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ABSTRACT

The block-based coding structure in the hybrid video coding framework inevitably

introduces compression artifacts such as blocking, ringing, etc. To compensate for those

artifacts, extensive filtering techniques were proposed in the loop of video codecs, which

are capable of boosting the subjective and objective qualities of reconstructed videos.

Recently, neural network-based filters were presented with the power of deep learning

from a large magnitude of data. Though the coding efficiency has been improved from

traditional methods in High-Efficiency Video Coding (HEVC), the rich features and in-

formation generated by the compression pipeline has not been fully utilized in the design

of neural networks. Therefore, we propose a learning-based method to further improve

the coding efficiency to its full extent.

In addition, the point cloud is an essential format for three-dimensional (3-D) ob-

jects capture and communication for Augmented Reality (AR) and Virtual Reality (VR)

applications. In the current state of the art video-based point cloud compression (V-PCC),
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a dynamic point cloud is projected onto geometry and attribute videos patch by patch, each

represented by its texture, depth, and occupancy map for reconstruction. To deal with oc-

clusion, each patch is projected onto near and far depth fields in the geometry video. Once

there are artifacts on the compressed two-dimensional (2-D) geometry video, they would

be propagated to the 3-D point cloud frames. In addition, in the lossy compression, there

always exists a tradeoff between the rate of bitstream and distortion (RD). Although some

methods were proposed to attenuate these artifacts and improve the coding efficiency, the

non-linear representation ability of Convolutional Neural Network (CNN) has not been

fully considered. Therefore, we propose a learning-based approach to remove the geom-

etry artifacts and improve the compressing efficiency.

Besides, we propose using a CNN to improve the accuracy of the occupancy map

video in V-PCC. To the best of our knowledge, these are the first learning-based solutions

of the geometry artifacts removal in HEVC and occupancy map enhancement in V-PCC.

The extensive experimental results show that the proposed approaches achieve significant

gains in HEVC and V-PCC compared to the state-of-the-art schemes.
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CHAPTER 1

RESIDUAL-GUIDED IN-LOOP FILTER USING CONVOLUTION NEURAL

NETWORK

The block-based coding structure in the hybrid video coding framework inevitably

introduces compression artifacts such as blocking, ringing, etc. To compensate for those

artifacts, extensive filtering techniques were proposed in the loop of video codecs, which

are capable of boosting the subjective and objective qualities of reconstructed videos.

Recently, neural network based filters were presented with the power of deep learning

from a large magnitude of data. Though the coding efficiency has been improved from

traditional methods in High-Efficiency Video Coding (HEVC), the rich features and in-

formation generated by the compression pipeline has not been fully utilized in the design

of neural networks. Therefore, in this paper, we propose the Residual-Reconstruction-

based Convolutional Neural Network (RRNet) to further improve the coding efficiency

to its full extent, where the compression features induced from bitstream in form of pre-

diction residual is fed into the network as an additional input to the reconstructed frame.

In essence, the residual signal can provide valuable information about block partitions

and can aid reconstruction of edge and texture regions in a picture. Thus, more adap-

tive parameters can be trained to handle different texture characteristics. The experimen-

tal results show that our proposed RRNet approach presents significant BD-rate savings

compared to HEVC and the state-of-the-art CNN-based schemes, indicating that residual

signal plays a significant role in enhancing video frame reconstruction.
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1.1 Background

Advanced Video Coding (H.264/AVC) [10], High-Efficiency Video Coding (H.265/HEVC)

[11] are existing popular video coding standards. Versatile Video Coding (VVC) [12] is

the emerging next-generation standard under the development of the Moving Pictures

Expert Group (MPEG). These video coding standards adopt the so-called hybrid coding

frameworks, where the major procedures include prediction, transform, quantization, and

entropy coding. In the hybrid coding framework, a video frame is partitioned into non-

overlapping coding blocks. These blocks form the basis coding units (CU), prediction

units (PU), transform units (TU), etc. A block-based coding scheme is hardware-friendly

and easy to implement. It also lends itself to useful coding functionalities such as paral-

lelization.

However, block-wise operation inevitably introduces video quality degradation

near the block boundaries, known as block artifacts. Beyond that, coarse quantization is

another major factor in causing video quality degradation, especially at the regions with

sharp edges known as the ringing artifacts. This ripple phenomenon induces poor visual

quality and leads to a bad user-experience [13]. Given this, extensive in-loop filters have

been proposed to compensate for artifacts and distortions in video coding. The in-loop

filters can be classified into two categories based on whether the deep learning techniques

are used.

The first category is traditional signal processing based methods, including De-

blocking Filter (DF) [14, 15], Sample Adaptive Offset (SAO) [16–18], Adaptive Loop

Filter (ALF) [19], non-local in-loop filter [20] and many others. DF can reduce blocking

2



artifacts at PU and TU boundaries. SAO compensates the pixel-wise residuals by ex-

plicitly signaling offsets for pixel groups with similar characteristics. ALF is essentially a

Wiener filter where the current pixel is filtered as a linear combination of neighboring pix-

els. The three filters mentioned above are based on neighbor-pixel statistics. In contrast,

the non-local in-loop filter takes advantage of non-local similarities in natural images.

Traditional methods improve the video quality with relatively low complexity.

Therefore, they have been successfully applied in video coding standards. Recently,

however, the deep learning based in-loop filters have been proposed to achieve further

improvements [21–23]. One type of CNN utilizes the principle of the Kalman filter to

construct a deep learning filter. Another type of CNN consists of the highway or content-

aware block units to achieve flexibility. People have realized that these deep learning

based schemes have at least two benefits from traditional methods. One is that non-linear

filtering operations are involved in the system. It is critical to capture and compensate

for the distortions caused by codecs because these coding distortions are essentially non-

linear by themselves. Another benefit is that deep learning can learn features from a large

amount of data automatically, which would be more efficient than handcraft features.

Though the coding efficiency has been improved from traditional methods in HEVC, the

coding information has not been fully utilized in the design of neural networks. In [24],

the authors proposed to utilize partition information in the design of neural networks,

indicating introducing more coding information can benefit the overall performance.

Motivated by these, we propose a novel in-loop algorithm by introducing the resid-

ual signal to the network and devising two sub-networks for residual and reconstruction
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signals, respectively. They are the Residual Network and the Reconstruction Network.

The major contributions of this work are three-fold:

• First, we supply the residual signal as the supplementary information and feed it

into the neural network in pair with the reconstructed frame. To the best of our

knowledge, this is the first work that utilizes the residual signal to devise an in-loop

filter for video coding.

• Second, the network structure is carefully designed for the dual-input CNN to uti-

lize the underlying features in different input channels fully. The residual blocks

are used for Residual-Network. A hierarchical autoencoder network with skip con-

nections is used for Reconstruction-Network.

• Third, extensive experiments have been conducted to compare with existing algo-

rithms to demonstrate its effectiveness of the proposed scheme. Throughout analy-

ses are provided to give more insights into the problem based on the experimental

results.

Note that a residual introduced deblocking method has been proposed in our previ-

ous work [25]. This paper provides more motivation, analysis, experimental results, and

comparison of related works on the residual-based loop filter. Additionally, in order to

validate the efficiency of our RRNet design, we recurs more three inputs-based methods

for comparison. The experimental results show that the customized Residual Network

and Reconstruction Network is significantly beneficial for bitrate savings.

We organize the remainder of this paper as follows. In Section 1.2, we describe
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related works. Section 1.3 introduces the proposed RRNet approach. In Section 1.4, we

report and analyze the experimental results. Finally, Section 1.5 summarizes this paper

and discusses future works.

1.2 In-loop filters in video compression

In this section, we briefly review the prior works related to loop filters of video

coding, including the traditional signal processing based methods and deep learning based

methods.

1.2.1 Traditional signal processing based methods

Relying on the signal processing theory, the following in-loop filter methods have

been proposed.

1) Deblocking Filter (DF). List et al. [26] devised the first version of an adaptive de-

blocking filter, which was adopted by H.264/AVC standard. It depressed distortions

at block boundaries by applying an appropriate filter. Zhang et al. [27] proposed

a three-step framework considering task-level segmentation and data-level paral-

lelization to efficiently parallelize the deblocking filter. Tsu-Ming et al. [14] then

proposed a high-throughput deblocking filter. In HEVC, Norkin et al. [15] designed

a DF with lower complexity and better parallel-processing capability. Li et al. [28]

provided deblocking with a shape-adaptive low-rank before preserving edges well

and an extra before restoring the lost high-frequency components.
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2) Sample Adaptive Offset (SAO) [29]. Chien and Karczewicz proposed an adap-

tive loop filtering technique [30] based on the Laplacian energy and classifications

of the reconstructed pixel value. This approach obtains obvious performance im-

provements but with high complexity. Ken et al. [31] designed an extrema cor-

recting filter (EXC) and a boundary correcting filter (BDC). Huang et al. [32] de-

veloped a picture-based boundary offset (PBO), picture-based border offset (PEO)

and picture-based adaptive constraint (PAC). Fu et al. [16,17] devised an algorithm

that can adaptively select the optimal pixel-classification method. However, com-

putational complexity is still very high. To address this, Fu and Chen et al. [18]

proposed a sample adaptive offset (SAO) method, which was finally adopted by

HEVC. It provides a better trade-off between performance and complexity.

3) Adaptive Loop Filter (ALF). Tsai et al. [19] proposed the ALF method to decrease

the mean square error between original frames and decoded frames by Wiener-

based adaptive filter. The filter coefficients are trained for different pixel regions at

the encoder. The coefficients are then explicitly signaled to the decoder. Besides,

ALF activates the filter at different regions by signaling control flags.

4) Non-local Mean Models. The non-local mean methods improve the efficiency of

in-loop filters as well. To suppress the quantization noise optimally and improve

the quality of the reconstructed frame, Han et al. [33] proposed a quadtree-based

non-local Kuan’s (QNLK) filter. Ma et al. [20] proposed the group-based sparse

representation with image local and non-local self-similarities. This model lays a
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(a) Ground Truth (b) Residual

Figure 1: Typical example of the Kimono residual under QP37 with intra mode. The
color has been adjusted for clear viewing. The inverse transformed residual signal pro-
vides the comprehensive partition information of the transforming units. It is obvious to
see the 32 ⇥ 32, 16 ⇥ 16, 8 ⇥ 8, and 4 ⇥ 4 partition blocks of TU in the residual. For
instance, the shapes of the woman’s body and tree trunks are more easily discernable.
Meanwhile, the residual contains a large amount of dense, detailed textures. For example,
we can see many needle leaves on the trees. This information can help to augment the
considerable variation in some areas of the reconstruction.

solid groundwork for the in-loop filter design. Zhang et al. [34] utilized image non-

local prior knowledge to develop a loop filter by imposing the low-rank constraint

on similar image patches for compression noise reduction.

1.2.2 Deep learning based methods

Recently, the deep learning based in-loop filters have been proposed. For images,

Dong et al. [35] designed a compact and efficient model, known as Artifacts Reduction

Convolutional Neural Networks (AR-CNN). This model was effective for reducing var-

ious types of coding artifacts. Kang et al. [36] propose to learn sparse image represen-

tations for modeling the relationship between low-resolution and high-resolution image

patches in terms of the learned dictionaries for image patches with and without blocking
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Figure 2: RRNet with sub-networks of both the Residual Network and the Reconstruction
Network. Residuals are fed into the Residual Network to provide the TU partition infor-
mation and the detailed textures information. The Residual Network relies on residual
blocks to learn features effectively with residual learning. We feed the reconstruction into
the Reconstruction Network. The Reconstruction Network executes the downsampling
and upsampling strategy to patch up the local and global information. This enhances
reconstruction quality and aids with the residual learning approach.
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artifacts, respectively. Wang et al. [37] devised a Deep Dual-Domain (D3) based fast

restoration framework to recover high-quality images from JPEG compressed images.

The D3 model increased the large learning capacity of deep networks.

For videos, Xue et al. [38] proposed the task-oriented flow (TOFlow), where a

motion representation was learned for video enhancement. Tao et al. [39] proposed a

sub-pixel motion compensation (SPMC) model, which has shown its efficiency in video

super-resolution applications. In the framework of video coding, Dai et al. [40] designed

a Variable-filter-size Residual-learning CNN (VRCNN) that achieved 4.6% bit-rate gain.

Yang et al. [41, 42] developed the Quality Enhancement Convolutional Neural Network

(QE-CNN) method in HEVC. With the residual learning [43], Wang et al. [44] designed

the dense residual convolutional neural network (DRN), which exploits the multi-level

features to recover a high-quality frame from a degraded one. Other CNN-based video

compression works, including [45–47] pushed the horizon of in-loop filtering techniques

as well. Most recently, Zhang et al. [21] devised the residual highway convolutional

neural network (RHCNN) in HEVC. Lu et al. [22] modeled loop filtering for video com-

pression as a Kalman filtering process. Jia et al. [23] proposed a content-aware CNN

based in-loop filtering for HEVC. However, most of these frameworks are designed for

one specific restoration task. To address this issue, Jin et al. [48] proposed a flexible deep

CNN framework that exploits the frequency characteristics of different types of artifacts.

The aforementioned deep learning methods only took the reconstructed low-quality

video frame as input. However, the coding information was not efficiently utilized. To

better use coding information, Lin and He et al. [5,24] proposed a partition-masked CNN,
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(a) Cactus Ground Truth (b) Cactus Residual Feature Map

(c) BQSquare Ground Truth (d) BQSquare Residual Feature Map

Figure 3: Residual feature maps of Cactus and BQSquare derived from the Residual
Network of RRNet under QP37. The residual features of Cactus with abundant context
including pokers, calender and metal circle demonstrates its prominent contribution for
enhancing the quality of the video frame. The residual features of BQSquare which are a
flat example show a great amount of details involving chairs and tables.
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Figure 4: The location of RRNet embedded in HEVC. We insert the RRNet into HEVC as
an in-loop method. The RRNet would input residual from extracting module and recon-
struction into the Residual Network and the Reconstruction Network, respectively. The
RRNet is executed instead of DF and SAO filters.
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Table 1: The Residual Network Parameters of conv layers

Layers Kernel Size Feature maps Stride Padding
Number

Conv 1 3⇥ 3 32 1 1
Residual Block 1 3⇥ 3 64 1 1
(2 convs)
Residual Block 2 3⇥ 3 64 1 1
(2 convs)
Residual Block 3 3⇥ 3 64 1 1
(2 convs)
Conv 8 3⇥ 3 32 1 1

Table 2: The Reconstruction Network Parameters of Conv And Transposed Conv Layers

Type of Layer Conv1 Conv2 Conv3 Transposed Conv1 Conv4 Transposed Conv2 Conv5 Conv6
Kernel Size 3⇥ 3 3⇥ 3 3⇥ 3 2⇥ 2 3⇥ 3 2⇥ 2 3⇥ 3 3⇥ 3

Feature Map Number 32 64 128 64 64 32 32 32
Stride 1 1 1 2 1 2 1 1

Padding 1 1 1 0 1 0 1 1

where the block partition information was utilized for improving the quality of the recon-

structed frames. It has shown additional improvements in terms of coding efficiency over

the reconstruction-only methods.

1.3 Residual-assisted in-loop RRNet

This section will discuss the proposed RRNet scheme in detail, including a more

in-depth discussion on the architecture of the RRNet, loss function, dataset, and training

process.
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1.3.1 Architecture of the proposed RRNet framework

Fig. 2 shows the overall architecture of the proposed RRNet framework. The pro-

posed RRNet framework includes two sub-networks: the reconstruction network and the

residual network. The reconstruction network uses the reconstruction as input and derives

reconstruction feature maps from the input. The residual network uses the residual as in-

put and derives residue feature maps from the input. The feature maps derived from the

two sub-networks are concatenated together and used as the input of the last convolutional

layer. In addition, we use the residual learning method that learns the difference between

the input and the label to accelerate the training process.

As explained in the last paragraph, both the reconstruction and residual are utilized

as the inputs of the proposed network. Applying the reconstruction as input is the same

as most existing works since our target is to enhance the reconstruction. However, why

the residual is used as the other input for our proposed RRNet network?

First, we believe that the residual can provide accurate transform unit (TU) par-

titions and great textures beneficial for the enhancement. Fig. 1 gives a typical example

of the residual from the sequence Kimono. We can see clear TU boundaries from the

residual figure. As we know, the basic unit of encoding the residual is a TU. Each TU

transforms and quantizes independently. Therefore, it is more probable to have severe

artifacts in the block boundary than the block center. The TU boundary information is a

good indicator that implicates where the distortion is more severe and guides the network

to learn more distinct features. In addition, we can see from the residual frame in Fig. 1

that, within each TU, the texture information is still visible. They can illustrate the body
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shapes of the girl and tree trunks clearly. This texture information also contributes to the

reconstruction enhancement.

Second, the residual signal suffers from frame prediction accuracy, most notably

in the areas where the residual contains non-zero values. This essentially means that

the encoder does not accurately predict the regions where the residual values are large.

Accordingly, the residual is beneficial for the CNN learning process, especially in areas

where the residual contains non-zero values. From the extracted residual feature maps as

shown in Fig. 3, we can see that the residual signal is useful for improving the capability

of the CNN to learn sharp edges and complex shape information that would otherwise be

missed by the encoder.

In addition to introducing the residual as the dual input, we can also see from Fig. 2

that we use different sub-networks for the reconstruction and residual. As we know, the

characteristics of the reconstruction and residual are different. The residual is more sen-

sitive, while the reconstruction consisting of residual and prediction contains more global

information. We should design specific sub-networks to optimize the features derived

from various inputs and improve the reconstructed frame quality. A detailed introduction

of the two sub-networks will be described in detail in the next two subsections.

