
EXPLORING DEEP LEARNING TECHNIQUES

TO TACKLE THE SPARSITY PROBLEM

IN RECOMMENDER SYSTEMS

A Dissertation presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

MESHAL ALFARHOOD

Prof. Jianlin Cheng, Dissertation Supervisor

DECEMBER 2020

The undersigned, appointed by the Dean of the Graduate School, have examined

the dissertation entitled:

EXPLORING DEEP LEARNING TECHNIQUES TO TACKLE THE SPARSITY

PROBLEM IN RECOMMENDER SYSTEMS

presented by Meshal Alfarhood,

a candidate for the degree of Doctor of Philosophy and hereby certify that, in their

opinion, it is worthy of acceptance.

Prof. Jianlin Cheng

Prof. Dong Xu

Prof. Jeffrey Uhlmann

Prof. Stephen Montgomery-Smith

DEDICATION

I dedicate this dissertation to my parents, Dawood and Haya, for their endless

support and unconditional love throughout my whole life.

ACKNOWLEDGMENTS

First, I would like to express my deepest appreciation to my advisor and committee

chair, Prof. Jianlin Cheng, for his guidance, patience, and motivation during my

doctoral studies. Under his supervision, I had the opportunity to explore several

directions of my research that enriches my learning knowledge, and develops my

technical, theoretical and personal abilities. Second, I would like to thank the rest

of my dissertation committee: Prof. Dong Xu, Prof. Jeffrey Uhlmann, and Prof.

Stephen Montgomery-Smith for their valuable feedback and insightful comments.

Also, I am extremely thankful to my sponsor, King Saud University, for their

generous scholarship that covers my expenses throughout my master and PhD degrees.

I also extend my gratitude to the University of Missouri for giving me this opportunity

to be one of its alumni family.

A special appreciation goes to my older brother, Dr. Sultan. His support and

encouragement were one of the reasons what made this dissertation possible.

Finally, I would like to extend my sincere and obligation to my family back home

for the prayers, the long-distance support, and for believing in me. I am also grateful

to my friends in Columbia, MO for the great moments we had spent together. Without

all of them, I would have not reached at this point where I am writing this final part

of my dissertation!

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vii

LIST OF FIGURES . ix

ABSTRACT . xii

CHAPTER .

1 Introduction . 1

1.1 Recommender systems . 1

1.1.1 Motivation . 2

1.1.2 Problem definition . 3

1.2 Dissertation contributions and outline 6

2 Preliminaries and Related Work . 8

2.1 Recommendation techniques . 8

2.1.1 Collaborative filtering techniques 9

2.1.2 Content-based filtering techniques 11

2.1.3 Hybrid techniques . 12

2.2 Recommendation evaluation metrics 14

2.2.1 Rating accuracy metrics . 14

2.2.2 Classification accuracy metrics 15

2.2.3 Ranking metrics . 15

2.3 Deep learning in recommendations 17

iii

2.3.1 Autoencoder . 18

2.3.2 Multilayer Perceptron . 19

2.3.3 Convolutional Neural Network 20

2.3.4 Recurrent Neural Network . 21

2.3.5 Generative Adversarial Network 22

3 DeepHCF: Coupling MLP and CNN for Estimating User Ratings 23

3.1 Abstract . 23

3.2 Introduction . 24

3.3 Background . 26

3.3.1 Factorization machines . 27

3.4 Methodology . 29

3.4.1 Architecture . 29

3.4.2 MLP layers . 30

3.4.3 CNN layers . 31

3.4.4 Prediction layer . 32

3.5 Experiments . 34

3.5.1 Datasets . 34

3.5.2 State-of-the-art approaches 36

3.5.3 Experimental settings . 38

3.5.4 Impact of pre-training . 40

3.5.5 Impact of hyper-parameters tuning 40

3.5.6 Performance comparison . 42

3.6 Conclusion . 45

iv

4 CATA: A Collaborative Attentive Autoencoder Method for Rec-
ommending Scientific Articles . 46

4.1 Abstract . 46

4.2 Introduction . 47

4.3 Background . 49

4.3.1 Matrix factorization . 49

4.3.2 Attention mechanism . 53

4.4 Proposed model . 54

4.4.1 The attentive autoencoder . 55

4.4.2 Probabilistic matrix factorization 57

4.4.3 Prediction . 58

4.5 Experiments . 59

4.5.1 Datasets . 59

4.5.2 Evaluation methodology . 61

4.5.3 State-of-the-art approaches . 63

4.5.4 Experimental results . 64

4.6 Conclusion . 73

5 CATA++: Leveraging Content Information Independently via
Two Separated Attentive Autoencoders 74

5.1 Abstract . 74

5.2 Introduction . 75

5.3 Methodology . 78

5.4 Experiments . 81

5.4.1 Datasets . 81

v

5.4.2 State-of-the-art approaches . 86

5.4.3 Experimental results . 88

5.5 Discussion . 105

5.6 Conclusion . 107

6 Summary and Future Work . 108

6.1 Summary . 108

6.2 Future work . 110

BIBLIOGRAPHY . 114

VITA . 129

vi

LIST OF TABLES

Table Page

1.1 The representations of the user-item interaction matrices for (a) ex-

plicit and (b) implicit feedback data. 5

3.1 Description of MovieLens and Amazon datasets. 36

3.2 Performance results of our model, DeepHCF, against other baselines

using MovieLens-1M dataset. 43

3.3 Performance results of our model, DeepHCF, against other baselines

using Amazon Instant Video (AIV), Amazon Android Apps (AAA),

and Amazon Digital Music (ADM) datasets. 43

4.1 A summary description of notations used in this chapter. 49

4.2 Description of CiteULike datasets. 59

4.3 Parameter settings for λu and λv for our model, CATA, and CVAE. . 64

4.4 An example of the top-10 recommendations of our model (CATA) com-

pared to the CVAE model using the Citeulike-a dataset under the

sparse setting. 68

4.5 Performance comparisons on sparse data with using attention layer

(CATA) and without (CATA–). 69

5.1 Description of CiteULike datasets including tags and citations data. . 81

vii

5.2 The representation of the article-tag matrix (a) before, and (b) after

the matrix is updated when article0 cites article1 and article2 cites

article0. 84

5.3 Comparison among all models reflecting the data they use in their

model training. 86

5.4 The parameter settings for λu and λv for CDL, CVAE, CVAE++,

CATA, and CATA++, based on the validation experiment. 88

5.5 The first example to show the quality of recommendations using the

sparse cases of the Citeulike-2004-2007 dataset. 96

5.6 The second example to show the quality of recommendations using the

sparse cases of the Citeulike-a dataset. 97

5.7 The improvement percentage in our model’s performance over the

best competitor according to Recall@5, Recall@100, nDCG@5, and

nDCG@100 for (a) the sparse data and (b) the dense data. A (*)

indicates statistical significance on p ≤ 0.05. 98

5.8 The computational complexity (in seconds) for training one epoch

among autoencoder-based models. 105

6.1 A comparison among different metric learning approaches regarding

the scoring function and the loss function. 113

viii

LIST OF FIGURES

Figure Page

2.1 A basic example to show the difference in recommendations between

(a) collaborative filtering and (b) content-based filtering approaches. . 13

3.1 DeepHCF overview. 26

3.2 DeepHCF architecture. 28

3.3 Ratio of items that have been rated by N or fewer users in Amazon

Instant Video (AIV), Amazon Android Apps (AAA), Amazon Digital

Music (ADM), and MovieLens-1M (ML-1M) datasets. 35

3.4 A five-stage procedure for preprocessing item reviews. 38

3.5 An example of one review block from the Amazon Instant Video dataset. 39

3.6 Training and validation loss values of each epoch using the MovieLens-

1M dataset, with and without pre-training. 41

3.7 Training and validation loss values of each epoch using the Amazon

Instant Video dataset, with and without pre-training. 41

3.8 The impact of hyper-parameters tuning on DeepHCF performance for:

(a) dimension of MLP embeddings, and (b) batch size. 42

4.1 Matrix Factorization illustration. 50

4.2 Collaborative Attentive Autoencoder (CATA) architecture. 54

ix

4.3 A five-stage procedure for preprocessing article titles and abstracts. . 60

4.4 The percentage of the data entries that forms the training and testing

sets in CiteULike datasets. 61

4.5 The top-K recommendation performance under the sparse setting, P =

1, for Citeulike-a dataset. 66

4.6 The top-K recommendation performance under the sparse setting, P =

1, for Citeulike-t dataset. 66

4.7 The top-K recommendation performance under the dense setting, P =

10, for Citeulike-a dataset. 67

4.8 The top-K recommendation performance under the dense setting, P =

10, for Citeulike-t dataset. 67

4.9 The impact of λu and λv on CATA performance for (a-b) Citeulike-a,

and (c-d) Citeulike-t datasets. 70

4.10 The performance of CATA model with respect to different dimension

values of the latent space under (a) sparse data and (b) dense data. . 72

4.11 The reduction in the loss values vs. the number of training epochs. . 72

5.1 Collaborative Dual Attentive Autoencoder (CATA++) architecture. . 78

5.2 Ratio of articles that have been added to ≤ N users’ libraries. 82

5.3 The top-20 tags among all datasets. 92

5.4 The top-K recommendation performance under the sparse setting, P =

1, for the Citeulike-a dataset. 93

5.5 The top-K recommendation performance under the sparse setting, P =

1, for the Citeulike-t dataset. 93

5.6 The top-K recommendation performance under the sparse setting, P =

1, for the Citeulike-2004-2007 dataset. 94

x

5.7 The top-K recommendation performance under the dense setting, P =

10, for the Citeulike-a dataset. 94

5.8 The top-K recommendation performance under the dense setting, P =

10, for the Citeulike-t dataset. 95

5.9 The top-K recommendation performance under the dense setting, P =

10, for the Citeulike-2004-2007 dataset. 95

5.10 The performance results using only the left autoencoder (T) vs. the

right autoencoder (X), compared to combine all features via a single

autoencoder (X+T) and train features independently via two separated

autoencoders (CATA++) for (a-b) Citeulike-a, (c-d) Citeulike-t, and

(e-f) Citeulike-2004-2007 datasets. 100

5.11 The impact of hyper-parameters’ tuning on CATA++ performance for:

(a) the dimension of features’ latent space, and (b) the number of layers

inside each encoder and decoder. 101

5.12 The impact of λu and λv on CATA++ performance for (a-b) Citeulike-

a, (c-d) Citeulike-t, and (e-f) Citeulike-2004-2007 datasets. 102

xi

ABSTRACT

With the inception of e-commerce in the early twenty-first century, people’s lifestyles

have drastically changed. People today tend to do many of their daily routines online,

such as shopping, reading the news, and watching movies. Nevertheless, consumers

often face difficulties while exploring related items such as new fashion trends because

they are not aware of their existence due to the overwhelming amount of informa-

tion available online. This phenomenon is widely known as “information overload”.

Therefore, recommender systems (RSs) are a critical solution for helping users make

decisions when there are lots of choices. RSs have been integrated into and have

become an essential part of every website due to their effectiveness in increasing

customer interactions, attracting new customers, and growing business revenue.

Machine learning, and deep learning (DL) in particular, have achieved a great suc-

cess in resolving various computer science problems. Generally, DL-based approaches

have enhanced performance remarkably compared with traditional approaches. Specif-

ically, DL-based approaches have become the state-of-the-art techniques in RSs.

Therefore, in this dissertation, three DL-based contributions are presented to address

the natural data sparsity problem in RSs: (1) DeepHCF, a deep-hybrid, collaborative-

filtering model that trains two deep models via joint training for rating prediction

tasks; (2) CATA, a collaborative attentive autoencoder that integrates the atten-

tion mechanism to enhance the recommendation quality for ranking prediction tasks;

and (3) CATA++, an extended version of CATA that employs a dual attentive au-

toencoder to leverage more of the item’s content. All proposed models have gone

through comprehensive experiments to evaluate their performance against state-of-

the-art models using real-world datasets. Our experimental results show the superior-

ity of our models over state-of-the-art models according to various evaluation metrics.

xii

Chapter 1

Introduction

1.1 Recommender systems

The amount of data created in the last few years is overwhelming. Interestingly, more

than 90% of data has been created in only the last two years [1]. The term “informa-

tion overload” has gained popularity recently, describing the difficulties people face

in finding what they want from such a huge volume of available information. There

are two areas in computer science that are concerned with providing information pro-

cessing techniques to address the information overload, i.e., information retrieval (IR)

and recommender systems (RSs). In IR systems (e.g., the Google search engine1),

users submit requests for what they want, and the search engine tries to find the op-

timal corresponding results for those requests. On the other hand, RSs obtain users’

preferences first and then provide item recommendations based on those preferences

without users explicitly requesting them [2].

1www.google.com

1

1.1.1 Motivation

Recommender systems are everywhere today. Most of commercial and social websites

use recommendation engines to show relevant items to their users. This process

usually increases user activity and interactions with their websites. RSs have been

incorporated into different recommendation tasks such as recommending what videos

to watch [3], scientific papers to read [4], places to visit [5], and songs to which to listen

[6]. According to YouTube [7], 60% of the videos watched on YouTube2 come from its

homepage recommendations. Also, 80% of what Netflix3 users watch comes from its

recommender system as well, while the remaining 20% comes from users’ searches [8].

Moreover, a company like Amazon4 use recommender systems to increase its profit by

35% [9]. Finally, Google has successfully increased the click-through rate (CTR) in

its news service5 by 38% using recommendations [10]. Therefore, the ongoing research

in this field is important for both academia and industry, and holds the key for some

businesses to engage effectively with and serve their users.

Over the last few decades, a lot of effort has been made by both academia and

industry in proposing new ideas and solutions for RSs, which ultimately help ser-

vice providers in adopting such models into their system architecture. RSs research

has evolved remarkably following the Netflix prize competition6 in 2006, where the

company offered one million dollars for any team that could improve their recommen-

dation accuracy by 10%. Therefore, our main focus in this dissertation is to define

research challenges facing recommender systems, study the most popular works and

how they address such challenges, and then report our main contributions regarding

this matter. We now define what the “recommendation problem” is in the following

2www.youtube.com
3www.netflix.com
4www.amazon.com
5www.news.google.com
6www.netflixprize.com

2

section.

1.1.2 Problem definition

There are four primary elements involved in defining the recommendation problem.

Users (e.g., customers, authors, listeners) and items (e.g., movies, books, songs) are

the two main entities needed to build any commercial system. Let U be the set of

users and I be the set of items, such that U = {u1, u2, .., un} and I = {i1, i2, .., im}.

Items are usually points of interest for users, such that users interact with (e.g., buy,

watch, like) items. The user-item interactions, which are considered as the third

element in RSs, can be represented as a scoring function (Rui = score), such that

items with higher score values more likely match user preferences. Finally, additional

information that can be collected from either users (e.g., age, country, sex) or items

(e.g., movies’ reviews, books’ content, songs’ lyrics) can be seen as the fourth element

of RSs.

In order for recommender systems to generate recommendations, they first need

to collect the user-item interaction data and feed this data into the system for train-

ing. This user-item interaction data can be either collected in an explicit or implicit

manner. In explicit data, users directly express their opinion about an item using the

rating system to show how much they like that item. User ratings usually vary from

one star to five stars with five being very interested and one being not interested. This

type of data is very useful and reliable due to the fact that it represents users’ actual

feelings about those items. However, user ratings are occasionally not available due to

the difficulty of obtaining users’ explicit opinions. In this case, implicit feedback can

be obtained indirectly from user behavior such as user clicks, bookmarks, or the time

spent viewing an item. For example, if a user listens to a song ten times in the last

3

two days, he or she most likely likes this song. Thus, implicit data is more prevalent

and easier to collect, but it is generally less reliable than explicit data. Also, all the

observed interactions in implicit data constitute positive feedback, where negative

feedback is missing. This problem is also defined as the “one-class problem”.

There are multiple previous works that have aimed to address the one-class prob-

lem. A simple solution is to treat all missing data as negative feedback. However,

this is not true because the missing (unobserved) interaction could be positive if the

user is aware of the item existence. Therefore, using this strategy to build a model

might result in a misleading model due to the wrong assumption made at the be-

ginning. On the contrary, if we treat all missing data as unobserved data without

considering negative feedback, the corresponding trained model is more likely useless

since it is only trained on positive data. As a result, sampling negative feedback from

positive feedback is one practical solution for this problem, which has been proposed

by [11]. In addition, Weighted Regularized Matrix Factorization (WRMF) [12] is an-

other proposed solution that introduces a confidence variable that works as a weight

to measure how likely a user is to like an item. This approach has been described

thoroughly in Section 4.3.1.

In general, the user-item interaction data is usually represented by a matrix

R ∈ Rn×m, where n represents the number of users and m represents the number

of items. Rnm shows the rating value of Usern for Itemm. As stated before, the

rating values usually range from one to five for explicit feedback. On the other hand,

the recommendation problem with implicit data is usually formulated as follows:

Rnm =


1, if there is user-item interaction

0, if otherwise

(1.1)

4

Table 1.1: The representations of the user-item interaction matrices for (a) explicit
and (b) implicit feedback data.

(a) Explicit feedback

item0 item1 item2 ... itemm

user0 2 3 ...

user1 5 1 ... 4

user2 3 ... 5

...

usern 4 2 5 ...

(b) Implicit feedback

item0 item1 item2 ... itemm

user0 1 1 0 ... 0

user1 1 0 1 ... 1

user2 0 1 0 ... 1

...

usern 1 1 1 ... 0

where the values of ones in implicit feedback represent all the positive feedback.

However, it is important to notice that a value of zero does not imply always negative

feedback. It can be that users are not aware of the existence of those items. Examples

of what matrix R looks like in both cases are shown in Table 1.1.

Matrix R is usually highly imbalanced, where the number of the observed in-

teractions is much less than the number of the unobserved interactions. In other

words, matrix R is very sparse, meaning that users only interact either explicitly or

implicitly with a very small number of items compared to the total number of items

in matrix R. This sparsity problem is one frequent problem in RSs, which brings

a real challenge for any proposed model to have the capability to provide effective

personalized recommendations in this context. The sparsity of the user-item matrix

can be measured as the number of the interactions between users and items (e.g. the

5

number of all observed ratings in explicit data, and the number of all ones in implicit

data) divided by all the possible interactions in this matrix (i.e., the number of users

times the number of items).

1.2 Dissertation contributions and outline

This dissertation is organized into six chapters in the following order:

• Chapter 1 shows the motivation of this dissertation and defines the recom-

mendation problem.

• Chapter 2 describes recommender system techniques and their different evalua-

tion metrics, and then illustrates deep learning techniques and their applications

in recommender systems.

• Chapter 3 presents DeepHCF, a deep-hybrid collaborative-filtering model that

is designed and evaluated for a rating prediction task with explicit feedback

data. The main content of this chapter is part of this publication:

Alfarhood, M. and Cheng, J. (2018). DeepHCF: A deep learning based hybrid

collaborative filtering approach for recommendation systems. In 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA) (pp.

89-96). IEEE. [13].

• Chapter 4 presents CATA, a collaborative attentive autoencoder that is de-

signed and evaluated for a ranking prediction task with implicit feedback data.

The main content of this chapter is part of the following publications:

Alfarhood, M. and Cheng, J. (2019). Collaborative Attentive Autoencoder for

Scientific Article Recommendation. In 2019 18th IEEE International Confer-

ence On Machine Learning And Applications (ICMLA) (pp. 168-174). IEEE.

6

[14].

Alfarhood, M. and Cheng, J. (2021). Deep Learning-Based Recommender

System. In Deep Learning Applications, Volume 2. Advances in Intelligent

Systems and Computing, Vol 1232, (pp. 1-23). Springer, Singapore. [15].

• Chapter 5 presents CATA++, a dual attentive autoencoder model. It is an

improvement over our previous model, CATA, by leveraging articles contents

via double deep models. The main content of this chapter is part of this publi-

cation:

Alfarhood, M and Cheng, J. (2020). CATA++: A Collaborative Dual Atten-

tive Autoencoder Method for Recommending Scientific Articles. in IEEE Access,

vol. 8 (pp. 183633-183648). IEEE. [16].

• Chapter 6 concludes this dissertation and suggests potential directions for

future work.

7

Chapter 2

Preliminaries and Related Work

This chapter is organized into three main sections. We first describe the three well-

known categories of recommender systems, i.e., collaborative filtering approaches,

content-based filtering approaches, and hybrid approaches. We provide existing re-

lated work for each category. Afterward, we illustrate the different evaluation metrics

used in recommender systems according to the data type and what the model is trying

to measure. Finally, we go through the deep learning techniques and their literature

with regard to recommendations.

2.1 Recommendation techniques

Recommender systems generally are divided into two types, namely personalized RSs

and non-personalized RSs. Personalized RSs are based on the preferences of users,

while non-personalized RSs involve no personal preferences in their recommendations.

Recommending the most common or highly rated items in a training dataset is an

example of a non-personalized RSs, where all users get identical recommendations

8

[17]. Although non-personalized RSs might be useful and effective in some cases,

they are not generally within the scope of RSs research. Personalized RSs, on the

other hand, have three known models: collaborative filtering (CF), content-based

filtering (CBF), and hybrid models.

2.1.1 Collaborative filtering techniques

Collaborative filtering (CF) models (e.g., Singular Value Decomposition (SVD) [18])

focus on users’ histories, such that users with similar past behaviors tend to have

similar future tastes. For instance, if Usera and Userb are similar to each other, they

are more likely to agree on an item in the future. Matrix Factorization (MF) has been

one of the most popular CF techniques for many years and has been widely used in

the recommendation literature. Many proposed models are enhanced versions of MF,

such as Probabilistic Matrix Factorization (PMF) [19], Bayesian Probabilistic Matrix

Factorization (BPMF) [20], Sparse Probabilistic Matrix Factorization (SPMF) [21],

and Weighted Regularized Matrix Factorization (WRMF) [12]. MF is described in

depth in Section 4.3.1.

CF models are classified into two categories based on how models are trained,

i.e., memory-based CF and model-based CF [22]. Memory-based CF models (a.k.a.

neighborhood-based models) [23, 24] work by finding similarities among users (user-

based CF) or items (item-based CF) directly from the user-item ratings matrix, and

then predicting a user’s rating based on the average ratings of the k-nearest neighbors.

