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ABSTRACT

In dimensions n ≥ 2 we obtain Lp1(Rn) × · · · × Lpm(Rn) to Lp(Rn) boundedness

for the multilinear spherical maximal function in the largest possible open set

of indices and we provide counterexamples that indicate the optimality of our

results. Moreover, we obtain weak type and Lorentz space estimates as well as

counterexamples in the endpoint cases.

We also study a family of maximal operators that provides a continuous link

connecting the Hardy-Littlewood maximal function to the spherical maximal func-

tion. Our theorems are proved in the multilinear setting but may contain new

results even in the linear case. For this family of operators we obtain bounds

between Lebesgue spaces in the optimal range of exponents.

Moreover, we provide multidimensional versions of the Kakeya, Nikodym, and

Besicovitch constructions associated with a fixed rectifiable set. These yield coun-

terexamples indicating that maximal operators given by translations of spherical

averages are unbounded on all Lp(Rn) for p <∞.

For lower-dimensional sets of translations, we obtain Lp boundedness for the as-

sociated maximally translated spherical averages and for the uncentered spherical

maximal functions for a certain range of p that depends on the upper Minkowski

dimension of the set of translations. This implies that the Nikodym sets associated

with spheres have full Hausdorff dimension.

v



Chapter 1

Introduction

One of the most central objects in analysis is the Hardy-Littlewood maximal

function

Mf(x) := sup
t>0

1

vn

∫
Bn
|f(x− ty)|dy (1.1)

where Bn = Bn(0, 1) is the unit ball in Rn and vn = |Bn| is the volume of Bn.

It is well known that the Hardy-Littlewood maximal function is weak-type-(1,1)

bounded, meaning that

∣∣ {x ∈ Rn : Mf(x) > λ}
∣∣ ≤ Cn

λ

∫
Rn
|f(y)| dy,

for some dimensional constant Cn independent of λ.

Since M is also trivially bounded on L∞, we obtain that M maps Lp(Rn) to

itself, which means that

‖Mf‖Lp . ‖f‖Lp , (1.2)

for all p > 1. Here, as well as in the following, we write A . B if there is a

constant C such that A ≤ CB and we write A .α B to indicate that C depends

on the parameter α.

An important consequence of the weak-type (1,1) bound of M is the Lebesgue

differentiation theorem, which states that for any locally integrable function f on
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Rn we have

lim
r→0

1

vnrn

∫
Bn(x,r)

f(y) dy = f(x)

for almost all x ∈ Rn, where Bn(x, r) is the n-dimensional ball centered at x with

radius r.

The main objects in this work are spherical averages, where we are averaging

over spheres centered at x, instead of taking averages over balls. Let Sn−1 denote

the unit sphere in Rn, let dσn−1 denote the surface measure on Sn−1 and ωn−1 =

dσ(Sn−1). For any t > 0, the spherical averages

Atf(x) :=
1

ωn−1

∫
Sn−1

f(x− ty)dσn−1(y) (1.3)

can be defined for functions f ∈ S(Rn), the Schwartz class. For such a function f

and a given point x, Atf(x) corresponds to the average of f on the sphere centered

at x and radius t > 0.

Spherical averages often appear as solutions to partial differential equations.

For example, the spherical average u(x, t) =
1

4π

∫
S2
f(x− ty)dσ(y) is a solution to

Darboux’s equation

3∑
i=1

∂2u

∂x2
i

(x, t) =
∂2u

∂t2
(x, t) +

2

t

∂u

∂t
(x, t),

u(x, 0) = f(x),

∂u

∂t
(x, 0) = 0.

in R3.

The study of maximal spherical means was initiated by Stein [50], who obtained

a bound for the linear spherical maximal function

Sf(x) := sup
t>0

1

ωn−1

∫
Sn−1

|f(x− ty)| dσn−1(y) = sup
t>0

At|f |(x) (1.4)

from Lp(Rn)→ Lp(Rn) when n ≥ 3 and p > n
n−1

and showed that it is unbounded

2



when p ≤ n
n−1

and n ≥ 2. The analogue of this result in dimension n = 2 was

established by Bourgain in [7], who also obtained a restricted weak type estimate

in [6] in the case n ≥ 3. Later, Seeger, Tao, and Wright in [47] proved that the

restricted weak type estimate does not hold in dimension n = 2. See Chapter 2

for the exact statements of these bounds.

A number of other authors have also studied the spherical maximal function;

see for instance [9], [12], [39], and [46]. Extensions of the spherical maximal

function to different settings have also been established by several authors; for

instance see [8], [26], [14], and [35].

It is not obvious a priori whether Sf is well-defined for f ∈ Lp, since Sn−1 is a

set of measure zero in Rn. However, since the Schwartz functions are dense in Lp

for 1 ≤ p <∞, the boundedness of S implies that we can define of Sf for f ∈ Lp

when p > n
n−1

. See Chapter 3 below for an extension of the definition of Sf for

f ∈ L1
loc, under some necessary modification.

One corollary of the Lp → Lp boundedness result of the spherical maximal

function is that the operator norm of the Hardy-Littlewood maximal function in

1.2 is bounded above by a constant independent of the dimension n. Indeed,

noting that Mf(x) ≤ Sf(x) and since

‖S(f)‖Lp ≤ Cp‖f‖Lp

for a constant Cp independent of the dimension, Stein and Strömberg showed in

[52] that for p > 1,

‖M‖Lp(Rn)→Lp(Rn) ≤ Cp

with Cp independent of the dimension n.

In the field of geometric measure theory, the boundedness of S has the inter-

esting implication that there is no set of Lebesgue measure zero in Rn containing

a sphere centered at every point x ∈ Rn. This was proven independently for n = 2
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by Marstrand in [36].

The bi(sub)linear analogue of Stein’s spherical maximal function

S2(f, g)(x) := sup
t>0

1

ω2n−1

∫
S2n−1

|f(x− ty)g(x− tz)|dσ2n−1(y, z) (1.5)

was first introduced in by Geba, Greenleaf, Iosevich, Palsson, and Sawyer [18] who

obtained the first bounds for it but later improved bounds were provided by [3],

[22], [29], and [33]. A multilinear (non-maximal) version of this operator when

all input functions lie in the same space Lp(R) was previously studied by Oberlin

[43]. The authors in [3] provided an example that shows that the bilinear spherical

maximal function is not bounded when p ≥ n
2n−1

. Jeong and Lee in [33] proved that

the bilinear maximal function is pointwise bounded by the product of the linear

spherical maximal function and the Hardy-Littlewood maximal function, which

helped them establish boundedness in the optimal open set of exponents, along

with some endpoint estimates. Certain analogous bounds have been obtained by

Anderson and Palsson in [1] and [2] concerning the discrete multilinear spherical

maximal function.

In Chapter 2 we extend the results of Jeong and Lee in the multilinear setting,

obtaining Lp1(Rn)×· · ·×Lp2(Rn)→ Lp(Rn) boundedness results for the operator

Sm(f1, . . . , fm)(x) := sup
t>0

1

ωmn−1

∫
Smn−1

m∏
i=1

|fi(x− tyi)|dσmn−1(y1, . . . , ym), (1.6)

for the optimal open set of exponents

p >
n

mn− 1
,

as well as some endpoint boundedness results. We also adapt the counterexample

of Barrionuevo, Grafakos, He, Honźık, and Oliveira in [3] to show that our results

are sharp. Moreover, we provide a counterexample that addresses a question raised

by Jeong and Lee in [33] regarding the validity of a strong type L1 × L∞ → L1

4



bound for the bilinear spherical maximal function.

The boundedness of the maximal operator S in [50] was obtain via the auxiliary

family of operators

Sα(f)(x) = sup
t>0

2

ωn−1B(n
2
, 1− α)

∫
Bn
|f(x− ty)|(1− |y|2)−αdy, (1.7)

defined originally for Schwartz functions, where 0 ≤ α < 1. Here B is the beta

function defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

for x, y > 0.

For each 0 < α < 1, Stein obtained boundedness for the operator Sα from Lp

to itself in the optimal range of exponents

p >
n

n− α
,

when n ≥ 3. This was extended to the case n = 2 indirectly in [7] and more

explicitly in [39]. In [31] the authors obtained boundedness results for maximal

operators associated to a more general set of measures that includes the family

Sα.

Far from being an artifact of the proof in [50], these averages arise naturally in

the study of partial differential equations as well. Consider the Cauchy problem

of the wave equation (in two dimensions)

∂2u

∂x2
1

(x, t) +
∂2u

∂x2
2

(x, t) =
∂2u

∂t2
(x, t),

u(x, 0) = f(x),

∂u

∂t
(x, 0) = g(x).

Then

u(x, t) = c0S3/2,tf(x) + c1tS1/2,tg(x),

5



where Sα,tf(x) =

∫
Bn
f(x − ty)

dy

(1− |y|2)α
. We note that while Sα,t has been

initially defined for 0 ≤ α ≤ 1, we can extend the definition to the case α > 1 by

analytic continuation on α.

Moreover, family Sα provides a continuous link that connects M to S in the

following explicit way: For any f ∈ L1
loc(Rn) and any x ∈ Rn we have

M(f)(x) ≤ Sα(f)(x) ≤ S(f)(x),

lim
α→1−

Sα(f)(x) = S(f)(x), (1.8)

lim
α→0+

Sα(f)(x) = M(f)(x).

These assertions are contained in Theorem 3.1 and are proved in Chapter 3.

The multilinear Hardy-Littlewood maximal function is

Mm(f1, . . . , fm)(x) = sup
t>0

1

vmn

∫
Bmn

m∏
i=1

|fi(x− tyi)| dy1 · · · dym. (1.9)

The uncentered version of this maximal operator first appeared in the work of

Lerner, Ombrosi, Perez, Torres, Trujillo-Gonzalez [34] with the unit cube in place

of the unit ball.

In analogy with the linear case, the boundedness of Sm implies that of Mm

with constant independent of the dimension n. We have that

‖Mm(f1, . . . , fm)‖Lp(Rn) ≤ C(p1, . . . , pm)
m∏
i=1

‖fi‖Lpi

with C(p1, . . . , pm) independent of the dimension n.

In Chapter 3 we define the family of operators Smα , which is a multilinear

version of Sα and that bridges the gap between Sm and Mm in manner similar

to (1.8). We obtain Lp1(Rn) × · · · × Lpm(Rn) → Lp(Rn) in the optimal range of

exponents

p >
n

mn− α
.
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This range interpolates between the bounds p > 1
m

for Mm and p > n
mn−1

for Sm.

A corollary of the boundedness of Smα , which includes Mm and Sm (when α = 0

and α = 1 respectively) is the multilinear analogue of the Lebesgue differentiation

theorem

lim
t→0

Smα,t(f1, . . . , fm)(x) = f1(x) · · · fm(x).

An important counterpart to the operatorM is the uncentered Hardy-Littlewood

maximal function

Muncf(x) := sup
Bn(y,r)3x

1

|Bn(y, r)|

∫
Bn(y,r)

|f(z)|dz, (1.10)

where the supremum is taken over all balls Bn(y, r) in Rn that contain x.

Given the connections between the Hardy-Littlewood and the spherical maxi-

mal functions we have described above, it is natural to ask whether an uncentered

version of S can be defined.

For a given direction of translation u ∈ Rn and a given radius t > 0, define the

average

Au,tf(x) :=

∫
Sn−1

f(x+ tu− ty)dσ(y).

For a compact subset T of Rn, which will serve as a set of translations, we

consider the maximal spherical translations

MTf(x) := sup
u∈T
Au,1|f |(x), (1.11)

where we are considering averages over the unit spheres x+u+Sn−1 with u varying

in T . We also define the uncentered spherical maximal function

STf(x) := sup
t>0
u∈T

Au,t|f |(x), (1.12)

7



which includes dilations.

The case that most resembles the uncentered Hardy-Littlewood maximal func-

tion is when T = Bn(0, 1), the closed unit ball in Rn. Then the operator ST

corresponds the averages over all spheres with x in their interior (in the Jordan-

Brouwer sense) and MT to all such unit spheres. However, by considering the

characteristic function of an ε-neighborhood of the unit sphere, we can readily see

that both ST and MT are unbounded on Lp(Rn) for any p <∞ if T = Bn(0, 1).

When T = Sn−1, we instead are considering all spheres that pass through x.

We will show that the operators MT and ST are unbounded as part of Corollary 4.1

when T = Sn−1.

However, we can obtain boundedness results forMT when the upper Minkowski

dimension of T (see (5.7) below for a definition) is strictly less than n− 1 and for

ST when it is strictly less than n− 2. We denote by dimBT the upper Minkowski

dimension (also known as the upper box dimension) of T . These results will be

the subject of Chapter 5.

The counterexample forMSn−1 mentioned above follows from the construction

of a Nikodym set in Rn associated with spheres, instead of hyperplanes. A clas-

sical Nikodym set is a set A ⊂ Rn of measure zero which contains a punctured

hyperplane through every point: for every y ∈ A, there is a hyperplane Vy ⊂ Rn

such that y ∈ Vy and Vy \ {y} ⊂ A. Nikodym [42] proved the existence of such

sets for n = 2, and Falconer [15] extended the result for all n ≥ 2.

Chang and Csörnyei in [10] constructed Nikodym, Besicovitch, and Kakeya Sets

associated with circles on R2. We prove the existence of the analogue of Nikodym

sets for unit spheres instead of hyperplanes in Chapter 4. This is achieved by

generalizing the Venetian blind construction from [10] to higher dimensions, which

also implies the existence of Kakeya and Besicovitch sets for spheres.

The existence of Nikodym sets associated to spheres also yields a counterex-

ample for an operator considered by Palsson and Sovine in [44], that is related to

the triangle operator of Greenleaf and Iosevitch [27].

8



It has been conjectured that the classical Kakeya and Nikodym sets have full

Hausdorff dimension. This is a very famous problem that remains open when n ≥

3. A similar question can be asked about their counterparts that are associated

to spheres.

We will show in Chapter 5 that any Nikodym set for spheres has full Hausdorff

dimension for any n ≥ 2, by obtaining an L2 bound for the Nikodym maximal

function for spheres.

9



Chapter 2

The Multilinear Spherical

Maximal Function

In this chapter we prove the Lp1(Rn) × · · · × Lpm(Rn) → Lp(Rn) boundedness of

the operator Sm and we provide counterexamples to show the optimality of the

results obtained.

2.1 Lp, weak Lp, and Lorentz spaces

Our endpoint estimates involve weak Lebesgue as well as Lorentz spaces. The

familiar Lp norm (or quasi-norm if p < 1) of a measurable function f is defined

by

‖f‖Lp =

(∫
Rn
|f(x)|p

) 1
p

dx

for 0 < p <∞ and

‖f‖L∞ = ess.sup |f | = inf {α : |{x : |f(x)| > α}| > 0} .

10



On the other hand, for 0 < p < ∞, the weak-Lp (denoted Lp,∞) norm of f is

defined as

‖f‖Lp,∞ = inf

{
C > 0 :

∣∣ {x : |f(x)| > α}
∣∣ ≤ Cp

αp
for all α > 0

}
.

The Lorentz Lp,q norm of f is defined as

‖f‖Lp,q =

(∫ ∞
0

(
t
1
pf ∗(t)

)q dt
t

) 1
q

for 0 < p, q < ∞ where f ∗(t) is the decreasing rearrangement of f , defined on

[0,∞) by

f ∗(t) = inf
{
α > 0 :

∣∣ {x : |f(x)| > α}
∣∣ ≤ t

}
.

The Lp, weak Lp and Lorentz spaces are the sets of all measurable functions

with finite corresponding norm, under the equivalence relation identifying func-

tions that are equal almost everywhere. The space L∞,∞ is defined to be L∞.

We refer the reader to [19, Chapter 1] for a detailed introduction to all of these

spaces.

2.2 The boundedness region of Sm

Let n ≥ 2, 1 ≤ p1, . . . , pm ≤ ∞, and
m∑
j=1

1
pj

= 1
p
. In this section we find the largest

possible open set of exponents for which

‖Sm(f1, . . . , fm)‖Lp .
m∏
j=1

‖fj‖Lpj (2.1)

holds. At the endpoints of this open region we prove weak type estimates

‖Sm(f1, . . . , fm)‖Lp,∞ .
m∏
j=1

‖fj‖Lpj (2.2)

11



or Lorentz space estimates (when n ≥ 3) of the form

‖Sm(f1, . . . , fm)‖Lp,∞ .
(∏
j 6=k

‖fj‖Lpj
)
‖fk‖Lpk,1 , k = 1, . . . ,m. (2.3)

We visualize the region of boundedness as a convex polytope with 2m +m− 1

vertices contained in the cube [0, 1]m with coordinates ( 1
p1
, . . . , 1

pm
) (see Figure 2.1).

The closure of this region, which we denote by R, is obtained as the intersection

of the cube [0, 1]m with the half space corresponding to the area of boundednsess:

R :=

{
1

p1

, . . . ,
1

pm
∈ [0, 1]m :

m∑
j=1

1

pj
≤ mn− 1

n

}
.

Strong type boundedness at a point ( 1
p1
, . . . , 1

pm
) means that (2.1) is satisfied;

similarly for weak type and Lorentz space bounds. To better describe this region,

we define

vj = (1, . . . , 1,
n− 1

n
, 1, . . . , 1) for j = 1, . . . ,m

and

V = conv{v1, . . . , vm},

the closed convex hull of the vj’s. We also denote by ∂R the boundary of a region

R in Rm.

