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ABSTRACT 

Bug-Drug Mismatch (BDM) occurrences are an important and modifiable 

category of inappropriate antibiotic therapy (IAAT) that increases adverse outcomes for 

patients and drives overall antibiotic resistance (AR). Surveillance of baseline AR, 

emerging trends in resistance among priority bacterial pathogens and prevalence of BDM 

with respect to the age of the patients and the type of health care-setting are required due 

to differences in antimicrobial need and use in these populations. Additionally, very little 

is known about the risk factors associated with BDM occurrence.  

We performed a retrospective study using de-identified, electronic health record 

(EHR) data in the Cerner Health Facts™ data warehouse. We assessed antibiotic 

susceptibility data between the years 2012 to 2017 and visualized the slope coefficient 

from linear regression to compare changes in resistance over time. We examined the 

prevalence of BDM for critically important antibiotics and clinically relevant pathogens 

between the year 2009 to 2017 in four groups of patients: adults; children; children 

treated in freestanding pediatric facilities and children treated in blended facilities (adults 

and children). We implemented multiple logistic regression as a reference model to 

identify risk factors for BDM occurrences and compared the predictive performance 
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measure with 4 machine learning models (logistic regression with lasso regularization, 

random forest, gradient boosted decision tree and deep neural network). 

The trends in resistance rates to clinically relevant antibiotics were influenced by 

age and care setting. BDM prevalence for several critically important antibiotics differed 

between children and adults as well as within pediatric and blended facilities. Risk factors 

such as age of the patient, patient comorbidities and size of the facility were significantly 

associated with BDM occurrence. Additionally, the machine learning models developed 

in our study has a high predictive ability (C-statistic), higher sensitivity, specificity, 

positive predictive value and positive likelihood ratio to identify BDM occurrence than 

the reference model. 

This study describes the utility of data visualization to interpret large scale EHR 

data on the trends of AR, prevalence and risk factors of BDM which are critical in 

tailoring antibiotic stewardship efforts to improving appropriate antibiotic prescribing 

and ultimately reduce AR.  

  



v 

 

APPROVAL PAGE 

The faculty listed below, appointed by the Dean of the School of Graduate Studies 

have examined a thesis titled “Tracking the threat of antibiotic resistance using electronic 

health record (EHR) data: Emerging trends in bacterial resistance, prevalence and 

prediction of bug-drug mismatch occurrence”, presented by Shivani Sivasankar, 

candidate for the Doctor of Philosophy degree, and certify that in their opinion it is 

worthy of acceptance. 

 

 

 

 

Supervisory Committee 

 

An-Lin Cheng, Ph.D., Committee Chair  

Department of Biomedical and Health Informatics 

 

Mark Hoffman, Ph.D. 

Department of Biomedical and Health Informatics 

Jennifer Goldman, M.D. 

Department of Pediatrics 

Gerald Wyckoff, Ph.D., 

Department of Molecular Biology and Biochemistry 

Yugyung Lee, Ph.D., 

Department of Computer Science 

 

 

  



vi 

 

TABLE OF CONTENTS 

ABSTRACT ...................................................................................................................... iii 

LIST OF ILLUSTRATIONS ............................................................................................ x 

LIST OF TABLES ............................................................................................................ xii 

LIST OF ABBREVIATIONS ........................................................................................ xiii 

ACKNOWLEDGMENTS ............................................................................................. xiv 

Chapter 

1 INTRODUCTION ......................................................................................................... 1 

1.1 Motivation .............................................................................................................. 1 

1.2 Objectives ............................................................................................................... 3 

1.3 Dissertation Content ............................................................................................... 3 

2 BACKGROUND ........................................................................................................... 5 

      2.1 Microbiology of Bacteria ...................................................................................... 5 

      2.2 General Approach to Infectious Disease............................................................... 5 

      2.3 Basis of Antibiotic Resistance .............................................................................. 7 

      2.4 Increasing Trend in Antibiotic Resistance ............................................................ 9 

2.5 Consequences of Antibiotic Resistance ................................................................ 10 

2.6 Complex Determinants of Inappropriate Antibiotic Use ...................................... 12 

2.7 Consequences of Bug-Drug Mismatch ................................................................. 14 

2.8 Growing Threat of AR in Children ....................................................................... 14 

2.9 Antibiotic Stewardship Program (ASP) Initiatives ............................................... 16 



vii 

 

2.10 Machine Learning in Health Care ....................................................................... 17 

3 VARIATION IN ANTIBIOTIC RESISTANCE PATTERNS FOR CHILDREN AND 

ADULTS TREATED AT 166 NON-AFFILIATED US FACILITIES  ........................... 21 

3.1 Introduction ........................................................................................................... 21 

3.2 Methods................................................................................................................. 23 

3.2.1 Data Source .................................................................................................. 23 

3.2.2 Data Definition............................................................................................. 24 

3.2.3 Data Validation ............................................................................................ 24 

3.2.4 Pathogen-Antibiotic Combination  .............................................................. 25 

3.2.5 Study Design ................................................................................................ 28 

3.2.6 Analysis........................................................................................................ 30 

      3.3 Results ................................................................................................................... 31 

3.3.1 Characteristics of Data ................................................................................. 31 

3.3.2 Baseline Resistance ...................................................................................... 32 

3.3.3 Trend in Resistance ...................................................................................... 34 

     3.4 Discussion .............................................................................................................. 41 

4 DIFFERENCES IN THE PREVALENCE OF DEFINITIVE BUG-DRUG 

MISMATCH (BDM) THERAPY BETWEEN ADULTS AND CHILDREN BY CARE-

SETTING .......................................................................................................................... 46 

     4.1 Introduction ............................................................................................................ 46 

    4.2 Methods................................................................................................................... 48 

4.2.1 Data Source .................................................................................................. 48 

4.2.2 Data Definition............................................................................................. 48 



viii 

 

4.2.3 Study Design ................................................................................................ 49 

4.2.4 Analysis........................................................................................................ 51 

      4.3 Results ................................................................................................................... 51 

4.3.1 Data Characteristics ..................................................................................... 51 

4.3.2 BDM Prevalence .......................................................................................... 52 

     4.4 Discussion .............................................................................................................. 58 

5 PREDICTING BUG-DRUG MISMATCH (BDM) OCCURRENCE IN EHR DATA 

USING MACHINE LEARNING MODELS .................................................................... 62 

     5.1 Introduction ............................................................................................................ 62 

     5.2 Methods.................................................................................................................. 64 

5.2.1 Data Source .................................................................................................. 64 

5.2.2 Study Design ................................................................................................ 64 

5.2.3 Study Variables ............................................................................................ 65 

5.2.4 Analysis........................................................................................................ 66 

     5.3 Results .................................................................................................................... 69 

5.3.1 Characteristics of Study Cohort ................................................................... 69 

5.3.2 Characteristics of BDM Occurrence ............................................................ 70 

5.3.3 Prediction of BDM Occurrence ................................................................... 78 

5.3.4 Variable Impact in ML Methods.................................................................. 80 

      5.4 Discussion ............................................................................................................. 82 

6 CONCLUSION .............................................................................................................. 88 

     6.1 Significance of Findings ........................................................................................ 88 

     6.2 Strengths and Limitations ...................................................................................... 89 



ix 

 

6.3 Future Work ................................................................................................................ 91 

REFERENCES ................................................................................................................. 92 

VITA .............................................................................................................................. 131 

  



x 

 

LIST OF ILLUSTRATIONS 

Figure           Page 

2.1. General approach to infectious disease ...................................................................... 7 

3.1. Data extraction and study design ............................................................................... 29 

3.2. Baseline resistance of the study cohort ...................................................................... 32 

3.3. Difference in level of resistance between subgroups ................................................. 33 

3.4. MCS (Multiple Categorical Slope) Plot of the study cohort ...................................... 35 

3.5. The pathogen-antibiotic combinations with a significant positive and negative trend 

for all the four groups ....................................................................................................... 36 

3.6. Patterns of increasing and decreasing trend in resistance of statistically significant 

pathogen-antibiotic isolates from adults ........................................................................... 37 

3.7. Patterns of increasing and decreasing trend in resistance of statistically significant 

pathogen-antibiotic isolates from children ........................................................................ 37 

3.8. Adults Vs children. (A) C-MCS (Comparison Multiple Categorical Slope) plot (B) 

Higher increase in resistance among isolates from adults than children; Higher increase in 

resistance among isolates from children than adults ......................................................... 38 

3.9. Patterns of trend in resistance among isolates from children by care-setting (A) 

Pediatric facilities (B) Blended facilities .......................................................................... 39 



xi 

 

3.10. Pediatric facilities Vs blended facilities. (A) C-MCS (Comparison Multiple 

Categorical Slope) plot (B) Higher increase in resistance among isolates from children in 

blended than pediatric facilities; Higher increase in resistance among isolates from 

children in pediatric than blended facilities ...................................................................... 40 

4.1. Data extraction and study design ............................................................................... 50 

4.2. Top 10 antibiotics with the highest BDM prevalence ............................................... 53 

4.3. Top 10 antibiotics with the highest BDM prevalence by bacterial infections ........... 54 

4.4. Top three antibiotics with the highest difference in BDM prevalence between 

subgroups .......................................................................................................................... 55 

4.5. Top three pathogen-antibiotic pairs with the highest difference in BDM prevalence 

between subgroups ............................................................................................................ 57 

5.1. Hyperparameters for deep neural network model ...................................................... 68 

5.1. Odd ratios of significant risk factors associated with BDM therapy estimated from 

logistic regression model .................................................................................................. 73 

5.2. Receiver operating characteristics curves .................................................................. 78 

5.3. Importance of Each Predictor in the Gradient-Boosted Decision Tree Models and 

Random Forest models ..................................................................................................... 81 

  



xii 

 

LIST OF TABLES 

Table                                                                                                                           Page 

3.1. HF data validation with CMH antibiogram ............................................................... 25 

3.2. Pathogen-Antibiotic combinations............................................................................. 27 

5.1. Patient characteristics................................................................................................. 71 

5.2. Facility Characteristics ............................................................................................... 72 

5.3. Antibiotic characteristics ........................................................................................... 73 

5.4. Microbiology pathogen and source site characteristics ............................................. 74 

5.5. Clinical characteristics and conditions ....................................................................... 75 

5.6. Risk factors associated with BDM therapy estimated from logistic regression    

model................................................................................................................................. 78 

5.7. Prediction ability of the reference model and 4 machine learning models ................ 80 

  



xiii 

 

LIST OF ABBREVIATIONS 

 

AR - Antibiotic Resistance 

BDM  - Bug-Drug Mismatch 

CDC - Center for Disease Control and Prevention 

WHO - World Health Organization 

ASP - Antibiotic Stewardship Policy 

HAI - Hospital Acquired Infection 

IAAT  - Inappropriate Antibiotic Therapy 

ML  -Machine Learning 

MCS - Multiple Categorical Slope Plot 

C-MCS -Comparison Multiple Categorical Slope Plot 

MRSA -Methicillin Resistant Staphylococcus aureus 

MSSA -Methicillin Susceptible Staphylococcus aureus 

VRE -Vancomycin Resistant Enterococcus 

 

 

 

 

 

 

 

 



xiv 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to Dr. Mark Hoffman, my research 

advisor and mentor for his patience, motivation, enthusiasm, immense knowledge, 

unwavering support over the last four years and giving me the opportunity to pursue 

my research interest at Children’s Mercy Research Institute. His guidance helped me 

throughout this research and writing the thesis. I could not have imagined having a 

better advisor and mentor for my Ph.D. study. I would like to extend my gratitude to 

Dr. An-Lin Cheng for her instructions, guidance, progress monitoring, and support. I 

would also like to express my gratitude to Dr. Jenifer Goldman, for the encouragement, 

guidance and supervision. Without her passionate participation and input, this research 

could not have been successfully conducted. Many thanks to Dr. Yugyung Lee for 

introducing me to machine learning and for her help in reviewing the machine learning 

models used in this research. I’m also thankful to Dr. Gerald Wyckoff, for the time he 

took to review my work and provide valuable feedback. I would also like to extend my 

gratitude to my colleagues, Cathy Jackson, Sierra Martin, Earl Glynn and Dr. Natalie 

Kane for their helpful comments and immense support towards my Ph.D. study and 

research. My last, but certainly not least, acknowledgement goes to my parents 

Sivasankar and Vijayalakshmi, my partner Deepak Sireeshan and all my friends for 

supporting me throughout these years. I wouldn’t be where I am without the love, help, 

and encouragement from you all. Thank you. 



1 

 

 

 

CHAPTER 1 

INTRODUCTION 

1.1.  Motivation 

Antibiotics have been a critical public health tool since the discovery of penicillin 

in 1928, saving the lives of millions of people around the world (1). Today, however, the 

emergence of drug resistance in bacteria is reversing the advances of the past eighty 

years, with drug choices for the treatment of many bacterial infections becoming 

increasingly limited, expensive, and, in some cases, nonexistent (2). Antibiotic-resistant 

(AR) pathogens infect more than 2.8 million Americans, and more than 35,000 people die 

each year (3). In 2013, the Center for Disease Control and Prevention (CDC) 

implemented the Antibiotic Resistance Solution (ARS) initiative with the objective: (i) to 

detect and respond to emerging trends in resistance; (ii) to identify track and understand 

antibiotic use data; (iii) to direct hospital antibiotic stewardship programs (ASP) to 

improve patient outcomes (4). These strategies were proven to be effective as there were 

28% fewer deaths from AR in hospitals since the ARS initiative (5). In this dissertation, 

we identified specific areas to improve the ARS framework which could further aid to 

stem the threat of AR. 

Identifying emerging patterns of antibiotic resistance is necessary for providers to 

effectively tailor antibiotic therapy (6–8). Antibiotic resistance is a global public health 

threat that continues to escalate and impact all populations, however, until recently, 

trends in drug resistant infections in children have been relatively uncharacterized. 
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Isolates from children have different selective pressure due to their evolving immune 

system, increased risk of adverse events or overall antimicrobial exposure (9, 10). The 

type of facility (standalone pediatric or blended facilities caring for adults and children) 

could also be a factor for different resistance patterns in children, especially in Hospital 

Acquired Infections (HAI) (11). Substantial differences between pediatric and blended 

facilities exist, including patient characteristics, medical training programs, and clinical 

outcomes (12–14).  Pediatric facilities have also been found to vary substantially in their 

use of antibiotics (15). However, there are no studies that have compared AR patterns for 

priority pathogens between children and adults nor between types of facility.  

Bug-Drug Mismatch (BDM) occurrences are an important and modifiable 

category of inappropriate antibiotic therapy (IAAT) that increases adverse outcomes for 

patients and drives overall antibiotic resistance (16). Considering, antibiotic use varies 

significantly between children and adults (17, 18), very few studies have evaluated 

appropriate antibiotic use in US hospitals within pediatric populations, and these reflect 

only single centers or specific diagnoses or interventions (19–22). And there are no 

studies that provide estimates on the prevalence of BDM occurrence on pediatric 

population between pediatric and blended facilities. 

Patients with a BDM occurrence have questionable therapeutic benefit and 

increasing adverse outcomes as the patient is prescribed incorrect antibiotic to which the 

pathogen is resistant (23).  However, little information exists on the identification of 

independent risk factors for BDM occurrence which may be useful for the development 

of preventive measures like development of Clinical Decision Support (CDS) tools as 

part of ASP initiatives (24, 25). While most of the published IAAT prediction studies 
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have focused on logistic regression models, ML models have potential in solving 

complex and challenging clinical outcome problems (26–31). Although there are ML 

studies recently published on predicting antibiotic resistance (32–34), there are no studies 

that have evaluated the utility of predicting BDM occurrence. 

1.2. Objectives 

The objectives of the dissertation are to: 

1. Compare the prevalence of AR and trends in resistance for the priority bacterial 

pathogens between children and adults as well as among children treated in primarily 

pediatric facilities and blended facilities.  

