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ABSTRACT

Human motion, behaviors, and intention are governed by human perception, reasoning,

common-sense rules, social conventions, and interactions with others and the surround-

ing environment. Humans can effectively predict short-term body motion, behaviors, and

intention of others and respond accordingly. The ability for a machine to learn, analyze,

and predict human motion, behaviors, and intentions in complex environments is highly

valuable with a wide range of applications in social robots, intelligent systems, smart man-

ufacturing, autonomous driving, and smart homes. In this thesis, we propose to address

the above research question by focusing on three important problems: human pose estima-

tion, temporal action localization and informatics, human motion trajectory and intention

prediction.

Specifically, in the first part of our work, we aim to develop an automatic system to

track human pose, monitor and evaluate worker’s efficiency for smart workforce manage-

ment based on human body pose estimation and temporal activity localization. We have

developed a deep learning based method to accurately detect human body joints and track

human motion. We use the generative adversarial networks (GANs) for adversarial training

to better learn human pose and body configurations, especially in highly cluttered environ-

ments. In the second step, we have formulated the automated worker efficiency analysis

into a temporal action localization problem in which the action video performed by the

worker is matched against a reference video performed by a teacher using dynamic time

warping.

In the second part of our work, we have developed a new idea, called reciprocal learn-

ing, based on the following important observation: the human trajectory is not only forward

xv



predictable, but also backward predictable. Both forward and backward trajectories follow

the same social norms and obey the same physical constraints with the only difference in

their time directions. Based on this unique property, we design and couple two networks,

forward and backward prediction networks, satisfying the reciprocal constraint, which al-

lows them to be jointly learned. Based on this constraint, we borrow the concept of adver-

sarial attacks of deep neural networks, which iteratively modifies the input of the network

to match the given or forced network output, and develop a new method for network pre-

diction, called reciprocal attack for matched prediction. It further improves the prediction

accuracy.

In the third part of our work, we have observed that human’s future trajectory is not only

affected by other pedestrians but also impacted by the surrounding objects in the scene.

We propose a novel hierarchical framework based on a recurrent sequence-to-sequence

architecture to model both human-human and human-scene interactions. Our experimental

results on benchmark datasets demonstrate that our new method outperforms the state-of-

the- art methods for human trajectory prediction.

xvi



Chapter 1

Background and Introduction

1.1 Deep Neural Networks

Deep learning is a sub-branch of a broader family of machine learning methods based on

artificial neural networks which is inspired from the biological brain structure. It is a pro-

cess of inducing intelligence into a machine by using complicated structure with multiple

processing layers and non-linear transformations. Due to the substantial improvement of

hardware computing capabilities and the development of large data sets, deep learning has

played an irreplaceable role in both academia and industry. Deep neural networks such as

Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) and Gener-

ative Adversarial Networks (GANs) have been widely applied and demostrated success in

various fields such as image processing, computer vision, natural language processing. In

this section, we will make a brief introduction of CNNs, LSTM, and GANs in the follow-

ing.
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1.1.1 Convolutional Neural Networks

CNNs is a class of Multi-layer Perceptron (MLP) which consists of an input layer, multiple

hidden layers, and an output layer. The hidden layers usually contain three primary lay-

ers, such as convolutional layers, pooling layers, and fully-connected layers. An example

architecture of CNNs is presented in Figure 1.1.

Figure 1.1: An example architecture of CNNs from AlexNet [1]

Covolutional layers are the essential building blocks of CNNs, which perform convo-

lution operation to the input with multiple learnable filters and pass its results to the next

layer. Mathematically, convolution is a sliding dot product between the entries of the filter

and the input, which generates a activation map for each filter. The output is formed by

stacking all activation maps along the depth dimension of the input.

Pooling layer usually follows the convolutional layer and performs a non-linear down-

sampling operation to the input. It reduces the spatial dimension of the intermediate repre-

sentation by combining the input of neuron clusters into a single neuron and passing to the

next layer, so the amount of parameters of the network is reduced significantly. However,

the important information is still retained. Also, a pooling layer introduces non-linearity in

the network to bring the better learning ability for the real world data.

Fully connected layers usually comes after several convolutional and pooling layers. It

2



is similar with the traditional MLP, where each neuron in this layer has fully connections

to the output from the previous layer. Therefore, the fully connected layer has much more

parameters than the convolutional layer.

1.1.2 Long Short-Term Memory

Long short-term memory (LSTM) [5] is a special kind of recurrent neural network (RNN).

It is widely used for process single data points like images and sequence data like speeches.

A typical LSTM unit consists of a cell which is the memory part of the LSTM unit and three

gates, such as an input gate, a forget gate and an output gate, which controls the flow of

information inside the unit.

Figure 1.2: An example architecture of an LSTM unit.

The core idea of LSTM is the cell state, it keeps tracking the long and short depen-

dencies over arbitrary time intervals in the input sequence. The gate mechanism controls

the information flow to the cell state. The input gate is used to decide what information

we need to store in the cell, the forget gate controls what information we need to throw

3



away from the cell and the output gate controls the extent of the information is used to

compute the output. The extent of the information flow is often decided by using logistic

sigmoid activation function. With the great ability to learn long-term dependencies, LSTM

works better than standard RNN in many tasks when RNN encounters gradient vanishing

problem.

1.1.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) belongs to the family of machine learning frame-

works, which was introduced by Ian Goodfellow et al. in [6]. GANs are algorithm archi-

tectures that consist of two neural networks, contesting with each other in order to generate

new, synthetic instances of new data with the same statistics as the real data. One neural

network, called the generator, generates candidates while the other network, called the dis-

criminator evaluate them for authenticity [6]. An illustrative figure of GANs are presented

in Figure 1.3.

Figure 1.3: An example architecture of GANs [2].

Specifically, the goal of generator network is to learn to map from a latent space to a data

distribution of interest, while the discriminator network is trained to distinguish candidates
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generated by the generator from the real data distribution. Backpropagation mechanism

is employed in training both networks. The generator network’s training objective is to

generate more realistic candidates to “fool” the discriminator network. Simultaneously,

the discriminator network is trained to become more skilled at classifying the generated

candidates into “fake” or real data [6, 7].

Generative Adversarial Networks (GANs) have been widely used and achieved im-

pressive results in representation learning [8–10], image translation [11, 12] and image

synthesis [13–16].

1.2 Human Behavior Understanding

Human behavior understanding is a critical part of real-world applications, such as video

surveillance [17], human-machine interactions [18], smart manufacturing[19], and many

others [20]. In our research, we are committed to applying the recent development of deep

neural networks to help smart manufacturing. As we all know, smart manufacturing re-

quires smart workforce management [19]. Monitoring operation efficiency of workers is

the central component in workforce management. Current practice often relies on sub-

jective visual monitoring by supervisors. For efficient management, it is highly desirable

to develop an automated system for real-time worker monitoring and operation efficiency

evaluations. This will provide fine-grain data for worker training, performance monitoring,

efficiency optimization, and manufacturing management. We aim to develop one of the first

automatic systems for real-time worker monitoring and operation efficiency evaluations in

a manufacturing environment based on human pose estimation and temporal activity local-

ization. In this following, we will briefly introduce two major research topics, human pose
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Figure 1.4: An illustration of the task of human pose estimation.

estimation and temporal activity localization.

Human pose estimation is a one of the key research topics in the field of human behavior

understanding in recent years. The goal of this task is to estimate the configuration of body

parts and determine the precise pixel locations of body keypoints from the input image

or video sequences [21]. An illustration represents the task of human pose estimation is

shown in Figure. 1.4.

Human pose estimation is often regarded as a regression problem. A considerable

amount of previous studies have primariy concentrated on deep neural networks and achieved

significant progress. DeepPose [22], opens the door to apply a deep neural network to ex-

tract features and directly regress locations of body joints from a RGB image. Also some

later studies such as Tompson et al. [23] argued that it is more efficient to regress the input

image into a set of heatmaps where each heatmap represent a body part.

To handle partially occluded body joints and limbs, existing regression-based pose esti-

mation methods try to learn a body configuration model to infer their locations [24]. In our

experiments, we recognize that they cannot efficiently handle fully occluded limbs, which
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Figure 1.5: An illustration of the task of temporal action localization.

occur quite often in practical scenarios, especially when the person is moving around in the

manufacturing floor. Ideally, we wish that the training data contains images of all different

poses of human body, including samples with fully occluded limbs. In this way, the deep

neural network can be carefully designed and trained to predict the body joints of these

fully occluded limbs. However, this is a nearly impossible task in practice since persons

with free-style motion will have a wide variety of body poses being occluded by different

objects, especially in highly cluttered environments, such as the manufacturing floors filled

with machines. In the training data, some typical body poses are dominating while difficult

cases are very rare. This poses a significant challenge for learning highly efficient human

pose estimation. To address this issue, we develop a deep learning-based method to ac-

curately detect human body joints and track its motion. We use the generative adversarial

networks (GANs) [6] for adversarial training to better learn human pose prior and body

configurations, especially in highly cluttered environments.

Another key aspect to understand human behavior is to decompose human behavior into

as set of activities. Therefore, the topic of temporal activity localization has also drawn a

lots of attentions in past few years [25–28]. The task for human activity detection is to

localize the temporal boundary such as start and end frame of an activity among long and

untrimmed videos. An illustration of the task of human pose estimation is shown in Figure.

1.5.
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One typical pipeline to deal with this problem is to firstly rely on deep neural network

to produce a set of temporal proposals of varying duration from the input video sequence.

Thereafter, a activity classifier and a completeness classifier are built to select the right

boundary of a certain activity among generated proposals [20, 28].

A manufacturing task, for example, assembling a 3-D printer or a vehicle door, often

consists a number of actions to be performed in a sequential manner. To measure the

efficiency, we propose to compare the amount of time used by the worker to perform each

action. In this work, a proficient worker, referred to as the teacher, is able to perform these

actions accurately and efficiently. By accurately, we mean that each action is performed

without errors, no action is missing, and all actions are performed in a correct sequential

order. With this, we formulate the worker efficiency analysis problem into a cross-video

matching problem: performing action-level matching between the teacher video and the

worker video so as to locate the beginning and end of each action performed by the worker

and compare its action time against the teacher’s to measure the operation efficiency. We

will describe in detail about our method in Chapter 2.

1.3 Human Trajectory Prediction

In addition to human behavior understanding, we are also very interested in predicting

human future trajectory. Learning and predicting human motion trajectories in complex

environments plays an important role in autonomous driving systems [29], social robots

[30], human-machine interactions, and smart environments [17, 18]. Human beings have

the intelligence to understand the moving patterns and intentions of surrounding persons

in the environment and act appropriately to avoid collision and follow social norms. Given
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Figure 1.6: Human’s future trajectory is affected not only by other pedestrians but also
by the surrounding environment. Our proposed method predicts socially and physically
plausible trajectories by hierarchically modeling the influence of all pedestrians in the scene
as well as the global scene layout and local context.

the observed trajectories of a bunch of pedestrians involved in a crowded scenario, can a

machine or robot predict their future trajectories by specifying their world coordinates on

a 2D map representation?

The problem of human trajectory prediction is different from person tracking [30]. It

needs to learn the human decision and behaviors in complex environments to predict future

motion trajectory during the next period of time (e.g., 5 seconds), instead of the next time

instance. As shown in Figure .1.6, we recognize that human motion trajectories and motion

patterns are governed by human perception, behavioral reasoning, common sense rules,

social conventions, and interactions with others and the surrounding environment [17, 29].

An efficient algorithm for human trajectory prediction needs to accomplish the fol-

lowing tasks: (1) Obeying physical constraints of the environment. To walk on a feasible

terrain and avoid obstacles or other physical constraints, we need to analyze the local and

global spatial information surrounding the person and pay attention to important elements

in the environment. (2) Anticipating movements of other persons or vehicles and their so-

cial behaviors. Some trajectories are physically possible but socially unacceptable. Human

motions are governed by social norms, such as yielding right-of-way or respecting personal
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space. To capture and model them is a non-trivial task. (3) Finding multiple feasible paths.

There are often a number of choices of moving trajectories for us to reach to the destination.

This uncertainty poses significant challenges for accurate human trajectory prediction.

To handle these challenges, a bunch of traditional methods [31–33] has been focused on

manually designing behavior models and energy functions. These methods usually fail in

crowded scenarios with complex scene structures since they did not learn human movement

behaviors from the training data. Recently, a number of methods based on deep neural net-

works have been developed for human trajectory prediction [34, 35]. Earlier methods have

been focused on learning dynamic patterns of moving agents (human and vehicles) [34]

and modeling the semantics of the navigation environment [36]. More recent approaches

incorporate interactions between all agents in the scene into the analysis in order to predict

the future trajectory for each agent. Methods have been developed to model human-human

interactions [37], understand social acceptability using data-driven techniques based on Re-

current Neural Networks (RNNs) [35, 38, 39], and model the joint influence of all agents

in the scene [40]. Methods have also been developed to predict multiple feasible paths of

human [35, 39, 41].

Parallel to learn the influence of other pedestrians, modeling human-scene interactions

is also quite helpful to better understand human behaviors and movements. A relatively

small number of recent work have studied the impact of scene structures [42]. [41] pro-

posed to use a hand-designed CNN to extract the scene layout features and incorporate the

human-human interactions to refine the trajectory prediction. [43, 44] utilized the VGGNet-

19 network [45] to capture the physical scene cues from raw scene images and applied soft

attention to highlight the important regions. However, these methods either used the same

scene context vectors for all pedestrians or did not model the influence of scene context
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from different time steps in temporal wise.

In our research, we recognize that human trajectories, governed by social norms and

constrained by physical structures of the surrounding environment, are not only forward

predictable, but also backward predictable. Motivated by this observation, we develop a

new approach, reciprocal twin networks, for human trajectory prediction. The forward and

backward prediction networks, are tightly coupled together, which allows them to be jointly

learned for accurate and robust human trajectory prediction. The detail of this methods is

illustrated in Chapter 3.

All above methods model the human-human interaction by the so-called pooling mech-

anism that shares the latent motion dynamics of pedestrians represented with the hidden

stats of LSTMs in a certain sized neighborhood. However, Social-LSTM just models in-

teractions within a limited local scope. Gupta et al. [40], Sadeghian et al. [43] and our

previous work [46] adopted the GANs (Generative Adversarial Networks) [6] to learn the

multimodal trajectory distributions and utilized the social pooling mechanism that takes

all pedestrians involved in the whole scene into consideration. These methods also have

limitations. [40] and our previous method [46] lose information by using the same social

vector for all pedestrians in a scene [44]. [43] manually designed a sorting operation that

may not generalize to all cases.

To further improve the performance of human trajectory prediction, we propose a novel

hierarchical attention-based framework based on a recurrent sequence-to-sequence archi-

tecture to jointly model human-human interactions and human-scene interactions to gen-

erate more accurate and plausible future trajectories. We leverage GAT (graph attention

networks) [47] to assign the different and adaptive importance to the surrounding pedestri-

ans and environment [48]. Because of the unequal contribution, the attention mechanism
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is more helpful than the pooling mechanism to encode the relative influences and the spa-

tial interactions [48]. We also observed that not only the spatial interactions at the same

time step is important but also the temporal continuity of interactions play a critical role in

predicting the future movements. Therefore, temporal correlations of these interactions are

also leaned in this work. We present this novel method in detail in Chapter 4.

1.4 Summary

This chapter introduces some background knowledge of deep neural networks and high-

level information about our research topics related human pose estimation, temporal action

localization and human future trajectory prediction. We recognize that there is an urgent de-

mand to develop some high-performance algorithms regards these topics in various fields,

such as smart manufacturing, autonomous driving system and social robots, is emerging.‘

In the following of this dissertation, we first introduce our automatic system to monitor and

analysis human’s behavior for smart manufacturing based on human pose estimation and

temporal activity localization in Chapter 2. Then, we present a new approach, reciprocal

twin networks, for human trajectory prediction in Chapter 3. Finally, a novel attention-

based approach that further improves the performance of human trajectory prediction is

illustrated in Chapter 4.
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Chapter 2

Automated Work Efficiency Analysis for
Smart Manufacturing Using Human
Pose Tracking and Temporal Action
Localization

2.1 Motivation

In this chapter, we aim to develop an automatic system to monitor and evaluate worker’s

efficiency for smart workforce management based on human body pose estimation and

temporal activity localization.

