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Abstract

In the first chapter of the dissertation an estimation of the continuous-time Markov
chain (CTMC) model of experts’ sentiment index is considered in the case of incomplete
data. Particularly, three estimation approaches based on a discrete-time sample are pre-
sented: the EM algorithm and two versions of the maximum likelihood estimation method.
The first approach for the estimation of the considered model is iterative and leads to mas-
sive recursive computations of matrices. The most crucial part of the second and third ap-
proaches is the numerical computation of the matrix exponential of the intensity matrix. In
particular, the second approach is based on the eigendecomposition of the intensity matrix
and the corresponding well-known property of matrix exponential for such decomposition.
In order to increase the effectiveness of the method in the third approach the fact that the
intensity matrix has a lower Hessenberg form is used. All three approaches are based on
numerical optimization using the nonlinear conjugate optimizer. In order to test them,
Monte Carlo simulations for few parametric sets and different number of agents are run.
Further, all three estimation methods are approbated on real market data for the German
economy.

The second chapter is dedicated to the development of the methods of calibration and
estimation of the model belonging to the asset price class of models. Two variants of the
generalization of the Markov Switching Multifractal (MSM) model, called the Asymmetric
Markov-Switching Multifrequency, are considered. The modifications are aimed to repro-
duce such a phenomenon of asset returns as leverage effect (asymmetry). Other features of
the model, namely the long memory stylized fact for different frequencies and degrees of
persistence, the mean reversion of volatility, and the volatility clustering, are investigated
and proven. The option pricing theory based on risk-neutral measure is developed for this
model. The model parameters’ calibration and estimation techniques are described and
tested with simulated and real data including asset prices and option prices from the Euro-
pean financial market. In-sample and out-of-sample performance are tested.

Keywords: Continuous-time Markov Chain, agent-based models, EM-algorithm, ma-
trix exponential, Maximum-likelihood estimation, Kolmogorov forward equation, transi-
tion probability estimation, Hessenberg matrix, calibration, option pricing, stylized facts,
Local Risk-Neutral Valuation Relationship, martingale measure, Monte Carlo simulations,
parallel computations on GPUs, equity risk premium.
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Introduction

Quantitative research in economics and finance has a history of more than a century.
Many models have been developed and used in the industry and academia and they be-
came classic and popular tools among professionals in the academia and industry. In gen-
eral, all these models could be divided into two general classes: structural form models and
reduced form models. Models of the first class are aimed to explain inner processes, while
the latter ones – mimic statistical features of data. Computers’ era gave and still gives new
opportunities for both classes of models allowing their further complication. In particu-
lar, modern stage of development of economics, financial market and technologies allows
more and more active digitalization and implementation of complicated quantitative mod-
eling by the actors. These processes lead to increase of accuracy, precision and quality of
analysis important for decision making in management and finance.

This dissertation considers both types of models – reduced and structural form mod-
els. The first topic of this dissertation is the modeling of experts’ sentiments dynamics im-
proving understanding of economical processes. In particular, a business climate index is
considered as the main real world example. As the business climate index we use a gener-
alized indicator that is an arithmetic mean of experts’ assessments. In such form, business
climate changes (as experts’ sentiments) refer to the opinion dynamics that are well de-
scribed by Weidlich’s1 agent-based model of opinion formation [97] (a much more general
version of the model is presented in the book [98]). It can be implemented for modeling
of migration, opinion formation processes (in particular, political processes), competition
between firms, consumption of goods, or evolution of cities. In this work, a simplified ver-
sion of the model is considered. In our case, the inputs of the model are regular surveys
of relevant experts from throughout the society. Namely, key economists, business people,
employees of analytical companies, and other specialists that are competent in the field of
economics and finance give their opinions about a current economical situation. These ex-
perts’ assessments are used to build an index of a current economical situation (a business
climate index).

1Wolfgang Weidlich is a founder of the sociological subdiscipline - sociodynamics.
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The second direction of the research presented in this dissertation was complete de-
velopment of a new asset and option prices model: its theoretical basis, estimation and
goodness-of-fit analysis. The topic of option pricing was also considered in author’s master
thesis [91] and two early articles [6, 90]. This new model, belonging to the class of reduced
form models as well as the famous Black-Scholes model (1973) became a theoretical and
practical basis for option pricing. Thus, it is aimed to describe observed statistical features
of the data. Since the Black-Scholes model was invented, the search began for a model that
better explains stylized facts (features) of real market financial data and shape of volatil-
ity surface. Among the most important stylized facts are heavy-tailed negatively skewed
non-normal distribution of underlying asset returns, clustering, persistence and leverage
effect in volatility. All these features, in particular the presence of the term structure in
volatility, contradict with Black-Scholes model assumptions and led to the so-called Im-
plied volatility "smirk", which is observed as out-of-the-money put option market prices
and in-the-money call option market prices being higher than Black-Scholes prices. More-
over, there is a negative correlation between the asset returns and their volatility in case
of equity market, which is called the leverage effect. The leverage effect is an important
stylized fact documented for the first time by F. Black in his 1976 paper2.

It is worth noting, in contrast to the first topic the second one is incomparably deeper
investigated, many competitive models have been developed since the Black and Scholes
work. The first attempts to describe some of the stylized facts, in particular excess kurtosis
and fat-tails, were focused on an incorporation of jumps into models (see Merton 1976).
The further focus of models development became incorporation of stochastic volatility (as
an alternative, stochastic interest rates or random jumps) in a model that forms a class of
two-factor3 stochastic models. This allowed researchers to describe clustering and volatil-
ity smiles. Historically, Taylor (1982) originally incorporated the stochastic volatility in an
asset price model, while Hull and White’s (1988) stochastic volatility models firstly mod-
eled the leverage effect stylized fact. Its importance for describing the volatility smirk was
proven by many authors (Bates 2000 and others). In the early 1990s, Heston (1993) pro-
posed the most famous model in the class of two factor stochastic volatility models: a
diffusion model known as the Heston model incorporating the leverage effect and mean
reversion property. Later, Bates (1996) complemented the Heston model with jumps. Carr
and Madan (1999) suggested an efficient method of computation based on Fourier trans-
formation in cases where the closed-form of characteristic function is known, in particular,
in the case of the Heston model. Duffie, Pan and Singleton (2000) provided a closed-form
transformation for pricing term-structure models, estimation of affine asset pricing mod-
els and pricing formulas for options that allowed the general definition of a broad class of
affine jump-diffusion stochastic volatility models (see Appendix A.7) and, correspondingly,
the rest continuous-time models were defined as a class of non-affine models. Toward the
end of the 1990s, the two-factor (one stochastic volatility process) jump-diffusion models
being used to explain volatility smiles/smirks were acknowledged as too restrictive to be
effective (Bates 1997, Bakshi, Cao and Chen 1997), in particular due to the dependence
of volatility level and a smile shape. Bates (2000) conducts an analysis of a large number

2It was then investigated many times by numerous authors, mostly by using linear regressions of returns and

volatility, for instance, in Christie (1982), Duffee (1995), etc.
3Hereafter we consider sources of randomness as factors. So, we consider the Black-Scholes model as an

one-factor model, while the Heston model is considered as a two-factor model.
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of models comparing the two-factor stochastic volatility model with random jumps and a
three-factor (two stochastic volatilities of different intensities) model in order to find out
whether they are substitutes. He concludes that jumps are necessary even for three-factor
models (two volatility factors).

It is clear that the general context of mathematical modeling for both dissertation top-
ics is ambivalent. The main feature of the considered agent-based model of sentiments
dynamics is that it takes into account the inner structure of a business climate change pro-
cess as an opinion formation process. In other words, we deal with a structural form model
that mimics the inner interaction of economic agents. In the same time, the option pric-
ing project of the dissertation goes to the mainstream having an aim to create the reduced
form model which is able to mimic all the main stylized facts of the data. Surprisingly, the
structural form models have not been given much attention in economics and finance in
contrast to such fields of science as physics. It seems to be natural, that the former fact
led to creation of an interdisciplinary field of science known as Econophysics, but still very
few researchers work with structural form models, in particular a related research based on
Weidlich’s sociodynamics was done by T. Lux [66]. This dissertation presents a framework
for mathematical modeling of opinion dynamics, which is considered as a continuous-time
Markov process of Poisson type with finite state space, in contrast to the differential equa-
tion formulation (master equation), as in the original formulation of Weidlich, T. Lux [66]
uses the same simplistic case of the Weidlich agent-based model (ABM), but the author
continues the line of Weidlich and constructs the Fokker-Plank equation on the base of
the master equation. Further, the author uses finite difference methods in order to solve
it and to use the solution for approximation of likelihood function, which allows the au-
thor to estimate the parameters of the model. As far as we know, no previous research has
investigated the topic except the mentioned ones, at in the considered narrow context.

In general, most of existing research in the field of option pricing are reduced form mod-
els. Development of these models in the 2000s was focused on multi-factor (usually, two-
or three-factor) models, often extending the Heston model by adding more volatility com-
ponents or stochastic interest rates (Levin 2008; multi-dimensional and multi-factor affine
diffusion, Byelkina and Levin 2010) or time-dependence of its parameters. For instance,
the generalization of Christoffersen, Heston and Jacobs 2009 is aimed at incorporation of
the stochastic correlation parameter. The presented work also considers an alternative to
the ARCH-class models which were prominent in 1980s and 1990s – a generalization of the
MSM model of Calvet and Fisher (2001) belonging to the class of stochastic volatility multi-
factor models. The original MSM model is aimed to reproduce such strong phenomena of
volatility as persistence (or long memory) and fractality. Moreover, it is able to model long
memory for different frequencies and degrees of persistence [19], that fits real economic
and business cycles well. In addition, it incorporates volatility clustering and mean rever-
sion of volatility, in contrast to ARCH-type models that usually catch one or two of these
features; besides, the MSM model generates non-Gaussian distribution of returns. The
models of this class differentiate from FIGARCH by being able to have a different rate of
long-memory property for different powers of returns. This class is relatively new and there
is not much literature aimed at developing the topic. An investigation of the long-memory
and other properties of MSM-class models can be found in [60, 84]. Liu and Lux [61] com-
pleted a generalization of the original MSM model of Calvet and Fisher. Its purpose is to
create bi-variate long-memory time series with controlled covariance (recently, the mul-
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tivariate approach was developed further in the series of papers [62, 63, 64]). This work
points out modeling of a different stylized fact, namely leverage effect (asymmetry), which
gives the name to this generalization – the Asymmetric Markov Switching Multifrequency
(AMSM) model. There are considered to be two different ways to incorporate asymmetry
in the original MSM model. The AMSM model does not abolish key features of the orig-
inal MSM model, but supplements them, which is proven theoretically and reinforced by
simulations and visualizations.

It can be concluded, that this dissertation well deserves careful analysis as a work closely
related to business cycles in economics and finance[99]. Let us note, despite both projects
are related to economical business cycles, modeling is very different at the same time. The
agent-based model theoretically explains the nature of business cycles, while the asymmet-
ric Markov switching model takes existence of this cycles as a statistical feature of financial
data, this is another example of ambivalence of the dissertation projects.

The main objective of the first chapter of this dissertation dedicated to the agent-based
model is development of an estimation technique for considered ABM model parameters
alternative to the one proposed by T.Lux [66]. As it was mentioned above, the simple Wei-
dlich’s model is considered in this dissertation from another mathematical angle, namely
as a continuous-time Markov chain (CTMC) with finite state space. The author assumed
that the formulation of ABM as CTMC could allow constructing alternative likelihood func-
tions4 based on the transitions probabilities of the considered CTMC process. In order to
attain this objective, the likelihood function developed and described by Billingsley [10] in
1961 could be used, with relaxation of certain conditions on asymptotic normality and con-
sistency as done by Prakasa Rao [81] and Huber [50]. The limitation of their likelihood func-
tion is a necessity of continuous-time observation of the CTMC process. In this dissertation
the likelihood function for the ABM model, which can be used for the case of discrete-time
(incomplete) observations of a sentiment-based process, consequently, is presented. It is
based on the transition probabilities which can be derived from Kolmogorov equations.
Three methods of this likelihood function maximization with respect to the model parame-
ters are developed and three new ABM model parameters estimation technique are thereby
established. The subordinate research objectives are investigation of the estimation tech-
niques statistical properties and performance, their strength and weaknesses, verification
of the possibility of fitting the considered ABM model to the real world sentiment-based
economic data series by the new techniques.

The second chapter of this dissertation dedicated to the option pricing based on two
versions of the AMSM model has three important aims: establishing the mathematical fea-
tures of the considered model versions, a mathematical basis for option pricing based on
the AMSM model, an estimation/calibration of the AMSM model parameters (both ver-
sions), finally, the verification of proposed techniques using the real data from the financial
market.

The ability to mimic stylized facts of returns, such as the non-normality of their distri-
bution and influence of the AMSM model parameters on returns of AMSM process, were
investigated and confirmed by simulations. The ability to mimic stylized facts of volatility
by two versions of AMSM model, which are often united by the term clustering of volatility,
was proven in the series of theorems and lemmas, namely: the mean reversion of volatility,
the long memory of volatility and, finally, the leverage effect, crucial for this work. In ad-

4A likelihood function is necessary for maximum-likelihood estimation methods.
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dition, the influence of model parameters at the long memory property measured by the
Hurst exponent is investigated by simulations.

For the AMSM model it was intended to use calibration of the model parameters with
option prices from the real financial market. This led to the mandatory stage of developing
mathematical basis for option pricing based on the AMSM model as well as for any other
model. As the mathematic basis for option pricing, the modification of the risk-neutral
(LRNVR) approach of Duan [28], developed for the GARCH model, was used. This assump-
tion led to another series of theorems and lemmas necessary for the option pricing with
AMSM model. In particular, the Duan’s approach assumes construction of the stochastic
discount factor based on utility function, which allowed to define Radon-Nikodym deriva-
tive. This derivative allows to transform a physical measure into a risk-neutral one. Then,
the construction and distribution of returns and volatility of AMSM process under this risk-
neutral measure was defined and, lastly, the fact, that this constructed risk-neutral measure
is a martingale measure, was proven.

The final stage of the project dedicated to the AMSM model is aimed to explore cali-
bration and estimation techniques for its parameters. In order to extract the parameters of
the original MSM model, Calvet and Fisher constructed the likelihood function, that allows
the use of the MLE method. Note, Liu and Lux [62, 63, 64] used an alternative estimation
technique, namely, the GMM method of estimation. The first method of fitting the AMSM
model parameters in this work is calibration, based on minimization of weighted sum of
squared residuals (RSS) between real market option prices5 and theoretical ones obtained
using the AMSM model. In addition, the equity risk premium, that is part of the model, was
calibrated jointly with the model parameters using option prices. The second approach is
based not only on option prices data alone, but it also uses historical asset returns with
corresponding option prices during a joint estimation procedure or historical asset returns
alone. This goal was achieved by construction of the likelihood function for each of three
types of dataset, and then by the maximum likelihood method applied firstly to the simu-
lated data then to the real data from the financial market.

Let us describe the projects briefly sketched above with more details. The main lim-
itation for direct implementation of the ABM model is absence of the closed-form of the
likelihood function necessary for the maximum likelihood estimation method in the case
of discrete observations, because the transition probabilities of the underlying CTMC pro-
cess are a subject to numerical solution in this case. One of possibilities to estimate CTMC
in the case of incomplete (discrete) data is to use the Expectation-Maximization (EM) algo-
rithm [27] based on the iterative maximization of the likelihood function using conditional
expectations of complete data given the observed data instead of missing data. Many au-
thors apply this method to CTMC and among them are such frequently cited authors as
Asmussen [5], M. Bladt, and M. Sørensen [12], with the broad review done in the work of
Mezner [70]. These authors consider the generator matrix of CTMC process as a matrix
with constant elements, whilst the corresponding matrix is tridiagonal with the elements
of diagonal and subdiagonals being functions of three parameters in the ABM model case.
Nevertheless, the similar construction to the one from the paper by Bladt and Sorensen
(2005) was used. Particularly, the idea of eigendecomposition for computing of the expec-
tation step of the EM algorithm used in the presented dissertation is based on the paper by

5Broad cross-sectional option prices (set of Call option contracts with different strike prices and maturities)

are used as a data set.
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P. Metzner, I. Horenko, and C. Schutte [71]. There are two difficulties in the application of
the EM algorithm in the considered case. First, it is necessary to obtain a mathematical ex-
pectation of the likelihood function as a result of the expectation step of the EM algorithm,
which is quite a complicated procedure. Second, it is necessary to maximize this expecta-
tion on the maximization step, which can be done only numerically. This happens because
the system of first order conditions does not have an exact solution in our case, but it has
the same structure as for the case of ordinary MLE based on complete data. One of the ways
to solve this maximization problem is to use the Generalized EM algorithm incorporating
features of either the Newton-Raphson type method or another numerical optimization
method (see [69]) on the maximization step of the EM algorithm. Namely, the modification
of the nonlinear conjugate gradient numerical method [14, 42] was used. Nevertheless, the
ABM with limited number of agents can be used with EM algorithm approach, namely up
to around 30 agents.

The idea of the second ABM model’s estimation approach presented in the dissertation
is based on direct implementation of the eigendecomposition of the infinitesimal gener-
ator matrix of CTMC process in order to calculate the transition probability matrix of this
process necessary for constructing of the discrete-time likelihood function. Further, this
likelihood function is maximized using Levenberg-Marquart optimization method. The
second approach is two orders of magnitude faster than the previous one, based on EM al-
gorithm, as it was revealed during simulations, still this approach has the same limitation
on the model defining constant – the agents number, due to instability of eigendecompo-
sition procedure for large sparse matrices.

For the third model parameters estimation approach another realization of the idea of
direct computation of the transition probability matrix is suggested, the one, which permits
us to overcome the instability of the second approach for a large number of agents. Namely,
another method of the matrix’s exponential computation is used, the one, that is based on
the fact that the infinitesimal matrix of the considered CTMC process underlying the ABM
model has a lower Hessenberg form (see the paper of Moler and Loan[72]). This makes it
possible to compute the transition probability matrix in a more robust and efficient man-
ner. As a result, the likelihood function is constructed and maximized by a nonlinear con-
gruential optimizer. This approach led to greater stability of estimation of the ABM models
with larger number of agents (350 agents settings were successfully tested) and further up
to 10 times decrease of computational intensity. In order to test the performance of the
methods, Monte Carlo simulations are done. This enables us to verify the quality of the
estimates.

The main obstacle in the second dissertation project with modification of Duan’s ap-
proach, created for the GARCH model, is that in the case of the MSM model, we have
two sources of randomness against one in the GARCH model. The second source of ran-
domness leads to changing of the measure and the sigma-algebra constructions. In order
to overcome this difficulty, the assumption that the second source of randomness of the
MSM model is known at the moment of time t −1 rather than t , like in the original MSM
model, was done in order to prove theorems analogical to the ones in Duan’s paper. An-
other obstacle, but a computational one, is the non-affine6 construction of Asymmetric
MSM models, which does not allow the use of semi-closed form expressions and leads to
the Monte Carlo methods. AMSM models have a complicated construction of choice oper-

6See Appendix A.7.
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ators, which makes paths generation relatively slow. Any option price computed using the
AMSM model requires thousands of Monte Carlo simulations. Calibration and estimation
of the model parameters procedures require computation of not just a single option price,
but a cross-section of option prices. Further, the calibration procedure is an iterative search
algorithm of model parameters values; this means, that hundreds and thousands of option
basket price evaluations are necessary. As a result, a calibration of the AMSM model may
take hours. In order to overcome these difficulties, it was necessary to use a sophisticated
search algorithm and tricky programming solutions based on C++ programming language
enhanced by parallelization technology for graphic cards computations (OpenCL). Another
issue is convergence of the search algorithm in conditions of noisy data, because option
prices obtained by the Monte Carlo method are imprecise (probabilistic) values slightly
varying depending on a seed. This fact complicates the minimization task significantly
(objective function becomes noisy), reduces precision/accuracy of calibrated parameters
and increases computation time.

A data collecting strategy was and still is complicated task in many researches, the one
presented is not an exception, despite the fact that internet made this task easier for many
fields of science, including quantitative economics and finance. In particular, the internet
brought to a new level the idea of open data. There are plenty of institutions providing an
access to scientific open data, one of the most famous institutions is The Organization for
Economic Co-operation and Development (OECD)7. The OECD provides economical and
financial data collected in 36 countries. In particular, the OECD established the business
confidence index and consumer confidence index which are examples of sentiment-based
indices investigated in this research. The ZEW – Leibniz Centre for European Economic Re-
search in Mannheim8 is a German organization sharing open data values9 and providing
the sentiment-based economic data. The ZEW financial market monthly survey was es-
tablished in December 1991. About 350 experts (agents) from financial and industrial sec-
tors participate in this survey. The ZEW Financial Market Survey is used as a basis for the
ZEW Indicator of Economic Sentiment. This research uses the ZEW Indicator of Economic
Sentiment index data10 as a real world data example for the ABM in the first dissertation
project. The raw dataset is not always ready for direct use, it has to be prepared to fit the
ABM model’s format. Thus, the ZEW index is the difference between the percentage shares
of optimistic and the pessimistic experts (agents) concerning the German economy in the
next six months. Therefore, the ZEW index values belong to the interval from -100 to 100
and has to be transformed according to the assumptions about the data structure of the
considered ABM model, this procedure is described further in Section 2.8.

The data from financial markets, necessary for the second project, is relatively more
assessable and published online by both private and public institutions. For example,
Deutsche Börse Exchange website provides raw and visualized data for many assets, such as
equities, bonds, ETF/ETP, funds, commodities. It has its own search engine, which can be

7www.oecd.org/
8www.zew.de/en/das-zew/ueber-das-zew/
9https://www.zew.de/en/das-zew/ueber-das-zew/open-access/
10www.zew.de/en/publikationen/zew-gutachten-und-forschungsberichte/

forschungsberichte/konjunktur/zew-finanzmarktreport/

www.oecd.org/
www.zew.de/en/das-zew/ueber-das-zew/
https://www.zew.de/en/das-zew/ueber-das-zew/open-access/
www.zew.de/en/publikationen/zew-gutachten-und-forschungsberichte/forschungsberichte/konjunktur/zew-finanzmarktreport/
www.zew.de/en/publikationen/zew-gutachten-und-forschungsberichte/forschungsberichte/konjunktur/zew-finanzmarktreport/
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used to find assets used in this research: EURO STOXX 50 index11, DAX30 index12, Siemens
share13 and SAP share14. The website of Eurex derivatives exchange operated by Deutsche
Börse AG also publishes plenty of trade data offline15, online data for equity options16,
which was used to obtain cross-section option prices data for the second project. A more
complicated task is extracting a risk-free interest rate data necessary for option pricing. The
problem here is availability of interest rates only for certain maturities, for example one
week, one month and etc. Besides, there are two main sources of borrowing: the money
market and the capital market. The capital market provides borrowing and interest rates
for longer maturities with quarterly fixed interest rates, while the money market provides
borrowing for shorter maturities. At the same time a derivative maturity is measured in
days, this leads to necessity of interpolation of various interest rates for different maturities
from both money market and capital market. As a risk-free interest rate in the European
money market EURIBOR17 interest rates are usually assumed. The EURIBOR quotes are
accessible online on the website of the Bundesbank18, for example the EURIBOR one-week
daily quotations19 were used among other in this research. The European Central Bank
publishes so-called yield-curves, representing the term structure of interest rates on the
capital market. In particular, the ECB website provides the raw data for yield curves online,
the "Current year - AAA" dataset20 was used in the interest rate interpolation procedure
together with the EURIBOR quotation mentioned earlier.

The artificial data is another popular option for research purposes, taking into account
difficulties with obtaining real data and necessity to have data with certain known proper-
ties in many research circumstances. The estimation methods developed in both projects
of this dissertation were tested in a playground with a huge amount of simulated data.
The artificial data was constructed by the author with the properties allowed to investigate:
the sensitivity of the models with respect to their parameters, the statistical properties of
the obtained models’ parameters estimates, to tune the estimation procedures, to choose
optimization methods that fit better for the objective (likelihood) functions used. Note,
through the use of artificially simulated data a few optimization methods have been tested
and selected, namely the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [18], the
Levenberg-Marquart algorithm [58] and adaptive simulated annealing (ASA) [53], and a
few additional ones were discarded, namely the ordinary simulated annealing, the thresh-
old accepting, great deluge and evolutionary algorithms. In the case of AMSM model the
sample paths of the process are simulated in parallel, which led to solving certain specific
issues, such as quasirandom number generation of uniform and normal random variables

11www.boerse-frankfurt.de/indices/euro-stoxx-50
12www.boerse-frankfurt.de/indices/dax
13www.boerse-frankfurt.de/equity/siemens-ag
14www.boerse-frankfurt.de/equity/sap-se
15www.eurexchange.com/exchange-en/market-data/file-services
16www.eurexchange.com/exchange-en/products/equ/opt
17The Euro Interbank Offered Rate (EURIBOR) is the averaged interest rates in the interbank market pub-

lished by European Money Markets Institute.
18www.bundesbank.de/dynamic/action/en/statistics/time-series-databases/

time-series-databases/743796/743796
19These time series quotes are labeled as BBK01.ST0307 by Bundesbank.
20https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_

yield_curves/html/index.en.html

www.boerse-frankfurt.de/indices/euro-stoxx-50
www.boerse-frankfurt.de/indices/dax
www.boerse-frankfurt.de/equity/siemens-ag
www.boerse-frankfurt.de/equity/sap-se
www.eurexchange.com/exchange-en/market-data/file-services
www.eurexchange.com/exchange-en/products/equ/opt
www.bundesbank.de/dynamic/action/en/statistics/time-series-databases/time-series-databases/743796/743796
www.bundesbank.de/dynamic/action/en/statistics/time-series-databases/time-series-databases/743796/743796
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/html/index.en.html
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in parallel. To make simulation experiments as fast as possible a few measures were taken:
the models were programmed with efficient C++ programming language, paths simulation
was realized using GPU (Graphic Processor Units) rather than Computing Processor Units
(CPU) and, finally, the bulk of the experiments were conducted on the recently established,
powerful and flexible service of cloud computing Amazon AWS cloud (in the case of AMSM
model from the second dissertation project).

It would be impossible or at least time-consuming to store and analyze all the simulated
and, later, real data manually, in order to manage it R21 [80] was used. R is an open source
software environment for statistical computing and visualization. It allowed to systematize
the research workflow, to enrich it with statistical analysis, complex plots and statistical
tables with error metrics, which were automatically generated and stored for further use
in the thesis text. In addition, a few open source R libraries allowed to relatively easily
estimate Hurst exponent and several alternative (benchmark) option pricing models. So,
the workflow of the research was highly integrated and based on three main information
technologies (IT): C++ language for fast computations, R statistical language for data anal-
ysis/visualization and LATEXas a document preparation system. This workflow is also based
on the principles of reproduced research that was implemented using another technol-
ogy coming from IT sphere – the Git22, which is a version-control system allowing tracking
changes in text files, usually with a code. Thus, the repositories with C++, R and LATEXcode
for both research projects (six repositories) were created. These projects were defined as
submodules of main repository joining the whole dissertation research as an united single
entity. This allowed to manage and recreate the state of the project on certain milestones
and reproduce the state of the projects on them.

Summarizing, we can say, that, as we could see from the explanation of both projects,
they are ambivalent not only in the context of general mathematical modeling, but also in
the context of specific stochastic models: the agent-based model from the first disserta-
tion project is considered as a continuous-time stochastic process (Markov chain), while
the asymmetric Markov multifrequency model of log-returns from the second project is
modeled as a discrete-time stochastic process.

The first project of this dissertation provides new mathematical basis for this kind of
agent-based models, considering the variant of Weidlich’s agent-based model belonging to
a relatively rare class (in economics and finance) of structural form models as a continuous-
time Markov chain with a finite state space. This basis allowed to suggest three new ap-
proaches to estimate the agent-based sentiment dynamics process of Weidlich, aimed to
mimic sentiment-based business cycles indices. The most efficient method among these
three approaches is approved using the real data for the ZEW Indicator of Economic Senti-
ment.

The second project is also aimed to take into account business cycles by the assumption
of existing multiple frequencies modeling log-returns of assets like the Markov switching
multifrequency model (AMSM). The new AMSM model variant is suggested in this work
and investigated together with the one suggested by A. Lëove [59]. The desired properties
such as the non-normality of the log-returns distribution and the stylized facts associated
with the notion of clustering of volatility are proven theoretically or with the use of sim-
ulations. The theory of option pricing for both variants of the AMSM model is developed

21https://www.r-project.org/
22https://git-scm.com/

https://www.r-project.org/
https://git-scm.com/
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and based on adoptions of the approach of Duan that had constructed the risk-neutral
measure for the GARCH model. The rich set of techniques of calibration and estimation
of not only the model parameters, but also the equity risk premium for both AMSM model
variants, using option prices, historical asset returns or both, are developed, tested and ap-
proved for the real financial data. The superiority of the AMSM model is shown in a series
of goodness-of-fit tests based on the real data with a few popular models as a benchmark.

The structure of this dissertation is as follows: two chapters, corresponding to two
projects; sixteen sections; sixteen appendices; code listings for both projects; bibliography;
sixty plots; forty two tables.

In particular, the first chapter consists of eight sections. Section 2.1 describes the model
of business climate changes and the probabilistic features of the underlying Markov pro-
cess with finite state space. In addition, this section is dedicated to constructing both the
continuous-time and discrete-time likelihood functions. In Section 2.2 the model sensi-
tivity with respect to the model parameters is analyzed and the Monte Carlo simulation
technique is also described. In order to estimate the model parameters, the EM algorithm
is applied. Its technique, properties and application are described in Section 2.3. The sec-
ond approach of the model estimation is defined and tested in Section 2.4, while Section 2.5
considers and then verifies the third approach in the case of simulated data. Section 2.7 is
dedicated to computing the efficiency of all three approaches. Finally, Section 2.8 presents
the implementation of the approaches to the real data (ZEW index).

The second chapter consists of six sections. Section 3.1 is dedicated to the definition
of both variants of the AMSM model and the ability of this model to mimic known stylized
facts of returns and volatility. In Section 3.2 a mathematical basis for option pricing using
the AMSM model is developed. Section 3.3 describes Monte Carlo simulation technique
used for option pricing. The calibration and estimation methods based on option prices
data and historical log-returns data are presented in Section 3.4 and Section 3.5. The fi-
nal Section 3.6 illustrates in-sample and out-of-sample performance of the AMSM model
variants.



2
Three Approaches For Estimation Of

Agent-based Model Of Experts’ Sentiment

Index

2.1. Theoretical basis

2.1.1. Jump processes vs. Diffusion processes
As was mentioned above, the inputs of the model are regular surveys of relevant experts’

from throughout society, who give their opinions about the current business climate. These
experts’ assessments are used to build a business climate index (and also can be used for
modeling similar agent-based indexes). In general, this index can be modeled using the
Weidlich model. A simple case study of this model is given further.

Further, it is assumed, that the negative pole of assessments corresponds to the value
"-1", while the positive pole of assessments to the value "1". Thus, the business climate
index (which is, in fact, a Weidlich’s opinion dynamics process) is a stochastic process with
discrete values in the interval [−1,1]. However, what kind of stochastic process is it?

The second assumption is that the opinion dynamic process is a continuous-time pro-
cess with a Markov property. This leads us to the class of continuous-time Markov pro-
cesses. There are two main concepts regarding their modeling: as a diffusion process or
as a jump process. In the first case, it is necessary to assume that at least one transition (a
small one) occurs at any short period of time with the probability 1. In the second case, it
is assumed that no transition occurs in a short enough period of time with high probabil-
ity, but if any transition does happen, it has large amplitude. In the presented dissertation,
the second concept is used, while T. Lux [66] instead follows the first concept and models
opinion dynamics as a diffusion process.

In addition, the following is assumed: agents are homogeneous; at each moment of
time just one agent can change their own opinion; and the time between opinion changes
is not a constant. Further, the probability of opinion changes is defined by transition prob-
abilities that depend on three parameters: the parameter ν is a time scale parameter and,

11
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specifically, it means the frequency of opinion changes; the parameter α0, depending on
its sign, explains a shift to the optimistic (positive sign) or pessimistic (negative sign) side;
the parameter α1 expresses a power of social pressure towards a common opinion (posi-
tive sign) or against it (negative sign). Thus, we assume that there are N agents and, each
of them at time t has either an optimistic ("+") or pessimistic ("-") opinion; therefore, there
are two types of agents. Let

• n+(t ) be the number of optimistic agents,

• n−(t ) be the number of pessimistic agents.

Let us define the process of agents’ opinion dynamics X = (X t )∞t=0 on the probability
space (Ω,F ,P ) as follows

X t = n+(t )−n−(t )

N
, (2.1)

where the state space is

Ω=
{
−1,− (N −1)

N
, . . . ,0, . . .

(N −1)

N
,1

}
. (2.2)

Note, the state space Ω has 2N +1 states with an indices i running over the index set I =
{−N ,−(N −1), . . . ,0, . . . , (N −1), N }. Therefore, any values of X have the form i /N for every t ,
where i ∈ I . Further, the formulations "the process X is in the state i " and "the process X at
the time t has the value i /N " will be used interchangeably. The process trajectory example
is depicted in large scale in Figure 2.1.
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Figure 2.1: The sentiment index process X dynamics on the state spaceΩ (y-axis).

Let us proceed from the intuitive formulation of the model to a stricter one based on
Gallager’s book [37].

2.1.2. Countable-state continuous-time Markov chain
In the relevant chapter the process of opinion formation X = (X t )∞t=0 is modeled as a

continuous-time countable-state Markov process of the Poisson type (further Markov pro-
cess) on the given filtered probability space (Ω,F , {Ft }T

t=0,P ) satisfying the usual condi-
tions, adopted to the filtration {Ft }T

t=0. Therefore, trajectories of the process X are assumed
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to be right-continuous step functions with values from the state space Ω. Besides, the
Markov property holds.

Definition 1. If the following expression holds for any states i , j ∈ I

P

(
X t+∆ = j

N

∣∣∣X t = i

N
, Xs1 = x1, . . . , Xsm = xm

)
= P

(
X t+∆ = j

N

∣∣∣X t = i

N

)
, (2.3)

where 0 < sl < . . . < s1 < t , then the process X has the Markov property.

This definition states that future values of the process X depend only on a current value
of the process; in other words, X is a memoryless process.

Definition 2. Let S1 < S2 < . . . denote all moments of time at which transitions occur, then

the sequence (Xn)∞n=0 = (X(Sn))∞n=0 or equivalently Xn = X t for Sn ≤ t < Sn+1 forms a Markov

chain on the state space Ω, called an embedded Markov chain (in the literature, it is also

called "jump process" [77]) with the probabilities of transition from any state i ∈ I to j ∈ I

denoted as P e
i j .

P−N, −N+1
e

P−N+1, −N
e

P−N+1, −N+2
e

P−N+2, −N+1
e

PN−1, N−2
e

PN−2, N−1
e

PN, N−1
e

PN−1, N
e

−1 −(N−1)/N ... (N−1)/N 1

Figure 2.2: Embedded Markov Chain.

Note, it is assumed P e
i i = 0, i ∈ I for simplicity. So, there is no self transitions assump-

tion. Figure 2.2 illustrates the embedded Markov chain for the considered model.

Definition 3. Let time intervals between two successive transitions be denoted as Un = Sn −
Sn−1 for any n > 0. Then, the distribution of holding intervals Un is given by

PU
i (x) = P

(
Un ≤ x

∣∣∣Xn−1 = i

N

)
= 1−exp(−qi x), i ∈ I , (2.4)

where qi is called a transition intensity (also a transition rate, in literature) from the state

i ∈ I .

Note, according to the Markov property (2.3), Un is independent of Xn−2, Xn−3, . . . , X0

and Un−1,Un−2, . . . ,U0.

Definition 4. Let the current state be i and the moment of time t (not necessarily the time

of previous transition), then the time until the next transition to the state j occurs is Y (t ).
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Therefore, taking into account the Markov property, the distribution of transition time Y (t )

from i to j is the following

P Y
i j (x) = P

(
Y (t ) ≤ x, X (t +Y (t )) = j

N

∣∣∣X (t ) = i

N

)
= P

(
Y (t ) ≤ x

∣∣∣X (t +Y (t )) = j

N
, X (t ) = i

N

)
P

(
X (t +Y (t )) = j

N

∣∣∣X (t ) = i

N

)
= PU

i (x)P e
i j

= [
1−exp(−qi x)

]
P e

i j . (2.5)

In order to summarize all details above, let us give a strict definition of the countable-
state Markov process1 (see also Figure 2.1).

Definition 5. Any continuous-time stochastic process X = (X t )∞t=0 taking values on count-

able set on the given filtered probability space (Ω,F , {Ft }T
t=0,P ) is called a continuous-time

Markov chain (CTMC), if it has the Markov property and for each t ≥ 0

X t = Xn for Sn−1 ≤ t < Sn ; S0 = 0; Sn =
n∑

m=1
Um for n ≥ 1, (2.6)

where (Xn)∞n=0 is a discrete-time (embedded) Markov chain defined by the transition prob-

abilities P e
i j on a countable or finite state space, Un is a holding interval with exponential

distribution (given Xn−1 is in state i ∈ I ) with the transition rate qi > 0.

It is easy to see that such a Markov process is in fact specified by quantities qi and P e
i j .

So, the product qi P e
i j can be interpreted as a transition intensity from any state i to any

state j , namely

qi j = qi P e
i j , i 6= j , i , j ∈ I (2.7)

then a summation of them over all j 6= i gives

qi =
∑
j 6=i

qi j . (2.8)

Hence, the transition probabilities of the embedded Markov chain can be defined as

P e
i j =

qi j

qi
. (2.9)

Therefore, let us introduce the intensity matrix Q = {qi j }i , j∈I with the non-diagonal entries
qi j and the diagonal entries −qi , then the whole Markov process X can be defined by the
intensity matrix. In the related literature, this type of matrix is also called an infinitesimal
generator.

1This formulation is closely related to the definition of R.Gallager in [37]
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In considered adaptation of the Weidlich sociological model the intensity rates of pro-
cess X are given by

qi i+1(θ) =ω+(i /N ;θ),

qi i−1(θ) =ω−(i /N ;θ),

qi (θ) =ω+(i /N ;θ)+ω−(i /N ;θ),

qi j (θ) = 0 for |i − j | > 1, i , j ∈ I

(2.10)

where

ω+(x;θ) = (1−x)νexp(U (x;α0,α1)),

ω−(x;θ) = (1+x)νexp(−U (x;α0,α1)),

U (x;α0,α1) =α0 +α1x.

(2.11)

Thus, the transition probabilities of the embedded Markov chain (Xn)∞n=0 for i , j ∈ I are
constructed as

P e
i i−1(θ) = qi i−1(θ)

qi (θ)
= ω−(i /N ;θ)

ω−(i /N ;θ)+ω+(i /N ;θ)
,

P e
i i+1(θ) = qi i+1(θ)

qi (θ)
= ω+(i /N ;θ)

ω−(i /N ;θ)+ω+(i /N ;θ)
,

P e
i j (θ) = 0 for |i − j | > 1, i = j .

(2.12)

Altogether, the main inputs of the model were denoted and their mathematical sense
was described. Let us give an explanation for the model parameters: ν is a time scale pa-
rameter and, specifically, it means a frequency of opinion changes; the parameter α0, de-
pending on its sign, explains a shift to the optimistic (>0) or pessimistic (<0) side; and the
parameter α1 expresses the power of social pressure towards the common opinion (>0) or
against it (<0).

2.1.3. Kolmogorov equations
In the case of the considered ABM model, a transition from the current state i to any

state rather than i −1 or i +1 has to be done within a few transitions (see Figure 2.1). For
example, the process X has to make at least 2N transitions within time t in order to reach
the state N ∈ I from the state −N ∈ I . Now, it is necessary to define the corresponding prob-
ability of successive and non-successive transition (series of successive transitions in fact)
from any state i to any j within time t , as depicted in Figure 2.1. These probabilities are
important for practical use of the model; in particular, for a likelihood function construc-
tion.

Theorem 1. The probabilities P X
i j (t ) of the process X transition between any states i and j

(through an unknown number of successive transitions) and within time t are defined by the

Kolmogorov forward and backward equations in the case of CTMC, correspondingly

dP X
i j (t )

d t
= ∑

k 6= j

(
P X

i k (t )qk j
)−P X

i j (t )q j ,

dP X
i j (t )

d t
= ∑

k 6= j

(
qi k P X

k j (t )
)
−qi P X

i j (t ),

(2.13)
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or in the matrix form

dP X (t )

d t
= P X (t )Q,

dP X (t )

d t
=QP X (t ),

(2.14)

where Q is a matrix of intensity rates with qi j as the off-diagonal elements and −qi as the

diagonal elements.

Proof. The proof is given in Appendix A.1.

The following corollary is dedicated to the solution of Kolmogorov equations under cer-
tain assumptions, but firstly it is necessary to give a definition.

Definition 6. Let X be an N ×N matrix, then the N ×N matrix

exp(X ) =
∞∑

k=0

X k

k !
, X 0 = I (2.15)

is called a matrix exponential of X .

Corollary 1. If the initial condition P X (0) = I holds, then the matrix differential equation

(2.14) has the following solution

P X (t ) = exp(tQ) (2.16)

where exp(·) is a matrix exponential.

So, if there is an efficient computation method of the matrix exponential on the r.h.s. of
(2.16), then the whole matrix of transition probabilities P X

i j (t ) can be calculated.
Another corollary reveals how the structure of the considered ABM model affects the

Kolmogorov equations.

Corollary 2. Recall, the intensity rates matrix Q is a tridiagonal in the case of the ABM model.

Q =



• • 0 0 0

• • • 0 0

0 • • • 0

0 0 • • •
0 0 0 • •


Therefore, the sum in the Kolmogorov system of equations (2.13) reduces to the terms con-

taining nonzero intensities, namely qi i+1, qi i−1,qk . Thus, the Kolmogorov forward equations

reduce to

dP X
i ,−N (t )

d t
= P X

i ,−N+1(t )q−N+1,−N −P X
−N , j (t )q−N ,

dP X
i , j (t )

d t
= P X

i , j−1(t )q j−1, j +P X
i , j+1(t )q j+1, j −P X

i , j (t )q j , for −N < j < N , (2.17)

dP X
i ,N (t )

d t
= P X

i ,N−1(t )qN−1,N −P X
i ,N (t )qN .
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The Kolmogorov backward equations reduce to

dP X
−N , j (t )

d t
= q−N ,−N+1P X

−N+1, j (t )−q−N P X
−N , j (t ),

dP X
i , j (t )

d t
= qi ,i−1P X

i−1, j (t )+qi ,i+1P X
i+1, j (t )−qi P X

i , j (t ), −N < i < N ,

dP X
N , j (t )

d t
= qN ,N−1P X

N−1, j (t )−qN P X
N , j (t ).

(2.18)

Altogether, the ABM model is determined by the vector of parameters θ = (ν,α0,α1),
which in turn specifies the transition intensity matrix Q(θ) and the transition probabilities
matrix P X (t ;θ).

ä

2.1.4. Summary of the results on the theoretical basis of the agent-based

model.
There are a few probabilities defined above, which have to be clearly distinguished.

Note, it is important to understand that only the probability P X
i j (t ) is defined for the case of

non-successive transitions. In contrast, it is assumed that there are an arbitrary number of
intermediate transitions between i and j for P X

i j (t ). Let us summarize:

1. P e
i j is a successive transition probability of the embedded Markov chain of Markov

process X from the state i to j (see Definition 2);

2. PU
i (x) is a distribution of time between any two successive transitions from the state

i (see Definition 3);

3. P Y
i j (x) ( f Y

i , j (x)) is a distribution (density) of time Y (t ) until the next successive transi-
tion from the state i at time time t to and state j (see Definition 4);

4. P X
i j (t ) is a probability of non-successive transition from the state i to j within the exact

time t (see Theorem 1).

The latter two probabilities allow us to construct two different likelihood functions. Thus,
the obvious choice of the model estimation approach is the widespread maximum likeli-
hood method.

2.1.5. Likelihood functions
In order to estimate parameters θ = (ν,α0,α1), the algorithms that are based on maxi-

mization of likelihood functions were used. Therefore, it is necessary to construct a likeli-
hood function. It is possible to do this in two ways:

• In the case when the complete data sample (non-discrete observations) of the pro-
cess (X t )∞t=0 is available, the complete likelihood function Lc (θ|X ) can be constructed.
As will be shown later on, this function is expressed through the intensities qi j and
depends on information about all transitions and the time that the process spent in
different states;
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• In the case when there is only a discrete data sample y of the continuous-time process
(X t )∞t=0, the incomplete likelihood function Ld (θ|y), which is expressed through the
transition probabilities P X (∆t ) (∆t is an interval between observations), can be used.

It is necessary to construct both the complete and the incomplete likelihood functions to
proceed further. Note, these two likelihood functions are constructed also in [12] and [71].
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Figure 2.3: Holding time Ri (T ) =U3 +U7 of the process X.

Let us start with construction of the likelihood function for the case when the process
(X t )∞t=0 is observed continuously. This means all the moments of transition Sk are known,
as are all the corresponding states of the process X in these moments. Then, let M be the
total number of transitions X made during the whole observation time T and the variable
Ri (T ) is the total time that the process (X t )∞t=0 spent in any state i . So, the formal definition
is the following

Ri (T ) =
∫ T

0
I {Xs = i /N }d s =

M∑
k=1

Uk+1I {XSk = i /N }, (2.19)

where I {·} is an indicator function, Uk+1 is an interval until the next transition occurs from
the time moment Sk of the k-th transition. This illustrated in Figure 2.3; there, the process
X holds state i for two periods, U3 and U7, therefore Ri (T ) =U3 +U7 for this example.

Next, the number of transitions from any state i to any state j during the time T is
denoted further as Ni j (T ). In the example depicted on Figure 2.3, the process X made two
transitions from i to i +1, therefore Ni ,i+1(T ) = 2.

In order to construct the likelihood function, it is also necessary to define the corre-
sponding density function.

Lemma 1. The probability density function of X successive transition time from any state i

to any j is defined as

f Y
i , j (x) = P e

i j qi exp(−qi x), (2.20)

where P e
i j is a transition probability of embedded Markov chain, qi is an intensity rate of X

transitions from the state i .
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From To Time Ni j (T )

i-2 i-1 U1 1

i-1 i U2 1

i i+1 U3,U7 2

i+1 i+2 U4,U8 2

i+1 i U6 1

i+2 i+1 U5 1

Table 2.1: Number of transitions of the process in Figure 2.3.

Proof. The proof is given in Appendix A.2.

Note, the probability density function f Y
i j (x) allows us to calculate the probability of

the event of the process X successive transition from the state i to j within exactly time
Un = Sk −Sk−1, rather than the distribution of time between state i and j . This is necessary
for constructing the likelihood function invented by Billingsley [10].

Theorem 2. The likelihood function based on a complete continuous-time observation sam-

ple x of the CTMC process X is expressed by (see [10], [41])

Lc (θ|x) =
N∏

i=−N

∏
j 6=i

q
Ni j (T )
i j exp(−qi , j Ri (T )), (2.21)

where qi j is an intensity rate of X transitions from any state i to j , Ni j (T ) is the number of

transitions from any state i to any state j during the time T in data sample x, Ri (T ) is the

total time that the process X spent in each state i during observation sample x at time T .

Proof. The proof is given in Appendix A.3.

Example
Let us consider an example of a continuous-data sample of the process X depicted in

Figure 2.3. The process made eight transitions at the moments of time (S1, . . . ,S8) with
corresponding values (XS1 = (i −2)/N , . . . , XS8 = (i +2)/N ).

Table 2.1 collects the data about the number of transitions that occurred during obser-
vation time T . Table 2.2 collects the data about the total holding time Ri (T ) during obser-
vation time T for each state.
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State Ri (T )

-1 0

· · ·
i-2 U1

i-1 U2

i U3 +U7

i+1 U4 +U6 +U8

i+2 U5

· · ·
1 0

Table 2.2: Time the process in Figure 2.3 spent in each state.

This data allows us to construct the likelihood function Lc (θ|x) according to Theorem 2

Lc (θ|x)
de f=

M−1∏
k=0

qXSk
exp(−qXSk

Uk+1)

= qi−2,i−1qi−1,i qi ,i+1qi+1,i+2qi+2,i+1qi+1,i qi ,i+1qi+1,i+2×
exp

(−[
qi−2U1 +qi−1U2 +qiU3 +qi+1U4 +qi+2U5 +qi+1U6 +qiU7 +qi+1U8

])
= q1

i−2,i−1q1
i−1,i q2

i ,i+1q2
i+1,i+2q1

i+1,i q1
i+2,i+1×

exp
(−[

qi−2U1 +qi−1U2 +qi (U3 +U7)+qi+1(U4 +U6 +U8)+qi+2U5
])

=
[

N∏
i=−N

∏
j 6=i

q
Ni j (T )
i j

]
×

[
N∏

i=−N
exp(−qi Ri (T ))

]
T hm.2=

N∏
i=−N

∏
j 6=i

q
Ni j (T )
i j exp(−qi j Ri (T )),

ä

The next step after construction of the likelihood function is to formulate the system of
the first order conditions necessary for a maximization of function.

Corollary 3. The first order conditions necessary for a maximization of the log-likelihood
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function l c (θ|x) = logLc (θ|x) in the case of the considered agent-based model are given by2

δl c (θ|x)

δν
=

N∑
i=−N

[
(Ni i+1 +Ni i−1)

1

ν
−Ri

(
exp

(
α0 +α1

i

N

)
+exp

(
−α0 −α1

i

N

))]
= 0,

δl c (θ|x)

δα0
=

N∑
i=−N

[
(Ni i+1 −Ni i−1)−νRi

(
exp

(
α0 +α1

i

N

)
−exp

(
−α0 −α1

i

N

))]
= 0, (2.22)

δl c (θ|x)

δα1
=

N∑
i=−N

i

N

[
(Ni i+1 −Ni i−1)−νRi

(
exp

(
α0 +α1

i

N

)
−exp

(
−α0 −α1

i

N

))]
= 0.

Proof. The proof is given in Appendix A.4.

The solution of the system (2.22) is desired estimation of θ = (ν,α0,α1). Unfortunately,
the system (2.22) has only numerical solutions.

Further, it is necessary to mention that changes of agents’ opinions cannot be observed
during the time between interviews; consequently, the real data is discrete in time. So, the
expressions f Y

i j (t ) (2.20) cannot be used, because the process (X t )∞t=0 could make more than
one transition over the time t (discrete time-step). On the other hand the use of the com-
plete likelihood function for a discrete data leads to biased estimates. Therefore, Lc (θ|x)
cannot be used in the case of available discrete data sample directly, but it will be used
further for the artificially simulated (continuous) data in Section 2.3.

An alternative is an incomplete likelihood function.
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Figure 2.4: Discrete-time sample y of the process X.

Theorem 3. Let y = {y0 = X t0 , y1 = X t1 , . . . , yM = X tM } be a vector of discrete observations of

the process X at moments of time t0 < t1 < ·· · < tM (see Figure 2.4), tk = tk−1 +∆t , then the

incomplete (discrete) likelihood function based on this vector is given by

Ld (θ|y) = ∏
i , j∈I

(
P X

i j (∆t ;θ)
)ci j

, (2.23)

2The dependence on T of Ni j (T ) and Ri (T ) is omitted in order to increase the readability of expressions.
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where ci j , i , j ∈ I is a number of transitions from any state i to any state j in the vector y,

while P X
i j (∆t ;θ) denotes the corresponding transition probabilities for the process X with pa-

rameters θ within ∆t .

Proof. The likelihood function of the outcome corresponding to the series of transitions

y = y1, . . . , yM is

Ld (θ|y) =
M−1∏
k=0

P X
yk yk+1

(tk ;θ).

This product can be rearranged. Namely, the same transitions could be counted as ci j and

their probabilities collected as P X
i j (∆t ;θ), so

M−1∏
k=0

P X
yk yk+1

(tk ;θ) = ∏
i , j∈I

(
P X

i j (∆t ;θ)
)ci j

,

The probabilities P X
i j (∆t ;θ) are derived by solving Kolmogorov equations (Theorem 1). The

solution (2.16) is given by the matrix exponential

P X (∆t ;θ) = exp(∆tQ(θ)).

However, there is no straightforward way to calculate the elements of r.h.s. of the ex-
pression of the likelihood function in Theorem 3, because exp(∆tQ(θ)) being a matrix ex-
ponential is not available in closed-form. It means we don’t know what each P X

i j (∆t ;θ)
looks like, hence we cannot take derivatives and so on. The only solution for maximization
of Ld (θ|y) is a numerical calculation of matrix exponential and then numerical optimiza-
tion of Ld (θ|y), which is provided in Section 2.4.

Before we begin with estimation techniques for both likelihood functions, it is neces-
sary to highlight the simulation technique used for verification of the methods described
further.

2.1.6. Monte Carlo simulation technique
It is important to note the following fact: the process X = (X t )∞t=0 is not able to make two

transitions at one moment of time by definition. In particular, only one transition occurs
at each moment of time, either to a state i −1 or to a state i +1. A direction of transitions
being a discrete-time random variable is defined by the following probabilities

P e
i i+1 =

qi i+1

qi
, P e

i i−1 =
qi i−1

qi
,

where i is a current state of process X. The following well-known procedure was used to
generate it. An uniform random variable u is generated by one of the pseudo-random
number generators. Then, if u < P e

i i+1, then X tk+1 = X tk +1/N (step up), otherwise X tk+1 =
X tk − 1/N (step down). From the previous Section 2.1.2 (equation (2.4)), it is known that
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the distribution of time interval Un up to the next successive transitions from any state
i ∈ [−N , N ] is given by

PU
i (x;θ) = P

(
Un ≤ x

∣∣∣X tn−1 =
i

N
, X tn = j

N

)
= 1−exp

(−qi (x;θ)x
)= f (x).

In order to generate Un , an inverse of function f (x) is derived, then the uniform random
variable u ∈ (0,1) generated by a computer3 is plugged into f −1(x). So, it is assumed Un =
f −1(u).

In order to simulate a whole continuous-time sample x of the process X, X0 = 0 is as-
sumed as an initial state first, then an interval of time to the next successive transition Un

and its direction (from i to i −1 or i +1) are generated. This procedure is continued while
Sn =∑k

i=1Ui <= T .
In the next stage, M discrete-time observation values collected as y = (y0, . . . , yM ) are ex-

tracted from the artificial continuous-time data sample x at the time moments tk = k ×∆t ,
where the discretization step ∆t = 1. This means it is necessity to evaluate a state of gener-
ated trajectory x in each of time points t = (0,1, . . . ,T ). As a result, a sample of discrete-time
observations y = y1, . . . , yT is derived, where yi = X ti . The sample y is used further as an
input for estimation procedures. This allows us to simulate real world circumstance char-
acterized by accessibility of discrete observations of any sentiment index only, rather than
continuous-time observation.4

The following parametric sets were used further for testing purposes, analogous to T.
Lux [66]:

• Set 1: θ = (3,0,0.8);

• Set 2: θ = (3,0.2,0.8);

• Set 3: θ = (3,0,1.2);

• Set 4: θ = (3,0.2,1.2).

Note, you can see the example of simulated discrete-time data sample in Figure (2.6e)
and the corresponding continuous-time trajectory path (see Figure 2.6d).

ä

Prior to proceeding to the estimation of the model, it is important to investigate the
influence of parameters on the model. This will help us to understand the performance of
the estimation techniques for different parametric sets.

3A high quality random number generator from AlgLib library [13] is used for the generation of uniform ran-

dom numbers. This procedure requires two seed numbers; two prime numbers for better quality of gen-

erated random numbers were used, namely 3715061396 and 2984140826. The idea is to make sequences

necessary for generation of direction and intervals between successive transition less correlated, it ensures

good properties of Monte Carlo simulations.
4All Monte Carlo simulation experiments share only two long sequences of uniform random numbers. The

first one is for the generation of transition directions; the second one is for the generation of intervals be-

tween successive transitions.
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2.2. Sensitivity analysis w.r.t. model version and its parame-

ters
It is not evident what kind of inner dependencies the model has with respect to its pa-

rameters (ν,α0,α1) and number of agents N , if considering only its construction from a
mathematical aspect, as described in Section 2.1. In this section such an analysis is pro-
vided.

Recall, the probability distribution of transition time from the state i to j is given by
(2.5), namely

P Y
i j (t ;θ) = P e

i j (θ)PU
i (t ;θ).

The probability above is defined as the product of two probabilities: the distribution of time
between successive transitions from i to j (holding time) given by PU

i (t ;θ) (see (2.4)) and
the transition probability of the embedded Markov chain P e

i i+1(θ) or P e
i i−1(θ)5 defining the

probabilities of transition directions. The analysis is aimed at investigation of properties of
these two probabilities.

Also, the numbers of plots’ sets provide certain evidence useful for understanding the
connections among parameters. Figures 2.5a-d display various plots of the transition time
distributions PU

i (x;θ) and PU
i (0.2;θ) (z-axis) that occur during time horizon 0.2 with re-

spect to parameters ν, α0, α1 (y-axis) and state i (x-axis). Figures 2.6a-e display various
simulated continuous-time sample paths and one discrete-time observation of the pro-
cess X (y-axis) for different agents numbers N and parameters α0, α1. Figures 2.7a-d de-
pict simulated examples of distributions of holding time for each state and parameters α0,
α1. Finally, Figure 2.8 shows the dependencies of transition probability of the embedded
Markov chain P e

i j for each state i with respect to the parameters α0, α1.

2.2.1. Number of agents N
Firstly, let us consider the number of agents N that is not a parameter, but rather a

model-defining constant. This defines the number of states and, therefore, the state space
Ω of the process X.

An analysis of Figures 2.6a-c shows the tendency of holding time decreasing with up-
growth of N . The process looks almost smooth and the transitions are almost invisible,
while in the case of N = 5 there are clear periods with no transitions at all.

Another clear dependency is that, the paths become more narrow with a growth of N ;
the evidence of this is shown in Figures 2.6a-c and Figures 2.7. There, the range of senti-
ment index values is equal to [−1,1] for N = 5 and the process reaches the borders a few
times and twice moves from the one border to another. In contrast, the process oscillates
around the trend line for N = 150, never touching the borders. The reason is that the step
size 1/N becomes twice as small with a twice as large N . At the same time, the probability
of transition

P e
i i+1(N ,α0,α1,ν) ≥ P e

2i ,2i+1(2N ,α0,α1,ν)P e
2i+1,2i+2(2N ,α0,α1,ν)

5All other P e
i j are equal to zero in the considered model.
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Figure 2.5: Probability distribution of time between transitions w.r.t. model parameters. As the fixed values

of the parameters are taken, the vector θ = (N ,α0,α1,ν) = (50,0,0.8,3)

for the same step size (1/N ), because

P e
2i ,2i+1(2N ,α0,α1,ν) = exp(α0 +α12i /2N )

exp(α0 +α12i /2N )+exp(−α0 −α12i /2N )

= P e
i i+1(N ,α0,α1,ν),

therefore

P e
2i+1,2i+2(2N ,α0,α1,ν) ≤ 1

de f= P e
2i ,2i+1(2N ,α0,α1,ν)P e

2i+1,2i+2(2N ,α0,α1,ν)

=P e
i ,i+1(N ,α0,α1,ν)P e

2i+1,2i+2(2N ,α0,α1,ν)

≤P e
i ,i+1(N ,α0,α1,ν).

because a probability by definition is less or equal to unity.
This means that the extreme points become less likely and the amplitude becomes

smaller.

2.2.2. Parameter α1

Figure 2.8 provides a prediction that the simulated process X sample paths should have
"points of attraction". It is clear that the process should fluctuate around 0 for α0 = 0, α1 =
0.8 (see Figure 2.8b), but for α0 = 0, α1 = 1.2 there should be three "points of attraction"
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Figure 2.6: Changing of trajectories (simulated) for different N . Horizontal axis is real time.

(x = −0.7, 0, 0.7). The simulations pictured in Figure 2.7e confirms this. In general, α1

changes the curvature of transition probabilities P e defining transition direction; namely,
the curve of P e plots raises for larger α1 and becomes non-monotonic for α1 > 1. This
fact leads to higher transition probabilities pushing the process from borders for higher
α1, due to steeper P e (larger difference between P e

i i+1 and P e
i i−1), while upward/downward

probabilities are close around zero-state. As a result, the trajectories become narrower for
larger α1 (see Figure 2.7).

Also, the probability of there being transitions becomes lower for the same period of
time with an increase ofα1, especially for the states close to the extreme ones. The evidence
for this is presented in Figure 2.5a. It clear that the surface monotonically decreases with
a growth of α1, meaning lower probability of transition. Further, the plot is folding along
the α1-axis, making a transition from the polar states less likely for larger α1. This kind of
dependency effectively explains the real world, where a change of opinion is less likely with
the higher pressure of a majority, especially in cases where most of people have the same
opinion (the polar states −1 and 1).

2.2.3. Parameter α0

The influence ofα0 on a shift of trajectory presents the opposite picture. It can be traced
back easily in Figures (2.6a)-(2.6d). The Figures in 2.8 are instructive for understanding
of dependency with respect to parameter α0 . For instance, the process should fluctuate
around the state 0.9 according to Figure 2.8f, where the curves of P e

i i+1(θ) and P e
i i−1(θ)
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Figure 2.7: Simulated distribution of time the process spends in each state i = 1, . . . ,2N + 1 (equal to i =
−N , . . . , N ) for different parameters (N ,α0,α1), where the horizontal axis is a state i , the vertical axis is a time

spent in corresponding state. ν= 15.

are intersected. This fact is confirmed by Figure (2.6c) of the sample path. Similarly, Fig-
ure (2.8c) shows that the point of attraction migrates from the point x = 0 (for α0 = 0) to
x = 0.7 (for α0 = 0.2), and Figure (2.6b) of the sample path also asserts this fact. In general,
any positive value ofα0 leads to a shift of P e

i i+1 to curve upward, P e
i i−1 downward, vica versa

for any negativeα0. In turn, this leads to the movement of the equilibrium point to the right
for α0 > 0 and to the left for α0 < 0 (see Figures 2.8). The above analysis demostrates that
the model can easily mimic a shift oin the real sentiment index if it takes place.

The model parameter α0 also shows clear influence on holding time probability distri-
bution PU

i (x;θ) (2.4). This influence is controversial according to Figure 2.5d, which has
an asymmetric saddle-shape – the probability of transition within 0.2 units of time for any
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states i < 0 increases for largerα0 > 0 and decreases for states i > 0 for smallerα0 > 0; in the
case of negativeα0, the relationship is the opposite. Although the biases in the distribution
of holding time for each state are clear from the plot of theoretical probability PU

i (0.2), it
is not easy to detect an influence of such biases on simulated sample paths Figures 2.6a-
2.6d and on the distribution of holding time in states (Figures (2.7)). However, Figure 2.6c,
depicting the simulated sample path with α0 = 0.2, seems to have significantly more mo-
tionless periods when the process is closer to 1. In the case of Figure 2.6d, the trajectory is
quite volatile, thus, it is difficult to recognize an influence, at least for the current scale.

0.00

0.25

0.50

0.75

1.00

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

(a) α0=−0.2,α1=0.8

0.00

0.25

0.50

0.75

1.00

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

(b) α0=0,α1=0.8

0.00

0.25

0.50

0.75

1.00

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

(c) α0=0.2,α1=0.8

0.00

0.25

0.50

0.75

1.00

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

(d) α0=−0.2,α1=1.2

0.00

0.25

0.50

0.75

1.00

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

(e) α0=0,α1=1.2

0.00

0.25

0.50

0.75

1.00

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

(f) α0=0.2,α1=1.2

Figure 2.8: Changing of probabilities P e
i i+1 (solid line) and P e

i i−1 (dash line) for different (α0,α1). The hori-

zontal axis is a state of process.

2.2.4. Parameter ν
There is evident appearance of dependency of the last parameter ν in Figure 2.5d. The

probability of transition during 0.2 units of time dramatically rise with an increase of ν. As
an example of sample paths for different ν is not provided, let us just mention that, in case
of simulations for θ = (ν,α0,α1) = (3,0,1.2), N = 50 for time horizon T = 200, the process
makes around 1000 transitions. Meanwhile, for θ = (50,10,0,1.2), it makes around 3300
transitions.

Concerning direction of the process transitions with respect to parameter ν, it does not
depend on it, because

P e
i i+1(θ) = qi i+1(θ)

qi (θ)
= ω−(i /N ;θ)

ω−(i /N ;θ)+ω+(i /N ;θ)
=

= exp(−α0 −α1i /N )

exp(−α0 −α1i /N )+exp(α0 +α1i /N )
.

(2.24)

So, ν is purely in charge of the time scale: in other words, for the time between transitions
(aka holding time).

ä
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Let us proceed to estimation of the model parameters. There are three estimation ap-
proaches considered: the EM algorithm based on likelihood function Lc (θ|x) which is de-
fined for a continuous-time sample and two approaches based on maximization of likeli-
hood function Ld (θ|y) for a discrete-time sample.

2.3. EM algorithm approach
The first examined approach is the EM algorithm suggested by Dempster in 1977 [27],

which was also very well described with a lot of theoretical details in McLachlan’s book [69].
The idea of implementation of the EM algorithm in the case of incomplete data (discrete
observations) for a continuous-time Markov Chain is based on M.Bladt and M.Sorensen’s
2005 paper [12]. Further, Metzner, Horenko, and Schütte 2007 [71] developed the approach
of Bladt and Sorensen and suggested a more efficient expectation-step. In both cases, the
authors considered and estimated the elements of infinitesimal generator Q = {qi j } with
constant intensity rates qi j , while the ABM model has intensity rates qi j (θ) parameterized
by three parameters θ = (ν,α0,α1), which are necessary to estimate. In this section, the
approach from [71] adapted to the ABM model of sentiments dynamics is considered.

2.3.1. Theoretical description
The idea of the EM algorithm is to augment missing data with expected data. It is an

iterative algorithm, based on the iterative maximization (M-step) of the expectation of a
complete data based likelihood function Lc (θ|x) conditional on an incomplete data sample
y (E-step).

So, let there be a vector of parameters θ̂m obtained on the iteration m of the EM algo-
rithm, which is then used to find the conditional expectation (E-step)

Eθ̂m

[
logLc (θ; x)

∣∣∣y
]

, (2.25)

where x is a complete data sample, y is an incomplete data sample (data between obser-
vations is missing), Eθ̂m

[·] is an expectation substituting the parameters’ values (α0,α1,ν)

with θ̂m = (α̂0, α̂1, ν̂) when it is necessary for calculation of this expectation. The expecta-
tion (2.25) is maximized in order to obtain the next approximation θ̂m+1 (M-step)

θ̂m+1 = argmax
θ

(
Eθ̂m

[
logLc (θ; x)

∣∣∣y
])

. (2.26)

Before we formulate crucial property of the algorithm, monotonicity, let us begin with
the preliminary result connecting the two likelihood functions defined in Section 2.1.5.

Lemma 2. The incomplete-data likelihood function Ld (θ|y) is connected with its complete-

data counterpart in the following way

logLd (θ|Y = y) = logLc (θ|X = x)− log fX (x|Y = y ;θ) (2.27)

where x is a complete data (all transitions occur and intervals between them) about the pro-

cess X = (X t )t=∞
t=0 behavior, y is a discretization of x with a constant time step (not all transi-

tions fixed and real intervals are unknown). In other words, it is a vector with states of X = x

recorded each ∆t step and fX (x|Y = y ;θ) is a conditional distribution of X given Y = x.
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Figure 2.9: Transition probabilities of the process X.

Proof. Any complete data sample x incorporates any correspondent incomplete data y ob-

tained as a discretization of x. Thus,

P (Y = y) = P (X = x,Y = y)

P (X = x|Y = y)
= P (X = x)

P (X = x|Y = y)
(2.28)

or equivalently

fY (y) = fX ,Y (x, y)

fX (x|Y = y)
= fX (x)

fX (x|Y = y)
, (2.29)

where fY (y) is a probability density function for an incomplete data sample. Namely, it is

defined as the following density for the considered ABM model

fY (y) = f d (y ;θ) =
M−1∏
k=0

P X
yk yk+1

(∆t ;θ) (2.30)

and fX (x) is its complete data counterpart, which is defined in Section 2.1.5 for the consid-

ered model

fX (x) = f c (x;θ) =
M−1∏
k=0

f Y
XSk

,XSk+1
(Uk+1) =

N∏
i=−N

∏
j 6=i

q
Ni j (T )
i j exp(−qi , j Ri (T )). (2.31)

Then, taking the log function from both sides of (2.29), one led to the proposition of lemma.

The above result allows us to prove the crucial property of the EM algorithm in ensuring
monotonic enhancement of estimates from a single iteration to a successive iteration.

Theorem 4. Let a vector of parameters obtained on the m-th iteration of the EM algorithm by

maximization of expected complete (continuous-time) likelihood Lc (θ; x) (2.26) be denoted

as θ̂m , then the following inequality holds (the property of monotonicity)

Ld (θ̂m+1) ≥ Ld (θ̂m), m > 0, (2.32)

where Ld (θ; y) is an incomplete (discrete-time) likelihood functions defined in (2.23), (2.27).
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Proof. See the proof in [27] and [69] (Section 3.2, "Monotonicity of the EM algorithm").

Let us describe the computation of conditional expectation (2.25) in detail. It could be
said that usually the E-step is the most difficult part of the algorithm implementation, both
– theoretically and numerically. To begin with, the complete likelihood (2.21) is plugged
into the expectation (2.25) conditional on incomplete data sample y given the parameters’
values θ̂m obtained on the previous iteration

Eθ̂m

[
logLc (θ)|y]= N∑

i=−N

∑
i 6= j

[
log(qi j (θ))Eθ̂m

[
Ni j (T )|y]−qi j (θ)Eθ̂m

[
Ri (T )|y]]

. (2.33)

So, the goal is to calculate Eθ̂m
[Ni j (T )|y] and Eθ̂m

[Ri (T )|y] in the case of the ABM model.

Theorem 5. Let y = {y0, . . . , yM } be M discrete observations of agent-based process X with a

discretization step ∆t , T be a total observation time (T = M ×∆t ), so then

Eθ̂m
[Ri (T )|y] = ∑

k,l∈I

ckl

P X
kl

(
∆t ; θ̂m

) ∫ ∆t

0
P X

ki

(
s; θ̂m

)
P X

i l

(
∆− s; θ̂m

)
d s,

Eθ̂m
[Ni j (T )|y] = ∑

k,l∈I

ckl qi j (θ̂m)

P X
kl

(
∆t ; θ̂m

) ∫ ∆t

0
P X

ki

(
s; θ̂m

)
P X

j l

(
∆− s; θ̂m

)
d s,

(2.34)

where Ri (T ) is a time process X holden any state i during observation time T , Ni j (T ) is a

number of transitions from arbitrary state i to arbitrary state j , qi j (θ̂m) are entries of the

generator matrix Q(θ̂m), while P X
kl (∆; θ̂m) are elements of the transition probability matrix

P X (t ; θ̂m), ckl is a number of transitions from any state k ∈ I to any state l ∈ I in the data

sample y, both matrices are obtained on the m-th iteration of the EM algorithm.

Proof. The proof is given in Appendix A.5.

The next corollary allows us to calculate the integrals (2.34) obtained in Theorem 5.
This method of computation was suggested by Metzner [71]. In order to implement the
formula given in the corollary below, the generator matrix Q(t ;θm) defined by (2.10) has
to be calculated for the fixed time t and parametric set θm obtained on m-th iteration of
the EM algorithm. Then the eigenvalues and eigenvectors of Q(t ;θm) have to be extracted
using a numeric method like QR-decomposition, for example. This procedure has to be
repeated for each m-th iteration of the EM algorithm with a new set of model parameters
θm .

Corollary 4. Assume the dynamics of the CTMC process X is defined by transition probability

matrix P X (t ;θ) = exp(tQ(θ)), then the following expression holds∫ t

0
P X

ab(s;θ)P X
cd (t − s;θ)d s = ∑

i∈I
uai u−1

i b

∑
j∈I

uc j u−1
j dΦi j (t ), (2.35)

where

Φpq (t ;θ) =


te tλi : λi =λ j

e tλi −e tλ j

λi −λ j
: λi 6=λ j ,

(2.36)
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λk are eigenvalues of Q(t ;θ), ul r are elements of matrix U with corresponding eigenvectors

of Q(t ;θ), θ = {ν,α0,α1} are the model parameters.

Proof. In order to compute the matrix P X (t ; θ̂m) we use a decomposition of (2N+1)×(2N+
1) matrix Q =Q(θ̂m) as follows

Q =U DλU−1, (2.37)

where U is a matrix, each row of which is a certain eigenvector, and Dλ is a diagonal matrix

that consists of corresponding eigenvalues of the matrix Q. This decomposition has the

following well-known property (see p. 195 in [36], [72])

P (t ) = exp(tQ) =U exp(tDλ)U−1, (2.38)

where exp(·) is a matrix exponential. The elements Pab(s) and Pcd (t − s) of this matrix,

according to the matrix multiplication rules, are given by

Pab(s) = ∑
i∈I

uai u−1
i b e sλi

Pcd (t − s) = ∑
j∈I

uc j u−1
j d e(t−s)λ j

Therefore,

Pab(s)Pcd (t − s) = ∑
i∈I

uai u−1
i b

∑
j∈I

uc j u−1
j d eλi s+λ j (t−s)

∫ t

0
pab(s)pcd (t − s)d s = ∑

i∈I
uai u−1

i b

∑
j∈I

uc j u−1
j d

∫ t

0
eλi s+λ j (t−s)d s,

where

∫ t

0
eλi s+λ j (t−s)d s =


te tλi : λi =λ j

e tλi −e tλ j

λi −λ j
: λi 6=λ j .

As a result of m-th iteration the vector θ̂m+1 is obtained and, consequently, the implicit
matrix Q(θ̂m+1) and P X (t ; θ̂m) can be calculated, which are inputs for the next iteration of
the EM algorithm.

Summing up, Theorem 5 provides us with the theoretical basis of the E-step calculation.
Note, this theorem does not provide an analytical solution; it is necessary to use numerical
methods for eigendecomposition of Q(t ; θ̂m) on each E-step of each EM iteration. Fur-
ther, the M-step also has to be made using one of the numerical optimization methods,
such as the BFGS method named after its authors Broyden—Fletcher—Goldfarb—Shanno.
Theorem 4 guarantees improvements of estimation in the regards to improvement of the
likelihood function Ld .
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2.3.2. Application
As mentioned previously, it is impossible to use the continuous-time likelihood func-

tion Lc (θ|x) from (2.21) directly due to the lack of continuous-time sample x in the real
world, since the use of a discrete time (incomplete) sample y with Lc (θ|x = y) would causes
biased estimates. Meantime, the complete-data likelihood Lc (θ|x) and incomplete-data
likelihood Ld (θ|y) are tightly connected as it was proven in Lemma 2. The presence of this
connection is allowed by iterative EM maximization6 of expectation E [Lc (θ|x)|y], to maxi-
mize monotonically its discrete-time counterpart Ld (θ|y) according to Theorem 5.

As a starting point, the following initial parameters values for testing of algorithm per-
formance for the EM algorithm are used: θ̂0 = (1,0,1). The E-step requires an eigen decom-
position of the intensity matrix Q(∆t ;θm) from (2.37). An eigendecomposition is the most
crucial step of the whole algorithm, because a robustness of the algorithm depends very
strongly on quality of this decomposition. In order to calculate a matrix with of eigen-
vector U , matrix D with eigenvalues on its diagonal and the inverse of matrix U from
the Corollary 4 used AlgLib library [13]. A calculation of the transition probability ma-
trix P X (∆t ;θm) by QR decomposition of Q(∆t ;θm) is formalized as the subroutine named
Matrix_P_eigen_decomposition, as well as all further steps and sub-steps according to the
logic of the procedural programming paradigm. Next, all values Φpq (∆t ;θm) defined in
Corollary 4 are calculated in the corresponding subroutine Matrix_Phi and stored in a
memory. Unfortunately, they depend on the eigenvalues matrix D derived from Q(∆t ;θm).
Therefore, we have to repeat calculation of them on each E-step. Having matrices U , D ,
Φpq (∆t ;θm) and P X (∆t ;θm), it is possible to proceed to the calculation of Eθ̂0

[Ri |y] and
Eθ̂0

[Ni j |y] from (2.34) using Corollary 4. As a result, the expectation of likelihood function
Eθm [Lc (θ|x)|y] defined in (2.33) can be calculated.

The next stage of an iteration is the M-step defined by equation (2.26). Namely, we need
to maximize Eθm [Lc (θ|x)|y] with respect to θ. A non-linear congruential optimizer (BLEIC
optimizer - Bound and linear equality/inequality constrained optimizer - from AlgLib li-
brary) is used for this purpose with the following settings: starting point θ = (1,0,1), lower
boundary conditions (0.01,−3,−5), and upper boundary conditions (7,3,5) corresponding
to parametric vector θ = (ν,α0,α1). The maximum is denoted by θ̂m+1 and used on the next
iteration instead of θ̂m . The process is continued till the stopping criteria are not fulfilled.
Shortly, the algorithm can be sketched as compact scheme.

1. θ̂0 := (1,0,1)

2. E-step:

(a) Call Matrix_P_eigen_decomposition(Q(θ̂m)) →U , D , P X ;

(b) Call Matrix_Phi(D) →Φ;

(c) Call Matrix_E_R(U , P X ,Φ, Q, C ) → vector of Eθ̂m
[Ri |y] for i ∈ I ;

(d) Call Matrix_E_N(U , P X ,Φ, Q, C ) → matrix of Eθ̂m
[Ni j |y] for i , j ∈ I ;

3. M-step:

6In order to use the EM algorithm C++ programme was created, where by the AlgLib [13] and TNT [79] libraries

were used for complicated mathematical calculations.
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(a) argmaxθEθm [Lc (θ|x)|y] → θ̂m+1;

4. IF (stopping criteria is not true) THEN θ̂m = θ̂m+1, go to (2) ELSE θ̂∗ = θ̂m .

where C is a matrix of transitions in the incomplete sample data y .

ä
In order to check the performance of the presented EM algorithm based estimation ap-

proach, synthetic continuous-time trajectories of the opinion dynamics index process X
defined in the Section 2.1 for the time-horizon T = 200 were simulated using the Monte-
Carlo technique. Each synthetic continuous-time trajectory consists of around 1200 transi-
tions, which is the number of transitions the process X makes until T . Further, the discrete-
time sample was extracted from each synthetic continuous-time trajectory by selecting val-
ues of it with the discretization step ∆t = 1. So, the result of such a procedure is a discrete-
time trajectory with 200 transitions. These trajectories were used as an input for the tested
estimation procedures. Then, the statistical properties of the obtained parameter estimates
were investigated, to analyzed the advantages and disadvantages of the approaches.

2.3.3. Error metrics
In order to compare estimates obtained by the EM algorithm and other approaches we

use:

• Mean value of ¯̂θ – measure of accuracy. It shows whether an estimator is biased or
not;

• Corrected sample standard deviation (SD) – measure of estimation precision:

SD =
√

n∑
i=0

(θ̂i − ¯̂θ)2
/

(n −1),

where n is a number estimates obtained during n Monte Carlo experiments;

• Relative Standard Error (RSE) - is a standard error of the mean (or SEM) divided by
value of the mean:

RSE = SE M
¯̂θ

×100% = SD
p

n ¯̂θ
×100%,

where n is a number estimates obtained during n Monte Carlo experiments. An esti-
mate is good enough in terms of precision if RSE is less than around 30%;

• Median – is also a measure of accuracy, but less sensitive to extreme values than a
mean;

• Root-Mean Square Error (RMSE) – measure of both accuracy and precision, because
it incorporates both, variance of estimator and its bias:

RMSE =
√

n∑
i=0

(θ̂i −θ)2
/

n,

where n is a number estimates obtained during n Monte Carlo experiments.

As we can see standard deviation and root-mean square error are very close in the case
of unbiased estimator.
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2.3.4. Numerical results
Here we will discuss the outcomes and performance of the EM algorithm. The results

of 100 repeated estimations of 100 Monte-Carlo simulated data samples for ABM models
with the number of agents N equal to 5, 10, 15, 20 and different parameters vectors θ based
on the methodology from Section 2.1.6 are presented in Tables 2.3 and 2.4 and Figures
2.10 and 2.11. To compare the results, the maximum likelihood estimates based on the
continuous-time Lc (θ|x) are also presented.7 Let us analyze these results.

Lc -MLE EM algorithm

ν̂ α̂0 α̂1 ν̂ α̂0 α̂1

S Mean 3.004 0.015 0.747 3.025 0.015 0.747

E Median 3.000 0.008 0.768 3.037 0.008 0.767

T SD 0.086 0.021 0.133 0.297 0.021 0.130

1 RMSE 0.086 0.026 0.142 0.296 0.026 0.140

S Mean 3.005 0.253 0.711 3.038 0.257 0.701

E Median 3.012 0.237 0.724 3.067 0.237 0.706

T SD 0.094 0.100 0.179 0.278 0.103 0.181

2 RMSE 0.094 0.272 0.199 0.279 0.277 0.206

S Mean 3.009 0.043 1.131 3.042 0.045 1.125

E Median 3.012 0.009 1.163 3.030 0.010 1.158

T SD 0.097 0.065 0.109 0.293 0.068 0.113

3 RMSE 0.097 0.078 0.348 0.294 0.081 0.344

S Mean 2.999 0.286 1.096 2.979 0.321 1.040

E Median 2.997 0.242 1.129 2.971 0.275 1.073

T SD 0.114 0.180 0.233 0.329 0.193 0.249

4 RMSE 0.113 0.338 0.376 0.328 0.374 0.345

Table 2.3: The results of estimates based on 100 Monte Carlo simulated discrete sample paths with a length

of 200 discrete-time points extracted from continuous-time sample paths with around 1200 transitions each.

The Lc -MLE estimates based on the original continuous-time sample paths (as a benchmark) and EM esti-

mates based on the corresponding discrete-time sample paths. ABM model with 20 agents.

Experiments settings
The settings of the Monte Carlo simulation experiments are the following for the EM

algorithm, if not mentioned otherwise:

• 100 discrete-time paths obtained from discretization of 100 simulated continuous-
time sample paths8;

7It is possible to use complete-data likelihood function Lc (θ|x) in Monte Carlo simulations, because we sim-

ulate firstly the continuous-time (complete) sample path x, and the discrete-time sample path y using dis-

cretization of x, while the only discrete-time sample y is usually available in real world examples.
8Recall, a continuous-time data for the model is unavailable in real world.
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• Time-horizon for each continuous-time sample T = 2009;

• The step of discrete "observation" of corresponding continuous-time sample paths
∆t = 1, therefore there are 200 discrete observations;

• ABM-5,10,15,20 model versions with the number agents N = 5,10,15,20, correspond-
ingly;

• The initial point of optimization subroutines θ̂0 = (4,0.5,15);

• The parametric sets:

– Set 1: ν= 3, α0 = 0, α1 = 0.8,

– Set 2: ν= 3, α0 = 0.2, α1 = 0.8,

– Set 3: ν= 3, α0 = 0, α1 = 1.2,

– Set 4: ν= 3, α0 = 0.2, α1 = 1.2.

• The continuous-time sample paths (complete-data) in such settings consist of about
1200 transitions comparing to only 200 "observed" transitions in the corresponding
discrete-time sample paths (incomplete-data).

The simulation procedure of continuous-time sample paths described in Subsection
2.1.6 starts from point x0 = 0 and provides the vector of process X states x, the time in-
tervals between transitions Un , the matrix with transitions number N (T ) = {Ni j (T )}, the
vector with occupation times R(T ) = {Ri (T )}. This data is enough to calculate the likeli-
hood function for the Lc -based MLE method. Further, this data allows us to construct a
discrete-time sample, namely to obtain the vector with states y = {yi }200

i=0 obtained with the
observation step∆t = 1. Further, the x and y sample paths were estimated in parallel10; the
results of estimation and their times were collected for further analysis and error metrics
computation.

Main results
Let us begin our analysis of the EM algorithm results with the estimates of parameters

α0 and α1 (see Table 2.3 with the results for the EM algorithm and Lc -based MLE). The
median values of estimates α̂0 for Set 1 and Set 3 are very close to zero, 0.008 and 0.01, and
seem to be unbiased. The median values of α̂1 for Set 2,4 are not so perfect, 0.237 and 0.275,
but small nevertheless. In general, the EM estimates of α̂1 show very similar tendencies to
α̂0. The only difference is a slightly higher magnitude of errors ofα1. Indirectly, unbiasness
is confirmed by the values of the standard deviation and root-mean square error that are:
very close for Set 1 and both α0, α1; close for Set 2,3 and of parameters; while for Set 4 the
difference is more significant, as well as the magnitude. Thus, the level of root-mean square
error and standard deviation is a result of variance of the estimator, mostly for Set 1 and less
for Set 4. For instance, the root-mean square error (of α0) has a magnitude around 0.374
for Set 4, while SD is 0.193; therefore, the root-mean square error and standard deviation

9See the details of simulation technique in Subsection 2.1.6.
10Each estimation was produced on its own core of the CPU in parallel. Thus, the performance of a simulation

experiment depends on the number of CPU cores, as an estimation procedure was not parallelized.
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are not so close. In this sense, it is useful to compare the values of mean and median. There
is evidence that the difference between the median and mean is higher for sets with higher
errors. The reason for that are the outliers of estimates for some Monte Carlo simulations,
which can appear because of poor convergence of numerical optimization subroutine due
to local maximums of the likelihood function or accumulation of computation errors of
numerical calculation procedures. Another reason can be insignificant size of sample. Re-
gardless, the presence of biases does not mean that they are the only explanation for the
higher magnitude. The main reason is a higher variation of estimates of these sets of pa-
rameters, which seems to be a more complicated case for an estimation.