Unlike CBF models, similarities among items here are higher when two items in the

system are rated by multiple users in the same manner. For instance, user-based

CF models are reflected in the following popular phrasing used on many websites:

“users similar to you also bought this item”. Popular phrasing for item-based CF

9

models is: “users who bought this item also bought this item”. Thus, calculating

the similarity is the base of this kind of approach. Cosine-similarity is one common

similarity measurement method to measure the cosine of the angle between two users

vectors as follows:

cos(A,B) =
A ·B
‖A‖ ‖B‖

=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(2.1)

where · indicates the dot product between the two vectors and ‖A‖ is the norm of

that vector.

Another common similarity measurement method is the Pearson correlation sim-

ilarity, where its coefficient, ρ, is calculated as:

ρA,B =
cov(A,B)

σAσB
=

∑n
i=1(ai − a)(bi − b)√∑n

i=1(ai − a)2
√∑n

i=1(bi − b)2
(2.2)

where cov is the covariance, and σ is the standard deviation.

Alternatively, Mean Squared Difference (MSD) and Mean Absolute Difference

(MAD) are other popular similarity functions used to measure how close two users

or items are to each other. They can be calculated as follows:

MSD(A,B) =
1

|C|
∑
i∈C

(Ai −Bi)
2

MAD(A,B) =
1

|C|
∑
i∈C

|Ai −Bi|
(2.3)

where C is the set of items that are rated by both users A and B.

In contrast, model-based CF models (a.k.a. latent factor models) apply machine

learning techniques to model users and items as vectors in the latent space. Matrix

factorization-based models and neural networks are the most popular examples of

10

this approach. Model-based CF approaches are generally more popular than memory-

based CF approaches, and they also handle the matrix sparsity much better. However,

they are obviously slower in the training phase than the memory-based methods since

they need to build and train the model first. On the contrary, they are faster in the

testing phase once the model is trained since the memory-based methods need to run

the process over again each time they need to do a testing.

However, CF models generally rely only on users’ past ratings in their learning

processes and do not consider other auxiliary information validated later to improve

the quality of recommendations. For that reason, CF models suffer when there are

new users or new items arrive to the system. These models are neither able to give

recommendations to new users because there is not enough information about those

users, nor are they able to recommend new items to existing users because those items

have not seen before by any user [25]. This particular issue is known as the “cold-

start problem”. In addition, the performance of CF models drops substantially when

users or items have insufficient amounts of feedback data. This problem is known as

the “data sparsity problem”.

2.1.2 Content-based filtering techniques

Content-based filtering (CBF) models, on the other hand, work by learning an item’s

features from that item’s information and offers recommendations based on the sim-

ilarities among items, rather than the similarities among users like CF models do.

Item similarities here are calculated from the item’s information, such as the item

title and genre. For example, if Usera likes Itemb, then CBF models look for other

items that have characteristics similar to Itemb to make their recommendations. Un-

like CF models that need other users’ ratings, CBF models are user-independent [26].

11

Furthermore, new items can be recommended to existing users because the recom-

mendation here is based on item features and not user feedback. Figure 2.1 shows a

basic example of the difference between CF and CBF approaches in how they generate

recommendations.

However, CBF models have two major challenges, i.e., the limited content analysis

problem and the overspecialization problem. The first problem refers to the difficulty

of extracting information from items because they are not always available, while the

second one appears when a RS only gives item recommendations similar to the items

users liked before [27]. Consequently, CBF models lack novelty and diversity in their

recommendations [28]. Generally, they have lower performance than CF models.

DeepMusic [29] is an example of a CBF model that relies only on item information

and neglects user ratings. It learns latent factors only from the audio signals to recom-

mend musics. In addition, LIBRA [30] is a book RS that extracts book information

from Amazon web pages and then gives recommendations using a bag-of-words naive

Bayesian text classifier. Finally, INTIMATE [31] is a movie RS that gives recommen-

dations based only on movies’ synopses using text categorization techniques.

2.1.3 Hybrid techniques

More recently, much effort has been put forth to include an item’s information along

with the user’s ratings data via topic modeling [4, 32, 33]. For example, Collaborative

Topic Regression (CTR) [4] is composed of Probabilistic Matrix Factorization (PMF)

and Latent Dirichlet Allocation (LDA) to utilize both a user’s ratings and an item’s

reviews to learn their latent features. By doing this, the natural sparsity problem

can be alleviated, and these kinds of approaches are called “hybrid models”. Hybrid

models are combinations between CF and CBF approaches to take advantage of both

12

(a) Collaborative filtering approach (b) Content-based filtering approach

Figure 2.1: A basic example to show the difference in recommendations between (a)
collaborative filtering and (b) content-based filtering approaches.

approaches’ positive aspects and to overcome some of the issues each possess. For

example, the sparsity problem and the cold start problem are addressed by this hybrid

approach. However, this type of approach increases the complexity of the model

and usually needs more time to train [25]. In this dissertation, we propose three

hybrid approaches that use both a user’s feedback history and an item’s auxiliary

information.

Generally, hybrid models are divided into two sub-categories according to how

models are trained: loosely coupled models and tightly coupled models [34]. Loosely

coupled models train CF and CBF models separately, like ensembles, and then deter-

mine the final score based on the scores of the two separated models. On the other

hand, the tightly coupled models train both CF and CBF models jointly. In joint

training, both models cooperate with each other to calculate the final score under the

same loss function.

13

2.2 Recommendation evaluation metrics

Recommendation tasks can be classified into two different tasks based on the type

of input data. They can be either rating prediction or ranking prediction tasks [35].

In rating predictions, models use explicit feedback to train their model to predict a

future rating a user would give to an item. On the other hand, ranking predictions

(a.k.a. top-K recommendation) work by suggesting a list of items to a user and

ranking them based on user preferences. Implicit feedback is widely used by ranking

prediction models [12, 11, 36]. Ranking prediction tasks are more popular in the

literature than rating prediction tasks due to the ease of collecting implicit data [35].

There are different metrics to evaluate each recommendation task, which are described

in the following sections.

2.2.1 Rating accuracy metrics

Since the rating predication task seeks to predict ratings users would give to items not

yet seen, the accuracy computed here by calculating the error between the predicted

ratings and the actual ratings. There are three standard error metrics to compute

accuracy: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean

Squared Error (RMSE). MSE and RMSE give greater penalty to larger errors by

squaring the error, as illustrated in the following equations:

MAE =
1

n

n∑
i=1

|ri − r̂i|

MSE =
1

n

n∑
i=1

(ri − r̂i)2

RMSE =

√√√√ 1

n

n∑
i=1

(ri − r̂i)2

(2.4)

14

where ri is the actual rating, r̂i is the predicted rating, and n is the number of samples.

2.2.2 Classification accuracy metrics

On the other hand, the ranking prediction task seeks to recommend K items to each

user. The common way to evaluate this case is by computing how many correct or

relevant items within the top-K recommended items. Precision and recall are the

most popular methods to do this. Precision measures the ratio between the number

of correct recommendations and the number of all recommended items, while recall

measures the ratio between the number of correct recommendations and the number

of all relevant items in the testing dataset, as follows:

precision =
|Relevant items ∩ Recommended items|

|Recommended items|

recall =
|Relevant items ∩ Recommended items|

|Relevant items|

(2.5)

There is a trade-off between the recall and precision metrics, such that increasing

the number of recommended items never decreases the recall value, but generally

decreases the precision value. Therefore, the F1 score combines both metrics together

and works as a harmonic mean of the recall and precision, as the following:

F1 =
2 · precision · recall

precision + recall
(2.6)

2.2.3 Ranking metrics

Yet, the previous metrics do not take into account the ranking of the recommended

items. They treat all the K recommended items the same. However, it is often impor-

tant for some systems to reward items on the top of the list more than others. Thus,

15

there are three popular ranking metrics for this situation. First, Mean Reciprocal

Rank (MRR) evaluates the ranking of the first correct recommendation as:

MRR =
1

|U |

|U |∑
u=1

1

ranki
(2.7)

where |U | is the total number of users, i is the rank of the recommended items, and

ranki is the rank of the first relevant item within the top-K recommendations.

Second, Mean Average Precision (MAP) shows the average precision for all rele-

vant items. It is different than the original precision metric (Equation 2.5), such that

MAP has higher final values for items at the top of the recommended item list than

at the bottom of the list. The original precision metric gives similar results as long

as they are within the recommended list. This is shown by the following equation:

MAP =
1

|U |

|U |∑
u=1

∑n
i=1 precision(i) · rel(i)

|R|
(2.8)

where R is the set of all relevant items, n is the number of recommended items,

precision(i) is the precision value at rank i, and rel(i) is an indicator function where

it returns a one if the item at rank i is a relevant item and a zero otherwise.

Third, Discounted Cumulative Gain (DCG) is another popular ranking metric

where the score of each recommended item is reduced logarithmically, proportional

to the position of that item. Unlike MAP, which works only with binary outcomes,

DCG can work also with non-binary outcomes in the following manner:

DCG =
1

|U |

|U |∑
u=1

n∑
i=1

2reli − 1

log2(i+ 1)
(2.9)

In addition, normalized Discounted Cumulative Gain (nDCG) normalizes DCG by

16

dividing its result by the ideal DCG (IDCG) where all the correct recommendations

in IDCG appear at the top of the list. Thus, the value of nDCG now ranges between

zero and one, as:

nDCG =
1

|U |

|U |∑
u=1

DCG

IDCG
(2.10)

2.3 Deep learning in recommendations

The amount of data that has been created lately grows exponentially from the years

before. Because of that, the term “big data” gets more recognition, with this term

describing the massive body of unstructured data generated that requires further

analysis. Machine learning, and deep learning in particular, have gained increasing

attention in recent years due to the way they enhance how we process big data,

and also for their capability to model complicated data such as texts and images.

Recently, deep learning has become a promising tool for different data domains due

to the increase in computational resources like GPUs, the exponential growth of

available data, and improved algorithms. For instance, deep learning models have

been successfully applied in computer vision, speech recognition, and natural language

processing (NLP) problems.

The application of deep learning to recommender systems is recent. Even though

traditional recommendation approaches have achieved a great success in the last two

decades, they still have shortcomings in accurately modeling complex (e.g., non-

linear) relationships between users and items. Alternatively, deep neural networks

are universal function approximators that are capable of modeling any continuous

function. One of the first works that applies deep learning concept for collaborative

filtering is Restricted Boltzmann Machine (RBM) [37]. It performs inference by us-

17

ing a two-layer architecture to learn users’ tastes from their histories. However, this

model is not deep enough (two layers only) to capture the features of users and items,

and furthermore, it does not employ other auxiliary information. There are many

types of deep learning models that are utilized today to enhance the recommendation

quality such as Autoencoder (AE), Multilayer Perceptron (MLP), Convolutional Neu-

ral Network (CNN), Recurrent Neural Network (RNN), and Generative Adversarial

Network (GAN).

2.3.1 Autoencoder

Deep autoencoders are unsupervised deep learning techniques where the input and

output of the network have the same dimension size. They are typically composed

of two main parts – the encoder and the decoder – such that the encoder compresses

its input into a lower dimensional representation, while the decoder tries to estimate

the original input using the lower dimensional representation. By doing this, the

autoencoder can be used to reduce input dimensionality while preserving the abstract

information of the input.

Autoencoder-based models have been integrated in various recommendation tasks

[34, 38, 39, 40, 41, 42, 43]. They are usually used to pretrain data and then use the

learned lower representation of that data in the training of another model. Recently,

Collaborative Deep Learning (CDL) [34] has become a very popular deep learning

technique in RSs due to its promising performance. It is composed from a Stacked

Denoising Autoencoder (SDAE) and Probabilistic Matrix Factorization (PMF). CDL

can be viewed as an updated version of the Collaborative Topic Regression (CTR) [4]

by substituting the Latent Dirichlet Allocation (LDA) topic modeling with a deep-

based model, SDAE, to learn from item contents, and then integrating the learned

18

latent features into PMF. In addition, Deep Collaborative Filtering (DCF) [44] is

a similar work that uses a marginalized Denoising Autoencoder (mDA) with PMF.

More recently, Collaborative Variational Autoencoder (CVAE) [39] has been used to

learn deep item latent features via a variational autoencoder. The authors of CVAE

show that their model learns better item features than CDL because their model

infers the latent variable distribution in the latent space instead of the observation

space.

2.3.2 Multilayer Perceptron

Multilayer Perceptron (MLP) is another deep learning model that is trained in a

supervised manner. MLP can be defined as a feedforward neural network with mul-

tiple hidden layers between the input and the output layers, where it can be applied

to both regression and classification tasks. The structure of MLP can have various

shapes like the tower shape used in [45, 46, 47], the constant shape used in [48], or

the diamond shape used in [49].

MLP has been recently utilized in several models. For example, the YouTube

recommender system in 2016 used a MLP in its model [45]. Specifically, the archi-

tecture of the YouTube recommender system had two deep MLPs. The first deep

MLP model was used for candidate generation, while the second one was used for

ranking. Their evaluation showed that this new deep technique outperformed the

YouTube’s old recommender system, which implemented using the Matrix Factoriza-

tion (MF) method. Furthermore, Google presented a combination of wide and deep

models for recommender systems [47]. It has shown that the wide model is good for

memorization, while the deep model is good for generalization. The deep model uses

a MLP with embeddings for sparse features. The model was evaluated on Google

19

Play and the results showed that both wide and deep model have an improvement in

the App acquisition over using wide-only or deep-only models. In addition, Neural

Collaborative Filtering (NCF) [46] uses a MLP to model implicit feedback data only,

without utilizing users’ and items’ information into the model training. Later, Joint

Neural Collaborative Filtering (J-NCF) [50] was shown to optimize NCF by modeling

both feature extraction and user-item interaction via two networks.

2.3.3 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are very popular in the computer vision do-

main, especially for grid-like data such as images, due to the huge success they achieve

in detecting the spatial relationships in images compared to other traditional models.

CNNs typically consist of convolutional layers followed by pooling layers and then a

fully connected layer at the end [51]. The convolutional layers extract features from

their input by scanning the image using different filter matrices and then generating

k feature maps, where k is the total number of filters. The pooling layers are then

responsible for reducing the dimensionality of the feature maps. CNNs generally have

fewer parameters than MLP using the same number of units, which makes them easy

to train [52].

CNNs met recommendations in multiple models [29, 53, 54, 55, 56, 57]. For

instance, Convolutional Matrix Factorization (ConvMF) [53] combines CNN with

Probabilistic Matrix Factorization (PMF). It effectively utilizes the contextual infor-

mation of documents in order to extract items’ latent factors. The bag-of-word model

does not work well since it ignores the word order. Therefore, the authors of ConvMF

use CNN to generate the document latent vector, and they then integrate it with the

epsilon variable in the PMF model to generate the final prediction. Because ConvMF

20

only considers an item’s auxiliary information, the probabilistic hybrid model (PHD)

[54] is proposed, which is built on top of the ConvMF by adding a stacked denoising

autoencoder (SDAE) into the model to extract users’ latent factors from the users’

auxiliary information. By extracting both users’ and items’ latent factors, the PHD

model outperforms ConvMF. Also, Pubmender [55] uses a deep CNN to recommend

venues for publishing biomedical articles by using the abstract of each article. Their

CNN model is composed of three convolutional and max-pooling layers. Finally,

DeepCoNN [56] uses two parallel CNNs to learn from text reviews. They group the

reviews by users and items to learn user behaviors and item properties separately in

order to predict the corresponding ratings.

2.3.4 Recurrent Neural Network

Recurrent Neural Network (RNN) is another deep learning approach that works very

well for sequential data such as text, speech, video, etc. Each unit in the RNN is

connected to the previous one, such that it remembers past computations. There

are many variants of RNN such as Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU). The GRU has less computation cost than LSTM, which makes

it more popular.

RNN has been successfully applied in recommendations [3, 58, 59, 60]. For ex-

ample, AskTheGRU [58] uses a RNN-based technique to represent textual data as

latent vectors for the task of scientific article recommendation. Unlike other models

that use the bag-of-words for features extraction, the RNN-based model improves the

recommendation performance.

21

2.3.5 Generative Adversarial Network

Generative Adversarial Networks (GANs) are one of the most prevalent recent in-

novations in the deep learning community. GANs are basically generative models

that can generate new data that is similar to the training data. The structure of a

GAN has a generative network (a.k.a. the generator) and a discriminative network

(a.k.a. the discriminator), such that the generative network produces new data that

looks like real data and then the discriminative network decides if a data instance

is real (i.e., taken from the actual dataset) or fake (i.e., generated by the generative

network). Therefore, the real data works as positive instances for the discriminator,

while the fake data works as negative instances. During training, the generator and

the discriminator compete against each other, such that the generator’s performance

improves over training and the discriminator’s performance degrades over time and

eventually can no longer easily classify between real and fake data.

GANs are very popular applications for image generation, video generation, and

voice generation. With that being said, GANs have been effectively employed for

recommendation tasks [61, 62, 63, 64]. For example, LARA [64] is a GAN-based

model where the generative network generates user profiles corresponding to item

attributes, while the discriminative network distinguishes the generated profiles from

the real ones. New items are recommended to users who have similar attributes like

those generated profiles.

22

Chapter 3

DeepHCF: Coupling MLP and
CNN for Estimating User Ratings

3.1 Abstract

Data sparsity is a significant challenge for collaborative filtering methods in recom-

mendation systems for making accurate recommendations. Several approaches have

been published to address this issue. Most of them usually use only one source of data

to train their model, and other approaches still have lower performance, especially

when the sparsity of data is very high. In this work, we use a deep learning-based

model, DeepHCF, to tackle this problem. DeepHCF uses two sources of data (i.e.,

user-item ratings matrix and item reviews) to train two deep models via joint training.

The user-item ratings matrix data is trained using a Multilayer Perceptron (MLP),

while other side information is trained using a Convolutional Neural Network (CNN).

The users’ and items’ latent features learned by each model are utilized by factor-

ization machines for our model prediction. Extensive experimental results on four

different real-world datasets show that DeepHCF achieves, on average, a 7.42% im-

23

provement over the second most accurate method, when the dataset has over 99.9%

sparsity.

3.2 Introduction

Recommender systems have become an essential component of any commercial web-

site nowadays. These systems are able to gather users’ feedback by encouraging

users to rate products of their choice, and the systems then use them to improve

the recommendation quality. For instance, movie recommendations have gained a

lot of attention recently due to the fact that on-demand TV services have played

increasing roles in people’s lives. According to a research conducted by the Leicht-

man Research Group in 2018 [65], 69% of United States households subscribe to at

least one streaming video service, such as Netflix, Amazon Prime, and Hulu. More-

over, these on-demand TV services are overtaking traditional TV providers. Aside

from the absence of the advertisement breaks, people prefer on-demand TV services

because of the fact that they can watch TV programs when and where they want.

Accordingly, online streaming services integrate RSs to attract more customers, gain

customer satisfaction from those using the service, and eventually increase company

revenue.

In contrast to the huge amount of research on traditional algorithms for rec-

ommender systems like matrix factorization, there is much less work of using deep

learning in recommendations. Thus, in this work, we propose DeepHCF, a deep

learning model that jointly trains a Multilayer Perceptron (MLP) with a Convolution

Neural Network (CNN) for collaborative filtering applications. Some of the current

work using deep learning models neglect user-item ratings matrices and focus only on

auxiliary information like item reviews [53, 56], while other works show the benefit

24

of using the ratings matrix to train a MLP [46, 66]. However, using only one source

of data usually does not scale well when data sparsity is very high.

Consequently, DeepHCF is trained on two different sources of data using two sub-

networks. The two sub-networks are trained jointly. Joint training is different than

ensembles, where models in ensembles are trained separately at the training phase

[47]. However, models in joint training are trained together at the training phase

under the same objective function. The MLP network takes the user-item ratings

matrix as an input, while the CNN network takes the other side information as an

input. Lastly, prediction layer with factorization machines are introduced on top of

the previous sub-networks as the prediction estimator of our model. Figure 3.1 shows

the abstract architecture of our model.

DeepHCF is evaluated on four distinct datasets with various sparsity. MovieLens-

1M is a relatively denser dataset, with 95% sparsity, compared to Amazon datasets,

which have over 99.9% sparsity. DeepHCF outperforms all other methods on Amazon

datasets in terms of prediction error. More precisely, DeepHCF achieves a compa-

rable result with the best method on the MovieLens-1M dataset, while it achieves a

substantial improvement, 7.42% on average, on Amazon datasets.

The main contributions of this work are summarized as follows:

• We introduce DeepHCF, a deep learning-based model as a hybrid collaborative

filtering approach consisting of a Multilayer Perceptron and a Convolutional

Neural Network, which takes two different sources of data as input.

• We implement a prediction layer on top of the two deep models, such that user-

item and review representations can interact with each other to predict final

ratings using factorization machines.

• We evaluate our model on four different real-world datasets with different per-

25

MLP CNN

FM

Ratings Matrix Side Information

Prediction

Figure 3.1: DeepHCF overview.

centages of sparsity. We compare the performance of our proposed model with

five state-of-the-art approaches. DeepHCF achieves superior performance when

the data sparsity is extremely high.

The rest of this chapter is organized as follows. In Section 3.3, we describe the

background of this work. Our model, DeepHCF, is described in depth in Section 3.4.

Section 3.5 presents the experiments that we have done to evaluate our model against

the state-of-the-art approaches. Finally, the conclusions are presented in Section 3.6.

3.3 Background

In this section, we explain the idea behind the factorization machines approach that

we use in our model.

26

3.3.1 Factorization machines

Factorization Machines (FM) [67] is a supervised learning approach that models all

possible interactions among feature variables. Learning from features in pairs some-

times has more valuable information than learning from features independently. For

example, the two features “toys” and “age” are well correlated to each other such that

knowing the user’s young age indicates the high possibility that the user would pur-

chase or use a particular toy. Some obvious correlations between any two features can

be captured manually by human experts like in the previous example, however, other

complex relations between features are hidden in data that needs to be discovered

automatically. Thus, FM was originally designed to model all features’ interactions.

FM captures all single (first-order) and pairwise (second-order) interactions of the

input features as follows:

FM(x) = w0 +
n∑

i=1

wixi +
n∑

i=1

n∑
j=i+1

wijxixj, (3.1)

where w0 is the global bias, wi is the weight assigned to each feature, and wij is the

weight assigned for each feature pair xixj. wij can be calculated as the dot product

of the embedding vector of feature i (Vi) and the embedding vector of feature j (Vj)

as wij = V T
i Vj. A two-way FM with degree, d=2, is sufficient in most cases, like what

is shown in Equation 3.1.

FM has been successfully integrated in recommendation systems [56, 68, 47].