Our proposed method for automated worker efficiency analysis consists of two major

steps. In the first step, we develop a deep learning-based method to accurately detect human

body joints and track its motion. We use the generative adversarial networks (GANs) [6]

for adversarial training to better learn human pose prior and body configurations, especially

in highly cluttered environments. In the second step, we formulate the automated worker

13



efficiency analysis into a temporal action localization problem in which the action video

performed by the worker is matched against a reference video performed by a teacher using

dynamic time warping.

To measure the efficiency, we propose to compare the amount of time used by the

worker to perform the action against the action time used by the teacher.

Compared to existing work, the major contributions of this work are summarized as

follows: (1) We develop a generative adversarial learning method for efficient human pose

estimation in highly cluttered environments. (2) We formulate the problem of operation

efficiency analysis problem into action-level cross-video matching between the worker and

teacher and developed an effective solution based on dynamic time warping. (3) We estab-

lish a method for automated worker efficiency analysis which provides fine-grain data for

smart workforce management.

The remainder of this chapter is organized as follows. Section 2.2 reviews previous

work on human pose estimation and temporal localization. Section 2.3.1 presents the

details of human pose extraction based on our proposed generative adversarial training

method. Section 2.3.2 explains our body pose feature extraction and dynamic time warp-

ing for action level video matching. Section 2.3.3 summarizes our algorithm for automated

worker efficiency analysis. Experimental results are presented in Section 2.4. Section 2.5

concludes the paper and discusses future work.

2.2 Related Work

Our work is closely related to human pose estimation and temporal activity localization.
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2.2.1 Human Pose Estimation

The task of human pose estimation is to determine the precise pixel locations of body key-

points from a single image [21]. Similar with saliency detection [49, 50], pose estimation

needs to highlight and separate the the salient body joint regions from background in im-

ages [51]. Since the work of DeepPose [22], human pose estimation has recently achieved

significant progress with deep convolutional neural networks. Human pose estimation is

often formulated as a regression problem, predicting locations of body joints from deep

neural network features [22]. DeepPose uses a deep neural network (DNN) to directly

regress the coordinates of body joints. Tompson et al. [23] argued that it is more efficient

to use DNNs to regress heatmap images at multiple scales. Luvizon et al. [52] designed

a differentiable regression-based network by using a soft-argmax function to transform

heatmaps to human body joint coordinates. Nibali et al. [24] transform human body joint

positions from heatmaps by constructing a differentiable spatial to numerical transform

(DSNT) layer [53]. While body models are not necessary for effective part localization,

constraints between parts allow us to assemble independent detection results into an accu-

rate body configuration. Detection-based methods are relying on powerful DNNS to detect

body parts and then combine them into a human pose using a graphical model [54–58],

where the input image is the raw image and the output image is a set of heatmaps that

represent the estimated human pose.

In this work, we incorporate the generative adversarial networks (GAN) [6] into our

human pose estimation. Instead of generating synthetic data purely from noise as in the

vanilla GAN, conditional GAN [59] uses real data as condition. One example work is the

image to image translation [60]. Here, the generator is fed with a pair of images A and B

during training, where the conditional GAN learns to generate B from A, or vice versa. A

15



similar strategy has been adopted by [61] to generate synthetic human pose images, while

the discriminator aims to distinguish real and synthesis pose images. Chou et al. [62]

proposed to use two identical Hourglass networks [63] as generator and discriminator. The

generator is used to generate the heatmap location of each joint, while the discriminator is

used to distinguishes real heatmaps from generated heatmaps. We propose to incorporate

the conditional GAN into the human pose estimation framework that can infer augmented

training data from ground truth annotations during the training process. This adversarial

training method will be able to better learn human pose prior and body configurations,

especially in highly cluttered environments.

2.2.2 Temporal Activity Localization

Temporal activity localization in continuous videos is a challenging and interesting prob-

lem in computer vision area [64]. During the past a few years, a number of algorithms

have been developed. A sliding temporal window approach with a greedy non-maximum

suppression has been used to locate the action segments in long videos [64]. For spa-

tiotemporal action localization, the number of windows can be reduced by finding action

proposals [65] or optimal action tubes using branch-and-bound methods [66]. [67] de-

veloped a hidden Markov model for action segmentation and localization. [68] proposed a

semi-Markov model which combines three different types of features: segment boundaries,

segment content, and interactions between neighboring segments. The action localization

is then formulated into a max-margin problem [68].

Motivated by the success of deep neural networks (DNNs) [1], [69] developed a two-

stream DNN to learn features from still images and motion flow simultaneously. A 3-D

DNN has been designed in [70] to learn spatio-temporal features for activity localization.
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It has been recognized that DNN-based activity localization methods require a large num-

ber of annotations to train the action detectors and localization module, which are often

hard and time-consuming to obtain in practice. To address this issue, Wang et al. [71]

proposed to utilize auxiliary data to transfer subspace clustering knowledge from source

sequences to target sequences to improve activity localization performance. [72] proposed

a temporal pooling scheme which is incorporated with dynamic clustering to build a hierar-

chical framework to achieve accurate temporal action localization from a sequence of local

features.

2.3 The Proposed Method

In this work, we develop an intelligent system to perform automated monitoring and eval-

uation of operation efficiency of workers for smart manufacturing. An overview of the

system is illustrated in Figure. 2.1. We formulate the worker efficiency analysis problem

into action-level cross-video matching between the teacher and the worker. Specifically,

the teacher video for a specific manufacturing task is pre-segmented and labeled with a

sequence of actions. The start time, end time, and time duration of each action performed

by the teacher are extracted. We perform deep learning based human body pose estimation

on both teacher and worker videos, detect body joints, and track their motion. We then

extract pose features to characterize both video sequences. Using dynamic time warping,

we perform feature sequence matching between these two videos. Based on this matching

result, we can then obtain the start time, end time, and time duration of each action per-

formed by the worker, compute their relative differences from the teacher action sequence,

and determine the operation efficiency of the worker. In the following sections, we will
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Figure 2.1: Overview of our worker efficiency evaluation system.

explain these major algorithm components in more details.

2.3.1 Human Body Pose Tracking

The first component of our proposed method is human body pose estimation and tracking.

Existing regression-based pose estimation methods work well with visible limbs. To handle

partially occluded body joints and limbs, they try to learn a body configuration model to

infer their locations [24]. In our experiments, we recognize that they cannot efficiently

handle fully occluded limbs, which occur quite often in practical scenarios, especially when

the person is moving around in the manufacturing floor. Ideally, we wish that the training

data contains images of all different poses of human body, including samples with fully

occluded limbs. In this way, the deep neural network can be carefully designed and trained
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to predict the body joints of these fully occluded limbs. However, this is a nearly impossible

task in practice since persons with free-style motion will have a wide variety of body poses

being occluded by different objects, especially in highly cluttered environments, such as the

manufacturing floors filled with machines. In the training data, some typical body poses

are dominating while difficult cases are very rare. This poses a significant challenge for

learning highly efficient human pose estimation.

To address this issue, we propose to incorporate generative adversary training into hu-

man pose estimation and train the following three networks jointly: the human pose esti-

mator, the semantic data generator, and the semantic data discriminator. Generative Adver-

sarial Networks (GAN) [6] consist of two models that are trained in an alternative manner.

The generator G is optimized to reproduce the true data distribution pdata by generating

data that are hard for the discriminator D to differentiate them from real data. Meanwhile,

D is optimized to distinguish real data from synthetic ones generated by G. The overall

training procedure is similar to a two-player min-max game with the following objective

function,

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] +

Ez∼pz [log(1−D(G(z)))],

(2.1)

where x is an instance from the true data distribution pdata, and z is a noise vector sampled

from distribution pz. Conditional GAN [59] is an extension of GAN where both the gen-

erator G(z, c) and discriminator D(x, c) receive additional conditioning variables c, thus

allowing G to generate images conditioned on variables c.

In this work, the generative (G) network augments the training data and enforces the

pose estimator to estimate the joints more precisely. The discriminative (D) network eval-

uates the conditional pair, i.e., the training images and the estimated pose heatmaps, to
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enforce the G network to generate semantically similar human pose images. An overview

of the human pose estimation system is illustrated in Figure. 2.2. An RGB image is fed

into the feature extraction module (FE) for visual feature extraction, and then fed into the

pose estimation module to infer pose heatmaps. The visual features will be concatenated

with the estimated heatmaps and the ground truth heatmaps to form an overall conditioned

feature vector C, where the estimated heatmaps serve as the conditioning augmentation.

Since the pose condition is naturally provided by the Gaussian heatmaps, so we donot need

to have an additional Gaussian function to generate pose embedding [59]. The conditioned

features C will be fed into the discriminator and generator networks to generate synthetic

pose images. The discriminator is a matching-aware discriminator. The positive pair is

the real image paired with the ground truth pose Pt concatenated with the extracted visual

features V . The negative pairs have two groups. The first group is the real image paired

with the estimated pose Pe concatenated with V . The second group is the synthetic image

paired with Pt and V .

We use a modified version of the hourglass network [63] as our human pose estimator.

The hourglass design is a state-of-the-art architecture for bottom-up and top-down infer-

ence with residual blocks. It processes input images at multiple scales with down-scaling

and up-scaling. In this work, We find out that, by replacing the residual block in the hour-

glass network with an inception-residual [73] block, we can achieve improved accuracy in

estimating occluded poses. The overall structure is shown in Figure. 2.3.

Inspired by the work of [74] which uses a conditional Variational Auto-encoder (VAE)

to map the raw image into the latent space, we propose to use an hourglass network to

extract latent representations of visual features in order to semantically generate image

samples that follow the same distribution of the real data. The learned latent representation
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Figure 2.2: The overall framework of our proposed poseGAN for the joint human pose es-
timation and conditional image synthesis. It includes the following components: Generator
(G), Discriminator (D), Feature Extractor (FE) and Pose Estimator (PE). M and N are
the number of channels of a tensor. N is the number of keypoints to be predicted. During
training, the discriminator D takes real images and their corresponding ground truth anno-
tations Pt as positive sample pairs, whereas negative sample pairs consist of two groups.
The first is real images with mismatched pose estimations Pe, while the second is synthetic
images with their corresponding true annotations Pt.
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V has the same resolution as the pose estimation results. The variable P follows a multi-

variate Gaussian distribution. It is a deterministic latent encoding of the human pose that

we use to condition the high-level visual features extracted from the raw image by the Fea-

ture Extraction (FE) network. It is pre-trained jointly with the pose estimator (PE). We

then fix the FE and start the training of the discriminator (D) and generator (G) networks.

During the GAN-based human pose learning process, both the generator and the pose

estimator work towards the goals of generating better pose conditions and more plausible

images. For the generator, it has two tasks. Specifically, it needs to generate images that are

both visually reasonable and pose-wise correct. For the pose estimator, it has two tasks as

well. The first one is to generate good pose estimation. Its performance is often measured

by the Euclidean distance between the estimated body joint locations and the ground truth

ones. The second one is to generate good poses for constructing feasible human image

samples. This second task complements the first one because, in occlusion conditions, it is

hard to infer the occluded body joint locations with a location-wise loss function because

the these body joints are not visible. By constructing a feasible image, the pose estimator

and the generator learns to cope with occluded parts.

In the following, we explain the specific loss functions to train these networks. Let I

be the input RGB image and Pt be the ground truth heatmap. We use P to denote the non-

linear functionality of the Pose Estimation Network. P (I) represents the predicted heatmap

of body joints from the input image I . Pe is used to simplify the denotion of P (I). The

Generator and Discriminator networks are denoted by G and D, respectively. The overall
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Figure 2.3: Implementation details of Generator (G) and Discriminator (PE). In each
module, the top notation [M ] indicates the resolution of the input tensor, while the bottom
[N ] denotes the resolution at the output tensor of this module. The up-sampling blocks
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LeakyReLU, except that the first one does not have Batch normalization.
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loss is the sum of GAN loss, the pose estimator loss, and L1 loss:

L(G,P,D; I, Pt) =LGAN(G,P,D; I, Pt)

+ LPose(P ; I, Pt)

+ λL1(G; I, Pt), (2.2)

where the GAN loss is the sum of the generator loss and discriminator loss:

LGAN(G,P,D; I, Pt) = LG(G,P ; I, Pt) +

LD(D,P ; I, Pt).

(2.3)

Following the prior work [12], the generator loss is to guide the G networks infer con-

ditioned synthetic images that can hardly be distinguished by the Discriminator. That is,

the fake pair p̂ is encouraged to be real in the Discriminator output.

LG(G,P ; I, Pt) = − log(p̂+ ε), (2.4)

where the fake pairs are defined as:

p̂ = D(G(I, Pt ⊗ V ), Pt) + D(I, Pe). (2.5)

⊗ is used here to denote the concatenation operation of tensors. In practice, in order to

prevent the logarithmic function to explode with input value zero, we add a constant as

ε = e−12. In our case, one constituent of the pairs corresponds to the real image paired with

the estimated pose Pe concatenated with V , while the other corresponds to the synthetic

image paired with Pt and V . The first group of fake pairs is helpful in the training of the
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pose estimator. The second group, on the other hand, provides useful gradient signals to

help creating better image synthesis.

The discriminator loss consists of D outputs of both real pair input p and fake pairs

input p̂:

LD(D,P ; I, Pt) = log(p+ ε) +

log(1− p̂+ ε),

(2.6)

where the fake pairs are defined in Equation 2.5 and the real pair is the real image paired

with the ground truth pose Pt concatenated with the extracted visual features V which is

denoted as:

p = D(I, Pt). (2.7)

The pose estimator loss is the standard MSE (mean squared error) loss for heatmap

regression:

LPose(P ; I, Pt) = ‖P (I)− Pt‖2 +

‖P (G(I, Pt))− Pt‖2.

(2.8)

The L1 loss is to enforce the synthetic image to be not only semantically congruent to

pose conditions, but visually similar to the original image:

L1(G; I, Pt) = |I −G(I, Pt)|1. (2.9)

In the experimental section, we will provide comprehensive evaluation of the proposed

human pose estimation method on the benchmark dataset. Figure. 2.4 shows examples of

body poses estimated by the proposed poseGAN method. With these accurately detected

body joints in each frame of the teacher and worker videos, we will track their motion in

the temporal domain, extract features, and perform cross-video action matching.
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Figure 2.4: Examples of human poses obtained by our poseGAN algorithm.

2.3.2 Body Pose Feature Extraction and Dynamic Time Warping for
Action Matching

In this section, we aim to characterize the action-level similarity between two segments

from the teacher and worker videos. Specifically, given two video segments, what is the

similarity between them from the human action perspective?

In our proposed method, we use the the poseGAN method presented in the previous

section to detect the body joints in each video frame. In this section, we propose to design

invariant features to represent this sequence of body joints and their motion for action-level

cross-video matching. The 2-D skeleton model used in this work is shown in Figure. 2.5.

It is organized in a tree structure. The joints of the lower body are denoted by J9, J10, J12,

and J13. In manufacturing environments, these fours joints are often occluded by machines

and desks. Keypoints on the head, including eyes and ears, are denoted by J0, J14, J15, J16,
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Figure 2.5: (a) Human skeleton model (blue spheres are joints and red lines are limbs). (b)
Green lines generated to extract features

and J17. Joints that are mostly visible in videos and important for recognize actions are

head center J0, body center J1, arm joints (J2, J3, J4, J5, J6, and J7) and two knee joints

J8 and J11, as illustrated in Figure. 2.5.

The following features are extracted from the sequence of detected body joints to rep-

resent the actions: (a) (FA) normalized distance d(Jm, Jk) between joints Jm and Jk which

includes J1 and J3, J1 and J4, J2 and J6, J1 and J7, J2 and J4, J2 and J6, J2 and J7, J5 and

J3, J5 and J4, J5 and J7; (b) (FB) normalized vector between two joints Jm and Jk, which

is defined by Vmk =
−−−→
JmJk/‖

−−−→
JmJk‖; (c) (FC) joint moving distance M v

k of each joint Jk

between the current frame and previous frame, where 0 ≤ k ≤ 17 and v indicates the cur-

rent frame; (d) (FD) its moving direction M θ
k ; and (e) (FE) the relative angle Θmk between

joints Jm and Jk with respect to the body center J1, where m and k indicate the joint index
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from 2 to 7. Here, the distance vectors between joints are normalized with respect to the

average should width which is defined as the Euclidean distance from J2 to J5.