To give a better illustration of how we embed the above-introduced framework

in HEVC, we give a modified HEVC encoder in Fig. 4. We replace the deblocking and

SAO filters using the proposed RRNet framework. The output frame from our framework

will be used as a reference for the to-be-encoded frames in the future. Note that in the

proposed RRNet framework, we need to extract the residual from the bitstream in addition
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to the reconstruction.

1.3.2 Design of the Residual Network

We develop a Residual Network consisting of several residual blocks [43] to adapt

to the residual features. The residual block could effectively keep the residual features and

the gradient information on the shallow layers. Therefore, the proposed Residual Network

can derive the distinct features from the residual frame. Considering the complexity,

we use only 8 convolutional layers to derive the residual features. Because the network

consisting of residual blocks [43] could effectively keep the residual features and the

gradient information on the shallow layers [49], we adopt the residual block as the basic

unit of our Residual Network.

The network based on the residual blocks brings apparent advantages. In the resid-

ual blocks based network, the collection of multiple routes substitutes the simple sole

route. Based on the multiple routes property, because of the independence of the routes in

the residual block-based network, this uncorrelated property enhances the canonical ef-

fect of the Residual Network. Because the contributions for the gradient information are

mainly from the shallow layers, adding the weights of the short routes could effectively

prevent from vanishing gradient.

In Fig. 2, the upper pathway shows the detailed architecture of our proposed

Residual Network. Table 1 shows the convolutional layers configurations. The Resid-

ual Network includes three residual blocks consisting of six convolutional layers and two
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convolutional layers at the beginning and end. We set the Kernel Size for each convo-

lutional layer as 3 ⇥ 3, the Feature Map Number as 32, Stride as 1, and Padding as 1.

As the Parametric Rectified Linear Unit (PReLU) [50] has been demonstrated to be more

effective than the ReLU, we employ it as the activation function in the Residual Network.

We compute the feature maps of the Residual Network as follows:

(
F res

i
(x) = A(Wi ⇤ F res

i�1(x) + Bi), i 2 {2, 4, 6, 8}
F res

j
(x) = A(Wj ⇤ F res

j�1(x) + Bj) + F res

j�2(x), j 2 {3, 5, 7}
(1.1)

where x denotes the input of residual, A is the activation function, Wi and Bi are the

weights and bias matrices respectively.

1.3.3 Design of the Reconstruction Network

Simultaneously, we consider the reconstruction signal as the other input. There-

fore, we design a Reconstruction Network containing several downsampling and upsam-

pling pairs to learn the reconstruction features. The Reconstruction Network adopts the

classic autoencoder architecture [51, 52] with the skip connection concatenating the en-

coder and decoder parts [53]. In this way, the reconstruction network can recover the

global information and details as much as possible.

The Reconstruction Network has the following advantages. On the encoder side,

downsampling the reconstruction helps extract more useful reconstruction features of low

space dimensions. Based on the downsampling operation, upsampling the small recon-

struction features helps derive the more extensive reconstruction features on the decoder

side. The skip connection concatenating the reconstruction features from the encoder side
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could help the decoder to recover the global and detailed information of the reconstruc-

tion.

In Fig 2, the lower pathway shows the detailed structure of our proposed Re-

construction Network. We adopt the pooling and transposed convolutional layer to per-

form downsampling and upsampling, respectively. In the encoder phase, downsampling

reduces the redundancy effectively in the reconstruction and keeps useful information.

However, it may cut the global context as well. Hence, we execute the upsampling in

the decoder phase to propagate the global information of the reconstruction to the next

convolutional layer. Next, in the skip connection phase, we concatenate the concentrated

reconstruction features from the encoder to the upsampling reconstruction features from

the decoder. This is to provide the network with both the brief features and global context

in the reconstruction. The Reconstruction Network is a difference learning network as

well. Table 18 shows the detailed configurations. For the convolutional layers, we set the

Kernel Size to 3 ⇥ 3, Stride to 1, Padding to 1, Feature Map Number to 32, 64 or 128.

For the transposed convolutional layers [54], we set the Kernel Size to 2 ⇥ 2, Stride to

2, Padding to 1, Feature Map Number to 64 or 32. The reconstruction network can be

formulated as follows,

F rec

i
(z) = P (Wi ⇤ F rec

i�1(z) + Bi), i 2 {1, 2} (1.2)

where z is the reconstruction signal input, and P represents the sequential functions for

activation and max-pooling. We choose PReLU as the activation function in the Recon-

struction Network.
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Table 3: Training parameters

Parameters QP 37
Base Learning Rate 1e�4

� Adjusting Coefficient 0.1
Adjusting Epochs Interval 100
Weight Decay 1e�4

Momentum 0.9
Total Epochs 120

F rec

5 (z) = C(P (W5 ⇤ F rec

4 (z) + B5), F rec

2 (z))

F rec

7 (z) = C(P (W7 ⇤ F rec

6 (z) + B7), F rec

1 (z))
(1.3)

where C denotes the concatenating function for jointing features.

After concatenating the features of the Residual Network and the Reconstruction

Network, we calculate them with a convolutional layer of 1 channel. Then we obtain the

final output Fout(x, z) which is the same size as input.

1.3.4 Loss function, dataset and training

Loss function. We employ Mean Squared Error (MSE) [55] as the loss function

for our proposed RRNet as follows,

L(⇥) =
1

N

NX

i=1

||⌥(Yi|⇥)�Xi||22 (1.4)

where⇥ encapsulates the whole parameter set of the network containing weights and bias

and ⌥(Yi|⇥) denotes the network module. Xi is a pixel of the original frame, where i

indexes each pixel. Yi is the corresponding pixel of the reconstruction, that is compressed

by HEVC when we turn off its deblocking and SAO. N is the number of pixels.

18



Dataset. We employ the DIV2K [56, 57] dataset comprising 800 training images

and 100 validating images of 2k resolution as the original frames. Because modern video

codecs operate on YUV color domain, we convert the original 900 PNG images to YUV

videos with FFMPEG [58] of GPU acceleration. A modified HEVC reference software

is then used to encode original frames to generate the reconstruction and residual with

QP22, QP27, QP32, and QP37, respectively. We finally extract 64 ⇥ 64 blocks from

the Luma component of the reconstructed, residual, and original frames and use them as

the inputs and labels for training our proposed RRNet. In total, there are 522, 939 groups

of inputs and labels for training and 66, 650 groups for validation.

Training. Once we obtain the residual and reconstruction patches of divided com-

ponents, we feed them into the Residual Network and the Reconstruction Network, re-

spectively, by batch-size of 16. Table 19 exhibits the parameters of training procedure for

QP37 samples. We experiment with a larger learning (1e�3) rate and a smaller learning

rate (1e�5), but the former one leads to the gradient explosion while the later one learns

too slowly. Therefore, 1e�4 is the appropriate base learning rate of QP37 model. We

adopt the Adaptive Moment Estimation (Adam) [59] algorithm with the momentum of

0.9 and the weight decay of 1e�4. These parameter values are selected according to ex-

perience values. When the model is trained less than 120 epochs, the loss has not been

convergent. Accordingly, the QP37 model is trained with 120 epochs. After 100 epochs,

we decrease the learning rate by 10 times. After the QP37 model is derived, we fine tune

it with 20 epochs to obtain the other models: QP22, QP27, QP32. Finally, we obtain the

models for all the QPs for testing.
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Table 4: BD-rate of the SOTAs and proposed RRNet against HEVC under All Intra case

Class Sequence VRCNN [40] EDSR Residual Partition-aware RRNet
vs. HEVC Blocks [6] vs. HEVC CNN [5] vs. HEVC vs. HEVC

A Traffic �8.1% �8.5% �8.7% -10.2%
PeopleOnStreet �7.7% �7.8% �8.2% -9.4%

B Kimono �5.9% �6.6% �6.9% -8.6%
ParkScene �6.2% �6.6% �6.9% -8.1%
Cactus �2.7% �4.9% �5.4% -5.8%
BasketballDrive �5.2% �4.6% �4.7% -7.7%
BQTerrace �2.9% �2.9% �2.9% -4.2%

C BasketballDrill �10.6% �10.9% �11.3% -13.8%
BQMall �7.3% �7.0% �7.4% -9.3%
PartyScene �4.6% �4.5% �4.8% -5.6%
RaceHorses �5.8% �5.0% �5.3% -7.1%

D BasketballPass �7.6% �7.3% �7.8% -9.5%
BQSquare �5.3% �5.4% �5.8% -6.3%
BlowingBubbles �5.5% �5.5% �5.7% -6.7%
RaceHorses �8.9% �8.8% �9.1% -10.2%

E FourPeople �10.0% �10.4% �10.9% -12.8%
Johnny �9.1% �8.1% �8.7% -12.5%
KristenAndSara �9.4% �9.0% �9.6% -11.8%
Class A �7.9% �8.2% �8.5% -9.8%
Class B �4.6% �5.1% �5.4% -6.9%
Class C �7.1% �6.9% �7.2% -8.9%
Class D �6.8% �6.7% �7.1% -8.2%
Class E �9.5% �9.2% �9.7% -12.4%

Avg. All �6.8% �6.9% �7.2% -8.9%
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Table 5: The computational complexity of VRCNN and proposed RRNet against HEVC
under All Intra case

Approches Frame-work Encoding Time Decoding Time
VRCNN Pytorch(C++) 108.72% 420.41%
RRNet Pytorch(C++) 117.48% 1238.78%

1.4 Experimental results

To test the performance of the proposed algorithm, we embedded the proposed

RRNet scheme into HEVC reference software as shown in Fig. 4. In this section, we first

compare the proposed RRNet with VRCNN [40], EDSR Residual Blocks [6], Partition-

aware CNN [5], and HEVC on BD-rate [60], respectively. Subsequently, we validate the

multiple inputs function by comparing the dual-input residual and reconstruction with the

solo input reconstruction. Meanwhile, we compare the dual-input Residual and Recon-

struction approach with the dual-input Partition and Reconstruction approach [5]. After-

ward, we evaluate the efficiency of different networks on the same inputs by comparing

RRNet and EDSR Residual Blocks with the dual-input of residual and reconstruction. For

the test, we test all the sequences defined in HM-16.19 CTC [61] under the intra-coding

and inter-coding configurations.

1.4.1 Performances of the proposed RRNet algorithm

Table 4 shows the comparison results of VRCNN [40], EDSR Residual Blocks [6],

Partition-aware CNN [5], and the proposed RRNet against HEVC under the all intra case.
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(a) BasketballDrill (b) FourPeople

(c) Johnny (d) Traffic

Figure 5: Comparison of RD curves in HEVC with DF and SAO, VRCNN and proposed
RRNet on luminance. The compared RD curves of BasketballDrill(a), FourPeople(b),
Johnny(c) and Traffic(d) are shown. It is obvious that our proposed RRNet outperforms
HEVC with DF and SAO and VRCNN for all theses sequences under all tested QPs
including 22, 27, 32 and 37.
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Table 6: BD-rate of VRCNN and proposed RRNet against HEVC under Random Access
case

Class Sequence VRCNN vs. HEVC RRNet vs. HEVC
A Traffic �5.0% -6.0%

PeopleOnStreet �1.4% -1.6%
B Kimono �1.9% -2.6%

ParkScene �2.7% -3.4%
Cactus �3.2% -3.9%
BasketballDrive �1.4% -1.9%
BQTerrace �5.2% -5.8%

C BasketballDrill �3.1% -4.3%
BQMall �2.0% -2.5%
PartyScene �0.5% -1.0%
RaceHorses �1.3% -1.4%

D BasketballPass �0.7% -0.9%
BQSquare �1.4% -2.1%
BlowingBubbles �1.8% -2.4%
RaceHorses �1.5% -1.6%

E FourPeople �8.2% -9.5%
Johnny �7.6% -10.2%
KristenAndSara �6.9% -7.6%
Class A �3.2% -3.8%
Class B �2.9% -3.5%
Class C �1.7% -2.3%
Class D �1.4% -1.7%
Class E �7.6% -9.1%

Avg. All �3.1% -3.8%
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Note that to ensure fairness, the EDSR Residual Blocks and Partition-aware CNN all em-

ploy eight convolutional layers, including three residual blocks as shown in Table 9, which

have the same convolution layer depth as the one of the Residual Network in the proposed

RRNet. We train QP37 models of VRCNN, EDSR Residual Blocks, and Partition-aware

CNN with 120 epochs on the whole DIV2K dataset and then achieve the models of QP32,

QP27 and QP22 by fine tuning the trained QP37 model with 20 epochs. These are iden-

tical to the process used to train RRNet as stated in Section 3.4.5.

We can see that the proposed RRNet algorithm outperforms VRCNN, EDSR

Residual Blocks, and Partition-aware CNN by an average of 2.1%, 2.0%, and 1.7%, re-

spectively. Additionally, the RRNet method surpasses VRCNN, EDSR Residual Blocks,

and Partition-aware CNN in every sequence in BD-rate. Specifically, the proposed RR-

Net scheme outperforms VRCNN, EDSR Residual Blocks, and Partition-aware CNN by

2.9%, 3.2%, and 2.7% on Class E, respectively. Similarly, compared to the HEVC anchor,

RRNet realizes a substantial gain on BD-rate with an average of �8.9%. The most re-

markable individual difference occurs on BasketballDrill sequence with a gain of �13.8%

on BD-rate. This sequence contains particularly complex textures with very dramatic vari-

ations. These performances demonstrate that RRNet effectively enhances the reconstruc-

tion by introducing the residual signal and developing customized networks for residual

and reconstruction inputs.

Fig. 23 shows the luminance Rate-Distortion (RD) curves of the proposed RRNet

approach, VRCNN, and HEVC anchor. As illustrated, the PSNR of the proposed RRNet

method is higher than the one of VRCNN and HEVC with in-loop filters under every QP
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in BasketballDrill, FourPeople, Johnny, and Traffic sequences. This clearly shows that

the proposed RRNet model is superior to the VRCNN and HEVC baseline approaches to

enhance the quality of compressed video frames.

The time complexity [62] is exhibited in Table 5. In all cases, we apply the

same test environment. Specifically, the GPU configuration is GTX 1080ti. Due to the

huge computation of CNN on the encoder side, VRCNN takes 8.72% longer than HEVC.

Meanwhile, because of the dual-input networks, RRNet takes 17.48% longer than HEVC.

On the decoder side, the results reflect a similar situation for complexity. HEVC com-

putes fastest while RRNet complexity overhead is 1238.78%. We can adopt the methods

of model compression and acceleration [63–65] to reduce the redundancy of the proposed

RRNet model. The solutions of model compression and acceleration includes parameter

pruning, quantization, low-rank factorization, compact convolutional filters, and knowl-

edge distillation. We can use the parameter pruning and quantization based approaches to

remove the redundancy of the RRNet parameters. In addition, the low-rank factorization

based methods are utilized to calculate the useful parameters of RRNet. The compact

convolutional filters are structurally designed to shrink the parameter space of RRNet and

save computation and storage resources. The approaches based on knowledge distillation

is used to train a more compact RRNet or learn a distilled RRNet model.

Table 6 shows the experimental results in random access case. We can see that the

proposed algorithm can bring an average of �0.7% and �3.8% BD-rate gain compared

to VRCNN and HEVC, respectively. Again, we can also see that RRNet outperforms

the other two methods in every class. Moreover, the peak difference between RRNet and
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Table 7: The dual-input Residual and Reconstruction approach and the dual-input Parti-
tion and Reconstruction [5] approach versus Reconstruction only approach on the BD-rate

Partition and Reconstruction [5] Residual and Reconstruction
vs. Reconstruction vs. Reconstruction

Class A �0.4% -1.0%
Class B �0.2% -0.9%
Class C �0.4% -1.1%
Class D �0.4% -0.8%
Class E �0.6% -1.6%
Avg. All �0.4% -1.0%

Table 8: The computational complexity of the dual-input Partition and Reconstruction
method [5] and the dual-input Residual and Reconstruction approach against HEVC

Approches Frame-work Encoding Decoding
Time Time

Partition Reconstruction [5] Pytorch(C++) 122.24% 1581.63%
Residual Reconstruction Pytorch(C++) 123.81% 1669.39%

VRCNN reaches 1.5% on Class E. This demonstrates that the benefits brought by RRNet

can be propagated to inter frames. Thus the RRNet can bring significant performance

improvements in random access case.

Table 9: Convolutional Parameters of EDSR Residual Blocks [6]

Kernel Size 3⇥ 3
Feature Map Number 32
Stride 1
Padding 1
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1.4.2 Results analysis of multiple inputs approaches

Here we compare the method with residual and reconstruction inputs to the method

with only reconstruction input. Additionally, we compare the dual-input Residual and Re-

construction approach with another multiple inputs approach that utilizes the mean mask

of the PU partition [5] and Reconstruction. Note to guarantee a fair comparison, all recon-

struction sub-networks utilize the same network with eight convolutional layers, including

three EDSR residual blocks shown in Table 9.

Table 7 exhibits the comparison of the dual-input Residual and Reconstruction

scheme against Reconstruction only method and the comparison of the dual input PU

Partition and Reconstruction method against Reconstruction only method. On the one

hand, the dual-input Residual and Reconstruction saves an average of �1.0% BD-rate

compared with Reconstruction only method. On the other hand, the dual-input Residual

and Reconstruction method saves an average of �0.6% BD-rate over the dual input Parti-

tion and Reconstruction method. Specifically, the dual-input Residual and Reconstruction

approach leads �1.6% BD-rate on Class E against the only Reconstruction method. The

peak difference of BD-rate between the dual-input Partition and Reconstruction method

and the only Reconstruction method on Class E is �0.6%. In every class, the dual-input of

the Residual and Reconstruction approach is better than the only Reconstruction method

and the dual-input of the Partition and Reconstruction method on BD-rate.