Theorem 2.1. Let n ≥ 2, 1 ≤ p1, . . . , pm ≤ ∞ and
∑m

j=1
1
pj

= 1
p
. Then the mul-

tilinear spherical maximal function Sm in (1.6) satisfies the following estimates:

Case I: If 1 < pj <∞ for all j ∈ {1, . . . ,m}, then Sm is bounded from Lp1(Rn)×

· · · × Lpm(Rn) to Lp(Rn) if and only if p > n
mn−1

.

Case II: When 1
pj
∈ {0, 1} for some j and p > n

mn−1
we have:

(a) At the vertex (0, . . . , 0) the strong type estimate (2.1) holds.

(b) At the 2m−2 vertices of [0, 1]m except (0, . . . , 0) and (1, . . . , 1) the weak type

estimate (2.2) holds.

Let 1 ≤ k < m. At each open k-dimensional face of ∂[0, 1]m ∩ R, described as

12



the set of all points ( 1
p1
, . . . , 1

pm
) on the boundary of [0, 1]m ∩R with exactly m− k

fixed coordinates in {0, 1}, we have:

(c) If all m− k fixed coordinates are 0, then the strong type estimate (2.1) holds

for all n ≥ 2.

(d) If at least one fixed coordinate equals 1, then the strong type estimate (2.1)

holds when n ≥ 3.

Case III: When p = n
mn−1

(critical exponent), then we have when n ≥ 3:

(e) On the boundary of V we have the Lorentz space estimate (2.3).

(f) On the interior of V we have the weak type estimate (2.2). More generally,

we have

‖Sm(f1, . . . , fm)‖
L

n
mn−1 ,∞ .

m∏
j=1

‖fj‖Lpj,sj , (2.4)

for all s1, . . . , sm > 0 such that

m∑
j=1

1

sj
=
mn− 1

n
.

Remarks. 1. Using a well-known theorem of Stein and Strömberg [52], we can

see that in the case of the largest open set, and the endpoint estimates (a) and (c)

above, the implicit constant can be taken to be independent of the dimension n.

2. As was noted in [33], the method used in the proof of Theorem 2.1 also yields

bounds for the stronger multi(sub)linear operator

M (f1, . . . , fm)(x) := sup
t1,...,tm>0

∣∣∣∣∣
∫
Smn−1

m∏
j=1

fj(x− tjyj)dσmn−1(y1, . . . , ym)

∣∣∣∣∣ (2.5)

in the same ranges of pj’s as Sm. Also, trivially, the counterexamples provided for

the unboundedness of Sm also work for M .

3. When n = 1 and m ≥ 3, estimates in the case Lp(R)×L∞(R)×· · ·×L∞(R)→

Lp(R) for p > m
m−1

follow from the classical theorem of Rubio de Francia in [45].

However the optimal results in the case n = 1 remain open.

13



As an example we graph the area of boundedness for the trilinear spherical

maximal function.

v2

v3

v1 = (n−1
n
, 1, 1)v2

v3

O

C

F

E

D

B

A
1/p1

1/p2

1/p3

Figure 2.1: Lp1 × Lp2 × Lp3 → Lp boundedness of the trilinear spherical maximal
operator (n ≥ 2).

The counterexamples claimed in Theorem 2.1 are contained in Proposition 2.1.

Proposition 2.1. Let 1 ≤ p1, . . . , pm ≤ ∞ and
m∑
j=1

1
pj

= 1
p
. The multilinear

spherical maximal function Sm is unbounded from Lp1 × · · · × Lpm to Lp when

p ≤ n

mn− 1
and n ≥ 2.

The following proposition contributes a negative answer to a question posed

by Jeong and Lee in [33] regarding a strong type L1(Rn) × L∞(Rn) → L1(Rn)

bound for the bilinear spherical maximal function.

Proposition 2.2. Let pj ∈ {1,∞} for all j = 1, . . . ,m. Then the strong type

estimate

‖Sm(f1, . . . , fm)‖Lp .
m∏
j=1

‖fj‖Lpj

holds if and only if pj =∞ for all j = 1, . . . ,m.

The optimality of the weak type and Lorentz space estimates of Theorem 2.1

not covered in Proposition 2.2 remains open.
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2.3 Proof of Theorem 2.1

The proof of our main theorem is based on the following slicing lemma, which

was first used in [33] in the bilinear case. This result can be found for instance in

[19, Appendix D.2], [3], or [29] and it is a special case of the co-area formula [16,

Theorem 3.2.22], but we include a proof in Section 2.5 for the sake of completeness.

Lemma 2.1. Let 1 ≤ k < m and n ≥ 2. For a function F (y1, . . . , ym) defined in

Rmn with yj ∈ Rn, j = 1, . . . ,m , we have

∫
Smn−1

F (y1, . . . , ym) dσmn−1(y1, . . . , ym) (2.6)

=

∫
Bkn

∫
r
Yk

S(m−k)n−1

F (y1, . . . , ym) dσ
r
Yk

(m−k)n−1(yk+1, . . . , ym)
dy1 · · · dyk√

1−
∑k

j=1 |yj|2
,

where Bkn = Bkn(0, 1) is the unit ball in Rkn, r
Yk

=
√

1−
∑k

j=1 |yj|2 and dσ
r
Yk

(m−k)n−1

is the normalized surface measure on r
Yk
S(m−k)n−1.

Lemma 2.1 enables us to pointwise control the multilinear spherical maximal

function in terms of a product of m− 1 Hardy-Littlewood maximal operators and

one spherical maximal operator.

Proof of Theorem 2.1. To avoid technicalities arising from interpolating sublinear

operators, we consider the following linerization of the maximal operator. For a

measurable function τ : Rn → [0,∞) we define

T (f1, . . . , fm)(x) :=

∫
Smn−1

m∏
j=1

fj(x− τ(x)yj)dσmn−1(y1, . . . , ym).

Since the boundedness of T on some spaces implies the boundedness for Sm on

the same spaces, it is enough to show

‖T (f1, . . . , fm)‖Lp ≤ C
m∏
j=1

‖fj‖Lpj ,

for some C independent of τ .
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Since

|T (f1, . . . , fm)| ≤ Sm(f1, . . . , fm),

applying Lemma 2.1 with k = m− 1 yields the following m pointwise estimates:

T (f1, . . . , fm)(x) .
∏
j 6=k

Mfj(x) · Sfk(x), k = 1, . . . ,m, (2.7)

where Mfj is the Hardy-Littlewood maximal function of fj and Sfk is the linear

spherical maximal function of fk. As was covered in the introduction, for M it is

well known that

‖Mf‖Lp . ‖f‖Lp

for p > 1 and

‖Mf‖L1,∞ . ‖f‖L1 .

Also, for n ≥ 2,

‖Sf‖Lp . ‖f‖Lp

if and only if p > n
n−1

. Therefore, by Hölder’s inequality we obtain the following

m estimates

‖T (f1, . . . , fm)‖Lp ≤
∏
j 6=k

‖Mfj‖Lpj · ‖Sfk‖Lpk , k = 1, . . . ,m

.
m∏
j=1

‖fj‖Lpj ,

when

pk >
n
n−1

, 1 < p1, . . . , pm ≤ ∞, and
m∑
j=1

1
pj

= 1
p
.

Thus, applying (complex) interpolation between these estimates and the trivial

L∞ × · · · × L∞ → L∞ bound, we obtain the boundedness in the largest possible

open set of exponents, as well as the endpoint estimates (a), (b) and (c) in the

statement of the theorem (see [25] and [20, Theorem 7.2.2] for the interpolation

result we used for (c)).
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For the estimates in (d) − (f), we will use Bourgain’s restricted weak type

endpoint bound for the linear spherical maximal function, which only holds for

n ≥ 3 (for n = 2 Seeger, Tao, and Wright [47] showed that the restricted weak

type inequality fails in the linear case). So for n ≥ 3 we have the following m

estimates:

‖T (f1, . . . , fm)‖
L

n
mn−1 ,∞ ≤

∏
j 6=k

‖Mfj‖L1,∞ · ‖Sfk‖L n
n−1 ,∞

.
∏
j 6=k

‖fj‖L1‖fk‖L n
n−1 ,1

.

Interpolating these estimates with the estimates in (c), we conclude (d).

Moreover, trivially

‖T (χF1 , . . . , χFm)‖
L

n
mn−1 ,∞ .

m∏
j=1

|Fj|
1
pj

for any measurable sets F1, . . . , Fm and for all

1 ≤ p1, . . . , pm ≤
n

n− 1
such that

m∑
j=1

1

pj
=
mn− 1

m
.

Since L
n

mn−1
,∞(Rn) is n

mn−1
- convex, the estimates imply

‖T (f1, . . . , fm)‖
L

n
mn−1 ,∞ .

m∏
j=1

‖fj‖Lpj, n
mn−1

.

Thus, using multilinear interpolation we conclude (e) and (f) (see [4, Lemma 2.1

and Proposition 2.2] for the multilinear interpolation result used here).

2.4 Counterexamples

The counterexamples are obtained by an adaptation of the examples in [3, Propo-

sition 7]. These are based on the original counterexamples of Stein [50].
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Proof of Proposition 2.1. We consider the functions

fj(y) = |y|−
n
pj log

(
1

|y|

)−m
pj

χ|y|≤νj ,

where νj = e−m/n/100 when j ≤ m − 1 and νm = e−m/n/2. Then fj ∈ Lpj(Rn).

Indeed

∫
Rn
|fj(y)|pjdy =

∫
Bn(0,νj)

|y|−n log

(
1

|y|

)−m
dy

=

∫ νj

0

|r|−1 log

(
1

|r|

)−m
dy

=

∫ ∞
1/νj

u−1 log(u)−mdu

=

∫ ∞
log(1/νj)

v−mdv <∞, since m > 1.

For s > 0, let

Sms (f1, . . . , fm)(x) :=

∫
Smn−1

m∏
j=1

fj(x− syj)dσmn−1(y1, . . . , ym).

Since the mapping

(y1, . . . , ym) 7→ (Ay1, . . . , Aym),

with A ∈ SOn is an isometry on Smn−1, we see that we estimate

Sm(f1, . . . , fm) ≥ Sm√mR(f1, . . . , fm)(Re1),

for some R large, where e1 = (1, 0, . . . , 0) ∈ Rn.

We let

Y = (y1, . . . , ym−1) ∈ R(m−1)n, ym =: z = (z′, zn),

with

z′ = (ym1 , . . . , y
m
n−1) ∈ Rn−1 and zn =

√√√√1−
m−1∑
j=1

|yj|2 − |z′|2.
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Moreover, we define

E = (e1, . . . , e1) ∈ R(m−1)n.

Applying Lemma 2.1 with k = m− 1, we have that

Sm√mR(f1, . . . , fm)(Re1) =

=

∫
B(m−1)n

m−1∏
j=1

fj(Re1 −
√
mRyj)

∫
r
Y
Sn−1

fm(Re1 −
√
mRz)dσ

r
Y
n−1(z)

dY√
1− |Y |2

.

First we focus on the inner integral, namely

I =

∫
D

|Re1 −
√
mRz|−

n
pm

(
− log |Re1 −

√
mRz|

)− m
pm dσ

r
Y
n−1(z),

where

D = r
Y
Sn−1 ∩Bn

(
e1√
m
,
νm√
mR

)
.

For

z0 ∈ rY Sn−1 ∩ ∂Bn

(
e1√
m
,
νm√
mR

)
,

we let θ be the angle between the vectors z0 and e1, which is the largest one

between z ∈ D and e1. Then θ is small since R is large and

|D| ∼ (
√

1− |Y |2θ)n−1 ∼ θn−1.

Using the fact that for θ small,

θ2 ∼ sin2 θ = 1− cos2 θ ∼ 1− cos θ,

and the law of cosines

1

4mR2
= 1− |Y |2 +

1

m
− 2
√

1− |Y |2 1√
m

cos θ,
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we obtain that

θ2 ∼ 1

4mR2
−
(√

1− |Y |2 − 1√
m

)2

.

In turn, since √
1− |Y |2 > 1

2

when R > 2(m− 1), we have that

∣∣∣∣√1− |Y |2 − 1√
m

∣∣∣∣ ≤ 4(m− 1)

100
√
mR

and thus we conclude that θ ≥ C/R. The same calculation also yields that

∣∣∣∣√1− |Y |2 − 1√
m

∣∣∣∣ . ∣∣∣∣ E√m − Y
∣∣∣∣ ,

that will be used later in the proof.

Hence, we can bound I from below by

∫ θ

0

∫
r
Y

sinαSn−2

|Re1 −
√
mRz|−

n
pm

(
− log |Re1 −

√
mRz|

)− m
pm dσ

r
Y

sinα

n−2 dα,

where

|z| = r
Y

=
√

1− |Y |2 ≈ 1√
m

and z = r
Y

cosα.

By symmetry, it suffices to consider the case r
Y
< 1√

m
. Let β be the angle such

that ∣∣∣∣ e1√
m
− z
∣∣∣∣ = 2

∣∣∣∣rY − 1√
m

∣∣∣∣ .
Then

β ≈
∣∣∣∣rY − 1√

m

∣∣∣∣ .
On the other hand, when α = 0, we have

∣∣∣∣ e1√
m
− z
∣∣∣∣ =

∣∣∣∣rY − 1√
m

∣∣∣∣ .
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Therefore, for all α ∈ [0, β] we have that

∣∣∣∣z − e1√
m

∣∣∣∣ ≈ ∣∣∣∣rY − 1√
m

∣∣∣∣ . ∣∣∣∣Y − E√
m
,

∣∣∣∣
as was noted above. Thus, using Lemma 2.2, we obtain

I ≥

≥C
∫ θ

0

∫
r
Y

sinαSn−2

|Re1 −
√
mRz|1−n

|Re1 −
√
mRz|

n
pm
−n+1 (− log |Re1 −

√
mRz|)

m
pm

dσ
r
Y

sinα

n−2 (z)dα

≥CR1−n|RE −
√
mRY |−

n
pm

+n−1
(
− log |RE −

√
mRY |

)− m
pm |
√
mr

Y
− 1|1−n

·
∫ C(1−

√
mr

Y
)

0

sinn−2 α dα

≥CR1−n|RE −
√
mRY |−

n
pm

+n−1
(
− log |RE −

√
mRY |

)− m
pm .

Also, for any 0 ≤ j ≤ m− 1, we have the trivial bound

|Re1 −
√
mRyj| ≤

(
m−1∑
j=1

|Re1 −
√
mRyj|2

)1/2

= |RE −
√
mRY |.

Thus using Lemma 2.2 again, we see that

M√mR(f1, . . . , fm)(Re1)

≥ CR1−n
∫
B(m−1)n( E√

m
, 1
50
√
mR

)

|RE −
√
mRY |−

n
p

+n−1
(
− log |RE −

√
mRY |

)−m
p dY

≥ CR1−mn
∫
B(m−1)n(0, 1

50
)

|w|−
n
p

+n−1 (− log |w|)−
m
p dw

≥ CR1−mn
∫ 1

50

0

r−
n
p

+mn−2 (− log r)−
m
p dr

=


CR1−mn if p = n

mn−1

∞ if p < n
mn−1

.

We therefore conclude that Sm(f1, . . . , fm) is not in Lp for any p < n
mn−1

and when
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p = n
mn−1

, and

Sm(f1, . . . , fm)(x) & |x|1−mn

for all |x| large enough and thus it is also not in L
n

mn−1 (Rn) when p = n
mn−1

.

Proof of Proposition 2.2. The L∞ × · · · × L∞ → L∞ holds trivially and the mul-

tilinear maximal function is unbounded from L1 × · · · ×L1 → L
1
m by Proposition

2.1. Let 1 ≤ k < m. By symmetry, it is enough to show that the strong type

estimate (2.1) fails at the point (1, . . . , 1, 0, . . . , 0). Let

f1(y) = · · · = fk(y) = χBn(0, 1
2)(|y|)

and

fk+1(y) = · · · = fm = 1.

Then, similar to the proof of Proposition 2.1, we obtain the following pointwise

bound

Sm(f1, . . . , fm)(x) = Sm(f1, . . . , fm)(Re1) ≥ Sm√mR(f1, . . . , fm)(Re1)

=

∫
Smn−1

k∏
j=1

χBn(0, 1
2)(|Re1 −

√
mRyj|)dσmn−1(y1, . . . , ym)

≥
∫
Smn−1

χBkn(0, 1
2)(|REk −

√
mRYk|)dσmn−1(y1, . . . , ym),

where

Ek = (e1, . . . , e1) and Yk = (y1, . . . , yk)
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are vectors in Rkn. Applying Lemma 2.1, we have that

∫
Smn−1

χBkn(0, 1
2)(|REk −

√
mRYk|)dσmn−1(y1, . . . , ym)

=

∫
Bkn

χBkn(0, 1
2)(|REk −

√
mRYk|)∫
r
Yk

S(m−k)n−1

dσ
r
Y

[(m−k)n−1](y
k+1, . . . , ym)

dYk√
1− |Yk|2

&
∫
Bkn

χBkn(0, 1
2)(|REk −

√
mRYk|)dYk,

since

1− |Yk|2 ≥
1

2m

when R is large enough. Therefore we obtain

Sm(f1, . . . , fm)(x) =Sm(f1, . . . , fm)(Re1)

≥Sm√mR(f1, . . . , fm)(Re1)

&R−kn,

and thus Sm does not map L1 × · · · × L1 × L∞ × · · · × L∞ → L
1
k .