2.
0

3.
0

4.
0

nu

0.
0

0.
4

0.
8

al
ph

a0

0.
0

0.
5

1.
0

1.
5

al
ph

a1

Lc
−

M
LE

 (
S

et
 1

)

Lc
−

M
LE

 (
S

et
 2

)

Lc
−

M
LE

 (
S

et
 3

)

Lc
−

M
LE

 (
S

et
 4

)

E
M

 (
S

et
 1

)

E
M

 (
S

et
 2

)

E
M

 (
S

et
 3

)

E
M

 (
S

et
 4

)

Figure 2.10: The results of estimates based on 100 Monte Carlo simulated discrete sample paths with a

length of 200 discrete-time points extracted from continuous-time sample paths with around 1200 transi-

tions each for various parametric sets by two estimation methods: Lc -MLE (complete-data) and EM algo-

rithm (incomplete-data). ABM-20 model.

Figure 2.10 depicts the results of two methods estimating the same samples simulated
with various parametric sets, as described in the Experiments Settings subsection above.
The estimations distributions are represented in the figure as violins (symmetric around
y-axis empirical density functions) for all investigated combinations of methods and para-
metric sets on three panels for the corresponding parameters ν,α0 andα1. An inspection of
Fig 2.10 shows that the estimates ν̂ tend to have the low biases (around 3.042 in the worst
case), but the standard deviation and root-mean square errors are significantly higher in
absolute values (both around 0.3). The errors are almost the same for all parameters’ sets.
They are a bit larger for Set 4, but in general the parameter ν is much less sensitive to the
change of parameter sets than the other two parameters. The reason for that may be in the
construction of the transition probability matrix (2.16). Recall, it is given by

P X (t ;θ) = exp(tQ(θ)).
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The key feature of its construction is possibility to isolate parameter ν from the other two
in the following way

exp(tQ(θ)) = exp(tνQ̃(α0,α1)).

As a result, it is evident that the transition probabilities P X have more straightforward de-
pendency on ν than on α0 and α1. This can be the reason for low sensitivity of ν with
respect to different parameters’ sets. At the same time, it explains the similar properties of
α̂0 and α̂1.

In order to make a general conclusion about the quality of EM estimates it is good to
check out the values of RSE. Let us provide the values of relative standard error for Set 4
which has higher errors of estimates:

• RSEset4(ν̂) = 1.13%11,

• RSEset4(α̂0) = 6.15%,

• RSEset4(α̂1) = 2.44%.

It can be seen from Table 2.3 that the absolute errors of ν̂ are comparable, while the relative
errors give another picture: the relative standard error of α̂0 is significantly higher. It is,
however, important to note that even 6.15% is very well and satisfactory result, because it
is less than the moderate level 30%. In other words, the method shows good precision.

Note, the ML-estimates of α0 and α1 based on Lc (θ) and continuous-time sample have
absolutely the same properties as the EM estimates; their precision and accuracy presented
in first columns of Table 2.3 are also very close to the EM case. Only the estimates of ν are
a little bit better. Overall, the EM algorithm using an incomplete data sample shows very
close quality of estimates with respect to the classical maximum likelihood estimates based
on the complete data sample.

Models comparison
Another Monte Carlo simulation experiment is dedicated to differences in estimation of

ABM based on various numbers of agents N . During the experiment, the results of estima-
tion of the models ABM-5, ABM-10, ABM-15 and ABM-20 are compared with the number
of agents N = 5,10,15,20, correspondingly. The estimation results’ metrics are collected
for the methods Lc -MLE (complete-data) and EM algorithm (incomplete-data) in Table 2.4
visualized in Figure 2.11.

A brief inspection of Fig. 2.11 shows two tendencies. The first one is the tendency of ν
estimates to be biased for ABM-5, less biased for ABM-10,15 and unbiased for the case of
ABM-20. On the contrary, the deviation of estimates α0 and α1 becomes worse for models
with a higher number of agents. These tendencies hold for both the complete-data based
Lc -MLE and incomplete-data based EM algorithm.

Deeper investigation of the estimations’ results is based on the analysis of the error
metrics collected in Table 2.4. The first fact confirming the evidence from Figure 2.11 is the
monotonic growth of SD and RMSE for both complete-data based Lc -MLE and incomplete-
data based EM algorithm forα1, namely from around 0.068 to 0.142 and from 0.088 to 0.140,
correspondingly. The error metrics ofν estimates are improving, the RMSE of EM algorithm

11It tells what the size of standard error (deviation) is comparing with the estimate size in percent.
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Lc -MLE EM algorithm

ν α0 α1 ν α0 α1

A Mean 3.004 0.014 0.780 2.847 0.014 0.740

B Median 3.006 0.002 0.788 2.826 0.000 0.743

M SD 0.093 0.020 0.065 0.347 0.021 0.065

5 RMSE 0.093 0.024 0.068 0.378 0.026 0.088

A Mean 3.006 0.013 0.774 3.021 0.012 0.771

B Median 3.010 0.003 0.782 3.055 0.004 0.788

M SD 0.090 0.018 0.093 0.292 0.017 0.090

10 RMSE 0.090 0.022 0.096 0.291 0.021 0.094

A Mean 3.005 0.013 0.763 3.074 0.013 0.764

B Median 3.007 0.006 0.787 3.013 0.007 0.782

M SD 0.088 0.019 0.112 0.312 0.020 0.111

15 RMSE 0.088 0.023 0.117 0.319 0.024 0.116

A Mean 3.004 0.015 0.747 3.025 0.015 0.747

B Median 3.000 0.008 0.768 3.037 0.008 0.767

M SD 0.086 0.021 0.133 0.297 0.021 0.130

20 RMSE 0.086 0.026 0.142 0.296 0.026 0.140

Table 2.4: The results of estimates based on 100 Monte Carlo simulated discrete sample paths with a length

of 200 discrete-time points extracted from continuous-time sample paths with around 1200 transitions each.

Lc -MLE columns are the estimates obtained by maximization of the continuous-time sample (as a bench-

mark) and the EM algorithm columns are the estimates obtained by EM algorithm estimation of the discrete-

time sample for models with different numbers of agents N .
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Figure 2.11: The results of estimates based on 100 Monte Carlo simulated discrete sample paths with a length

of 200 discrete-time points extracted from continuous-time sample paths with around 1200 transitions each

for ABM-5,-10,-15,-20 versions of ABM model and parametric Set 1 by three estimation methods: Lc -MLE

(complete-data) and EM algorithm (incomplete-data).

estimates, for instance, decrease from 0.378 to 0.296. The error metrics of α0 estimates do
not indicate a significant difference.

Summing up, the EM algorithm provides a fine quality of estimates of three parameters
for all considered ABM model versions (ABM-5,-10,-15,-20). The variation in the results’
quality is weak for the model when the number of agents is N ≤ 20.

2.3.5. Discussion
The results of EM based estimation are satisfactory in terms of error metrics, especially

for parameters ν and α1. As can be seen in Figure 2.10, only the ν estimates are signifi-
cantly worse if they are compared to incomplete-data y based EM results with complete-
data based results of Lc −MLE method, but only in terms of the standard deviation of the
obtained estimates. The rest of the behavior of the estimators is very similar – the same ten-
dency for Set 2,4 of higher biases and higher deviation of α0 and α1 estimates. Moreover,
the values of metrics are almost the same for α0 α1.

The drawback of the EM algorithm lies in another plane. An EM algorithm applica-
tion to the considered ABM model is computationally intensive. It is impossible to es-
timate ABM models with number of agents N more than around 20 with the EM algo-
rithm, because the time of estimation increases dramatically. The reason for that is in
the highly recurrent construction of the vector (Eθ̂m

[Ri (T )|y])N
i=−N and, especially, matrix

(Eθ̂m
[Ni , j (T )|y])N

i , j=−N from (2.34). A computation of its elements requires (2N+1)4 floating-
point operations. Moreover, in order to make the E-step (2.26) we have to use numerical
optimization, which is based on the numerical evaluation of derivatives. It means we have
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to repeat computation of (2.34) at least three times at each step of the optimization proce-
dure. More detailed results concerning time-consumption are collected and discussed in
Section 2.7. Further, the number of agents N is also bound by the eigendecomposition of
the matrix Q; this problem (catastrophic cancellation) is discussed in the next section. Nev-
ertheless, the EM algorithm is applicable on an average PC in cases without a large number
of agents N .

ä

Further, we consider an alternative to the EM algorithm approaches, which allow esti-
mation based on direct maximization of Ld (θ) (2.23) for large N .

2.4. Direct computation of discrete-time likelihood function

approach
A different approach may be taken in order to overcome the weakness of the EM algo-

rithm, namely the calculation during all iterations of the following matrices with expecta-
tions {

Eθ̂m

[
Ri (T )

∣∣∣y
]}N

i=−N
: 1× (2N +1) (2.39){

Eθ̂m

[
Ni , j (T )

∣∣∣y
]}N

i , j=−N
: (2N +1)× (2N +1), (2.40)

These expectations are necessary for the calculation of the expectation of continuous-time
likelihood function Lc (θ|x) (2.34) conditionally on the observed discrete data sample y. The
approach suggests calculation of the transition probability matrix P X (∆;θ) (2.16) numeri-
cally and to use it for computation of the likelihood function Ld (θ), which is maximized in
the logic of the MLE method.

2.4.1. Theoretical description
The crucial part of this and the next approach is calculation of the matrix exponential

exp(tQ(θ)), which is quite a complicated numerical problem. Unfortunately, it does not
have a straightforward settled solution. There are plenty of ways to solve it, each with own
advantages and disadvantages, including methods from different fields, such as: matrix de-
compositions, differential equations, and various approximations. The most widely used
are described and analyzed in Moler and Loan’s paper [72] (2003). The situation is compli-
cated by the sparsity of the matrix Q(θ), which grows with the number of agents N ; since
Q(θ) is tridiagonal the number of zero entries is (2N +1)×(2N −2)+2. Further, Q(θ) is non-
negative, non-symmetric and singular by definition, with a zero eigenvalue [88] and for all
others on the open left half plane, their eigenvalues are real.

As mentioned in [72], there is a group of matrix exponential P X (∆;θ) = exp(∆Q(θ))
computation methods based on the following property. Let Q be decomposed as

Q = SBS−1,
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then, the definition of matrix exponential exp(tQ) implies

exp(tQ) = S exp(tB)S−1.

In this approach, the eigendecomposition (2.37) is used, which is also used as part of the
EM algorithm

P X (t ;θ) = exp(tQ(θ)) =U exp(tDλ)U−1,

where Dλ is a diagonal matrix with eigenvalues on diagonal, U is a matrix whose columns
are corresponding eigenvectors of Q. The main advantage of this decomposition is that e tD

is given by
exp(tD) = di ag (exp(λ1), . . . ,exp(λ2N+1)).

Moreover, U is a nonsingular matrix, hence the inverse matrix U−1 exists.
Further, the transition probability matrix P X (t ;θ) of the CTMC process X computed the

eigendecomposition as above using numerical methods. Then it is directly used for the
computation of the likelihood function Ld (2.23). Recall, it is given by

Ld (θ|y) = ∏
i , j∈I

(
P X

i j (∆t ;θ)
)ci j

,

where ci j is a number of transitions from the state i to the state j in the discrete-time sam-
ple y .

On the last step, it is necessary to maximize Ld (θ|y) for given discrete observations y.
Unfortunately, it is not possible to perform analytically, because we cannot formulate F.O.C.
due to the absence of the closed-form of P X

i j (∆t ;θ) In particular, we need to know partial

derivatives P X
i j (∆t ;θ). So, the likelihood function Ld (θ|y) is maximized using numerical

optimization methods.

2.4.2. Application
The key procedure of the method is a computation of the transition probability ma-

trix P X (t ;θ), which consists of two stages that are necessary for eigendecomposition (2.37):
first, a derivation of eigenvalues and corresponding eigenvectors; second, an inversion of
the matrix U . A realization of both stages has a strong influence on the quality and speed
of the whole method. Therefore, they have to be carefully, efficient and quickly computed.
Thus, in order to implement the method, two C++ libraries were used for numerical com-
putations AlgLib [13] and TNT [79]. Each of them has the necessary subroutines of eigende-
composition and matrix inversion, but as we will see further, they have different round-off
errors and, as a result, different degrees of robustness.

Another important part of the method is the numerical optimization problem, that is

θ∗ = argmax
θ

(Ld (θ)). (2.41)

As with the previous step, there is no sense in reinventing the wheel and creating our own
C++ realization of well-known optimizers. Instead, we used two optimizers from the pack-
age AlgLib: nonlinear congruential optimizer (it is called BLEIC12 in AlgLib documentation)

12BLEIC – boundary and linear equality/inequality constraints.
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and Levenberg-Marquart (LM) optimizer.13 It may look a bit odd, because the Levenberg-
Marquart method is known and widely used as optimizer for least squares problems, but it
also can be used for general optimization problems. In this case, it acts like the Trust Region
Newton method. The main advantage of LM for our purposes is that it uses a three-point fi-
nite difference stencil for numerical differentiation. Therefore, only three values of Ld have
to be computed 14 on each step of this method, whereas the numerical differentiation in
the BLEIC subroutine has a five-point stencil. We used it as an optimizer for Lc (θ|x), which
is quite cheap computationally.15

In general, the method implementation can be outlined as:

1. θ̂0 := (1,0,1)

2. Maximization procedure (Levenberg-Marquart or BLEIC):

(a) Computation of Ld and its numerical partial derivatives (two evaluations of Ld

for each):

• Evaluation of Ld ;

– Computation of Q(N ;θk );

– Decomposing of Q by using (2.37);

– Computation of P X = exp(Q) by using (2.38).

(b) LM-step;

(c) IF (stopping criteria is not true) THEN θ̂k = θ̂k+1, go to (2a) ELSE θ̂∗ = θ̂k+1.

2.4.3. Numerical results
The procedure of continuous-time and corresponding discrete-time data samples sim-

ulation is described in detail in Subsection 2.3.4.
The results of the two estimation experiments using the approach of numerical com-

putation of Ld (θ|y) are presented in Tables 2.5 and 2.6 (columns of section Ld -MLE), and
corresponding Figures 2.12 and 2.13. The first experiment is dedicated to the quality of
the ABM-20 model parameters estimates for various parameters’ sets, while the second
one is dedicated to estimation of various ABM model versions with the number of agents
N = 5,10,15,20. As the tool of analysis we continue to use the values of mean, standard
deviation (SD), root-mean square error (RMSE) and median. The meanings of these were
described in Subsection 2.3.4.

Let us begin with the analysis of Table 2.6. The Ld -MLE estimates of parameter ν are
more robust for model AB M−10 with the best precision and accuracy for the parameter es-
timates 0.29 (both SD and RMSE), while the worst results are obtained for AB M−5, namely
0.366 (SD) and 0.386 (RMSE). Nevertheless, the difference between all of the results is less
than 30%; only the AB M −5 version is significantly worse than the others. The closeness of
the median and mean values indicates there is no (or at least only a few) outliers/failures of

13For further details about these algorithms see Numerical Recipes [42].
14Each evaluation of the likelihood function Ld (θ|y) is computationally expensive, because it requires the

eigendecomposition of the intensity rates matrix Q(θ) to be produced.
15Recall, we consider ordinary MLE based on the complete-data likelihood Lc (θ|x) as perfect, but there are

rare case in practice; at the same time, it is useful as a benchmark method.
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Lc -MLE Ld -MLE

ν̂ α̂0 α̂1 ν̂ α̂0 α̂1

S Mean 3.004 0.015 0.747 3.032 0.016 0.747

E Median 3.000 0.008 0.768 3.044 0.006 0.767

T SD 0.086 0.021 0.133 0.301 0.022 0.133

1 RMSE 0.086 0.026 0.142 0.301 0.026 0.142

S Mean 3.005 0.253 0.711 3.116 0.290 0.783

E Median 3.012 0.237 0.724 3.102 0.264 0.736

T SD 0.094 0.100 0.179 0.478 0.126 0.309

2 RMSE 0.094 0.272 0.199 0.489 0.315 0.308

S Mean 3.009 0.043 1.131 3.272 0.148 1.230

E Median 3.012 0.009 1.163 3.156 0.008 1.198

T SD 0.097 0.065 0.109 0.534 0.214 0.182

3 RMSE 0.097 0.078 0.348 0.597 0.259 0.467

S Mean 2.999 0.286 1.096 3.959 0.497 1.489

E Median 2.997 0.242 1.129 4.000 0.500 1.500

T SD 0.114 0.180 0.233 0.288 0.021 0.076

4 RMSE 0.113 0.338 0.376 1.001 0.497 0.693

Table 2.5: The results of estimates based on 100 Monte Carlo simulated discrete sample paths with a length

of 200 discrete-time points extracted from continuous-time sample paths with around 1200 transitions each.

The Lc -MLE estimates based on the artificial continues-time data sample (as a benchmark) and Ld -MLE

estimates based on eigendecomposition of P X obtained by estimation procedure from Section 2.4. ABM

model with 20 agents.
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Figure 2.12: The distribution results of estimates based on 100 Monte Carlo simulated discrete sample paths

with a length of 200 discrete-time points extracted from continuous-time sample paths with around 1200

transitions each for various parametric sets by two estimation methods: Lc -MLE (complete-data) and Ld -

MLE (incomplete-data). ABM-20 model.
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Figure 2.13: The distribution of results of estimates based on 100 Monte Carlo simulated discrete sample

paths with a length of 200 discrete-time points extracted from continuous-time sample paths with around

1200 transitions each for ABM-5,-10,-15,-20 versions of ABM model and parametric Set 1 by two estimation

methods: Lc -MLE (complete-data) and Ld -MLE (incomplete-data).



2.4. Direct computation of discrete-time likelihood function approach 46

the estimation procedure. In particular, the standard deviation of Ld -estimate ν̂ is around
0.29, the root-mean square error of ν̂ is 0.29 for AB M − 10 model. The Ld -estimators of
parametersα0 do not seem to vary significantly for different versions of the model, with SD
and RMSE around 0.018−0.026. The estimates of α1 display to the opposite to ν-estimates
tendency. The values of standard deviation and root-mean square error for those estimates
increase monotonically from AB M −5 to AB M −20. Another tendency is underestimation
of the parameter α1, but the bias is around 5%.

Note, it is clear that the Ld -MLE and EM algorithm provide very close results with very
similar quality. This effect has clear theoretical justification. As was mentioned earlier, the
sequence of EM estimates {θ̂k } obtained on each iteration of the algorithm converges to
the maximum point of discrete-time likelihood function Ld (θ|y). This property is called a
monotonicity (2.32) of EM sequence and it is given by

Ld
(
θ̂k+1

∣∣∣y
)
≥ Ld

(
θ̂k

∣∣∣y
)

.

Consequently, the Ld -MLE estimates have similar properties and features as the EM algo-
rithm estimates that were discussed in Subsection 2.3.4. Nevertheless, there are differences
the in the error metrics levels and behavior for different parameters sets, as we will see fur-
ther.16

Also, Figure 2.13 contains results for the ABM-25 model version. It shows clear signs of
instability of estimation procedure. The distributions of estimates have groups of outliers
in the bottom of each plot. We will also see the presence of outliers (failures of maximiza-
tion procedure convergence) in the next experiment.

Table 2.5 collects the metrics of 100 simulated sample paths estimates of the ABM-20
model for various parameters settings. There is a clear tendency of estimates to get worse
from Set 1 to Set 4 for both metrics: RMSE of ν-estimates increases from 0.301 (Set 1) to
1.001 (Set 4); α0-estimates from 0.026 to 0.497; and α1-estimates from 0.142 to 0.693. Ad-
ditional information is given in Figure 2.12. The immediately noticeable part of the figure
is that the EM estimates and Ld -based estimates distribution show up very similar tenden-
cies for various parameters sets, but there are clear "tails" of results distribution for Ld -MLE
estimates. These "tails" are failures of optimization procedure, It is especially clear for Set
4 with median estimates of parameters (4.0,0.5,1.5), which is exactly the initial point of the
maximization procedure.

ä

In the next section, we analyze outcomes and reasons for the method collapse for the
ABM model versions with the number of agents N ≥ 25.

2.4.4. Discussion
The main contrast to the application of the EM algorithm is the only computationally

expensive operation in the presented approach, namely the eigendecomposition of the in-
tensity rates matrix Q(θ). Due to its computational efficiency, it allows us to increase sig-
nificantly the maximum number of agents N capable for estimation.

16The results of Lc -MLE were compared in the previous section with the EM algorithm results, which are very

similar to Ld -MLE.
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Lc -MLE Ld -MLE

ν α0 α1 ν α0 α1

A Mean 3.004 0.014 0.780 2.872 0.014 0.739

B Median 3.006 0.002 0.788 2.843 0.002 0.737

M SD 0.093 0.020 0.065 0.366 0.021 0.064

5 RMSE 0.093 0.024 0.068 0.386 0.025 0.089

A Mean 3.006 0.013 0.774 3.034 0.013 0.769

B Median 3.010 0.003 0.782 3.051 0.004 0.784

M SD 0.090 0.018 0.093 0.290 0.018 0.091

10 RMSE 0.090 0.022 0.096 0.290 0.022 0.096

A Mean 3.005 0.013 0.763 3.084 0.014 0.761

B Median 3.007 0.006 0.787 3.029 0.009 0.781

M SD 0.088 0.019 0.112 0.312 0.020 0.112

15 RMSE 0.088 0.023 0.117 0.322 0.024 0.118

A Mean 3.004 0.015 0.747 3.032 0.016 0.747

B Median 3.000 0.008 0.768 3.044 0.006 0.767

M SD 0.086 0.021 0.133 0.301 0.022 0.133

20 RMSE 0.086 0.026 0.142 0.301 0.026 0.142

Table 2.6: The results of averaged estimates based on 200 Monte Carlo simulations (200 discrete time-steps,

around 1200 continuous time-steps for each), where Lc -MLE columns are the estimates obtained by maxi-

mization of the continues-time likelihood (as a benchmark), Ld -MLE columns are the estimates obtained by

maximization of the likelihood based on eigendecomposition of P X for different numbers of agents N .



2.4. Direct computation of discrete-time likelihood function approach 48

Focusing on the general features of the methods, we can point out that the Ld -MLE
approach presented in this section is simpler and faster than the EM algorithm. Both
of them have subroutines for the matrix Q(θ) decomposition and matrix P X computa-
tion, but the EM algorithm also requires the highly recursive computation of the vector
(Eθ̂m

[Ri (T )|y])N
i=−N and matrix (Eθ̂m

[Ni , j (T )|y])N
i , j=−N from the expression (2.34). This leads

to strong acceleration of computations, which in turn makes it possible to estimate agent-
based models described in Section 2.1 with a greater number of agents N (up to around
30). Nevertheless, this limitation is still unsatisfactory. In order to overcome it, we should
understand the reasons behind the method collapse.

The main aim of Ld -MLE is maximization of the discrete-time likelihood function Ld (θ)
(2.23) as follows from its name. As a part of the method we have a subroutine for compu-
tation of Ld (θ|y). It does the following: 1. Simply simulate one trajectory path; 2. Compute
the matrix Q(θ) from the expression (2.7) and decompose it by using the eigendecomposi-
tion (2.37); 3. Compute the matrix P X (∆;θ), which we use in turn for computation of Ld (θ).
Let us sequentially check the weaknesses of this procedure.

First of all, let us look at the 3D-surface of Ld (θ) (w.r.t. α0 andα1) generated by using the
parameters from Set 3 for N = 50 for two different realizations of the optimization subrou-
tine, one based on C++ library TNT [79] and another one based on C++ library [13]. They
are displayed in Figure 2.14.
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Figure 2.14: Instability of likelihood function Ld based on eigendecomposition for a large number of agents.

The discrete-time (incomplete) sample y of AB M−50 is simulated with the parameters: ν= 3,α0 = 0,α1 = 1.2,

then the likelihood function Ld (ν,α0,α1|y) is plotted w.r.t. α0 and α1, ν fixed to 3. Ld computed by using

AlgLib library [13] eigen decomposition for the left plot, while TNT library [79] is used for the right one.

From Figure 2.14, it is apparent that the surface is strongly distorted, especially in the
case of the TNT subroutine. AlgLib is robust, but in a very limited area (approximately
for −0.5 ≤ α0 ≤ 0.5, 0.7 ≤ α1 ≤ 1.2). So, the reason for the method collapse is not in the
optimizer subroutine.
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Let us check deeper into the method construction. Namely, the weakest point of the
method is potentially the eigendecomposition and computation of the matrix P X (∆). The
most descriptive and simple manner of analysis is a visual representation. So, it is shown
in Figure 2.15.
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Figure 2.15: Visualization of N ×N matrix P X (∆) entries for different N computed by using AlgLib library [13]

for parameter values from Set 1: ν= 3, α0 = 0, α1 = 0.8.

Notably, everything appears fine for ABM-5,-10,-25 and -100 (α0 = 0); troubles only
arise for the case of nonzero parameter α0. In particular, certain artifacts of instability
show up already for N = 30 (Figure 2.15e). Particularly, there are clear lines on the edge
of the curvature part and waves on the plain part. One can see that, with an increase of N
up to N = 32, great distortions occur (Figure 2.15f). In the literature, this effect is called loss
of significance.
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Let us consider the matrix P X (∆) calculation. That is given by (2.38), namely

P X (t ) = exp(tQ) =U exp(tDλ)U−1.

There are at least two weak points regarding round off errors and loss of significance. The
first one is the near confluence of eigenvalues. This problem can lead to loss of accuracy
for all methods of matrix exponential computation based on the calculation of eigenval-
ues.17 Another difficulty that can lead to large round-off errors is "nearly" defectiveness18

of matrix U for certain parameter values. In Moler and Loan’s (2003) paper, they defined
the following measure of defectiveness

cond(V ) = ||V ||||V −1||, (2.42)

where || · || is a norm of matrix. This value cond(V ) tends to infinity for a defective matrix
V ; it is large for a "nearly" defective matrix V .

The value cond(V ) for different number of agents N and Set 2, 4 were checked out. The
results are collected in Table 2.7. One can see from the table that the matrix Q(N ;θ) tends to
become defective extremely fast forα0 = 0.2 with increasing of N . This is one of the possible
reasons of the described estimation method collapse for N ≥ 30. The results in Table 2.7

θSet2 = (3,0,1.2) θSet4 = (3,0.2,1.2)

N = 5 11.2521 36.7164

N = 25 5.3215 2.23×107

N = 32 424.2756 1.15×109

N = 40 1380.8990 3.25×1011

N = 50 5757.3560 1.94×1014

Table 2.7: The values of defectiveness measure cond(U ) for the matrix of eigenvectors U for the different

parameters N values.

coincide very well with Figures 2.15: both show that, for α0 = 0, the computation of the
matrix P (∆) is stable, but we see distortion on the plot for N ≥ 32 for nonzero α0. At the
same time, the measure cond(U ) has a very high level that indicates "near" defectiveness
of U .

In general, the situation with loss of accuracy in the case our method is an example
of what Moler and Loan described as follows: "In practical computation with inexact data
and inexact arithmetic, the gray area where the eigenvalues are nearly confluent leads to
loss of accuracy". For example, the minimal distance between eigenvalues of the matrix
Q(N ;θ) is equal to 0.1645 and the maximum distance is 1.5652 for N = 5 (parametric Set 3),
whereas for N = 100 the minimal distance is 0.00004 and the maximum distance is 0.0084.
Note, from empirical observations, eigenvalues lie on the interval (−12,0) for our model.
As a result, eigenvalues become closer as N increases, because we have more values on the
same interval (−12.0). This is a crucial difficulty for the implementation of the method for
the circumstance of our study.

17See [72] for more details.
18A matrix is called defective if it does not have a complete basis of eigenvectors.
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This method is better implemented in cases of symmetric matrix Q or any other matrix
that guarantees non-confluent eigenvalues and orthogonal basis of eigenvectors. For our
case, the method is robust only for N ≤ 20 when α0 6= 0. In fact, the same situation holds
for all methods based directly or indirectly on eigenvalues.

Despite this criticism, which means the limitation on the number of agents N can be
unsatisfactory for certain problems, this method gives us a great increase in speed and
simplicity.

ä

The next method is also based on numerical computation of the matrix exponential
(2.16).

2.5. Lower Hessenberg matrix approach
The main idea of this approach to exploit the inner structure of the intensity rate matrix

Q(N ;θ), namely, that Q(N ;θ) is tridiagonal, which is the partial case of the lower Hessen-
berg matrix.

2.5.1. Theoretical description
First of all, let us begin with a definition of Hessenberg matrices.

Definition 7. A square matrix H of size N ×N is called an upper Hessenberg if entries below

the first subdiagonal are zeros

H =



• • • • •
• • • • •
0 • • • •
0 0 • • •
0 0 0 • •


or a lower Hessenberg matrix if entries above the first superdiagonal are zero

H =



• • 0 0 0

• • • 0 0

• • • • 0

• • • • •
• • • • •


In the case of the considered Weidlich agent-based model, the matrix Q(N ;θ) is already

a lower Hessenberg; moreover, it is tridiagonal. So, we do not need to decompose Q(N ;θ)
in order to obtain the Hessenberg form. Instead, we are able to use it directly.
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Theorem 6. Let Q(θ) be the intensity rate matrix of CTMC process X defined in Section 2.1,

then the columns of the transition probability matrix P X (t ;θ) = exp(tQ) are defined by back-

ward iterative formula

P X
•,k−1 =

1

qk−1,k

(
QP X

•,k −qk,k P X
•,k −qk+1,k P X

•,k+1

)
, k ∈ {−N +1, . . . , N }. (2.43)

where P X
•,i denotes i -th column of the matrix P X (∆;θ), P X

N is assumed to be known.

Proof. The proof is given in Appendix A.6.

Theorem 6 allows us to calculate the transition probability matrix P X (t ) assuming the
very last column is known. The only missing piece of the puzzle is the last column of the
matrix P X (t ).

As proved earlier in Theorem 1 the transition probability matrix P X (t ;θ) can be found as
a solution of the system of ordinary differential equation known as backward Kolmogorov
equation, formulated as 

dP X (t )

d t
=QP X (t ),

P X (0) = I .

This o.d.e. is given by the following equation for an arbitrary element of P X (t ) as

dP X
i j (t )

d t
= ∑

k 6= j

(
qi k P X

k j (t )
)
−qi P X

i j (t ),

where k ∈ {−N , . . . , N }, qi =∑N
k=−N qi k . Therefore, all the elements of j-th column of transi-

tion probability matrix P X (t ) are defined by ordinary differential equations including only
elements of j-th column. Thus, the very last column of P X (t ) is described by the system of
2N +1 o.d.e. 

dP X
•,N (t )

d t
=QP X

•,N (t ),

P X
•,N (0) = (0, . . . ,1)T .

(2.44)

Its solution P X
•,N (t ) can be obtained numerically using such methods of differential equa-

tions as the Runge-Kutta method and many others19.
Summing up, it is possible to compute the last column of P X (t ) solving numerical o.d.e.

(2.44). Any standard o.d.e. solver20 can be used in order to implement the method. Then
it is necessary to find all the other columns of P X (t ) using iterative formula (2.43) from
Theorem 6. Further, the discrete-time likelihood function Ld (θ|y) from Theorem 3 can
be constructed and maximized with respect to the parameters vector θ as well as in the
previous approach

θ∗ = argmax
θ

(LHes(θ|y)),

19The whole matrix exponential P (t ) = exp(tQ) can be computed column by column, changing the initial

vector P X (0) using numerical integration methods as described in [72], but it is inefficient to do so.
20For example, one of the Runge-Kutta type or finite-difference methods.



2.5. Lower Hessenberg matrix approach 53

where y is a discrete-time observations of the CTMC process X, LHes(θ|y) has the same
construction as Ld (θ|y) and is introduced only in order to distinguish results of the second
and the third approaches.

2.5.2. Application
One of the advantages of this method is the relative simplicity of implementation. In

fact, we just need an o.d.e. solver (we used the Runge-Kutta-Cash-Karp method realiza-
tion from AlgLib library [13]). The rest of the procedure of matrix exponential P X (∆;θ) =
exp(Q(N ;θ)) computation is programmed in a dozen lines. As before (in subsection 2.4.2),
a non-linear congruential optimizer21 is used for maximization of the likelihood function
LHes(θ|y)

θ∗ = argmax
θ

(LHes(θ|y)). (2.45)

The parameters estimations based on maximization of Lc (θ|x) (also by using non-linear
congruential optimizer) are still used as an idealistic case for comparison purposes.

In general, the method implementation can be sketched as:

1. θ̂0 := (1,0,1)

2. Non-linear congruential optimizer:

(a) Computation of LHes and its numerical partial derivatives (two evaluations of
LHes for each iteration):

• Evaluations of LHes ;

– Computation of Q(N ;θi );

– Solving of the system of o.d.e. (2.44);

– Computation of P X = exp(Q) by using (2.43).

(b) The optimizer does the new step;

(c) IF (stopping criteria is not true) THEN θ̂i = θ̂i+1, go to (2a) ELSE θ̂∗ = θ̂i+1.

ä

Now, let us discuss the numerical results and analyze their errors.

2.5.3. Numerical results for the two-parametric case
Firstly, let us consider the simplified two-parametric case. Namely, we fix the parame-

ter α0 to value 0 in order the investigate a performance of the method for the simpler two
parametric case. It is more convenient to analyze the existence of dependence on initial
conditions for the two parametric case. In particular, the two-parametric case is more com-
putationally cheap, so it allows us to gain time. In addition, we can examine the influence
of the parameter α0 on the stability and quality of the method estimates.

21BLEIC optimizer from AlgLib library.
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S E T 3 ν̂ α̂1

Lc -MLE

Mean 2.99883 0.92805

SD 0.08466 0.53078

RMSE 0.08446 0.59521

Median 2.99980 1.10840

LHes-MLE

Mean 3.17454 0.99665

I.P. 1 = SD 0.60156 0.85951

(2, 1.5) RMSE 0.62492 0.88114

Median 3.03194 1.11298

Mean 3.69885 2.16478

I.P. 2 = SD 0.56214 1.28756

(2, 0.5) RMSE 0.89600 1.60634

Median 3.99365 2.97623

Mean 3.07588 1.00105

I.P. 3 = SD 0.41306 0.54186

(4, 1.5) RMSE 0.41895 0.57592

Median 3.01856 1.13430

Mean 3.00915 1.16871

I.P. 4 = SD 0.40317 0.87290

(4, 0.5) RMSE 0.40227 0.87128

Median 3.00550 1.10598

Mean 3.50724 1.70420

I.P. 5 = SD 0.62708 1.34490

(2, 1) RMSE 0.80533 1.43316

Median 3.61332 1.40423

Mean 3.02686 1.00673

I.P. 6 = SD 0.41298 0.65739

(4, 1) RMSE 0.41283 0.68361

Median 2.99680 1.09777

Table 2.8: The results of averaged estimates based on 200 Monte Carlo simulations for different initial points

and ABM-200 model version with θ = (3,0,1.2). During estimation α0 is fixed to zero.
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As with the previous methods, we simulated 200 trajectories of the opinion dynamics
process X = (X t )∞t=0 (see (2.1)) for the parametric Set 1,3. Then, we estimated all the tra-
jectories by using the method described above. The results of the Monte Carlo simulation
experiment in the form of mean estimated values, standard deviations, root-mean square
errors, and medians are collected in Tables 2.8 and 2.9. Note, the simulated samples are
the same as for the previous two estimation approaches and were explained in detail in
Subsections 2.1.6, 2.3.4. Further, henceforth the BLEIC optimizer from AlgLib library [13]
is used for MLE again.

Unfortunately, an analysis of the method performance by Table 2.8 shows high biases
and the dependence on initial points (I.P.) for the parameterization set ν= 3, α0 = 0, α1 =
1.2 of ABM-200 model for different initial points of optimization subroutine. Particularly,
the biases are very significant (0.699,0.965) and (0.507,0.504) correspondingly for the initial
points (ν0,α0

1) = (2,0.5) and (ν0,α0
1) = (2,1). The standard deviation and root-mean square

error are also higher by 1.5 - 2 times than for the initial point (4,0.5), for instance. In con-
trast, the biases are relatively low for other initial points, or even close to zero. For example,
the biases are less than 0.08 for ν, 0.2 forα1 in the case of the initial points (ν0,α0

1) = (4,0.5),
(4,1.5), (4,1). This is combined with a tolerable level of standard deviation and root-mean
square errors.

Nevertheless, it turns out that the method is unstable. The reason for this is the loss
of significance, as with the second method. The nature of the matrix P X degeneration,
however, is different from that of the previous methods. The evidence is shown in Figure
2.16, which depicts the probability transition matrix P X (∆;θ). It has huge distortion in the
columns −100,99,98 in intersection with rows −10 to 10. These columns are calculated last
in the recurrent formula (2.43). So, this is the result of accumulated computational errors
on the previous recursion stages.

Stabilization
It was empirically discovered that the method becomes unstable if the number of agents

N are in the range between 30 and 50. This fact was the source of the idea for the stabiliza-
tion of the method above. All columns of the matrix P X are computed recursively from
the last column P X

•,N (∆;θ) obtained from (2.44). However, it is possible to compute any

column of the matrix P X (∆;θ) by using o.d.e. representation (2.44), not only P X
•,N (∆;θ).

So, in order to stabilize the method, we recompute two columns over each k column by
using the o.d.e. solver. Namely, we recompute the columns for any i such that 2N +
1− i k, 2N + 1− i k + 1 are positive. For instance, if N = 200 and k = 50, then the follow-
ing columns of the matrix P X (∆;θ) of size 2N +1×2N +1 are computed by solving o.d.e.:
401,352,351,301,302, . . . ,51,52 (the rest of the columns are computed by recurrent formula
from Theorem 6). By doing so, we minimize accumulated computational errors for each k
columns of the P X computation. Further, k is called a stabilization parameter k.

The results of the estimation after the method stabilization do not depend on an initial
point of optimizer any more. Due to an insignificant difference of the estimates and corre-
sponding estimation characteristics for the different initial points we do not present these
results in form of Table 2.8. We collected the results in Table 2.9 only for one initial point
(ν0,α0

1) = (4,1.5), but for two parametric sets. As we can see there is insignificant bias of the
parameter ν estimates (with the magnitude around 10−2) for both parametric cases. The
standard deviation is less than the lowest standard deviation on 30% for the unstabilized
method. The standard deviation of the estimates based on Lc -MLE (and the continuous-
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Figure 2.16: Loss of significance for three-parametric case, ν= 3,α0 = 0.2,α1 = 1.2, N = 100.

ν̂ α̂1 ν̂ α̂1

Lc -MLE

SET 1 SET 3

Mean 2.99989 0.50941 2.99883 0.92805

SD 0.08405 0.56114 0.08466 0.53078

RMSE 0.08384 0.63067 0.08446 0.59521

Median 2.99893 0.62834 2.99980 1.10840

LHes-MLE

SET 1 SET 3

Mean 3.00772 0.52180 3.01652 0.93083

SD 0.30687 0.56299 0.33926 0.54243

RMSE 0.30620 0.63122 0.33881 0.60433

Median 2.98873 0.60557 2.99884 1.09454

Table 2.9: The results of averaged estimates based on 200 Monte Carlo simulations of the AB M −200 model

version for the two-parametric case (the parameterα0 is fixed with value 0). It stabilized each k = 100 column.
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time sample) is more than three times smaller. Regardless, the level of standard deviation
is satisfactory, because if we consider the level of relative standard error, we can see that it
is around 0.8%. This is a very low level. Concerning the parameter α1, it is underestimated
for both parametric sets 1,3. Curiously enough, that aligns very well with the benchmark
estimates based on maximization of Lc -MLE using the continuous-time sample. Another
difference is the very close level of the standard deviation and root-mean square error for
the estimates based on the discrete likelihood LHes and continuous-time likelihood Lc . The
magnitude is around 0.6 for both cases and the corresponding relative standard error is
around 7.62% for Set 1 and 4.12% for Set 3; both are less than the acceptable level of RSE,
namely 30%.

Despite the clear underestimation of the parameter α1, the performance of the method
for the two-parametric case, confirmed by the results presented in Table 2.9, are satisfac-
tory, the method is robust.

2.5.4. Numerical results for the three-parametric case
Table 2.10 collects the results of estimation of all three parameters for all considered

parametric cases (Set 1, 2, 3, 4). The first notable point is the massive underestimation of
the parameter α1 for Set 1,3 by both Lc -based and LHes-based approaches. The tendency
was strong for the two-parametric case, but with the addition of parameter α0, it became
even stronger. Both methods estimate the value of parameter α1 as negative, almost zero
(around −0.09), for Set 1. That is very far away from the real value (0.8). This is confirmed
by the large root-mean square error (around 1.16). More than half of this value is because of
the standard deviation; its high level tells us about the instability of the α1-estimates. The
value of standard deviation, 0.75, corresponds to the level of relative standard error around
58%. That is twice as large as the tolerable 30%-level. It is, however, important to note a
relative standard error is sensitive to the mean value of the estimated parameter; when it
tends to zero ,a relative standard error tends to infinity. If we compare α1-estimates for
Set 1 and Set 3, we see the levels of standard deviation are the same (around 0.75) and the
biases are also the same (around 0.8). So, we see a negative effect of the parameter α0 ad-
dition, in that it leads to stronger underestimation of the parameter α1 for the parametric
sets 1, 3. It is important to note that this is true for both LHes-based (discrete-time sam-
ple) and Lc (continuous-time sample) MLE approaches. Hence, the reason for it is not the
discrete-time data sample or the proposed method. Curiously, the effect of parameter α1

underestimation appears only for Sets 1,3. Both methods show very similar, nearly unbi-
ased results for the parameter α1 for Sets 2,4. Further, the level of standard deviation is a
few times lower (around 0.12) for Set 4 and 0.23 for Set 2. In terms of relative standard error,
it is less than 2.2%.

If consider the estimates of the other two parameters (ν and α0), we see that both ap-
proaches give estimates that seem to be unbiased for all four parametric sets. Therefore,
the root-mean square error of the α0 estimate has the same magnitude as the standard de-
viation. It is around 0.093 for Sets 1,2,3 and even smaller for Set 4 (around 0.75). It holds for
both approaches. The results of estimation of the parameter ν are slightly different in this
sense. The method shows a three times higher level of root-mean square error and stan-
dard deviation rather than the benchmark Lc -based method. This is the same tendency we
observed above for the two-parametric case.

In order to complement the picture and to track an evolution of estimates quality, the
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ν̂ α̂0 α̂1

Lc -MLE

Mean 2.99465 0.00070 -0.08717

SD 0.08487 0.09434 0.75158

S RMSE 0.08483 0.09410 1.16152

E Median 2.99357 -0.00227 -0.00227

LHes -MLE

T Mean 3.03825 0.00140 -0.08988

1 SD 0.30259 0.09373 0.75492

RMSE 0.30424 0.09351 1.16574

Median 3.03472 -0.00388 0.09092

Lc -MLE

Mean 2.99559 0.22732 0.73706

SD 0.09360 0.09012 0.23288

S RMSE 0.09647 0.09396 0.24067

E Median 2.98976 0.21721 0.76706

LHes -MLE

T Mean 2.98444 0.22982 0.73364

2 SD 0.31037 0.09064 0.23018

RMSE 0.30999 0.09521 0.23900

Median 2.97876 0.21718 0.76918

Lc -MLE

Mean 2.99934 -0.00649 0.46592

SD 0.08515 0.09452 0.73582

S RMSE 0.08494 0.09452 1.03807

E Median 2.99655 -0.02386 0.65713

LHes -MLE

T Mean 2.98792 -0.00643 0.47176

3 SD 0.30292 0.09572 0.74437

RMSE 0.30241 0.09569 1.04003

Median 2.98101 -0.00228 0.65787

Lc -MLE

Mean 3.00420 0.21141 1.18435

SD 0.10695 0.06936 0.12618

S RMSE 0.10676 0.07012 0.12684

E Median 2.99842 0.19704 1.20463

LHes -MLE

T Mean 3.00166 0.21422 1.18246

4 SD 0.34203 0.07217 0.12587

RMSE 0.34117 0.07339 0.12678

Median 2.99526 0.20652 1.20362

Table 2.10: The results of averaged estimates based on 100 Monte Carlo simulations for all parametric sets

and model version ABM-200, stabilization parameter k = 100.
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SET 1 ν̂ α̂0 α̂1

Lc -MLE (ABM-50)

Mean 2.99553 -0.00023 0.60372

SD 0.08595 0.05700 0.22680

RMSE 0.08585 0.05687 0.29951

Median 2.99260 -0.00402 0.65303

LHes -MLE (ABM-50)

Mean 3.05232 0.00140 0.60561

SD 0.30883 0.05729 0.22996

RMSE 0.31247 0.05715 0.30068

Median 3.03412 -0.00354 0.65585

Lc -MLE (ABM-100)

Mean 2.99265 0.00080 0.41178

SD 0.09004 0.06669 0.41253

RMSE 0.09011 0.06652 0.56573

Median 2.99028 0.00117 0.49648

LHes -MLE (ABM-100)

Mean 3.05597 -0.00649 0.40408

SD 0.29594 0.11670 0.42082

RMSE 0.30046 0.11659 0.57702

Median 3.05833 -0.00149 0.50549

Lc -MLE (ABM-150)

Mean 2.99978 -0.00868 0.10848

SD 0.08431 0.0745287 0.62816

RMSE 0.08410 0.07485 0.93317

Median 2.99777 -0.00645 0.26891

LHes -MLE (ABM-150)

Mean 3.03089 -0.00858 0.10210

SD 0.28978 0.07490 0.63713

RMSE 0.29070 0.07520 0.94391

Median 3.01268 -0.00819 0.27956

Lc -MLE (ABM-200)

Mean 2.99591 -0.00768 -0.10172

SD 0.08682 0.09193 0.79574

RMSE 0.08670 0.09202 1.2013

Median 2.98557 -0.00279 0.01131

LHes -MLE (ABM-200)

Mean 3.03781 -0.00757 -0.10816

SD 0.32592 0.09346 0.81200

RMSE 0.32730 0.09354 1.21688

Median 3.02615 -0.00263 -0.01322

Table 2.11: The results of averaged estimates of 100 Monte Carlo paths for parametric Set 1 and numbers of

agents N = 50,100,150,200. The initial point of optimizer is (4, 0.5, 1.5), stabilization parameter k = 100.
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results of estimation of the model parameters for the most problematic Set 1 for a differ-
ent number of agents, namely N = 50, 100, 150, 200, are presented in Table 2.11. Thus,
it is evident that the quality of ν-estimates does not depends on the number of agents N .
The values of root-mean square error and standard deviation fluctuate around 0.087 for Lc -
MLE and around 0.3 for LHes-MLE. Conversely, the α0 estimates show a weak tendency of
errors growth, of approximately 30% from N = 50 to N = 200. At the same time,α1 shows an
even stronger tendency of estimation instability. The growth is from the tolerable level of
root-mean square error 2.7% (for N = 50) to 40% (for N = 150). This is complemented with
the growth of systematic underestimation. Note, the version of method based on the lower
Hessenberg property of matrix Q(θ) with the stabilization provides a very similar quality
of estimates of the continuous-time process X = (X t )∞t=0 (see (2.1)) using only the discrete-
time sample in comparison with the "benchmark"-method of maximization of likelihood
Lc based on the continuous-time sample. This means that Lc -based estimates have ap-
proximately the same biases.

An analysis of the dependence of agent numbers on biases of α1-estimates in terms of
statistical power is given in Subsection 2.5.5.

2.5.5. Statistical power of estimations analysis
In order to investigate the nature of biases, we also considered the hypothesis of small

statistical power of estimation procedure, because of the small sample size. We made a
series of estimations based on 200 Monte Carlo experiments for a few time horizons T to
see the dynamics; the results are depicted in Figure 2.17. Then we simulated 200 longer
samples (with horizon T = 1600 instead T = 200 in origin) for each of the four parametric
sets to determine the real performance of the method for all parametric sets. The results of
estimates for each of them are collected in Table 2.12.

Recall, the number of transitions in the continuous-time path of the process increases
for a more distant horizon T in the fixed model parameters (primarily, on parameter ν).
However, we can generate the transitions’ direction and time between transitions during
simulation. Therefore, we can simulate sample paths of a length such that the overall ob-
served time is equal to the horizon T . Further, a discrete-time path y is extracted from
the corresponding continuous-time sample x by evaluation (from continuous-time sam-
ple) of the process X at discrete points (the discretization step is ∆ = 1). So, we have 401
data points in discrete-time sample y in the case of T = 400 (at time t = 0,1,2, ...,400). This
discrete-time data y is only used in Ld - and LHes-based MLE approaches, while Lc -based
MLE only uses a continuous-time sample x.

Now the question is: where is the border for the horizon T that separates the insuffi-
cient size of the data sample from one that is sufficient for the ABM-200 model version, for
example? As we mentioned above, in order to perform corresponding analysis, we made a
series of simulation experiments with different horizons T from 200 to 1600 for the ABM-
200 model version. As we can see from Figure 2.17, the increase of horizon up to T = 400
already made a significant difference in quality of estimates; the bias ofα1 became twice as
small, at - 0.405 instead of 0.908. Further, the bias of the parameter α1 estimator gradually
decreased down to 0.285 (T = 600), 0.225 (T = 800) and, finally, 0.098 (T = 1600). Despite
this improvement, a really good quality of estimates for the parameter α1 (the estimates
are good enough for other two parameters even for T = 200) is achieved for a sample size
of around 1600 (T = 1600).
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Figure 2.17: Biases for different sample sizes for parametric Set 1.

Combining the results in Subsection 2.5.4, namely the quality of estimates for models
with various numbers of agents N , and the analysis in this subsection, we can conclude
that the more agents, the more data needed for accurate estimation. It is reasonable, with
a growth in the number of agents that the process becomes more floating because of more
states it can take. As a result, it is necessary to have more data to estimate the parameters
of the model. This can also explain the higher quality of Lc -MLE estimates that are based
on a continuous-time sample consisting of around 1000 state changes (data points) for
parametric Set 1 and AB M −200.

The results of estimations for the wider horizon T = 1600 in Table 2.12 22 show a clear
improvement of estimates and corresponding standard deviation. Compared with Table
2.10 (horizon T = 200), we can see that the biases of ν and α0 estimates are still small or
negligible, while the biases of α1 estimates being significant for T = 200 became much
smaller for T = 1600. For example, the bias of α1-estimate for Set 1 (with the worst quality
of estimates) is around 0.1 which is less than 10% of its absolute value. Another clear im-
provement is observed for values of standard deviation (SD) and root-mean square errors
(RMSE), they decrease: three times for the parameter ν; around two times for α0; seven
times for Set 1; and fifteen times for Set 3. The smallest effect is observed for Set 4; that is
understandable, because the best quality of estimates for T = 200 was obtained for this set.
To summarize, the quality of estimates is absolutely satisfactory for the horizon T = 1600.

Now we will discuss another revealed influence on the quality of estimates: the de-
pendence of estimates quality on the initial point of simulation. This helps to explain the
especially significant difficulties for certain parametric sets (Set 1,3).

2.5.6. Dependence of estimates quality on initial point of simulation
At the moment, all simulated paths of the process X started in the initial point X0 = 0.

Now, let us go back to the analysis of the sensitivity of the model with respect to its parame-
ters from Section 2.2. Particularly, it is important to look at plots of transition probabilities
P e

i i+1, P e
i i−1 (Figure 2.8). It is clear from them that, for each parametric sets, the process X

has distinct points of attraction. In the case when α0 = 0 it is situated in zero point state

22In Tables 2.12 and 2.13, the results of Lc -based estimations are omitted due to their clear similarity to the

LHes -based estimates.
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ν̂ α̂0 α̂1

S Mean 2.99788 0.00131 0.70209

E SD 0.11328 0.01688 0.12863

T RMSE 0.11302 0.01688 0.16140

1 Median 2.99374 0.00098 0.71709

S Mean 2.99819 0.20873 0.78505

E SD 0.11476 0.05347 0.09751

T RMSE 0.11449 0.05405 0.09841

2 Median 2.9923 0.20394 0.79685

S Mean 2.99607 0.00373 1.14047

E SD 0.11581 0.04410 0.05393

T RMSE 0.11558 0.04415 0.08024

3 Median 2.99737 0.00360 1.14627

S Mean 2.99338 0.21587 1.18187

E SD 0.10692 0.06151 0.07893

T RMSE 0.10685 0.06338 0.08080

4 Median 2.99073 0.20977 1.18477

Table 2.12: The results of averaged estimates based on 200 Monte Carlo simulations for all parametric sets,

model version AB M −200 and the horizon T = 1600.
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ν̂ α̂0 α̂1

S Mean 2.98054 0.02479 0.73773

E SD 0.30303 0.09334 0.19995

T RMSE 0.30289 0.09635 0.20895

1 Median 2.97762 0.01096 0.75043

S Mean 2.96395 0.32890 0.60430

E SD 0.31426 0.30278 0.44972

T RMSE 0.31554 0.32838 0.48942

2 Median 2.94704 0.32856 0.62336

S Mean 2.99802 0.20842 0.91823

E SD 0.32027 0.40915 0.54829

T RMSE 0.31947 0.45827 0.61523

3 Median 3.02326 0.16079 0.90476

S Mean 2.96286 0.65943 0.65806

E SD 0.30795 0.75934 0.89883

T RMSE 0.30942 0.88588 1.04764

4 Median 2.93323 0.77956 0.51360

Table 2.13: The results of averaged estimates based on 200 Monte Carlo simulations for all parametric sets,

number of agents AB M −200, initial point of simulations X0 = (N −1)/N and the horizon T = 200.
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(with two additional points of attraction for Set 3); it is situated far on the right (approxi-
mately at 0.75) for sets 2, 4. Then, looking at Figures 2.7 (distribution of time spent in each
state), we see what it means for the process. In the case of Set 1, the process just varies
around the initial point of simulation (around zero); in the case of Set 2, it also switches the
attraction point to its right after variation around the attraction point (the state zero); and
finally, in the case of sets 3 and 4, it makes a long migration to the attraction point on the
right. All of these facts correlate well with the quality of estimates: less migration equals
to worse quality of estimates. In other words, the data sample for Set 1 provides much less
information.

In order to verify this hypothesis, we made another series of experiments analogical to
the simulation presented in Table 2.10 with the only difference: the initial point of simula-
tions X0 was changed to state N −1/N . The results of estimation for these new simulated
samples are given in Table 2.13.

There is evidence from the table that the situation with quality of estimates has changed
to the opposite. The best quality of estimation is observed for Set 1,3 (at least w.r.t. biases).
Note, the estimates are biased not only for α1 (as it was for the initial point X0 = 0), but also
for α0. In addition, the level of RMSE and standard deviation are significantly higher than
for X0 = 0. Nevertheless, this allows us to make the conclusion that the quality of estimates
does not depend on the parametric set. In case of a real sample, the quality seems to be
similar to Set 1 in case of X0 = 0 or Set 4 in case of X0 = (N −1)/N . So, in order to obtain
more credible estimations, it is necessary to increase the sample size (statistical power).

It is interesting to compare our findings with the results of T. Lux [66]. The estimates
calculated using the methods presented above tend to have low precision for the parameter
α1 and α0 for certain cases. The estimates in Lux’s method encounter troubles for the pa-
rameter ν and also for the parameter α1 (but less significant). Meanwhile, the LHes-based
estimates of ν have insignificant biases and stable level of RMSE and SD, at around 0.3.

ä

2.6. Experiments structure
In order to make the logic of the simulation experiments clear, the structure and orga-

nization of the experiments results are outlined as a block-scheme in Figure 2.18. There are
four methods that depicted as the upper four blocks in the scheme: three based on the in-
complete data samples (EM algorithm, "Ld-MLE" (Matrix decomposition) and "Ld-MLE"
(Recursive ODE)) and one based on complete data (denoted as "Lc-MLE"). The former
method is the Maximum Likelihood Estimation (MLE) method based on estimation of syn-
thetic complete data sample x. The maximization of likelihood Lc (θ|x) defined by (2.21)
was used as a benchmark method for the incomplete-data counterparts. The other three
methods are based on estimation of incomplete (discrete-time) data sample y extracted
from its complete counterpart x. The EM algorithm iteratively maximizes a mathemati-
cal expectation E [Lc (θ|x)|y] and is described in Section 2.3. Another two incomplete data
methods are the ordinary MLE methods based on likelihood Ld (θ|y) defined by (2.23). The
difference between the two Ld -based methods is in the way the transition probability ma-
trix P X (t ;θ) is calculated, namely by decomposition of infinitesimal generator Q(θ) or solv-
ing of o.d.e., and is described in Sections 2.4 and 2.5, respectively. All of the other blocks are
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Lc-MLE

EM-algorithm

Ld-MLE 
(matrix P

decomposition) 

Ld-MLE 
(Recurcive

O.D.E.) 

Table 1.4 
N=5,10,15,20;  

1 par.sets

Table 1.5 
N=20; 4 par.sets

Table 1.6 
N=5,10,15,20;  

1 par.sets 

Table 1.8 
N=50; IP=6; 2D 

Table 1.13 (Init.point) 
N=200; 4 par.set 

Table 1.14 
Time-consumption 

Table 1.12 
N=200; T=1600 

Table 1.11 
N=50,100,150,200;  

1 par.set 

Table 1.10 
N=200; 4 par.set 

Table 1.9 
N=200; 2 par.set; 2D 

Table 1.3 
N=20; 4 par.sets 

Figure 2.18: Structure of experiments and results for all three approaches.

Monte Carlo simulation experiments results presented as Tables 2.3-2.14 with computed
error metrics.

Note, the EM algorithm, being an iterative procedure of maximization of Lc expectation,
delivers results very similar to Lc -MLE itself. So, Lc -MLE23 was used as a computationally
faster proxy of the EM algorithm. Likewise, the methods based on the Ld likelihood max-
imization deliver similar results, while the Ld -MLE based on o.d.e. solving24 is more com-
putationally efficient. Therefore, Lc -MLE and Ld -MLE based, on lower Hessenberg matrix
(o.d.e. solving), are used for comparison purposes in this research and, hence, they are the
participants in most of the simulation experiments (see Figure 2.18).

2.7. Computational intensity comparison
All three approaches are based on similar constructions: they compute the transition

probability matrix P X (∆;θ). The crucial part of the EM algorithm and Ld -MLE approach is
an eigendecomposition of intensity matrix Q. The LHes-MLE approach uses the Hessen-
berg property of intensity matrix Q. All three approaches are programmed as one piece
of code and share the same mechanism of trajectory simulation. The Ld -based and LHes-
based approaches are interchangeable on the level of matrix P X computation. The EM al-
gorithm and Ld -based approaches share the same procedure of matrix P X computation25.
This allows us to compare all three approaches directly in terms of time-consumption.

23Complete-data is usually unavailable in real world examples.
24This Ld -MLE version is significantly faster and more robust compared to the other one, as is shown later.
25In our application of the EM algorithm the same procedure for P X computation as in case LHes based on

Hessenberg property could also be used, but further analysis shows it to be meaningless.
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N EM (sec) Ld (sec) LHes (sec)

5 0.245378 0.07901 0.25547

10 5.8642 0.257703 0.425559

15 81.0639 0.709209 0.672825

20 358.404 1.73141 0.898927

25 1124.78 8.03567 1.13752

50 - - 4.06312

100 - - 14.4249

150 - - 30.2157

200 - - 58.983

250 - - 135.98

300 - - 195.215

350 - - 294.828

Table 2.14: An average (across 200 simulations) time-consumption for one model estimation for the para-

metric Set 1: ν= 3, α0 = 0, α1 = 0.8.

In order to make a time-consumption26 analysis, measurements of computation time
during simulation and estimation experiments were made for all three approaches. In par-
ticular, measured time was necessary to estimate the 200 simulated paths27 for each ap-
proach, which was then averaged (divided on 200), again for each. All of the results are
collected in Table 2.14. The time-consumption is visualized in Figure 2.19.

The first point of interest from Table 2.14 is that the EM algorithm is much more com-
putationally expensive compared to the other two. In the case of AB M −20, it takes around
10 minutes for a single estimation, while for N = 25 it already takes half an hour. Never-
theless, this is a satisfactory time in practice. Further growth of N also rests on limitation
of the eigendecomposition, which suffers from the catastrophic cancellation described in
Section 2.4.4. The solution could be in using computation of P X based on the Hessenberg
property, but it appears more reasonable, at least with regards to computation time, to use a
"pure" LHes-based approach. Comparing the performance of the Ld -based and LHes-based
approaches we have a duality. The first one is more computationally efficient for a small
number of agents N (for N ≤ 15), while the second method is more efficient for large N , es-
pecially considering the instability of eigendecomposition for large values of N . In fact, the
LHes-based method not only allows us to produce estimation for large N , but it also does
so quite quickly: it takes on average less than a minute to estimate the model parameters
for N . When N becomes greater than 200, computational time begins grow rapidly: it takes
around 10 minutes to estimate the model AB M −30028.
26All of the measurements are based on Windows API functions QueryPerformanceCounter and QueryPerfor-

manceFrequency. PC specifications: Intel i5-3210M CPU, 6Gb RAM. allowing us to make precision measure-

ments with accuracy to microseconds.
27For the parametric Set 1: ν= 3, α0 = 0, α1 = 0.8.
28Recall, it means we have to work with 601-by-601 matrices Q and P X .
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Figure 2.19: Visualization of average (across 200 simulations) time-consumption for one model estimation

(values are in seconds). Horizontal line is number of agents N ; vertical line is time in seconds. The parametric

Set 1 was used: ν= 3, α0 = 0, α1 = 0.8.
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In order to visualize the dynamics of time-consumption, plots are presented in Fig-
ure 2.19. All three approaches show clear exponential growth of computation time, but the
fast growth area shifts depending on the method. Thus, the critical point for the EM algo-
rithm is N = 10, while it is N = 25 and N = 100 for Ld -based and LHes methods, respectively.
These differences allow us to estimate the model in hundreds times faster in the case of the
Ld -based method and in thousands times faster for the LHes-based case with respect to
the EM algorithm. The difference between the Ld -MLE and LHes-MLE approaches is not
so dramatic, but also significant. The Ld -MLE method is up to three times faster than the
LHes-MLE for small N , but it is up to ten times slower for N around 25.

ä

2.8. Real data estimation
The business sentiment is closely related to such lagged indicators as GDP growth. In

contrast to GDP, sentiments indices allow us to estimate business conditions and the state
of the economy more frequently. This section is dedicated to the estimation of real sen-
timent indexes using the Agent-Based model and its versions considered in the previous
sections.

2.8.1. Business confidence, economic and consumer sentiment indexes
There are numerous sentiment-based indicators in the fields of financial markets, eco-

nomics, business and consumer behavior. The most famous indexes are established in the
US and EU:

• Measure of CEO Confidence™ (US) – This index is based on a survey of around 100
Chief Executives each month and is conducted by Conference Board29, which is an
independent business membership and research association working in the public
interest.

• Moody’s Analytics Survey of Business Confidence (US) – This is based on surveying
middle and senior-level managers around the globe weekly since late 2002. It is pub-
lished by Economy.com.

• YPO Global Pulse (US) – This economic sentiment indicator is based on surveys of
CEOs around the globe (on a quarterly basis) regarding the economic state, sales,
employment and investment activity.

• Michigan Consumer Sentiment Index (US) – A telephone survey of consumer expec-
tations regarding overall economy conducted by the University of Michigan.

• NY Empire State Index (US) – Based on (monthly) surveys of manufacturers in New
York State conducted by the Federal Reserve Bank of New York.

• Business confidence index (OECD) – Based on enterprises’ current position and ex-
pectations of production, orders and stocks.

29The dataset with historical values of index is accessible on ChiefExecutive.net and is covered in each issue

of Chief Executive magazine on a fee basis.
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• Consumer confidence index (OECD) – Similar to MCSI.

• Ifo Business Climate Index (Germany) – An indicator of economic developments in
Germany based on a monthly survey of 7,000 participants in the fields of manufac-
turing, construction, wholesaling and retailing. It has been published on a monthly
basis by the Ifo Institute for Economic Research (Munich) since 1972.

• ZEW Financial Market Survey (Germany) – Introduced in 1991, it is conducted each
month in order to collect expectations regarding the development of international
financial markets. Participants are German analysts working in financial and indus-
trial sectors. Overall, up to 350 participants are questioned.
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Figure 2.20: ZEW Indicator of Economic Sentiment Germany, balances.

Despite there being a number of indexes, it is not easy to test the proposed ABM model
on real data. The methodology of most of the indexes publishers is not disclosed or only
partially disclosed. Even the number of participants is unknown for most cases, which is
a very important model-defining constant. Another obstacle is too wide a number of par-
ticipants, which is especially typical for consumer confidence indexes like MCSI and CSI.
Many indexes are based on rare surveys in to coincide with a short history. So, in this re-
search we are focused on the ZEW index as well as T. Lux [66] in order to obtain compa-
rable results of two alternative approaches of the ABM model estimation. Another reason
is that the ZEW index has a known and limited (up 350) number of participants (agents).
Additionally, ZEW has a long historical data series that is freely accessible, as depicted in
Figure 2.20.

As stated in the description on the website of the Centre for European Economic Re-
search (ZEW in German abbreviation), the ZEW index is constructed as the balance s = p−n
of percentage share p of the survey respondents with positive expectation regarding eco-
nomic state and the share of negative counterparts n. Therefore, the ZEW index values
belong to intervals from −100 to 100. This definition is slightly different to the one given
in Section 2.1, but they are in fact equivalent, because n+(t )/N and n−(t )/N are shares of
optimistic and pessimistic agents.

The input data for the methods considered above is a time-series of discrete-time ob-
servations of sentiment index {yt }T

t=0 supposed to take values in the state space Ω with
2×N +1 states

Ω=
{
−1,− (N −1)

N
, . . . ,0, . . .

(N −1)

N
,1

}
,
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which is defined by a model-defining assumption about the number of agents N . So, the
first necessary transformation is to normalize the ZEW index values yt by division by 100 in
order to have them in the interval [−1,1]

ȳt = yt

100
∈ [−1,1].

The second step is to set the correspondence of the normalized values to the states from the
state space Ω. Namely, the normalized values ȳt are multiplied by the number of agents N
and then rounded to the closest integer number from the set −N , . . . , N , then divided again
by N

ŷt = round(ȳt ×N )

N
= round

(
yt ×N /100

)
N

.

Further, the matrix c of transitions between states in the real data sample {ŷt }T
t=0 is con-

structed, which is a necessary component for construction of the discrete-time likelihood
function Ld (θ|ŷ) from Section 2.1.5 and Theorem 3.

2.8.2. ZEW index estimation procedure and results
The first attempts to estimate the ZEW index data sample {ŷt }T

t=0 with the MLE method
based on the Hessenberg property described in Section 2.5 highlighted the inoperability of
the method’s implementation without additional modification in assumption of the large
number of agents N , in particular for N larger than 100, while the C++ code developed for
the method worked fine for N up to 350 in the case of simulated data. Deeper instigation
using the plots of the likelihood function Ld (θ|ŷ) surface constructed for the transformed
real data sample ŷ and the corresponding transition matrix c with respect to the parameters
ν and α1 (α0 fixed to zero), see Figure 2.21, shows that, with an assumption of a larger
number of agents N , the "ridge" with the highest likelihood values move in the direction
of higher ν. As a result, the estimated values of ν go up to 20, which in turn leads to large
absolute values of intensity rates qi j . This behavior coincides with two facts mentioned
in Section 2.2: 1. A larger number of agents N means lower time between transitions; and
2. Figure 2.5 shows that transitions occur more often for higher ν. So, if we have a fixed
data sample with fixed time between transitions, then an assumption of a larger number of
agents should be compensated by higher ν, and that is exactly what occurred.

There is also another dependency, which is the transition probability P X (∆t ) being the
solution of Kolmogorov equations is equal to the matrix exponential exp(∆tQ), where ∆t
is the interval between successive observations, Q is the intensity rates matrix with the el-
ements of the form ν f (x;α0,α1), and therefore, the transition probabilities (due to Taylor
series expansion) are functions depending on the product ν∆t . This fact leads to a close re-
lationship between∆t and ν, namely that higher∆t leads to lower ν and vica versa. During
the estimation of real data we assumed ∆t = 30, which corresponds to one month (in days)
between observations.

In the sense of computational mathematics and programming, the problem nested in
the o.d.e. solver used for solving the Kolmogorov system ordinary differential equations
(2.13) from Theorem 1, in particular in its precision. In order to overcome an instability
of the method’s implementation, it was necessary to switch from the classical Runge-Kutta
method (RK4, see [24]), to a higher order Runge-Kutta-Fehlberg method (RKF78, see [24]).
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Figure 2.21: Likelihood function surface plot for ZEW index data with boundaries for ν = (0,30), α1 = (0,2)

and α0 fixed to zero.
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Perhaps, multiprecision o.d.e. solvers should provide even more robust solution compar-
ing with floating point methods like RK4 and RKF78. However, the price of this improve-
ment can be significantly higher time-consumption.

In order to control the robustness of the estimation results, the procedure was repeated
for various numbers of assumed agents N . Namely, the ZEW index data was estimated
firstly with the ABM-15 model version, which is characterized as the most robust, then
with ABM-25, -50, -75, -100, -150, -200, -250, -300 and, finally, ABM-350. Next, the esti-
mation procedure was repeated for each N with various initial points θ0 = (ν,α0,α1) of the
optimization subroutine, which is the crucial part of MLE method: (2, 0.5, 1.5), (4, 0.5, 1.5),
(7.5, 0.2, 0.2), (8.5, 0.2, 0.2), (12, 0.2, 0.2). This methodology should ensure continuity and
convergence of results, plus exclude failures of the method’s implementation.
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Figure 2.22: Estimation of the ZEW index by various versions of the ABM model. N is the number of agents in

the ABM model version.

The results of estimation using the methodology described above are visualized in Fig-
ure 2.22 and collected in Table 2.15. An analysis of both of them convey a clear and smooth
convergence of α0 and α1 estimates when assumption about the number of agents goes
from the minimal number N = 15 to the real one N = 350, namelyα0 = 0.004 andα1 = 1.16.
In contrast to the estimates of α0 and α1, the estimates of ν display its scale nature of
ν and are characterized by roughly linear dependence on the number of agents assump-
tion. In order to gain an impression of the quality of the obtained estimates of the ZEW in-
dex, the standard deviation and bias are also estimated (see SD? and Bi as? in Table 2.15).
These metrics are obtained by Monte Carlo simulation of data paths with the parameters
ν?,α?0 ,α?1 estimated for the ZEW index and corresponding N . For example, Bi as? is a
difference between the median of estimates of ν obtained for 50 simulated data paths in
assumption ν= ν? and ν? itself.

The results of estimation can be compared with the estimates from T. Lux’s paper [66].
Recall, the results that can be compared are:

• the case of estimated number of agents (N = 42): ν= 0.15 (SE = 0.07),α0 = 0.09 (SE =
0.06), α1 = 0.99 (SE = 0.14);

• the case of N = 350: ν= 0.78 (SE = 0.06), α0 = 0.01 (SE = 0.01), α1 = 1.19 (SE = 0.01).

The ZEW index was also estimated using the ABM-42 model, in order to have comparable
estimates. The results of the estimation are 0.39 (ABM-42) versus 0.15 (Lux) for ν, 0.03
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N ν? SD? Bi as? α?0 SD? Bi as? α?1 SD? Bi as?

15 0.052 0.004 0.002 0.077 0.061 0.024 0.871 0.123 -0.032

25 0.143 0.012 0.001 0.046 0.043 0.015 0.999 0.078 -0.043

50 0.547 0.053 -0.002 0.023 0.025 0.010 1.092 0.040 -0.029

75 1.144 0.103 0.005 0.015 0.018 0.011 1.121 0.032 -0.017

100 1.895 0.147 0.025 0.012 0.021 0.009 1.136 0.036 -0.017

150 3.698 0.354 0.017 0.008 0.024 0.011 1.149 0.032 -0.023

200 5.768 0.610 0.231 0.006 0.022 0.009 1.154 0.027 -0.025

250 7.989 0.965 0.087 0.005 0.084 0.008 1.157 0.030 -0.023

300 10.322 2.754 0.116 0.004 0.035 0.003 1.159 0.039 -0.025

350 12.768 1.071 -0.157 0.004 0.019 0.002 1.160 0.024 -0.020

Table 2.15: ZEW index data estimation.

(ABM-42) versus 0.09 (Lux) for α0, and 1.07 (ABM-42) versus 0.99 (Lux) for α1. Taking into
account standard errors of estimates, only the estimates of ν are significantly different. In
the case of the ABM-350 model version, the estimates of α0 and α1 are even more similar,
namely 0.01 (Lux) and 0.004 (ABM-350), 1.19 (Lux) and 1.16 (ABM-350), respectively, while
the estimates of ν are completely different again. The fact of different estimates of ν seems
to be caused by a different assumption of discretization step ∆t . In this research, ∆t is
assumed to be equal to 30 for monthly data, while T. Lux assumed it to be equal to unity.



3
Asymmetric Markov-Switching

Multifrequency Models

A huge number of asset return models are based on the assumption of discrete time.
The most popular are the ARCH-class models pioneered by Engle (1982). The original
model was aimed at describing non-constant volatility stylized fact, in particular, volatility
clustering. The models from this class are successfully used for forecasting a volatility, es-
pecially GARCH (Bollerslev 1986), which has the Heston model as its continuous-time limit
in case of GARCH(1,1) specification. Its generalized versions are able to describe such a
feature as the leverage effect (EGARCH, Threshold GARCH, GJR-GARCH, QGARCH), strong
persistence with hyperbolic decay of influence – FIGARCH (Balie, Bollerslev, Mikkelsen
1996). Similarly to the continuous-time case, discrete-time models can be divided into
classes of affine and non-affine models. Thus, the first result allowing implementation of
ARCH-models for option price belongs to Duan (1995), who developed an option pricing
methodology based on Monte Carlo simulations, to establish the option pricing theoretical
basis and methodology for non-affine models. Heston and Nandi (2000) achieved another
significant result: they developed an affine GARCH model that allowed them to obtain
a semi-closed form expression of European call option price. Generally speaking, affine
models (see Appendix A.7) have worse abilities in modeling stylized facts, being more re-
strictive than non-affine counterparts. At the same time, affine models are more computa-
tionally efficient and convenient. Both authors use Local Risk-Neutral Valuation Relation-
ship (LRNVR) measures. Further efforts were targeted towards generalization of LRNVR
(Duan 1999; Christoffersen et al. 2010) and alternative risk-neutral pricing approaches,
such as the extended Girsanov principle (Elliot and Madan 1998) and the conditional Es-
cher transformation (Christoffersen et al. 2009). Other discrete-time models, for example,
Dallores et al. (2006), Khrapov and Renault (2014) using the CAR model, were considered.

3.1. Models and Features
In this section we describe the theoretical structure of the model, its properties and

features. In particular, in Subsection 3.1.2 we describe model construction and in Subsec-
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tion 3.1.3 model features.

3.1.1. An overview of discrete-time models development
First of all, let us given a filtered probability space (Ω,F , {Ft }T

t=0,P ) with a natural fil-
tration {Ft }T

t=0, induced by the discrete-time stochastic process of asset prices, S = {St }T
t=0,

satisfying the usual conditions1. Then, a general discrete-time model of asset returns is
formulated as follows

rt = log

(
St

St−1

)
=µt +σtεt , (3.1)

where S = {St }∞t=0 is an asset price process on the regular grid t = 0,1,2, . . . ,∞, µt – trend, σt

– volatility, εt are i.i.d.. In the simplest case (discrete-time equivalent of the Black-Scholes
model), trend and volatility are assumed to be constant, µt ≡µ andσt ≡σ, while ε ∈ N (0,1)
or another non-Gaussian distribution (for example, Student-t or Generalized Error Distri-
bution). More general discrete time models were developed in two main directions: de-
terministic volatility models, namely, autoregressive conditionally heteroskedastic (ARCH)
class of models introduced by Engle [35], and stochastic volatility models. The models in
ARCH-class are able to describe many stylized facts of returns and volatility dynamics, in-
cluding its clustering.

GARCH(p,q) Bollerslev [15] is the most popular in the ARCH-family given by

σ2
t =ω+

q∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (3.2)

As mentioned above, F. Black in 1976 gave the first economical explanation of the phe-
nomena in terms of financial leverage of companies: a decrease of equity price leads to
an increase of equity-debt ratio (leverage), which in turn leads to an increase of uncer-
tainty about the steadiness of the company. Today, the effect of asymmetrical correlation
– a volatility increase in the case of negative returns is no longer linked to the financial
leverage. Nevertheless, the effect is significant and incorporation of it leads to better expla-
nation of volatility smiles. A few examples of asymmetric models in the ARCH-family are
given below2.

AGARCH (Asymmetric) of Engle (1990)

σ2
t =ω+

q∑
i=1

αi (εt−i −ρ)2 +
p∑

j=1
β jσ

2
t− j (3.3)

EGARCH (Exponential) of Nelson [76] also points to the model leverage effect. It is for-
mulated using logarithms

logσ2
t =ω+

q∑
i=1

αi g (zt−i )+
q∑

i=1
βi logσ2

t−i (3.4)

1A filtration (Ft )t>0 is considered to satisfy the usual conditions if it is right-continuous and complete (for

more details see [57]).
2A comprehensive review of the ARCH-class models is given in [16].
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where function g is constructed to produce asymmetric response on asset price move-
ments, namely g (zt ) = θzt +γ(|zt | −E |zt |), zt are Gaussian or non-Gaussian innovations
sequence.

NGARCH (Non-linear asymmetric) of Engle and Ng [34] aimed at the modeling leverage
effect

σ2
t =ω+α(εt−1 −ρσt−1)2 +βσ2

t−1, (3.5)

where α, β≥ 0; ω> 0.
GJR-GARCH (Glosten-Jagannathan-Runkle, [40]) is another model with an asymmetry.

The model is

σ2
t =ω+δσ2

t−1 +αy2
t−1 +φy2

t−1Iεt−1<0 (3.6)

where εt is i.i.d., yt = εtσt , I is indicator function (of negativity).
Another important stylized fact is a volatility persistence, which is tightly connected

with volatility clustering.
FIGARCH (Fractionally Integrated) is a generalization of GARCH by Baillie, Bollerslev

and Mikkelsen (1996) allowing for the description of persistence (long memory). It defines
volatility as

φ(L)(1−L)dε2
t =ω+ (1−β(L))νt , (3.7)

where νt ≡ ε2
t −σ2

t , 0 < d < 1, the equations φ(z) = 0, β(z) = 1 have all the roots in a unit
circle, L is a lag operator.

As we can see from the above, the volatility is Ft−1-measured in all ARCH-class models,
which means that the volatility tomorrow is not stochastic in the class, it is assumed to be
known. In contrast, the volatility process in the Stochastic Volatility (SV) family of models
is Ft -measured, as it is evident from its name, and driven by its own process.

The ASV (asymmetric) model is the simplest SV model with asymmetry in discrete-time.
It is defined as

logσ2
t =ω+αut +β logσ2

t−1 (3.8)

where ut is i.i.d. innovation sequence with corr(εt ,ut−1) = ρ. The very last assumption
defines leverage effect in the model directly.

The LMSV (long-memory) model of Breidt , Crato and de Lima (1998) is devoted to a
persistence in volatility. The log-volatility process is given by

σt =σexp(νt /2)

φ(L)(1−L)d (νt −µ) = θ(L)ηt ,
(3.9)

where {ηt } is i.i.d. N (0,σ2
η), {νt } is ARFIMA process independent of {εt }. Hautsch [46] de-

scribes additional stochastic volatility models with discrete time.
The stochastic volatility models are less restrictive than the ARCH-family, but an op-

tion pricing task is more convenient to solve with continuous-time versions of SV mod-
els, while Duan [29] and Heston & Nandi [47] have developed methodology for the ARCH
family, which can be (and will be done for the AMSM model later) generalized for non-
stochastic volatility models. There is another methodology, but it uses the same pricing
formula obtained by Kallsen and Taqqu [56] for an arbitrage-free continuous-time case.
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3.1.2. Asymmetric Markov Switching Multifrequency Models
In this work I consider models that are more sophisticated than ARCH-class models,

but also non-stochastic volatility3 models. Namely, I use the Markov Switching Multifractal
(MSM) model created by Calvet and Fisher [19]. It can reproduce many of the stylized facts
simultaneously (in contrast to the ARCH-family), as we will see further, but not the leverage
effect. So, the purpose of the generalization is to create and to calibrate an asymmetric
version of the MSM model, which is reflected in the name of the model – Asymmetric MSM.

Let us begin with the MSM model first. An asset price returns process is defined on the
filtered probability space (Ω,F , {Ft }T

t=0,P ) with the natural filtration {Ft }T
t=0, induced by

the discrete-time stochastic process of asset prices, S = {St }T
t=0, satisfying the usual condi-

tions4. As in the previous models, the asset returns are given by 3.1, namely

rt = log

(
St

St−1

)
=µt +σtεt ,

but the key difference compared to the ARCH-class models is in the construction of the
volatility process σ= {σ(Mt )}∞t=0. It is defined as

σt =σ0

(
k̂∏

i=1
Mi ,t

) 1
2

, (3.10)

or in terms of logarithmic volatility

logσ2
t = logσ2

0 +
k̂∑

i=1
log Mi ,t (3.11)

where M = {Mt }∞t=0, Mt = (M1,t , . . . , Mk̂,t ) is a random-vector of volatility components at
time t switching with different frequencies, each Mk,t is given by

Mk,t =


m0, if uk,t−1 ∈ [0,γk /2),
2−m0, if uk,t−1 ∈ [γk /2,γk ),
Mk,t−1, if uk,t−1 ∈ [γk ,1),

(3.12)

where {uk,t−1} are uniform i.i.d.. this formulation is equivalent to Calvet and Fisher’s defi-
nition

Mk,t =
{

M , with probability γk ,
Mk,t−1, with probability 1−γk

(3.13)

M =
{

m0, with probability 1/2,
2−m0, with probability 1/2,

(3.14)

with the following properties for both cases

• k̂ is number of frequencies,

3It can also be formulated as the stochastic volatility model.
4A filtration (Ft )t>0 is considered to satisfy the usual conditions if it is right-continuous and complete (for

more details see [57]).
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• Mt ≥ 0, E [Mk,t ] = 1,

• M1,t⊥M2,t⊥ . . . Mk̂,t (statistically independent), as a result σ0 is the unconditional
standard deviation of log-returns.

The difference – albeit a crucial one – between Calvet and Fisher’s formulation and the
one considered in this research is that Mk,t is assumed to be Ft -measurable for (3.13), while
Mk,t ≡ f (uk,t−1) is assumed to be Ft−1-measurable in (3.12) and further. This means Mk,t is
assumed to be known at the moment of time t by Calvet and Fisher’s formulation and at t−1
the current research. The former fact makes option pricing using the methodology of Duan
[29, 28] possible.

The authors of the MSM model, Calvet and Fisher, described the economical sense be-
hind Mk,t in their paper [19] in the following way:

"Thus, the lowest frequencies might correspond to business cycles and tech-
nological shocks, while other frequencies could correspond to earnings cycles
or short-lived liquidity shocks. This closely captures the economic intuition
that different types of volatility shocks have different degrees of persistence."
(Journal of Econometrics 105, 2001, p.40)

The transition probabilities γ= (γ1, . . . ,γk̂ ) for all k̂ heterogeneous frequencies in MSM
are specified as

γk = 1− (1−γ1)bk−1
, γ1 ∈ (0,1), b ∈ (1,∞), k = 1. . . k̂. (3.15)

So, the MSM model is defined by four parameters (k̂ is the matter of model specification),
θ = (b,γk̂ ,m0,σ0).

The original definition of γk above having two parameters b and γk̂ seems to be exces-
sive. The values of b and γk̂ from practice and prior researches are known to be approxi-
mately 3 and 0.95, correspondingly, in the case of k̂ from 6 to 8. In order to make the model
suitable for calibration, we could simply fix these two parameters. An alternative approach
is to mimic the shape of γk distribution (3.15) by using non-parametric expression. In par-
ticular, this approach has been used in Lux [84]. Namely, the following approximation

γ?k = 2k−k̂ . (3.16)

The similarity of γk and γ?k is depicted in Figure 3.1.
Further, I consider two approaches of asymmetry incorporation.

Asymmetric MSM model, variant 1
A.E.Leövey [59] suggested the first approach. The distribution of Mk,t−1 is assumed to

be a binomial distribution with two states (m0,2−m0), but its distribution now depends on
εt−1 innovation

Mk,t =


m0, if uk,t−1 ∈ [
0,γk (1−Φ(ρεt−1))

)
,

2−m0, if uk,t−1 ∈ [
γk (1−Φ(ρεt−1)),γk

)
,

Mk,t−1, if uk,t−1 ∈ [
γk ,1

)
,

(3.17)

whereΦ(·) is a cumulative distribution function of standard normal variable, while the new
parameter ρ controls an asymmetry, m0 ∈ (1,2). Thus, the AMSM1 model parameters vec-
tor is θ = (m0,σ0,b,γk̂ ,ρ); in the simplified case, it is just θ = (m0,σ0,ρ).
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Figure 3.1: The horizontal axis is the frequency k, the vertical one is a transition probability, the triangles are

γk , while the squares are γ?k transition probabilities, γk̂ = γ?
k̂
= 0.95.