These performances clearly show that based on the same network architecture

for video reconstruction, the residual signal provides useful information for augmenting

the quality. This is reasonable because the inverse transformed residual provides the TU
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Table 10: BD-rate of RRNet against the dual-input Residual and Reconstruction with
EDSR Residual Blocks [6]

Class RRNet vs. Residual and Reconstruction with EDSR Residual Blocks
Class A �0.8%
Class B �1.4%
Class C �1.0%
Class D �0.5%
Class E �2.2%
Avg. All �1.2%

partition information and the detailed textures used to enhance the reconstruction. Hence,

introducing the residual signal augments the quality of the compressed video frame promi-

nently. In conclusion, compared to the only Reconstruction method and another multiple

input methods based on the mean mask of the partition, the dual-input Residual and Re-

construction approach clearly augments the reconstruction. On the aspect of the time

complexity, as shown in Table 8, the dual-input Residual and Reconstruction approach

and the dual-input Partition and Reconstruction method are approximately on the same

level.

1.4.3 Results analysis of network architecture

We compare the proposed RRNet approach with the dual-input of residual and

reconstruction method with EDSR Residual Blocks to evaluate the performance of the

proposed Residual Network and Reconstruction Network. Note that both the RRNet and

the second method have the same inputs. The second method utilizes the EDSR Resid-

ual Blocks on both residual and reconstruction. Table 10 shows the compared results

between RRNet and the dual-input of residual and reconstruction approach with EDSR
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Figure 6: The comparison of QP 32 model with respective QP models. The �PSNR on
�QP = 0 means the QP32 model compared to itself on PSNR is zero. Except QP34
setting, the PSNR of individual QP model is better than the one for the QP32 settings on
the other QP parameters. The �PSNR increases significantly with the absolute value of
�QP on the each side of �QP = 0.
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Figure 7: Visual comparisons between the ground truths, HEVC anchor, VRCNN, and
proposed RRNet approach on the luminance of QP37 in Johnny and BasketballDrill se-
quences, respectively. The groups of figures (a), (b), (c), and (d) are the original video,
the video generated using HEVC, the video generated using VRCNN, the video generated
using RRNet, respectively. (Zoom in for better visual effects.)
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Residual Blocks. RRNet gains an average of �1.2% BD-rate against the latter method.

Specifically, the proposed RRNet outperforms the dual-input of residual and reconstruc-

tion method with EDSR Residual Blocks in every class sequence for BD-rate. The largest

difference of BD-rate is �2.2% on the Class E sequence. These demonstrate that both the

Residual Network and the Reconstruction Network fit their respective signals very well.

The results also clearly demonstrate that processing the residual and reconstruction with

unique architectures is beneficial. Additionally, the validation of comparison provides

evidence that the RRNet network shows an obvious improvement in the quality of coded

frames.

1.4.4 The performance from a specific QP model on different QPs

To validate the performance from an assigned QP model on other QP settings,

as illustrated in Fig. 6, we compared the PSNR of QP32 when reconstructed by other QP

models. The�PSNR on�QP = 0 means that the QP32 model compares itself on PSNR,

and it should be zero. Except for QP34, the PSNR of other QP models evaluated on itself

is better than when it is evaluated on the QP32 model. The�PSNR increases dramatically

with the absolute value of�QP on both positive and negative sides. Accordingly, specific

QP tuned models outperform the other QP models when tuned for that specific setting. In

summary, based on Fig. 6, a model can be reused to replace another model in the range of

�2 to 2 �QP.
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1.4.5 Subjective Results

Fig. 7 exhibits the visual comparisons between the ground truths, HEVC anchor,

VRCNN, and proposed RRNet approach on the luminance of QP37 in Johnny and Bas-

ketballDrill sequences, respectively. The groups of figures (a), (b), (c), and (d) are the

original video, the video generated using HEVC, the video generated using VRCNN, the

video generated using RRNet, respectively. In the Johnny, from the zoomed gold blocks,

we can see that there are evident distortions and textures miss in the HEVC and VRCNN

frames, while the RRNet frame shows smoother and more abundant textures. We can see

from the zoomed blue rectangles that the HEVC and VRCNN frames blur more severely

than the RRNet frame. From the BasketballDrill, we can see from the zoomed gold and

blue blocks that the distortions in HEVC and VRCNN frames are more serious than the

one of the RRNet frame. The experimental results demonstrate that the proposed RRNet

can bring better subjective qualities than the previous in-loop filtering methods.

1.5 Summary

In this paper, we propose a new video deblocking solution that utilizing both re-

constructed pixels as well as rich information and features available from the compression

pipeline. The coding residual signal unique from compression pipeline is utilized as an

additional input for improving the CNN based in-loop filter for HEVC. In essence, it is

introduced to enhance the quality of reconstructed compressed video frames. In this pro-

cess, we first import the residual as an independent input to reinforce the textures and

details. Then, we custom designed RRNet approach that involves two separate CNNs:
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the Residual Network and the Reconstruction Network. Each customized layer aims to

reveal specific features that are characteristic of each type of frame. In the Residual Net-

work, we apply residual blocks to minimize the difference between the input frame and

the output frame. In the Reconstruction Network, we utilize both downsampling and

upsampling ladders to adapt to learn the features for the reconstruction frames. The ex-

perimental results demonstrate that the proposed algorithms significantly reduce artifacts

from both objective and subjective perspectives. From the objective point of view, the

BD-rate is significantly improved. From the subjective point of view, the reconstruction

quality of the compressed video frames is superior. These results demonstrate that the

proposed schemes improved the current state of the art significantly in BD rate reduction.

In the future, we will try to create more advanced in-loop methods for video coding, while

develop complexity reduction for the inference time model.

33



CHAPTER 2

DEEP LEARNING GEOMETRY COMPRESSION ARTIFACTS REMOVAL FOR

VIDEO-BASED POINT CLOUD COMPRESSION

Point cloud is an essential format for three-dimensional (3-D) object modelling

and interaction in Augmented Reality (AR) and Virtual Reality (VR) applications. In the

current state of the art video-based point cloud compression (V-PCC), a dynamic point

cloud is projected onto geometry and attribute videos patch by patch, each represented

by its texture, depth, and occupancy map for reconstruction. To deal with occlusion,

each patch is projected onto near and far depth fields in the geometry video. Once there

are artifacts on the compressed two-dimensional (2-D) geometry video, they would be

propagated to the 3-D point-cloud frames. In addition, in the lossy compression, there

always exists a tradeoff between the rate of bitstream and distortion (RD). Although some

geometry-related methods were proposed to attenuate these artifacts and improve the cod-

ing efficiency, the interactive correlation between projected near and far depth fields has

been ignored. Moreover, the non-linear representation ability of Convolutional Neural

Network (CNN) has not been fully considered. Therefore, we propose a learning-based

approach to remove the geometry artifacts and improve the compressing efficiency. We

have the following contributions. We devise a two-step method working on the near and

far depth fields decomposed from geometry. The first stage is learning-based Pseudo-

Motion Compensation. The second stage exploits the potential of the strong correlations

between near and far depth fields. Our proposed algorithm is embedded in the V-PCC

34



reference software. To the best of our knowledge, this is the first learning-based solu-

tion of the geometry artifacts removal in V-PCC. The extensive experimental results show

that the proposed approach achieves significant gains on geometry artifacts removal and

quality improvement of 3-D point-cloud reconstruction compared to the state-of-the-art

schemes.

2.1 Background

Due to the massive demands for stereoscopic experience, three-dimensional (3-

D) sensing and scanning instruments including Light Detection and Ranging (LIDAR)

scanners [66,67] and RGB-D cameras [67,68] are developing unprecedentedly. Those 3-

D devices daily generate an enormous amount of data. To visualize these 3-D data vividly,

some 3-D representing methods, such as point clouds, light fields, and polygon meshes,

progress rapidly. Those stereo expressing approaches are capable of representing the 3-D

volumetric data in a realistic and immersive way. Point cloud is especially popular among

these methods since we can acquire them more easily, render them more realistically, and

manipulate them more feasibly.

Point cloud is an important format for various 3-D based volumetric technologies

such as virtual reality (VR), augmented reality (AR), and mixed reality (MR) [69] all

advancing rapidly. The number of 3-D applications [70, 71] is therefore increasing sig-

nificantly based on these immersive and realistic technologies. For instance, an applying

case is navigation [72, 73]. The mobile navigation [73] aims to create a 3-D map with
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localization data, global positioning system (GPS) images, and depth data. Other appli-

cations are VR/AR immsersive videos, games [74] and telecommunications [75]. Since

it is feasible to render and visualize point clouds, we can use a collection of 3-D point

clouds to represent the low delay 3-D stream of the high quality (4K or 8K) immersive

telecommunications. In addition, the historic relic [76] is another interesting application.

This type of heritage application is capable of providing an immersive stereo experience

by visualizing the real historical relic to billions of points. However, point clouds con-

tain a lot of digital data, so that storing and streaming such massive data is very difficult.

The conflict between demands and capacity of the storage pushes an emergence of useful

point cloud compression (PCC) solutions.

Driven by this technique requirement, Moving Pictures Experts Group (MPEG)

starts the standardization [77] of PCC. Owing to the different densities of point clouds,

there are two types of schemes incorporating video-based point cloud compression (V-

PCC) [77] and geometry-based point cloud compression (G-PCC) [77]. V-PCC mainly

works on dense point clouds while G-PCC works on sparse point clouds such as large-

scale point cloud maps that are produced by simultaneous localization and mapping (SLAM)

algorithms [78]. We mainly discuss the V-PCC development in this work. V-PCC di-

vides a point cloud into many 3-D patches at first. V-PCC then projects the generated

3-D patches onto 2-D planes and packs them into a 2-D geometry video and a texture

video. Subsequently, to encode 2-D videos efficiently, V-PCC maintains spatial conti-

nuity by padding the void area of geometry and texture videos before the 2-D compres-

sion. V-PCC eventually compresses the padded geometry and texture videos with 2-D
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video codecs such as Advanced Video Coding (AVC) [10], High Efficiency Video Cod-

ing (HEVC) [11], and Versatile Video Coding (VVC) [12] in the lossy mode.

Due to this lossy compression of V-PCC, distortions exist in the 2-D geometry

reconstruction and 3-D point-cloud reconstruction. Essentially, the 2-D geometry video

is the depth information of the 3-D point cloud. Once the 2-D geometry reconstruction

distorts, the 3-D point-cloud reconstruction will also have artifacts. For instance, when

the 2-D geometry reconstruction loses some pixels, the corresponding points of the 3-D

point-cloud reconstruction will miss as well. Similarly, if the 2-D geometry reconstruc-

tion inserts a few noisy redundant pixels, the 3-D point-cloud reconstruction will intro-

duce the corresponding redundant points. In addition, if some values of the 2-D geometry

reconstruction verify, compared to the origin, the corresponding points of the 3-D recon-

struction will locate in mistaken positions. All these cases degrade the quality of 3-D

point-cloud reconstruction and result in artifacts.

To attenuate artifacts, researchers proposed some 2-D geometry-related meth-

ods [4, 9, 79, 80]. Among them, [81] as a geometry padding approach proposed padding

the empty space between patches with neighboring patch information. This method is

especially beneficial for coding efficiency in all the intra cases. To further decrease the

distance between the point-cloud reconstruction and its origin, [8] searched and picked up

a depth value from a depth candidate list in the 2-D geometry video for padding the 3-D

geometry. This encoder-only method is the first method using geometry reconstruction

to process the inserted redundant positions. Although these methods have achieved suc-

cesses, the non-linear representation ability of the learning-based [82] approach has not
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been fully considered. There is still considerable space to develop a better learning-based

geometry distortion removal algorithm.

Therefore, to take care of the tradeoff between the distortion and bitrate, in this

work, we propose for the first time a learning-based approach removing the geometry

artifacts for a better quality of the 3-D point-cloud reconstruction. We make the following

contributions.

• To address the geometry artifacts problem, we propose a two-step method work-

ing on the near and far depth fields decomposed from geometry. The first stage is

learning-based Pseudo-Motion Compensation. The second stage exploits the po-

tential of the strong correlations between near and far depth fields. To the best of

our knowledge, this is the first learning-based solution of the geometry artifacts

removal in V-PCC.

• Our proposed algorithm is embedded in the V-PCC reference software for simu-

lation. We have conducted extensive experiments to compare with state-of-the-art

(SOTA) methods to demonstrate the effectiveness of the proposed method. We

thoroughly analyze the experimental results to give more insights into the problem.

We organize the remainder of this paper as follows. We review the related works

on point cloud compression in Section 2.2, followed by our motivation and observations

on geometry in Section 2.3. We introduce the proposed geometry artifacts removal with

two stages in Section 2.4. In section 2.5, we report and analyze the experimental results

comprehensively. We summarize this paper in Section 2.6 briefly.
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2.2 Artifacts removal in V-PCC

This section briefly reviews the previous point cloud compression (PCC) works

and the geometry improvement methods in V-PCC.

2.2.1 Point cloud compression

The PCC methods can be roughly summarized into two groups, which are the

group of 3-D-based and 2-D-based approaches and the group of deep learning-based ap-

proaches.

1) 3-D-based and 2-D-based methods. Because there is no strong time correla-

tion between the neighboring frames, the 3-D-based methods can not precisely estimate a

motion between points in neighboring frames. Kammerl et al. [83] devised a lossy com-

pression approach for dynamic point cloud streaming. The co-located octree node of the

reference point-cloud frame predicted the current point-cloud frame. However, we can

only apply this approach to a few moved point-cloud frames. Thanou et al. [84] used a

set of graphs to represent the time-varying geometry of these point-cloud frames. Based

on this, they cast 3-D motion estimation as a feature-matching issue between consecutive

point-cloud frames. However, this method did not precisely estimate the motion vectors

of some objects in point-cloud frames.

Queiroz et al. [85] proposed a simple codec. This coder segmented the voxelized

point cloud at each frame into blocks of voxels. Their proposed method executed the

3-D translational motion estimation block by block to find the corresponding block in the

reference point-cloud frame. In addition, Mekuria et al. [86] further imported iterative
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closest point (ICP) instead of translational motion model to better formulate the motions

in neighboring point-cloud frames. These methods could relieve the suffering from 3-D

motion estimation and motion compensation to some extent.

To solve the bottleneck that streaming and caching the point clouds requires large

bandwidth and storage space, Sun et al. [87] proposed a clustering method starting with

a range image-based 3-D segmentation. In addition, it introduced a prediction with the

depth modeling modes for depth map coding. Nevertheless, without flexible block parti-

tion and more efficient motion estimation schemes, the coding efficiency of the dynamic

point cloud compression (DPCC) still cannot be compatible with the 2-D-based approach.

Because codecs such as AVC, HEVC, and VVC have proven that the 2-D video

compression algorithms are efficient, researchers proposed 2-D-based methods to trans-

form the 3-D dynamic point cloud to 2-D videos for compression. Budagavi et al. [88]

developed a method to code a projected 2-D video acquired from ordering points in a 3-D

point cloud with HEVC. However, this work could not further utilize the inter-prediction

information since the obtained video did not have many spatial and temporal correlations.

To attenuate this deficiency, He et al. [89] proposed a cubic projection method to convert

a 3-D dynamic point cloud to a 2-D video. Although this work improved video coding

performance, this approach resulted in missing points due to occlusion.

To minimize the number of occluded points, Lasserre et al. [90] proposed an ap-

proach that combined the octree and projection. Mammou et al. [91] devised a method

that projected a 3-D dynamic point cloud to 2-D videos by a patch-based scheme. Their

motivation was to consider projecting more points while reducing the bit cost on 2-D

40



video coding as much as possible. Packing a group of patches that consists of 2-D pixels

converted from 3-D points was the main philosophy of the patching method. This work

packed these 2-D patches onto a video then compressed by codecs such as HEVC. Li et

al. [92] proposed a general model utilizing the 3-D motion and 3-D to 2-D correspondence

to calculate the 2-D motion vector (MV). Compared to other proposals, the patch-based

method [93] performed better in coding efficiency. MPEG Immersive media working

group (MPEG-I) adopted [93] as a V-PCC standard. This approach has shown its effi-

ciency with excellent performance. However, we have not improved the geometry video

to its full potential extent, which intrinsically guides the 3-D point-cloud reconstruction

process.

2) Deep learning-based methods. Point cloud processing is the fundamental com-

ponent for any deep-learning-based point-cloud applications. Rather than compress point

cloud data directly, Tu et al. [94] proposed converting the packet data, which is raw point

cloud data, losslessly into range images previously. To avoid unnecessarily voluminous

rendering data, Qi et al. [95] proposed a type of neural network that directly consumes

point clouds, which well respects the permutation invariance of points in the input. How-

ever, many works process the 3-D videos frame-by-frame either through 2-D convents

or 3-D perception algorithms. Choy et al. [96] proposed a new sparse tensor-based 3-

D point-cloud processing method called Minkowski. This network for spatio-temporal

perception can directly process such 3-D videos using high-dimensional convolutions.