2.5 Lemmas 2.1 and 2.2

Proof of Lemma 2.1. For yj = (yj1, . . . , y
j
n) ∈ Rn, j = 1, . . . ,m, we set

Y = (y1, . . . , yk) ∈ Rkn, (yk+1, . . . , ym) =: Z = (Z ′, zn),

with

Z ′ = (yk+1, . . . , ym−1, ym1 , . . . , y
m
n−1) ∈ R(m−k)n−1

and

zn =

√√√√1−
k∑
j=1

|yj|2 − |Z ′|2.
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For the sake of clarity in notation, we write

r
Y

=

√√√√1−
k∑
j=1

|yj|2

instead of r
Yk

. Setting

Z/r
Y

= W = (W ′, wn),

we express the right hand side of (2.6) as

∫
Bkn

∫
r
Y
S(m−k)n−1

F (Y, Z)dσ
r
Y

[(m−k)n−1](Z)
dY√

1− |Y |2

=

∫
Bkn

r
Y

(m−k)n−1

∫
S(m−k)n−1

F (Y, r
Y
W )dσ[(m−k)n−1](W )

dY√
1− |Y |2

=

∫
Bkn

r
Y

(m−k)n−1

·
∫
B(m−k)n−1

[F (Y, r
Y
W ′, r

Y
wn) + F (Y, r

Y
W ′,−r

Y
wn)]

dW ′√
1− |W ′|2

dY√
1− |Y |2

=

∫
Bkn

∫
r
Y
B(m−k)n−1

[F (Y, Z ′, zn) + F (Y, Z ′,−zn)]
dZ ′√

1− |W ′|2
dY√

1− |Y |2

=

∫
Bkn

∫
r
Y
B(m−k)n−1

[F (Y, Z ′, zn) + F (Y, Z ′,−zn)]
dZ ′dY√

1− |Y |2 − |Z ′|2
,

as one can verify that

√
1− |W ′|2

√
1− |Y |2 =

√
1− |Y |2 − |Z ′|2.

Using that Bmn−1 is equal to the disjoint union

Bmn−1 =
⋃ {(

Y, r
Y
v
)

: v ∈ B(m−k)n−1
}
,

we see that the last integral is equal to

∫
Bmn−1

[F (Y, Z ′, zn) + F (Y, Z ′,−zn)]
dY dZ ′√

1− |Y |2 − |Z ′|2
,
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which, in turn, is equal to

∫
Smn−1

F (Y, Z)dσmn−1(Y, Z)

using [19, Appendix D.5].

Lemma 2.2. Let r1, r2 > 0, t, s < e
− r2
r1 and t ≤ Cs for some C ≥ 1. Then there

exists an absolute constant C ′ (depending only on C, r1, r2) such that

s−r1
(

log
1

s

)−r2
≤ C ′t−r1

(
log

1

t

)−r2
. (2.8)

Proof. For x > 0 we define

F (x) = xr1 (log x)−r2 .

Differentiating F , we see that F is increasing when x > e
r2
r1 and so for s < e

− r2
r1 ,

F

(
1

s

)
=s−r1

(
log

1

s

)−r2
≤C r1(Cs)−r1

(
log

1

Cs

)−r2
=C r1F

(
1

Cs

)
≤C ′F

(
1

t

)
=C ′t−r1

(
log

1

t

)−r2
.
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Chapter 3

Families between the

Hardy-Littlewood and Spherical

maximal functions

3.1 The families Sα and Smα

In this chapter, we denote by dσκ−1 the surface measure on unit sphere Sκ−1 in

Rκ, vκ the measure of the unit ball in Rκ and ωκ−1 = dσκ−1(Sκ−1) is the total

measure of Sκ−1. Recall that κvκ = ωκ−1 for any integer κ ≥ 2. We also use the

notation Bκ for the unit ball in Rκ and RBκ for the ball of radius R > 0 centered

at the origin in Rκ. The space of Schwartz functions on Rκ is denoted by S(Rκ).

We will study multilinear versions of S, Sα and of M . We introduce the family

of operators

Smα (f1, . . . , fm)(x) =
2/ωmn−1

B(mn
2
, 1− α)

sup
t>0

∫
Bmn

m∏
i=1

|fi(x− tyi)|
dy

(1− |y|2)α
, (3.1)

defined initially for functions fi ∈ S(Rn) and 0 ≤ α < 1. This is a multilinear

extension of the operator Sα = S1
α introduced in (1.7).
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We recall the definition of the multilinear spherical maximal operator

Sm(f1, . . . , fm)(x) = sup
t>0

1

ωmn−1

∫
Smn−1

m∏
i=1

|fi(x− tθi)| dσmn−1(θ1, . . . , θm), (3.2)

given also for functions fi ∈ S(Rn). When m = 1, Sm reduces to S in (1.4).

We would like to extend the definitions of the operators in (3.1) and (3.2) to

functions in fi in L1
loc(Rn), which is the space of all locally integrable functions,

meaning that f ∈ L1
loc(Rn) if and only if f ∈ L1(K) for every compact K ⊂ Rn.

Fix fi in L1
loc(Rn) and x ∈ Rn; then

t 7→ F (t) = tmn−1

∫
Smn−1

m∏
i=1

|fi(x− tθi)|dσmn−1(θ1, . . . , θm) (3.3)

is integrable over any interval [0, L], which implies that the integrals in (3.2) are

finite for almost all t > 0. Likewise, if F is as in (3.3) and t ∈ (0, L), then

∫
Bmn

m∏
i=1

|fi(x− tyi)|
dy

(1− |y|2)α
=

∫ 1

0

F (tr)

(1− r2)α
dr

tmn−1

≤ 1

tmn−α

∫ L

0

F (s) ds

(t− s)α
, (3.4)

and the last integral is the convolution (evaluated at t) of the L1 functions Fχ[0,L]

and s−αχ(0,L] on the real line, hence it is finite a.e. on (0, L). We conclude that

the integral in (3.1) is finite for almost all t > 0 for fi ∈ L1
loc(Rn) and x ∈ Rn.

Now, one cannot properly define the supremum of a family {At}t>0 (At ≥ 0)

which satisfies At <∞ for almost all t > 0. But it is possible to define the essential

supremum of {At}t>0, which is practically the supremum restricted over the subset

of (0,∞) on which At <∞. So to extend the definitions of the operators in (3.2)

and (3.1) to functions fi ∈ L1
loc(Rn) for any x ∈ Rn by replacing the supremum in

these expressions by the essential supremum ess.sup. However, this adjustment is
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not needed when

fi ∈ Lpi(Rn) with
n∑
i=1

1

pi
=

1

p
<
mn− α

n
,

since, in that case, the corresponding averages vary continuously in t. See Corol-

lary 3.1 below. Based on this discussion we provide the following definition.

Definition 3.1. Let t > 0, fi ∈ L1
loc(Rn) for 1 ≤ i ≤ m, and x ∈ Rn. We define

Smα,t(f1, . . . , fm)(x) =
2/ωmn−1

B(mn/2, 1− α)

∫
Bmn

m∏
i=1

fi(x− tyi)
dy

(1− |y|2)α
(3.5)

and

Smα (f1, . . . , fm)(x) = ess.sup
t>0

Smα,t(|f1|, . . . , |fm|)(x) (3.6)

for 0 ≤ α < 1. We also define

Sm1,t(f1, . . . , fm)(x) =
1

ωmn−1

∫
Smn−1

m∏
i=1

fi(x− tθi) dσmn−1(θ1, . . . , θm) (3.7)

and

Sm(f1, . . . , fm)(x) = ess.sup
t>0

Sm1,t(|f1|, . . . , |fm|)(x). (3.8)

We prove the following results:

Theorem 3.1. Let 0 < α < 1. Given fi ∈ L1
loc(Rn) and x ∈ Rn we have

Mm(f1, . . . , fm)(x) ≤ Smα (f1, . . . , fm)(x) ≤ Sm(f1, . . . , fm)(x) (3.9)

lim
α→1−

Smα (f1, . . . , fm)(x) = Sm(f1, . . . , fm)(x) (3.10)

lim
α→0+

Smα (f1, . . . , fm)(x) = Mm(f1, . . . , fm)(x). (3.11)

These statements are valid even when some of the preceding expressions equal ∞.

As Mm is pointwise controlled by the product of the Hardy-Littlewood opera-

tors acting on each function, this operator is bounded from Lp1(Rn)×· · ·×Lpm(Rn)
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to Lp(Rn) in the full range of exponents

1 < p1, . . . , pm ≤ ∞ and 1/p1 + · · ·+ 1/pm = 1/p.

Boundedness for Sm holds in the smaller region

n/(mn− 1) < p ≤ ∞

as shown in Chapter 2. So it is expected that Smα are bounded in some intermediate

regions. This is the content of the following result.

Theorem 3.2. Let n ≥ 2, 0 ≤ α < 1, and 1 < pi ≤ ∞. Define p by
∑m

i=1
1
pi

= 1
p
.

Then there is a constant C = C(m,α, p1, . . . , pm) such that

‖Smα (f1, . . . , fm)‖Lp(Rn) ≤ C
m∏
i=1

‖fi‖Lpi (Rn) (3.12)

for all fi ∈ Lpi(Rn) if and only if

n

mn− α
< p ≤ ∞.

Moreover, if (3.12) holds, then the constant C can be chosen to be independent of

the dimension (as indicated by the parameters on which it is claimed to depend).

Remark 3.1. As a consequence, we obtain dimensionless Lp1 × · · · × Lpm → Lp

bounds for the multilinear Hardy-Littlewood maximal function Mm. Precisely, we

have

‖Mm(f1, . . . , fm)‖Lp ≤ C(p1, . . . , pm)
m∏
i=1

‖fi‖Lpi (Rn),

where

1

m
< p ≤ ∞,

n∑
i=1

1

pi
=

1

p

and C(p1, . . . , pm) does not depend of n.

This extents the result of Stein and Strömberg [52] to the multilinear setting.
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In Figure 3.1 we graph the range of boundedness for the bilinear operator S2
α.

(1,0)

(0,1)

(n−1
n
, 1)

(n−α
n
, 1)

(0,0)

1/p1

1/p2

Figure 3.1: Range of Lp1 × Lp2 → Lp boundedness of S2
α when 0 ≤ α ≤ 1

and n ≥ 2. The bilinear spherical maximal function is bounded below the black
dotted line, while the bilinear Hardy-Littlewood maximal function is bounded on
the entire square.

The estimates in (3.12) imply that when fi ∈ Lpi(Rn) with

n∑
i=1

1

pi
=

1

p
<
mn− α

n
,

then for almost all x ∈ Rn, the averages

Smα,t(f1, . . . , fm)(x)

are finite uniformly in t > 0.

Corollary 3.1. Let 0 ≤ α ≤ 1 and suppose that for all 1 ≤ i ≤ m, fi ∈ Lpi(Rn)

where 1 < pi ≤ ∞ satisfy
∑m

i=1
1
pi

= 1
p
< mn−α

n
. Then for almost every x in Rn,

the function

t 7→ Smα,t(f1, . . . , fm)(x)

is well defined and continuous in t ∈ (0,∞). Therefore in Definition 3.1, for

almost all x ∈ Rn, we can replace the essential supremum by a supremum in both

(3.6) and (3.8).
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Corollary 3.2. Let 0 ≤ α ≤ 1 and suppose that for all 1 ≤ i ≤ m, fi ∈ Lpiloc(Rn)

where 1 < pi ≤ ∞ satisfy
∑m

i=1
1
pi

= 1
p
< mn−α

n
. Then for almost every x ∈ Rn,

lim
t→0

Smα,t(f1, . . . , fm)(x) = f1(x) · · · fm(x). (3.13)

Parts of Theorem 3.1 may be new even when m = 1. Theorem 3.2 is only

new when m ≥ 2 as the case m = 1 was considered in [50]. The proofs of these

theorems can be suitably adapted to the measures

q

B(mn/q, 1− α)

d~y

(1− |~y |q)α

for any q > 0 in lieu of

2

B(mn
2
, 1− α)

d~y

(1− |~y |2)α

in (3.1). To simplify the notation in our proofs, we adopt the following conventions:

~y = (y1, . . . , ym) ∈ (Rn)m [~f ] = (f1, . . . , fm)

d~y = dy1 · · · dym (f1 ⊗ · · · ⊗ fm)(~y ) = f1(y1) · · · fm(ym)

~θ = (θ1, . . . , θm) ∈ Smn−1 ⊗~f = f1 ⊗ · · · ⊗ fm

x = (x, . . . , x)︸ ︷︷ ︸
m times

∈ (Rn)m |⊗ ~f | = |f1| ⊗ · · · ⊗ |fm|

Two main ideas are used in the proof of Theorem 3.1; integration by parts

and the fundamental theorem of calculus, both with respect to the radial coordi-

nate. Theorem 3.2 is based on a slicing formula that allows us to control Smα by

the product of the Hardy-Littlewood maximal operators acting on m − 1 input

functions and of Sα (defined in (1.7)) acting on the remaining function. This gives

estimates near the vertices of the region on which boundedness is claimed, while

the remaining bounds are obtained by multilinear interpolation.
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3.2 The proof of Theorem 3.1

Before we discuss the proof of Theorem 3.1 we note that when α = 0, equality

holds in the first inequality in (3.9), since

ωmn−1

2
B
(mn

2
, 1
)

=
ωmn−1

2

2

mn
= vmn.

That is,

Mm[~f ](x) = Sm0 [~f ](x).

In fact (3.9) is valid even when α = 0, since

Mm[~f ](x) = Sm0 [~f ](x)

= sup
t>0

1

vmn

∫ 1

0

∫
Smn−1

|⊗ ~f |(x− tr~θ )dσmn−1(~θ )rmn−1dr

≤ 1

vmn

∫ 1

0

sup
t′>0

∫
Smn−1

|⊗ ~f |(x− t′~θ )dσmn−1(~θ )rmn−1dr

= mnSm[~f ](x)

∫ 1

0

rmn−1dr

= Sm[~f ](x).

Proof of Theorem 3.1. First we show that for any 0 < α < 1 we have

Smα [~f ](x) ≤ Sm[~f ](x)

for any x ∈ Rn. Indeed, we have

1

ωmn−1

2

B(mn
2
, 1− α)

ess.sup
t>0

∫
Bmn
|⊗ ~f |(x− t~y )(1− |~y |2)−αd~y

≤ 1

ωmn−1

2

B(mn
2
, 1− α)

∫ 1

0

rmn−1

(1− r2)α
ess.sup
t>0

∫
Smn−1

|⊗ ~f |(x− rt~θ )dσmn−1(~θ )dr

≤ 1

ωmn−1

2

B(mn
2
, 1− α)

(∫ 1

0

rmn−1

(1− r2)α
dr

)
ess.sup
t′>0

∫
Smn−1

|⊗ ~f |(x− t′~θ )dσ(~θ )

=Sm[~f ](x),
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since ∫ 1

0

rmn−1

(1− r2)α
dr =

1

2
B
(mn

2
, 1− α

)
.

This concludes the proof of the second inequality in (3.9).

Next we prove the first inequality in (3.9). That is, for a fixed x ∈ Rn and

0 < α < 1, we show that

Mm[~f ](x) ≤ Smα [~f ](x).

If for some x ∈ Rn we had Mm[~f ](x) =∞, we would also have that Smα [~f ](x) =∞

as

(1− |~y |2)−α ≥ 1

when |~y | < 1. So we may assume that Mm[~f ](x) < ∞ in the calculation below.

For fixed t > 0 we define

Ht(r) =

∫ r

0

smn−1

(∫
Smn−1

|⊗ ~f |(x− ts~θ ) dσ(~θ )

)
ds =

∫
|~y |≤r
|⊗ ~f |(x− t~y )d~y,

for r > 0. As each fj is locally integrable, the integral on the right converges

absolutely, and thus the expressions in the parentheses are finite for almost all

s > 0 and moreover, the s-integral converges absolutely. Thus Ht(r) is the integral

from 0 to r of an L1 function. Then, the Lebesgue differentiation theorem gives

d

dr
Ht(r) = H ′t(r) = rmn−1

∫
Smn−1

|⊗ ~f |(x− tr~θ )dσ(~θ ) for almost all r > 0.

Moreover, for any r > 0 we have

ess.sup
t>0

1

vmnrmn
Ht(r) = ess.sup

t>0

1

vmn
Hrt(1)

= ess.sup
t′>0

1

vmn
Ht′(1)

=Mm[~f ](x) <∞,
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where in the last equality we replaced the essential supremum by the supremum,

using the continuity of the function

t 7→Mm
t (f1, . . . , fm)(x) =

1

vmn

∫
Bmn

m∏
i=1

|fi(x− tyi)|dy1 · · · dym,

for any fi ∈ L1
loc(Rn), which can be obtained by an application of the Lebesgue

dominated convergence theorem. Let

cmn,α =
2

ωmn−1B(mn
2
, 1− α)

.