2. Compare the prevalence of BDM occurrence at the antibiotic level and pathogen level 

between children and adults as well as among children treated in primarily pediatric 

facilities and blended facilities. 

3. Identify the risk factors associated with BDM occurrence using logistic regression. 

4. Develop machine learning models that predict the occurrence of BDM and compare 

their prediction performance with the reference logistic regression model.  

1.3.  Dissertation Content  

Chapter 2 provides a brief background on the microbiology of bacteria, general 

approach to infection diseases, basis of antibiotic resistance, increasing trend in antibiotic 

resistance, complex determinants of inappropriate antibiotic use, consequences of 

antibiotic resistance and bug-drug mismatch, initiatives in Antibiotic Stewardship 

Programs and machine learning algorithms implemented in healthcare. Study 

methodology, data extraction, statistical analyses, results and discussion are presented in: 
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Chapter 3 for the evaluation of baseline AR prevalence and emerging trends in AR 

between adults and children as well pediatric and blended facilities; Chapter 4 for the 

prevalence of BDM at the antibiotic level and pathogen level between adults and children 

as well pediatric and blended facilities; Chapter 5 for identification of risk factor for 

BDM and comparing the prediction ability of logistic regression with machine learning 

techniques. Chapter 7 serves as the conclusion, where the major findings, strengths and 

limitations of the study are delineated and possible future directions for this research are 

explored.  
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CHAPTER 2 

BACKGROUND 

2.1. Microbiology of Bacteria 

The development of bacterial resistance to antibiotics is one of the best 

documented cases of rapid evolution. This section covers a brief overview of the 

microbial world. Bacteria such as Escherichia coli, Streptococcus pneumoniae and 

Staphylococcus aureus are both normal commensal flora and occasionally, pathogens 

which are responsible for infection. Therefore, growth of one of these organisms from a 

culture is not necessarily synonymous with infection. Suspicion of infection is increased 

greatly if the bacteria grows from a sterile site such as the bloodstream, abscess or 

cerebrospinal fluid (CSF) rather than non-sterile sites such as skin and sputum (35, 36). 

Definitive identification and susceptibility testing may take anywhere from hours to 

weeks, depending on the organism and the testing method. For bacteria, the most 

important identification method is the Gram stain which selectively stains the cell walls 

of Gram-positive bacteria but not of Gram-negative bacteria due to the absence of an 

outer cell wall (37). Rapid identification of bacteria based on morphology, colony 

clustering and preliminary biochemical tests can help to direct therapy. 
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2.2. General Approach to Infectious Diseases 

To protect the human body from the onslaught of bacterial pathogens, a large 

number of antimicrobial compounds have been developed that target points of 

vulnerability within these invaders. These agents can be grouped into three broad 

categories based on their mechanism of action: (1) those that target the bacterial cell 

envelope, (2) those that block the production of new proteins, (3) those that target DNA 

or DNA replication (35, 38). The susceptibility of a bacterial isolate to a given antibiotic 

is quantified by minimum inhibitory concentration (MIC). For every pathogen- antibiotic 

combination, there is a particular cut off MIC that defines susceptibility. Several assays 

such as the Kirby-Bauer method, E-tests and broth dilution methods, have been 

developed to measure whether any given bacterial isolate is susceptible or resistant to a 

particular antibiotic (39). 

The use of antibiotics falls into one of three general categories: prophylaxis, 

empiric use and definitive therapy. Prophylaxis is the treatment given to prevent an 

infection that has not yet developed such as those given to patients on 

immunosuppressive therapy (40). Empiric therapy is given to patients who have a 

suspected infection, but the responsible organisms have not yet been identified. 

Definitive therapy is given to patients after the bacterial culture and antibiotic sensitivity 

results are known (41). The major selection pressure driving changes in the frequency of 

antibiotic resistance is the volume of drug use. On a daily basis, clinicians are forced to 

choose an antibiotic for a patient with symptoms and signs of a serious infection before 

identification of the bacteria and before susceptibility test results are available. Such 

treatment can be described as initial empiric therapy initiated on the basis of (1) 
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symptoms of the patient, formal review of previously isolated organisms and prior 

antibiotic use, (2) using unit-based antibiograms, and (3) using data from surveillance 

studies. When identification and susceptibility testing results are available to the 

clinician, antibiotic regimens can be fine-tuned which requires narrowing or broadening 

antibiotic therapy based on the susceptibility results (42). However, in some cases this 

transition to definitive therapy might not occur and the patient might still receive 

incorrect antibiotics to which the pathogen is resistant. This is termed as bug-drug 

mismatch (BDM) (Figure 2.1) (24, 25, 43). 

 

Figure 2.1. General approach to infectious disease and definition of bug-drug mismatch 

2.3. Basis of Antibiotic Resistance 

Antibiotic resistance (AR) occurs when a drug loses its ability to inhibit bacterial 

growth effectively. Several mechanisms have evolved in bacteria which confer them with 

antibiotic resistance. Antibiotic resistance in bacteria may be an inherent trait of the 
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organism that renders it naturally resistant, or it may be acquired by means of mutation in 

its own DNA or acquisition of resistance-conferring DNA from another source (44).  

Generally, resistant microbes modify the antibiotic action in one of the following 

ways: Mutations that cause antibiotic resistance generally occur in three different types of 

genes. Among them are those encoding their transporters and regulators which reduce the 

level of antibiotic-disinfecting factors. Mutations in chromosome, defects in the 

transportation of aminoglycosides, and enzymatic inactivation are reported mechanism of 

resistance. These mechanisms can chemically modify the antibiotic, reprogram the 

metabolic pathways, decrease the ability to uptake drug, render it inactive through 

physical removal from the cell, or modify target site so that it is not recognized by the 

antibiotic. Destruction of sensitive strains by the antibiotic, allows naturally resistant 

strains to colonize the patient. For example, penicillin therapy destroys much of the 

normal oral flora and the mouth becomes colonized by penicillin-resistant organisms 

previously present in small numbers. A genetic mutation may occur during treatment and 

becomes apparent when the sensitive organisms are destroyed. Mutations in bacteria are 

more common with some antimicrobial agents than with others, and especially with 

streptomycin, rifampicin, and nalidixic acid. Certain organisms may acquire resistance as 

a result of the activity of phages (bacterial viruses) which incorporate a resistance gene 

present in one organism and when released transfer the resistance to an organism which 

was originally sensitive (45–47). Epidemiological factors, local antibiotic policies, patient 

characteristics, origin of the strains, and geographic location are among the factors 

contributing to highly variable resistance rates (48). Antibiotic-resistant germs, including 

new and emerging resistance, can spread within and between healthcare facilities. These 
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germs can cause infections in patients, called healthcare-associated infections (HAIs), 

and can spread to the community or environment (soil, water) (49, 50). The evolution and 

spread of antibiotic resistance challenge our continued ability to prevent and treat 

infectious diseases.  

2.4. Increasing Trend in Antibiotic Resistance 

The resistance to antibiotics is increasing at a faster pace than it can be controlled 

resulting in prolonged illness and greater risk of death. At the present time, about 70 

percent of the bacteria that cause infections in hospitals are resistant to at least one of the 

drugs most commonly used for treatment (8). Some organisms are resistant to all 

approved antibiotics and can only are treated with experimental and potentially toxic 

drugs. Worrisome trends are emerging, including the discovery of new resistant 

pathogens, such as Neisseria gonorrhoeae infections (51). Other drug-resistant, 

community-acquired bacterial infections, such as, group A Streptococcus and ESBL-

producing Enterobacteriaceae are also increasing (52). Several studies from developing 

countries show an alarming swing in multiple resistance among the prime enteric 

pathogens, such as E. coli, Klebsiella spp., Salmonella spp., Vibrio cholerae, and Shigella 

spp., to nearly all generally available antibiotics (53). A study estimating national trends 

in inpatient antibiotic use among US hospitals from 2006 – 2012 indicated significant 

decreases in fluoroquinolones (20%) and first- and second-generation cephalosporins 

(7%) usage, but these decreases were offset by significant increases in vancomycin (32%) 

and agents with broad-spectrum activity against gram-negative bacteria, including 

carbapenem (37%), third- and fourth-generation cephalosporin (12%), and β-lactam/β-
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lactamase inhibitor combination antibiotics (26%). Despite substantial reduction in 

fluoroquinolone use, this class remained the most commonly used antibiotic class in US 

hospitals in 2012 (19). 

2.5. Consequences of Antibiotic Resistance 

 AR pathogens have become a global threat responsible for high death tolls and 

life-threatening infections. Infections caused by resistant microorganisms often fail to 

respond to the standard treatment, resulting in prolonged illness and greater risk of death. 

When microbes become resistant to certain microbes, it reduces the effectiveness of 

treatment because patients remain infectious for longer, thus potentially spreading 

resistant microorganisms to others (54, 55). Consequences of these infections are 

aggravated enormously in volatile situations such as civil unrest, violence, famine and 

natural disaster (56). The World Health Organization (WHO) has warned that a post-

antibiotic era will result in frequent infections and small injuries may result in death if we 

fail to act against antibiotic resistance (57). More than 63,000 patients from the United 

States of America (USA) die every year from hospital-acquired bacterial infections (58). 

Individuals may succumb to Multiple Drug Resistant (MDR) infections because all 

available drugs have failed such as examples include hospital and community MDR 

strains of Mycobacterium tuberculosis, E. faecium, Enterobacter cloacae, K. 

pneumoniae, S. aureus, A. baumannii, and P. aeruginosa. Every year, an estimated 

25,000 patients die due to multiple drug resistance (MDR) bacterial infections(59–61). 

Many countries are facing the burden of nosocomial Staphylococcus aureus (S. Aureus) 

infections as waves of clonal dissemination. Methicillin-resistant Staphylococcus aureus 
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(MRSA) strains are rapidly spreading globally (62). Estimated costs due to multidrug-

resistant bacterial infection might result in extra healthcare costs and productivity losses.  

AR increases the costs of health care by billions of dollars every year (63). When 

infections become resistant to first-line medicines, more expensive therapies must be 

used. The longer duration of illness and treatment, often in hospitals, increases health-

care costs and the financial burden to families and societies (64). AR jeopardizes health-

care gains to society. Without effective antibiotics for care and prevention of infections, 

the success of treatments such as organ transplantation, cancer chemotherapy and major 

surgery would be compromised (65). AR also threatens health security, and damages 

trade and economies. The growth of global trade and travel allows resistant 

microorganisms to be spread rapidly to distant countries and continents. Additionally, 

when a patient receives treatment with antibiotics, both the causative pathogen and the 

normal nonpathogenic microflora in the body will be affected. The indigenous microflora 

makes up a complex ecological system of great importance for human health. Ideally, 

antibiotics should effectively kill the pathogen responsible for infections and, 

simultaneously, cause as little disturbance as possible to the microflora of the individual 

(66). 

Antibiotic-resistant infections can also complicate the response to and recovery 

from public health emergencies. For example, during the 2009 H1N1 influenza 

pandemic, many patients acquired secondary bacterial infections in addition to influenza, 

and some of these infections were resistant to antibiotics (67). While the implications of 

antibiotic resistance are not yet clear for the ongoing response to COVID-19 illness, 

increased use of antibiotics and other antimicrobial medicines—both appropriate and 
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inappropriate—to address primary or secondary infections has the potential to further 

accelerate the emergence of antibiotic resistance (68).  

The U.S. Government is responding to antibiotic resistance with a comprehensive 

and coordinated suite of actions implemented by a diverse set of agencies using a One 

Health approach. The National Strategy for Combating Antibiotic-Resistant Bacteria 

(CARB) has laid out five goals to reduce the incidence and impact of antibiotic-resistant 

infections for the years 2020-2025. Several drug susceptibility surveillance systems such 

as the Alliance for the Prudent Use of Antibiotics, the WHO Global Antimicrobial 

Resistance and Use Surveillance System (GLASS), the National Antimicrobial 

Resistance Monitoring System (NARMS) and the CDC National Healthcare Safety 

Network (NHSN) was established to help to assess the current status of resistance in a 

location (5, 69–71). Inappropriate and irrational use of antibiotics provide favorable 

conditions for resistant microorganisms to emerge, spread and persist.  

2.6.Complex Determinants of Inappropriate Antibiotic Use 

Antimicrobial agents are some of the most widely, and often injudiciously, used 

therapeutic drugs worldwide. For instance, in the United States, 80 million prescriptions 

of antibiotics for human use were filled and this equals 12,500 tons in one year (72). 

Important considerations when prescribing antimicrobial therapy include obtaining an 

accurate diagnosis of infection; understanding the difference between empiric and 

definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective 

oral agents for the shortest duration necessary; understanding drug characteristics that are 

peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of 

infection); accounting for host characteristics that influence antimicrobial activity; and in 
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turn, recognizing the adverse effects of antimicrobial agents on the host (73). Data show a 

direct correlation between the use of antibiotics and resistance. Countries with a higher 

consumption of antibiotics show higher rates of resistance (74).  

It has been a standard practice for most of the pharmaceutical companies to 

distribute antibiotics that may no longer be effective or lack regulatory approval. 

Although, increased antibiotic use result in a positive association with a higher 

prevalence of resistant microorganisms, while reduced antibiotic use indicate lower 

resistance rates (75). There is clear evidence that patients historically treated with 

antibiotics are more likely to have antibiotic resistance (76). Further, re-administration of 

antibiotics from the initial cycle accelerates resistance mechanisms. Antibiotics 

encourage selective pressure for bacteria to evolve when administered frequently or 

irrationally (77).  

Inappropriate use of antibiotics in humans and agriculture is one of the drivers of 

the emergence of antimicrobial resistance (78, 79). The prevalence of penicillin-resistant 

pneumococci, macrolide-resistant Streptococcus pneumoniae and S. pyogenes strongly 

correlates with total antibiotic use in outpatients. Such inappropriate use is the result of 

complex interactions between demand for and supply of antibiotics. Health professionals 

who prescribe or dispense antibiotics, when motivated by financial incentives, can induce 

demand through the unnecessary use of antibiotics (80). 

Several cross-sectional studies have evaluated factors contributing to antibiotic 

misuse in children (81–84). These studies found that insufficient parental knowledge and 

negative attitudes were among the most important factors contributing to inappropriate 

antibiotic prescription. Low educational level, being a single parent, having low income, 
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and being without experience in recurrent infections were significantly related to 

inadequate knowledge and negative attitude toward antibiotic use in children. 

2.7.Consequences of Bug-Drug Mismatch 

In addition to antibiotic overuse, Bug-Drug Mismatch (BDM) is also an important 

and modifiable contributor to inappropriate antibiotic use which is one of the drivers of 

emergence of AR and is a problem in all health care settings (85). Incorrectly prescribed 

antibiotics have questionable therapeutic benefit and expose patients to potential 

complications of antibiotic therapy. Subinhibitory and subtherapeutic antibiotic 

concentrations can promote the development of antibiotic resistance by supporting 

genetic alterations which promote antibiotic resistance and spread (86). Several studies 

have evaluated the association between appropriate antibiotic therapy and mortality 

among bacteremic patients (16, 87–90). The appropriateness of antibiotic therapy should 

be assessed on a case-by-case basis. Therapy should be considered to be appropriate if 

the regimen exhibits in vitro activity against the isolated pathogen. Patients receiving 

incorrectly prescribed antibiotics have questionable therapeutic benefit and were reported 

to have significantly higher mortality rate, length of hospitalization, hospital readmission 

rates and costs (23, 91–94).  