Another version of the MSM model generalization is more straightforward and sup-
posed to be more suitable for calibration. Developed by this author, its necessity is ex-
plained in detail in Section 3.4.

Asymmetric MSM model, variant 2
This variant of generalization suggests the use of an ordinary binomial distribution with

equally distributed states m0 and 2−m0 for Mk,t−1, while the construction of volatility is
changed as follows

σ(m0,σ0,ρ)t = (ρεt−1 −p
σ0)2

(
k̂∏

i=1
Mi ,t

) 1
2

, (3.18)

or alternatively

σ(m0,σ0,ρ)t = |ρεt−1 −σ0|
(

k̂∏
i=1

Mi ,t

) 1
2

. (3.19)

The constructions (ρεt−1 −p
σ0)2 and |ρεt−1 −σ0| produce an asymmetric response on a

negative innovation εt−1.
Hereafter the first generalization variant with transition probabilities defined by (3.15)

will be referred as AMSM1 model variant. The second variant with the construction of
volatility (3.18) parameterized with θ = (m0,σ0,ρ) and the transition probabilities defined
by (3.16) will be referred to as AMSM2 model.

Note, the models of new construction are generalizations of the ordinary MSM model; it
is enough to take ρ = 0. Moreover, if we also take m0 equal to 1, we obtain ordinary random
walk.

ä
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Further, we will discuss the ability of the AMSM model (both variants) to mimic stylized
facts of financial data: revealed statistical characteristics (distribution, correlation) of asset
prices, its returns and standard deviation (volatility). Mandelbrot (1963, [67]) and Fama
(1965) were the first to conduct notable investigations into financial data properties. The
stylized facts can be divided into two tightly linked groups: stylized facts of returns (asset
prices) and stylized facts of its volatility. Note, despite the stochastic nature of volatility and
corresponding stylized facts being revealed in 1960s, they were ignored in modeling for a
long time until Engle’s ARCH model wasn’t invented. The AMSM models are constructed
differently to the ARCH-class models, being an alternative to them. As we will see further,
this allows us to model a wider set of stylized facts of financial data, in both returns and
volatility. Primarily, it is focused on volatility persistence and the leverage effect.

3.1.3. Modeling of stylized facts in returns
Historical data samples of real assets prices often have trends, periods of quietness and

high volatility: rare shock events are often negative. As a result, their log-returns signif-
icantly deviate from normality in a statistical sense, which is an assumption of classical
models. This fact leads to the following stylized facts of real log-returns compared to the
normal ones: leptokurtic distribution (positive excess kurtosis), skewness (positive third
moment) and substantial outliers. The stylized facts are closely related to each other and
can be described, as real stock returns distribution is more heavy-tailed, peaked and asym-
metric.

As we can see in Figure 3.2, MSM-family models allow us to generate trajectories with
rare substantial outliers, switching trends and regimes. Namely, the AMSM paths on this
figure have at least four clear regimes: (0,250) – moderate volatility, sideways trend and
few weak negative outliers; (250,350) – high volatility, strong upward trend; (350,450) is
characterized by very low volatility with no outlier and moderate upward trend; (450,520)
– moderate volatility, downward trend and three significant negative outliers.

Another witness of the MSM family ability to mimic real market data is the histogram
of the AMSM model log-returns together with DAX index (symbol GDAXI) log-returns5 de-
picted in Figure 3.3 with fitted normal p.d.f., vertical lines as the mean and ±2/4σ (SD).
It clear that, for greater m0 and ρ, the distribution of returns deviate from normal to dis-
tribution with heavier tails, more peaked and showing up few outliers. Note that leverage
parameter ρ also contributes in non-normality, which makes the model more flexible and
allows it to capture more significant deviations. The DAX index returns histogram6 in the
right bottom corner of Figure 3.3 is depicted as an example of stock returns non-normality.
As we can see in the case (m0,ρ) = (1.4,0.01), AMSM returns are quite similar to DAX re-
turn’s distribution shape.

The third and the fourth moments, known as skewness and kurtosis7, are more precise
measure of deviation from normality. In order to find out the dependence between param-
eters m0 and ρ on skewness/kurtosis, a simulation experiment was performed: 1000 sam-
ple paths with 2048-points of AMSM1 and AMSM2 model returns8 for each m0 ∈ (1.0, 1.05,

5https://finance.yahoo.com/quote/%5EGDAXI/
6AMSM and DAX share returns scaled to have the same standard deviation.
7Here we assume a kurtosis as the fourth moment centered by kurtosis of standard normal r.v., namely it is

subtracted by 3
8The simulations were conduct on AWS cloud service, in particular, I used RStudio server AMI created and
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Figure 3.2: The graphical evidence of volatility clustering for the AMSM1 process. Namely, AMSM1 process

sample path, its returns and the volatility process {σ(m0, σ0, ρ)t } for the parameters θ = (1.4,0.02,3,0.95,2).

. . . ,1.8) and ρ fixed to 0; ρ ∈ (0.0, . . . ,4.0) (AMSM1) and ρ ∈ (0.0, . . . ,0.065,0.07) (AMSM2),
while m0 fixed to 1, σ0 = 0.02, k̂ = 6 in all specifications. Then skewness and kurtosis of re-
turns for each of 1000 sample paths were calculated and averaged for all parameters m0/ρ
values combinations. As we can see in Figure 3.4, there is clear and strong parabolic depen-
dence of both, m0 and ρ, on kurtosis for the AMSM2 model, but it is concave in the case of
AMSM1 for ρ, while it is convex in the case of AMSM2. The skewness of returns distribu-
tion is close to zero (as predicted by the theory) with significant deviations for ρ > 0.04 and
AMSM2, and also for m0 > 1.4 and both model variants.

To summarize, the general term fat/heavy tails is used to refer to deviations from nor-
mality, namely leptokurtic distribution and substantial outliers. It has been shown above
that the AMSM model is able to reproduce all these effects, while non-zero skewness (asym-
metry of returns distribution), is not observed in the case of standard Gaussian innova-
tions {εt }. Using skewed ones easily solves this; for example, Hanssen (1994) uses Student
t-distribution of innovations for the GARCH model. Another popular alternative is Gener-
alized Error Distribution (GED).

3.1.4. Modeling of stylized facts in volatility
As we can see from the construction of the model, in particularly of volatility process,

it is defined as a product of k̂ elements switching with its own frequencies. The highest
frequency corresponds to k = k̂ and the lowest to k = 1. This is consistent with a theory
of the existence of multiple scales in volatility: short-run scale corresponds to inter-day
volatility, market shocks are long-run volatility and so on. This makes it possible to mimic
clustering, long-range dependence, mean reversion of volatility, as well as the original MSM

maintained by Louis Aslett (www.LouisAslett.com).
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Figure 3.3: The graphical evidence of non-normality AMSM2 process returns in the case of (m0,ρ) deviate

from 1 and 0, correspondingly. The dashed lines are ±2/4 standard deviation.
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Figure 3.4: The dependence m0 and ρ parameters on skewness and kurtosis. The points are averaged skew-

ness and kurtosis of simulated AMSM2 returns for various parameters m0 and ρ values. The line on the plots

is either a polynomial regression or LOESS (local) regression. The shaded areas are 95% confidence bands.

model, and leverage effect – the main innovation of the AMSM models9. These effects and
the ability of the model to reproduce them are discussed in the next subsections. All the
abilities of the AMSM models are collected in Table 3.2 at the end of the subsection, as well
as the abilities of other wide-spread discrete-time and continuous-times models.

The key results (mean reversion property, long memory and leverage effect) are formu-
lated as theorems with proofs given in Appendices.

Let us start from the volatility clustering stylized fact as the most general phenomena.

Volatility clustering
The volatility clustering effect is a widely known empirical feature of stock prices data.

It is described as the existence of high volatility and low volatility periods in financial data:
after a large (small) return day, the next day is likely to have large (small) returns. The clus-
tering effect was found in empirical studies, see Engle and Russell (1998). Looking ahead,
we note that the AMSM models are also able to reproduce it; see10 Figure 3.2.

A presence of clustering in the real data leads to the natural assumption of the existence
of an autocorrelation structure in volatility. Due to the fact that the volatility is not a directly
observed quantity, the absolute or squared returns are used as an approximation, thus

γabs
n = corr(|rt |, |rt+n |), (3.20)

γ
sqr
n = corr(r 2

t ,r 2
t+n). (3.21)

The significance of the correlation coefficients γabs
n and γsqr

n is confirmed empirically and
documented in many previous studies on the topic. Moreover, it was found that these cor-

9Cont (2001) gives an extensive and well-defined systematization explanation of the stylized facts of asset

returns and their volatility.
10Using R package quantmod.
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relations are persistent for long intervals of time and decay with power law speed. This
effect is known as long memory and discussed in detail further in Subsection 3.1.4.

Another dependence structure revealed empirically for volatility is a leverage effect. It
connects the volatility to returns. The following correlation describing a leverage effect

γl ev
n = corr(|rt |,rt−n), (3.22)

was found to be significant and negative. It means, that negative returns (decrease of un-
derlying stock) leads to increase of volatility and, conversely, positive returns lead to de-
crease of volatility.

Note, the construction of (A)MSM models incorporates volatility clustering naturally.
Moreover, they are able to generate volatility clustering on different time scales, which is
consistent with the existence of business cycles of different frequency. Let us consider this
topic more deeply.

Mean reversion of volatility
The third, slightly more technical, dependence structure is a mean reversion of volatil-

ity. Let us start with a definition.

Definition 8. A mean reversion property of stochastic process is a tendency to revert to its

historical mean value over time.11,12

In the related literature, two kinds of mean reversion are considered: a mean reversion
in prices/returns and mean reversion in volatility.

In the case of mean reversion in prices/returns, as an economical explanation, it is usu-
ally assumed that under-priced and over-priced goods/securities exist on the real market.
The price of them is expected to have a tendency to increase or decrease, correspondingly.
This is considered to be the market force reverting prices to their mean. Various authors
have investigated this phenomenon with contradictory outcomes for different markets and
horizons. So, there is no common view on its existence.

The mean reversion in volatility is closely linked to persistence in volatility (long mem-
ory) and regime switching (volatility clustering). Namely, the existence of significant corre-
lation with lagged volatility values decaying slowly with a lag is interpreted as the tendency
of perturbations (regime characterized by high volatility) damping. In other words, an in-
fluence of a high volatility period is slow decay in the sense of autocorrelation and a process
that tends back to its mean values (regime characterized by low volatility).

The AMSM models possess a mean reversion property, as well as the original MSM
model. The idea is that a model should either have a mechanism for damping of pertur-
bation or should have an inner force that should push a process to its mean, for it to really
have the mean reversion property. In particular, we assume "washing out" of perturbation
at the current time in the course of time. This kind of mean reversion is observed in ARCH-
class models. In the proposition below, we prove that the AMSM models (as well as the
original MSM model) have such a mechanism.

11A broad description of mean reversion modeling is given in Hillebrand’s dissertation [48]. In particular, the

author distinguishes between three types of mean reversion modeling approaches.
12This property is in contrast with random walk behavior, which has no memory about the past.
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Theorem 7. The AMSM1 and AMSM2 models exhibit mean reversion of volatility property

as well as ordinary MSM models.13

Proof. The proof is given in Appendices A.8,A.9.

The next and the most important stylized fact in the context of this research is a leverage
effect.

Leverage effect
In the literature, as a leverage effect is defined as a negative correlation of volatility and

lagged returns. The effect owes its name to the economical interpretation given by Black in
1976 (see [11], also [21]), linking it with financial leverage. To be specific: a lower value of
asset price leads to higher debt/equity ratio. This in turn causes an increase in the volatility
of asset price. Meantime, a rise of asset price also affects the volatility, but is weaker. In
turn, it interferes with the asymmetric14 nature of the phenomena (see [34], [76]). Never-
theless, some authors, for example Figlewski and Wang (2000) question this interpretation
being prevalent in the literature. In particular, they mention that financial leverage cannot
explain amplitude of volatility and that any other change of leverage – except for asset price
change (because of debt changes or shares issue/repurchase) – does not lead to substantial
change of volatility.

Despite the disagreements about the economical causes of the leverage effect in the lit-
erature, the presence of negative correlation between volatility and lagged returns is com-
monplace. Moreover, option prices calculated without taking into account this fact can
lead to significant biases (see, [51]). Hence, the effect should be incorporated in models if
possible. As we mentioned above, the modifications of the original MSM model introduced
previously are aimed at embodying the leverage effect phenomenon.

First of all, in order to show that the AMSM model (both versions) can also reproduce
the leverage effect, let us prove the weak stationarity property of the volatility process. It
will provide us with some results necessary in the future.

Theorem 8. Let a volatility process (σt )∞t=0 of AMSM1/AMSM2 model version is defined by

(3.17/3.18), {εt }∞t=0 is a standard white noise with distribution N (0,1), then

cov(σt ,εt−1) < 0,

for both models and any t > 0, ρ > 0.

Proof. Due to complexity and length, the proof is placed in Appendices A.10/A.11.

In order to find out the sensitivity of AMSM versions with respect to parameter ρ, which
is responsible for leverage effect and possibility to model different levels of correlation
(leverage effect) statistical tests were performed on the correlation of the volatilities (σt )
and lagged shocks (εt−1)15. Namely, fifty paths of length 214 points each were simulated

13Note, the AMSM2 model has the same kind of mean reversion as ARCH-class models.
14This asymmetry gave the name to the models presented in this work – Asymmetric MSM models, namely the

expressions (3.17) and (3.49), which create asymmetric responses on negative and positive lagged returns.
15The R software environment was used for this purpose.
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ρ Correlation P-value Confidence interval

AMSM1

0.001 -0.0019 0.4941 (-0.07488, 0.0710)

0.01 -0.0053 0.4910 (-0.0782, 0.0677)

0.1 -0.06950 0.1744 (-0.1417, 0.0035)

0.25 -0.1651 0.0013 (-0.2353, -0.0933)

0.5 -0.2988 0.0000 (-0.3638, -0.2308)

0.75 -0.3877 0.0000 (-0.4480, -0.3239)

1.0 -0.4446 0.0000 (-0.5013, -0.3841)

2.0 -0.5269 0.0000 (-0.5776, -0.4720)

3.0 -0.5410 0.0000 (-0.5907, -0.4873)

5.0 -0.5481 0.0000 (-0.5972, -0.4949)

AMSM2

0.0001 -0.0001 0.4963 (-0.0731, 0.0728)

0.0005 -0.0147 0.4615 (-0.0876,0.0583)

0.001 -0.0297 0.4051 (-0.1025, 0.0433)

0.005 -0.1445 0.0059 (-0.2152, -0.0723)

0.01 -0.2774 0.0000 (-0.3434, -0.2086)

0.02 -0.4858 0.0000 (-0.5397, -0.4280)

0.03 -0.6128 0.0000 (-0.6564, -0.5651)

0.04 -0.6866 0.0000 (-0.7233, -0.6460)

0.05 -0.7273 0.0000 (-0.7599, -0.6910)

0.075 -0.7599 0.0000 (-0.7892, -0.7273)

Table 3.1: Leverage-effect statistical testing for AMSM models. Null hypothesis is a zero correlation of volatil-

ity σt and lagged shock εt−1. The significance level is 5%.
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with θ1 = (m0,σ0,b,γk̂ ,ρ, k̂) = (1.4,0.02,3,0.95,ρ,8) and θ2 = (m0,σ0,ρ, k̂) = (1.4,0.02,ρ,8)
model for different values of ρ for both specifications of model. The results of the testing
are collected in Table 3.1. The simulations showed that, in the case of the parameters set-
tings defined above, the approximate significance of correlation is achieved for ρ > 0.1 for
the AMSM1 model and ρ > 0.001 for the AMSM2 model. This knowledge will help us later
during the model calibration procedure. In addition, it gives us clues about the possible
amplitude of ρ.
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Figure 3.5: The time structure of leverage effect for the DAX index, AMSM1 (ρ = 0.58) and AMSM2 (ρ = 0.38)

simulated samples paths, measured as defined in (3.22).

More evidence of the leverage effect is presented in Figure 3.5. Namely, the estimates of
the correlation of absolute returns with lagged returns γlev

n (black dots) in: historical DAX
index path from the 1st January 2005 to 1st January 2018 on the top plot; the simulated
AMSM1 process path of length 214 with θ1 = (1.4,0.02,3,0.95,0.6,8) on the central plot; and
the simulated AMSM2 process path of length 214 with θ2 = (1.4,0.02,3,0.95,0.38,8) on the
bottom plot. Further, the blue line on all plots is a polynomial regression of γlev

n estimates,
the shaded areas are 95% confidence bands and the red line is zero-correlation level.

Note, the AMSM2 model returns are not correlated already at the lag equal to 2, in con-
trast to the AMSM1 model, where correlation γl ev

n = corr(|rt |,rt−n) tends to zero slightly
more smoothly (at lag n ≥ 3. In the case of real data, the correlation is even more per-
sistent. This is the price for simplification and computability, which, on the other hand,
leaves room for further improvements . For example, we can use AR(p) process in volatility
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construction instead of AR(1) used currently. This should make persistence stronger.

Long memory
The long-range dependency is observed in financial data. Taking into account that

absolute returns and squared returns are approximations for volatility, the long memory
phenomena was revealed by many authors. Taylor (1986) [95] was the first who showed
evidence of the long memory property of financial data series. He investigated the abso-
lute values of stock returns and revealed that they have slowly decaying autocorrelation
functions. In addition, the long-term volatility persistence was found in powers of abso-
lute returns |rk |n and also in squared returns by Zhuanxin, Granger and Engle (1993) [100].
Granger, Spear and Ding (2000) investigated properties of absolute daily returns for a few
markets. Let us give the definition of the phenomenon.

Definition 9. A weakly-stationary process X = {X t }∞t=0 is said to have a long memory16 (of-

ten, long-range dependent), if its autocorrelation γk ≡ corr(X t , X t−k ) (or returns, powers of

returns, absolute values) for some α ∈ (0,1) has hyperbolic decay, or equivalently power law

decay, which in functional form is

γX
k ∼ cα,γk−α, as k →∞, (3.23)

while if the process correlation satisfies

γX
k ∼ dα,γα

k , as k →∞, (3.24)

it is said to have a short memory (exponential decay).

The long memory property is closely related to a self-similarity property, but none of
these properties can guarantee another one.

Definition 10. A process Y = {Yt }∞t=0 is said to be a self-similar, if for any realization of it and

c > 0 holds the following relationship by distribution

Yct
D= c H Yt ,

where H ∈ (0,1) is called the Hurst exponent.

One of junctions for self-similarity and long memory properties is an autocorrelation
function. It is given (if it exists) for an increments of self-similar process, Zt = Yt −Yt−n , as
(see Beran [8])

γZ
k = H(2H −1)k2H−2 = cH k2H−2. (3.25)

So, there could be a suggested intersection of self-similarity and long memory, through
(3.23) and (3.25), as H = 1−α/2. Note, the self-similar processes itself (Y) is not station-
ary; only its increment process (Z) can be stationarity. Moreover, it has to be, at least,

16A comprehensive insight about these kinds of processes is provided by Beran [8], [9].
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weak stationary in order to have the long memory property as determined in the defini-
tion above. Hence, the increment process Z has long memory property when H ∈ (1/2,1);
it is either memoryless or has a short memory when H = 1/2 and it is an anti-persistent pro-
cess when H ∈ (0,1/2). The most well-known example of the self-similar process with the
long memory property of increments process is Fractional Brownian Motion (FBM) with its
increment process called Fractional Gaussian Noise (FGN), which we use further as a trial
process.

Returning to our models, the first evidence of a presence of long memory can be given
by an inspection of autocorrelation function. In the case of the AMSM1 process, it is given
in Figure 3.6 (there is the small jitter of the surface due to estimation errors during simula-
tion). In the theoretical sense, Calvet and Fisher [20] proved that an ordinary MSM process
has hyperbolic decay of autocovariance of absolute returns powers. Further, it has an im-
portant additional feature: the rate of decay differs for various powers, which coincides
with the empirical behavior of real financial time series. In addition, we will show that the
AMSM1 process enjoys the same features theoretically and testify to the strength of the
effect by simulations.

Before we formulate and prove the long memory property of AMSM1/AMSM2 models,
we require the following auxiliary assertion.

Lemma 3. The following expression holds for the components Mk,t of AMSM1 and AMSM2

model versions

E [σt ] = σ̂µk̂ , (3.26)

cov(σt ,σt+τ) = σ̂2µ2k̂

(
k̂∏

k=1

(
1+a1(1−γk )τ

)−1

)
, (3.27)

where τ> 0 and

µ= E
[
M 1/2]

σ̂=
{
σ0 (AMSM1)

σ0 +ρ2 (AMSM2)

a1 = 1

µ2
−1.

Besides,

E
[

M q/2
k,t M q/2

k,t+τ
]
= [

E
(
M q/2)]2 (

1+aq (1−γk )τ
)

, (3.28)

where

aq = E(M q )

E(M q/2)2
−1, (3.29)

M - is a binary variable taking values m0 and (2−m0) equiprobably in the case of AMSM2

model and with the probabilities (1−C DF (ρεt−1))/C DF (ρεt−1) in the case of AMSM1.

Proof. The proof is given in Appendix A.12.
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Figure 3.6: The graphical evidence of long memory for the AMSM1 process absolute returns. Namely, 3D-
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The main theoretical result formulated in the theorem below is closely aligned with the
results for the ordinary MSM model in [20], but the proof requires further explanations due
to differences in the models.

Theorem 9. Let ψq (n) = corr(|rt |q , |rt+n |q ), then the following holds

sup
n∈Ik̂

∣∣∣∣ l n(ψq (n))

ln(n−δ(q))
−1

∣∣∣∣→ 0, (3.30)

on the interval Ik̂ = {n : α1 logb(bk̄ ) ≤ logb(n) ≤ α2 logb(bk̄ ); α1,α2 ∈ (0,1)}, where {rt } =
{εtσt } are returns of the AMSM1/AMSM2 process,

δ(q) = logb(E(M q )/E(M q/2)2), q ≥ 0. (3.31)

Proof. The only difference of the AMSM1 model from the ordinary MSM model is the con-

struction of distribution M . Hence, the expectations E(M q ), E(M q/2) are different from

their counterparts in the case of ordinary MSM, and they also depend on the parameter

ρ, but they are still constants for any fixed ρ. Besides, E(M q/2
k,t M q/2

k,t+n) are defined by the

same expression as for the ordinary MSM, as we have proven in Lemma 3. So, there are no

changes in the major steps of the proof in [20], only minor ones.

The proof of theorem in the case of AMSM2 model is given in Appendix A.13.

Theorem 9 establishes the existence of the long memory in volatility for the AMSM
models, but we would like to estimate how strong it is in terms of the Hurst exponent for
different parameters of the model

θ = (m0,σ0,b,γk̂ ,ρ) = (1.4,0.02,3,0.95,2)

and their neighborhoods. In particular, we are interested in an investigation of the model
defining constant k̂ influence and the strength of the long memory for various powers of
absolute returns.

The problem is that the Hurst exponent, being a clear mathematical object, provides the
non-trivial task of estimation of its value in the practical sense. Hurst proposed the very first
method in 1951 [52], namely the rescaled range analysis (also known as R/S analysis). Later,
two alternatives were suggested: Detrended Fluctuation Analysis [78], which is developed
to be less sensitive to a violation of stationarity; and the approach of Geweke and Porter-
Hudak [38], which is based on a periodogram regression. All three approaches are based
on construction of a linear regression model, where H acts as slope parameters of it. This,
evidently, leads to the low precision of these methods. Later on, the modified R/S by Lo
[65] was aimed at distinguishing a short-range and a long-range dependence. In this sense,
Lo’s method could be especially useful in our case, but it suffers from the same issues as
the original R/S. Further, it requires the selection of the truncation lag (in order to exclude
a short memory effect). In addition, it was criticized for biases towards rejection of long-
dependence (see [96]). Another group of regression-based methods in the time domain
were suggested in the 1990s, namely Absolute Values of the Aggregated Series, Aggregated
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Variance, Differencing the Variance (see, Taqqu and Teverovsky [94, 93]) and Peng’s estima-
tor [78]. In the frequency domain, a method was developed based on a regression of peri-
odogram on frequency, namely the Periodogram method, Boxed Periodogram [94], Reisen’s
periodogram method [82] and the Geweke and Porter-Hudak method. The Whittle estima-
tor [93, 8, 9] is also based on a periodogram, but it is not a graphical (regression) method.
The second non-graphical estimator is based on a wavelet analysis discussed in [2]: it is an
unbiased semi-parametric efficient estimator. Further, there is a Haslett-Raftery estima-
tor [45], which is an approximation of the maximum likelihood estimator for the fractional
difference parameter d of ARFIMA model (there is an expression that holds H = 0.5+d)17.

Figure 3.7: The Hurst exponent estimates of 200 paths simulated for each trial process - Gaussian white noise,

fractional Gaussian noise and AR(1) process.

Before to estimate the value of the Hurst exponent for the absolute returns process with
different value of k̂ and q , we tested the performance of the twelve different approaches
discussed above 18 on a few toy examples. The trial processes are: an ordinary Gaussian
noise (white noise) with H = 0.5; a fractional Gaussian noise (fractional Gaussian noise)
with H = 0.7 and an stationary autoregressive process AR(1) with the short memory and
H = 0.5. The aim is to find out the sample properties of the estimators, as well as their
a robustness to the short memory (ability to distinguish the long and the short memory
properties). For this purpose 200 Monte Carlo simulations of paths for each trial process
of 264 = 65536 length19 were conducted. The estimates are presented using the boxplots in
Figure 3.7.

For the next experiment 50 paths of length 215 for each process type were simulated.
Namely, the AMSM1 process paths are simulated with the parameters m0 = 1.4, σ0 = 0.02,
ρ = 2, b = 3, γk̂ = 0.95. Then, each sample paths has been estimated with each estimator
and the dispersion of the estimates is visualized as the boxplots.

17Fractional Integrated processes are a class of processes aimed at modeling a long range dependence by

integrating a stationary process with a fractional number of repeats, namely d-times, where d - is called a

fractional difference parameter. In fact, GPH, Reisen’s estimator and Whittle’s estimator also estimate d .
18R packages fArma, fractal (Whittle’s estimator), fracdiff (Reisen’s estimator, GPH) have been used.
19An estimation of Hurst exponent typically needs long samples in order to catch the long memory effect.
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As we can see, for the white noise and the fractional Gaussian noise, most estimators
show good performance in the sense of an unbiasedness and a standard deviation. The
main exception is the classical R/S analysis; it shows significant bias in the case of white
noise and the largest standard deviation among all estimators in all three examples. Whit-
tle’s estimators has bias in the case of fractional Gaussian noise. All other estimators seem
to be unbiased and have small or moderate (Reisen’s and GPH) deviation. The picture is
dramatically different in the case of AR(1) stationary process20. Nine estimators fail to re-
ject persistence; the only three estimators are unbiased and provide correct estimates –
Reisens’s periodogram, GPH and Haslett-Raftery estimator. The last one shows the best
performance being based on a maximum likelihood approximation and designed to esti-
mate AR-class processes. The robustness to the presence of short memory was discussed
by Lo in 1991. He even suggested a modified version of classical R/S analysis [65], but it
suffers from a number of other problems (see [96]), in particular, the tendency to overre-
ject the persistence.

Figure 3.8: The Hurst exponential estimates for the absolute returns of AMSM1 process. Namely, 200 paths

simulated with parameters θ = (1.4,0.02,3,0.95,2).

Taking into account the different performance of the Hurst exponent estimators, we
need to be careful in analyzing results for the AMSM process absolute returns, which are
shown in Figure 3.8. All the estimators concordantly test some level of long memory in-
creased from around H = 0.62 to H = 0.83 with growth of number of scales from k̂ = 5 to
k̂ = 15. The only exceptions are the Reisen Periodogram method and GPH method esti-
mators in the case of k̂ = 5, as they rejected the long-memory assumption. Note, that H
increases in a non-linear manner with a very slow increase and convergence after k̂ = 15.

There is a peculiarity we should pay attention to when comparing the estimates of the
trial processes and the AMSM1 process: the trial processes’ estimates differ significantly in
the case of short memory and are concordant in the case of both pure noises. In the case
of AMSM1 estimates of H , we also see the dispersion, which spreads when k̂ increases.
One hypothesis is that the leverage-effect being the short-memory effect can lead to this

20An AR(1) process is stationary, if its parameter |φ1| < 1. As φ1 value 0.6897 was used.
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mismatch, but simulations do not support this conjecture; in the case of the ordinary MSM
process (ρ = 0), box plots of estimates look the same. Another, much more likely, hypothesis
is that the reason is the multi-scale nature of the (A)MSM models. The models allow us to
generate long-memory behavior for data (volatility, in our case) of different frequencies
simultaneously, which in turn leads to the discrepancy of the estimates.

Thus, we have shown the ability of the AMSM model versions to mimic both the lever-
age effect and the long memory. In particular, the real level of correlations for different ρ
(leverage effect) and the levels of persistence using Hurst exponent for AMSM1 model with
different specification of k̂ (long memory) have been measured .

Note, in Table 3.2 AMSM1/AMSM2 models are compared with a set of well-known mod-
els in terms of the possibility to generate the stylized facts.

3.2. Theoretical basis of option pricing based on AMSM mod-

els
The AMSM1 and AMSM2 models considered in this work are similar in terms of gen-

eral structure (see Section 3.1) to the GARCH-class of models and its generalizations. Duan
[28] was the first to develop the option pricing methodology for GARCH models, based on
the earlier results of Rubinstein (1976) and Brennan (1979). Later on, Duan with his col-
leagues generalized this approach to implement on the Markov regime switching models
[29], GARCH with jumps in returns and volatility [30]. Heston and Nandi (2000) obtained
alternative results in GARCH option pricing by developing closed-form solution for the spe-
cial version of the GARCH (1,1) model. The more recent results of Christoffersen et al (2009,
2012) are based on construction of the Radon-Nikodym derivative leading to the Equivalent
Martingale Measure (EMM) in the case of certain conditions based on a moment generat-
ing function.

Stylized Facts A
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SM
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A
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H
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H
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R

C
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24

G
JR

-G
A

R
C

H
25

F
IG

A
R

C
H

26

A
SV

27

L
M

SV
28

ret Leptokurtic distr. + + + + + + + + +

ur Asymmetric distr.29 - - - - - - - - -

ns Substantial outliers30 + + + + + + + + +

vo Leverage effect + - + + + + - + -

lat Mean reversion31 + + + + + +? + + +?

ili Long memory32 + - - - (+33) - - + - +

ty Clustering vol. + + + + + + + + +

Table 3.2: AMSM vs Other discrete-time models.

21The generalized autoregressive conditional heteroskedasticity model, see [15].
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The generalized (with leverage effect) and modified (non-stochastic volatility formu-
lation) AMSM models construction allows us to implement Duan’s option pricing theory
for Markov switching models (see [29]). Duan’s approach is based on consideration of the
basic (micro-)economics and constructs a Stochastic Discount Factor (see also [92]), which
allows us to evaluate option prices.

In Subsection 3.2.1 we show that Duan’s approach is implementable to the AMSM mod-
els and define which assumptions are required for that. In Subsection 3.2.2, we define the
martingale-measure and the transformation of the AMSM models under it. Next, the nec-
essary conditions for the existence of this measure are defined.

3.2.1. Stochastic Discount Factor
Assume that an investor has a certain consumption level Ct , an utility function u(Ct )

and maximizes the two-stage overall utility U (Ct+1,Ct ) at time t

max{U (Ct+1,Ct )} = max
{
u(Ct )+exp(−ρ)E P [u(Ct+1)|Ft ]

}
, (3.32)

where ρ is an impatience factor. Note, the utility of consumption at time t +1 is uncertain
and expected with respect to an information available at time t . Besides, we assume that
an investor at time t also invests in It assets with the price St . Thus, the investor’s payoff at
time t and t +1 are defined as

Payofft =Ct + It St , (3.33)

Payofft+1 = It St+1 =Ct+1 + It+1St+1. (3.34)

Then, we can substitute the last expressions in (3.32)

max{u(Ct )+exp(−ρ)E P [u(Ct+1)|Ft ]}
(3.33)(3.34)=

max{u
(
Payofft − It St

)+exp(−ρ)E P [u(It St+1 − It+1St+1)|Ft ]}.

22The asymmetric generalized autoregressive conditional heteroskedasticity model of Engle (1990).
23The exponential generalized autoregressive conditional heteroskedasticity model, see [76].
24The non-linear asymmetric generalized autoregressive conditional heteroskedasticity model, see [34].
25The Glosten-Jagannathan-Runkle generalized autoregressive conditional heteroskedasticity model, see

[40].
26The fractionally integrated generalized autoregressive conditional heteroskedasticity model of Baillie,

Bollerslev and Mikkelsen (1996).
27The asymmetric stochastic volatility model, see Section 3.1.1.
28The long-memory stochastic volatility model of Breidt , Crato and de Lima (1998).
29In the case of Gaussian innovations.
30Relatively high values of returns in all considered models are produced in the case of high volatility, rather

than incorporated directly in a model by using the jump component.
31Many details about mechanisms of mean reversion and classification of them were provided by Eric Hille-

brand in his Ph.D. dissertation [48]. I used his approach for judging the presence of the mean reversion

property.
32It is slower (hyperbolic) than the exponential decay of autocorrelation function.
33FIEGARCH of Bollerslev and Mikkelsen (1996).
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First order condition of maximization in the terms of It is

∂U

∂It
= ∂

∂It

(
u(Payofft − It St )

)+
+ ∂

∂It

(
exp(−ρ)E P [u(It St+1 − It+1St+1)|Ft ]

)=
=−St u′(Payofft − It St )+
+exp(−ρ)E P [St+1u′(It St+1 − It+1St+1)|Ft ] = 0

After the simplification, we obtain the condition for maximization of utility, which is also
known as Euler equation

St = E P
[

exp(−ρ)
u′(Ct+1)

u′(Ct )
St+1

∣∣∣Ft

]
, (3.35)

where u′(Ct+1)/u′(Ct ) is the marginal rate of substitution of current consumption Ct for the
future consumption Ct+1 (MRSt ).

The stochastic discounter factor

SDF = exp(−ρ)
u′(Ct+1)

u′(Ct )
= exp(−ρ)MRSt (3.36)

is an important part of the risk-neutral measure transformation described further.

3.2.2. Martingale measure
There are two sources of randomness in the model: the normal innovations {εt } and the

volatility regime defined by vector {ūt } = {u1,t , . . . ,uk̂,t } (see (3.12)). As a matter of theoreti-
cal convenience, we will substitute uniform variables by CDF of standard normal variable,
namely, ūt = Φ(ξ̄t ), where each element of {ξ̄t } is a i.i.d. normal sequence of k̂ elements
{ξ1,t , . . . ,ξk̂,t } independent from {εt } and independent to each other. It allows us to trans-
form variables freely, because uk,t is limited to [0,1], while ξk,t is not limited on the real
axis.

Proposition 1. In the framework of option pricing, we assume that the asset returns r =
{rt }∞t=0 of the underlying asset price process {St }∞t=0 are given by

rt = ln
St

St−1
= r +λσ(εt−1, ξ̄t−1)t − 1

2
σ2(εt−1, ξ̄t−1)t +σ(εt−1, ξ̄t−1)tεt , (3.37)

where r is a risk-free rate, λ is a unit risk premium34, εt is an i.i.d. standard normal se-

quence, ξ̄t is a i.i.d. sequence of i.i.d. vectors distributed as N
(
0k̂×1,Ik̂×k̂

)
random variables,

σ(εt−1, ξ̄t−1) is an Ft−1-measurable AMSM-volatility process.

Further, we define the new measure Q, which is equivalent to the physical measure P
and prove that it is a martingale measure. This new measure is an important part of an
option price valuation and, consequently, a calibration procedure.

34Here and later, it is assumed that if a compensation for the risk of holding an asset as a risk-free rate r

could be not enough or – on the contrary – excessive, then a risk premium depending on a volatility level is

necessary, namely λσt .
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Definition 11. Let the measure Q be absolutely continuous with respect to the measure P,

1. ln(St /St−1) is Q-normal conditionally on Ft−1,

2. V Q (ln(St /St−1)|Ft−1) =V P (ln(St /St−1)|Ft−1),

3. EQ [St /St−1|Ft−1] = exp(r ),

then Q and P are called to satisfy Local Risk-Neutral Valuation Relationship (LRNVR).

It is clear from the definition that under LRNVR for both measures, Q and P , we suppose
there are invariant one-period variances. Further, the returns need to be distributed log-
normally under risk-neutral measure Q conditionally on Ft−1 with expected log-returns
equal to the risk-free interest rate r .

In the next theorem, we define the conditions that ensure LRNVR holds, before the main
theorem is formulated.

Theorem 10. Assume that an economic agent maximizes an expected utility, this utility

function u(Ct ) is separable and additive, the measure Q is defined by Radon-Nikodym deriva-

tive

dQ

dP
= exp

(
(r −ρ)T +

T∑
t=1

ln

(
u′(Ct )

u′(Ct−1)

))
, (3.38)

then the measures P and Q satisfy LRNVR if only one of the following contradictory35 condi-

tions holds:

1. the coefficient of relative risk aversion is a constant, besides

ln

(
Ct

Ct−1

)∣∣∣Ft−1
P∼N (µ,σ);

2. the coefficient of absolute risk aversion is a constant, besides

(Ct −Ct−1)|Ft−1
P∼N (µ,σ);

3. the utility function is linear

u(Ct ) = aCt +b.

Proof. The proof is given in Appendix A.14.

At the stage of construction of LRNVR measure Q, we need only general assumptions
about the agent’s utility function as we can see from the conditions and the proof of Theo-
rem 10. These assumptions lead to normality of the logarithmic Marginal Rate of Substitu-
tion (MRS)

ln(MRSt ) = ln

(
u′(Ct )

u′(Ct−1)

)
,

35The first and the second condition cannot both be true.
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possibility to formulate Euler equation (3.35) and define measure Q, which is defined as a
logarithmic MRS discounted by the difference between an interest rate and an impatience
factor.

Note, there is no use for any knowledge about volatility process {σt } for the definition
and constructing of Q, except its Ft−1-measurability. Nevertheless, any change to measure
Q affects the model. In particular, we need to find out the new definition of returns and
volatility innovations, εt and ξt , under this measure. The next theorem is dedicated to this
problem.

Theorem 11. Let the underlying asset price process {St }∞t=0 be defined by (3.37), the measure

Q is defined by (3.38) and satisfies LRNVR, then under Q holds

rt = ln
St

St−1
= r − 1

2
σ?t (ε?t−1, ξ̄?t−1)2 +σ?t (ε?t−1, ξ̄?t−1)ε?t , (3.39)

[
ε?t

ξ̄?t

]
=


εt +λ
ξ1,t +ν

. . .

ξk̂,t +ν


∣∣∣Ft−1

Q∼N
(
0(1+k̂)×1,I(1+k̂)×(1+k̂)

)
, (3.40)

the volatility process of AMSM1 model is defined as

σ?t =σ0

(
k̂∏

i=1
M?

k,t

) 1
2

, (3.41)

M?
k,t =


m0, if Φ(ξ?k,t−1 −ν) ∈ [

0,γk (1−Φ(ρ(ε?t−1 −λ)))
)

,

2−m0, if Φ(ξ?k,t−1 −ν) ∈ [
γk (1−Φ(ρ(ε?t−1 −λ))),γkΦ(ρ(ε?t−1 −λ))

)
,

Mk,t−1, if Φ(ξ?k,t−1 −ν) ∈ [
γk ,1

)
.

(3.42)

the volatility process of AMSM2 model is defined as

σ?t = (
ρ(ε?t−1 −λ)−p

σ0
)2

(
k̂∏

i=1
M?

k,t

) 1
2

, (3.43)

M?
k,t =


m0, if Φ(ξ?k,t−1 −ν) ∈ [0,γk /2),

2−m0, if Φ(ξ?k,t−1 −ν) ∈ [γk /2,γk ),

Mk,t−1, if Φ(ξ?k,t−1 −ν) ∈ [γk ,1),

(3.44)

whereΦ(·) is a cumulative distribution function of standard normal variable.

Proof. The proof is given in Appendix A.15.

According to Proposition 1, there are two random processes defining the return process
(3.37) under the measure P . The first one is white noise {εt }∞t=0. Theorem 11 establishes
the transformation of {εt }∞t=0 under measure Q, namely it is necessary to substitute ran-
dom variable εt distributed as standard normal distribution with respect to P to another
variable, which should be distributed under Q (see (3.40)). In addition, the models share
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the volatility regime switching construction defined by uniform i.i.d. random variables
{ut ,k }∞t=0 = {Φ(ξk,t )}∞t=0. Theorem 11 establishes corresponding transformation for the uni-
form random variables uk,t =Φ(ξk,t ) toΦ(ξ?k,t−ν), where ν is the second risk-neutralization
parameter (see (3.40), (3.42), (3.44)).

The theoretical difference between AMSM1 and AMSM2 models is in the leverage effect
incorporation approach, namely, the way to incorporate a correlation of the volatility pro-
cess {σt }∞t=0 and the lagged innovation process {εt−1}∞t=1 of the returns process definition.
In the case of the AMSM1 model the leverage effect, namely εt−1, is incorporated in the
volatility regime switching process components Mk,t . Therefore, the measure change from
P to Q leads to another interval defining the value of M?

k,t (see (3.42)). At the same time,
the leverage effect is incorporated in the volatility process definition directly in the case of
AMSM2. Therefore, it is necessary to correct this definition under measure Q (see (3.43)),
while the intervals defining M?

k,t are the same as under the physical measure P (see (3.44)).

Corollary 5. The discount price process {Ŝt }∞t=0 = {St exp(−r t )}∞t=0 is a martingale under Q,

thus Q is a martingale measure.

Proof. The proof is given in Appendix A.16.

The results of Theorem 11 and its Corollary 5 allow us to price derivatives, such as
vanilla options, defined in the form

CT = EQ [
f (ST )

]
,

by using the Monte Carlo technique. As a consequence, we are able now to calibrate the
model parameters θ = (m0,σ0,ρ) from real option prices from the financial market, as well
as the risk-neutral correction parameters (λ,ν).

ä
In the next section, we discuss how to implement the Monte Carlo simulation tech-

nique in the case of the AMSM model. In particular, the main aim is to make simulation
computationally efficient and fast.

3.3. Monte Carlo method for option pricing based on AMSM

models
In order to have reasonable model calibration time, we needed to have a fast method of

performing option price computations. The fastest way is to compute option prices using
a closed-form solution, but this is impossible for our complicated structure model. There
are two popular alternatives for numerical solution – the Fast Fourier Transformation and
Monte Carlo methods. The first one is impossible to implement, because the characteristic
function is unavailable in the case of (A)MSM models. So, the Monte Carlo method is our
method of choice. The main disadvantage of it is its relative slowness, especially given the
fact we need to produce intense option prices computations on each step of the calibration
(optimization) procedure. Hence, we need to increase the speed of the Monte Carlo option
prices computation. Luckily, Monte Carlo methods are easy to parallelize and modern soft-
ware/hardware is available to do this efficiently.
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3.3.1. Parallel implementation of Monte Carlo methods
Historically, parallel computations were possible only on Super Computers, which are

designed to use the whole power of parallel computations. For ordinary PCs, multi-core
Computer Processor Units (CPU) and multi-CPU features were developed in the mid 2000s.
As a result, parallel computations became affordable for a wide range of people, includ-
ing scientists. Recently, a new direction has appeared: parallel computations on Graphic
Processor Units (GPUs). The reason for this is the combination of a very high level of par-
allelism caused by the purposes of graphical 3D-modeling and the low price (relatively to
multi-CPU clusters) of GPUs. In this research, the author uses a variety of GPUs, starting
with the relatively old AMD4670, middle-range AMD 7730M with 8 Compute Units (512
stream cores) and AMD R7 360 (768 cores), and finally rented a remote PC36 with powerful
GPU, professional level Nvidia GRID K520 (1556 CUDA-cores) and Nvidia Tesla K80 (2496
CUDA-cores) developed specifically for parallel computations. In other words, we are able
to run 512/768/1556/2496 computations (path simulations) in parallel. Today, there are
two main technologies for parallel computations on GPUs: Nvidia’s CUDA [25] (available
only for Nvidia GPUs) and OpenCL (works with AMD and Nvidia GPUs and even with multi-
core CPUs). I prefer OpenCL as a more universal technology; besides, I initially only had
access to AMD GPUs (ATI 4670 and later to AMD7730M).

3.3.2. Monte Carlo simulations
A computation of option price using the Monte Carlo method requires the computation

of a certain number (thousands) of payoffs at the maturity T , then taking an arithmetic av-
erage of them in the case of European Call/Put. This means we need to simulate a corre-
sponding number of paths of underlying asset price process S = {St }∞t=0 from Section 3.1.
The simulation of paths is produced in parallel on CPU/GPU. The memory of GPUs is de-
signed to work more efficiently with the special type of variables that are 4-elements vec-
tors. Therefore, it is more efficiently to compute 4 paths simultaneously within each stream
running on a separate core. Also, the procedure for generation of Gaussian innovations
gives two (actually 8 values because of storing everything in 4-elements vectors) Gaussian
values for each two uniform entries. If we do not want to lose 4 Gaussian variables on gen-
eration of each point of trajectory, it is better to use them for generation of an additional 4
paths. As a result, we compute 8 paths of the process S on each core in parallel.

The underlying (A)MSM process has three sources of randomness on each step t of
trajectory of S according to its definition: 1. whether there is a switch (Mk,t = M) or not
(Mk,t = Mk,t−1), 2. if there is a switch, then in what direction it should be (m0 or 2−m0)
and 3. Gaussian innovations εt . Firstly, we need to generate uniform random values, then
transform them to the normal random variables εt , ξk,t . Secondly, we need to make the
risk-neutral correction according to the Theorem 11 expressions (3.42,3.44), namely we
subtract ν and λ from εt and ξk,t , correspondingly. The algorithm schematically described
below shows n-th step of sample-path simulation of the AMSM process:

1. Input: independent Gaussian 4-elements vectors NRand1 and NRand2, 8-elements
vector of asset prices Si ,n−1, i = 1..8;

2. Repeat from k = 1 to k = k̂:

36Amazon AWS cloud service.
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(a) Input: independent Gaussian 4-elements vectors of random numbers NRand3,
NRand4, εn−1 (NRand1 from (n −1)-step);

(b) 4-elements vector NRand3 is used to decide whether there is a switch for each
of 4 paths on this step n. Repeat from i = 1 to i = 4:

• AMSM1: ifΦ(NRandi
3−ν) < γk , then M i

k,n draws from binomial distribution

M for each i , otherwise M i
k,n = M i

k,n−1;

• AMSM2: ifΦ(NRandi
3−ν) < γk , then M i

k,n draws from binomial distribution

M for each i , otherwise M i
k,n = M i

k,n−1;

(c) 4-elements vector NRand4 is used to define new value M i
k,n (m0 or 2−m0) for

each of 4 paths. Repeat from i = 1 to i = 4:

• AMSM1: if Φ(NRandi
4 −ν) < 1−Φ(ρ(NRand1 −λ)), then M i

k,n = m0 for i -

path, otherwise M i
k,n = 2−m0;

• AMSM2: ifΦ(NRandi
4−ν) < 0.5, then M i

k,n = m0 for i -path, otherwise assign

M i
k,n = 2−m0;

3. In order to obtain another 4-elements vector of volatilities, σ(1)
n , repeat from i = 1 to

i = 4:

• AMSM1: σ(1)
i ,n =σ0

(∏k̂
k=1 M i

k,n

) 1
2

• AMSM2: σ(1)
i ,n = (

ρ(NRand1 −λ)−p
σ0

)2
(∏k̂

i=1 M i
k,n

) 1
2

;

4. In order to obtain 4-elements vector of volatilities, σ(2)
n , repeat 2. and 3. for εn−1

(NRand2 from (n −1)-step);

5. Repeat from i = 1 to i = 4

(a) Si ,n = Si ,n−1 exp

(
r − 1

2

(
σ(1)

i ,n

)2 +σ(1)
i ,nNRandi

1

)
;

(b) Si+4,n = Si+4,n−1 exp

(
r − 1

2

(
σ(2)

i ,n

)2 +σ(2)
i ,nNRandi

2

)
;

6. Output: 8 Monte Carlo simulated asset prices at time n: Si ,n , i = 1..8.

Note, we need 4× (4× k̂ + 2) independent Gaussian random values on each n-step of
simulation of 8-th AMSM paths on each kernel.

Further, if the underlying 8-elements asset price vector ST at maturity T is calculated,
then we are able to calculate Payoffi = (Si ,T −K )+ and send it back from the parallel kernel
to the host subroutine. In the host subroutine, we collect the payoffs from all the parallel
kernels and take an average of them, which is the option price value C MC .

ä
There are a few obstacles in the way of Monte Carlo computations methods, which have

a strong influence on the quality of results: uniform random numbers generation, Gaussian
random numbers generation and improvement of convergence.



3.3. Monte Carlo method for option pricing based on AMSM models 102

3.3.3. Uniform random numbers generation
Monte Carlo methods are very sensitive to the quality of random numbers generation.

Therefore, we need to choose the right way to do it carefully. It is known that PC does not
have an incorporated source of randomness, at least at present (we will not discuss special
devices that are developed currently, for example, those based on the principle of Lava-
lamp or attempts to use access time to hard drive). We have to use pseudo- or quasirandom
numbers generators, which are purely deterministic by construction. Nevertheless, they
pass statistical tests on randomness and they are both suitable for Monte Carlo simulations.

Firstly, let us consider pseudorandom number generators (PRNG). There are few main
classes of uniform pseudorandom number generators: Linear Congruential (LCG), Lagged
Fibonacci and Mersenne twister. Each has its own advantages and disadvantages. Gen-
erally speaking, the first two are simpler and faster than the third one, but they produce
numbers of lower quality in the sense of randomness, because of the serial correlation and
other features. So, they cannot be used for Monte Carlo simulations. Mersenne twister [68]
was therefore chosen as the main PRNG in this work. It has huge period 2(19937) −1, which
is one of Mersenne primes. It produces high-quality pseudorandom numbers, passes most
tests for statistical randomness and is faster than most of the linear congruential genera-
tors. Concerning disadvantages, it starts slower than LCGs and it is more sensitive for the
initial seed. In order to obtain its own seed for each AMSM simulated path, we use the Lin-
ear Fibonacci Generator from the well-known C++ Boost library [24] to create the array of
seeds. Note, in the (A)MSM-class of models we have three sources of randomness. As we

AMSM-path 1 Day 1 → Day 2 → Day 3 → ... Day T

AMSM-path 2 Day 1 → Day 2 → Day 3 → ... Day T

AMSM-path 3 Day 1 → Day 2 → Day 3 → ... Day T

...

AMSM-path M Day 1 → Day 2 → Day 3 → ... Day T

Table 3.3: The scheme of parallel pseudo-Monte Carlo simulation. The arrows show the direction of random-

number generation, T is a maturity, M is a number of simulated paths.

discussed above in the path simulation algorithm, all three belong to Gaussian white noise
class. The pseudo-Monte Carlo is a fully parallelizable procedure. In the case of PRNG,
8 AMSM paths are simulated by using one common pseudorandom Mersenne twister se-
quence generated in each kernel subroutine, see Table 3.3. In other words, blocks of 8 paths
independently in parallel simulate M AMSM paths. For M = 216 = 65536, it is necessary to
run 8192 independent kernel subroutines. As an initial step, it is necessary to generate M
seeds and store them in the memory. Each kernel subroutine takes seed values from this
array in parallel and outputs 8 terminal simulated values Si ,T , i = 1, . . . ,8.

Secondly, we consider quasirandom number generators (QRNG) as a possible alterna-
tive. The main feature of QRNG is a low-discrepancy property. Quasirandom numbers are
constructed in order to have this property. As Jäckel writes in his book ([54], 8.5, p. 88; see
also Koksma-Hlawka inequality [49]): "The more ’homogeneous’ the underlying number
generated, the more accurate and rapidly converging will be a Monte Carlo calculation on
it”. In other words, it is possible to improve convergence significantly by using quasi-RNG
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(with correct initialization). There are a few well-known examples of such numbers: Hal-
ton, Sobol’ and Niederreiter numbers. There are two main issues of QRNG implementation
in our case: dimensionality and poor parallelization.

Quasirandom numbers are very sensitive to the dimensionality of the problem. If it
is necessary to compute the expectation E [ f (U1, ...,Ud )], where U1, ...,Ud are uniform i.i.d.,
then according to quasi-Monte Carlo method, it is necessary to generate d-dimensional se-
quence of N quasirandom numbers x = x̄1, . . . , x̂N . As a result, the expectation is computed
as

E
[

f (U1, . . . ,Ud )
]≈ 1

N

N∑
i=1

f
(
x1

i , . . . , xd
i

)
,

where x1
i , . . . , xd

i are i.i.d. for each i = 1, . . . , N by the construction of quasirandom numbers.
Jäckel showed, that Halton, Niederreiter and Sobol’ (with unit initialization) sequences fail
to producing of low-discrepancy numbers in the case of large dimensions. Meanwhile,
Sobol’ numbers with regularity breaking initialization are comparable in quality to pseu-
dorandom numbers (see, Jäckel sections 8.5, 8.6). So, the only choice for high dimensional
problems are Sobol’ numbers. In the case of the AMSM model, it is necessary to gener-
ate 4× k̂ +2 quasirandom sequences with a dimension equal to maturity T (up to 720) in
each kernel subroutine described in Section 3.3.2. Theoretically, we could use a smaller
dimension, for example 12 (monthly monitoring), but in doing so, we would neglect all ad-
vantages of the MSM model, because for such a small number of steps, the model would
not generate stylized facts, due to a lack of any different frequencies. We therefore use the
the generator of Sobol’ quasirandom numbers written with C++ language by John Burkardt
of the original Fortran77 version by Bennett Fox [7] library. This generator computes ele-
ments of the Sobol quasirandom sequence with dimension up to 1111.

Another issue is the impossibility to fully parallelize the Monte Carlo approximation
procedure based on quasirandom numbers. Unlike to pseudorandom numbers, only one
T -dimensional sequence x of quasirandom numbers theoretically is able to generate a
whole set of uniform random numbers so all necessary paths are long enough, see Ta-
ble 3.4. In other words, each T -dimensional element x̄i of quasirandom sequence x is a
set of uniform numbers for random variable in AMSM path simulation. This means we
should generate huge a T -dimensional QRN-sequence of length M × (2k̂ +1), where M is a
number of simulated AMSM paths. For M = 216 = 65536 and k̂ = 5, the length of generated
T -dimensional sequence x equal to 65′536×(2×5+1) = 720′896. This means it is necessary
to store the array with 720′896×720 elements in the case of maturity (dimension) T = 720.
This huge array is computed as a part of quasi-Monte Carlo initialization step, then it stored
in the memory (it is necessary to allocate almost 3Gb of memory). Each kernel subroutine
takes random values from its own rows of this array in parallel and produces 8 Monte Carlo
simulated values Si ,T , i = 1, . . . ,8. As a result, this quasi-Monte Carlo simulation procedure
is slower than its pseudo-Monte Carlo counterpart, because of the vast number of read
operations from the memory by the kernels running on GPU in parallel.

The conceptual difference between PRNG and QRNG approaches is outlined in Ta-
bles 3.3 and 3.4. The results for computation time of vanilla European Call-option price
are summed up in Table 3.5. The first column is the number of AMSM paths simulated to
compute each option price. An average computation time on CPU/GPU based on pseudo-
/quasi- random number generation for the various length of paths (maturity) and number
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Dimension 1 Dimension 2 Dimension 3 ... Dimension T

AMSM-path 1 Day 1 Day 2 Day 3 ... Day T

↓ ↓ ↓ ... ↓
AMSM-path 2 Day 1 Day 2 Day 3 ... Day T

↓ ↓ ↓ ... ↓
... ... ... ... ... ...

↓ ↓ ↓ ... ↓
AMSM-path M Day 1 Day 2 Day 3 ... Day T

Table 3.4: The scheme of quasi-Monte Carlo simulation. The arrows show the direction of generation of T -

dimensional sequence of quasirandom numbers, T is a maturity, M is a number of simulated paths.

of paths is collected in the 2nd, 3rd, 4th and 6th columns. An acceleration achieved on
the GPU by comparing to the CPU37 for PRNG and QRNG is collected in the 5th and 7th
columns.

As we can see from Table 3.5, the use of GPU for the parallel computations of option
prices with (A)MSM model yields great benefit for the time-consumption. An computation
on GPU provides acceleration from six times for fewer short paths up to eighteen times
for more numerous and longer paths. Note, there are different relationships for PRNG
and QRNG cases: the computation efficiency of PRNG-based computations grows expo-
nentially for longer paths, while the QRNG-based computations efficiency is relative sta-
ble. Meanwhile, the PRNG-based computations are less time-consuming than the QRNG-
based ones; they are from 2.5 to 9 times faster depending on the number and the length of
the AMSM paths. This is caused by an intensive use of relative slow read/write operations
from/to the memory, compared to direct generation on the fly in the case of PRNG. Addi-
tionally, the QRNG-based computations are very memory consuming; more than 1Gb of
memory is necessary in the case of 65536 paths of length 240 points. On the other hand,
QRNG provides better quality of random numbers, which leads to a more robust Monte
Carlo method use.

Note, sample-path simulations of the AMSM model in fact require random variables
with normal distribution rather than uniform. Generating Gaussian noise that has normal
distribution is less challenging. It is based on s transformation of uniform random vari-
ables, but it is also an important issue.

3.3.4. Gaussian random numbers generation
It is known that the inverse cumulative distribution method is a preferable method for

generation of non-uniform distributions. Random numbers produced using the inverse
cumulative distribution function (CDF) have better statistical properties; for instance, they
have lower discrepancy rather than numbers produced using the Box-Muller technique
[54], however, in the case of normal distribution, a closed-form of inverse CDF is unavail-
able. As a solution, we have to use either a numerical approximation of the inverse CDF
of normal distribution or choose another technique. Both approaches are tested in this re-

37The computation subroutine uses all cores of CPU for parallel computations.
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No.of CPU CPU GPU (Accel.) GPU (Accel.)

sample-paths (PRNG) (QRNG) (PRNG) (QRNG)

Maturity 30

16384 0.0090 0.0214 0.0014 (x6.43) 0.0036 (x5.94)

32798 0.0159 0.0458 0.0018 (x8.83) 0.0064 (x7.15)

65536 0.0297 0.0911 0.0025 (x11.88) 0.0128 (x7.12)

Maturity 60

16384 0.0145 0.0464 0.0017 (x8.52) 0.0066 (x7.03)

32798 0.0257 0.0912 0.0022 (x11.68) 0.0124 (x7.35)

65536 0.0500 0.1823 0.0031 (x16.13) 0.0246 (x7.01)

Maturity 90

16384 0.0188 0.0677 0.0021 (x8.95) 0.0088 (x7.69)

32798 0.0345 0.1603 0.0026 (x13.27) 0.0162 (x9.89)

65536 0.0665 0.3227 0.0036 (x18.47) 0.0323 (x9.99)

Table 3.5: An average computation time (secs) of European call option prices with various strike prices and

maturities by using AMSM2 model on CPU (8-core AMD 8320) and GPU (2496-cores Nvidia Tesla K80) in the

case of pseudo- and quasirandom number generator and different number of used sample paths.

search. As the main approach, the classical Box-Muller transformation ([17]) is used. As an
alternative Moro’s interpolation formula of the inverse Gaussian CDF [73] is used. Another
possible choice for the inverse CDF, as advised by Jäckel, is Acklam’s interpolation formula
[3], which is much more sophisticated for programming.

The Box-Muller transformation has at least two known undesirable outcomes: 1. the
Neave effect with congruential pseudorandom number generators Ran0 (see, [74], [54]);
2. the loss of equidistant property and low-discrepancy in a combination with QRNGs (see
3.5.2, p.104 in Seydel [86]). There are also sometimes collapses in generation of random-
numbers (see Figure 9.5 in [54]). Hence, theoretically inverse CDF is a preferable and safer
technique, but in the sense of programming, it is slower and more sophisticated than the
Box-Muller technique.

The following random numbers are used in this research: Mersenne-Twister pseudo-
random numbers transformed by the Box-Muller technique [17]; and Sobol quasirandom
numbers transformed by the Abramowitz and Stegun approximation formula (see, the equa-
tion 7.1.26 in [1]). Certain comparison test simulations preceded this choice; for more de-
tails, see Subsection 3.4.2.

ä
There are additional methods to improve convergence of Monte Carlo integrals known

as variance reduction techniques.
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3.3.5. Variance reduction
Figure 3.9 visualizes the convergence of Monte Carlo option price values obtained for 4

different seeds with respect to the number of sample-paths. The variance of Monte Carlo
estimates is quite high, and the level and the speed of convergence is not sufficient; the
largest difference is around 0.04, while the convergence requires more than 100 thousands
of sample-paths simulated.
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Figure 3.9: Monte Carlo integrals convergence for 4 seeds with Moro’s CDF-approximation formula. X-axis is

a number of AMSM sample-paths in thousands.

In order to improve convergence and decrease sensitivity to the seed Antithetic variates
and Control variates variance reduction techniques have been tested (see, [86], [54], [39]).
The aim of these techniques is to reduce the variance of Monte Carlo integral computation
results, which leads to reduction of the standard error of estimates obtained by the Monte
Carlo method.

Recall, it is necessary to compute an option price C = E
[

f (ST )
]

using the Monte Carlo
method which is a mathematical expectation of payoff function f (ST ), where ST is a price
of underlying asset modeled by the AMSM process in a maturity time T . This option price
obtained by Monte Carlo integration C MC is given by

C MC = 1

M

M∑
i=1

f
(
S̃i

T

)
Q→ E

[
f (ST )

]=C for M →∞,

where S̃i
T are M simulated sample-path values of AMSM process at the time horizon T , Q

is the risk-neutral measure constructed in Section 3.2.
The idea of the control variates technique is to use knowledge about the difference (er-

ror) between the known closed-form solution of a variable V = E
[
g (ST )

]
correlated with C

and the value of V MC obtained using the Monte Carlo method

V MC = 1

M

M∑
i=1

g
(
S̃i

T

)
Q→ E

[
g (ST )

]=V for M →∞,

where S̃i
T are the same M simulated sample-path values of AMSM process at the time hori-

zon T as used for the computation of C MC . The knowledge about the error in a computa-
tion of V MC helps to make correction of Monte Carlo integral C MC . The option price value
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CCV corrected by control variate is given by

CCV =C MC +b
(
V −V MC )

, (3.45)

where C MC is an original Monte Carlo integral value, V is the value of the expectation
E

[
g (ST )

]
known analytically, b is defined as

b = σC

σV
ρCV = cov[C ,V ]

var[V ]
≈

∑N
i=1

(
f
(
S̃i

T

)−C MC
)(

g
(
S̃i

T

)−V MC
)

∑N
i=1

(
g

(
S̃i

T

)−V MC
)2 ,

where σ2
C = var[C ], σ2

V = var[V ], ρCV is a correlation between C and V , S̃i
T are the same M

simulated sample-path values used earlier for computation of C MC and V MC .
There are two obvious candidates for use as a control variate. First, a spot asset price

S0 can be used as a control variate, because it is known from the theoretical background
of the model that EQ [exp(−r T )ST ] = S0. As the second candidate is a Black-Scholes option
price, which has a closed-form solution, but in this case it is necessary to assume that the
volatility σt = σ0 = constant, therefore, the inner structure of the AMSM model’ volatility
is neglected. Conversely, this control variate is more suitable for the correction of another
option price computation in an economical sense. Further, it showed better correction
results during tests. So, the second control variate has been chosen.

The control variates technique improves Monte Carlo integration, but it can be im-
proved even further. Also, the control variates technique is less effective for out-of-the-
money options, because the correlation b is much weaker for on-the-money options (see
[39]). So, an additional variance reduction technique can be considered, in particular, an-
tithetic variates.

The idea of antithetic variates is to use the property of normal distribution symmetry.
Namely, if the sample-path of the process S is simulated using the vector of normal vari-
ables ε= {ε1, . . . ,εT }, then the sample-path simulated using the vector ε− = {−ε1, . . . ,−εT } is
equally probable. Therefore, it is possible to increase the number of simulated paths in two
times without a generation of additional random numbers. The option price C computed
by the Monte Carlo method with antithetic variates, namely C AV , is defined as

C AV = 1

M

M∑
i=1

f
(
S̃i

T

)+ f
(
Ŝi

T

)
2

, (3.46)

where S̃i
T are M simulated sample-path values of the AMSM process at the time horizon T ,

Ŝi
T are antithetic variates, which are derived by using negative vectors of normal variables
ε− = {−εn}T

n=0. So, the arithmetic average of payoff f
(
S̃i

T

)
and its antithetic variate payoff

f
(
Ŝi

T

)
are used as the payoff value in each sample-path simulation.

There are three normally distributed sources of randomness in the case of the AMSM
model as described in Section 3.3.2 and denoted there as NRand1, Nrand3 and NRand4.
Therefore, it is necessary to use −NRand1, −Nrand3 and −NRand4 in the Monte Carlo sim-
ulation subroutine in order to construct antithetic variates Ŝi

n on each step n. So, we can
simulate additional eight values of underlying asset prices Ŝi

T at maturity T in each kernel
for each of eight paths and corresponding eight payoffs (Ŝi

T −K )+. It is necessary to take
an average of the payoffs of simulated underlying asset price and its antithetic variate, then
send this average to the host sub-routine for averaging accordingly (3.46). As a result, the
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antithetic variates allow us to simulate 16 paths instead of 8 with a smaller effort on each
kernel (the time-consumption increases only on around 35%).

Figure 3.10 depicts the Monte Carlo option price value changes in the case of increasing
the number of sample-paths used. Is is obtained with 4 different seeds using the control
variates and antithetic variates variance reduction techniques. A visual comparison of Fig-
ure 3.10 with the pure Monte Carlo depicted in Figure 3.9 in the same scale shows the
decrease of the variance of the Monte Carlo method. The largest difference is around 0.008
there compared to around 0.04 for the pure Monte Carlo. The increase of the speed of con-
vergence of the Monte Carlo procedure shows the convergence after around 65 thousands
sample-paths used. The drawback is that, the antithetic variates have been found to lead to
significant biases of option prices obtained with this technique for the AMSM model38. In
addition, the literature states that an implementation of the antithetic variates technique
with quasirandom numbers can lead to unpredictable results (see [54]). So, the antithetic
variates have been tested, but not used for calibration of the model in the next sections.
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Figure 3.10: Monte Carlo integrals convergence for 4 seeds. Antithetic and control variates techniques are

used. X-axis is a number of AMSM sample-paths in thousands.

3.4. Calibration of AMSM models’ parameters based on op-

tion prices
In Section 3.2 the theoretical background of option pricing have been developed. The

key Theorem 11 defines the asset returns process {rt } under the LRNVR measure by adding
two risk premiums, namely λ and ν. In this section, the unit risk premium λ is assumed to
be known, while the volatility risk-premium ν is assumed to be zero.

3.4.1. Theoretical background and practical obstacles
In order to use the AMSM model for computation of exotic option prices or constructing

of volatility surface, we cannot use estimation techniques based on historical data about
underlying asset price, because they recover parameters values w.r.t. physical probability

38This result was obtained empirically during simulations on artificial data and not presented here due to its

minor importance.
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measure P whereas we need parameters of the model w.r.t. to risk-neutral measure Q. In
this case, we can use calibration which is a procedure of model parameters recovering from
a real option price data. The idea is to find such parameter vector θ = (m0,σ0,ρ) that fits
the real data in the sense of a minimal Residual Sum of Squares (RSS)

RSS =
N∑

i=1

(
C R

i −C AMSM
i

)2
(3.47)

where C R
i is a real option price and C AMSM

i is a corresponding option price computed by
using AMSM model assumptions. There is an obstacle, prices of out-of-the-money options
are much smaller than prices of in-the-money options, hence they would dominate the
values of out-the-money options in RSS. Therefore, it is necessary to use a weighted sum
for them, such as

W RSS =
N∑

i=1
wi

(
C R

i −C AMSM
i

)2
(3.48)

where as wi are used
(
1/C R

i

)2
.

The theoretical problem seems to be clear, but a practical implementation leads to a
number of obstacles described in the next subsection.

Narrow valley region problem
There are two issues with an optimization procedure in spite of the convex shape of

the objective function being a sum of squares (WRSS). The first one is a long narrow valley
on the surface of the objective function (OF). It is depicted in Figure 3.11. The surface’s

m0

b

R
S

S

Figure 3.11: The objective function (RSS) surface w.r.t. the model’ variables m0 and b.

tilt along the valley is small. The reasons for that are the different sensitivity and scale of
the parameters: m0 is in interval (1,2), σ0 and ρ are around 0.01-0.05 (ρ is around 2 for
AMSM1). The presence of such region makes many optimization procedures very slow.

Another negative factor could lead optimization procedures to fail: the noise, the source
of which is in the Monte Carlo simulations that underlie the evaluation of the objective
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function (WRSS). In other words, the objective function (3.48) has a stochastic nature with
an amplitude of fluctuations close to the slope through the valley. As a result, the surface
(that has to be smooth and convex) looks "lunar" in a small scale. The evidence is presented
in Figure 3.12.

It is clear from Figure 3.12 that the surface becomes smoother for the greater number of
simulated sample-paths, but it is not monotonic and non-convex anyway. The issue also
relates also to a numerical analysis. All the computations were made with single-precision
computations39. This means the precision of all mathematical operations is only 7-9 deci-
mal digits, resulting in the precision of Monte Carlo being around 4 digits after the decimal
point. Hence, it is another source of noise.
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(b) 262144 AMSM−paths

Figure 3.12: The objective function (RSS) surface in the case of 216 and 218 sample-paths used in Monte Carlo

method for each evaluation of option price in RSS.

Further, an overview of testified optimization methods used for the minimization (op-
timization) of (W)RSS is given.

Optimization methods
The first class of considered methods is the class of stochastic optimization methods. In

the literature, its use is often proposed for a calibration, as this class is relatively robust to
noise and local minimums. One such method is the Simultaneous Perturbation Stochastic
Approximation (SPSA, [87]). It is known as a cheap, robust to a noise method that is similar
to gradient-based methods by the speed of convergence. Even so, it often stops reaching
the bottom of the valley with the data simulated for the presented models (see Section 3.3.2)
and preference has been given to another stochastic method: Simulated Annealing (SA,
[85]) and its variation, Adaptive Simulated Annealing (ASA, [53]). Both are global optimiza-
tion methods developed to overcome the non-convexity problem. Nevertheless, the (A)SA
method has shown high dispersion of results during Monte Carlo experiments and seems
to suffer from local minimums as well as other methods, as it is presented further. In or-
der to improve the convergence of (A)SA, a two-stage approach was used: the stochastic

39Due to a time-consumption and the hardware limitations
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global optimization method (Simulated Annealing is recommended by many authors for
calibration) in order to obtain the first approximation of the minimum, then Levenberg-
Marquardt gradient-based method in the second stage to obtain a more precise minimum.
This approach revealed the superiority of the ASA method over SA modification in the sense
of closeness to the real parameter values.

Among other testified methods is the Nelder-Mead simplex method [75] from the class
of direct search zero-order methods. Methods from this class are characterized by very
low efficiency (a large number of objective function evaluations). Also, the algorithm can
(and does) get stuck in local minimums, as do the previous group methods. This method
has showed worse performance than others and has not been used further in these experi-
ments.

The third class consists of pure gradient-based first-order optimization methods, for ex-
ample, the Levenberg-Marquardt (LM, [58]) algorithm, conjugate gradient (CG, [89]) method
and the Broyden-Fletcher-Goldfarb-Shanno (BFGS, [18]) algorithm. In order to decrease
probability of getting stuck in a local minimum, I added bound to the step size of these
algorithms below by δ = 10−4 (in the case of the two-stage approach as well). In addition,
I used preconditioning and scaling. These algorithms go to the bottom of valley quickly,
and then go slowly through it or get stuck in the local minimums due to the non-smooth
surface. Despite the convergence issues, the LM method is chosen as the second main
approach for wide Monte Carlo experiments.

Errors of calibration
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Figure 3.13: A calibration (Monte Carlo) experiment.

Before starting the model calibration, let us clarify a few terms and measures heavily
used throughout the remainder of this research.

Definition 12. In order to be able to investigate a quality of the calibrated parameters, it is

necessary to repeat a calibration/estimation procedure N times (50 or 100, otherwise speci-

fied) with the different Monte Carlo seeds for each pair (#options, #paths) and for the spec-

ified settings (an optimization method, a basket structure, the model version). Further, this
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procedure is called a calibration/estimation experiment (see Figure 3.13 and the red nodes in

Figure 3.14).

Definition 13. Precision of calibration procedure means a measure of calibration results

variability.

Definition 14. Accuracy of calibration procedure means a measure of systematic calibration

errors, in other words, biases of parameters’ estimates.

As the triplets of quality measures (a center metric, an accuracy and a precision met-
rics) of a calibration procedure for a different number of options, sample-paths and other
settings, the following metrics are used: Mean/Standard Deviation/RMSE and, the more
robust triplet, Median/Median Absolute Deviation (MAD)40/Mean Absolute Error (MAE).
As the visualization of the differences of these triplets the distribution of 100 Monte Carlo
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Figure 3.14: The structure of calibration (Monte Carlo) experiments.

calibration procedure repeats for the parameter m0 are plotted in Figure 3.15, in which the
red vertical lines are Mean±2∗SD and the blue lines are Median±2∗MAD. It is evident
that, the plot, the bi-modal distribution is corrupted by outliers41. The first triplet clearly
gives more weight to values far from the mean (outliers), which distorts measurement of
center/precision/accuracy. The Median/MAD/MAE triplet of metrics is more robust.

40The scale constant is calculated from the sample as 75%-quantile.
41The nature of outliers is a failure of the numerical procedure convergence described in Subsection 3.4.1.
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Figure 3.15: Results of 100 calibration procedure repeats with the settings: 32768 sample-paths, θr eal =
(1.4,0.02,0.05), AMSM2 model. Mean/SD/RMSE – red lines, Median/MAD/MAE – blue lines, Mode – green

lines.

There is an alternative solution: to remove all outliers. This leads to a problem of choice
of calibration results, which can be recognized as a fail. If all m0 less than some barrier
are removed, say 1.2 for m0, ρ less than 0.00075, the mean/median would depend on these
barriers values. A more sophisticated solution in this circumstance is use of Expectation-
Maximization clustering [83]. K-means clustering is another plausible candidate, which
seems to be very natural approach. It "kills two birds with one stone"; that is, infiltrates
outliers and calculates the mean value for the rest of the results of calibration. This clus-
terization method separates the calibration experiment data on two subsets with different
Gaussian distributions. The disadvantage of this approach is the presence of an empiri-
cal rule of thumb deciding which group consists of outliers. This solution was tested, but
the main direction chosen was an improvement of convergence by choosing an appropri-
ate optimization method, smart options basket construction and an optimization of the
number of sample-paths in the Monte Carlo method.

3.4.2. Sensitivity analysis
It is necessary to examine the approach and the models using simulated data before

using real option price data (from the market). There are a few questions that arise before
starting the calibration: how many sample-paths in each calibration should be used? How
many times should the calibration procedure be repeated to get plausible results? The next
subsections are devoted to these and some other questions.

First of all, it is necessary to mention that many experiments have been done for the
AMSM2 model version, because of its lower time-consumption. The calibration results
comparison for AMSM1 and AMSM2 are given for the best setting revealed for AMSM2
version at the end of the section. Second, in order to accelerate and to simplify the experi-
mentation process, most of the calibration experiments in this and the subsequent sections
have been done using Amazon Elastic Cloud service [4]. In particular, g2.2xlarge instances
with the powerful Nvidia GRID K520 GPU and Intel Xeon E5-2670 CPU have been used.

A synthetic option data set is used for the calibration experiments in the next two sec-
tions. It is constructed as baskets of up to 70 European Call Option prices and computed for
the vector of parameters θ = (m0,σ0,b,γk̂ ,ρ) = (1.4,0.02,3,0.95,0.05) (AMSM2 model). One
seed was used for the simulation of the artificial data and then distinct seeds were used
for the calibration experiments. The following fixed parameters are used: the number of
frequencies k̂ = 5 and the interest rate 0.00018 per day. The range of equity risk premium
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(ERP) values, namely λσt , are from 3% to 8%, depending on a historical period of time ac-
cording to various references, while an annualized volatility σt of a stock market is usually
in the range 10%−20%. Therefore, λ is in the approximate range 0.15−0.8 and the value
λ= 0.51 has been used as a fair possible value for the simulations in this section.

As noted above, the artificial option baskets are constructed as a set of vanilla Call op-
tions with 10 different strike prices (K): 40, 42,...,58. The maturities are: 30, 60, 90, 120, 240,
360, 720 days. The initial underlying stock price S0 = 50.

Definition 15. The Call option baskets with different strike prices (K ) and different matu-

rities (T ) are henceforth called KT-baskets, in contrast to K-baskets, which includes options

with one and the same maturity and only the strike price K varies.

The structure of artificial option price data is presented in Table 3.6 for clarity. The rea-
son for this choice is to reproduce the whole volatility surface, especially w.r.t. the maturity
T , because the features of the models are more likely to be reproduced on a long horizon.
Otherwise there would be only one or two frequencies for a short maturity. According to
this structure, an example of K-baskets are {C31, . . . ,C40}, {C61, . . . ,C70}, KT-basket example
is {C1, . . . ,C30}.

T \K 40 42 44 46 48 50 52 54 56 58

30 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

60 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

90 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30

120 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40

240 C41 C42 C43 C44 C45 C46 C47 C48 C49 C50

360 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60

720 C61 C62 C63 C64 C65 C66 C67 C68 C69 C70

Table 3.6: Structure of artificial datasets with 70 Call option prices computed by Monte Carlo method.

There are different numbers of sample-paths used for option pricing in the Monte Carlo
method for each Ci in different experiments. The ones that have been tested are, namely:

• 8×210 = 213 = 8192 sample-paths denoted for simplicity as 8K ;

• 214 = 16384 denoted as 16K ;

• 215 = 32768 denoted as 32K ;

• 214 +215 = 49152 denoted as 48K ;

• 216 = 65536 denoted as 64K ;

• 220 denoted as 1024K .

The numbers of sample-paths are factors of 2 due to the reasons, in particular, the num-
ber of sample-paths simulated in each parallel subroutine (core) is 8 = 23 as described in
Section 3.3.2.
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Hardware dependency
First of all, it is necessary to note that the round error problem plays a role in the

comparison of results produced by CPU and GPU, enhanced by use of a single-precision
floating-point format. In fact, a calibration procedure computes not exactly the same op-
tion price values for the same model parameters and experiments settings (including the
seed), but those for a different hardware. The variation has amplitude around 10−4. In turn,
this means that it is impossible to reproduce exactly the same results on a different hard-
ware (no matter its kind, CPU or GPU), but is statistically equal, as will be shown further.

The calibration experiment settings for CPU and GPU are: 100 calibration repeats; 32K
sample-paths for each option price evaluation; 40 options with various strike prices and
maturities; θ = (1.4,0.02,0.05); AMSM2 model. The illustration of the results is provided
using violin42, as shown plots in Figure 3.16. A visual inspection leads to the conclusion that
the shape of distributions in both cases is slightly different: the GPU-based experiments
seem to fail slightly more often, which leads to slightly more noisy results.
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Figure 3.16: Results of 100 calibration repeats on CPU and GPU with the settings: 32768 trajectories, 40 op-

tions, θr eal = (1.4,0.02,0.05), AMSM2 model.

In addition to the distribution plots, Yuen’s t-test (Yuen and Dixon (1973), Yuen (1974))
was conducted. It is more robust than the Welch t-test in the case of non-normality (in-
cluding outliers, long tails). It is strongly rejected the null hypothesis (non-similarity) of
the experiments results distributions based on GPU and CPU for all three parameters (see
Table 3.7).

Parameter H0 p-value

µ Law
(
µGPU

) 6= Law
(
µCPU

)
1.514451e −51

σ0 Law
(
σGPU

0

) 6= Law
(
σCPU

0

)
3.138822e −183

ρ Law
(
ρGPU

) 6= Law
(
ρCPU

)
9.853688e −108

Table 3.7: Distribution equivalence test of Yuen for GPU- and CPU-based experiments for the same settings.

Note, due to the statistical indifference of GPU- and CPU-based calculations, all sim-
ulations for baskets of 30, 40, 50 options were made on more powerful GPUs, while CPUs

42This kind of plots depicts a kernel density symmetrically with respect to a vertical box plot for each dataset

(labeled on x-axis). The small white circle is a median value; the upper and lower boundaries of the solid

black rectangular are the 1st quartile (Q1) and the 3rd quartiles (Q3); the upper and lower boundaries of

violins are Q1−1.5∗ IQR and Q +1.5∗ IQR, where IQR =Q3−Q1 (interquartile-range).
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were used for small baskets and short maturities in order to utilize computing resources
efficiently.

Gaussian quasirandom number generation method
In this experiment, AMSM model parameters are calibrated on an artificial option data

simulated using one of three Gaussian quasirandom number transformation methods: Box-
Muller transformation, Abramowitz and Stegun approximation formula, and Moro approx-
imation formula [73]. All the methods use uniformly distributed quasirandom numbers,
transforming them to normally distributed ones. The goal is to choose a more robust ap-
proach in the sense of calibration results quality. The various errors metrics are calculated
for this reason, knowing the real parameters values. The results are collected in Table 3.8
and the histograms of calibrated values are presented in Figure 3.17.

Moro A&S BM

m0

Mean 1.32592 1.37922 1.41051

Median 1.32770 1.37341 1.40543

SD 0.06105 0.02465 0.04013

RMSE 0.09561 0.03206 0.04109

MAE 0.07784 0.02640 0.03253

MSE 0.00914 0.00103 0.00169

σ0

Mean 0.01784 0.02004 0.01939

Median 0.01848 0.01999 0.01973

SD 0.00335 0.00027 0.00246

RMSE 0.00396 0.00027 0.00251

MAE 0.00271 0.00004 0.00193

MSE 0.2×10−4 0.8×10−7 0.6×10−5

ρ

Mean 0.05457 0.05471 0.05242

Median 0.05159 0.05561 0.05264

SD 0.01068 0.00405 0.00771

RMSE 0.01152 0.00619 0.00801

MAE 0.00748 0.00521 0.00616

MSE 0.00013 0.00004 0.00006

Table 3.8: The comparison of Gaussian random numbers generation methods for QRNG: Moro approxima-

tion formula, Abramowitz and Stegun formula, Box-Muller transformation.

Note, the error metrics and the figures clearly prove the superiority of the Abramowitz
and Stegun approximation formula in the sense of accuracy and precision of calibration for
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quasirandom numbers generation. The Box-Muller transformation provides similar qual-
ity, while the calibration based on Moro’s formula provides significantly more biased and
volatile results for all three parameters.

0

10

20

30

1.
2

1.
3

1.
4

1.
5

1.
6

m0 (Moro)

de
ns

ity

0

10

20

30

1.
2

1.
3

1.
4

1.
5

1.
6

m0 (A&S)
de

ns
ity

0

10

20

30

1.
2

1.
3

1.
4

1.
5

1.
6

m0 (B&M)

de
ns

ity

0

250

500

750

1000

1250

0.
01

50

0.
01

75

0.
02

00

0.
02

25

0.
02

50

sigma0 (Moro)

de
ns

ity

0

250

500

750

1000

1250

0.
01

50

0.
01

75

0.
02

00

0.
02

25

0.
02

50
sigma0 (A&S)

de
ns

ity

0

250

500

750

1000

1250

0.
01

50

0.
01

75

0.
02

00

0.
02

25

0.
02

50

sigma0 (B&M)
de

ns
ity

0

50

100

150

0.
04

0.
06

0.
08

0.
10

rho (Moro)

de
ns

ity

0

50

100

150

0.
04

0.
06

0.
08

0.
10

rho (A&S)

de
ns

ity

0

50

100

150

0.
04

0.
06

0.
08

0.
10
rho (B&M)

de
ns

ity

Figure 3.17: Distribution of calibration results for different Gaussian random number generation methods:

Moro approximation formula, Abramowitz and Stegun formula, Box-Muller transformation.

Summing up, the Abramowitz and Stegun approximation formula is preferable for the
case of Gaussian quasirandom numbers generation, while the Box-Muller transformation
will be used further for Gaussian pseudorandom numbers generation.

Number of sample-paths
In the next experiments, the KT-baskets of options are used with the different maturities

according to Table 3.6. For example, the basket of size 25 consists of Call options with
the prices C1,C2, . . . ,C25 (maturities 30, 60, 90). In this experiment various sample-paths
numbers (16384 = 16K , 32768 = 32K , 65536 = 64K ) are used, based on both pseudorandom
and quasirandom numbers for computation of each option price.

Let us begin with Figure 3.18. It collects as bar plots the results of calibration exper-
iments for a few combinations of option baskets and path numbers for each calibrated
parameter, in both cases of pseudo- and quasirandom numbers. This set of plots should
give us general information on the sensitivity of the calibration procedure to the number
of sample-paths used for each option price computation.