For any 0 < b < 1 we write

Smα [~f ](x)

≥ ess.sup
t>0

cmn,α

∫ b

0

H ′t(r)
1

(1− r2)α
dr

= ess.sup
t>0

cmn,α

[
Ht(b)

1

(1− b2)α
−
∫ b

0

Ht(r)
−2αr

(1− r2)α+1
dr

]
≥ ess.sup

t>0
cmn,α

[
Ht(b)

1

(1− b2)α
−
∫ b

0

Mm[~f ](x)
−2αr

(1− r2)α+1
vmnr

mndr

]
= cmn,α

[
Mm[~f ](x)

vmnb
mn

(1− b2)α
−
∫ b

0

Mm[~f ](x)
−2αr

(1− r2)α+1
vmnr

mndr

]
= cmn,αM

m[~f ](x)vmn

[
bmn

(1− b2)α
−
∫ b

0

−2αr

(1− r2)α+1
rmndr

]
= cmn,αM

m[~f ](x)vmn

[
mn

∫ b

0

(1− r2)−αrmn−1dr

]
,

where all the previous steps make use of the assumption that Mm[~f ](x) < ∞.

Letting b → 1− we obtain the first inequality in (3.9). So we established both

inequalities in (3.9) for fi ∈ L1
loc(Rn).

Our next goal is to show that

lim
α→1−

Smα [~f ](x) ≥ Sm[~f ](x), (3.14)

where lim denotes the limit inferior. Let us fix fj in L1
loc(Rn) and x ∈ Rn. We
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define

G~f (t) =

∫
Smn−1

|⊗ ~f |(x− t~θ )dσmn−1(~θ ).

We observed earlier that for any L <∞ we have

∫ L

0

tmn−1G~f (t) dt ≤
m∏
i=1

∫
(|x|+1)Bn

|fi(yi)| dyi <∞

thus G~f (t) < ∞ for almost all t > 0. So let us fix a t > 0 for which G~f (t) < ∞.

For this t we will show that

lim
α→1−

∫ 1

0

G~f (rt)
2rmn−1(1− r2)−α

B(mn
2
, 1− α)

dr = G~f (t). (3.15)

Once (3.15) is shown, we deduce

lim
α→1−

sup
t′>0

∫ 1

0

G~f (rt′)
2rmn−1(1− r2)−α

B(mn
2
, 1− α)

dr ≥ G~f (t)

and taking the supremum on the right over all t > 0 for which G~f (t) <∞, yields

(3.14). Notice that the supremum over these t’s is the essential supremum which

appears in the definition of this operator.

To prove (3.15), it will suffice to show that

lim
α→1−

∫ 1

0

∣∣G~f (rt)−G~f (t)
∣∣2rmn−1(1− r2)−α

B(mn
2
, 1− α)

dr = 0. (3.16)

For smooth functions with compact support ϕi we have

lim
α→1−

∫ 1

0

∣∣G~ϕ (rt)−G~ϕ (t)
∣∣2rmn−1(1− r2)−α

B(mn
2
, 1− α)

dr = 0 (3.17)

as

∣∣∣∣ m∏
i=1

∣∣∣ϕi(x− rtθi)∣∣∣− m∏
i=1

∣∣∣ϕi(x− tθi)∣∣∣∣∣∣∣ ≤∣∣∣∣ m∏
i=1

ϕi(x− rtθi)−
m∏
i=1

ϕi(x− tθi)
∣∣∣∣

≤C t(1− r)
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and this factor cancels the singularity of (1− r2)−α while

lim
α→1−

B(
mn

2
, 1− α) = +∞.

Let us suppose that 0 < ε < 1 is given. For our given fi ∈ L1
loc(Rn), fixed

t > 0, and x ∈ Rn, we pick ϕi smooth functions with compact support such that

‖fi − ϕi‖L1(( 1
t
+1)(|x|+1)Bn) ≤ ε.

This implies that

∥∥f1 ⊗ · · · ⊗ fm − ϕ1 ⊗ · · · ⊗ ϕm
∥∥
L1(( 1

t
+1)(|x|+1)Bmn)

≤ C ′ε, (3.18)

where

C ′ =
m∑
i=1

∏
1≤j≤m
j 6=i

(
‖fj‖L1(( 1

t
+1)(|x|+1)Bn) + 1

)
, (3.19)

using the identity (valid for complex numbers ai, bi)

a1a2 · · · am − b1b2 · · · bm =
m∑
i=1

b1 · · · bi−1(ai − bi)ai+1 · · · am. (3.20)

In view of (3.17), the proof of (3.16) will be a consequence of the estimate:

∫ 1

0

∣∣Q(~f, ~ϕ, tr, t)
∣∣2rmn−1(1− r2)−α

B(mn
2
, 1− α)

dr ≤ C ′′ε (3.21)

where

Q(~f, ~ϕ, tr, t) =
(
G~f (rt)−G~f (t)

)
−
(
G~ϕ (rt)−G~ϕ (t)

)
.

Notice that this function is integrable in r over [0, 1]. Thus the fundamental

theorem of calculus applies, in the sense that

rKQ(~f, ~ϕ, tr, t) =
d

dr

∫ r

0

sKQ(~f, ~ϕ, ts, t)ds
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for almost all r in [0, 1]. (K here is a fixed positive power.)

For any 0 < b < 1 we have

∫ b

0

∣∣Q(~f, ~ϕ, tr, t)
∣∣2rmn−1(1− r2)−α

B(mn
2
, 1− α)

dr

=

∫ b

0

d

dr

∫ r

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds 2(1− r2)−α

B(mn
2
, 1− α)

dr

=

(∫ b

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds) 2(1− b2)−α

B(mn
2
, 1− α)

−
∫ b

0

(∫ r

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds)2(−2αr)(1− r2)−α−1

B(mn
2
, 1− α)

dr

≤
(∫ 1

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds)[ 2(1− b2)−α

B(mn
2
, 1− α)

−
∫ b

0

2(−2αr)(1− r2)−α−1

B(mn
2
, 1− α)

dr

]
=

(∫ 1

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds)[∫ b

0

2(1− r2)−α

B(mn
2
, 1− α)

dr

]
≤
(∫ 1

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds)[∫ b

0

2(1− r)−α

B(mn
2
, 1− α)

dr

]
≤
∫ 1

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds 2mn−1,

as (1− α)B(mn, 1− α) is bounded from below by some constant C ′(mn).

It remains to show that the integral

∫ 1

0

smn−1
∣∣Q(~f, ~ϕ, ts, t)

∣∣ds
is bounded by a constant multiple of ε. But this integral is controlled by

∫
Bmn

∣∣∣−→|f |(x− t~y )−
−→
|ϕ|(x− t~y )

∣∣∣d~y +

∫
Bmn

∣∣∣−→|f |(x− ~y )−
−→
|ϕ|(x− ~y )

∣∣∣d~y
which is bounded by

∫
Bmn

∣∣∣∣∣∣∣ m∏
i=1

fi(x−tyi)
∣∣∣−∣∣∣ m∏

i=1

ϕi(x−tyi)
∣∣∣∣∣∣∣d~y+

∫
Bmn

∣∣∣∣∣∣∣ m∏
i=1

fi(x−yi)
∣∣∣−∣∣∣ m∏

i=1

ϕi(x−yi)
∣∣∣∣∣∣∣d~y
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which, in turn, is bounded by

∫
Bmn

∣∣∣∣ m∏
i=1

fi(x− tyi)−
m∏
i=1

ϕi(x− tyi)
∣∣∣∣d~y +

∫
Bmn

∣∣∣∣ m∏
i=1

fi(x− yi)−
m∏
i=1

ϕi(x− yi)
∣∣∣∣d~y.

Then using (3.20) we obtain that the preceding expression is bounded by 2C ′ε,

where C ′ is as in (3.19). This proves (3.21), which as observed earlier, implies

(3.14).

Finally, we prove (3.11). To do this, in view of (3.9), we fix x in Rn and fi in

L1
loc(Rn). It will suffice to show that

lim
α→0+

Smα [~f ](x) ≤Mm[~f ](x). (3.22)

For t > 0 we set

Kt(α) =
2

ωmn−1B(mn
2
, 1− α)

∫
Bmn

~|f |(x− t~y )(1− |~y |2)−αd~y .

Since we are taking the limit as α→ 0+ we may consider α < 1/2. By the triangle

inequality, for 0 < α < 1/2 we have

Kt(α) ≤ Kt(0) +
∣∣Kt(α)−Kt(0)

∣∣ ≤ Kt(0) + α sup
0≤β≤1/2

|K ′t(β)|, (3.23)

where we denoted by K ′t(β) the derivative of Kt with respect to β. Let us

temporarily assume that fi are bounded functions. Fix 0 ≤ β ≤ 1/2. We write

|K ′t(β)|

=
2/ωmn−1

B
(
mn
2
, 1− β

)2

∣∣∣∣B (mn2 , 1− β
)∫

Bmn
|⊗ ~f |(x− t~y )

(
ln

1

1− |~y |2
) d~y

(1− |~y |2)β

−
(
d

dβ
B
(mn

2
, 1− β

))∫
Bmn
|⊗ ~f |(x− t~y )(1− |~y |2)−βd~y

∣∣∣∣
≤ 2

∏m
i=1 ‖fi‖L∞

B
(
mn
2
, 1− β

) ∫ 1

0

(1− r2)−βrmn−1
(

ln
1

1− r2

)
dr

+
2
∏m

i=1 ‖fi‖L∞
B
(
mn
2
, 1− β

)2

(∫ 1

0

s−β
(

ln
1

s

)
(1− s)

mn
2
−1 ds

)
1

2
B
(mn

2
, 1− β

)
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≤ 2
∏m

i=1 ‖fi‖L∞
B(mn

2
, 1)

[ ∫ 1

0

(1− r2)−
1
2 rmn−1

(
ln

1

1− r2

)
dr

+
1

2

∫ 1

0

s−
1
2

(
ln

1

s

)
(1− s)

mn
2
−1 ds

]
= C~f,mn,

where we used that 0 ≤ β ≤ 1/2 and that

∣∣∣∣ ddβB (mn2 , 1− β
)∣∣∣∣ =

∫ 1

0

s−β
(

ln
1

s

)
(1− s)

mn
2
−1ds

≤
∫ 1

0

s−
1
2

(
ln

1

s

)
(1− s)

mn
2
−1ds.

Taking the essential supremum in (3.23) with respect to t > 0, we conclude for

α < 1/2 that

Smα [~f ](x) ≤Mm[~f ](x) + αC~f,mn.

Therefore for every x ∈ Rn we obtain

lim
α→0+

Smα [~f ](x) ≤Mm[~f ](x),

under the assumption that fi are bounded functions. We now remove this as-

sumption on the fi. Given fi in L1
loc(Rn), define

fki = fiχ|fi|≤k,

for k = 1, 2, 3, . . . . Then

|f 1
i | ≤ |f 2

i | ≤ |f 3
i | ≤ · · · ≤ |fi|,

amd

|fki | ↑ |fi| as k →∞,
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and the functions fki are bounded.

Let [ ~fk ] = (fk1 , . . . , f
k
m). For each k = 1, 2, 3, . . . and each t > 0 the mono-

tonicity of Smα in each variable and the preceding argument for bounded functions

give

lim
α→0+

Smα [~f ](x) ≥ lim
α→0+

Smα [ ~fk ](x)

≥
2ω−1

mn−1

B(mn
2
, 1− α)

∫
Bmn

m∏
i=1

|fki (x− tyi)|
dy

(1− |y|2)α
.

Ignoring the middle term and letting k →∞ we obtain

lim
α→0+

Smα [~f ](x) ≥
2ω−1

mn−1

B(mn
2
, 1− α)

∫
Bmn

m∏
i=1

|fi(x− tyi)|
dy

(1− |y|2)α

via the Lebesgue monotone convergence theorem. Taking the essential supremum

over all t > 0 yields inequality (3.22), and thus concludes the proof of (3.11).

3.3 The derivation of Theorem 3.2

Proof of Theorem 3.2. For any 0 ≤ α < 1, we prove that the estimate

Smα (f1, . . . , fm)(x) ≤ Sα(fk)(x)
∏
i 6=k

M(fi)(x), (3.24)

is valid for all fi ∈ L1
loc(Rn) and all x ∈ Rn, where Sα is defined in (1.7) and M is

the Hardy-Littlewood maximal operator on Rn. For any fixed t > 0, we set

Smα,t(f1, . . . , fm)(x) = cmn,α

∫
Bmn

m∏
i=1

|fi(x− tyi)|(1− |y|2)−αdy

where

cmn,α =
2

ωmn−1B(mn/2, 1− α)
.
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For yi ∈ Rn we set

y = (y1, . . . , ym) and ŷk = (y1, . . . , yk−1, yk+1, . . . , ym).

Then for a fixed k ∈ {1, 2, . . . ,m} we have

c−1
mn,α S

m
α,t(f1, . . . , fm)(x)

=

∫
Bmn

m∏
i=1

|fi(x− tyi)|(1− |y|2)−αdy

=

∫
B(m−1)n

∫
√

1−|ŷk|2Bn

m∏
i=1

|fi(x− tyi)| (1− |ŷk|2)−α
(

1−
∣∣∣ yk√

1−|ŷk|2
∣∣∣2)−αdykdŷk

=

∫
B(m−1)n

∏
i 6=k

|fi(x− tyi)|
∫
Bn
|fk(x− t

√
1− |ŷk|2uk)|(1−|ŷ

k|2)
n
2
−α

(1−|uk|2)α
dukdŷk

≤
∫
B(m−1)n

∏
i 6=k

|fi(x− tyi)| ess.sup
t>0

∫
Bn
|fk(x− tuk)|(1−|uk|2)−αduk

dŷk

(1−|ŷk|2)α−
n
2

≤ c−1
n,α Sα(fk)(x) · sup

t>0

∫
B(m−1)n

∏
i 6=k

|fi(x− tyi)|
dŷk

(1− |ŷk|2)α−
n
2

,

with cn,α = 2/(ωn−1B(n/2, 1− α)).

Next, we use the following fact concerning multilinear approximate identities:

Suppose that

φ : Rκn → C

has an integrable radially decreasing majorant Φ, and let φt(~y ) = t−κnφ(~y/t). If

∗ denotes convolution on Rκn, then the estimate

sup
t>0
|(⊗~f ) ∗ φt(x)| ≤ ‖Φ‖L1(Rκn)M

m[~f ](x) (3.25)

is valid for all locally integrable functions fj on Rn, j = 1, . . . , κ. This follows by

applying [19, Corollary 2.12] to the function

(x1, . . . , xκ) 7→ ⊗~f(x1, . . . , xκ)
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on Rκn and using that the κn-dimensional Hardy-Littlewood maximal function of

⊗~f at the point (x, . . . , x) ∈ (Rn)κ equals Mm[~f ](x).

Returning to the previous calculation, for ŷk ∈ R(m−1)n we consider the func-

tion φ(ŷk) = (1− |ŷk|2)
n
2
−α

+ . Using that n ≥ 2 (hence n/2− α ≥ 0), we calculate

that

‖φ‖L1(R(m−1)n) =
ω(m−1)n−1

2
B

(
(m− 1)n

2
,
n

2
+ 1− α

)
.

Using (3.25) for κ = m− 1, we can see that

sup
t>0

∫
B(m−1)n

∏
i 6=k

|fi(x− tyi)|
dŷk

(1− |ŷk|2)α−
n
2

≤ ‖φ‖L1(Rκn)M
m−1[f̂k](x),

where [f̂k] = (f1, . . . , fk−1, fk+1, fm). Using the well known fact that

ωn−1 =
2πn/2

Γ(n/2)

and the identity

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,

one can verify that

cmn,α · c−1
n,α · ‖φ‖L1 = 1.

Thus we conclude that

Smα,t(f1, . . . , fm)(x) ≤ Sα(fk)(x)Mm−1[f̂k](x).

Taking the essential supremum of Smα,t(f1, . . . , fm)(x) over t > 0 yields

Smα (f1, . . . , fm)(x) ≤ Sα(fk)(x)Mm−1[f̂k](x). (3.26)

Since (3.26) holds for α = 0, we have that

Mm
α [~f ] ≤M(f1)(x)Mm−1[f̂ 1](x).
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Therefore, consecutive applications of (3.26) conclude the proof of (3.24).

We now turn to the boundedness of Sα when m = 1. It was shown in [50] that

Sα is bounded on Lp for n
n−α < p ≤ ∞ when n ≥ 3. We remark that this result

also holds when n = 2. We now provide a sketch of a proof valid in all dimensions

n ≥ 2. To do this, for f ∈ S(Rn), we express Sαf as a maximal multiplier operator

Sαf(x) =
2πα

ωn−1

Γ(1− α)

B(n
2
, 1− α)

sup
t>0

∣∣∣∣ ∫
Rn
f̂(ξ)

Jn
2
−α(2πt|ξ|)
|tξ|n2−α

e2πix·ξdξ

∣∣∣∣
using the identity in [19, Appendix B.5]. To derive this we use the Bochner-

Riesz multiplier (1− |x|2)−α with a negative exponent, viewed as a kernel. Then

the Fourier transform expression for (1 − |x|2)z when Re z > 0 is also valid for

Re z > −1 by analytic continuation. Notice that in this range of z, the kernel

remains locally integrable. Using properties of Bessel functions, the multiplier

mα(ξ) =
Jn

2
−α(2π|ξ|)
|ξ|n2−α

is a smooth function which satisfies for all multi-indices γ

|∂γξmα(ξ)| ≤ Cn,γ

|ξ|n+1
2
−α

and the exponent

a =
n+ 1

2
− α

is strictly bigger than 1
2

(since n ≥ 2 and α < 1). Then the hypotheses of [45,

Theorem B] apply and we obtain that Sα is bounded on Lp(Rn) (when restricted

to Schwartz functions) for

p >
2n

n+ 2a− 1
=

n

n− α
.