2.8.Growing Threat of AR in Children 

AR is a global public health threat that continues to escalate and impact all 

populations, however, until recently, the trend in drug resistant infection in children has 

gone relatively uncharacterized (95).  Studies regarding CA-MRSA in U.S. children 

generally highlight the rapid increase in infections from the mid-1990s until 2005–2006, 
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with a subsequent decrease in infection rates thereafter (96) . However, there is 

significant geographic variation, and while both pediatric HA-MRSA and CA-MRSA 

rates have mostly stabilized, some regions have noted continued increases in CA-MRSA 

infection (97, 98). Trimethoprim-sulfamethoxazole (TMP/SMX) and clindamycin are 

often used in the treatment of CA-MRSA; and while resistance to TMP/SMX has 

remained relatively uncommon, clindamycin resistance in both CA-MRSA and 

methicillin-sensitive S. aureus (MSSA) has increased over the past decade. A recent 

study from the U.S. Military Health System found CA-MRSA clindamycin resistance 

increased from 9.3% in 2005 to 16.7% in 2014 (99). Similar increases in MSSA 

clindamycin resistance have been reported (100). In the U.S., current resistance to 

macrolides has been estimated at approximately 5%, a two-fold increase compared to 

1990s. The clinical significance of this resistance has become apparent, as some children 

treated with macrolides for S. pyogenes pharyngitis developed acute rheumatic fever(101, 

102). Antibiotic resistance in Enterococcus species (E. faecalis and E. faecium) became a 

significant problem in healthcare settings during the 1980s, when the organisms began 

displaying high level resistance to vancomycin. While VRE remain stable residents of 

adult intensive care units (ICUs), these resistant organisms have increased in pediatric 

inpatient settings. A study of VRE in U.S. children described VRE rates of 53 cases per 

million in 1997 which increased to 120 cases per million by 2012. The majority of 

affected children had a history of prolonged healthcare and antibiotic exposures (103). 

Pediatric-focused antibiotic stewardship programs (ASP) are necessary because of 

their overall high levels of antibiotic exposure and immature immune system. In addition 

to these factors, the type of facility could also be a factor in the trend in resistance, 
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especially in Hospital Acquired Infections (HAI)(11). However, very little is known 

about the difference in the emerging trend in resistance pattern between children treated 

in pediatric and blended facilities. Estimating the difference in the trends in resistance is 

essential to formulate strategies and interventions to prescribe appropriate antibiotics and 

improve the outcome of individual patients. Definitive inappropriate use of antibiotics 

varied depending on the type of care setting as well as between children and adults (17, 

18). Pediatric facilities have been found to vary substantially in their use of antibiotics 

among children(15). Recent research also shows that children admitted to non-pediatric 

emergency departments were more likely to receive inappropriate antibiotics(104). A 

comprehensive analysis estimating IAAT prescriptions between different patient 

population and care setting is critical to understand the actual situation of antibiotic use.  

However, to our knowledge, there has not been a study of IAAT that considers the 

influence of age and the type of healthcare setting. Antimicrobial adverse effects have 

been found to differ between children and adults (105, 106). Given the disparity within 

the age of the patient and the type of facility, it is necessary to synthesize the best 

available evidence to be able to predict patient outcomes such as the mortality rate, the 

length of hospitalization and hospital readmission in these settings. Data derived from 

EHRs loaded into multi-institutional data warehouses provide a powerful resource for 

addressing these issues.    

2.9. Antibiotic Stewardship Program (ASP) Initiatives 

One important strategy to combat antibiotic resistance is the use of institutional 

Antibiotic Stewardship Programs (ASPs). ASPs are programs that work to promote the 

appropriate use of antibiotics and to decrease the spread of resistant organisms. They are 
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instituted by the hospital, and they often involve a multidisciplinary team that reviews 

antibiotic use and advises providers on how to use antibiotics more effectively (107). 

ASPs have been shown to be very effective in helping to optimize antibiotic use and 

reduce healthcare costs. Studies have demonstrated that institutional implementation of 

ASPs has led to a decrease in patients being infected with both C. diff and even VRE 

(108). Additionally, ASPs have led to decreased costs associated with treating patients 

requiring antibiotics. This is important to consider as the price of many antibiotics has 

greatly increased. ASPs have shown great promise but implementation is limiting their 

effect. Currently, 79% of university hospitals have ASPs but only 40% of community 

hospitals have designated ASPs. ASPs have been shown to make a difference but their 

effectiveness will be limited until they become more broadly applied (109). 

Antibiotic resistance and its widespread implications present predicament to 

healthcare. Access to emerging trends in antibiotic resistance and patterns of appropriate 

therapy for adults and pediatric patients within pediatric and blended facilities is critical 

in expanding antibiotic stewardship efforts in these settings. This would likely improve 

patient outcomes while limiting the risk of drug resistance by helping clinicians 

determine how to apply newer diagnostic modalities and therapeutic options. 

2.10. Machine Learning in Health Care 

 Machine learning has progressed dramatically over the past two decades, from 

laboratory curiosity to a practical technology in widespread commercial use. Machine-

learning algorithms vary greatly, in part by the way in which they represent candidate 

programs (e.g., decision trees, mathematical functions, and general programming 
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languages) and in part by the way in which they search through this space of programs 

(e.g., optimization algorithms) (110). The most widely used machine-learning methods 

are supervised, unsupervised, semi-supervised learning and reinforcement learning 

methods. In supervised learning, input data is called training data and has a known label. 

The model establishes a learning process, compares the predicted results with the actual 

results of the training data and continuously adjusts the predictive model until the 

predicted results of the model reach an expected accuracy, such as classification and 

regression problems. Common algorithms include decision trees, Bayesian classification, 

least squares regression, logistic regression, support vector machines, neural networks, 

and so on (111). In unsupervised learning, input data is not labeled and does not have a 

known result. The model is prepared by deducing structures present in the input data 

through a mathematical process to systematically reduce redundancy or to organize data 

by similarity or to infer the intrinsic links of data, such as clustering and association rule 

learning. Common algorithms include independent component analysis, K-Means and A-

priori algorithms (112). In semi-supervised learning, input data is a mixture of labeled 

and un-labelled data. Common algorithms include graph theory inference algorithms and 

Laplacian support vector machines. In reinforcement learning, input data is fed back to 

the model, emphasizing how to act based on the environment to maximize the expected 

benefits (113).  

Since the 1980s, deep learning and biomedical data have been coevolving and 

feeding each other. The breadth, complexity, and rapidly expanding size of biomedical 

data have stimulated the development of novel deep learning methods, and application of 

these methods to biomedical data have led to scientific discoveries and practical 
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solutions. The ability of machine learning to extract information from data, paired with 

the centrality of data in healthcare, makes research in machine learning for healthcare 

crucial (114). Interest in machine learning for healthcare has grown immensely, including 

work in diagnosing diabetic retinopathy, detecting lymph node metastases from breast 

pathology, autism subtyping by clustering comorbidities, large- scale phenotyping from 

observational data, predicting patient risk of sepsis, predicting a patient’s likelihood of 

readmission to the hospital, and predicting the need for end of life care (115–120). The 

advent of large-scale data sets provided by next-generation sequencing and electronic 

health records (EHR's) make applying machine learning to the study and treatment of AR 

possible. To date, it has been used for antimicrobial susceptibility genotype/phenotype 

prediction, development of AR clinical decision rules, novel antimicrobial agent 

discovery and antimicrobial therapy optimization (121, 122). 

One pivotal impediment in ML relates to the black box nature, or opacity, of 

many machine learning algorithms (123). Especially in critical use cases that include 

clinical decision making, there is some hesitation in the deployment of such models 

because the cost of model misclassification is potentially high in healthcare. Historically, 

there has been a trade-off between interpretable machine learning models and 

performance (precision, recall, F-Score, AUC, etc.) of the prediction models. More 

interpretable models like regression models and decision trees often perform less well on 

many prediction tasks compared to less interpretable models like gradient boosting, deep 

learning models, and others(124). Researchers and scientists have had to balance the 

desire for the most highly performing model to that which is adequately interpretable. 
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However, recently, many ML based clinical decision support systems (CDSS) 

which are computer-based programs where the characteristics of an individual patient are 

analyzed by the ML algorithms to present patient-specific assessments or 

recommendations to the clinician towards a decision (125). The first FDA approval for an 

autonomous AI system took place in 2018 with IDx, a ML system used to detect diabetic 

retinopathy in retinal fundus photographs (126). Although there are still some limitations 

with the interpretability of ML models, the utility of ML models in the implementation of 

CDSS tools in healthcare are advantageous and must be explored. However, currently 

there are no ML studies on predicting antibiotic use or BDM occurrence. 

In this study, in addition to exploring the trends of AR, prevalence and risk factors 

of BDM, we also predicted BDM occurrence using ML models and compared the 

predictive performance with a reference LR model. These findings are critical in tailoring 

antibiotic stewardship efforts to improving appropriate antibiotic prescribing and to 

ultimately reduce AR.  
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CHAPTER 3 

VARIATION IN ANTIBIOTIC RESISTANCE PATTERNS FOR CHILDREN AND 

ADULTS TREATED AT 166 NON-AFFILIATED US FACILITIES  

3.1. Introduction 

The emergence of antibiotic-resistant (AR) bacteria endangers the efficacy of 

antibiotics and is a global public health crisis (127, 128). The Centers for Disease Control 

and Prevention (CDC) estimates 2.8 million people in the U.S. are infected each year 

with bacteria resistant to antibiotics with an average of 35,000 deaths (3). AR infections 

cause significant morbidity and mortality worldwide and could reach up to 10 million 

deaths by 2050 (129, 130). AR infections can double the duration of hospital stays, 

increase mortality rate, prolong treatment and increase healthcare costs (41, 131). 

Estimates suggest AR infections contribute $35 billion to health-care costs per year in the 

US (132).  

The CDC and World Health Organization (WHO) provide prioritized lists of AR 

bacteria based on level of concern to human health (3, 133). The ESKAPE pathogens 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are considered to be the 

most emergent AR threats (134, 135). Several US studies show an alarming increase in 

resistance among pathogenic gram-negative (GN) bacilli, including Pseudomonas 

aeruginosa, Acinetobacter baumannii, Escherichia coli, Proteus mirabilis, Serratia 
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marcescens, Haemophilus spp., Klebsiella spp., Salmonella spp., Citrobacter spp., 

Enterobacter spp., and Shigella spp. (59, 136–143). Gram-positive bacteria cause serious 

and difficult to treat infections, exacerbated by marked increases in antibiotic resistance 

among these bacteria, most notably methicillin resistance in Staphylococcus aureus 

(MRSA), decreased susceptibility to penicillin in Streptococcus pneumoniae and 

vancomycin resistant Enterococci (VRE) (144–146). Tracking emerging patterns of 

antibiotic resistance allows providers to precisely tailor antibiotic therapy and prevent the 

spread of existing AR.  

Drug susceptibility surveillance systems such as the Alliance for the Prudent Use 

of Antibiotics, the WHO Global Antimicrobial Resistance and Use Surveillance System 

(GLASS), the National Antimicrobial Resistance Monitoring System (NARMS) and the 

CDC National Healthcare Safety Network (NHSN) help to assess the current status of 

resistance in a location (5, 69–71). These resources do not provide granular information 

at the facility level. Institution specific antibiograms are generated by health-care 

facilities to report, track and benchmark AR bacteria. They are often generated by a 

multidisciplinary team that annually review the resistance patterns to inform appropriate 

use of antibiotics and to decrease the spread of resistant organisms (147). These 

antibiograms do not generally include patient demographics such as gender, race or age.  

Until recently, trends in drug resistant infections in children have been relatively 

uncharacterized. Isolates from children have different selective pressure due to their 

evolving immune system, increased risk of adverse events or overall antimicrobial 

exposure (95, 105, 106, 148). A recent study found a 700-percent surge in pediatric 

infections caused by the enteric pathogens resistant to multiple antibiotics in the US over 
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a period of 8 years (149). For example, clindamycin resistance among isolates from 

children in both MRSA and methicillin-susceptible S. aureus (MSSA) has increased from 

9.3% in 2005 to 16.7% in 2014 (150). VRE isolates from children increased from 53 

cases per million in 1997 to 120 cases per million in 2012 in US (103). The type of 

facility (standalone pediatric or blended facilities caring for adults and children) could 

also be a factor for different resistance patterns in children, especially in Hospital 

Acquired Infections (HAI) (11). Pediatric facilities have been found to vary substantially 

in their use of antibiotics (15). AR patterns for priority pathogens have not been 

compared between children and adults nor between types of facility. This would inform 

pediatric care-setting focused antibiotic stewardship programs (ASP).  

Data derived from EHRs loaded into multi-institutional data warehouses provide a 

powerful resource for examining these issues.  One such data resource, Cerner Health 

Facts™ (HF), contains micro-susceptibility test results from multiple sites (151). The 

objective of this study is to compare the trends in resistance for the priority bacterial 

pathogens between children and adults as well as among children treated in primarily 

pediatric facilities and blended facilities.  

3.2. Methods 

3.2.1. Data Source 

We derived the study data from Cerner Health Facts database (Kansas City, MO, 

USA) populated by the daily extraction of discrete EHR data from participating 

organizations. HF data is de-identified in a manner compliant with US Health Insurance 

Portability and Accountability Act (HIPAA) standards. In the 2018 version of the HF, 
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416 facilities associated with 84 nonaffiliated health systems have contributed 5 million 

distinct micro-susceptibility encounter data from 3 million patients to HF at intervals 

from January 2000 through 2017. HF includes microbiology results, patient 

demographics, diagnoses, medication orders, other laboratory tests and clinical 

procedures. The Children’s Mercy Institutional Review Board has designated research 

with HF data as “non-human subjects research.” 

3.2.2. Data Definition 

The efficacy of the antibiotics against the pathogens is interpreted as resistant(R) 

if the isolates are not inhibited by the recommended dosage of antibiotic and there is a 

bacterial growth in the presence of the antibiotic; susceptible (S) if the isolates are 

inhibited by the recommended dosage of antibiotic; and intermediate (I) if there is limited 

growth in the presence of dilute antibiotics (152). The calculation of antimicrobial 

resistance (proportion of R relative of the total) is dependent on two prerequisites: the 

data should only consist of first isolates (the isolate of a bacterial species found first in a 

patient per encounter) and a minimum required number of 30 isolates per year for every 

group (153, 154).  

3.2.3. Data Validation 

Every encounter in HF is associated with a health system ID and a contributing 

facility within the health system. Children’s Mercy Hospital (CMH) is a contributor to 

HF. In order to test the reliability of HF data, we extracted the 2017 CMH  antimicrobial 

susceptibility data using the health system ID in HF and compared it with the CMH 2017 

antibiogram (155) (Table 3.1). We evaluated the reliability of the data using a single-
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measurement, absolute-agreement, 2-way mixed-effects intra-class correlation (ICC) 

method (156). 

Table 3.1. HF data validation with CMH antibiogram.  

 

Note: Health Facts (HF) data and Children’s Mercy Hospital (CMH) 2017 antibiogram; 

MSSA- Methicillin Susceptible Staphylococcus aureus; MRSA- Methicillin Resistant 

Staphylococcus aureus; 
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3.2.4. Pathogen-Antibiotic Combinations 

Each record in the dataset includes the pathogen, susceptibility test results and the 

time stamp of the test result verification. In order to minimize the number of pathogens, 

we selected relevant pathogens based on the CDC report on greatest AR threats and the 

WHO list of global priority antibiotic resistant bacteria (3, 133). There are 22 such 

pathogens: Acinetobacter baumannii, Citrobacter freundii, Enterobacter aerogenes, 

Enterobacter cloacae, Enterococcus faecium, Escherichia coli, Haemophilus influenzae, 

Klebsiella oxytoca, Klebsiella pneumoniae, MRSA, Methicillin-susceptible 

Staphylococcus aureus (MSSA), Proteus mirabilis, Pseudomonas aeruginosa, 

Salmonella spp., Serratia marcescens, Shigella spp., Staphylococcus Coag Neg spp. 

(CoNS), Streptococcus Group A, Streptococcus Group B, Streptococcus pneumoniae, 

Streptococcus viridans and VRE. In order to focus on clinically relevant antibiotics, we 

included Clinical and Laboratory Standards Institute (CLSI) recommended antimicrobial 

agents approved by the US Food and Drug administration for clinical use that are 

considered for routine testing and reporting by microbiology laboratories in the U.S. 