Gojcic et al. [97] proposed an end-to-end algorithm for joint learning of both parts of

initial pairwise and the globally consistent refinement.
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The deep learning-based PCC methods utilized the non-linear ability of Convo-

lutional Neural Network (CNN) and Recurrent Neural Network (RNN) to improve the

efficiency of PCC. To require less volume while giving the same decompression accu-

racy, Tu et al. [98] used an RNN and residual blocks to compress one frame from 3-D

LiDAR. However, these two methods did not use joint optimization. Quach et al. [99]

performed the joint optimization of both rate and distortion with a tradeoff parameter

on a data-driven method. They created this method for the geometry static point cloud

compression (SPCC) based on learned convolutional transforms and uniform quantiza-

tion. Nevertheless, there is still space to improve the architecture of the network. Huang

et al. [100] presented a new 3-D geometry PCC method based on an auto-encoder net-

work. They used the extracted features of the raw model in the encoder to compress the

original data to be bitstream. They further compressed the bitstream with sparse coding.

Nevertheless, this method worked on the well-segmented objects.

To reduce the bitrate, Huang et al. [101] proposed a deep compression method

to decrease the memory footprint of LiDAR point clouds with the sparsity and structural

redundancy between points. Nevertheless, the spatio-temporal relationships had not been

fully considered. To reduce the bitrate of both geometry and intensity values, Biswas

et al. [102] exploited spatio-temporal relationships across multiple LiDAR sweeps and

proposed a conditional entropy model. This models the probabilities of the octree sym-

bols by utilizing both coarse level geometry, previous sweeps’ geometric, and intensity

information.
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2.2.2 Geometry related methods in V-PCC

MPEG calls some geometry-related works to improve the point cloud quality and

compression efficiency during the V-PCC standardization. Guede et al. [79] proposed

encoding the projected information as an absolute depth value instead of an error be-

tween the far layer and near layer. However, this solution can not improve the quality

of the point-cloud reconstruction. To obtain a better tradeoff between these artifacts and

bitrate, Olivier et al. [103] proposed improving the projection of connected components

into patches. Nevertheless, it did not resolve the empty space between patches, which

directly impacted the coding efficiency. In order to take care of the empty space, Rhyu

et al. [81] proposed dilating the gap between patches by expanding the geometry from

boundaries of patches. Although this way minimized block artifacts in the decoded 2-D

video, it still compressed the near and far geometry frames separately. To get better en-

coding efficiency, Dawar et al. [80] proposed using one frame instead of two frames to

encode 2-D near and far layers. However, this method interpolated pixels from spatial

neighbors leading to distortions to some extent and did not save decoding time.

To keep the reconstruction quality but decrease the decoding time complexity,

Nakagami et al. [9] proposed an upgraded geometry smoothing. The geometry smoothing

of V-PCC aims at alleviating potential discontinuities that may arise at the patch bound-

aries due to compression artifacts. This proposed approach moved boundary points to the

centroid of their nearest neighbors. It skipped the smoothing for points inside a patch and

pre-calculated the neighbor points centroid instead of the nearest neighbor (NN) search.
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Figure 8: The projection process [1] from 3-D to 2-D in V-PCC. The segmented 3-D
patches are projected to six planes of its bounding box.

Nevertheless, this approach did not exploit the geometry information of the 3-D recon-

struction.

Graziosi et al. [8] therefore proposed padding the geometry with the reconstructed

depth value for those positions introduced by occupancy map rescaling. To decrease

the distance between the geometry reconstruction and origin, this encoder-only method

searched and selected a depth value from a range of possible geometry depth values for an

inserted point. This method only used some limited neighborhoods and geometry charac-

teristics. The color consistency and surface consistency of the lines in the reconstruction

could be beneficial. In addition, this method could still be improved further by occupancy
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Figure 9: The correlations between 3-D point clouds sequence and 2-D geometry video.
A 2-D patch with picture order count (POC) 2N of near layer and one with 2N + 1 of far
layer are both derived from the same 3-D point cloud patch with POC N .

map reconstruction methods.

Although V-PCC adopted these two works into the reference software due to their

good performances, they did not fully exploit the strong correlations and interactions

between the geometry near and far layers. In addition, the non-linear representation ability

of CNN has not been considered carefully in the V-PCC geometry distortion removal.

2.3 Geometry in V-PCC

To explain the importance and necessity of the 2-D geometry improvement in V-

PCC, we need to figure out the property of the geometry step by step. We first elaborate on

how V-PCC converts the 3-D point cloud to the 2-D near and far layers of geometry frames

in the projecting process. Then we state the strong correlations between near and far

layers of the geometry. We explain all these above in Section 2.3.1. To better understand
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that how geometry propagates its impact on point-cloud reconstruction, we previously

introduce the important role that geometry plays in the point cloud reconstructing process

in Section 2.3.2. Finally, we explain the impact of 2-D geometry on 3-D point-cloud

reconstruction in both objective and subjective performance in Section 2.3.3.

2.3.1 The projection from 3-D to 2-D

A point-cloud frame consists of a collection of points within a 3-D volumetric

space that is with its coordinates, geometry, and attributes information, as shown in Fig. 8

(a). To use the proven powerful 2-D codecs such as HEVC and VCC, V-PCC first projects

the volumetric 3-D point-cloud frames to 2-D video frames. The whole projection pro-

cess contains three stages: patch segmentation, patch generation, and patch packing. The

V-PCC patch denotes a set of information that describes the point cloud in a 3-D bounding

box. This information incorporates points, corresponding geometry, and attribute descrip-

tions along with the atlas information.

The patch segmentation aims to decompose the 3-D point clouds into many patches.

Then during the process of patch generation, as shown in Fig. 8, V-PCC projects the seg-

mented 3-D patches to six planes of its bounding box. To appropriately resolve the prob-

lem that different 3-D points are projected onto the identical 2-D pixel, V-PCC projects

each patch onto two depth fields. More specifically, we assume that P (u, v) is the collec-

tion of points of a patch projected to the identical sample (u, v). The near layer stashes the

point of P (u, v) with the lowest depth d0. The far layer projects the point of P (u, v) with
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Table 11: 2-D and 3-D geometry PSNR comparison between lower and higher bitrates of
V-PCC Anchor [7] within soldier first 32 frames

PSNR (dB) Metrics r1 (lower) r2 (higher)

2-D Geometry video
Near Layer 46.8062 49.1117

Far Layer 46.4561 48.7152

Avg. All 46.6312 48.9134

3-D point clouds Point-to-Point Error 65.66 67.45

Point-to-Plane Error 67.42 69.48

the highest depth within [d0, d0 + �], where � denotes the thickness of the projected sur-

face. Intrinsically, as illustrated in Fig. 9, a 2-D near layer with picture order count (POC)

2N and a far layer with POC 2N + 1 are both derived from the same 3-D point-cloud

frame with POC N . Fig. 10 visualizes an example of the near layer frame with POC 2N ,

corresponding POC 2N + 1 far layer frame and their difference. Since generally, the � is

a minimal value, it is difficult to directly see the difference between the near and far layer

frames unless we make subtraction with them as Fig. 10 (c). Afterward, to generate the

2-D geometry and attributes videos, V-PCC arranges the projected 2-D patches compactly

onto a 2-D frame with size W ⇥ H . We call this stage patch packing. Once we obtain

2-D geometry videos, codecs can compress them efficiently.

2.3.2 The reconstruction process

Before reconstructing point clouds, the V-PCC decoder first demultiplexes the

compressed bitstream into geometry, attributes, occupancy map, and atlas streams. The

atlas mainly contains auxiliary patch information. The occupancy map is a binary signal

video implicating whether a 2-D pixel exists in the original 3-D point cloud as a point.

Once the reconstructing process starts, as described in Fig. 11, V-PCC reconstructs the at-

las first. We can see from Fig. 11 (a) that V-PCC only builds padded patch rough sketches.
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After V-PCC merges the decoded occupancy map into the reconstruction, the occupancy

status of the points becomes clear because the occupancy map removes the padded area.

However, there is still no clear person shape information. When V-PCC adds

the geometry information into the reconstruction, all 3-D point clouds are almost created

except the color attributes. Finally, V-PCC draws the attributes on the reconstruction.

2.3.3 The impact of the 2-D geometry to the 3-D point cloud

The visualizing reconstruction process above has demonstrated that how the 2-D

geometry enormously impacts the subjective quality of 3-D point clouds reconstruction.

Furthermore, Fig. 12 shows that how the V-PCC propagates the 2-D geometry artifacts

significantly to the 3-D point-cloud reconstruction. The sub-figures of the first row (a),

(b), and (c) are the 2-D geometry, attributes, and 3-D point cloud of ground truths, re-

spectively. With the same arrangement, the sub-figures of the second row are from anchor

reconstructions. Because it is difficult to directly recognize the difference of the geometry

value between the anchor and ground truth with our eyes, we visualize their difference in

(d). We can clearly see the geometry value distortion of the gun in the enlarged area of

(d). As explained in Section 2.3.2, the V-PCC reconstructs the 2-D attributes video with

a 2-D reconstructed geometry video, containing useful pixel location information. The

V-PCC finally reconstructs the 3-D point clouds with recolored and smoothed attributes

video in 3-D space. From the enlarged areas, we can clearly see that the V-PCC prop-

agates the 2-D geometry distortion to attributes reconstruction. Then, the V-PCC brings

the attributes artifacts into the 3-D point-cloud reconstruction.
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On the aspect of objective influence, we can find the same importance of geometry

video in Table 11. The higher bitrate r2 outperforms the lower one r1 on the PSNR of

2-D geometry video on either near or far layer. These gains are obviously propagated to

3-D point clouds on either point-to-point or point-to-plane [104] PSNR. These altogether

demonstrate the consistency of objective geometry qualities on both 2-D and 3-D sides.

Based on the analysis and observations above, if an efficient algorithm improving 2-D

geometry can be carefully devised, we can expect similar ideal performance on the 3-D

point cloud.

2.4 Two-step geometry artifacts removal

Based on the observations and analysis above in Section 2.3, the 2-D geometry

impacts the 3-D point-cloud reconstruction significantly. Therefore, to remove artifacts

of the near and far layers in geometry, we develop an algorithm with a two-step strategy.

In the first step, we not only improve the near and far layers with individual CNNs, but

also use the enhanced near reconstruction as the Pseudo-Motion Compensation (PMC) for

augmenting the far layer. In the second step, we dive into the interactions between near

and far layers and devise an X-like interacting network (XInteractNet) to fully use their

strong similarities for further enhancement. Specifically, we elaborate an in-depth discus-

sion on the two-step scheme in Section 2.4.1, design of XInteractNet in Section 2.4.2, loss

function in Section 3.4.4, dataset in Section 2.4.4, and training process in Section 3.4.5.
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Algorithm 1 The flow of two-step approach

Input: The near depth field reconstruction r0, the far depth field gp1.
Output: The artifacts removed near depth field r

00
0 and far depth field r

00
1 .

if Step one initialization successes then

Input r0 into the step one S0(·) CNN and output the augmented near reconstruction
r
0
0;

Input gp1 and Pseudo-Motion Compensation r
0
0 into the predictor and output the far

reconstruction r1;
Input r1 into the step one S1(·) CNN and output the augmented far reconstruction r

0
1;

end

if Step two initialization successes then

Input r0
0 and r

0
1 into the step two XInteractNet;

Compute the down features xd

0 and xd

1 with X Down Block �d(x0(i), x1(i));
Compute the up features yu0 and yu1 with X Up Block �u(y0(i), y1(i));
Output the artifacts removed near depth field r

00
0 and far depth field r

00
1 ;

end

2.4.1 Artifacts removal of geometry with two steps

We carefully devise our algorithm on two aspects. On the one hand, as observed

in Section 2.3.2 and Section 2.3.3, the geometry plays an important role in the 3-D point-

cloud reconstruction. We, therefore, focus on removing artifacts of geometry to improve

the quality of 3-D point clouds further. On the other hand, as elaborated in Section 2.3.1,

in the projection process of geometry, V-PCC projects a 3-D point-cloud frame to two

2-D different layer frames, including a near one denoted as g0 with depth d0 and a far

one denoted as g1 with depth d1. Since we essentially acquire these two 2-D frames from

the same 3-D point-cloud frame, we consider utilizing their similarities and interactive

information Is(g0, g1) as much as possible for denoising geometry. Hence, we propose a
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CNN-based two-step method that uses the interaction Is(g0, g1) to enhance near layer g0

and far layer g1 as frequently as possible.

Fig. 13 describes the upgraded V-PCC encoding scheme embedded in the pro-

posed two-step approach. Initially, the upgraded V-PCC uses the 3-D input of point

clouds P (i) to generate patch information T (j). V-PCC then generates the occupancy

map O(k) with these patches information T (j) during the patch packing process. After-

wards, V-PCC generates the 2-D near layer g0 and far layer g1 from the 3-D input P (i),

patch information T (j) and occupancy map O(k) for further padding. V-PCC then pads

far layer g0 and near layer g1 to generate corresponding gp0 and gp1 that are beneficial for

predicting, transforming and quantizing.

The target of the first step is to denoise the coarse artifacts of the reconstructed

near layer r0 and far layer r1 first. This way can provide step two with reconstructions of

better quality as dual inputs. The inter prediction in HEVC adopts motion compensation

technologies. The principle of motion compensation in codec is to search out a reference

frame containing reference blocks for predicting the current frame. Since we replace

the reference frame with an enhanced near layer reconstruction in the upgraded codec

for predicting the far layer reconstruction, we call this process as PMC. Specifically, at

first, we feed r0 into a CNN S(·) (near CNN) that is an autoencoder structure with four

convolutional layers. Then the augmented near layer reconstruction r
0
0 as PMC iteratively

participates into the padded far layer gp1 prediction to generate the far layer reconstruction

r1. We embed the algorithm of step one into the V-PCC and HECV encoders, configuring

the near layer reconstruction r
0
0 as an I frame while the geometry far layer reconstruction
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r1 as a P frame. The overhauled codec sets the near layer r0
0 (I frame) as a reference frame

for predicting the far layer reconstruction r1 (P frame). The updated encoder estimates

and compensates the motions for the far layer reconstruction r1 with the enhanced near

layer reference frame r
0
0. Accordingly, due to this PMC, if the quality of the near layer

reference frame r
0
0 is better, the quality of the far layer reconstruction r1 will be better.

Afterward, we feed the far reconstruction r1 into the far layer step one CNN (far CNN),

which has the same architecture as near CNN, to produce a better reconstruction r
0
1.

The objective of the second step is to utilize the interactive information Is(r
0
0, r

0
1)

between near layer r0
0 and far layer r0

1 in full extent for further removing artifacts. Ac-

cordingly, we devise a network with two inputs and two outputs, namely XInteractNet

mining the interactive information Is(r
0
0, r

0
1) as much as possible. We input the outputs

of step one including r
0
0 and r

0
1 into XInteractNet to achieve enhanced corresponding near

layer reconstruction r
00
0 and far layer reconstruction r

00
1 . We finally use r

00
0 and r

00
1 for re-

constructing the 3-D point cloud. We elaborate the proposed two-step artifacts removal

algorithm of near and far depth fields in Algorithm 1.

2.4.2 XInteractNet

The architecture of the proposed XInteractNet in the second step is illustrated

in Fig. 14. Let us define x0(i) and x1(i) are the near and far layer feature map of No.

i level of the XInteractNet, respectively. In order to share the interactive information

Is(x0(i), x1(i)) between near and far layers as much as possible, we devise a network

model pair called X interactive down and up blocks as the basic unit of XInteractNet.
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According to the observations above in Section 2.3, for a given near and far layer pairs,

there exists a high correlation between the near and far layer feature maps at every level

in the network. Therefore, the main idea behind the design of the proposed x interac-

tive down and up blocks is sharing the interactive information Is(x0(i), x1(i)) after every

convolutional computation level.

Specifically, in the X down block, to share the interactive information Id(x0(i), x1(i))

at level i before the max-pooling operation, we merge the previous convolutional near

layer’s feature x0(i� 1) and far layer’s feature x1(i� 1) into x(i� 1) first. Then we fed

x(i � 1) into the max-pooling model f(x(i � 1);w) to decrease its size from H ⇥W to

(H/2)⇥ (W/2) while aggregate more features from C channels to 2⇥ C channels. The

No. i+ 1 convolutional near and far layers take the pooled x(i) feature as input to tackle

the next convolution computation. We set the kernel size to 3⇥ 3, stride to 1, padding to

1 for all convolutional layers of X down block. Formally, the X interactive down block is

able to be concluded as

 d (x0(i), x1(i)) = C(�d

0 ⇤ x0 (i) ,�
d

1 ⇤ x1 (i)) (2.1)

where x0(i) and x1(i) are the near and far features input that stands on the No. i layer. �d

0

and �d

1 are denoted as the the near and far layers model parameters including correspond-

ing weights and bias matrices, respectively. C denotes the concatenation function.

Similarly, the X up block shares the interactive information Iu(y0(j), y1(j)) at

level j before the transposed-convolution operation. The previous convolutional near

layer’s feature y0(j � 1) and far layer’s feature y1(j � 1) share interactions for each

other and we merge them into y(j � 1). Afterward, the No. j transposed-convolutional
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Table 12: The convolutional and transposed convolutional layers parameters of the first X
Up Block in XInteractNet

Layer 1 2 3

Level Near Conv Near Transposed Conv Near Conv
Far Conv Far Transposed Conv Far Conv

Kernel Size 3⇥ 3 2⇥ 2 3⇥ 3
3⇥ 3 2⇥ 2 3⇥ 3

Feature Map 64 64 32
Number 64 64 32

Stride 1 2 1
1 2 1

Padding 1 0 1
1 0 1

layer takes it as input to recover its size from (H/2) ⇥ (W/2) back to H ⇥ W while

decreasing the feature channels from 2C to C. Then we concatenate the achieved y0(j)

and y1(j) features again and feed it into the next NO. j + 1 convolutional near and far

layers for computation. Table 12 shows the convolutional layer parameters of X up block.