Firstly, the accuracy of calibration is considered using Figure 3.18. The most important
outcome is almost absent biases for a large number of sample-paths (64K ), especially in
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Figure 3.18: Levenberg-Marquardt optimization method. KT-baskets with 10 to 50 options. AMSM2 model

with θr eal = (m0,σ0,ρ) = (1.4,0.02,0.05). X-axis is a number of options in basket, Y-axis is distribution of

calibration results for one of the parameters, the number of sample-paths and the kind of generator are noted

in the brackets.
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(a) MAD (PRNG) (b) MAD (QRNG)

(c) MAE (PRNG) (d) MAE (QRNG)

Figure 3.19: Error metrics (z-axis) of ρ estimates in cases of different size of option baskets (y-axis) and the

number of sample-paths (x-axis).
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the case of ρ estimates. Note, there is a bias of median ρ for the large baskets (40, 50 op-
tions) and the medium or low number of sample-paths (16K , 32K ). Comparing the results
for PRNG and QRNG, it is easy to identify different patterns: the estimates of σ0 based on
QRNG are almost perfect in all three cases, while the PRNG-based estimates strongly de-
pend on the number of sample-paths; therefore, the biases have different directions. In
general, QRNG exceeds PRNG results in the sense of accuracy for all numbers of sample-
paths, while the preferable setting is 64K sample-paths.

Secondly, the precision of the calibration is considered using Figure 3.18. It is clear
that increasing of the sample-paths number leads to a decrease of the calibration results
dispersion for all parameters, especially for m0. The deviation is moderate for 32K sample-
paths in both cases of random number generators; it improves even more for 64K .

Summing up, quasirandom numbers based experiments show up superior calibration
experiments results for 64K sample-paths in the sense of accuracy and precision, especially
because of ρ estimates. Note, the quasi-Monte Carlo method has superior results even for
a small number of sample-paths in the case of small 10-options K-baskets with maturity
T = 3043. Figure 3.19 confirmes these conclusions, showing the values of metrics MAD
(precision) and MAE (accuracy) for different numbers of sample-paths and KT-baskets in
the case of ρ parameter estimates.

Let us look deeper and compare the results for pseudorandom and quasirandom num-
bers by the distribution (histograms) of ρ estimates in the case of 64K sample-paths in Fig-
ure 3.20. The distribution looks like a normal distribution with a clear mean, median and
mode approximately equal to 0.05 for the case of 10 options baskets and PRNG. However,
there is a tendency for outliers to appear with the growth of baskets size. The most clear
tail with outliers has the basket with 40 options, the maturities T = 30,60,90,120 and the
strikes K = 40,42, ...,58. In the case of QRNG, the concentration of mass tends to be tighter.
The median/mean central metrics are skewed more for small baskets, while there is almost
no bias and the majority of results concentrate around the real ρ = 0.05.

Note, there is no tails in the case of QRNG, which is formed by outliers (fails of conver-
gence, in fact). That makes the results based on quasi-Monte Carlo more reliable.

Number of calibration repeats
Another factor that could influence analysis results is a number of calibration proce-

dures repeats. For most of the tests, 50 was chosen as sufficient, being limited by the per-
formance of the Monte Carlo method and the necessity of a large number of various ex-
periments. The illustration of convergence is depicted in Figure 3.21, where the median of
cumulative distribution of results is given. This allows us to see how adding each calibra-
tion result changes the median. It is clear that, after 40 calibration repeats, relative conver-
gence is observed. The settings are 64K sample-paths and various KT-baskets according
to the Table 3.6. In these circumstances, 50 repeats looks like a fair trade-off between the
reliability of results and the computation time of the array of tests, while it can be useful to
increase the number of calibration repeats in practical cases.

43In the case of QRNG, the method of Gaussian numbers generation — as mentioned earlier — is also a crucial

factor affecting the quality of calibration. The Box-Muller approach in combination with quasirandom

numbers may provide unpredictably poor results.
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Figure 3.20: Distribution of 100 calibration repeats results for 10, 20, 30, 40 options in a basket and 64K

paths. AMSM2 model with ρr eal = 0.05. Red lines – Mean, ±2SD ; blue lines – Median, ±2SD ; black line – real

parameter value.
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Figure 3.21: AMSM2 model with θr eal = (m0,σ0,ρ) = (1.4,0.02,0.05), KT-baskets with 10 to 40 options. X-axis

is a number of calibration results used for the median calculation (N ), Y-axis is a median of N calibration

results of ρ parameter in the case of PRNG/QRNG.

Parameters’ scale
In this experiment, the sensitivity of calibration quality depending on a scale of leverage

parameter ρ is tested. The settings are: AMSM2 model; LM optimization algorithm; KT-
basket with maturities T = 30,60,90,120. During the experiment, the AMSM2 model is
calibrated with the true values of ρ = 0.01,0.02,0.03,0.04,0.05, while other two parameters
are θr eal = (m0,σ0) = (1.4,0.02). The results are plotted in Figure 3.22.
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Figure 3.22: Sensitivity of calibration experiment’s distribution depending on the size of ρ for Levenberg-

Marquardt optimization method and AMSM2 model.
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The result of the experiment demonstrates that the calibration procedure turns out to
be even more stable in the case of smaller ρ. Additionally quasi-Monte Carlo (red violins on
the plot) reaffirms its excellence, being less biased, especially with respect to the parameter
ρ, as well as less deviating. The best results in the experiments are achieved for ρ = 0.01
and QMC.

3.4.3. Preliminary calibration results for λ fixed and ν= 0 case.
In this subsection, the results of calibration experiments based on two optimization

methods are presented: the local gradient-based Levenberg-Marquardt (LM) method and
the global stochastic Adaptive Simulated Annealing (ASA) method.

The settings for the following experiments are similar to the settings in Section 3.4.2:
64K AMSM paths; the AMSM1 model parameters θreal = (m0,σ0,ρ) = (1.4,0.02,0.25); the
AMSM2 model parameters θreal = (m0,σ0,ρ) = (1.4,0.02,0.05); k̂ = 5, S0 = 50, r = 0.00018,
risk-neutralization parameter λ = 0.5144 and ν = 045. The option prices data set consists
of: four K-baskets with 10 options each, the corresponding four maturities are 30, 60, 90,
120; three KT-baskets with the corresponding maturities T = 30, 60, T = 30, 60, 90, T = 30,
60, 90, 120. The maximum number of objective function (WRSS from (3.48)) evaluations is
limited to 1000 times, the initial point of optimization method is [1.5,0.05,0.05], the search
region lower boundary is [1.05,0.001,0.000001], the upper boundary is [1.85,0.1,1.0].

All of the collected results were grouped by experiments settings and prepared for an
analysis, which was conducted using R programming language and software environment
for statistical computing and visualizations. Diverse plots assisted to estimate the gen-
eral precision and accuracy of the calibration techniques for different settings in a reader-
friendly manner. Another stricter tool of analysis are the error metrics collected in Ta-
bles 3.10,3.11: mean and median value, Median Absolute Deviation (MAD) and Mean Ab-
solute Error (MAE).

In order to manage development and according to the idea of "reproducible research",
the project (later, the whole thesis project) including C++ application and its code, R scripts,
experiments data and LATEXtext files were placed in the Git repository. This allows us to
present the project as a solid object of text, code, data and their change history. Therefore,
this made it possible to reproduce the full computational environment used to obtain the
results according to the concept of reproducible research.

The structure and denotations of the calibration experiments in this subsection are col-
lected in Table 3.9. For instance, the calibration experiment "30(P)" consists of calibration
of the AMSM1/AMSM2 model parameters based ASA/LM46 optimization method repeated
50 times for different seeds using the prices of K-baskets with 10 options with the maturity
T = 30, the pseudorandom number used for Monte Carlo integration.

ASA method
In this section, K-baskets of the same size (10 options), composed from the options with

common maturity, but different strikes (40, 42,...,58), and KT-baskets with various maturi-
ties in the same basket, for example the basket "30-90" consists of Call options with the

44The choice of λ is discussed in more details in Section 3.4.2 and 3.5.
45The simplified version is considered in this section.
46The experiments were repeated for both model versions and both optimization methods in order to have

comparable results.
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Calibration Number of Maturity Random Number Basket

Experiment Options Generator Type

30(P) 10 30 PRNG K-basket

30(Q) 10 30 QRNG K-basket

60(P) 10 60 PRNG K-basket

60(Q) 10 60 QRNG K-basket

90(P) 10 90 PRNG K-basket

90(Q) 10 90 QRNG K-basket

120(P) 10 120 PRNG K-basket

120(Q) 10 120 QRNG K-basket

30,60(P) 20 30,60 PRNG KT-basket

30,60(Q) 20 30,60 QRNG KT-basket

30-90(P) 30 30,60,90 PRNG KT-basket

30-90(Q) 30 30,60,90 QRNG KT-basket

30-120(P) 40 30,60,90,120 PRNG KT-basket

30-120(Q) 40 30,60,90,120 QRNG KT-basket

Table 3.9: Calibration experiment’s structure. It consists of 50 repeated calibrations based on pseudo- and

quasi-Monte Carlo and Adaptive Simulated Annealing method with 64K sample-paths for each option price

evaluation. The real parameters values are θAMSM1 = (m0,σ0,ρ) = (1.4,0.02,0.25).

prices C1,C2, . . . ,C30 (maturities 30, 60, 90) according to Tables 3.6,3.9, are used. In all ex-
periments in this section, 64K sample-paths based on pseudo- and quasirandom numbers
are used for a computation of each option price.

AMSM1 model
The results of calibration based on Adaptive Simulated Annealing (ASA) method are vi-

sualized in Figure 3.23. They spread into two groups visually, corresponding to the group
of K-baskets based results on the left and KT-baskets based results on the right. This subdi-
vision is mostly characterized by results for ρ. Namely, the calibrations based on K-baskets
have huge variation (low precision) for ρ and also for m0. Meanwhile, the accuracy is mod-
erate for K-baskets, but this fact does not allow us to speak seriously about K-baskets and
AS, because of the terrible precision of the results for this combination. Besides, there is a
clear difference between PRNG- and QRNG-based results. The calibration procedure fails
in the case of pseudorandom numbers for m0 – the results are both imprecise and biased,
especially for the higher maturities.

The only reliable choice is the combination of KT-baskets and quasi-Monte Carlo; dis-
tribution of calibration results is concentrated densely around the real parameters’ values
(1.4,0.02,0.25) characterized by slight overestimation of ρ for the baskets with T = 30−90
and m0 for the basket T = 30−120. These results are measured in more detail with the dif-
ferent metrics and collected in Table 3.10. An analysis of them shows that MAD (precision
metric) and MAE (accuracy metric) of KT-baskets are around two times lower for m0 and
σ0, and around 2−5 times lower in the case of ρ. The best performance is reached for the
basket with maturities T = 30−120.
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Figure 3.23: Calibration experiment’s distribution for ASA and AMSM1 model. θr eal = (m0,σ0,ρ) =
(1.4,0.02,0.25).

AMSM2 model
The results of the ASA optimization method for AMSM2 model are visualized in Fig-

ure 3.24. The first two violins (the experiments 30P and 30Q) on all three plots (for all
three parameters) show the worst performance over all K- and KT-baskets and the AMSM2
model; all three calibration results are significantly biased from the real values (m0,σ0,ρ) =
(1.4,0.02,0.05) significantly. The results for the rest of the three K-baskets are also signifi-
cantly biased (especially in the case of maturity 90) for the case of pseudorandom numbers.
The results based on quasirandom numbers and the K-baskets with T = 90, T = 120 (exper-
iments 90Q and 120Q correspondingly) are exceptions in the sense of accuracy not being
biased, but they have very poor precision for m0 and ρ. Similarly, the calibration experi-
ments based on KT-baskets and the pseudo-Monte Carlo method demonstrate (30,60(P ),
30−90(P ), 30−120(P )) less biased results, but are also very noisy and imprecise. The best re-
sults are achieved for KT-baskets and quasi-Monte Carlo (30,60(Q), 30−90(Q), 30−120(Q)):
moderate precision for m0 and ρ, low precision for σ0, and, in fact, no bias.

In addition, the results of quasi-Monte Carlo can be analyzed according to the values of
errors metrics in Table 3.11. An inspection of the table provides the proof of the increasing
quality of results for the larger KT-baskets, with the best choice being the KT-basket with the
maturities T = 30,60,90,120. The MADs values of (m0,σ0,ρ) are (0.083,0.000471,0.0082);
MAEs values are (0.1054,0.000821,0.1936).

Levenberg-Marquardt (LM) method
The Levenberg-Marquardt (LM) optimization algorithm construction is especially suit-

able for a minimization of Weighted Residual Sum of Squares (3.48). Its search region was
set up with the upper boundary (1.85,0.1,0.1); the lower boundary (1.05,0.0001,0.000001);
and the initial point is (1.5,0.05,0.5) for AMSM1 and (1.5,0.05,0.05) for AMSM2 models. The
real values of parameters are (1.4,0.02,0.25) and (1.4,0.02,0.05) for AMSM1 and AMSM2
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Figure 3.24: Calibration experiments distributions for ASA and AMSM2 model. θr eal = (m0,σ0,ρ) =
(1.4,0.02,0.05).

models, correspondingly. The results in the subsection are provided according to the cali-
bration experiments structure in Table 3.9.

AMSM1 model
An inspection of Figure 3.25 plotted in the same scale as Figure 3.23, 3.24 shows that the

Levenberg-Marquardt method provides significantly less noisy results. The least biased re-
sults are achieved for KT-baskets baskets and quasi-Monte Carlo as well as in the case of
the ASA method. On the other hand, the calibration experiments based on LM systemati-
cally overestimate ρ for almost all baskets. The only exception is 30−120(Q), but it provides
biased results for m0. K-baskets are all more biased than their KT-counterparts; moreover,
the calibration procedure merely sticks to the initial point in the case of T = 120.

The precision of the results in Figure 3.25 is characterized by a smaller range of disper-
sion of the experiment results’ distribution for K-baskets compared to the ASA case, except-
ing the case of experiment 30(Q). Table 3.10 confirms this fact with error metrics; MAD of
m0 for the LM results is 2−4 times lower than for ASA, and MAE is also lower. In the case
of KT-baskets, the ASA and LM optimization methods have similar accuracy and precision
for m0, but the LM calibration results are significantly worse for the ρ; its MAD and MAE
metrics are almost two times higher than their ASA counterparts.

In general, the distinguishing tendency of the experiments based on the LM and AMSM1
model is overestimation of ρ for all baskets.

AMSM2 model
The visualization of calibration experiments for the LM method and AMSM2 model is

presented in Figure 3.26, according to the calibration experiments structure in Table 3.9.
It observes uniform growth of the upward bias of m0, σ0 and the downward bias of ρ cali-
bration results with the growth of maturity in K-baskets and pseudo-Monte Carlo compu-
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Figure 3.25: Calibration experiment’s distribution for LM and AMSM1 model. The dashed lines are θr eal =
(m0,σ0,ρ) = (1.4,0.02,0.25).

tations. In the case of quasi-Monte Carlo approach, there is the only significant bias of m0

and ρ – the case of K-basket with maturity T = 60. In the case of KT-baskets, biases are
lower for pseudo-Monte Carlo, but again quasi-Monte Carlo appears clearly preferable in
this aspect. In the sense of precision the quasi-Monte Carlo wins as well, especially for the
σ0 parameter.

An inspection of Table 3.11 shows that the best results in the sense of accuracy and
precision are obtained in the calibration experiments 30−90(Q), 30−120(Q) and 30(Q). The
estimates are concentrated around the real values (1.4,0.02,0.05): MAD and MAE equal to
0.002−0.004 for ρ; the estimates ofσ0 are perfect in both accuracy and precision with MAD
from 5.11×10−6 to 3.61×10−4; MAE is not larger than 4.26×10−4, MAD and MAE are from
0.0108 to 0.0432 for m0. Note also, the parameter ρ is underestimated for all K-baskets and
overestimated for the KT-baskets, especially in the case T = 60. To summarize, KT-baskets
look to be a more favorable choice.

3.4.4. Comparative analysis and intermediate conclusions
The dependence structure of parameters estimates is explored deeper for K- and KT-

baskets in the case of the AMSM1/AMSM2 model and ASA/LM optimization method (cor-
respondingly) using Figures 3.27a, 3.27b. Each scatter plot in these figures depicts all 50
calibration results in each corresponding experiment (30(Q), 30 − 60(Q), 30 − 90(Q) and
30− 120(Q)) according to the calibration experiments structure in Table 3.9. The figures
collect the scatter plots of calibrated parameters values m0 (1st row) and σ0 (2nd row)
against ρ, the dotted lines are real values of the parameters, namely θreal = (1.4,0.02,0.25)
for AMSM1 model and θreal = (1.4,0.02,0.05) for the AMSM2 model. For example, the re-
sults of the calibration experiment 30−90(Q) for AMSM1 model based on ASA optimization
procedure and consisting of 50 repeated calibrations are depicted in the third column of
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Calibration 30(Q) 60(Q) 90(Q) 120(Q) 30,60(Q) 30−90(Q) 30−120(Q)

Experiment

m0 (ASA)

Mean 1.3443 1.3783 1.4092 1.4640 1.3657 1.3542 1.4524

Median 1.3576 1.3997 1.4299 1.4441 1.3962 1.3736 1.4463

MAD 0.0996 0.0974 0.1134 0.1482 0.0432 0.0396 0.0412

MAE 0.0734 0.1064 0.1162 0.1480 0.0493 0.0517 0.0650

m0 (LM)

Mean 1.3327 1.3854 1.4536 1.5153 1.3818 1.3878 1.4411

Median 1.3277 1.3847 1.4745 1.5197 1.3873 1.3844 1.4487

MAD 0.0447 0.0266 0.0276 0.0067 0.0247 0.0415 0.0480

MAE 0.0725 0.0249 0.0600 0.1159 0.0251 0.0327 0.0665

σ0 (ASA)

Mean 1.55e-02 2.23e-02 2.11e-02 2.10e-02 2.18e-02 2.10e-02 1.99e-02

Median 1.49e-02 2.05e-02 1.97e-02 2.03e-02 2.04e-02 2.01e-02 1.98e-02

MAD 3.87e-03 1.52e-03 1.44e-03 1.50e-03 8.54e-04 7.70e-04 5.65e-04

MAE 4.77e-03 2.98e-03 2.36e-03 1.64e-03 2.00e-03 1.47e-03 6.35e-04

σ0 (LM)

Mean 1.59e-02 2.00e-02 1.89e-02 1.90e-02 1.95e-02 1.92e-02 1.72e-02

Median 1.49e-02 2.01e-02 1.89e-02 1.90e-02 2.00e-02 1.93e-02 1.90e-02

MAD 1.63e-03 3.28e-04 7.02e-04 4.91e-04 1.26e-03 8.78e-04 1.79e-03

MAE 5.33e-03 3.08e-04 1.07e-03 9.95e-04 1.28e-03 1.07e-03 2.87e-03

ρ (ASA)

Mean 0.4090 0.4104 0.4003 0.4513 0.3089 0.3004 0.2282

Median 0.3685 0.3707 0.3159 0.3613 0.2937 0.3145 0.2334

MAD 0.3523 0.2765 0.3944 0.4251 0.0830 0.0866 0.0896

MAE 0.2508 0.2352 0.2899 0.3125 0.1079 0.0803 0.0641

ρ (LM)

Mean 0.3733 0.4470 0.5005 0.5258 0.4294 0.3991 0.3391

Median 0.3683 0.4585 0.4972 0.5243 0.3997 0.3884 0.2962

MAD 0.1135 0.0778 0.0516 0.0359 0.1231 0.0913 0.1163

MAE 0.1423 0.1970 0.2505 0.2758 0.1830 0.1492 0.1279

Table 3.10: Calibration experiment’s results for quasi-Monte Carlo and AMSM1 model case. The real param-

eters values are θAMSM1 = (m0,σ0,ρ) = (1.4,0.02,0.25).
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Calibration 30(Q) 60(Q) 90(Q) 120(Q) 30,60(Q) 30−90(Q) 30−120(Q)

Experiment

m0 (ASA)

Mean 1.6355 1.5429 1.3938 1.4541 1.3425 1.3907 1.4736

Median 1.7300 1.5868 1.3854 1.4530 1.3665 1.3897 1.4357

MAD 0.1096 0.2778 0.1928 0.1651 0.0696 0.0931 0.0830

MAE 0.2927 0.2281 0.1720 0.1645 0.0956 0.0984 0.1054

m0 (LM)

Mean 1.4234 1.4672 1.4293 1.3857 1.3726 1.3895 1.4263

Median 1.4122 1.4633 1.4324 1.3869 1.3707 1.3925 1.4262

MAD 0.0108 0.0186 0.0252 0.0170 0.0232 0.0337 0.0432

MAE 0.0239 0.0672 0.0327 0.0177 0.0293 0.0234 0.0363

σ0 (ASA)

Mean 3.51e-02 2.32e-02 2.20e-02 2.08e-02 2.20e-02 2.13e-02 2.01e-02

Median 3.60e-02 2.25e-02 2.07e-02 1.99e-02 2.01e-02 2.01e-02 1.96e-02

MAD 1.73e-02 3.40e-03 1.40e-03 1.07e-03 1.78e-03 1.32e-03 4.71e-04

MAE 1.57e-02 3.48e-03 2.16e-03 1.40e-03 2.85e-03 1.73e-03 8.21e-04

σ0 (LM)

Mean 2.02e-02 2.05e-02 2.01e-02 1.98e-02 1.98e-02 2.02e-02 1.96e-02

Median 2.00e-02 2.04e-02 2.01e-02 1.98e-02 1.98e-02 2.01e-02 1.96e-02

MAD 5.11e-06 3.22e-04 2.12e-04 9.16e-05 2.74e-04 3.61e-04 2.92e-04

MAE 1.96e-04 4.63e-04 1.79e-04 1.77e-04 2.60e-04 3.09e-04 4.27e-04

ρ (ASA)

Mean 0.0324 0.0328 0.0470 0.0426 0.0497 0.0516 0.0564

Median 0.0334 0.0313 0.0471 0.0371 0.0522 0.0518 0.0525

MAD 0.0184 0.0242 0.0283 0.0288 0.0127 0.0127 0.0082

MAE 0.2176 0.2172 0.2030 0.2074 0.2003 0.1984 0.1936

ρ (LM)

Mean 0.0462 0.0431 0.0456 0.0466 0.0535 0.0512 0.0514

Median 0.0468 0.0428 0.0455 0.0464 0.0532 0.0513 0.0516

MAD 0.0028 0.0013 0.0008 0.0016 0.0026 0.0020 0.0028

MAE 0.0039 0.0069 0.0044 0.0034 0.0036 0.0020 0.0030

Table 3.11: Calibration experiment’s results for quasi-Monte Carlo and AMSM2 model case. The real param-

eters values are θAMSM2 = (m0,σ0,ρ) = (1.4,0.02,0.05).
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Figure 3.26: Calibration experiment’s distribution for LM and AMSM2 model. The dashed lines are θr eal =
(m0,σ0,ρ) = (1.4,0.02,0.05).

Figure 3.27a (3rd and 7th plots).
In order to visualize a correspondence between the first and the second rows of plots

the clustering procedure47 was ran to colorize groups of close results. Three groups of cal-
ibration results are selected in each experiment; each of these groups is colored with three
blue color tones. So, the results of experiment 30(Q) on the top (m0 w.r.t ρ) and the bottom
(σ0 w.r.t ρ) plots form the line. The first group (light blue) forms the bottom part of the line,
the second group (blue) is in the middle, and the third group in the top of the line.

There is a clear tendency in the scatter patterns with the growth of baskets size (from 10
to 40) and the number of various maturities (from the only T = 30 to the set T = 30,60,90,
120). There are clear linear dependence patterns in the 30(Q) experiment, while there is
more or less ellipsoidal patterns in the case of the 30−120(Q) experiments. The results for
the AMSM1 model deviates more significantly; also note that the plots between σ0 and ρ

are less scattered for both models. These dependencies are the result of volatility definition
in the models. It is especially clear for AMSM2 model, where the volatility is given by

σ(m0,σ0,ρ)t =
(
ρεt−1 −p

σ0
)2

(
k̂∏

i=1
Mi ,t

) 1
2

, (3.49)

where ρ and σ0 play a similar role. Another tendency is the movement of results’ mass
closer to the real values for the experiments from 30(Q) to 30− 120(Q), according to Ta-
ble 3.9. Also note, there are few outliers in the case of K-basket and AMSM2 model. These
are fails of convergence of the calibration procedure, where it got stuck in the initial point
of optimization procedure.

The negative dependence of ρ and m0, observed for the violin plots in Figures 3.23 and
3.26 (for K-baskets), is visualized now in the first row of Figure 3.27a and Figure 3.27b (the

47Different methods from the Mclust R package.
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experiment 30(Q)). In order to compensate for the higher value of m0 in (3.49) the value
of ρ should be smaller (up to zero). This is what can be observed for the LM optimization
procedure case and experiment 60(Q) (for example) in Figure 3.26 and ASA for the K-basket
experiment 90(Q) in Figure 3.24. The values of the results just move along a certain curve
on the plots, especially for the couple σ0/ρ and the experiments 30(Q) (both models) and
30,60(Q) (AMSM2 model). If one parameter is biased, then another one also gets biased.
Notably, the effect is caused by an increase of the number of maturities in baskets. It allows
us to remove or at least to decrease this dependency. There is a relatively dense cloud of
results in experiments 30 − 120(Q) for AMSM1 with a lower number of outliers than for
other experiments fewer maturities. For the AMSM2 model case, an absence of outliers
observed, plus the round cloud for m0/ρ and the thin ellipse for σ0/ρ), but some bias from
the crosslines of real parameters value exists.

An inspection of Table 3.10 shows the superiority of the Adaptive Simulated Anneal-
ing optimization method in combination with quasi-Monte Carlo and KT-baskets in the
case of the AMSM1 model. The error metrics of the ASA results are comparable to its LM
counterparts in the case of m0 estimates, but they are better for σ0 by up to 2.5 times. Fi-
nally, the most convincing advantage is achieved for ρ. The favorable basket is the KT-
basket with maturities 30−120 trading days. Meantime, the calibration experiments based
on quasi-Monte Carlo option pricing in combination with the Levenberg-Marquardt opti-
mization method turned out vastly superiority for the AMSM2 model. The MAD errors of
the LM-based approach are lower by a factor of ten for most baskets compared to their ASA
counterparts. The MAE errors are even lower by two orders of magnitude. This is a great
improvement compared to ASA in the case of the AMSM2 model.

The next subsection is aimed at considering an estimation of the equity unit-risk pre-
mium λ in addition to the model parameters θ = (m0σ0,ρ).

3.5. Calibration and Estimation of AMSM model parameters

and equity unit-risk premium based on option and asset

prices
As was mentioned earlier in Section 3.4.2, an Equity Risk Premium (ERP) rough esti-

mation range is usually from 0.2 to 0.8. Let us look deeper, through Aswath Damodaran’s
manuscript [26], which gives a comprehensive review on the topic of ERP. The author dis-
tinguishes three approaches for estimating it: a survey approach, a historical data approach
and an implied approach. The first one is organized as an experts’ sentiments survey about
the value of the risk premium. The most challenging part of this approach is to define a
representative group of experts. The second one is investigating historical values of returns
and subtracting what is considered as a risk-free rate in order to determine ERP. The key
question is to define the time-horizon of historical data and what to use as the risk-free
asset, especially in the case of emerging markets. Finally, the third approach is forward-
looking and aimed at extracting of ERP from expected cash flows or an implied volatility.
The first two approaches do not take market believes into consideration, while the im-
plied volatility approach does. Additionally, these methods can yield different values of
ERP. Therefore, there is a question as to which approach to prefer. All these facts make an
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(a) The results of calibration for KT-baskets, ASA optimization method, AMSM1 model version. The real values θreal = (m0,σ0,ρ) =
(1.4,0.02,0.25).
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(b) The results of calibration for KT-baskets, LM optimization method, AMSM2 model version. The real values θreal = (m0,σ0,ρ) =
(1.4,0.02,0.05).

Figure 3.27: Scatter of calibration results for the experiments 30(Q), 30−60(Q), 30−90(Q) and 30−120(Q).

The dotted lines are the real values of parameters.
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estimation of ERP a tricky task. Therefore, it would be more feasible to estimate the equity
unit equity risk premium λ (EURP48) jointly with the model parameters (m0,σ0,ρ). The
joint estimation allows us to obtain a consistent value of λ.

The methods of joint estimation of model parameters and EURP in this section are
based on the maximum likelihood estimation method. So, let us begin with construction
of various likelihood functions that are used further for estimation purposes.

3.5.1. Likelihood functions
There are two main data sources for statistic inference concerning model parameters

and EURP: a historical data about underlying asset returns and options price data. They
allow us to construct various likelihood functions.

Asset returns data case
The likelihood functions of AMSM models are similar to the conventional MSM model

case considered by Calvet & Fisher [20], but need to be modified due to another definition
of the log-return process {rt } (3.37), namely it has the leverage effect modeling modifica-
tions of the volatility defined in (3.17), (3.18). Another reference is Hamilton (see [43], [44]),
in which the author describes how to construct a likelihood function for Markov Switching
processes in detail.

Let us begin with the log-returns rt = logSt /St−1 for the AMSM1 model given by

rt =µt +σtεt = r f +λσ0σ
M
t (ρ,m0)

− 1

2

(
σ0σ

M
t (ρ,m0)

)2

+σ0σ
M
t (ρ,m0)εt ,

(3.50)

The log-returns rt = logSt /St−1 for the AMSM2 model are given by

rt =µt +σtεt = r f +λ
(
ρεt−1 −p

σ0
)2
σM

t (m0)

− 1

2

(
ρεt−1 −p

σ0
)2 (

σM
t (m0)

)2

+ (
ρεt−1 −p

σ0
)2
σM

t (m0)εt ,

(3.51)

where the sum of the risk-free rate r f and the equity risk premiumλσt is an expected return
of asset {St }, θ = (m0,σ0,ρ) denotes the vector of AMSM model parameters in both cases.

It is easy to see that rt is normally distributed conditionally on Ft−1 and Mt with mean
µt and variance σ2

t , taking into account σt is Ft−1-measurable and the definition of the
Markov process {Mt }. The hidden Markov process {Mt } has a finite number of states due

to the binomial nature of its components, namely d = 2k̂ . So, each state of {Mt } is denoted

by mi =
{

mi
1, . . . ,mi

k̂

}
, where i = 1, . . . ,d . Therefore, it is possible to distinguish the states

of volatility process σM
t itself. The state of σM

t depends on Mt in the i -state, namely mi ,
therefore, it will be denoted as σi

t . In general, the returns density is given by

ω
i j
t = f

(
rt

∣∣∣Mt = m j ,rt−1,σi
t−1, . . . ,r0,σ0;θ,λ

)
(3.52)

48An equity risk premium (ERP) is λ×σ in the AMSM model, therefore λ is an equity unit-risk premium

(EURP) measured in units of volatility.
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AMSM1:

ω
j
t =

1
p

2πσ j
t

exp

(
−1

2

(
rt −µt

σ
j
t

)2)
(3.53)

µt = r f +λσ j
t −

1

2

(
σ

j
t

)2
, (3.54)

σ
j
t =σ0

(
k̂∏

k=1
m j

k

)1/2

(3.55)

AMSM2:

ω
i j
t = 1

p
2πσi j

t

exp

(
−1

2

(
rt −µt

σ
i j
t

)2)
(3.56)

µt = r f +λσi j
t − 1

2

(
σ

i j
t

)2
, (3.57)

σ
i j
t =

(
ρεi

t−1 −
p
σ0

)2
(

k̂∏
k=1

m j
k

)1/2

(3.58)

where

εi
t−1 =

rt−1 − r f −λσi
t−1 + 1

2

(
σi

t−1

)2

σi
t−1

, (3.59)

σ
i j
0 =σ0, i , j = 1, . . . ,d ; d = 2k̂ . (3.60)

The density ωi , j
t depends on σ

i j
t and σi

t−1 (through εt−1), both are measurable w.r.t. Ft−1

and are known at the moment t from the previous iteration.
The transition probabilities of {Mt } from the state mi to the state m j are given for t > 0

by

p i j
t−1 = P

(
Mt = m j

∣∣∣Mt−1 = mi ;θ,λ
)
=

k̂∏
k=1

[(
1−γk

)
I
{

mi
k = m j

k

}
+γk P

(
m j

k = m0

)]
, (3.61)

AMSM1:

P
(
m j

k = m0

)
=

{
1−Φ(ρεi

t−1), if m j
k = m0

Φ(ρεi
t−1), if m j

k 6= m0,
(3.62)

εi
t−1 =

rt−1 − r f −λσi
t−1 + 1

2

(
σi

t−1

)2

σi
t−1

; (3.63)

AMSM2:

P
(
m j

k = m0

)
= 0.5, (3.64)
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where Φ(·) is a CDF of the standard normal random variable. Note, p i j
t depends on ρ and

λ only in the case of the AMSM1 model.
The probability of certain state mi at the moment t has to be defined later; it is denoted

by

Πi
t = P

(
Mt = mi

∣∣∣rt ,σt , . . . ,r0,σ0;θ,λ
)

. (3.65)

As a result, we can construct a density function of returns process {rt }∞t=0 conditional on
Ft−1

f (rt |rt−1,σt−1, . . . ,r0,σ0;θ,λ) =
d∑

i=1

d∑
j=1

Πi
t−1p i j

t ω
j
t (AMSM1), (3.66)

f (rt |rt−1,σt−1, . . . ,r0,σ0;θ,λ) =
d∑

i=1

d∑
j=1

Πi
t−1p i j

t ω
i j
t (AMSM2), (3.67)

thenΠt can be defined as

Π
j
t =

ω
j
t
∑d

i=1Π
i
t−1p i j

t∑d
j=1ω

j
t
∑d

i=1Π
i
t−1p i j

t

(AMSM1), (3.68)

Π
j
t =

∑d
i=1Π

i
t−1p i j

t ω
i j
t∑d

j=1

∑d
i=1Π

i
t−1p i j

t ω
i j
t

(AMSM2). (3.69)

Note,Πt is calculated recursively. The initial value for it can be chosen as [20]

Π
j
0 =

k̂∏
k=1

P
(
M = m j

k

)
. (3.70)

Finally, the log-likelihood function by using (3.66) is given by

LR (θ,λ|r1, . . . ,rT ) =
T∑

t=1
log

(
d∑

j=1
ω

j
t

d∑
i=1

Πi
t−1p i j

t

)
(AMSM1), (3.71)

LR (θ,λ|r1, . . . ,rT ) =
T∑

t=1
log

(
d∑

i=1

d∑
j=1

Πi
t−1p i j

t ω
i j
t

)
(AMSM2). (3.72)

Note, the log-likelihood has the same general form as the MSM model of Calvet and Fisher,
but the components ωt ,Πt and P are defined differently.

The computation algorithm for the likelihood based on historical returns data is the
following:

1. Calculate 1× k̂ vector of γk , d × k̂ matrix M of
{

m j
k

} j=1,...,d

k=1,...,k̂

2. Assign σi
0 =σ0, σi

−1 =σ0 for i = 1, . . . ,d

3. InitializeΠ0 as (3.70)

4. Repeat from t = 1
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(a) Calculate 1×d vector σt by (3.50,3.51)

(b) Calculate 1×d vector ωt (AMSM1) or d ×d matrix ωt (AMSM2) by (3.52)

(c) Calculate d ×d matrix Pt by (3.61)

(d) Calculate d ×1 vectorΠt by (3.68)

(e) Increment LR := LR +LR
t , where LR

t is a likelihood of rt obtained from its density
function (3.66)

5. Until t = T

6. Return the value of likelihood LR from (3.71)

Option price data case
There is another approach for construction of likelihood function based on an option

price data inspired by Christoffersen’s papers [22, 23]. Let us consider an option price Ci

from Table 3.6, where the computation error is given by

εi =
C R

i −C AMSM
i (θ,λ,ν)

wi
, (3.73)

where C R
i is a real market Call option price, C AMSM

i is a theoretical price of the same option
computed in the assumption the AMSM model holds, as the weights wi can be used wi =
C R

i or wi = BSVi (Black-Scholes Vega). In particular, Black-Scholes vega weights are used
by Christoffersen in [22]. Note, the sum of these squared errors is the Weighted Residual
Sum of Squares (WRSS) defined in (3.48).

Assume εi are i.i.d. normal, then the log-likelihood function can be defined as follows

LO (
θ,λ,ν|C R

1 , . . . ,C R
N

)= N∑
i=1

log

(
exp

(
− ε2

i

2σ2
ε

)/√
2πσ2

ε

)
≈−1

2

N∑
i=1

(
ε2

i

σ2
ε

+ logσ2
ε

)
(3.74)

where N is a number of option prices, σ2
ε is a variance of the error with a sample estimate

σ̂2
ε =

∑N
i=1 ε

2
i

/
N . Let us substitute σ2

ε in the last expression, thus

LO (
θ,λ,ν|C R

1 , . . . ,C R
N

)=−1

2

∑N
i=1 ε

2
i∑N

i=1 ε
2
i

N − 1

2

N∑
i=1

log

(
N∑

i=1
ε2

i

/
N

)
= (3.75)

−N

2
− N

2
log

(
N∑

i=1
ε2

i

/
N

)
= (3.76)

−N

2

(
1+ log

(
WRSS

/
N

))
∼ (3.77)

−N

2
log

(
WRSS

/
N

)
, (3.78)

then the average log-likelihood is given by

lO (
θ,λ,ν|C R

1 , . . . ,C R
N

)=−1

2
log

(
WRSS

/
N

)
.
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Asset returns and option prices data case
Christoffersen [22], [23] and some other authors argue for the use of both returns and

options prices data in order to obtain parameters estimates consistent with physical and
risk-neutral measure simultaneously. In this case, the idea is to create a mixed likelihood
function. In the simplest case, it can be defined as (see [22])

LM (
m0,σ0,ρ,λ,ν|rT , . . . ,r1,C R

N , . . . ,C R
1

)=
LR (

m0,σ0,ρ,λ|rT , . . . ,r1
)+

LO (
m0,σ0,ρ,λ,ν|C R

N , . . . ,C R
1

)
,

(3.79)

an alternative formulation includes weighting the number of data points used for a com-
putation of LR and LO (see [23]) is given by

LM (
m0,σ0,ρ,λ,ν|r1, . . . ,rT ,C R

1 , . . . ,C R
N

)=
1

T
LR (

m0,σ0,ρ,λ|r1, . . . ,rT
)+

1

N
LO (

m0,σ0,ρ,λ,ν|C R
1 , . . . ,C R

N

)
,

(3.80)

or

LM (
m0,σ0,ρ,λ,ν|r1, . . . ,rT ,C R

1 , . . . ,C R
N

)=
T +N

2T
LR (

m0,σ0,ρ,λ|r1, . . . ,rT
)+

T +N

2N
LO (

m0,σ0,ρ,λ,ν|C R
1 , . . . ,C R

N

)
,

(3.81)

where T is a log-returns path length used for calculation of LR (θ,λ), N is a number of option
prices used for calculation LO(θ,λ,ν).

Another alternative is a sequential estimation of model parameters, namely m0,σ,ρ,λ
from an asset price data first, whereas the volatility risk-premium parameter ν is calibrated
from an option price data

argmax
m0,σ0,ρ,λ

LR ⇒ m?
0 ,σ?0 ,ρ?,λ?⇒ argmax

ν
LO ⇒ ν? (3.82)

or

argmax
m0,σ0,ρ,λ

LR ⇒ m?
0 ,σ?0 ,ρ?,λ?⇒ min

ν
WRSS ⇒ ν? (3.83)

or

argmax
m0,σ0,ρ,λ

LR ⇒λ?⇒ min
m0,σ0,ρ,ν

WRSS ⇒ m?
0 ,σ?0 ,ρ?,ν?. (3.84)

3.5.2. Preliminary estimation results for λ estimated and ν fixed.
The AMSM model parameters are estimated jointly with the equity unit risk premium λ

in this section, while the volatility risk premium ν is fixed to a constant value 0.05. The rea-
son of fixing the volatility risk premium ν is its weaker tractability in an economical sense
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compared to the equity unit risk premium λ. Another reason is an increased feasibility and
to shorten the calibration analysis. The author decided to use non zero ν in order to have
this component of risk neutrality correction in all computations for research purposes. The
value 0.05 was chosen to be small enough and to have a minor influence on option prices
during sensitivity analysis omitted in the text.

In particular, two likelihood functions were tested, namely LR (θ,λ), based on a stock
price historical data and LO(θ,λ,ν), based on an options prices data; both data sets are
simulated.

Asset returns data case
In this subsection, the case of estimators based on the simulated underlying asset’s log-

returns {rt } = {St }∞t=0 data is considered. Namely, the likelihood function LR (θ,λ) defined
as (3.71) in the previous section is used. There are two groups of 7 experiments: the first
group consists of the benchmark experiments estimating the models parameters (m0,σ0,ρ)
in the assumption λ is fixed and the second group consists of the experiments estimating
the equity unit risk-premium (EURP) λ jointly with the model parameters.

The 50 asset log-returns paths of 1500 trading days are simulated in each experiment
with the various parameters settings according to Table 3.12. The models are specified with
k̂ = 5 frequencies, the initial underlying asset price S0 = 50 and the interest rate r = 0.00018
a day. The maximum number of objective function evaluations in the settings of opti-
mization procedure is limited to 1500 times, the initial point of optimization procedure is
[1.5,0.05,0.0005,0.001], the search region of optimization procedure has the lower bound-
ary [1.0,0.0005,0.000001,0.0] and the upper boundary [1.85,0.1,0.7,1.1].

Experiment m0 σ0 ρ (AMSM1/AMSM2) λ ν λ fixed/estimated?

Exp1.f 1.3 0.02 0.25/0.01 0.5 0.05 fixed

Exp1.e 1.3 0.02 0.25/0.01 0.5 0.05 estimated

Exp2.f 1.4 0.01 0.25/0.01 0.5 0.05 fixed

Exp2.e 1.4 0.01 0.25/0.01 0.5 0.05 estimated

Exp3.f 1.4 0.02 0.25/0.01 0.25 0.05 fixed

Exp3.e 1.4 0.02 0.25/0.01 0.25 0.05 estimated

Exp4.f 1.4 0.02 0.25/0.01 0.5 0.05 fixed

Exp4.e 1.4 0.02 0.25/0.01 0.5 0.05 estimated

Exp5.f 1.4 0.02 0.25/0.01 0.75 0.05 fixed

Exp5.e 1.4 0.02 0.25/0.01 0.75 0.05 estimated

Exp6.f 1.4 0.03 0.25/0.01 0.5 0.05 fixed

Exp6.e 1.4 0.03 0.25/0.01 0.5 0.05 estimated

Exp7.f 1.5 0.02 0.25/0.01 0.5 0.05 fixed

Exp7.e 1.5 0.02 0.25/0.01 0.5 0.05 estimated

Table 3.12: Estimation experiments structure. Each experiment consists of 50 repeated MLE estimations

based on LR (θ;λ) likelihood and Adaptive Simulated Annealing method.

In these experiments, only one optimization method is used, namely, the global stochas-
tic Adaptive Simulated Annealing (ASA) method.
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AMSM1 model
The results of the experiments for the AMSM1 model are visualized in Figure 3.28. First

of all, these results do not demonstrate significant difference between the two groups of
experiments (fixed and estimated λ), at least visually. The estimates of m0, σ0 and λ seem
to be unbiased, while ρ is systematically slightly underestimated. There is no clear depen-
dence of this bias on other parameters values and the group of experiments. The bias is
approximately the same for all experiments. The ρ estimates are also significantly noisier,
there was a difference of four between their minimum and maximum estimates.

An inspection of Tables 3.13 and 3.14 shows more details. The scale of m0, ρ and λ

is approximately the same, but MAD of ρ is around four times greater. It is in the range
[0.076,0.092], while MAD error metrics of another two parameters are in the range [0.018,
0.023]. The MAE errors of ρ are around three times higher. The magnitude of MAD and
MAE metrics of σ0 is in the range [4.98× 10−4,1.25× 10−3] and [4.00× 10−4,1.23× 10−3].
The difference of MAD and MAE errors between three-parametric and four-parametric es-
timations is up to 10% in favor of the three-parametric case. The best results in the sense
of accuracy and precision are obtained for the experiment Exp3.e with λ = 0.25, while the
worst was obtained for the experiment Exp5.e with λ = 0.75, which means the quality of
estimates become lower for higher λ.

Exp1.f Exp2.f Exp3.f Exp4.f Exp5.f Exp6.f Exp7.f

m0

True 1.3 1.4 1.4 1.4 1.4 1.4 1.5

Mean 1.297 1.396 1.398 1.396 1.395 1.397 1.496

Median 1.299 1.396 1.400 1.396 1.396 1.396 1.497

MAD 0.024 0.023 0.028 0.024 0.022 0.024 0.020

MAE 0.020 0.019 0.020 0.019 0.018 0.019 0.017

σ0

True 0.02 0.01 0.02 0.02 0.02 0.03 0.02

Mean 2.00e-02 1.00e-02 2.00e-02 2.00e-02 2.00e-02 3.00e-02 1.99e-02

Median 2.02e-02 1.01e-02 2.02e-02 2.02e-02 2.01e-02 3.02e-02 2.00e-02

MAD 6.98e-04 4.68e-04 1.02e-03 9.37e-04 9.93e-04 1.41e-03 1.24e-03

MAE 6.36e-04 4.00e-04 8.44e-04 8.02e-04 7.57e-04 1.21e-03 9.32e-04

ρ

True 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Mean 0.223 0.230 0.232 0.230 0.229 0.230 0.234

Median 0.216 0.222 0.232 0.223 0.218 0.225 0.225

MAD 0.082 0.073 0.076 0.072 0.091 0.073 0.076

MAE 0.071 0.061 0.057 0.061 0.066 0.061 0.055

Table 3.13: The statistics of fourteen MLE (returns-based) estimation experiments in the case of AMSM1

model and λ fixed. Each experiment consisting of 50 simulations.
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Figure 3.28: The distributions of LR -MLE estimates of asset returns data during 14 experiments in the case

of AMSM1 model. Each experiment consists of 50 simulations. Odd experiments assume λ is fixed, even

experiments estimate λ. The dotted lines are the real parameters values θreal = (m0;σ0;ρ) = (1.3, 1.4, 1.5;

0.01, 0.02, 0.03; 0.25) and the risk premiums real values (λ;ν) = (0.25, 0.5, 0.75; 0.05).
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Exp1.e Exp2.e Exp3.e Exp4.e Exp5.e Exp6.e Exp7.e

m0

True 1.3 1.4 1.4 1.4 1.4 1.4 1.5

Mean 1.296 1.396 1.398 1.396 1.395 1.396 1.496

Median 1.299 1.396 1.400 1.396 1.395 1.397 1.497

MAD 0.024 0.024 0.028 0.024 0.020 0.024 0.021

MAE 0.020 0.019 0.020 0.019 0.018 0.019 0.017

σ0

True 0.02 0.01 0.02 0.02 0.02 0.03 0.02

Mean 2.00e-02 1.00e-02 2.00e-02 2.00e-02 2.00e-02 3.00e-02 1.99e-02

Median 2.02e-02 1.01e-02 2.02e-02 2.02e-02 2.01e-02 3.02e-02 2.01e-02

MAD 7.25e-04 5.26e-04 1.11e-03 1.06e-03 1.04e-03 1.57e-03 1.24e-03

MAE 6.44e-04 4.07e-04 8.55e-04 8.17e-04 7.74e-04 1.23e-03 9.44e-04

ρ

True 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Mean 0.224 0.231 0.233 0.230 0.230 0.231 0.235

Median 0.216 0.222 0.233 0.223 0.221 0.225 0.224

MAD 0.083 0.078 0.076 0.076 0.092 0.075 0.077

MAE 0.072 0.062 0.058 0.061 0.066 0.061 0.056

λ

True 0.5 0.5 0.25 0.5 0.75 0.5 0.5

Mean 0.499 0.499 0.249 0.499 0.748 0.499 0.499

Median 0.495 0.494 0.248 0.495 0.743 0.496 0.496

MAD 0.021 0.020 0.018 0.020 0.023 0.020 0.018

MAE 0.019 0.019 0.017 0.019 0.020 0.019 0.019

Table 3.14: The statistics of fourteen MLE (returns-based) estimation experiments in the case of AMSM1

model and λ estimated. Each experiment consisting of 50 simulations.
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AMSM2 model
The results of the experiments for the AMSM2 model are visualized in Figure 3.29. First

of all, there is a clear difference between the three-parametric and four-parametric estima-
tion experiments (fixed and estimated λ), but it is impossible to tell unequivocally which
case has better performance anyway.
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Figure 3.29: The distributions of LR -MLE estimates of asset returns data during 14 experiments in the case

of AMSM2 model. Each experiment consists of 50 simulations. Odd experiments assume λ is fixed, even

experiments estimate λ. The dotted lines are the real parameters values θreal = (m0;σ0; ρ) = (1.3, 1.4, 1.5;0.01,

0.02, 0.03; 0.01) and the risk premiums real values (λ;ν) = (0.25,0.5, 0.75; 0.05).

The estimates of m0, σ0 and λ are unbiased as well as in the case of AMSM1, while ρ is
systematically underestimated and significantly in few cases (up to two times) in contrast
to the case of the AMSM1 model. There is a clear dependence of these biases on λ size.
Further, ρ estimates bias becomes higher for higher m0 and lower σ0. The ρ estimates
deviation is significantly higher than for other parameters estimated.

Tables 3.15,3.16 reaffirm negative dependence between λ andσ0 estimates and the size
of λ: MAD of λ increases from 0.021 to 0.025, MAE increases from 0.018 to 0.024 for λ =
0.25,0.5,0.75 (the experiments Exp3.e, Exp4.e, Exp5.e). Also there is an increase of MAD
and MAE metrics forσ0. In addition, the real size ofσ0 effects the quality of estimates of m0

and λ. That is smaller σ0 leads to larger (MAD; MAE): from (0.023;0.018) to (0.028;0.025)
for m0; from (0.021;0.018) to (0.029;0.024) for λ. MAD and MAE of ρ is larger for larger
m0 and λ. The MAD and MAE metrics of m0 estimates for the three-parametric case (the
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experiments Exp1.f,...,Exp7.f ) are larger for the experiments Exp2, Exp3, Exp4, Exp5, while
they are lower than in the four-parametric estimations in other cases.

In general, the quality of estimates is similar for fixed λ and estimated λ, with slightly
higher levels of MAD and MAE for the former case.

Exp1.f Exp2.f Exp3.f Exp4.f Exp5.f Exp6.f Exp7.f

m0

True 1.3 1.4 1.4 1.4 1.4 1.4 1.5

Mean 1.297 1.404 1.403 1.398 1.397 1.398 1.502

Median 1.299 1.397 1.400 1.397 1.396 1.398 1.498

MAD 0.019 0.034 0.028 0.025 0.029 0.020 0.025

MAE 0.016 0.027 0.023 0.019 0.020 0.017 0.023

σ0

True 0.02 0.01 0.02 0.02 0.02 0.03 0.02

Mean 1.99e-02 1.03e-02 2.02e-02 2.00e-02 2.02e-02 2.99e-02 2.07e-02

Median 1.99e-02 1.02e-02 2.03e-02 2.01e-02 2.01e-02 2.98e-02 2.05e-02

MAD 6.51e-04 7.03e-04 1.19e-03 8.70e-04 9.12e-04 1.62e-03 1.52e-03

MAE 4.93e-04 6.67e-04 1.02e-03 7.97e-04 9.71e-04 1.16e-03 1.73e-03

ρ

True 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Mean 0.009 0.008 0.009 0.009 0.008 0.009 0.007

Median 0.009 0.008 0.009 0.009 0.008 0.009 0.007

MAD 0.002 0.001 0.001 0.001 0.001 0.002 0.001

MAE 0.241 0.242 0.241 0.241 0.242 0.241 0.243

Table 3.15: The statistics of fourteen MLE (returns-based) estimation experiments in the case of AMSM2

model and λ fixed. Each experiment consisting of 50 simulations.

Asset returns and options prices data case
In this subsection the performance of a wider set of estimators is considered and com-

pared: MLE based on LR (θ,λ) likelihood function from the previous subsection; the cal-
ibration procedure based on minimization of Weighted Residual Sum of Squares (WRSS)
from Section 3.4, which is equivalent to a maximization of LO(θ,λ,ν) likelihood defined as
(3.75) and MLE based on LM likelihood defined as (3.79). In other words, a comparison of
estimators based on underlying asset log-returns, options prices data and mixture of them
is presented here.

The estimation methods applied to the simulated data in the assumption AMSM model
holds with the following parametric settings:

• The parametric set I: (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.25/0.01,0.25,0.05);

• The parametric set II: (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.25/0.01,0.5,0.05);
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Exp1.f Exp2.f Exp3.f Exp4.f Exp5.f Exp6.f Exp7.f

m0

True 1.3 1.4 1.4 1.4 1.4 1.4 1.5

Mean 1.297 1.403 1.396 1.398 1.396 1.395 1.502

Median 1.298 1.397 1.393 1.396 1.393 1.395 1.498

MAD 0.018 0.028 0.026 0.023 0.026 0.023 0.028

MAE 0.017 0.025 0.019 0.021 0.020 0.018 0.022

σ0

True 0.02 0.01 0.02 0.02 0.02 0.03 0.02

Mean 1.99e-02 1.03e-02 1.99e-02 2.00e-02 2.02e-02 2.98e-02 2.03e-02

Median 1.99e-02 1.01e-02 1.99e-02 2.00e-02 2.00e-02 2.98e-02 2.02e-02

MAD 8.35e-04 8.18e-04 1.03e-03 9.88e-04 1.23e-03 1.47e-03 1.79e-03

MAE 5.77e-04 6.14e-04 7.51e-04 9.28e-04 1.03e-03 1.25e-03 1.43e-03

ρ

True 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Mean 0.009 0.008 0.009 0.009 0.008 0.009 0.007

Median 0.009 0.008 0.009 0.009 0.008 0.009 0.008

MAD 0.002 0.001 0.002 0.001 0.001 0.002 0.001

MAE 0.241 0.242 0.241 0.241 0.242 0.241 0.243

λ

True 0.5 0.5 0.25 0.5 0.75 0.5 0.5

Mean 0.499 0.495 0.248 0.498 0.745 0.498 0.499

Median 0.496 0.497 0.247 0.496 0.739 0.500 0.494

MAD 0.024 0.029 0.021 0.020 0.025 0.021 0.024

MAE 0.021 0.024 0.018 0.020 0.024 0.018 0.019

Table 3.16: The statistics of fourteen MLE (returns-based) estimation experiments in the case of AMSM2

model. Each experiment consists of 50 simulations.
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Exper. m0 σ0 ρ λ ν Estimation Options prices Asset price

title method data data path

Parametric set I

Exp1.1 1.4 0.02 0.25/0.01 0.25 0.05 LR -MLE none 1500

Exp2.1 1.4 0.02 0.25/0.01 0.25 0.05 min(WRSS) 10 options (T = 30) none

Exp3.1 1.4 0.02 0.25/0.01 0.25 0.05 min(WRSS) 30 options (T = 30,60,90) none

Exp4.1 1.4 0.02 0.25/0.01 0.25 0.05 LM -MLE 10 options (T = 30) 750

Exp5.1 1.4 0.02 0.25/0.01 0.25 0.05 LM -MLE 30 options (T = 30,60,90) 750

Parametric set II

Exp1.2 1.4 0.02 0.25/0.01 0.5 0.05 LR -MLE none 1500

Exp2.2 1.4 0.02 0.25/0.01 0.5 0.05 min(WRSS) 10 options (T = 30) none

Exp3.2 1.4 0.02 0.25/0.01 0.5 0.05 min(WRSS) 30 options (T = 30,60,90) none

Exp4.2 1.4 0.02 0.25/0.01 0.5 0.05 LM -MLE 10 options (T = 30) 750

Exp5.2 1.4 0.02 0.25/0.01 0.5 0.05 LM -MLE 30 options (T = 30,60,90) 750

Parametric set III

Exp1.3 1.4 0.02 0.25/0.01 0.75 0.05 LR -MLE none 1500

Exp2.3 1.4 0.02 0.25/0.01 0.75 0.05 min(WRSS) 10 options (T = 30) none

Exp3.3 1.4 0.02 0.25/0.01 0.75 0.05 min(WRSS) 30 options (T = 30,60,90) none

Exp4.3 1.4 0.02 0.25/0.01 0.75 0.05 LM -MLE 10 options (T = 30) 750

Exp5.3 1.4 0.02 0.25/0.01 0.75 0.05 LM -MLE 30 options (T = 30,60,90) 750

Table 3.17: Estimation experiments structure. Each consists of 25 repeated estimations based on pseudo-

and quasi-Monte Carlo and Adaptive Simulated Annealing method.
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• The parametric set III: (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.25/0.01,0.75,0.05).

Each experiment was repeated with each of the three parametric sets above and consists
of:

1. The simulation of 25 asset log-returns sample paths of 1500 trading days each, for ex-
ample {ri }1500

i=1 , then the estimation of each using MLE based on LR (θ,λ;r1, . . . ,r1500);

2. The simulation of European Call options prices for 25 K-baskets (cross-sections) by
10 options each 49 and the only maturity T = 30, then the calibration of the AMSM
models parameters by minimization of WRSS for each basket;

3. Similarly, the simulation of European Call options prices for 25 KT-baskets by 30 op-
tions each with the maturities T = 30,60,90, then the calibration of the AMSM model
by minimization of WRSS for each basket;

4. The simulation of European Call options prices for 25 K-baskets by 10 options each
with the only maturity T = 30, denoted as C1, . . . ,C10. In addition, the simulation
of corresponding 25 underlying asset log-returns paths of 750 trading days each, de-
noted as {ri }750

i=1, then the estimation of the AMSM models by maximization of the cor-
responding likelihood LM (θ,λ;r1, . . . ,r750,C1, . . . ,C10) with respect to the model pa-
rameters θ and EURP λ;

5. Similarly, the simulation of European Call options prices for 25 KT-baskets of 30 op-
tions each with the maturities T = 30,60,90. In addition, the simulation of 25 asset
log-returns paths of 750 trading days each, then the estimation of the AMSM models
by maximization of the corresponding likelihood LM .

The models are specified with k̂ = 5 frequencies, the initial underlying asset price S0 =
50 and the interest rate r = 0.00018 a day. The maximum number of objective function
evaluations is limited to 1500 times in the optimizer subroutines settings, the initial point
of optimization method is [1.5,0.05,0.0005,0.001], while the search region lower boundary
is [1.0,0.0005,0.000001,0.0] and the upper boundary is [1.85,0.1,0.7,1.1]. The structure of
the experiments is reflected in Table 3.17.

In this subsection, the Levenberg-Marquardt optimization method was used for the
minimization of WRSS (calibration), while the global stochastic Adaptive Simulated An-
nealing (ASA) method was used for the maximization of LR (θ,λ;r) and LM (θ,λ;r,C) likeli-
hood functions.

AMSM1 model
Visual inspection of Figure 3.30 shows that the calibration procedure fails to estimateσ0

and λ in the experiments Exp2.1, Exp2.2, Exp2.3 (option chains with the maturity T = 30).
Further, there is clear large dispersion of the estimates of ρ and, especially, λ in the case of
the experiments Exp3.1, Exp3.2, Exp3.3 (option chains with the maturities T = 30,60,90).
The maximum likelihood estimators based on the likelihood functions LR (Exp1.1, Exp1.2,
Exp1.3) and LM (Exp4.1, Exp4.2, Exp4.3, Exp5.1, Exp5.2, Exp5.3) are unbiased, excepting
the slightly biased estimates of m0 in the experiments Exp4.1, Exp4.2, Exp4.3. In addition,

49The difference between these baskets is the seed of random number generator used.
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the estimates of ρ and λ based on the maximization of likelihood functions LM overesti-
mate the equity unity risk-premium λ in Exp5.1 weakly.

An analysis of Table 3.18 containing the metrics of the experiments results distribution
gives the following conclusions. The metric MAD (precision) of LR -based MLE estimates of
m0 and λ is typically up to two times less compared to the calibration and LM -based MLE,
while MAD of calibration (WRSS column in the table) and LM -based estimates of σ0 and ρ
is significantly lower than for LR -based counterparts, mostly two to three times.

Looking deeper, the estimates obtained by the maximization of the likelihood function
LR (Exp1.x) are unbiased, and their mean and median values deviate from the real ones
slightly, by 2%−10%. Their precision depends on a parameter: the estimates of λ have the
highest precision, namely M AD = 0.017. . .0.02, while the lowest precision is obtained for
the estimates of ρ, M AD = 0.089. . .0.1.

1.
1

1.
3

1.
5

m
0

0.
01

6
0.

02
0

0.
02

4

si
gm

a0

0.
0

0.
1

0.
2

0.
3

0.
4

rh
o

0.
0

0.
4

0.
8

la
m

bd
a

E
xp

1.
1

E
xp

2.
1

E
xp

3.
1

E
xp

4.
1

E
xp

5.
1

E
xp

1.
2

E
xp

2.
2

E
xp

3.
2

E
xp

4.
2

E
xp

5.
2

E
xp

1.
3

E
xp

2.
3

E
xp

3.
3

E
xp

4.
3

E
xp

5.
3

Figure 3.30: Three groups of estimation/calibration experiment’s distributions depicted as violins for three

λ = 0.25,0.5,0.75 and AMSM1 model. Each group consists of estimation experiments distributions of LR -

MLE (Exp1.x), calibration (Exp2.x, Exp3.x) and LM -MLE (Exp4.x, Exp5.x) methods. The dotted lines are the

real parameters values θr eal = (m0;σ0;ρ) = (1.4;0.02;0.25) and EURP λ= 0.25,0.5,0.75.

The calibration procedure (Exp2.x) using the option chain prices with the maturity T =
30 (strike prices K = 40,42, ...,58) gives very close-grouped (precise) estimates: M AD(m0) ≈
0.015, M AD(σ0) ≈ 5.0×10−5, M AD(ρ) ≈ 0.01, M AD(λ) = 0.008. The estimates of m0 and
σ0 are biased; the estimates of λ are calibrated completely wrong in Exp2.x, as mentioned
earlier. The results of calibration using the prices of KT-basket of a few option chains with
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the maturities T = 30,60,90 and the strike prices K = 40,42, ...,58 (Exp3.x) are significantly
more accurate. In particular, the median of m0 jumped from 1.351 to 1.414 for the case λ=
0.75 (Exp3.3), but the results are more imprecise: M AD(m0) ≈ 0.018, M AD(σ0) ≈ 5.0×10−4,
M AD(ρ) ≈ 0.025, M AD(λ) ≈ 0.180.

The performance of the MLE-estimates based on the likelihood LM (Exp4.x, Exp5.x) is
somewhat a mixture of LR -MLE and the calibration results. The estimates used the single
option chain (K-basket with T = 30) and the historical underlying asset prices data (Exp4.x)
are slightly biased, but less than their calibration based counterparts. The estimates based
on the multiple option chains (KT-baskets) and the historical underlying asset prices data
(Exp5.x) seem to be unbiased. Meantime, LM -based MLE estimates of σ0 and ρ are sig-
nificantly less noisy comparing to LR -based ones, for example: M AD(σ0) ≈ 3.43 × 10−4

(Exp5.1) versus 1.03e−10−3 (Exp1.1), M AD(ρ) ≈ 0.043 (Exp5.3) versus 0.1 (Exp1.3). The LM -
based MLE estimates of m0 and λ are less precise, but the difference with LR -based ones
is not that huge, as the calibration procedure results have, for example: M AD(m0) ≈ 0.029
(Exp5.2) versus 0.051 (Exp1.2), M AD(λ) ≈ 0.072 (Exp5.3) versus 0.02 (Exp1.3) and 0.231 for
the calibration (Exp3.3).

AMSM2 model
An inspection of Figure 3.31 shows a similar picture for the AMSM2 model compared to

the results obtained for the AMSM1 model, but there are two important differences. First of
all, LM -based MLE estimates (Exp4.x, Exp5.x) are no longer unbiased. Second, the results
of λ calibration based on WRSS minimization turn out to fail for both baskets types (Exp2,
Exp3).

The MLE based on the likelihood function LR provides the best estimates ofλ according
to Table 3.19: M AD ≈ 0.029, M AE ≈ 0.02 (Exp1.1) comparing to LM -based MLE estimates,
MAD up to 0.107, MAE up to 0.113 (Exp5.1)).

The calibration procedure provides the best m0 and ρ estimates, but it completely fails
with λ. Further, the estimates ofσ0 are significantly more biased and have the highest MAE
levels compared to other estimators.

In contrast to AMSM1, LM -based MLE estimates are increasingly biased for larger λ:
the median of m0 drops down from 1.385 to 1.344 (Exp5.x), the median of σ0 drops from
2.02×10−2 to 2.08×10−2 and the median of ρ drops from 0.011 to 0.007. Meantime, the bias
of λ is low and similar to LR -based MLE case, but it is significantly more deviated than its
LR -based counterpart (MAD is in the range 0.063..0.107 versus 0.021..0.029). The LM -based
MLE estimates of ρ also have large deviation (MAD 0.002), which leads – together with the
significant bias of ρ estimates – to the largest MAE among the considered estimators.

3.5.3. Comparative analysis and intermediate conclusions
In general, the estimates of ρ and λ for the AMSM1 model are significantly noiser than

m0 and σ0 estimates, especially for larger real values of λ. The estimates based on LR like-
lihood are very imprecise for ρ (Exp1.x). The calibration on single option chain datasets
(K-baskets, Exp2.x) is not able to estimate λ at all and it is poor for the case of multiple op-
tion chains datasets (KT-basket, Exp3.x). In contrast, the LR -based MLE estimates of λ and



3.5. Calibration and Estimation of AMSM model parameters and equity unit-risk premium
based on option and asset prices 149

1.
1

1.
3

1.
5

m
0

0.
01

6
0.

02
0

0.
02

4

si
gm

a0

0.
00

6
0.

01
0

0.
01

4

rh
o

0.
0

0.
4

0.
8

la
m

bd
a

E
xp

1.
1

E
xp

2.
1

E
xp

3.
1

E
xp

4.
1

E
xp

5.
1

E
xp

1.
2

E
xp

2.
2

E
xp

3.
2

E
xp

4.
2

E
xp

5.
2

E
xp

1.
3

E
xp

2.
3

E
xp

3.
3

E
xp

4.
3

E
xp

5.
3

Figure 3.31: Three groups of estimation/calibration experiment’s distributions depicted as violins for three

λ = 0.25,0.5,0.75 and AMSM2 model. Each group consists of estimation experiments distributions of LR -

MLE (Exp1.x), calibration (Exp2.x, Exp3.x) and LM -MLE (Exp4.x, Exp5.x) methods. The dotted lines are the

real parameters values θr eal = (m0;σ0;ρ) = (1.4;0.02;0.01) and EURP λ= 0.25,0.5,0.75.
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the calibration of ρ are both accurate and precise. In general, the MLE estimates based on
the likelihood LM in conjunction with KT-baskets (Exp5.x) are a preferable choice for the
AMSM1 model as a good trade-off in the sense of accuracy and precision of all four param-
eters. At the same time, there is no perfect estimator for the AMSM2 model as well. The
calibration procedure fails with λ, while the best results are achieved for ρ and m0. The
MLE based on LM fails with an estimation of ρ and is fine with the rest parameters, but
LR -based MLE exceeds it in the sense of lower MAE of m0, ρ and λ.

3.6. Application
The aim of this section is to apply the calibration and estimation techniques described

above to real data from financial markets, to run out-of-sample performance tests and to
compare the AMSM model with competitive models.

3.6.1. Real market data
First of all, it is necessary to recover a risk-free interest rate from the market. There are

two main sources of borrowing on financial markets: a money market (short-range) and a
capital market (long-range). In the first case, EURIBOR and other -IBOR spot rates are usu-
ally used as short-range risk free interest rates, while yield curve spot rates calculated and
published by ECB are used as long-range risk free interest rates. The values of these short-
and long-range interest rates were collected for various expiries with the longest expiry cor-
responding to the longest maturity in the options prices data. Further, these rates are used
to construct interpolation using the LOESS50 interpolation method (see Figure 3.32). The
interpolation allows us to obtain interest rates for non-standard expiries equal to maturi-
ties of considered vanilla options. Note, the interpolated interest rates are used only for
option pricing. They are meaningless for asset returns estimation, where fixed daily inter-
est r = 0.00018 (around 6.5% annually) was used, similarly to Christoffersen, Heston and
Jacobs’ approach in their joint paper [22]. Also note, the interpolated annual rates are con-
verted to daily ones using the following well-known formula

rd = 1− (1− ra)1/365.

The largest European derivatives exchange is EUREX. A number of European style op-
tions are traded, including many options with German blue chips as underlying assets. In
order to estimate real data options, two indices were chosen, namely Euro Stoxx 5051 and
DAX 3052, and two shares, namely Siemens53 and SAP54. The historical prices of these un-
derlying assets were collected from the 2nd of January 2004 to the 28th of August 2018 from
Börse Frankfurt. The leverage effect, being the crucial point of this chapter, is depicted in
Figure 3.33 for all considered underlying assets for lags from 1 to 15. The strongest effect is
observed for both indices. Note also, they appear to be closely correlated, which can be ex-
plained by the fact that they share many stocks. At the same time, SAP is clearly not affected
by the leverage effect at all.

50LOESS is a non-parametric (local) regression model.
51ISIN EU0009658145, WKN 965814.
52ISIN DE0008469008, WKN 846900.
53ISIN DE0007236101, WKN 723610, symbol SIE.
54ISIN DE0007164600, WKN 716460, symbol SAP.
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Figure 3.32: The term structure of interest rates (yield curve), where the cyan triangles are spot rates from the

money market (EURIBOR), the tomato triangles are spot rates from the capital market (ECB), the blue line

and the black dots are interpolated (LOESS) interest rates used for option pricing.
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The option chain intraday quotes data collected on the 13th of July, the 25th of July and
the 13th of August 2018 for the following options: Euro Stoxx 50 Index Options (OESX)55,
DAX 30 Options (ODAX)56, Siemens (SIE)57 and SAP (SAP) 58 on EUREX exchange for the
underlying assets described above. This data is visualized as the price surface with respect
to strike prices and maturities in Figure 3.34. As option price is assumed to be an average
value of ask and bid prices, therefore, options with no bid price (and zero volume of trade)
are neglected. The most detailed data during the 13th of July was available for STOXX 50
index options: the maturities are from 12 to 651 and the strike prices are from 0.2 to 364.8
euros. DAX 30 index options were traded the same day for shorter maturities, namely up
to around 400 business days. The datasets are even smaller for SAP and Siemens options,
namely less than 200 prices; this is compared to around 600 prices in the case of Stoxx 50
and DAX 30 index options. The difference is in the number of strike prices available for
trading of SAP and Siemens options. Also note that all four datasets have certain shift of
strike prices with an increase of maturity, which reflects market beliefs on a future trend.

In addition, the datasets are filtered according to the level of moneyness. The definition
of moneyness of an option is given by

Moneyness = exp(−r T )
S0

K
,

where K is a strike price, T is a maturity, S0 is a spot price of underlying in the date of
signing the contract. Thus, the options with the moneyness level: between 0.96 and 1.04
are assumed further as at-the-money (ATM), less than 0.96 are assumed as in-the-money
(ITM) and greater than 1.04 are assumed as out-the-money (OTM). Options with the mon-
eyness level less than 0.9 or greater than 1.1 are filtered out from the dataset. Options with
maturities less than 20 are not liquid; therefore, they were also excluded from the dataset.
Further, all options in the dataset are split into three groups by maturity: short-run with
maturities T ∈ [20,90]), mid-run with T ∈ [91,180] and long-run with T ∈ [181,1000]. The
resulting dataset size is 228 options in the case of Stoxx 50 index options; its structure is
reflected in Table 3.20.

Moneyness Short-run Mid-run long-run

ITM 21 18 23

ATM 33 22 32

OTM 27 23 18

Table 3.20: The dataset’s structure and size for Stoxx 50 index options case.

The quality of real data estimates is considered in the next subsection. In this subsec-
tion, an estimation of the real data by estimators developed and testified on synthetic data
in Sections 3.4 and 3.5 is considered for both model versions with both risk premiums
(EURP and volatility risk premium) estimated.

55Product ISIN DE0009652396, Underlying ISIN EU0009658145.
56Product ISIN DE0008469495, Underlying ISIN DE0008469008.
57Product ISIN DE0007236101, Underlying ISIN DE0007236101.
58Product ISIN DE0007164600, Underlying ISIN DE0007164600.
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Figure 3.34: The surfaces of options quotes from EUREX exchange for various assets at 13th July 2018.
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3.6.2. In-sample and out-of-sample performance
The final test for the AMSM models and three methods developed for estimation of

them is in-sample and out-of-sample performance. In order to do so, the estimates are
used for computation of theoretical option prices corresponding to the Euro Stoxx 50 op-
tions from Table 3.20, that are split into nine baskets by three types of moneyness (ITM,
ATM and OTM) and three time horizons (SR, MR and LR). The dataset on 13th of July 2018
used for the estimation allows us to define in-sample performance measured by residuals
(WRSS). Analogical datasets were created for Euro Stoxx 50 option prices at 24 July 2018
and 13 August 2018. They were filtered and prepared the same way as described in Subsec-
tion 3.6.1 in order to obtain another nine baskets, but two and four weeks out-of-sample.
In order to compare the real option prices and their theoretical counterparts computed by
the AMSM model, the former ones were computed using the model parameters estimates
obtained for the in-sample datasets (baskets). The calibration for DAX 30, Siemens and SAP
options was excluded from further analysis due to small amount of data, especially, for long
horizons (DAX 30, see Figure 3.34). In addition, the liquidity of options for Siemens and SAP
assets is questionable (see the artifacts of the price surfaces in Figure 3.34). Nevertheless,
the estimation based on asset returns only was done for all four assets, see Section 3.6.2, in
particular Figure 3.36.

As a benchmark, the Black-Scholes (BS) model, Black-Scholes Ad-Hoc (BSAH) model
[33] and Heston-Nandi (HN) model [47] are estimated on each of nine baskets from Ta-
ble 3.20, then the corresponding in-sample and out-of-sample theoretical option prices
computed. Note, Black-Scholes ad-hoc model differs in the volatility parameter from the
classic one. Namely, it is not a constant, but a nonlinear regression of strike price K and
maturity T . In particular, the polynomials of K and T of order two are used as the non-
linear regression, which leads to a necessity to estimate five parameters. The closed-form
GARCH option valuation model of Heston and Nandi [47] is a well-known model for cases
when options prices data is not available for a calibration as it requires only an underlying
asset log-returns data.

So, AMSM, BS and AdHoc models were used to estimate all nine in-sample baskets from
Table 3.20 and then two and four weeks out-of-sample prices were calculated. Therefore,
there are nine parametric sets obtained for the corresponding nine in-sample baskets (ATM
SR and etc.) for each AMSM model version from the calibration approach, as well as from
the LM -based MLE approach, for the Ad-Hoc model, and also nine volatility parameter
estimates for the Black-Scholes model. Only one parametric sets was obtained from the
historical asset log-returns observed until 13th July 2018 for the AMSM models from MLE
based on LR likelihood and for the Heston-Nandi model. The parametric set consists of
just the volatility parameter in the case of the BS model, while the Ad-Hoc, HN model and
AMSM models have five parameters.

Calibration based on market option prices
The real data calibration results based on minimization using the Levenberg-Marquardt

algorithm (LM) and Adaptive Simulated Annealing (ASA) of the Weighted Residual Sum of
Squares (WRSS) defined by (3.48) are presented in this subsection. Theoretical details, the
choice of optimization methods and the sensitivity analysis are given in Section 3.4. The
calibration results based on synthetic data are described in Subsection 3.4.3 for the case of
fixed λ and ν.
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The Stoxx 50 index options real data described above. The calibration experiment con-
sists of ten repeats of the calibration procedure with different seeds of Monte Carlo paths
simulation necessary for an option price computation by the AMSM model. The theoreti-
cal option prices in the short-run (SR) and mid-run (MR) option baskets are computed in
this experiment using quasirandom numbers, which showed better performance during
estimation experiments based on the synthetic data. The long-run (LR) theoretical option
prices are computed with pseudorandom numbers due to large memory and time con-
sumption of computation based on quasirandom numbers. The number of sample paths
during Monte Carlo option pricing were 49K quasirandom paths for each option price (SR
case), 24K quasirandom paths (MR case) and, finally, 98K pseudorandom paths in the case
of long-run maturities.

The seed and the parameter values corresponding to the case with the lowest WRSS
among ten calibration repeats are used further as an optimal choice. These best estimates
are collected in Table 3.21.

The in-sample and out-of-sample results are depicted as barplots of relative residuals
for each model and baskets (moneyness is x-axis) in Figure 3.35. As relative residual is con-
sidered the expression (Cr −Cm)/Cr , where Cr is a real market option price, Cm is a theo-
retical option price obtained using one of the models. There are two situations when all the
models behave poorly: out-of-the-money and short-run (OTM SR) options prices compu-
tation. In particular, the relative residuals in this case are up to 60% for the BS model, 25%
for the AMSM1 model in-sample and up to −%120 for the BS model, −140% for the AMSM2
model in the case of two weeks out-of-sample. The relative residuals of OTM MR theoret-
ical options prices are smaller, but also significant, they are up to −60% for the BS model,
and −50% for the AMSM model. An economical reason for quite large residuals can be a
lack of liquidity in both cases of OTM options and SR options, especially in the first case.
Further, the results are surprisingly worse for the case of two weeks out-of-sample options
pricing than their counterparts computed another two weeks later. This can be a result of
poor estimation of the risk free interest rate, which is very important for an accurate option
pricing. Another factor can be small dataset size; the baskets used for the calibration con-
sist of around 30 options. At the same time, the main aim of this subsection is to compare
the AMSM model and competitive models’ performance to each other rather than perfect
accuracy.

It is clear from Figure 3.35, comparing the relative residuals, that the results for the
AMSM1 and AMSM2 models are visually very similar. Their precision and accuracy are
so close that it is impossible to select the winner. A visual inspection aimed at compar-
ing AMSM models with the benchmark models shows the classic Black-Scholes model is
worse in most scenarios. Ad-Hoc seems to be worse for the short-run case in conjunction
with ITM and OTM options, while it is better for the case of mid-run options and worse or
similar for the long-run options pricing.

A more detailed picture can be found in Tables 3.24 and 3.25 with calculated WRSS val-
ues. The AMSM1 and AMSM2 model versions have close residuals with a superiority of one
or another version in different cases. Both AMSM models compared to the Black-Scholes
model have significantly lower errors in-sample and four weeks out-of-sample, while the
BS model is surprising better than all other models two weeks out-of-sample in the case
of mid-run (MR). Another benchmark model, Ad-Hoc model, has lower WRSS values than
AMSM counterparts in case of mid-run options two and four weeks out-of-sample, namely:
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Figure 3.35: Relative standard errors (residuals) of theoretical options prices computation in the case of vari-

ous maturities and moneyness for AMSM1, AMSM2, Ad-Hoc and BS models based on options prices data.
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0.03 (ITM), 0.33 (ATM), 1.47 (OTM) in the case of two weeks out-of-sample and 0.00 (ITM),
0.01 (ATM), 0.04 (OTM). In general, AMSM demonstrates its superiority in the long-run,
which can be explained by increasing the importance of the presense of various volatility
frequencies modeled by AMSM that show up for longer sample paths.

Also, the results obtained using the LM optimization method are collected in the second
part of Tables 3.24 and 3.25. Note, ASA provides slightly better optimal parameters in the
sense of WRSS than the LM method in most cases, excepting few mid-run and short-run
results. For example, WRSS is lower for ITM MR and ATM MR baskets in the case of LM
based calibration.

Maximum likelihood estimation based on asset returns
Details about the estimator construction are given in Section 3.5.1. The simulations

in Subsection 3.5.2 showed that the most precise and accurate results for MLE based on
LR (θ,λ|r) likelihood (3.71) provides the Adaptive Simulated Annealing optimization algo-
rithm, thus it is used for the real data estimation experiments as well.

The log-returns sample paths of four assets on Börse Frankfurt (Euro Stoxx 50 index,
DAX30 index, SAP and Siemens stocks) are the input data. The length of historical data
sample size used for estimation is from 500 points up to 3500 data points (trading days).
Note, the dataset with 3500 trading days corresponds to the time window starting from
11th October 2004 and ending 13 July 2018.

An estimation of real data on assets return with MLE does not depends on the seed,
thus there is no sense to repeat it, even taking into account the stochastic nature of the ASA
algorithm. Instead, the estimation was repeated for various time windows, as mentioned
earlier for four underlyings. The results are presented for the AMSM1 model version with
estimation of four parameters excluding ν; they are visualized in Figure 3.36. Further, the
log-returns of Stoxx 50 index are depicted on the fifth panel as a scatter plot w.r.t. to the
timeline, which allows us to reveal a dependence of the asset returns behavior on the esti-
mated model parameters. The use of the datasets with various historical horizons allows us
to see a stability of estimates and a certain level of convergence of the estimates if it takes
place.

There is clear tendency in the estimation results presented in Figure 3.36 that, if the
dataset includes high volatility periods (2008, 2011, 2014-2016), higher estimates of m0 and
σ0 lead to lower ρ andλ. The evidence of this trend is the most clear in the jump of parame-
ters estimates after the addition of the period from 2008-09-01 to 2009-08-24 to the dataset
used for estimation. The opposite tendency is observed in the case of datasets with lower
volatility, for example, in the case of the quiet period from 2016-06-16 to 2018-05-28. This
dependence is clear due to m0 and σ0 having the greatest impact on the volatility size. It is
important to note for further investigation that the estimates differ significantly depending
on the time window choice.

The results for the AMSM2 model are similar, but slightly more unstable compared
to the AMSM1 model version. This behavior was also observed during simulations (Fig-
ures 3.28, 3.29).

The best estimates in the sense of minimal WRSS were achieved for short historical time
windows, 180 and 360 trading days. These results are collected in Table 3.22 for both AMSM
model versions and for a few additional historical time windows (90, 720, 1080 days).

In order to visualize option pricing, residuals are provided Figure 3.37 with relative stan-
dard errors (residuals) and Table 3.27 collects WRSS values achieved for the optimal model
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Figure 3.36: The estimates of AMSM1 model parameters. The first four panels depicts estimates of corre-

sponding model parameter for various data horizons, namely from 500 days to 3500 trading days. The fifth

panel depicts log-returns of Stoxx 50 index.
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Figure 3.37: Relative standard errors (residuals) of theoretical options prices computation in the case of var-

ious maturities and moneyness for AMSM1, AMSM2, Heston-Nandi and BS models based on asset returns

data.
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parameters (see Table 3.22) analogical to the previous approach.
The first glance at Figure 3.37 leads to a conclusion that there is a clear growing trend

of the residuals growth going from in-the-money to out-of-the-money baskets for all mod-
els in mid-run and long-run for the AMSM and HN models. The largest relative residuals
are observed for short-run out-of-the-money options as well as for the previous approach,
namely they are up to −150%.

Another conclusion is that the AMSM2 model outperforms the Heston-Nandi GARCH
model version in most cases, especially in the case of the same two weeks out-of-sample
datasets (see Table 3.27). In contrast to the results obtained during calibration of option
prices data, AMSM2 model version estimated with MLE based on log-returns provides sig-
nificantly more accurate and precise results than the AMSM1 model version, which is clear
from both the figure and the errors size. Further, the only AMSM2 model estimated on as-
set returns shows up relative residuals comparable to the classic BS model results, but the
BS model was calibrated on the options prices data, which is not always available. The BS
model results are presented here for informational purposes only.

Maximum likelihood estimation based on asset returns and market option prices
The third and the last method implemented to the real data is MLE based on mixed

likelihood functions LM (θ,λ,ν|r;C) defined in Section 3.5.1 and investigated on simulated
data in Section 3.5.2. It combines the asset returns data with the options prices data. As
in the previous case, the simulated annealing algorithm (ASA) was used to maximize the
likelihood. The performance of the method on the simulated data was discussed in Sub-
section 3.5.2.

Out-of-sample performance was measured the same way as for the first method. The
data used for this method is a combination of two datasets from the previous two ap-
proaches. The options prices dataset was used exactly the same as for the first method
and the datasets with historical asset returns were used of the same size as in the second
method: 180 and 360 trading days.

The parameters boundaries of optimization region were extended compared to the pre-
vious two cases, since many of the preliminary estimation experiments with LM -based MLE
led to ρ close to the upper boundary. Nevertheless, the best results in the sense of WRSS are
achieved not for extremal values of ρ. The best estimates for both AMSM model versions
are collected in Table 3.23 for the options baskets and historical frames.

There is no evident advantage in the sense of the relative residuals plotted in Figure 3.38
for LM -based MLE over their counterparts in Figure 3.35 obtained using only options prices
data. Let us look deeper, using Tables 3.24,3.25 and 3.26. The estimates obtained during
calibration provide similar WRSS of theoretical option prices for ITM and ATM cases, but
the WRSS are significantly lower for the case of OTM options. For example, in the case
of two weeks out-of-sample (AMSM1/AMSM2): 13.46/14.93 versus 14.98/19.38, 3.16/3.39
versus 3.81/4.11, 0.48/0.45 versus 0.54/0.6. Thus, the results this approach obtained are
very close and do not exceed the ones obtained during calibration in the first approach;
therefore, further analysis is omitted.