(157). There are 41 clinically relevant antibiotics for those 22 pathogens (Table 3.2). 

Antibiotics primarily used to treat urinary tract infections are only considered for isolates 

whose source of infection is specifically urinary. 
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Table 3.2. Pathogen-Antibiotic combinations 

Antibiotic MSSA CoNS MRSA Strep Entero GNR Pseudo 

Amikacin          778,611 77,477 

Amoxicillin-Clavulanate          197,415   

Ampicillin      21,460 19,036 821,228   

Ampicillin-Sulbactam 42,244     143 847,299   

Aztreonam          462,059 30,671 

Cefazolin 58,772 17,078      808,011   

Cefepime     7,196   880,360 83,460 

Cefotaxime      16,830       

Cefotetan         53,955   

Ceftazidime          719,160 72,043 

Ceftriaxone 24,248 12,288   29,105   990,847   

Cefuroxime 879 982   2,448   244,989   

Ciprofloxacin        8,062 963,469 90,321 

Clarithromycin 2,769            

Clindamycin 199,368 63,062 103,188 36,073       

Dalfopristin-Quinupristin 10,519  7,787  815     

Daptomycin 65,242 21,662 34,324 1,703 6,707     

Doripenem         40,965 4,666 

Doxycycline             

Ertapenem         528,311   

Gentamicin 187,678 80,664       1,054,345 95,205 

Imipenem 10,603    518 54 473,624 50,659 

Levofloxacin 156,326 74,092   37,585 9,180 851,512 61,233 

Linezolid 146,544 59,448 90,735 24,145 16,685     

Meropenem 7,331    5,725 61 671,669 67,540 

Moxifloxacin 71,526 23,857   7,078   43,695   

Nitrofurantoin        11,354 860,473   

Oxacillin 170,135            

Penicillin     43,616 14,417     

Piperacillin-tazobactam 1,636      24 871,241 79,811 

Rifampin 169,937 73,547           

Tetracycline        10,123     

Tigecycline 64,202  41,200 7,179 4,731 241,147   

Tobramycin         875,088 86,545 

Trim/Sulf 209,141 48,727 104,987 12,499   1,044,670   

Vancomycin 178,338 73,949 94,615 37,298 4,435     

 

Note: MSSA- Methicillin Susceptible Staphylococcus aureus; MRSA- Methicillin 

Resistant Staphylococcus aureus; CoNS – Coag Negative Staphyloccocus; Strep – 
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S.pyogenes, S.agalactiae, S.pneumoniae, S.viridans; Enterococci – E.faecium, VRE; 

Pseudo – P.aeruginosa; GNR – Gram negative rod organisms (C.freundii, E.aerogenes, 

E.cloacae, E.coli, H.influenzae, K.oxytoca, K.pneumoniae, P.mirabilis, Salmonella spp, 

S.Marcescens and Shigella spp).  

Excluded intrinsically resistant combinations: 
a Pathogens (C.freundii, E.aerogenes, E.cloacae, S.marcescens) -  Antibiotics (Ampicillin, 

Ampicillin-Sulbactam, Amoxicillin-Clavulanate, Cefazolin);  
b Pathogens (K.oxytoca, K.pneumoniae) – Ampicillin;  
c Pathogens (P.mirabilis, S.marcescens) -Nitrofurantoin 

3.2.5. Study Design 

We conducted a retrospective study of encounters with the 22 priority pathogens 

with microbiology susceptibility results for the FDA recommended and clinically 

relevant antibiotics between the years 2012 to 2017 (Figure 3.1). S. aureus isolates were 

classified as MRSA if oxacillin/methicillin resistant and MSSA if oxacillin/methicillin 

susceptible. We included encounters of the pathogens which reported valid susceptible, 

intermediate, or resistant results with a valid date stamp. Facilities consistently reporting 

the microbiology susceptibility every year between the years 2012 to 2017 were included 

(166 facilities) while 241 facilities with inconsistent data were excluded.  Facilities where 

the mean age of patients is less than eighteen were identified as likely pediatric facilities 

and facilities treating both adults and children were identified as blended facilities. We 

separated the data cohort into four groups: encounters of the isolates from children (Age 

<18) (Group I); and adults (Age >18) (Group II); isolates of children from pediatric 

facilities (Group III) and isolates of children from blended facilities (Group IV). 

Pathogen-antibiotic combinations with minimum required number of 30 isolates per year 

were included in every group (Figure 3.1).  
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Figure 3.1. Data extraction and study design. 
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3.2.6. Analysis 

We examined the resistant percentage of each pathogen-antibiotic pair 

individually and in relation to the four cohorts. We calculated the slope coefficient for the 

trend in proportion of resistance of every pathogen-antibiotic combination over the years 

of 2012 to 2017 by utilizing linear regression. The data is installed in Microsoft 

(Redmond, WA) Azure and queries are performed with R Studio version 1.1.453 with R 

version 3.6.1. An analysis that we refer to as the Multiple Categorical Slope (MCS) was 

performed for the total cohort and for all the four groups to identify significant antibiotic-

resistant-pathogens which are increased/decreased over the years. In the MCS plot, the 

calculated slopes of the pairs are plotted on the Y-axis and similar to a Manhattan plot, 

the X-axis of the plot shows antibiotics as dots organized by pathogens, in different 

colored blocks. The pairs which increased during the period evaluated are indicated 

above the upper limit (95th percentile value of the slope) horizonal line while the pairs 

which decreased are indicated below the baseline lower limit (5th percentile value of the 

slope). We compared the significance of the difference in the slope between children vs 

adult (Group I vs II) as well as children in pediatric facilities vs blended facilities (Group 

III vs IV) through the Comparison-MCS plot. In the C-MCS plot, the effect of the 

interaction term [group X year] are plotted for every pathogen-antibiotic pair. The 

significance of the interaction term was tested to determine pathogen-antibiotic pairs with 

unequal slopes that represent a different pattern in the trend in resistance between 

children and adults as well as between children in pediatric facilities and children in 

blended facilities.  
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3.3. Results 

3.3.1. Characteristics of Data 

The reliability of the data evaluated using ICC indicate that the agreement of the 

data between HF and the CMH antibiogram is considered to be excellent (ICC = 0.84 

[95% CI: 0.77 – 0.88], After excluding outliers: ICC=0.984 [95% CI: 0.977 – 0.99]).  

The 2018 version of the HF microbiology susceptibility data includes 125 million 

susceptibility results evaluated from 1047 pathogens screened for resistance to 216 

antimicrobials resulting in 23,362 unique pathogen-antibiotic combinations. Isolate 

samples were reported from 550 distinct body source sites. Urinary tract isolates 

constituted 63% of all isolates. The majority of the susceptibility tests used minimal 

inhibitory concentration (MIC) or Kirby- Bauer (KB) method. Inclusion of 22 priority 

pathogens and clinically relevant antibiotics resulted in 302 pathogen-antibiotic 

combinations yielding 19 million encounters in the study cohort. This cohort consists of 

1.5 million isolates identified from 1 million patients associated with 166 U.S. facilities. 

Most (63%) facilities were non-teaching institutions, and the majority (80%) were located 

in urban environments. More than two-thirds (68%) had fewer than 200 beds, 28% had 

200-500 beds and 4% had more than 500 beds.  

There were 84,101 patients in the cohort younger than 18 (13% of the HF cohort) 

whose encounters were segregated into Group I (children), the remaining encounters in 

Group II (adults). Group I includes encounters from 160 facilities with 10 pediatric 

facilities. Those encounters were separated into Group III (pediatric facilities) while the 

remaining encounters are Group IV (blended facilities). Data characteristics of these 

groups are summarized in Figure 3.1.  
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3.3.2. Baseline Resistance  

Within the total study cohort, the 22 priority pathogens with the highest 

percentage of resistance to the clinically relevant antibiotics are shown in Figure 3.2 

(number of isolates tested; % resistant). Among the pathogens with highest total level of 

resistance, Streptococcus Group B had the highest resistance to clindamycin (22,252; 

52.79%). 

 

Figure 3.2. Baseline resistance of the study cohort. (Total no. of resistant 

encounters, Resistance %) 

 

We compared resistance patterns based on age group (Figures 3.3A and 3.3.B) 

and care setting (Figures 3.3C and 3.3D). The overall difference in the proportion of 

resistant isolates was higher in adults when compared to children (Figures 3.3A and 
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3.3B). For example, isolates from adults had a higher proportion of ciprofloxacin 

resistant A. baumannii (38% Vs 6%, p<0.0001) while isolates from children had a higher 

proportion of amikacin resistant P. aeruginosa isolates (17% vs 4%, p<0.0001). Children 

in pediatric facilities had a higher proportion of resistant isolates when compared to 

blended facilities (Figure 1.3C and D). For example, isolates from children in pediatric 

facilities had a higher proportion of ceftriaxone resistant E. aerogenes compared to those 

treated in blended facilities (21% vs 4%, p<0.0001) while isolates from children in 

blended facilities had a higher proportion of penicillin resistant S. pneumoniae (18% Vs 

2%, p<0.0001). 

 

 

Figure 3.3. Difference in level of resistance between subgroups. Higher baseline 

resistance in isolates from: (A) Adults when compared to children. (B) Children when 

compared to adults. (C) Children in blended facilities when compared to pediatric 

facilities (D) Children in pediatric facilities when compared to blended facilities 
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3.3.3. Trend in Resistance 

The MCS plot of the study cohort is shown in Figure 3.4A. The predominant pair 

was ciprofloxacin resistant Shigella sp. which increased from 1.6% to 8% between 2012-

2017 (slope = 1.17, R2=0.972, p=0.003) and ceftazidime resistant A. baumanii which 

decreased from 34% to 24% (slope = -6.24, R2=0.981, p=0.004). The positive and 

negative trends of other statistically significant pairs are depicted in Figure 3.4B. 
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Figure 3.4. MCS (Multiple Categorical Slope) Plot of the study cohort. (A) MCS plot: 

Calculated slopes of the antibiotic-resistant-pathogen pairs are plotted on the Y-axis, the 

X-axis of the plot shows antibiotics as dots organized by pathogens (listed to the right), in 

different colored blocks. Statistically significant pairs which increased between 2012 – 

2017 are highlighted above the upper limit (95th percentile value of the slope) horizonal 

line while the pairs which decreased are highlighted below the baseline lower limit (5th 

percentile value of the slope). (B) Patterns of increased/decreased trend in resistance of 

statistically significant antibiotic-resistant-pathogens 
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The pathogen-antibiotic combinations with a significant positive and negative 

trend for all the four groups are shown in Figure 3.5. Among isolates from adults, 

cefuroxime resistant H. influenzae increased from 1.4% to 8% (slope = 1.9, R2=0.945, 

p=0.02), while ceftazidime resistant A. baumanii decreased from 36.1% to 25.3% (slope 

= -6.81, R2=0.972, p=0.004) (Figure 3.6). Among isolates from children, clindamycin 

resistant MRSA increased from 15.5% to 24.2% (slope =1.86, R2=0.992, p=0.0007) 

while nitrofurantoin resistant E. aerogenes decreased from 37.1% to 13.3% (slope = -

5.19, R2=0.959, p=0.009) (Figure 3.7).  

 

Figure 3.5. The pathogen-antibiotic combinations with a significant positive and negative 

trend for all the four groups 
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Figure 3.6. Patterns of increasing and decreasing trend in resistance of statistically 

significant pathogen-antibiotic isolates from adults. 

 

Figure 3.7. Patterns of increasing and decreasing trend in resistance of statistically 

significant pathogen-antibiotic isolates from children.  
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The C-MCS plot for adult vs children is shown in Figure 3.8A. Ertapenem 

resistant E. cloacae isolates from children increased significantly compared to adults 

(children: 0.7% to 9.8%; adults: 2.1% to 2.8%; p=0.00013). In contrast, 

ampicillin/sulbactam resistant K. oxytoca increased in adults but decreased in children 

(adults: 11% to 14%; children: 13% to 7%; R2 =0.533) (Figure 3.8B). 

 

Figure 3.8. Adults Vs children. (A) C-MCS (Comparison Multiple Categorical 

Slope) plot (B) Higher increase in resistance among isolates from adults than children; 

Higher increase in resistance among isolates from children than adults 
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In pediatric facilities, ertapenem resistant E. cloacae increased from 0% to 27.1% 

(slope = 5.16, R2=0.948, p=0.002) while gentamicin resistant P. mirabilis decreased from 

8% to 0.8% (slope = -1.89, R2=0.894, p=0.01) (Figure 3.9A). In blended facilities, 

cefazolin resistant P. mirabilis increased from 4% to 11% (slope = 1.5, R2=0.85, p=0.02) 

while nitrofurantoin resistant E. cloacae decreased from 25% to 14% (slope = -1.81, 

R2=0.71, p=0.03) (Figure 3.9B).  

 

Figure 3.9. Patterns of trend in resistance among isolates from children by care-

setting (A) Pediatric facilities (B) Blended facilities 

The C-MCS plot for cultures from children in pediatric vs blended facilities is 

shown in Figure 3.10A. Imipenem resistant P. aeruginosa isolates from children 
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increased in pediatric facilities but decreased in blended facilities (Pediatric: 8% to 14%; 

Blended: 12% to 10%; R2 =0.738). In contrast, ampicillin/sulbactam resistant K. oxytoca 

increased in blended facilities but decreased in pediatric facilities (Blended: 11% to 12%; 

Pediatric: 13% to 7%; R2 =0.533) (Figure 3.10B). 

 
Figure 3.10. Pediatric facilities Vs blended facilities. (A) C-MCS (Comparison 

Multiple Categorical Slope) plot (B) Higher increase in resistance among isolates from 

children in blended than pediatric facilities; Higher increase in resistance among isolates 

from children in pediatric than blended facilities 
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3.4. Discussion 

We evaluated variation in AR for 22 high priority pathogens based on age 

category of patient (child, adult), care setting for pediatric patients and over time. Several 

statistically significant changes in AR rates were observed between January 2012 and 

December 2017 as well as over time with respect to age and care-setting. Overall, we 

note a higher level of AR among isolates of the same pathogen for children compared to 

adults and children treated in pediatric facilities compared to those treated at blended 

facilities. However, we also note varying trends for individual bug-drug pairs. 

Our findings with respect to the entire HF cohort indicated high resistance rates of 

gram-positive pathogens to clindamycin (Figure 3.2), consistent with a CDC report 

showing that clindamycin resistant Group B Streptococcus results in 31,000 infections 

and 1700 deaths per year (3). Our study also indicated high resistance rates of gram-

negative (GN) bacteria to cephalosporins (ceftriaxone, cefuroxime, cefotetan and 

cefazolin). Emergence of cephalosporin resistant GN infections such as, ceftriaxone 

resistant A. baumanii, third-generation cephalosporin resistant Klebsiella and E. coli 

isolates can have a detrimental impact on clinical outcomes (158–161). The emerging 

trends in resistance rates to clinically relevant antibiotics are worrisome and may lead to 

the spread of life-threatening infections, especially for inpatient settings. Our study 

reports an increase in ciprofloxacin resistant Shigella spp., (Fig 4) which is consistent 

with a health advisory published by the CDC describing an increase in the number of 

reported cases of ciprofloxacin resistant Shigellosis (162).  

Our study adds to the national concerns about AR as we show differences in 

resistance patterns between isolates from adults and children. At the baseline level, A. 
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baumanii were more resistant in isolates from adults when compared to children (Fig 

3A). This was consistent with the literature indicating that carbapenem-resistant A. 

baumannii is increasing in adults. However, in isolates from children, there was a 

significant decrease in trend of resistance after 2008 which may be related to the expert 

guidance released by the Infectious Diseases Society of America and the Society for 

Healthcare Epidemiology expert guidance in 2007 advising implementation of 

antimicrobial stewardship programs in acute care settings to combat MDR A baumannii 

during this time period (60, 163, 164). Another finding in our study indicates that P. 

aeruginosa isolates from children were more resistant than those from adults (Fig 3B). 