(In [45, Theorem B] there is an upper restriction on p, but as Sα is bounded on

L∞ this does not apply here.) Then Sα extends to general f ∈ Lp(Rn) for p > n
n−α
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by density, and this extension coincides with that given in Definition 3.1.

We now use (3.24) to obtain that

‖Smα (f1, . . . , fm)‖Lp(Rn) ≤ C
m∏
i=1

‖fi‖Lpi (Rn) (3.27)

for all fi ∈ Lpi , when 1 < pi ≤ ∞ for i 6= k and n
n−α < pk ≤ ∞. Here the constant

C = C(m,α, p1, . . . , pm) doesn’t depend on the dimension n, since

Sα(f)(x) ≤ S1(f)(x)

and

‖S1(f)(x)‖Lp(Rn) ≤ c ‖f‖Lp(Rn)

for a constant c independent of n (see [52]).

To describe geometrically the points (1/p1, . . . , 1/pm) for which we claim bound-

edness for Smα , consider the cube Q = [0, 1]m and let V be the set of all of its

vertices except for the vertex (1, 1, . . . , 1). Then |V | = 2m − 1. We consider the

intersection of Q with the half-space H of Rm described by

H =
{

(t1, . . . , tm) : t1 + · · ·+ tm ≤ mn−α
n

}
.

Then Q ∩H has 2m − 1 +m vertices, namely the set V union the m points

(1, . . . , 1, mn−α
n

, 1, . . . , 1),

where mn−α
n

ranges over the m slots. We claim that Smα satisfies strong Lp bounds

in the interior of Q ∩ H. To see this, we interpolate between estimates at the

vertices of Q ∩H.

Precisely, the interpolation works as follows: Let W be the vertices of Q ∩H

that do not belong to V and let W ′ be a finite union of open balls centered at

the points of W intersected with Q ∩ H. We interpolate between points P =
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(1/p1, . . . , 1/pm) in V ∪W ′. If P ∈ V , then we have an estimate Lp1 × · · · × Lpm

to Lp for Smα , as at least one coordinate 1/pk is 0 (i.e., pk = ∞), and we apply

(3.27) for this k. Now if P lies in W ′, then there is a k ∈ {1, . . . ,m} such that

pk >
n

n−α and pi are near 1 for all i 6= k. Using estimate (3.27) again for this choice

of k, we obtain that Smα maps Lp1 × · · · × Lpm to Lp at this point P . Applying

the m-linear version of the Marcinkiewicz interpolation theorem [25], we deduce

the boundedness of Smα in the interior of Q ∩H. Similar reasoning provides weak

type bounds on all the faces of Q ∩ H, except possibly on the H face, on which

we don’t know if there are any bounds at all.

Finally we show the optimality of the range p > n
mn−α . We consider the action

of Smα on characteristic functions; specifically, let

f1 = · · · = fm = χBn .

Since the characteristic functions belong in all Lp spaces, in the definition of

Smα [~f ] we can replace the essential supremum by the supremum (see Corollary 3.1).

Therefore for |x| sufficiently large it is enough to pick t =
√
m |x| in order to write

the estimate

c−1
mn,α S

m
α (f1, . . . , fm)(x) ≥

∫
Bmn

m∏
i=1

|fi(x−
√
m |x| yi)| · (1− |~y |2)−αd~y

≥
∫
|~y− x√

m |x| |≤
1√
m |x|

(1− |~y |2)−αd~y

≥ 2−α
∫
|~y− x√

m |x| |≤
1√
m |x|

(1− |~y |)−αd~y (3.28)

since

∣∣∣~y − x√
m |x|

∣∣∣ ≤ 1√
m |x|

=⇒
∣∣x−√m |x| yj∣∣ ≤ 1 for all j = 1, . . . ,m.

The point

θx =
x√
m|x|
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lies on the sphere Smn−1. A simple geometric argument gives that the integral in

(3.28) expressed in polar coordinates ~y = r~θ is at least

∫ 1

1− c
|x|

(1− r)−αrmn−1

∫
|~θ−θx|≤ c

|x|

dσmn−1(~θ )
dr

2α
≥ 2−α

|x|1−α
C(m,n)

|x|mn−1
=

2−αC(m,n)

|x|mn−α

for some small constants c, C (depending on n and m). We conclude the proof by

noting that the function

|x|−mn+αχ|x|≥100

does not lie in Lp(Rn) for p ≤ n
mn−α .

We proved Theorem 3.2 working directly with Lpi functions. Alternatively, we

could have worked with a dense family of Lpi and then extend to Lpi by density.

There is no ambiguity in this extension, in view of the following proposition.

Proposition 3.1. Let 0 < p1, . . . , pm, p ≤ ∞. Suppose that T is a subadditive

operator in each variable1 that satisfies the estimate

‖T (f1, . . . , fm)‖Lp ≤ K‖f1‖Lp1 · · · ‖fm‖Lpm (3.29)

for all functions fj in a dense subspace of Lpj . Then T admits a unique bounded

subadditive extension from Lp1 × · · · × Lpm to Lp with the same bound.

Proof. For any j ∈ {1, . . . ,m}, given fj ∈ Lpj pick sequences akj , b
l
j, k, l =

1, 2, 3, . . . in the given dense subspace of Lpj which converge to fj in Lpj . Us-

ing the idea proving (3.20) and the subadditivity of T in each variable we obtain:

∣∣T (ak1, a
k
2, . . . , a

k
m)− T (bl1, b

l
2, . . . , b

l
m)
∣∣ ≤

m∑
i=1

[∣∣T (bl1, . . . , b
l
i−1, a

k
i − bli, aki+1, . . . , a

k
m)
∣∣+ ∣∣T (ak1, . . . , a

k
i−1, b

k
i −ali, bli+1, . . . , b

l
m)
∣∣].

1this means |T (. . . , f + g, . . . )| ≤ |T (. . . , f, . . . )|+ T (. . . , g, . . . )| for all f, g
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Applying the Lp (quasi norm) and hypothesis (3.29) we deduce

∥∥T (ak1, a
k
2, . . . , a

k
m)− T (bl1, b

l
2, . . . , b

l
m)
∥∥
Lp

≤ CpK

m∑
i=1

‖aki − bli‖Lpi
∏
j 6=i

[
‖akj‖Lpj + ‖blj‖Lpj

]
.

(3.30)

Taking blj = alj in (3.30) we conclude that the sequence

{
T (ak1, a

k
2, . . . , a

k
m)
}∞
k=1

is Cauchy in Lp and thus it has a limit

T (f1, . . . , fm).

This limit does not depend on the choice of the sequences akj converging to fj, as

we can choose l = k in (3.30) and let k → ∞. Thus T has a unique extension

T . This extension is also bounded with the same bound and is subbadditive by

density.

3.4 The proofs of Corollaries 3.1 and 3.2

Next we discuss the proof of Corollary 3.1. The case m = 1 of this result is

contained in [51, Chapter XI Section 3.5].

Proof. It suffices to prove the assertion for almost all x in a ball N Bn, as Rn is a

countable union of N Bn over N = 1, 2, . . . . Let us fix such a ball N Bn. It will

suffice to prove the continuity of

t 7→ Sα,t(f1, . . . , fm)(x)

on (0, R) for every R > 0. Fix such an R > 0 as well. Then we may replace each
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fi by

gi = fiχ(N+R)Bn

as

Sα,t(f1, . . . , fm)(x) = Sα,t(g1, . . . , gm)(x)

when x ∈ N Bn and 0 < t < R. As gi have compact support and lie in Lpi , they

also lie in Lqi , where qi < pi are chosen so that

1

q
=

m∑
i=1

1

qi
<
mn− α

n
.

The purpose of introducing qi < pi was to replace all infinite indices pi by finite

ones, as there is no good dense subspace of L∞.

We pick sequences ϕkj of smooth compactly supported functions with ϕkj → gj

in Lqj(Rn) (since qj <∞) and consider the sequence

ess.sup
t>0

Smα,t(g1 − ϕk1, . . . , gm − ϕkm), m = 1, 2, 3, . . . .

By (3.12) if α < 1 (or by Chapter 2 if α = 1) this sequence converges to zero in

Lq(Rn), thus there is a subsequence that converges to zero a.e. This implies that

there is a subset E of Rn of measure zero such that for all x ∈ Rn \ E we have

lim
k→∞

∥∥Smα,t[~g ](x)− Smα,t[ ~ϕk](x)
∥∥
L∞((0,∞),dt)

= 0,

i.e.,

Smα,t[
~ϕk](x)→ Smα,t[

~f ](x)

uniformly in t > 0. Since Smα,t[
~ϕk](x) is continuous in t, we conclude that Smα,t[~g ](x)

is also continuous in t, for almost every x ∈ Rn.

To prove Corollary 3.2, we will need a proposition analogous to [19, Theorem

2.1.14]. Let (X,µ) and (Y, ν) be σ finite measure spaces and let 0 < pj ≤ ∞,

j = 1, . . . ,m, and 0 < q <∞. Let Dj be a dense subspace of Lpj(X,µ). Suppose
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that for all t > 0, Tt is an m-linear operator defined on Lp1(X,µ)×· · ·×Lpm(X,µ)

with values in the space of measurable functions defined a.e. on Y . Assume that

for all fj ∈ Lpj , the function

y 7→ T∗(f1, . . . , fm)(y) = sup
t>0
|Tt(f1, . . . , fm)(y)|

is ν-measurable on Y .

Proposition 3.2. Let 0 < pi ≤ ∞, 1 ≤ i ≤ m, 0 < q < ∞ and Tt and T∗ as in

the previous discussion. Suppose that there is a constant B such that

‖T∗(f1, . . . , fm)‖Lq,∞ ≤ B

m∏
j=1

‖fj‖Lpj (3.31)

for all fj ∈ Lpj(X,µ). Also suppose that for all ϕj ∈ Dj

lim
t→0

Tt(ϕ1, . . . , ϕm) = T (ϕ1, . . . , ϕm) (3.32)

exists and is finite ν-a.e. Then for all functions fj ∈ Lpj(X,µ) the limit in (3.32)

exists and is finite ν-a.e., and defines an m-linear operator which uniquely extends

T defined on D1×· · ·×Dm and which is bounded from Lp1×· · ·×Lpm to Lq,∞(X).

Proof. Given fj ∈ Lpj we define the oscillation of ~f for y ∈ Y by setting

O~f (y) = lim sup
ε→0

lim sup
θ→0

∣∣Tε[~f ](y)− Tθ[~f ](y)
∣∣.

We will show that for all fj ∈ Lpj and all δ > 0,

ν
(
{y ∈ Y : O~f (y) > δ}

)
= 0. (3.33)

Once (3.33) is established, we obtain that O~f (y) = 0 for ν-almost all y, which

implies that Tt[~f ](y) is Cauchy for ν-almost all y, and it therefore converges ν-

a.e. to some T [~f ](y) as t→ 0. The operator T defined this way on Lp1(X)×· · ·×

49



Lpm(X) is linear and extends T given in (3.32) defined on D1 × · · · ×Dm.

To approximate O~f (y) we use density. Given 0 < η < 1, we find ϕj ∈ Dj such

that ‖fj − ϕj‖Lpj < η, j = 1, . . . ,m. Without a loss of generality, we also assume

that ‖ϕi‖Lpi ≤ 2‖fi‖Lpi . Since

Tt[~ϕ ]→ T [~ϕ ] ν − a.e.,

it follows that O~ϕ = 0 ν-a.e. Using (3.20), we write

Tt[~f ]− Tt[~ϕ ] =
m∑
i=1

Tt(ϕ1, . . . , ϕi−1, fi − ϕi, fi+1, . . . , fm)

and from this we obtain

O~f ≤ O~ϕ +
m∑
i=1

O(ϕ1,...,ϕi−1,fi−ϕi,fi+1,...,fm) ν-a.e.

Now, for any δ > 0 we have

ν
(
{y ∈ Y : O~f (y) > δ}

)
≤ ν

({
y ∈ Y :

m∑
i=1

O(ϕ1,...,ϕi−1,fi−ϕi,fi+1,...,fm) > δ
})

≤ ν
({
y ∈ Y :

m∑
i=1

2T∗(ϕ1, . . . , ϕi−1, fi − ϕi, fi+1, . . . , fm) > δ
})

≤
m∑
i=1

ν
({
y ∈ Y : 2T∗(ϕ1, . . . , ϕi−1, fi − ϕi, fi+1, . . . , fm) >

δ

m

})
≤

m∑
i=1

[(
2B

m

δ

)
‖ϕ1‖Lp1 · · · ‖ϕi−1‖Lpi−1‖fi − ϕi‖Lpi‖fi+1‖Lpi+1 · · · ‖fm‖Lpm

]q
≤
(

2mB
m

δ

)q
ηq

m∑
i=1

(∏
j 6=i

‖fj‖qLpj
)
.

Letting η → 0, we deduce (3.33). We conclude that Tt[~f ] is a Cauchy sequence and

hence it converges ν-a.e. to some T [~f ] which satisfies the claimed assertions.

We now prove Corollary 3.2
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Proof. It suffices to prove the assertion for almost all x in a ball N Bn, as Rn is a

countable union of balls. Let us fix a ball N Bn. Then we replace the given fi in

Lpiloc by gi = fiχ(N+1)Bn since

Sα,t(f1, . . . , fm)(x) = Sα,t(g1, . . . , gm)(x)

when x ∈ N Bn and 0 < t < 1. As gi have compact support and lie in Lpi , they

also lie in Lqi , where qi < pi are chosen so that

1

q
=

m∑
i=1

1

qi
<
mn− α

n
.

As qi < ∞, the space of smooth functions with compact support is a dense sub-

space of Lqi . Now (3.13) is easily shown to hold for smooth functions with compact

support fi, when 0 ≤ α ≤ 1, thus (3.32) holds with Tt = Sα,t. Moreover (3.31)

holds by Theorem 3.2 if α < 1 or by Chapter 2 if α = 1. By Proposition 3.2, for

t < 1, we obtain that for almost all x ∈ N Bn we have

lim
t→0

Smα,t(f1, . . . , fm)(x) = lim
t→0

Smα,t(g1, . . . , gm)(x) =
m∏
j=1

gj(x) =
m∏
j=1

fj(x),

thus (3.13) holds for all gi in Lqi , in particular for our given fi in Lpiloc.
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Chapter 4

Nikodym, Besicovitch, and

Kakeya Sets Associated with

Spheres

In [10] the authors constructed Nikodym, Besicovitch, and Kakeya Sets associated

with circles on R2. In this chapter we extend this construction to the higher

dimensional setting, proving the existence of Nikodym, Besicovitch, and Kakeya

sets associated with spheres. These sets provide counterexamples for maximal

operators given by translations of spherical averages are unbounded on all Lp(Rn)

for p <∞.

4.1 Introduction and statements of results

In this chapter and in the next, we will denote with dσ the normalized surface

measure, since the normalizing factor 1
ωn−1

will not play any important role. For

a given vector u ∈ Rn and a given radius t > 0, we define the average

Au,tf(x) :=

∫
Sn−1

f(x+ tu− ty)dσ(y).

The vector u corresponds to a direction of translation. The (centered) spherical
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maximal function which originated in Stein [50] corresponds to the case u = 0:

Sf(x) := sup
t>0

∫
Sn−1

|f(x− ty)| dσ(y) = sup
t>0
A0,t|f |(x). (4.1)

For a fixed u ∈ Sn−1, let

Muf(x) := sup
t>0
Au,t|f |(x) (4.2)

be the maximal average of f over all spheres x+ t(u+Sn−1) with t > 0 varying. It

was shown in [S91] that for n = 2, Mu is bounded from Lp(R2) to itself for p > 2,

uniformly in u.

In the following we will be allowing u to vary as well. For a compact subset T

of Rn, which will serve as a set of translations, we consider the maximal spherical

translations

MTf(x) := sup
u∈T
Au,1|f |(x), (4.3)

where we are considering averages over the unit spheres x+u+Sn−1 with u varying

in T . We also consider the uncentered spherical maximal function

STf(x) := sup
t>0
u∈T

Au,t|f |(x), (4.4)

which includes dilations. These operators are initially defined for f ∈ S(Rn), the

Schwartz class. When T = {0} we recover the spherical maximal function defined

in (5.1). Clearly

MTf(x) ≤ STf(x)

for any x ∈ Rn.

When T = Bn(0, 1), the closed unit ball in Rn, the operator ST corresponds

the averages over all spheres with x in their interior (in the Jordan-Brouwer sense)

andMT to all such unit spheres. By considering the characteristic function of an

ε-neighborhood of the unit sphere, we can readily see that both ST and MT are
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unbounded on Lp(Rn) for any p <∞ if T = Bn(0, 1).

When T = Sn−1, we instead are considering all spheres that pass through x.

We will show that the operators MT and ST are unbounded as part of Corollary 4.1

when T = Sn−1. However, we obtain boundedness results forMT when the upper

Minkowski dimension of T (see (5.7) below for a definition) is strictly less than

n − 1 and for ST when it is strictly less than n − 2. We denote by dimBT the

upper Minkowski dimension (also known as the upper box dimension) of T . These

results will be the subject of Chapter 5.

