4/1/2019  2:02:35 PM 7/24/2019  3:49:09 PM 

15LOO1L 3/23/2019  7:24:33 PM 5/15/2019  11:47:11 AM 

33BEO1L 8/27/2019  5:13:23 PM 10/2/2019  1:25:21 PM 
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