Mathematically, the X interactive up block is able to be represented by

 u (y0(j), y1(j)) = C(�u

0 ⇤ y0 (j) ,�u

1 ⇤ y1 (j)) (2.2)

where y0(j) and y1(j) are the near and far features input that stands on the No. j layer.

�u

0 and �u

1 denote the the near and far layers model parameters including corresponding

weights and bias matrices, respectively. C denote the concatenation function.

2.4.3 Interactive loss function

To properly fit the second step of XInteractNet, we devise a loss function called

Interactive loss function to measure the XInteractNet. During the design process of the

interactive loss function, we have two primary considerations.

First, as a dual inputs and dual outputs supervised network, XInteractNet should
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Table 13: Proposed two-step method and geometry padding method [8] against the geom-
etry smoothing method [9] respectively on BD-rate and time complexity within the first
32 frames of sequences under all intra

Class Sequence
V-PCC with geometry padding method (SOTA) [8] Proposed two-step method
Geom.BD-Totalrate Attr.BD-Totalrate Geom.BD-Totalrate Attr.BD-Totalrate
D1 # D2 # Luma # Cb # Cr # D1 # D2 # Luma # Cb # Cr #

A
Loot �4.4% �9.9% 4.4% 4.8% 5.4% -20.8% -18.2% �1.2% �1.4% �0.5%
Redandblack �0.8% �7.5% 4.4% 5.9% 5.0% -10.1% -11.3% �1.1% �0.9% �2.4%
Soldier �1.5% �7.8% 4.4% 7.3% 6.4% -13.8% -12.8% �1.9% 0.1% �0.8%

B Longdress �1.3% �8.2% 2.3% 3.5% 3.2% -12.8% -13.7% �2.9% �1.4% �2.3%
Class a �2.2% �8.4% 4.4% 6.0% 5.6% -14.9% -14.1% �1.4% �0.7% �1.2%
class b �1.3% �8.2% 2.3% 3.5% 3.2% -12.8% -13.7% �2.9% �1.4% �2.3%

Avg. All �2.0% �8.3% 3.9% 5.4% 5.0% -14.4% -14.0% �1.8% �0.9% �1.5%
Enc.Self 102% 103%
Enc.Child 101% 101%
Dec.Self 102% 121%
Dec.Child 101% 212%

be capable of recovering the near and far depth fields to be close to their original ones on

the pixel level, respectively. We, therefore, define the near Mean Square Error (MSE):

L0(⇥0) =
1

N

NX

i=1

||⌥0(r
00

0 (i)|⇥0)� g0(i)||22 (2.3)

where ⇥0 encapsulates the whole near depth field parameter set of the XInteractNet, that

contains weights and bias. ⌥0(r
00
0 (i)|⇥0) is denoted as corresponding near depth field

modules in the XInteractNet that output r00
0 . As explained in Section 2.4.2, g0(i) is the

original near depth field, where i indexes each of them. r
00
0 (i) is the near depth field

output of the XInteractNet. N is the number of frames. Similarly, the far MSE is defined

as

L1(⇥1) =
1

N

NX

i=1

||⌥1(r
00

1 (i)|⇥1)� g1(i)||22 (2.4)

Hence, the sum of near MSE L0(⇥0) and far MSE L1(⇥1) can be defined as Dual MSE
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(DMSE)

LD(⇥0,⇥1) = L0(⇥0) + L1(⇥1) (2.5)

Second, as explained in Section 2.4.2 above, the XInteractNet aims to utilize the

interactive information Is(r0, r1) between the near and far depth fields as much as possi-

ble. Relying on the interactive information, the XInteractNet should be able to handle two

types of depth field problems well. Specifically, one non-occlusive case is that the origi-

nal near depth field is the same as the original far depth field. V-PCC essentially converts

the same 3-D point to the original near and far pixel with the same value. The XInter-

actNet should recognize this non-occlusive case and do its best to assimilate them with

their Is(g0, g1). In this way, the XInteractNet can be helpful to reconstruct only one point

in 3-D space correctly. In the other occlusive case, the correlation between near and far

depth fields is quite weak, and this means that the near depth field is quite different from

the far depth field. The XInteractNet should then learn from Is(g0, g1) to discriminate

them and help reconstruct two different points in 3-D space. Based on the considerations

above, we need to design a special term in the loss function that can recover the interactive

status of Is(r0, r1) to be as close as possible to the original interactive status Is(g0, g1).

We, therefore, devise an interactive term

LIT (r
00

0 , r
00

1 , g0, g1) = �Ls1(|r
00

0 � r
00

1 |, |g0 � g1|) (2.6)

where Ls1 denotes smooth L one loss function. r00
0 and r

00
1 are the near and far depth fields

outputs of XInteractNet while g0 and g1 are their corresponding origins. � is a tuning

coefficient and is set to 0.001 by default. This interactive term pushes the XInteractNet
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to learn from interactive information so that it could squeeze the difference between near

and far reconstructions and the difference of their labels.

We finally propose the interactive loss function:

LI((⇥0,⇥1); (r
00
0 , r

00
1 , g0, g1)) = LD(⇥0,⇥1)+

LIT (r
00
0 , r

00
1 , g0, g1)

(2.7)

The interactive loss function LI((⇥0,⇥1); (r
00
0 , r

00
1 , g0, g1)) effectively constrain the XIn-

teractNet to learn from the interactive information Is(g0, g1) for correctly recognizing the

correlation between the near and far depth fields.

2.4.4 Dataset

We adopt the Common Test Conditions(CTC) [105] consisting of dynamic point

cloud sequences recommended by MPEG for training, validating, and testing. 8i captured

and collected these raw 3-D point cloud sequences. For our two-step algorithm, to train

and validate our near and far S(·) CNNs of step one and XInteractNet of step two mod-

els, we use Queen sequence. We test the proposed models with the other four sequences

containing Loot, RedandBlack, Soldier, and Longdress, as shown in Section 2.5. On step

one, V-PCC generates 250 near depth field and 250 far depth field origins and reconstruc-

tions of Queen. Among these data, for both near and far depth fields, we use 192 frames

for training while 58 frames for validating. Then, we extract the 64 ⇥ 64 Coding Tree

Units (CTU) from the luminance component of the generated near and far depth field of

origins and reconstructions. Finally, we generate a total of 76, 800 near and far depth field

frames for training, and 23, 200 frames for validating our S(·) CNNs. In step two, we use
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Table 14: Training parameters

Parameters Value
Base Learning Rate 1e�4

� Adjusting Coefficient 0.1
Adjusting Epochs Interval 50
Weight Decay 1e�4

Momentum 0.9
Total Epochs 60

Table 15: Proposed two-step method and one-step method of near and far CNNs against
the one-step method of mixed geometry respectively on BD-rate and time complexity
within the first 32 frames of sequences under the all intra case

Class Sequence
One-step method of near and far CNNs Proposed two-step method

Geom.BD-Totalrate Attr.BD-Totalrate Geom.BD-Totalrate Attr.BD-Totalrate
D1 # D2 # Luma # Cb # Cr # D1 # D2 # Luma # Cb # Cr #

A
Loot �4.4% �1.9% 0.0% 1.1% 0.6% -12.2% -8.0% �0.3% �0.1% �1.0%
Redandblack �3.3% �2.1% �0.1% �0.2% �0.1% -6.1% -4.9% �0.4% �1.1% �1.2%
Soldier �3.8% �1.5% �0.1% 0.4% 0.0% -8.1% -4.8% �0.8% �0.7% �1.3%

b Longdress �4.2% �1.8% �0.2% 0.1% 0.2% -5.9% -3.9% �1.2% �1.0% �1.1%
Class A �3.9% �1.8% �0.1% 0.4% 0.1% -8.8% -5.9% �0.5% �0.6% �1.1%
Class B �4.2% �1.8% �0.2% 0.1% 0.2% -5.9% -3.9% �1.2% �1.0% �1.1%

Avg. All �3.9% �1.8% �0.1% 0.3% 0.2% -8.1% -5.4% �0.7% �0.7% �1.1%
Enc.Self 100% 100%
Enc.Child 103% 103%
Dec.Self 108% 118%
Dec.Child 101% 113%

the V-PCC embedded step one models, instead of anchor V-PCC reference software, to

generate both training and validating data. The other data preparation process is the same

as the step one generation process. The amount of training or validating CTUs is the same

as the one of step one as well.
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2.4.5 Training

To train the first step S(·) CNNs, we feed the near and far depth field reconstruc-

tion CTUs obtained from V-PCC anchor into the near and far S(·) CNNs, respectively.

The corresponding near and far origins generated from the anchor supervise the training

procedure. During training the XInteractNet of the second step, we feed the generated re-

construction CTUs of near and far depth fields from step one S(·) CNNs into XInteractNet

by batch-size of 16, respectively. The corresponding near and far origins generated from

S(·) CNNs supervise the XInteractNet training procedure. Table 19 shows the parameters

of the XInteractNet training process. Once the interactive loss is convergent, the training

state is considered as completion. According to our experiments and observations, the

loss is convergent before 60 epochs so we set the total XInteractNet training epochs to 60.

Additionally, we set the base learning rate to 1e�4. We degrade the learning rate by mul-

tiplying � of 0.1 after each interval of 50 epochs. In fact, � just means the learning rate

adjusting coefficient. We apply the Adaptive Moment Estimation (Adam) [59] algorithm

as the gradient optimizer. We set Adam momentum to 0.9 and the weight decay to 1e�4.

We use these hyper-parameters for the first step S(·) training as well.

2.5 Experimental results

To evaluate the performance of the proposed approaches, we implement our pro-

posed two-step and one-step algorithms into the V-PCC and HEVC reference software.

As explained in Section 2.4, the two-step method represents the proposed geometry arti-

facts removal approach in two stages, including step one with near and far CNNs and step
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Table 16: Proposed two-step method against the geometry smoothing [9] on BD-rate and
Time complexity under the random access case

Sequence
Geom.BD- Attr.BD-TotalRate
TotalRate

D1 # D2 # Luma # Cb # Cr #
A.Loot -20.2% -19.2% �6.0% �3.8% �5.9%
A.Red&black -10.3% -11.5% �2.0% �1.2% �2.2%
A.Soldier -6.1% -6.6% �5.0% �1.6% �1.9%
B.Longdress -12.1% -14.1% �3.9% �2.4% �2.8%
Class A -12.2% -12.4% �4.3% �2.2% �3.3%
Class B -12.1% -14.1% �3.9% �2.4% �2.8%
Avg. All -12.2% -12.8% �4.2% �2.3% �3.2%
Enc.Self 103%
Enc.Child 100%
Dec.Self 119%
Dec.Child 211%

two using our designed XInteractNet. The one-step method of near and far CNNs means

it executes one stage utilizing the near CNN and far CNN for corresponding depth fields.

The one-step method of mixed geometry is inputted with a mixture of near and far depth

fields. In this section, we compare the V-PCC geometry smoothing method [9], state-of-

the-art(SOTA), namely geometry padding method [8], the one-step methods above, and

the proposed two-step method. On the aspect of test data, we experiment within the first

32 frames of four V-PCC CTC [105] sequences, as mentioned in Section 3.4.5.

2.5.1 Comparison with SOTA under all intra

As Table 13 shown, we compare the proposed two-step method and SOTA geom-

etry padding [8] against the V-PCC geometry smoothing [9] under all intra case within

the first 32 frames of four CTC sequences [105]. Note that, to be fair, we set both the

proposed two-step method and the other two V-PCC methods to 8 bits for the geome-

try encoder. We experiment with all these methods under four level bitrate settings. On
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point-to-plane D2 Geom.BD-TotalRate, we can see that the proposed two-step approach

outperforms V-PCC geometry smoothing by an average of �14.0% while the SOTA ge-

ometry padding method gains �8.3% on this metric. In addition, the proposed two-step

method surpasses SOTA and geometry smoothing methods in every sequence on point-

to-plane D2. Specifically, the proposed two-step approach performs better than SOTA by

�5.7% and �5.5% related to Class A and B on point-to-plane D2, respectively. Espe-

cially, the peak difference even reaches �8.3% on Loot of Class A.

Compared to the SOTA geometry padding method, the proposed two-step method

gains an average of �12.4% on point-to-point D1 Geom.BD-TotalRate. We can see that

the proposed two-step method outperforms SOTA and geometry smoothing methods in

all sequences on point-to-point D1. Specifically, the proposed two-step method surpasses

SOTA on Class A and B correspondingly by �12.7% and �11.5% at the point-to-point

error D1. In addition, the top difference climbs to �16.4% on Loot of Class A.

Two reasons lead to these comparison results. Both geometry smoothing [9] and

geometry padding [8] do not exploit the strong correlations and interactions between the

geometry near and far layers. In addition, the non-linear representation ability of CNN has

not been considered in these two geometry distortion removal methods. All these above

implicate that our proposed two-step mechanism and designed XInteractNet achieves a

clear improvement on the problem of geometry artifacts removal. Besides, the design

of XInteractNet effectively exploiting the strong correlations between near and far depth

fields is beneficial for the enhancement of geometry.

As illustrated in Fig. 22, we count the number of points nr of the reconstructed
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3-D point cloud within the first 32 frames of four CTC sequences. From level r1 to level

r4, the bitrate labeled on the Y axis gradually increases. Our proposed algorithm aims

to remove the artifacts and restore the points that initially exist in ground truth as much

as possible. We can obviously see that the number of points nr of our proposed two-

step method is more than the one of SOTA, geometry smoothing. These statistics fully

demonstrate that the proposed two-step methods efficiently restore the original points in

the 3-D point-cloud reconstruction to improve its quality.

Fig. 23 shows the comparison of Geometry Rate-Distortion (RD) curves in all the

intra cases on Loot sequence. As shown, the point-to-plane D2 PSNRs of all 4 bitrate

settings in the proposed two-step method is higher than the ones of the SOTA and geom-

etry smoothing method. Similarly, the point-to-point D1 PSNRs of r1, r2, and r3 bitrate

levels in the proposed two-step method are higher than those of the SOTA and geometry

smoothing method as well. These results significantly prove that the proposed two-step

method is superior to the SOTA and geometry smoothing on removing geometry artifacts

and improving the PCC quality.

The time complexity [62] is shown in Table 13 as well. For all methods, we con-

figure the same environments. Specifically, the CPU configuration is Intel core i5-8400

CPU @ 2.80GHz, and the GPU configuration is GTX 1080ti. The ‘Enc.Self’ represents

the encoder side of V-PCC, and ‘Enc.Child’ means the encoder side of HEVC. Similarly,

the ‘Dec.Self’ represents the decoder side of V-PCC, and ‘Dec.Child’ means the decoder

side of HEVC. Under the all intra case, on the encoder side of V-PCC, the proposed two-

step method takes 103% time of geometry smoothing method. On the decoder side of
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V-PCC, it takes 121% time of geometry smoothing method. Their time complexities are

similar.

2.5.2 Comparison with one-step methods

Table 15 shows the BD-rate and time complexity comparison between the pro-

posed two-step method and the one-step method of near and far CNNs all against the

one-step method inputted into mixed geometry within the first 32 frames of four CTC se-

quences. The proposed two-step method outperforms the one-step method of near and far

CNNs by an average of �4.2% and �3.6% on point-to-point error D1 and point-to-plane

D2, respectively. Meanwhile, the proposed two-step method performs better than the one-

step method inputted into mixed geometry �8.1% and �5.4% on point-to-point error D1

and point-to-plane error D2, respectively. These performances significantly demonstrate

that the proposed two-step method outperforms one-step methods on objective qualities

and PCC coding efficiency. These results also prove that XInteractNet in the second step

explores the similarities between the near layer and far layer effectively. In addition,

thanks to the architecture design with X similarity down and up blocks, XInteractNet

could mine the interactions between the near layer and far layer in a full extent.

Regarding time complexity, the proposed two-step method takes almost the same

time as the geometry smoothing method on the encoder side of V-PCC and HEVC. Mean-

while, on the decoder side of V-PCC and HEVC, it takes 118% and 113% time of geom-

etry smoothing method, respectively.

As exhibited in Fig. 22, we compare the number of points nr in the reconstructed
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3-D point cloud between the proposed two-step method and one-step methods within the

first 32 frames of four CTC sequences as well. We can see that the number of points nr

of the proposed two-step method is more than either the one of the one-step method of

near and far CNNs or the one of the one-step method inputted into mix geometry in all se-

quences. These statistics fully prove that the proposed two-step method significantly per-

forms better than other one-step methods on restoring points for artifact removal. Addi-

tionally, Fig. 23 shows the RD curves comparison between the proposed two-step method

and the other one-step methods. The proposed two-step method leads the higher PSNRs

of point-to-point error D1 and points to plane error D2 than other one-step methods.

2.5.3 Performances of the proposed two-step algorithm under random access case

As shown in Table 16, in the random access case, we can see that compared to the

V-PCC geometry smoothing method, the proposed two-step method gains an average of

�12.2% and �12.8% on Geom.BD-TotalRate point-to-point error D1 and point-to-plane

error D2, respectively. Again, we can also see that the proposed two-step method leads

the geometry smoothing method on point-to-point error D1 and point-to-plane error D2 in

every class. Additionally, the top difference between the two-step method and geometry

smoothing method climbs to �20.2% and �19.2% at Loot on point-to-point error D1 and

point-to-plane D2, respectively. This comparison fully proves that the benefits brought by

the proposed two-step methods can be similarly propagated to random access case.