ä
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Figure 3.38: Relative standard errors (residuals) of theoretical options prices computation in the case of var-

ious maturities and moneyness for AMSM1, AMSM2, Ad-Hoc and BS models based on real market asset re-

turns and options prices data.
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LR WRSS WRSS LM LM

Par. Metrics T = 30 T = 30−90 T = 30 T = 30−90

Real (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.25,0.25,0.05)

m
0

Mean 1.391 1.370 1.399 1.379 1.388

Median 1.390 1.369 1.385 1.375 1.390

MAD 0.031 0.014 0.014 0.025 0.029

MAE 0.023 0.030 0.029 0.030 0.025
σ

0
Mean 1.99e-02 2.07e-02 2.01e-02 2.00e-02 1.99e-02

Median 2.02e-02 2.07e-02 2.01e-02 2.00e-02 1.98e-02

MAD 1.03e-03 5.17e-05 3.30e-04 2.36e-04 3.43e-04

MAE 8.47e-04 7.07e-04 3.08e-04 2.10e-04 3.25e-04

ρ

Mean 0.248 0.251 0.242 0.252 0.268

Median 0.243 0.250 0.261 0.252 0.266

MAD 0.089 0.010 0.032 0.020 0.023

MAE 0.062 0.008 0.050 0.014 0.022

λ

Mean 0.253 0.008 0.209 0.251 0.274

Median 0.252 0.003 0.207 0.250 0.300

MAD 0.019 0.004 0.160 0.065 0.125

MAE 0.016 0.242 0.125 0.059 0.098

Real (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.25,0.5,0.05)

m
0

Mean 1.389 1.359 1.399 1.384 1.380

Median 1.391 1.360 1.402 1.380 1.387

MAD 0.029 0.015 0.016 0.043 0.051

MAE 0.021 0.041 0.013 0.037 0.034

σ
0

Mean 1.99e-02 2.15e-02 2.02e-02 2.00e-02 2.00e-02

Median 2.01e-02 2.15e-02 2.01e-02 2.00e-02 2.01e-02

MAD 1.02e-03 4.73e-05 5.16e-04 5.93e-04 3.72e-04

MAE 8.10e-04 1.51e-03 4.77e-04 3.79e-04 3.02e-04

ρ

Mean 0.247 0.255 0.277 0.257 0.271

Median 0.228 0.253 0.276 0.254 0.265

MAD 0.099 0.010 0.019 0.039 0.038

MAE 0.066 0.008 0.031 0.032 0.027

λ

Mean 0.502 0.007 0.431 0.504 0.493

Median 0.498 0.005 0.460 0.487 0.490

MAD 0.017 0.008 0.171 0.092 0.136

MAE 0.017 0.493 0.162 0.071 0.087

Real (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.25,0.75,0.05)

m
0

Mean 1.387 1.352 1.413 1.371 1.394

Median 1.390 1.351 1.414 1.367 1.398

MAD 0.019 0.015 0.022 0.041 0.044

MAE 0.019 0.048 0.034 0.041 0.035

σ
0

Mean 1.99e-02 2.23e-02 2.08e-02 2.03e-02 2.01e-02

Median 2.00e-02 2.23e-02 2.06e-02 2.04e-02 2.01e-02

MAD 1.10e-03 5.53e-05 7.91e-04 5.61e-04 6.05e-04

MAE 7.81e-04 2.33e-03 9.45e-04 5.83e-04 4.10e-04

ρ

Mean 0.246 0.256 0.264 0.234 0.249

Median 0.236 0.254 0.279 0.237 0.250

MAD 0.100 0.009 0.026 0.074 0.043

MAE 0.068 0.009 0.065 0.047 0.038

λ

Mean 0.751 0.011 0.449 0.736 0.733

Median 0.746 0.008 0.485 0.718 0.729

MAD 0.020 0.012 0.231 0.055 0.072

MAE 0.020 0.739 0.339 0.057 0.070

Table 3.18: Three groups of estimation/calibration experiment’s distribution for three λ = 0.25,0.5,0.75 and

AMSM1 model. Each group based on asset returns (LR ), options prices (WRSS) and mixed returns/options

(LM ) data. θr eal = (m0;σ0;ρ) = (1.4;0.02;0.25), (λ;ν) = (0.25,0.5,0.75;0.05).
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LR WRSS WRSS LM LM

Metrics T = 30 T = 30−90 T = 30 T = 30−90

Real (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.01,0.25,0.05)

m
0

Mean 1.389 1.398 1.415 1.377 1.394

Median 1.384 1.399 1.414 1.372 1.385

MAD 0.022 0.015 0.016 0.030 0.026

MAE 0.021 0.012 0.016 0.039 0.030
σ

0
Mean 2.00e-02 2.07e-02 1.99e-02 2.01e-02 1.99e-02

Median 1.99e-02 2.07e-02 2.06e-02 2.02e-02 2.02e-02

MAD 6.78e-04 5.44e-05 1.27e-04 3.03e-04 3.96e-04

MAE 7.72e-04 6.91e-04 1.03e-03 3.65e-04 4.66e-04

ρ

Mean 0.010 0.010 0.012 0.009 0.011

Median 0.009 0.010 0.012 0.009 0.011

MAD 0.002 0.001 0.001 0.001 0.001

MAE 0.001 0.001 0.002 0.002 0.002

λ

Mean 0.250 0.005 0.232 0.217 0.239

Median 0.252 0.000 0.003 0.209 0.173

MAD 0.029 0.000 0.004 0.095 0.107

MAE 0.020 0.245 0.329 0.090 0.113

Real (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.01,0.5,0.05)

m
0

Mean 1.389 1.396 1.416 1.366 1.362

Median 1.388 1.395 1.412 1.363 1.367

MAD 0.026 0.017 0.014 0.020 0.043

MAE 0.022 0.014 0.016 0.037 0.048

σ
0

Mean 1.99e-02 2.14e-02 2.07e-02 2.02e-02 2.03e-02

Median 2.00e-02 2.14e-02 2.13e-02 2.03e-02 2.03e-02

MAD 1.01e-03 4.92e-05 1.49e-04 3.87e-04 3.38e-04

MAE 9.01e-04 1.43e-03 1.32e-03 4.04e-04 4.12e-04

ρ

Mean 0.009 0.010 0.012 0.008 0.009

Median 0.009 0.010 0.012 0.007 0.009

MAD 0.001 0.001 0.001 0.002 0.002

MAE 0.001 0.001 0.002 0.002 0.002

λ

Mean 0.503 0.002 0.201 0.512 0.473

Median 0.503 0.000 0.027 0.509 0.492

MAD 0.024 0.000 0.040 0.068 0.063

MAE 0.020 0.498 0.451 0.058 0.060

Real (m0,σ0,ρ,λ,ν) = (1.4,0.02,0.01,0.75,0.05)

m
0

Mean 1.394 1.392 1.418 1.352 1.351

Median 1.387 1.391 1.415 1.352 1.344

MAD 0.020 0.017 0.015 0.021 0.025

MAE 0.021 0.015 0.019 0.048 0.049

σ
0

Mean 2.03e-02 2.21e-02 2.11e-02 2.08e-02 2.09e-02

Median 2.00e-02 2.21e-02 2.20e-02 2.09e-02 2.08e-02

MAD 1.39e-03 4.49e-05 2.73e-04 3.64e-04 3.05e-04

MAE 1.20e-03 2.14e-03 1.74e-03 8.24e-04 8.98e-04

ρ

Mean 0.008 0.010 0.012 0.007 0.007

Median 0.008 0.009 0.012 0.007 0.007

MAD 0.001 0.001 0.001 0.002 0.002

MAE 0.002 0.001 0.002 0.003 0.003

λ

Mean 0.746 0.010 0.293 0.694 0.702

Median 0.736 0.001 0.039 0.707 0.718

MAD 0.021 0.001 0.057 0.070 0.083

MAE 0.027 0.740 0.573 0.076 0.080

Table 3.19: Three groups of estimation/calibration experiment’s distribution for three λ = 0.25,0.5,0.75 and

AMSM2 model. Each group based on asset returns (LR ), options prices (WRSS) and mixed returns/options

(LM ) data. θr eal = (m0;σ0;ρ) = (1.4;0.02;0.01), (λ;ν) = (0.25,0.5,0.75;0.05).
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Moneyness Maturity m0 σ0 ρ λ ν WRSS

AMSM1

ITM SR 1.7187 0.0110 2.7675 -0.8300 1.0427 0.0005

ITM MR 1.8484 0.0096 4.0818 0.0741 -0.9103 0.0000

ITM LR 1.6642 0.0212 0.1881 -1.8684 -1.9118 0.0521

ATM SR 1.4049 0.0053 4.9367 -0.2814 1.5187 0.1253

ATM MR 1.5427 0.0126 1.1789 -1.9416 1.7478 0.0340

ATM LR 1.5592 0.0127 1.1536 0.0495 -1.4741 0.0845

OTM SR 1.3150 0.0115 2.4397 -1.5840 1.9484 0.4698

OTM MR 1.3508 0.0087 3.9341 -0.9220 1.7293 0.0819

OTM LR 1.0970 0.0059 3.9721 0.1575 0.8243 0.0880

AMSM2

ITM SR 1.6575 0.0201 0.0652 -0.8723 -0.3984 0.0013

ITM MR 1.6166 0.0366 0.0732 -1.9970 -0.1533 0.0000

ITM LR 1.5168 0.0140 0.0018 1.0877 -1.7085 0.0499

ATM SR 1.2303 0.0048 0.0220 -0.9640 1.5861 0.1837

ATM MR 1.0577 0.0112 0.0452 -1.2724 0.9699 0.0578

ATM LR 1.3544 0.0032 0.0637 -1.8556 -1.0226 0.0851

OTM SR 1.0594 0.0083 0.0410 -0.8636 -0.1146 0.4064

OTM MR 1.0565 0.0171 0.0348 -1.8285 -0.6712 0.0962

OTM LR 1.0915 0.0011 0.0405 0.5522 -0.1639 0.0796

Table 3.21: Optimal estimates obtained by the calibration based on real market options prices using ASA

optimization method.

Hist.horizon m0 σ0 ρ λ ν Likelihood

AMSM1

90 1.1372 0.0103 47.4035 -0.0770 1.4103 306.7150

180 1.1955 0.0097 44.2026 -0.0898 -0.9302 622.1550

360 1.2872 0.0074 0.7027 0.0009 -1.1876 1283.3400

720 1.3162 0.0099 0.6828 0.0121 0.5399 2376.2100

1080 1.2943 0.0100 0.7546 0.0063 0.9240 3456.3700

AMSM2

90 1.2137 0.0083 0.0039 0.0205 0.1147 305.8210

180 1.2348 0.0079 0.0045 -0.0459 -0.7980 618.4520

360 1.2770 0.0074 0.0042 0.0077 -0.0873 1279.9900

720 1.3164 0.0106 0.0051 0.0191 1.9538 2368.9800

1080 1.3019 0.0108 0.0056 0.0127 -0.2157 3445.7600

Table 3.22: Optimal estimates obtained by the estimation of asset prices using maximization of likelihood LR

with ASA optimization method.
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Moneyness Maturity Hist.horizon m0 σ0 ρ λ ν Likelihood

AMSM1

ITM SR 360 1.3375 0.0118 0.9682 -0.0186 -0.5541 1383.0100

ITM MR 360 1.2854 0.0086 0.9052 -0.0622 0.1186 1324.3500

ITM LR 180 1.2757 0.0077 0.9833 -0.0646 -1.9829 672.7520

ATM SR 360 1.2510 0.0055 6.6845 0.0534 1.2139 1338.6800

ATM MR 360 1.2420 0.0067 3.2521 0.0241 0.5784 1345.2100

ATM LR 180 1.2795 0.0094 0.8531 -0.0750 -1.4864 680.3000

OTM SR 360 1.3027 0.0073 0.7187 -0.0352 -0.2304 1330.8300

OTM MR 360 1.2603 0.0070 1.5579 0.0403 -0.1101 1306.9500

OTM LR 180 1.2259 0.0071 1.6467 -0.0872 -0.1455 686.3250

AMSM2

ITM SR 360 1.4245 0.0160 0.0063 0.0190 -0.7765 1380.0300

ITM MR 180 1.3412 0.0137 0.0054 -0.0437 -0.6019 657.3530

ITM LR 180 1.2299 0.0078 0.0042 -0.0312 -1.7680 671.0360

ATM SR 360 1.2636 0.0056 0.0057 0.0106 0.3300 1327.5000

ATM MR 180 1.2075 0.0082 0.0059 -0.0854 -0.0961 677.4850

ATM LR 180 1.2727 0.0103 0.0054 -0.0415 -0.9135 678.6030

OTM SR 360 1.2813 0.0060 0.0040 0.0063 0.0787 1326.8900

OTM MR 180 1.1965 0.0064 0.0048 -0.0451 0.1296 639.8590

OTM LR 180 1.1210 0.0073 0.0044 -0.0415 -0.3502 680.6250

Table 3.23: Optimal estimates obtained by the estimation of real market asset returns and options prices using

maximization of likelihood LM with ASA optimization method.
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Maturity Moneyness AMSM1 AMSM2 Ad-Hoc BS

In-sample

ITM 0.00 0.00 0.00 0.03

Short-run ATM 0.13 0.18 0.15 1.52

OTM 0.47 0.41 1.40 9.06

ITM 0.00 0.00 0.00 0.00

Mid-run ATM 0.05 0.07 0.02 0.26

OTM 0.08 0.10 0.00 0.44

ITM 0.05 0.05 0.03 0.28

Long-run ATM 0.08 0.09 0.09 3.99

OTM 0.09 0.08 0.08 0.20

2 weeks out-of-sample

ITM 0.10 0.09 0.06 0.16

Short-run ATM 2.33 2.66 1.14 0.34

OTM 13.46 14.93 16.20 68.91

ITM 0.05 0.03 0.03 0.03

Mid-run ATM 0.86 0.55 0.33 0.17

OTM 3.16 3.39 1.47 1.32

ITM 0.09 0.09 0.10 0.37

Long-run ATM 0.32 0.33 0.48 7.91

OTM 0.48 0.45 0.66 0.25

4 weeks out-of-sample

ITM 0.01 0.01 0.00 0.02

Short-run ATM 0.73 0.75 0.12 3.07

OTM 2.82 3.20 3.44 1.53

ITM 0.38 0.03 0.00 0.03

Mid-run ATM 0.06 0.17 0.01 0.50

OTM 0.29 0.25 0.04 0.98

ITM 0.05 0.04 0.03 0.27

Long-run ATM 0.10 0.09 0.12 5.27

OTM 0.11 0.10 0.11 0.11

Table 3.24: Weighted Residual Sum of Squares values of theoretical options prices obtained by the calibra-

tion (ASA method) based on the options chains with various maturities and moneyness, two optimization

methods: Levenberg-Marquardt algorithm and Adaptive Simulated Annealing.
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Maturity Moneyness AMSM1 AMSM2 Ad-Hoc BS

In-sample

ITM 0.00 0.00 0.00 0.03

Short-run ATM 0.16 0.23 0.15 1.52

OTM 0.99 13.88 1.40 9.06

ITM 0.00 0.00 0.00 0.00

Mid-run ATM 0.06 0.08 0.02 0.26

OTM 0.20 0.17 0.00 0.44

ITM 0.05 0.05 0.03 0.28

Long-run ATM 0.08 0.09 0.09 3.99

OTM 0.09 0.09 0.08 0.20

2 weeks out-of-sample

ITM 0.10 0.08 0.06 0.16

Short-run ATM 2.92 2.29 1.14 0.34

OTM 17.55 5.90 16.20 68.91

ITM 0.03 0.04 0.03 0.03

Mid-run ATM 0.48 0.55 0.33 0.17

OTM 3.87 4.34 1.47 1.32

ITM 0.09 0.09 0.10 0.37

Long-run ATM 0.33 0.33 0.48 7.91

OTM 0.49 0.46 0.66 0.25

4 weeks out-of-sample

ITM 0.01 0.02 0.00 0.02

Short-run ATM 13.44 0.74 0.12 3.07

OTM 3.50 9.16 3.44 1.53

ITM 0.01 0.01 0.00 0.03

Mid-run ATM 0.11 0.19 0.01 0.50

OTM 0.51 0.36 0.04 0.98

ITM 0.05 0.05 0.03 0.27

Long-run ATM 0.10 0.10 0.12 5.27

OTM 0.11 0.11 0.11 0.11

Table 3.25: Weighted Residual Sum of Squared values of theoretical options prices obtained by the calibration

based on the options chains with various maturities and moneyness, two optimization methods: Levenberg-

Marquardt algorithm and Adaptive Simulated Annealing.
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Maturity Moneyness AMSM1 AMSM2 Ad-Hoc BS

In-sample

ITM 0.01 0.00 0.00 0.03

Short-run ATM 0.24 0.54 0.15 1.52

OTM 0.96 0.95 1.40 9.06

ITM 0.00 0.00 0.00 0.00

Mid-run ATM 0.08 0.12 0.02 0.26

OTM 0.13 0.21 0.00 0.44

ITM 0.08 0.07 0.03 0.28

Long-run ATM 0.10 0.09 0.09 3.99

OTM 0.10 0.11 0.08 0.20

2 weeks out-of-sample

ITM 0.09 0.09 0.06 0.16

Short-run ATM 1.82 2.04 1.14 0.34

OTM 14.98 19.38 16.20 68.91

ITM 0.03 0.04 0.03 0.03

Mid-run ATM 0.63 0.63 0.33 0.17

OTM 3.81 4.11 1.47 1.32

ITM 0.09 0.08 0.10 0.37

Long-run ATM 0.29 0.31 0.48 7.91

OTM 0.54 0.60 0.66 0.25

4 weeks out-of-sample

ITM 0.02 0.01 0.00 0.02

Short-run ATM 0.97 1.08 0.12 3.07

OTM 3.85 3.60 3.44 1.53

ITM 0.02 0.02 0.00 0.03

Mid-run ATM 0.10 0.17 0.01 0.50

OTM 0.34 0.54 0.04 0.98

ITM 0.07 0.06 0.03 0.27

Long-run ATM 0.11 0.10 0.12 5.27

OTM 0.13 0.14 0.11 0.11

Table 3.26: Weighted Residual Sum of Squares values of theoretical options prices obtained by LM -MLE esti-

mation (ASA method) based on the options chains with various maturities and moneyness, Adaptive Simu-

lated Annealing is used as an optimization method.
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Maturity Moneyness AMSM1 AMSM2 HN BS

In-sample

ITM 0.33 0.16 0.10 0.03

Short-run ATM 2.68 0.98 3.42 1.52

OTM 9.99 28.47 172.93 9.06

ITM 0.30 0.24 0.04 0.00

Mid-run ATM 3.35 2.16 4.55 0.26

OTM 4.57 2.30 55.86 0.44

ITM 3.60 0.08 0.86 0.28

Long-run ATM 6.94 0.82 0.86 3.99

OTM 21.02 3.28 1.57 0.20

2 weeks out-of-sample

ITM 0.04 0.00 0.00 0.16

Short-run ATM 0.91 2.97 9.27 0.34

OTM 1.24 145.75 528.07 68.91

ITM 0.09 0.06 0.14 0.03

Mid-run ATM 2.07 1.02 10.49 0.17

OTM 3.91 0.98 259.50 1.32

ITM 3.37 0.06 0.97 0.37

Long-run ATM 12.86 0.49 2.20 7.91

OTM 34.70 2.27 4.11 0.25

4 weeks out-of-sample

ITM 0.32 0.19 0.14 0.02

Short-run ATM 4.54 0.76 0.57 3.07

OTM 12.08 5.21 54.27 1.53

ITM 0.52 0.43 0.02 0.03

Mid-run ATM 3.61 2.43 2.50 0.50

OTM 8.71 4.23 145.50 0.98

ITM 3.11 0.06 0.78 0.27

Long-run ATM 8.87 0.68 1.28 5.27

OTM 23.46 2.56 2.10 0.11

Table 3.27: Weighted Residual Sum of Squares values of theoretical options prices obtained by LR -MLE esti-

mation (ASA method) based on the options chains with various maturities and moneyness, Adaptive Simu-

lated Annealing is used as an optimization method.



4
Conclusions

This dissertation presents two very different models, but both are related to economical
business cycles. The first model is the agents-based model (ABM) adopting continuous-
time Markov chain (CTMC) with finite space state as a mathematical basis for describing
experts’ sentiments dynamics. Three approaches for estimation of this model have been
developed:

1. The first approach is the EM algorithm. The estimates obtained using this approach
have good quality in terms of standard deviation and root-mean square errors, es-
pecially for the estimates of parameters α0 and α1 (confirmed by Table 2.3), at least
for the considered model versions with the number of agents N ≤ 25. For relative
standard errors, the method’s estimates are also very satisfactory. The main limita-
tion of the first approach is that it is characterized by high computational demand,
which makes estimation of the model for a number of agents around 25 take quite a
long time (around 20 minutes). In order to overcome this problem, parallel computa-
tion or another technique could be applied, nevertheless, the first method seems to
be numerically inefficient for ABM model versions with a number of agents N more
than around 10. This is due to a high level of recursion and because of the necessity
of numerical maximization, which greatly increases computational efforts.

2. The second method, based on numerical computation of transition probabilities,
and which could be denoted "eigendecomposition approach", was shown to be very
similar to the EM algorithm in quality of estimates for precision and accuracy. That
was predicted by the theory of EM algorithms. So, the estimates made by the second
method have almost the same standard deviation and root-mean square errors as the
EM algorithm for the same model versions. The advantage of the second method is a
lower computational cost in comparison with the EM algorithm. This makes it pos-
sible to estimate the model in a quicker manner for the same range of N . As a more
computationally efficient alternative, the second estimation approach was proposed,
but it also has limitations. At the heart of the first and second approaches is incor-
porated the eigendecomposition of the intensity rates matrix Q. This decomposition
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is unstable for large N (more than 30), while a robust method of estimation for N
more than 200 is required for many real-world sentiment-based processes. The rea-
son for the instability of the eigendecomposition of Q, is that the intensity matrix Q is
a "nearly" defective matrix. Another possible reason is the "nearly" confluence eigen-
values of the matrix Q. There is also another less significant complication with this
approach: an analysis of the estimation results revealed the problem of underestima-
tion of the parameter α1 that occurred with the growing of the constant N defining
the number of agent in particular model.

3. Finally, the third approach is based on another method of matrix exponential com-
putation suggested in Moler and Loan’s paper, namely the fact that the intensity ma-
trix is a lower Hessenberg matrix, moreover, it is a tridiagonal matrix. This fact, after
certain tricks have been applied, enables us to use the recursive procedure of matrix
exponential computation to take advantage of the tridiagonal construction of the in-
tensity rates matrix Q of CTMC process. As a result, a robust method for the ABM
model estimation was created in case a large number of agents, it could be denoted
as "lower Hessenberg matrix approach". The third method uses matrix exponen-
tial computation not in the same form as proposed the original one by Moler and
Loan, it has a higher computational cost, because of the use of an ordinary differ-
ential equation solver approximately (2N +1)/50-times for each matrix of transition
probabilities computation. Regardless, the method is quite fast (one estimation takes
around one minute for AB M −200); much faster than the pure method of matrix ex-
ponential computation based on ordinary differential equations (which requires to
run the o.d.e. solver of system of 2N +1 equations 2N +1 times). In other words, the
pure method of matrix exponential computation based on the ordinary differential
equation is not that computationally efficient compared to the presented one and
does not incorporate the special structure of the intensity rate matrix. In addition,
the same issue, which was revealed for the second method in terms of precision and
accuracy of estimates, was also obtained by the third method: an increase of biases
with the growth in the number of agents N . As it was established during this work,
this effect is caused by insufficiency of data, but it was shown that the biases vanish
with an increase of sample size. So, there is a trade-off between the assumption on
the model defining constant of the number of agents N and the sample size influ-
encing the quality of estimates. Therefore, the important result is that the suggested
third method enables us to estimate the model in a robust and quite fast manner for
N equal to more than 350 at least, but such a number of agents N would require a
long data sample.

As mentioned earlier, T.Lux [66] considered the same model, but his approach is based
on the parabolic partial differential equation (Fokker-Plank equation), which defines the
approximation of transient densities. Then the author uses the numerical solution of it
to construct the likelihood function approximation. So, it was possible to compare both
approaches and some discussion of this is provided. Summarizing, the method was used
for estimation of the ZEW index data sample (1991 to 2017). The estimates of the ZEW index
obtained by this method are similar to the ones in the alternative approach of T. Lux [66],
but they differ in estimation of time scale parameter due to a different time scale.

There are a few possible directions for a future research. In order to overcome the loss
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of significance effect, which is peculiar for the first and the second estimation approaches,
the special subroutines based on arbitrary-precision arithmetic rather than common fixed-
precision floating point arithmetic can be used. There are a few C++ libraries that can be
used, for example Boost (C++ libraries) Multiprecision Library [24], but in general this way
seems to be computationally expensive and complicated to apply. Also, there are a few
other methods of matrix exponential computations in Moler and Loan’s review [72] that
used to be quite robust and computationally effective. For example, the method based
on QR-decomposition, the so-called "scaling and squaring" method, the method based on
Pade-approximation, or the method of matrix multiplication (which is potentially fast in
combination with parallel computations on CPU or GPU).

Summing up for the first project of the dissertation, the three presented estimation ap-
proaches for the agent-based model of sentiment dynamics, namely the EM algorithm,
"eigendecomposition" and "lower Hessenberg matrix" approaches, allow us to estimate
the model with the same quality. The first two have limitations on the number of agents in
the model, plus the EM algorithm is less computationally efficient and more difficult to im-
plement. Comparing the second and third approaches, the eigendecomposition method is
easier to implement (it is a well-known procedure included in many software and math-
ematical packages), and it is quite fast. The lower Hessenberg matrix approach with a
modification has higher computation stability, allowing it to estimate ABM models with
a larger number of agents, which is complemented with good computation efficiency, but
it requires a bit more efforts to programme it.

The second project of the dissertation is dedicated to the theoretical basis, estimation
techniques and goodness-of-fit of the model which belongs to the class of Markov Switch-
ing Multifractal models. One of the key features of the models in this class is an ability to
describe various economic and business cycles of different periodicity. During this work
the new modification of the original Markov-Switching Multifractal model of Calvet and
Fisher was developed, and it is aimed at incorporation of a leverage effect stylized fact in
the model. This model, called an Asymmetric Markov-Switching Multifrequency model,
was formulated in two versions, the new one denoted in the text as AMSM2 model and
Leövey’s modification [59] denoted as AMSM1 model in the text. In this dissertation, in or-
der to guarantee the properties of the original MSM model were preserved, a few lemmas
and a few theorems were developed and proved. Namely, these theorems prove a mean-
reversion property, a long memory of volatility and a leverage effect property, pivotal for
this research for both versions of the AMSM model.

Another group of formulated and proven theorems in this dissertation was dedicated
to providing a theoretical basis of option pricing with the AMSM model (both versions).
First of all, the stochastic discount factor adopted from Duan’s approach of GARCH option
pricing gave us an economical sense of switch between physical and risk-neutral measures
in terms of utility function. Besides, this approach allowed us to construct the Local Risk-
Neutral Valuation Relation (LRNVR) measure for the AMSM model. As a final theoretical
result, it was proved that this measure is a martingale measure in the case of AMSM model
(both versions). The LRNVR measure allowed to define an option price as a mathematical
expectation with respect to it. This expectation has no a closed-form solution only the
numerical one in the case of both AMSM model versions. The lack of a closed-form solution
for an option price leads to the use of the Monte Carlo method.

To provide the ability of practical application of the AMSM model, the technique of
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the model parameters’ estimation is necessary. Three estimation approaches of AMSM
model parameters were proposed in this research for both model versions. The first one
is the calibration of the model on real market option prices data. Another two approaches
maximize the likelihood functions constructed on underlying asset returns only, or both
asset returns and real market options prices. The resolution of many uncertainties took a
lot of effort during the estimation stage: two model versions, two optimization methods
of likelihood function maximization and loss function minimization, two kinds of random
numbers for Monte Carlo sample paths simulations and three kinds of datasets (historical
returns, real market option prices or both). The quantitative stage of this work was aimed
at revealing the best combination of these factors and their impact, but let us summarize it
step-by-step.

The first estimation approach is aimed at minimization of the weighted sum of squared
residual between a real market or artificially simulated1 cross-section of option prices and
their theoretical counterparts calculated using the AMSM model. This approach is known
also as calibration. The calibration experiments on synthetic option prices data estab-
lished, that the cross-sections of options with multiple maturities are significantly more
efficient for the calibration of AMSM model than the cross-section with the only one ma-
turity. In particular, the calibration procedure based on the ASA optimization method pro-
vides the best results in the sense of accuracy and precision in the case of the AMSM1 model
version, while the procedure based on the Levenberg-Marquardt algorithm has vast superi-
ority over the one based on Adaptive Simulated Annealing in the case of the AMSM2 model
version. The comparison of AMSM model parameters calibration results for two versions of
AMSM model revealed that the AMSM1 model version is significantly less robust; it is more
noisy and biased in general. Thus, the AMSM2 model variant and its calibration appeared
to be more promising during the simulation stage for practical implementation with a real
market data.

The equity unit-risk premium (EURP)2 is considered an exogenous parameter in the
calibration procedure, while the second and the third approaches jointly estimate both,
the AMSM model parameters and EURP. The underlying asset log-returns data was used to
enhance the estimation procedure. It is important to note, that an estimation of ERP is con-
sidered to be a tricky and controversial task in the literature. In order to solve this estima-
tion problem, two likelihood functions were constructed. The construction of the first one
is based on only historical log-returns data. It establishes the second AMSM model estima-
tion approach via a maximization of this likelihood with respect to the model parameters
(MLE method). The third suggested approach adds the second component incorporating
real market options prices data to this likelihood function. As a result, the procedure of
maximization of this two-component likelihood function establishes the third estimation
approach.

During the simulation and estimation experiments with the second approach, it was
revealed that the second estimation approach is adequate with an estimation of the AMSM

1In this case the couples of option prices are calculated with the AMSM model but using different seeds for the

Monte Carlo method. The first price in any of these couple is calculated with the predefined parameters of

the AMSM model, while the parameters necessary to calculate the second one are assumed to be unknown

and be the subject of a calibration procedure.
2The equity risk premium is assumed to be the product of the volatility and the equity unit-risk premium in

the AMSM model.
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model parameters and equity unit-risk premium; the most difficult for estimation by this
approach is the leverage parameter. The MLE based on the likelihood constructed over
log-returns and option prices datasets has turned out to be a good trade-off in the sense of
accuracy and precision of the estimates of the model parameters and ERP for the AMSM1
model. At the same time, the best quality of estimates on artificial data over all combina-
tions of optimization methods and model versions was achieved for the MLE based on the
likelihood constructed over log-returns only and AMSM2 model version, at least for esti-
mation of the crucial terms of the model: leverage effect parameter and the equity unit-risk
premium.

The implementation of all three estimation approaches was tested by the out-of-sample
performance of options pricing using the same methodology and data in order to obtain
comparable results. The difference is in the benchmark model used for the second ap-
proach. Namely, the Heston-Nandi closed-form option valuation solution has been used
as a benchmark; as is the second approach, this solution is based on only underlying asset
returns, which makes the comparison more valid. As a result, the superiority of evaluation
based on the AMSM model was established. The results of the implementation of the other
two approaches are less straightforward. The first approach (calibration on the real market
option prices) turned out to be superior in the sense of out-of-sample performance of op-
tion pricing over the benchmark Ad-Hoc model, at least for long-run option pricing. This is
logical in the sense of the theoretical properties of the AMSM model, in particular, its long
memory, leverage effect and the multifrequency properties of the volatility component of
the AMSM model. In general, the third estimation approach, despite being quite robust
during the simulations, did not provide advantages over the first approach in the sense of
out-of-sample performance and settings used, but it allows to estimate EURP jointly with
the model parameters.

There are a few options for further research directions. During the simulations stage, a
tightσ0 and ρ connection was revealed, thus the model could incorporate this fact in order
to decrease the number of parameters. This could make the model parameters estimation
easier and more straightforward. An estimation of the equity and variance risk premium
by sequential estimation approaches in Section 3.5.1 are another point of further research,
but it still could be better to assume the risk premiums as endogenous parameters in order
to increase robustness of the calibration and estimation procedures of the AMSM model.



A
Appendices

A.1. Proof of Theorem 1 known as Kolmogorov’s theorem.
Proof. The formal definition of non-successive transition from any state i at time s to any

other state j (see Figure 2.1), taking into account Markov property of X, is given by

P X
i j (t ) = P

(
Xs+t = j

N

∣∣∣Xs = i

N

)
= P

(
X t = j

N

∣∣∣X0 = i

N

)
.

If there is an intermediate moment of time τ< t during a transition from i to j , then due to

the Chapman-Kolmogorov equation

P X
i j (t ) = P

(
X t = j /N

∣∣∣X0 = i /N
)
= ∑

k∈I
P X

i k (τ)P X
k j (t −τ). (A.1)

The probability of two transitions during time interval (τ, t ] is negligible for a suffi-

ciently close τ and t , then the probability of not necessary successive transition P X
i j (t −τ)

and the probability P Y
i j (t −τ) of successive transition within time not greater than t −τ (see

Definition 2.5) are equal. Since, t −τ is small, then the Taylor series expansion ("T.exp.") of

exponential function allows us to yield the following result

P X
i j (t −τ) = P Y

i j (t −τ)

= [
1−exp(−qi (t −τ))

]
P e

i j

T.exp.= qi P e
i j (t −τ)+o(t −τ),

= qi j (t −τ)+o(t −τ),

P X
i i (t −τ) = 1− ∑

i 6= j
P X

i j (t −τ)

= 1− (t −τ)
∑
i 6= j

qi j +o(t −τ)

= 1− (t −τ)qi +o(t −τ),
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if to substitute these expressions into Chapman-Kolmogorov equation (A.1)

P X
i j (t ) = P X

i j (τ)
(
1− (t −τ)q j

)+ ∑
k 6= j

P X
i k (τ)qk j (t −τ)+o(t −τ), (A.2)

after some algebra

P X
i j (t )−P X

i j (τ)

t −τ = ∑
k 6= j

P X
i k (τ)qk j −P X

i j (τ)q j +o(t −τ).

Then, taking the limit τ→ t , the equation known as the Kolmogorov forward equations for

continuous-time Markov processes is turned out

dP X
i j (t )

d t
= ∑

k 6= j

(
P X

i k (t )qk j
)−P X

i j (t )q j .

This equation is known as the Master equation in the case of jump processes, while it is

known as the Fokker-Plank equation in the case of diffusion processes.

There is also a matrix form of the forward Kolmogorov equations

dP X (t )

d t
= P X (t )Q,

where Q is a matrix of intensity rates qi j .

Note, if we assume that the time interval τ to be small enough and consists of not more

than one transition, then the Taylor expansion can be used for an approximation of prob-

abilities P X
i j (τ) in the right hand side term of the Chapman-Kolmogorov expression (A.1),

which gives us

P X
i j (t ) = (

1−τqi
)

P X
i j (t −τ)+ ∑

k 6= j
qi kτP X

k j (t −τ)+o(τ),

after some algebra

P X
i j (t )−P X

i j (t −τ)

τ
= ∑

k 6= j
qi k P X

k j (t −τ)−qi P X
i j (t −τ)+o(τ).

Then taking the limit τ→ 0, the equations known as the Kolmogorov backward equations

for continuous-time Markov processes are derived, that is

dP X
i j (t )

d t
= ∑

k 6= j

(
qi k P X

k j (t )
)
−qi P X

i j (t ),

or in the matrix form

dP X (t )

d t
=QP X (t ),

where Q is a matrix of intensity rates qi j .
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A.2. Proof of Lemma 1.
Proof.

f Y
i , j (x)

de f=
dP Y

i j (x)

d x

= P e
i j

dPU
i (x)

d x

= P e
i j

d

d x
(1−exp(−qi x))

= P e
i j qi exp(−qi x).

A.3. Proof of Theorem 2.
Proof. According to definitions of likelihood and probability density functions

Lc (θ|x)
de f=

M−1∏
k=0

f Y
XSk

XSk+1
(Uk+1) (A.3)

(2.20)=
M−1∏
k=0

P e
XSk

XSk+1

[
qXSk

exp(−qXSk
Uk+1)

]
(A.4)

=
[

M−1∏
k=0

P e
XSk

XSk+1
qXSk

][
M−1∏
k=0

exp(−qXSk
Uk+1)

]
, (A.5)

where S0 < . . . < Sk < . . . < T are moments of time when transitions occur in the data sample

x, XSk is a state of X at time Sk , while Uk = Sk −Sk−1.

Further, it is more convenient to consider the two multipliers in the brackets (A.5) sep-

arately. The idea is to proceed from the products with respect to the process X succes-

sive states at transition times Sk to products based on counting of each kind of transitions

Ni j (T ) and time spend in each state Ri (T ). The first multiplier in (A.5) can be expressed as

M−1∏
k=0

P e
XSk

XSk+1
qXSk

(2.7)=
M−1∏
k=0

qXSk
XSk+1

=
N∏

i=−N

∏
j 6=i

q
Ni j (T )
i j ,
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while the second multiplier in (A.5) is transformed as

M−1∏
k=0

exp(−qXSk
Uk+1) = exp

(
−

M−1∑
k=0

qSkUk+1

)
(2.19)= exp

(
−

N∑
i=−N

qi Ri (T )

)

=
N∏

i=−N
exp(−qi Ri (T ))

(2.8)=
N∏

i=−N
exp

(
−Ri (T )

∑
j 6=i

qi j

)

=
N∏

i=−N

∏
j 6=i

exp(−qi j Ri (T )).

Combining the former results

Lc (θ|x) =
[

N∏
i=−N

∏
j 6=i

q
Ni j (T )
i j

][
N∏

i=−N

∏
j 6=i

exp(−qi j Ri (T ))

]

=
N∏

i=−N

∏
j 6=i

q
Ni j (T )
i j exp(−qi , j Ri (T )).

A.4. Proof of Corollary 3.
Proof. The proof1 begins with the definition of likelihood function given in Theorem 2

l c (θ|x)
T hm.2= log

(
N∏

i=−N

∏
j 6=i

q
Ni j

i j (θ)exp
(−qi j (θ)Ri

))

= log

(
N∏

i=−N
q Ni i+1

i i+1 (θ)q Ni i−1
i i−1 (θ)exp

(−[qi i+1(θ)+qi i−1(θ)]Ri
))

=
N∑

i=−N

[
Ni i+1 log(qi i+1(θ))+Ni i−1 log(qi i−1(θ))− [qi i+1(θ)+qi i−1(θ)]Ri

]
.

=
N∑

i=−N

[
(Ni i+1 +Ni i−1) log(ν)+ (Ni i+1 −Ni i−1)

(
α0 +α1

i

N

)]
−

N∑
i=−N

[
νRi

(
exp

(
α0 +α1

i

N

)
+exp

(
−α0 −α1

i

N

))]
.

1The holding times Ri (T ) are reduced to Ri for simplicity of denotations in this proof.
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Next, the partial derivatives with respect to all parameters θ = (ν,α0,α1) are

δl c (θ|x)

δν
=

N∑
i=−N

[
(Ni i+1 +Ni i−1)

1

ν
−Ri

(
exp

(
α0 +α1

i

N

)
+exp

(
−α0 −α1

i

N

))]
= 0,

δl c (θ|x)

δα0
=

N∑
i=−N

[
(Ni i+1 −Ni i−1)−νRi

(
exp

(
α0 +α1

i

N

)
−exp

(
−α0 −α1

i

N

))]
= 0,

δl c (θ|x)

δα1
=

N∑
i=−N

i

N

[
(Ni i+1 −Ni i−1)−νRi

(
exp

(
α0 +α1

i

N

)
−exp

(
−α0 −α1

i

N

))]
= 0.

A.5. Proof of Theorem 5.
Proof. The idea of the proof is based on Propositions 3.6, 3.7 in the book of P. Guttorp [41]

for the case of unconditional expectations.

Assume the process X was continuously observed until time t and we have complete

data about its behavior, in particular, the number of its transitions Ni j (t ) from all combi-

nations of states i and j and time periods it spent in each state Ri (t ).

It is possible to split the observation interval [0, t ] into subintervals such that no more

than one transition occurs per each segment. More formally, let us divide [0, t ] into D

subintervals [(r −1)h,r h], r = 1, . . . ,D , where the number of transitions from i to j in seg-

ment r is denoted as nr (i , j ), therefore Ni j (t ) = ∑D
r=1 nr (i , j ). Next, h can be chosen small

enough to nr (i , j ) would take two values (0 or 1) almost surely, in other words with the

probability 1−o(h). Then, let us consider the probability of nr (i , j ) to be equal unity jointly

the fact that the process X initial state X0 = k and the final observed state X t = l . Therefore,

the process X was in arbitrary state a ∈ I in the beginning of the considered observation

segment r , then it transited to some arbitrary state b ∈ I , thus

P
(
nr (i , j ) = 1, X0 = k, X t = l

)=
= ∑

a,b∈I
P

(
nr (i , j ) = 1, X0 = k, X(r−1)h = a, Xr h = b, X t = l

)
.

(A.6)

The probability inside of the sum on the r.h.s. can be rearranged as a product of a few

probabilities due to the Markov property of X. The first one is the probability to transit

(likely through intermediate states) from k to a within comparably long time (r −1)h. This

probability is a solution of the Kolmogorov equation, namely the matrix exponential P X (·)
obtained in Theorem 1. The second one is a probability of transition during the small in-

terval indicated by nr (i , j ) = 1 in conjunction with the fact X(r−1)h = a and Xr h = b. The

final one is the probability of transition from b to l within long time t − r h which is also an
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element of matrix exponential P X (·). Therefore,

P
(
nr (i , j ) = 1, X0 = k, X(r−1)h = a, Xr h = b, X t = l

)=
= P X

k,a((r −1)h)P
(
nr (i , j ) = 1, X(r−1)h = a, Xr h = b

)
P X

b,l (t − r h).

The value of the central probability on the r.h.s. of the expression above depends on which

of two cases a 6= i , b 6= j or a = i , b = j occurred

P
(
nr (i , j ) = 1, X(r−1)h = a, Xr h = b

)={
P Y

a,i (h)P Y
i , j (h)P Y

j ,b(h)+o(h), if a 6= i , b 6= j ,

P Y
a,b(h)+o(h), if a = i , b = j

(A.7)

In the first case, it means we need to calculate the probability of three transitions (a →
i → j → b) during the time interval chosen to have only one transition almost surely. It is

possible to consider this probability as a product of separate probabilities2 to have three

successive transitions in time not greater than length of the interval h, denoted as P Y·,· (·)
(the difference between P X and P Y discussed earlier and visualized by Figure 2.9). The

calculations are similar to the proof of Theorem 1; it also uses Taylor expansion, denoted

as "T.exp." in the calculations below, of exponential function. So, the following holds in the

case a 6= i , b 6= j

P
(
nr (i , j ) = 1, X(r−1)h = a, Xr h = b

)= P Y
a,i (h)P Y

i , j (h)P Y
j ,b(h)+o(h)

= [
1−exp(−qah)

]
P e

ai

[
1−exp(−qi h)

]
P e

i j

[
1−exp(−q j h)

]
P e

j b +o(h)

T.exp.= [
qaP e

ai h +o(h)
][

qi P e
i j h +o(h)

][
q j P e

j bh +o(h)
]
+o(h),

= (
qai h +o(h)

)(
qi j h +o(h)

)(
q j bh +o(h)

)+o(h)

=O(h3) = o(h)

In the second case (a = i , b = j ), it is proven similarly

P
(
nr (i , j ) = 1, Xr h = j , X(r−1)h = i

)= qi j h +o(h).

It means that, in the sum (A.6) the unique term is not of order o(h), namely the term with

a = i ,b = j . Therefore,

P
(
nr (i , j ) = 1, X t = l , X0 = k

)
= P X

k,i ((r −1)h)P
(
nr (i , j ) = 1, Xr h = j , X(r−1)h = i

)
P X

j ,l (t − r h)+o(h)

= P X
k,i ((r −1)h)qi j hP X

j ,l (t − r h)+o(h).

2This probability is given in Definition 4.
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Going back to the main statement of the theorem, the following expectation should be cal-

culated

Eθ̂m
[Ni j (t )|X t = l , X0 = k] =

D∑
r=1

P
(
nr (i , j ) = 1

∣∣∣X t = l , X0 = k
)
+o(h)

=
D∑

r=1

P
(
nr (i , j ) = 1, X t = l , X0 = k

)
P (X t = l , X0 = k)

+o(h)

=
D∑

r=1

P
(
nr (i , j ) = 1, X t = l , X0 = k

)
P X

kl

(
t ; θ̂m

) +o(h)

where o(h) denotes negligible probability of other possible outcomes. Finally, we obtain

Eθ̂m
[Ni j (t )|X t = l , X0 = k] =

D∑
r=1

P X
k,i

(
(r −1)h; θ̂m

)
qi j

(
θ̂m

)
hP X

j ,l

(
t − r h; θ̂m

)
P X

kl

(
t ; θ̂m

) +o(h)

= qi j
(
θ̂m

)
P X

kl

(
t ; θ̂m

) D∑
r=1

P X
k,i

(
(r −1)h; θ̂m

)
hP X

j ,l

(
t − r h; θ̂m

)+o(h)

h→0→ qi j
(
θ̂m

)
P X

kl

(
t ; θ̂m

) ∫ t

0
P X

ki

(
s; θ̂m

)
P X

j l

(
t − s; θ̂m

)
d s.

The calculation of conditional expectation of Ri (t ) = ∫ t
0 I (Xu = i )du is significantly sim-

pler and based on the possibility to change the order of integration under certain condi-

tions (Fubini’s theorem). Further, the well-known fact that the mathematical expectation

of indicator function is equal to the probability distribution function is used. Thus,

Eθ̂m

[
Ri (t )

∣∣∣X t = l , X0 = k
]
= Eθ̂m

[∫ t

0
I (Xu = i )du

∣∣∣X t = l , X0 = k

]
=

∫ t

0
Eθ̂m

[
I (Xu = i )

∣∣∣X t = l , X0 = k
]

du

=
∫ t

0
Pθ̂m

(
Xu = i

∣∣∣X t = l , X0 = k
)

du

=
∫ t

0

Pθ̂m
(Xu = i , X t = l , X0 = k)

P (X t = l , X0 = k)
du

=
∫ t

0

Pθ̂m
(Xu = i , X t = l , X0 = k)

P X
kl (t )

du

=
∫ t

0

P X
k,i (u)P X

i ,l (t −u)

P X
kl (t )

du

= 1

P X
kl (t ; θ̂m)

∫ t

0
P X

ki (u; θ̂m)P X
i l (t −u; θ̂m)du,

where I (cond) is an indicator function taking value 1 if cond is true, otherwise 0.
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Finally, due to the Markov property of process X

Eθ̂m
[Ni j (T )|y] = ∑

k,l∈I
ckl Eθ̂m

[Ni j (∆t )|X∆t = l , X0 = k]

= ∑
k,l∈I

ckl qi j
(
θ̂m

)
P X

kl

(
t ; θ̂m

) ∫ t

0
P X

ki

(
s; θ̂m

)
P X

j l

(
t − s; θ̂m

)
d s

Eθ̂m
[R j (T )|y] = Eθ̂m

[R j (T )|X0 = y0, . . . , Xi∆t = yi , . . . , XT = yM ]

M .p.=
M∑

i=1
Eθ̂m

[R j (∆t )|X(i−1)∆t = yi−1, Xi∆t = yi ]

M .p.= ∑
k,l∈I

ckl Eθ̂m
[R j (∆t )|X∆t = l , X0 = k]

= ∑
k,l∈I

ckl

P X
kl (t ; θ̂m)

∫ t

0
P X

ki (u; θ̂m)P X
i l (t −u; θ̂m)du

A.6. Proof of Theorem 6.
Proof. Recall, Q3 is a tridiagonal matrix of intensity rates. For example, it is given for the

case N = 2 by

Q =



−q−2,−1 q−2,−1 0 0 0

q−1,−2 −(q−1,−2 +q−1,0) q−1,0 0 0

0 q0,−1 −(q0,−1 +q0,1) q0,1 0

0 0 q1,0 −(q1,0 +q1,2) q1,2

0 0 0 q2,1 −q2,1


Let us begin with the proof of matrix exponential property that follows from its Definition 6

tQ exp(tQ) = tQ

(
I + tQ

1!
+ t 2Q2

2!
+ t 3Q3

3!
+ . . .

)
= tQ + t 2QQ

1!
+ t 3QQ2

2!
+ t 4QQ3

3!
+ . . .

= tQ + t 2Q2

1!
+ t 3Q3

2!
+ t 4Q4

3!
+ . . .

= tQ + t 2QQ

1!
+ t 3Q2Q

2!
+ t 4Q3Q

3!
+ . . .

=
(

I + tQ

1!
+ t 2Q2

2!
+ t 3Q3

3!
+ . . .

)
tQ

= exp(tQ)tQ,

3Further, we will omit dependence Q on θ due to simplicity of writing.
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therefore

tQP X (t ) = tQ exp(tQ) = exp(tQ)tQ = P X (t )tQ.

Further, k-th columns of the l.h.s. and r.h.s. of the expression above4 are expressed as

[
Q exp(tQ)

]
•,k =


∑N

i=N q−N ,i P X
i ,k (t )

· · ·∑N
i=−N qN ,i P X

i ,k (t )

=


∑k+1

i=k−1 q−N ,i P X
i ,k (t )

· · ·∑k+1
i=k−1 qN ,i P X

i ,k (t )

=QP X
•,k (t ),

[
exp(tQ)Q

]
•,k =


∑N

i=N P X
−N ,i (t )qi ,k

· · ·∑N
i=−N P X

N ,i (t )qi ,k

=


∑k+1

i=k−1 P X
−N ,i (t )qi ,k

· · ·∑k+1
i=k−1 P X

N ,i (t )qi ,k

=
k+1∑

i=k−1
P•,i (t )qi ,k ,

where k ≥−N+1, P X
•,k is k-th column of the transition probability matrix P X (t ). As a result,

we obtain

k+1∑
i=k−1

P•,i (t )qi ,k =Q ·P X
•,k (t )

All the superdiagonal entries of Q are positive by definitions (see the expressions (2.11). We

can rewrite it after some algebra with respect to the (k −1)-th column of P X (t ) as

P X
•,k−1(t ;θ) = 1

qk−1,k (θ)

(
Q(θ)P X

•,k (t )−qk,k (θ)P X
•,k (t )−qk+1,k (θ)P X

•,k+1(t )
)

,

where k ∈ {−N +1, . . . , N }.

A.7. Affine-Jump Diffusion (AJD) processes in option pricing
Beneficial analytic properties of AJD allow explicit, or at least efficient, numerical calcu-

lations and explain popularity of the class of AJD processes in quantitative finance. Besides,
AJD are able to model variety of underlying process properties, such as the mean-reversion,
jumps, correlations, and stochastic volatility. The foundational work on the topic is by
Duffie et al. (see [31]), while J.Kallsen et al. (see [55]) give many examples of affine stochas-
tic processes in the context of semimartingales.

We begin with the definition of jump-diffusion processes according to [32].

Definition 16. A Markov process X = {X t }t≥0 on a state space D ⊂ Rn defined on filtered

probability space (Ω,F , {Ft }t≥0,P ) is called the jump-diffusion process if it is solving the

stochastic differential equation

d X t =µ(X t )d t +σ(xt )dWt +d Zt , (A.8)

4Taking into account that P X (t ;θ) = exp(tQ(θ)) by Corollary 1 from Section 2.1.
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where µ : D → Rn , σ : D → Rn×n , {Wt }t≥0 is a Ft -measurable Wiener process in Rn , (Zt )t≥0

is a right-continuous pure jump process in Rn with probability distribution of jumps, ν, and

intensity {λ(Xs)}s∈[0,t ], λ : D → [0,∞).

The idea of the Affine Jump-Diffusion (AJD) processes is an assumption of affine struc-
ture of µ, σσT and λ on D . In this case, certain restrictions have to be imposed on it in
order to obtain desirable properties of the AJD process. Let us adopt the restrictions from
[32] necessary for successful option pricing with AJD processes.

Definition 17. The jump-diffusion process X = {X t }t≥0 defined above is called an affine jump-

diffusion process, if µ, σσT and λ are determined by pairs of coefficients K0, K1, H0, H1, l0, l1

and ρ0, ρ1 as follows

• µ(x) = K0 +K1x, for K0 ∈ Rn , K1 ∈ Rn×n ;

• (σ(x)σ(x)T )i j = (H0)i j + (H1)i j · x, for H0 ∈ Rn×n , H1 ∈ Rn×n×n ;

• λ(x) = l0 + l1 · x, for l0 ∈ R, l1 ∈ Rn .

Further, it is necessary to define the affine discount-rate function R : D → R as R(x) =
ρ0 +ρ1 · x for ρ0 ∈ R, ρ1 ∈ Rn . Also the transformation θ(c) = ∫

Rn exp(c · z)dν(z), c ∈ C n

(n-dimensional complex numbers), where the integral is assumed to be well defined.
If the vector χ= (K , H , l ,θ,ρ) is well defined (see [32]), then it allows us to determine a

transformation at t ≤ T , by

ψχ(u, X t , t ,T ) = Eχ
[

e−∫ T
t R(Xs )d seu·X t

∣∣∣Ft

]
, (A.9)

where Eψ is an expectation under assumption the distribution of X is determined by χ.
As it was shown in [32], the transformation ψχ can be presented in the following form

ψχ(u, x, t ,T ) = eα(t )+β(t )·x , (A.10)

where α(t ) and β(t ) are a solutions of the ODEs

(α(t ))
′ = ρ0 −K0β(t )− 1

2
β(t )T H0β(t )− l0(θ(β(t ))−1), (A.11)

(β(t ))
′ = ρ1 −K T

1 β(t )− 1

2
β(t )T H1β(t )− l1(θ(β(t ))−1), (A.12)

with boundary conditions

α(T ) = 0, (A.13)

β(T ) = u. (A.14)

Thus, the transformation ψχ can be performed solving the ODEs above. These ODEs can
be solved explicitly or numericaly in some cases.

The idea is to create such AJD models that allow us to solve these ODEs quickly and
efficiently.
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A.8. Proof of Theorem 7. Mean-reversion property in the case

of AMSM1 model.
Proof. Consider the conditional expectation at the moment t of the future volatility σt+n

of the AMSM1 model for n ≥ 2.

E
[
σt+n

∣∣∣Ft

]
= E

[
σ0

k̂∏
k=1

M
1
2

k,t+n

∣∣∣Ft

]
=σ0

k̂∏
k=1

E

[
M

1
2

k,t+n |Ft

]
.

Let us calculate the more general case of the expectation inside of the product above and

implement the chain rule of mathematical expectations to it

E
[

M q
k,t+n

∣∣∣Ft

]
= E

[
E

[
M q

k,t+n

∣∣∣Ft+n−2

]∣∣∣Ft

]

Mk,t+n =


m0, if uk,t+n−1 ∈ [

0,γk (1−Φ(ρεt+n−1))
)

,

2−m0, if uk,t+n−1 ∈ [
γk (1−Φ(ρεt+n−1)),γk

)
,

Mk,t−1, if uk,t+n−1 ∈ [
γk ,1

)
,

where q > 0, uk,t+n−1 are independent standard uniform variables, then

E
[

M q
k,t+n

∣∣∣Ft+n−2

]
= mq

0 P
(
uk,t+n−1 ∈

[
0,γk (1−Φ(ρεt+n−1))

)∣∣∣Ft+n−2

)
+

(2−m0)q P
(
uk,t+n−1 ∈

[
γk (1−Φ(ρεt+n−1)),γk

)∣∣∣Ft+n−2

)
+

M q
k,t+n−1P

(
uk,t+n−1 ∈ [γk ,1)

∣∣∣Ft+n−2

)
.

Due to εt+n−1 and uk,t+n−1 are Ft+n−1-measurable and i.i.d. for any k,n and t the condi-

tional probabilities can be substituted by unconditional ones. Also, the probability P (x ∈
(a,b)) of continuous standard uniform random variable x is equal to b − a for a,b ∈ [0,1].

Therefore,

E
[

M q
k,t+n

∣∣∣Ft+n−2

]
=mq

0γk (1−Φ(ρεt+n−1))+
(2−m0)q (

γk −γk (1−Φ(ρεt+n−1))
)+

M q
k,t−1(1−γk )

Then,

E
[

E
[

M q
k,t+n

∣∣∣Ft+n−2

]∣∣∣Ft

]
=γk

(
mq

0

(
1−E

[
Φ(ρεt+n−1)

∣∣∣Ft

]))
+

γk

(
(2−m0)q E

[
Φ(ρεt+n−1)

∣∣∣Ft

])
+

(1−γk )E
[

M q
k,t+n−1

∣∣∣Ft

]
,

where the following expression may be denoted as

E q
M = γk

(
mq

0

(
1−E

[
Φ(ρεt+n−1)

∣∣∣Ft

]))
+γk

(
(2−m0)q E

[
Φ(ρεt+n−1)

∣∣∣Ft

])
. (A.15)
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Taking into account that {εt } is an i.i.d. sequence, the values of {εt } do not depend on past

information. Thus, we can replace the conditional expectations in E q
M in (A.15). Moreover,

due to the stationarity of white noise the expression E q
M does not depend on t . Finally,

E
[

M q
k,t+n

∣∣∣Ft

]
= E

[
E

[
M q

k,t+n

∣∣∣Ft+n−2

]∣∣∣Ft

]
= (1−γk )E

[
M q

k,t+n−1

∣∣∣Ft

]
+γk E q

M . (A.16)

Note, this expression is defined for n ≥ 2. Since M q
k,t is Ft -measurable, it is necessary to

substitute the conditional expectation by (A.16) only n−1 times, because after n−1 substi-

tutions, the very last conditional expectation will be the same as for n = 1, namely

E
[

M q
k,t+1

∣∣∣Ft

]
= M q

k,t+1.

For example for n = 3

E
[

M q
k,t+3

∣∣∣Ft

]
= (1−γk )E

[
M q

k,t+2

∣∣∣Ft

]
+γk E q

M =

(1−γk )
[

(1−γk )E
[

M q
k,t+1

∣∣∣Ft

]
+γk E q

M

]
+γk E q

M =
(1−γk )2M q

k,t+1 + (1−γk )γk E q
M +γk E q

M .

Thus, we obtain after n −1 substitutions

E
[

M q
k,t+n

∣∣∣Ft

]
= (1−γk )n−1M q

k,t +γk E q
M

n−2∑
j=0

(1−γk ) j , n ≥ 2. (A.17)

The expression (A.17) can be – roughly speaking – interpreted as (1−γk )n−1-share of today’s

shock incorporated in a future shock. If we let the n tend to infinity, then the first term in

the r.h.s. tends to zero (M q
k,t is bounded). In the meantime, the sum in the second term of

(A.17) is a sum of geometric progression, therefore

E
[

M q
k,t+n

∣∣∣Ft

]
→ γk

1

1− (1−γk )
E q

M = E q
M , when n →∞,

where E M q is the reversion level of the sequence {Mk,t }∞t=0. So, the underlying volatility

process {σt }∞t=0 of AMSM1 model has the following properties

E
[
σt+n

∣∣∣Ft

]
=σ0

k̂∏
k=1

[
(1−γk )n−1M

1
2

k,t +γk E
1
2
M

n−2∑
j=0

(1−γk ) j

]
, (A.18)

E
[
σt+n

∣∣∣Ft

]
→σ0E k̂/2

M , when n →∞. (A.19)

It means that an expected value of AMSM1 volatility goes to the mean reversion level of

volatility (A.19), when the horizon of the expectation n goes to infinity.
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A.9. Proof of Theorem 7. Mean-reversion property in the case

of AMSM2 model.
Proof. The proof has the same milestones as the proof for the AMSM1 model. Thus, let us

consider the conditional expectation of future volatility (n ≥ 2)

E
[
σt+n

∣∣∣Ft

]
= E

[(
ρεt+n−1 −p

σ0
)2

k̂∏
k=1

M
1
2

k,t+n

∣∣∣Ft

]
=

E
[(
ρεt+n−1 −p

σ0
)2

∣∣∣Ft

] k̂∏
k=1

E

[
M

1
2

k,t+n

∣∣∣Ft

]
.

Since the sequence {εt } consists of independent and identically distributed variables, we

can replace the conditional expectation by the unconditional one in the first expectation

E
[(
ρεt+n−1 −p

σ0
)2

] k̂∏
k=1

E

[
M

1
2

k,t+n

∣∣∣Ft

]
= (

ρ2 +σ0
) k̂∏

k=1
E

[
M

1
2

k,t+n

∣∣∣Ft

]
.

Now implement the chain rule of expectations to the generalized version of the last one

above

E
[

M q
k,t+n

∣∣∣Ft

]
= (A.20)

E
[

E
[

M q
k,t+n

∣∣∣Ft+n−2

]∣∣∣Ft

]
= (A.21)

E

[(
(1−γk )M q

k,t+n−1 +γk

(
1

2
mq

0 + 1

2
(2−m0)q

))∣∣∣Ft

]
= (A.22)

(1−γk )E
[

M q
k,t+n−1

∣∣∣Ft

]
+γk E q

M = (A.23)

αk +βk E
[

M q
k,t+n−1

∣∣∣Ft

]
, (A.24)

where αk = γk E q
M , βk = (1−γk ) ∈ (0,1), E q

M = (mq
0 + (2−m0)q )/2, m0 ∈ [1,2).

The last expression can be interpreted as an expected value of Mk,t+n incorporating

only βk -share of expectation of the previous value Mk,t+n−1. If we recurrently implement it

to itself n −1 times, we obtain

E
[

M q
k,t+n

∣∣∣Ft

]
= (1−γk )n−1M q

k,t +γk E q
M

n−2∑
j=0

(1−γk ) j . (A.25)

When the lag n tends to infinity, the first term in the r.h.s. of (A.25) tends to zero (M q
k,t is

bounded), while the sum in the second term of (A.25) is a sum of geometric progression,

therefore

E
[

M q
k,t+n

∣∣∣Ft

]
→ γk

1

1− (1−γk )
E q

M = E q
M , when n →∞
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where E q
M is a reversion level of the sequence {Mk,t }∞t=0. So, the underlying volatility process

{σt }∞t=0 of the AMSM2 model has the following properties

E
[
σt+n

∣∣∣Ft

]
= (

ρ2 +σ0
) k̂∏

k=1

[
(1−γk )n−1M

1
2

k,t +γk E
1
2
M

n−2∑
j=0

(1−γk ) j

]
, (A.26)

E
[
σt+n

∣∣∣Ft

]
→ (

ρ2 +σ0
)

Ek̂/2
M , when n →∞. (A.27)

It means that the expected value of the AMSM2 model volatility goes to mean reversion

level (A.27), when the horizon of expectation n goes to infinity. Note, that this level is an

unconditional means of volatility, which was directly proven in Lemma 3.

A.10. Proof of Theorem 8. Leverage effect of AMSM1 model.
Proof. We need to define the sign of cov(σt ,εt−1), which is given by

cov(σt ,εt−1) = E [(σt −Eσt )εt−1] = E [σtεt−1]−Eσt Eεt−1 =

=σ0E

[
εt−1

k̂∏
k=1

M
1
2

k,t

]
.

Let us implement the chain rule of mathematical expectations, where Et−1[·] denotes a

conditional expectation with respect to the information Ft−1

σ0E

[
εt−1

k̂∏
k=1

M
1
2

k,t

]
=

σ0E

[
Et−2

[
εt−1

k̂∏
k=1

M
1
2

k,t

∣∣∣εt−1

]]
=

σ0E

[
εt−1

k̂∏
k=1

Et−2

[
M

1
2

k,t

∣∣∣εt−1

]]
.

Now, we will calculate conditional expectation inside

Et−2

[
M

1
2

k,t

∣∣∣εt−1

]
=m

1
2
0 P

(
uk,t−1 ∈ [0,γk (1−Φ(ρεt−1)))

∣∣∣εt−1 ∧Ft−2

)
+

(2−m0)
1
2 P

(
uk,t−1 ∈ [γk (1−Φ(ρεt−1)),γk )

∣∣∣εt−1 ∧Ft−2

)
+

M
1
2

k,t−1P
(
uk,t−1 ∈ [γk ,1)

∣∣∣εt−1 ∧Ft−2

)
=

γk

(
m

1
2
0

(
1−Φ(ρεt−1)

)+ (2−m0)
1
2Φ(ρεt−1)

)
+ (1−γk )M

1
2

k,t−1,

whereΦ(·) is a cumulative distribution function of standard normal variable, uk,t−1 is stan-

dard uniform variable. Let us denote as

M̂ k/2(εt−1) = m
k
2
0

(
1−Φ(ρεt−1)

)+ (2−m0)
k
2Φ(ρεt−1) (A.28)
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Then, taking into account M 1/2
k,t−1 being Ft−2-measurable depends5 on εt−2 and ut−2

cov(σt ,εt−1) =σ0E

[
εt−1

k̂∏
k=1

(
(1−γk )M 1/2

k,t−1(εt−2,ut−2)+γk M̂ 1/2(εt−1)
)]

. (A.29)

In order to calculate the covariance for the general value k̂ we would consider two partial

cases, k̂ = 1 and k̂ = 2, then the general case.

The case of k = 1.

cov(σt ,εt−1) =

σ0E

[
(1−γ1)M

1
2

1,t−1εt−1 +γ1M̄
1
2 εt−1

]
=

σ0(1−γ1)E

[
M

1
2

1,t−1

]
E [εt−1]+σ0γ1E

[
M̄

1
2 εt−1

]
=

c1E
[

M̄
1
2 εt−1

]
,

where c1 =σ0γ1 > 0.

The case of k = 2.

cov(σt ,εt−1) =σ0E

[(
(1−γ1)M

1
2

1,t−1 +γ1M̄
1
2

)(
(1−γ2)M

1
2

2,t−1 +γ2M̄
1
2

)
εt−1

]
=

σ0E

[(
(1−γ1)(1−γ2)M

1
2

1,t−1M
1
2

2,t−1 + (1−γ1)γ2M
1
2

1,t−1M̄
1
2+

(1−γ2)γ1M
1
2

2,t−1M̄
1
2 +γ1γ2(M̄

1
2 )2

)
εt−1

]
=

2∑
k=0

ck E

[(
M̄

1
2

)k
εt−1

]
,

where

c0 =σ0(1−γ1)(1−γ2)E

[
M

1
2

1,t−1

]
E

[
M

1
2

2,t−1

]
E [εt−1] = 0,

c1 =σ0(1−γ1)γ2E

[
M

1
2

1,t−1

]
+σ0(1−γ2)γ1E

[
M

1
2

2,t−1

]
> 0,

c2 = γ1γ2 > 0.

Case of k = n. If we consider the general case with an arbitrary k = n, we see the same

structure – the sum of E
[
εt−1M̄ k/2(εt−1)

]
with the positive6 coefficients ck

cov(σt ,εt−1) =
n∑

k=1
ck E

[(
M̄

1
2

)k
εt−1

]
, ck > 0. (A.30)

5Further, the brackets denoting dependence of M 1/2
k,t−1 on εt−2 and ut−2 as well as M̄ 1/2 depends on εt−1 is

omitted due to simplicity of writing in this proof.
6The coefficient c0 is equal to zero and omitted further in the proof.
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So, in order to define the sign of cov(σt ,εt−1), we should find out the sign of expectations

E
[
εt−1M̄ k/2(εt−1)

]
, where M̄

k
2 is defined by (A.28)

E
[(

M̄ 1/2)k
εt−1

]
= E

[(
m

1
2
0Φ(−ρεt−1)+ (2−m0)

1
2Φ(ρεt−1)

)k

εt−1

]
.

By using Newton’s binomial theorem and grouping terms by couples (1,k), (2,k −1) and so

on (such couples have equal binomial coefficients), we obtain7∑
k≥n>m

bk
mE

[(
m

n
2

0 (2−m0)
m
2 Φ(−ρεt−1)nΦ(ρεt−1)m+ (A.31)

m
m
2

0 (2−m0)
n
2Φ(−ρεt−1)mΦ(ρεt−1)n

)
εt−1

]
, (A.32)

where bk
m are binomial coefficients.

Now, we need to mention the following fact. The functions

Φ(−x)nΦ(x)m x,

Φ(−x)mΦ(x)n x

are symmetrical reflections of each other with respect to the origin. Also, the probability

density function of standard normal variable (εt−1) is symmetric with respect to the vertical

axis. As a result, the following expression holds

E(n,m) = E
[
Φ(−ρεt−1)nΦ(ρεt−1)mεt−1

]=−E
[
Φ(−ρεt−1)mΦ(ρεt−1)nεt−1

]
.

It allows us to rewrite the sum (A.31, A.32) in the form

E

[(
M̄

1
2

)k
εt−1

]
= ∑

k≥n>m
bk

m

(
m

n
2

0 (2−m0)
m
2 −m

m
2

0 (2−m0)
n
2

)
E(n,m),

where

m
n
2

0 (2−m0)
m
2 −m

m
2

0 (2−m0)
n
2 > 0

for n > m, while E(n,m) is negative for n > m, ρ > 0. Thereby,

E

[(
M̄

1
2

)k
εt−1

]
< 0,

for any k ≥ 1.

Therefore, the main result of Theorem 8 is proven

cov(σt ,εt−1) =
k̂∑

k=1
ck E

[(
M̄

1
2

)k
εt−1

]
< 0,

for ρ > 0.

7This sum that has the additional (middle) term in the case of k is even, namely it is given by mk/2+1
0 (2−

m0)k/2+1E
[
Φ(−ρεt−1)k/2Φ(ρεt−1)k/2εt−1

]
, but this expectation is equal to zero for any k. As a result, this

term is omitted in further calculations.



A.11. Proof of Theorem 8. Leverage effect of AMSM2 model. 191

A.11. Proof of Theorem 8. Leverage effect of AMSM2 model.
Proof. To begin with the definition of covariance

cov(σt ,εt−1) =
E [(σt −E(σt ))(εt−1 −E(εt−1))] =

E
[((
ρεt−1 −p

σ0
)2
σM

t −E(σt−1)
)
εt−1

]
=

E
[(
ρ2ε3

t−1 −2ρ
p
σ0ε

2
t−1 +σ0εt−1

)
σM

t

]=
By using independence of ut−1 and εt−1(

ρ2E
[
ε3

t−1

]−2ρ
p
σ0E

[
ε2

t−1

]+σ0E [εt−1]
)

E
[
σM

t

]=−2ρ
p
σ0E

[
σM

t

]< 0,

where σM
t =

(
k̂∏

k=0
Mk,t

)1/2

.

A.12. Proof of Lemma 3. Weak-stationarity of AMSM1/AMSM2

model.
We need to prove two facts about {σt }∞t=0: that the first moment of it is a constant; and

that the covariance does not vary with respect to a time.
So, let us begin with the first moment. We obtain for AMSM1 case

E [σt ] =σ0E

(
k̂∏

k=0
Mk,t

)1/2=σ0E
[
σM

t

]
,

By taking into account the independence of each Mk,t and εt−1 for AMSM2 case

E [σt ] = E

(
ρεt−1 −p

σ0
)2

(
k̂∏

k=0
Mk,t

)1/2= E
[(
ρεt−1 −p

σ0
)2

]
E

[
σM

t

]
,

where

E
[(
ρεt−1 −p

σ0
)2

]
= ρ2E

[
ε2

t−1

]−2ρ
p
σ0E [εt−1]+σ0 = ρ2 +σ0,(

k̂∏
k=0

Mk,t

)1/2

≡σM
t .

In both cases we have

E
[
σM

t

]= k̂∏
k=0

E
[

M 1/2
k,t

]
, (A.33)

E
[

M 1/2
k,t

]
= (1−γk )E

[
M 1/2

k,t−1

]
+γk E

[
M 1/2] (A.34)
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In order to have volatility process stationary, we assume that E
[

M 1/2
k,t

]
is constant indepen-

dent of t

E
[

M 1/2
k,t

]
= E

[
M 1/2

k,t− j

]
=µ.

Then, the equation (A.34) is rearranged after some algebra

µ= (1−γk )µ+γk E
[
M 1/2] ,

µ= E
[
M 1/2] ,

for each model. In other words, we have to assume that the unconditional expectation of
each volatility component M 1/2

k,t is equal to the expectation of binomial variable M 1/2. Thus,
we obtain

E [σt ] = σ̂E [σM
t ] = σ̂µk̂ , (A.35)

where σ̂ denotes the parameter σ0 (in the case of AMSM1) and (ρ2 +σ0) (in the case of
AMSM2).

Now, let us consider the covariance

cov(σt ,σt+τ) = E [(σt −E [σt ])(σt+τ−E [σt ])] =
E

[(
σt − σ̂µk̂

)(
σt+τ− σ̂µk̂

)]
= σ̂2E

[
σM

t σ
M
t+τ

]− σ̂2µ2k̂ ,

Then taking into account the independence of Mk,t and Mm,t (k 6= m), we obtain

E
[
σM

t σ
M
t+τ

]= E

[
k̂∏

k=1
M 1/2

k,t M 1/2
k,t+τ

]
=

k̂∏
k=1

E
[

M 1/2
k,t M 1/2

k,t+τ
]

.

Let τ= 1, then by using the chain rule of conditional expectations we can rewrite

E
[

M q/2
k,t M q/2

k,t+1

]
= E

[
M q/2

k,t E
(
M q/2

k,t+1

∣∣∣Ft−1

)]
=

E
[

M q/2
k,t

(
M q/2

k,t (1−γk )+M q/2γk

)]
= (1−γk )E

[
M q

k,t

]
+γk

(
E

[
M q/2])2 =

(
E

[
M q/2])2

(1−γk )
E

[
M q

k,t

]
(
E

[
M q/2

])2 +γk

= (
E

[
M q/2])2 [

(1−γk )(1+aq )+γk
]=

(
E

[
M q/2])2 (

1+aq (1−γk )1) .

Thus, we could assume that the following expression holds

E
[

M q/2
k,t M q/2

k,t+τ
]
= (

E [M q/2]
)2 (

1+aq (1−γk )τ
)

, (A.36)

where

aq = E(M q )

E [M q/2]2
−1.
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The expression (A.36) holds for τ= m. Let us prove that it also holds for τ= m +1.

E
[

M q/2
k,t M q/2

k,t+m+1

]
=

E
[

M q/2
k,t E

(
M q/2

k,t+m+1

∣∣∣Ft+m−1

)]
=

E
[

M q/2
k,t

(
(1−γk )M q/2

k,t+m +γk M q/2
)]

=
(1−γk )E

[
M q/2

k,t M q/2
k,t+m

]
+γk

(
E

[
M q/2])2 =

Since, the expression (A.36) holds for τ= m, then(
E

[
M q/2])2 (

1+aq (1−γk )m)
(1−γk )+ (

E
[
M q/2])2

γk =(
E

[
M q/2])2 [

1−γk +aq (1−γk )m+1 +γk
]=(

E
[
M q/2])2 [

1+aq (1−γk )m+1] .

Therefore, the expression holds for any natural positive τ.
The results above imply the final result for covariance function

cov(σt ,σt+τ) = σ̂2µ2k̂
k̂∏

k=1

(
1+a1(1−γk )τ

)− σ̂2µ2k̂ , (A.37)

where τ> 0 and

a1 = E(M)

E(M 1/2)2
−1 = 1

µ2
−1.

As we can see, the covariance does not depend on t , only on the lag τ. Therefore, the weak
stationarity property holds for the volatility process of AMSM1/AMSM2 model with the

assumption E
[

M 1/2
k,t

]
= E

[
M 1/2

]=µ.

A.13. Proof of Theorem 9. Long memory of AMSM2 model.
Proof. First of all, we will prove this theorem for the more general definition of the AMSM2

model’s transition probabilitiesγk given in (3.15) rather than the simplified definition (3.16)

aimed to mimic shape of (3.15) in case of (γk̂ ,b) = (0.95,3) being more computationally

easy. Namely, we assume, as well did Calvet & Fisher in their original work, that

γk = 1− (1−γ1)bk−1
, γ1 ∈ (0,1),b ∈ (1,∞). (A.38)

Let us consider the autocorrelation function of the AMSM2 process, taking into account

independence of
{
ε

q
t

}
and

{
σ

q
t

}
sequences

ψq (n) = corr
(|rt |q , |rt+n |q

)= corr
(|εt |qσq

t , |εt+n |qσq
t+n

)=
E

(|εt |q
)

E
(|εt+n |q

)(
E

(
σ

q
t σ

q
t+n

)−E
(
σ

q
t

)
E

(
σ

q
t+n

))
E

(|εt |2q
)

E
(
σ

2q
t

) .
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By using the stationarity of white noise

ψq (n) = cq
E

(
σ

q
t σ

q
t+n

)−E
(
σ

q
t

)
E

(
σ

q
t+n

)
E

(
σ

2q
t

) , (A.39)

where

cq = E
(|εt |q

)2

E
(∣∣∣ε2q

t

∣∣∣) .

In order to calculate the expression (A.39), we calculate each expectation separately and

then collect the results. So,

Eσq
t = E

[(
ρεt−1 −p

σ0
)2q

] k̂∏
i=1

E
[

M q/2
i ,t

]
= e2q E

[
M q/2]k̂

,

Eσq
t+n = E

[(
ρεt+n−1 −p

σ0
)2q

] k̂∏
i=1

E [M q/2
i ,t+n] = e2q E

[
M q/2]k̂

,

Eσ2q
t = E

[(
ρεt−1 −p

σ0
)4q

] k̂∏
i=1

E
[

M q
i ,t

]
= e4q E

[
M q]k̂ ,

E
(
σ

q
t σ

q
t+n

)= E
[(
ρεt−1 −p

σ0
)2q

]
E

[(
ρεt+n−1 −p

σ0
)2q

] k̂∏
i=1

E
[

M q/2
i ,t M q/2

i ,t+n

]
,

where ey is a deterministic variable that depends on y and also on parameters ρ and σ0

due to stationarity and standard normal distribution of a standard white noise.

As a result, the autocorrelation functionψq (n) and the quantity Kq (n) from the proof of

Calvet and Fisher are different for the AMSM2 model. It is given by

ψq (n) = c̄q

(1+aq )k̂

(
k̂∏

k=1

(
1+aq (1−γk )n)−1

)
,

Kq (n) = c̄q

(1+aq )k̂

k̂∏
k=1

(
1+aq (1−γk )n)

,

where

aq = E
(
M q

)[
E

(
M q/2

)]2 −1, c̄q = cq

e2
2q

e4q
.

The rest of the proof is the same as in Calvet and Fisher’s paper, but instead of cq should be

used c̄q .
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A.14. Proof of Theorem 10.
Lemma 4. If Yt has a normal distribution conditionally on Ft−1 with constant mean and

variance under P, and

St−1 = E P [exp(−ρ+Yt )St |Ft−1], (A.40)

dQ

dP
= exp

(
(r −ρ)T +

T∑
t=1

Yt

)
(Radon-Nikodym derivative), (A.41)

then

1. Q – is a probability measure, which is equivalent8 to P;

2. Q and P satisfy LRNVR.

Proof. The proof is generally based on Duan’s results:

1. The proof is given for Lemma A.1 in Duan [28];

2. The proof in Lemma A.2 in Duan [28] is based on the assumption that volatility σt

is Ft−1-measurable, which is true for the GARCH model, as well as for the AMSM

models. Thus, the proof is same.

The Lemma above defines the general form of Radon-Nikodym derivative necessary to
measure transition from P to Q.

Proof. The conditions of the theorem lead to the normality of the logarithmic marginal rate

of substitution.

(1) The coefficient of relative risk aversion is defined as

λ1 =−C
u′′(C )

u′(C )
=−

(
d ln(C )

dC

)−1 d ln(u′(C ))

dC
≈− ln(u′(Ct ))− ln(u′(Ct−1))

ln(Ct )− ln(Ct−1)
.

After some algebra

ln

(
u′(Ct )

u′(Ct−1)

)
≈−λ1 ln

(
Ct

Ct−1

)∣∣∣Ft−1
P∼N (µ,σ)

(2) The coefficient of absolute risk aversion λ2, defined as

λ2 =−u′′(C )

u′(C )
=−d ln(u′(C ))

dC
≈− ln(u′(Ct )− ln(u′(Ct−1)))

Ct −Ct−1

Thus,

ln

(
u′(Ct )

u′(Ct−1)

)
≈−λ2(Ct −Ct−1)|Ft−1

P∼N (µ,σ)

8Two measures are equivalent, if and only if they are absolutely continuous to each other.
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(3) We have that u(Ct ) = aCt +b, therefore u′(Ct ) = a. Hence,

u′(Ct )

u′(Ct−1)
= 1 ⇒ ln

(
u′(Ct )

u′(Ct−1)

)∣∣∣Ft−1
P∼N (0,0).

If we denote

Yt = ln

(
u′(Ct )

u′(Ct−1)

)∣∣∣Ft−1
P∼N (µ,σ2),

dQ

d p
=exp

(
(r −ρ)T +

T∑
t=1

ln

(
u′(Ct )

u′(Ct−1)

))
= exp

(
(r −ρ)T +

T∑
t=1

Yt

)
,

St−1 =E P
[

exp

(
−ρ+ ln

(
u′(Ct )

u′(Ct−1)

))
St

∣∣∣Ft−1

]
= E P

[
exp

(−ρ+Yt
)

St

∣∣∣Ft−1

]
then all condition of Lemma 4 are fulfilled. Therefore, Q is LRNVR probability measure

equivalent to P .

A.15. Proof of Theorem 11.
Proof. Since, rt = ln(St /St−1) are normally distributed conditionally on Ft−1 w.r.t. Q ac-

cording to Definition 11 of LRNVR (item 1), we could write it down as follows

ln
St

St−1
=µ?t +ε?t σ?t ,

where ε?t
Q∼N (0,1), µ?t and σ?t are Ft−1-measurable, therefore

St

St−1
= exp(µ?t +ε?t σ?t ),

by taking conditional expectation w.r.t. measure Q and using a definition of moment gen-

erating function of normal random variable, we obtain

EQ
[

St

St−1

∣∣∣Ft−1

]
= EQ [exp(µ?t +ε?t σ?t )|Ft−1]

MGF= exp

(
µ?t + (σ?t )2

2

)
.

We also know from the Definition 11 of LRNVR (item 3) that

EQ
[

St

St−1

∣∣∣Ft−1

]
= exp(r ).

Thus, we obtain

µ?t = r − 1

2
(σ?t )2.

Definition 11 of LRNVR (item 2) connects the variances under P and Q, namely

σt =σt (ε?t−1,ξ?t−1)2 =V Q
[

ln
St

St−1

∣∣∣Ft−1

]
=V P

[
ln

St

St−1

∣∣∣Ft−1

]
=σt (εt−1,ξt−1)2.



A.15. Proof of Theorem 11. 197

Since under the measure P

rt = ln
St

St−1
= r +λσt − 1

2
σ2

t +εtσt ,

σt =σt (εt−1,ξt−1).

and in the meantime under the measure Q

rt = ln
St

St−1
= r − 1

2
(σ?t )2 +ε?t σ?t ,

hence

r +λσt − 1

2
σ2

t +εtσt = r − 1

2
σ2

t +ε?t σt

εt = ε?t −λ.

Therefore, the distribution of Mk,t given in the definition of the AMSM1 model (3.17) is

changed under Q in the case of AMSM1 to the following one

M?
k,t =


m0, if Φ(ξ?k,t−1 −ν) ∈ [

0,γk (1−Φ(ρ(ε?t−1 −λ)))
)

,

2−m0, if Φ(ξ?k,t−1 −ν) ∈ [
γk (1−Φ(ρ(ε?t−1 −λ))),γkΦ(ρ(ε?t−1 −λ))

)
,

Mk,t−1, if Φ(ξ?k,t−1 −ν) ∈ [
γk ,1

)
,

while the change of the measure leads to change in the volatility process definition in the

case of the AMSM2 model, namely

σ?t = (
ρ(ε?t −λ)−σ0

)2

(
k̂∏

i=k
M?

k,t

) 1
2

.

In order to define the risk-neutral correction of the vector ξt under Q, let us consider

the Moment Generation Function (MGF) of its components ξk,t

EQ
[

exp
(
cξk,t

)∣∣∣Ft−1

]
= E P

[
exp

(
cξk,t + (r −ρ)+Yt

)∣∣∣Ft−1

]
,

where the variables ξk,t and Yt = ln(MRSt ) from (3.38) are distributed normally under mea-

sure P conditionally on Ft−1

ξk,t |Ft−1 ∼N (0,1),

Yt |Ft−1 ∼N (µ,σ).

Therefore, we can represent Yt as the following combination

Yt |Ft−1
D=αt +νtξk,t +Ut ,
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where Ut |Ft−1 ∼N
(
0,E [U 2

t |Ft−1]
)
, Ut⊥ξk,t , then the MGF of ξk,t is rearranged as

EQ
[

exp
(
cξk,t

)∣∣∣Ft−1

]
= E P [

exp
(
αt + (r −ρ)+Ut

) |Ft−1
]

E P [
exp

(
(νt + c)ξk,t

) |Ft−1
]

since

αt + (r −ρ)+Ut |Ft−1 ∼ N
(
αt + r −ρ,E P [U 2

t |Ft−1]
)

,

(νt + c)ξk,t |Ft−1 ∼ N
(
0,(νt + c)2) ,

then by using knowledge of normal variable’s MGF we obtain

EQ
[

exp
(
cξk,t

)∣∣∣Ft−1

]
= exp

(
αt + (r −ρ)+ 1

2
E P [

U 2
t |Ft−1

])
exp

(
ν2

t

2
+ c2

2
+ cνt

)
.