The teacher video and the worker video are represented by sequences of joint features

defined in the above, denoted by Ft(n) and Fw(n) respectively. The next step is to deter-

mine the sequence-level alignment between them. The actions performed by the teacher

are denoted by Ak, 1 ≤ k ≤ K. Action Ak corresponds to feature sequence segment

[Ft(nk),Ft(nk + ∆k)], where nk is the start time (in frames) and ∆k is the time duration

of action Ak. Our task here is to identify the segments in the worker feature sequence

[Fw(mk),Fw(mk + δk)] which match with the teacher actions [Ft(nk),Ft(nk + ∆k)].

This is so-called temporal action localization problem which emerges as an important

research problem in computer vision and machine learning [68]. This problem is challeng-

ing in our case since different workers may perform actions with different speeds from the

teacher. The worker may have additional side actions between actions, causing significant

interference during matching. To address this issue, we propose to explore the method of

dynamic time warping (DTW). It uses a cost matrix to track the similarity between each

pair of poses from these two sequences. The action-level matching and synchronization are

determined by the monotonic path connecting starting and ending points of the cost matrix

with the lowest accumulated distance or the highest sub-sequence similarity. Specifically,

we represent the teacher and worker action video to be matched by two sequences or time

series of feature vectors X and Y

X = [X1, X2, ..., Xt1 , ..., XT1 ], (2.10)

Y = [Y1, Y2, ..., Yt2 , ..., YT2 ]. (2.11)

Xt1 is the feature vector which combines features (FA) to (FE) for frame t1 of the teacher
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video. Yt2 is the feature vector for frame t2 in the worker video. T1 and T2 are the length of

both videos. We first compute the local cost matrix Cl ∈ RT1×T2 where each entry of this

matrix ct1,t2 represents the Euclidean distance between feature vectors Xt1 and Yt2 .

ct1,t2 = ‖Xt1 − Yt2‖2. (2.12)

From this local cost matrix, we try to find the alignment path which goes through the

minimal cost positions on the matrix. We denote the alignment path to be obtained by our

DTW algorithm by

W = {w(1), w(2), · · · , w(K)}. (2.13)

The associated weight for W (k) is

w(k) = c(xnk , ymk), nk ∈ [1, T1],mk ∈ [1, T2] (2.14)

Then, the overall cost function is defined as:

C[p](X, Y ) =
K∑
k=1

w(k) =
K∑
k=1

c(xnk , ymk) (2.15)

The dynamic time warping algorithm aims to find the optimal warping path p̂ to minimize

the cost function, which can be solved with dynamic programming. We define D(t1, t2) as

the accumulated cost matrix, which is initialized withD(1, 1) = ct1,t2 = ‖Xt1−Yt2‖. Then,

during each stage of dynamic programming, we update the cumulative distance D(t1, t2)
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as follows:

D(t1, t2) = min{D(t1 − 1, t2 − 1), D(t1 − 1, t2),

D(t1, t2 − 1)}+ c(Xt1 , Yt2).

(2.16)

Once the accumulated cost matrix is constructed, the optimal warping path p∗ can be found

by backtracking from the end point (T2, T1) to the start point (1, 1). The total cost the

optimal path will be used to measure the action-level similarity between two segments

from the teacher and student videos.

2.3.3 Temporal Activity Localization

In the previous section, we have derive an action-level similarity measure between two

video segments from the teacher and worker videos. From the optimal path, we can also

identify which subset of frames achieves the best match. In this section, we will use this

method to identify the matches of all teacher actions in the worker video. Specifically, the

teacher has performed K actions {Ak}. Each action Ak is labeled in the teacher video for

frames [Ft(nk),Ft(nk + ∆k)] where nk is the starting frame and nk + ∆k is the ending

frame. During temporal activity localization, we start with the first action A1. The input to

our matching algorithm outlined in the above section will be two video segments: the first

one is [Ft(nk),Ft(nk + ∆k)] from the teacher video. The second one is from the worker

video. For this worker video segment, we start with an initial guess [Fw(Uk),Fw(Vk)].

Initially, U1 = 1. We can set V1 to be a sufficiently large number which can cover the

first action performed by the worker. We then apply the matching algorithm to find the

optimal path based on dynamic time warping and determine the best matching frames for

[Ft(nk),Ft(nk+∆k)], whose frame index range is denoted by [Fw(nk),Fw(nk+∆k)]. Once
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Figure 2.6: Temporal localization of worker actions.

the current action is matched, we can set Uk+1 = nk + ∆k and Vk+1 to be a number larger

than Uk+1 and being able to cover the next action. The overall procedure is illustrated in

Figure. 2.6.

2.4 Experimental Results

Our experimental evaluation consists of two parts, evaluating the poseGAN method for

human pose estimation on benchmark datasets and evaluating the accuracy of worker op-

eration efficiency analysis.

2.4.1 Human Pose Estimation Evaluation

Datasets

We evaluate the proposed poseGAN on two widely used benchmark datasets: the MPII

Human Pose [75] and extended Leeds Sports Poses (LSP) [76]. The MPII Human Pose
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dataset has about 25K images with 40K annotated poses. The images are collected from

YouTube videos covering daily human activities with highly articulated human poses. The

LSP dataset consists of 11K training images and 1K testing images of sports activities.

Evaluation Criteria

Three widely used criteria are used in the literature to evaluate the performance of the

proposed human pose estimation method: Percentage of Corrected Parts (PCP) [56], Per-

centage of Detected Joints (PDJ) [22], and Percentage of Corrected Keypoints (PCK) [56].

The PCP evaluates the localization accuracy of body parts. It requires the estimated

part end points must be within half of the part length from the ground truth part end points

[56]. It has been recognized that the PCP measure has the drawback of penalizing shorter

limbs, such as lower arms. Thus, the PDJ measure is introduced in [22] to measure the

detection rate of body joints, where a joint is considered to be detected if the distance

between the detected joint and the true joint is less than a fraction of the torso diameter.

The torso diameter is usually defined as the distance between two end joints on the human

torso, such as left shoulder and right hip [22]. The PCK measure is very similar to the PDJ

criterion. The only difference is that the torso diameter is replaced with the maximum side

length of the external rectangle of ground truth body joints.

In our experiments, we follow the official benchmark evaluation protocols [75]. Official

benchmark on MPII dataset adopts PCKH (using portion of head length as reference) at

0.5, while official benchmark on LSP dataset adopts both PCP and PCK at 0.2. We use the

PCK [56] metric for performance comparisons on the LSP dataset, and the PCKH measure

[75], where the error tolerance is normalized with respect to the head size, for performance

comparisons on the MPII Human Pose dataset.
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Table 2.1: Comparisons of PCK@0.2 score on the LSP test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Wei et al. [77] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Insafutdinov et al. [78] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Pishchulin et al. [55] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Lifshitz et al. [79] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Belagiannis&Zisserman [80] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Yang et al. [81] 98.3 94.5 92.2 88.9 94.7 95.0 93.7 93.9
Chu et al. [82] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Bulat&Tzimiropoulos er al. [83] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Tang et al. [84] 97.1 94.7 91.6 89.0 93.7 94.2 93.7 93.4
Luvizon et al. [52] 97.4 93.8 86.8 82.3 93.7 90.9 88.3 90.5
Zhang et al. [85] 97.3 92.3 86.8 84.2 91.9 92.2 90.9 90.8
Ours 98.4 94.6 92.0 89.5 95.0 95.0 93.6 94.0

Results

Table 2.1 summarizes the PCK scores with a threshold of 0.2. Our approach outperforms

several recent state-of-the-art methods with a PCK score of 94.0%. Table 2.2 shows the

comparison of the PCKh performance of our method with previous state-of-the-art methods

at a normalized distance of 0.5. Our algorithm achieves the state-of-the-art performance of

91.2% in the PCKH − 0.5 score. Note that we test multiple scales (1 and 0.75) on both

the MPII and LSP datasets. The occlusion of limbs will cause ambiguity in human pose

estimation. In this work, using GAN-based image synthesis conditioned by human pose

estimation and adversarial training, the pose estimator and the generator learns to cope

with occluded parts. Our experiments on these two benchmarks show that this approach

improves the overall performance.

Examples of pose estimation on the LSP and MPII datasets are shows in Figure. 2.7

and Figure. 2.8 respectively. Figure. 2.4 shows some examples of human poses in the

manufacturing environment estimated by the proposed poseGAN method.

33



Table 2.2: Comparisons of PCKh@0.5 score on the MPII test set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total
Bulat&Tzimiropoulos et al. [83] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Wei et al. [77] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Insafutdinov et al. [78] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Rafi et al. [86] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Gkioxary et al. [87] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Lifshitz et al. [79] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Pishchulin et al. [55] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Newell et al. [63] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Tang et al. [84] 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8
Yang et al. [88] 97.9 95.6 90.7 86.5 89.8 86.0 81.5 90.2
Zhang et al. [85] 98.3 96.4 91.5 87.4 90.9 87.1 83.7 91.1
Ours 98.1 96.3 92.2 87.8 90.6 87.6 82.7 91.2

2.4.2 Evaluating the Worker Efficiency Analysis

Dataset

In this work, we establish a dataset for worker efficiency evaluation. We choose the task

of assembling a computer. The whole task consists of 11 operations or actions. We record

the installation task performed by one teacher and 10 workers (students). Examples video

frames are shown in Figure. 2.9. In totally, the dataset has more than 60,000 frames. We

manually identify those 11 actions in these videos and label the corresponding frames.

Results

To measure the accuracy of our proposed method in localizing each operation performed by

the worker, we use the Intersection over Union (IoU), which is the number of overlapped

frames between the detected action video segment and the ground truth video segment

divided by their union. For example, if the worker perform one operation from frame 100
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Figure 2.7: Examples of human pose estimation from the LSP test set.

to frame 200. The detected video frames for this operation by our method are from 120 to

260. Then, the corresponding IoU score is 80/160 = 0.5. We compare the performance

of our method against two recent start-of-the-art methods: (1) Wang et al. [71] which

extracted low-level HoG features [89] from each frame and performed subspace clustering

by transferring knowledge from relevant labelled source sequences to unlabelled target

sequences. They formulated the problem as least-square regression. (2) Zhang et al. [72]

performed dynamic clustering to group low-level features and then use cut-based pooling

to aggregate the encoded features within each time window to locate the specific human
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Figure 2.8: Examples of human pose estimation from the MPII test set.

action. The worker’s activity localization results are presented in Table 2.3, where W

indicates the worker. From the experiment results, we can clearly see that our method

generally outperforms the other two methods.

In the following ablation study, we evaluate the contributions of major algorithm com-

ponents. The features used in our algorithm have three major components: distance features

(features FA and FC), direction features (features FB and FD), and angle features (feature

FE). The results of the ablation study are summarized in Table 2.4. From the experimental

results, we can clearly see that each feature component is contributing to the overall per-

formance. The distance and direction features have relatively contributions to the overall
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Figure 2.9: Example frames of our worker operation efficiency evaluation dataset.

Table 2.3: Comparisons of worker’s activity localization among surveillance videos. Error
metrics reported are IoU scores.

Method W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Avg.
Zhang et al. [72] 0.9518 0.9439 0.9416 0.9669 0.9341 0.9413 0.9479 0.9632 0.9543 0.9655 0.9510
Wang et al. [71] 0.9244 0.9358 0.9432 0.9327 0.9419 0.9324 0.9548 0.9516 0.9389 0.9647 0.9420
Ours 0.9771 0.9885 0.9624 0.9573 0.9608 0.9771 0.9511 0.9619 0.9681 0.9735 0.9678

performance.

To further verify our method, we also perform the leave-one-out cross validations. We

first manually extract the action video segments without empty frames for each of these 10

workers. Then we use every worker’s activity video as the reference and match it with every

other worker’s video. The quantitative result of the cross validation result is summarized in

Table 2.5. The experimental results show the average IoU score and standard deviation for

each validation by leaving one worker’s video out. We can see that our method can achieve

the average accuracy about 94± 2%.
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Table 2.4: Ablation experiments of using features without different components. Error
metrics reported are IoU scores.

Method W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Avg.
With All Features 0.9771 0.9885 0.9624 0.9573 0.9608 0.9771 0.9511 0.9619 0.9681 0.9735 0.9678
- Without Distance Features (FA+FC) 0.8723 0.8941 0.8775 0.8813 0.9044 0.9073 0.8829 0.8936 0.9058 0.9077 0.8927
- Without Direction Features (FB+FD) 0.8962 0.9084 0.9013 0.8982 0.9061 0.9128 0.8983 0.9077 0.8909 0.9116 0.9032
- Without Angle Features (FE) 0.9244 0.9446 0.9264 0.9082 0.9239 0.9357 0.9012 0.9196 0.9212 0.9342 0.9239

Table 2.5: Cross validation of Worker’s activity localization among 10 videos

Worker W1 W2 W3 W4 W5 W6 W7 W8 W9 W10
IoU Avg 0.95 0.94 0.93 0.94 0.93 0.94 0.92 0.93 0.93 0.95
IoU Std ±0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.03 ± 0.02 ± 0.01 ± 0.02 ± 0.03 ± 0.02

It is worthy to note that our proposed temporal activity localization method is specifi-

cally designed for our worker efficiency evaluation system. By “specifically”, we mean that

each action is performed without errors, no action is missing, and all actions are performed

in a correct sequential order. For example, if a worker performs these actions in a wrong

order, the localization accuracy will decrease to about 70%.

With our worker efficiency evaluation system, the amount of time spent by each worker

on each operation can be automatically obtained. Figure. 2.10 shows the total amount

of time spent by each worker to complete the whole assembling task with 11 operations.

Figure. 2.11 shows the time of each worker spent on each operation. This data can be

used directly to evaluate the performance of each worker. We can find out why a worker is

performing so slowly and what operation he or she is inefficient on.
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Figure 2.10: Time (sec) spent by each worker for the whole assembling task.

Figure 2.11: Time (sec) spent for each operation of the manufacturing task.
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2.5 Conclusion

In this chapter, we have successfully developed an automatic system to monitor and evalu-

ate worker’s efficiency for smart manufacturing workforce management using human body

pose estimation and temporal action localization. We first developed a novel semantic ad-

versarial training framework with GAN networks that accurately detect human body joints,

estimate its pose, and track its motion. Then, we formulated the automated worker ef-

ficiency analysis into a temporal action localization problem in which the action video

performed by the worker is matched against a reference video performed by a teacher. We

showed our proposed poseGAN achieves the state-of-the-art performance on benchmark

dataset and our automated work efficiency analysis is able to achieve accurate action lo-

calization with an average IoU score large than 0.9. To our knowledge, this is one of the

first systems to automatically evaluate worker efficiency. The resulting data can be used for

performance evaluation and diagnosis of workers for smart workforce management.
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Chapter 3

Reciprocal Learning Networks for
Human Trajectory Prediction

3.1 Motivation

Human motion trajectory prediction in complex environments plays an important role in

autonomous driving systems [29], social robots [30], and smart environments [17, 18]. In

this chapter, we propose to explore the unique characteristics of human trajectories and

develop a new approach, called reciprocal learning for human trajectory prediction. As

illustrated in Figure. 3.1, we observe that the human trajectory is not only forward pre-

dictable, but also backward predictable. Imagine that the time is reversed and person is

traveling backwards. As discussed in the above, the forward moving trajectories follow the

social norm and obey the environmental constraints. So do the backward moving trajecto-

ries since the only difference between them is that the time is reversed. From the training

data, we can train two different prediction networks, the forward prediction network Fθ and
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Figure 3.1: Imagine that time is reversed and person is traveling backwards. The human
trajectory is not only forward predictable, but also backward predictable. This leads to
our new approach of reciprocal coupling and learning between the forward and backward
prediction networks for accurate human trajectory prediction.

the backward prediction network Gφ. These two networks are tightly coupled together, sat-

isfying a reciprocal constraint. For example, using the forward network, we can predict the

future trajectory Y = Fθ(X) from the observed or known trajectory X. If the prediction

Y is accurate, then Gφ(Y) must be equal to X.