CoNN [56], for example, jointly trains two CNNs that are coupled in the last layer.

One CNN is used to train only the user reviews, while the other one is used to train

the item reviews. MF is used to predict the corresponding rating at the final layer.

One major limitation of this approach is that CoNN is unable to deal with users and

item with no previous ratings (a.k.a. the cold start problem).

27

Ite
m

 R
ev

ie
w

s

Ta
rg

et

ta
nh

M
ax
Po

ol
in
g

M
ax
Po

ol
in
g

..
..

Embeddings

M
ax
Po

ol
in
g

Ite
m

 ID

Em
be

dd
in

gs

Fe
at

ur
e

Ve
ct

or

Em
be

dd
in

gs

U
se

r I
D

ta
nh

FM M
ul

R
eL

U

R
eL

U

C
N
N

M
LP

Pr
ed
ic
tio

n

F
ig

u
re

3.
2:

D
ee

p
H

C
F

ar
ch

it
ec

tu
re

.

28

3.4 Methodology

Our proposed model, DeepHCF, is described thoroughly in this section. DeepHCF

is a hybrid model where it takes advantage of both a ratings matrix and other side

information to address the sparsity problem. It models users’ behavior and items’

characteristics using two sources of data: user-item ratings matrix and item reviews.

It learns hidden latent features from both sets of data, such that the learned latent

features can be employed to approximate ratings for each user. We first describe the

general architecture of our model in Section 3.4.1. Then, MLP layers, CNN layers,

and prediction layer are presented in Sections 3.4.2, 3.4.3, and 3.4.4, respectively.

3.4.1 Architecture

The architecture of our model for ratings prediction is shown in Figure 3.2. The

DeepHCF network consists of two parallel sub-networks, connected by a prediction

layer at the top. The two parallel sub-networks comprise a Multilayer Perceptron

(MLP) and a Convolutional Neural Network (CNN) trained in a joint manner to

predict final ratings in order to minimize prediction error. MLP is a widely used

model with excellent scalability, generalization, performance, and the ability to learn

complex relationships. CNN, similarly, is an impressive approach for extracting high-

level representations from raw data. The learned latent features of each model are

multiplied by each other and then factorized by factorization machines to estimate

ratings values. The difference between our predicted value and the actual value is

then computed to estimate the loss function of our model. Further specifics about all

layers in the architecture are presented in the next three sub-sections.

29

3.4.2 MLP layers

The MLP structure in our model has three main components: input layer, embedding

layer, and hidden layers. User ID and item ID are the inputs of our MLP model, and

they are separately embedded into two different embedding layers, which are then

concatenated and fed into three hidden layers. Embedding is a function, f : X → Rn,

that mapping individual data values from a large, sparse categorical domain to dense

vectors. It is particularly useful when some of the values may be similar in some

meaningful way to other values.

Next, the three hidden layers are in a tower shape, meaning that each hidden

layer has fewer neurons than the previous layer. The activation of each neuron a
(`)
j is

computed as:

a
(`)
j = σ(

∑
i=1

a
(`−1)
i w

(`)
ij + b

(`)
j), (3.2)

where (`) is the layer number and σ is a non-linear activation function. The non-

linear activation function used in the first two hidden layers is the Rectified Linear

Unit (ReLU), which is defined in Equation 3.3, while the third hidden layer has

a ”tanh” activation function (Equation 3.4) to be consistent with the CNN latent

feature layer. The learned latent features in the MLP model represents user behavior

in collaborative filtering approaches.

f(x) = max{0, x} (3.3)

f(x) =
ex − e−x

ex + e−x
(3.4)

30

3.4.3 CNN layers

The CNN model in this work is inspired by [69]. The CNN structure has five main

components: an input layer, embedding layers, convolution layers, pooling layers,

and a fully connected layer at the end. First, distinct words from the item review

are embedded into different embedding layers. Word embedding is very influential

in natural language processing techniques. It maps each word onto a dense vector,

such that similar words have nearly similar vectors. Plotting all the words in the

embeddings space would result in placing words with the same meaning or those that

are semantically related close to each other in that space. For example, “love” and

“like” would eventually be close to each other and the distance (e.g., the Euclidean

distance) between these two words’ vectors would be very small. However, “camel”

and “pen” would have a very large distance between their vectors in the embeddings

space because they are semantically different. Glove [70], which is based on matrix

factorization techniques, and word2vec [71], which is based on neural networks, are

two well-known approaches for word embeddings. Word embeddings can be initialized

either with pre-trained word embeddings, or randomly, such that it learns through

training. Pre-trained word embeddings are usually preferred and enable the training

to converge faster.

Second, the convolutional layers extract features from their inputs. They use mul-

tiple filters along with three different word window sizes, w, to capture the surround-

ing words’ interactions. Let xi ∈ Rk represent the k-dimensional word embeddings

for the i-th word in the sentence. The whole sentence can be represented as the

concatenation of all words embedding as x1:n = x1 ⊕ x2 ⊕ ... ⊕ xn. Each feature, ci,

extracted from convolution layers is computed as:

ci = σ(W · xi:i+w−1 + b), (3.5)

31

where b is the bias, W ∈ Rwk is the filter, and σ is a non-linear activation function.

We use ReLU as activation function for the convolutional layers for faster convergence

and to reduce the vanishing gradient problem. The feature map, j, generated from

convolutions (Equation 3.6) are then fed into the max-pooling layer to capture the

most important information.

cj = (cj1, c
j
2, c

j
3, c

j
4, ..., c

j
n−w+1) (3.6)

Max-pooling layer reduces the dimensionality of each feature map by taking the

maximum value from values in Equation 3.6. Lastly, the max-pooling layer feeds its

output into a fully connected layer with a ”tanh” activation function. The size of

this layer is equivalent to the size of the last hidden layer of the MLP model.

3.4.4 Prediction layer

The outcome of the MLP model and the CNN model are the learned latent features

with the same dimensions. The prediction layer concatenates the two sets of latent

features and applies a multiplication function (Equation 3.7). The multiplication

function is the element-wise multiplication that takes two vectors of the same size,

n, and return a single vector of size n also. It simply multiplies vectors A and B,

element by element.

Cn = (An ×Bn) = Ai ×Bi (3.7)

The result of the multiplication function is then fed to the factorization machines

(FM) layer that applies a sigmoid function (Equation 3.8) to its output. The sigmoid

neuron outputs a continuous range of values between 0 and 1 as the predicted rating

32

of our model.

f(x) =
1

1 + e−x
(3.8)

Therefore, it is essential to normalize our ratings before the training phase to

be in the same range [0,1], instead of being in the range of [1,5]. In the testing

phase, we need to convert the predicted rating back into the original range of [1,5]

by de-normalization. The normalization process is shown in Equation 3.9, while the

de-normalization process is shown in Equation 3.10:

N(x̂i) =
xi −min(x)

max(x)−min(x)
(3.9)

D(xi) = x̂i × (max(x)−min(x)) +min(x), (3.10)

where min(x) is the minimum rating value, max(x) is the maximum rating value,

and i refers to each sample in the dataset.

Since the output of our model is a real-value between 0 and 1, the most straightfor-

ward and suitable loss function for the training is the binary cross entropy (Equation

3.11). As it is shown in the equation, the cross entropy loss value increases as the

predicted rating value varies from the actual rating value.

Entropy(yi, ŷi) = −(yilog(ŷi) + (1− yi)log(1− ŷi)), (3.11)

where yi is the actual rating value, ŷi is the predicted rating value, and i refers to

each sample in the dataset.

33

3.5 Experiments

We have performed extensive experiments on different datasets to evaluate our model

against other state-of-the-art approaches. Our model is implemented in Python with

Tensorflow [72], a well-known Python library for deep learning implemented by

Google. We first describe the datasets and evaluation metrics that are used to evalu-

ate DeepHCF in Section 3.5.1. Then, we describe the state-of-the-art approaches in

Section 3.5.2. The experimental settings are then defined in Section 3.5.3. Section

3.5.4 shows the impact of using pre-training for word embeddings. Afterwards, the

impact of tuning some hyper-parameters on the performance of DeepHCF is reported

in Section 3.5.5 Lastly, the performance results are shown in Section 3.5.6.

3.5.1 Datasets

In our experiments, we use four real-world datasets from two different platforms for

our evaluation. Three datasets are collected from Amazon product data1, while the

remaining dataset is taken from MovieLens2. The four datasets are categorized into

two categories based on the platform from which they are collected, which are the

following:

• MovieLens: This movie rating dataset has been widely used to evaluate col-

laborative filtering approaches. This version of this dataset has one million

ratings with a sparsity of around 95.35%. It is considered a relatively denser

dataset compared to Amazon datasets. It has explicit ratings that go from one

to five. However, the MovieLens dataset does not have movie reviews in its

original format. Therefore, reviews for each movie are obtained from IMDB3.

1http://jmcauley.ucsd.edu/data/amazon
2https://grouplens.org/datasets/movielens
3http://www.imdb.com

34

0 1 2 3 4 5
N

0.0

0.2

0.4

0.6

0.8

ra
tio

 o
f i

te
m

s
AIV
AAA
ADM
ML-1M

Figure 3.3: Ratio of items that have been rated by N or fewer users in Amazon
Instant Video (AIV), Amazon Android Apps (AAA), Amazon Digital Music (ADM),
and MovieLens-1M (ML-1M) datasets.

• Amazon: This category has three datasets: Amazon Instant Video, Amazon

Android Apps, and Amazon Digital Music. This category is critical for most ex-

isting approaches due to its high data sparsity that exceeds 99.9%. All datasets

contain explicit ratings from one to five and also contain product reviews from

Amazon, which are collected between May 1996 and July 2014. More details

about the datasets are shown in Table 3.1.

Figure 3.3 shows the ratio of items that have been rated only by five or fewer

users. As the plot shows, more than half of items in Amazon datasets have only two

or fewer ratings. Moreover, 95% of items in Amazon Digital Music dataset have five

35

Table 3.1: Description of MovieLens and Amazon datasets.

Dataset #Users #Items #Ratings Sparsity%

MovieLens-1M 6,040 3,544 993,482 95.35%
Amazon Instant Video 29,757 15,149 135,188 99.97%
Amazon Android Apps 240,931 51,598 1,322,838 99.98%
Amazon Digital Music 56,810 156,493 351,762 99.99%

or fewer ratings. On the contrary, MovieLens-1M is much denser, where at least 90%

of movies have been rated by more than five users.

We split each dataset randomly into a training set (80%), a validation set (10%),

and a test set (10%). The training set is used to train our model. The validation

set is used to stop the model’s training early to avoid overfitting. This technique is a

form of regularization. The test set is used to compute the performance of our model

against the state-of-the-art methods. We use the same sets with all the state-of-the-

art methods for the purpose of fair comparison.

Mean Absolute Error (MAE) and Root-Mean-Square Error (RMSE) are used for

our evaluations. Lower MAE (Equation 3.12) and lower RMSE (Equation 3.13) in-

dicate a better performance.

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.12)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.13)

3.5.2 State-of-the-art approaches

Since Convolutional Matrix Factorization (ConvMF+) [53] was extensively evalu-

ated against previous state-of-the-art models like Probabilistic Matrix Factorization

36

(PMF) [19], Collaborative Topic Regression (CTR) [4], and Collaborative Deep

Learning (CDL) [34] and was shown to have better performance by a wide margin,

we decide not to repeat those same comparisons in this work and only compare our

model with ConvMF+ and the following baseline approaches:

• User Average: This approach calculates the average rating for each user in

the training set and assigns this value for future prediction. If the user is not

found in the training set, the global average will be assigned as a prediction.

• Item Average: This approach calculates the average rating for each item in

the training set and assigns this value for future prediction. If the item is not

found in the training set, the global average will be assigned as a prediction.

• BPMF: Bayesian Probabilistic Matrix Factorization [20] has proven to be an

improvement over PMF by adding a Bayesian treatment into its model. It is

trained using Markov Chain Monte Carlo (MCMC).

• ALS-WR: Alternating Least Squares with Weighted Regularization [73] is

a matrix factorization method that uses alternating least squares (ALS) with

weighted lambda regularization.

ConvMF+ [53] uses both ratings matrix and item reviews similarly as DeepHCF to

train a CNN with PMF, while the other baselines use only the rating matrix data

for their predictions. Although User Average and Item Average approaches seem

very naive, we intentionally add these two basic methods to show that some recent

approaches, ConvMF+ for example, fail in some cases, something that is described in

detailed at the performance comparison section. For BPMF and ALS-WR, we used

the GitHub4 implementation for both approaches.

4https://github.com/chyikwei/recommend

37

Figure 3.4: A five-stage procedure for preprocessing item reviews.

3.5.3 Experimental settings

We follow the same experimental settings as the aforementioned state-of-the-art ap-

proaches [53, 4, 34]. Items that do not have reviews are removed from the dataset.

Moreover, users who have fewer than three ratings are also removed in Amazon

datasets. After that, the items’ reviews in each dataset are preprocessed using a

five-stage procedure, as displayed in Figure 3.4. First, each review block has a lot

of information (such as “reviewer ID”, “item ID”, “reviewer name”, “rating helpful-

ness”, “review text”, “overall rating”, “review summary”, and “review time”), but we

are only interested in two pieces of information from that block: the plain text of the

review, and the item ID. An example of what each review block looks like is displayed

in Figure 3.5. Second, we group all the items’ reviews by the item ID. Third, all stop

words (such as “the”, “is”, or “a”) are removed from each review. Stop words are

not unique identifiers that can be used to classify and group documents with one an-

other. We also remove all corpus-specific stop words that have a document frequency

of more than 0.5. In other words, words that appear in more than 50% of the reviews

are removed because they are not considered to be unique identifiers as well. For

example, even though words like “movie” and “actor” seem to be unique identifiers

38

Figure 3.5: An example of one review block from the Amazon Instant Video dataset.

in general, they are not in case of we have reviews from movies dataset; because they

appear most frequently in movies’ reviews. Fourth, we calculate the term frequency-

inverse document frequency (TF-IDF) score for each word. TF-IDF [74] is a frequent

technique used in the information retrieval field to measure the importance of each

word (W) in the collection of documents (D). The TF-IDF score can be calculated

as the multiplication of the term frequency (TF) by the inverse document frequency

(IDF), i.e., TF-IDF = TF · IDF, such that:

TF =
of occurrences of word W in document D

Total # of words in document D
(3.14)

IDF = log (
Total # of documents

of documents containing word W
) (3.15)

where IDF = 0 if a word appears in all documents. Stop words usually have this

value. Therefore, this metric is very practical for filtering words, such that frequent

words have lower scores while unique words have higher scores.

Finally, after the TF-IDF score of each word is calculated, only the top 8000

distinct words are selected. Also, we limit the maximum review length to 200 words.

For MLP layers, we set the embedding size for both user and item attributes to

64 dimensions. Also, we use the dropout technique with values of [0.1 and 0.25] for

39

regularization. In the same way for CNN, we use three different window sizes [1, 2,

and 3] for the convolutional layers to represent the surrounding words, and we use

64 filters per window size. In addition, we use a dropout rate equal to 0.25 to avoid

overfitting. Lastly, the pre-trained word embeddings5 of 200 dimensions are used to

initialize the word embedding vectors.

3.5.4 Impact of pre-training

Figures 3.6 and 3.7 show the state of each epoch of our model, DeepHCF, with and

without pre-training CNN embeddings on MovieLens-1M and Amazon Instant Video

dataset. We can observe from Figures 3.6 and 3.7 that the Amazon datasets in

general converge very quickly with only two epochs; this is due clearly to the high

sparsity of the datasets, while MovieLens-1M converges with 18 epochs of training.

On the other hand, with or without Glove word embeddings to initialize our CNN

embeddings vectors as pre-training, DeepHCF displays a fast convergence within both

datasets. Thus, pre-training does not improve our model performance, and a random

initialization can achieve results equivalent to the results with word embeddings pre-

training. In contrast to the significant impact of pre-training on other approaches,

this result demonstrates that DeepHCF is insensitive to parameter initialization of

the embedding layer.

3.5.5 Impact of hyper-parameters tuning

To determine the best hyper-parameters values that maximize our model perfor-

mance, we run our model on different setting values regarding the dimension size

of the MLP embeddings and the batch size of the MovieLens-1M (MovieLens) and

5http://nlp.stanford.edu/projects/glove

40

0 5 10 15 20 25
epoch

0.560

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

lo
ss

MovieLens-1M
train
valid

(a) With pre-training

0 5 10 15 20 25 30
epoch

0.560

0.565

0.570

0.575

0.580

0.585

0.590

0.595

0.600

lo
ss

MovieLens-1M
train
valid

(b) Without pre-training

Figure 3.6: Training and validation loss values of each epoch using the MovieLens-1M
dataset, with and without pre-training.

0 5 10 15 20 25
epoch

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

lo
ss

Amazon Instant Video
train
valid

(a) With pre-training

0 5 10 15 20 25
epoch

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

lo
ss

Amazon Instant Video
train
valid

(b) Without pre-training

Figure 3.7: Training and validation loss values of each epoch using the Amazon
Instant Video dataset, with and without pre-training.

41

(a) Embeddings size (b) Batch size

Figure 3.8: The impact of hyper-parameters tuning on DeepHCF performance for:
(a) dimension of MLP embeddings, and (b) batch size.

the Amazon Instant Video (Amazon) datasets. First, when we set the embeddings

dimension for our MLP network to one of the following values {8, 16, 32, 64, 128,

256}, we find that the best performance occurs when we set the dimension to 64, as

Figure 3.8a shows. Similarly, we repeat the same procedure for the batch size, where

values are in the following range {16, 32, 64, 128, 256, 512, 1024}. We find that using

more than 256 training examples decrease the performance, and the optimal batch

size in our case is between 128 and 256, as Figure 3.8b shows.

3.5.6 Performance comparison

For each dataset, we run three experiments, with the average error is reported in this

section. The performance of DeepHCF and the other baselines are reported in the next

two sub-sections. DeepHCF outperforms all baselines on the Amazon datasets and

shows competitive results on the MovieLens-1M dataset according to both metrics:

MAE and RMSE. The improvement rate in each table indicates the improvement in

error for our model, DeepHCF, over the second most accurate method.

42

Table 3.2: Performance results of our model, DeepHCF, against other baselines using
the MovieLens-1M dataset. Best values are marked in bold.

Approach MovieLens-1M

MAE RMSE

User Average 0.830 1.036
Item Average 0.781 0.979

BPMF 0.678 0.869
ALS-WR 0.675 0.861

ConvMF+ 0.678 0.861
DeepHCF 0.674 0.867

Improvement% 0.14% -

Table 3.3: Performance results of our model, DeepHCF, against other baselines using
Amazon Instant Video (AIV), Amazon Android Apps (AAA), and Amazon Digital
Music (ADM) datasets. Best values are marked in bold.

Approach AIV AAA ADM

MAE RMSE MAE RMSE MAE RMSE

User Average 0.778 1.168 1.005 1.373 0.569 0.917
Item Average 0.788 1.079 0.975 1.250 0.625 0.943

BPMF 0.817 1.103 1.024 1.326 0.612 0.910
ALS-WR 0.856 1.141 1.087 1.423 0.631 0.919

ConvMF+ 0.866 1.149 0.994 1.307 0.661 0.934
DeepHCF 0.688 0.994 0.896 1.180 0.520 0.830

Improvement% 11.43% 7.87% 8.10% 5.60% 8.61% 8.97%

Average Improvement% MAE= 9.38%, RMSE= 7.42%

43

ConvMF+ has two attributes, λi and λj, that should be manually set and are

significant to its performance. Thus, we use the same values the original authors

used in their paper for the MovieLens-1M, i.e., λi = 100 and λj = 10. However,

for all Amazon datasets, we search in the grid of [1, 10, 100] and find that best

performance is given when λi = 1 and λj = 100.

MovieLens-1M dataset

This dataset has a level of sparsity equal to 95.35%. Table 3.2 summarizes the

performance on this dataset. As the table shows, BPMF, ALS-WR, and ConvMF+

perform very well and have much better performance than the other straightforward

methods, User Average and Item Average. DeepHCF as well performs well on this

dataset and achieves a comparable performance with other baselines. This result

demonstrates that most of the existing collaborative filtering approaches, including

DeepHCF, are effective and powerful with relatively denser datasets.

Amazon datasets

This category has three datasets, all of which are extremely sparse, something that

poses a significant challenge to all collaborative filtering approaches to make accu-

rate recommendations. All datasets have a sparsity of more than 99.9%. Table 3.3

summarizes the performance of all methods on Amazon datasets. We can observe

from Table 3.3 that ConvMF+ performs poorly compared to other approaches in this

category due to the high percentage of sparsity. Furthermore, the two naive methods,

Item Average and User Average, have a better score than ConvMF+ in terms of both

metrics. We believe that the user latent vector of ConvMF+, which is learned by

PMF, does not represent the user features very accurately in the Amazon datasets.

44

On the contrary, our model, DeepHCF, achieves a substantial improvement over

the second most accurate method in Amazon Instant Video, Amazon Android Apps,

Amazon Digital Music datasets by a marginal improvement in RMSE of 7.87%, 5.60%,

and 8.97% respectively. The average improvement in RMSE over the three datasets

is 7.42%. This significant gain demonstrates that the DeepHCF model works much

better than the other methods on very sparse datasets, such as the Amazon datasets.

We believe that using MLP to learn the user representation, and CNN to analyze the

sentiment in text reviews are more powerful and robust with extraordinarily sparse

datasets.

3.6 Conclusion

In this work, we develop a deep learning method to address the data sparsity prob-

lem of collaborative filtering approaches in recommendation systems. We introduce

DeepHCF, a deep learning network for hybrid collaborative filtering, composed of two

sub-networks trained jointly with two different sources of data. A prediction layer

with factorization machines is built on top of the two models to utilize their outcome

for our final prediction. We evaluate our model on four different real-world datasets

against five methods. The evaluation results show that DeepHCF achieves superior

performance in both metrics, MAE and RMSE, in the case of three datasets with

extreme data sparsity, while it achieves a competitive performance when the data is

relatively denser. In conclusion, our model is effective on both dense and sparse data.

45

Chapter 4

CATA: A Collaborative Attentive
Autoencoder Method for
Recommending Scientific Articles

4.1 Abstract

Matrix Factorization (MF) is a successful collaborative filtering approach used in rec-

ommendation systems. However, its performance decreases significantly when users

of the system have limited, inadequate feedback data. This problem is also known as

the data sparsity problem. To handle this problem, hybrid approaches were proposed

recently to integrate items’ contextual information with MF-based approaches, which

improved the performance of recommendations. Nevertheless, learning better repre-

sentation of the items’ contents is still a challenge that needs to be further enhanced.