Let c = 0, then

1 = exp

(
αt + (r −ρ)+ 1

2
E P [

U 2
t |Ft−1

]+ ν2
t

2

)
.

Hence we have

EQ [
exp

(
cξk,t

) |Ft−1
]= exp

(
c2

2
+ cνt

)
,

and this implies ξk,t |Ft−1 ∼N (νt ,1) under Q. We assume further for simplicity that νt is a

constant. Therefore, we can define

ξ?k,t = ξk,t +ν.

Note, the independence of ε?t and ξ?k,t is proved in a similar way as given in the appendix

of [29].

A.16. Proof of Corollary 5.
Proof. Since

St = St−1 exp

(
r − 1

2
(σ?t )2 +σ?t ε?t

)
,

where ε?t
Q∼N (0,1) i.i.d. Then

Ŝt = St exp(−r t )) =St−1 exp(−r (t −1)− r )exp

(
r − 1

2
(σ?t )2 +σ?t ε?t

)
=

Ŝt−1 exp

(
−1

2
(σ?t )2 +σ?t ε?t

)
.

Continuing, we obtain the following general expression

ŜT = Ŝt exp

(
−1

2

T∑
s=t

(σ?s )2 +
T∑

s=t
σ?s ε

?
s

)
.
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Let us take the conditional expectation of ŜT given Ft

EQ
[

ŜT

∣∣∣Ft

]
=

Ŝt EQ

[
exp

(
−1

2

T∑
s=t

σ2
s +

T∑
s=t

σsξs

)∣∣∣Ft

]
=

Ŝt EQ

[
exp

(
−1

2

T−1∑
s=t

σ2
s +

T−1∑
s=t

σsξs

)
EQ

[
exp

(
−1

2
σ2

T +σT ξT

)∣∣∣FT−1

]∣∣∣Ft

]
MGF=

Ŝt EQ

[
exp

(
−1

2

T−2∑
s=t

σ2
s +

T−2∑
s=t

σsξs − 1

2
σ2

T−1 +σT−1ξT−1

)∣∣∣Ft

]
=

Ŝt EQ

[
exp

(
−1

2

T−2∑
s=t

σ2
s +

T−2∑
s=t

σsξs

)
EQ

[
exp

(
−1

2
σ2

T−1 +σT−1ξT−1

)
∣∣∣FT−2

]∣∣∣Ft

]
= . . . = Ŝt .

Thus, we have proven that Q is a martingale measure.
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C
Code listings

C.1. ABM model
The purpose of the program is to estimate the ABM model parameters. The code is

based on the Object-Oriented Programming (OOP) principles. They allow to join a data
with methods of data manipulation. In the presented code such an object is called Input-
DataClass. It contains the input data necessary for the model estimation (see comments in
the code listings below). Further, InputDataClass contains two methods that are standard
for C++: the constructor and destructor. The first one allocates memory and assigns the
values read from InputData structure containing sample paths, the data extracted from the
sample to the corresponding private variables of the object InputDataClass. In opposite,
the second method frees the used memory. As a result, the complete set of matrices and
vectors necessary for the ABM model estimation can be created, copied, transmitted and
destroyed in one line of code.

C.1.1. Header file with main structures and global variables
This file is used to separate the variables and structures definitions from the subrou-

tines code.

/ / Inclusion of standard C++ header f i l e s

#include <time . h>

#include <windows . h> / / " winbase . h " / / ( include

#include <iostream >

#include <vector >

/ / Inclusion of AlgLib algebraic computation l i b r a r y f i l e s

#include " src \ AlgLib \ap . h"

#include " src \ AlgLib \ a l g l i b i n t e r n a l . h"

#include " src \ AlgLib \ algl ibmisc . h"

#include " src \ AlgLib \ l i n a l g . h"
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#include " src \ AlgLib \ s t a t i s t i c s . h"

#include " src \ AlgLib \ dataanalysis . h"

#include " src \ AlgLib \ specialfunctions . h"

#include " src \ AlgLib \ solvers . h"

#include " src \ AlgLib \ optimization . h"

#include " src \ AlgLib \ diffequations . h"

#include " src \ AlgLib \ fasttransforms . h"

#include " src \ AlgLib \ integrat ion . h"

#include " src \ AlgLib \ interpolat ion . h"

/ / Inclusion of TNT algebraic computaion l i b r a r y f i l e s

#include " src \TNT\ tnt . h"

#include " src \TNT\ jama_eig . h"

#include " src \TNT\jama_lu . h"

/ / Inclusion of Boost computaion l i b r a r y f i l e s

/ / necessary f o r random number generation and o . d . e .

/ / solving

#include " boost\numeric\ odeint . hpp"

#include " boost\random\ lagged_fibonacci . hpp"

#include " boost\random\uniform_01 . hpp"

#include " boost\random\ variate_generator . hpp"

#include " boost\random\ mersenne_twister . hpp"

#include " boost\math\ tools \minima . hpp"

using namespace a l g l i b ;

/ / disable some i r r e l e v a n t warnings

# i f (AE_COMPILER==AE_MSVC)

#pragma warning ( disable :4100)

#pragma warning ( disable :4127)

#pragma warning ( disable :4702)

#pragma warning ( disable :4996)

#endif

/ / Some other standard headers

#include < s t r i n g . h>

#include <iostream >

#include <str ing >

#include <fstream >

#include <conio . h>

#include <math . h>

#include < s t d l i b . h>

/ / GLOBALS
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#define SDK_SUCCESS 0

#define SDK_FAILURE 1

/ / Defining f i l e with algorithms s e t t i n g s to read

std : : i fstream s e t t i n g s ;

/ / Data s t r u c t u r e containing sample path with observations

/ / and corresponding o b j e c t s

struct InputData

{

int method ; / / 0 : Lc−MLE; 1 : EM−algorithm ; 2 , 3 : Ld−MLE

int ** c ; / / matrix with number of t r a n s i t i o n s in y

double ** N; / / matrix with number of t r a n s i t i o n s in y_ob

double ** Q; / / i n t e n s i t y r a t e s matrix

double * R ; / / vector of holding time in each s t a t e

double * y ; / / vector of continuos−time observed s t a t e s

double * rho ; / / t r a n s i t i o n i n t e r v a l s in continuos−time sample path

double * y_ob ; / / d i s c r e t e−time sample paths s t a t e s

int NN; / / number of agents

int MM; / / l i m i t of number of t r a n s i t i o n s in y

int MM_max; / / r e a l number of t r a n s i t i o n s in y

double TT ; / / time horizon of observed path

int TT_d ; / / number of d i s c r e t e t r a n s i t i o n s

double delta_tk ; / / d i s c r e t i z a t i o n step of y_ob

double ** P_d ; / / t r a n s i t i o n p r o ba b i l i t y matrix

/ / vector of diagonal elements of eigen decomposition

double ** D_lambda_d ;

double ** U_d;

/ / matrix with eigen v e c t o r s of eigen decomposition

double ** invU_d ; / / inverse of U_d

/ / frequncy of r e i n i t i a l i z a t i o n of

/ / t r a n s i t i o n p r o ba b i l i t y calculation

int Reinit ;

} ;

class InputDataClass

{

private :

double ** Q; / / i n t e n s i t y r a t e s matrix
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int ** c_tmp ; / / matrix with number of t r a n s i t i o n s in y

double ** N_tmp; / / matrix with number of t r a n s i t i o n s in y_ob

double * R_tmp ; / / vector of holding time in each s t a t e

double * y_tmp ; / / vector of continuos−time observed s t a t e s

double * rho_tmp ; / / t r a n s i t i o n i n t e r v a l s in cont .−time sample path

double * y_ob_tmp ; / / d i s c r e t e−time sample paths s t a t e s

double * y_ob_tmp2 ; / / d i s c r e t e−time sample paths s t a t e s

int MM_max; / / r e a l number of t r a n s i t i o n s in y

int N; / / number of agents

int M; / / l i m i t of number of t r a n s i t i o n s in y

double ** P_d ; / / t r a n s i t i o n p r o ba b i l i t y matrix

/ / vector of diagonal elements of eigen decomposition

double ** D_lambda_d ;

double ** U_d;

/ / matrix with eigen v e c t o r s of eigen decomposition

double ** invU_d ; / / inverse of U_d

InputData Data ;

public :

InputDataClass ( InputData * I n i t ) ;

~InputDataClass ( ) ;

} ;

InputDataClass : : InputDataClass ( InputData * I n i t )

{

int NN = ( * I n i t ) .NN;

int MM = ( * I n i t ) .MM;

/ / ===== Memory Allocation =====

Q = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

Q[ i ] = new double [2 * NN + 1 ] ;

for ( int i = 0 ; i <= 2 * NN; i ++){

for ( int j = 0 ; j <= 2 * NN; j ++)

{ Q[ i ] [ j ] = 0 ; } }

c_tmp = new int * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

c_tmp [ i ] = new int [2 * NN + 1 ] ;

N_tmp = new double * [ 2 * NN + 1 ] ;
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for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

N_tmp[ i ] = new double [2 * NN + 1 ] ;

R_tmp = new double [2 * NN + 1 ] ;

y_tmp = new double [MM] ;

y_tmp [ 0 ] = 0 ; / / INITIAL POINT !

rho_tmp = new double [MM] ;

y_ob_tmp = new double [MM] ;

/ / ======== Mem Alloc f o r Ld−MLE ===========

P_d = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

P_d [ i ] = new double [2 * NN + 1 ] ;

D_lambda_d = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

D_lambda_d [ i ] = new double [2 * NN + 1 ] ;

U_d = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

U_d[ i ] = new double [2 * NN + 1 ] ;

invU_d = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++)

invU_d [ i ] = new double [2 * NN + 1 ] ;

/ / Assign InputData s t r u c t u r e the pointers

/ / of al located memory

( * I n i t ) . c = c_tmp ;

( * I n i t ) .N = N_tmp;

( * I n i t ) . R = R_tmp ;

( * I n i t ) . y = y_tmp ;

( * I n i t ) . y_ob = y_ob_tmp ;

( * I n i t ) . rho = rho_tmp ;

( * I n i t ) .Q = Q;

( * I n i t ) . P_d = P_d ;

( * I n i t ) . D_lambda_d = D_lambda_d ;

( * I n i t ) . U_d = U_d;

( * I n i t ) . invU_d = invU_d ;

/ / Assign whole InputData s t r u c t I n i t to

/ / Data private variable in the c l a s s

Data = ( * I n i t ) ;
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}

InputDataClass : : ~ InputDataClass ( )

{

/ / Memory f r e e

delete [ ] ( R_tmp ) ;

delete [ ] ( y_tmp ) ;

delete [ ] ( rho_tmp ) ;

delete [ ] ( y_ob_tmp ) ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] c_tmp [ i ] ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] N_tmp[ i ] ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] Q[ i ] ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] P_d [ i ] ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] D_lambda_d [ i ] ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] U_d[ i ] ;

for ( int i = 0 ; i <2 * Data .NN + 1 ; i ++)

delete [ ] invU_d [ i ] ;

} ;

struct Results { double x [ 3 ] ; } ;

/ / Global variables

int method ;

int do_paral lel ; / / t r i g g e r of p a r a l l e l computations

int NN;

int MM;

int Reinit ;

double TT ;

double delta_tk ;

/ / r e a l parameters values

double nu_real ;

double alpha0_real ;

double alpha1_real ;

/ / range of simulations

int MC_iterations1 ;
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int MC_iterations2 ;

/ / I n i t i a l point of optimization method

int IP ;

/ / Numerical O.D. E . s o l v e r from AlgLib

/ / 1 : runge_kutta4 ; 2 : runge_kutta_fehlberg78 ;

/ / 3 : b u l i r s c h _ s t o e r

int ode_stepper ;

/ / Array of Prime number can be used as seeds of

/ / random number generators

unsigned int PrimesSampleArr [ 1 0 0 0 ] ;

int k ;

double counter ;

/ / stopping c r i t e r i o n s

double epsg ; / / = 1.0 e−7;

double epsf ; / / = 0 ; / / 15 ?

double epsx ; / / = 0 ;

double d i f f s t e p ; / / = 1.0 e−7;

double ode_step_size ;

/ / Input data

real_1d_array y_ob ;

real_2d_array xx ;

/ / Boundaries of search regions of optimizers

real_1d_array bndl ; / / = " [ 1 . 1 , −1.5 , 0 . 0 ] " ;

real_1d_array bndu ; / / = " [ 5 , 1 . 5 , 5 . 0 ] " ;

real_1d_array scale ; / / = " [ 5 , 1 . 5 , 5 . 0 ] " ;

/ / t r i g g e r

int output ;

/ / The type of container used to hold the s t a t e vector

typedef std : : vector < double > state_type ;

hqrndstate rnd_state , rnd_state2 ;

/ / Additional functions

void StartTimer ( _int64 * pt1 )

{
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QueryPerformanceCounter ( (LARGE_INTEGER* ) pt1 ) ;

}

double StopTimer ( _int64 t1 )

{

_int64 t2 , ldFreq ;

QueryPerformanceCounter ( (LARGE_INTEGER*)& t2 ) ;

QueryPerformanceFrequency ( (LARGE_INTEGER*)& ldFreq ) ;

return ( ( double ) ( t2 − t1 ) / ( double ) ldFreq ) ;

}

std : : s t r i n g IntToStr ( int x )

{

std : : stringstream r ;

r << x ;

return r . s t r ( ) ;

}

std : : s t r i n g FloatToStr ( f l o a t x )

{

std : : stringstream r ;

r << x ;

return r . s t r ( ) ;

}

f l o a t StrToFloat ( std : : s t r i n g s )

{

return ( f l o a t ) : : atof ( s . c _ s t r ( ) ) ;

}

C.1.2. Main file with code
This file contains all the subroutines necessary to estimate the ABM model using any

of three methods described in the main part of this dissertation, in particular, see Subsec-
tions 2.3.2, 2.4.2 and 2.5.2. In addition, there are subroutines for simulation of artificial
continuous-time sample paths, discretization of them, parsing of a real data and the file
with settings. Finally, the main function running all the code is also in this file.

/ / Inclusion of standard headers and ABM. hpp header f i l e

#include " stdafx . h"

#include " ppl . h"

#include "ABM. hpp"

/ / This function computes i n t e n s i t y rate w_u of t r a n s i t i o n up ( q _ i i +1)
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double w_u( double x , double nu , double alpha0 , double alpha1 )

{

return (1 − x ) * nu * exp ( ( alpha0 + alpha1 * x ) ) ;

/ / return nu * exp ( ( alpha0 + alpha1 *x ) ) ;

}

/ / This function computes i n t e n s i t y rate w_u of t r a n s i t i o n down ( q_ii −1)

double w_d( double x , double nu , double alpha0 , double alpha1 )

{

return (1 + x ) * nu * exp ( − ( alpha0 + alpha1 * x ) ) ;

/ / return nu * exp ( − ( alpha0 + alpha1 *x ) ) ;

}

/ / This function computes t r a n s i t i o n p r o b ab i l i t y of t r a n s i t i o n up ( q _ i i +1)

double pi_u ( double x , double nu , double alpha0 , double alpha1 )

{

i f ( x ! = 1 . f ) {

return w_u( x , nu , alpha0 , alpha1 ) /

( w_u( x , nu , alpha0 , alpha1 ) + w_d( x , nu , alpha0 , alpha1 ) ) ; }

else {

return 0 ; }

}

/ / This function computes t r a n s i t i o n p r o b ab i l i t y of t r a n s i t i o n up ( P_ii −1)

double pi_d ( double x , double nu , double alpha0 , double alpha1 )

{

i f ( x ! = 1 . f ) {

return w_d( x , nu , alpha0 , alpha1 ) /

( w_u( x , nu , alpha0 , alpha1 ) + w_d( x , nu , alpha0 , alpha1 ) ) ; }

else {

return 0 ; }

}

/ / This function computes log−l ike l ihood function log ( L^c ( theta | x ) )

double L (

double nu , double alpha0 , double alpha1 ,

int NN, double ** N, double* R)

{

double sum = 0 ;

for ( int i=−NN; i <NN; i ++)

{

sum += N[ i ] [ i +1] * log (w_u( ( double ) i /

( double )NN, nu , alpha0 , alpha1 ) ) −
R[ i ] * w_u( ( double ) i /

( double )NN, nu , alpha0 , alpha1 ) ;
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}

for ( int i=−NN+1; i <NN+1; i ++)

{

sum += N[ i ] [ i −1] * log (w_d( ( double ) i /

( double )NN, nu , alpha0 , alpha1 ) ) −
R[ i ] * w_d( ( double ) i /

( double )NN, nu , alpha0 , alpha1 ) ;

}

return sum;

}

/ / This function computes function Phi_pq ( t ; Theta )

/ / from Corollary 4

void Matrix_Ksi ( double t , double ** Ksi , double ** D_lambda , int NN)

{

for ( int i =0; i <=2 * NN; i ++)

{

for ( int j =0; j <=2 * NN; j ++)

{

i f (D_lambda[ i ] [ i ]==D_lambda[ j ] [ j ] ) {

Ksi [ i ] [ j ] = t * exp (D_lambda[ i ] [ i ] ) ; }

else {

Ksi [ i ] [ j ] = ( exp ( t *D_lambda[ i ] [ i ] ) −
exp ( t *D_lambda[ j ] [ j ] ) ) /

(D_lambda[ i ] [ i ] − D_lambda[ j ] [ j ] ) ;

}

}

}

/ / return * Ksi_ ;

}

/ / This function computes matrix of i n t e n s i t y r a t e s Q

void Matrix_Q ( double ** Q, double nu , double alpha0 , double alpha1 , int NN)

{

double w1 = 0 , w2 = 0 ;

for ( int i =1; i <=2 * NN − 1 ; i ++)

{

w1 = ( double )w_d( ( double)(−NN+ i ) /

( double )NN, nu , alpha0 , alpha1 ) ;

w2 = ( double )w_u( ( double)(−NN+ i ) /

( double )NN, nu , alpha0 , alpha1 ) ;

Q[ i ] [ i −1] = w1;

Q[ i ] [ i ] = − w2 − w1;

Q[ i ] [ i +1] = w2;

}
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w1 = w_u(−1.0 ,nu , alpha0 , alpha1 ) ;

w2 = w_d( 1 . 0 ,nu , alpha0 , alpha1 ) ;

Q[ 0 ] [ 0 ] = − w1;

Q[ 0 ] [ 1 ] = w1;

Q[2 * NN] [ 2 * NN − 1] = w2;

Q[2 * NN] [ 2 * NN] = − w2;

}

/ / This function computes matrix exponential of diagonal matrix D

void Matrix_expD ( double t , double ** D_lambda , int NN)

{

for ( int i =0; i <=2 * NN; i ++)

{

D_lambda[ i ] [ i ] = t * exp (D_lambda[ i ] [ i ] ) ;

}

}

using namespace TNT;

using namespace JAMA;

/ / Inversion function f o r TNT l i b r a r y from

/ / http : / / wiki . cs . princeton . edu / index . php /TNT

template<class T>

TNT : : Array2D<T> invert ( const TNT : : Array2D<T> &M)

{

a s s e r t (M. dim1 ( ) == M. dim2 ( ) ) ; / / I s M square matrix

/ / s ol ve f o r inverse with LU decomposition

JAMA : : LU<T> lu (M) ;

/ / c r e a t e i d e n t i t y matrix

TNT : : Array2D<T> id (M. dim1 ( ) , M. dim2 ( ) , (T ) 0 ) ;

for ( int i = 0 ; i < M. dim1 ( ) ; i ++) id [ i ] [ i ] = 1 ;

/ / s o l v e s A * A_inv = I d e n t i t y

return lu . solve ( id ) ;

}

/ / This function computes t r a n s i t i o n p r o b ab i l i t y matrix P

/ / based on an eigen decomposition of matrix

/ / using subroutines from TNT l i b r a r y

void Matrix_P_eigen_decomposition_TNT (

double t , double ** P , double ** Q,

double ** U, double ** D_lambda ,
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double ** invU , int NN, int f l a g )

{

/ / Memory al location f o r matrices tempP and A

double ** tempP = new double * [ 2 * NN + 1 ] ;

Array2D< double > A(2*NN+1 ,2*NN+1 , 0 . 0 ) ;

/ / I n i t i a l i z e array A values with i n t e n s i t y rate q _ i j

for ( int i =0; i <= 2*NN; i ++)

for ( int j =0; j <= 2*NN; j ++)

A[ i ] [ j ] = Q[ i ] [ j ] ;

/ / Create (2*NN+1)x (2*NN+1) arrays V, D

Array2D<double> V(2*NN+1 ,2*NN+ 1 ) ;

Array2D<double> D(2*NN+1 ,2*NN+ 1 ) ;

/ / Create (2*NN+1) vector e

Array1D<double> e (2*NN+ 1 ) ;

/ / Eigen−decomposition of A using methods of TNT l i b r a r y

Eigenvalue <double> EV(A ) ;

EV . getV (V ) ; / / Assign eigen v e c t o r s of A to V

EV . getD (D) ; / / Assign eigen number A to D

/ / i f f l a g i s true , rewrite values of D to D_lambda array

/ / from matrix format of TNT to convenient one

i f ( f l a g )

{

for ( int i =0; i <= 2 * NN; i ++)

{

D_lambda[ i ] [ i ] = D[ i ] [ i ] ;

for ( int j =0; j <= 2 * NN; j ++)

{

/ / in U e i g e n v e c t o r s are rows

U[ j ] [ i ] = V[ j ] [ i ] ;

}

}

}

double sum;

/ / Multiplicate matrix V on matrix exponential of D

for ( int i =0; i <= 2 * NN; i ++)

{

for ( int j =0; j <= 2 * NN; j ++)

{
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tempP[ i ] [ j ] = ( double )V[ i ] [ j ] *
exp ( ( double ) t * D[ j ] [ j ] ) ;

}

}

/ / Find a lower triangular matrix L and an upper triangular matrix U

/ / so that matrix lu i s matrix V ( from JAMA package )

JAMA : : LU<double> lu (V ) ;

/ / c r e a t e i d e n t i t y matrix id

TNT : : Array2D<double> id (V . dim1 ( ) , V . dim1 ( ) , ( double ) 0 ) ;

for ( int i = 0 ; i < V . dim1 ( ) ; i ++) id [ i ] [ i ] = 1 ;

/ / s o l v e s f o r inverse matrix , V * V_inv = I d e n t i t y

D = lu . solve ( id ) ;

/ / Rewrite obtained inverse matrix D of V to

/ / matrix inv U of convenient data type

i f ( f l a g )

{

for ( int i =0; i <= 2 * NN; i ++)

{

for ( int j =0; j <= 2 * NN; j ++)

{

invU [ i ] [ j ] = D[ i ] [ j ] ; / / vr [ i ] [ j ] ;

}

}

}

/ / Calculate t r a n s i t i o n p r o b ab i l i t y matrix P as U exp ( tD ) invU

for ( int i =0; i <= 2 * NN; i ++)

{

for ( int j =0; j <= 2 * NN; j ++)

{

sum = 0 ;

for ( int k =0;k<= 2 * NN; k++)

{

sum += tempP[ i ] [ k ] * D[ k ] [ j ] ;

}

P[ i ] [ j ] = sum;

}

}

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] tempP[ i ] ;
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}

/ / This function computes t r a n s i t i o n p r o b ab i l i t y matrix P

/ / based on an eigen decomposition of matrix

/ / using a l g l i b l i b r a r y subroutines

void Matrix_P_eigen_decomposition (

double t , double ** P , double ** Q, double ** U, d

ouble ** D_lambda , double ** invU , int NN, int f l a g )

{

/ / Memory al location and i n i t i a l i z a t i o n

double ** tempP = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++)

tempP[ i ] = new double [2 * NN + 1 ] ;

a l g l i b : : real_1d_array wr ;

a l g l i b : : real_1d_array wi ;

a l g l i b : : real_2d_array v l ;

a l g l i b : : real_2d_array vr ;

a l g l i b : : real_2d_array vr2 ;

a l g l i b : : real_2d_array a ;

a . setlength (2 * NN + 1 , 2 * NN + 1 ) ;

for ( int i =0; i <= 2 * NN; i ++){

for ( int j =0; j <= 2 * NN; j ++){

a [ i ] [ j ] = Q[ i ] [ j ] ;

} }

/ / Eigen decomposition of i n t e n s i t y r a t e s matrix a

/ / using a l g l i b l i b r a r y subroutines . The r e s u l t i s

a l g l i b : : rmatrixevd (

a , / / real_2d_array a ,

2 * NN + 1 , / / ae_int_t n ,

1 , / / ae_int_t v needed ,

wr , / / eigenvalues

wi ,

vl ,

vr ) ; / / e i g e n v e c t o r s are columns

/ / Rewrite eigen v e c t o r s and values from matrix

/ / format of a l g l i b to convenient one

i f ( f l a g )

{

for ( int i =0; i <= 2 * NN; i ++)

{
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D_lambda[ i ] [ i ] = wr [ i ] ; ;

for ( int j =0; j <= 2 * NN; j ++)

{

/ / in U e i g e n v e c t o r s are rows

U[ j ] [ i ] = vr [ j ] [ i ] ;

}

}

}

double sum;

/ / Multiplicate matrix V on matrix exponential of D

for ( int i =0; i <= 2 * NN; i ++)

{

for ( int j =0; j <= 2 * NN; j ++)

{

tempP[ i ] [ j ] = ( double ) vr [ i ] [ j ] *
exp ( ( double ) t * ( double )wr [ j ] ) ;

}

}

/ / Inverse eigen v e c t o r s matrix vr aka U

ae_int_t info ;

matinvreport rep ;

rmatrixinverse ( vr , info , rep ) ;

/ / Rewrite eigen v e c t o r s and values from matrix

/ / format of a l g l i b to convenient one

i f ( f l a g )

{

for ( int i =0; i <= 2 * NN; i ++)

{

for ( int j =0; j <= 2 * NN; j ++)

{

invU [ i ] [ j ] = vr [ i ] [ j ] ;

}

}

}

/ / Calculate t r a n s i t i o n p r o b ab i l i t y matrix P as U exp ( tD ) invU

for ( int i =0; i <= 2 * NN; i ++)

{

for ( int j =0; j <= 2 * NN; j ++)

{

sum = 0 ;

for ( int k =0;k<= 2 * NN; k++)
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{

double temp = vr [ k ] [ j ] ;

sum += tempP[ i ] [ k ] * ( double ) vr [ k ] [ j ] ;

}

P[ i ] [ j ] = sum;

}

}

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] ( tempP[ i ] ) ;

}

/ / This function computes i n t e g r a l int_0 ^{ delta t } ( P_ki P_i l )

/ / then divides i t by P_kl from Theorem 5 and Corollary 4

void Matrix_Mk (

double t , int k , int l , int i , double *Mk,

double ** P , double ** Ksi , double ** D_lambda ,

double ** U, double ** invU , int NN)

{

double sum = 0 ;

for ( int j =0; j <=2 * NN; j ++)

{

double sum2 = 0 ;

for ( int q=0;q<=2 * NN; q++)

{

sum2 += ( double )U[ i ] [ q ] *
( double ) invU [ q ] [ l ] *
( double ) Ksi [ j ] [ q ] ;

}

sum += ( double )U[ k ] [ j ] * ( double ) invU [ j ] [ i ] * ( double )sum2 ;

}

i f (P[ k ] [ l ] ! = ( double ) 0 ) {

*Mk = 1/P[ k ] [ l ] * sum ; } else { *Mk = ( double ) 0 ; }

}

/ / This function computes expectation of R vector elements

/ / using the formula from Theorem 5

void Matrix_E_R (

double t , double* E_R , int ** c , double ** P ,

double ** Ksi , double ** D_lambda , double ** U,

double ** invU , int NN)

{

double Mk = ( double ) 0 ;

for ( int i =0; i <=2 * NN; i ++)

{
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double sum = 0 ;

for ( int k =0;k<=2 * NN; k++)

{

for ( int l =0; l <=2 * NN; l ++)

{

Matrix_Mk ( t , k , l , i ,&Mk, P , Ksi ,

D_lambda ,U, invU ,NN) ;

sum += ( double ) c [ k ] [ l ] * Mk;

}

}

E_R [ i ] = ( double )sum;

}

}

/ / This function computes i n t e g r a l int_0 ^{ delta t } ( P_ki P_i l )

/ / then multipl ies i t by c_kl / P_kl from Theorem 5

/ / and Corollary 4

void Matrix_fk (

double t , int k , int l , int i , int j , double * fk ,

double ** Q, double ** P , double ** Ksi ,

double ** D_lambda , double ** U,

double ** invU , int NN)

{

i f ( i != j )

{

double sum = 0 ;

for ( int pp=0;pp<=2 * NN; pp++)

{

double sum2 = 0 ;

for ( int qq=0;qq<=2 * NN; qq++)

{

sum2 += ( double )U[ j ] [ qq] *
( double ) invU [qq ] [ l ] *
( double ) Ksi [pp ] [ qq ] ;

}

sum += ( double )U[ k ] [ pp] *
( double ) invU [pp ] [ i ] * sum2 ;

}

i f (P[ k ] [ l ] ! = ( double ) 0 ) {

* fk = ( double )Q[ i ] [ j ] /P[ k ] [ l ] * sum ; }

else { * fk = ( double ) 0 ; }

}

else

{ * fk / * [ i ] [ i ] * / = 0 . L ; }

}
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/ / This function computes expectation of N matrix elements

/ / using the formula from Theorem 5

void Matrix_E_N (

double t , double ** E_N, int ** c , double ** Q,

double ** P , double ** Ksi , double ** D_lambda ,

double ** U, double ** invU , int NN)

{

double fk = 0 . L ;

for ( int i =0; i <=2 * NN; i ++)

{ for ( int j =0; j <=2 * NN; j ++)

{

double sum = 0 ;

for ( int k =0;k<=2 * NN; k++)

{

for ( int l =0; l <=2 * NN; l ++)

{

Matrix_fk ( t , k , l , i , j ,& fk ,Q, P , Ksi ,

D_lambda ,U, invU ,NN) ;

sum += ( double ) c [ k ] [ l ] * fk / * [ i ] [ j ] * / ;

}

}

E_N[ i ] [ j ] = ( double )sum;

} }

}

/ / This function computes expectation of log−l ike l ihood L^c

/ / from the formula ( 1 . 3 3 )

double c_Likelihood (

double nu , double alpha_0 , double alpha_1 ,

double ** E_N, double* E_R , int NN)

{

double sum = 0 ;

double ** Q = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++)

Q[ i ] = new double [2 * NN + 1 ] ;

Matrix_Q ( Q, nu , alpha_0 , alpha_1 , NN) ;

for ( int i =1; i <=2 * NN − 1 ; i ++)

{

sum += log (Q[ i ] [ i −1]) * E_N[ i ] [ i −1] − Q[ i ] [ i −1] * E_R [ i ] ;

sum += log (Q[ i ] [ i +1]) * E_N[ i ] [ i +1] − Q[ i ] [ i +1] * E_R [ i ] ;

}
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sum += log (Q[ 0 ] [ 1 ] ) * E_N[ 0 ] [ 1 ] − Q[ 0 ] [ 1 ] * E_R [ 0 ] ;

sum += log (Q[2 * NN] [ 2 * NN − 1 ] ) * E_N[2 * NN] [ 2 * NN − 1] −
Q[2 * NN] [ 2 * NN − 1] * E_R[2 * NN] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] (Q[ i ] ) ;

return sum;

}

/ / This function s o l v e s O.D. E .

using namespace a l g l i b ;

void ode_function_1_diff (

const real_1d_array &y , double x ,

real_1d_array &dy , void * ptr )

{

InputData data_tmp = * ( ( InputData * ) ptr ) ;

for ( int i =1; i <2*NN; i ++)

{

dy [ i ] = data_tmp .Q[ i ] [ i −1] * y [ i −1] +

data_tmp .Q[ i ] [ i ] * y [ i ] +

data_tmp .Q[ i ] [ i +1] * y [ i + 1 ] ;

}

dy [ 0 ] = data_tmp .Q[ 0 ] [ 0 ] * y [ 0 ] +

data_tmp .Q[ 0 ] [ 1 ] * y [ 1 ] ;

dy[2 * NN] = data_tmp .Q[2 * NN] [ 2 * NN − 1] * y [2 * NN − 1] +

data_tmp .Q[2 * NN] [ 2 * NN] * y [2 * NN] ;

}

using namespace std ;

using namespace boost : : numeric : : odeint ;

/ / Create a c l a s s necessary f o r application boost o . d . e . s o l v e r

/ / The c l a s s i s describing Boundary Value Problem

/ / namely Forward Kolmogorov Equation ( Theorem 1)

/ / f o r i−th column of t r a n s i t i o n p r o b ab i l i t y matrix

/ / https : / / en . wikipedia . org / wiki / Boundary_value_problem

class Forward_Kolmogorov_Equation

{

struct InputData T1 ;

public :

Forward_Kolmogorov_Equation ( struct InputData G) : T1(G) { }
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void operator ( ) (

const state_type &y , state_type &dydt , const double )

{

for ( int i = 1 ; i <2 * T1 .NN; i ++)

{

dydt [ i ] =

T1 .Q[ i ] [ i − 1] *
y [ i − 1] +

T1 .Q[ i ] [ i ] * y [ i ]+

T1 .Q[ i ] [ i + 1] *
y [ i + 1 ] ;

}

dydt [ 0 ] = T1 .Q[ 0 ] [ 0 ] * y [0]+ T1 .Q[ 0 ] [ 1 ] * y [ 1 ] ;

dydt [2 * T1 .NN] =

T1 .Q[2 * T1 .NN] [ 2 * T1 .NN − 1] *
y [2 * T1 .NN − 1]+

T1 .Q[2 * T1 .NN] [ 2 * T1 .NN] *
y [2 * T1 .NN] ;

}

} ;

void write_out ( const state_type &x , const double t )

{

/ / s td : : out << t << ’ \ t ’ << x [ 0 ] << endl ;

}

/ / This function computes t r a n s i t i o n p r o b ab i l i t y matrix P

/ / based on an eigen decomposition of matrix

/ / using a l g l i b o . d . e . and method describe in

/ / Section 1 . 6 . 2 , Theorem 6

void Matrix_P_recursive_ode ( InputData * data_tmp )

{

using namespace std ;

using namespace boost : : numeric : : odeint ;

/ / Memory al location

double ** Q_ode = ( * data_tmp ) .Q;

double ** P_ode = ( * data_tmp ) . P_d ;

int NN = ( * data_tmp ) .NN;

double delta_tk = ( * data_tmp ) . delta_tk ;

/ / Definit ion and i n i t i a l i z a t i o n of variables

real_1d_array y2 ;

double eps2 = 0.000000001; / / stopping c r i t e r i o n

double h = 0 ;
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odesolverstate s3 ;

real_1d_array x t b l ;

real_2d_array y t b l ;

odesolverreport rep ;

double i n i t _ s t e p _ s i z e = delta_tk * 0 . 1 ;

state_type x (2 * NN + 1 ) ;

double sum1 , sum2 ;

double precision_cut = 0 . 0 ;

/ / O.D. E . based computation of the l a s t column of

/ / p r o ba b i l i t y matrix P^X( t ; theta )

/ / Solve Forward Kolmogorov Equation f o r N−th

/ / column , equation ( 1 . 4 4 )

for ( int k=2 * NN − 1 ; k>=0; k−−)

{

/ / I f i t i s the l a s t column of t r a n s i t i o n p r o ba bi l i t y

/ / matrix P^X( t ; theta ) s ol ve the o . d . e .

i f ( k==2 * NN − 1)

{

for ( int i =0; i <=2*NN; i ++)

{

x [ i ] = 0 . 0 ; / / s t a r t at x =1.0 , p=0.0

}

x [2 * NN] = 1 . 0 ;

/ / Define system of o . d . e . as system

Forward_Kolmogorov_Equation system ( * data_tmp ) ;

/ / See Table 1 . 6 . Stepper Algorithms in

/ / https : / /www. boost . org / doc / l i b s / 1 _70_0 / l

/ / i b s / numeric / odeint / doc / html / boost_numeric_odeint /

/ / odeint_in_detai l / s teppers . html

/ / Solve Forward Kolmogorov Equation

/ / " system " by Runge−Kutta 4 algorithm

i f ( ode_stepper == 1)

{

runge_kutta4 < state_type > rk4 ;

s i z e _ t steps = integrate_const (

rk4 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

/ / By Fehlberg 78 algorithm
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i f ( ode_stepper == 2) {

runge_kutta_fehlberg78 < state_type > rk78 ;

s i z e _ t steps = integrate_const (

rk78 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

/ / By Bulirsch−Stoer algorithm

i f ( ode_stepper == 3)

{

bulirsch_stoer < state_type > rk4 ;

s i z e _ t steps = integrate_const (

rk4 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

/ / Write solution of o . d . e . as ( k+1)−column ,

/ / otherwise f o r c e the t r a n s i t i o n p r o b ab i l i t y

/ / to be zero ( i f i t i s lower then

/ / numerical precis ion )

for ( int i =0; i <2*NN + 1 ; i ++)

{

i f ( ( x [ i ] >= precision_cut ) && ( x [ i ] <= 1 ) ) {

P_ode [ i ] [ k + 1] = x [ i ] ;

}

else { P_ode [ i ] [ k + 1] = 0 ; }

}

}

/ / Solve Forward Kolmogorov Equation f o r each

/ / ( * data_tmp ) . Reinit−th column in order to prevent

/ / catastrophic cancelation ( accumulation of e r r o r s )

i f ( ( k ! = 0 ) && ( k % ( * data_tmp ) . Reinit == 0 ) )

{

for ( int i =0; i <=2*NN; i ++)

{

x [ i ] = 0 . 0 ; / / s t a r t at x =1.0 , p=0.0

}

x [ k+1] = 1 . 0 ;

Forward_Kolmogorov_Equation system ( * data_tmp ) ;

i f ( ode_stepper == 1)

{
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runge_kutta4 < state_type > rk4 ;

s i z e _ t steps = integrate_const (

rk4 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

i f ( ode_stepper == 2) {

runge_kutta_fehlberg78 < state_type > rkf78 ;

s i z e _ t steps = integrate_const (

rkf78 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

for ( int i = 0 ; i <2 * NN + 1 ; i ++)

{

i f ( ( x [ i ] >= precision_cut ) && ( x [ i ] <= 1 ) ) {

P_ode [ i ] [ k + 1] = x [ i ] ;

}

else { P_ode [ i ] [ k + 1] = 0 ; }

}

for ( int i =0; i <=2*NN; i ++)

{

x [ i ] = 0 . 0 ;

}

x [ k+2] = 1 . 0 ;

i f ( ode_stepper == 1)

{

runge_kutta4 < state_type > rk4 ;

s i z e _ t steps = integrate_const (

rk4 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

i f ( ode_stepper == 2) {

runge_kutta_fehlberg78 < state_type > rkf78 ;

integrate_const (

rkf78 , system , x , 0 . 0 ,

delta_tk , ode_step_size ) ;

}

for ( int i = 0 ; i <2 * NN + 1 ; i ++)

{

/ / P_ode [ i ] [ k + 1] = y t b l [ 1 ] [ i ] ;
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i f ( ( x [ i ] >= precision_cut ) && ( x [ i ] <= 1 ) ) {

P_ode [ i ] [ k + 2] = x [ i ] ; / /

}

else { P_ode [ i ] [ k + 2] = 0 ; }

}

}

/ / I f i t i s not the l a s t and not one of each

/ / ( * data_tmp ) . Reinit columns calculated by

/ / o . d . e . solving , then c a l c u l a t e using

/ / i t e r a t i v e formula from Theorem 6

sum1 = 0 , sum2 = 0 ;

for ( int j =0; j <2*NN + 1 ; j ++)

{

/ / Neither the f i r s t nor the l a s t element

/ / of k−th column

i f ( ( j !=0)&&( j !=2 * NN) ) {

sum1 =

(Q_ode[ j ] [ j −1] /

Q_ode[ k ] [ k +1]) *
P_ode [ j −1][k+1]+

( ( Q_ode[ j ] [ j ] − Q_ode[ k +1][ k +1])/

Q_ode[ k ] [ k +1]) *
P_ode [ j ] [ k+1]+

(Q_ode[ j ] [ j +1] /

Q_ode[ k ] [ k +1]) *
P_ode [ j +1][ k + 1 ] ; }

/ / I f the f i r s t element of k−th column

i f ( j ==0){ sum1 =

( ( Q_ode[ j ] [ j ] − Q_ode[ k +1][ k +1])/

Q_ode[ k ] [ k +1]) * P_ode [ j ] [ k+1]+

(Q_ode[ j ] [ j +1] / Q_ode[ k ] [ k +1]) *
P_ode [ j +1][ k + 1 ] ;

/ / I f the l a s t element of k−th column

i f ( j ==2 * NN) { sum1 =

(Q_ode[ j ] [ j −1] /Q_ode[ k ] [ k +1]) *
P_ode [ j −1][k+1] +

( ( Q_ode[ j ] [ j ] − Q_ode[ k +1][ k +1])/

Q_ode[ k ] [ k +1]) * P_ode [ j ] [ k + 1 ] ; }

/ / Computational t r i c k excluding too
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/ / small numbers from any further computations

i f ( k == 2 * NN − 1)

{

i f ( (sum1 >= precision_cut ) && (sum1 <= 1 ) ) {

P_ode [ j ] [ k ] = sum1 ; }

else { P_ode [ j ] [ k ] = 0 ; } ;

}

else {

sum2 = (Q_ode[ k + 2 ] [ k + 1] /

Q_ode[ k ] [ k + 1 ] ) *
P_ode [ j ] [ k + 2 ] ;

i f ( (sum1 − sum2 >= precision_cut ) &&

(sum1 − sum2 <= 1 ) ) {

P_ode [ j ] [ k ] = sum1 − sum2 ; }

else

{

P_ode [ j ] [ k ] = 0 ;

} ;

}

}

}

}

/ / Computation of d i s c r e t e l ikel ihood defined by the Theorem 3

/ / from r e a l data sample

double d_Likelihood (

/ / Structure with i n i t i a l data

InputData * data_tmp ,

/ / model parameters

double nu , double alpha_0 , double alpha_1 )

{

/ / I n i t i a l i z e t r a n s i t i o n i n t e n s i t y matrix Q and

/ / t r a n s i t i o n p r o ba b i l i t y P by zeros

for ( int i = 0 ; i <= 2 * ( * data_tmp ) .NN; i ++) {

for ( int j = 0 ; j <= 2 * ( * data_tmp ) .NN; j ++) {

( * data_tmp ) .Q[ i ] [ j ] = 0 . 0 ;

( * data_tmp ) . P_d [ i ] [ j ] = 0 . 0 ;

} }

/ / Calculate Q elements f o r given parameters nu, alpha_0 , alpha_1

/ / and the model with ( * data_tmp ) .NN agents . Store them in

/ / matrix ( * data_tmp ) .Q of data s t r u c t u r e data_tmp
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Matrix_Q ( ( * data_tmp ) . Q, nu , alpha_0 , alpha_1 , ( * data_tmp ) .NN) ;

/ / Log matrix Q to matrix_Q . i n i i f output i s 1

i f ( ( output ==1)) {

ofstream d_sample ( "matrix_Q . i n i " ) ;

for ( int i = 0 ; i < 2 * ( * data_tmp ) .NN + 1 ; i ++){

for ( int j = 0 ; j < 2 * ( * data_tmp ) .NN + 1 ; j ++){

d_sample << ( * data_tmp ) .Q[ i ] [ j ] << " , " ; }

d_sample << endl ;

}

d_sample . close ( ) ;

}

/ / I f method f i e l d of data_tmp i s not 3 ( not lower Hessenberg

/ / matrix approach ) , then use eigen−decomposition ,

/ / otherwise use r e c u r s i v e formula and o . d . e . s o l v e r

/ / from Section 1.6

i f ( ( * data_tmp ) . method != 3) {

Matrix_P_eigen_decomposition (

( * data_tmp ) . delta_tk ,

( * data_tmp ) . P_d ,

( * data_tmp ) . Q,

( * data_tmp ) . U_d,

( * data_tmp ) . D_lambda_d ,

( * data_tmp ) . invU_d ,

( * data_tmp ) .NN,

1 ) ; }

else {

Matrix_P_recursive_ode ( data_tmp ) ; }

/ / Log matrix P to matrix_P . i n i i f output i s 1

i f ( ( output ==1)) {

ofstream d_sample ( " matrix_P . i n i " ) ;

for ( int i = 0 ; i < 2 * ( * data_tmp ) .NN + 1 ; i ++) {

for ( int j = 0 ; j < 2 * ( * data_tmp ) .NN + 1 ; j ++) {

d_sample << ( * data_tmp ) . P_d [ i ] [ j ] << " , " ;

}

d_sample << endl ;

}

d_sample . close ( ) ;

}

/ / Computation of d i s c r e t e l ikel ihood defined by the Theorem 3

double sum = 0 ;

for ( int i =0; i <= ( * data_tmp ) . TT_d − 1 ; i ++)
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{

/ / Rounding r e a l index value stored in y_ob [ i ]

/ / to pick certain s t a t e

int state1 =

( * data_tmp ) .NN +

( int ) boost : : math : : round (

( * data_tmp ) .NN *
( * data_tmp ) . y_ob [ i ] ) ;

int state2 =

( * data_tmp ) .NN +

( int ) boost : : math : : round (

( * data_tmp ) .NN *
( * data_tmp ) . y_ob [ i + 1 ] ) ;

double value = ( * data_tmp ) . P_d [ state1 ] [ state2 ] ;

i f ( ( value >0 ) &&

( value <=1) ) {

sum += log ( value ) ;

}

}

/ / Print calculated l ikel ihood value in order to observe convergence

/ / of an optimization ( maximization ) procedure

i f ( ( ( output == 1) | | ( output == 2 ) ) && ( do_paral lel != 1 ) )

{

cout << "nu_d = " << nu << " alpha_0_d = " << alpha_0 <<

" alpha_1_d = " << alpha_1

<< " Disc . Lik . = " << sum << endl ;

}

/ * * l ikel ihood_val = * / / / return sum/ ( ( 1 + 2 * NN) * (1 + 2 * NN) ) ;

return sum/ ( ( * data_tmp ) . TT_d + 1 ) ;

}

using namespace a l g l i b ;

/ / Another version of continuous−time l ikel ihood computation

/ / with other types of input data

void f c n _ c _ l i k ( const real_1d_array &x , double &func , void * ptr )

{

InputData data_tmp = * ( ( InputData * ) ptr ) ;

func = −c_Likelihood (

x [ 0 ] , x [ 1 ] , x [ 2 ] , data_tmp .N, data_tmp . R, data_tmp .NN) ;

}
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/ / Another version of d i s c r e t e−time l ikel ihood computation

/ / with other types of input data

void fcn_d_lik ( const real_1d_array &x , double &func , void * ptr )

{

InputData data_tmp = * ( ( InputData * ) ptr ) ;

func = −d_Likelihood ( &data_tmp , x [ 0 ] , x [ 1 ] , x [ 2 ] ) ;

}

/ / One more version of continuous−time l ikel ihood computation

/ / with other types of input data

void fcn_d_lik2 ( const real_1d_array &x , real_1d_array &f i , void * ptr )

{

InputData data_tmp = * ( ( InputData * ) ptr ) ;

f i [ 0 ] = −d_Likelihood ( &data_tmp , x [ 0 ] , x [ 1 ] , x [ 2 ] ) ;

}

/ / This function estimates input data stored in data_tmp and

/ / returning the optimal parameter values as nu_EM and e t c

/ / Optimizer i n i t i a l point i s stored in xx vector

void EM_algorithm (

InputData * data_tmp , int ipoint , double *nu_EM,

double *alpha_0_EM , double *alpha_1_EM )

{

/ / Memory Allocation

InputData data_tmp2 = *data_tmp ;

double ** Ksi = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) Ksi [ i ] = new double [2 * NN + 1 ] ;

double ** D_lambda = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++)

D_lambda[ i ] = new double [2 * NN + 1 ] ;

double ** U = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) U[ i ] = new double [2 * NN + 1 ] ;

double ** invU = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) invU [ i ] = new double [2 * NN + 1 ] ;

double ** P = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) P[ i ] = new double [2 * NN + 1 ] ;

double * E_R = new double [2 * NN + 1 ] ;
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double ** E_N = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) E_N[ i ] = new double [2 * NN + 1 ] ;

double ** Q = new double * [ 2 * NN + 1 ] ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) Q[ i ] = new double [2 * NN + 1 ] ;

for ( int i = 0 ; i <= 2 * NN; i ++) {

for ( int j = 0 ; j <= 2 * NN; j ++) { Q[ i ] [ j ] = 0 ; } }

/ / I n i t i a l i z a t i o n

double nu_m = 1 . 0 , alpha_0_m = 0 . 0 , alpha_1_m = 1 . 0 ;

double lv1 = d_Likelihood ( data_tmp , nu_m, alpha_0_m , alpha_1_m ) ;

double lv3 = 0 ;

int counter = 0 ;

/ / Estimation unti l abs ( lv1 − lv3 ) >=0.0000001)&

/ / ( i t e r a t i o n s counter <=1000)

while ( ( abs ( lv1 − lv3 ) >=0.0000001)&&(counter <=1000))

{

/ / Calculate necessary matrices

Matrix_Q ( Q, nu_m, alpha_0_m , alpha_1_m , NN) ;

Matrix_P_eigen_decomposition (

( * data_tmp ) . delta_tk ,

P ,

Q,

U,

D_lambda ,

invU ,

NN,

1 ) ;

Matrix_Ksi ( ( * data_tmp ) . delta_tk , Ksi , D_lambda , NN) ;

Matrix_E_R (

( * data_tmp ) . delta_tk , E_R , ( * data_tmp ) . c ,

P , Ksi , D_lambda , U, invU , NN ) ;

Matrix_E_N (

( * data_tmp ) . delta_tk , E_N, ( * data_tmp ) . c ,

Q, P , Ksi , D_lambda , U, invU , NN ) ;

/ / Assign i n i t i a l point stored in xx vector by ipoint number

real_1d_array x ;

x . setcontent ( 3 , xx [ ipoint ] ) ;

/ / I n i t i a l i z a t i o n of optimizer

minbleicstate s t a t e ;

minbleicreport rep ;
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minbleiccreatef ( x , d i f f s t e p , s t a t e ) ;

/ / Set boundaries of search region

minbleicsetbc ( state , bndl , bndu ) ;

/ / Define stopping c r i t e r i o n s

minbleicsetinnercond ( state , epsg , epsf , epsx ) ;

/ / Assign calculated expectations of matrix N and vector R

data_tmp2 .N = E_N ;

data_tmp2 . R = E_R ;

/ / Begin optimization , namely maximization of

/ / l ikel ihood f c n _ c _ l i k with parameters and

/ / input data stored in data_tmp2 s t r u c t u r e

a l g l i b : : minbleicoptimize (

state , fcn_c_l ik , NULL, ( void *)&data_tmp2 ) ;

minbleicresults ( state , x , rep ) ;

/ / Write the r e s u l t of optimization ( vector x ) to variables :

nu_m = x [ 0 ] , alpha_0_m = x [ 1 ] , alpha_1_m = x [ 2 ] ;

/ / Store current l ikel ihood value

lv1 = lv3 ;

/ / Calculate d i s c r e t e l ikel ihood L^d( y ; thet a_i ) f o r new

/ / parameters nu_m, alpha_0_m , alpha_1_m

lv3 = d_Likelihood ( data_tmp , nu_m, alpha_0_m , alpha_1_m ) ;

/ / Counter of i t e r a t i o n s

counter +=1;

}

/ / Save r e s u l t s

*nu_EM = nu_m;

*alpha_0_EM = alpha_0_m ;

*alpha_1_EM = alpha_1_m ;

/ / Clean Up

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] ( D_lambda[ i ] ) ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] ( Ksi [ i ] ) ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] (U[ i ] ) ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] ( invU [ i ] ) ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] ( P[ i ] ) ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] ( E_N[ i ] ) ;

for ( int i = 0 ; i <2 * NN + 1 ; i ++) delete [ ] (Q[ i ] ) ;

delete [ ] ( E_R ) ;
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}

/ / Wrapper f o r MLE estimation subroutines

Results MLE_wrapper( InputData * data_tmp , int ipoint )

{

/ / Assign i n i t i a l point

real_1d_array x ;

x . setcontent ( 3 , xx [ ipoint ] ) ;

/ / I n i t i a l i z e optimizer

minbleicstate state2 ;

minbleicreport rep2 ;

minbleiccreatef ( 3 , x , d i f f s t e p , state2 ) ;

minbleicsetscale ( state2 , scale ) ;

minbleicsetbc ( state2 , bndl , bndu ) ;

minbleicsetinnercond ( state2 , epsg , epsf , epsx ) ;

/ / I f f i l e d method of data_tmp s t r u c t u r e i s 0 , then

/ / maximize continuous−time l ikel ihood f c n _ c _ l i k

/ / otherwise d i s c r e t e fcn_d_lik

i f ( ( * data_tmp ) . method == 0) {

a l g l i b : : minbleicoptimize ( state2 , fcn_c_l ik , NULL, data_tmp ) ;

}

else {

a l g l i b : : minbleicoptimize ( state2 , fcn_d_lik , NULL, data_tmp ) ;

}

minbleicresults ( state2 , x , rep2 ) ;

/ / Return the r e s u l t s as a s t r u c t u r e Res

Results Res ;

Res . x [ 0 ] = x [ 0 ] ;

Res . x [ 1 ] = x [ 1 ] ;

Res . x [ 2 ] = x [ 2 ] ;

return ( Res ) ;

}

/ / This function writing a l l the data in s t r u c t u r e data_tmp

/ / in the t e x t f i l e s

void output_fcn ( InputData * data_tmp )

{

ofstream c_sample ( "matrix_c_sample . i n i " ) ;

for ( int i = 0 ; i <= ( * data_tmp ) .MM_max; i ++){
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c_sample << ( * data_tmp ) . y [ i ] << " , " ; }

c_sample . close ( ) ;

ofstream rho ( " matrix_rho . i n i " ) ;

for ( int i = 0 ; i <= ( * data_tmp ) .MM_max; i ++) {

rho << ( * data_tmp ) . rho [ i ] << " , " ; }

rho . close ( ) ;

ofstream R( " matrix_R . i n i " ) ;

for ( int i = 0 ; i < 2* ( * data_tmp ) .NN+1; i ++) {

R << ( * data_tmp ) . R[ i ] << " , " ; }

R . close ( ) ;

ofstream N( "matrix_N . i n i " ) ;

for ( int i = 0 ; i < 2 * ( * data_tmp ) .NN + 1 ; i ++) {

for ( int j = 0 ; j < 2 * ( * data_tmp ) .NN + 1 ; j ++) {

N << ( * data_tmp ) .N[ i ] [ j ] << " , " ; }

N << endl ;

}

N. close ( ) ;

ofstream d_sample ( "matrix_d_sample . i n i " ) ;

for ( int i = 0 ; i <= ( * data_tmp ) . TT_d ; i ++) {

d_sample << ( * data_tmp ) . y_ob [ i ] << " , " ;

}

d_sample . close ( ) ;

ofstream c ( " matrix_c . i n i " ) ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++) {

for ( int j = 0 ; j < 2 * NN + 1 ; j ++) {

c << ( * data_tmp ) . c [ i ] [ j ] << " , " ;

}

c << endl ;

}

c . close ( ) ;

}

/ / Simulate complete−data ( continuous−time ) sample path

int GenContinuousSample (

int k , InputData * data_tmp , double nu_real ,

double alpha0_real , double alpha1_real )

{

/ / Memory al location

double* R = ( * data_tmp ) . R ;

double ** N = ( * data_tmp ) .N;
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double* rho = ( * data_tmp ) . rho ;

double* y = ( * data_tmp ) . y ;

double TT = ( * data_tmp ) . TT ;

int MM = ( * data_tmp ) .MM;

int NN = ( * data_tmp ) .NN;

double * Ud = new double [ 2*MM] ;

double * Ud2 = new double [MM] ;

/ / I n i t i a l i z a t i o n of R, N and rho with zeros

for ( int j =0; j <=2*NN; j ++) R[ j ] = 0 ;

for ( int i =0; i <=2*NN; i ++) {

for ( int j =0; j <=2*NN; j ++){

N[ i ] [ j ] = 0 ;

}

}

for ( int j =0; j <=MM−1; j ++) rho [ j ] = 0 ;

/ / I n i t i a l i z a t i o n of two independent uniform

/ / random number generators rng1 and rng2

boost : : random : : mt19937 base_rng ;

boost : : random : : uniform_01<> u01 ;

boost : : random : : mt19937 base_rng_2 ;

boost : : random : : uniform_01<> u01_2 ;

/ / Set d i f f e r e n t seeds from array PrimesSampleArr

/ / with prime numbers

base_rng . seed ( PrimesSampleArr [2 * ( k − 1 ) ] ) ;

base_rng_2 . seed ( PrimesSampleArr [2 * ( k − 1) + 1] ) ;

boost : : random : : variate_generator <boost : : mt19937&,

boost : : uniform_01<> >

rng ( base_rng , u01 ) ;

boost : : random : : variate_generator <boost : : mt19937&,

boost : : uniform_01<> >

rng2 ( base_rng_2 , u01_2 ) ;

/ / F i l l uniform random variables v e c t o r s Ud and Ud2

/ / with values generated by rng1 and rng2

for ( int j = 0 ; j <= MM − 1 ; j ++) {

Ud[ j ] = rng ( ) ;

/ / outfileRNG <<( int )randNum[ j ] < <"\n " ;

Ud2[ j ] = rng2 ( ) ;

i f (Ud2[ j ] == 0) { Ud2[ j ] = rng2 ( ) ; }

}
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/ / Simulate continuous−time sample path as described in Section 1 . 2 . 5

double t = 0 ; int m = 0 ;

while ( t <=TT)

{

double p1=pi_u (

( double ) y [m] ,

nu_real ,

alpha0_real ,

alpha1_real ) ;

/ / Generate new s t a t e

i f ( ( 0 . 0 <= Ud[m] ) && (Ud[m] <= p1 ) )

{

i f ( ( int ) boost : : math : : round (NN * y [m] ) != NN ) {

y [m+1]= y [m] + ( double )1 / ( double )NN; }

else {

y [m+1]= y [m] − ( double )1 / ( double )NN; }

}

i f ( ( p1 < Ud[m] ) && (Ud[m] <= 1 . 0 ) )

{

i f ( ( int ) boost : : math : : round (NN * y [m] ) !=−NN ) {

y [m+1]= y [m] − ( double )1 / ( double )NN; }

else {

y [m+1]= y [m] + ( double )1 / ( double )NN; }

}

/ / Generate i n t e r v a l between t r a n s i t i o n s

rho [m+1] = −log(1−Ud2[m] ) /

( w_u(

( double ) y [m] ,

nu_real ,

alpha0_real ,

alpha1_real ) +

w_d(

( double ) y [m] ,

nu_real ,

alpha0_real ,

alpha1_real ) ) ;

t += rho [m+ 1 ] ;

m++;

}

/ / Cut the sample to have end point at TT

rho [m] = TT − t + rho [m] ;

y [m] = y [ m − 1 ] ;
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( * data_tmp ) .MM_max = m;

double qq = 0 ; double s = 0 ; int p = 0 ,q = 0 ;

/ / F i l l vector of holding time R and

/ / matrix N with number of t r a n s i t i o n s

for ( int j =0; j <=m−2; j ++)

{

p = NN + ( int ) boost : : math : : round ( NN * y [ j ] ) ;

R[p] = R[p] + rho [ j + 1 ] ;

q = NN + ( int ) boost : : math : : round ( NN * y [ j +1] ) ;

N[p ] [ q ] = N[p ] [ q ] + 1 ;

}

delete [ ] (Ud ) ;

delete [ ] ( Ud2 ) ;

return 0 ;

}

/ / This function return number of t r a n s i t i o n s in continuous−time

/ / sample unti l time t through vector of i n t e r v a l s between t r a n s i t i o n s rho

int y_k ( double t , double* rho , int MM)

{

double s = 0 ; int i = 0 ;

while ( ( s< t ) && ( i <=MM−1))

{

s = s + rho [ i ] ;

i = i + 1 ;

}

return i −1;

}

/ / This function write d i s c r e t e−time sample y_ob from continuous−time y

/ / to corresponding f i e l d s of the s t r u c t u r e data_tmp with input data

int GenDiscreteSample ( InputData * data_tmp )

{

int MM = ( * data_tmp ) .MM_max;

double tk = 0 ;

( * data_tmp ) . y_ob [ 0 ] = ( * data_tmp ) . y [ 0 ] ;

/ / Write s t a t e of the process y in d i s c r e t i z a t i o n time stamps tk

/ / to y_ob [ ]

int t = 1 ;
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while ( tk <= ( * data_tmp ) . TT)

{

tk = tk + ( * data_tmp ) . delta_tk ;

int k = y_k ( tk , ( * data_tmp ) . rho , MM) ;

( * data_tmp ) . y_ob [ t ] = ( * data_tmp ) . y [ k ] ;

t ++;

}

t−−; t−−;

( * data_tmp ) . TT_d = t ; / / r e a l vector s i z e of y_ob

/ / I n i t i a l i z e matrix c with zeros

for ( int i =0; i <=2 * ( * data_tmp ) .NN; i ++) {

for ( int j =0; j <=2 * ( * data_tmp ) .NN; j ++) {

( * data_tmp ) . c [ i ] [ j ] = ( int ) 0 ; } ; }

/ / F i l l c with quanti t ies of t r a n s i t i o n s from i to j in y_ob

for ( int i =1; i <= t ; i ++)

{

int i1 = NN +

( int ) boost : : math : : round ( ( * data_tmp ) .NN *
( * data_tmp ) . y_ob [ i −1 ] ) ;

int i2 = NN +

( int ) boost : : math : : round ( ( * data_tmp ) .NN *
( * data_tmp ) . y_ob [ i ] ) ;

( * data_tmp ) . c [ i1 ] [ i2 ] = ( * data_tmp ) . c [ i1 ] [ i2 ] + ( int ) 1 ;

}

/ / Log a l l generated data from data_tmp to hard drive

i f ( output==2) { output_fcn ( data_tmp ) ; }

return ( 0 ) ;

}

/ / Parser of r e a l data sample y_ob

int ParseRealSample ( InputData * data_tmp , real_1d_array y_ob )

{

/ / Assign number of observations to TT_d

( * data_tmp ) . TT_d = y_ob . length ( ) − 1 ;

/ / F i l l y_ob of s t r u c t u r e data_tmp

for ( int i = 0 ; i <= ( * data_tmp ) . TT_d ; i ++)

{

( * data_tmp ) . y_ob [ i ] = y_ob [ i ] ;

}
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/ / I n i t i a l i z a t i o n of c with zeros

for ( int i = 0 ; i <= 2 * ( * data_tmp ) .NN; i ++) {

for ( int j = 0 ; j <= 2 * ( * data_tmp ) .NN; j ++) {

( * data_tmp ) . c [ i ] [ j ] = ( int ) 0 ; } ; }

/ / F i l l c with quanti t ies of t r a n s i t i o n s from i to j in y_ob

for ( int i = 1 ; i <= ( * data_tmp ) . TT_d ; i ++)

{

int i1 = NN +

( int ) boost : : math : : round ( ( * data_tmp ) .NN *
( * data_tmp ) . y_ob [ i − 1 ] ) ;

int i2 = NN +

( int ) boost : : math : : round ( ( * data_tmp ) .NN *
( * data_tmp ) . y_ob [ i ] ) ;

( * data_tmp ) . c [ i1 ] [ i2 ] = ( * data_tmp ) . c [ i1 ] [ i2 ] + ( int ) 1 ;

}

/ / Log sample paths y_ob and matrix c to hard drive

i f ( output==1) {

ofstream d_sample ( "matrix_d_sample . i n i " ) ;

for ( int i = 0 ; i <= ( * data_tmp ) . TT_d ; i ++) {

d_sample << ( * data_tmp ) . y_ob [ i ] << " , " ;

}

d_sample . close ( ) ;

ofstream c ( " matrix_c . i n i " ) ;

for ( int i = 0 ; i < 2 * NN + 1 ; i ++) {

for ( int j = 0 ; j < 2 * NN + 1 ; j ++) {

c << ( * data_tmp ) . c [ i ] [ j ] << " , " ;

}

c << endl ;

}

}

return ( 0 ) ;

}

/ / This function c a l c u l a t e s s t a t i s t i c a l metrics RMSE, FSSE , median , mean

/ / of estimated parameters . Note , t h i s function used f o r f a s t accessing

/ / quality of estimates .

/ / The r e s u l t s presented in the main t e x t were analyzed with R .

void StandardErrorsMed (

double ** par , int IP , int size , double real_par_value ,

double * par_av , double *FSSE , double *RMSE, double *med)

{
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* par_av = 0 ; *RMSE = 0 ; *med = 0 ; *FSSE = 0 ;

for ( int kk =1; kk<= s i z e ; kk++)

{

* par_av += par [ kk−1][ IP ] ;

*RMSE +=(par [ kk−1][ IP ] − real_par_value ) *
( par [ kk−1][ IP ] − real_par_value ) ;

}

*RMSE = sqrt ( *RMSE/ s i z e ) ;

* par_av /= s i z e ;

/ / Sample Error of Mean based on biased ( but corrected ) s

/ / ample s t . dev . or j u s t sample s t . dev .

for ( int kk =1; kk<= s i z e ; kk++)

{

*FSSE +=(par [ kk−1][ IP ] − * par_av ) *
( par [ kk−1][ IP ] − * par_av ) ;

}

*FSSE = sqrt ( * FSSE / ( size −1)) ;

for ( int i =0; i <= s i z e − 1 ; i ++)

{

for ( int j =0; j <= s i z e − 2 ; j ++)

{

i f ( par [ j ] [ IP ] <par [ j +1][ IP ] )

{

double temp = par [ j ] [ IP ] ;

par [ j ] [ IP ] = par [ j +1][ IP ] ;

par [ j +1][ IP ] = temp ;

}

}

}

*med = par [ s i z e /( int ) 2 ] [ IP ] ;

}

/ / This function c a l c u l a t e s median

void Par_Median ( double ** par , int IP , int i t e r )

{

double par2 [ 2 0 ] ;

for ( int i =0; i <=IP−1; i ++) par2 [ i ] = par [ i t e r ] [ i ] ;

for ( int i =0; i <=IP−1; i ++)

{

for ( int j =0; j <= IP − 2 ; j ++)
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{

i f ( par2 [ j ] <par2 [ j +1])

{

double temp = par2 [ j ] ;

par2 [ j ] = par2 [ j + 1 ] ;

par2 [ j +1] = temp ;

}

}

}

par [ i t e r ] [ IP ] = ( par2 [ IP / ( int )2 − 1] + par2 [ IP / ( int ) 2 ] ) / 2 ;

}

/ / Parser of s e t t i n g s f i l e with model and estimation algorithms parameters

int ParseSettings ( ofstream &simulations , ifstream &s e t t i n g s )

{

/ / Check e x i s t e n c e of s e t t i n g s f i l e

try { s e t t i n g s . open( " Sett ings . i n i " ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Sett ings . i n i f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

/ / Read s e t t i n g s f i l e l i n e by l i n e

s t r i n g l i n e ;

while ( g e t l i n e ( sett ings , l i n e ) )

{

istr ingstream i s _ l i n e ( l i n e ) ;

s t r i n g key ;

i f ( g e t l i n e ( i s _ l i n e , key , ’ ’ ) )

{

s t r i n g value ;

i f ( g e t l i n e ( i s _ l i n e , value , ’= ’ ) ) {

g e t l i n e ( i s _ l i n e , value ) ;

/ / Estimation method (EM, MLE)

i f ( key == "method" ) method =

( int ) StrToFloat ( value ) ;

/ / P a r a l l e l estimation f o r each i n i t i a l point

i f ( key == " do_paral lel " ) do_paral lel =

( int ) StrToFloat ( value ) ;

/ / Number of agents

i f ( key == "N" )

NN = ( int ) StrToFloat ( value ) ;
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/ / Sample s i z e

i f ( key == "M" )

MM = ( int ) StrToFloat ( value ) ;

/ / Time horizon

i f ( key == "T" )

TT = StrToFloat ( value ) ;

/ / Switcher of r e i n i t i a l i z a t i o n described

/ / in Section 1 . 6 . 3

i f ( key == " Reinit " )

Reinit = ( int ) StrToFloat ( value ) ;

/ / D i s c r e t i z a t i o n step

i f ( key == " delta_tk " )

delta_tk = StrToFloat ( value ) ;

/ / Parameters values f o r simulation

i f ( key == " nu_real " )

nu_real = StrToFloat ( value ) ;

i f ( key == " alpha0_real " )

alpha0_real = StrToFloat ( value ) ;

i f ( key == " alpha1_real " )

alpha1_real = StrToFloat ( value ) ;

/ / Discrete−time sample

i f ( key == " y_real " ) {

y_ob = value . c _ s t r ( ) ; }

/ / I n i t i a l point , boundaries and s c a l e

/ / of search region

i f ( key == " xx " ) {

xx = value . c _ s t r ( ) ; }

i f ( key == "ub" ) {

bndu = value . c _ s t r ( ) ; }

i f ( key == " lb " ) {

bndl = value . c _ s t r ( ) ; }

i f ( key == " scale " ) {

scale = value . c _ s t r ( ) ; }

/ / Stopping c r i t e r i o n s

i f ( key == "epsg" )

epsg = StrToFloat ( value ) ;

i f ( key == " epsf " )

epsf = StrToFloat ( value ) ;

i f ( key == "epsx" )

epsx = StrToFloat ( value ) ;
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/ / Optimizer step s i z e

i f ( key == " d i f f s t e p " )

d i f f s t e p = StrToFloat ( value ) ;

/ / O.D. E . stepper s i z e of step

i f ( key == " ode_step_size " )

ode_step_size = StrToFloat ( value ) ;

/ / O.D. E . stepper algorithm ( rk4 and e t c )

i f ( key == " ode_stepper " )

ode_stepper = ( int ) StrToFloat ( value ) ;

/ / Logging on / o f f

i f ( key == "output" )

output = ( int ) StrToFloat ( value ) ;

}

}

}

s e t t i n g s . close ( ) ;

try { s e t t i n g s . open( " Sett ings . i n i " ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Real Data f i l e found ! Exception

of opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

/ / Write the s e t t i n g s to the f i l e simulations

/ / with the estimations r e s u l t s

while ( g e t l i n e ( sett ings , l i n e ) )

{

simulations << l i n e << endl ;

}

s e t t i n g s . close ( ) ;

return 1 ;

}

/ / Write the array of l ikel ihood function values in d i s c r e t e points

/ / on 2D rectangle f o r p l o t t i n g

void PlotLik ( InputData data_tmp )

{

double xv = 0 . 0 1 ;

double yv = 0 . 0 1 ;
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double dx = 1 . 6 ;

double dy = 0 . 0 2 ;

double xlim = 120;

double ylim = 2 ;

ofstream plot3D ( "plot3D . i n i " ) ;

while ( xv <= xlim )

{

yv = 0 . 0 1 ;

while ( yv <= ylim )

{

/ / i f ( do_parallel ) {

/ / concurrency : : p a r a l l e l _ f o r ( 0 , 200 ,

/ / [ &]( int k )

/ / {

double val = d_Likelihood(&data_tmp , xv , 0 , yv ) ;

plot3D << val << " , " ;

yv = yv + dy ;

}

/ / ) ;

plot3D << endl ;

xv = xv + dx ;

cout << xv << endl ;

}

plot3D << endl << endl ;

try { s e t t i n g s . open( " Sett ings . i n i " ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Sett ings . i n i f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

/ / return 0 ;

}

s t r i n g l i n e ;

while ( g e t l i n e ( sett ings , l i n e ) )

{

plot3D << l i n e << endl ;

}

s e t t i n g s . close ( ) ;
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plot3D . close ( ) ;

}

/ / ==============Main Function==============

int

main( int argc , char * argv [ ] )

{

/ / Enter range of i t e r a t i o n s ( seeds ) from the keyboard

cout << "MC i t e r a t i o n s from # : " ;

cin >> MC_iterations1 ;

cout << "MC i t e r a t i o n s to # : " ;

cin >> MC_iterations2 ;

time_t t = time ( 0 ) ; / / get time now

struct tm * now = localtime (& t ) ;

s t r i n g t t 3 = IntToStr ( MC_iterations1 ) ;

s t r i n g t t 4 = IntToStr ( MC_iterations2 ) ;

/ / Create f i l e with estimation experiment

/ / r e s u l t s in f o l d e r Simulations

/ / with a name containing Date and Time

s t r i n g t t = " Simulations \\Seed=( " + t t 3 + " , " + t t 4 + " ) _"

+ IntToStr (now−>tm_year + 1900) + ’− ’

+ IntToStr (now−>tm_mon + 1) + ’− ’

+ IntToStr (now−>tm_mday) + " "

+ IntToStr (now−>tm_hour ) + "−"

+ IntToStr (now−>tm_min) + "−"

+ IntToStr (now−>tm_sec ) + " . t x t " ;

ofstream simulations ( t t ) ;

/ / Parse S e t t i n g s . i n i

ParseSettings ( simulations , s e t t i n g s ) ;

IP = xx . rows ( ) ; / / Number of i n i t i a l points

/ / =======Mem Alloc f o r Errors Metrics==========

double FSSE_nu_c = 0 , FSSE_alpha_0_c = 0 , FSSE_alpha_1_c = 0 ;

double FSSE_nu_d = 0 , FSSE_alpha_0_d = 0 , FSSE_alpha_1_d = 0 ;

double FSSE_nu_EM = 0 , FSSE_alpha_0_EM = 0 , FSSE_alpha_1_EM = 0 ;

double RMSE_nu_c = 0 , RMSE_alpha_0_c = 0 , RMSE_alpha_1_c = 0 ;
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double RMSE_nu_d = 0 , RMSE_alpha_0_d = 0 , RMSE_alpha_1_d = 0 ;

double RMSE_nu_EM = 0 , RMSE_alpha_0_EM = 0 , RMSE_alpha_1_EM = 0 ;

double med_nu_c = 0 , med_alpha_0_c = 0 , med_alpha_1_c = 0 ;

double med_nu_d = 0 , med_alpha_0_d = 0 , med_alpha_1_d = 0 ;

double med_nu_EM = 0 , med_alpha_0_EM = 0 , med_alpha_1_EM = 0 ;

/ / Number of i t e r a t i o n s

int itRange = MC_iterations2 − MC_iterations1 + 1 ;

double ** nu_c = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) nu_c [ i ] = new double [ IP ] ;

double ** nu_d = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) nu_d [ i ] = new double [ IP ] ;

double ** nu_EM = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) nu_EM[ i ] = new double [ IP ] ;

double ** alpha_0_c = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) alpha_0_c [ i ] = new double [ IP ] ;

double ** alpha_0_d = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) alpha_0_d [ i ] = new double [ IP ] ;

double ** alpha_0_EM = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) alpha_0_EM [ i ] = new double [ IP ] ;

double ** alpha_1_c = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) alpha_1_c [ i ] = new double [ IP ] ;

double ** alpha_1_d = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) alpha_1_d [ i ] = new double [ IP ] ;

double ** alpha_1_EM = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) alpha_1_EM [ i ] = new double [ IP ] ;

/ / Timers ’ arrays

double ** timerLc = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) timerLc [ i ] = new double [ IP ] ;

for ( int i = 0 ; i < itRange ; i ++)

for ( int j = 0 ; j < IP ; j ++) timerLc [ i ] [ j ] = ( _int64 ) 0 ;

double ** timer = new double * [ itRange ] ;

for ( int i = 0 ; i <itRange ; i ++) timer [ i ] = new double [ IP ] ;

for ( int i = 0 ; i < itRange ; i ++)

for ( int j = 0 ; j < IP ; j ++) timer [ i ] [ j ] = ( _int64 ) 0 ;

/ / Seed I n i t i a l i z a t i o n

i fstream PrimesSample ;
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/ / Read f i l e with primes numbers ( seeds )

try { PrimesSample . open( "PrimesSample . t x t " ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Seed Data f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

char * buffer = new char [ 1 0 2 4 ] ;

for ( int i = 0 ; i < 200; i ++) { PrimesSample >> PrimesSampleArr [ i ] ; }

double nu_c_av = 0 , alpha_0_c_av = 0 , alpha_1_c_av = 0 ;

double nu_d_av = 0 , alpha_0_d_av = 0 , alpha_1_d_av = 0 ;

double nu_EM_av = 0 , alpha_0_EM_av = 0 , alpha_1_EM_av = 0 ;

counter = 0 ;

/ / A l l o c a t e k x 3 array of estimates

int k = xx . rows ( ) ;

double ** estimates = new double * [ k ] ;

for ( int i = 0 ; i <k ; i ++) estimates [ i ] = new double [ 3 ] ;

/ / ===== Real−data estimation =====

/ / I f r e a l parameters values are unknown ( r e a l data )

i f ( ( nu_real == 0 . 0 ) &&

( alpha0_real == 0 . 0 )

&& ( alpha1_real == 0 . 0 ) ) {

i f ( ( y_ob . length ( ) > 0 ) )

{

/ / Progress bar f i l e d with | f o r each i n i t i a l point

cout << endl ;

for ( k = 1 ; k <= ( int ) xx . rows ( ) ; k++) {

cout << " | " ; }

cout << endl ;

i f ( do_paral lel ) {

/ / Estimate data sample s t a r t i n g with each

/ / i n i t i a l point separately in p a r a l l e l

concurrency : : p a r a l l e l _ f o r ( 0 , k − 1 ,

[ & ] ( int ipoint )

{

/ / F i l l real_data and real_data_cl

/ / s t r u c t u r e s with s e t t i n g s
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/ / from s e t t i n g s f i l e

InputData real_data ;

real_data . method = method ;

real_data .NN = NN;

real_data .MM = MM;

real_data . Reinit = Reinit ;

real_data . delta_tk = delta_tk ;

real_data . k = 0 ;

InputDataClass real_data_cl (

&real_data ) ;

/ / Parse r e a l sample and

/ / write to real_data

ParseRealSample(& real_data , y_ob ) ;

/ / Log l ikel ihood function surface

i f ( ( output == 3) && ( ipoint == 0 ) ) {

PlotLik ( real_data ) ; }

/ / s t r u c t u r e with r e s u l t s

Results Res ;

/ / I f method i s not 1 (EM) do MLE

/ / otherwise EM algorithm

i f (method ! = 1) {

Res =

MLE_wrapper(

&real_data ,

ipoint ) ; }

else {

double temp_nu_EM = 0 ,

temp_alpha_0_EM = 0 ,

temp_alpha_1_EM = 0 ,

lv3 = 0 ;

EM_algorithm (

&real_data , ipoint ,

&temp_nu_EM,

&temp_alpha_0_EM ,

&temp_alpha_1_EM ) ;

Res . x [ 0 ] = temp_nu_EM ;

Res . x [ 1 ] = temp_alpha_0_EM ;

Res . x [ 2 ] = temp_alpha_1_EM ;

}
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/ / Write the r e s u l t s of

/ / estimates to array

estimates [ ipoint ] [ 0 ] = Res . x [ 0 ] ;

estimates [ ipoint ] [ 1 ] = Res . x [ 1 ] ;

estimates [ ipoint ] [ 2 ] = Res . x [ 2 ] ;

/ / Add to progress bar |

cout << " | " ;

}

) ;

}

/ / I f not in p a r a l l e l

else {

for (

int ipoint = 0 ;

ipoint < xx . rows ( ) ;

ipoint ++)

{

/ / F i l l real_data and real_data_cl

/ / s t r u c t u r e with s e t t i n g s

/ / from s e t t i n g s f i l e

InputData real_data ;

real_data . method = method ;

real_data .NN = NN;

real_data .MM = MM;

real_data . Reinit = Reinit ;

real_data . delta_tk = delta_tk ;

real_data . k = 0 ;

InputDataClass real_data_cl (

&real_data ) ;

/ / Parse r e a l sample and

/ / write to real_data

ParseRealSample(& real_data , y_ob ) ;

/ / Log l ikel ihood function surface

i f ( ( output == 3) && ( ipoint == 0 ) ) {

PlotLik ( real_data ) ; }

/ / s t r u c t u r e with r e s u l t s

Results Res ;

/ / I f method i s not 1 (EM) do MLE
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/ / otherwise EM algorithm

i f (method ! = 1) {

Res =

MLE_wrapper(

&real_data ,

ipoint ) ; }

else {

double temp_nu_EM = 0 ,

temp_alpha_0_EM = 0 ,

temp_alpha_1_EM = 0 , lv3 = 0 ;

EM_algorithm (

&real_data , ipoint ,

&temp_nu_EM,

&temp_alpha_0_EM ,

&temp_alpha_1_EM ) ;

Res . x [ 0 ] = temp_nu_EM ;

Res . x [ 1 ] = temp_alpha_0_EM ;

Res . x [ 2 ] = temp_alpha_1_EM ;

}

estimates [ ipoint ] [ 0 ] = Res . x [ 0 ] ;

estimates [ ipoint ] [ 1 ] = Res . x [ 1 ] ;

estimates [ ipoint ] [ 2 ] = Res . x [ 2 ] ;

cout << " | " ;

}

}

/ / Print out and log the estimates

cout << endl ;

for ( int ipoint = 0 ; ipoint < xx . rows ( ) ; ipoint ++)

{

cout << " nu_real = " <<

estimates [ ipoint ] [ 0 ] <<

" alpha_0_real = " <<

estimates [ ipoint ] [ 1 ] <<

" alpha_1_real = " <<

estimates [ ipoint ] [ 2 ] << endl ;

simulations << "0" << " , " <<

estimates [ ipoint ] [ 0 ] <<

" , " << estimates [ ipoint ] [ 1 ] << " , " <<

estimates [ ipoint ] [ 2 ] << " , " << " , " << endl ;

}

}
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nu_real = estimates [ 0 ] [ 0 ] ;

alpha0_real = estimates [ 0 ] [ 1 ] ;

alpha1_real = estimates [ 0 ] [ 2 ] ;

}

/ / Progress bar

cout << endl ;

for ( k = MC_iterations1 ; k <= MC_iterations2 ; k++)

{

cout << " | " ;

}

cout << endl ;

/ / Conduct Monte Carlo simulation experiment with

/ / MC_iterations2 − MC_iterations2 + 1 r e p l i c a t i o n s

concurrency : : p a r a l l e l _ f o r (

MC_iterations1 , MC_iterations2 + 1 , [ & ] ( int k )

{

/ / F i l l simulated_data and sim_data_cl s t r u c t u r e

/ / with s e t t i n g s from s e t t i n g s f i l e

InputData simulated_data ;

simulated_data . method = method ;

simulated_data .NN = NN;

simulated_data .MM = MM;

simulated_data . TT = TT ;

simulated_data . Reinit = Reinit ;

simulated_data . delta_tk = delta_tk ; / / TT /MMM

simulated_data . k = k ;

InputDataClass sim_data_cl(&simulated_data ) ;

/ / ===== A r t i f i c i a l Data Simulation =====

/ / Continuous−time sample

GenContinuousSample (

k ,

&simulated_data ,

nu_real ,

alpha0_real ,

alpha1_real ) ;

/ / D i s c r e t i z a t i o n

GenDiscreteSample(&simulated_data ) ;
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/ / === Complete−data case estimation (MLE) ===

i f (method == 0 ) {

for ( int ipoint = 0 ; ipoint < xx . rows ( ) ; ipoint ++)

{

_int64 timeLc = ( _int64 ) 0 ;

StartTimer(&timeLc ) ;

Results Res = MLE_wrapper(

&simulated_data , ipoint ) ;

nu_c [ k − MC_iterations1 ] [ ipoint ] =

Res . x [ 0 ] ;

alpha_0_c [ k − MC_iterations1 ] [ ipoint ] =

Res . x [ 1 ] ;

alpha_1_c [ k − MC_iterations1 ] [ ipoint ] =

Res . x [ 2 ] ;

timerLc [ k − MC_iterations1 ] [ ipoint ] =

StopTimer ( timeLc ) ;

}

}

/ / ===== Incomplete−data case estimation =====

/ / == EM−algorithm ==

i f (method == 1) {

for ( int ipoint = 0 ; ipoint < xx . rows ( ) ; ipoint ++)

{

/ / I n i t i a l point and

/ / other parameters i n i t i a l i z a t i o n

real_1d_array x ;

x . setcontent ( 3 , xx [ ipoint ] ) ;

_int64 time = ( _int64 ) 0 ;

StartTimer(&time ) ;

double temp_nu_EM = 0 ,

temp_alpha_0_EM = 0 ,

temp_alpha_1_EM = 0 ,

lv3 = 0 ;

/ / Estimation
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EM_algorithm (

&simulated_data , ipoint ,

&temp_nu_EM,

&temp_alpha_0_EM ,

&temp_alpha_1_EM ) ;

/ / Write the r e s u l t s and timing in arrays

timer [ k − MC_iterations1 ] [ ipoint ] =

StopTimer ( time ) ;

nu_EM[ k − MC_iterations1 ] [ ipoint ] =

temp_nu_EM ;

alpha_0_EM [ k − MC_iterations1 ] [ ipoint ] =

temp_alpha_0_EM ;

alpha_1_EM [ k − MC_iterations1 ] [ ipoint ] =

temp_alpha_1_EM ;

}

}

/ / == MLE ==

i f ( ( method == 2) | | (method == 3 ) ) {

for ( int ipoint = 0 ; ipoint < xx . rows ( ) ; ipoint ++)

{

/ / Timer s t a r t

_int64 time = ( _int64 ) 0 ;

StartTimer(&time ) ;

Results Res = MLE_wrapper(

&simulated_data , ipoint ) ;

/ / Write r e s u l t s and timing in arrays

timer [ k − MC_iterations1 ] [ ipoint ] =

StopTimer ( time ) ;

nu_d [ k − MC_iterations1 ] [ ipoint ] =

Res . x [ 0 ] ;

alpha_0_d [ k − MC_iterations1 ] [ ipoint ] =

Res . x [ 1 ] ;

alpha_1_d [ k − MC_iterations1 ] [ ipoint ] =

Res . x [ 2 ] ;

}

}
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cout << " | " ;

}

) ;

/ / Print out the r e s u l t s of estimation

cout<<endl<< endl <<"NN = "<<NN<<" nu = "<<

nu_real <<" alpha_0 = "<<alpha0_real <<" alpha_1 = "<<

alpha1_real << endl ;

/ / S t a t i s t i c a l metrics of estimation experiment

for ( int ipoint = 0 ; ipoint < xx . rows ( ) ; ipoint ++)

{

/ / Write i n i t i a l point to log f i l e simulations

simulations << endl << endl << " IP = [ " <<

xx [ ipoint ] [ 0 ] << " , " << xx [ ipoint ] [ 1 ] << " , " <<

xx [ ipoint ] [ 2 ] << " ] " << endl << endl ;

/ / Log the r e s u l t s of continuous−time sample estimation

i f (method == 0) {

for ( k = MC_iterations1 ; k <= MC_iterations2 ; k++)

{

simulations << k << " , " <<

nu_c [ k − MC_iterations1 ] [ ipoint ] <<

" , " <<

alpha_0_c [ k − MC_iterations1 ] [ ipoint ] <<

" , " <<

alpha_1_c [ k − MC_iterations1 ] [ ipoint ] <<

" , " <<

method << " , " <<

timerLc [ k − MC_iterations1 ] [ ipoint ] <<

endl ;

}

simulations << endl ;

/ / Calculate e rror metrics

StandardErrorsMed (

nu_c , ipoint , itRange , nu_real ,

&nu_c_av , &FSSE_nu_c , &RMSE_nu_c, &med_nu_c ) ;

StandardErrorsMed (

alpha_0_c , ipoint , itRange , alpha0_real ,

&alpha_0_c_av , &FSSE_alpha_0_c ,

&RMSE_alpha_0_c , &med_alpha_0_c ) ;

StandardErrorsMed (

alpha_1_c , ipoint , itRange , alpha1_real ,
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&alpha_1_c_av , &FSSE_alpha_1_c ,

&RMSE_alpha_1_c , &med_alpha_1_c ) ;

/ / Print err or metrics on screen

simulations << "nu_c = " <<

nu_c_av << " alpha_0_c = " <<

alpha_0_c_av << " alpha_1_c = " << alpha_1_c_av <<

" Cont . Lik . = " << endl ;

simulations << "FSSE_nu_c = " << FSSE_nu_c <<

" FSSE_alpha_0_c = " << FSSE_alpha_0_c <<

" FSSE_alpha_1_c = " << FSSE_alpha_1_c << endl ;

simulations << "RMSE_nu_c = " << RMSE_nu_c <<

" RMSE_alpha_0_c = " << RMSE_alpha_0_c <<

" RMSE_alpha_1_c = " << RMSE_alpha_1_c << endl ;

simulations << "Median_nu_c = " << med_nu_c <<

" Median_alpha_0_c = " << med_alpha_0_c <<

" Median_alpha_1_c = " <<

med_alpha_1_c << endl << endl ;

}

/ / Log the r e s u l t s of d i s c r e t e−time sample estimation by EM

i f (method == 1) {

for ( k = MC_iterations1 ; k <= MC_iterations2 ; k++)

{

simulations << k << " , " <<

nu_EM[ k − MC_iterations1 ] [ ipoint ] <<

" , "<<

alpha_0_EM [ k − MC_iterations1 ] [ ipoint ] <<

" , "<<

alpha_1_EM [ k − MC_iterations1 ] [ ipoint ] <<

" , " << method << " , " <<

PrimesSampleArr [2 * ( k − 1 ) ] <<

" , " << PrimesSampleArr [2 * ( k − 1) + 1] <<

" , " << timer [ k − MC_iterations1 ] [ ipoint ] <<

endl ;

}

/ / Calculate e rror metrics

StandardErrorsMed (

nu_EM, ipoint , itRange , nu_real ,

&nu_EM_av , &FSSE_nu_EM,

&RMSE_nu_EM, &med_nu_EM ) ;

StandardErrorsMed (

alpha_0_EM , ipoint , itRange , alpha0_real ,

&alpha_0_EM_av , &FSSE_alpha_0_EM ,
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&RMSE_alpha_0_EM , &med_alpha_0_EM ) ;

StandardErrorsMed (

alpha_1_EM , ipoint , itRange , alpha1_real ,

&alpha_1_EM_av , &FSSE_alpha_1_EM ,

&RMSE_alpha_1_EM , &med_alpha_1_EM ) ;

/ / Print err or metrics on screen

simulations << endl << "nu_EM = " << nu_EM_av <<

" alpha_0_EM = " << alpha_0_EM_av <<

" alpha_1_EM = " <<

alpha_1_EM_av << " Disc . Lik . = 0" << endl ;

simulations << "SD_nu_EM = " << FSSE_nu_EM <<

" SD_alpha_0_EM = " << FSSE_alpha_0_EM <<

" SD_alpha_1_EM = " << FSSE_alpha_1_EM << endl ;

simulations << "RMSE_nu_EM = " << RMSE_nu_EM <<

" RMSE_alpha_0_EM = " << RMSE_alpha_0_EM <<

" RMSE_alpha_1_EM = " << RMSE_alpha_1_EM << endl ;

simulations << "Median_nu_EM = " << med_nu_EM <<

" Median_alpha_0_EM = " << med_alpha_0_EM <<

" Median_alpha_1_EM = " << med_alpha_1_EM << endl ;

}

/ / Log the r e s u l t s of d i s c r e t e−time sample estimation by MLE

i f ( ( method == 2) | | (method == 3 ) ) {

for ( k = MC_iterations1 ; k <= MC_iterations2 ; k++)

{

simulations << k << " , " <<

nu_d [ k − MC_iterations1 ] [ ipoint ] << " , "

<< alpha_0_d [ k − MC_iterations1 ] [ ipoint ] <<

" , " <<

alpha_1_d [ k − MC_iterations1 ] [ ipoint ] <<

" , " << method <<

" , " << PrimesSampleArr [2 * ( k − 1 ) ] <<

" , " <<

PrimesSampleArr [2 * ( k − 1) + 1] <<

" , " <<

timer [ k − MC_iterations1 ] [ ipoint ] <<

endl ;

}

simulations << endl ;

/ / Calculate e rror metrics

StandardErrorsMed (

nu_d , ipoint , itRange , nu_real ,

&nu_d_av , &FSSE_nu_d , &RMSE_nu_d, &med_nu_d ) ;
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StandardErrorsMed (

alpha_0_d , ipoint , itRange ,

alpha0_real ,

&alpha_0_d_av ,

&FSSE_alpha_0_d ,

&RMSE_alpha_0_d ,

&med_alpha_0_d ) ;

StandardErrorsMed (

alpha_1_d , ipoint , itRange , alpha1_real ,

&alpha_1_d_av ,

&FSSE_alpha_1_d ,

&RMSE_alpha_1_d ,

&med_alpha_1_d ) ;

/ / Print err or metrics on screen

simulations << "nu_d = " << nu_d_av <<

" alpha_0_d = " <<

alpha_0_d_av << " alpha_1_d = " << alpha_1_d_av <<

" Disc . Lik . = " << endl ;

simulations << "SD_nu_d = " << FSSE_nu_d <<

" SD_alpha_0_d = " << FSSE_alpha_0_d <<

" SD_alpha_1_d = " << FSSE_alpha_1_d << endl ;

simulations << "RMSE_nu_d = " << RMSE_nu_d <<

" RMSE_alpha_0_d = " << RMSE_alpha_0_d <<

" RMSE_alpha_1_d = " << RMSE_alpha_1_d << endl ;

simulations << "Median_nu_d = " << med_nu_d <<

" Median_alpha_0_d = " << med_alpha_0_d <<

" Median_alpha_1_d = " << med_alpha_1_d <<

endl << endl ;

}

}

simulations . close ( ) ;

s e t t i n g s . close ( ) ;

/ / Clean up

for ( int i = 0 ; i < itRange ; i ++) delete [ ] nu_c [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] nu_d [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] nu_EM[ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] alpha_0_c [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] alpha_0_d [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] alpha_0_EM [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] alpha_1_c [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] alpha_1_d [ i ] ;
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for ( int i = 0 ; i < itRange ; i ++) delete [ ] alpha_1_EM [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] timer [ i ] ;

for ( int i = 0 ; i < itRange ; i ++) delete [ ] timerLc [ i ] ;

getch ( ) ;

return SDK_SUCCESS;

}

C.2. AMSM model
The code for the AMSM model consists of three file: the header file with all the defi-

nitions, the main file with the code of subroutines and the file with the code of OpenCL
kernel running on GPU.