Based on this observation and the unique reciprocal constraint, we develop a new ap-

proach called reciprocal network learning for accurate and robust prediction of human tra-

jectories. We introduce the reciprocal prediction loss and establish an iterative procedure

for training these two tightly coupled networks. We borrow the concept of the adversar-

ial attacks of deep neural networks which iteratively modifies the input of the network to

match a given target or forced network output. We integrate the reciprocal constraint with

the adversarial attack method to develop a new matched prediction method for human tra-

jectory prediction. Our experimental results on benchmark datasets demonstrate that our

new method outperforms the state-of-the-art methods for human trajectory prediction.

The major contributions of this work can be summarized as follows. (1) We have

established a forward and backward prediction network structure for human trajectory pre-

diction, which satisfies the reciprocal prediction constraints. (2) Based on this constraint,
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we have developed a reciprocal learning approach to jointly train these two prediction net-

works in an collaborative and iterative manner. (3) Once the network is successfully trained,

we have developed a new approach for network inference or testing by integrating the con-

cept of adversarial attacks with the reciprocal constraint. It is able to iteratively refine

the predicted trajectory by the forward network such that the reciprocal constraint is satis-

fied. (4) Our ablation studies have shown that the proposed new approach is very effective

with significant contributions to the overall performance of our method, which outperforms

other state-of-the-art methods in the literature.

The rest of the chapter is organized as follows. Section 3.2 reviews related work on

human trajectory prediction. The proposed reciprocal network learning and matched pre-

diction are presented in Section 3.3. Section 3.5 presents the experimental results, perfor-

mance comparisons, and ablation studies. Section 3.6 summarizes our major contributions

and concludes the paper.

3.2 Related Work

Existing methods for human trajectory prediction mainly focus on modeling human-human

interactions and human-scene interactions. Human-human models focus on learning hu-

man movements and how human interacts with others [39, 40]. Human-scene models also

try to learn the dynamic contents of the background scenes to extract some visual features

to help better understand human motions [34, 36, 90–95]. In this section, we review exist-

ing work, including human-human models and human-scene models for human trajectory

prediction. We also discuss related work in sequence prediction using Recurrent Neural

Networks (RNNs) [96]. Our work is inspired by generative models [6, 97] and the idea of
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cycle consistence [98–101] in visual tracking, relevant papers in these two areas are also

reviewed in this section.

3.2.1 Human-Human Models for Trajectory Prediction

A number of methods have been developed in the literature to model human social inter-

actions and behaviors in crowded scenes, such as people attempting to avoid walking into

each other. Helbing and Molnar [37] introduced the Social Force Model to characterize

social interactions among people in crowded scenes using coupled Langevin equations. In

recent methods based on LSTM (Long Short Term Memory) [39], social pooling was in-

troduced to share features and hidden representations between different agents. The key

idea is to merge hidden states of nearby pedestrians to make each trajectory aware of its

neighbourhood. [102] found out that groups of people moving coherently in one direction

should be excluded from the above pooling mechanism. [40] used a Generative Adversarial

Network (GAN) to discriminate between multiple feasible paths. Their pooling mechanism

relies on relative positions between all pedestrians with the target pedestrian. This model

is able to capture different movement styles but does not differentiate between structured

and unstructured environments. [103] predicted human trajectories using a spatio-temporal

graph to model both position evolution and interactions between pedestrians.

3.2.2 Human-Scene Models for Trajectory Prediction

Another set of methods for human trajectory prediction have focused on learning the effects

of physical environments. For example, human tend to walk along the sidewalk, around a

tree or other physical obstacles. Sadeghian et al. [43] considered both traveled areas and
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semantic context to predict social and context-aware positions using a GAN (Generative

Adversarial Network). Liang et al. [104] proposed to use abstract scene semantic segmen-

tation features and multi-scale location encoding for better predicting multiple plausible

trajectories. [105] designed a probabilistic model and introduced a dynamic attention-

based state encoder to encode agent interactions. [106] extracted multiple visual features,

including each person’s body keypoints and the scene semantic map to predict human be-

havior and model interaction with the surrounding environment. [38] has studied attractions

towards static objects, such as artworks, which deflect straight paths in several scenarios

such as museums. [34] proposed a Bayesian framework to predict unobserved paths from

previously observed motions and to transfer learned motion patterns to new scenes. In

[107], the dynamics and semantics for long-term trajectory predictions have been studied.

Scene-LSTM [108] divided the static scene into grids and predicted pedestrian’s location

using LSTM. The CAR-Net method [109] integrated past observations with bird’s eye view

images and analyzed them using a two-levels attention mechanism.

3.2.3 Recurrent Neural Networks for Sequence Prediction

This work is also related to recurrent neural networks (RNNs) [96]. RNNs are widely used

for sequence data analysis, e.g., speech recognition [110–113], image captioning [114–

119], machine translation [111] and video generation [120]. [121] recognizes that the draw-

back of RNNs model is the lack of high-level and spatio-temporal structure. [39, 122, 123]

propose to learn complex interactions using multiple networks. [35] designs an RNN-

based encoder-decoder framework and uses variational autoencoder (VAE) to predict the

sequence. Alahi et al. proposes a so-called social pooling layer to capture the interactions

of human within a certain range. In this work, we borrow the idea from [40] which uses a
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multi-layer perceptron (MLP) followed by a max pooling layer to learn the human-human

interaction.

3.2.4 Generative Networks and Cycle Consistency Learning

Generative Adversarial Networks (GANs) have been widely used and achieved impres-

sive results in representation learning [8–10], image translation [11, 12] and image syn-

thesis [13–16]. In this work, we adopt a GAN framework to force the generated future

and past trajectories to be indistinguishable from the ground truth. Using transitivity as

a way to regularize structured data has been explored. For example, in visual tracking,

[99, 124] developed a forward-backward consistency constrain. In language processing,

[125–127] studied human and machine translators to verify and improve translations based

on back translation and reconciliation mechanisms. Cycle consistency has also been used

for motion analysis [128], action prediction [129], 3D shape matching [130], dense se-

mantic alignment [131, 132], depth estimation [133–135], and image-to-image translation

[136, 137]. CycleGAN [137] introduces a cycle consistence constraint for learning a map-

ping to translate an image from the source domain into the target domain. Pang et al.

[129] propose to use a bi-directional LSTM model for early actions prediction. It employs

consistency learning by synthesizing future action and reconstructing observed action.

3.3 Reciprocal Networks for Human Trajectory Predic-
tion

In this section, we present our reciprocal network learning method for human trajectory

prediction.
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3.3.1 Problem Formulation

We follow the standard formulation of trajectory forecasting problem in the literature [103,

106]. With observed trajectories of all moving agents in the scene, including persons and

vehicles, the task is to predict the moving trajectories of all agents for the next period of

time, say 10 seconds, in the near future. Specifically, let X = X1, X2, · · · , XN be the

trajectories of all human in the scene. Our task is to predict the future trajectories of all

human Ŷ = Ŷ1, Ŷ2, · · · , ŶN simultaneously. The input trajectory of human n is given by

Xn = (xtn, y
t
n) for time steps t = 1, 2, · · · , To. The ground truth of future trajectory is

given by Yn = (xtn, y
t
n) for time step t = To + 1, · · · , Tp.

3.3.2 Method Overview

As illustrated in Figure. 3.2, in reciprocal learning, we are learning two coupling networks,

the forward prediction network Fθ which predicts the future trajectories Y = Fθ(X) from

the past data X, and the backward prediction network Gφ which predicts the past trajecto-

ries X = Gφ(Y) from the future data Y. It should be noted that, during training, both the

past and future data are available. If both networks are well trained, then we should have

following two reciprocal consistency constraints:

X ≈ Gφ(Fθ(X)), (3.1)

Y ≈ Fθ(Gφ(Y)). (3.2)

These two networks are able to help each other to improve the learning and prediction per-

formance. Specifically, if the backward prediction network Gφ is trained, we can use the

reciprocal constraint (3.1) to double check the accuracy of the forward prediction network
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Figure 3.2: Illustration of the proposed reciprocal learning approach.

Fθ and improve its performance during training. Likewise, if the forward prediction net-

work Fθ is trained, we can use (3.2) to improve the training performance of the backward

prediction network Gφ. This results in a tightly coupled iterative learning and performance

improvement process between these two prediction networks, as illustrated in Figure. 3.2.

Once the forward and backward networks are successfully trained using the reciprocal

learning approach, we develop a new network inference method called reciprocal attack

for matched prediction. It borrows the concept of adversarial attacks of deep neural net-

works where the input is iteratively modified such that the network output matches a given

target [138].

Our proposed idea echoes some thoughts in CycleGAN [137] which presents an ap-

proach for learning a mapping to translate an image from a source domain to a target do-

main. They also learn an inverse mapping and introduce the cycle consistence constraint.

Our approach is significantly different from this CycleGAN method. We design two tightly

coupled prediction networks, the forward and backward prediction networks, which are

jointly learned based on the reciprocal constraint. For the testing part, our approach intro-

duces a new reciprocal attack method for matched prediction of human trajectory.
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Figure 3.3: Illustration of the training process of reciprocal learning.

3.3.3 Reciprocal Network Training

To successfully train the forward and backward prediction networks, we define two loss

functions, J− and J+, to measure the prediction accuracy of the past and future trajectories.

One reasonable choice will be the L2 between the original trajectory and its prediction.

These two loss functions will be updated alternatively and combined to guide the training

of each of these two networks, as illustrated in Figure. 3.3. For example, when training the

forward prediction network Fθ, the loss function used in existing literature is the prediction

error of the future trajectory L+. In reciprocal training, we first pre-train the backward

prediction network Gφ using the training data with all trajectories reversed in time. We

then use this network to map the prediction result of Fθ, Ŷ = Fθ(X), back to the past

trajectory, which is given by

X̂ = Gφ(Ŷ) = Gφ(Fθ(X)). (3.3)

The past trajectory loss is then given by L− = ||X−X̂||2. We refer to this loss as reciprocal

loss. It will be combined with L+ to form the loss function for the forward prediction
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network Fθ:

J+[θ] = λ · L+ + (1− λ) · L−

= λ · ||Y − Fθ(X)||2 (3.4)

+ (1− λ) · ||X−Gφ(Fθ(X))||2.

Similarly, we can derive the loss function for the backward prediction network Gφ:

J−[φ] = λ · L− + (1− λ) · L+

= λ · ||X−Gφ(Y)||2 (3.5)

+ (1− λ) · ||Y − Fθ(Gφ(Y))||2.

In reciprocal training, we first pre-train the forward and backward prediction networks

independently. Then, these two networks are jointly trained in an iterative manner based

on the reciprocal constraint.

3.3.4 Constructing the Forward and Backward Prediction Networks

Both the forward and backward networks share the same network structure. In the fol-

lowing, we use the forward prediction network Fθ as an example to explain our network

design. As illustrated in Figure. 3.4, we adopt the existing Social-GAN in [40] as our

baseline prediction network. Our model consists of two key components: (1) a feature

extraction module and (2) an LSTM (Long Short Term Memory)-based GAN (generative

adversarial network) module.
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Figure 3.4: Overview of our prediction model. Our model consists of two key components:
(1) a feature extraction module, (2) an LSTM-based GAN module.

Feature Extraction

In real world scenarios, human’s selection of future path is affected by the surrounding

environment, including other persons in the neighborhood and the physical scene. Our

feature extraction module has three major components to extract human-specific, scene

context and depth structure features.

(a) Human-specific features. The human scale feature captures the temporal pattern and

dependency of each human trajectory. Given the observed trajectories X = X1, X2, · · · , XN

of all human in the scene, the input trajectory of each human n is defined as Xn = (xtn, y
t
n)

from time steps t = 1, 2, · · · , To. We first embed the coordinates of each human n into a

fixed size vector etn using a single layer MLP [139]:

etn = ψ(xtn, y
t
n;Wem), (3.6)

where ψ(·) is an embedding function with ReLU non-linearity [140] and Wem is the em-
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bedding weight. Then, we use an LSTM module to encode them into a high-dimensional

feature F t
h,n.

F t
h,n = LSTMen(F t−1

h,n , e
t
n;Wen1), (3.7)

where Wen1 denotes the encoding weight which can be optimized during training process.

Notice that Wen1 is shared between all human in the scene. In order to capture the joint

influence of all surrounding human’s movements on the prediction of the target human n,

we borrow the idea from [40] to build a social pooling module (SP) which encodes the

human-human interactions. The relative distances between the target person and others

are calculated. These distance vectors are concatenated with the hidden state in the LSTM

network for each person and then embedded by an MLP and followed by a Max-Pooling

function [141] to form the joint feature F t
s,n.

F t
s,n = SP (F t

h,1, F
t
h,2, · · · , F t

h,N). (3.8)

A maximum number of moving human in the scene is set and a default value of 0 is used if

the corresponding agent does not exist in the current frame.

(b) Scene context features. As recognized in [41, 43], the environmental context affects

the decision of the human in planning its next step of movement. Features of the current

scene can be incorporated into the reasoning process. Similar to prior work [43], we use

the VGGNet-19 network [45] pre-trained on the ImageNet [45] to extract the visual feature

f t of background scene I t, which is then fed into an LSTM encoder to compute the hidden

state tensor F t
v .

f t = V GG(I t), (3.9)

F t
v = LSTMen(F t−1

v , f t;Wen2), (3.10)

52



where Wen2 is the corresponding encoding weights.

(c) Depth structure features. As a unique feature of our proposed method, we propose

to also incorporate the 3D scene depth structure into the reasoning process, which also im-

proves the prediction accuracy of human trajectories. This is because the human motion

occurs in the original 3D environment. Therefore, its natural behavior and motion patterns

are better represented in the 3D instead of 2D coordinate system. For example, the trajec-

tory of a person walking near the camera is much different from that of a person walking

far away from the camera due to the camera perspective transform. To address this issue,

we propose to estimate a depth map from a single image using existing depth estimation

method [3]. We use the pre-trained model Monodepth2, denoted by D to perform monocu-

lar depth estimation and obtain the depth map Dt = D(I t) of scene I t, then use an LSTM

to encode it into a depth feature F t
d.

F t
d = LSTMen(F t−1

d , Dt;Wen3), (3.11)

where Wen3 is the associated encoding weights. Figure. 3.5 presents qualitative depth

estimation examples from Town Centre dataset [4] by Monodepth2.

LSTM-based GAN for Trajectory Prediction

Inspired by previous work [40, 43], in this work we use an LSTM based Generative Adver-

sarial Network (GAN) module to generate human’s future path as illustrated in Figure. 3.4.

The generator is constructed by a decoder LSTM. Similar to the conditional GAN [18], a

white noise vector Z is sampled from a multivariate normal distribution. Then, a merge

layer is used in our proposed network which concatenates all encoded features mentioned
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Figure 3.5: Examples of the input (left column) and the output (right column) of the monoc-
ular depth estimation [3]. The input image is from Town Centre dataset [4].

above with the noise vector Z.

F t
n = concat(F t

s , F
t
v , F

t
d, Z), (3.12)

We take F t
n as the input to the LSTM decoder to generate the candidate future paths Ŷ t

n for

each human.

Ŷ t
n = LSTMde(Ŷ

t−1
n , F t

n;Wde), (3.13)

where Wde is the decoding weights of LSTM.

The discriminator is built with an LSTM encoder which takes the input Y ′tn as randomly

chosen trajectory from either ground truth Y t
n or predicted trajectories Ŷ t

n and classifies

them as “real” or “fake”. Generally speaking, the discriminator classifies the trajectories

which are not accurate as “fake” and forces the generator to generator more realistic and

feasible trajectories.

Ltn = LSTMen(Y ′
t
n, h

t
en;Wen4), (3.14)

where Ltn is the predicted label from the discriminator for the chosen input trajectory to be
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“real”(Ltn = 1) or “fake”(Ltn = 0). hten denotes the hidden state of the encoding LSTM and

Wen4 is the corresponding weights.

Within the framework of our reciprocal learning for human trajectory prediction, let

Gθ : X → Y and Gφ : Y → X be the generators of the forward prediction network Fθ

and the backward prediction network Gφ, respectively. Dθ is the discriminator for Fθ. Its

input Y ′ is randomly selected from either ground truth Y or the predicted future trajectory

Ŷ . Similarly, Dφ is discriminator for Gφ. To train Fθ and Gφ, we combine the adversarial

loss with the forward prediction loss J+[θ] and the backward prediction loss J−[φ] in Eqs.