In this work, we propose a Collaborative Attentive Autoencoder (CATA) that learns

latent factors of items through an attention mechanism that can capture the most

pertinent part of information for making better recommendations. Comprehensive

46

experiments on two real-world datasets have shown our method performs better than

the state-of-the-art models according to various evaluation metrics.

4.2 Introduction

Scientific article recommendation is a very common application for RSs. It keeps

researchers updated on recent related work in their field. One traditional way to

find relevant articles is to go through the references section in other articles. Yet,

this approach is biased toward heavily cited articles, such that new relevant articles

with higher impact have less chance to be found. Another method is to search for

articles using keywords. Although this technique is popular among researchers, they

must filter out a tremendous number of articles from the search results to retrieve

the most suitable articles. Moreover, all users get the same search results with the

same keywords, and these results are not personalized based on the users’ personal

interests. Thus, recommendation systems can address this issue and help scientists

and researchers find valuable articles while being aware of recent related work.

Deep learning (DL) recently has become an effective approach for most computer

science problems. DL meets recommendation systems the last few years and has

shown superiority over traditional CF models. One of the first works to apply DL

for CF recommendations is Restricted Boltzmann Machines (RBM) [37]. However,

this approach is not deep enough (two layers only) to learn users’ tastes from their

histories, and it does not take contextual information in consideration. Later on,

Collaborative Deep Learning (CDL) [34] became the state-of-the-art method in DL-

based RSs. Recently, Collaborative Variational Autoencoder (CVAE) [39] has been

proposed which uses a variational autoencoder to handle the item contents, and has

shown to have better predictions over CDL. However, both CDL and CVAE mod-

47

els assume that all parts of their model’s contribution are the same for their final

predictions.

Hence, in this work, we propose a deep learning-based model named Collaborative

Attentive Autoencoder (CATA) for recommending scientific articles. In particular,

we integrate the attention mechanism into our unsupervised deep learning process to

identify an item’s features. We learn the item’s features from the article’s textual

information (e.g., the article’s title and abstract) to enhance the recommendation

quality. The compressed low-dimensional representation learned by the unsupervised

model is incorporated then into the matrix factorization approach for our ultimate

recommendation. To demonstrate the capability of our proposed model to generate

more relevant recommendations, we conduct inclusive experiments on two real-world

datasets, which are taken from the CiteULike1 website, to evaluate CATA against

multiple recent works. The experimental results prove that our model can extract

more constructive information from an article’s contextual data than other models.

More importantly, CATA performs very well where the data sparsity is extremely

high.

The remainder of this chapter is organized in the following manner. First, we

demonstrate essential background and related work in Section 4.3. Our model, CATA,

is introduced in Section 4.4. The experimental results of our model against the state-

of-the-art models are discussed thoroughly in Section 4.5. We then conclude our work

in Section 4.6.

1www.citeulike.org

48

Table 4.1: A summary description of notations used in this chapter.

Notation Meaning

n Number of users
m Number of articles
d Dimension of the latent factors
R User-article matrix
U Latent factors of users
V Latent factors of articles
C Confidence matrix
P Users preferences matrix
Xj Article’s side information, i.e., title and abstract
Tj Article’s side information, i.e., tags and citations

θ(Xj) Mapping function for input Xj of the first autoencoder
γ(Tj) Mapping function for input Tj of the second autoencoder
Zj Compressed representation of Xj

Yj Compressed representation of Tj
λu Regularization parameter for users
λv Regularization parameter for articles

4.3 Background

Our work is designed and evaluated on recommendations with implicit feedback.

Thus, in this section, we describe the well-known collaborative filtering approach,

Matrix Factorization, for implicit feedback problems. After that, we describe one of

the recent ideas in deep learning community that is incorporated into our model in

this chapter, the attention mechanism. Table 4.1 summarizes all the notations used

in chapter 4 and chapter 5 to describe our approaches.

4.3.1 Matrix factorization

Matrix Factorization (MF) [75] is the most popular CF method, mainly due to its

simplicity and efficiency. The idea behind MF is to decompose the user-item matrix,

R ∈ Rn×m, into two lower-dimensional matrices, U ∈ Rn×d and V ∈ Rm×d, such that

49

Figure 4.1: Matrix Factorization illustration.

the inner product of U and V will approximate the original matrix R, where d is the

dimension of the latent factors, such that d� min(n,m).

R ≈ U · V T (4.1)

Figure 4.1 illustrates the MF process. For example, the approximation rating for

user i to item j, rij, can be computed as the dot product of vector ui with vector vTj .

MF optimizes the values of U and V by minimizing the sum of the squared dif-

ference between the actual values and the model predictions with adding two regu-

larization terms, as shown here:

L =
∑
i,j∈R

Iij
2

(rij − uivTj)2 +
λu
2
‖ui‖2 +

λv
2
‖vj‖2 (4.2)

where Iij is an indicator function that equals 1 if useri has rated itemj, and 0 if other-

wise. Also, ||U || and ||V || are the Euclidean norms, and λu, λv are two regularization

terms preventing the values of U and V from being too large. This avoid model

overfitting.

50

Explicit data, such as ratings (rij) are not regularly available. Therefore, Weighted

Regularized Matrix Factorization (WRMF) [12] introduces two modifications to the

previous objective function to make it work for implicit feedback. The optimization

process in this case runs through all user-item pairs with different confidence levels

assigned to each pair, as in the following:

L =
∑
i,j∈R

cij
2

(pij − uivTj)2 +
λu
2
‖ui‖2 +

λv
2
‖vj‖2 (4.3)

where pij is the user preference score with a value of 1 when useri and itemj have an

interaction, and 0 otherwise. cij is a confidence variable where its value shows how

confident the user like the item. In general, cij = a when pij = 1, and cij = b when

pij = 0, such that a > b > 0.

Stochastic Gradient Decent (SGD) [76] and Alternating Least Squares (ALS) [73]

are two optimization methods that can be used to minimize the objective function of

MF in Equation 4.2. The first method, SGD, loops over each single training sample

and then computes the prediction error as:

eij = rij − uivTj (4.4)

The gradient of the objective function with respect to ui and vj can be computed

as the following:
∂L
∂ui

= −
∑
j

Iij(rij − uivTj)vj + λuui

∂L
∂vj

= −
∑
i

Iij(rij − uivTj)ui + λvvj

(4.5)

After calculating the gradient, SGD updates the user and item latent factors in

51

the opposite direction of the gradient using the following equations:

ui ← ui + α(
∑
j

Iijeijvj − λuui)

vj ← vj + α(
∑
i

Iijeijui − λjvj)
(4.6)

where α is the learning rate. Learning rate is usually set with a very small number

(e.g., 0.001). Setting the learning step with too large number may lead into missing

the minimum. However, if it is too small, it takes more time for the model to converge.

Even though SGD is easy to implement and generally faster than ALS in some

cases, it is not suitable to use with implicit feedback, since looping over each single

training sample is not practical. ALS works better in this case. ALS iteratively

optimizes U while V is fixed, and vice versa. This optimization process is repeated

until the model converges.

To determine what user and item vector values minimize the objective function

for implicit data (Equation 4.3), we first take the derivative of L with respect to ui.

∂L
∂ui

= −
∑
j

cij(pij − uivTj)vj + λuui

0 = −Ci(Pi − uiV T)V + λuui

0 = −CiV Pi + CiV uiV
T + λuui

V CiPi = uiV CiV
T + λuui

V CiPi = ui(V CiV
T + λuI)

ui = V CiPi(V CiV
T + λuI)−1

ui = (V CiV
T + λuI)−1V CiPi

(4.7)

where I is the identity matrix.

52

Similarly, taking the derivative of L with respect to vj leads to:

vj = (UCjU
T + λvI)−1UCjPj (4.8)

4.3.2 Attention mechanism

The idea of the attention mechanism is motivated by the human vision system and

how our eyes pay attention and focus on a specific part of an image, or specific

words in a sentence, for example. In the same way, attention in deep learning can be

described simply as a vector of weights to show the importance of the input elements.

Thus, the intuition behind attention is that not all parts of the input are equally

significant, i.e., only few parts are significant for the model. Attention was initially

designed for a neural machine translation system [77], and then successfully applied

in other contexts such as image classification [78], and document classification [79].

Recently, attention mechanism has been adopted frequently in natural language

processing (NLP) applications, where the it can pay attention to different parts of

the text input. In particular, attention is able to determine the contribution of

each text’s segment by computing the weighted sum of all input segments, and then

assigning different scores to each segment via alignment score function. Currently,

there are several variations of the attention mechanism, which has been introduced in

the literature, such as the global attention [80], the local attention [80], and the self-

attention [81]. For instance, the global attention works on the entire input sequence,

while the local attention is only applied to a subset of the sequence, such that the

local attention has less computational complexity.

Attention has also been successfully applied in different recommendation tasks [82,

83, 84, 85, 86, 87]. For example, MPCN [84] is a multi-pointer co-attention network

53

Rij

VjUi

Xj

Encoder

Decoder

X̂j

Zj

λu λv

j	=	1:m

SoftmaxX

Attention

i	=	1:n

Figure 4.2: Collaborative Attentive Autoencoder (CATA) architecture.

that takes user and item reviews as input, and then extracts the most informative

reviews that contribute more in predictions. Also, D-Attn [86] uses a convolutional

neural network with dual attention (local and global attention) to represent the user

and the item latent representations similarly like the matrix factorization approach.

Moreover, NAIS [87] employs an attention network to distinguish items in a user

profile, which have more influential effects in the model predictions.

4.4 Proposed model

In this section, we illustrate our proposed model in depth. The intuition behind our

model is to learn the latent factors of items in PMF with the use of available side

54

textual contents via an attentive unsupervised learning that can catch more plentiful

information from the available data. The architecture of our model is displayed in

Figure 4.2. We clarify each part of our model individually in the next two sections.

4.4.1 The attentive autoencoder

Autoencoder [88] is an unsupervised learning neural network that is useful for com-

pressing high-dimensional input data into a lower-dimensional representation while

preserving the abstract nature of the data. The autoencoder network is generally

composed of two main components, i.e., the encoder and the decoder. The encoder

takes the input and encodes it through multiple hidden layers and then generates a

compressed representative vector, Zj. The encoding function can be formulated as

Zj = f(Xj). Subsequently, the decoder can be used then to reconstruct and estimate

the original input, X̂j, using the representative vector, Zj. The decoder function can

be formulated as X̂j = f(Zj). Each the encoder and the decoder usually consist of

the same number of hidden layers and neurons. The output of each hidden layer is

computed as follows:

h(`) = σ(h(`−1)W (`) + b(`)) (4.9)

where (`) is the layer number, W is the weights matrix, b is the bias vector, and σ

is a non-linear activation function. We use the Rectified Linear Unit (ReLU) as the

activation function.

Our model takes input from the article’s textual data, Xj = {x1, x2, ..., xs}, where

xi is a value between [0, 1] and s represents the vocabulary size of the articles’ titles

and abstracts. In other words, the input of our autoencoder network is a normalized

bag-of-words histograms of filtered vocabularies of the articles’ titles and abstracts.

Batch normalization (BN) [89] has been proven to be a proper solution for the

55

internal covariant shift problem, where the layer’s input distribution in deep neural

networks changes across the time of training, and causes difficulty in training the

model. In addition, BN can work as a regularization procedure like Dropout [90]

in deep neural networks. Accordingly, we apply a batch normalization layer after

each hidden layer in our autoencoder to obtain a stable distribution from each layer’s

output.

Furthermore, we use the idea of attention mechanism to work between the encoder

and the decoder such that only relevant parts of the encoder output are selected for

the input reconstruction. It calculates the scores as the probability distribution of

the encoder’s output using the softmax(.) function.

f(zc) =
ezc∑
d e

zd
(4.10)

The probability distribution and the encoder output are then multiplied using

element-wise multiplication function to get Zj.

We use the attentive autoencoder to pretrain the items contextual information

and then integrate the compressed representation, Zj, in computing the items latent

factors, Vj, from the matrix factorization method. The dimension space of Zj and Vj

are set to be equal to each other. Finally, we adopt the binary cross-entropy (Equation

4.11) as the loss function we want to minimize of our attentive autoencoder model.

L = −
∑
k

(
yk log(pk)− (1− yk) log(1− pk)

)
(4.11)

where yk corresponds to the correct labels, and pk corresponds to the predicted values.

The value of p that minimizes the previous loss function the most is when p = y,

which makes it fit for our autoencoder. To verify that, taking the derivative of the

56

loss function to respect to p results into:

∂L
∂p

= −y(
1

p
)− (1− y)(

−1

1− p
)

−y
p

+
1− y
1− p

= 0

− y(1− p) + (1− y)p = 0

− y + yp+ p− yp = 0

− y + p = 0

p = y

(4.12)

4.4.2 Probabilistic matrix factorization

Probabilistic Matrix Factorization (PMF) [19] is a probabilistic linear model where

the prior distributions of the latent factors and users’ preferences are drawn from

Gaussian normal distribution.

ui ∼ N (0, λ−1u I)

vj ∼ N (0, λ−1v I)

pij ∼ N (uiv
T
j , σ

2)

(4.13)

We integrate the items’ contents, trained through the attentive autoencoder, into

PMF. Therefore, the objective function in Equation 4.3 has been changed slightly to

become:

L =
∑
i,j∈R

cij
2

(pij − uivTj)2 +
λu
2
‖ui‖2 +

λv
2
‖vj − θ(Xj)‖2 (4.14)

where θ(Xj) = Encoder(Xj) = Zj.

Thus, taking the partial derivative of our previous objective function with respect

to both ui and vj results in the following equations that minimize our objective

57

function the most:

ui = (V CiV
T + λuI)−1V CiPi

vj = (UCjU
T + λvI)−1UCjPj + λvθ(Xj)

(4.15)

4.4.3 Prediction

After our model has been trained and the latent factors of users and articles, U and

V , are identified, we calculate our model’s prediction scores of useri and each article

as the dot product of vector ui with all vectors in V as scoresi = uiV
T . Then, we

sort all articles based on our model predication scores in descending order, and then

recommend the top-K articles for that useri. We go through all users in U in our

evaluation and report the average performance among all users. The overall process

of our approach is illustrated in Algorithm 1.

Algorithm 1: CATA algorithm

1 pre-train autoencoder with input X;

2 Z ← θ(X);
3 U, V ← Initialize with random values;

4 while <NOT converge> do
5 for <each user i> do
6 ui ← update using Equation 4.15;

7 end for
8 for <each article j> do
9 vi ← update using Equation 4.15;

10 end for

11 end while
12 for <each user i> do
13 scoresi ← uiV

T;

14 sort(scoresi) in descending order;

15 end for
16 Evaluate the top-K recommendations;

58

Table 4.2: Description of CiteULike datasets.

Dataset #Users #Articles #Pairs Sparsity%

Citeulike-a 5,551 16,980 204,986 99.78%
Citeulike-t 7,947 25,975 134,860 99.93%

4.5 Experiments

In this section, we conduct extensive experiments aiming to answer the following

research questions:

• RQ1: How does our proposed model, CATA, perform against state-of-the-art

methods?

• RQ2: Does adding the attention mechanism actually improve our model per-

formance?

• RQ3: How could different values of the regularization parameters (λu and λv)

affect CATA performance?

• RQ4: What is the impact of different dimension values of users and items’

latent space on CATA performance?

• RQ5: How many training epochs are sufficient for pretraining our autoencoder?

We first describe the datasets, evaluation methodology, baselines, and then followed

by the experimental results answering the previous research questions.

4.5.1 Datasets

Two scientific article datasets are used to evaluate our model against state-of-the-

art methods. Both datasets are collected from CiteULike domain. The first dataset

59

Figure 4.3: A five-stage procedure for preprocessing article titles and abstracts.

is called Citeulike-a, which is collected by [4], has 5,551 users, 16,980 articles, and

204,986 user-article pairs. The sparseness of this dataset is extremely high, where

only around 0.22% of the user-article matrix has interactions. Each user has at least

ten articles in his or her library. On average, each user has 37 articles in his or her

library and each article has been added to 12 users’ libraries. On the other hand,

the second dataset is called Citeulike-t, which is collected by [32]. It has 7,947 users,

25,975 articles, and 134,860 user-article pairs. This dataset is actually sparser than

the first one with only 0.07% available user-article interactions. Each user has at least

three articles in his or her library. On average, each user has 17 articles in his or her

library and each article has been added to five users’ libraries. Brief statistics of the

datasets are shown in Table 4.2.

Title and abstract of each article are given. The average number of words per

article in both title and abstract after our text preprocessing is 67 words in Citeulike-a,

and 19 words in Citeulike-t. We follow the same preprocessing techniques as the state-

of-the-art models [34, 4, 39]. A five-stage procedure to preprocess the textual content

is displayed in Figure 4.3. Each articles title and abstract are combined together and

then are preprocessed such that stop words are removed. After that, top-N distinct

60

(a) Citeulike-a (b) Citeulike-t

Figure 4.4: The percentage of the data entries that forms the training and testing
sets in CiteULike datasets.

words based on the TF-IDF measurement are picked out. 8,000 distinct words are

selected for Citeulike-a, while 20,000 distinct words are selected for Citeulike-t to

form the bag-of-words histogram, which are then normalized into values between 0

and 1 based on the vocabularies’ occurrences.

4.5.2 Evaluation methodology

We follow the state-of-the-art techniques [39, 34, 32] to generate our training and

testing sets. For each dataset, we create two versions of the dataset for sparse and

dense settings. In total, four dataset cases are used in our evaluation. To form the

sparse (P = 1) and the dense (P = 10) datasets, P items are randomly selected from

each user library to generate the training set while the remaining items from each

user library are used to generate the testing set. As a result, when P = 1, only 2.7%

and 5.9% of the data entries are used to generate the training set in Citeulike-a and

Citeulike-t, respectively. Similarly, 27.1% and 39.6% of the data entries are used to

generate the training set when P = 10 as Figure 4.4 shows.

61

We use recall and Discounted Cumulative Gain (DCG) as our evaluation metrics

to test how our model performs. Recall is usually used to evaluate recommender

systems with implicit feedback. However, precision is not favorable to use with im-

plicit feedback because the zero value in the user-article interaction matrix has two

meanings: either the user is not interested in the article, or the user is not aware of

the existence of this article. Therefore, using the precision metric only assumes that

for each zero value the user is not interested in the article, which is not the case.

Recall per user can be measured using the following formula:

recall@K =
Relevant Articles ∩K Recommended Articles

Relevant Articles
(4.16)

where K is set manually in the experiment and represents the top K articles of each

user. We set K = 50, 100, 150, 200, 250, and 300 in our evaluations. The overall

recall can be calculated as the average recall among all users. If K equals the number

of articles in the dataset, recall will have a value of 1.

Recall, however, does not take into account the ranking of articles within the

top-K recommendations, as long as they are in the top-K list. However, DCG does.

DCG shows the capability of the recommendation engine to recommend articles at

the top of the ranking list. Articles in higher ranked K positions have more value

than others. The DCG among all users can be measured using the following equation:

DCG@K =
1

|U |

|U |∑
u=1

K∑
i=1

rel(i)

log2(i+ 1)
(4.17)

where |U | is the total number of users, i is the rank of the top-K articles recommended

by the model, and rel(i) is an indicator function that outputs 1 if the article at rank

i is a relevant article, and 0 otherwise.

62

4.5.3 State-of-the-art approaches

We evaluate our approach against two recent hybrid approaches, as they are described

below:

• CML+F: Collaborative Metric Learning (CML) [91] is a metric learning model

that pulls items liked by a user closer to that user. Recommendations are then

generated based on the K-Nearest Neighbor of each user. CML+F additionally

uses a neural network with two fully connected layers to train items’ features

(articles’ tags in this work) to update items’ location. CML+F has been shown

to have a better performance than CML.

• CVAE: Collaborative Variational Autoencoder (CVAE) [39] is a probabilistic

model that jointly models both user-item matrix and items content using a

variational autoencoder (VAE) with a probabilistic matrix factorization (PMF).

It can be considered as the baseline of our proposed approach since they share

the same strategy.

We omit comparisons with some well-known hybrid collaborative filtering approaches

such as CTR [4], CDL [34], DeepMusic [29], and VBPR [92] because they have been

already outperformed by CVAE and CML+F.

For hyper-parameter settings, we set the confidence variables (i.e., a and b) to

a = 1, and b = 0.01. These are the same values used in CVAE as well. Also, a four-

layer network is used to construct our attentive autoencoder. The four-layer network

has the following shape “#Vocabularies-400-200-100-50-100-200-400-#Vocabularies”.

63

Table 4.3: Parameter settings for λu and λv for our model, CATA, and CVAE.

Approach Citeulike-a Citeulike-t

Sparse Dense Sparse Dense

λu λv λu λv λu λv λu λv

CVAE 0.1 10 1 10 0.1 10 0.1 10
CATA 10 0.1 10 0.1 10 0.1 10 0.1

4.5.4 Experimental results

For each dataset, we repeat the data splitting four times with different random splits

of training and testing set, which has been previously described in the evaluation

methodology section. We use one split as a validation experiment to find the optimal

parameters of λu and λv for our model and CVAE as well. We search a grid of

the following values {0.01, 0.1, 1, 10, 100} and the best values on the validation

experiment have been reported in Table 4.3. The other three splits are used to report

the average performance of our model against the baselines. We address the research

questions that have been previously defined in the beginning of this section.

RQ1

To measure the performance of our model against the baselines, we conduct quanti-

tative and qualitative comparisons to answer this question. Figures 4.5, 4.6, 4.7, and

4.8 show the performance of the top-K recommendation under the sparse and dense

settings in both datasets. First, the sparse cases are considered a critical challenge

for any proposed model since there are less data for training. In the sparse setting

where there is only one article in each user’s library in the training set, our model,

CATA, outperforms the baselines in both datasets in terms of recall and DCG, as

figures 4.5 and 4.6 show. More importantly, CATA outperforms the baselines by a

64

wide margin in Citeulike-t, where it’s actually sparser and contains less contextual

data. This validates the robustness of our model against the data sparsity.