64



2.5.4 Subjective results

Fig. 25 shows the visual comparisons of ground truth, point-cloud reconstructions

of geometry smoothing, geometry padding (SOTA), and the proposed two-step method.

These figures are from sequences of Loot, RedandBlack, and Longdress. We generate

the figures (a), (b), (c), and (d) from the point cloud ground truth, the point-cloud recon-

structions of geometry smoothing, geometry padding (SOTA), and the proposed two-step

methods, respectively. From these sequences, we can clearly see from the zoomed red and

green blocks that there are apparent distortions in the reconstructions of geometry smooth-

ing, geometry padding. However, the reconstructions of the proposed two-step method

exhibit better visual qualities. For instance, the green rectangles of Loot and Longdress

and red ones of Redandblack and Longdress show significantly smoother boundary edges

processed by the proposed two-step method. Meanwhile, the green rectangle of Redand-

black and the red one of Loot exhibits obviously more abundant graph information as

well. The subjective results demonstrate that compared to the geometry smoothing and

geometry padding (SOTA) methods, the proposed two-step approach could significantly

bring better visual qualities.

2.6 Summary

The geometry video intrinsically represents the depth fields of 3-D point clouds.

Once there are artifacts on the compressed 2-D geometry video, they would be prop-

agated to the 3-D point-cloud frames. In the lossy compression, there always exists a
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tradeoff between the rate of bitstream and distortion. This paper proposes a learning-

based approach to remove the geometry artifacts and improve the compressing efficiency.

We devise a two-step method working on the near and far depth fields decomposed from

geometry. The first stage is learning-based Pseudo-Motion Compensation. The second

stage exploits the potential of the strong correlations between near and far depth fields.

We embed the proposed algorithm into the V-PCC reference software. To the best of our

knowledge, this is the first learning-based solution of the geometry artifacts removal in

V-PCC. The extensive experimental results show that the proposed approach achieves sig-

nificant gains on geometry artifacts removal and quality improvement of 3-D point-cloud

reconstruction compared to state-of-the-art schemes. In the future, we can still exploit

the temporal relationships of the 2-D geometry and 3-D point-cloud frames to assist the

artifact removal further. The multi-frames-based method is another reasonable potential

solution utilizing the learned features for motion compensation. In addition, we consider

using sparse convolution for PCC, which is a promising direction as well.
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(a) Near layer (b) Far layer

(c) The difference of near and far layer

Figure 10: Near (a) and far (b) layer frames in 2-D geometry video. (C) is the difference
� between the near layer frame with POC 2N and its corresponding POC 2N +1 far layer
frame. Since generally, the difference � is a minimal value, it is difficult to directly see
the difference between the near and far layer frames unless making subtraction with them
as (c).
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(a) atlas

(b) add occupancy 
map on (a)

(c) add geometry on 
(b)

(d) add textures on 
(c)

Figure 11: The process of 3-D point-cloud reconstruction [1] in V-PCC. The atlas (a) is
first reconstructed. Only padded patch rough sketches are built. After the decoded oc-
cupancy map is merged into the reconstruction (b), the points occupancy status becomes
clearly shown because the occupancy map has removed the padded area. When the ge-
ometry information is added into the reconstruction (c), all 3-D point clouds are almost
created except the color attributes. Finally, the attributes are drawn on the reconstruction
(d). This visualizing reconstruction process demonstrates how the 2-D geometry enor-
mously impacts the subjective quality of 3-D point clouds reconstruction.
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(a) 2-D Geometry 
Ground Truth

(e) 2-D Geometry 
Anchor

(b) 2-D Texture 
Ground Truth

(f) 2-D Texture 
Anchor

(c) 3-D Point Cloud 
Ground Truth

(g) 3-D Point Cloud 
Anchor

(d) 2-D Geometry 
Difference
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Figure 12: Impact of the 2-D geometry artifacts to the 3-D point cloud artifacts. The
sub-figures of the first row (a), (b), and (c) are the 2-D geometry, attributes, and 3-D point
cloud of ground truths, respectively. With the same arrangement, the sub-figures of the
second row are from anchor reconstructions. Because it is difficult to directly recognize
the difference of the geometry value between the anchor and ground truth with our eyes,
we visualize their difference in (d). White and black pixels represent the different ones,
while gray pixels are the same ones. We can clearly see the geometry value distortion
of the gun in the enlarged area of (d). From the enlarged areas, we can clearly see that
the V-PCC propagates the 2-D geometry distortion to attributes reconstruction. Then, the
V-PCC brings the attributes artifacts into the 3-D point-cloud reconstruction.
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Figure 13: The proposed two-step method is embedded in the V-PCC encoding scheme.
The target of the first step is to denoise the coarse artifacts of the reconstructed near layer
r0 and far layer r1 first. The augmented near layer reconstruction r

0
0 as PMC iteratively

participates into the far layer gp1 prediction to generate the far layer reconstruction r1.
Afterward, r1 is fed into the far layer step one CNN to produce a better reconstruction r

0
1.

The objective of the second step is to utilize the interactive information Is(r
0
0, r

0
1) between

near layer r0
0 and far layer r0

1 in full extent for further removing artifacts. We input the
outputs of step one including r

0
0 and r

0
1 into XInteractNet to achieve enhanced correspond-

ing near layer reconstruction r
00
0 and far layer reconstruction r

00
1 . They are finally used for

reconstructing the 3-D point cloud.
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Figure 14: XInteractNet architecture. In the X down block, to share the interactive infor-
mation Id(x0(i), x1(i)) at level i before the max-pooling operation, the previous convo-
lutional near layer’s feature x0(i � 1) and far layer’s feature x1(i � 1) are merged into
x(i� 1) first. The No. i+1 convolutional near and far layers take the pooled x(i) feature
as input to tackle the next convolution computation. Similarly, the X up block shares the
interactive information Iu(y0(j), y1(j)) at level j before the transposed-convolution op-
eration. The previous convolutional near layer’s feature y0(j � 1) and far layer’s feature
y1(j � 1) are shared and merged into y(j � 1). The obtained y0(j) and y1(j) features are
concatenated again and fed into the next NO. j + 1 convolutional near and far layers for
computation.

71



(a) Loot (b) Redandblack

(c) Soldier (d) Longdress

Figure 15: Number of points NR in reconstructed 3-D point clouds within first 32 frames
of four CTC sequences. The bitrate of Y axis gradually increases from level r1 to level r4.
The number of points NR of our proposed two-step method clearly restore more points
than V-PCC geometry pading and smoothing methods. These statistics fully demonstrate
that the proposed two-step method effectively restores the 3-D point clouds.
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(a) Point-to-point RD Curves on Loot (b) Point-to-plane RD Curves on Loot

Figure 16: Comparison of Geometry point-to-point and point-to-plane Rate-Distortion
(RD) curves on Loot sequence in all the intra cases. As shown, the point-to-point and
point-to-plane PSNRs of first three rate points in the proposed two-step method is higher
than the ones of all other V-PCC geometry padding and smoothing methods. This proves
that the proposed algorithm performs obviously better than SOTA methods on improving
coding efficiency.
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(a) Ground truth
(b) Geometry

smoothing method
(c) Geometry padding

method
(d) Proposed two-step

method

Figure 17: Visual comparisons of ground truth, point-cloud reconstructions of geometry
smoothing, padding and proposed two-step methods. The figures are derived from Loot,
RedandBlack, and Longdress. From the three sequences, we can clearly see from the red
and green rectangles that there are significant artifacts and noises in the reconstructions
of V-PCC Geometry smoothing and padding methods, while the reconstructions of the
proposed two-step method show a smoother effect. The visual results obviously demon-
strate that compared to the SOTA, the proposed two-step method brings better subjective
qualities.
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CHAPTER 3

CONVOLUTIONAL NEURAL NETWORK-BASED OCCUPANCY MAP

ACCURACY IMPROVEMENT FOR VIDEO-BASED POINT CLOUD

COMPRESSION

In video-based point cloud compression (V-PCC), a dynamic point cloud is pro-

jected onto geometry and attribute videos patch by patch for compression. In addition to

the geometry and attribute videos, an occupancy map video is compressed into a V-PCC

bitstream to indicate whether a two-dimensional (2D) point in the projected geometry

video corresponds to any point in three-dimensional (3D) space. The occupancy map

video is usually downsampled before compression to obtain a tradeoff between the bitrate

and the reconstructed point cloud quality. Due to the accuracy loss in the downsampling

process, some noisy points are generated, which leads to severe objective and subjec-

tive quality degradation of the reconstructed point cloud. To improve the quality of the

reconstructed point cloud, we propose using a convolutional neural network (CNN) to

improve the accuracy of the occupancy map video. We mainly make the following contri-

butions. First, we improve the accuracy of the occupancy map video by formulating the

problem as a binary segmentation problem since the pixel values of the occupancy map

video are either 0 or 1. Second, in addition to the downsampled occupancy map video,

we introduce a reconstructed geometry video as the other input of the CNN to provide

more useful information in order to indicate the occupancy map video. To the best of our

knowledge, this is the first learning-based work to improve the performance of V-PCC.
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Compared to state-of-the-art schemes, our proposed CNN-based approach achieves much

more accurate occupancy map videos and significant bitrate savings.

3.1 Background

Three-dimensional (3D) industry- and consumer-level scanning equipment, such

as RGBD cameras [67, 68] and light detection and ranging (LIDAR) [66, 67], are becom-

ing more common and less expensive than ever before. These sensing devices are capable

of scanning and producing a massive amount of 3D data. Due to their ability to represent

3D data in a more immersive and realistic pattern, 3D visual representation approaches

such as polygon meshes, light fields, and point clouds are becoming increasingly popular.

Among these 3D volumetric digital representation formats, point clouds achieve a good

tradeoff among ease of acquisition, realistic rendering, and facilitating data manipulation

and processing. Therefore, point clouds are being adopted more frequently.

Point clouds lay a solid foundation for unprecedented visual technologies, includ-

ing immersive virtual reality (VR), augmented reality (AR), and mixed reality (MR) [69].

These advanced technologies are useful in many applications [70, 71], including his-

toric site [76] and art museum exploration, immersive real-time remote telecommuni-

cations [75], interactive games [74], and mobile navigation [72] [73]. However, point

clouds are typically represented by an extremely large amount of data. Consequently, it is

impossible to cache, stream, and render these large amounts of raw point cloud data. This

barrier has created the necessity for efficient point cloud compression (PCC).

Recently, the Moving Pictures Experts Group (MPEG) initiated a standardization
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activity [77] on PCC. The diversity of point clouds in terms of density has led to the de-

velopment of two technologies: video-based point cloud compression (V-PCC) [77] and

geometry-based point cloud compression (G-PCC) [77]. In this paper, we mainly focus

on some improvements based on V-PCC. In V-PCC, a point cloud is initially segmented

into 3D patches. Then, these 3D patches are projected onto two-dimensional (2D) planes

and packed into geometry and attribute videos. Afterwards, the empty space in the ge-

ometry and attribute videos is padded to keep the spatial continuity to improve the video

compression efficiency. Finally, the geometry and attribute videos are compressed with

high-efficiency video coding (HEVC) [11].

Due to the padding process and the loss caused by compression, it is difficult to

determine whether one pixel in the reconstructed geometry video corresponds to a valid

3D point. To address this problem, in addition to the geometry and attribute videos,

an occupancy map video is compressed into the V-PCC bitstream. The pixels in the

occupancy map video are used to indicate whether the pixels in the geometry and attribute

videos correspond to any points in 3D space. Ideally, the occupancy map video should be

coded with the same resolution as the geometry and attribute videos (full-resolution), but

this incurs a high bitrate cost. To save bitrates, the V-PCC encoder downscales the full-

resolution occupancy map video to a half-resolution or quarter-resolution video before

compression. The V-PCC decoder then upscales this downscaled occupancy map video

back to the full resolution for reconstructing the 3D point cloud. Some noisy pixels are

thus introduced in the boundary areas of the upsampled full-resolution occupancy map

video. These 2D noisy pixels are reconstructed into 3D noisy points, which leads to
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serious quality degradation of the reconstructed point cloud.

Through V-PCC standardization, a variety of occupancy map refinement meth-

ods [3, 4, 106–112] have been proposed to improve the occupancy map accuracy. Among

them, the methods in [4] and [3] have been adopted in the V-PCC encoder, although they

are disabled by default. In [4], a patch border filter (PBF) was proposed to manipulate oc-

cupancy map and geometry videos to reduce the distance between the contours of patches.

However, this method may still introduce some error pixels on the contours. In [3], an oc-

cupancy refinement (OR) method is proposed to iteratively refine the occupancy flags of

blocks with fewer pixels to avoid introducing noisy ones in the occupancy map. However,

this method can still insert some noisy pixels. These deficiencies all lead to degradations

in the quality of 3D point cloud reconstructions. Therefore, these two methods have not

been adopted as part of the V-PCC common test condition (CTC) [105], and there is still

considerable space to develop a better method to improve the accuracy of occupancy map

videos.

In this paper, we propose an occupancy-geometry-based convolutional neural net-

work (OGCNN) to improve the accuracy of occupancy map videos in order to improve

the quality of reconstructed 3D point clouds. To the best of our knowledge, this work is

the first CNN-based solution for improving the efficiency of V-PCC. This work mainly

makes the following technical contributions.

• We formulate the problem of occupancy map accuracy improvement as a binary

segmentation problem. The binary cross entropy loss is adopted as the loss function

to train the CNN.
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• A reconstructed geometry video is introduced as the other input of the proposed

CNN in addition to an occupancy map video. The geometry contains useful infor-

mation that can help improve the accuracy of the occupancy map video.

• The proposed algorithm is implemented in the V-PCC reference software. Exten-

sive experiments have been conducted to compare the algorithm in this paper with

state-of-the-art (SOTA) algorithms to demonstrate the effectiveness of the proposed

scheme.

We organize the remainder of this paper as follows. We review the related works

on point cloud compression in Section 3.2, followed by our motivation and observations

on occupancy map video enhancement in Section 3.3. We introduce the proposed CNN-

based occupancy map accuracy improvement method in Section 3.4. In Section 3.5, we

comprehensively report and analyze the experimental results. A summary of this paper is

presented in Section 3.6.

3.2 Occupancy map improvement

This section briefly reviews the prior works on dynamic point cloud compression

and accuracy improvements based on occupancy map videos in V-PCC.

3.2.1 Dynamic point cloud compression

There are roughly two types of compression methods, 3D-based approaches and

2D-based approaches, for dynamic point cloud compression. As indicated by its name, a

3D-based approach directly performs 3D motion estimation and motion compensation in
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3D space. Kammerl et al. [83] proposed a lossy compression method for dynamic point

cloud streaming that uses the colocated octree node of the reference frame to predict that

of the current frame. This method, however, can only be applied to frames with small mo-

tions. Thanou et al. [84] formulated 3D motion estimation as a feature-matching problem

between successive graphs after representing the time-varying geometry of these point

cloud frames with a set of graphs. Nonetheless, the motion vectors of some objects in

point cloud frames are not accurately estimated. Queiroz et al. [85] developed a simple

coder that breaks the voxelized point cloud at each frame into blocks of voxels. The 3D

translational motion estimation was performed block by block to find the corresponding

block of the reference frame. In addition, Mekuria et al. [86] further introduced the it-

erative closest point (ICP) instead of a translational motion model to better characterize

the motions in neighboring frames. These schemes can attenuate the deficiencies of 3D

motion estimation and motion compensation to some extent. Nevertheless, without flex-

ible block partitioning and more efficient motion estimation algorithms, the compression

performance of dynamic point clouds is still incomparable with that of 2D-based methods.

The 2D-based methods that are dedicated to converting a 3D dynamic point cloud

to 2D videos for compression through 2D video coding standards have been proven to

be efficient. Budagavi et al. [88] proposed compressing projected 2D videos derived by

sorting points in a 3D point cloud with HEVC. However, this work cannot exploit the

mature interprediction, as the generated videos do not have high spatial and temporal cor-

relations. To alleviate this drawback, He et al. [89] employed the cubic projection method

to convert a 3D dynamic point cloud to 2D videos. Although this work promotes video
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coding performance, this algorithm leads to the loss of many points due to occlusion.

Lasserre et al. [90] proposed combining an octree and a projection to decrease the num-

ber of occluded points. Mammou et al. [91] considered projecting a 3D dynamic point

cloud onto 2D videos with a patch-based algorithm. Compared to other proposals, the

patch-based algorithm [93] shows better compression efficiency. The MPEG immersive

(MPEG-I) media working group adopts a patch-based algotithm as the base of the V-PCC

standard. In addition, Li et al. [113] proposed using occupancy-map-based rate-distortion

optimization and partitioning to improve the performance of V-PCC. Although V-PCC

has been proven to be efficient due to its astonishing performance, the downsampled oc-

cupancy map video, which intrinsically guides the reconstruction of the geometry and

texture information, leads to severe objective and subjective quality degradation of the

reconstructed point cloud.

3.2.2 Recent advances in occupancy map video improvement

Through the V-PCC standardization process, many occupancy map refinement

methods were proposed to improve occupancy map accuracy. Vosoughi et al. [106] pro-

posed a scalable locally adaptive erosion filter that first classified the current pixel of

the full-resolution decoded occupancy map into a set of intuitively well-defined classes.