The counterexample forMSn−1 mentioned above follows from the construction

of a Nikodym set in Rn associated with spheres, instead of hyperplanes. A clas-

sical Nikodym set is a set A ⊂ Rn of measure zero which contains a punctured

hyperplane through every point: for every y ∈ A, there is a hyperplane Vy ⊂ Rn

such that y ∈ Vy and Vy \ {y} ⊂ A. Nikodym [42] proved the existence of such

sets for n = 2, and Falconer [15] extended the result for all n ≥ 2.

We prove the existence of the analogue of Nikodym sets for unit spheres instead

of hyperplanes. Our result is a higher-dimensional analogue of [10, Theorem 6.9],

specialized to spheres.

Theorem 4.1 (Nikodym set for spheres). There exists a set A ⊂ Rn such that:

1. A has Lebesgue measure zero.

2. For all y ∈ Rn, there is a point py ∈ Rn and an (n− 1)-plane Vy containing

0 such that y ∈ py + Sn−1 and py + (Sn−1 \ Vy) ⊂ A.

Also, the mappings y 7→ py and y 7→ Vy are Borel.

To prove Theorem 4.1, we consider two closely related problems: the Kakeya

needle problem and the existence of Besicovitch sets. These problems were orig-

inally studied in the case of the line segment in the plane by Besicovitch in [5].

See [38] for classical and recent results in this area. By adapting a construction

of Cunningham [13], Héra and Laczkovich showed in [28] that a sufficiently short

circular arc can be moved (via rigid motions) to any position in the plane leaving
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a trace of arbitrarily small area; this can be considered the analogue of the Kakeya

needle problem for circular arcs.

The results in [28] were extended by Csörnyei and the first author, who showed

that if one removes a neighborhood of two diametrically opposite points from a

circle, the resulting set can be moved to any other position in arbitrarily small

area [10, Corollary 1.3]. In fact, they studied a Kakeya needle problem variant for

all rectifiable sets, not just circles. See [10, Theorem 1.2].

In Section 4.2, we prove the following, which provides a higher-dimensional

generalization of the result in [10] about circles mentioned in the previous para-

graph.

Theorem 4.2 (Kakeya needle problem for spheres). Let ε > 0 be arbitrary. Then

between the origin and any prescribed point in Rn, there exists a polygonal path

P =
⋃m
i=1 Li with each Li a line segment, and for each i there exists an (n − 1)-

plane Vi containing 0, such that

∣∣∣⋃
i

⋃
p∈Li

(p+ {x ∈ Sn−1 : dist(x, Vi) > ε})
∣∣∣ < ε. (4.5)

By considering the limit ε → 0 in the appropriate sense, Theorem 4.2, we

obtain Theorem 4.3 (see [10, Section 6]).

Theorem 4.3 (Besicovitch set for spheres). For every path P0 in Rn and for any

neighborhood of P0, there is a path P in this neighborhood with the same endpoints

as P0 and there is a (n− 1)-plane Vp containing 0 such that

∣∣∣ ⋃
p∈P

(p+ (Sn−1 \ Vp))
∣∣∣ = 0. (4.6)

Also, the mapping p 7→ Vp is Borel.

One can see that Theorem 4.3 implies Theorem 4.1; the idea is to take count-

ably many translates of the set in (4.6). (see [10, Section 6] for details.)

55



We use the set A of Theorem 4.1 to construct counterexamples for two op-

erators that arise in harmonic analysis. Kakeya sets were first used to construct

counterexamples in harmonic analysis in the celebrated work of C. Fefferman [17]

on the ball multiplier.

We provide counterexamples for two maximally translated spherical averages.

The first operator, MSn−1 , has already been defined in (5.3). The characteristic

function of the set A in Theorem 4.1 serves as a counterexample to the bounded-

ness of MSn−1 . Since

MSn−1f(x) ≤ SSn−1f(x),

we will conclude that SSn−1 is unbounded as well. We have the following corollary:

Corollary 4.1. For any n ≥ 2, the maximal operator MSn−1 is not bounded from

Lp(Rn) to itself for any 1 ≤ p <∞.

Proof. Let A be the set of measure zero in Theorem 4.1. Since A is a Lebesgue

measurable set, the regularity of the Lebesgue measure implies that for any ε > 0

there exists an open set Gε ⊃ A such that |Gε| < ε. Then at each x we can

choose the sphere Σx = px + Sn−1 with x ∈ Σx contained in A up to a set of

(n− 1)-dimensional measure zero. Since A ⊂ Gε, for any x ∈ Rn we have

MSn−1χGε(x) ≥
∫

Σx

χGε(y)dσ(y) = 1.

Thus for each p ∈ [1,∞) there does not exist a constant cp such that

‖MSn−1f‖Lp ≤ cp‖f‖Lp

for all f ∈ Lp(Rn), since MSn−1χGε(x) = 1 for all x ∈ Rn while ‖χGε‖Lp < ε1/p.

The second operator, S∗, was introduced by Palsson and Sovine in [44], to
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estimate the triangle operator

T (f, g)(x) =

∫
Ω

f(x− u)g(y − v)dµΩ(u, v),

which is the averaging operator corresponding to the surface measure µΩ on the

submanifold Ω of R2n

Ω =
{

(u, v) ∈ R2n : |u| = |v| = |u− v| = 1
}
.

The Triangle Operator was first introduced for n = 1 by Greenleaf and Io-

sevich in [27], where Lp1 × Lp2 → Lp estimates for T were used to show that if

the Hausdorff dimension of a compact set E ⊂ R2 is greater than 7
4
, then the

set of three-point configurations determined by E has positive three-dimensional

measure. It was the extended in [44] to higher dimensions and, more recently, a

trilinear version of T , the pyramid averaging operator, was introduced by Neuman

in [41] in order to study the four-point configuration problem.

In [44] it was noted that a geometric majorization of T , similar to the one

utilized by Jeong and Lee in [33] for the bilinear spherical maximal function,

yields the natural pointwise estimate

T (f, g)(x) ≤ Sf(x) · sup
u∈Sn−1

|Suf(x)|,

for every x ∈ Rn, where Sf(x) is the spherical maximal function of f defined in

(5.1) and for u ∈ Sn−1,

Sug(x) :=

∫
Hu

g(x− y)dσHu(y),

is the averaging operator over the (n− 2)-sphere

Hu := {v ∈ Sn−1 : |u− v| = 1} = Sn−1 ∩ {v : u · v = 1/2}
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and σHu is the surface measure on Hu.

In [44] the authors posed the question of the Lp(Rn) → Lp(Rn) boundedness

of

S∗g(x) := sup
u∈Sn−1

|Sug(x)|.

Such a bound would imply an Lp1 × Lp2 → Lp bound for T . However, no such

bound is possible and the counterexample follows from the set A of Theorem 4.1

once again.

Corollary 4.2. For any n ≥ 2, the operator S∗ is not bounded on Lp(Rn) for any

1 ≤ p <∞.

Corollary 4.2 is proved in Section 4.3.

4.2 The Kakeya needle problem

The proof of Theorem 4.2 is a generalization of the proof of [10, Theorem 1.2] to

higher dimensions. At first we focus on spheres, but in Subsection 4.2.2 we will

extend the construction to general rectifiable sets.

4.2.1 The Venetian Blind Construction

Let Pn−1 be the quotient of Sn−1 where we identify antipodal points together. We

will refer to an element of Pn−1 as a direction of Rn. Note that if θ1, θ2 ∈ Pn−1,

then the dot product θ1 · θ2 is well-defined up to a sign. For θ ∈ Pn−1, let θ⊥ ⊂ Rn

denote the orthogonal complement.

We begin with the following basic estimate, which provides a higher dimen-

sional analogue of [10, Lemma 3.3], specialized to spheres. We denote the k

Hausdorff measure by Hk. We refer the reader to [37] for the definitions of the

Hausdorff measure and dimension.

Lemma 4.1 (Basic estimate). Let ε > 0. Let L ⊂ Rn be a line segment in the

58



direction θ ∈ Pn−1. Suppose R ⊂ {x ∈ Sn−1 : |x · θ| ≤ ε}. Then

|L+R| ≤ εH1(L)Hn−1(R).

Proof. Without loss of generality, assume θ = e1 = (1, 0, . . . , 0). Let

P : Rn → R

be the orthogonal projection onto e⊥1 . Let R = R+ ∪R−, where

R+ = {(x1, . . . , xn) ∈ R : x1 ≥ 0}.

Let f : Rn−1 → R be given by

f(y) :=
√

1− |y|2.

Using the hypothesis on R, an elementary computation gives

Hn−1(R+) =

∫
P (R+)

√
1 + |∇f(y)|2 dy

≥1

ε
Hn−1(P (R+)).

A similar inequality holds for R−. By Fubini’s theorem, we have

|L+R| ≤ H1(L)
(
Hn−1(P (R+)) +Hn−1(P (R−))

)
≤ εH1(L)Hn−1(R).

In the following lemma, we will think of R2 as the subspace of Rn spanned by

e1 = (1, 0, . . . , 0) and e2 = (0, 1, 0, . . . , 0). The set P1 ⊂ Pn−1 will denote the set of

directions of R2. We also identify the direction (cosα, sinα) ∈ P1 with α ∈ R/πZ.

Lemma 4.2 (The iterated Venetian blind construction). Let ε > 0. Let L ⊂
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R2 ⊂ Rn be a line segment in direction e1. Then there exists a polygonal path

P ⊂ R2 ⊂ Rn with the same endpoints as L such that we can decompose P = G∪B,

where the “good” part G and the “bad” part B satisfy the following:

1. G is a finite union of parallel line segments of some direction θG ∈ (0, π
2
) ⊂

P1.

2. B is a finite union of parallel line segments of some direction θB ∈ (−π
2
, 0) ⊂

P1.

3. We have θG >
π
2
− ε, and θG − θB < π

2
.

4. There exists a constant c ∈ (0, 1) depending only on θB and θG such that

H1(B) ≤ cH1(L).

5. For any compact set

R ⊂ Sn−1 ∩
⋃

θ∈[0,θG]

θ⊥, (4.7)

we have

|G+R| . εH1(L)Hn−1(R). (4.8)

The implied constant is absolute. (Recall that we think of [0, θG] as a subset

of P1, which itself is a subset of Pn−1.)

6. For any compact set

R ⊂ Sn−1 ∩
⋃
θ∈IB

θ⊥. (4.9)

Then

|B +R| . εH1(L)Hn−1(R) (4.10)
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Remark 4.1. The set G is “good” because the interval of directions associated with

it, [0, θG], is large, i.e., close to π/2. On the other hand, the interval of directions

associated with the “bad” set B is small. However, the redeeming property of B is

(4), which means that when we iterate this iterated Venetian blind construction,

the total size of the “bad” set will decrease to zero very quickly.

The iterated Venetian blind construction used to prove Lemma 4.2 has essen-

tially already appeared in [10, Section 4]. We provide a sketch below.

(c)

(a)

(b)

Figure 4.1: Two steps in the Venetian blind construction, starting with (a) as the
initial segment.

Proof. The fundamental procedure in our construction is taking a line segment L

and replacing it with a “basic zigzag” with the same endpoints. A basic zigzag is

a polygonal path which is made up of N congruent and equally spaced segments

in some direction interlaced with N congruent segments in some other direction.

(See Figure 4.1(b) for an example.)

Fix ε > 0 and L ⊂ R2 ⊂ Rn a line segment in direction e1. Let

0 < β ≤ γ <
π

4

be angles depending on ε, to be determined later.

Fix N1 ∈ N (to be determined later), and apply the basic zigzag construction

to L to get a zigzag

Z1 ⊂ R2
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with N1 segments in directions γ and N1 segments in direction −β. We write

Z1 = G1 ∪B1,

where G1 is the union of line segments in direction γ and B1 is the union of line

segments in direction −β

Next fix N2 ∈ N, and repeat the zigzag procedure on each segment of G1, but

now with directions 2γ and −β. The end result is a polygonal path

Z2 = G2 ∪B2 ∪B1.

See Figure 4.1(c) for an example. Here G2 is the union of the line segments in

direction 2γ, and B2 is the union of line segments in direction −β created in this

step.

At the end of the jth step, we have a polygonal path

Zj = Gj ∪
j⋃
i=1

Bi.

All the segments in Gj have direction mγ. (Note that there are N1 · · ·Nj congruent

segments in Gj.) All the segments in

j⋃
i=1

Bi

have direction −β.

We stop the iteration at j = k, where k satisfies

kγ ∈ [π/2− 2β − γ, π/2− 2β).

We set G = Gk, B =
⋃k
i=1Bi, θG = kγ, and θB = −β. Then (1) and (2) are

satisfied. By choosing γ and β small enough and by the definition of k, we can

satisfy (3).
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Next, we show that (4) follows from some elementary Euclidean geometry.

Let LG and LB be line segments in directions θG and θB respectively, such that

L ∪ LG ∪ LB is a triangle. Then H1(LB) = H1(B), and (4) follows from

kγ > π − (kγ + β)

and the law of sines.

Finally, we check the volume estimates (5) and (6). For each i = 1, . . . , k, let

Ei = Sn−1 ∩
⋃

θ∈[(i−1)γ,iγ]

θ⊥. (4.11)

Let R be a compact set such that

R ⊂
k⋃
i=1

Ei.

This is precisely the condition (4.7). By Lemma 4.1,

|Gi + (R ∩ Ei)| ≤ γH1(Gi)Hn−1(R ∩ Ei) ≤ γH1(L)Hn−1(R ∩ Ei).

Furthermore, by choosing each Ni sufficiently large (i.e., making the basic zigzags

very fine), Gj is contained in a small neighborhood of Gi whenever j ≥ i. This,

along with compactness, implies that

|Gj + (R ∩ Ei)| . γH1(L)Hn−1(R ∩ Ei)

for all j ≥ i. By taking j = k and by summing over all i, we get

|G+R| . γH1(L)Hn−1(R) (4.12)

which implies (5) if we choose γ small enough depending on ε. To obtain (6), we

use Lemma 4.1 again, and choose β small enough depending on ε.
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Lemma 4.3 (Iterating the iterated Venetian blind construction). Let ε > 0. Let

L ⊂ R2 ⊂ Rn be a line segment in direction e1. Then there exists a polygonal path

P =
m⋃
i=1

Li ⊂ R2,

with each Li a line segment, such that for each i there exists an interval Ii ⊂ P1

such that

1. Each Ii has length at most ε.

2. We have

|
⋃
i

(Li + Sn−1 ∩
⋃

θ∈P1\Ii

θ⊥)| < ε. (4.13)

The idea of the proof of Lemma 4.3 is to apply the iterated Venetian blind

construction to the initial line segment L to get a polygonal path, then to apply

the construction again to each segment of the polygonal path, and so on.

Each time we apply Lemma 4.2, we have a choice of direction of the iterated

Venetian blind (clockwise or counter-clockwise). By making these choices carefully,

we can reduce the size of the exceptional set of directions Ii for most segments in

our polygonal path. By Lemma 4.2(4), the total length of the segments for which

the exceptional set of directions remains large goes to zero. For the complete

details, see [10, Section 4].

Observe that Lemma 4.3 immediately implies Theorem 4.2.

4.2.2 Translates of rectifiable sets

The theorems for spheres can easily be generalized to (n − 1)-rectifiable sets in

Rn. The main modification is replacing Lemma 4.1 with Lemma 4.4, below. We

do not need these generalizations, but they may be of independent interest, we

state the theorems below.

Let Pn−1 be the quotient of Sn−1 where we identify antipodal points together.

We will refer to an element of Pn−1 as a direction of Rn. Note that if θ1, θ2 ∈ Pn−1,
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then the dot product θ1 · θ2 is well-defined up to a sign. We consider Pn−1 as a

metric space, with the metric induced by the arc-length metric on Sn−1. That is,

the distance between θ1 and θ2 is arccos |θ1 · θ2|. For θ ∈ Pn−1, we define the ball

B(θ, r) ⊂ Pn−1

of radius r via this metric.

Let E ⊂ Rn. We say that E is (n− 1)-rectifiable if there exist countably many

C1 hypersurfaces Γi ⊂ Rn such that

Hn−1(E \
⋃
i

Γi) = 0. (4.14)

For x ∈ E, we define

Nx ∈ Pn−1

to be the direction such that for all Γi containing x, the direction Nx is normal to

Γi at x. While Nx may not be defined at all points in E, it is a standard fact that

Nx is defined for Hn−1-almost every x ∈ E. If Nx is defined, we refer to it as the

direction normal to E at x.

The following is the analogue of [10, Theorem 1.2].

Theorem 4.4 (Kakeya needle problem for translations). Let E ⊂ Rn be a (n−1)-

rectifiable set of finite Hn−1-measure. Let ε > 0 be arbitrary. Then between the

origin and any prescribed point in Rn, there exists a polygonal path

P =
m⋃
i=1

Li

with each Li a line segment, and for each i there exists a direction θi ∈ Pn−1, such

that ∣∣∣⋃
i

⋃
p∈Li

(p+ Ei)
∣∣∣ < ε, (4.15)
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where

Ei = {x ∈ E : |Nx · θi| > ε}. (4.16)

The following is the analogue of [10, Theorem 6.2]. See also [10, Remark 6.3].