This was comparable to a recent analysis of over 87,000 P. aeruginosa isolates recovered 

from U.S. children that showed an increase in MDR P. aeruginosa from 15.4% to 26% 

between 1999–2012 (165). P. aeruginosa is known to be especially prevalent among 

children with cystic fibrosis (CF), up to 80%, but less common among adult CF patients 

(166, 167). An example of emerging trend among isolates from adults is cefuroxime 

resistant H. influenzae (Fig 5A). One possible explanation is the increased selective 

pressure due to the treatment guidelines for management of community acquired 

pneumonia in immunocompetent adults established by the American Thoracic Society 

and the Infectious Disease Society of America which recommends cefuroxime for 

influenza with bacterial superinfection (49).  

We also evaluated variations in resistance patterns based on care setting. For 

example, we show that K. pneumonia had a higher baseline resistance in isolates from 

children treated in blended facilities (Fig 3C). K. pneumonia accounts for nearly 15% of 

all HAI (168). Therefore, it is possible that blended facilities could have a higher 
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proportion of K. pneumonia associated HAI than pediatric facilities. One key example 

based on both age and care-setting is the emerging trend of Ertapenem resistant E. 

cloacae isolates from children and especially within the pediatric facilities (Fig 5). 

Ertapenem-Resistant Enterobacteriaceae are identified as an important problem 

associated with an increased 30-day mortality and a significant variation in antibiotic 

treatment for children with infrequent use of combination therapy (169). This rising trend 

could be due to the emergence and spread of resistant clones which may be easily 

transmitted within health-care settings (45). 

These patterns highlight the growing problem of bacteria developing resistance to 

first line therapies segmented by age and the type of care-setting. These trends are 

especially concerning for emergency department providers, because they are often the 

first point of contact for individuals presenting with these diseases and must make 

empiric antibiotic selections. Failure to identify and properly treat these organisms can 

have a devastating impact on patient outcomes (170). While institution specific 

antibiograms, exist, they are not universally available. One important strategy to combat 

AR is the use of care setting specific Antibiotic Stewardship Programs (ASPs) based on 

the type of facility and the age of the patient. ASPs work to promote the appropriate use 

of antibiotics and to decrease the spread of resistant organisms (147). ASPs have 

optimized antibiotic use and reduced healthcare costs but their effectiveness will be 

limited until they become more specific to the type of population and care setting (171, 

172). Our work suggests strategies to offer ASPs informed by national and local data. 

Our study also identified patterns with negative trends in resistance, including 

drops in A. baumanii resistance in the HF cohort and among adults. The 2019 CDC report 
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on A. baumanii indicated that resistance to fluroquniolones, extended-spectrum β-lactam, 

ampicillin/sulbactam and trimethoprim/ sulfamethoxazole has been decreasing between 

2013 – 2017, consistent with the findings of this study (3). The increased use of 

carbapenems as an empirical treatment for A. baumannii infections has potentially 

reduced the selective pressure to develop resistance to other antibiotics. These negative 

trends highlight that successful ASP decrease AR bacteria over time.  

Our study has known limitations. First, it could not be ascertained whether the 

infections were community acquired or nosocomial or whether resistance was primary or 

secondary, the AR rates were generalized to the full study population. Second, despite 

controlling for the total number of encounters, confounding variables for severity of 

resistance may exist. However, this does not change our result with respect to the 

proportion of baseline resistance or trend in resistance. Third, our work is observational 

and does not provide insights into the drivers for the changes in AR patterns.  

Our study also had several strengths. First, we created the MCS and C-MCS plots, 

a novel methodology plotting the slope of the proportion of resistance segregated by 

pathogen-antibiotic combinations to identify significant increase/decrease in the trend in 

resistance and enabling easy comparison between groups. We were able to discern 

patterns, identify linear relationships in 302 pathogen-antibiotic pairs, repeat the analysis 

for four groups and focus on significant insights readily apparent in the MCS and C-MCS 

plots. Second, we used a national data set that combines patient and facility level 

characteristics and validated the accuracy of the HF data source for the first time with 

internal antibiogram data. Third, we compared the level of resistance and the trend in AR 

at the care-setting level for the first time.  
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This study described prevalence and trends of AR among common gram-positive 

and gram-negative pathogens factoring the age of the patient and the care setting. Our 

methods can influence the development of data-driven ASP at local, regional and national 

levels.  
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CHAPTER 4 

DIFFERENCES IN THE PREVALENCE OF DEFINITIVE BUG-DRUG MISMATCH 

(BDM) THERAPY BETWEEN ADULTS AND CHILDREN BY CARE-SETTING 

4.1. Introduction 

Inappropriate antibiotic use poses a major challenge to public health in terms of 

increasing antibiotic resistance (AR), the likelihood of preventable adverse drug events 

(ADE), and the use and cost of health care services (173–175). The Centers of Disease 

Control (CDC) in the US reported that 55.7% of patients from 323 hospital settings were 

given antibiotics during their hospital stay (176). Within the outpatient setting in the US, 

there were an estimated 249.8 million total antibiotic prescriptions, equivalent to 763 

prescriptions per 1000 persons in the year 2018 (177). CDC estimates that total 

inappropriate antibiotic orders may approach 50% of all outpatient antibiotic use (178, 

179). An important and modifiable category of inappropriate antibiotic therapy include 

Bug-Drug Mismatch (BDM) occurrence in which the antibiotic therapy is given after the 

antibiotic susceptibility test result of the isolated pathogen was verified to be resistant 

(24, 25, 43). BDM is preventable with timely access to AST results and is an important 

quality concern as they hinder the opportunity to target susceptible antibiotics to known 

pathogen or to optimize empiric treatment.  

Antibiotic use varies significantly between children and adults (17, 18). Among 

pediatric patients, antibiotics are the most commonly prescribed drug class, and more 
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than half of hospitalized United States (US) children receive antibiotics (180). Around 

70,000 children visited the ED for antibiotic-related ADEs from oral antibiotics each year 

between 2011 to 2015 twice as often as adults. Many of these visits (41%) were from 

children 2 years or younger (181). Additionally, substantial differences exist between 

stand-alone pediatric sites and blended facilities caring for children and adults, including 

patient characteristics, clinical training, patient outcomes and distinction in guideline-

concordant antibiotic use for children (12–14, 182). Pediatric facilities vary substantially 

in their use of antibiotics among children. Children admitted to non-pediatric emergency 

departments were more likely to receive inappropriate antibiotics (15). 

To date, evaluation of appropriate pediatric antibiotic prescribing in US 

populations has been most extensive in outpatient settings (183, 184). While multiple 

studies in adult inpatient populations have demonstrated that 30%–50% of antibiotics are 

prescribed inappropriately, few studies have focused on US pediatric populations, and 

these reflect only single centers or specific diagnoses or interventions (19–22). 

Furthermore, most studies do not include detailed assessments of prescribing 

appropriateness. And there are no studies that provide estimates on the prevalence of 

BDM in pediatric populations between pediatric facilities and blended facilities. National 

estimates indicate that only 10% of pediatric hospitalizations occur in a pediatric 

children’s hospital, which suggests that research on antibiotic use in other facility types is 

also needed to inform pediatric antimicrobial stewardship efforts (185).  

Data derived from EHRs loaded into multi-institutional data warehouses provide a 

powerful resource for examining these issues. One such data resource, Cerner Health 

Facts™ (HF), includes granular micro-susceptibility test results and inpatient medication 
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orders from multiple sites (151). The primary objective of this study is to evaluate the 

overall BDM prevalence using the unique combination of laboratory and medication 

EHR data. The secondary objective is to compare the prevalence of BDM between 

children and adults as well as among children treated in primarily pediatric facilities and 

blended facilities.  

4.2.Methods 

4.2.1. Data Source 

We derived the study data from Cerner Health Facts database (Kansas City, MO, 

USA) populated by the daily extraction of discrete EHR data from participating 

organizations. HF data is de-identified in a manner compliant with US Health Insurance 

Portability and Accountability Act (HIPAA) standards. In the 2018 version of HF, which 

includes 54 million inpatient medication orders, 29 million microbiology results and 5 

million micro susceptibility results from 21 million patients in 473 facilities. The 

Children’s Mercy Institutional Review Board has designated research with HF data as 

“non-human subjects research.” 

4.2.2. Data Definition 

The efficacy of the antibiotics against the pathogens is interpreted as susceptible 

(S) if the isolates are not inhibited by the recommended dosage of antibiotic and there is a 

bacterial growth in the presence of the antibiotic; and resistant (R) if the isolates are 

inhibited by the recommended dosage of antibiotic (152). An antibiotic order is identified 

as BDM if the isolated pathogen is resistant to the antibiotic and the antibiotic is ordered 
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within 3 weeks after the antibiotic susceptibility test (AST) result was verified; and 

appropriate if the isolated pathogen is susceptible to the antibiotic.  

4.2.3. Study Design 

We conducted a retrospective study of patients with microbiology result, AST 

results and antibiotic orders within the same visit between 2009-2017. We included 14 

clinically relevant pathogen groups: Acinetobacter, Citrobacter, Enterobacter, 

Enterococcus, Escherichia, Hemophilus, Klebsiella, MRSA, MSSA, Proteus, 

Pseudomonas, Salmonella, Serratia, Streptococcus (186). In order to exclude positive 

cultures that were possibly due to contamination, pathogens were further filtered on 

sterile source sites (abdomen, abscess, blood, body fluid, bone, and incision). We 

included AST results of the pathogens which reported valid susceptible, intermediate, or 

resistant results with a valid date stamp. Critically important FDA recommended 

antibiotics were included in the study (187); topical, ophthalmic, or OTIC antibiotics 

were excluded. Every antibiotic order had an associated valid AST result within the same 

encounter. We separated the HF study cohort into four groups: encounters of the isolates 

from children (Age <18) (Group I); and adults (Age >18) (Group II); isolates of children 

from pediatric facilities (Group III) and isolates of children from blended facilities 

(Group IV). Facilities where the mean age of patients is less than eighteen were identified 

as likely pediatric facilities and facilities treating both adults and children were identified 

as blended facilities (Figure 4.1).  
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Figure 4.1. Data extraction and study design 
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4.2.4. Analysis 

The unit of analysis is an antibiotic order per encounter. We examined the 

prevalence of BDM for important antibiotics and across relevant pathogens. The 

prevalence of BDM is calculated as the number of BDM antibiotic orders by the total 

number of antibiotic orders. We compared the BDM prevalence between children and 

adults as well as between pediatric and blended facilities using Fisher’s exact test or the 

Pearson Chi-square test. All p-values were two-sided. R version 3.3.1 was used for all 

data management and analysis. 

4.3.Results 

4.3.1. Data Characteristics 

We included antibiotic orders and AST results of 14 pathogen groups 

(Acinetobacter spp., Citrobacter spp., Enterobacter spp., Enterococcus spp., Escherichia 

spp., Haemophilus spp., Klebsiella spp., MRSA, Proteus spp., Pseudomonas spp., 

Salmonella spp., Serratia spp., Staphylococcus spp., Streptococcus spp.) screened across 

27 antibiotics (amikacin, amoxicillin/clav, ampicillin/sulbactam, ampicillin, aztreonam, 

cefazolin, cefepime, cefoxitin, ceftazidime, ceftriaxone, cefuroxime, ciprofloxacin, 

clindamycin, doxycycline, ertapenem, erythromycin, gentamicin, levofloxacin, linezolid, 

meropenem, moxifloxacin, oxacillin, pip/tazo, rifampin, tigecycline, tobramycin, 

vancomycin). Vancomycin was the most ordered antibiotic at 24% (18,262 encounters) 

followed by levofloxacin at 15% (11,284 encounters). Isolate samples were recorded 

from 6 distinct body source sites. Abscess and blood isolated pathogens constituted 81% 
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of all isolates. The majority of the susceptibility tests used minimal inhibitory 

concentration (MIC) or Kirby- Bauer (KB) method.  

The total study cohort consists of 76,314 encounters from 71,552 patients in 217 

facilities from 64 non-affiliated organizations. Most facilities (72%) were non-teaching 

institutions, and the majority were urban (83%). More than half of the facilities had 

between 200-500 beds (53%), 41% had fewer than 200 beds and 6% had more than 500 

beds. Group I consists of 66,235 adults (93% of the HF study cohort) from 215 facilities 

while Group II consists of 5,329 children (7% of HF study cohort) from 113 facilities. 

Group III consists of 9 pediatric facilities treating 3,584 children. Group IV consists of 

104 blended facilities treating 1,748 children (Figure 4.1). 

4.3.2. BDM Prevalence  

The BDM prevalence in the overall study cohort was 7% (5,418 encounters). 

Erythromycin was the antibiotic with the highest BDM prevalence at 52% (133 

encounters) for all bacterial infections. This was followed by cefazolin at 17% (5631 

encounters) and ampicillin/sulbactam at 13% (1,295 encounters) (Figure 4.2).  
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Figure 4.2. Top 10 antibiotics with the highest BDM prevalence. (No. of BDM 

encounters, BDM Prevalence %) 

At the pathogen-antibiotic level, erythromycin ordered for Enterococcus sp., 

infections had the highest BDM prevalence of 58%, cefazolin ordered for Citrobacter sp., 

infections at 51% and ampicillin/sulbactam ordered for Citrobacter sp., infections at 21% 

(Figure 4.3).  
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Figure 4.3. Top 10 antibiotics with the highest BDM prevalence by bacterial infections. 

Highest BDM prevalence by pathogen for every antibiotic are highlighted and labelled. 

Size of the circle corresponds to the number of encounters for every pathogen-antibiotic 

combination. 

The overall difference in the prevalence of BDM was higher in adults when 

compared to children (7% Vs 5%). We compared BDM prevalence patterns at the 

antibiotic level based on age group (Figure 4.4A, 4.4B) and care setting (Figure 4.4C, 

4.4D). For example, ampicillin/sulbactam ordered for adults had a higher BDM 

prevalence than children (16% Vs 7%, p<0.0001). Other BDM associations were more 

common for children, for example cefazolin ordered for children had a higher BDM 

prevalence than adults (23% vs 18%, p<0.0001). Additionally, cefazolin ordered for 

children in blended facilities had a higher BDM prevalence than children in pediatric 

facilities (27% vs 21%, p<0.0001). Few BDM associations were slightly more common 

among children in pediatric facilities than blended facilities, such as the BDM prevalence 

for meropenem (6% vs 2%). 
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Figure 4.4. Top three antibiotics with the highest difference in BDM prevalence between 

subgroups. 
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We compared BDM prevalence patterns at the bug-drug level based on age group 

(Figure 4.5A, 4.5B) and care setting (Figure 4.5C, 4.5D). For example, gentamicin 

ordered for gentamicin resistant Serratia and MRSA isolates from adults had a higher 

BDM prevalence than children (14% Vs 3%, p<0.0001; 16% Vs 0%, p<0.0001). Several 

BDM associations at the bug-drug level were more common in children than adults, such 

as cefazolin ordered for cefazolin resistant Staphylococcus isolates (24% vs 12%, 

p<0.0001). More specifically, cefazolin ordered for cefazolin resistant Staphylococcus 

isolates from children in pediatric facilities had a higher BDM prevalence when 

compared to children in blended facilities (16% vs 10%, p <0.0001). Other bug-drug 

combinations had a slightly higher BDM prevalence among children in blended facilities 

than pediatric facilities, such as gentamicin ordered for gentamicin resistant Escherichia 

isolates (10% vs 7%, p<0.01).  
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Figure 4.5. Top three pathogen-antibiotic pairs with the highest difference in BDM 

prevalence between subgroups. 
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4.4.Discussion 

We use “real world” de-identified EHR data to evaluate the prevalence of bug-

drug mismatch (BDM) between laboratory results and medication orders. Using this 

approach, we found that the BDM prevalence for several critically important antibiotics 

differed between children and adults as well as within pediatric and blended facilities.  