Second, with the dense setting where there are more articles in each user’s library

in the training set, our model performs comparably to other baselines, as figures 4.7

and 4.8 show. As a matter of fact, many of the existing models actually work well

under this setting, but poorly under the sparse setting. For example, CML+F achieves

a competitive performance on the dense data; however, it fails on the sparse data since

their metric space needs more interactions for users to capture their preferences. As

a result, this experiment demonstrates the capability of our model in making more

relevant recommendations under both sparse and dense data conditions.

In addition to the previous quantitative results, some qualitative results are re-

ported in table 4.4 as well. The table shows the top 10 recommendations of our

model, CATA, against the state-of-the-art model, CVAE, on one selected random

user under the sparse setting using Citeulike-a dataset. In this example, user50 has

only one article in his training library with a title “Machine learning”. Our model

can identify this user interests, and then recommends more general articles based on

the same topic “Machine learning” rather than recommending more specialized and

deeper articles, like the ones recommended by CVAE. For example, the recall@10 of

CATA in this example equals 3
22

= 0.136, by assuming the number of relevant articles

for this users is 22 articles, while DCG@10 equals 1
log2(4)

+ 1
log2(7)

+ 1
log2(11)

= 1.146.

From this example and other users’ examples we have examined, we can state that

our model detects the major elements of articles’ contents and users’ preferences more

accurately.

65

50 100 150 200 250 300

K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
ec

a
ll

citeulike-a Recall, P=1

CML+F

CVAE

CATA

(a) Citeulike-a recall

50 100 150 200 250 300

K

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
C

G

citeulike-a DCG, P=1

CML+F

CVAE

CATA

(b) Citeulike-a DCG

Figure 4.5: The top-K recommendation performance under the sparse setting, P = 1,
for Citeulike-a dataset.

50 100 150 200 250 300

K

0.05

0.10

0.15

0.20

0.25

R
ec

al
l

citeulike-t Recall, P=1

CML+F

CVAE

CATA

(a) Citeulike-t recall

50 100 150 200 250 300

K

0.1

0.2

0.3

0.4

0.5

D
C

G

citeulike-t DCG, P=1

CML+F

CVAE

CATA

(b) Citeulike-t DCG

Figure 4.6: The top-K recommendation performance under the sparse setting, P = 1,
for Citeulike-t dataset.

66

50 100 150 200 250 300

K

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R
ec

a
ll

citeulike-a Recall, P=10

CML+F

CVAE

CATA

(a) Citeulike-a recall

50 100 150 200 250 300

K

1.4

1.6

1.8

2.0

2.2

2.4

2.6

D
C

G

citeulike-a DCG, P=10

CML+F

CVAE

CATA

(b) Citeulike-a DCG

Figure 4.7: The top-K recommendation performance under the dense setting, P = 10,
for Citeulike-a dataset.

50 100 150 200 250 300

K

0.25

0.30

0.35

0.40

0.45

0.50

R
ec

al
l

citeulike-t Recall, P=10

CML+F

CVAE

CATA

(a) Citeulike-t recall

50 100 150 200 250 300

K

1.2

1.4

1.6

1.8

2.0

D
C

G

citeulike-t DCG, P=10

CML+F

CVAE

CATA

(b) Citeulike-t DCG

Figure 4.8: The top-K recommendation performance under the dense setting, P = 10,
for Citeulike-t dataset.

67

T
ab

le
4.

4:
A

n
ex

am
p
le

of
th

e
to

p
-1

0
re

co
m

m
en

d
at

io
n
s

of
ou

r
m

o
d
el

(C
A

T
A

)
co

m
p
ar

ed
to

th
e

C
V

A
E

m
o
d
el

u
si

n
g

th
e

C
it

eu
li
ke

-a
d
at

as
et

u
n
d
er

th
e

sp
ar

se
se

tt
in

g.

U
se

r
ID

:
50

A
rt

ic
le

s
in

tr
ai

n
in

g
se

t:
M

ac
h
in

e
le

ar
n
in

g

C
A

T
A

In
u
se

r
li
b
ra

ry
?

1.
D

at
a

m
in

in
g

p
ra

ct
ic

al
m

ac
h
in

e
le

ar
n
in

g
to

ol
s

an
d

te
ch

n
iq

u
es

N
o

2.
T

h
e

v
is

u
al

d
is

p
la

y
of

q
u
an

ti
ta

ti
ve

in
fo

rm
at

io
n

N
o

3
.

P
a
tt

e
rn

re
co

g
n
it

io
n

a
n
d

m
a
ch

in
e

le
a
rn

in
g

in
fo

rm
a
ti

o
n

sc
ie

n
ce

a
n
d

st
a
ti

st
ic

s
Y

e
s

4.
C

p
ro

gr
am

s
fo

r
m

ac
h
in

e
le

ar
n
in

g
N

o
5.

L
ea

rn
in

g
op

en
cv

co
m

p
u
te

r
v
is

io
n

w
it

h
th

e
op

en
cv

li
b
ra

ry
N

o
6
.

S
u
p
p

o
rt

v
e
ct

o
r

n
e
tw

o
rk

s
Y

e
s

7.
A

ct
iv

e
le

ar
n
in

g
fo

r
n
at

u
ra

l
la

n
gu

ag
e

p
ar

si
n
g

an
d

in
fo

rm
at

io
n

ex
tr

ac
ti

on
N

o
8.

C
p
ro

gr
am

s
fo

r
m

ac
h
in

e
le

ar
n
in

g
m

or
ga

n
ka

u
fm

an
n

se
ri

es
in

m
ac

h
in

e
le

ar
n
in

g
tr

an
sl

at
io

n
ap

p
ro

ac
h
..
.

N
o

9.
In

te
ll
ig

en
ce

w
it

h
ou

t
re

p
re

se
n
ta

ti
on

N
o

1
0
.

T
h
e

e
le

m
e
n
ts

o
f

st
a
ti

st
ic

a
l

le
a
rn

in
g

Y
e
s

C
V

A
E

In
u
se

r
li
b
ra

ry
?

1.
D

at
a

m
in

in
g

p
ra

ct
ic

al
m

ac
h
in

e
le

ar
n
in

g
to

ol
s

an
d

te
ch

n
iq

u
es

N
o

2.
T

ow
ar

d
m

ac
h
in

e
em

ot
io

n
al

in
te

ll
ig

en
ce

an
al

y
si

s
of

aff
ec

ti
ve

p
h
y
si

ol
og

ic
al

st
at

e
N

o
3.

A
ct

iv
it

y
re

co
gn

it
io

n
fr

om
u
se

ra
n
n
ot

at
ed

ac
ce

le
ra

ti
on

d
at

a
N

o
4.

E
x
tr

ac
ti

n
g

p
ro

d
u
ct

fe
at

u
re

s
an

d
op

in
io

n
s

fr
om

re
v
ie

w
s

N
o

5.
A

ct
iv

e
le

ar
n
in

g
fo

r
n
at

u
ra

l
la

n
gu

ag
e

p
ar

si
n
g

an
d

in
fo

rm
at

io
n

ex
tr

ac
ti

on
N

o
6.

L
ea

rn
in

g
op

en
cv

co
m

p
u
te

r
v
is

io
n

w
it

h
th

e
op

en
cv

li
b
ra

ry
N

o
7.

N
am

ed
en

ti
ty

ex
tr

ac
ti

on
fr

om
sp

ee
ch

N
o

8.
F

ac
e

re
co

gn
it

io
n

b
y

h
u
m

an
s

n
in

et
ee

n
re

su
lt

s
al

l
co

m
p
u
te

r
v
is

io
n

re
se

ar
ch

er
s

sh
ou

ld
k
n
ow

ab
ou

t
N

o
9.

D
es

ig
n

ex
p

er
im

en
ts

th
eo

re
ti

ca
l

an
d

m
et

h
o
d
ol

og
ic

al
ch

al
le

n
ge

s
in

cr
ea

ti
n
g

co
m

p
le

x
in

te
rv

en
ti

on
..
.

N
o

10
.

N
am

ed
en

ti
ty

re
co

gn
it

io
n

th
ro

u
gh

cl
as

si
fi
er

co
m

b
in

at
io

n
N

o

68

Table 4.5: Performance comparisons on sparse data with using attention layer (CATA)
and without (CATA–). Best values are marked in bold.

Approach Citeulike-a Citeulike-t

Recall@300 DCG@300 Recall@300 DCG@300

CATA– 0.3003 1.6644 0.2260 0.4661
CATA 0.3060 1.7206 0.2425 0.5160

RQ2

To examine the importance of adding the attention layer into our autoencoder, we

create another variant of our model that has the same architecture, but lacks the

attention layer, which we call CATA–. We evaluate this model on the sparse datasets,

and the performance comparisons are reported in Table 4.5. As the table shows,

adding the attention mechanism boosts the performance. Consequently, using the

attention mechanism gives more focus to some parts of the encoded vocabularies in

each article to better represent the contextual data, eventually leading to increased

recommendation quality.

RQ3

As we mentioned before, there are two regularization parameters, λu and λv, that

are used in the objective function of the matrix factorization model to prevent the

magnitude of the latent feature vectors from being too large, which eventually pre-

vents the model from overfitting the training data. Our previously reported results

were obtained by setting λu and λv to the numbers in Table 4.3 according to the val-

idation experiment. However, we perform multiple experiments to show the impact

of different values of λu and λv and how they affect the performance of our model.

We use different values to set the parameters from the following range {0.01, 0.1, 1,

10, 100}. Figure 4.9 visualizes how our model performs under each combination of

69

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-a, P=1

0.072

0.080

0.088

0.096

0.104

0.112

Re
ca

ll@
50

(a) Citeulike-a, P=1

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-a, P=10

0.195

0.210

0.225

0.240

Re
ca

ll@
50

(b) Citeulike-a, P=10

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-t, P=1

0.080

0.085

0.090

0.095

0.100

0.105

Re
ca

ll@
50

(c) Citeulike-t, P=1

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-t, P=10

0.12

0.14

0.16

0.18

0.20

0.22

Re
ca

ll@
50

(d) Citeulike-t, P=10

Figure 4.9: The impact of λu and λv on CATA performance for (a-b) Citeulike-a, and
(c-d) Citeulike-t datasets.

λu and λv. We find that our model has a lower performance when the value of λv is

considerably large under the dense setting, as Figures 4.9b and 4.9d show. On the

other hand where the data is sparser in Figures 4.9a and 4.9c, a very small value

of λu (e.g., 0.01) tends to have the lowest performance among all other numbers.

Generally, we observe that the optimal performance happens in both datasets when

λu = 10 and λv = 0.1. We can conclude that when there is sufficient user feedback,

items’ contextual information is no longer essential to obtain user preferences, and

vice versa.

70

RQ4

The vectors of the latent features (U and V) represent the characteristic of users

and items that a model tries to learn from data. We examine the impact of the

size of these vectors on the performance of our model. In other words, we examine

how many dimensions in the latent space can represent the user and item features

more accurately. It is worth mentioning that our reported results in the RQ1 section

use 50 dimensions, which is similar to the size used by the state-of-the-art model

(CVAE) in order to have fair comparisons. However, we run our model again using

five dimension sizes from the following values {25, 50, 100, 200, 400}. Figure 4.10

shows how our model performs in terms of recall@100 under each dimension size. We

observe that increasing the dimension size in dense data leads always to a gradual

increase in our model performance, as shown in Figure 4.10b. Also, larger dimension

sizes are recommended for sparse data as well. However, they do not necessary

improve the model’s performance all the time (e.g., the Citeulike-t dataset in Figure

4.10a). Generally, dimension sizes between 100 and 200 are suggested for the latent

space dimension.

RQ5

We pretrain our autoencoder first until the loss value of the data converges sufficiently.

The loss value shows the error computed by the autoencoder’s loss function where it

shows how well the model reconstructs outputs from inputs. Figure 4.11 visualizes

the number of needed training epochs to render the loss value sufficiently stable. We

find that 200 epochs are sufficient for pretraining our autoencoder.

71

25 50 100 200 400
d

0.13

0.14

0.15

0.16

0.17

Re
ca

ll@
10

0

citeulike-a
citeulike-t

(a) P=1

25 50 100 200 400
d

0.30

0.32

0.34

0.36

0.38

0.40

Re
ca

ll@
10

0

citeulike-a
citeulike-t

(b) P=10

Figure 4.10: The performance of CATA model with respect to different dimension
values of the latent space under (a) sparse data and (b) dense data.

0 100 200 300 400 500
Epochs

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Lo
ss

citeulike-a
citeulike-t

Figure 4.11: The reduction in the loss values vs. the number of training epochs.

72

4.6 Conclusion

In this work, we propose a Collaborative Attentive Autoencoder (CATA) to lever-

age side textual information to learn a better compressed representation of the data

through an attention mechanism, which can guide the training process to focus on

the relevant part of the encoder output in order to improve the model predictions.

CATA shows the superiority over the state-of-the-art methods on two scientific article

datasets. The performance improvement of CATA increases consistently as the data

sparsity increases. The qualitative studies also prove the good quality of our model

recommendations.

73

Chapter 5

CATA++: Leveraging Content
Information Independently via
Two Separated Attentive
Autoencoders

5.1 Abstract

Recommender systems today have become an essential component of any commer-

cial website. Collaborative filtering approaches, and Matrix Factorization (MF) tech-

niques in particular, are widely known for their felicitous performance in recommender

systems. However, the natural data sparsity problem limits their performance, where

users generally only interact with a small fraction of available items. Consequently,

multiple hybrid models have been proposed recently to optimize MF performance by

incorporating additional contextual information the MF’s its learning process. Al-

though these models improve recommendation quality, there are two primary aspects

for further enhancements: (1) multiple models focus only on some portion of the

74

available contextual information and neglect other portions, and (2) learning the fea-

ture space of the contextual information is still a research area that needs further

exploration.

In this chapter, we introduce a Collaborative Dual Attentive Autoencoder (CATA++)

method that utilizes an item’s content and learns its latent space via two parallel au-

toencoders. We employ the attention mechanism in the middle of our autoencoders

to capture the most significant segments of contextual information, which leads to a

better representation of the items in the latent space. Also, by leveraging more of

the item’s content, our model is able to detect more complex patterns that help in

disclosing item-item similarities and eventually increasing the quality of recommen-

dations, especially for sparse data. Extensive experiments on three scientific-article

datasets have shown that our dual-process learning strategy has significantly im-

proved MF performance in comparison with other state-of-the-art MF-based models

using various experimental evaluations. The source code of our methods is available

at: https://github.com/jianlin-cheng/CATA.

5.2 Introduction

The amount of data created in the last few years is overwhelming. Interestingly, the

data volume grows exponentially yearly compared to the years before, making the

era of big data. This motivates and attracts researchers to utilize this massive data

to develop more practical and accurate solutions in most of the computer science

domains. For instance, recommender systems (RSs) are primarily a good solution to

process massive data in order to extract useful information (e.g., users’ preferences)

to help users with personalized decision making.

There are several applications for recommendation engines such as movies, songs,

75

books, games, and scientific publications, among other things. For example, scientific

paper recommendations are very common applications for RSs. They are quite useful

in helping scholars be aware of related work in their research area. Compared to movie

and song recommendations, the sparsity of the user-item matrix in the domain of

scientific article recommendations is typically higher because the number of available

publications greatly exceeds the number of users. For instance, the matrix sparsity

in Mendeley1 is three times higher than it is in Netflix2 [93].

Existing recommendation models in scientific article domain, such as CDL [34]

and CVAE [39], have two major limitations. First, they assume that all features

contribute equally to the final prediction. Second, they focus only on some parts of

the auxiliary item data and neglect other parts that could also be utilized toward

improving the quality of recommendations. In this work, we address the first limita-

tion by using the attention mechanism, while the second limitation is addressed by

using two attentive autoencoders in parallel, which are trained separately to detect

the item features more accurately. More precisely, we introduce a Collaborative Dual

Attentive Autoencoder (CATA++) that is used to recommend scientific papers. We

incorporate the attention technique into our deep feature learning procedure to learn

from article’s textual data (e.g., title, abstract, tags, and citations between papers)

in order to enhance the recommendation quality. The features learned by each at-

tentive autoencoder are then employed into the matrix factorization (MF) method

for our final articles’ suggestions. To show the effectiveness of our proposed model,

we perform a comprehensive experiment on three real-world datasets to show how

our model works compared to multiple recent MF-based models. The results show

that our model can extract better features from the textual data in comparison to

1www.mendeley.com
2www.netflix.com

76

other models. More importantly, CATA++ has a higher recommendation quality in

the case of high-sparse data. Also, incorporating different parts of the item’s data

into our training process has a positive effect on our model performance, such that

item-item similarities are captured more properly.

The main contributions of this work are summarized in the following points:

• We introduce CATA++, a Collaborative Dual Attentive Autoencoder, that is

evaluated on recommending scientific articles. We employ the attention tech-

nique into our model, such that only relevant parts of the data can contribute

more to item representations. These item representations help in finding simi-

larities among articles.

• We utilize more article content in our deep feature learning process. To the best

of our knowledge, our model is the first that utilizes all article content, including

title, abstract, tags, and citations, together in one deep model by coupling two

attentive autoencoder networks.

• We show the capability of our proposed model of treating different item content

independently and then combining their latent features jointly into the matrix

factorization method for our ultimate recommendations.

• We evaluate our model using three real-world datasets. We compare the perfor-

mance of our proposed model with seven baselines. CATA++ achieves superior

performance when the data sparsity is considerably high.

The remainder of this chapter is organized in the following order. First, our model,

CATA++, is demonstrated in depth in Section 5.3. After that, the experimental

results of our model against the state-of-the-art models are discussed thoroughly in

Section 5.4. Next, Section 5.5 discusses the theoretical and practical implications of

our findings. Lastly, we conclude our work in Section 5.6.

77

Rij

Vj

Ui λu

λv

Xj

Encoder

Decoder

X`j

Zj SoftmaxX

Attention

i =	1:n

Tj

Encoder

Decoder

T`j

YjSoftmax X

Attention

j =	1:m

Figure 5.1: Collaborative Dual Attentive Autoencoder (CATA++) architecture.

5.3 Methodology

This chapter introduces an extended model that is built on top of our model in Chap-

ter 4. There is auxiliary contextual information, beside article titles and abstracts,

that has never been used by other state-of-the-art methods together in one model,

such as article tags (keywords) and citations. Therefore, we extend our previous

model, CATA, to include all article content in our model training. We believe that

the additional article data (e.g., tags and citations between articles) can be integrated

into our model in a way that augments the recommendation quality. We thus name

our extended model, CATA++. The architecture of CATA++ is displayed in Figure

78

5.1.

The first part of our model is our two deep, attentive autoencoders. CATA++

takes two types of input from article content, i.e., Xj = {x1, x2, ..., xs} and Tj =

{t1, t2, ..., tg}, where xi and ti are real values between zero and one, s is the vocabulary

size of our articles’ titles and abstracts, and g is the vocabulary size of our articles’

tags. In other words, the two types of input from our attentive autoencoder are two

normalized bag-of-words histograms that represent the vocabularies of our textual

information.

In our previous model (CATA [14]), we train a single attentive autoencoder and

incorporate its output into Probabilistic Matrix Factorization (PMF). The objective

function of CATA was defined as:

L =
∑
i,j∈R

cij
2

(pij − uivTj)2 +
λu
2
‖ui‖2 +

λv
2
‖vj − θ(Xj)‖2 (5.1)

On the other hand, as Figure 5.1 shows, the latent factors of items (V) from the

matrix factorization method are now updated from both autoencoders. CATA++

exploits more of the item’s content and trains them via two separate, parallel attentive

autoencoders. We use the output of the two separated networks together as the

prior information of the items’ latent factors from PMF. Therefore, adding a second

attentive autoencoder leads to a change of the loss function from our previous chapter

(Equation 5.1). The new loss function is defined as follows:

L =
∑
i,j∈R

cij
2

(pij − uivTj)2 +
λu
2
‖ui‖2 +

λv
2
‖vj − (θ(Xj) + γ(Tj))‖2 (5.2)

where θ(Xj) = Encoder(Xj) = Zj, and γ(Tj) = Encoder(Tj) = Yj, such that θ(Xj)

and γ(Tj) work as the Gaussian prior information for vj.

79

To determine the values of ui and vj that minimize our previous objective function,

we again take the derivative of L with respect to ui and vj. The outputs of the

derivatives result in the following equations:

ui = (V CiV
T + λuI)−1V CiPi

vj = (UCjU
T + λvI)−1UCjPj + λv(θ(Xj) + γ(Tj))

(5.3)

Finally, we use the Alternating Least Squares (ALS) optimization approach to

update the values of U and V . ALS works by iteratively optimizing the values of U

while the values of V are fixed, and vice versa. This iterative operation continues

until the values of U and V converge. The overall steps of our approach are described

in Algorithm 2.

Algorithm 2: CATA++ algorithm

1 pre-train first autoencoder with input X;

2 pre-train second autoencoder with input T;
3 Z ← θ(X);
4 Y ← γ(T);
5 U, V ← Initialize with random values;

6 while <NOT converge> do
7 for <each user i> do
8 ui ← update using Equation 5.3;

9 end for
10 for <each article j> do
11 vi ← update using Equation 5.3;

12 end for

13 end while
14 for <each user i> do
15 scoresi ← uiV

T;

16 sort(scoresi) in descending order;

17 end for
18 Evaluate the top-K recommendations;

80

Table 5.1: Description of CiteULike datasets including tags and citations data.

Dataset #Users #Articles #Pairs #Tags #Citations Sparsity%

Citeulike-a 5,551 16,980 204,986 46,391 44,709 99.78%
Citeulike-t 7,947 25,975 134,860 52,946 32,565 99.93%
Citeulike-2004-2007 3,039 210,137 284,960 75,721 – 99.95%

5.4 Experiments

This section shows a comprehensive experiment in order to address the following

research questions:

• RQ1: How does our model perform compared to other state-of-the-art models?

Prove with quantitative and qualitative analysis.

• RQ2: Are both autoencoders (left and right) cooperating with each other to

enhance the recommendation performance?

• RQ3: What is the impact of different hyper-parameters’ tuning (e.g., dimension

of the features’ latent space, number of layers inside both of the encoder and the

decoder, and the two regularization variables λu and λv) on the performance of

our model?

• RQ4: What is the computational complexity of our attentive autoencoder,

compared to other existing autoencoders used in the state-of-the-art models?

Before answering the aforementioned research questions, we first present our datasets,

our evaluation metrics, and the baseline models against which we evaluate our model.