Theorem 4.5 (Besicovitch set for translations). Suppose E ⊂ Rn can be covered

by finitely many C1 hypersurfaces. Then for every path P0 in Rn, and for any

neighborhood of P0, there is a path P in this neighborhood with the same endpoints

as P0, and for every p ∈ P , there exists θp ∈ Pn−1 such that

|
⋃
p∈P

(p+ {x ∈ E0 : Nx · θp 6= 0}| = 0. (4.17)

Also, the mapping p 7→ θp is Borel.

The following is the analogue of [10, Theorem 6.10].

Theorem 4.6 (Nikodym set for translations). Suppose E ⊂ Rn can be covered

by finitely many C1 hypersurfaces. Let Γ be a rectifiable hypersurface. Then there

exists a set A ⊂ Rn which satisfies the following:

1. A has Lebesgue measure zero;

2. For all y ∈ Rn, there is a θy ∈ Pn−1 and a py ∈ Rn such that y ∈ py + Γ,

and py + Ey ⊂ A, where Ey = {x ∈ E : Nx · θy 6= 0}.

Also, the mappings y 7→ py and y 7→ Vy are Borel.

The proof of Theorem 4.4 uses the same iterated Venetian blind construction

as in Lemma 4.2. To obtain the volume estimates ((5) and (6) of Lemma 4.2), we

use the following lemma in place of Lemma 4.1.

Lemma 4.4 (Basic estimate). Let E ⊂ Rn be a (n− 1) rectifiable set. Let δ > 0

be sufficiently small, and let θ ∈ Pn−1 be an arbitrary direction. Let R be a subset
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of E such that

|Nx · θ| ≤ δ for every x ∈ R. (4.18)

Then if we translate R by a vector v of direction θ, the total area covered is bounded

above by a constant multiple of δHn−1(R)|v|.

Proof. We follow the proof of [10, Lemma 3.3]. We fix δ > 0, a direction θ, and a

vector v of direction θ. Let R be a subset of E such that

|Nx · θ| ≤ δ

for every x ∈ R.

For each x ∈ R there is a C1 hypersurface Γi from (4.14) containing x. We

choose a partition

R =
⋃
i

Ri

such that

Ri ⊂ Γi

for each i. Because of (4.18), we can further partition each

Ri =
⋃
j

Ri,j

into countably many pieces such that for each Ri,j, there exists a direction wi,j or-

thogonal to θ such that Ri,j is the graph of a Lipschitz function fi,j in the (w⊥i,j, wi,j)

coordinate system, with Lipschitz constant bounded by a constant multiple of δ.

Fix i and j. Without loss of generality, we can assume that θ = e1 and that

wi,j = en. When we translate Ri,j by the vector v, for each fixed t ∈ R we obtain

#{x ∈ Rn−1 : fi,j(x) = t, (x, fi,j(x)) ∈ Ri,j}
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many (not necessary disjoint) horizontal line segments on the line Rn−1×{t}, each

of length |v|. Therefore, by Fubini’s theorem, the volume covered is at most

|v|
∫

#{x ∈ R : fi,j(x) = t, (x, fi,j(x)) ∈ Ri,j} dt . δHn−1(Ri,j)|v|,

where the second inequality follows from the co-area formula (see [16, Theorem

3.2.22]) and the fact that f has Lipschitz constant . δ. Summing over i and j,

we obtain the lemma.

Remark 4.2. If, e.g., the set E is a hyperplane, then Theorem 4.4, Theorem 4.5,

and Theorem 4.6 do not say anything useful because every point on E has the same

normal direction. If we use rotations in addition to translations, we can shrink

the set we need to delete in these theorems. In two dimensions, this is explained in

[10, Section 5], and the result generalizes to higher dimensions as well. However

we will not these results, so we omit the details.

4.3 The Operator S∗

In the proof of Corollary 4.2 extra care is required to make sure that the deleted

set of the sphere in Theorem 4.1 does not intersect the manifold of integration Hu

in a set of positive Hn−2 measure.

Proof of Corollary 4.2. For u ∈ Sn−1, the operator Sug(x) is the average of g(x−·)

over the submanifold

Hu := {v ∈ Sn−1 : |u− v| = 1} = Sn−1 ∩ {v : u · v = 1/2},

which is a (n − 2)-dimensional sphere of radius
√

3/2 centered at 1
2
u lying inside

the hyperplane containing 1
2
u with normal direction u. It is the intersection of

two unit spheres, one centered at the origin and the other at u ∈ Sn−1.

Let A be the set of measure zero in Theorem 4.1. Then for each x ∈ Rn there
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exists a unit sphere

Σx = px + Sn−1

for which we have x ∈ Σx and

Hn−1(Σx \ A) = 0.

In particular, there exists a (n− 1)-manifold Vx 3 0 such that

px + (Sn−1 \ Vx) ⊂ A.

Let

zx = px − x

and note that zx ∈ Sn−1. For this zx consider the manifold

Hzx = (zx + Sn−1) ∩ Sn−1.

Since

Σx ∩ A

is a (n− 2)-sphere with radius 1, center px, and it is contained in the affine space

px + Vx,

we conclude that

(x+Hzx) ∩ A

has full (n− 2)-dimensional measure.

To see this, fix x ∈ Rn. We translate the space so that x = 0 and subsequently

we rotate the space so that zx = e1. Then

Hzx = Sn−1 ∩ {e1 = 1/2}
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is a (n− 2)-sphere with radius
√

3/2. Let Wx be intersection

Vx ∩ {e1 = 1/2}.

Then Wx is a (n − 2)-dimensional affine space or the empty set. Identifying

{e1 = 1/2} with Rn−1 we see that

Hzx \ A = Hzx \Wx

is the intersection of a sphere in Rn−1 with an affine space in Rn−1 (or with the

empty set) and thus

Hzx ∩ A

has full measure.

Thus for every x ∈ Rn there exists a direction zx ∈ Sn−1 such that the (n− 2)-

dimensional manifold

x+Hzx

is contained in A, except for a set of (n− 2)-dimensional measure zero.

It follows that the operator S∗ is not bounded for any p < ∞ using a coun-

terexample similar to the one in Corollary 4.1. Since A is a Lebesgue measurable

set, the regularity of the Lebesgue measure implies that for any ε > 0 there exists

an open set Gε ⊃ A such that |Gε| < ε. Then for any x ∈ R2

S∗χGε(x) ≥
∫
Hzx

χGε(x− y)dσ(y) = 1.

Thus for each p ∈ [1,∞) there cannot exist a constant cp such that

‖S∗g‖Lp ≤ cp‖g‖Lp ,

since for g(x) = χGε(x) we have S∗χGε(x) = 1 for all x ∈ Rn while ‖χGε‖Lp < ε1/p.
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Chapter 5

Uncentered Spherical Maximal

Functions

Recall that in Chapter 4 we defined the average

Au,tf(x) :=

∫
Sn−1

f(x+ tu− ty)dσ(y)

for a given direction of translation u ∈ Rn and a given radius t > 0. The (centered)

spherical maximal function which originated in Stein [50] corresponds to the case

u = 0:

Sf(x) := sup
t>0

∫
Sn−1

|f(x− ty)| dσ(y) = sup
t>0
A0,t|f |(x). (5.1)

For a fixed u ∈ Sn−1, let

Muf(x) := sup
t>0
Au,t|f |(x) (5.2)

be the maximal average of f over all spheres x+ t(u+Sn−1) with t > 0 varying. It

was shown in [S91] that for n = 2, Mu is bounded from Lp(R2) to itself for p > 2,

uniformly in u.

For a compact subset T of Rn, which will serve as a set of translations, we
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consider the maximal spherical translations

MTf(x) := sup
u∈T
Au,1|f |(x), (5.3)

where we are considering averages over the unit spheres x+u+Sn−1 with u varying

in T . We also consider the uncentered spherical maximal function

STf(x) := sup
t>0
u∈T

Au,t|f |(x), (5.4)

which includes dilations. These operators are initially defined for f ∈ S(Rn), the

Schwartz class. When T = {0} we recover the spherical maximal function defined

in (5.1). Clearly

MTf(x) ≤ STf(x)

for any x ∈ Rn.

When T = Bn(0, 1), the closed unit ball in Rn, the operator ST corresponds

the averages over all spheres with x in their interior (in the Jordan-Brouwer sense)

andMT to all such unit spheres. By considering the characteristic function of an

ε-neighborhood of the unit sphere, we can readily see that both ST and MT are

unbounded on Lp(Rn) for any p <∞ if T = Bn(0, 1).

When T = Sn−1, we instead are considering all spheres that pass through

x. We have showed that the operators MT and ST are unbounded as part of

Corollary 4.1 when T = Sn−1.

However, we can obtain boundedness results forMT when the upper Minkowski

dimension of T (see (5.7) below for a definition) is strictly less than n− 1 and for

ST when it is strictly less than n− 2. We denote by dimBT the upper Minkowski

dimension (also known as the upper box dimension) of T . For the maximal spher-

ical translations operator we have the following result:

Theorem 5.1. Let n ≥ 2 and let T ⊂ Rn be a compact set. If dimBT < n − 1,
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then MT is bounded on Lp(Rn) for all

p > 1 + (n− dimBT )−1.

Therefore, for n ≥ 2, when dimBT < n − 1 and p > 1 + (n − dimBT )−1,

the operator MT , initially defined for Schwartz functions f ∈ S, can be uniquely

extended to Lp(Rn) by continuity. For the uncentered spherical maximal function

we have:

Theorem 5.2. For n ≥ 3 let T ⊂ Rn be a compact set. If dimBT < n − 2, then

ST is bounded on Lp(Rn) for all

p > 1 + (n− dimBT − 1)−1.

Similarly, for n ≥ 3, when dimBT < n− 2 and p > 1 + (n− dimBT − 1)−1, ST

admits a unique extension to Lp(Rn). Moreover, the boundedness of ST implies

the almost everywhere convergence of the uncentered spherical means.

Corollary 5.1. For n ≥ 3 let T ⊂ Rn be a compact set. Suppose dimBT < n− 2,

p > 1 + (n− dimBT − 1)−1,

and f ∈ Lploc(Rn). Then for almost every x ∈ Rn,

lim
t→0

∫
Sn−1

f(x+ tu− ty)dσ(y) = f(x) uniformly in u ∈ T . (5.5)

That is, for almost every x ∈ Rn,

lim
t→0

sup
u∈T

∣∣∣∣∫
Sn−1

f(x+ tu− ty)dσ(y)− f(x)

∣∣∣∣ = 0. (5.6)

Proof of Corollary 5.1. Let T and p be as in the hypothesis of Corollary 5.1. Let

f ∈ Lp. For any ε > 0 we can write f = g + h where h is smooth with compact
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support, and ‖g‖Lp ≤ ε. Since h is continuous,

lim sup
t→0

sup
u∈T
|Au,th− h| = 0

and thus

‖ lim sup
t→0

sup
u∈T
|Au,tf − f |‖Lp ≤‖ lim sup

t→0
sup
u∈T
|Au,tg − g|‖Lp

≤‖ sup
t→0

sup
u∈T
Au,t|g|‖Lp + ‖g‖Lp

.‖g‖Lp

≤ε,

where in the third inequality we use Theorem 5.2. Letting ε → 0, we obtain

(5.6).

Theorems 5.1 and 5.2 have the following geometric implications.

Corollary 5.2. Every Nikodym set for spheres has full Hausdorff dimension.

Moreover, if we have a Nikodym set for spheres A as in Theorem 4.1, then the

set T := {y − py : y ∈ Rn} ⊂ Sn−1 of “relative positions of the spheres” must be

have full upper Minkowski dimension in Sn−1. We prove this in Section 5.3.

Corollary 5.3. Let T ⊂ Sn−1 be a compact set with dimBT < n − 1. Suppose

that a subset A of Rn has the property that for each y ∈ Rn there exists a point

py ∈ Rn such that y − py ∈ T , and

Hn−1
(
(py + Sn−1) ∩ A

)
> 0.

Then A has positive measure.

Proof. Let T ⊂ Sn−1 and A be as above. If A had zero measure, then the operator

MT would be unbounded, however this contradicts 5.1, since dimBT < n− 1 and

thus MT is bounded.
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Suppose that A has zero measure. We prove that MT is unbounded with

an argument similar to corollary 4.1. Since A is a Lebesgue measurable set, the

regularity of the Lebesgue measure implies that for any ε > 0 there exists an

open set Gε ⊃ A such that |Gε| < ε. Then at each x we can choose the sphere

Σx = px + Sn−1 with x ∈ Σx and Σx ∩A has positive (n− 1)-dimensional measure

zero. Since A ⊂ Gε, for any x ∈ Rn we have

MTχGε(x) ≥
∫

Σx

χGε(y)dσ(y)

≥ Hn−1
(
(px + Sn−1) ∩ A

)
≥ cx

for some cx > 0 independent of ε. On the other hand,

χGε → 0 pointwise almost everywhere

and thus MT is unbounded.

Corollary 5.4. Let T ⊂ Sn−1 be a compact set with dimBT < n − 2. Suppose

that a subset A of Rn has the property that for each y ∈ Rn there exists a point

py ∈ Rn such that

y − py
|y − py|

∈ T,

and

Hn−1
(
(py + |y − py|Sn−1) ∩ A

)
> 0.

Then A has positive measure.

We omit the proof, since it is similar to the proof of Corollary 5.3.

The range of boundedness in the Theorems 5.1 and 5.2 might not be optimal,

however, we will show that there are lower bounds for the range of p where MT

(and thus ST ) are bounded.
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Theorem 5.3. Let n ≥ 2 and let 0 ≤ s ≤ 1. If MT is bounded on Lp(Rn) for all

dimBT = s, then

p ≥ 1 +
s

n− 1
.

Theorem 5.4. Let n ≥ 2 and let 1 < s ≤ n− 1. If MT is bounded on Lp(Rn) for

all dimBT = s, then

p ≥ 1 +
s− dse+ 1

n− dse+ 1
.

5.1 The Decomposition

Recall that one definition of the upper Minkowski dimension is

dimBT = inf

{
s ≥ 0 : lim sup

r→0

|{x ∈ Rn : dist(x, T ) < r}|
rn−s

<∞
}
. (5.7)

(See, e.g., [37, Section 5.5].)

Since dimBT = dimBT , we can assume that T is compact. In the following θ

will denote an element of the fixed compact set T .

We begin with a dyadic decomposition. We fix a radial function ρ0 ∈ C∞(Rn)

such that ρ0(ξ) = 1 for |ξ| ≤ 1 and ρ0(ξ) = 0 when |ξ| ≥ 2. For j ≥ 1 we let

ρj(ξ) = ρ0(2−jξ)− ρ0(21−jξ)

and we observe that
∑∞

j=0 ρj ≡ 1. We define σj = (ρjσ̂)∨ and

Mj
Tf(x) := sup

θ∈T
|(f ∗ σj)(x+ θ)|

SjTf(x) := sup
t>0
θ∈T

∣∣∣∣∫
Rn
f(x+ tθ − ty)σj(y)dy

∣∣∣∣ = sup
t>0
θ∈T

|(f ∗ (σj)t ) (x+ tθ)| ,

and note that Aθ,1f(x) =
∑∞

j=0A
j
θf(x). where for any function φ defined on
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Rn,

(φ)t(x) := t−nφ
(x
t

)
is the L1-normalized dilation. Then

MTf(x) ≤
∞∑
j=0

Mj
T |f |(x)

and

STf(x) ≤
∞∑
j=0

SjT |f |(x).

The following are our main estimates for Mj
T and SjT .

Lemma 5.1. Let T ⊂ Rn be compact. Then for all f ∈ L2(Rn) and all s > dimBT ,

‖Mj
Tf‖L2(Rn) .T,s 2j(

s
2
−n−1

2 )‖f‖L2(Rn) (5.8)

‖SjTf‖L2(Rn) .T,s 2j(
s+1
2
−n−1

2 )‖f‖L2(Rn). (5.9)

Lemma 5.2. Let T ⊂ Rn be any compact set. For any f ∈ L1(Rn) and any ε > 0,

‖Mj
Tf‖L1(Rn) .T,ε 2j(1+ε)‖f‖L1(Rn) (5.10)

‖SjTf‖L1,∞(Rn) .T,ε 2j(1+ε)‖f‖L1(Rn). (5.11)

When dimBT < n−1, interpolating between (5.8) and (5.10) we conclude that

MT is bounded on Lp(Rn) when

1 + 1/(n− dimBT ) < p ≤ 2.

Since MT is trivially bounded on L∞(Rn), Theorem 5.1 follows. Similarly, inter-

polating between (5.9) and (5.11) yields Theorem 5.2. The rest of this section

contains the proofs of Lemma 5.1 and Lemma 5.2.
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5.2 The L2 bound

Proof of Lemma 5.1. Let T ⊂ Rn be a compact set and fix s > dimBT . In this

proof, the implied constants can depend on T and s.