(3.4) and (3.5) together to construct the overall loss function for Fθ and Gφ, respectively:

Lθ = LθGAN + J+[θ], Lφ = LφGAN + J−[φ], (3.15)

where adversarial losses LθGAN and LφGAN are defined as:

LθGAN = min
Gθ

max
Dθ

EY ′∼p(Y,Ŷ )[logDθ(Y ′)] (3.16)

+ EX∼p(X),Z∼p(Z)[log(1−Dθ(Gθ(X,Z)))],

LφGAN = min
Gφ

max
Dφ

EX′∼p(X,X̂)[logDφ(X ′)] (3.17)

+ EY∼p(Y ),Z∼p(Z)[log(1−Dφ(Gφ(Y, Z)))].
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3.4 Reciprocal Attack for Matched Prediction of Human
Trajectories

Once the forward and backward networks are successfully trained with the above loss func-

tions based on the reciprocal learning approach, we are ready to perform prediction of the

human trajectories. By taking advantage of the reciprocal property of the forward and

backward networks, we develop a new network inference method called reciprocal attack

for matched prediction to achieve improved performance in human trajectory prediction.

Figure 3.6: Illustration of the proposed reciprocal attack method.

As illustrated in Figure. 3.6, Fθ is our trained network for human trajectory predic-

tion. With the past trajectories X as input, it predicts the future trajectories Ŷ = Fθ(X).

During network testing or actual prediction, we do not know the ground truth of the future

trajectory. How do we know if this prediction Ŷ is accurate or not? How can we further

improve its accuracy? Fortunately, in our reciprocal learning framework, we have another

network, the backward prediction network Gφ, which can be used to map the estimated Ŷ

back to the known input X. Our idea is that, if Ŷ is accurate, then its backward prediction

X̂ = Gφ(Ŷ) = Gφ(Fθ(X)) should match the original input X. When the prediction Ŷ is
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not accurate, we can modify the prediction such that the above matching error is minimized.

This leads to the following optimization problem:

Ŷ∗ = arg min
Ỹ=Ŷ+∆(t)

||X−GΦ(Ỹ)||2. (3.18)

Here, ∆(t) is the small perturbation or modification added to the existing prediction result

Ŷ. The above optimization procedure aims to find the best modification Ŷ∗ = Ŷ + ∆(t)

to minimize the matching error.

This optimization problem can be solved by adversarial attack methods recently studied

in the literature of deep neural network attack and defense. In this work, we propose

to borrow the idea from the famous Fast Gradient Sign method (FGSM) developed by

Goodfellow et al. [138] to perform adversarial attacks. Essentially, it is the same error back

propagation procedure as network training. The only difference is that network training

modifies the network weights based on error gradients. However, the adversarial attack

does not modify the network weights, it propagates the error all the way to the input layer

to modify the original input image to minimize the loss.

This approach uses the sign of the gradient at each pixel to determine the direction

of changing pixel value. In our case, we remove the sign function and directly use the

gradient to update the input trajectory. With the matching error of human trajectories

E = ||X−GΦ(Ỹ)||2, we can perform multiple iterations of the modified FGSM attack on

the prediction Ŷ such that the matching error is minimized. At iteration m, the attacked

trajectory (input) is given by

Ŷm = Ŷm−1 − ε · ∇ŶE(X, Ŷm−1), (3.19)
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with Ŷ0 = Ŷ. ε is the magnitude of attacks [138]. ∇ŶE(X, Ŷm−1) indicates the gradient

of error function E with respect to the input Ŷ. Intuitively, the updated trajectory Ŷm will

minimize E. We then perform an exponential average of {Ŷm} to obtain the improved

prediction

Ŷ∗ =

[
M∑
m=1

eα·m · Ŷm

]
/

M∑
m=1

eα·m, (3.20)

where M is the total iterations and α is a constant to control the relative weights between

these different iterations of attacks.

Figure. 3.7 shows an example of the trajectory prediction results using reciprocal attack

in each iteration performed on the HOTEL dataset. We can see that, using reciprocal attack

in an iterative manner, the error metrics, ADE and FDE (see definition in Section 3.5.3) of

trajectory prediction will decrease in a certain iteration, then they might increase after a few

iterations. Since we do not know the ground truth, we choose to perform reciprocal attack

for 20 iterations based on heuristic studies. Then an exponential average is performed on

the result trajectories in each iteration to obtain the refined future trajectories prediction.

The ablation studies in the following section will provide more results to demonstrate the

effectiveness of this attacked-based matched prediction scheme.
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Figure 3.7: Example of our proposed reciprocal attack performed on HOTEL dataset. X-
coordinates in both figures indicate the iteration, while Y-coordinates indicate error metrics,
ADE and FDE (see detailed explanation in Section 3.5.3).
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3.5 Experimental Results

We provide extensive performance comparisons on benchmark datasets (ETH [142] and

UCY [143]) between our work and state-of-the-art methods. We also conduct ablation

to demonstrate the effectiveness of each algorithm component. To further evaluate the

generalization capability of our method on predicting human future trajectories, we conduct

experiments on two new datasets: Town Centre [4] and Grand Central Station [144].

3.5.1 Datasets

Performance comparisons and ablation studies are performed on the ETH [142] and UCY

[143] datasets, which contain real world human trajectories and various natural human-

human interaction scenarios. In total, 5 sub-datasets, ETH, HOTEL, UNIV, ZARA1 and

ZARA2, are included in these two datasets. Each set contains bird’s-eye view images and

2D locations of each human. In total there are 1536 humans in these 5 datasets. They

contain challenging situations, including human collision avoidance, human crossing each

other, and dynamic group behaviors. Each scene occurs in a unconstrained outdoor envi-

ronment [43].

Generalization studies are performed on the Town Centre [4] and Grand Central Station

[144] datasets. The Town Center dataset contains short videos with frequent human-human

and human-scene interactions. It is originally used for human tracking tasks with bounding

boxes for the head and body for each human. In the experiment, we use the center of the

human body bounding box as the location, as in existing methods [41, 42]. The Grand

Center Station dataset contains a long-duration video (more than 32 minutes) and consists

of about 12,600 pedestrians with frequent human interactions. It is originally used for
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human behavior analysis.

3.5.2 Implementation Details

Our GAN model is constructed using the LSTM for the encoder and decoder. The generator

and discriminator are trained iteratively with the Adam optimizer. We choose the batch size

of 64 and the initial learning rate of 0.001. The whole model is trained for 200 epochs. The

trajectories are embedded using a single layer MLP with dimension of 16. The encoder

and decoder for the generator use an LSTM with the hidden state’s dimension of 32. In

the LSTM encoder for the discriminator, the hidden state’s dimension is 48. In the pooling

module, we follow the procedure and setting in [40]. The maximum number of human

surrounding the target human is set to 32. This value is chosen since in all datasets, none

of them has more than 32 human in any frame. For the feature extraction part, following

the prior work [43], we use the VGG feature with a size of 512 for the background scene,

which is then embedded using a single MLP to a dimension of 16. For the depth map

estimation, we use the pre-trained model Monodepth2 from [3] and the depth feature is

also embedded using a single layer MLP with a dimension of 16. The weight for our loss

function is λ = 0.5. We perform the reciprocal attack for 20 iterations, the perturbation ε

is set as 0.05.

3.5.3 Evaluation Metrics and Methods

Following the standard evaluation procedure [31, 39], we use the following two error met-

rics for performance evaluations. (1) Average Displacement Error (ADE) is the average L2

distance between the ground truth trajectory and our prediction over all predicted time steps
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from To + 1 to Tp. (2) Final Displacement Error (FDE) is the Euclidean distance between

the predicted final destination and the true final destination at end of the prediction period

Tp. They are defined as:

ADE =

∑
n∈Ψ

Tp∑
t=To+1

√
(x̂tn − xtn)2 + (ŷtn − ytn)2

|Ψ| · Tp
, (3.21)

FDE =

∑
n∈Ψ

√
(x̂

Tp
n − xTpn )2 + (ŷ

Tp
n − yTpn )2

|Ψ|
, (3.22)

where (x̂tn, ŷ
t
n) and (xtn, y

t
n) are the predicted and ground truth coordinates for human n at

time t, Ψ is the set of human and |Ψ| is the total number of human in the test set.

Following existing methods [39, 40, 43], we use the leave-one-out evaluation protocol

on the ETH and UCY datasets. Specifically, four datasets are used for training and the

remaining one is used for testing. Given the human trajectory for the past 8 time steps

(3.2 seconds), our model predicts the future trajectory for next 12 time steps (4.8 seconds).

In our generalization studies, following the previous work [42], we split the data of Town

Centre and Grand Central Station into one half for training and the other half for testing.

All location coordinates are normalized to [0, 1] for training and testing.

3.5.4 Comparison with Existing Methods

We compare our method against the following state-of-the-art methods: (1) Linear [40]:

This method applies a linear regression to estimate linear parameters by minimizing the

least square error [40]. (2) LSTM [39]: This is the baseline model for the LSTM-based

method, which does not consider human-human interactions or background scene informa-
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tion. (3) S-LSTM [39]: This method models each human by an LSTM and proposes a social

pooling mechanism. Both S-LSTM and LSTM generate one trajectory for each observation.

(4) S-GAN [40]: This is one of the first GAN-based methods. During the pooling stage, all

human in the scene are considered. S-GAN and S-GAN-P are different only in whether the

pooling mechanism is applied or not. The method chooses the best trajectory from 20 net-

work predictions as the final test result. (5) SoPhie [43]: This work implements a so-called

physical constrain described by background scene features. Also the attention mechanism

is used in this GAN-based method. (6) Scene-LSTM [42]: This method imposes a two-level

grid structure on the scene to incorporate the scene information with human movements.

(7) Next [106]: This method introduces a LSTM-based predictor with pooling of multiple

features. In the test part, besides using a single model, it follows [40] to train 20 differ-

ent models with random initialization. In our comparison, we follow [106] to report the

minimum ADE and FDE over 20 outputs.

3.5.5 Quantitative Results

Table 3.1 shows the comparison results of our method against existing methods on the

above two performance metrics ADE and FDE. As illustrated in Table 3.1, our method

outperforms all other methods except on the ETH dataset against Scene-LSTM and on the

Hotel dataset against Next. We can see that the Linear method has the lowest accuracy,

it can only predict the straight trajectory and have very poor performance in videos with

complicated human-human and human-environment interactions. LSTM performs better

than Linear since it can handle more complicated trajectories. S-LSTM also outperforms

the Linear model since it uses the social pooling mechanism, but it performs worse than

LSTM. According to [40], the S-LSTM is trained on a synthetic dataset and fine-tuned on
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the real dataset to improve the accuracy. Scene-LSTM achieves better results than S-LSTM

since it incorporates the scene information as well as human movements. Both SoPhie and

Next outperform the S-GAN due to the use of background visual features and the attention

module. Overall, our method achieves the best average error metrics in both ADE and FDE

among all comparison methods.

Table 3.1: Comparisons of different methods on ETH (Column 3 and 4) and UCY (Column
5-7) datasets.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE

Linear [40] 1.33 0.39 0.82 0.62 0.77 0.79
LSTM [39] 1.09 0.86 0.61 0.41 0.52 0.70
S-LSTM [39] 1.09 0.79 0.67 0.47 0.56 0.72
S-GAN [40] 0.81 0.72 0.60 0.34 0.42 0.58
S-GAN-P [40] 0.87 0.67 0.76 0.35 0.42 0.61
SoPhie [43] 0.70 0.76 0.54 0.30 0.38 0.54
Scene-LSTM [42] 0.36 0.95 0.63 0.45 0.40 0.56
Next [106] 0.73 0.30 0.60 0.38 0.31 0.46
Ours 0.69 0.43 0.53 0.28 0.28 0.44

FDE

Linear [40] 2.94 0.72 1.59 1.21 1.48 1.59
LSTM [39] 2.14 1.91 1.31 0.88 1.11 1.52
S-LSTM [39] 2.35 1.76 1.40 1.00 1.17 1.54
S-GAN [40] 1.52 1.61 1.26 0.69 0.84 1.18
S-GAN-P [40] 1.62 1.37 1.52 0.68 0.84 1.21
SoPhie [43] 1.43 1.67 1.24 0.63 0.78 1.15
Scene-LSTM [42] 0.67 1.77 1.41 1.00 0.90 1.15
Next [106] 1.65 0.59 1.27 0.81 0.68 1.00
Ours 1.24 0.87 1.17 0.61 0.59 0.90

To evaluate the performance of our method in predicting feasible paths in crowded

scenes, we follow the procedure in previous papers [43] to report a new evaluation metric

which is the percentage of near-collisions among humans. A collision is defined when the

Euclidean distance between two human is smaller than 0.1m. We compute the average per-

centage of human near-collision in each frame of ETH and UCY datasets. The comparison

results against the Linear, S-GAN and SoPhie are shown in Table 3.2. We can see that
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Table 3.2: Average percentage of colliding human for each scene in ETH and UCY datasets.
The first column represents the ground truth.

GT Linear [40] S-GAN [40] SoPhie [43] Ours
ETH 0.000 3.137 2.509 1.757 1.512
HOTEL 0.092 1.568 1.752 1.936 1.547
UNIV 0.124 1.242 0.559 0.621 0.563
ZARA1 0.000 3.776 1.749 1.027 1.094
ZARA2 0.732 3.631 2.020 1.464 1.252
Avg 0.189 2.670 1.717 1.361 1.194

our method outperforms these three methods on the ETH, HOTEL, and ZARA2 datasets,

producing less human collision in the future time. On the other two datasets, UNIV and

ZARA1, S-GAN and SoPhie perform slightly better than ours. However, they suffer from

significant performance degradation on other datasets.

3.5.6 Ablation Studies

To systematically evaluate our method and study the contribution of each algorithm com-

ponent, we perform a number of ablation experiments in Table 3.3. Our algorithm has

three major new components, the reciprocal learning, the incorporation of 3D depth map

features, and the reciprocal attacks for matched prediction. In the first row of Table 3.3, we

list the ADE and FDE results for our method (full algorithm). The second row shows the re-

sults for our method without reciprocal training. The third row shows results without depth

map features. The last row shows results without reciprocal attacks for prediction. We can

clearly see that each algorithm component is contributing to the overall performance.

With the reciprocal consistence constraints, during training, our model forces the back-

ward predicted trajectory to be consistent with the observed past trajectory, thus the pre-
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Table 3.3: Ablation experiments of our full algorithm without different components. Error
metrics reported are ADE and FDE in meter scale.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE

Our Method (Full Algorithm) 0.69 0.43 0.53 0.28 0.28 0.44
- Without Reciprocal Learning 0.73 0.49 0.60 0.38 0.36 0.51
- Without Depth Features 0.71 0.43 0.56 0.31 0.31 0.46
- Without Reciprocal Attacks 0.70 0.45 0.55 0.32 0.30 0.46

FDE

Our Method (Full Algorithm) 1.24 0.87 1.17 0.61 0.59 0.90
- Without Reciprocal Learning 1.31 0.97 1.22 0.73 0.70 0.99
- Without Depth Features 1.30 0.88 1.19 0.63 0.62 0.92
- Without Reciprocal Attacks 1.26 0.90 1.18 0.65 0.61 0.92

dicted future trajectory which is the input of the backward network will be forced to be

closer to the ground truth. As shown in the 2nd and 6th rows of Table 3.3, the ADE in-

creases to 0.51 from 0.44 and FDE increases to 0.99 from 0.90 on average when reciprocal

consistence is excluded. By adding the depth features and reciprocal attacks, the prediction

can be slightly refined to further improve the performance. Results in the 3rd and 7th rows

shown in Table 3.3 shows the benefit of introducing the depth features since it can help the

model to better understand human behavior and the background scene context. The recip-

rocal attack mechanism modifies the predicted trajectory in an iterative manner to match

the original trajectory with the backward prediction network. The minor improvement of

this proposed mechanism is clearly shown in the 4th and 8th rows of Table 3.3. With all

these ablation experimental results, we can conclude that all three algorithm components

are critical in our proposed method.