5.4.1 Datasets

We use three real-world, scientific article datasets to evaluate our model against

other state-of-the-art models. All the three datasets are collected from the CiteULike

81

1 2 3 4 5
N

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f a

rti
cle

s

citeulike-a
citeulike-t
citeulike-2004-2007

Figure 5.2: Ratio of articles that have been added to ≤ N users’ libraries.

website. CiteULike was a web service that let users to create their own library of

academic publications. The first two datasets are the same datasets we used in our

previous chapter. In addition, we add a third dataset in this chapter that is three

times larger than the previous ones with regard to the user-article matrix. The

data values in this dataset were extracted between 11-04-2004 and 12-31-2007. This

dataset is collected by [94] and it has 3039 users, 210137 articles, and 284960 user-

article interaction pairs. This dataset is the sparsest among the three datasets, with

less than 0.05% of the user-article matrix having interactions. Each user has at least

10 articles in his or her library. On average, each user has 94 articles in his or her

library and each article has been added only to one user library. Also, this dataset

poses a scalability challenge for recommender systems because of its size.

In this chapter, in addition to the utilization of article titles and abstracts, we

82

utilize more contextual information such as article tags and citations. Article tags

are single-word keywords that have been generated by CiteULike users when they

add an article to their library. There are multiple tags assigned to each article. On

the other hand, citation data is taken from Google Scholar3. At the beginning, we

analyze the tags’ data and show how many articles assigned to each tag in Figure

5.3. The figure shows the top-20 tags in each dataset. For instance, in Citeulike-t

dataset, “bioinformatics” has been assigned to 1522 articles. Using this information,

we can catch similarities among articles more accurately. More information about

the datasets is shown in Table 5.1.

Figure 5.2 shows the ratio of articles that have been added to five or fewer users’

libraries. For instance, 1%, 13%, and 77% of the articles have been added only to one

user library in Citeulike-a, Citeulike-t, and Citeulike-2004-2007 datasets, respectively.

Moreover, 15% of the articles in Citeulike-a dataset have been added to five or fewer

users’ libraries. On the contrary, 77% and 99% of the articles in Citeulike-t and

Citeulike-2004-2007 datasets have been added to five or fewer users’ libraries. From

this perspective, Figure 5.2 shows how articles have different degrees of sparsity among

the three datasets.

We imitate the same procedure used by state-of-the-art models [34, 4, 39] to

preprocess our textual data. For Citeulike-a and Citeulike-t datasets, article titles

and abstracts are preprocessed in a similar manner to our previous chapter (Section

4.5.1). For the Citeulike-2004-2007 dataset, we preprocess this dataset such that stop

words, non-English words, and English words with less than three letters are removed.

Also, words that have a document frequency of more than 0.9 and words that appear

in less than three articles are removed as well. Thus, we have 19871 distinct words

as our vocabulary list used to build the bag-of-words (BoW) histogram. The created

3https://scholar.google.com

83

Table 5.2: The representation of the article-tag matrix (a) before, and (b) after the
matrix is updated when article0 cites article1 and article2 cites article0.

(a) Before integrating the citations data.

tag0 tag1 tag2 ... tagg

article0 0 1 0 ... 1

article1 1 0 0 ... 0

article2 0 1 0 ... 0

...

articlem 0 1 0 ... 0

(b) After integrating the citations data.

tag0 tag1 tag2 ... tagm

article0 1 1 0 ... 1

article1 1 0 0 ... 0

article2 0 1 0 ... 1

...

articlem 0 1 0 ... 0

BoW histogram can be described as normalized vectors that has values between zero

and one, based on the occurrence counts of the vocabularies. The average number of

words per article in both title and abstract after our text preprocessing is 55 words

for the Citeulike-2004-2007 dataset.

Simultaneously, we preprocess the tags’ information, such that tags assigned to

fewer than five articles are removed, and thus we get 7386 and 8311 tags in total

for the Citeulike-a and Citeulike-t datasets, respectively. For the Citeulike-2004-2007

dataset, we only keep tags that are assigned to more than 10 articles, and that results

in 11754 tags in total for this dataset. After that, we create a matrix for the bag-of-

words histogram, Q ∈ Rm×g, to represent the article-tag relationship, with m being

the number of articles and g being the number of tags. This matrix is filled with ones

84

and zeros, such that:

qat =


1, if tagt is assigned to articlea

0, if otherwise

(5.4)

Also, citations between articles are integrated in this matrix, such that if articlex

cites articley, then all the ones in vector qy of the original matrix are copied into vector

qx. We do that to capture article-article relationships. Table 5.2 shows an example

of how the article-tag matrix is updated using the citations data. For instance, if

article0 cites article1, the article-tag matrix is updated by copying all the ones in

article1 into article0. Similarly, if article2 cites article0, all the ones in article0 of

the original matrix are copied into article2.

We use recall and normalized Discounted Cumulative Gain (nDCG) as our eval-

uation metrics to test how our model performs. Unlike the recall metric (which we

defined previously in Equation 4.16), the nDCG metric shows the ability of a model

to recommend articles at the upper part of the recommendation list. nDCG among

all users can be measured using the following equation:

nDCG@K =
1

|U |

|U |∑
u=1

DCG@K

IDCG@K
(5.5)

such that:

DCG@K =
K∑
i=1

rel(i)

log2(i+ 1)

IDCG@K =

min(R,K)∑
i=1

1

log2(i+ 1)

(5.6)

where |U | is the total number of users, i is the rank of the top-K recommended

articles, R is the number of relevant articles, and rel(i) is an indicator function that

85

Table 5.3: Comparison among all models reflecting the data they use in their model
training.

Approach User-article matrix Side information

Title Abstract Tags Citations

POP X – – – –
GMF X – – – –
CML X – – – –
CDL X X X – –

CVAE X X X – –
CVAE++ X X X X X

CATA X X X – –
CATA++ X X X X X

takes the value of one if the article at rank i is a relevant article, and zero if otherwise.

5.4.2 State-of-the-art approaches

We evaluate our approach against the following baselines:

• POP: Popular predictor is a non-personalized recommender system. It rec-

ommends the most popular articles in a training set, such that all users get

identical recommendations. It is widely used as a benchmark for personalized

recommendation models.

• GMF: Generalized Matrix Factorization (GMF) [46] is a simple non-linear

generalization of matrix factorization, where its prediction works as follows:

ŷ = sigmoid(W (ui� vj)), such that W is the weight and � is the element-wise

product.

• CML: Collaborative Metric Learning (CML) [91] is a metric learning model

that pulls items liked by a user closer to him. Recommendations are then

generated based on the K-Nearest Neighbor of each user.

86

• CDL: Collaborative Deep Learning (CDL) [34] is a probabilistic model that

jointly models both a user-item matrix and an item’s content using a stacked

denoising autoencoder (SDAE) with PMF.

• CVAE: Collaborative Variational Autoencoder (CVAE) [39] is a similar ap-

proach to CDL [34]. However, it uses a variational autoencoder (VAE) instead

of SDAE to incorporate item content into PMF.

• CVAE++: We modify the implementation of CVAE [39] to include two vari-

ational autoencoders to engage more item information into the model training,

in a manner similar to the way CATA++ functions. By adding another VAE

into the model, we change the loss function accordingly, such that the loss of

the item’s latent variable becomes: L(v) = λv
∑

j ‖vj − (zj + yj)‖22, where zj is

the latent content variable of the first VAE and yj is the latent content variable

of the second VAE.

• CATA: Collaborative Attentive Autoencoder (CATA) [14] is our preliminary

work that uses a single attentive autoencoder (AAE) to train article content,

i.e., title and abstract.

Table 5.3 gives further clarifications about which part of article data is involved

in each model training. As the table shows, only CATA++ and CVAE++ use all the

available information for their model training.

To have a fair comparison among all baseline models and our model, the authors

original code is used to ensure the correct implementation of such models. Also, a

validation experiment is used to tune the optimal values of the comparative methods’

hyperparameters. For example, Table 5.4 reports the best values of λu and λv for

CDL, CVAE, CVAE++, CATA, and CATA++ according to the validation test. We

use a grid search of the values {0.01, 0.1, 1, 10, 100} to obtain their optimal values.

87

Table 5.4: The parameter settings for λu and λv for CDL, CVAE, CVAE++, CATA,
and CATA++, based on the validation experiment.

Approach Citeulike-a Citeulike-t Citeulike-2004-2007

Sparse Dense Sparse Dense Sparse Dense

λu λv λu λv λu λv λu λv λu λv λu λv

CDL 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10 0.01 10
CVAE 0.1 10 1 10 0.1 10 0.1 10 0.1 10 0.1 10

CVAE++ 0.1 10 0.1 10 0.1 10 0.1 10 1 10 1 10
CATA 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1

CATA++ 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1

In addition, we use the same dimension size across all models; since different dimen-

sion sizes are subject to have different results. Also, for all models that are based on

matrix factorization, we set a=1, b=0.01, and d=50. In addition, for CDL [34], we

set λn=1000, λw=0.0001, and use a two-layer SDAE network architecture that has

a structure of “#Vocabularies-200-50-200-#Vocabularies” to run their code on our

datasets. For CVAE [39] and CVAE++, we use a three-layer VAE network architec-

ture, which is similar to the structure reported in their paper [39], with a structure

equivalent to “#Vocabularies-200-100-50-100-200-#Vocabularies”. Finally, for CATA

and CATA++, a four-layer AAE network architecture in the form of “#Vocabularies-

400-200-100-50-100-200-400-#Vocabularies” is used train our models.

5.4.3 Experimental results

We now answer the research questions that have been previously defined in the be-

ginning of this section.

88

RQ1

To show how our model performs, we perform quantitative and qualitative analyses

to address this question. Figures 5.4, 5.5, and 5.6 show how our model performs

compared to the other models under the sparse setting, P = 1, based on the recall

and nDCG metrics for all the three datasets. In the same way, Figures 5.7, 5.8, and

5.9 show the same performance under the dense setting, P = 10, based on the recall

and nDCG metrics as well.

First, the sparse cases are more challenging for any recommendation model, due

to the scarce feedback data that is used for the model training. In the sparse setting

where there is only one article in each user library for the training phase, CATA++

achieves a superior performance relative to other MF-based models in all datasets in

terms of recall and nDCG. More importantly, CATA++ beats the best model among

all the baselines, CVAE++, by a wide margin in the Citeulike-2004-2007 dataset,

where it is actually the sparsest and contains a huge number of articles. This validates

the robustness of our model to work with sparse data. On the other hand, among all

baseline models, POP, GMF, and CML generally have the lowest performance, which

validates the usefulness of integrating contextual data to alleviate the data sparsity

problem.

Second, in the dense setting where there are more articles in each user library

for the training phase, our model again beats the other models, as Figures 5.7, 5.8,

and 5.9 show. In reality, many of the existing models actually work well under this

dense setting, but poorly under the sparse setting. For example, CDL fails to beat

POP with the Citeulike-t dataset under the sparse setting, and then easily beats POP

under the dense setting as Figures 5.5a and 5.8a show. Also, the CML model, which

integrates no contextual information, performs very well under the dense setting and

has competitive results with other context-aware models, but again performs poorly

89

on sparse data.

Table 5.7 shows the percentage increase in our model performance, CATA++,

over the best competitor among all other baselines. This percentage measures the

increase in performance, which can be calculated according to the following formula:

improv% = (pour−psota)/psota×100, where pour is the performance of our model, and

psota is the performance of the best model among all baselines. Also, the table shows

if the increase in performance is statistically significant, based on the p-value test

(p ≤ 0.05) suggested in [95] for comparing the performance of two models. As the

table shows, our model achieves statistically significant improvements over the best

model among the baselines in all sparse cases with respect to two different evaluation

metrics. For instance, using Recall@5 metric, our model achieves a 14.44%, 28.25%,

and 49.21% significant improvement in all sparse cases of Citeulike-a, Citeulike-t,

and Citeulike-2004-2007 datasets, respectively. More importantly, the table shows

that the improvement in our model performance is remarkably higher with smaller

K values. On the other hand, on average, our model achieves a slightly improvement

increase in the dense cases, which concludes the robustness of our model to work

under sparse and dense data.

In addition to the aforementioned quantitative analysis, qualitative analysis is

also reported in Tables 5.5 and 5.6 to show the quality of recommendations using real

examples. The first example (i.e., Table 5.5) shows the top-10 recommended articles

generated by our model (CATA++) and the other competitive model (CVAE++)

for one random user using the Citeulike-2004-2007 dataset under the sparse setting.

With this case study, we seek to gain a deeper insight into the difference between

the two models through the recommendations they make. The example in the table

presents user2214, who has only one paper in his or her training set entitled “A

collaborative filtering framework based on fuzzy association rules and multiple-level

90

similarity”. This example defines the sparsity problem very well where a user has

limited feedback data. Based on the article’s title, this user is probably interested

in recommender systems and more specifically in collaborative filtering (CF). After

analyzing the results of each model, we can deduce that our model can recommend

more relevant articles than the other baseline. For instance, most of the top-10

recommendations based on CATA++ are related to the user’s interest. Our model

accuracy in this example is 0.4. Even though CVAE++ generates relevant articles as

well, some irrelevant articles could be recommended as well such as the recommended

article #7, entitled “Optimizing search engines using clickthrough data”, which is

more about search engines than RSs. In addition, the second example in Table

5.6 presents user3830, who has only one paper in his/her training set entitled “A

homology theory for spanning trees of a graph”. Based on the article’s title, this user

is probably interested in mathematics and more specifically in graphs. The results

show again that our model can recommend more relevant articles than the other

baseline. For instance, most of the top-10 recommendations based on our model

are related to the user’s interest, while irrelevant articles could be recommended by

CVAE++, such as the recommended article #3, entitled “Jena: implementing the

semantic web recommendations”, which is obviously unrelated to the user’s interests.

After examining multiple examples, we can conclude that our model identifies user

preferences more accurately, especially in the presence of limited data.

91

0 250 500 750 1000 1250 1500 1750
Count

review
bioinformatics

network
evolution
networks
software

genomics
genome

statistics
analysis

methods
theory

protein
thesis
model

human
expression

social
algorithm

learning

Top 20 tags - Citeulike-a

(a) Citeulike-a dataset

0 250 500 750 1000 1250 1500 1750 2000
Count

review
bioinformatics

statistics
network

networks
evolution
learning
software
genetics
methods

genomics
social

 analysis
 prediction

model
genome

theory
database

ngs
expression

Top 20 tags - Citeulike-t

(b) Citeulike-t dataset

0 1000 2000 3000 4000 5000 6000 7000
Count

review
evolution

support
govt

research
humans
non-us

animals
protein
model

human
models

learning
structure
network
analysis

us
rna

male
simulation

Top 20 tags - Citeulike-2004-2007

(c) Citeulike-2004-2007 dataset

Figure 5.3: The top-20 tags among all datasets.

92

5 10 20 50 100
K

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Re
ca

ll

Citeulike-a, P=1

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(a) Citeulike-a recall

5 10 20 50 100
K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

nD
CG

Citeulike-a, P=1

POP
GML
CML
CDL
CVAE
CVAE++
CATA
CATA++

(b) Citeulike-a nDCG

Figure 5.4: The top-K recommendation performance under the sparse setting, P = 1,
for the Citeulike-a dataset.

5 10 20 50 100
K

0.00

0.05

0.10

0.15

0.20

Re
ca

ll

Citeulike-t, P=1

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(a) Citeulike-t recall

5 10 20 50 100
K

0.00

0.02

0.04

0.06

0.08

0.10

nD
CG

Citeulike-t, P=1

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(b) Citeulike-t nDCG

Figure 5.5: The top-K recommendation performance under the sparse setting, P = 1,
for the Citeulike-t dataset.

93

5 10 20 50 100
K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
ca

ll

Citeulike-2004-2007, P=1

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(a) Citeulike-2004-2007 recall

5 10 20 50 100
K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

nD
CG

Citeulike-2004-2007, P=1

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(b) Citeulike-2004-2007 nDCG

Figure 5.6: The top-K recommendation performance under the sparse setting, P = 1,
for the Citeulike-2004-2007 dataset.

5 10 20 50 100
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
ca

ll

Citeulike-a, P=10

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(a) Citeulike-a recall

5 10 20 50 100
K

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

nD
CG

Citeulike-a, P=10

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(b) Citeulike-a nDCG

Figure 5.7: The top-K recommendation performance under the dense setting, P = 10,
for the Citeulike-a dataset.

94

5 10 20 50 100
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
ca

ll

Citeulike-t, P=10

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(a) Citeulike-t recall

5 10 20 50 100
K

0.050

0.075

0.100

0.125

0.150

0.175

0.200

nD
CG

Citeulike-t, P=10

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(b) Citeulike-t nDCG

Figure 5.8: The top-K recommendation performance under the dense setting, P = 10,
for the Citeulike-t dataset.

5 10 20 50 100
K

0.00

0.05

0.10

0.15

0.20

0.25

Re
ca

ll

Citeulike-2004-2007, P=10

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(a) Citeulike-2004-2007 recall

5 10 20 50 100
K

0.00

0.05

0.10

0.15

0.20

nD
CG

Citeulike-2004-2007, P=10

POP
GMF
CML
CDL
CVAE
CVAE++
CATA
CATA++

(b) Citeulike-2004-2007 nDCG

Figure 5.9: The top-K recommendation performance under the dense setting, P = 10,
for the Citeulike-2004-2007 dataset.

95

T
ab

le
5.

5:
T

h
e

fi
rs

t
ex

am
p
le

to
sh

ow
th

e
q
u
al

it
y

of
re

co
m

m
en

d
at

io
n
s

u
si

n
g

th
e

sp
ar

se
ca

se
s

of
th

e
C

it
eu

li
ke

-2
00

4-
20

07
d
at

as
et

.

U
se

r
ID

:
22

14

A
rt

ic
le

s
in

tr
ai

n
in

g
se

t:
A

co
ll
ab

or
at

iv
e

fi
lt

er
in

g
fr

am
ew

or
k

b
as

ed
on

fu
zz

y
as

so
ci

at
io

n
ru

le
s

an
d

m
u
lt

ip
le

-l
ev

el
si

m
il
ar

it
y

C
A

T
A

+
+

In
u
se

r
li
b
ra

ry
?

1.
It

em
-b

as
ed

co
ll
ab

or
at

iv
e

fi
lt

er
in

g
re

co
m

m
en

d
at

io
n

al
go

ri
th

m
s

N
o

2.
C

om
b
in

in
g

co
ll
ab

or
at

iv
e

fi
lt

er
in

g
w

it
h

p
er

so
n
al

ag
en

ts
fo

r
b

et
te

r
re

co
m

m
en

d
at

io
n
s

N
o

3.
A

n
ac

cu
ra

te
an

d
sc

al
ab

le
co

ll
ab

or
at

iv
e

re
co

m
m

en
d
er

N
o

4
.

G
o
o
g
le

n
e
w

s
p

e
rs

o
n
a
li

za
ti

o
n
:

S
ca

la
b
le

o
n
li

n
e

co
ll

a
b

o
ra

ti
v
e

fi
lt

e
ri

n
g

Y
e
s

5
.

C
o
m

b
in

in
g

co
ll

a
b

o
ra

ti
v
e

a
n
d

co
n
te

n
t-

b
a
se

d
fi
lt

e
ri

n
g

u
si

n
g

co
n
ce

p
tu

a
l

g
ra

p
h
s

Y
e
s

6.
L

in
k

p
re

d
ic

ti
on

ap
p
ro

ac
h

to
co

ll
ab

or
at

iv
e

fi
lt

er
in

g
N

o
7.

S
lo

p
e

on
e

p
re

d
ic

to
rs

fo
r

on
li
n
e

ra
ti

n
g-

b
as

ed
co

ll
ab

or
at

iv
e

fi
lt

er
in

g
N

o
8
.

S
lo

p
e

o
n
e

p
re

d
ic

to
rs

fo
r

o
n
li

n
e

ra
ti

n
g
-b

a
se

d
co

ll
a
b

o
ra

ti
v
e

fi
lt

e
ri

n
g

Y
e
s

9.
A

d
ec

en
tr

al
iz

ed
C

F
ap

p
ro

ac
h

b
as

ed
on

co
op

er
at

iv
e

ag
en

ts
N

o
1
0
.

T
o
w

a
rd

th
e

n
e
x
t

g
e
n
e
ra

ti
o
n

o
f

re
co

m
m

e
n
d
e
r

sy
st

e
m

s:
A

su
rv

e
y

o
f

th
e

st
a
te

-o
f-

th
e
-a

rt
..

Y
e
s

C
V

A
E

+
+

In
u
se

r
li
b
ra

ry
?

1.
C

om
b
in

in
g

co
ll
ab

or
at

iv
e

fi
lt

er
in

g
w

it
h

p
er

so
n
al

ag
en

ts
fo

r
b

et
te

r
re

co
m

m
en

d
at

io
n
s

N
o

2.
E

x
p
la

in
in

g
co

ll
ab

or
at

iv
e

fi
lt

er
in

g
re

co
m

m
en

d
at

io
n
s

N
o

3
.

G
o
o
g
le

n
e
w

s
p

e
rs

o
n
a
li

za
ti

o
n
:

S
ca

la
b
le

o
n
li

n
e

co
ll

a
b

o
ra

ti
v
e

fi
lt

e
ri

n
g

Y
e
s

4.
L

ea
rn

in
g

u
se

r
in

te
ra

ct
io

n
m

o
d
el

s
fo

r
p
re

d
ic

ti
n
g

w
eb

se
ar

ch
re

su
lt

p
re

fe
re

n
ce

s
N

o
5.

It
em

-b
as

ed
co

ll
ab

or
at

iv
e

fi
lt

er
in

g
re

co
m

m
en

d
at

io
n

al
go

ri
th

m
s

N
o

6.
E

n
h
an

ci
n
g

d
ig

it
al

li
b
ra

ri
es

w
it

h
T

ec
h
L

en
s+

N
o

7.
O

p
ti

m
iz

in
g

se
ar

ch
en

gi
n
es

u
si

n
g

cl
ic

k
th

ro
u
gh

d
at

a
N

o
8.

C
on

te
x
t-

se
n
si

ti
ve

in
fo

rm
at

io
n

re
tr

ie
va

l
u
si

n
g

im
p
li
ci

t
fe

ed
b
ac

k
N

o
9.

A
n
ew

ap
p
ro

ac
h

fo
r

co
m

b
in

in
g

co
n
te

n
t-

b
as

ed
an

d
co

ll
ab

or
at

iv
e

fi
lt

er
s

N
o

1
0
.