Define φ by φ̂(ξ) = ρ0(2−j−2ξ), so that φ̂(ξ) = 1 for |ξ| ≤ 2j+2 and φ̂(ξ) = 0

for |ξ| ≥ 2j+3. We observe that since ρ0 is a Schwartz function,

sup
θ∈T
|φ(x+ θ)| . 2jn

(1 + 2j dist(x, T ))100n
=: Φ(x) (5.12)

We begin with some estimates on Φ, which will be the key estimates needed

in our proof. We claim the following:

‖Φ‖L1(Rn) . 2js (5.13)∥∥∥∥ ∂∂t(Φ)t(x)

∥∥∥∥
L1(Rn)

. t−12j(s+1). (5.14)

By s > dimBT , (5.7), and the boundedness of T , we have

|{x ∈ Rn : dist(x, T ) < r}| . rn−s max(r, 1)s

for all r ≥ 0, so

∫
Rn

(1 + 2j dist(x, T ))−100n dx

=

∫
dist(x,T )≤2−j

+
∞∑

`=−j+1

∫
2`−1<dist(x,T )≤2`

.
∞∑

`=−j

(2j+`)−100n|{x ∈ Rn : dist(x, T ) < 2`}|

.
∞∑

`=−j

(2j+`)−100n(2`)n−s max(2`, 1)s

. (2−j)n−s,
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which proves (5.13). For (5.14), we compute

∂

∂t
(Φ)t(x) = −t−1(n(Φ)t(x) + (Φ̃)t(x)) (5.15)

where

Φ̃(x) := x · ∇Φ(x).

Since dist(x, T ) is a 1-Lipschitz function, it follows that for almost every x ∈ Rn,

∇ dist(x, T ) exists and |∇ dist(x, T )| ≤ 1. Thus Φ is Lipschitz, and for almost

every x, Φ̃(x) is defined and satisfies

|Φ̃(x)| . 2j(n+1)

(1 + 2j dist(x, T ))100n
,

Arguing as in the proof of (5.13), we have

‖Φ̃‖1 . 2j(s+1). (5.16)

By (5.13), (5.15), and (5.16), we obtain (5.14).

Now we can prove (5.8) and (5.9). We may assume that f ≥ 0. First we

focus on (5.8). By the fact that the Fourier transform of (f ∗ σj)2 is supported in

B(0, 2j+2) and (5.12),

Mj
Tf(x)2 = sup

θ∈T
|(f ∗ σj)(x+ θ)|2 = sup

θ∈T
|((f ∗ σj)2 ∗ φ)(x+ θ)|

. (|f ∗ σj|2 ∗ Φ)(x). (5.17)

Therefore,

‖Mj
Tf‖

2
2 .

∥∥|f ∗ σj|2 ∗ Φ
∥∥2

1

≤ ‖f ∗ σj‖2
2 ‖Φ‖1
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By Plancherel and the familiar estimate |σ̂(ξ)| . (1 + |ξ|)−n−1
2 (see, e.g., [19,

Appendix B.4]), we have

‖f ∗ σj‖2 = ‖f̂ρjσ̂‖2

≤‖f̂‖2‖ρjσ̂‖∞

. 2−j(
n−1
2

)‖f‖2,

which combined with (5.13) yields (5.8).

For (5.9), we proceed similarly. By the fact that the Fourier transform of

(f ∗ (σj)t)
2 is supported in B(0, 2j+2/t) and (5.12),

SjTf(x)2 = sup
θ∈T,t>0

|(f ∗ (σj)t)(x+ tθ)|2

= sup
θ∈T,t>0

|((f ∗ (σj)t)
2 ∗ φt)(x+ tθ)|

. sup
t>0

((f ∗ (σj)t)
2 ∗ (Φ)t)(x).

Since σj is smooth and Φ is Lipschitz, the function

t 7→ ((f ∗ (σj)t)
2 ∗ (Φ)t)(x)

is absolutely continuous for almost all x ∈ Rn by Radamacher’s theorem. By the

fundamental theorem of calculus,

∫ s

1

∂

∂t
((f ∗ (σj)t)

2 ∗ (Φ)t)(x) dt = (f ∗ (σj)s)
2 ∗ (Φ)s)(x)− (|f ∗ σj|2 ∗ Φ)(x).

Thus for s > 1

(f ∗ (σj)s)
2 ∗ (Φ)s)(x) ≤

∣∣∣∣∫ s

1

∂

∂t
((f ∗ (σj)t)

2 ∗ (Φ)t)(x) dt

∣∣∣∣+
∣∣(f ∗ σj)2 ∗ Φ(x)

∣∣
≤
∫ s

1

∣∣∣∣ ∂∂t((f ∗ (σj)t)
2 ∗ (Φ)t)(x)

∣∣∣∣ dt+ (|f ∗ σj|2 ∗ Φ)(x)

≤
∫ ∞

0

∣∣∣∣ ∂∂t((f ∗ (σj)t)
2 ∗ (Φ)t)(x)

∣∣∣∣ dt+ (|f ∗ σj|2 ∗ Φ)(x).
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Similarly, for 0 < s < 1,

(f ∗ (σj)s)
2 ∗ (Φ)s)(x) ≤

∣∣∣∣∫ s

1

∂

∂t
((f ∗ (σj)t)

2 ∗ (Φ)t)(x) dt

∣∣∣∣+
∣∣(f ∗ σj)2 ∗ Φ(x)

∣∣
≤
∫ 1

s

∣∣∣∣ ∂∂t((f ∗ (σj)t)
2 ∗ (Φ)t)(x)

∣∣∣∣ dt+ (|f ∗ σj|2 ∗ Φ)(x)

≤
∫ ∞

0

∣∣∣∣ ∂∂t((f ∗ (σj)t)
2 ∗ (Φ)t)(x)

∣∣∣∣ dt+ (|f ∗ σj|2 ∗ Φ)(x).

Since the right hand side is independent of s, we can take supremum over all

s > 0 to conclude that

SjTf(x)2 = (|f ∗ σj|2 ∗ Φ)(x) +

∫ ∞
0

∣∣∣∣ ∂∂t((f ∗ (σj)t)
2 ∗ (Φ)t)(x)

∣∣∣∣ dt.
By Leibniz’s rule and integrating in x,

‖SjTf‖
2
2 .

∫
Rn

(|f ∗ σj|2 ∗ Φ)(x) dx

+

∫
Rn

∫ ∞
0

∣∣∣∣( ∂∂t [(f ∗ (σj)t)
2] ∗ (Φ)t)(x)

∣∣∣∣ dt dx
+

∫
Rn

∫ ∞
0

∣∣∣∣((f ∗ (σj)t)
2 ∗ ∂

∂t
(Φ)t)(x)

∣∣∣∣ dt dx
:= I + II + III.

In the proof of (5.8) above, we showed

I . 2j(s−(n−1))‖f‖2
2.

To estimate II, we use Fubini, Young’s inequality, and

‖(Φ)t‖1 = ‖Φ‖1 . 2js.

Then we argue as in the proof of [19, Lemma 6.5.2]. This gives us

II . 2js
∫
Rn

∫ ∞
0

∣∣∣∣ ∂∂t [(f ∗ (σj)t)
2(x)]

∣∣∣∣ dt dx
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. 2js(2j(
1
2
−n−1

2
)‖f‖2)2.

For III, we use (5.14), Fubini, Young, and Plancherel to get

III . 2j(s+1)

∫
Rn

∫ ∞
0

|(f ∗ (σj)t)(x)|2 dt
t
dx

. 2j(s+1)

∫
Rn

∫ ∞
0

∣∣∣f̂(ξ)σ̂j(tξ)
∣∣∣2 dt

t
dξ

. 2j(s+1)−j(n−1)‖f‖2
2,

which completes the proof.

5.3 Proof Corollary 5.2

With the results in Chapter 3 in mind, we define

Nαf(x) := sup
θ∈Sn−1

cn,α

∫
|y|≤1

|f(x− y − θ)|(1− |y|2)−αdy,

for 0 < α < 1, where cn,α = 2
ωn−1B(n

2
,1−α)

and B is the Beta function.

The argument underlined in Section 5.2 can be applied to the operator Nα,

showing that it is bounded on L2. We will be use this to show that any Nikodym

set associated to spheres has full dimension

Proof of Corollary 5.2. Let dσα = cn,α(1 − |y|2)−αdy and let ρj, φ, and Φ be as

above. Then we define σαj =
(
ρjσ̂α

)∨
and

N j
αf(x) = sup

θ∈T
|(f ∗ σj)(x+ θ)|

and we observe that

N j
αf(x)2 . (|f ∗ σαj |2 ∗ Φ)(x).
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As was shown in Chapter 3, using the identity in [19, Appendix B.5] and the

properties of Bessel functions, the multiplier

σ̂αj (ξ) = c′n,α
Jn

2
−α(2π|ξ|)
|ξ|n2−α

ρj(ξ)

is a smooth function which satisfies for all multi-indices γ

|∂γξ σ̂αj (ξ)| .n,α,γ 2−j(
n+1
2
−α).

We proceed as in the proof on Lemma 5.1 to obtain that

‖N j
αf‖L2 .n,α 2−(1−α)j‖f‖L2

and thus Nα is bounded from L2 to L2 for any 0 < α < 1.

From this, we can immediately conclude that the Minkowski dimension of the

Nikodym set for spheres is n. Indeed let Aδ be a δ-neighborhood of A∩ [−10, 10]n,

where A is a Nikodym set associated to spheres. Then for every x ∈ [−5, 5]n there

exists a θx ∈ Sn−1 such that x ∈ θx + Sn−1 and

θx + Sn−1 ⊂ Aδ.

Thus for f = χAδ ,

NαχAδ(x) &n,α

∫
|y|≤1

|χAδ(x− y − θx)|(1− |y|2)−αdy

=

∫
1−d≤|y|≤1

(1− |y|2)−αdy

&n,α δ
1−α.

Thus, using the L2 to L2 bound for Nα, we get that

δ1−α .n,α ‖NαχAδ‖L2 .n,α ‖χAδ‖L2 .n,α |Aδ|1/2.
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Since this holds for all 0 < δ < 1, we conclude that dimBA ≥ n− 2(1− α) for all

α < 1 and thus dimBA = n.

To address the question of the Hausdorff dimension of the Nikodym set for

spheres, we define Sδ = {x ∈ Rn : 1 − δ ≤ |x| ≤ 1} and define the Nikodym

maximal function for spheres:

Ñδf(x) = sup
θ∈Sn−1

1

|Sδ|

∫
Sδ
|f(x− y − θ)|dy

From the definition of Sδ we conclude that

|Sδ| ∼ δ.

For y ∈ Sδ, we have

(1− |y|2)−α &α δ
−α

so we have the pointwise bound

Ñδf(x) =
1

|Sδ|
sup

θ∈Sn−1

∫
Sδ
|f(x− y − θ)|dy

. δ−1 sup
θ∈Sn−1

∫
Sδ
|f(x− y − θ)|dy

.α δ
α−1 sup

θ∈Sn−1

∫
Sδ
|f(x− y − θ)|(1− |y|2)−αdy

.α δ
α−1Nαf(x).

Since Nα is bounded in L2 for any 0 < α < 1, it follows that

‖Ñδf‖2 .ε δ
−ε‖f‖2, for all ε > 0 (5.18)

Using (5.18) and a standard pigeonhole on scales argument, we conclude that

the Hausdorff dimension of any Nikodym set for spheres is n. See, e.g., [53,

Proposition 10.2] or [38, Theorem 22.9] for the details. This completes the proof

of Corollary 5.2.
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5.4 The L1 Bound

Proof of Lemma 5.2. Let T ⊂ Rn be a compact set. Given ε > 0, fix a large

integer N such that n/N < ε. In this proof, the implied constants can depend on

T and N .

Let ψ be given by

ψ̂(ξ) = ρ0(2−jN−1ξ).

We have

sup
θ∈T
|ψ(x+ θ)| . (2jN)n

(1 + 2jN dist(x, T ))100nN

.
2jn

(1 + |x|)100nN

=: Ψ(x),

where the first inequality is analogous to (5.12), and the second is by the bound-

edness of T .

Observe that the Fourier transform of (f ∗ σj)N is supported in B(0, 2jN), so

for any t > 0

sup
θ∈T
|(f ∗ (σj)t)(x+ tθ)|N = sup

θ∈T
|((f ∗ (σj)t)

N ∗ (ψ)t)(x+ tθ)|

≤ (|f ∗ (σj)t|N ∗ (Ψ)t)(x).

Thus, by Minkowski’s integral inequality

SjTf(x) ≤ sup
t>0

(|f ∗ (σj)t)|N ∗ (Ψ)t)(x)1/N

≤ sup
t>0

(
f ∗ (|(σj)t|N ∗ (Ψ)t)

1/N
)

(x) (5.19)

= sup
t>0

(
f ∗ (Kj)t

)
(x).
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where

Kj = (|σj|N ∗Ψ)1/N .

Similarly,

M j
Tf(x) ≤

(
f ∗Kj

)
(x). (5.20)

Next, we claim

Kj(x) .
2j(1+ε)

(1 + |x|)100n
(5.21)

By [19, p. 480],

|σj(x)| =
∣∣(ρ∨j ∗ σ)(x)

∣∣ . 2j

(1 + |x|)200n
.

Therefore,

(
|σj|N ∗Ψ

)
(x) .

∫
2jN

(1 + |y|)200nN

2jn

(1 + |x− y|)100nN
dy

≤ 2j(N+n)

∫
1

(1 + |y|)200nN

(1 + |y|)100nN

(1 + |x|)100nN
dy

.
2j(N+n)

(1 + |x|)100nN

which together with n/N < ε proves (5.21).

Observe that (5.20), (5.21), and Young’s convolution inequality together imply

(5.10). Moreover, since Kj has a radially decreasing majorant,

sup
t>0
|f ∗ (Kj)t|(x) ≤ ‖Kj‖L1Mf(x),

where Mf is the the Hardy-Littlewood maximal function of f . (See, e.g., [19,

Theorem 2.1.10].) This, (5.19), (5.21), and the weak type (1,1) bound on the

Hardy-Littlewood maximal function together imply (5.11).
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5.5 Lower bounds on the range of p

In this section we obtain lower bounds for the range of boundedness of MT and

ST . Let dimH T denote the Hausdorff dimension of T .

Lemma 5.3. Let k ∈ Z such that 1 ≤ k ≤ n− 1. If T ⊂ Rn−k × {0}k, dimBT =

dimH T , and S = {0}n−k−1 × Sk, then dimB(T + S) = k + dimBT .

Lemma 5.3 is consequence of a Fubini-type argument.

Proof. The inequality

dimB(T + S) ≤ k + dimBT

is immediate from the definition of the upper Minkowski dimension. On the other

hand, by[37, Theorem 5.12],

dimB(T + S) ≥ dimH(T + S).

Since

dimH A ≤ dimH B, if A ⊂ B

it is enough to work with a single chart of Sk. Since the Hausdorff dimension is

preserved under diffeomorphisms, it is enough to show that

dimH

(
T +

(
{0}n−k ×Bk(0, 1)

))
≥ k + dimH T,

or equivalently

dimH

(
T ×Bk(0, 1)

)
≥ k + dimH T,

which is true by [37, Theorem 8.10].
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Theorem (Theorem 5.3). Let n ≥ 2 and let 0 ≤ s ≤ 1. If MT is bounded on

Lp(Rn) for all dimBT = s, then p ≥ 1 + s
n−1

.

Proof. Let T be any subset of R1 × {0}n−1 with

dimBT = dimH T = s

and T = −T . Suppose MT is bounded on Lp(Rn). Note that

MTχB(0,2δ) & δn−1

on the set

{x ∈ Rn : dist(x, T + Sn−1) < δ}.

Thus

δn−1|{x : dist(x, T + Sn−1) < δ}|1/p . ‖MTχB(0,2δ)‖p

. ‖χB(0,2δ)‖Lp

. δn/p

so

|{x : dist(x, T + Sn−1) < δ}| . δn−p(n−1).

By Lemma 5.3, T + Sn−1 has upper Minkowski dimension n− 1 + s, so

p ≥ 1 +
s

n− 1
.

The following applies for 1 < s ≤ n− 1. It actually applies for s ≤ 1 too, but

the previous theorem gives a stronger bound in that case.
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Theorem (Theorem 5.4). Let n ≥ 2 and let 1 < s ≤ n− 1. If MT is bounded on

Lp(Rn) for all dimBT = s, then

p ≥ 1 +
s− dse+ 1

n− dse+ 1
.

Proof. Let k = dse, i.e., k is the integer such that k − 1 < s ≤ k. Let k be any

subset of Rk × {0}n−k with dimBT = dimH T = s and T = −T . Define

C =
1√
2
Sk−2 × {0}n−k+1 = {x ∈ Rn : x2

1 + · · ·+ x2
k−1 = 1

2
, xk = · · · = xn = 0}

C ′ = {0}k−1 × 1√
2
Sn−k = {x ∈ Rn : x1 = · · · = xk−1 = 0, x2

k + · · ·+ x2
n = 1

2
}

and note that

C =
⋂
x∈C′

(x+ Sn−1).

This implies

MTχC2δ
& δn−k+1 on {x : dist(x, T + C ′) < δ},

where C2δ denotes the 2δ-neighborhood of C. Thus

δn−k+1|{x : dist(x, T + C ′) < δ}|1/p

. ‖MTχC2δ
‖Lp

. ‖χC2δ
‖Lp

. δ(n−k+2)/p

so

|{x : dist(x, T + C ′) < δ}| . δ(n−k+2)−p(n−k+1)

By Lemma 5.3, T + C ′ has upper Minkowksi dimension n− k + s, so

p ≥ 1 +
s− k + 1

n− k + 1
.
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Since

MTf(x) ≤ STf(x)

pointwise for all x ∈ Rn, the same lower bounds hold for ST as well.
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