To evaluate the influence of the parameter λ in Eqn. 3.4 and 3.5, we perform ablation

experiments on ZARA1 and UNIV datasets with λ value from 0.1 to 0.9. Figure. 3.8

presents how ADE and FDE changes with respect to different λ values. As we can see in
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Figure. 3.8, both the forward trajectory loss and the past trajectory loss have contributions

to overall performance. However, the forward trajectory loss plays a relatively more impor-

tant role than the backward trajectory loss does. For example, when λ = 0.1, it indicates the

weight for the forward trajectory loss is 0.1, while the weight for the backward trajectory

loss is 0.9, the ADE for UNIV dataset with λ = 0.1 is greater than it with λ = 0.9.

We also perform ablation experiments to evaluate the influence of the parameter ε in

Eqn. 3.19 which is the magnitude of reciprocal attack. As we discussed above, reciprocal

attack minor refines the predicted forward trajectory to match the ground truth better. As

we can see in Figure. 3.9, ε within a certain range has slight influence on the overall

performance.

3.5.7 Qualitative Results

Figure. 3.10 shows successful and failure examples of our predicted trajectories. Following

prior work S-GAN [40], we show the best predicted trajectory among 20 model outputs in

the figure. We can see that our proposed method is able to correctly predict the future

path. According to the background scene, we can see that our method can ensure that each

human path follows the physical constrains of the scene, such as walking around obstacles,

e.g. trees, and staying on sidewalks. Our method also shows the decent prediction results

with human-human interactions. When persons walk in a crowded road, they can avoid

each other when they merge from various directions and then walk towards a common

direction.

The last row in Figure. 3.10 shows some failure cases which have relatively large error

rates. For example, we see human slowing down or even stops for a while, or human taking

a straight path rather than making a detour around the obstacles. Nevertheless, in most
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Figure 3.8: Illustration of ADE and FDE changes with respect to different λ values on
ZARA1 and UNIV dataset
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Figure 3.9: Illustration of ADE and FDE changes with respect to different ε values on the
ZARA1 dataset
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Figure 3.10: Illustration of our method predicting future 12 time steps trajectories, given
previous 8 time steps. The results are drawn under HOTEL, ETH, UNIV and ZARA1 and
ZARA2 datasets from 1st column to 5th column, respectively.

cases, our method still can predict the plausible path, even though the predicted path is not

quite same as the ground truth. For example, for the first, third and fifth cases in the last

row, in our prediction paths, the target human are trying to walk around another human or

the tree in the road, which are quite reasonable in practice.

3.5.8 Generalization: Evaluations on Town Centre and Grand Cen-
tral Station Datasets

To further evaluate the generalizability of our method, we perform experiments on new

datasets: Town Centre [4] and Grand Central Station [144]. Following the previous work

[42], for each of these two datasets, we combine the training data from ETH and UCY

datasets and 50% data from this dataset for training, the remaining data is used for testing.

The objective is to predict trajectories in the next 12 and 16 time steps based on the tra-
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jectories of 8 previous time steps. The comparison results of our method with S-GAN [40]

and Scene-LSTM [42] are shown in Table 3.4. We can clearly see that our method outper-

forms the existing methods in both datasets. Some qualitative examples on Town Centre

and Grand Central Station datasets are presented in Figure. 3.11.

Table 3.4: The quantitative results (ADE and FDE) on Town Centre and Grand Central
Station datasets with different prediction lengths of future trajectories.

Metrics Datasets Prediction Length S-GAN [40] S-GAN-P [40] Scene-LSTM [42] Ours

ADE
Town Center

12 0.22 0.21 0.09 0.07
16 0.37 0.38 0.14 0.09

Grand Central Station
12 0.21 0.40 0.11 0.06
16 0.32 0.79 0.14 0.07

FDE
Town Center

12 0.46 0.42 0.18 0.13
16 0.80 0.81 0.27 0.18

Grand Central Station
12 0.45 0.74 0.17 0.11
16 0.62 1.50 0.25 0.15

3.5.9 Backward Prediction Evaluation

We also conduct experiments of backward trajectory prediction (predict past trajectories by

giving future trajectories) on the ETH and UCY datasets. We compare the ADE and FDE

results with the S-GAN and S-GAN-P methods. The objective is to predict trajectories of

the previous 8 time steps based on the trajectories of 12 future time steps. The prediction

error results are shown in Table 3.5. We can see that, our reciprocal learning method

outperforms S-GAN and S-GAN-P on both ETH and UCY datasets. The results show that

our reciprocal learning is able to accurately perform both forward and backward prediction

of human trajectories. Several visual examples of our backward prediction on the ETH and

UCY datasets are shown in Figure. 3.12.
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Figure 3.11: Qualitative examples of our method predicting future 12 time steps trajec-
tories, given previous 8 time steps ones on Town Centre (1st column) and Grand Central
Station (2nd column) dataset. Note that, we crop and resize the original image for better
visualization.

Table 3.5: The quantitative results on ETH (Column 3 and 4) and UCY (Column 5-7)
datasets on the task of backward prediction (predicting the trajectories of previous 8 time
steps, given the trajectories of 12 future time steps).

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE
S-GAN [40] 0.57 0.27 0.39 0.22 0.24 0.34
S-GAN-P [40] 0.56 0.31 0.37 0.24 0.27 0.35
Ours 0.50 0.22 0.31 0.20 0.18 0.28

FDE
S-GAN [40] 1.05 0.68 0.74 0.42 0.43 0.67
S-GAN-P [40] 1.07 0.72 0.71 0.43 0.49 0.68
Ours 0.95 0.44 0.65 0.40 0.37 0.56
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Figure 3.12: Illustration of backward prediction (predicting previous 8 time steps trajecto-
ries, given future 12 time steps ones). The results are drawn under HOTEL, ETH, UNIV
and ZARA1 and ZARA2 datasets from 1st column to 5th column respectively. Note that,
we crop and resize the original image for better visualization.

3.6 Conclusion

In this chapter, we have explored the unique characteristics of human trajectories and de-

veloped a new approach, reciprocal network learning, for human trajectory prediction. Two

networks, the forward and backward prediction networks, are tightly coupled together, sat-

isfying the reciprocal constraint, which allows them to be jointly learned for accurate and

robust human trajectory prediction. Based on this constraint, we borrowed the concept

of adversarial attacks of deep neural networks, which iteratively modifies the input of the

network to match the given or forced network output, and developed a new method for

network testing, called reciprocal attack for matched prediction. It has further improved

the prediction accuracy slightly. Extensive experimental results have demonstrated our ap-

proach achieves the state-of-art performance on public benchmark datasets.
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Chapter 4

Hierarchical Interactions Modeling for
Human Future Trajectory Prediction

4.1 Motivation

As shown in Figure 4.1, we observe that human’s future trajectory is not only affected by

other pedestrians but also impacted by the surrounding objects in the scene. Human-human

interactions, such as walking in groups and avoiding collisions can affect the route planning

of the next time step. Also, physical constraints of the surrounding environment, such as

buildings, sidewalks, trees, etc, can enable or restrict certain types of human movements.

In this chapter, we propose a novel hierarchical framework based on a recurrent sequence-

to-sequence analysis architecture to model both human-human and human-scene interac-

tions. As we can see in Figure 4.2, our method exploits three sources of information:

the human trajectory information which captures each pedestrian’s past trajectories, the

global scene information which extracts the scene layout from the whole scene image, and
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Figure 4.1: Human’s future trajectory is affected not only by other pedestrians but also
by the surrounding environment. Our proposed method predicts socially and physically
plausible trajectories by hierarchically modeling the influence of all pedestrians in the scene
as well as the global scene layout and local context.

the local image patch information which captures the scene context within a certain sized

neighborhood. Our model captures the human movement patterns and learns the influence

of all pedestrians involved in the scene [48]. Then, global scene layout features extracted

from the whole scene image at each time step are encoded by LSTMs. The correspond-

ing influence of these features is learned by a graph attention network (GAT). Finally, we

extract local scene context features from image patches centered around each pedestrian

at each time step. The context features are encoded by LSTMs and the hidden states are

fed into the GAT to learn the spatial interactions of local patches. We also add an extra set

of LSTMs to capture the temporal correlations of these interactions along the time steps.

This novel hierarchical interactions modeling can automatically learn the influence of each

pedestrian in a whole scene and the influence of the scene at multiple scales.

The rest of this chapter is organized as follows. Section 4.2 reviews and discusses

related work on human trajectory prediction and GAT. Section 4.3 presents our proposed

hierarchical network to model human-human and human-scene interactions. Experimental

results and ablation studies are presented in Section 4.4. Section 4.5 concludes the paper.
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Figure 4.2: The input information observed for our method.

4.2 Related Work

Our work mainly focuses on the task of human future trajectory prediction. Researchers

have designed handcrafted rules and energy parameters to capture human motions [5, 18,

31, 142, 145]. However, those methods usually fail to generalize properly [44]. Most

recent works rely on utilizing Recurrent Neural Networks(RNNs) [96] to learn these pa-

rameters directly from the data or build a sequence to sequence model to predict future

human trajectories by observing past human trajectories [48]. These type of methods have

two main categories, modeling human and human interactions [39, 40, 48, 103] and mod-

eling human and scene interactions [43, 106–109]. In this section, we review existing

works on both human-human models and human-scene models. We also review existing

work Graph Convolutional Networks (GCN) [146], which is a central component in our

proposed method.
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4.2.1 Human-Human Models for Trajectory Prediction

The methods of human-human models focus on learning the influence among the surround-

ing pedestrians. Social Force Model [37] proposed by Helbing et al. designed hand crafted

functions to characterize pedestrians interactions in crowded scenarios to build coupled

Langevin equations. Many recent works solved the problem by using LSTM networks [5].

The baseline work was introduced as Social-LSTM [39], which proposed a social pooling

mechanism to share hidden representations among pedestrians. The key hypothesis of this

work was that each pedestrian’s moving direction and velocity are impacted by the sur-

rounding pedestrians within a certain area. [102] observed that human commonly tend to

show coherent movement patterns, thus it clustered trajectories which have similar move-

ments into a group and propose an LSTM-based model to learn group dynamics. [40]

proposed an LSTM-based Generative Adversarial Network (GAN) model to learn human-

human interactions by considering all pedestrians existing in the background scene and

discriminate between multiple feasible trajectories to handle the multi-modal problem of

human trajectory prediction. However, the limitation of this method is that it does not

differentiate between structured and unstructured environment. Social-Attention [103] ar-

gued that modeling interactions between humans as function of proximity is not necessarily

true and proposed a prediction model which captures the relative importance of each sur-

rounding pedestrian with respect to the target person in the entire scene. We observe that

the above methods have not considered the impact of the nearby scene structures, such as

buildings or some static obstacles, which might impact the future human movements.
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4.2.2 Human-Scene Models for Trajectory Prediction

The other category of methods also take the pedestrians’ interactions with their background

scene structures into consideration by incorporating the extracted visual features. SS-

LSTM [41] proposed to use CNN to extract the scene layout features and combined it

with social interactions to learn human movements. Sadeghian et al. [43] explored both

past trajectories of pedestrians and semantic context to learn weighted interactions between

human-human and human-scene, then combine them together as the input to a Generative

Adversarial Network (GAN). Liang et al. [104] utilized rich visual features, such each

pedestrian’s bounding box, keypoint information and scene semantic features for better

predicting multiple plausible trajectories. Scene-LSTM [42, 108] designed a two-level grid

structure to segment the static background scene into several cells and then trained two

coupled LSTMs to encode both pedestrian’s past movements and the scene grids. [147]

proposed to encompass three pooling mechanism, such as social, navigation and seman-

tic pooling, to capture the human-human interactions, past observations from previously

crossed areas, and the scene semantics, respectively. These information are then fed into

an LSTM-based model to forecast the future paths. [46] developed the reciprocal twin net-

works, which include a forward prediction network to predict future trajectory from past

observations and a backward prediction network which performs the trajectory prediction

backward in time, to form a reciprocal constraint by utilizing the property of cycle con-

sistency. Also it combines the extracted CNN visual features and 3D depth features into

encoding to better understand the environment structure.
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4.2.3 Graph Neural Network

Graph neural networks (GNNs) were first introduced by [146], which are a powerful type

of neural networks designed to work directly on graphs and leverage their structural infor-

mation. Recently, GNNs have shown significant ability on handling the problem, such as

action recognition [148, 149]. Graph Attention Networks that proposed by Velickovi et al.

[47] were build based on the recent developments in GNNs, it can be applied to the task

of a self-attention based architecture over data with any type of structured that can be rep-

resented as a graph [44]. It could assign different importance to different nodes in a graph

implicitly.

A number of works applied GATs to the task of human trajectory prediction recently

and have achieved state-of-the-art results. Social-BiGAT [44] proposed to formulate the

human-human interactions as a graph and applied GATs as an attention mechanism to

the target pedestrian to learn the influence from the surrounded pedestrians. STGAT [48]

shared the same problem formulation with Social-BiGAT to model the spatial interactions

between pedestrians and also designed an extra set of LSTMs to model the temporal corre-

lations of the interactions. Social-STGCNN [150] argued that modeling human trajectories

as a graph directly from the beginning is more efficient than aggregation based model like

Social-BiGAT. It proposed a weighted adjacency matrix and used Temporal CNN (TCNs)

[151] to quantitatively measure the influence between pedestrians.

In our work, we also formulate the complex interactions as graph structures. However,

beside modeling human-human interactions using GATs like the above methods, we also

try to model the human-scene interactions by building graphs for scene layout features.

Two extra graphs are built, where the first one is referred to as the global scene graph

and the second one is the local scene patch graph. For the global scene graph, each node
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indicates the scene layout features at each time step, and the edges are the interactions of

human verses the whole background scene. We also want to learn the influence of different

scene configurations. So we build another graph, local scene patch graph, where nodes

refer to the layout feature from a certain size image patch around each pedestrian at each

time step, and edges are these interactions.

4.3 The Proposed Method

In this section, we present our hierarchical interactions modeling for human future trajec-

tory prediction.

4.3.1 Problem Formulation

Our problem in this work is: given the observed trajectories of a group of pedestrians in

a crowded scene and the contextual information of the background environment, can we

predict their future trajectories?

Similar to prior literature [43, 44], we assume that each pedestrian’s movement direc-

tion will be affected by the social impact of other pedestrians and the physical constraints

of the surrounding environment. Thus, in our model, the past observed trajectories of each

of the N currently visible pedestrians, X = X1, · · · , Xn, · · · , XN , are first taken as input

and referred to as the human trajectory information. The input trajectory for pedestrian

n is denoted as Xn = (xtn, y
t
n), where t indicates the time step, t = 1, 2, · · · , Tobs. For

a particular scene, the observed scene information as inputs to our model has two parts.

The first one is the current scene images I t, which is used to capture the global layout of

the current environment and referred to as global scene information. While the other one
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Figure 4.3: Pipeline of our proposed system. We take input from three scale informa-
tion: observed human trajectories, observed global scene images and observed local scene
patches. Our whole model is built based on seq2seq model, where Encoder, Intermediate
State and Decoder are included. The Encoder is designed to extract spatio-temporal infor-
mation from multiple sources. The spatial and temporal information concatenated with a
noise are summarized in the Intermediate State and then form the input for the Decoder to
yield the predicted trajectory for each observed human.

is a local image patch centered at the current position of the target pedestrian, P t
n, which

is used to capture the background context of the target pedestrian n. Given the above ob-

served information, our goal is to predict the future trajectories of each visible pedestrian n

(∀n ∈ {1, · · · , N}), Ŷn = (x̂tn, ŷ
t
n) for time step t = Tobs + 1, · · · , Tpred. The ground truth

of the future trajectories are denoted by Yn.

4.3.2 Method Overview

Our full model starts with three feature encoding modules, where human past trajectories,

observed global scene images, and local image patches are encoded to fixed-sized tensors.