Our study indicated that adults when compared to children had a higher BDM 

prevalence especially for ampicillin/sulbactam, tobramycin and levofloxacin. The higher 

BDM prevalence in adults probably relates to the increasing resistance of pathogens to 

ampicillin/sulbactam and levofloxacin in adults (188, 189); cautious use of 

aminoglycosides (tobramycin) in children due to variability in the dosing regimen and 

pharmacokinetics (190, 191). Since tobramycin exhibits the toxic effects common to 

aminoglycosides, i.e., ototoxicity and nephrotoxicity, interventions to decrease BDM 

prevalence among adults to maximize therapeutic outcomes and minimize adverse 

consequences are important (192). 

At the baseline level, 5% of the children in pediatric and blended facilities had a 

BDM in our study. These results are in agreement with a multi-center study involved 

examining the medical records of 11,784 children who had been prescribed antibiotics in 

32 U.S. pediatric hospitals found 6% of the children received at least one suboptimal 

antibiotic due to BDM (193). Our study shows specific bug-drug combinations with 

particularly high mis-match rates. For example, cefazolin ordered for Staphylococcus 

infections had a higher BDM prevalence among children than adults, particularly among 

children in pediatric facilities. Cefazolin treatment may be associated with clinical failure 

for serious MSSA infections due to the inoculum effect of cefazolin (194, 195). The 
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higher BDM prevalence could be related to the significant increase in cefazolin usage in 

pediatric facilities (19). These findings also parallel a recent study that showed continued 

inappropriate administration of prophylactic antibiotics before surgery among children in 

pediatric facilities of which cefazolin was most frequently prescribed (196). .  

Overall, erythromycin had higher BDM prevalence compared to any other 

antibiotic. Even though our findings agree with a single center study on inappropriate 

antibiotic orders in soft tissue infections (197), some or most of erythromycin 

prescriptions could have been ordered as a prokinetic agent which results in increased GI 

motility (198). The use of erythromycin as a prokinetic agent still does not constitute 

prudent antimicrobial prescribing and should be avoided as it can increase the emergence 

and spread of antibiotic resistance and the likelihood of Clostridium difficile disease 

(199).  

In this study, we did not analyze antibiotic use for empiric therapy, which is 

ordered for a patient with symptoms and signs of a serious infection before identification 

of the bacteria and before susceptibility test results are available (200). It is essential that 

empiric and definitive antibiotic therapy be separately defined, because interventions 

aimed at increasing the proportion of patients who receive appropriate empiric and 

definitive therapy would be inherently different. In populations in which inappropriate 

empiric therapy is associated with increased mortality mitigations such as clinical 

guidelines, hospital antibiograms, and consultations with infectious diseases specialists 

may improve the likelihood that empiric therapy is appropriate. In contrast, interventions 

aimed at increasing appropriate definitive therapy would involve facilitation of prompt 

access to the final culture and susceptibility test reports, as well as full comprehension of 
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the implications for treatment. Bug-drug mismatches as reported in this study are easily 

preventable with timely access to AST results. 

One proposed method of attenuating the rise of resistance is reducing unnecessary 

antibiotic use such as BDM through antimicrobial stewardship programs (ASPs) (24). 

Electronic health records (EHR) and clinical decision support systems (CDSS), provide 

real-time alerts updated when new microbial culture results become available or 

antimicrobial changes occur. These systems help ASPs by providing a means to track 

resistant pathogens, antimicrobial utilization, data on patient-specific microbiology 

cultures and susceptibilities, patient comorbidities, adverse drug reactions, and drug-drug 

interactions (201) . CDSS have both prebuilt and customizable ASP–related alerts which 

can be created for specific patient care units or for an entire institution (202). Prior 

studies assessing the impact of CDSS on ASPs have demonstrated process and economic 

benefits of these technologies by reducing the use of broad-spectrum antibiotics, 

improving antibiotic dosing, increased number of interventions and optimizing the 

selection of antibiotics (203–205). However, additional research is required to determine 

the true impact of CDSS on ASP and the goal of improved patient outcomes through 

optimized antimicrobial use. Another study evaluated the utility of the CDSS tool which 

provided a BDM alert where 64% of the blood culture isolates and 56% of the wound 

culture isolates required intervention (25). A case study on the ASP team in a community 

hospital in Illinois reported the use of the CDSS to create multiple algorithms to 

automatically identify BDM and streamlined antibiotic therapy for patients (206). The 

majority of these studies on ASP have been conducted in adult facilities. The Infectious 

Diseases Society of America and the Society for Healthcare Epidemiology of America 
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recommends further research in pediatric settings (109). Few studies on ASP 

implementation in pediatric and blended facilities have demonstrated decrease in 

antibiotic misuse (207, 208). 

Our work is based on a large, multicenter cohort and has several strengths. First, 

our data has representation of different regions in the US and a large sample size, which 

reduces biases of local origin, increases external validity and provides statistical power. 

Second, this is the first comprehensive exploration study comparing the BDM prevalence 

within age groups and care-setting.  

However, our study also had known limitations. First, because this study was 

retrospective, there is no way to determine whether the choice of antibiotics for the study 

population were confounded by factors beyond our recognition in the de-identified data. 

Second, we did not evaluate the impact of the BDM on antibiotic adverse events or other 

clinical outcomes in this work. Our study is observational in nature, which prevents us 

from determining causal relationships.  

In conclusion, we describe the first use of large scale EHR data to evaluate BDM 

at 217 US healthcare facilities from 64 non-affiliated organizations. We identify the 

importance of factoring the age of the patient and the care setting to address the 

prevalence of BDM. Our findings clearly demonstrate an opportunity for further 

outcomes research and for readily implemented interventions such as development of 

data-driven CDSS tools to assist ASP at local, regional and national levels. 

  



62 

 

 

 

CHAPTER 5 

PREDICTING BUG-DRUG MISMATCH (BDM) OCCURRENCE IN EHR DATA 

USING MACHINE LEARNING MODELS 

5.1. Introduction 

Inappropriate antibiotic therapy is an important driver for the global increase in 

antibiotic resistance (AR) (72, 76). The CDC estimates that more than 70% of the 

bacteria responsible the 2 million infections acquired in US hospitals each year are 

resistant to at least one commonly used antibiotic, and 20% to 50% of antibiotics 

prescribed in US acute-care hospitals are unnecessary or inappropriate (209). In addition 

to increase in AR, consequences of inappropriate antibiotic therapy also include increase 

in disease severity, disease length, health complications, risk of death, healthcare costs 

and re-hospitalization (23, 91–94).  

An important and modifiable category of inappropriate antibiotic therapy is Bug-

Drug Mismatch (BDM) occurrence in which the antibiotic therapy is given after the 

antibiotic susceptibility test result of the isolated pathogen was verified to be resistant. 

Patients with a BDM occurrence have questionable therapeutic benefit and increasing 

adverse outcomes as the patient is prescribed incorrect antibiotic to which the pathogen is 

resistant (23). However, little information exists on the identification of independent risk 

factors for BDM occurrence which may be useful for the development of preventive 

measures like development of Clinical Decision Support (CDS) tools as part of Antibiotic 
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Stewardship Programs (ASP) (24, 25). Data derived from Electronic Health Records 

(EHR) loaded into multi-institutional data warehouses containing facility metrics, clinical 

conditions of the patients, antibiotic orders and microbiology results provide a powerful 

resource for addressing these issues.  

Clinical EHR systems and their rich, heterogeneous data provide opportunities for 

impactful secondary use (210). Fully taking advantage of such large repositories of data 

is a challenge because of sheer complexity of the data (151). Machine learning (ML) 

methods offer nonlinear and nonparametric methods to address such challenges by their 

ability to accommodate larger feature sets, to identify implicit or explicit feature 

interactions and identify subtle patterns in data while remaining robust to problems in 

data quality and completeness (211). While most of the published IAAT prediction 

studies have focused on logistic regression models, ML models have potential in solving 

complex and challenging clinical outcome problems (26–31). ML procedures are capable 

of processing complex nonlinear relationships between predictors, yield more stable 

predictions and high-order effects in the predictive variables, which are difficult to handle 

with conventional parametric logistic regression methods (212, 213). Although there are 

ML studies predicting antibiotic resistance (32–34), there are no ML studies on 

predicting antibiotic use combined with AR. 

Therefore, the first goal of this study was to identify the likely risk factors 

associated with BDM occurrence using logistic regression. The second aim was to 

develop machine learning models that predict the occurrence of BDM and compare their 

predictive performance with the reference logistic regression model.  
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5.2. Methods 

5.2.1. Data Source 

We derived the study data from Cerner Health Facts database (Kansas City, MO, 

USA) populated by the daily extraction of discrete EHR data from participating 

organizations. HF data is de-identified in a manner compliant with US Health Insurance 

Portability and Accountability Act (HIPAA) standards. This work was performed with 

the 2018 version of the Health Facts which includes data from 664 facilities associated 

with 100 non-affiliated health systems. This version of the HF data includes 69 million 

patients, 507 million encounters, 29 million microbiology results, 729 million medication 

orders, 989 million diagnoses and 6.9 billion clinical events. The Children’s Mercy 

Institutional Review Board has designated research with HF data as “non-human subjects 

research.” 

5.2.2. Study Design 

We conducted a prognostic study of combined data of patients with a 

microbiology culture result, antibiotic susceptibility test (AST) results and antibiotic 

orders within the same visit between 2009-2017. We included clinically relevant 

pathogens (133), critically important antibiotics from WHO (187), samples obtained only 

from sterile source sites to exclude pathogens as possible contaminants. We excluded 

encounters that did not have valid AST test result or interpretation. We excluded 

antibiotic orders which were topical, ophthalmic, or OTIC.  
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5.2.3. Study Variables 

Every antibiotic order was either classified as a BDM if the isolated pathogen was 

resistant to the antibiotic and the antibiotic was ordered within 3 weeks after the AST 

result was verified; or appropriate if the isolated pathogen was susceptible to the 

antibiotic. We included patient demographic characteristics such as age group, sex, race; 

and facility characteristics such as census region, urban/rural status, teaching facility 

status, bed size, acute status, freestanding pediatric facility status. There were 27 

critically important antibiotics and if a patient was prescribed to more than one antibiotic, 

we defined it as combination therapy. There were 14 clinically relevant pathogens and if 

a patient had more than one isolated pathogen we defined it as polymicrobial bacteremia. 

Turn-around-time for the AST test was defined as the time difference between the 

ordered date and result verified date). A patient was classified as expired based on the 

discharge disposition (expired or expired at home, expired in a medical facility or expired 

place unknown). We also included source site of the culture sample; year of the 

encounter; duration of the hospital stay; antibiotic therapy duration; presence of surgery 

and admission to ICU. The most common patient comorbidities associated with 

inappropriate antibiotic therapy were included: Sepsis, cardiovascular disease, diabetes, 

cancer, hypertension, neurological disorder, hypothyroidism, psychological disorder, 

anemia, renal failure, liver disease, rheumatoid arthritis and fluid electrolyte disorder (92, 

94, 214, 215). The severity of comorbidities were calculated by the Elixhauser Van 

Walraven weighted score in which a higher score indicates greater severity (216). 
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5.2.4. Analysis 

We conducted multiple imputation using the random forest method for variables 

with missing data: teaching status of the facility (missing values: 6.2%), mortality (12%), 

antibiotic therapy duration (7.8%), admission to ICU (8%). Random forest imputation is 

a nonparametric algorithm that can accommodate nonlinearities and interactions and does 

not require a particular parametric model to be specified (217). Missingness was imputed 

using all the variables in the study cohort. 

Descriptive statistics were implemented to summarize the patients’ characteristics 

as mean (SD) or proportions. Chi-square or Fisher’s exact test for the categorical data and 

Student’s -test or Mann-Whitney test for the continuous data were employed to compare 

data between different groups.  

To predict the probability of BDM occurrence, we developed the reference model 

(logistic regression model) and 4 machine learning models in the training set (70% 

random sample). Using the predictors stated above, we constructed 4 machine learning 

prediction models: (i) logistic regression with lasso regularization (218), (ii) random 

forest (219), (iii) gradient-boosted decision tree (220), and (iv) deep neural network 

(221). Lasso regularization extends standard regression models by enabling us to select 

important predictors (feature selection), more interpretable and clinically useful when 

compared to a standard logistic regression model using many predictors. For the lasso 

regression, we chose the regularization parameter (lambda). This gives the minimal 

misclassification error rate in order to penalize large coefficients from small sample sizes. 

This penalty function (minimal lambda) shrinks large coefficients toward 0, minimizing 
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potential overfitting (222). The minimal lambda was calculated using 10-fold cross-

validation using the glmnet package (218).  

Random forest is an ensemble of decision trees created by using bootstrap 

samples of the training data and random feature selection in tree induction. In this model, 

we used out-of-bag (left-out samples after bagging) estimation to measure the prediction 

errors (223).  

Gradient-boosted decision tree is another ensemble approach—an additive model 

of decision trees estimated by gradient descent. For the random forest and gradient-

boosted tree models, we used a grid search strategy to identify the best combination of 

hyperparameters by using the ranger and caret packages (219, 220). In the lasso 

regression and gradient-boosted tree models, we used 10-fold cross-validation to measure 

the prediction error with a smaller variance than that from a single train-test set split 

(224).  

Deep neural networks are a class of machine learning algorithms consisting of 

multiple layers of nonlinear processing units to learn the value of the parameters that 

result in the best prediction of outcome. In the deep neural network, we constructed 5-

layer feedforward model with adaptive moment estimation optimizer using Keras 

implemented in R statistical software (225). For the deep neural network, we developed 

the final models by manually tuning the hyperparameters, such as the number of layers 

and hidden units, learning rate, learning rate decay, dropout rate, batch size, and epochs, 

using the keras package (Figure 5.1)(221). In this model, to minimize potential 

overfitting, we used dropout that randomly removes portions of units in the network, 
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ridge regularization that shrinks large coefficients, and batch normalization that 

normalizes the means and variances of layer inputs (226, 227).  

 

 

Figure 5.1. Hyperparameters for deep neural network model 

 

In the test set (30% random sample), we measured the prediction performance of 

each model by computing (1) accuracy (percentage of correct predictions) (2) C-statistics 

(ie, the area under the receiver operating characteristic [ROC] curve), (3) prospective 

prediction results (ie, sensitivity, specificity, positive predictive value, negative predictive 

value, positive likelihood ratio, and negative likelihood ratio).  
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To gain insights into the contribution of each predictor to machine learning 

models, we also computed the variable importance in the gradient-boosted decision tree 

and random forest models for each outcome. The variable importance is a scaled measure 

to have a maximum value of 100. A DeLong test was used to compare ROC curves 

(228). We considered 2-sided P < .05 to be statistically significant. All analyses were 

performed with R statistical software version 3.4.1 (R Foundation for Statistical 

Computing). 

5.3. Results 

5.3.1. Characteristics of Study Cohort 

The study cohort consists of 72,538 encounters from 767,971 patients in 215 

facilities. The majority of the patients were between 18-65 years old (50%), and 52.6% 

were male patients. Most encounters were from teaching institutions (71%), and the 

majority were in urban environments (83%). More than half of the encounters were from 

facilities between 200-500 beds (65%), 25% had more than 500 beds and 7% had less 

than 100.  

 The most commonly identified antibiotic therapy were combination therapy 

(18%) followed by levofloxacin (11%). The most commonly identified pathogens were 

MSSA (21.2%) followed by Escherichia (21%). Abscess and blood isolated pathogens 

constituted 81% of all isolates. The common comorbidities were cardiovascular disease 

(58.7%), hypertension (57.9%), fluid electrolyte disorders (49%), sepsis (42%) and 

diabetes (37.5%). Overall, the mean Elixhauser weighted score was 12.1, the mortality 

rate was 0.9% and the ICU admission rate was 4.8%. The average number of days for 
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length of hospital stay was 15 days, turn-around time for the AST test was 3 days and 

antibiotic therapy duration was 12 days (Tables 5.1-5.5). 