Then, different erosion patterns were applied to various classes in the neighborhood of

the current pixel. Due to the coarse occupancy resolution, some noisy points are added to

the reconstructed point cloud. Oh et al. [107] proposed a combination of upsampling and

2D filtering to remove the added points in the occupancy map video. To smooth the jaggy
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patch boundaries and reduce redundant points, Lee et al. [108] proposed an occupancy

map refinement method with corner-based boundary estimation. This work primarily

addressed the oblique lines. Cai et al. [109] proposed an adaptive occupancy map upsam-

pling method for reconstructing a high-resolution occupancy map video. However, there

is no guarantee that it can be as close as possible to the original full-resolution occupancy

map video. Najaf-Zadeh et al. [110] proposed signaling a ternary occupancy map to the

decoder if a boundary block in the occupancy map is allowed to be trimmed. Wang et

al. [112] proposed shifting the position of the occupancy map bounding box during patch

generation. However, it can only partially reduce the number of noisy points. These meth-

ods can partially solve the problem of inaccurate occupancy map videos. However, none

of them are significant enough to be adopted by V-PCC.

There are some methods adopted by the V-PCC encoder during the V-PCC stan-

dardization process. Andrivon et al. [4] proposed a patch border filtering (PBF) method to

manipulate the occupancy map and geometry videos to reduce the distance between con-

tours of patches. However, this method can still insert some noisy pixels on the contours.

Guede et al. [3] proposed a method to iteratively refine an occupancy map video. This

method is proposed to modify the occupancy flags of the blocks with fewer pixels to avoid

inserting error flags in an occupancy map video. However, this method may still introduce

some noisy points while removing some real points. As a result, they are disabled in the

V-PCC encoder by default and are not part of the V-PCC common test condition. There-

fore, there is still considerable space to devise a better occupancy map video accuracy

improvement method to boost the dynamic point cloud compression efficiency.
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3.3 Occupancy map video in V-PCC

In this section, we first give a clear definition of the resolution of an occupancy

map video. Then, the influences of the occupancy map resolution on distortions and

bitrates are introduced in detail.

3.3.1 Occupancy map video resolution

Ideally, an occupancy map video should be coded at full resolution to indicate

exactly whether pixels in the geometry and attribute videos correspond to any points.

Nevertheless, a full-resolution occupancy map would cost too many bits. To save bit cost,

the V-PCC downscales the full-resolution occupancy map video by P times. Correspond-

ingly, a P ⇥ P block bp of the full-resolution occupancy map, consisting of P 2 pixels,

is downscaled to a single pixel sp in the downsampled video. When P equals 2 and 4,

the downscaled video is called a half-resolution and quarter-resolution occupancy map

video, respectively. The V-PCC then upscales the downsampled occupancy map video

back to a full-resolution video. Correspondingly, sp is upscaled to a P ⇥ P block b
0
p
. The

reconstructed full-resolution occupancy map video is finally used for reconstructing the

geometry and attributes.

In the following, to further analyze the influence of the occupancy map video on

the reconstructed quality of the geometry and attributes, we call the pixels indicating that

there are corresponding points in 3D space occupied pixels, while we name the pixels in-

dicating that there are no corresponding points in 3D space unoccupied pixels. Suppose a

P ⇥P block bp in the original full-resolution occupancy map video includes Xo occupied
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Table 17: V-PCC anchor [2] performance comparison of the quarter-resolution, half-
resolution, and full-resolution occupancy maps within the first 32 frames

Class Sequence
Quarter vs. Full Quarter vs. Half

Geom.BD-GeomRate Geom.BD-GeomRate
D1 D2 D1 D2

A Loot �50.3% �45.5% �21.9% �14.9%
Redandblack �52.9% �43.3% �23.8% �11.8%
Soldier �52.1% �44.2% �23.8% �13.9%
Queen �61.1% �52.7% �25.4% �15.3%

B Longdress �50.1% �41.1% �23.2% �12.8%
Class A �54.1% �46.4% �23.7% �14.0%
Class B �50.1% �41.1% �23.2% �12.8%

Avg. All �53.3% �45.3% �23.6% �13.8%

pixels. If Xo is less than P 2, then bp is partially occupied. Even though bp is partially

occupied, V-PCC marks its corresponding sp as occupied to avoid losing points. The oc-

cupied pixel sp indicates that all P 2 pixels in the reconstructed full-resolution occupancy

map video are occupied. The downsampling and upsampling processes would increase

P 2 �Xo occupied pixels. Fig. 18 gives a typical example to compare the full-resolution

occupancy map video with the quarter-resolution occupancy map video. The red pixels

indicate the occupied pixels in the full-resolution occupancy map video, while the blue

pixels indicate the occupied pixels in the reconstructed full-resolution occupancy map

video. In an extreme case, in the original full-resolution occupancy map, as shown in the

top left subfigure of Fig. 18, only one pixel is occupied in a 4⇥ 4 block. However, in the

quarter-resolution occupancy map, as shown in the top right subfigure of Fig. 18, all the

pixels in the corresponding 4 ⇥ 4 block are considered occupied. In this way, 15 noisy

pixels are generated in the restored full-resolution occupancy map.
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3.3.2 The impact of the occupancy map resolution on the quality of the geometry and

attributes

An increase in the number of noisy pixels in the full-resolution occupancy map

video can lead to noisy pixels in the geometry and attribute videos. As illustrated in

Fig. 19, the reconstructions of the occupancy maps, geometry, and attributes in the first

and second rows are derived from the configurations of the quarter resolution and full

resolution, respectively. We can see from the enlarged areas of the occupancy map videos

((a) and (b)) that the edge of the body shows a more severe block artifact in the quarter-

resolution case than in the full-resolution case. Compared with the quarter resolution, the

full resolution provides more accurate representations of the occupancy map. Moreover,

the impact of the occupancy accuracy can be propagated into the geometry and attributes.

We can see from the enlarged areas of the geometry ((c) and (d)) and attributes ((e) and

(f)) that the block distortions are more severe in the quarter-resolution case than in the

full-resolution case.

3.3.3 The impact of the occupancy map on the bitrates

As mentioned in Section 3.3.1, an occupancy map with higher resolution may

lead to smaller distortions. However, it also brings a much higher bitrate cost. According

to our observations, the bit cost of the full-resolution occupancy map is approximately

four times greater than that of the quarter-resolution map. As shown in Table 17, we

compare the BD-rates [60] of the point-to-point error (D1) and point-to-plane error (D2)

[104] among the quarter-resolution, half-resolution and full-resolution occupancy maps
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in the V-PCC anchor version 11 [2]. Compared to the full-resolution occupancy map,

the quarter-resolution occupancy map achieves a �53.3% BD-rate savings on D1 and a

�45.3% BD-rate savings on D2. Compared to the half-resolution occupancy map, the

quarter-resolution occupancy map achieves a �23.6% and �13.8% BD-rate savings on

D1 and D2, respectively. The main reason for these results is that, compared to the half-

resolution and full-resolution occupancy map videos, the quarter-resolution videos are

downscaled two and four times, respectively; hence, they cost much fewer bits.

3.4 Occupancy map refinement OGCNN with two inputs

In this section, we introduce the proposed OGCNN scheme in detail, including

a detailed discussion on the design of the OGCNN, loss function, dataset, and training

process.

3.4.1 Architecture of the proposed OGCNN

As shown in Table 17, the quarter-resolution occupancy map video leads to a

better performance compared with the half-resolution and full-resolution occupancy map

videos. However, we also know that the higher the occupancy map video resolution is,

the better the quality of the reconstructed geometry and attributes. Therefore, we use

the quarter-resolution occupancy map video as the base and try to design an algorithm to

improve its accuracy and to improve the reconstructed point cloud geometry and attribute

quality. As CNNs have been demonstrated to be powerful in both low-level and high-level

vision tasks [82], we propose using a CNN to make the accuracy of the quarter-resolution
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occupancy map as close as possible to that of a higher-resolution target. The higher-

precision target can be the full-resolution or half-resolution occupancy map.

When we design the proposed architecture, we mainly consider the following two

aspects to optimize its performance. First, as the occupancy map is a particular type of

video that incorporates only binary values, we formulate the problem of improving the

occupancy map precision as a binary segmentation problem. In other words, we try to

devise a segmentation CNN that can discriminate the occupied (value 1) and unoccu-

pied (value 0) statuses per pixel in the inputted occupancy map. Second, in addition to

the quarter-precision occupancy map video, geometry reconstruction is introduced as the

other input to provide the network with more useful information. In the V-PCC encoder,

as the geometry values of the unoccupied pixels are padded from their neighbors [114],

they can better reflect the real occupancy distribution than the binary occupancy map. For

example, if the geometry value of a specific position is not the same as that of its neigh-

bors, it is almost impossible for it to be an unoccupied pixel. However, we cannot obtain

this information from the quarter-resolution occupancy map itself. Therefore, we con-

sider the geometry reconstruction to be an important supplement to the quarter-resolution

occupancy map.

Fig. 20 shows the overall architecture of the proposed OGCNN scheme with both

the quarter-resolution occupancy map video and reconstructed geometry video as inputs.

The scheme consists of two subnetworks: the Occupancy Network and the Geometry

Network. The Occupancy Network uses the quarter-resolution occupancy map video as

input. It derives occupancy segmentation feature maps from the occupancy map. The
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Geometry Network uses the reconstructed geometry video as input and derives geometry

segmentation feature maps from the geometry. The occupancy map and geometry seg-

mentation features are then concatenated together and used as the input of the remaining

convolutional layers.

Algorithm 2 The flow of the OGCNN approach in V-PCC

Input: x is the Occupancy Network input, and the geometry reconstruction z is the
Geometry Network input.

Output: The enhanced occupancy map Fout(O(x), G(z)).

if Initialization succeeds then

Input the occupancy map x into the Occupancy Network;
Extract the geometry reconstruction z as the Geometry Network input;
Compute the Occupancy Network segmentation features O(x);
Compute the Geometry network segmentation features G(z);
Concatenate the segmentation features of O(x) and G(z);
Obtain the enhanced occupancy map Fout(O(x), G(z));

end

In addition to the dual inputs, as shown in Fig. 20, we develop different subnet-

works for the quarter-resolution occupancy map video and the reconstructed geometry

video. As mentioned above, the characteristics of the occupancy map and geometry re-

construction are different. The occupancy map is binary, while the information in the

geometry is more sensitive. We design different subnetworks to optimize the features

derived from the occupancy map and geometry. Detailed introductions of the two subnet-

works are described in Section 3.4.2 and Section 3.4.3, respectively.

Algorithm 2 shows the algorithm flow of the proposed OGCNN. We first extract

the occupancy map and geometry reconstructions from the bitstream. Then, both of them
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Table 18: Occupancy Network Parameters of the Conv and Transposed Conv Layers

Layer Conv1 Conv2 Transposed Conv3 Conv4
Conv1

Kernel 3⇥ 3 3⇥ 3 2⇥ 2 3⇥ 3 3⇥ 3
Size

Feature 4 8 4 4 4
Map

Number
Stride 1 1 2 1 1

Padding 1 1 0 1 1

are fed into the OGCNN to generate the occupancy map video with a higher accuracy. The

occupancy map video with a higher accuracy is finally used in loop for reconstructing the

geometry, attributes, and point cloud.

3.4.2 Design of the Occupancy Network

The Occupancy Network uses the unsampled quarter-resolution occupancy map

video as the input. It adopts the classic autoencoder architecture [51] [52] with a skip

connection concatenating the encoder and decoder [53]. The Occupancy Network con-

tains a downsampling and upsampling pair to segment the occupancy map. In this way,

the Occupancy Network can collect the global information as much as possible.

The lower branch of Fig. 20 shows the detailed architecture of our proposed Oc-

cupancy Network. We adopt the max pooling plus convolutional layer and transposed

convolutional layer [54] to perform downsampling and upsampling, respectively. At the

89



encoder, downsampling reduces the occupancy map redundancy and keeps the most dis-

tinctive features for segmentation. At the decoder, upsampling increases the spatial res-

olution of the features to the target resolution for accurate segmentation. However, the

downsampling-upsampling process may lead to a loss of global information. To provide

accurate global information for segmentation, a skip connection, which concatenates the

features in the encoder and decoder, is added to the network structure.

Table 18 shows the detailed configurations of the Occupancy Network. For the

convolutional layers, we set the kernel size to 3⇥ 3, the stride to 1, the padding size to 1,

and the feature map number to 4 or 8. For the transposed convolutional layers, we set the

kernel size to 2 ⇥ 2, the stride to 2, the padding size to 0, and the feature map number to

4. We use the rectified linear unit (ReLU) as the activation function.

3.4.3 Design of the Geometry Network

As analyzed in Section 3.4.1 above, we consider the reconstructed geometry video

as the other input of the proposed OGCNN to improve the precision of the occupancy

map video. Accordingly, we develop a specific Geometry Network to derive distinctive

features. In the Geometry Network, the residual block [43] is employed to derive the

geometry features for segmentation. The residual block also has the benefit of preventing

the vanishing of the gradient.

The upper branch of Fig. 20 describes the detailed structure of the proposed Geom-

etry Network. The Geometry Network includes a residual block and three convolutional

layers. Considering the complexity, we only use a total of five convolutional layers to
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derive the geometry features. For each convolutional layer, we set the kernel size to 3⇥3,

the padding size to 1, the stride to 1, and the feature map number to 4.

3.4.4 Loss function

To train our proposed segmentation network effectively, we adopt the binary cross-

entropy loss [115] to supervise the training of the proposed OGCNN.

L(⇥) = 1
N

P
N

i=1(log⌥ ((Oi, Gi)|⇥) ·Xi�
log(1�⌥ ((Oi, Gi)|⇥)) · (1�Xi))

(3.1)

where ⇥ encapsulates the whole parameter set of the OGCNN, including the weights

and bias, and ⌥ (Yi|⇥) denotes the OGCNN module. Xi denotes the labels of a half-

resolution or full-resolution occupancy map, where i indexes each label. Oi and Gi are

the corresponding dual inputs of the upsampled quarter-resolution occupancy map and

the reconstructed geometry video, respectively. N is the number of samples. Under the

supervision of the binary cross-entropy loss, the output of the occupancy map video is

close to that of the target half-resolution or full-resolution occupancy map video.

3.4.5 Dataset and training

Dataset. There are currently no widely used datasets to train the proposed OGC-

NNN for improving V-PCC. The only dataset we can have access to is the dynamic point

cloud dataset provided by 8i and defined in the V-PCC CTC [105]. We divide the five

dynamic point clouds from 8i into training, validating, and testing datasets. More specif-

ically, we use the dynamic point cloud called Soldier for training and validation. We

use the other four dynamic point clouds, Loot, Redandblack, Queen, and Longdress, for
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Table 19: Training parameters

Parameters Value
Batch size 16
Total Epochs 60
Base Learning Rate 1e�4

� Adjusting Coefficient 0.1
Adjusting Epoch Intervals 50
Weight Decay 1e�4

Momentum 0.9

testing. With Soldier, we first derive 300 frames of the quarter-resolution occupancy

map video and reconstructed geometry video, both of which have spatial resolutions of

1280 ⇥ 1280, from the V-PCC reference software. Among them, 224 and 76 frames are

used for training and validation, respectively. Then, we generate the same number of full-

resolution and half-resolution occupancy map videos as labels. Finally, we extract 64⇥64

blocks from the Luma component of the occupancy map videos and the reconstructed ge-

ometry videos and use them for training the proposed OGCNN. In total, there are 89, 600

pairs of 64⇥ 64 inputs and labels for training and 30, 400 pairs for validation.

Training. Table 19 shows the detailed parameters of the training process. The

batch size and total number of epochs are set as 16 and 60, respectively. For training,

we set the base learning rate to 1e�4. After 50 epochs, we decrease the learning rate by

multiplying by 0.1. We adopt the adaptive moment estimation (Adam) [59] algorithm

as the gradient optimizer. The momentum and weight decay are set to 0.9 and 1e�4,

respectively.
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Table 20: Performance comparison of the full-resolution OGCNN, half-resolution
OGCNN and quarter-resolution V-PCC [2] under the all intra case

Class Sequence
Full OGCNN vs. V-PCC [2] Half OGCNN vs. V-PCC [2]

Geom.BD-TotalRate Attr.BD-TotalRate Geom.BD-TotalRate Attr.BD-TotalRate
D1 D2 Luma Cb Cr D1 D2 Luma Cb Cr

A
Loot 6.3% -16.9% 2.9% 1.2% 4.6% �0.2% -13.5% 0.8% 0.4% 2.4%
Redandblack 16.2% -20.4% 3.4% �0.2% 2.2% 4.1% -15.2% 1.1% �0.2% 0.5%
Queen 18.4% -26.1% 23.9% 24.3% 48.1% �1.5% -18.5% 5.0% 7.3% 14.4%

B Longdress 22.0% -18.5% 3.2% 0.9% 2.0% 7.7% -14.2% 0.9% 0.1% 0.6%
Class A 13.6% -21.1% 10.1% 8.4% 18.3% 0.8% -15.7% 2.3% 2.5% 5.8%
Class B 22.0% -18.5% 3.2% 0.9% 2.0% 7.7% -14.2% 0.9% 0.1% 0.6%

Avg. All 15.7% -20.5% 8.4% 6.5% 14.2% 2.5% -15.3% 1.9% 1.9% 4.5%

Table 21: Occupancy accuracy comparison of the V-PCC anchor and OGCNNs on bound-
ary blocks

N = 16 N = 32 N = 64
V-PCC Half Full V-PCC Half Full V-PCC Half Full
Anchor OGCNN OGCNN Anchor OGCNN OGCNN Anchor OGCNN OGCNN

Loot 89.27% 94.61% 96.24% 94.03% 97.00% 97.89% 96.08% 98.03% 98.61%
RedandBlack 88.27% 93.52% 95.38% 92.70% 95.96% 97.10% 94.59% 97.00% 97.84%
Queen 87.35% 92.26% 94.09% 91.86% 95.01% 96.16% 93.58% 96.06% 96.95%
Longdress 88.96% 93.69% 95.06% 93.42% 96.23% 97.00% 95.53% 97.43% 97.95%
Avg. All 88.47% 93.52% 95.19% 93.01% 96.05% 97.04% 94.94% 97.13% 97.84%
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3.5 Experimental results

3.5.1 Experimental settings and metrics

To test the performance of the proposed OGCNN, we implement the proposed

OGCNN in version 11 of the V-PCC reference software [2] to compare it with the V-PCC

version 11 anchor, PBF [4], and OR [3]. Two OGCNNs are trained depending on whether

we use the full-resolution occupancy map video or the half-resolution occupancy map

video as the label. The OGCNN trained with the full-resolution occupancy map video

as the label is named the Full OGCNN. The OGCNN trained with the half-resolution

occupancy map is called the Half OGCNN. We test the performance of the proposed

algorithms in both the all intra and random access cases, as defined in the V-PCC CTC

[105]. We test the five rate points from a low bitrate r1 to a high bitrate r5, as defined

in the V-PCC CTC [105]. As the dynamic point cloud Soldier is used in the training

process, we use the other four dynamic point clouds from 8i to show the performance of

the proposed OGCNN. To save some encoding time, we only test the first 32 frames of

each point cloud, which are a good representation of all frames.