C
o
m

b
in

in
g

co
ll

a
b

o
ra

ti
v
e

a
n
d

co
n
te

n
t-

b
a
se

d
fi
lt

e
ri

n
g

u
si

n
g

co
n
ce

p
tu

a
l

g
ra

p
h
s

Y
e
s

96

T
ab

le
5.

6:
T

h
e

se
co

n
d

ex
am

p
le

to
sh

ow
th

e
q
u
al

it
y

of
re

co
m

m
en

d
at

io
n
s

u
si

n
g

th
e

sp
ar

se
ca

se
s

of
th

e
C

it
eu

li
ke

-a
d
at

as
et

.

U
se

r
ID

:
38

30

A
rt

ic
le

s
in

tr
ai

n
in

g
se

t:
A

h
om

ol
og

y
th

eo
ry

fo
r

sp
an

n
in

g
tr

ee
s

of
a

gr
ap

h

C
A

T
A

+
+

In
u
se

r
li
b
ra

ry
?

1.
C

ol
le

ct
iv

e
d
y
n
am

ic
s

of
sm

al
l-

w
or

ld
n
et

w
or

k
s

N
o

2.
T

h
e

ge
om

et
ry

of
gr

ap
h
s

an
d

so
m

e
of

it
s

al
go

ri
th

m
ic

ap
p
li
ca

ti
on

s
N

o
3.

T
h
e

fr
ac

ta
l

ge
om

et
ry

of
n
at

u
re

N
o

4
.

P
o
se

ts
a
n
d

p
la

n
a
r

g
ra

p
h
s

Y
e
s

5.
S
y
m

b
ol

ic
d
y
n
am

ic
s

ge
n
er

at
ed

b
y

a
co

m
b
in

at
io

n
of

gr
ap

h
s

N
o

6.
V

er
y

la
rg

e
gr

ap
h
s

N
o

7.
A

m
u
lt

il
ev

el
al

go
ri

th
m

fo
r

p
ar

ti
ti

on
in

g
gr

ap
h
s

N
o

8.
T

h
e

n
ot

io
n

of
d
im

en
si

on
in

ge
om

et
ry

an
d

al
ge

b
ra

N
o

9.
D

ep
th

-fi
rs

t
se

ar
ch

an
d

li
n
ea

r
gr

ap
h

al
go

ri
th

m
s

N
o

1
0
.

A
m

in
-m

a
x

re
la

ti
o
n

o
n

p
a
ck

in
g

fe
e
d
b
a
ck

v
e
rt

e
x

se
ts

Y
e
s

C
V

A
E

+
+

In
u
se

r
li
b
ra

ry
?

1.
S
p

ec
tr

a
of

ra
n
d
om

gr
ap

h
s

w
it

h
gi

ve
n

ex
p

ec
te

d
d
eg

re
es

N
o

2.
A

si
m

p
le

m
in

cu
t

al
go

ri
th

m
N

o
3.

J
en

a:
im

p
le

m
en

ti
n
g

th
e

se
m

an
ti

c
w

eb
re

co
m

m
en

d
at

io
n
s

N
o

4.
F

or
m

al
iz

in
g

re
fa

ct
or

in
gs

w
it

h
gr

ap
h

tr
an

sf
or

m
at

io
n
s

N
o

5.
T

op
ol

og
ic

al
fi
sh

ey
e

v
ie

w
s

fo
r

v
is

u
al

iz
in

g
la

rg
e

gr
ap

h
s

N
o

6.
In

te
rf

ac
e

au
to

m
at

a
N

o
7.

T
en

so
r

d
ec

om
p

os
it

io
n
s

an
d

ap
p
li
ca

ti
on

s
N

o
8.

F
as

t
ap

p
ro

x
im

at
io

n
of

ce
n
tr

al
it

y
N

o
9.

M
in

in
g

co
h
er

en
t

d
en

se
su

b
gr

ap
h
s

ac
ro

ss
m

as
si

ve
b
io

lo
gi

ca
l

n
et

w
or

k
s

fo
r

fu
n
ct

io
n
al

d
is

co
ve

ry
N

o
10

.
G

en
et

ic
n
et

w
or

k
s

w
it

h
ca

n
al

y
zi

n
g

b
o
ol

ea
n

ru
le

s
ar

e
al

w
ay

s
st

ab
le

N
o

97

Table 5.7: The improvement percentage in our model’s performance over the best
competitor according to Recall@5, Recall@100, nDCG@5, and nDCG@100 for (a)
the sparse data and (b) the dense data. A (*) indicates statistical significance on
p ≤ 0.05.

Metric Citeulike-a Citeulike-t Citeulike-2004-2007

Sparse Dense Sparse Dense Sparse Dense

Recall@5 14.44% * 2.22% 28.25% * 0.2% 49.21% * –
Recall@100 8.99% * 2.81% * 8.08% * 4.97% * 16.39% * 33.58% *
nDCG@5 8.93% * – 18.42% * – 7.67% * –

nDCG@100 9.58% * 3.47% * 11.34% * 2.74% * 6.54% * 9.28% *

RQ2

To examine if the two autoencoders are cooperating with each other in finding more

similarities among users and items, we run multiple experiments to show how each

autoencoder performs individually compared to how they perform together. In other

words, we compare the performance of training all features independently via two

separated, parallel autoencoders (i.e., CATA++) against the performance of training

all features combined via a single autoencoder, where we combine X and T features

together. In the comparison, we also include the performance of training only the right

autoencoder (i.e., CATA), which leverages article titles and abstracts (X), and the

performance of training the left autoencoder, which leverages article tags and citations

if available (T). Figure 5.10 shows the overall results. As the figure shows, the dual-

process strategy always garners better results than the other techniques, where they

use a single autoencoder, except in one case in Figure 5.10c. We believe that training

X and T separately, like what CATA++ does, can extract more meaningful features

than if we combine them together in a single autoencoder.

In addition, the performance of the left autoencoder and the right autoencoder

are comparable to one another, such that the right autoencoder is better than the left

98

autoencoder using the Citeulike-a dataset, while the left autoencoder is better than

the right autoencoder in the other two datasets. We can conclude, by coupling both

autoencoders together, our model is able to identify more similarities among users

and items, which eventually leads to better recommendations.

RQ3

We conduct several experiments to find the influence of tuning some hyper-parameters

on the performance of our model, such as the dimension of the latent features, the

number of hidden layers of our attentive autoencoder, and the two regularization

parameters, λu and λv, used to learn the user’s and article’s latent features.

First, the dimension of the latent space used to report our results in the previous

section is 50, i.e., each user’s and item’s latent feature, ui and vj, is a vector of size 50.

We use the exact number as in the state-of-the-art approach, CVAE, in order to have

fair comparisons. However, to see the impact of different dimension sizes, we repeat

our whole experiment by changing the size into one of following values: {25, 50, 100,

200, 400}. In other words, we set the size of the latent factors of PMF and the size of

the bottleneck of our attentive autoencoder to one of the previous values. As a result,

on average, we observe that when the dimension size is equal to 200, our model has

the best performance among all three datasets as Figure 5.11a shows. This is because

the increase of the latent dimensionality allows the model to detect and learn more

of the user and item characteristics. However, there is always a trade-off between the

latent dimensionality and the computational complexity. Higher dimensions leads to

an increase in training time. Generally, setting the latent space with a size between

100 and 200 is the ideal to gain a remarkable performance, taking into account the

computational complexity.

Second, a four-layer network is used to construct our attentive autoencoder when

99

5 10 20 50 100
K

0.025

0.050

0.075

0.100

0.125

0.150

0.175
Re

ca
ll

Citeulike-a, P=1
T
X
X+T
CATA++

(a) Citeulike-a, P=1

5 10 20 50 100
K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
ca

ll

Citeulike-a, P=10
T
X
X+T
CATA++

(b) Citeulike-a, P=10

5 10 20 50 100
K

0.05

0.10

0.15

0.20

0.25

Re
ca

ll

Citeulike-t, P=1
T
X
X+T
CATA++

(c) Citeulike-t, P=1

5 10 20 50 100
K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
ca

ll

Citeulike-t, P=10
T
X
X+T
CATA++

(d) Citeulike-t, P=10

5 10 20 50 100
K

0.02

0.04

0.06

0.08

0.10

0.12

Re
ca

ll

Citeulike-2004-2007, P=1
T
X
X+T
CATA++

(e) Citeulike-2004-2007, P=1

5 10 20 50 100
K

0.00

0.05

0.10

0.15

0.20

0.25

Re
ca

ll

Citeulike-2004-2007, P=10
T
X
X+T
CATA++

(f) Citeulike-2004-2007, P=10

Figure 5.10: The performance results using only the left autoencoder (T) vs. the
right autoencoder (X), compared to combine all features via a single autoencoder
(X+T) and train features independently via two separated autoencoders (CATA++)
for (a-b) Citeulike-a, (c-d) Citeulike-t, and (e-f) Citeulike-2004-2007 datasets.

100

25 50 100 200 400
d

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Re
ca

ll@
10

0

citeulike-a
citeulike-t
citeulike-2004-2007

(a) Latent space dimension

2 3 4 5
#Layers

0.00

0.05

0.10

0.15

0.20

Re
ca

ll@
10

0

citeulike-a
citeulike-t
citeulike-2004-2007

(b) Number of layers

Figure 5.11: The impact of hyper-parameters’ tuning on CATA++ performance for:
(a) the dimension of features’ latent space, and (b) the number of layers inside each
encoder and decoder.

101

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-a, P=1

0.08

0.09

0.10

0.11

0.12

Re
ca

ll@
50

(a) Citeulike-a, P=1

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-a, P=10

0.20

0.21

0.22

0.23

0.24

0.25

Re
ca

ll@
50

(b) Citeulike-a, P=10

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-t, P=1

0.120

0.128

0.136

0.144

0.152

Re
ca

ll@
50

(c) Citeulike-t, P=1

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-t, P=10

0.195

0.210

0.225

0.240

Re
ca

ll@
50

(d) Citeulike-t, P=10

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-2004-2007, P=1

0.070

0.075

0.080

0.085

0.090

Re
ca

ll@
50

(e) Citeulike-2004-2007, P=1

0.01 0.1 1 10 100
v

10
0

10
1

0.
1

0.
01

u

Citeulike-2004-2007, P=10

0.105

0.120

0.135

0.150

0.165

Re
ca

ll@
50

(f) Citeulike-2004-2007, P=10

Figure 5.12: The impact of λu and λv on CATA++ performance for (a-b) Citeulike-a,
(c-d) Citeulike-t, and (e-f) Citeulike-2004-2007 datasets.

102

we reported our results previously. The four-layer network has a shape of “#Vocabularies-

400-200-100-50-100-200-400-#Vocabularies”. However, we again repeat the whole ex-

periment by changing the number of layers starting from two to five layers, such that

each layer is half the size of its previous one. As Figure 5.11b shows, using fewer

than three layers are not enough to learn from the item’s content. This proves the

effectiveness of our deep feature learning process to gain more constructive features.

Deep neural networks have been proven to be the appropriate mechanism once the

training data is considerably big. Generally, three-layer and four-layer networks are

sufficiently ideal to train our model.

Third, we repeat our experiment again with setting the values of λu and λv from

the following range: {0.01, 0.1, 1, 10, 100}. Figures 5.12a and 5.12c show the per-

formance of sparse data using the Citeulike-a and Citeulike-t datasets, respectively.

From these two figures, using a lower value of λv typically results in a lower perfor-

mance, meaning the user feedback data is not sufficient and the model needs more

article information. The same thing can be said of both scenarios using the Citeulike-

2004-2007 dataset in Figures 5.12e and 5.12f. In Figure 5.12e, a higher value of λu

decreases the performance where user feedback is scarce. Even though Figure 5.12f

shows the performance under the dense setting for the Citeulike-2004-2007 dataset,

it still represents the sparsity problem with respect to the articles, as we showed pre-

viously in Figure 5.2, where 80% of the articles have been only added to one user

library. In addition, Figure 5.12c is different than Figures 5.12a, 5.12e, and 5.12f,

where increasing λv does not necessarily improve the performance. We believe that

the missing information from the article content is one reason for that, as we have

previously indicated that the average number of vocabularies in this dataset is 19

words compared to 67 words, and 55 words in the Citeulike-a and Citeulike-2004-

2007 datasets. On the other hand where user feedback is considerable enough, a

103

higher value of λv results in a lower performance, as Figures 5.12b and 5.12d show.

RQ4

In this section, the scalability of the aforementioned models with respect to run-

ning time is examined. In particular, we show the computational complexity of the

autoencoder-based models using each one of our datasets. To do that, we use similar

settings for all examined models, such that the network structure and the computa-

tional resources are similar to each other. Table 5.8 shows the computational com-

plexity (in seconds) for training one epoch among autoencoder-based models using

one CPU. As the table shows, CDL, CVAE, and CATA have a comparable running

time. More precisely, there is no significant difference in time complexity among the

three autoencoders, which are our attentive autoencoder (AAE), the variational au-

toencoder (VAE) used in CVAE [39], and the stacked denoising autoencoder (SDAE)

used in CDL [34].

On the other hand, using more item content for training is expected to make a

longer running time. However, For CATA++ and CVAE++, this longer running

time in comparison with those model who use a single autoencoder is not significant.

More specifically, CATA++ and CVAE++ take approximately less than two times

the running time of CATA and CVAE, which results ultimately in a linear growth

in time complexity. As a result, using additional autoencoder with additional data

content has been validated to scale well with bigger datasets, and more importantly,

it remarkably improves the recommendations quality.

104

Table 5.8: The computational complexity (in seconds) for training one epoch among
autoencoder-based models.

Approach Citeulike-a Citeulike-t Citeulike-2004-2007

CDL 40 135 1253

CVAE 50 165 1540

CATA 49 179 1705

CVAE++ 100 247 2505

CATA++ 98 239 2673

5.5 Discussion

CATA++ is built on top of our previous model, CATA [14]. However, it extraordinary

boosts the quality of recommendations by incorporating additional relational article’s

information into our deep feature learning. Our model shows the capability of learning

item features via two separated attentive autoencoders. In particular, we show the

beneficial impact of treating different item content independently and then combine

their latent features jointly into the matrix factorization approach.

Our experimental evaluations validate the ability of our model to overcome the

limitations mentioned in the beginning of this chapter. The current related work hold

two shortcomings, i.e., they are not effectively exploiting all available item content

in a single model, and also they are treating all features equally, where in reality

different features could contribute differently in predictions. For instance, we show

that our dual-learning mechanism, used on both CATA++ and CVAE++, have a

higher recommendation quality than their original versions (i.e., CATA and CVAE),

which emphasizes the usefulness of involving more of the item data in a single model.

In addition, our attentive autoencoder (AAE) can extract more constructive informa-

tion over the variational autoencoder (VAE) and the stacked denoising autoencoder

(SDAE), as CATA has the superiority over CVAE and CDL, and CATA++ has the

105

superiority over CVAE++. This demonstrates the great impact of integrating the

attention mechanism into our deep feature learning.

Another influential implication of this work is that our model shows the superiority

over multiple competitive models using extremely sparse, real-world datasets. In

reality, data sparsity is one of the real problems facing recommender systems. Having

a huge amount of available items from different categories, users tend only to interact

with a tiny fraction of items, leads to the difficulty of obtaining user preferences.

Saying that, we show that CATA++ achieves a statistically significant improvement

with extremely sparse data in terms of several evaluation metrics, such as recall,

precision, F1 score, and nDCG.

One limitation of this work is that the dot product used in the matrix factorization

(MF) violates the triangle inequality property, where it may cause users and item are

placed incorrectly in the vector space. For any three items, the triangle inequality is

fulfilled once the sum of distance between any two item pairs in the feature space is

greater or equal to the distance of the third item pair, such that d(x, y) ≤ d(x, z) +

d(z, y). Therefore, a potential extension of this work attempts to replace the MF

approach with a metric learning-based approach, such as the ones introduced in [91,

96, 97]. More precisely, a potential future work aims to substitute the dot product

mechanism with a distance metric function, e.g., Euclidean distance. By doing so,

user-user and item-item relationships might be captured more accurately. Another

future direction of this work is to investigate the capability of applying this model in

another recommendation domain (e.g., movie recommendations), where movie data

(e.g., movie reviews and synopsis) can be used for our deep feature learning.

106

5.6 Conclusion

In this chapter, we alleviate the natural data sparsity problem in recommender sys-

tems by introducing a dual-process strategy to learn from an item’s textual infor-

mation by coupling two parallel attentive autoencoders together. The learned item’s

features are then utilized in the learning process of the matrix factorization (MF).

We evaluate our model through an academic article recommendation task using three

real-world datasets. The huge gap in the experimental results validates the usefulness

of exploiting more item information and the benefit of integrating the attention tech-

nique in finding more relevant recommendations, thus boosting the recommendation

accuracy. As a result, our model, CATA++, is superior over multiple state-of-the-

art MF-based models according to several evaluation measurements. Furthermore,

the performance improvement of CATA++ increases consistently as data sparsity

increases from one dataset to another. Even though our model has been applied to

a ranking predication task with implicit feedback data, it could be used for a rating

prediction task with explicit feedback data as well by altering the final loss function.

107

Chapter 6

Summary and Future Work

6.1 Summary

Although the concept of neural networks has been defined for more than 50 years, the

era of deep learning only started in the last decade when a research paper entitled

“A fast learning algorithm for deep belief nets” [98] showed an efficient way to train

deep neural networks, something not applicable before due to the limitations of com-

putational resources. Another research paper entitled “Learning deep architectures

for AI” [99] showed the capability of deep networks to obtain magnificent results on

different tasks. More recently, deep learning gets high recognition lately for being the

state-of-the-art techniques in various computer science domains like computer vision,

natural language processing, speech recognition, and recommender systems.

Therefore, in this dissertation, we have investigated various deep learning tech-

niques to address the data sparsity problem in recommender systems. The data

sparsity problem arises when users rate very small number of items, causing a prob-

lem for recommender systems to identify the preferences of their users. An effective

108

solution to this problem is to take the advantage of available user information (e.g.,

age, country, and occupation) and item content (e.g., movie reviews, paper abstracts,

and song lyrics) along with user feedback data to enrich the learning process, in order

to identify the key features that eventually will help make user recommendations.

First, we proposed a deep-hybrid collaborative-filtering model, DeepHCF, that

combines two deep learning networks together, i.e., Multilayer Perceptron and Con-

volutional Neural Network. The two deep networks are trained in parallel under the

same objective function, using two different inputs to estimate user ratings. The MLP

model takes a user’s rating history as input and tries to learn the user-item latent

vectors, while CNN takes an item’s text reviews, which are written by multiple users,

as input and tries to detect popular opinions that most likely fit the user. The output

of the two sub-models are used by factorization machines to predict the final ratings.

This approach is an example of a rating prediction problem.

Second, we proposed a collaborative attentive autoencoder, CATA, that improves

the performance of the Matrix Factorization (MF) approach by including the con-

textual data of items in the learning process. This approach is evaluated on recom-

mending scientific papers. CATA works by initially pretraining paper’s textual data

(e.g., the title and abstract) via an attentive autoencoder. The learned latent repre-

sentation is then used in the learning process of MF, such that the difference between

the latent factors of items from MF and the learned latent representation from the

attentive autoencoder is minimized.

Third, we proposed a collaborative dual attentive autoencoder, namely CATA++,

which is built on top of our previous model. CATA++ adds another attentive autoen-

coder to train more article’s data, such that article’s similarities are detected more

precisely, which promotes the recommendations quality. The two autoencoders are

trained independently and are used together to learn items’ latent factors from the

109

matrix factorization. All our proposed models have been evaluated on at least two

datasets, and they have shown to have a better recommendation performance over

several state-of-the-art models according to different evaluation procedures.

6.2 Future work

For future work, we suggest exploring into the followings points:

1. New metric learning algorithms could be explored to substitute the Matrix

Factorization (MF) technique because the dot product in the MF does not

guarantee the triangle inequality. For any three items, the triangle inequality is

fulfilled once the sum of distance between any two item pairs in the feature space

is greater or equal to the distance of the third item pair, such that d(x, y) ≤

d(x, z) + d(z, y). By doing so, user-user and item-item relationships might be

captured more accurately. In general, any new metric that defines the distance

between any two objects should satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

(6.1)

There are several recent works that present new metric learning methods, which

experimentally outperform the MF-based methods. Example of such methods

are Collaborative Metric Learning (CML) [91], Latent Relational Metric Learn-

ing (LRML) [100], Collaborative Translational Metric Learning (TransCF) [96],

Factorized Metric Learning (FML) [101], Collaborative Preference Embedding

110

(CPE) [102], Symmetric Metric Learning (SML) [97], and Hyperbolic Metric

Learning (HyperML) [103]. Table 6.1 shows a comparison among the afore-

mentioned metric learning approaches with respect to two major aspects, i.e.,

the scoring function (a.k.a. the distance function) and the loss function. The

scoring function is a function that measures the distance between two objects.

2. Other language models could be investigated to replace the attentive autoen-

coder and the convolutional neural network to train the auxiliary information.

For example, capsules networks (CapsNet) [104, 105, 106] have reached the per-

formance of the state-of-the-art models. Some have even surpassed the state-of-

the-art performance in some areas, especially that of computer vision. CapsNet

is a new type of neural network that takes control over CNN. CNN has some

drawbacks; for example, the precise location of objects in an image are lost, and

images should be trained with different angles in order to be recognized. These

well-known issues have been solved by capsules networks by using a vector to

represent the properties of objects instead of using a single point like CNN.

CNN at its beginning was designed for computer vision problems. Since this

point, however, it has been successfully applied in natural language processing

problem. Similarly, we believe that CapsNet can be used in a way to train

items’ contextual information, similarly like what CNN does.

3. Although our focus in this dissertation has been to evaluate our proposed models

against the data sparsity problem, other recommendation challenges could be

evaluated as well, including the cold start problem and the scalability problem.

The cold start problem is very related to the sparsity problem. However, it is

only concerned with recommendations for new users who have no feedback data

yet in the training data. On the other hand, the scalability problem challenges

111

researchers to design efficient models that can handle very large datasets. The

scalability problem can be evaluated against the computation time needed for

training and testing.

4. User data can be gathered and then used to update users’ latent factors in the

same way that we update items’ latent factors in CATA and CATA++. Even

though user data is often not available due to the privacy concerns (e.g., CiteU-

Like datasets do not have user data), we believe that item data, together with

user-item interaction data, can be used to infer user information. For example,

we could infer users’ interests from tags information assigned to documents.