The code of the OpenCL kernel for the Monte Carlo simulation of AMSM sample paths is
based on toy example code of the Black-Scholes option pricing based on the Monte Carlo
method provided in AMD APP SDK 2.71. The code below adopts a few denotations, the
uniform random number generator function generateRand and two accessory functions
lshift128 and rshift128 from the AMD APP SDK. Also, this code uses the subroutine of com-
putation of the inverse of cumulative distribution function of a normal random variable
invented by Boris Moro [73] and the subroutine with the same purpose from Numerical
Recipes [42]. The main function of the kernel is calPriceVega. In this function new val-
ues of 8 sample paths are generated iteratively and simultaneously. Another crucial func-
tion is calSigma which is dedicated to calculation of a new volatility state. In the function
calOutputs are calculated payoff values. The other functions in this file are supplementary
and aimed to compute the next pseudo-random or quasi-random number, or to transform
them to Gaussian numbers.

C.2.1. OpenCL kernel for parallel computations

/ / 0 − MSM

/ / 1 − AMSM1

/ / 2 − AMSM2

/ / The kernel g e t s external parameters as

/ / data s t r u c t u r e MonteCarloAttrib

typedef struct _MonteCalroAttrib

{

f l o a t 4 s t r i k e P r i c e ;

/ / Switcher between QRNG and PRNG

int4 RNG;

/ / AMSM model parameters

1AMD APP SDK is outdated on 2019 and substituted with GPUOpen initiative, see gpuopen.com.
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f l o a t 4 lambda ;

f l o a t 4 nu ;

f l o a t 4 b ;

f l o a t 4 m0;

f l o a t 4 rho ;

int4 k ;

f l o a t 4 gkk ;

/ / Contract parameters

f l o a t 4 i n t e r e s t ;

f l o a t 4 i n i t P r i c e ;

f l o a t 4 sigma0 ;

int4 model ;

} MonteCarloAttrib ;

/ * *

* @brief L e f t s h i f t

* @param input input to be s h i f t e d

* @param s h i f t s h i f t i n g count

* @param output r e s u l t a f t e r s h i f t i n g input

* /

void

l s h i f t 1 2 8 ( uint4 input , uint s h i f t , uint4 * output )

{

unsigned int i n v s h i f t = 32u − s h i f t ;

uint4 temp ;

temp . x = input . x << s h i f t ;

temp . y = ( input . y << s h i f t ) | ( input . x >> i n v s h i f t ) ;

temp . z = ( input . z << s h i f t ) | ( input . y >> i n v s h i f t ) ;

temp .w = ( input .w << s h i f t ) | ( input . z >> i n v s h i f t ) ;

* output = temp ;

}

/ * *

* @brief Right s h i f t

* @param input input to be s h i f t e d

* @param s h i f t s h i f t i n g count

* @param output r e s u l t a f t e r s h i f t i n g input

* /

void

r s h i f t 1 2 8 ( uint4 input , uint s h i f t , uint4 * output )
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{

unsigned int i n v s h i f t = 32u − s h i f t ;

uint4 temp ;

temp .w = input .w >> s h i f t ;

temp . z = ( input . z >> s h i f t ) | ( input .w << i n v s h i f t ) ;

temp . y = ( input . y >> s h i f t ) | ( input . z << i n v s h i f t ) ;

temp . x = ( input . x >> s h i f t ) | ( input . y << i n v s h i f t ) ;

* output = temp ;

}

/ * *

* @brief Generates gaussian random numbers by using

* Mersenne Twister algo and box muller transformation

* @param seedArray seed

* @param gaussianRand1 gaussian random number generated

* @param gaussianRand2 gaussian random number generated

* @param nextRand generated seed f o r next usage

* /

void generateRand ( uint4 seed ,

f l o a t 4 *UniformRand1 ,

f l o a t 4 *UniformRand2 ,

uint4 *nextRand )

{

uint mulFactor = 4 ;

uint4 temp [ 8 ] ;

uint4 state1 = seed ;

uint4 state2 = ( uint4 ) ( 0 ) ;

uint4 state3 = ( uint4 ) ( 0 ) ;

uint4 state4 = ( uint4 ) ( 0 ) ;

uint4 state5 = ( uint4 ) ( 0 ) ;

uint stateMask = 1812433253u ;

uint t h i r t y = 30u ;

uint4 mask4 = ( uint4 ) ( stateMask ) ;

uint4 t h i r t y 4 = ( uint4 ) ( t h i r t y ) ;

uint4 one4 = ( uint4 ) ( 1u ) ;

uint4 two4 = ( uint4 ) ( 2u ) ;

uint4 three4 = ( uint4 ) ( 3u ) ;

uint4 four4 = ( uint4 ) ( 4u ) ;
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uint4 r1 = ( uint4 ) ( 0 ) ;

uint4 r2 = ( uint4 ) ( 0 ) ;

uint4 a = ( uint4 ) ( 0 ) ;

uint4 b = ( uint4 ) ( 0 ) ;

uint4 e = ( uint4 ) ( 0 ) ;

uint4 f = ( uint4 ) ( 0 ) ;

unsigned int thirteen = 13u ;

unsigned int f i f t e e n = 15u ;

unsigned int s h i f t = 8u * 3u ;

unsigned int mask11 = 0 x f d f f 3 7 f f u ;

unsigned int mask12 = 0xef7f3f7du ;

unsigned int mask13 = 0xff777b7du ;

unsigned int mask14 = 0 x7ff7fb2fu ;

const f l o a t one = 1 . f ;

const f l o a t intMax = 4294967296. f ;

/ / f l o a t 4 temp1 ;

/ / f l o a t 4 temp2 ;

/ / I n i t i a l i z i n g s t a t e s .

state2 = mask4 * ( state1 ^ ( state1 >> t h i r t y 4 ) ) + one4 ;

state3 = mask4 * ( state2 ^ ( state2 >> t h i r t y 4 ) ) + two4 ;

state4 = mask4 * ( state3 ^ ( state3 >> t h i r t y 4 ) ) + three4 ;

state5 = mask4 * ( state4 ^ ( state4 >> t h i r t y 4 ) ) + four4 ;

uint i = 0 ;

for ( i = 0 ; i < mulFactor ; ++ i )

{

switch ( i )

{

case 0 :

r1 = state4 ;

r2 = state5 ;

a = state1 ;

b = state3 ;

break ;

case 1 :

r1 = r2 ;
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r2 = temp [ 0 ] ;

a = state2 ;

b = state4 ;

break ;

case 2 :

r1 = r2 ;

r2 = temp [ 1 ] ;

a = state3 ;

b = state5 ;

break ;

case 3 :

r1 = r2 ;

r2 = temp [ 2 ] ;

a = state4 ;

b = state1 ;

break ;

default :

break ;

}

l s h i f t 1 2 8 ( a , s h i f t , &e ) ;

r s h i f t 1 2 8 ( r1 , s h i f t , &f ) ;

uint4 temp2 ;

temp2 . x = a . x ^ e . x ^ ( ( b . x >> thirteen ) & mask11) ^

f . x ^ ( r2 . x << f i f t e e n ) ;

temp2 . y = a . y ^ e . y ^ ( ( b . y >> thirteen ) & mask12) ^

f . y ^ ( r2 . y << f i f t e e n ) ;

temp2 . z = a . z ^ e . z ^ ( ( b . z >> thirteen ) & mask13) ^

f . z ^ ( r2 . z << f i f t e e n ) ;

temp2 .w = a .w ^ e .w ^ ( ( b .w >> thirteen ) & mask14) ^

f .w ^ ( r2 .w << f i f t e e n ) ;

temp[ i ] = temp2 ;

}

*UniformRand1 = convert_f loat4 (temp [ 0 ] ) * one / intMax ;

*UniformRand2 = convert_f loat4 (temp [ 1 ] ) * one / intMax ;

*nextRand = temp [ 2 ] ; / / * * * * * * * * * * * * * * * * * *

}
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/ * This function returns the inverse of cumulative

normal d i s t r i b u t i o n function .

Reference : The Full Monte , by Boris Moro ,

Union Bank of Switzerland . RISK 1995(2) * /

f l o a t cndev ( f l o a t u)

{

f l o a t a [ 4 ] = {

2.50662823884 f ,

−18.61500062529 f ,

41.39119773534 f ,

−25.44106049637 f } ;

f l o a t b [ 4 ] = { −8.47351093090 f ,

23.08336743743 f ,

−21.06224101826 f ,

3.13082909833 f } ;

f l o a t c [ 9 ] = {

0.3374754822726147 f ,

0.9761690190917186 f ,

0.1607979714918209 f ,

0.0276438810333863 f ,

0.0038405729373609 f ,

0.0003951896511919 f ,

0.0000321767881768 f ,

0.0000002888167364 f ,

0.0000003960315187 f } ;

f l o a t x , r ;

x = u−0.5 f ;

i f ( fabs ( x ) <0.42 f )

{

r = x * x ;

r = x * ( ( ( a [ 3 ] * r+a [ 2 ] ) * r+a [ 1 ] ) * r+a [ 0 ] ) /

( ( ( ( b [ 3 ] * r+b [ 2 ] ) * r+b [ 1 ] ) * r+b [ 0 ] ) * r +1. f ) ;

return ( r ) ;

}

r = u ;

i f ( x >0. f ) r =1. f−u ;

r = native_log (−native_log ( r ) ) ;

r = c [0]+ r * ( c [1]+ r * ( c [2]+ r * ( c [3]+ r * ( c [4]+

r * ( c [5]+ r * ( c [6]+ r * ( c [7]+ r * c [ 8 ] ) ) ) ) ) ) ) ;

i f ( x <0. f ) r=−r ;

return ( r ) ;

}
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void generateRandGaussian (

uint4 seed ,

f l o a t 4 * gaussianRand1 ,

f l o a t 4 * gaussianRand2 ,

uint4 *nextRand )

{

uint4 tempRand = seed ;

f l o a t 4 temp1 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 temp2 = ( f l o a t 4 ) 0 . 0 f ;

/ / f l o a t 4 temp3 = ( f l o a t 4 ) 0 . 0 f ;

/ / f l o a t 4 temp4 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 r ;

f l o a t 4 s ;

f l o a t 4 var_phi ;

const f l o a t PI = 3.14159265358979 f ;

const f l o a t two = 2.0 f ;

generateRand (tempRand , &temp1 , &temp2 , nextRand ) ;

/ / ======Applying Box Mullar Transformations=====

r = sqrt ( (−two ) * log (temp1) ) ;

var_phi = two * PI * temp2 ;

* gaussianRand1 = r * native_cos ( var_phi ) ; / / * * * * * * * * * * *

* gaussianRand2 = r * native_sin ( var_phi ) ;

/ / *nextRand = temp [ 2 ] ;

/ / The methods of transformation which are not in use

/ / are commented out

/ / =====Applying Box Mullar Transformations ( Polar version )=====

/ * s = temp1*temp1+temp2*temp2 ;

var_phi = −2 * log ( s ) / s ;

* gaussianRand1 = temp1 * s q r t ( var_phi ) ;

* gaussianRand2 = temp2 * s q r t ( var_phi ) ; * /

/ / *nextRand = temp [ 2 ] ;

/ / =======Moro Inverse Formula=========

/ *
temp3 . x = cndev ( temp1 . x ) ;

temp3 . y = cndev ( temp1 . y ) ;
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temp3 . z = cndev ( temp1 . z ) ;

temp3 .w = cndev ( temp1 .w) ;

temp4 . x = cndev ( temp2 . x ) ;

temp4 . y = cndev ( temp2 . y ) ;

temp4 . z = cndev ( temp2 . z ) ;

temp4 .w = cndev ( temp2 .w) ;

* gaussianRand1 = temp3 ;

* gaussianRand2 = temp4 ; * /

}

/ / Approximation of Normal CDF

f l o a t phi ( f l o a t x ) / / Normal CDF

{

/ / constants

f l o a t a1 = 0.254829592 f ;

f l o a t a2 = −0.284496736 f ;

f l o a t a3 = 1.421413741 f ;

f l o a t a4 = −1.453152027 f ;

f l o a t a5 = 1.061405429 f ;

f l o a t p = 0.3275911 f ;

/ / Save the sign of x

f l o a t sign = 1 . f ;

i f ( x < 0 . f )

sign = −1. f ;

x = fabs ( x ) / sqrt ( 2 . 0 f ) ;

/ / A&S formula 7 . 1 . 2 6

f l o a t t = 1.0 f / ( 1 . 0 f + p* x ) ;

f l o a t y = 1.0 f − ( ( ( ( ( a5 * t + a4 ) * t ) + a3 ) * t +

a2 ) * t + a1 ) * t *exp(−x * x ) ;

return 0.5 f * ( 1 . 0 f + sign * y ) ;

}

/ / Numerical r e c i p e s 6.14 inverse

/ / normal CDF approximation

f l o a t inv_phi ( f l o a t p) {

f l o a t x , err , t , pp ;

f l o a t mu = 0 . f , s i g = 1 . f ;

f l o a t p_ = p * 2 . f ;
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i f ( p_ >= 2.0 f ) return −100. f ;

i f ( p_ <= 0.0 f ) return 100. f ;

pp = ( p_ < 1.0 f ) ? p_ : 2 . f − p_ ;

t = sqrt (−2. f * log (pp / 2 . f ) ) ;

x = −0.70711 f *((2 .30753 f + t *0.27061 f ) /

( 1 . f + t *(0.99229 f + t *0.04481 f ) ) − t ) ;

for ( int j = 0 ; j <2; j ++) {

err = 2 . f − 2 . f * phi ( sqrt ( 2 . f ) * x ) − pp ;

x += err / (1.12837916709551257 f *exp(−sqrt ( x ) ) − x * err ) ;

}

f l o a t tmp = ( p_ < 1.0 f ? x : −x ) ;

return −1.41421356237309505 f * s i g *tmp + mu;

}

/ / Normal CDF f l o a t 4 type version

f l o a t 4 phi4 ( f l o a t 4 x )

{

f l o a t 4 temp ;

temp . x = phi ( x . x ) ;

temp . y = phi ( x . y ) ;

temp . z = phi ( x . z ) ;

temp .w = phi ( x .w) ;

return temp ;

}

/ / Gaussian quasi−random number generator fcn

void generateQRandGaussian (

f l o a t 4 temp1 ,

f l o a t 4 temp2 ,

f l o a t 4 * gaussianRand1 ,

f l o a t 4 * gaussianRand2

)

{

f l o a t 4 r ;

f l o a t 4 s ;

f l o a t 4 var_phi ;

const f l o a t PI = 3.14159265358979 f ;

const f l o a t two = 2.0 f ;

/ / ====Applying Box Mullar Transformations====

/ * r = s q r t ( (−two ) * native_log ( temp1 ) ) ;

var_phi = two * PI * temp2 ;

* gaussianRand1 = r * native_cos ( var_phi ) ;
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* gaussianRand2 = r * native_sin ( var_phi ) ; * /

/ / *nextRand = temp [ 2 ] ;

/ / ==Applying Box Mullar Transformations ( Polar version )==

/ * s = temp1*temp1+temp2*temp2 ;

var_phi = −2 * log ( s ) / s ;

* gaussianRand1 = temp1 * s q r t ( var_phi ) ;

* gaussianRand2 = temp2 * s q r t ( var_phi ) ; * /

/ / *nextRand = temp [ 2 ] ;

/ / ====Moro Inverse Formula=====

/ / f l o a t 4 temp3 , temp4 ;

/ / temp3 . x = cndev ( temp1 . x ) ;

/ / temp3 . y = cndev ( temp1 . y ) ;

/ / temp3 . z = cndev ( temp1 . z ) ;

/ / temp3 .w = cndev ( temp1 .w) ;

/ / temp4 . x = cndev ( temp2 . x ) ;

/ / temp4 . y = cndev ( temp2 . y ) ;

/ / temp4 . z = cndev ( temp2 . z ) ;

/ / temp4 .w = cndev ( temp2 .w) ;

/ / * gaussianRand1 = temp3 ;

/ / * gaussianRand2 = temp4 ;

/ / ==== A&S Inverse Formula ====

f l o a t 4 temp3 , temp4 ;

temp3 . x = inv_phi (temp1 . x ) ;

temp3 . y = inv_phi (temp1 . y ) ;

temp3 . z = inv_phi (temp1 . z ) ;

temp3 .w = inv_phi (temp1 .w) ;

temp4 . x = inv_phi (temp2 . x ) ;

temp4 . y = inv_phi (temp2 . y ) ;

temp4 . z = inv_phi (temp2 . z ) ;

temp4 .w = inv_phi (temp2 .w) ;

* gaussianRand1 = temp3 ;

* gaussianRand2 = temp4 ;

}

/ / Quadratic spl ine f o r smoothing payoff fcn

/ / ( not used in current version )
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f l o a t QuadraticSpline ( f l o a t x )

{

return ( 0 . 5 f * x * x + 0.5 f * x + 0.125 f ) ;

} ;

/ / Payoff calculation f o r given Strike ,

f l o a t 4 calOutputs (

f l o a t 4 s t r i k e ,

f l o a t 4 price / / ,

/ * f l o a t 4 t r a j P r i c e 2 , * /

/ / f l o a t 4 * pathDeriv1 ,

/ * f l o a t 4 * pathDeriv2 * /

)

{

/ / f l o a t 4 tempDiff1 = 0 . f ;

/ / tempDiff1 . x = t r a j P r i c e 1 . x − s t r i k e P r i c e . x ;

/ / tempDiff1 . y = t r a j P r i c e 1 . y − s t r i k e P r i c e . y ;

/ / tempDiff1 . z = t r a j P r i c e 1 . z − s t r i k e P r i c e . z ;

/ / tempDiff1 .w = t r a j P r i c e 1 .w − s t r i k e P r i c e .w;

f l o a t 4 tempDiff1 = 0 . f ;

tempDiff1 = price − s t r i k e ;

/ / f l o a t b a r r i e r = 0 . f ;

/ / The l i n e s necessary f o r smoothing payoff fcn

/ / are commented out in current version

/ * i f ( ( tempDiff1 . x<−b a r r i e r ) | | ( tempDiff1 . x> b a r r i e r ) )

{ * /

i f ( tempDiff1 . x < 0 . f ) { tempDiff1 . x = 0 . f ; }

/ * }

e l s e

{ tempDiff1 . x = QuadraticSpline ( tempDiff1 . x ) ; } ;

i f ( ( tempDiff1 . y<−b a r r i e r ) | | ( tempDiff1 . y> b a r r i e r ) )

{ * /

i f ( tempDiff1 . y < 0 . f ) { tempDiff1 . y = 0 . f ; }

/ * }

e l s e

{ tempDiff1 . y = QuadraticSpline ( tempDiff1 . y ) ; } ;

i f ( ( tempDiff1 . z<−b a r r i e r ) | | ( tempDiff1 . z> b a r r i e r ) )

{ * /

i f ( tempDiff1 . z < 0 . f ) { tempDiff1 . z = 0 . f ; }

/ * }

e l s e
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{ tempDiff1 . z = QuadraticSpline ( tempDiff1 . z ) ; } ;

i f ( ( tempDiff1 .w<−b a r r i e r ) | | ( tempDiff1 .w> b a r r i e r ) )

{ * /

i f ( tempDiff1 .w < 0 . f ) { tempDiff1 .w = 0 . f ; }

/ * }

e l s e

{ tempDiff1 .w = QuadraticSpline ( tempDiff1 .w) ; } ;

* /

/ *
i f ( ( tempDiff2 . x<−b a r r i e r ) | | ( tempDiff2 . x> b a r r i e r ) )

{

i f ( tempDiff2 . x < 0.0 f )

{ tempDiff2 . x = 0.0 f ; } }

e l s e

{ tempDiff2 . x = QuadraticSpline ( tempDiff2 . x ) ; } ;

i f ( ( tempDiff2 . y<−b a r r i e r ) | | ( tempDiff2 . y> b a r r i e r ) )

{

i f ( tempDiff2 . y < 0.0 f )

{ tempDiff2 . y = 0.0 f ; } }

e l s e

{ tempDiff2 . y = QuadraticSpline ( tempDiff2 . y ) ; } ;

i f ( ( tempDiff2 . z<−b a r r i e r ) | | ( tempDiff2 . z> b a r r i e r ) )

{

i f ( tempDiff2 . z < 0.0 f )

{ tempDiff2 . z = 0.0 f ; } }

e l s e

{ tempDiff2 . z = QuadraticSpline ( tempDiff2 . z ) ; } ;

i f ( ( tempDiff2 .w<−b a r r i e r ) | | ( tempDiff2 .w> b a r r i e r ) )

{

i f ( tempDiff2 .w < 0.0 f )

{ tempDiff2 .w = 0.0 f ; } }

e l s e

{ tempDiff2 .w = QuadraticSpline ( tempDiff2 .w) ; } ;

* /

/ / * * * * * * * * * * * * * * * * * * * * * * *

/ / pathDeriv1 = &tempDiff1 ;

/ / pathDeriv2 = &tempDiff2 ;

return tempDiff1 ;
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}

/ / This approximation i s used instead of normal CDF

/ / in AMSM1 model as more numerically e f f i c i e n t analogue

f l o a t cuted_sin ( f l o a t var_x )

{

f l o a t res_value ;

/ / const f l o a t PI = 3.14159265358979 f ;

f l o a t b a r r i e r = 2.042035225 f ;

i f ( ( var_x <= b a r r i e r )&&(var_x>=−b a r r i e r ) )

{

res_value = ( ( native_sin ( var_x /1.3 f ) + 1 . f ) / 2 . f ) ;

} ;

i f ( var_x<−b a r r i e r )

{

res_value = 0 . f ;

} ;

i f ( var_x > b a r r i e r )

{

res_value = 1 . f ;

} ;

return res_value ;

/ / return phi ( var_x ) ;

}

/ / This function c a l c u l a t e s new v o l a t i l i t y s t a t e

/ / k−th frequency f o r 4 sample paths simultaneously

f l o a t 4 calSigma (

f l o a t 4 sigma0 , / / model parameter

f l o a t gk , / / f i x e d model parameter

f l o a t 4 m0, / / model parameter

int4 Model , / / (A)MSM( 1 | 2 )

int i , / / t r i g g e r of i n i t i a l s t a t e

f l o a t 4 Randf1 , / / uniform r . v .

f l o a t 4 Randf2 , / / uniform r . v .

f l o a t 4 * next , / / next s t a t e

f l o a t 4 * prev , / / previous s t a t e

f l o a t 4 rho , / / model parameter

f l o a t 4 prevRandGaus , / / previous eps_i

f l o a t 4 lambda , / / model parameter

f l o a t 4 TProb / / i n i t i a l t r a n s i t i o n prob .

)

{

f l o a t 4 sigma = sigma0 ;
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f l o a t 4 tempNext = * next ;

f l o a t 4 tempPrev = * prev ;

/ / F i r s t sample paths ====

i f ( Randf1 . x <= gk )

{

/ / i f ( i >1){

/ / AMSM1 ( eq . 2 . 4 2 )

i f ( Model . x <= 1 ) {

i f ( Randf2 . x <= 1 . f −
cuted_sin ( rho . x * ( prevRandGaus . x − lambda . x ) ) ) {

tempNext . x = m0. x ; }

else {

tempNext . x = 2 . f−m0. x ; } }

/ / AMSM2 ( eq . 2 . 1 3 , 2 . 1 4 , 2 . 4 4 f o r nu=0)

i f ( Model . x == 2 ) {

i f ( Randf2 . x <= 0.5 f ) {

tempNext . x = m0. x ; }

else {

tempNext . x = 2 . f−m0. x ; } }

/ / }

/ / e l s e { i f ( Randf2 . x <= TProb . x ) {

/ / tempNext . x = m0. x ; } e l s e { tempNext . x = 2 . f−m0. x ; } }

/ / ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TProb ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

}

else {

tempNext . x = tempPrev . x ; }

/ / Rewrite previous and next v o l a t i l i t y component s t a t e

tempPrev . x = tempNext . x ;

sigma . x = sigma0 . x * sqrt ( tempNext . x ) ;

/ / Second sample path ====

i f ( Randf1 . y <= gk )

{

/ / i f ( i >1){

/ / AMSM1 ( eq . 2 . 4 2 )

i f ( Model . x <= 1 ) {

i f ( Randf2 . y <= 1 . f −
cuted_sin ( rho . y * ( prevRandGaus . y − lambda . y ) ) ) {

tempNext . y = m0. y ; }

else {

tempNext . y = 2 . f−m0. y ; } }

/ / AMSM2 ( eq . 2 . 1 3 , 2 . 1 4 , 2 . 4 4 f o r nu=0)

i f ( Model . x == 2 ) {
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i f ( Randf2 . y <= 0.5 f ) {

tempNext . y = m0. y ; }

else {

tempNext . y = 2 . f−m0. y ; } }

/ / }

/ / e l s e { i f ( Randf2 . y <= TProb . y ) {

/ / tempNext . y = m0. y ; } e l s e { tempNext . y = 2 . f−m0. y ; } }

/ / ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TProb ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

}

else {

tempNext . y = tempPrev . y ; }

/ / Rewrite previous and next v o l a t i l i t y component s t a t e

tempPrev . y = tempNext . y ;

sigma . y = sigma0 . y * sqrt ( tempNext . y ) ;

/ / Third sample path ====

i f ( Randf1 . z <= gk )

{

/ / i f ( i >1){

/ / AMSM1 ( eq . 2 . 4 2 )

i f ( Model . x <= 1 ) {

i f ( Randf2 . z <= 1 . f −
cuted_sin ( rho . z * ( prevRandGaus . z − lambda . z ) ) ) {

tempNext . z = m0. z ; }

else {

tempNext . z = 2 . f−m0. z ; } }

/ / AMSM2 ( eq . 2 . 1 3 , 2 . 1 4 , 2 . 4 4 f o r nu=0)

i f ( Model . x == 2 ) {

i f ( Randf2 . z <= 0.5 f ) {

tempNext . z = m0. z ; }

else {

tempNext . z = 2 . f−m0. z ; } }

/ / }

/ / e l s e { i f ( Randf2 . z <= TProb . z ) {

/ / tempNext . z = m0. z ; } e l s e { tempNext . z = 2 . f−m0. z ; } }

/ / ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TProb ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

}

else {

tempNext . z = tempPrev . z ; }

/ / Rewrite previous and next v o l a t i l i t y component s t a t e

tempPrev . z = tempNext . z ;

sigma . z = sigma0 . z * sqrt ( tempNext . z ) ;
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/ / Fourth sample path ====

i f ( Randf1 .w <= gk )

{

/ / i f ( i >1){

/ / AMSM1 ( eq . 2 . 4 2 )

i f ( Model . x <= 1 ) {

i f ( Randf2 .w <= 1 . f −
cuted_sin ( rho .w * ( prevRandGaus .w − lambda .w) ) ) {

tempNext .w = m0.w; }

else {

tempNext .w = 2 . f−m0.w; } }

/ / AMSM2 ( eq . 2 . 1 3 , 2 . 1 4 , 2 . 4 4 f o r nu=0)

i f ( Model . x == 2 ) {

i f ( Randf2 .w <= 0.5 f ) {

tempNext .w = m0.w; }

else {

tempNext .w = 2 . f−m0.w; } }

/ / }

/ / e l s e { i f ( Randf2 .w <= TProb .w ) {

/ / tempNext .w = m0.w; } e l s e { tempNext .w = 2 . f−m0.w; } }

/ / ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TProb ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

}

else {

tempNext .w = tempPrev .w; }

/ / Rewrite previous and next v o l a t i l i t y component s t a t e

tempPrev .w = tempNext .w;

sigma .w = sigma0 .w * sqrt ( tempNext .w) ;

* next = tempNext ;

* prev = tempPrev ;

return sigma ;

}

f l o a t 4 absolute ( f l o a t 4 value )

{

i f ( value . x>= 0 . f ) { return value ; }

else { return −value ; }

}

/ * * ==== Main function ====

* @brief Calculates the price f o r a l l t r a j e c t o r i e s f o r

given random numbers

* @param a t t r i b s t r u c t u r e of inputs f o r simulation
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* @param width width of random array

* @param priceSamples array of calculated price samples

* @param pathDeriv array calculated path d e r i v a t i v e s

* /

__kernel

void

calPriceVega (

/ / external s t r u c t u r e with model and other parameters

MonteCarloAttrib a t t r i b ,

int noOfSum, / / sample path length

int width ,

__global uint4 * randArray ,

__global f l o a t 4 * QrandArray ,

__global f l o a t 4 * priceSamples ,

__global f l o a t 4 * pathDeriv )

{

/ / width_sobol = width ;

/ / noOfSum_sobol = noOfSum ;

/ / I n i t i a l i z a t i o n of variables

/ / f l o a t 4 i s a vector of 4 f l o a t values

f l o a t 4 b = a t t r i b . b ;

f l o a t 4 m0 = a t t r i b .m0;

int4 k = a t t r i b . k ;

f l o a t 4 gkk = a t t r i b . gkk ;

f l o a t 4 lambda = a t t r i b . lambda ;

f l o a t 4 nu = a t t r i b . nu ;

f l o a t 4 sigma0 = a t t r i b . sigma0 ;

f l o a t 4 rho = a t t r i b . rho ;

f l o a t 4 i n t e r e s t = a t t r i b . i n t e r e s t ;

/ / int4 i s a vector of 4 f l o a t values

int4 Model = a t t r i b . model ;

int4 RNG = a t t r i b .RNG;

/ / Model = ( int ) Model4 . x ;

f l o a t 4 s t r i k e P r i c e = a t t r i b . s t r i k e P r i c e ;

f l o a t 4 i n i t P r i c e = a t t r i b . i n i t P r i c e ;

/ / In order to get access to d i f f e r e n t elements

/ / of external arrays global id are obtained

s i z e _ t xPos = get_global_id ( 0 ) ;

s i z e _ t yPos = get_global_id ( 1 ) ;

f l o a t 4 temp = ( f l o a t 4 ) 0 . 0 f ;
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/ / f l o a t 4 price1 = ( f l o a t 4 ) 0 . 0 f ;

/ / f l o a t 4 price2 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 pathDeriv1 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 pathDeriv2 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 pathDeriv1_neg = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 pathDeriv2_neg = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 PayOffBS1 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 PayOffBS2 = ( f l o a t 4 ) 0 . 0 f ;

f l o a t 4 t r a j P r i c e 1 = i n i t P r i c e ;

f l o a t 4 t r a j P r i c e 2 = i n i t P r i c e ;

f l o a t 4 trajPrice1_neg = i n i t P r i c e ;

f l o a t 4 trajPrice2_neg = i n i t P r i c e ;

f l o a t 4 trajPrice1_BS = i n i t P r i c e ;

f l o a t 4 trajPrice2_BS = i n i t P r i c e ;

f l o a t 4 finalRandf1 = temp ;

f l o a t 4 finalRandf2 = temp ;

f l o a t 4 finalRandf3 = temp ;

f l o a t 4 finalRandf4 = temp ;

f l o a t 4 finalRandf1gaus = temp ;

f l o a t 4 finalRandf2gaus = temp ;

f l o a t 4 finalRandf3gaus = temp ;

f l o a t 4 finalRandf4gaus = temp ;

f l o a t 4 finalRandf5gaus = temp ;

f l o a t 4 finalRandf6gaus = temp ;

f l o a t 4 prevfinalRandf1gaus = temp ;

f l o a t 4 prevfinalRandf2gaus = temp ;

f l o a t 4 tempNext = ( f l o a t 4 ) 1 . 0 f ;

f l o a t 4 tempPrev = ( f l o a t 4 ) 1 . 0 f ;

uint4 nextRand = randArray [ yPos * width + xPos ] ;

int i ;

int j ;

/ / Array with i n i t i a l t r a n s i t i o n p r o b a b i l i t i e s

/ / ( t h i s feature i s not used in f i n a l version )

f l o a t 4 TP [ 1 0 ] ;

/ *
TP[ 0 ] = ( f l o a t 4 )0.2789 f ;

TP[ 1 ] = ( f l o a t 4 )0.4202 f ;
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TP[ 2 ] = ( f l o a t 4 )0.5156 f ;

TP[ 3 ] = ( f l o a t 4 )0.5387 f ;

TP[ 4 ] = ( f l o a t 4 )0.5024 f ;

TP[ 5 ] = ( f l o a t 4 )0.4605 f ; * /

TP[ 0 ] = 0 . 5 f ;

TP[ 1 ] = 0 . 5 f ;

TP[ 2 ] = 0 . 5 f ;

TP[ 3 ] = 0 . 5 f ;

TP[ 4 ] = 0 . 5 f ;

TP[ 5 ] = 0 . 5 f ; TP[6]=TP[7]=TP[8]=TP[ 9 ] = 0 . 5 f ;

f l o a t 4 Mt[ 1 0 ] , nextMt [ 1 0 ] ,Mt2[ 1 0 ] , nextMt2 [ 1 0 ] ;

f l o a t 4 Mt_neg [ 1 0 ] , nextMt_neg [ 1 0 ] , Mt2_neg [ 1 0 ] , nextMt2_neg [ 1 0 ] ;

for ( int i =0; i <10; i ++)

{

Mt[ i ] = 1 . f ; nextMt [ i ] = 1 . f ;

Mt2[ i ] = 1 . f ; nextMt2 [ i ] = 1 . f ;

Mt_neg [ i ] = 1 . f ; nextMt_neg [ i ] = 1 . f ;

Mt2_neg [ i ] = 1 . f ; nextMt2_neg [ i ] = 1 . f ;

} ;

int kmax = k . x ;

f l o a t parb = b . x ;

f l o a t pargkk = gkk . x ;

f l o a t gk [ 1 0 ] ;

/ / Calculation of vector of gk

/ / (A)MSM( 1 )

i f (Model . x <= 1 ) {

gk [kmax−1] = gkk . x ;

gk [ 0 ] = 1 . f − exp ( log ( 1 . f − pargkk ) *
exp ( log ( parb ) * ( 1 . f−kmax ) ) ) ;

for ( int i =1; i <kmax − 1 ; i ++){

/ / eq . 2 . 1 5

gk [ i ] = 1 . f − exp ( log ( 1 . f − gk [ 0 ] ) *
exp ( log ( parb ) * ( f l o a t ) i ) ) ; } ; }

else {

/ / AMSM2

for ( int i =1; i <kmax ; i ++){

/ / eq . 2 . 1 6

gk [ i −1] = exp ( ( i−kmax) * log ( 2 . f ) ) ; } ;

gk [kmax−1] = gkk . x ; }

f l o a t 4 sigma1 , sigma2 , sigma1_neg , sigma2_neg ;
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uint4 tempRand = nextRand ;

i f (RNG. x == 1) / / I f PseudoRandom Numbers are used

{

/ / Generate i t e r a t i v e l y the next Gaussian R .N.

generateRandGaussian (

tempRand ,

&prevfinalRandf1gaus ,

&prevfinalRandf2gaus ,

&nextRand ) ;

} else / / I f QuasiRandom Numbers are used

{

/ / QRNvector = 0 ;

/ / finalRandf1 = QrandArray [ ( yPos *
/ / width + xPos ) *
/ / (2 * k . x + 1) * 2 * max_maturity +

/ / QRNvector * max_maturity + i ] ;

/ / QRNvector = QRNvector + 1 ;

/ / finalRandf2 = QrandArray [ ( yPos *
/ / width + xPos ) *
/ / (2 * k . x + 1) * 2 * max_maturity +

/ / QRNvector * max_maturity + i ] ;

/ / generateQRandGaussian (

/ / finalRandf1 ,

/ / finalRandf2 ,

/ / &finalRandf1gaus ,

/ / &finalRandf2gaus ) ;

prevfinalRandf1gaus = ( f l o a t 4 ) 0 . f ;

prevfinalRandf2gaus = ( f l o a t 4 ) 0 . f ;

}

/ / Run the Monte Carlo simulation of sample

/ / path of (Num_Sum − 1) length

int max_maturity = 10; int QRNvector ;

for ( i = 1 ; i < noOfSum ; i ++)

{

i f (RNG. x == 1) / / PRNG

{

tempRand = nextRand ;

/ / Generate 8 epsi lon_t from eq . 2 . 1

/ / f o r 8 sample paths simultaneously

generateRandGaussian (

tempRand ,
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&finalRandf1gaus ,

&finalRandf2gaus ,

&nextRand ) ;

} else / / QRNG

{

QRNvector = 0 ;

/ / Read uniform 4 QRN from the external

/ / array QrandArray in non−GPU memory

/ / from posit ion xPos , yPos

finalRandf1 = QrandArray [ ( yPos *
width + xPos ) *
(2 * k . x + 1) * 2 * max_maturity +

QRNvector * max_maturity + i ] ;

QRNvector = QRNvector + 1 ;

/ / Read another 4 uniform QRN

finalRandf2 = QrandArray [ ( yPos *
width + xPos ) *
(2 * k . x + 1) * 2 * max_maturity +

QRNvector * max_maturity + i ] ;

/ / Transform 8 QRN in 8 epsi lon_t from eq . 2 . 1

/ / f o r 8 sample paths simultaneously

generateQRandGaussian (

finalRandf1 ,

finalRandf2 ,

&finalRandf1gaus ,

&finalRandf2gaus ) ;

}

/ / ====Computation of Sigma1 & Sigma2====

/ / Sigma1 i s a vector 4 sigma s t a t e s f o r 4

/ / samples paths , Sigma2 contains another

/ / 4 sigmas f o r another 4 paths

/ / AMSM1 or MSM model

i f (Model . x <= 1 ) {

sigma1 = sigma0 ;

sigma2 = sigma0 ;

/ / A n t i t h e t i c variables ( not used in f i n a l version )

/ / sigma1_neg = sigma0 ;

/ / sigma2_neg = sigma0 ;

}
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else {

/ / AMSM2 model

sigma1 =

( rho * ( prevfinalRandf1gaus − lambda) − sqrt ( sigma0 ) ) *
( rho * ( prevfinalRandf1gaus − lambda) − sqrt ( sigma0 ) ) ;

sigma2 =

( rho * ( prevfinalRandf2gaus − lambda) − sqrt ( sigma0 ) ) *
( rho * ( prevfinalRandf2gaus − lambda) − sqrt ( sigma0 ) ) ;

/ / A n t i t h e t i c variables ( not used in f i n a l version )

/ / sigma1_neg =

/ / ( rho * ( prevfinalRandf1gaus − lambda) − s q r t ( sigma0 ) ) *
/ / ( rho * ( prevfinalRandf1gaus − lambda) − s q r t ( sigma0 ) ) ;

/ / sigma2_neg =

/ / ( rho * ( prevfinalRandf2gaus − lambda) − s q r t ( sigma0 ) ) *
/ / ( rho * ( prevfinalRandf2gaus − lambda) − s q r t ( sigma0 ) ) ;

}

/ / Mkt frequencies calculation

/ / and multiplication

for ( j = 0 ; j <=k . x−1; j ++)

{

i f (RNG. x == 1 ) { / / PRNG

/ / tempRand = nextRand ;

/ / generateRand (

/ / tempRand , &finalRandf1 ,

/ / &finalRandf2 , &nextRand ) ;

/ / QRNvector = 2 , 3 ; 6 , 7 ; . . .

tempNext = nextMt [ j ] ;

tempPrev = Mt[ j ] ;

tempRand = nextRand ;

generateRandGaussian (

tempRand ,

&finalRandf3gaus ,

&finalRandf4gaus ,

&nextRand ) ;

/ / QRNvector = 0 , 1 ; t = i

/ / Calculate vector sigma1

sigma1 = calSigma (

sigma1 , gk [ j ] , m0, Model , i ,

phi4 ( finalRandf3gaus − nu) ,

phi4 ( finalRandf4gaus − nu) ,

&tempNext , &tempPrev ,
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rho , prevfinalRandf1gaus ,

lambda , TP[ j ] ) ;

} else { / / QRNG

/ / Counter of numbers read

/ / from QrandArray

QRNvector = QRNvector + 1 ;

/ / Read next 4 QRN

finalRandf1 =

QrandArray [

( yPos * width + xPos ) * ( 2 * k . x + 1) *
2 * max_maturity +

QRNvector * max_maturity + i ] ;

QRNvector = QRNvector + 1 ;

/ / Read another 4 QRN

finalRandf2 =

QrandArray [

( yPos * width + xPos ) * ( 2 * k . x + 1) *
2 * max_maturity +

QRNvector * max_maturity + i ] ;

/ / Rewrite next and previous M_t

/ / vector s t a t e s

tempNext = nextMt [ j ] ;

tempPrev = Mt[ j ] ;

/ / Transform uniform 8 QRN to 8

/ / Gaussian QRN

generateQRandGaussian (

finalRandf1 ,

finalRandf2 ,

&finalRandf3gaus ,

&finalRandf4gaus ) ;

/ / Calculation of the next v o l a t i l i t y s t a t e

/ / f o r 4 sample paths

sigma1 = calSigma (

sigma1 , gk [ j ] , m0, Model , i ,

phi4 ( finalRandf3gaus − nu) ,

phi4 ( finalRandf4gaus − nu) ,

&tempNext , &tempPrev ,

rho ,

prevfinalRandf1gaus ,

lambda ,
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TP[ j ] ) ;

}

/ / Rewrite next and previous M_t

nextMt [ j ] = tempNext ;

Mt[ j ] = tempPrev ;

/ / Mkt f o r another 4 paths

i f (RNG. x == 1) / / PRNG

{

/ / tempRand = nextRand ;

/ / generateRand (

/ / tempRand , &finalRandf3 ,

/ / &finalRandf4 , &nextRand ) ;

/ / QRNvector = 4 , 5 ; 8 , 9 ; . . .

tempNext = nextMt2 [ j ] ;

tempPrev = Mt2[ j ] ;

tempRand = nextRand ;

generateRandGaussian (

tempRand ,

&finalRandf5gaus ,

&finalRandf6gaus ,

&nextRand ) ;

/ / QRNvector = 0 , 1 ; t = i

/ / Calculate vector sigma2

sigma2 = calSigma (

sigma2 , gk [ j ] , m0, Model , i ,

phi4 ( finalRandf5gaus − nu) ,

phi4 ( finalRandf6gaus − nu) ,

&tempNext , &tempPrev ,

rho ,

prevfinalRandf2gaus ,

lambda ,

TP[ j ] ) ;

} else / / QRNG

{

QRNvector = QRNvector + 1 ;

/ / Read next 4 QRN

finalRandf3 = QrandArray [

( yPos * width + xPos ) * ( 2 * k . x + 1) *
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2 * max_maturity +

QRNvector * max_maturity + i ] ;

QRNvector = QRNvector + 1 ;

/ / Read another 4 QRN

finalRandf4 = QrandArray [

( yPos * width + xPos ) * ( 2 * k . x + 1) *
2 * max_maturity +

QRNvector * max_maturity + i ] ;

tempNext = nextMt2 [ j ] ;

tempPrev = Mt2[ j ] ;

/ / Transform uniform 8 QRN to 8

/ / Gaussian QRN

generateQRandGaussian (

finalRandf3 ,

finalRandf4 ,

&finalRandf5gaus ,

&finalRandf6gaus ) ;

/ / Calculate vector sigma2

sigma2 = calSigma (

sigma2 , gk [ j ] , m0, Model , i ,

phi4 ( finalRandf5gaus − nu) ,

phi4 ( finalRandf6gaus − nu) ,

&tempNext , &tempPrev ,

rho , prevfinalRandf2gaus ,

lambda , TP[ j ] ) ;

}

nextMt2 [ j ] = tempNext ;

Mt2[ j ] = tempPrev ;

/ / Computation of Sigma1_neg & Sigma2_neg

/ / ====== ( A n t i t h e t i c Variates ) ======

/ / This block i s not used in current version

/ / tempRand = nextRand ;

/ / generateRand (

/ / tempRand , &finalRandf1 ,
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/ / &finalRandf2 , &nextRand ) ;

/ *
tempNext = nextMt_neg [ j ] ;

tempPrev = Mt_neg [ j ] ;

sigma1_neg = calSigma (

sigma1_neg , gk [ j ] , m0, Model , i ,

1 . f−finalRandf1 , 1 . f−finalRandf2 ,

&tempNext,&tempPrev ,

rho,−prevfinalRandf1gaus ,

lambda , TP[ j ] ) ;

nextMt [ j ] = tempNext ;

Mt[ j ] = tempPrev ;

/ / tempRand = nextRand ;

/ / generateRand (

/ / tempRand ,

/ / & finalRandf1 ,

/ / & finalRandf2 ,

/ / & nextRand ) ;

tempNext = nextMt2_neg [ j ] ;

tempPrev = Mt2_neg [ j ] ;

sigma2_neg = calSigma (

sigma2_neg , gk [ j ] , m0, Model , i ,

1 . f−finalRandf3 ,

1 . f−finalRandf4 ,

&tempNext ,

&tempPrev , rho ,

−prevfinalRandf2gaus ,

lambda , TP[ j ] ) ;

nextMt2_neg [ j ] = tempNext ;

Mt2_neg [ j ] = tempPrev ;

* /

}

/ / Calculate the t r a j e c t o r y price and

/ / sum price f o r a l l t r a j e c t o r i e s

t r a j P r i c e 1 = t r a j P r i c e 1 *
exp ( i n t e r e s t − 0.5 f * sigma1 * sigma1

+ finalRandf1gaus * sigma1 ) ;

/ / For A n t i t h e t i c v a r i a t e s

/ / trajPrice1_neg = trajPrice1_neg *
/ / exp ( i n t e r e s t − 0.5 f * sigma1_neg *
/ / sigma1_neg−
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/ / finalRandf1gaus * sigma1_neg ) ;

t r a j P r i c e 2 = t r a j P r i c e 2 * exp (

i n t e r e s t −
0.5 f * sigma2 * sigma2 +

finalRandf2gaus * sigma2 ) ;

/ / For A n t i t h e t i c v a r i a t e s

/ / trajPrice2_neg = trajPrice2_neg *
/ / exp ( i n t e r e s t −
/ / 0.5 f * sigma2_neg * sigma2_neg −
/ / finalRandf2gaus * sigma2_neg ) ;

trajPrice1_BS =

trajPrice1_BS * exp ( i n t e r e s t −
0.5 f * sigma0 * sigma0 +

finalRandf1gaus * sigma0 ) ;

/ / Control variate

trajPrice2_BS =

trajPrice2_BS * exp ( i n t e r e s t −
0.5 f * sigma0 * sigma0

+ finalRandf2gaus * sigma0 ) ;

prevfinalRandf1gaus = finalRandf1gaus ;

prevfinalRandf2gaus = finalRandf2gaus ;

}

/ / For A n t i t h e t i c variables ===

/ / trajPrice1_neg = t r a j P r i c e 1 ;

/ / trajPrice2_neg = t r a j P r i c e 2 ;

/ * calOutputs (

s t r i k e P r i c e ,

t r a j P r i c e 1 ,

t r a j P r i c e 2 ,

pathDeriv1 ,

pathDeriv2 ) ;

calOutputs (

s t r i k e P r i c e ,

trajPrice1_neg ,

trajPrice2_neg ,

pathDeriv1_neg ,

pathDeriv2_neg ) ;

calOutputs (

s t r i k e P r i c e ,

trajPrice1_BS ,
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trajPrice2_BS ,

PayOffBS1 ,

PayOffBS2 ) ; * /

/ / Payoff (A)MSM model case

pathDeriv1 = calOutputs ( s t r i k e P r i c e , t r a j P r i c e 1 ) ;

pathDeriv2 = calOutputs ( s t r i k e P r i c e , t r a j P r i c e 2 ) ;

/ / For A n t i t h e t i c variables

/ / pathDeriv1_neg = calOutputs (

/ / s t r i k e P r i c e ,

/ / trajPrice1_neg ) ;

/ / pathDeriv2_neg = calOutputs (

/ / s t r i k e P r i c e ,

/ / trajPrice2_neg ) ;

/ / Payoff Black−Scholes case

PayOffBS1 = calOutputs (

s t r i k e P r i c e ,

trajPrice1_BS ) ;

PayOffBS2 = calOutputs (

s t r i k e P r i c e ,

trajPrice2_BS ) ;

/ / Write 8 AMSM Payoffs into external non−GPU based array

priceSamples [ ( yPos * width + xPos ) * 2] = pathDeriv1 ;

/ / For A n t i t h e t i c case ( pathDeriv1 + pathDeriv1_neg ) / 2 . f ;

priceSamples [ ( yPos * width + xPos ) * 2 + 1] = pathDeriv2 ;

/ / For A n t i t h e t i c case ( pathDeriv2 + pathDeriv2_neg ) / 2 . f ;

/ / Write 8 B.−S . Payoffs into external non−GPU based array

pathDeriv [ ( yPos * width + xPos ) * 2] = PayOffBS1 ;

pathDeriv [ ( yPos * width + xPos ) * 2 + 1] = PayOffBS2 ;

}

C.2.2. Header file with main structures
This file has very simple structure and it is used to define the variables and main class

MonteCarloAMSM containing all the settings of the AMSM model, Monte Carlo simulation
and methods of optimization. In addition, this file includes headers of external open source
libraries used, such as: the code of Sobol quasi-random generator by John Burkardt2, AlgLib
library by Sergey Bochkanov3, Boost library 4, Adaptive Simulated Annealing (ASA) code by

2The Department of Scientific Computing, Florida State University, people.sc.fsu.edu/~jburkardt/
3www.alglib.net
4www.boost.org

people.sc.fsu.edu/~jburkardt/
www.alglib.net
www.boost.org
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Lester Ingber5 and OpenCL SDK headers.

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Copyright 2014 Advanced Micro Devices , Inc . A l l r i g h t s reserved .

Redistr ibution and use in source and binary forms , with or

without modification , are permitted provided that the following

conditions are met :

Redistr ibutions of source code must retain the above copyright

notice , t h i s l i s t of conditions and the following disclaimer .

Redistr ibutions in binary form must reproduce the above copyright

notice , t h i s l i s t of conditions and the following disclaimer in the

documentation and / or other materials provided with the

d i s t r i b u t i o n .

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS

AND CONTRIBUTORS "AS IS " AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL

THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT , INDIRECT , INCIDENTAL, SPECIAL , EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS

OF USE, DATA, OR PROFITS ; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY ,

WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

#ifndef MonteCarloAMSM_H_

#define MonteCarloAMSM_H_

#define NOMINMAX / / cppOpt

/ / global_work_size

/ / global memory buffer i s a matrix X*Y*4 ( f l o a t 4 )

/ / global memory buffer * 4* 2( each kernel generates 4*2 paths ) =

/ / number of paths

#define GLOBAL_MEMORY_SIZE_X 64 / / width

/ / # define GLOBAL_MEMORY_SIZE_Y 32 / / height

5www.ingber.com

www.ingber.com
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int GLOBAL_MEMORY_SIZE_Y = 32;

/ / local_work_size

#define GROUP_SIZE 64 / / 128

/ / OpenCL s e t t i n g s

#define GPU_FORCE_64BIT_PTR 0

#define GPU_USE_SYNC_OBJECTS 1

#define GPU_MAX_ALLOC_PERCENT 100

#define GPU_SINGLE_ALLOC_PERCENT 100

#define GPU_MAX_HEAP_SIZE 100

#define __CL_ENABLE_EXCEPTIONS

#ifndef Pi

#define Pi 3.141592653589793238462643

#endif

/ / standard C++ headers

#include <stdio . h>

#include < s t d l i b . h>

#include < a s s e r t . h>

#include < s t r i n g . h>

#include <conio . h> / / f o r getch ( )

#include <fstream >

/ / #include <iostream >

/ / #include <iomanip>

/ / #include <sstream >

/ / OpenCL headers

#include <SDKCommon. hpp>

#include <SDKApplication . hpp>

#include <SDKFile . hpp>

#include <time . h>

/ / AlgLib headers and s e t t i n g s / /

/ / disable some i r r e l e v a n t warnings

# i f (AE_COMPILER==AE_MSVC)

#pragma warning ( disable :4100)

#pragma warning ( disable :4127)

#pragma warning ( disable :4702)

#pragma warning ( disable :4996)

#endif
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#include " src \ algl ibmisc . h"

#include " src \ a l g l i b i n t e r n a l . h"

#include " src \ap . h"

#include " src \ stdafx . h"

#include " src \ data . h"

#include " src \ l i n a l g . h"

#include " src \ s t a t i s t i c s . h"

#include " src \ dataanalysis . h"

#include " src \ specialfunctions . h"

#include " src \ solvers . h"

#include " src \ optimization . h"

#include " src \ diffequations . h"

#include " src \ fasttransforms . h"

#include " src \ integrat ion . h"

#include " src \ interpolat ion . h"

using namespace a l g l i b ;

/ * *

* MonteCarloAMSM

* Class implements OpenCL Monte Carlo Simulation sample

f o r AMSM Option pricing

* Derived from SDKSample base c l a s s

* /

/ / BOOST math l i b r a r y s e t t i n g s

#include "Trash\ boost \random\ lagged_fibonacci . hpp"

#include "Trash\ boost \random\ uniform_int_distribution . hpp"

#include "Trash\ boost \random\ mersenne_twister . hpp"

#include "Trash\ boost \random\ normal_distribution . hpp"

#include "Trash\ boost \random . hpp"

/ / ASA math l i b r a r y s e t t i n g s

#include "ASA\ asa . h"

#include "ASA\ asa_usr . h"

#include "ASA\ asa_usr_asa . h"

/ / Sobol ’ QRNs header f i l e

#include " src \ sobol . hpp"

/ / AMSM model parameters

double m0_real , sigma_real , rho_real , lambda_real , nu_real ;

double m0_tmp, sigma_tmp , rho_tmp , lambda_tmp , nu_tmp ;

int model ; / /MSM, AMSM1, AMSM2
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int khat ; / / Fixed Param

/ / f l o a t lambda ; / / Option Param

/ / f l o a t nu ;

f l o a t i n i t P r i c e ; / / Option Param

f l o a t i n t e r e s t = 0 . f ; / / Option Param ( default )

/ / Simulation parameters

unsigned int maxCalculations ;

int path_length ;

int data_gen ;

int RNG;

int ControlVariates ;

int max_maturity ;

int b_gkk_est ;

/ / Optimization procedures parameters

real_1d_array IPo , IPo2 , s , s2 , LoBoundary , UpBoundary ,

LoBoundary2 , UpBoundary2 , y , x ;

double IPoint [ 5 ] , LBoundary [ 5 ] , UBoundary [ 5 ] ;

int Par_number ; / / number of estimated parameters

double * r ;

double ** DataPointArr ;

int number_of_C = 0 ;

double d i f f s t e p , d i f f s t e p 2 ; / / s tep s i z e

int estimation = 1 ;

int performance = 1 ;

int s i l e n t = 0 ;

ae_int_t acctype ; / / acc elerat ion of minimization fcn

int likMixed ;

f l o a t objective_fcn ;

/ / Timers

_int64 Timer = ( _int64 ) 0 ;

int price_calc_counter ;

/ / Some minor parameters

int printout , logging = 1 ;

/ / extern std : : ofstream l o g _ f i l e ;

const char * directory ;

double BestRSS ;

f l o a t optimum [ 5 ] ;

int NumOfPoints1 = 0 , NumOfPoints2 = 0 ;

unsigned int seed_of_simulation_of_seed = 2984140826;
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unsigned int seed = 0 ;

unsigned int PrimesSampleArr [ 1 0 0 0 ] ;

int SeedNumber = 0 ;

int counter1 ;

double objective_func (

double b , double m0, double gkk , double rho ,

double sigma , double lambda_ , double nu_ ,

int model , int from , int to ) ;

double objective_func2 (

double b , double m0, double gkk , double rho ,

double sigma , double lambda_ , double nu_ ,

int model , int from , int to ) ;

std : : s t r i n g Method ;

std : : s t r i n g ObjFcn ;

std : : s t r i n g Method2 ;

std : : s t r i n g ObjFcn2 ;

std : : s t r i n g Memory;

int Stage ;

int lambda_external ;

std : : i fstream s e t t i n g s ;

/ / Class containing Monte Carlo simulation s e t t i n g s

class MonteCarloAMSM : public SDKSample

{

c l _ i n t steps ; / * *< Steps f o r AMSM Monte Carlo simulation * /

c l _ f l o a t i n i t P r i c e ; / * *< I n i t i a l price * /

c l _ f l o a t s t r i k e P r i c e ; / * *< S t r i k e price * /

c l _ f l o a t i n t e r e s t ; / * *< I n t e r e s t rate * /

c l _ f l o a t maturity ; / * *< maturity * /

c l _ f l o a t lambda ; / * *< risk−premium * /

c l _ f l o a t nu ; / * *< risk−premium * /

c l _ f l o a t b ; / * *< parameter b * /

c l _ f l o a t m0; / * *< parameter m0 * /

c l _ f l o a t m1; / * *< parameter m0 * /

c l _ i n t k ; / * *< number of frequencies * /

c l _ f l o a t gkk ; / * *< switch p r o b a bi l i t y * /

c l _ f l o a t * gk ; / * *< array of switch p r o b a b i l i t i e s * /
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c l _ f l o a t sigma0 ; / * *< i n i t i a l sigma0 value * /

c l _ f l o a t rho ; / * *< c o r r e l a t i o n between Returns and Switch * /

/ / c l _ i n t a ;

c l _ i n t noOfSum ; / * *< Number of e x e r c i s e points * /

c l _ i n t noOfTraj ; / * *< Number of samples * /

/ * *< time taken to setup OpenCL resources

and building kernel * /

cl_double setupTime ;

/ * *< time taken to run kernel and read r e s u l t back * /

cl_double kernelTime ;

c l _ f l o a t *sigma ; / * *< Array of sigma values * /

c l _ f l o a t * price ; / * *< Array of price values * /

/ / c l _ f l o a t * vega ; /** < Array of vega values * /

c l _ f l o a t * r e f P r i c e ; / * *< Array of r e f e r e n c e price values * /

cl_uint *randNum; / * *< Array of random numbers * /

c l _ f l o a t *QrandNum; / * *< Array of Quasi−random numbers * /

/ * *< Array of price values f o r given samples * /

c l _ f l o a t * priceVals ;

/ * *< Array of price d e r i v a t i v e values f o r given samples * /

c l _ f l o a t * priceDeriv ;

cl_context context ; / * *< CL context * /

cl_device_id * devices ; / * *< CL device l i s t * /

cl_mem priceBuf ; / * *< CL memory buffer f o r sigma * /

cl_mem priceDerivBuf ; / * *< CL memory buffer f o r price * /

cl_mem randBuf ; / * *< CL memory buffer f o r random number * /

cl_mem QrandBuf ; / * *< CL memory buffer f o r random number * /

cl_command_queue commandQueue; / * *< CL command queue * /

cl_program program ; / * *< CL program * /

cl_kernel kernel ; / * *< CL kernel * /

c l _ i n t width ;

c l _ i n t height ;

s i z e _ t blockSizeX ; / * *< Group−s i z e in x−d i r e c t i o n * /

s i z e _ t blockSizeY ; / * *< Group−s i z e in y−d i r e c t i o n * /
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int i t e r a t i o n s ; / * *< Number of i t e r a t i o n s f o r kernel execution * /

bool dUseInPersistent ;

bool dUseOutAllocHostPtr ;

bool disableMapping ;

bool disableAsync ;

/ / Required only when anync enabled

cl_mem priceBufAsync ; / * *< CL memory buffer f o r sigma * /

cl_mem priceDerivBufAsync ; / * *< CL memory buffer f o r price * /

/ * *< CL memory buffer f o r random number * /

cl_mem randBufAsync ;

/ / Required only when anync and mapping enabled

/ * *< Array of price values f o r given samples * /

c l _ f l o a t * priceValsAsync ;

/ * *< Array of price d e r i v a t i v e values f o r given samples * /

c l _ f l o a t * priceDerivAsync ;

/ * *< SDKDeviceInfo o b j e c t instance * /

streamsdk : : SDKDeviceInfo deviceInfo ;

/ * *< KernelWorkGroupInfo Object instance * /

streamsdk : : KernelWorkGroupInfo kernelInfo ;

public :

/ * *

* Constructor

* I n i t i a l i z e member variables

* @param name name of sample ( s t r i n g )

* /

MonteCarloAMSM( std : : s t r i n g name)

: SDKSample(name)

{

steps = 1 ;

i n i t P r i c e = 50. f ;

s t r i k e P r i c e = 55. f ;

i n t e r e s t = 0.00018 f ;

maturity = 1 . f ;

lambda = 0.51 f ;

nu = 0 . f ;

b = 3 . f ;

m0 = 1.4 f ;

m1 = 2 . f − m0;

k = 6 ;
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gkk = 0.95 f ;

gk = NULL;

sigma0 = 0.01 f ;

rho = 0.3 f ;

setupTime = 0 ;

kernelTime = 0 ;

blockSizeX = GROUP_SIZE ; / / ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

blockSizeY = 1 ;

noOfSum = 300;

/ / GLOBAL_MEMORY_SIZE_X*GLOBAL_MEMORY_SIZE_Y =

noOfTraj = 256;

width = GLOBAL_MEMORY_SIZE_X;

sigma = NULL;

price = NULL;

r e f P r i c e = NULL;

randNum = NULL;

QrandNum = NULL;

priceVals = NULL;

priceDeriv = NULL;

devices = NULL;

i t e r a t i o n s = 1 ;

dUseInPersistent = true ;

dUseOutAllocHostPtr = true ;

disableMapping = true ;

disableAsync = true ;

priceValsAsync = NULL;

priceDerivAsync = NULL;

}

/ * *

* Constructor

* I n i t i a l i z e member variables

* @param name name of sample ( const char * )

* /

MonteCarloAMSM( const char * name)

: SDKSample(name)

{

steps = 1 ;

i n i t P r i c e = 50. f ;

s t r i k e P r i c e = 55. f ;

i n t e r e s t = 0.00018 f ;
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maturity = 1 . f ;

lambda = 0.51 f ;

nu = 0 . f ;

b = 3 . f ;

m0 = 1.4 f ;

m1 = 2 . f − m0;

k = 6 ;

gkk = 0.95 f ;

gk = NULL;

sigma0 = 0.01 f ;

rho = 0.3 f ;

setupTime = 0 ;

kernelTime = 0 ;

blockSizeX = GROUP_SIZE ;

blockSizeY = 1 ;

noOfSum = 300;

noOfTraj = 256;

width = GLOBAL_MEMORY_SIZE_X;

sigma = NULL;

price = NULL;

/ / vega = NULL;

r e f P r i c e = NULL;

/ / refVega = NULL;

randNum = NULL;

QrandNum = NULL;

priceVals = NULL;

priceDeriv = NULL;

devices = NULL;

i t e r a t i o n s = 1 ;

dUseInPersistent = true ;

dUseOutAllocHostPtr = true ;

disableMapping = true ;

disableAsync = true ;

priceValsAsync = NULL;

priceDerivAsync = NULL;

}

/ * *

* Destructor

* /
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~MonteCarloAMSM ( )

{

FREE( sigma ) ;

FREE( price ) ;

/ / FREE( vega ) ;

FREE( r e f P r i c e ) ;

/ / FREE( refVega ) ;

FREE( gk ) ;

i f (randNum)

{

# i f d e f _WIN32

ALIGNED_FREE(randNum ) ;

# else

FREE(randNum ) ;

#endif

randNum = NULL;

}

FREE(QrandNum) ;

FREE( priceVals ) ;

FREE( priceDeriv ) ;

FREE( devices ) ;

}

/ * *

* A l l o c a t e and i n i t i a l i z e host memory with appropriate values

* @return SDL_SUCCEE on suc cess and SDK_FAILURE on f a i l u r e

* /

int setupMonteCarloAMSM ( ) ;

/ * *

* Override from SDKSample , Generate binary image of given kernel

* and e x i t application

* @return SDL_SUCCEE on suc cess and SDK_FAILURE on f a i l u r e

* /

int genBinaryImage ( ) ;

/ * *

* OpenCL r e l a t e d i n i t i a l i z a t i o n s .
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* Set up Context , Device l i s t , Command Queue , Memory b u f f e r s

* Build CL kernel program executable

* @return SDL_SUCCEE on suc cess and SDK_FAILURE on f a i l u r e

* /

int setupCL ( ) ;

/ * *

* Set values f o r kernels ’ arguments , enqueue c a l l s to the kernels

* on to the command queue , wait t i l l end of kernel execution .

* Get kernel s t a r t and end time i f timing i s enabled

* @return SDL_SUCCEE on succ ess and SDK_FAILURE on f a i l u r e

* /

/ / int runCLKernels ( ) ;

/ / delegate : Callback ( int s t r ) ;

f l o a t runCLKernels2 (

f l o a t gkk , / / Model Param

f l o a t b , / / Model Param

f l o a t rho , / / Model Param

f l o a t sigma0 , / / Model Param

f l o a t m0, / / Model Param

int k , / / Fixed Param

int model ,

f l o a t lambda , / / Option Param

f l o a t nu , / / Option Param

f l o a t i n i t P r i c e , / / Option Param

f l o a t s t r i k e P r i c e , / / Option Param

f l o a t i n t e r e s t , / / Option Param

int noOfSum, / / Sym Param

int width , / / Sym Param

int height ,

f l o a t * Price

) ;

/ * *

* Override from SDKSample . Print sample s t a t s .

* /

/ / void p r i n t S t a t s ( ) ;

/ * *

* Override from SDKSample . I n i t i a l i z e

* command l i n e parser , add custom options

* @return SDL_SUCCEE on succ ess and SDK_FAILURE on f a i l u r e
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* /

int i n i t i a l i z e ( ) ;

/ * *

* Override from SDKSample , adjust width and height

* of execution domain , perform a l l sample setup

* @return SDL_SUCCEE on suc cess and SDK_FAILURE on f a i l u r e

* /

int setup ( ) ;

/ * *

* Override from SDKSample

* Run OpenCL Bitonic Sort

* @return SDL_SUCCEE on suc cess and SDK_FAILURE on f a i l u r e

* /

int run ( ) ;

/ * *

* Override from SDKSample

* Cleanup memory a l l o c a t i o n s

* @return SDL_SUCCEE on succ ess and SDK_FAILURE on f a i l u r e

* /

/ / int runCalibration ( ) ;

int cleanup ( ) ;

/ * *

* Override from SDKSample

* V e r i f y against r e f e r e n c e implementation

* @return SDL_SUCCEE on suc cess and SDK_FAILURE on f a i l u r e

* /

int v e r i f y R e s u l t s ( ) ;

private :

} ;

#endif

C.2.3. Main file with code
This file contains all the methods and algorithms necessary for the Monte Carlo simu-

lations and calibration of the AMSM model based on various optimization methods. In the
first part of the file are defined general subroutines such as the subroutine calculating the
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error metrics, normal CDF and etc. The next part is dedicated to the subroutines provid-
ing the GPU based computation infrastructure, such as: memory allocation, initialization,
writing and reading from buffers, launching computations. The third block of subroutines
supports the optimization (minimization) functionality. In this block the objective func-
tions and other necessary objects for Levenberg-Marquardt, Simulated Annealing, SPSA
and other optimizers are defined. Finally, the main subroutine includes the parser of set-
tings and input data, logging functionality, error metrics calculation, launcher of the cali-
bration and estimation subroutines based on various optimizers.