To evaluate the geometry distortions, we use the point-to-point error (D1) and

point-to-plane error (D2) as the metrics [105]. Both D1 and D2 are calculated in a sym-

metrical way with both the original point cloud and reconstructed point cloud as the an-

chors. The one with a larger distortion is used as the final distortion. O and R denote the

original point cloud and its reconstruction. For each point r 2 R, we identify its corre-

sponding point o 2 O by searching the nearest neighbor with a KD-tree in O. Then, D1
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d
0
R,O

from R to O is calculated as follows:

d
0

R,O
=

1

NR

X

8r2R

||D(r, o)||22 (3.2)

where NR is the number of points in point cloud R. D(r, o) is the error vector connecting

r to o. D1 d
0
O,R

from O to R can be computed in a similar manner.

Similarly, d00
R,O

denotes D2 from R to O, which is calculated as

d
00

R,O
=

1

NR

X

8r2R

(D(r, o) · Vr)
2 (3.3)

where Vr is the normal vector on point r. D2 d
00
O,R

from O to R can be computed in a

similar manner.

The attribute distortion also employs the symmetric computation method. The

attribute distortion [105] dR,O from R to O uses the mean square error (MSE)

dR,O =
1

NR

X

8r2R

||y(o)� x(r)||22 (3.4)

where y(o) and x(r) are the attribute values of the original and reconstruction point cloud

points, respectively. The attribute distortion dO,R from O to R can be computed in a

similar manner.

To better show the performance of the proposed OGCNN in improving occupancy

map accuracy, we provide a new quality metric to measure the occupancy map accuracy.

As the occupancy map accuracy is meaningful only at the boundary block between the

patches and the empty space, we first give a clear definition of the boundary block. As

shown in Fig. 21, a boundary block is an N ⇥ N square that consists of both occupied

and unoccupied pixels. In Fig. 21, the white grids represent the occupied pixels, while
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the black grids represent the unoccupied pixels. The red, blue, yellow squares indicate

the 16 ⇥ 16, 32 ⇥ 32, and 64 ⇥ 64 boundary blocks, respectively. Then, our proposed

occupancy accuracy ↵N is defined as

↵N =

P
⇠

i=1�N(i)

 N

, (3.5)

where N is the boundary block size and ⇠ is the total number of boundary blocks. �N(i)

indicates the number of correctly identified pixels in the ith boundary block between the

reconstructed occupancy map video and the label.  N is the total number of pixels in all

⇠ boundary blocks. As indicated by (3.5), when we measure the occupancy map accuracy,

we restrict the statistical area to the boundary blocks to avoid counting large amounts of

successive occupied or unoccupied pixels, as they are identical in the reconstructed and

original occupancy map videos. Therefore, our proposed occupancy accuracy measure

can better reflect the benefits of the proposed algorithms for improving the occupancy

map accuracy.

3.5.2 Performances of the proposed OGCNN algorithm under the all intra case

Table 20 shows the BD-rate comparison results of the proposed OGCNN and the

quarter-resolution V-PCC anchor under the all intra case. We can see that the proposed

half and Full OGCNNs achieve an average of 15.3% and 20.5% BD-rate savings when D2

is used as the quality metric. The performance improvements are consistent for all tested

dynamic point clouds, as the proposed OGCNN achieves over 10% rate-distortion (R-D)

performance improvements for all dynamic point clouds. The peak difference reaches
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18.5% and 26.1% for the dynamic point cloud Queen. The experimental results demon-

strate the effectiveness of the proposed OGCNN.

In addition, we can see from Table 20 that both the half and Full OGCNNs lead to

some performance losses on the geometry if measured by D1 and the attributes. As stated

in Section 3.4.1, the OGCNN aims to remove some noisy points. Therefore, the numbers

of points NR of the proposed half and Full OGCNNs are less than that of the V-PCC

anchor. According to (3.2) and (3.4), the smaller the number of points NR is, the larger

D1 and the attribute distortion are since they are the average of all points. That is why

the proposed OGCNN suffers some performance losses in terms of geometry if measured

by D1 or the attributes. In addition, as explained by [104], D1 has the disadvantage of

ignoring the fact that point clouds represent surfaces of objects.

To better show the performance of the proposed OGCNNs for improving occu-

pancy map accuracy, we compare the occupancy accuracies on the boundary blocks be-

tween the OGCNNs and the V-PCC anchor in Table 21. In Table 21, N represents the

boundary block size. We test three configurations with N set to 16, 32 and 64 for eval-

uation. We can see that both the Full OGCNN and Half OGCNN perform much better

than the V-PCC anchor. For example, when N equals 16, the Full OGCNN and the Half

OGCNN improve the occupancy map accuracy by 6.72% and 5.05% compared with the

V-PCC anchor, respectively. These results further demonstrate that the proposed OGCNN

can lead to a better occupancy map video than the V-PCC anchor.

To measure the complexities of the proposed algorithm, we use the same environ-

ment to test both the V-PCC anchor and the proposed algorithm. More specifically, the
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CPU configuration is an Intel(R) Core i5-8400 CPU @ 2.80 GHz, and the GPU configura-

tion is a GTX 1080ti. In the all intra case, both the full and Half OGCNNs lead to almost

the same encoding time compared with the V-PCC anchor. In addition, the decoding time

is increased by 2% on average. The time complexities of the proposed algorithms are

similar to that of the the V-PCC anchor.

Table 22: Performance comparison of the Half OGCNN and V-PCC anchor [2] under

Random Access

Sequence

Geom.BD- Attr.BD-TotalRate

TotalRate

D1 D2 Luma Cb Cr

A.Loot �1.1% -12.0% 1.6% 0.5% 5.4%

A.Red&black 4.2% -14.1% 1.1% �0.1% 0.5%

A.Queen �0.6% -18.8% 7.0% 9.5% 17.6%

B.Longdress 9.2% -14.8% 1.2% 1.1% 1.6%

Class A 0.8% -15.0% 3.2% 3.3% 7.8%

Class B 9.2% -14.8% 1.2% 1.1% 1.6%

Avg. All 2.9% -14.9% 2.7% 2.7% 6.3%

3.5.3 Performance of the proposed OGCNN algorithm under the random access case

In the random access case, as shown in Table 22, we can see that compared to the

V-PCC anchor, the proposed Half OGCNN can achieve an average 14.9% R-D perfor-

mance improvement when D2 is used as the quality metric. The peak difference between

the OGCNN and the V-PCC anchor reaches 18.8% on the dynamic point cloud Queen.
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This result demonstrates that, in addition to the all intra case, the OGCNN can bring sig-

nificant benefits to the random access case. As explained in Section 3.5.2, compared to the

anchor, the Half OGCNN also suffers a few performance losses in terms of the attributes.

Table 23: Performance comparison of the Half OGCNN, OR [3], and PBF [4] under the

all intra case

Sequence

Half OGCNN vs. PBF [4] Half OGCNN vs. OR [3]

Geom.BD-TotalRate Geom.BD-TotalRate

D1 D2 D1 D2

A.Loot 0.9% -4.5% 1.2% -9.5%

A.Red&black 3.3% -9.5% 5.7% -8.9%

A.Queen 4.2% -10.5% 6.5% -11.3%

B.Longdress 4.6% -12.8% 7.4% -8.8%

Class A 2.8% -8.1% 4.5% -9.9%

Class B 4.6% -12.8% 7.4% -8.8%

Avg. All 3.3% -9.3% 5.2% -9.6%

3.5.4 Comparison of the OGCNN and SOTAs

Table 23 shows the BD-rate comparison of the Half OGCNN, PBF [4], and OR [3].

The Half OGCNN performs better than the PBF and OR by an average of 9.3% and

9.6% when D2 is used as the quality metric, respectively. These performance results

demonstrate that the proposed OGCNN significantly outperforms the SOTAs. In addition,

the time complexities of the proposed algorithms are comparable to that of the SOTAs.
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3.5.5 Ablation analysis of introducing the geometry

Table 24: Performance comparison of the Half OGCNN and Occupancy Network under

the all intra case

Sequence

Geom.BD- Attr.BD-TotalRate

TotalRate

D1 D2 Luma Cb Cr

A.Loot 1.4% -4.1% 0.4% 0.5% 1.0%

A.Red&black 0.2% -2.8% 0.2% 0.3% 0.2%

A.Queen 1.8% -3.6% 0.8% 3.0% 5.8%

B.Longdress 2.0% -2.6% 0.5% 0.0% 0.2%

Class A 1.1% -3.5% 0.5% 1.2% 2.3%

Class B 2.0% -2.6% 0.5% 0.0% 0.2%

Avg. All 1.4% -3.3% 0.5% 0.9% 1.8%

To evaluate the effect of introducing the geometry as an additional input, we com-

pare the proposed Half OGCNN with the Occupancy Network illustrated in Fig. 20. The

Occupancy Network uses only the quarter-resolution occupancy map video as input. Note

that to ensure fairness, the Half OGCNN and the Occupancy Network use the same net-

work configurations. Table 24 shows the comparison of the Half OGCNN with and with-

out the Geometry Network. Compared to the Occupancy Network, the Half OGCNN

saves an average of 3.3% BD-rate when D2 is used as the quality metric, while suffering

a few performance losses of attributes. These performance results demonstrate that the

geometry, as an additional input, can lead to clear benefits.
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3.5.6 Number of points

To further demonstrate that the proposed OGCNN can reduce the number of noisy

points, we count the numbers of points NRs in the reconstructed 3D point clouds under

different algorithms in Fig. 22. The Y axis is the bitrate, which gradually increases from

low bitrate r1 to high bitrate r5. We can see that for all dynamic point clouds, the number

of points NR of our proposed Half OGCNN and Full OGCNN are less than those of the

V-PCC anchor, SOTAs, and Occupancy Network. These statistics fully demonstrate that

the proposed OGCNN removes noisy points to improve the R-D performance.

3.5.7 Rate-Distortion Curves

Fig. 23 shows some representative geometry R-D curves from the all intra case.

We can see that the D2 PSNRs of the proposed OGCNN at all five rate points are higher

than those of the V-PCC anchor, SOTAs and Occupancy Network. These experimental

results demonstrate that the proposed OGCNN is significantly superior to the V-PCC

anchor, SOTAs, and Occupancy Network.

3.5.8 Visual results of the 2D occupancy maps

Fig. 24 shows the 2D occupancy map video comparison of the ground truth, V-

PCC anchor, and proposed Full OGCNN. The reconstructed occupancy map videos are

derived from the first frames of Loot and Longdress. For Loot, (a), (b), (c) and (d) are the

occupancy map reconstructions of the Full OGCNN and the V-PCC anchor, the difference

between the two, and the ground truth, respectively. (e) and (f) are the enlarged areas of
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the gold and blue blocks in (c). For Longdress, the same order is followed. In (c) and (i),

the green pixels denote the unoccupied pixels of the V-PCC anchor correctly removed by

the Full OGCNN. The red pixels denote the occupied pixels of the V-PCC anchor wrongly

removed by the Full OGCNN. We can see from (c) and (i) that the number of green pixels

is much greater than the number of red pixels. The 2D occupancy map results demonstrate

that the proposed OGCNN can remove many noisy points and very few original points.

3.5.9 Visual results of the 3D point clouds

Fig. 25 shows a visual comparison of the original point clouds and the point clouds

reconstructed by the V-PCC anchor and the proposed Half OGCNN. The zoomed figures

are derived from the first frame of Loot, the first frame of RedandBlack, the first frame of

Longdress, and the 300th frame of Longdress. From these frames, we can clearly see from

the red and green rectangles that there are many noisy points in the reconstructions of the

V-PCC anchor. However, the reconstructions of the Half OGCNN are much smoother

and closer to the original point clouds. The visual results demonstrate that the proposed

OGCNN can achieve a much better subjective quality.

3.6 Summary

In this paper, we first point out that the accuracy of the occupancy map video is

important to the quality of reconstructed point clouds under video-based point cloud com-

pression (V-PCC). Then, we propose an occupancy-geometry-based convolutional neural

network (OGCNN) to improve the occupancy map accuracy. We formulate the problem of

improving occupancy map accuracy as a binary segmentation problem. In addition to the
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quarter-resolution occupancy map video, we use the reconstructed geometry video as the

other input. The experimental results show that our proposed OGCNN approach presents

clear accuracy improvements in the occupancy map video and leads to significant BD-rate

savings compared to the state-of-the-art schemes. To the best of our knowledge, this is the

first CNN-based work on improving the performance of V-PCC. We will consider more

CNN-based algorithms to improve the performance of V-PCC in the future.
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Figure 18: Occupancy map comparison of the full resolution and quarter resolution with
the same occupancy distribution. A grid represents a pixel in the occupancy map video.
The bold border square is denoted as a 4 ⇥ 4 block. The red pixels indicate the occu-
pied pixels in the full-resolution occupancy map video, while the blue pixels indicate the
occupied pixels in the reconstructed full-resolution occupancy map video.
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Figure 19: Comparison of the occupancy maps, geometry, and attributes of the quarter-
resolution and full-resolution videos. The reconstructions of the occupancy maps, geom-
etry, and attributes in the first and second rows are derived from the configurations of the
quarter-resolution and full-resolution videos, respectively. We can see from the enlarged
areas that, compared to the full resolution, the edges of the body in the quarter-resolution
occupancy map, geometry and attribute videos show a more serious zigzag artifact.
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Figure 20: The proposed OGCNN framework includes two subnetworks: the Occupancy
Network and the Geometry Network. The Occupancy Network uses the quarter-resolution
occupancy map video as input. It derives occupancy segmentation feature maps from the
occupancy map. The Geometry Network uses the reconstructed geometry video as input
and derives geometry segmentation feature maps from the geometry. The occupancy map
and geometry segmentation features are then concatenated together and used as the input
of the remaining convolutional layers.
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Figure 21: Occupancy map boundary blocks. A boundary block is an N ⇥ N square
that consists of both occupied and unoccupied pixels. The white grids represent the occu-
pied pixels, while the black grids represent the unoccupied pixels. The red, blue, yellow
squares indicate the 16⇥ 16, 32⇥ 32, and 64⇥ 64 boundary blocks, respectively.

107



(a) Loot (b) Redandblack

(c) Queen (d) Longdress

Figure 22: Comparison of the numbers of points NR in the reconstructed 3D point clouds
of the V-PCC [2], OR [3], PBF [4], Occupancy Network and OGCNN. The Y axis is
the bitrate, which gradually increases from low bitrate r1 to high bitrate r5. We can see
that for all dynamic point clouds, the number of points NR in our proposed Half OGCNN
and Full OGCNN are less than those in the V-PCC anchor, SOTAs, and the Occupancy
Network.
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(a) Loot (b) Redandblack

(c) Queen (d) Longdress

Figure 23: Geometry R-D curve comparison of the V-PCC [2], OR [3], PBF [4], Occu-
pancy Network and OGCNN for the all intra case. We can see that the D2 PSNRs of
the proposed OGCNN at all five rate points are higher than those of the V-PCC anchor,
SOTAs and Occupancy Network.

109



Th
e 

fir
st

 fr
am

e 
of

 L
oo

t

(a) Full OGCNN (b) V-PCC Anchor (c) The difference

(d) Ground Truth (f) Zoomed leg(e) Zoomed body

Th
e 

fir
st

 fr
am

e 
of

 L
on

gd
re

ss

(g) Full OGCNN (h) V-PCC Anchor (i) The difference

(j) Ground Truth (l) Zoomed skirt(k) Zoomed shoulder

Figure 24: 2D occupancy map comparison of the ground truth, V-PCC anchor [2] and
proposed Full OGCNN. For Loot, (a), (b), (c) and (d) are the occupancy map reconstruc-
tions of the Full OGCNN and the V-PCC anchor, the difference between the two, and the
ground truth, respectively. (e) and (f) are the enlarged areas of the gold and blue blocks
in (c). For Longdress, the same order is followed. In (c) and (i), the green pixels denote
the unoccupied pixels of the V-PCC anchor correctly removed by the Full OGCNN. The
red pixels denote the occupied pixels of the V-PCC anchor wrongly removed by the Full
OGCNN.
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Figure 25: 3D visual comparison of the original point clouds, the point clouds recon-
structed by the V-PCC anchor and the proposed Half OGCNN.
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