5.3.2. Characteristics of BDM Occurrence 

There were 5,157 antibiotic orders classified as BDM therapy (7%). When 

compared to appropriate therapy, BDM had a higher percentage of combination antibiotic 

therapy (16% vs 48%; p<0.001), MRSA infections (14% vs 20%; p<0.001), 

polymicrobial infections (4% vs 13%; p<0.001), specimen collected from bone (0.7% vs 

2%; p<0.001), cardiovascular disease (58% vs 64%; p<0.001), neurological disorder 

(21% vs 26%; p<0.001), renal failure (26% vs 32%; p<0.001), psychological disorders 

(31% vs 35%; p<0.001), anemia (14% vs 18%; p<0.001), higher Elixhauser weighted 

score (Mean; 11.9 vs 13.7; p<0.001); ICU admission (4.6% vs 6.3%; p<0.001); average 

duration of stay (14 days vs 19 days; p<0.001); average antibiotic therapy duration (17.5 

days vs 22 days; p<0.001) (Tables 5.1-5.5). 
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Table 5.1. Patient characteristics 

Patient  

Characteristics 

Appropriate  

(N=63282) 

BDM 

(N=4689) 

Total  

(N=67971) 

p value 

Gender 
   

< 0.001 

   Female 30121 (47.6%) 2109 (45.0%) 32230 (47.4%) 
 

   Male 33161 (52.4%) 2580 (55.0%) 35741 (52.6%) 
 

Age Group 
   

< 0.001 

0 - 17 4857 (7.7%) 278 (5.9%) 5135 (7.6%) 
 

18 - 64 31576 (49.9%) 2361 (50.4%) 33937 (49.9%) 
 

>= 65 26849 (42.4%) 2050 (43.7%) 28899 (42.5%) 
 

Race 
   

0.459 

   African American 12953 (20.5%) 972 (20.7%) 13925 (20.5%) 
 

   Asian/Pacific 

Islander 

1062 (1.7%) 92 (2.0%) 1154 (1.7%) 
 

   Biracial 149 (0.2%) 10 (0.2%) 159 (0.2%) 
 

   Caucasian 43366 (68.5%) 3210 (68.5%) 46576 (68.5%) 
 

   Hispanic 734 (1.2%) 60 (1.3%) 794 (1.2%) 
 

   Other 5018 (7.9%) 345 (7.4%) 5363 (7.9%) 
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Table 5.2. Facility Characteristics 

Facility  

Characteristics 

Appropriate 

(N=67381) 

BDM 

(N=5157) 

Total  

(N=72538) 

p value 

Pediatric 3667 (5.4%) 219 (4.2%) 3886 (5.4%) <0.001 

Acute 67313 (99.9%) 5150 (99.9%) 72463 (99.9%) 0.453 

Teaching facility 47915 (71.1%) 3727 (72.3%) 51642 (71.2%) 0.076 

Urban status 55973 (83.1%) 4169 (80.8%) 60142 (82.9%) < 0.001 

Census Region 
   

< 0.001 

   Midwest 10092 (15.0%) 911 (17.7%) 11003 (15.2%) 
 

   Northeast 14015 (20.8%) 1098 (21.3%) 15113 (20.8%) 
 

   South 30943 (45.9%) 2282 (44.3%) 33225 (45.8%) 
 

   West 12331 (18.3%) 866 (16.8%) 13197 (18.2%) 
 

Bed size range 
   

< 0.001 

   <5 1478 (2.2%) 78 (1.5%) 1556 (2.1%) 
 

   6-99 3898 (5.8%) 286 (5.5%) 4184 (5.8%) 
 

   100-199 9417 (14.0%) 636 (12.3%) 10053 (13.9%) 
 

   200-299 17167 (25.5%) 1093 (21.2%) 18260 (25.2%) 
 

   300-499 18163 (27.0%) 1604 (31.1%) 19767 (27.3%) 
 

   500+ 17258 (25.6%) 1460 (28.3%) 18718 (25.8%) 
 

Year of encounter     

2009 4210 (6.2%) 302 (5.9%) 4512 (6.2%) < 0.001 

2010 5048 (7.5%) 471 (9.1%) 5519 (7.6%)  

2011 4850 (7.2%) 391 (7.6%) 5241 (7.2%)  

2012 5798 (8.6%) 483 (9.4%) 6281 (8.7%)  

2013 7806 (11.6%) 646 (12.5%) 8452 (11.7%)  

2014 9273 (13.8%) 730 (14.2%) 10003 (13.8%)  

2015 9818 (14.6%) 739 (14.3%) 10557 (14.6%)  

2016 11485 (17.0%) 818 (15.9%) 12303 (17.0%)  
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Table 5.3. Antibiotic characteristics 

Antibiotics Appropriate 

(N=67381) 

BDM 

(N=5157) 

Total  

(N=72538) 

   Amikacin 53 (0.1%) 2 (0.0%) 55 (0.1%) 

   Amox/Clav 561 (0.8%) 44 (0.9%) 605 (0.8%) 

   Amp/Sulb 614 (0.9%) 68 (1.3%) 682 (0.9%) 

   Ampicillin 861 (1.3%) 58 (1.1%) 919 (1.3%) 

   Aztreonam 99 (0.1%) 7 (0.1%) 106 (0.1%) 

   Cefazolin 3058 (4.5%) 429 (8.3%) 3487 (4.8%) 

   Cefepime 1483 (2.2%) 49 (1.0%) 1532 (2.1%) 

   Cefoxitin 89 (0.1%) 9 (0.2%) 98 (0.1%) 

   Ceftazidime 381 (0.6%) 19 (0.4%) 400 (0.6%) 

   Ceftriaxone 7323 (10.9%) 155 (3.0%) 7478 (10.3%) 

   Cefuroxime 92 (0.1%) 3 (0.1%) 95 (0.1%) 

   Ciprofloxacin 6923 (10.3%) 521 (10.1%) 7444 (10.3%) 

   Clindamycin 3996 (5.9%) 329 (6.4%) 4325 (6.0%) 

   Combination 10939 (16.2%) 2209 (42.8%) 13148 (18.1%) 

   Doxycycline 165 (0.2%) 3 (0.1%) 168 (0.2%) 

   Ertapenem 637 (0.9%) 2 (0.0%) 639 (0.9%) 

   Erythromycin 33 (0.0%) 33 (0.6%) 66 (0.1%) 

   Gentamicin 1338 (2.0%) 60 (1.2%) 1398 (1.9%) 

   Levofloxacin 7023 (10.4%) 789 (15.3%) 7812 (10.8%) 

   Linezolid 2606 (3.9%) 5 (0.1%) 2611 (3.6%) 

   Meropenem 1124 (1.7%) 40 (0.8%) 1164 (1.6%) 

   Moxifloxacin 295 (0.4%) 17 (0.3%) 312 (0.4%) 

   Oxacillin 700 (1.0%) 9 (0.2%) 709 (1.0%) 

   Pip/Tazo 3233 (4.8%) 91 (1.8%) 3324 (4.6%) 

   Rifampin 1108 (1.6%) 13 (0.3%) 1121 (1.5%) 

   Tigecycline 90 (0.1%) 1 (0.0%) 91 (0.1%) 

   Tobramycin 266 (0.4%) 12 (0.2%) 278 (0.4%) 
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Table 5.4. Microbiology pathogen and source site characteristics 

Microbiology 

characteristics  

Appropriate 

 (N=67381) 

BDM 

(N=5157) 

Total  

(N=72538) 

Pathogens 
   

   Acinetobacter 511 (0.8%) 94 (1.8%) 605 (0.8%) 

   Citrobacter 715 (1.1%) 42 (0.8%) 757 (1.0%) 

   Enterobacter 2226 (3.3%) 280 (5.4%) 2506 (3.5%) 

   Enterococcus 4330 (6.4%) 513 (9.9%) 4843 (6.7%) 

   Escherichia 14399 (21.4%) 799 (15.5%) 15198 (21.0%) 

   Haemophilus 173 (0.3%) 1 (0.0%) 174 (0.2%) 

   Klebsiella 5396 (8.0%) 204 (4.0%) 5600 (7.7%) 

   MRSA 9101 (13.5%) 1022 (19.8%) 10123 (14.0%) 

   Polymicrobial 2754 (4.1%) 680 (13.2%) 3434 (4.7%) 

   Proteus 2460 (3.7%) 158 (3.1%) 2618 (3.6%) 

   Pseudomonas 4599 (6.8%) 272 (5.3%) 4871 (6.7%) 

   Salmonella 236 (0.4%) 4 (0.1%) 240 (0.3%) 

   Serratia 1124 (1.7%) 125 (2.4%) 1249 (1.7%) 

   Staphylococcus 14576 (21.6%) 837 (16.2%) 15413 (21.2%) 

   Streptococcus 4781 (7.1%) 126 (2.4%) 4907 (6.8%) 

Source Site 
   

   Abdomen 1671 (2.5%) 125 (2.4%) 1796 (2.5%) 

   Abscess 26167 (38.8%) 2439 (47.3%) 28606 (39.4%) 

   Blood 29967 (44.5%) 1585 (30.7%) 31552 (43.5%) 

   Body Fluid 3163 (4.7%) 223 (4.3%) 3386 (4.7%) 

   Bone 490 (0.7%) 78 (1.5%) 568 (0.8%) 

   Incision 2015 (3.0%) 174 (3.4%) 2189 (3.0%) 
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Table 5.5. Clinical characteristics and conditions 

Clinical 

Characteristics 

Appropriate 

 (N=67381) 

BDM 

(N=5157) 

Total  

(N=72538) 

p value 

Sepsis 28449 (42.2%) 2079 (40.3%) 30528 (42.1%) 0.008 

Surgery 1009 (1.5%) 98 (1.9%) 1107 (1.5%) 0.023 

Cardiovascular  39246 (58.2%) 3304 (64.1%) 42550 (58.7%) < 0.001 

Diabetes 24995 (37.1%) 2238 (43.4%) 27233 (37.5%) < 0.001 

Cancer 8721 (12.9%) 669 (13.0%) 9390 (12.9%) 0.951 

Hypertension 38870 (57.7%) 3161 (61.3%) 42031 (57.9%) < 0.001 

Neurological  14113 (20.9%) 1355 (26.3%) 15468 (21.3%) < 0.001 

Hypothyroidism 9535 (14.2%) 829 (16.1%) 10364 (14.3%) < 0.001 

Psychological  20928 (31.1%) 1817 (35.2%) 22745 (31.4%) < 0.001 

Anemia 9696 (14.4%) 928 (18.0%) 10624 (14.6%) < 0.001 

Renal Failure 17703 (26.3%) 1646 (31.9%) 19349 (26.7%) < 0.001 

Liver Disease 9023 (13.4%) 697 (13.5%) 9720 (13.4%) 0.8 

Rheum Arthritis 4280 (6.4%) 322 (6.2%) 4602 (6.3%) 0.759 

Fluid Electrolyte 33155 (49.2%) 2814 (54.6%) 35969 (49.6%) < 0.001 

Elixhauser  

   

< 0.001 

    Mean (SD) 11.97 (13.12) 13.78 (13.62) 12.10 (13.16) 

 

      Range -18 to 78 -14 to 64 -18 to 78 

 

Expired 591 (0.9%) 28 (0.5%) 619 (0.9%) 0.012 

ICU 3123 (4.6%) 327 (6.3%) 3450 (4.8%) <0.001 

Length of stay  

   

< 0.001 

    Mean (SD) 14.432 (33.284) 19.357 (35.947) 14.782 (33.504) 

 

    Range 0 - 2656 0 - 1504 0-2656 

 

Turn-around-time  

   

0.335 

    Mean (SD) 2.954 (8.984) 3.074 (2.171) 2.962 (8.678) 

 

    Range 0  - 1222 0  - 122 0 - 1222 

 

Antibiotic duration  

   

< 0.001 

     Mean (SD) 17.523 (48.124) 22.311 (38.379) 17.863 (47.513) 

 

     Range 0 - 5855 0 - 844  0 - 5855 
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From the multiple logistic regression model, factors significantly associated with 

the BDM occurrence included (OR; 95% CI): patients with sepsis (1.11; 1.01-1.21); 

psychological disorders (1.12; 1.03-1.23); neurological disorders (1.15; 1.04-1.28); 

anemia (1.15; 1.03-1.27); Elixhauser weighted score (1.009; 1.003-1.015); MRSA 

infection (1.42; 1.06-1.91); Enterococcus infection (2.12; 1.57-2.90); bone as a sample 

source site (2.35; 1.58-3.48); ICU admission (1.32; 1.12-1.54); facilities with a bed size > 

500 (1.66; 1.78-1.23); facilities with a bed size (300-499) (1.53;1.10-2.16); Asian/pacific 

Islander ethnicity (1.32; 0.99-1.74); adults (age 18-64) (1.69; 1.30-2.23); senior adults 

(age >= 65) (1.936; 1.481-2.559); encounter year 2010 (1.23; 1.01-1.50) (Figure 5.2, 

Table 5.6).  
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Figure 5.2. Odd ratios of significant risk factors associated with BDM therapy 

estimated from logistic regression model 
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Table 5.6. Risk factors associated with BDM therapy estimated from logistic regression 

model 

Risk factors OR (95% CI) P value 

Bed size range 300-499 1.532(1.1-2.164) 0.0133 

Bed size range 500+ 1.665(1.178-2.386) 0.0046 

Race- Asian/Pacific Islander 1.328(0.996-1.748) 0.0479 

Sepsis 1.112(1.02-1.212) 0.016 

Elixhauser Weighted Score 1.009(1.003-1.015) 0.0043 

Adult (18 -64 years) 1.699(1.309-2.23) 0.0001 

Senior adults (>=65 years) 1.936(1.481-2.559) <0.0001 

Pathogen - Enterococcus 2.123(1.57-2.901) <0.0001 

Pathogen - MRSA 1.418(1.065-1.912) 0.0192 

ICU 1.323(1.13-1.543) 0.0004 

Length of Stay 1.001(1-1.002) 0.0045 

Source Site - Bone 2.357(1.588-3.481) <0.0001 

Neurological disorder 1.153(1.038-1.279) 0.0076 

Psychological disorder 1.125(1.029-1.229) 0.0096 

Anemia 1.153(1.039-1.277) 0.0069 

 

 

5.3.3. Prediction of BDM occurrence 

The discrimination ability of different models, as represented by ROC curves, is 

shown in figure 5.3.  
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Figure 5.3. Receiver operating characteristics curves. Prediction ability of the reference 

model logistic regression (LG), logistic regression with lasso regularization (lasso), deep 

neural network (DNN), gradient boosted decision tree (GBD), random forest (RF) in the 

test set. The corresponding values of the area under the curve for each model (ie, C 

statistics) are presented in Table 5.7. 

The reference model (logistic regression) had the lowest discriminative ability (C 

statistic, 0.78; 95% CI, 0.71-0.85), while all the 4 machine learning models had a higher 

discriminative ability. For example, the random forest model and GBD had significantly 

higher C statistics (random forest: 0.8364; P <0.01 and GBD: 0.8442; P < 0.01). All the 

machine learning had a higher accuracy than the reference model (eg, 0.899 in the 

reference model vs 0.9061 in the gradient boosted decision tree). Additionally, compared 

with the reference model, all machine learning except lasso had a higher specificity (eg, 

0.37 [95% CI, 0.34-0.39] in the reference model vs 0.51 [95% CI, 0.48-0.53] in the 

random forest) to predict BDM occurrence. The positive predictive values (tests for BDM 
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occurrence outcome) of all models were high (0.95 [95% CI, 0.93-0.96] in all models) 

and the negative predictive values were lower (0.34 [95% CI, 0.30-0.39] in all models). 