Then, three GAT-based modules are designed to model the human-human interactions,

global human-scene interactions, and local human-scene interactions. Temporal LSTM

modules are designed to capture the temporal correlations of human-human interactions

and local human-scene interactions. Finally, noises are concatenated with the hidden states
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Figure 4.4: The framework of Human Trajectory Encoder. The upper level LSTMs are
human motion extractor to capture the hidden motion states for each pedestrian. The middle
level GATs are used to model the human-human interactions. The lower level LSTMs
are applied to learn the temporal correlation of the interactions. Then the hidden motion
states and the spatio-temporal vectors are concatenated as the output of Human Trajectory
Encoder.

for each pedestrian and then fed into the LSTM decoder to predict the future trajectories

for every pedestrians involved in the environment. An overview of our whole system is

illustrated in Figure. 4.3. The details of each component will be described in the following

subsections.

4.3.3 Human Trajectory Encoder

The human trajectory encoder is composed of three major components: human motion

extractor, GAT-based human-human interaction modeling, and LSTM-based temporal cor-

relation learning. The concept of human trajectory encoder is illustrated in Figure 4.4.
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Human Motion Extractor

The human motion extractor is designed to capture the temporal pattern and dependency of

each observed trajectory. Previous researches [39, 40] have demonstrated that the LSTM

has an outstanding ability to capture the motion state of a pedestrian from the observed

time-series trajectories. In our method, we also borrow the idea and build an LSTM for

each pedestrian visible in a scene to get their motion states. The observed trajectory of

each pedestrian n is defined as Xn = (xtn, y
t
n) from time steps t = 1, 2, · · · , Tobs. First, the

relative position of each pedestrian to the previous time step is calculated as follows:

∆xtn = xtn − xt−1
n ,

∆ytn = ytn − yt−1
n .

(4.1)

Then, we use a single layer MLP [139] to embed the relative coordinates into a fixed size

vector etn:

etn = ψ(∆xtn,∆y
t
n;Wemb), (4.2)

where ψ(·) is an embedding function with ReLU non-linearity [140] and Wemb is the em-

bedding weight. etn is then fed to the LSTM cell to capture the hidden motion state M t
n for

pedestrian n at time step t:

M t
n = LSTMenh(M t−1

n , etn;Wenh), (4.3)

where LSTMenh denotes the LSTM encoder for human motion and Wenh is the encoding

weight for LSTMenh which is shared among all pedestrians involved in the scene and can

be optimized during training process.
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GAT-based Human-Human Interaction Modeling

Humans intuitively know to focus more on the pedestrians who might collide with their

future route. Similarly, we want our model to assign different and adaptive importance

to the pedestrians in the crowded scenario. A number of prior works [39, 40, 43] assume

that the order of the Euclidean distance between different pedestrians plays a key role on

modeling the so-called social interactions. However, this is not necessarily always true.

Specifically, the faraway pedestrian may also have great impacts on the target pedestrian’s

movements. To tackle this problem, some recent researches [48, 103] proposed the idea of

attention up. They represented the social impacts by an attention vector, which is calculated

as a weighted sum of pedestrians’ current states.

In order to model the human-human interactions and share information across all pedes-

trians in a crowded scenario, we leverage the recent work in GATs (graph attention net-

works) by considering each pedestrian in the scene as one node in the graph. As shown in

Figure 4.5, we build a complete graph at each time step, where the nodes are the pedestrians

involved in the current scene and the edges represent the human-human interactions. This

mechanism does not introduce any restriction on pedestrian orders and allows pedestrians

to interact with each other.

The GAT processes the graph-structured data by aggregating information from all neigh-

boring graph nodes following a self-attention strategy. Usually, several stacked graph at-

tention layers are applied in the networks. The computing mechanism of a single attention

layer is illustrated in Figure 4.6. In our work, the input of the graph attention layer is the

hidden motion states M t
n ∈ {M t

1,M
t
2, · · · ,M t

N} for observed pedestrians 1, 2, · · · , N at

time step t, where M t
n ∈ RF , F is the feature dimension of M t

n. The output is the aggre-

gated feature M ′t
n, where M ′t

n ∈ RF ′ . Note that the input and output feature dimensions,
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Figure 4.5: An illustration of the complete graph we build at each time step. Each node
denotes each human (h1, h2, · · · , hn) and the edges represent the human-human interaction.

F and F ′, can be different. The interaction coefficients αhtnm of pedestrian m to pedestrian

n at time step t is given by:

αh
t
nm =

exp(Φ(aTh [WatthM
t
n ⊕WatthM

t
m]))∑

k∈Ψn

exp(Φ(aTh [WatthM
t
n ⊕WatthM

t
k]))

, (4.4)

where ⊕ denotes the concatenation operation. ah ∈ R2F ′ is the weight vector of a sin-

gle layer feed-forward neural network which is normalized by a softmax function with

LeakyReLU denoted by Φ(·). aTh indicates the transposition of ah. Ψn represents the set

of the neighboring nodes of node n on the graph. Watth ∈ RF ′×F is the weight matrix

of a shared linear transformation. The aggregated output of the graph attention layer for

pedestrian n at time step t can be computed by:

M ′t
n = Θ(

∑
m∈Ψn

αh
t
nmWatthM

t
m), (4.5)
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Figure 4.6: An illustration of the computing mechanism of a single graph attention layer.
It aggregates information from each neighboring node and following a self-attention strat-
egy. M t

1,M
t
2, · · · ,M t

N indicates the hidden motion states for pedestrians 1, 2, · · · , N and
α11, α12, · · · , α1N denotes the importance of the corresponding pedestrian with respect to
pedestrian 1.

where Θ(·) represents a nonlinear function.

Temporal Correlation Learning for Human-Human Interactions

By far, we model human-human interactions by sharing hidden states among pedestrians

at the same time step. However, these operations only capture the spatial information

of human-human interactions. In our work, we design an extra set of LSTMs to learn

the temporal correlations between those interactions. The input of the temporal LSTM

(LSTMth) is the output of the graph attention layers, M ′t
n got from Eq. (4.5), and the

operation of LSTMth is given by

Th
t
n = LSTMth(Th

t−1
n ,M ′t

n;Wth), (4.6)

where Thtn is the hidden temporal correlation state of human-human interactions and Wth

is the weight for LSTMth and shared among all sequences.

In the last step of Human Trajectory Encoder, we concatenate the hidden motion states
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Figure 4.7: The framework of Global Scene Layout Encoder. The inputs are the observed
scene images at each time step. A CNN is used to extract the scene layout features, which
are then fed to LSTMs to compute the hidden state vectors. GAT is applied to model the
global human-scene interactions.

M t
n obtained from Eq. (4.3) and the temporal correlations of human-human interactions

Th
t
n got from Eq. (4.6) to form the spatiotemporal information learned from the observed

human trajectories.

Hen = M t
n ⊕ Thtn. (4.7)

4.3.4 Global Scene Layout Encoder

As discussed in [41, 43], the chosen route of a pedestrian is also highly affected by the scene

layouts, such as stationary obstacles, moving cars, entries, exits, etc. However, compared

to model the influence of other pedestrians, a relatively small number of recent work paid

attention to modeling the influence of the scene structures on human trajectory prediction.

In our work, we propose to utilize Convolutional Neural Networks (CNNs) to extract global

information of the scene and applied GAT to model the global human-scene interactions.

An illustrative framework of our Global Scene Layout Encoder is presented in Figure 4.7.
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Global Scene Layout Extractor

First, we use a CNN to extract the global scene layout feature lt from scene image I t at

each time step t, which is given by

lt = CNN(I t), (4.8)

where CNN here is the VGGNet-19 network [45] that is pre-trained on the ImageNet [45].

The extracted scene layout feature lt is then fed to an LSTM encoder to compute the hidden

state vector Lt for each observed pedestrian at time step t

Lt = LSTMens(L
t−1, lt;Wens), (4.9)

where Wens is the associated encoding weight.

GAT-based Global Human-Scene Interaction Modeling

Since the camera is stationary in our task, the background scene is almost the same in most

cases. However, the pedestrians in the scene are moving. The configuration of the observed

scene images also changes with time due to the movement of these pedestrians. Therefore,

the scene features between the observed scene images at different time steps are mainly

caused by the pedestrians’ movements.

In order to model these human-scene interactions, we propose to use the GAT to assign

different and adaptive influence to the hidden states of the scene features at different time

steps. First, we build a complete graph by considering each hidden state of the scene

features at each time step as nodes and the interactions as edges, similar with Figure. 4.6.
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The inputs to graph attention layers are the hidden states of the scene features at each time

step, L1, L2, · · · , Ltobs . The interaction coefficients αgtt′ of the scene hidden states Lt′ to

Lt is defined as follows:

αgtt′ =
exp(Φ(aTg [WattgL

t ⊕WattgL
t′ ]))∑

k∈Ψtobs

exp(Φ(aTg [WattgL
t ⊕WattgL

k]))
. (4.10)

Similar to Eq. (4.4), ag is the weight vector of a single layer feed-forward neural network

which is normalized by a softmax function with Leaky ReLU denoted by Φ(·). aTg rep-

resents the transposition of ag. Ψtobs represents the set of the scene feature hidden states

from time step 1 to tobs. Wattg is the weight matrix of a shared linear transformation. The

aggregated output of the graph attention layer for scene feature hidden state at time step t

can be computed by

L′
t

= Θ(
∑

t′∈Ψtobs

αgtt′WattgL
t), (4.11)

where Θ(·) denotes a nonlinear function. Finally, The global scene layout hidden state and

global human-scene interaction are combined together to form the output of global scene

layout encoder for each pedestrian,

Gen = Lt ⊕ L′t, (4.12)

where ⊕ indicates the concatenation operation.
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Figure 4.8: The framework of Local Patch Context Encoder. The inputs are the observed
certain-sized local image patches that centered on the position of each pedestrian at each
time step. A CNN is used to extract the local context features, which are then fed to LSTMs
to capture the hidden state of local context. GAT is applied to model the local human-scene
interactions. An extra set of LSTMs are designed to learn the temporal correlations of
these interactions. The tensors from the upper level LSTMs and the lower level LSTMs are
concatenated to form the output of the Local Patch Context Encoder.

4.3.5 Local Patch Context Encoder

The above mechanisms do not characterize the relationship between the past context at a

specific area of a scene and the current movements of a target pedestrian. In this work, we

model these relationships by learning the influence of the scene context in a local image

patch centered around the pedestrian at each time step. The concept is illustrated in Figure

4.8.

Local Patch Context Extractor

The local patch for pedestrian n at time step t is denoted as P t
n, which is segmented from

the scene image with a certain size, e.g. 128 is used in our work. First, we use a pre-

trained CNN to extract the context features ctn of the local patch P t
n. Here the CNN is the
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VGGNet-19 network [45] which is pre-trained on the ImageNet [45].

ctn = CNN(P t
n) (4.13)

These features are then fed into the LSTMs to capture the hidden state of the local context.

Ct
n = LSTMenp(C

t−1
n , ctn;Wenp), (4.14)

where Wenp is the corresponding weight for LSTMenp .

GAT-based Local Human-Scene Interactions

In the above section, we try to model the influence of surrounding pedestrians and the scene

layout of the environment the target pedestrian involved with. However, using global scene

layout information to model human-scene interaction may ignore some details of scene

context around pedestrians. We observe that a target pedestrian’s future path planning is not

only impacted by his surrounding scene context but also impacted by the surrounding scene

context of the pedestrians around him. For example, the entrance of a building is included

in both image patches for two pedestrians, and they are walking towards the building from

different directions. If this information is observed, the target pedestrian may make some

adjustments to his future path selection. We introduce this type of human-scene interactions

as local human-scene interactions to further understand human movements.

Similar to modeling the interactions in the above sections, we try to model local human-

scene interactions by leveraging GAT. A complete graph is constructed with nodes as the

hidden state of local context for each pedestrian at same time step and edges as the inter-

actions between the nodes. The adaptive influence αltnm from the local patch P t
m to P t

n at
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time step t is computed by

αl
t
nm =

exp(Φ(aTl [WattlC
t
n ⊕WattlC

t
m]))∑

k∈Ψn

exp(Φ(aTl [WattlC
t
n ⊕WattlC

t
k]))

, (4.15)

where Wattl is the weight matrix of a shared linear transformation which is applied to

each node. al is the weight vector of a single layer feed-forward neural network which

is normalized by a softmax function with Leaky ReLU denoted by Φ(·). aTl indicates the

transposition of al. ⊕ is used here to denote the concatenation operation. Ψn represents

the set of the neighboring nodes of node n on the graph. With the normalized attention

coefficients αltnm, the aggregated output of the graph attention layer for pedestrian n at

time step t is defined as follows:

C ′
t
n = Θ(

∑
m∈Ψn

αl
t
nmWattlC

t
m), (4.16)

where Θ(·) represents a nonlinear function. Note that global scene layout feature extrac-

tion and global human-scene interaction modeling are in sync with the human trajectory

information captured by Human Trajectory Encoder.

Temporal Correlation Learning for Local Human-Scene Interactions

In order to gather the spatial and temporal information, we also design an extra set of

temporal LSTMs to learn temporal correlation between the local human-scene interactions

modeled at the same time step.

Tl
t
n = LSTMtl(Tl

t−1
n , C ′

t
n;Wtl), (4.17)
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where Tltn is the hidden temporal correlation state of local human-scene interactions C ′tn,

and Wtl is the associated weight. As we discussed above, both the local scene context of

the target pedestrian and the local human-scene interactions are useful to help us to better

learn human behavior. By taking advantage of the spatiotemporal information, we combine

these two parts together, which is give by:

Len = Ct
n ⊕ Tltn, (4.18)

where ⊕ indicates the concatenation operation.

4.3.6 Future Trajectory Prediction

As illustrated in Figure 4.3, after the Encoder stage, the intermediate state tensor Stn for

each pedestrian is formed by concatenating human motion hidden state Hen (from Eq.

4.7), global scene layout hidden state Gen from Eq. (4.12), and local context hidden state

Len from Eq. (4.18) with a randomly sampled noise Z from N (0, 1).

Stn = Hen ⊕Gen ⊕ Len ⊕ Z. (4.19)

Then, the intermediate state tensor is fed into the LSTM decoder as the initial hidden state

to predict the future relative coordinates Y for each pedestrian, which is attained by

Ŝtn = LSTMde(Ŝ
t−1
n , Stn;Wde),

Y n
t = (x̂tn, ŷ

t
n) = WoŜ

t
n + bo,

(4.20)

93



where Wde is the weight matrix of the LSTM decoder, Wo and bo are the corresponding

weight and bias term of the linear output layer. The relative coordinates can be then easily

converted to the real coordinates according to Eq. (4.1).

Similar to the previous works [40, 48], given limited observed information, our model

tries to learn human motion patterns and generate multiple both physically and socially

feasible trajectories. A number of previous works [39, 41, 108] proposed to generate the

future trajectory by sampling from a Gaussian distribution, where the parameters for the

distribution are trainable by minimizing the negative log-likelihood loss of the ground truth.

However, as discussed in [40], the sampling process is non-differentiable, so a certain

amount of difficulty will be introduced in the back-propagation stage.

Thus, in our work, we follow the similar strategy from prior work [40, 48] to model

the multi-modal properties of human movements by introducing a variety loss to encour-

age diversity of generated trajectories from the network. For each pedestrian, k possible

trajectories are generated by introducing a random noise Z ∼ N (0, 1) before the decoder

stage. Then as the final production, the estimated trajectory that is nearest to the ground

truth is chosen. The variety loss is given by:

Lvariety = min
k
||Yn − Ŷ t

n ||2, (4.21)

where Yn is the ground truth of pedestrian n. k is a hyperparameter and Ŷ t
n is the predicted

trajectory returned by our network. By only taking the best trajectory in L2 sense into

consideration, this loss strengthens our model to generate the outputs which are consistent

with the observed information.
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4.4 Experimental Results

In this section, we compare the performance of our method against a number of state-of-

the-art methods on two public and commonly used datasets: ETH [142] and UCY [143].

In order to evaluate the generalization ability of our method, we also perform experiments

on the other two datasets, Town Centre [4] and Grand Central Station [144].

4.4.1 Datasets

ETH [142] and UCY [143] are two publicly available and commonly used datasets that

consist of 2D real-world human trajectories and bird’s-eye view images to evaluate the

performance of human future trajectory prediction. 5 subsets, such as ETH, HOTEL, UNIV,

ZARA1 and ZARA2, with 4 different background scenes are included. In total, there

are 1536 pedestrians in the crowded scenarios, where contain various human movement

patterns, e.g. pedestrians walking in a same direction, pedestrians crossing each other,

collision avoidance, etc.