Similarly, as we did in creating the article-tag matrix, we can build a user-tag

matrix and then learn users’ preferences to update users’ latent factors.

5. As we have seen in the previous chapters, auxiliary contextual information is

very important to increase recommendations accuracy. However, when splitting

user ratings into training and testing splits, we do not take the timestamp into

consideration. Due to the fact that users’ interests might change over time,

evaluating recommender systems in this way might not reflect real-world sce-

narios. Therefore, timestamps are important features that have been integrated

in time-aware recommendation systems. We have not involved time parameters

into any of our model training. Thus, we could adjust our model architecture

accordingly and evaluate our models as time-aware models.

112

T
ab

le
6.

1:
A

co
m

p
ar

is
on

am
on

g
d
iff

er
en

t
m

et
ri

c
le

ar
n
in

g
ap

p
ro

ac
h
es

re
ga

rd
in

g
th

e
sc

or
in

g
fu

n
ct

io
n

an
d

th
e

lo
ss

fu
n
ct

io
n
.

A
p
p
ro

a
ch

S
co

ri
n
g

fu
n
ct

io
n

L
o
ss

fu
n

ct
io

n

C
M

L
[9

1]
d
(u
,v

)
=
‖u
−
v
‖2 2

∑ u
,v
∈
S

∑ u
,v̂
/∈
S

[d(u,
v
)
−
d
(u
,v̂

)
+
m
] +

L
R

M
L

[1
00

]
d
(u
,v

)
=
‖u

+
r u

v
−
v
‖2 2

∑ u
,v
∈
S

∑ u
,v̂
/∈
S

[d(u,
v
)
−
d
(u
,v̂

)
+
m
] +

T
ra

n
sC

F
[9

6]
d
(u
,v

)
=
‖u

+
r u

n
b
r
v
n
b
r
−
v
‖2 2

∑ u
,v
∈
S

∑ u
,v̂
/∈
S

[d(u,
v
)
−
d
(u
,v̂

)
+
m
] +

F
M

L
[1

01
]

d
(u
,v

)
=
‖u
−
v
‖2 2

∑ u
,v
∈
R
C

u
v
(Y

u
v
−
d
(u
,v

))
2

C
P

E
[1

02
]

d
(u
,v

)
=
‖u
−
v
‖2 2

∑ u
,v
∈
S

∑ u
,v̂
/∈
S

[(d(u
,v̂

)
−
d
(u
,v

)) −
m
] +

+
[m−

(d(u
,v̂

)
−
d
(u
,v

))] +

S
M

L
[9

7]
d
(u
,v

)
=
‖u
−
v
‖2 2

∑ u
,v
∈
S

∑ u
,v̂
/∈
S

[d(u,
v
)
−
d
(u
,v̂

)
+
m

u

] +
+
[d(u,

v
)
−
d
(v
,v̂

)
+
n
v

] +

H
y
p

e
rM

L
[1

03
]
d
(u
,v

)
=

2 √
c

ta
n
h
−
1
(√
c
‖−

u
⊕

c
v
‖2 2

)
∑ u

,v
∈
S

∑ u
,v̂
/∈
S

[d(u,
v
)
−
d
(u
,v̂

)
+
m
] +

113

Bibliography

[1] S. Sagiroglu and D. Sinanc. Big data: A review. In 2013 International Con-

ference on Collaboration Technologies and Systems (CTS), pages 42–47. IEEE,

2013.

[2] F. Yuan. Learning implicit recommenders from massive unobserved feedback.

PhD thesis, University of Glasgow, 2018.

[3] A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. Chi. Latent

cross: Making use of context in recurrent recommender systems. In Proceed-

ings of the Eleventh ACM International Conference on Web Search and Data

Mining, pages 46–54. ACM, 2018.

[4] C. Wang and D. Blei. Collaborative topic modeling for recommending scientific

articles. In Proceedings of the 17th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 448–456. ACM, 2011.

[5] J. Zhang, C. Chow, and Y. Zheng. Orec: An opinion-based point-of-interest

recommendation framework. In Proceedings of the 24th ACM International

on Conference on Information and Knowledge Management, pages 1641–1650.

ACM, 2015.

114

[6] X. Wang and Y. Wang. Improving content-based and hybrid music recom-

mendation using deep learning. In Proceedings of the 22nd ACM international

conference on Multimedia, pages 627–636. ACM, 2014.

[7] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta,

Y. He, M. Lambert, B. Livingston, et al. The youtube video recommendation

system. In Proceedings of the fourth ACM conference on Recommender systems,

pages 293–296. ACM, 2010.

[8] C. Gomez-Uribe and N. Hunt. The netflix recommender system: Algorithms,

business value, and innovation. ACM Transactions on Management Information

Systems (TMIS), 6(4):13, 2016.

[9] I. MacKenzie, C. Meyer, and S. Noble. How retailers can keep up with

consumers. https://www.mckinsey.com/industries/retail/our-insights/how-

retailers-can-keep-up-with-consumers, 2013. (Accessed on 06-13-2019).

[10] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:

scalable online collaborative filtering. In Proceedings of the 16th international

conference on World Wide Web, pages 271–280. ACM, 2007.

[11] R. Pan, Y. Zhou, B. Cao, N. N Liu, R. Lukose, M. Scholz, and Q. Yang. One-

class collaborative filtering. In 2008 Eighth IEEE International Conference on

Data Mining, pages 502–511. IEEE, 2008.

[12] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback

datasets. In ICDM, volume 8, pages 263–272. Citeseer, 2008.

[13] M. Alfarhood and J. Cheng. Deephcf: A deep learning based hybrid collabo-

rative filtering approach for recommendation systems. In 2018 17th IEEE In-

115

ternational Conference on Machine Learning and Applications (ICMLA), pages

89–96. IEEE, 2018.

[14] M. Alfarhood and J. Cheng. Collaborative attentive autoencoder for scien-

tific article recommendation. In 2019 18th IEEE International Conference On

Machine Learning And Applications (ICMLA), pages 168–174. IEEE, 2019.

[15] M. Alfarhood and J. Cheng. Deep learning-based recommender systems. In

Deep Learning Applications, Volume 2. Advances in Intelligent Systems and

Computing, pages 1–23. Springer Singapore, 2021.

[16] M. Alfarhood and J. Cheng. Cata++: A collaborative dual attentive au-

toencoder method for recommending scientific articles. In IEEE Access, pages

183633–183648. IEEE, 2020.

[17] J. Schafer, J. Konstan, and J. Riedl. Recommender systems in e-commerce. In

Proceedings of the 1st ACM conference on Electronic commerce, pages 158–166.

ACM, 1999.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality

reduction in recommender system-a case study. Technical report, Minnesota

Univ Minneapolis Dept of Computer Science, 2000.

[19] A. Mnih and R. Salakhutdinov. Probabilistic matrix factorization. In Advances

in neural information processing systems, pages 1257–1264, 2008.

[20] R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization

using markov chain monte carlo. In Proceedings of the 25th international con-

ference on Machine learning, pages 880–887. ACM, 2008.

116

[21] L. Jing, P. Wang, and L. Yang. Sparse probabilistic matrix factorization by

laplace distribution for collaborative filtering. In Twenty-Fourth International

Joint Conference on Artificial Intelligence, 2015.

[22] C. Desrosiers and G. Karypis. A comprehensive survey of neighborhood-based

recommendation methods. In Recommender systems handbook, pages 107–144.

Springer, 2011.

[23] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms.

ACM Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[24] G. Linden, B. Smith, and J. York. Amazon. com recommendations: Item-to-

item collaborative filtering. IEEE Internet computing, 7(1):76–80, 2003.

[25] B. Betru, C. Onana, and B. Batchakui. Deep learning methods on recommender

system: A survey of state-of-the-art. International Journal of Computer Appli-

cations, 162(10):17–22, 2017.

[26] P. Lops, M. De Gemmis, and G. Semeraro. Content-based recommender sys-

tems: State of the art and trends. In Recommender systems handbook, pages

73–105. Springer, 2011.

[27] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems

survey. Knowledge-based systems, 46:109–132, 2013.

[28] Z. Batmaz, A. Yurekli, A. Bilge, and C. Kaleli. A review on deep learning for

recommender systems: challenges and remedies. Artificial Intelligence Review,

52(1):1–37, 2019.

117

[29] A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music

recommendation. In Advances in neural information processing systems, pages

2643–2651, 2013.

[30] R. Mooney and L. Roy. Content-based book recommending using learning

for text categorization. In Proceedings of the fifth ACM conference on Digital

libraries, pages 195–204. ACM, 2000.

[31] H. Mak, I. Koprinska, and J. Poon. Intimate: A web-based movie recommender

using text categorization. In Proceedings IEEE/WIC International Conference

on Web Intelligence (WI 2003), pages 602–605. IEEE, 2003.

[32] H. Wang, B. Chen, and W. Li. Collaborative topic regression with social regu-

larization for tag recommendation. In Twenty-Third International Joint Con-

ference on Artificial Intelligence, 2013.

[33] J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding

rating dimensions with review text. In Proceedings of the 7th ACM conference

on Recommender systems, pages 165–172. ACM, 2013.

[34] H. Wang, N. Wang, and D. Yeung. Collaborative deep learning for recommender

systems. In Proceedings of the 21th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 1235–1244. ACM, 2015.

[35] S. Zhang, L. Yao, and A. Sun. Deep learning based recommender system: A

survey and new perspectives. In arXiv preprint arXiv:1707.07435., 2017.

[36] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr:

Bayesian personalized ranking from implicit feedback. In Proceedings of the

twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461.

AUAI Press, 2009.

118

[37] R. Salakhutdinov, A. Mnih, and G. Hinton. Restricted boltzmann machines for

collaborative filtering. In Proceedings of the 24th international conference on

Machine learning, pages 791–798. ACM, 2007.

[38] H. Wang, X. Shi, and D. Yeung. Relational stacked denoising autoencoder for

tag recommendation. In Twenty-ninth AAAI conference on artificial intelli-

gence, 2015.

[39] X. Li and J. She. Collaborative variational autoencoder for recommender sys-

tems. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 305–314. ACM, 2017.

[40] D. Liang, R. Krishnan, M. Hoffman, and T. Jebara. Variational autoencoders

for collaborative filtering. In Proceedings of the 2018 World Wide Web Con-

ference, pages 689–698. International World Wide Web Conferences Steering

Committee, 2018.

[41] Y. Wu, C. DuBois, A. Zheng, and M. Ester. Collaborative denoising auto-

encoders for top-n recommender systems. In Proceedings of the Ninth ACM In-

ternational Conference on Web Search and Data Mining, pages 153–162. ACM,

2016.

[42] S. Sedhain, A. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet

collaborative filtering. In Proceedings of the 24th International Conference on

World Wide Web, pages 111–112. ACM, 2015.

[43] S. Zhang, L. Yao, and X. Xu. Autosvd++: An efficient hybrid collaborative

filtering model via contractive auto-encoders. In Proceedings of the 40th Inter-

national ACM SIGIR conference on Research and Development in Information

Retrieval, pages 957–960. ACM, 2017.

119

[44] S. Li, J. Kawale, and Y. Fu. Deep collaborative filtering via marginalized denois-

ing auto-encoder. In Proceedings of the 24th ACM International on Conference

on Information and Knowledge Management, pages 811–820. ACM, 2015.

[45] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube

recommendations. In Proceedings of the 10th ACM Conference on Recommender

Systems. ACM, 2016. ACM, 2016.

[46] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative fil-

tering. In Proceedings of the 26th International Conference on World Wide Web

(WWW), pages 173–182. International World Wide Web Conferences Steering

Committee, 2017.

[47] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Ander-

son, G. Corrado, W. Chai, M. Ispir, and R. Anil. Wide and deep learning for

recommender systems. In Proceedings of the 1st Workshop on Deep Learning

for Recommender Systems. ACM, 2016.

[48] Y. Shan, T. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao. Deep crossing: Web-

scale modeling without manually crafted combinatorial features. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 255–262. ACM, 2016.

[49] W. Zhang, T. Du, and J. Wang. Deep learning over multi-field categorical data.

In European conference on information retrieval, pages 45–57. Springer, 2016.

[50] W. Chen, F. Cai, H. Chen, and M. Rijke. Joint neural collaborative filtering for

recommender systems. In ACM Transactions on Information Systems (TOIS),

pages 1–30. ACM, 2019.

120

[51] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[52] J. Liu and C. Wu. Deep learning based recommendation: a survey. In Inter-

national Conference on Information Science and Applications, pages 451–458.

Springer, 2017.

[53] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu. Convolutional matrix factorization

for document context-aware recommendation. In Proceedings of the 10th ACM

Conference on Recommender Systems. ACM, 2016.

[54] J. Liu, D. Wang, and Y. Ding. Phd: A probabilistic model of hybrid deep col-

laborative filtering for recommender systems. In Asian Conference on machine

learning, pages 224–239, 2017.

[55] X. Feng, H. Zhang, Y. Ren, P. Shang, Y. Zhu, Y. Liang, R. Guan, and D. Xu.

The deep learning–based recommender system “pubmender” for choosing a

biomedical publication venue: Development and validation study. Journal of

medical Internet research, 21(5):e12957, 2019.

[56] L. Zheng, V. Noroozi, and P. Yu. Joint deep modeling of users and items using

reviews for recommendation. In Proceedings of the Tenth ACM International

Conference on Web Search and Data Mining. ACM, 2017.

[57] Y. Gong and Q. Zhang. Hashtag recommendation using attention-based con-

volutional neural network. In IJCAI, pages 2782–2788, 2016.

[58] T. Bansal, D. Belanger, and A. McCallum. Ask the gru: Multi-task learning

for deep text recommendations. In Proceedings of the 10th ACM Conference on

Recommender Systems, pages 107–114. ACM, 2016.

121

[59] C. Wu, A. Ahmed, A. Beutel, A. Smola, and H. Jing. Recurrent recommender

networks. In Proceedings of the tenth ACM international conference on web

search and data mining, pages 495–503. ACM, 2017.

[60] H. Jing and A. Smola. Neural survival recommender. In Proceedings of the

Tenth ACM International Conference on Web Search and Data Mining, pages

515–524. ACM, 2017.

[61] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang.

Irgan: A minimax game for unifying generative and discriminative information

retrieval models. In Proceedings of the 40th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, pages 515–524,

2017.

[62] H. Bharadhwaj, H. Park, and B. Lim. Recgan: recurrent generative adver-

sarial networks for recommendation systems. In Proceedings of the 12th ACM

Conference on Recommender Systems (RecSys), pages 372–376, 2018.

[63] D. Perera and R. Zimmermann. Cngan: Generative adversarial networks for

cross-network user preference generation for non-overlapped users. In The

World Wide Web Conference, pages 3144–3150. ACM, 2019.

[64] C. Sun, H. Liu, M. Liu, Z. Ren, T. Gan, and L. Nie. Lara: Attribute-to-

feature adversarial learning for new-item recommendation. In Proceedings of

the 13th International Conference on Web Search and Data Mining (WSDM),

pages 582–590, 2020.

[65] Leichtman Research Group. 69% of u.s. households have an svod ser-

vice. https://www.leichtmanresearch.com/wp-content/uploads/2018/08/LRG-

Press-Release-08-27-18.pdf, 2018. (Accessed on 07-13-2019).

122

[66] X. He and T. Chua. Neural factorization machines for sparse predictive an-

alytics. In Proceedings of the 40th International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR ’17. ACM, 2017.

[67] S. Rendle. Factorization machines. In 2010 IEEE International Conference on

Data Mining, pages 995–1000. IEEE, 2010.

[68] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: a factorization-machine

based neural network for ctr prediction. arXiv preprint arXiv:1703.04247, 2017.

[69] Y. Kim. Convolutional neural networks for sentence classification. In Pro-

ceedings of the 2014 Empirical Methods in Natural Language Processing, page

1746–1751. EMNLP, 2014.

[70] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word

representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP), pages 1532–1543, 2014.

[71] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed

representations of words and phrases and their compositionality. In Advances

in neural information processing systems, pages 3111–3119, 2013.

[72] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,

A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning

on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[73] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collabo-

rative filtering for the netflix prize. In International conference on algorithmic

applications in management, pages 337–348. Springer, 2008.

123

[74] G. Salton and M. McGill. Introduction to modern information retrieval.

McGraw-Hill, Inc, 1983.

[75] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-

mender systems. Computer, 42(8):30–37, 2009.

[76] S. Funk. Netflix update: Try this at home. https://sifter.org/ si-

mon/journal/20061211.html, 2006. (Accessed on 11-13-2019).

[77] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. In Proceedings of the 3rd International Confer-

ence on Learning Representations (ICLR), 2015.

[78] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual

attention. In Advances in neural information processing systems, pages 2204–

2212, 2014.

[79] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention

networks for document classification. In Proceedings of the 2016 conference of

the North American chapter of the association for computational linguistics:

human language technologies, pages 1480–1489, 2016.

[80] M. Luong, H. Pham, and C. Manning. Effective approaches to attention-based

neural machine translation. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 1412–1421, 2015.

[81] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural

information processing systems, pages 5998–6008, 2017.

124

[82] Yogesh Jhamb, Travis Ebesu, and Yi Fang. Attentive contextual denoising

autoencoder for recommendation. In Proceedings of the 2018 ACM SIGIR In-

ternational Conference on Theory of Information Retrieval, pages 27–34. ACM,

2018.

[83] C. Ma, P. Kang, B. Wu, Q. Wang, and X. Liu. Gated attentive-autoencoder

for content-aware recommendation. In Proceedings of the Twelfth ACM Inter-

national Conference on Web Search and Data Mining, pages 519–527. ACM,

2019.

[84] Y. Tay, A. Luu, and S. Hui. Multi-pointer co-attention networks for recommen-

dation. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2309–2318. ACM, 2018.

[85] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T. Chua. Attentional factorization

machines: learning the weight of feature interactions via attention networks. In

Proceedings of the 26th International Joint Conference on Artificial Intelligence,

pages 3119–3125. AAAI Press, 2017.

[86] S. Seo, J. Huang, H. Yang, and Y. Liu. Interpretable convolutional neural

networks with dual local and global attention for review rating prediction. In

Proceedings of the Eleventh ACM Conference on Recommender Systems, pages

297–305. ACM, 2017.

[87] X. He, Z. He, J. Song, Z. Liu, Y. Jiang, and T. Chua. Nais: Neural attentive

item similarity model for recommendation. IEEE Transactions on Knowledge

and Data Engineering, 30(12):2354–2366, 2018.

[88] G. E Hinton and R. Salakhutdinov. Reducing the dimensionality of data with

neural networks. science, 313(5786):504–507, 2006.

125

[89] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift. In Proceedings of the 32nd International

Conference on Machine Learning (ICML), pages 448–456. ACM, 2015.

[90] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. The Journal

of Machine Learning Research, 15(1):1929–1958, 2014.

[91] C. Hsieh, L. Yang, Y. Cui, T. Lin, S. Belongie, and D. Estrin. Collaborative

metric learning. In Proceedings of the 26th international conference on world

wide web, pages 193–201. International World Wide Web Conferences Steering

Committee, 2017.

[92] R. He and J. McAuley. Vbpr: visual bayesian personalized ranking from implicit

feedback. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[93] A. Vellino. Usage-based vs. citation-based methods for recommending scholarly

research articles. arXiv preprint arXiv:1303.7149, 2013.

[94] A. Alzogbi. Time-aware collaborative topic regression: Towards higher rele-

vance in textual item recommendation. In BIRNDL@ SIGIR, pages 10–23,

2018.

[95] P. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Pearson

Education India, 2016.

[96] C. Park, D. Kim, X. Xie, and H. Yu. Collaborative translational metric learning.

In 2018 IEEE International Conference on Data Mining (ICDM), pages 367–

376. IEEE, 2018.

126

[97] M. Li, S. Zhang, F. Zhu, W. Qian, L. Zang, J. Han, and S. Hu. Symmetric

metric learning with adaptive margin for recommendation. In Thirty-Fourth

AAAI Conference on Artificial Intelligence, 2020.

[98] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief

nets. Neural computation, 18(7):1527–1554, 2006.

[99] Y. Bengio. Learning deep architectures for ai. Foundations and trends R© in

Machine Learning, 2(1):1–127, 2009.

[100] Y. Tay, L. Anh, and S. Hui. Latent relational metric learning via memory-based

attention for collaborative ranking. In Proceedings of the 2018 World Wide

Web Conference, pages 729–739. International World Wide Web Conferences

Steering Committee, 2018.

[101] S. Zhang, L. Yao, B. Wu, X. Xu, X. Zhang, and L. Zhu. Unraveling metric

vector spaces with factorization for recommendation. IEEE Transactions on

Industrial Informatics, 16(2):732–742, 2019.

[102] S. Bao, Q. Xu, K. Ma, Z. Yang, X. Cao, and Q. Huang. Collaborative preference

embedding against sparse labels. In Proceedings of the 27th ACM International

Conference on Multimedia, pages 2079–2087, 2019.

[103] L. Tran, Y. Tay, S. Zhang, G. Cong, and X. Li. Hyperml: A boosting metric

learning approach in hyperbolic space for recommender systems. In WSDM,

pages 609–617, 2020.

[104] S. Sabour, N. Frosst, and G. Hinton. Dynamic routing between capsules. In

Advances in neural information processing systems, pages 3856–3866, 2017.

127

[105] S. Sabour, N. Frosst, and G. Hinton. Matrix capsules with em routing. In 6th

international conference on learning representations, ICLR, pages 1–15, 2018.

[106] A. Kosiorek, S. Sabour, Y. Teh, and G. Hinton. Stacked capsule autoencoders.

In Advances in Neural Information Processing Systems, pages 15486–15496,

2019.

128

VITA

Meshal Alfarhood was born and raised in Zulfi, Saudi Arabia. He obtained his

Bachelor of Science degree in Computer Science from King Saud University, Riyadh,

Saudi Arabia in 2011. He then joined the same department he graduated from with a

teaching assistant position. This faculty position gave him the opportunity to receive

a scholarship to pursue his graduate studies in the United States. He earned his

Master of Science degree in Computer Science from University of Arkansas in 2015.

He then joined the University of Missouri-Columbia as a PhD student in 2016 where

he joined the Bioinformatics and Machine Learning Laboratory (BML) under the

supervision of Prof. Jianlin Cheng. His research interests include Machine Learning,

Big Data Analytics, and Recommender Systems. He defended his dissertation and

earned his doctoral degree in November 2020.

129