Compared to the reference model, random forest model had both higher positive 

likelihood ratio (1.48 [95% CI, 1.43-1.54] vs 1.85 [95% CI, 1.76-1.95]) and negative 

likelihood ratio (0.16 [95% CI, 0.15-0.18] vs 0.17 [95% CI, 0.16-0.19]) (Table 5.7). 

Table 5.7. Prediction ability of the reference model and 4 machine learning models  

Model C 

statisti

c 

  

P-value Sensitiv

ity 

(95% 

CI) 

Specific

ity 

(95% 

CI) 

PPV  

(95% 

CI) 

NPV  

(95% 

CI) 

PLR NLR Accurac

y 

LR 0.8049 Ref. 0.94 

(0.93-

0.95) 

0.37 

(0.34-

0.39) 

0.95 

(0.93-

0.96) 

0.32 

(0.30-

0.34) 

1.48 

(1.43-

1.54) 

0.16 

(0.15-

0.18) 

0.8990 

Lasso 0.8057 0.27 0.94 

(0.92-

0.95) 

0.36 

(0.34-

0.39) 

0.95 

(0.93-

0.96) 

0.33 

(0.30–

0.35) 

1.48 

(1.43-

1.54) 

0.16 

(0.15-

0.17) 

0.9000 

DNN 0.845 0.003 0.93 

(0.94-

0.95) 

0.44 

(0.39-

0.48) 

0.95 

(0.93-

0.96) 

0.35 

(0.34-

0.37) 

1.69 

(1.56-

1.73) 

0.18 

(0.14 – 

0.19) 

0.9010 

GBD 0.8442 0.005 0.94 

(0.94-

0.95) 

0.42 

(0.40-

0.45) 

0.95 

(0.95-

0.96) 

0.37 

(0.35-

0.39) 

1.64 

(1.57-

1.71) 

0.13 

(0.12-

0.14) 

0.9061 

RF 0.8364 0.025 0.91 

(0.91-

0.92) 

0.51 

(0.48 – 

0.53) 

0.96 

(0.96-

0.96) 

0.31 

(0.29-

0.33) 

1.85 

(1.76-

1.95) 

0.17 

(0.16-

0.19) 

0.9001 

Reference (Ref.) model;  Logistic regression (LG); logistic regression with lasso 

regularization (lasso); deep neural network (DNN); gradient boosted decision tree 

(GBD); random forest (RF)  

 

5.3.4. Variable impact in ML models 

Figure 5.4 demonstrates the impact of the variables in random forest and gradient 

boosted decision tree.  
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Figure 5.4. Importance of Each Predictor in the Gradient-Boosted Decision Tree Models 

and Random Forest models. The variable importance is a measure scaled to have a 

maximum value of 100. 
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In both the models, MRSA infection, blood as a source site, length of stay, 

duration of antibiotic therapy, combination antibiotic therapy, cefazolin and ciprofloxacin 

therapy were important predictors. 

5.4. Discussion 

In this analysis of nationally representative data of antibiotic orders and AST test 

results, we were able to identify significant risk factors for BDM occurrence and we 

applied machine learning approaches (ie, lasso regression, random forest, gradient-

boosted decision tree, and deep neural network) to improve the overall discrimination 

ability to predict BDM occurrence based on machine learning prediction metrics.  

In our study we noted that adults (age 18-64) were 69% more likely and senior 

adults (age > 65) were 93% more likely to have a BDM than children. Our finding 

indicates that the age group of the patient has a significant impact on the appropriateness 

of the antibiotic therapy. This finding is probably due to the differences in antibiotic need 

and use between children and adults (17, 18). Antimicrobial adverse effects also differ 

between children and adults (105, 106).  

Our study noted a significant association between complex patient conditions and 

the risk of BDM occurrence. Patients with sepsis were 11% more likely of receiving a 

BDM. Studies on sepsis have shown that inappropriate antibiotics or delayed 

administration of antibiotics is associated with detrimental outcomes (229–231). Patients 

with anemia were 15% more likely, patients with psychological disorders were 12% more 

likely and patients with neurological disorders were 15% more likely to receive a BDM. 

Several studies have explored the psychiatric adverse effects of antibiotics where early 

life exposure antibiotics have been associated with elevated risk of some psychiatric 



83 

 

disorders. Managing BDM occurrence could reduce the incidence of these sequelae (234, 

235). Additionally, the odds of receiving a BDM increases by 9% with every unit 

increase in the weighted Elixhauser score. Several studies have examined the importance 

of comorbidity associated with inappropriate antibiotic use (236–238). Our study also 

identifies patients in an ICU were 32% more likely to have a BDM. This finding is 

consistent with other work indicating that 30% to 60% of antibiotics prescribed in ICUs 

are unnecessary, inappropriate, or suboptimal (239, 240). ICU’s have a disproportionately 

high incidence of difficult to treat AR infections where patients may receive the incorrect 

antibiotic as a salvage therapy (241, 242). Appropriate antibiotic stewardship in ICUs 

should include rapid identification and optimal treatment of bacterial infections by 

improving the ability to avoid BDM. Another potential factor in our study was patients 

with MRSA infection were 41% more likely to have a BDM. This is possible due to the 

widespread prevalence of multi-drug resistance and pan-drug resistance in MRSA 

infections (61). This finding can also be related to the increasing evidence that 

inappropriate antibiotics not only encourage overgrowth with MRSA but may also 

enhance pathogenicity (243).  

Another significant risk factor was patients from larger facilities (bed size greater 

than 500), were 66% more likely and facilities with bed size between 300-500 were 53% 

more likely to have a BDM than small ambulatory clinics (bed size < 5). This finding 

parallels findings from several studies which reported variation in inappropriate antibiotic 

ordering among and within different health care settings (244, 245).  

Although we were not able to include individual provider characteristics in our 

study, other work has noted that cultural factors (such as patient attitudes) and external 
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forces (such as insurance type, accessibility and price of antibiotics, or public opinion) 

may influence the prescribing of antibiotics (246, 247). Prior studies suggest that provider 

beliefs stemming from the number of years of experience and method of training factor 

into the decision to prescribe antibiotics, and that the providers have individual treatment 

styles regardless of patient characteristics (248, 249). Another study found that resident 

physicians had lower rates of antibiotic ordering than attending physicians, which may 

reflect an impact of trainee education regarding antimicrobial stewardship. Other local 

factors, such as the culture within each provider’s practice, may contribute to the 

decision-making process in prescribing an antibiotic (250). Providers within a clinic may 

coalesce around prescribing practices, especially if they share patients who have 

expectations about receiving antibiotics in particular situations. These differences in 

prescribing behavior among providers and clinics may offer targets for future 

interventions. Further research is needed to characterize antibiotic prescribing patterns for 

patients managed in these settings as this likely represents an important, yet under 

recognized, area of consideration in attempts to improve antibiotic stewardship. 

The findings reported in this study are critical in designing antibiotic stewardship 

efforts such as clinical decision support system tools which provide BDM alert focused 

on the age group of the patients to prevent BDM and improve patient outcomes (24, 25). 

We recommend tailoring these interventions to specific patient characteristics, patient 

comorbidities, settings of care and provider types which could be more effective in 

improving appropriate prescribing and ultimately improving patient outcomes as well as 

reducing antibiotic resistance. Additionally, future national stewardship efforts should 

target education and antimicrobial stewardship interventions for advanced practice 
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providers, as their role continues to grow (109). Educational interventions may include 

dissemination of susceptibility information, use of computer-based algorithms, and 

academic detailing. An understanding of the factors contributing to potentially 

inappropriate antibiotic use can help guide policy makers to design an effective 

educational or administrative intervention. Several CDSS tools have been developed 

recently using machine learning techniques such as the ability to recommend initial 

treatment for patients with hepatocellular carcinoma, to identify prescriptions with a high 

risk of medication error and to optimize medication therapies for Parkinson’s disease 

(119, 251, 252). The increasingly widespread availability of electronic health records and 

the development of big data analytics are currently paving the way for the use of machine 

learning techniques, which relies on sophisticated algorithms with the capacity to analyze 

vast quantities of data to identify potential medical problems (253). 

The machine learning models implemented in this study achieved higher 

predictive performance to identify BDM occurrence compared to standard LR methods. 

These machine learning models also achieved a higher sensitivity (identify patients with 

BDM occurrence), higher specificity (identify patients with appropriate therapy), higher 

positive predictive value (proportion of patients predicted with BDM who actually had 

the BDM), higher negative predictive value (proportion of patients predicted with 

appropriate antibiotics therapy who actually had appropriate therapy), higher positive 

likelihood ratio (increase in the odds of having a BDM in patients who are predicted to 

have a BDM), negative likelihood ratio (increase in the odds of having an appropriate 

therapy in patients who are predicted to have an appropriate therapy).  
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There are several potential explanations for the incremental gains in the prediction 

ability by the machine learning approaches. First, machine learning approaches are able 

to incorporate the high-order nonlinear interactions between predictors, which cannot be 

addressed by traditional modeling approaches (eg, logistic regression model) 

(211). Additionally, we applied rigorous approaches to minimize potential overfitting of 

the models (eg, lasso and ridge regularization, cross-validation, and dropout). Modern 

machine learning approaches possess scalability within a larger context of health 

information technology (eg, extracting a multitude of potential predictors from electronic 

health records and monitoring devices, continuous sophistication of the model using 

updated health data, and reinforcement learning) (254). This is the first study that has 

identified risk factors specifically for BDM occurrence and implemented machine 

learning models to predict BDM occurrence. 

Our study has several potential limitations. First, we were not able to account for 

provider level characteristics in our model factor in IAAT. Second, we excluded 

encounters with no information on the AST testing, a potential source of selection bias. 

Third, the machine learning approaches are data driven and, therefore, depend on 

accurate and complete data. Variations in the coding and accuracy of the EHR data are 

well known, a potential source of bias in the machine learning models. Fourth, the 

imputation of missingness is a potential source of bias, even though, random forest is 

known to be a rigorous technique for imputation.  

In conclusion, by using large scale de-identified EHR data we were able to 

identify several significant risk factors associated with BDM occurrence. Primary risk 

factors such as age of the patient, patient comorbidities and care setting are critical to 
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expand antibiotic stewardship efforts into these settings to reduce BDM occurrence. 

Additionally, the machine learning models developed in our study has a high predictive 

ability, higher sensitivity, PPV and PLR to identify BDM than the reference model which 

could be used to develop CDSS tools as part of ASP efforts to reduce BDM occurrence as 

a measure of improving appropriate prescribing which ultimately results in improving 

patient outcomes and reducing antibiotic resistance.  
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CHAPTER 6 

CONCLUSION 

6.1. Significance of Findings 

Antibiotic resistance in bacteria continues to evolve and represent an ever-

increasing danger in all populations, including children. The potential for negative patient 

outcomes increases as AR becomes more prevalent. The high economic burden in the 

healthcare sector has become a burning issue, due to extended hospital stays, isolation 

wards, stringent infection control measures and treatment failures. Opportunities to 

mitigate spread of these dangerous organisms are numerous, and multi-faceted 

approaches should focus on education and training, bundled infection prevention 

measures, antibiotic stewardship programs, and addressing modifiable risk factors for 

infection. A heightened awareness and targeted resources by national and international 

programs, especially those dedicated to the health of children, are essential to halt the 

spread of these menacing pathogens in our most vulnerable population. 

We observed several statistically significant changes in AR rates over time with 

respect to age and care-setting. The examples discussed in the study highlight the 

growing problem of bacteria developing resistance to first line therapies. These trends are 

especially concerning for providers, as they are often the first point of contact for patients 

presenting with these diseases and must determine which antibiotics to administer. 

Failure to identify and properly treat these organisms can have a devastating impact on 
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patient outcomes. As such, it is important for providers to review previous culture and 

sensitivity results when available, particularly in patients with risk factors for resistant 

organisms. One important strategy to combat AR is to consider the emerging trend in AR 

and factoring the age of the patient while implementing care-setting specific ASP to 

optimize antibiotic use, reduce healthcare cost and improve patient outcomes.  

One proposed method of attenuating the rise of resistance is reducing unnecessary 

antibiotic use such as BDM. We found that the BDM prevalence for several critically 

important antibiotics differed between children and adults as well as within pediatric and 

blended facilities. We were also able to identify several significant risk factors associated 

with BDM occurrence. Primary risk factors such as age of the patient, patient 

comorbidities and care setting are critical to expand antibiotic stewardship efforts into 

these settings to reduce BDM occurrence. Additionally, the machine learning models 

developed in our study has a high predictive ability, higher sensitivity, PPV and PLR to 

identify BDM than the reference model which could be used to develop CDSS tools as 

part of ASP efforts. These efforts to reduce BDM occurrence as a measure of improving 

appropriate prescribing would ultimately result in improving patient outcomes and 

reducing antibiotic resistance.  

6.2. Strengths and Limitations 

Our work has known limitations. First, despite controlling for the total number of 

encounters, confounding variables for severity of resistance may exist. However, this 

does not change our result with respect to the proportion of baseline resistance or trend in 

resistance. Second, it could not be ascertained whether the infections were community 

acquired or nosocomial or whether resistance was primary or secondary, the AR rates 
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were generalized to the full study population. Third, our work is observational and does 

not provide insights into the drivers for the changes in AR patterns. Fourth, our work was 

retrospective using a de-identified data resource, there is no way to determine whether the 

choice of antibiotics for the study population were confounded by factors beyond our 

recognition. Fifth, we were not able to account for provider level characteristics in our 

model to predict BDM which had been identified as potential risk factor in inappropriate 

antibiotic therapy. Sixth, we excluded encounters with no information on the AST 

testing, which might be a potential source of selection bias. Seventh, the machine 

learning approaches are data driven and, therefore, depend on accurate data. Variations 

generally exist in the coding and accuracy of the EHR data, which introduces bias in the 

machine learning models. Eighth, the imputation of missingness by random forest is a 

rigorous technique yet is a potential source of bias.  

Our study also had several strengths. We describe the first use of large scale EHR 

data to identify difference in the trends in resistance within care-setting. Second, our data 

has representation of different regions in the US and a large sample size, which reduces 

biases of local origin, increases external validity and provides statistical power. Third, we 

used powerful data visualization techniques to discern patterns, identify linear 

relationships in 302 pathogen-antibiotic pairs, repeat the analysis for four groups and 

focus on significant insights readily apparent in the MCS and C-MCS plots. Fourth, we 

validated the accuracy of the HF data source for the first time with internal antibiogram 

data. Fifth, we evaluated BDM at 217 US healthcare facilities from 64 non-affiliated 

organizations, in contrast to other work which is from a single institution or smaller 

number of organizations. Sixth, the data source combines laboratory, medication, 
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surgery, patient diagnosis and facility characteristics which made it possible to evaluate 

risk factors for BDM occurrence. Seventh, this is also the first study that has 

implemented machine learning models to predict BDM occurrence by incorporating the 

high-order nonlinear interactions between predictors, which cannot be addressed by 

traditional modeling approaches.  

6.3. Future Work 

Future studies include several corrective measures to target the growing problem 

of antibiotic resistance. Including provider level characteristics as additional predictors 

might further improve the accuracy of the ML models to predict BDM occurrence. 

Implementing the ML algorithm to develop clinical decision support systems as part of 

the ASP initiative to automatically identify BDM occurrences and streamline antibiotic 

therapy for patients will improve appropriate prescribing and ultimately result in 

improving patient outcomes and reducing antibiotic resistance. Additionally, widespread 

implementation of care-setting specific ASP which factors the age group of the patient 

will be pivotal to combat the rising threat of AR infections.  

In conclusion, the findings reported in this study on the trends of AR, prevalence 

and risk factors of BDM are critical in tailoring antibiotic stewardship efforts to 

improving appropriate antibiotic prescribing and to ultimately reduce AR.  
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