The Town Centre dataset [4] is originally collected to evaluate the perform of human

tracking. It consists of a short video with hundreds of pedestrians in a real-world crowded

scene. The annotation file contains bounding boxes of each pedestrian’s body and head. By

following some prior works [41, 42], we define the location of a pedestrian as the center

position of his/her body bounding box. The trajectory data is collected in every 5th frame.

Grand Central Station dataset [144] is originally collected to analyze human behaviors. A

long-duration video (about 33:20 mins) is recorded in a crowded station, which contains

trajectories of about 12,600 pedestrians. Both Town Centre and Grand Central Station

datasets consist of considerable amounts of human-human and human-scene interactions.
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4.4.2 Implementation Details

In our work,our model is constructed using LSTMs and GATs. The hidden state dimension

of the LSTM encoder, temporal LSTM, and LSTM decoder is 32. Following prior work

[43], the scene features with a size of 512 are extracted by the VGGNet-19 network [45]

which is pre-trained on the ImageNet [45]. The local image patch size is 128×128. Two

graph attention layers [152] are applied to compute the interactions. The hidden dimension

and output dimensions of the graph attention layer are 16 and 32, respectively. Our model

is trained with the Adam optimizer with the initial learning rate of 0.001 and batch size of

64. The hyper-parameter k in Eq. (4.21) is set as 20 for evaluation.

4.4.3 Evaluation Metrics and Protocol

We evaluate our performance by two commonly used metrics, such as Average Displace-

ment Error (ADE) and Final Displacement Error (FDE), by following the prior works

[39, 40, 43, 48]. ADE (Eq. 4.22) reports the average Euclidean distance between our pre-

dicted trajectories and the ground truth trajectories from time step Tobs + 1 to Tpred. FDE

in Eq. (4.23) reports the Euclidean distance between the final position of the predicted

trajectory and ground truth trajectory at time step Tpred.

ADE =

∑
n∈Ψ

Tpred∑
t=Tobs+1

√
(x̂tn − xtn)2 + (ŷtn − ytn)2

|Ψ| · Tpred
, (4.22)

FDE =

∑
n∈Ψ

√
(x̂

Tpred
n − xTpredn )2 + (ŷ

Tpred
n − yTpredn )2

|Ψ|
, (4.23)
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where (x̂tn, ŷ
t
n) and (xtn, y

t
n) are the predicted and ground truth trajectory coordinates for

pedestrian n at time t, Ψ represents the set of observed pedestrians and |Ψ| denotes the

total number of observed pedestrians.

For comparison on the ETH and UCY datasets, we follow the standard protocol in

prior work [40]. The leave-one-out evaluation protocol is used on the 5 subsets, such as 4

datasets are used for training and the remaining one is used for testing. Note that, since a

video of UNIV subset is not available, we use a small a smaller test set for UNIV and a

smaller training set across all splits [106]. The other 4 test subsets (ETH, HOTEL, ZARA1,

ZARA2) are totally same as our comparison baselines, so the results are comparable. We

observe the human trajectories and the scene images for the past 8 time steps (3.2 seconds)

in order to predict trajectories in next 12 time steps (4.8 seconds). For the generalization

experiments on Town Centre and Grand Central Station dataset, we follow the previous

work [42] to normalize the location coordinates to [0, 1] and split the whole data into half

for training and testing respectively.

4.4.4 Comparison with Existing Methods

We compare our experimental result on ETH and UCY datasets against the following recent

state-of-the-art methods:

• S-GAN [40]: This is one of the first GAN-based methods. Two variants, such as

S-GAN and S-GAN-P, are different in whether applying the pooling mechanism. The

hyperparameter k in the variety loss is set as 20 for evaluation.

• SoPhie [43]: This method observes human trajectories and scene images, and applies

a soft attention mechanism for both features.
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• Scene-LSTM [42]: This method designs two coupled LSTMs to encode both pedes-

trian’s past trajectories and the scene grids.

• Next [106]: This method extracts multiple visual features, such as pedestrian’s bound-

ing box, pedestrian keypoints and scene semantic features for encoding, and use

a LSTM decoder to predict future trajectories. To encourage the multiple feasible

paths, the authors train 20 different models with random initialization by following

[40].

• Social-BiGAT [44]: This method leverages GAT to model the human-human inter-

actions and applied a soft attention mechanism on the extracted visual features.

• STGAT [48]: This method captures the spatial interactions by GAT and also design

an extra sets of LSTM to extract the temporal information along the observed time

steps.

4.4.5 Quantitative Results

We present the comparison results of our method against a number of recent state-of-the-

art methods on commonly used ETH and UCY datasets. Two metrics, ADE and FDE, are

reported in meter scale in Table 4.1. As illustrated in Table 4.1, our method outperforms

all baselines in most cases, except on the ETH dataset against Scene-LSTM. S-GAN and

S-GAN-P perform the worst as expected, since both baselines do not utilize the scene infor-

mation and directly assign the human influence by the distances with the target pedestrian.

Both Scene-LSTM and Sophie performs better than S-GAN due to the introduction of the

scene information. Sophie outperform Scene-LSTM in general since the combination of

the so-called social and physical attentions applied. Next encodes various visual features
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Table 4.1: Comparison results of all the baselines and our method on ETH (Column 3 and
4) and UCY (Column 5-7) datasets on the task of predicting 12 future time steps, by given
the 8 previous time steps. All models takes as Error metrics reported are ADE / FDE in
meter scale.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE

S-GAN, CVPR’18 [40] 0.81 0.72 0.60 0.34 0.42 0.58
S-GAN-P, CVPR’18 [40] 0.87 0.67 0.76 0.35 0.42 0.61
SoPhie, CVPR’19 [43] 0.70 0.76 0.54 0.30 0.38 0.54
Scene-LSTM, ISCV’19 [42] 0.36 0.95 0.63 0.45 0.40 0.56
Next, CVPR’19 [106] 0.73 0.30 0.60 0.38 0.31 0.46
STGAT, ICCV’19 [48] 0.65 0.64 0.52 0.34 0.29 0.43
Social-BiGAT, NIPS’19 [44] 0.69 0.49 0.55 0.30 0.36 0.48
Ours 0.59 0.29 0.51 0.32 0.28 0.40

FDE

S-GAN, CVPR’18 [40] 1.52 1.61 1.26 0.69 0.84 1.18
S-GAN-P, CVPR’18 [40] 1.62 1.37 1.52 0.68 0.84 1.21
SoPhie, CVPR’19 [43] 1.43 1.67 1.24 0.63 0.78 1.15
Scene-LSTM, ISCV’19 [42] 0.67 1.77 1.41 1.00 0.90 1.15
Next, CVPR’19 [106] 1.65 0.59 1.27 0.81 0.68 1.00
STGAT, ICCV’19 [48] 1.12 0.66 1.10 0.69 0.60 0.83
Social-BiGAT, NIPS’19 [44] 1.29 1.01 1.32 0.62 0.75 1.00
Ours 1.07 0.57 1.09 0.68 0.59 0.80

extracted from the scene images and employs the focal attention on the encoded features

to achieve a better result than Sophie. We share the same mechanism with STGAT and

Social-BiGAT to model the human-human interactions by leveraging GAT. STGAT applies

an extra set of LSTMs to capture the tempoal information, while Social-BiGAT extracts the

scene image features and introduce them with a soft attention mechanism. Different from

them, in addition to using GAT to model the human-human interactions, we also model the

interactions between human and the scene in two scales. Overall, our method achieves the

state-of-the-art performance and outperforms all comparison baselines in both ADE and

FDE on average.

We also compute an evaluation metrics called near-collisions that is proposed in [43]

to further evaluate the ability of our method in predicting reasonable and feasible paths in

the crowded scenarios. near-collisions represents the percentage of two pedestrians getting
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Table 4.2: Average percentage of colliding pedestrians for each scene in ETH and UCY
datasets. The first column represents the ground truth.

GT S-GAN [40] SoPhie [43] Ours
ETH 0.000 2.509 1.757 1.447
HOTEL 0.092 1.752 1.936 1.326
UNIV 0.124 0.559 0.621 0.514
ZARA1 0.000 1.749 1.094 1.172
ZARA2 0.732 2.020 1.464 1.315
Avg 0.189 1.717 1.361 1.155

closer than 0.1m. The average percentages of near-collisions across all frames in ETH and

UCY datasets are reported in Table 4.2, the results of S-GAN and Sophie are cited from

[43]. As we can see in Table 4.2, our method outperforms both S-GAN and Sophie, which

indicates our method generates more reasonable paths to prevent pedestrian collisions.

4.4.6 Ablation Studies

Compared with the baselines, our method has two major new components, the global scene

layout encoder and local scene context encoder.To evaluate the importance and the contri-

bution of each new component, several ablation experiments are performed and the ADE

and FDE are reported in Table 4.3. As illustrated in the second and fifth rows of Table 4.3,

the error metrics ADE and FDE both increase when we exclude the global scene layout

encoder. With the global scene layout encoder, our model can learn the influence of the

entire layout of the scene to generate better physical reasonable future trajectories. In the

third and sixth rows of Table 4.3, we list the results without the local scene context encoder.

Both ADE and FDE increase since the model lacks the knowledge of the scene context in

a local neighborhood. From the last column of Table 4.3, we can see that both our two new

components have contributions to the overall performance. While the global scene lay-
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Table 4.3: Ablation experiments of our full algorithm without different components. Error
metrics reported are ADE and FDE in meter scale.

Metric Method ETH HOTEL UNIV ZARA1 ZARA2 Avg

ADE
Our Method (Full Algorithm) 0.59 0.29 0.51 0.32 0.28 0.40

- Without Global Scene Layout Encoder 0.66 0.47 0.52 0.30 0.30 0.45
- Without Local Scene Context Encoder 0.63 0.45 0.52 0.31 0.29 0.44

FDE
Our Method (Full Algorithm) 1.07 0.57 1.09 0.68 0.59 0.80

- Without Global Scene Layout Encoder 1.25 0.72 1.10 0.69 0.60 0.87
- Without Local Scene Context Encoder 1.28 0.78 1.11 0.68 0.61 0.89

out encoder may potentially be slightly more helpful in ADE computation, the local scene

context encoder may generate a slightly more precise destination.

4.4.7 Qualitative Results

As we discussed before, the task of human trajectory prediction is challenging and our

goal is to predicted both socially acceptable and physical acceptable future paths. Given

a number of pedestrians in a crowded scene, many complicated interactions may occur,

such as group moving, walking towards each other, change directions to avoid collisions

with other pedestrian or stationary obstacles, etc. We present some qualitative results that

represent several interactions in Figure. 4.9. As shown in the first figure in the first row, a

pedestrian is walking out of the building and three other pedestrians are walking towards

a same direction without collisions. In the second figure in the first row and the last figure

in the second row, our model can learn the interactions between the pedestrian and the

obstacles like cars and trees, therefore generate the trajectories with a changing direction.

From the last figure in the first row and the first figure in the second row, we can see that our

model can generate reasonable and feasible paths for multiple pedestrians walking towards

101



Figure 4.9: Qualitative examples of our method predicting future 12 time steps trajectories,
given previous 8 time steps ones on ETH and UCY dataset. Note that, we crop and resize
the original image for better visualization.

each other. Our model also performs well on the pedestrians that almost stay still. As shown

in the second and third figures in the second row, our model can learn that pedestrians may

stand in the same place waiting for the train or chatting with each other. These successful

qualitative results can demonstrate that our method can predict reasonable and feasible

future trajectories in a complex and crowded scene.

4.4.8 Generalization Evaluations on Town Centre and Grand Central
Station Datasets

We conduct experiments on two new datasets, Town Centre [4] and Grand Central Station

[144], to further evaluate the generalization capability of our method. The experiment

setting is exactly same as [42]. For both datasets, the training data is formed by combining

the training data from ETH and UCY datasets and 50% data from this dataset. While the

remaining data is used for testing. We compare the results of predicting trajectories in next

12 and 16 time steps against S-GAN [40] and Scene-LSTM [42]. As illustrated in Table

4.4, our method clearly outperforms these two state-of-the-art baselines. Some qualitative

examples on both datasets are presented in Figure. 4.10.
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Table 4.4: The quantitative results (ADE and FDE) on Town Centre and Grand Central
Station datasets with different prediction lengths of future trajectories.

Metrics Datasets Prediction Length S-GAN [40] S-GAN-P [40] Scene-LSTM [42] Ours

ADE
Town Center

12 0.22 0.21 0.09 0.07
16 0.37 0.38 0.14 0.10

Grand Central Station
12 0.21 0.40 0.11 0.08
16 0.32 0.79 0.14 0.11

FDE
Town Center

12 0.46 0.42 0.18 0.11
16 0.80 0.81 0.27 0.19

Grand Central Station
12 0.45 0.74 0.17 0.14
16 0.62 1.50 0.25 0.17

Figure 4.10: Qualitative examples of our method predicting future 12 time steps trajecto-
ries, given previous 8 time steps ones on Town Centre (1st row) and Grand Central Station
(2nd row) dataset. Note that, we crop and resize the original image for better visualization.

4.5 Conclusion

In this chapter, we have developed a novel hierarchical framework based on a recurrent

sequence-to-sequence architecture to jointly predict the future trajectories of all pedestrians

involved in a crowded scenario. We use LSTMs to encode the past trajectory information,

global scene layout information and local scene context information. Then graph attention

networks are utilized to model the interactions between human-human and human-scene
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at each time step. Moreover, we design extra LSTMs to learn the temporal correlations

of these interactions. Experimental results on several benchmark datasets demonstrate that

by jointly modeling the interactions between all pedestrians and the physical environment,

our method outperforms prior state-of-the-art methods and generates more accurate and

plausible trajectories for pedestrians.
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Chapter 5

Summary and Future Work

In this dissertation, my research during my Ph.D study that covering human pose estima-

tion, temporal action localization and human trajectory prediction has been summarized.

In Chapter 2, we have successfully developed an automatic system to monitor and

evaluate worker’s efficiency for smart manufacturing workforce management using human

body pose estimation and temporal action localization. We first developed a novel seman-

tic adversarial training framework with GAN networks that accurately detect human body

joints, estimate its pose, and track its motion. Then, we formulated the automated worker

efficiency analysis into a temporal action localization problem in which the action video

performed by the worker is matched against a reference video performed by a teacher. We

showed our proposed poseGAN achieves the state-of-the-art performance on benchmark

dataset and our automated work efficiency analysis is able to achieve accurate action local-

ization with an average IoU score large than 0.9.

In Chapter 3, we have explored the unique characteristics of human trajectories and

developed a new approach, reciprocal network learning, for human trajectory prediction.
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Two networks, the forward and backward prediction networks, are tightly coupled together,

satisfying the reciprocal constraint, which allows them to be jointly learned for accurate

and robust human trajectory prediction. Based on this constraint, we borrowed the concept

of adversarial attacks of deep neural networks, which iteratively modifies the input of the

network to match the given or forced network output, and developed a new method for

network testing, called reciprocal attack for matched prediction. It has further improved

the prediction accuracy. Extensive experimental results have demonstrated our approach

achieves the state-of-art performance on public benchmark datasets.

In Chapter 4, we propose a novel hierarchical framework based on a recurrent sequence-

to-sequence architecture to jointly predict the future trajectories of all pedestrians involved

in a crowded scenario. We use LSTMs to encode the past trajectory information, global

scene layout information and local scene context information. Then graph attention net-

works are utilized to model the interactions between human-human and human-scene at

each time step. Moreover, we design extra LSTMs to learn the temporal correlations of

these interactions. Experimental results on several benchmark datasets demonstrate that

by jointly modeling the interactions between all pedestrians and the physical environment,

our method outperforms prior state-of-the-art methods and generates more accurate and

plausible trajectories for pedestrians.

To better under human behaviors, in Chapter 2, we focus on human pose estimation

and temporal action localization. These topics are our initial step towards analyzing human

actions. There are more steps waiting to be explored and studied, such as human activity

recognition, 3D human pose estimation, etc. Also, we cover the topic of human future

trajectory prediction in Chapter 3 and 4. Another topic, future activity prediction, also

plays a critical role in applications, such as autonomous driving, social robots and smart
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surveillance system. Future work will include developing a method that jointly predicting

human’s future path and their future activities.
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