#include "MonteCarloAMSM . hpp"

#include <math . h>

#include <malloc . h>

#include <thread >

#include <future >

/ / Technical Functions

#include <windows . h>

/ / Returns the path to executable f i l e of t h i s program

s t r i n g getexepath ( )

{

char r e s u l t [MAX_PATH] ;

s t r i n g r e s u l t 2 = s t r i n g ( result , GetModuleFileName (

NULL, result , MAX_PATH) ) ;

int pos = r e s u l t 2 . find ( "MonteCarloAMSM . exe" ) ;

r e s u l t 2 = r e s u l t 2 . substr ( 0 , pos ) ;

return r e s u l t 2 ;

}

/ / The function s t a r t s a timer

void StartTimer ( _int64 * pt1 )

{

QueryPerformanceCounter ( (LARGE_INTEGER* ) pt1 ) ;

}

/ / The function stopes a timer

double StopTimer ( _int64 t1 )

{

_int64 t2 , ldFreq ;

QueryPerformanceCounter ( (LARGE_INTEGER*)& t2 ) ;

QueryPerformanceFrequency ( (LARGE_INTEGER*)& ldFreq ) ;

return ( ( double ) ( t2 − t1 ) / ( double ) ldFreq ) ;
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}

/ / The function f o r quadratic spl ine

f l o a t QuadraticSpline ( f l o a t x )

{

return ( 0 . 5 f * x * x + 0.5 f * x + 0.125 f ) ;

} ;

/ / The function converts an i n t e g e r number to a s t r i n g

std : : s t r i n g IntToStr ( int x )

{

std : : stringstream r ;

r << x ;

return r . s t r ( ) ;

}

/ / The function converts a f l o a t number to a s t r i n g

std : : s t r i n g FloatToStr ( f l o a t x )

{

std : : stringstream r ;

r << x ;

return r . s t r ( ) ;

}

/ / The function converts a s t r i n g to a f l o a t number

f l o a t StrToFloat ( std : : s t r i n g s )

{

return ( f l o a t ) : : atof ( s . c _ s t r ( ) ) ;

}

/ / The function computes approximation of Normal CDF

double CND( double X)

{

double L , K, w;

double const a1 = 0.31938153 , a2 = −0.356563782;

double const a3 = 1.781477937;

double const a4 = −1.821255978 , a5 = 1.330274429;

L = fabs (X ) ;

K = 1.0 / ( 1 . 0 + 0.2316419 * L ) ;

w = 1.0 − 1.0 / sqrt (2 * Pi ) * exp(−L *L / 2) *
( a1 * K + a2 * K *K + a3 * pow(K, 3) +

a4 * pow(K, 4) + a5 * pow(K, 5 ) ) ;
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i f (X < 0) { w = 1.0 − w; }

return w;

}

/ / The function computes another approximation of Normal CDF

double phi ( double x )

{

/ / constants

double a1 = 0.254829592 f ;

double a2 = −0.284496736 f ;

double a3 = 1.421413741 f ;

double a4 = −1.453152027 f ;

double a5 = 1.061405429 f ;

double p = 0.3275911 f ;

/ / Save the sign of x

int sign = 1 ;

i f ( x < 0) sign = −1;

x = fabs ( x ) / sqrt ( 2 . 0 ) ;

/ / A&S formula 7 . 1 . 2 6

double t = 1.0 / ( 1 . 0 + p* x ) ;

double y = 1.0 − ( ( ( ( ( a5 * t + a4 ) * t ) + a3 ) * t +

a2 ) * t + a1 ) * t *exp(−x * x ) ;

return 0 . 5 * ( 1 . 0 + sign * y ) ;

}

/ / The function computes normal density fcn

double dnorm( double x , double mean, double sd )

{

return ( 1 . 0 / sqrt (2 * ( double ) Pi *pow( sd , 2 ) ) *
exp(−pow( ( x − mean) / sd , 2) / 2 ) ) ;

}

/ / The function computes Black Scholes European c a l l option Vega

double d_j (

int j , double S , double K, double r f ,

double sigma , double T)

{

double d_1 = ( log ( S / K) + ( r f + pow( sigma , 2) / 2)*T) /

( sigma * sqrt (T ) ) ;

i f ( j == 1) { return ( d_1 ) ; }

else { return ( d_1 − sigma * sqrt (T ) ) ; }

}
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/ / The function computes Black and Scholes (1973) stock option formula

double BlackScholes (

char CallPutFlag , double S , double X ,

double T , double r , double v )

{

double d1 , d2 ;

d1 = ( log ( S / X) + ( r + v * v / 2)*T) / ( v * sqrt (T ) ) ;

d2 = d1 − v * sqrt (T ) ;

i f ( CallPutFlag == ’ c ’ )

return S *CND( d1 ) − X * exp(−r *T) *CND( d2 ) ;

else i f ( CallPutFlag == ’p ’ )

return X * exp(−r * T) * CND(−d2 ) − S * CND(−d1 ) ;

else return 0 ;

}

/ / The function computes B−S c a l l option vega

double BS_Call_Option_Vega (

double S , double K, double r , double sigma , double T)

{

return S * dnorm( d_j ( 1 , S , K, r , sigma , T) , 0 , 1) * sqrt (T ) ;

}

/ / The function computes e rror metrics : average , FSSE , RMSE, median

void StandardErrorsMed (

double ** par , int IP , int size , double real_par_value ,

double * par_av , double *FSSE , double *RMSE, double *med)

{

double * par_tmp = new double [ s i z e ] ;

for ( int i = 0 ; i < s i z e ; i ++) par_tmp [ i ] = par [ i ] [ IP ] ;

* par_av = 0 ; *RMSE = 0 ; *med = 0 ; *FSSE = 0 ;

for ( int kk = 1 ; kk <= s i z e ; kk++)

{

* par_av += par_tmp [ kk − 1 ] ;

*RMSE += ( par_tmp [ kk − 1] −
real_par_value ) * ( par_tmp [ kk − 1] −
real_par_value ) ;

}

*RMSE = sqrt ( *RMSE / s i z e ) ; / / RSMD

* par_av /= s i z e ;
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/ / Sample Error of Mean based on biased ( but corrected )

/ / sample s t . dev . or j u s t sample s t . dev .

for ( int kk = 1 ; kk <= s i z e ; kk++)

{ / / i f ( ( nu_c [ kk−1] >= 1 . 0 1 ) | | ( nu_c [ kk−1] <= 0 . 9 9 ) )

/ / {

*FSSE += ( par_tmp [ kk − 1] − * par_av ) *
( par_tmp [ kk − 1] − * par_av ) ;

/ / }

}

/ / Standard Error

*FSSE = sqrt ( * FSSE / ( s i z e − 1 ) ) ;

/ / Median

for ( int i = 0 ; i <= s i z e − 1 ; i ++)

{

for ( int j = 0 ; j <= s i z e − 2 ; j ++)

{

i f ( par_tmp [ j ] <par_tmp [ j + 1 ] )

{

double temp = par_tmp [ j ] ;

par_tmp [ j ] = par_tmp [ j + 1 ] ;

par_tmp [ j + 1] = temp ;

}

}

}

*med = par_tmp [ s i z e / ( int ) 2 ] ;

delete [ ] par_tmp ;

}

/ / Root−mean squared er ror

double RMSE( double * y , double * y_m, int s i z e )

{

double RMSE = 0 ;

for ( int kk = 1 ; kk <= s i z e ; kk++)

{

RMSE += ( y [ kk − 1] − y_m[ kk − 1 ] ) *
( y [ kk − 1] − y_m[ kk − 1 ] ) ;

}

RMSE = sqrt (RMSE / s i z e ) ;

return (RMSE) ;

}
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/ / Median

void Par_Median ( double ** par , int IP , int i t e r )

{

double par2 [ 2 0 ] ;

for ( int i = 0 ; i <= IP − 1 ; i ++) par2 [ i ] = par [ i t e r ] [ i ] ;

for ( int i = 0 ; i <= IP − 1 ; i ++)

{

for ( int j = 0 ; j <= IP − 2 ; j ++)

{

i f ( par2 [ j ] <par2 [ j + 1 ] )

{

double temp = par2 [ j ] ;

par2 [ j ] = par2 [ j + 1 ] ;

par2 [ j + 1] = temp ;

}

}

}

par [ i t e r ] [ IP ] = ( par2 [ IP / ( int )2 − 1] + par2 [ IP / ( int ) 2 ] ) / 2 ;

}

/ / The function l o g s o b j e c t i v e fcn values on 2D grid

void Plot3D ( )

{

/ / Create f i l e Plot3D . t x t f o r l o gs

ofstream plot3D (

getexepath ( ) . append(

" \\ Simulations \\ Plot3D . t x t " ) . c _ s t r ( ) ) ;

f l o a t yy , xx = 0 . f , y_bar = 0.5 f , x_bar = 0.5 f ,

x_step = 0.05 f , y_step = 0.05 f , r e a l _ v a l = 0 . f ;

double r s s = 0 ;

int count = 0 ;

/ / Write to f i l e

yy = 0 . f ;

plot3D << " , " ;

while ( yy <= y_bar ) {

plot3D << yy << " , " ;

yy = yy + y_step ;

}

plot3D << " \n" ;

while ( xx <= x_bar )

{

/ / Separators of values are commas

plot3D << xx << " , " ;
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yy = 0 . f ;

while ( yy <= y_bar )

{

r s s = objective_func2 (

( f l o a t ) 3 , ( f l o a t ) 1 . 4 , ( f l o a t ) 0 . 9 5 ,

0.05 f , 0.02 f , ( f l o a t ) yy , ( f l o a t ) xx ,

model , NumOfPoints1 , NumOfPoints2 ) ;

plot3D << r s s << " , " ;

count = count + 1 ;

cout << count << " xx = " <<

xx << " yy = " << yy << " \n" ;

yy = yy + y_step ;

/ / plotY <<yy <<" " ;

} ;

/ / New l i n e

plot3D << " \n" ;

/ / plotX <<xx < <"\n " ;

xx = xx + x_step ;

} ;

plot3D . close ( ) ;

/ / plotY . c l o s e ( ) ;

/ / plotX . c l o s e ( ) ;

getch ( ) ;

}

/ / ==== P a r a l l e l (GPU/CPU) computations ====

/ / Data s t r u c t u r e with model parameters

typedef struct _MonteCalroAttrib

{

c l _ f l o a t 4 s t r i k e P r i c e ;

c l _ i n t 4 RNG;

c l _ f l o a t 4 lambda ;

c l _ f l o a t 4 nu ;

c l _ f l o a t 4 b ;

c l _ f l o a t 4 m0;

c l _ f l o a t 4 rho ;

c l _ i n t 4 k ;

c l _ f l o a t 4 gkk ;

c l _ f l o a t 4 i n t e r e s t ;

c l _ f l o a t 4 i n i t P r i c e ;

c l _ f l o a t 4 sigma0 ;
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c l _ i n t 4 model ;

} MonteCarloAttrib ;

/ / OpenCL data s t r u c t u r e with model parameters

MonteCarloAMSM clMonteCarloAMSM(

"OpenCL Monte Carlo simulation

for AMSM Option Pricing " ) ;

/ / I n i t i a l i z e MonteCarloAMSM with AMSM model ,

/ / Monte Carlo and OpenCL parameters

int

MonteCarloAMSM : : i n i t i a l i z e ( )

{

/ / Call base c l a s s I n i t i a l i z e to get default configuration

CHECK_ERROR(

this−>SDKSample : : i n i t i a l i z e ( ) ,

SDK_SUCCESS,

"OpenCL resource i n i t i a l i z a t i o n f a i l e d " ) ;

/ / A l l o c a t e memory f o r options l i s t

const int optionsCount = 16;

streamsdk : : Option * optionList =

new streamsdk : : Option [ optionsCount ] ;

CHECK_ALLOCATION(

optionList ,

" Al locate memory f a i l e d ( optionList ) \ \ \ \n" ) ;

/ / AMSM model parameters

optionList [ 0 ] . _sVersion = "c" ;

optionList [ 0 ] . _lVersion = " steps " ;

optionList [ 0 ] . _description =

" Steps of Monte Carlo simulation " ;

optionList [ 0 ] . _type = streamsdk : : CA_ARG_INT ;

optionList [ 0 ] . _value = &steps ;

optionList [ 1 ] . _sVersion = "P" ;

optionList [ 1 ] . _lVersion = " i n i t P r i c e " ;

optionList [ 1 ] . _description = " I n i t i a l price ( Default value 50) " ;

optionList [ 1 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 1 ] . _value = &i n i t P r i c e ;

optionList [ 2 ] . _sVersion = " s " ;

optionList [ 2 ] . _lVersion = " s t r i k e P r i c e " ;

optionList [ 2 ] . _description = " S t r i k e price ( Default value 55) " ;
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optionList [ 2 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 2 ] . _value = &s t r i k e P r i c e ;

optionList [ 3 ] . _sVersion = " r " ;

optionList [ 3 ] . _lVersion = " i n t e r e s t " ;

optionList [ 3 ] . _description = " i n t e r e s t rate

( Default value 0.00018) " ;

optionList [ 3 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 3 ] . _value = &i n t e r e s t ;

optionList [ 4 ] . _sVersion = "m" ;

optionList [ 4 ] . _lVersion = " maturity " ;

optionList [ 4 ] . _description = " Maturity ( Default value 1) " ;

optionList [ 4 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 4 ] . _value = &maturity ;

optionList [ 5 ] . _sVersion = "lambda" ;

optionList [ 5 ] . _lVersion = " risk−premium" ;

optionList [ 5 ] . _description = " Risk−premium ( Default value 0 . 1 ) " ;

optionList [ 5 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 5 ] . _value = &lambda ;

optionList [ 6 ] . _sVersion = "b" ;

optionList [ 6 ] . _lVersion = "param b" ;

optionList [ 6 ] . _description = "Param b ( Default value 3) " ;

optionList [ 6 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 6 ] . _value = &b ;

optionList [ 7 ] . _sVersion = "m0" ;

optionList [ 7 ] . _lVersion = "param m0" ;

optionList [ 7 ] . _description = "Param m0 ( Default value 1 . 4 ) " ;

optionList [ 7 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 7 ] . _value = &m0;

optionList [ 8 ] . _sVersion = "k" ;

optionList [ 8 ] . _lVersion = "Number of frequencies " ;

optionList [ 8 ] . _description =

"Number of frequencies ( Default value 6) " ;

optionList [ 8 ] . _type = streamsdk : : CA_ARG_INT ; / / STRING ;

optionList [ 8 ] . _value = &k ;

optionList [ 9 ] . _sVersion = "gamma_k" ;

optionList [ 9 ] . _lVersion = " probabi l i ty of switch " ;

optionList [ 9 ] . _description =

" Probabi l i ty of the most frequent
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switch ( Default value 0.95) " ;

optionList [ 9 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 9 ] . _value = &gkk ;

optionList [ 1 0 ] . _sVersion = "sigma_0" ;

optionList [ 1 0 ] . _lVersion = " I n i t i a l v o l a t i l i t y " ;

optionList [ 1 0 ] . _description =

" I n i t i a l v o l a t i l i t y ( Default value 0.01) " ;

optionList [ 1 0 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 1 0 ] . _value = &sigma0 ;

optionList [ 1 1 ] . _sVersion = "rho" ;

optionList [ 1 1 ] . _lVersion =

" Correlation between Gaussian and Switch " ;

optionList [ 1 1 ] . _description =

" Correlation between Gaussian and

Switch ( Default value 1) " ;

optionList [ 1 1 ] . _type = streamsdk : : CA_ARG_FLOAT; / / STRING ;

optionList [ 1 1 ] . _value = &rho ;

/ / Monte Carlo simulations parameters

optionList [ 1 2 ] . _sVersion = "noOfSum" ;

optionList [ 1 2 ] . _lVersion = "number of points in path" ;

optionList [ 1 2 ] . _description = "number of points

( Default value 50) " ;

optionList [ 1 2 ] . _type = streamsdk : : CA_ARG_INT ; / / STRING ;

optionList [ 1 2 ] . _value = &noOfSum ;

optionList [ 1 3 ] . _sVersion = " noOfTraj " ;

optionList [ 1 3 ] . _lVersion = " sqrt (number of paths ) " ;

optionList [ 1 3 ] . _description =

" sqrt (number of paths ) ( Default value 256) " ;

optionList [ 1 3 ] . _type = streamsdk : : CA_ARG_INT ; / / STRING ;

optionList [ 1 3 ] . _value = &noOfTraj ;

/ / OpenCL options

optionList [ 1 4 ] . _sVersion = "width" ;

optionList [ 1 4 ] . _lVersion = "width" ;

optionList [ 1 4 ] . _description = "width ( Default value 128) " ;

optionList [ 1 4 ] . _type = streamsdk : : CA_ARG_INT ; / / STRING ;

optionList [ 1 4 ] . _value = &width ;

optionList [ 1 5 ] . _sVersion = " blockSizeX " ;

optionList [ 1 5 ] . _lVersion = " blockSizeX " ;

optionList [ 1 5 ] . _description = " blockSizeX ( Default value 128) " ;
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optionList [ 1 5 ] . _type = streamsdk : : CA_ARG_INT ; / / STRING ;

optionList [ 1 5 ] . _value = &blockSizeX ;

for ( c l _ i n t i = 0 ; i < optionsCount ; ++ i )

sampleArgs−>AddOption(& optionList [ i ] ) ;

delete [ ] optionList ;

streamsdk : : Option * iteration_option =

new streamsdk : : Option ;

CHECK_ALLOCATION(

iteration_option ,

" Failed to a l l o c a t e memory ( iteration_option ) \ \ \ \n" ) ;

iteration_option−>_sVersion = " i " ;

iteration_option−>_lVersion = " i t e r a t i o n s " ;

iteration_option−>_description =

"Number of i t e r a t i o n s to execute kernel " ;

iteration_option−>_type = streamsdk : : CA_ARG_INT ;

iteration_option−>_value = &i t e r a t i o n s ;

sampleArgs−>AddOption ( iteration_option ) ;

delete i teration_option ;

/ / Technical options defining OpenCL regimes

streamsdk : : Option * inPersistent_option =

new streamsdk : : Option ;

CHECK_ALLOCATION(

inPersistent_option ,

" Failed to a l l o c a t e memory ( inPersistent_option ) \ \ \ \n" ) ;

inPersistent_option−>_sVersion = " " ;

inPersistent_option−>_lVersion = " dInPersistent " ;

inPersistent_option−>_description =

" Disables the P e r s i s t e n t memory for input buffers " ;

inPersistent_option−>_type = streamsdk : :CA_NO_ARGUMENT;

inPersistent_option−>_value = &dUseInPersistent ;

sampleArgs−>AddOption ( inPersistent_option ) ;

delete inPersistent_option ;

streamsdk : : Option * outAllocHostPtr_option =
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new streamsdk : : Option ;

CHECK_ALLOCATION(

outAllocHostPtr_option ,

" Failed to a l l o c a t e memory ( outAllocHostPtr_option ) \ \ \ \n" ) ;

outAllocHostPtr_option−>_sVersion = " " ;

outAllocHostPtr_option−>_lVersion = " dOutAllocHostPtr " ;

outAllocHostPtr_option−>_description =

" Disables the Alloc host ptr for output buffers " ;

outAllocHostPtr_option−>_type = streamsdk : :CA_NO_ARGUMENT;

outAllocHostPtr_option−>_value = &dUseOutAllocHostPtr ;

sampleArgs−>AddOption ( outAllocHostPtr_option ) ;

delete outAllocHostPtr_option ;

streamsdk : : Option * disableMapping_option =

new streamsdk : : Option ;

CHECK_ALLOCATION(

disableMapping_option ,

" Failed to a l l o c a t e memory ( disableMapping_option ) \ \ \ \n" ) ;

disableMapping_option−>_sVersion = " " ;

disableMapping_option−>_lVersion = "dMapping" ;

disableMapping_option−>_description =

" Disables mapping/unmapping and uses read/ write buffers . " ;

disableMapping_option−>_type = streamsdk : :CA_NO_ARGUMENT;

disableMapping_option−>_value = &disableMapping ;

sampleArgs−>AddOption ( disableMapping_option ) ;

delete disableMapping_option ;

streamsdk : : Option * disableAsync_option =

new streamsdk : : Option ;

CHECK_ALLOCATION(

disableAsync_option ,

" Failed to a l l o c a t e memory ( disableAsync_option ) \ \ \ \n" ) ;

disableAsync_option−>_sVersion = " " ;

disableAsync_option−>_lVersion = "dAsync" ;

disableAsync_option−>_description = " Disables Asynchronous . " ;

disableAsync_option−>_type = streamsdk : :CA_NO_ARGUMENT;

disableAsync_option−>_value = &disableAsync ;
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sampleArgs−>AddOption ( disableAsync_option ) ;

delete disableAsync_option ;

return SDK_SUCCESS;

}

/ / Few technical OpenCL subroutines

int MonteCarloAMSM : : setup ( )

{

i f (setupMonteCarloAMSM ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

i f ( setupCL ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

return SDK_SUCCESS;

}

int MonteCarloAMSM : : run ( )

{

return SDK_SUCCESS;

}

int MonteCarloAMSM : : v e r i f y R e s u l t s ( )

{

return SDK_SUCCESS;

}

/ / Allocated memory r e l e a s e

int MonteCarloAMSM : : cleanup ( )

{

/ / Releases OpenCL resources ( Context , Memory e t c . )

c l _ i n t status ;

/ / Clean bufers

status = clReleaseMemObject ( priceBuf ) ;

CHECK_OPENCL_ERROR(

status ,

"clReleaseMemObject ( priceBuf ) f a i l e d . " ) ;

status = clReleaseMemObject ( priceDerivBuf ) ;

CHECK_OPENCL_ERROR(

status ,
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"clReleaseMemObject ( priceDerivBuf ) f a i l e d . " ) ;

status = clReleaseMemObject ( randBuf ) ;

CHECK_OPENCL_ERROR(

status ,

"clReleaseMemObject ( randBuf ) f a i l e d . " ) ;

status = clReleaseMemObject ( QrandBuf ) ;

CHECK_OPENCL_ERROR(

status ,

"clReleaseMemObject ( QrandBuf ) f a i l e d . " ) ;

/ / For Async OpenCL option ( not used )

i f ( ! disableAsync )

{

status = clReleaseMemObject ( priceBufAsync ) ;

CHECK_OPENCL_ERROR(

status ,

"clReleaseMemObject ( priceBufAsync ) f a i l e d . " ) ;

status = clReleaseMemObject ( priceDerivBufAsync ) ;

CHECK_OPENCL_ERROR(

status ,

"clReleaseMemObject ( priceDerivBufAsync ) f a i l e d . " ) ;

status = clReleaseMemObject ( randBufAsync ) ;

CHECK_OPENCL_ERROR(

status ,

"clReleaseMemObject ( randBufAsync ) f a i l e d . " ) ;

}

/ / Clean of OpenCL o b j e c t s ( kernel and e t c )

status = clReleaseKernel ( kernel ) ;

CHECK_OPENCL_ERROR(

status ,

" clReleaseKernel ( kernel ) f a i l e d . " ) ;

status = clReleaseProgram ( program ) ;

CHECK_OPENCL_ERROR(

status ,

" clReleaseProgram ( program ) f a i l e d . " ) ;

status = clReleaseCommandQueue (commandQueue ) ;

CHECK_OPENCL_ERROR(

status ,
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"clReleaseCommandQueue( readKernel ) f a i l e d . " ) ;

status = clReleaseContext ( context ) ;

CHECK_OPENCL_ERROR(

status ,

" clReleaseContext ( context ) f a i l e d . " ) ;

/ / Clean some other b u f f e r s

FREE( sigma ) ;

FREE( price ) ;

FREE( r e f P r i c e ) ;

FREE( priceVals ) ;

FREE( priceDeriv ) ;

FREE(QrandNum) ;

i f ( ! disableAsync && disableMapping )

{

FREE( priceValsAsync ) ;

FREE( priceDerivAsync ) ;

}

FREE( devices ) ;

return SDK_SUCCESS;

}

/ / Create binary f i l e from OpenCL kernel code

int

MonteCarloAMSM : : genBinaryImage ( )

{

streamsdk : : bifData binaryData ;

binaryData . kernelName = std : : s t r i n g (

"MonteCarloAMSM_Kernels . c l " ) ;

binaryData . f l a g s S t r = std : : s t r i n g ( " " ) ;

i f ( isComplierFlagsSpecified ( ) )

binaryData . flagsFileName = std : : s t r i n g ( f l a g s . c _ s t r ( ) ) ;

binaryData . binaryName = std : : s t r i n g ( dumpBinary . c _ s t r ( ) ) ;

int status = sampleCommon−>generateBinaryImage ( binaryData ) ;

return status ;

}

/ / Memory al location

int

MonteCarloAMSM : : setupMonteCarloAMSM ( )
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{

/ / A l l o c a t e and i n i t memory used by host

price = ( c l _ f l o a t * ) malloc ( steps * s i z e o f ( c l _ f l o a t ) ) ;

CHECK_ALLOCATION(

price ,

" Failed to a l l o c a t e host memory. ( price ) " ) ;

memset ( ( void * ) price , 0 , steps * s i z e o f ( c l _ f l o a t ) ) ;

r e f P r i c e = ( c l _ f l o a t * ) malloc ( steps * s i z e o f ( c l _ f l o a t ) ) ;

CHECK_ALLOCATION(

refPrice ,

" Failed to a l l o c a t e host memory. ( r e f P r i c e ) " ) ;

memset ( ( void * ) refPrice , 0 , steps * s i z e o f ( c l _ f l o a t ) ) ;

/ / Set samples and e x e r c i s e points

height = GLOBAL_MEMORY_SIZE_Y;

# i f defined (_WIN32)

randNum = ( cl_uint * ) _aligned_malloc (

width * height * s i z e o f ( cl_uint4 ) ,

1 6 ) ; / / !

# else

randNum = ( cl_uint * ) memalign(

16 ,

width * height * s i z e o f ( cl_uint4 ) ) ;

#endif

CHECK_ALLOCATION(

randNum,

" Failed to a l l o c a t e host memory. (randNum) " ) ; / / !

/ / Buffer array QrandNum contains a l l quasi−random numbers

/ / f o r a l l paths and f o r each t r a n s i t i o n

/ / width * height i s number of kernel in p a r a l l e l

/ / 2 * 4 paths in each kernel

/ / ( khat * 2 + 1) i s a number of r . n .

/ / necessary f o r each t r a n s i t i o n

/ / max_maturity i s length of path (number of t r a n s i t i o n s )

int s i z e = width * height * 2 *
s i z e o f ( c l _ f l o a t 4 ) * ( khat * 2 + 1) * max_maturity ;

QrandNum = ( c l _ f l o a t * ) malloc (

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) *
( khat * 2 + 1) * max_maturity ) ;

CHECK_ALLOCATION(
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QrandNum,

" Failed to a l l o c a t e host memory. (QrandNum) " ) ;

memset(

( void * )QrandNum,

0 ,

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) *
( khat * 2 + 1) * max_maturity ) ;

/ / Buffer array f o r each path value at maturity T

priceVals = ( c l _ f l o a t * ) malloc (

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) ) ;

CHECK_ALLOCATION(

priceVals ,

" Failed to a l l o c a t e host memory. ( priceVals ) " ) ;

memset(

( void * ) priceVals ,

0 ,

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) ) ;

/ / Buffer array f o r each d e r i v a t i v e value at maturity T

priceDeriv = ( c l _ f l o a t * ) malloc (

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) ) ;

CHECK_ALLOCATION(

priceDeriv ,

" Failed to a l l o c a t e host memory. ( priceDeriv ) " ) ;

memset(

( void * ) priceDeriv ,

0 ,

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) ) ;

return SDK_SUCCESS;

}

char DevInf [ 1 0 2 4 ] ;

/ / The function setups and connects to OpenCL kernel

int

MonteCarloAMSM : : setupCL ( void )

{

c l _ i n t status = 0 ;

cl_device_type dType ;

/ / Check device type (CPU or GPU)

i f ( deviceType . compare( "cpu" ) == 0)

{
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dType = CL_DEVICE_TYPE_CPU ;

}

else / / deviceType = "gpu"

{

dType = CL_DEVICE_TYPE_GPU ;

i f ( isThereGPU ( ) == f a l s e )

{

std : : cout <<

"GPU not found . F a l l i n g back to CPU device " <<

std : : endl ;

dType = CL_DEVICE_TYPE_CPU ;

}

}

/ / Get platform

cl_platform_id platform = NULL;

int retValue = sampleCommon−>

getPlatform (

platform ,

platformId ,

isPlatformEnabled ( ) ) ;

CHECK_ERROR(

retValue ,

SDK_SUCCESS,

"sampleCommon : : getPlatform ( ) f a i l e d " ) ;

/ / Display available devices .

retValue = sampleCommon−>

displayDevices ( platform , dType ) ;

CHECK_ERROR(

retValue ,

SDK_SUCCESS,

"sampleCommon : : displayDevices ( ) f a i l e d " ) ;

/ / I f we could find our platform , use i t .

/ / Otherwise use j u s t available platform .

cl_context_properties cps [ 3 ] =

{

CL_CONTEXT_PLATFORM,

( cl_context_properties ) platform ,

0

} ;

context = clCreateContextFromType (
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cps ,

dType ,

NULL,

NULL,

&status ) ;

CHECK_OPENCL_ERROR(

status ,

"clCreateContextFromType ( ) f a i l e d . " ) ;

status = sampleCommon−>

getDevices (

context ,

&devices ,

deviceId ,

isDeviceIdEnabled ( ) ) ;

CHECK_ERROR(

status ,

SDK_SUCCESS,

"sampleCommon : : getDevices ( ) f a i l e d " ) ;

/ / Set device info of given c l _ d e v i c e _ i d

retValue = deviceInfo . setDeviceInfo (

devices [ deviceId ] ) ;

CHECK_ERROR(

retValue ,

SDK_SUCCESS,

"SDKDeviceInfo : : setDeviceInfo ( ) f a i l e d " ) ;

commandQueue = clCreateCommandQueue(

context ,

devices [ deviceId ] ,

0 ,

&status ) ;

CHECK_OPENCL_ERROR(

status ,

"clCreateCommandQueue(commandQueue) f a i l e d . " ) ;

unsigned int s i z e = s i z e o f ( DevInf ) ;

retValue = clGetDeviceInfo ( devices [ deviceId ] ,

CL_DEVICE_NAME,

size ,

DevInf ,

NULL) ;
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i f (Memory. find ( "GPU" ) ! = std : : s t r i n g : : npos ) {

/ / c r e a t e Normal Buffer ,

/ / i f p r e s i s t e n t memory i s not in use

randBuf = clCreateBuffer ( context ,

CL_MEM_COPY_HOST_PTR,

s i z e o f ( cl_uint4 ) * width * height ,

randNum,

&status ) ;

CHECK_OPENCL_ERROR(

status ,

" clCreateBuffer ( randBuf ) f a i l e d . " ) ;

/ / c r e a t e buffer QrandBuf with QRNs

/ / f o r GPU in host memory

QrandBuf = clCreateBuffer ( context ,

CL_MEM_COPY_HOST_PTR,

/ / 2 * (max_k * 2 + 1) Uniform RNs

s i z e o f ( c l _ f l o a t 4 ) * width * height * 2 *
( khat * 2 + 1) * max_maturity ,

QrandNum,

&status ) ;

}

else {

/ / c r e a t e buffer f o r PRNs ,

/ / i f p e r s i s t e n t memory i s not in use

randBuf = clCreateBuffer ( context ,

CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,

s i z e o f ( cl_uint4 ) * width * height ,

randNum,

&status ) ;

CHECK_OPENCL_ERROR(

status ,

" clCreateBuffer ( randBuf ) f a i l e d . " ) ;

/ / c r e a t e buffer QrandBuf f o r QRNs

QrandBuf = clCreateBuffer ( context ,

CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,

/ / 2 * (max_k * 2 + 1) Uniform RNs

s i z e o f ( c l _ f l o a t 4 ) * width * height * 2 *
( khat * 2 + 1) * max_maturity ,

QrandNum,

&status ) ;

CHECK_OPENCL_ERROR(
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status ,

" clCreateBuffer ( QrandBuf ) f a i l e d . " ) ;

}

/ / c r e a t e buffer on GPU f o r priceBuf

priceBuf = clCreateBuffer (

context ,

CL_MEM_WRITE_ONLY,

s i z e o f ( c l _ f l o a t 4 ) * width * height * 2 ,

NULL,

&status ) ;

CHECK_OPENCL_ERROR(

status ,

" clCreateBuffer ( priceBuf ) f a i l e d . " ) ;

/ / c r e a t e Buffer f o r priceDerivBuf

priceDerivBuf = clCreateBuffer (

context ,

CL_MEM_WRITE_ONLY,

s i z e o f ( c l _ f l o a t 4 ) * width * height * 2 ,

NULL,

&status ) ;

CHECK_OPENCL_ERROR(

status ,

" clCreateBuffer ( priceDerivBuf ) f a i l e d . " ) ;

/ / Create a CL program using the kernel source

streamsdk : : buildProgramData buildData ;

buildData . kernelName = std : : s t r i n g (

"MonteCarloAMSM_Kernels . c l " ) ;

buildData . devices = devices ;

buildData . deviceId = deviceId ;

buildData . f l a g s S t r = std : : s t r i n g ( " " ) ;

i f ( isLoadBinaryEnabled ( ) )

buildData . binaryName = std : : s t r i n g ( loadBinary . c _ s t r ( ) ) ;

i f ( isComplierFlagsSpecified ( ) )

buildData . flagsFileName = std : : s t r i n g ( f l a g s . c _ s t r ( ) ) ;

retValue = sampleCommon−>buildOpenCLProgram (

program ,

context ,

buildData ) ;
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CHECK_ERROR(

retValue ,

SDK_SUCCESS,

"sampleCommon : : buildOpenCLProgram ( ) f a i l e d " ) ;

/ / get a kernel o b j e c t handler f o r a kernel with the given name

kernel = clCreateKernel (

program ,

" calPriceVega " ,

&status ) ;

CHECK_OPENCL_ERROR( status , " clCreateKernel ( calPriceVega ) f a i l e d . " ) ;

/ / Check group−s i z e against what i s returned by kernel

status = kernelInfo . setKernelWorkGroupInfo (

kernel ,

devices [ deviceId ] ) ;

CHECK_OPENCL_ERROR(

status ,

" kernelInfo . setKernelWorkGroupInfo f a i l e d " ) ;

std : : cout << "Max Group Size supported on the kernel : " <<

kernelInfo . kernelWorkGroupSize << std : : endl ;

i f ( ( blockSizeX * blockSizeY ) > kernelInfo . kernelWorkGroupSize )

{

i f ( ! quiet )

{

std : : cout << "Out of Resources ! " << std : : endl ;

std : : cout << "Group Size speci f ied : "

<< blockSizeX * blockSizeY << std : : endl ;

std : : cout << " F a l l i n g back to " <<

kernelInfo . kernelWorkGroupSize << std : : endl ;

}

/ / Three p o s s i b l e cases

i f ( blockSizeX > kernelInfo . kernelWorkGroupSize )

{

blockSizeX = kernelInfo . kernelWorkGroupSize ;

blockSizeY = 1 ;

}

}

/ / F i l l the buffer randNum with pseudo−random numbers

seed = PrimesSampleArr [SeedNumber − 1 ] ;
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/ / 2834947879; / /4294967291; / / / / 2 9 8 4 1 4 0 8 2 6 ;

/ / 1 586 349 558; / /4294967291; / /3715061396;

/ / Pseudo Random Number Generator from boost l ibrary ,

/ / namely , lagged_fibonacci44497

boost : : random : : lagged_fibonacci44497 gen ;

boost : : random : : uniform_int_distribution <> ud( 1 , 45000000);

boost : : variate_generator <

boost : : random : : lagged_fibonacci44497 &,

boost : : random : : uniform_int_distribution <>>

randUniform ( gen , ud ) ;

gen . seed ( seed ) ;

std : : cout << std : : endl << "seed = "<< seed <<

std : : endl << std : : endl ;

long buffer =0; / / s td : : ofstream outfileRNG ( "RNG. t x t " ) ;

/ / Warm up

for ( int j = 0 ; j < 1000; j ++){

buffer = randUniform ( ) ; / / ud( gen ) ;

/ / outfileRNG <<( int )randNum[ j ] < <"\\\\n " ;

} ;

for ( int j = 0 ; j < ( width * height * 4 ) ; j ++){

buffer = randUniform ( ) ;

randNum[ j ] = ( c l_uint ) buffer ; / / ( c l_uint ) randUniform ( ) ;

/ / ud( gen ) ;

/ / outfileRNG <<( int )randNum[ j ]<< std : : endl ;

} ;

/ / outfileRNG . c l o s e ( ) ;

/ / F i l l buf fer QrandNum with quasi−random numbers

int seed_sobol = seed ;

f l o a t * rnm1 = new f l o a t [ max_maturity ] ;

f l o a t * rnm2 = new f l o a t [ max_maturity ] ;

f l o a t * rnm3 = new f l o a t [ max_maturity ] ;

f l o a t * rnm4 = new f l o a t [ max_maturity ] ;

/ / Sobol quasi−random numbers generator

for ( int j = 0 ; j < 1000; j ++) {

i4_sobol ( max_maturity , &seed_sobol , rnm1 ) ;

i4_sobol ( max_maturity , &seed_sobol , rnm2 ) ;

i4_sobol ( max_maturity , &seed_sobol , rnm3 ) ;
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i4_sobol ( max_maturity , &seed_sobol , rnm4 ) ;

}

for ( int i = 0 ; i < width * height * ( khat * 2 + 1) * 2 ; i ++)

{

/ / seed = PrimesSampleArr [ i + 1 ] ;

i4_sobol ( max_maturity , &seed_sobol , rnm1 ) ;

i4_sobol ( max_maturity , &seed_sobol , rnm2 ) ;

i4_sobol ( max_maturity , &seed_sobol , rnm3 ) ;

i4_sobol ( max_maturity , &seed_sobol , rnm4 ) ;

/ / Write generated QRNs to buffer QrandNum

for ( int j = 0 ; j < max_maturity ; j ++) {

QrandNum[ i * 4 * max_maturity + j *4 + 0] = rnm1[ j ] ;

/ / ( f l o a t ) ( i * 4 * max_maturity + j * 4 + 0 ) ; / /

QrandNum[ i * 4 * max_maturity + j *4 + 1] = rnm2[ j ] ;

/ / ( f l o a t ) ( i * 4 * max_maturity + j * 4 + 1 ) ; / /

QrandNum[ i * 4 * max_maturity + j *4 + 2] = rnm3[ j ] ;

/ / ( f l o a t ) ( i * 4 * max_maturity + j * 4 + 2 ) ; / /

QrandNum[ i * 4 * max_maturity + j *4 + 3] = rnm4[ j ] ;

/ / ( f l o a t ) ( i * 4 * max_maturity + j * 4 + 3 ) ; / /

}

}

return SDK_SUCCESS;

}

/ / Main Computation Function where a l l the magic of

/ / p a r a l l e l computing on GPU happens !

f l o a t

MonteCarloAMSM : : runCLKernels2 (

f l o a t gkk , / / Model Param

f l o a t b , / / Model Param

f l o a t rho , / / Model Param

f l o a t sigma0 , / / Model Param

f l o a t m0, / / Model Param

int k , / / Fixed Param

int model , / / Model AMSM

f l o a t lambda , / / Option Param ( r i s k premium)

f l o a t nu , / / Option Param ( r i s k premium)

f l o a t i n i t P r i c e , / / Option Param

f l o a t s t r i k e P r i c e , / / Option Param
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f l o a t i n t e r e s t , / / Option Param

int noOfSum, / / Sym Param

int width , / / Sym Param

int height , / / Sym Param

f l o a t * OPrice

)

{

c l _ i n t status ;

c l _ i n t eventStatus = CL_QUEUED;

/ / Assigning of width and height

s i z e _ t globalThreads [ 2 ] = { ( s i z e _ t ) width , ( s i z e _ t ) height } ;

/ / Assigning of blockSizeX

s i z e _ t localThreads [ 2 ] = { blockSizeX , blockSizeY } ;

/ / Declare a t t r i b u t e s s t r u c t u r e

MonteCarloAttrib a t t r i b u t e s ;

i f ( localThreads [ 0 ] > deviceInfo . maxWorkItemSizes [ 0 ] | |

localThreads [ 1 ] > deviceInfo . maxWorkItemSizes [ 1 ] | |

( localThreads [ 0 ] * localThreads [ 1 ] ) > deviceInfo . maxWorkGroupSize )

{

std : : cout << "Unsupported : Device does not support requested "

<< " : number of work items . " ;

return SDK_FAILURE ;

}

/ / Assign noOfSum, width , randBuf argument to the kernel

status = clSetKernelArg (

kernel , 1 , s i z e o f ( c l _ i n t ) , ( void *)&noOfSum ) ;

CHECK_OPENCL_ERROR( status , " clSetKernelArg (noOfSum) f a i l e d . " ) ;

/ / width − i . e number of columns in the array

status = clSetKernelArg (

kernel , 2 , s i z e o f ( c l_uint ) , ( void *)&width ) ;

CHECK_OPENCL_ERROR( status , " clSetKernelArg ( width ) f a i l e d . " ) ;

status = clSetKernelArg (

kernel , 3 , s i z e o f (cl_mem) , ( void *)&randBuf ) ;

CHECK_OPENCL_ERROR( status , " clSetKernelArg ( randBuf ) f a i l e d . " ) ;

/ / Write host buffer to device buffer

status = clEnqueueWriteBuffer (

commandQueue, randBuf , CL_TRUE, 0 ,

width * height * s i z e o f ( int ) * 4 , randNum, 0 , NULL, NULL) ;

CHECK_OPENCL_ERROR(
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status ,

" clEnqueueWriteBuffer f a i l e d

to write randNum array ! " ) ;

/ / Assign QrandBuf argument to the kernel

status = clSetKernelArg (

kernel , 4 ,

s i z e o f (cl_mem) , ( void *)&QrandBuf ) ;

CHECK_OPENCL_ERROR(

status ,

" clSetKernelArg ( QrandBuf ) f a i l e d . " ) ;

/ / Write host buffer to device buffer

status = clEnqueueWriteBuffer (

commandQueue, QrandBuf , CL_TRUE, 0 ,

width * height * s i z e o f ( f l o a t ) * 4 * 2 * ( khat * 2 + 1) *
max_maturity , QrandNum, 0 , NULL, NULL) ;

CHECK_OPENCL_ERROR(

status ,

" clEnqueueWriteBuffer f a i l e d to write QrandNum array ! " ) ;

status = clSetKernelArg (

kernel , 5 , s i z e o f (cl_mem) , ( void *)& priceBuf ) ;

CHECK_OPENCL_ERROR(

status ,

" clSetKernelArg ( priceBuf ) f a i l e d . " ) ;

status = clSetKernelArg (

kernel , 6 , s i z e o f (cl_mem) , ( void *)& priceDerivBuf ) ;

CHECK_OPENCL_ERROR(

status ,

" clSetKernelArg ( priceDerivBuf ) f a i l e d . " ) ;

f l o a t timeStep = maturity / (noOfSum − 1 ) ;

cl_event events [ 1 ] ;

/ / Assign AMSM model parameters to a t t r i b u t e s s t r u c t u r e

const c l _ f l o a t 4 lambdaF4 = { lambda , lambda , lambda , lambda } ;

a t t r i b u t e s . lambda = lambdaF4 ;

const c l _ f l o a t 4 nuF4 = { nu , nu , nu , nu } ;

a t t r i b u t e s . nu = nuF4 ;

const c l _ f l o a t 4 bF4 = {b , b , b , b } ;
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a t t r i b u t e s . b = bF4 ;

const c l _ f l o a t 4 m0F4 = {m0, m0, m0, m0} ;

a t t r i b u t e s .m0 = m0F4;

const c l _ i n t 4 kF4 = { k , k , k , k } ;

a t t r i b u t e s . k = kF4 ;

const c l _ f l o a t 4 gkkF4 = { gkk , gkk , gkk , gkk } ;

a t t r i b u t e s . gkk = gkkF4 ;

const c l _ f l o a t 4 sigma0F4 = { sigma0 , sigma0 , sigma0 , sigma0 } ;

a t t r i b u t e s . sigma0 = sigma0F4 ;

const c l _ f l o a t 4 rhoF4 = { rho , rho , rho , rho } ;

a t t r i b u t e s . rho = rhoF4 ;

const c l _ f l o a t 4 i n i t P r i c e F 4 =

{ i n i t P r i c e , i n i t P r i c e , i n i t P r i c e , i n i t P r i c e } ;

a t t r i b u t e s . i n i t P r i c e = i n i t P r i c e F 4 ;

const c l _ f l o a t 4 str ikePriceF4 =

{ s t r i k e P r i c e , s t r i k e P r i c e , s t r i k e P r i c e , s t r i k e P r i c e } ;

a t t r i b u t e s . s t r i k e P r i c e = str ikePriceF4 ;

const c l _ f l o a t 4 interestF4 = { i n t e r e s t , i n t e r e s t , i n t e r e s t , i n t e r e s t } ;

a t t r i b u t e s . i n t e r e s t = interestF4 ;

const c l _ i n t 4 modelF4 = { model , model , model , model } ;

a t t r i b u t e s . model = modelF4 ;

const c l _ i n t 4 RNGF4 = { RNG, RNG, RNG, RNG } ;

a t t r i b u t e s .RNG = RNGF4;

/ / Set a t t r i b u t e s s t r u c t u r e to the kernel

status = clSetKernelArg (

kernel , 0 , s i z e o f ( a t t r i b u t e s ) , ( void *)& a t t r i b u t e s ) ;

CHECK_OPENCL_ERROR( status , " clSetKernelArg ( a t t r i b u t e s ) f a i l e d . " ) ;

/ / Enqueue a kernel run c a l l .

status = clEnqueueNDRangeKernel (

commandQueue,

kernel ,

2 ,
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NULL,

globalThreads , / * global_work_size * /

localThreads , / * local_work_size * /

0 ,

NULL,

&events [ 0 ] ) ;

CHECK_OPENCL_ERROR( status , "clEnqueueNDRangeKernel ( ) f a i l e d . " ) ;

status = clFlush (commandQueue ) ;

CHECK_OPENCL_ERROR( status , " clFlush ( ) f a i l e d . " ) ;

/ / wait f o r the kernel c a l l to f i n i s h execution

status = sampleCommon−>waitForEventAndRelease(&events [ 0 ] ) ;

CHECK_ERROR( status , 0 , "WaitForEventAndRelease ( events [ 0 ] ) Failed " ) ;

/ / Enqueue the r e s u l t s to application pointer

status = clEnqueueReadBuffer (

commandQueue,

priceBuf ,

CL_TRUE,

0 ,

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) ,

priceVals ,

0 ,

NULL,

&events [ 0 ] ) ;

CHECK_OPENCL_ERROR(

status ,

"clEnqueueReadBuffer ( priceBuf ) f a i l e d . " ) ;

/ / Wait f o r f i n i s h i n g execution of a l l kernels to read buffer

status = sampleCommon−>waitForEventAndRelease(&events [ 0 ] ) ;

CHECK_OPENCL_ERROR(

status ,

" clWaitForEventsAndRelease ( events [ 0 ] ) f a i l e d . " ) ;

/ / Enqueue the r e s u l t s to application pointer

status = clEnqueueReadBuffer (

commandQueue,

priceDerivBuf ,

CL_TRUE,

0 ,

width * height * 2 * s i z e o f ( c l _ f l o a t 4 ) ,
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priceDeriv ,

0 ,

NULL,

&events [ 0 ] ) ;

CHECK_OPENCL_ERROR(

status ,

"clEnqueueReadBuffer ( priceDerivBuf ) f a i l e d . " ) ;

/ / Wait f o r the read buffer to f i n i s h execution

status = sampleCommon−>waitForEventAndRelease(&events [ 0 ] ) ;

CHECK_OPENCL_ERROR(

status ,

" clWaitForEventsAndRelease ( events [ 0 ] ) f a i l e d . " ) ;

/ / f l o a t TPrice = 0 ;

int kk =0; f l o a t count =0. f ;

f l o a t ControlledVariate = 0 . f ;

f l o a t r a t i o = 1 . f , sumU = 0 . f , sumD = 0 . f , control =0. f ,

option_price_f loat =0. f , tempDiff = 0 . f , b a r r i e r = 0 . f ;

price [ kk ] = 0 . f ; f l o a t sum = 0 . f ;

f l o a t control2 = 0 . f ; f l o a t sum2 = 0 . f ;

for ( int i = 0 ; i < width * 8 * height ; i ++)

{

/ / Control v a r i a t e s

control = control + priceDeriv [ i ] ;

/ / option_price += ( double ) priceVals [ i ] ;

option_price_f loat = option_price_f loat + priceVals [ i ] ;

/ * i f ( logging ) {

l o g _ f i l e << priceVals [ i ] << " \n " ; }

opt ion_price_f loat += priceVals [ i ] ; * /

count+=1. f ;

}

/ / Averaging of payoffs to get math . expectation f o r AMSM

option_price_f loat /= count ;

/ / Averaging of payoffs to get math . expectation

/ / f o r BS control variate

control /= count ;

/ / option_price /= count ;

/ / Fixing of values due to control variate
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i f ( ControlVariates == 1) {

for ( int i = 0 ; i < width * 8 * height ; i ++)

{

i f (

( priceVals [ i ] >= 0) &&

( priceVals [ i ] <= 10000000)){

sumU +=

( priceDeriv [ i ] −
control ) *
( priceVals [ i ] −
option_price_f loat ) ;

sumD +=

( priceDeriv [ i ] − control ) *
( priceDeriv [ i ] − control ) ;

} ;

} ;

i f (sumD != 0 . f ) {

r a t i o = sumU / sumD;

}

else { r a t i o = 0 ; }

f l o a t BS_price = ( f l o a t ) BlackScholes (

’ c ’ , i n i t P r i c e , s t r i k e P r i c e ,

noOfSum, i n t e r e s t , sigma0 ) ;

option_price_f loat = (

exp(− i n t e r e s t * ( f l o a t )noOfSum ) *
option_price_f loat − r a t i o *
( exp(− i n t e r e s t * ( f l o a t )noOfSum ) *
control − / * i n i t P r i c e * / BS_price ) ) ;

}

/ / Return option price value

* OPrice = option_price_f loat ;

return option_price_f loat ;

}

/ / The function reads option p r i c e s data f o r c al i br at i o n from RealData . t x t

/ / and write i t to the array DataPointArr

void DataPointRead ( double ** DataPointArr , int n)

{

ifstream i n f i l e ;

char * buffer = new char [1000000];

/ / Try to read RealData . t x t

std : : s t r i n g app_path = getexepath ( ) ;
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app_path . append( " \\ RealData . t x t " ) ;

try { i n f i l e . open( app_path . c _ s t r ( ) ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Real Data f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

/ / return 0 ;

}

/ / Skip f i r s t two l i n e s

i n f i l e . g e t l i n e ( buffer , 1000000);

i n f i l e . g e t l i n e ( buffer , 1000000);

/ / Maturity read from vector [ , , , ]

i n f i l e . g e t l i n e ( buffer , 1000000);

s t r i n g s = s t r i n g ( buffer ) ;

replace ( s . begin ( ) , s . end ( ) , ’ [ ’ , ’ ’ ) ;

replace ( s . begin ( ) , s . end ( ) , ’ ] ’ , ’ ’ ) ;

stringstream ss ( s ) ;

vector <str ing > vect ;

while ( ss . good ( ) ) {

s t r i n g substr ;

g e t l i n e ( ss , substr , ’ , ’ ) ;

vect . push_back ( substr ) ; }

/ / Write a l l maturities to the f i r s t column of DataPointArr

for ( int i = 0 ; i < ( int ) vect . s i z e ( ) ; i ++) {

DataPointArr [ i ] [ 0 ] = StrToFloat ( vect . at ( i ) ) ; }

/ / S t r i k e p r i c e s read

i n f i l e . g e t l i n e ( buffer , 1000000);

s = s t r i n g ( buffer ) ;

replace ( s . begin ( ) , s . end ( ) , ’ [ ’ , ’ ’ ) ;

replace ( s . begin ( ) , s . end ( ) , ’ ] ’ , ’ ’ ) ;

stringstream ss2 ( s ) ;

vector <str ing > vect2 ;

while ( ss2 . good ( ) ) {

s t r i n g substr ;

g e t l i n e ( ss2 , substr , ’ , ’ ) ;

vect2 . push_back ( substr ) ;

}
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/ / Write a l l s t r i k e p r i c e s to the second column of DataPointArr

for ( int i = 0 ; i < n ; i ++) {

DataPointArr [ i ] [ 1 ] = StrToFloat ( vect2 . at ( i ) ) ;

}

/ / I n t e r e s t rate read

i n f i l e . g e t l i n e ( buffer , 1000000);

s = s t r i n g ( buffer ) ;

replace ( s . begin ( ) , s . end ( ) , ’ [ ’ , ’ ’ ) ;

replace ( s . begin ( ) , s . end ( ) , ’ ] ’ , ’ ’ ) ;

stringstream ss3 ( s ) ;

vector <str ing > vect3 ;

while ( ss3 . good ( ) ) {

s t r i n g substr ;

g e t l i n e ( ss3 , substr , ’ , ’ ) ;

vect3 . push_back ( substr ) ;

}

/ / Write a l l int . r a t e s to the third column of DataPointArr

for ( int i = 0 ; i < n ; i ++) {

DataPointArr [ i ] [ 2 ] = StrToFloat ( vect3 . at ( i ) ) ;

}

i n f i l e . close ( ) ;

delete [ ] buffer ;

}

/ / Toy example array with option p r i c e s data f o r c al i br a t i on

void DataPoint ( int var1 , int *noOfSum, f l o a t * s t r i k e , f l o a t * i n t e r e s t )

{

i f ( data_gen == 0) {

/ / Read & Write Data

*noOfSum = ( int ) DataPointArr [ var1 − 1 ] [ 0 ] ;

* s t r i k e = ( f l o a t ) DataPointArr [ var1 − 1 ] [ 1 ] ;

* i n t e r e s t = ( f l o a t ) DataPointArr [ var1 − 1 ] [ 2 ] ;

}

else {

switch ( ( int ) var1 )

{

case 1 : { *noOfSum = 30; * s t r i k e = 40. f ; } break ;

case 2 : { *noOfSum = 30; * s t r i k e = 42. f ; } break ;

case 3 : { *noOfSum = 30; * s t r i k e = 44. f ; } break ;

case 4 : { *noOfSum = 30; * s t r i k e = 46. f ; } break ;

case 5 : { *noOfSum = 30; * s t r i k e = 48. f ; } break ;
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case 6 : { *noOfSum = 30; * s t r i k e = 50. f ; } break ;

case 7 : { *noOfSum = 30; * s t r i k e = 52. f ; } break ;

case 8 : { *noOfSum = 30; * s t r i k e = 54. f ; } break ;

case 9 : { *noOfSum = 30; * s t r i k e = 56. f ; } break ;

case 10: { *noOfSum = 30; * s t r i k e = 58. f ; } break ;

case 11: { *noOfSum = 60; * s t r i k e = 40. f ; } break ;

case 12: { *noOfSum = 60; * s t r i k e = 42. f ; } break ;

case 13: { *noOfSum = 60; * s t r i k e = 44. f ; } break ;

case 14: { *noOfSum = 60; * s t r i k e = 46. f ; } break ;

case 15: { *noOfSum = 60; * s t r i k e = 48. f ; } break ;

case 16: { *noOfSum = 60; * s t r i k e = 50. f ; } break ;

case 17: { *noOfSum = 60; * s t r i k e = 52. f ; } break ;

case 18: { *noOfSum = 60; * s t r i k e = 54. f ; } break ;

case 19: { *noOfSum = 60; * s t r i k e = 56. f ; } break ;

case 20: { *noOfSum = 60; * s t r i k e = 58. f ; } break ;

case 21: { *noOfSum = 90; * s t r i k e = 40. f ; } break ;

case 22: { *noOfSum = 90; * s t r i k e = 42. f ; } break ;

case 23: { *noOfSum = 90; * s t r i k e = 44. f ; } break ;

case 24: { *noOfSum = 90; * s t r i k e = 46. f ; } break ;

case 25: { *noOfSum = 90; * s t r i k e = 48. f ; } break ;

case 26: { *noOfSum = 90; * s t r i k e = 50. f ; } break ;

case 27: { *noOfSum = 90; * s t r i k e = 52. f ; } break ;

case 28: { *noOfSum = 90; * s t r i k e = 54. f ; } break ;

case 29: { *noOfSum = 90; * s t r i k e = 56. f ; } break ;

case 30: { *noOfSum = 90; * s t r i k e = 58. f ; } break ;

case 31: { *noOfSum = 120; * s t r i k e = 40. f ; } break ;

case 32: { *noOfSum = 120; * s t r i k e = 42. f ; } break ;

case 33: { *noOfSum = 120; * s t r i k e = 44. f ; } break ;

case 34: { *noOfSum = 120; * s t r i k e = 46. f ; } break ;

case 35: { *noOfSum = 120; * s t r i k e = 48. f ; } break ;

case 36: { *noOfSum = 120; * s t r i k e = 50. f ; } break ;

case 37: { *noOfSum = 120; * s t r i k e = 52. f ; } break ;

case 38: { *noOfSum = 120; * s t r i k e = 54. f ; } break ;

case 39: { *noOfSum = 120; * s t r i k e = 56. f ; } break ;

case 40: { *noOfSum = 120; * s t r i k e = 58. f ; } break ;

case 41: { *noOfSum = 240; * s t r i k e = 40. f ; } break ;

case 42: { *noOfSum = 240; * s t r i k e = 42. f ; } break ;

case 43: { *noOfSum = 240; * s t r i k e = 44. f ; } break ;

case 44: { *noOfSum = 240; * s t r i k e = 46. f ; } break ;

case 45: { *noOfSum = 240; * s t r i k e = 48. f ; } break ;

case 46: { *noOfSum = 240; * s t r i k e = 50. f ; } break ;
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case 47: { *noOfSum = 240; * s t r i k e = 52. f ; } break ;

case 48: { *noOfSum = 240; * s t r i k e = 54. f ; } break ;

case 49: { *noOfSum = 240; * s t r i k e = 56. f ; } break ;

case 50: { *noOfSum = 240; * s t r i k e = 58. f ; } break ;

case 51: { *noOfSum = 360; * s t r i k e = 40. f ; } break ;

case 52: { *noOfSum = 360; * s t r i k e = 42. f ; } break ;

case 53: { *noOfSum = 360; * s t r i k e = 44. f ; } break ;

case 54: { *noOfSum = 360; * s t r i k e = 46. f ; } break ;

case 55: { *noOfSum = 360; * s t r i k e = 48. f ; } break ;

case 56: { *noOfSum = 360; * s t r i k e = 50. f ; } break ;

case 57: { *noOfSum = 360; * s t r i k e = 52. f ; } break ;

case 58: { *noOfSum = 360; * s t r i k e = 54. f ; } break ;

case 59: { *noOfSum = 360; * s t r i k e = 56. f ; } break ;

case 60: { *noOfSum = 360; * s t r i k e = 58. f ; } break ;

case 61: { *noOfSum = 720; * s t r i k e = 40. f ; } break ;

case 62: { *noOfSum = 720; * s t r i k e = 42. f ; } break ;

case 63: { *noOfSum = 720; * s t r i k e = 44. f ; } break ;

case 64: { *noOfSum = 720; * s t r i k e = 46. f ; } break ;

case 65: { *noOfSum = 720; * s t r i k e = 48. f ; } break ;

case 66: { *noOfSum = 720; * s t r i k e = 50. f ; } break ;

case 67: { *noOfSum = 720; * s t r i k e = 52. f ; } break ;

case 68: { *noOfSum = 720; * s t r i k e = 54. f ; } break ;

case 69: { *noOfSum = 720; * s t r i k e = 56. f ; } break ;

case 70: { *noOfSum = 720; * s t r i k e = 58. f ; } break ;

} ;

}

} ;

/ / Wrapper to clMonteCarloAMSM . runCLKernels2 , which runs i t

/ / on option price data from var1−th row of DataPoint

double function_temp (

f l o a t p1 , f l o a t p2 , f l o a t p3 , f l o a t p4 , f l o a t p5 ,

f l o a t p6 , f l o a t p7 , int model , f l o a t var1 )

{

f l o a t s t r i k e = 0 . f ;

/ / f l o a t s t r i k e P r i c e = 65. f ; / / Option Param

int noOfSum = 0 ; / / Sym Param

f l o a t tmp_interest = i n t e r e s t ;

int width = GLOBAL_MEMORY_SIZE_X; / / Sym Param

int height = GLOBAL_MEMORY_SIZE_Y; / / Sym Param

f l o a t temp ;
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price_calc_counter = price_calc_counter + 1 ;

DataPoint ( ( int ) var1 , &noOfSum, &s t r i k e , &tmp_interest ) ;

return ( double )clMonteCarloAMSM . runCLKernels2 (

p3 , / / gkk , / / Model Param

p1 , / / b , / / Model Param

p4 , / / rho / / Model Param

p5 , / / sigma0 , / / Model Param

p2 , / /m0 / / Model Param

khat , / / Fixed Param

model , / /

p6 , / / lambda , / / Option Param

p7 , / / nu, / / Option Param

i n i t P r i c e , / / Option Param

s t r i k e , / / s t r i k e P r i c e , / / Option Param

tmp_interest , / / Option Param

noOfSum, / / noOfSum, / / Sym Param

width , / / Sym Param

height , / / Sym Param

&temp ) ;

/ / return exp(−p1*pow( var1 , 2 ) ) ;

std : : cout<<" temp = " << ( double )temp << std : : endl ;

}

/ / Wrapper to objective_func , which allows to c a l i b r a t e

/ / various parameters by BFGS optimizer

void function1_func ( const real_1d_array &xx , double &func , void * ptr )

{

double ss =0;

i f ( Par_number == 3) {

ss = objective_func (

/ / Calibrate m_0, sigma_0 , rho

3 . 0 , xx [ 0 ] / * 1.4 * / , 0.95 / * xx [ 0 ] * / ,

/ * 2.0 * / xx [ 2 ] , / * 0.02 * / xx [ 1 ] ,

lambda_real , nu_real ,

model , NumOfPoints1 , NumOfPoints2 ) ;

}

i f ( Par_number == 4) {

i f ( ! lambda_external ) {

/ / Calibrate m_0, sigma_0 , rho , lambda

ss = objective_func (

3 . 0 , xx [ 0 ] / * 1.4 * / , 0.95 / * xx [ 0 ] * / ,
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/ * 2.0 * / xx [ 2 ] , / * 0.02 * / xx [ 1 ] ,

xx [ 3 ] , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

} else {

/ / Calibrate m_0, sigma_0 , rho , nu

ss = objective_func (

3 . 0 , xx [ 0 ] / * 1.4 * / , 0.95 / * xx [ 0 ] * / ,

/ * 2.0 * / xx [ 2 ] , / * 0.02 * / xx [ 1 ] ,

lambda_real , xx [ 3 ] ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

}

}

/ / Calibrate m_0, sigma_0 , rho , lambda , nu

i f ( Par_number == 5) {

i f ( ! b_gkk_est ) {

ss = objective_func (

3 . 0 , xx [ 0 ] / * 1.4 * / , 0.95 / * xx [ 0 ] * / ,

/ * 2.0 * / xx [ 2 ] , / * 0.02 * / xx [ 1 ] ,

xx [ 3 ] , xx [ 4 ] ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

}

else {

/ / Calibrate m_0, sigma_0 , rho , b , gamma_k

ss = objective_func (

x [ 3 ] , xx [ 0 ] / * 1.4 * / , x [ 4 ] / * xx [ 0 ] * / ,

/ * 2.0 * / xx [ 2 ] , / * 0.02 * / xx [ 1 ] ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ; }

}

func = ss ;

}

/ / Wrapper to objective_func , which allows to c a l i b r a t e

/ / various parameters by BFGS optimizer

void function1_func2 ( const real_1d_array &xx , double &func , void * ptr )

{

double ss = 0 ;

i f ( Par_number == 1) {

i f ( lambda_external ) {
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/ / Calibrate lambda

ss = objective_func2 (

3 . 0 , m0_tmp, 0.95 , rho_tmp , sigma_tmp ,

xx [ 0 ] , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

}

else {

/ / Calibrate nu

ss = objective_func2 (

3 . 0 , m0_tmp, 0.95 , rho_tmp , sigma_tmp ,

lambda_tmp , xx [ 0 ] ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

}

}

/ / Calibrate lambda , nu

i f ( Par_number == 2) {

ss = objective_func2 (

3 . 0 , m0_tmp, 0.95 , rho_tmp , sigma_tmp ,

xx [ 0 ] , xx [ 1 ] ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

}

func = ss ;

}

/ / Wrapper to objective_func , which allows to c a l i b r a t e

/ / various parameters by Levenberg−Marquardt optimizer

void function1_fvec ( const real_1d_array &x , real_1d_array &f i , void * ptr )

{

f l o a t r s s =0. f ; double y_MC=0. f ;

/ / I f method i s LM and o b j e c t i v e fcn i s WRSS

i f (

(Method . find ( "LM" ) ! = std : : s t r i n g : : npos ) &&

( ObjFcn . find ( "WRSS" ) ! = std : : s t r i n g : : npos ) ) {

for ( int i = NumOfPoints1 ; i <= NumOfPoints2 ; i ++)

{

/ / Calibrate m_0, sigma_0 , rho

i f ( Par_number == 3) {

y_MC = objective_func (

3 , x [ 0 ] , 0 .95 , x [ 2 ] , x [ 1 ] ,
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lambda_real , nu_real , model , i , i ) ;

}

i f ( Par_number == 4) {

i f ( ! lambda_external ) {

/ / Calibrate m_0, sigma_0 ,

/ / rho , lambda

y_MC = objective_func ( 3 , x [ 0 ] , 0 .95 ,

x [ 2 ] , x [ 1 ] ,

x [ 3 ] , nu_real ,

model ,

i , i ) ;

} else {

/ / Calibrate m_0, sigma_0 ,

/ / rho , nu

y_MC = objective_func ( 3 , x [ 0 ] , 0 .95 ,

x [ 2 ] , x [ 1 ] ,

lambda_real , x [ 3 ] ,

model ,

i , i ) ;

}

}

i f ( Par_number == 5) {

i f ( ! b_gkk_est ) {

/ / Calibrate m_0, sigma_0 , rho ,

/ / lambda , nu

y_MC = objective_func (

3 , x [ 0 ] , 0 .95 ,

x [ 2 ] , x [ 1 ] ,

x [ 3 ] , x [ 4 ] , model , i , i ) ;

}

else {

/ / Calibrate m_0, sigma_0 , rho ,

/ / b , gamma_k

y_MC = objective_func (

x [ 3 ] , x [ 0 ] , x [ 4 ] ,

x [ 2 ] , x [ 1 ] ,

lambda_real , nu_real ,

model ,

i , i ) ;

}

}

f i [ i − NumOfPoints1 ] =

(y_MC − y [ i − 1 ] ) / ( y [ i − 1 ] ) ;
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r s s = r s s +

( f l o a t ) f i [ i − NumOfPoints1 ] *
( f l o a t ) f i [ i − NumOfPoints1 ] ;

}

}

/ / I f method i s LM and o b j e c t i v e fcn i s not WRSS

else

{

/ / Calibrate m_0, sigma_0 , rho

i f ( Par_number == 3) {

f i [ 0 ] = 15000 + objective_func (

3 , x [ 0 ] , 0 .95 , x [ 2 ] , x [ 1 ] ,

lambda_real , nu_real , model , −1, −1);

}

i f ( Par_number == 4) {

i f ( ! lambda_external ) {

/ / Calibrate m_0, sigma_0 , rho , lambda

f i [ 0 ] = 15000 + objective_func (

3 , x [ 0 ] , 0 .95 , x [ 2 ] , x [ 1 ] ,

x [ 3 ] , nu_real ,

model ,

−1, −1);

}

else {

/ / Calibrate m_0, sigma_0 , rho , nu

f i [ 0 ] = 15000 + objective_func (

3 , x [ 0 ] , 0 .95 , x [ 2 ] , x [ 1 ] ,

lambda_real , x [ 3 ] ,

model ,

−1, −1);

}

}

i f ( Par_number == 5) {

i f ( ! b_gkk_est ) {

/ / Calibrate m_0, sigma_0 , rho ,

/ / lambda , nu

f i [ 0 ] = 15000 + objective_func (

3 , x [ 0 ] , 0 .95 , x [ 2 ] , x [ 1 ] ,

x [ 3 ] , x [ 4 ] ,

model ,

−1, −1);

}

else {

/ / Calibrate m_0, sigma_0 , rho , b ,
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/ / gamma_k

f i [ 0 ] = 15000 + objective_func (

x [ 3 ] , x [ 0 ] , x [ 4 ] , x [ 2 ] , x [ 1 ] ,

lambda_real , nu_real ,

model ,

−1, −1); }

}

r s s = ( f l o a t ) f i [ 0 ] ;

}

/ / Objective fcn evaluations counter

counter1 = counter1 + 1 ;

/ / Print on screen values of parameters

/ / during current i t e r a t i o n

i f ( printout ) {

i f ( Par_number == 3) {

i f ( ( counter1 ) % 8 == 0) {

std : : cout << " m0 = " << x [ 0 ] <<

" sigma = " <<

x [ 1 ] << " rho = " << x [ 2 ] <<

" lambda = " <<

lambda_real << " nu = " <<

nu_real << " RSS = " <<

r s s << " k = " << counter1 <<

" Time = " <<

StopTimer ( Timer ) <<

" \n" ; StartTimer(&Timer ) ; }

}

i f ( Par_number == 4) {

i f ( ! lambda_external ) {

i f ( ( counter1 ) % 10 == 0) {

std : : cout << " m0 = " <<

x [ 0 ] <<

" sigma = " <<

x [ 1 ] << " rho = " <<

x [ 2 ] <<

" lambda = " <<

x [ 3 ] << " nu = " <<

nu_real <<

" RSS = " <<

r s s << " k = " <<

counter1 <<

" Time = " <<

StopTimer ( Timer ) <<
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" \n" ; StartTimer(&Timer ) ; }

}

else {

i f ( ( counter1 ) % 10 == 0) {

std : : cout <<

" m0 = " << x [ 0 ] <<

" sigma = " << x [ 1 ] <<

" rho = " << x [ 2 ] <<

" lambda = " << lambda_real <<

" nu = " << x [ 3 ] <<

" RSS = " << r s s <<

" k = " << counter1 <<

" Time = " <<

StopTimer ( Timer ) <<

" \n" ; StartTimer(&Timer ) ; }

}

}

i f ( Par_number == 5) {

i f ( ( counter1 ) % 12 == 0) {

std : : cout <<

" m0 = " << x [ 0 ] <<

" sigma = " << x [ 1 ] <<

" rho = " << x [ 2 ] <<

" lambda = " << x [ 3 ] <<

" nu = " << x [ 4 ] <<

" RSS = " << r s s <<

" k = " << counter1 <<

" Time = " <<

StopTimer ( Timer ) <<

" \n" ; StartTimer(&Timer ) ; }

}

}

}

/ / Wrapper to objective_func , which allows to c a l i b r a t e

/ / various parameters by Levenberg−Marquardt optimizer

void function1_fvec2 (

const real_1d_array &x , real_1d_array &f i , void * ptr )

{

f l o a t r s s = 0 . f ; double y_MC = 0 . f ;

/ / I f method i s Levenberg−Marquardt

i f ( ( Method2 . find ( "LM" ) != std : : s t r i n g : : npos ) ) {
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for ( int i = NumOfPoints1 ; i <= NumOfPoints2 ; i ++)

{

i f ( Par_number == 1) {

i f ( lambda_external ) {

/ / Calibrate lambda

y_MC = objective_func2 (

3 , m0_tmp, 0.95 ,

rho_tmp , sigma_tmp ,

x [ 0 ] , nu_real ,

model , i , i ) ;

}

else {

/ / Calibrate nu

y_MC = objective_func2 (

3 , m0_tmp, 0.95 ,

rho_tmp , sigma_tmp ,

lambda_tmp , x [ 0 ] ,

model , i , i ) ;

}

}

i f ( Par_number == 2) {

/ / Calibrate lambda , nu

y_MC = objective_func2 (

3 , m0_tmp, 0.95 ,

rho_tmp , sigma_tmp ,

x [ 0 ] , x [ 1 ] ,

model , i , i ) ;

}

/ / Calculate weighted residual

f i [ i − NumOfPoints1 ] = (y_MC − y [ i − 1 ] ) /

( y [ i − 1 ] ) ;

/ / Calculate sum of squared r e s i d u a l s

r s s = r s s +

( f l o a t ) f i [ i − NumOfPoints1 ] *
( f l o a t ) f i [ i − NumOfPoints1 ] ;

}

}

/ / I f method i s not Levenberg−Marquardt

else

{

i f ( Par_number == 1) {

i f ( lambda_external ) {
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/ / Calibrate lambda

f i [ 0 ] = 15000 + objective_func2 (

3 , m0_tmp, 0.95 , rho_tmp ,

sigma_tmp ,

x [ 0 ] , nu_real , model , −1, −1);

}

else {

/ / Calibrate nu

f i [ 0 ] = 15000 + objective_func2 (

3 , m0_tmp, 0.95 , rho_tmp ,

sigma_tmp ,

lambda_tmp , x [ 0 ] ,

model , −1, −1);

}

}

i f ( Par_number == 2) {

/ / Calibrate lambda , nu

f i [ 0 ] = 15000 + objective_func2 (

3 , m0_tmp, 0.95 , rho_tmp ,

sigma_tmp ,

x [ 0 ] , x [ 1 ] ,

model , −1, −1);

}

r s s = ( f l o a t ) f i [ 0 ] ;

}

/ / Objective fcn evaluations counter

counter1 = counter1 + 1 ;

/ / Print on screen values of parameters

/ / during current i t e r a t i o n

i f ( printout ) {

i f ( Par_number == 1) {

i f ( lambda_external ) {

i f ( ( counter1 ) % 4 == 0) {

std : : cout <<

" lambda = " << x [ 0 ] <<

" nu = " << nu_real <<

" RSS = " <<

r s s << " k = " <<

counter1 << " Time = "<<

StopTimer ( Timer ) <<

" \n" ; StartTimer(&Timer ) ; }

}



C.2. AMSM model 347

else {

i f ( ( counter1 ) % 4 == 0) {

std : : cout << " lambda = " <<

lambda_tmp <<

" nu = " << x [ 0 ] <<

" RSS = " << r s s <<

" k = " << counter1 <<

" Time = " <<

StopTimer ( Timer ) <<

" \n" ; StartTimer(&Timer ) ; }

}

}

i f ( Par_number == 2) {

i f ( ( counter1 ) % 6 == 0) {

std : : cout << " lambda = " <<

x [ 0 ] << " nu = " <<

x [ 1 ] << " RSS = " <<

r s s << " k = " <<

counter1 <<

" Time = " <<

StopTimer ( Timer ) <<

" \n" ; StartTimer(&Timer ) ; }

}

}

}

using namespace std ;

/ / The function generates a r t i f i c i a l option p r i c e s data

/ / then write i t to RealDataSimulated . t x t together with

/ / the s e t t i n g s from S e t t i n g s . i n i

real_1d_array AMSM_option_data (

f l o a t b , f l o a t m0, f l o a t gkk , f l o a t rho , f l o a t sigma ,

f l o a t lambda_ , f l o a t nu_ , int model ,

int from , int to , ifstream &s e t t i n g s )

{

f l o a t y_MC = 0 . f ;

std : : s t r i n g s = " [ " ;

std : : ofstream outfi leData (

getexepath ( ) . append(

" \\ Simulations \\ RealDataSimulated . t x t " ) . c _ s t r ( ) ,

ios : : out | ios : : app ) ;

/ / Calculate p r i c e s from toy−example option data

for ( int i = 1 ; i <= 70; i ++)

{
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i f ( ( i >= from ) && ( i <= to ) ) {

y_MC = ( f l o a t ) function_temp (

b , m0, gkk , rho , sigma ,

lambda_ , nu_ , model , ( f l o a t ) i ) ;

}

else {

y_MC = 0 ;

}

i f ( i != 70) { s = s + FloatToStr (y_MC) + " , " ; }

else { s = s + FloatToStr (y_MC) ; } ;

} ;

s = s + " ] \n" ;

/ / Write vector [ , , , ] to the f i l e

outfi leData << s << endl <<endl ;

/ / Write s e t t i n g s e i t h e r l i n e by l i n e

try { s e t t i n g s . open( " Sett ings . i n i " ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Real Data f i l e found !

Exception opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

/ / return 0 ;

}

s t r i n g l i n e ;

while ( g e t l i n e ( sett ings , l i n e ) )

{

outfi leData << l i n e << endl ;

}

outfi leData . close ( ) ;

real_1d_array buffer = s . c _ s t r ( ) ;

return ( buffer ) ;

}

#include <iostream >

#include <cmath>

/ / Include cppOPT header

#include "C: \ Users\ stepa \OneDrive\ Dissertation \AMSM\

CPP\MonteCarloAMSM\cppOpt\ inc \cppOpt . h"

//# include "cppOpt\ inc \OptBoundaries . h"
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// The function necessary for Simulated Annealing optimizer

using namespace cppOpt ;

// Toy example objective fcn

template <typename T>

c l a s s MySolver : public OptSolverBase<T>

{

public :

// define your own calculat ion

void calculate ( OptCalculation <T> &optCalculation ) const

{

// defined x^2 as function to be optimized

optCalculation . r e s u l t = pow(

optCalculation . get_parameter ( "X" ) , 2 ) ;

}

} ;

// Toy example objective fcn

template <typename T>

c l a s s MySolver2 : public OptSolverBase<T>

{

public :

void calculate ( OptCalculation <T> &optCalculation ) const

{

double r s s = pow(

optCalculation . get_parameter ( "lambda" ) −
0.4 f , 2) +

pow( optCalculation . get_parameter ( "nu" ) −
0.02 f , 2 ) ;

optCalculation . r e s u l t = ( f l o a t ) r s s ;

}

} ;

// The following functions are based on

// cppOpt header−only numerical l i b r a r y

// containing 4 optimization algorithms :

// Simulated Annealing , Threshold Accepting ,

// Great Deluge , EVolutionary .

// The code and manual are a v a i l a bl e on

// https : / / github .com/ I3ck /cppOpt

using namespace cppOpt ;
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// Toy example objective fcn

template <typename T>

c l a s s MySolverTest : public OptSolverBase<T>

{

public :

// define your own calculat ion

void calculate ( OptCalculation <T> &optCalculation ) const

{

// defined x^2 as function to be optimized

optCalculation . r e s u l t = pow(

optCalculation . get_parameter ( "lambda" ) −
0.4 f , 2) +

pow( optCalculation . get_parameter ( "nu" ) −
0.02 f , 2 ) ;

}

} ;

using namespace std ;

// The function runs Threshold Accepting l o c a l search method

void optTA (

f l o a t * optimum, unsigned i n t maxCalculations ,

i n t seed , real_1d_array UpBoundary ,

real_1d_array LoBoundary )

{

// Assign boundary conditions

OptBoundaries< f l o a t > optBoundaries ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 0 ] , ( f l o a t )UpBoundary [ 0 ] ,

"m0" ) ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 1 ] , ( f l o a t )UpBoundary [ 1 ] ,

"sigma" ) ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 2 ] , ( f l o a t )UpBoundary [ 2 ] ,

"rho" ) ;

// i n s t a n t i a t e your calculator

MySolver< f l o a t > mySolver ;

//number of calculat ions

// unsigned i n t maxCalculations = 150;

//we want to find the minimum

OptTarget optTarget = MINIMIZE ;
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//how f a s t the simulated annealing algorithm slows down

// http : / / en . wikipedia . org / wiki / Simulated_annealing

f l o a t coolingFactor = 0.95 f ; / / 0 . 9 5 f ;

// the chance in the beginning to follow bad solutions

f l o a t startChance = 0.25 f ; // 0.25 f ;

// the s t a r t i n g threshold

// should be somewhere close to the dif ference of

//BEST_VALUE − WORST_VALUE

// so 25 − 0 => 25 => 20 in t h i s case

// http : / / comisef . wikidot .com/concept : thresholdaccepting

f l o a t threshold = 0.01 f ;

//how much the threshold changes each i t e r a t i o n

// should be similar to the cooling f a c t o r

// http : / / comisef . wikidot .com/concept : thresholdaccepting

f l o a t thresholdFactor = 3.92 f ;

OptThresholdAccepting< f l o a t > optTA ( optBoundaries ,

maxCalculations ,

&mySolver ,

optTarget ,

0 . 0 , // only required i f approaching / diverging

coolingFactor ,

threshold ,

thresholdFactor ) ;

// l e t ’ s go

OptBase< f l o a t > : : run_optimisations ( 1 , seed ) ;

// print r e s u l t

OptCalculation < f l o a t > best = optTA . get_best_calculation ( ) ;

// cout << best . to_string_header ( ) << endl ;

// cout << best . to_str ing_values ( ) << endl ;

optimum[ 0 ] = best . get_parameter ( "m0" ) ;

optimum[ 1 ] = best . get_parameter ( "sigma" ) ;

optimum[ 2 ] = best . get_parameter ( "rho" ) ;

}

// The function runs Great Deluge optimization method

void optGD(
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f l o a t * optimum, unsigned i n t maxCalculations ,

i n t seed , real_1d_array UpBoundary ,

real_1d_array LoBoundary )

{

OptBoundaries< f l o a t > optBoundaries ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 0 ] , ( f l o a t )UpBoundary [ 0 ] ,

"m0" ) ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 1 ] , ( f l o a t )UpBoundary [ 1 ] ,

"sigma" ) ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 2 ] , ( f l o a t )UpBoundary [ 2 ] ,

"rho" ) ;

// i n s t a n t i a t e your calculator

MySolver< f l o a t > mySolver ;

//number of calculat ions

// unsigned i n t maxCalculations = 150;

//we want to find the minimum

OptTarget optTarget = MINIMIZE ;

//how f a s t the simulated annealing algorithm slows down

// http : / / en . wikipedia . org / wiki / Simulated_annealing

f l o a t coolingFactor = 0.95 f ; / / 0 . 9 5 f ;

// the chance in the beginning to follow bad solutions

f l o a t startChance = 0.25 f ; // 0.25 f ;

// the i n i t i a l water l e v e l

// http : / / en . wikipedia . org / wiki / Great_Deluge_algorithm

f l o a t waterLevel = 25.0 f ;

//how much rain i s added to the water l e v e l per

// i t e r a t i o n with x^2 from −5 to +5 the max value

// i s 25 , while the min and wanted value i s 0 with

// 300 calculations , the water l e v e l should

// be pretty close to the optimum of 0 , 25/300 =>

// 0.083333 [ rain should AT LEAST be that much] =>

// make i t 0.15

// http : / / en . wikipedia . org / wiki / Great_Deluge_algorithm

f l o a t rain = 0.15 f ;
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// The main function

OptGreatDeluge< f l o a t > optGD( optBoundaries ,

maxCalculations ,

&mySolver ,

optTarget ,

0 . 0 , // only required i f approaching / diverging

coolingFactor ,

waterLevel ,

rain ) ;

// l e t ’ s go

OptBase< f l o a t > : : run_optimisations ( 1 , seed ) ;

// print r e s u l t

OptCalculation < f l o a t > best = optGD . get_best_calculation ( ) ;

// cout << best . to_string_header ( ) << endl ;

// cout << best . to_str ing_values ( ) << endl ;

optimum[ 0 ] = best . get_parameter ( "m0" ) ;

optimum[ 1 ] = best . get_parameter ( "sigma" ) ;

optimum[ 2 ] = best . get_parameter ( "rho" ) ;

}

// The function runs Evolutionary optimization method

void optEV (

f l o a t * optimum, unsigned i n t maxCalculations ,

i n t seed , real_1d_array UpBoundary ,

real_1d_array LoBoundary )

{

OptBoundaries<double> optBoundaries ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 0 ] , ( f l o a t )UpBoundary [ 0 ] ,

"m0" ) ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 1 ] , ( f l o a t )UpBoundary [ 1 ] ,

"sigma" ) ;

optBoundaries . add_boundary (

( f l o a t ) LoBoundary [ 2 ] , ( f l o a t )UpBoundary [ 2 ] ,

"rho" ) ;

// i n s t a n t i a t e your calculator

MySolver<double> mySolver ;

//we want to find the minimum
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OptTarget optTarget = MINIMIZE ;

//how f a s t the simulated annealing algorithm slows down

// http : / / en . wikipedia . org / wiki / Simulated_annealing

double coolingFactor = 0 . 9 5 ; / / 0 . 9 5 f ;

//how many individuals should be spawned in the beginning

// use an even , p o s i t i v number

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsStart = 500;

//how many individuals s h a l l be selected each generation

// t h i s should also be an even number

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsSelection = 20;

//how many children each parent pair should spawn

// use a number > 2

//// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsOffspring = 3 ;

//how much the offspring should be mutated

// or moved from the center of the parents

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

double mutation = 0 . 1 ;

OptEvolutionary <double> optEV ( optBoundaries ,

maxCalculations ,

&mySolver ,

optTarget ,

0 . 0 , // only required i f approaching / diverging

coolingFactor ,

nIndividualsStart ,

nIndividualsSelection ,

nIndividualsOffspring ,

mutation ) ;

// l e t ’ s go

OptBase<double > : : run_optimisations ( 1 , seed ) ;

// print r e s u l t

OptCalculation <double> best = optEV . get_best_calculation ( ) ;

// cout << best . to_string_header ( ) << endl ;

// cout << best . to_str ing_values ( ) << endl ;



C.2. AMSM model 355

optimum[ 0 ] = ( f l o a t ) best . get_parameter ( "m0" ) ;

optimum[ 1 ] = ( f l o a t ) best . get_parameter ( "sigma" ) ;

optimum[ 2 ] = ( f l o a t ) best . get_parameter ( "rho" ) ;

}

// The version with another boundaries and s e t t i n g s

void optEV2 (

f l o a t * optimum, unsigned i n t maxCalculations ,

i n t seed , real_1d_array UpBoundary ,

real_1d_array LoBoundary )

{

OptBoundaries<double> optBoundaries ;

optBoundaries . add_boundary(−5.0 , 5 . 0 , "X" ) ;

// i n s t a n t i a t e your calculator

MySolver<double> mySolver ;

//number of calculat ions

// unsigned i n t maxCalculations = 300;

//we want to find the minimum

OptTarget optTarget = MINIMIZE ;

//how f a s t the evolutionary algorithm slows down

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

double coolingFactor = 0 . 9 5 ;

//how many individuals should be spawned in the beginning

// use an even , p o s i t i v e number

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t n I n d i v i d i u a l s S t a r t = 50;

//how many individuals s h a l l be selected each generation

// t h i s should also be an even number

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsSelection = 10;

//how many children each parent pair should spawn

// use a number > 2

//// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsOffspring = 3 ;

//how much the offspring should be mutated

// or moved from the center of the parents
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// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

double mutation = 0 . 1 ;

// create your optimizer

// using the evolutionary algorithm

OptEvolutionary <double> opt ( optBoundaries ,

maxCalculations ,

&mySolver ,

optTarget ,

0 . 0 , // only required i f approaching / diverging

coolingFactor ,

nIndividiualsStart ,

nIndividualsSelection ,

nIndividualsOffspring ,

mutation ) ;

// enable logging

// boundaries object required to know

// the parameters names for the header

OptBase<double > : : enable_logging (

" example_evolutionary_x_square . log " , optBoundaries ) ;

// l e t ’ s go

OptBase<double > : : run_optimisations ( ) ;

// print r e s u l t

OptCalculation <double> best = opt . get_best_calculation ( ) ;

i f ( printout ) {

cout << best . to_string_header ( ) << endl ;

cout << best . to_str ing_values ( ) << endl ;

}

}

// The version for c a l i b r a t i o n of r isk−premiums

// lambda and nu

void optEV3 (

f l o a t * optimum, unsigned i n t maxCalculations ,

i n t seed , real_1d_array UpBoundary ,

real_1d_array LoBoundary )

{

OptBoundaries<double> optBoundaries ;

optBoundaries . add_boundary (

( f l o a t )UpBoundary [ 0 ] ,
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( f l o a t ) LoBoundary [ 0 ] ,

"lambda" ) ;

optBoundaries . add_boundary (

( f l o a t )UpBoundary [ 1 ] ,

( f l o a t ) LoBoundary [ 1 ] ,

"nu" ) ;

// i n s t a n t i a t e your calculator

MySolver2<double> mySolver ;

//we want to find the minimum

OptTarget optTarget = MINIMIZE ;

//how f a s t the simulated annealing algorithm slows down

// http : / / en . wikipedia . org / wiki / Simulated_annealing

double coolingFactor = 0 . 9 5 ; / / 0 . 9 5 f ;

/how many individuals should be spawned in the beginning

// use an even , p o s i t i v e number

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsStart = 500;

//how many individuals s h a l l be selected each generation

// t h i s should also be an even number

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsSelection = 20;

//how many children each parent pair should spawn

// use a number > 2

//// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

unsigned i n t nIndividualsOffspring = 3 ;

//how much the offspring should be mutated

// or moved from the center of the parents

// https : / / en . wikipedia . org / wiki / Evolutionary_algorithm

double mutation = 0 . 1 ;

OptEvolutionary <double> optEV ( optBoundaries ,

maxCalculations ,

&mySolver ,

optTarget ,

0 . 0 , // only required i f approaching / diverging

coolingFactor ,

nIndividualsStart ,

nIndividualsSelection ,
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nIndividualsOffspring ,

mutation ) ;

// l e t ’ s go

OptBase<double > : : run_optimisations ( 1 , seed ) ;

// print r e s u l t

OptCalculation <double> best = optEV . get_best_calculation ( ) ;

// cout << best . to_string_header ( ) << endl ;

// cout << best . to_str ing_values ( ) << endl ;

optimum[ 0 ] = ( f l o a t ) best . get_parameter ( "lambda" ) ;

optimum[ 1 ] = ( f l o a t ) best . get_parameter ( "nu" ) ;

}

// Simultaneous perturbation stochast ic approximation (SPSA)

// optimization algorithm

using namespace std ;

// The function ca l cu l a t e s the norm of matrix

f l o a t Norm_m( f l o a t ** a , i n t n)

{

f l o a t sum = 0 . f ;

for ( i n t i = 0 ; i <= n − 1 ; i ++)

for ( i n t j = 0 ; j <= n − 1 ; j ++)

{

sum = sum + a [ i ] [ j ] * a [ i ] [ j ] ;

}

return sqrt (sum ) ;

}

// The function ca l cu l a t e s the norm of vector

f l o a t Norm_v( f l o a t * a , i n t n)

{

f l o a t sum = 0 . f ;

for ( i n t j = 0 ; j <= n − 1 ; j ++)

{

sum = sum + a [ j ] * a [ j ] ;

}

return sqrt (sum ) ;

}

// The function ca l cu l a t e s the product of



C.2. AMSM model 359

// vector and matrix

void Product_1 (

f l o a t * invB_m , f l o a t ** invB ,

f l o a t * m, f l o a t * m_, i n t d)

{

for ( i n t i = 0 ; i <= d − 1 ; i ++)

{

f l o a t sum = 0 . f ;

for ( i n t j = 0 ; j <= d − 1 ; j ++)

sum = sum +

invB [ i ] [ j ] * (m[ j ] − m_[ j ] ) ;

invB_m [ i ] = sum;

}

}

// The function ca l cu l a t e s the product of

// matrix and matrix

void Product_2 (

f l o a t ** invB_x , f l o a t ** invB , f l o a t ** x ,

f l o a t * m_, i n t d , i n t mu)

{

for ( i n t k = 0 ; k<mu; k++)

for ( i n t i = 0 ; i <d ; i ++)

{

f l o a t sum = 0 . f ;

for ( i n t j = 0 ; j <d ; j ++)

sum = sum + invB [ i ] [ j ] * ( x [ k ] [ j ] − m_[ j ] ) ;

invB_x [ k ] [ i ] = sum;

}

}

// The function ca l cu l a t e s the product of

// matrix and diagonal matrix

void Product_3 (

f l o a t ** B, f l o a t ** ortB , f l o a t ** Diag , i n t d)

{

for ( i n t i = 0 ; i <= d − 1 ; i ++)

for ( i n t k = 0 ; k <= d − 1 ; k++)

{

f l o a t sum = 0 . f ;

for ( i n t j = 0 ; j <= d − 1 ; j ++)

sum = sum + ortB [ i ] [ j ] * Diag [ j ] [ k ] ;

B[ i ] [ k ] = sum;

}

}
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// The function ca l cu l a t e s the product of

// matrix and vector

void Product_m_v (

f l o a t ** A , f l o a t * b , f l o a t * res , i n t d)

{

for ( i n t i = 0 ; i <d ; i ++)

{

f l o a t sum = 0 . f ;

for ( i n t j = 0 ; j <d ; j ++)

sum = sum + A[ i ] [ j ] * b[ j ] ;

res [ i ] = sum;

}

}

// The function ca l cu l a t e s the inverse of matrix

void Inverse_matrix (

f l o a t ** B, f l o a t ** invB , i n t d)

{

// I n i t i a l i z a t i o n of A

a l g l i b : : real_2d_array a ;

a . setlength (d , d ) ;

for ( i n t i = 0 ; i < d ; i ++)

{

for ( i n t j = 0 ; j < d ; j ++)

{

a [ i ] [ j ] = B[ i ] [ j ] ;

}

}

// Computation of Inverse matrix

ae_int_t info ;

matinvreport rep ;

rmatrixinverse ( a , info , rep ) ;

// F i l l i n g of matrix invB

for ( i n t i = 0 ; i < d ; i ++)

{

for ( i n t j = 0 ; j < d ; j ++)

{

invB [ i ] [ j ] = ( f l o a t ) a [ i ] [ j ] ;

//sum += invU [ i ] [ j ] ;

}

}

}
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// The function ca l cu l a t e s the eigen

// decomposition of matrix

void Eigen_decomposition (

f l o a t ** C, f l o a t ** ortB , f l o a t ** D, i n t d)

{

a l g l i b : : real_1d_array wr ;

a l g l i b : : real_1d_array wi ;

a l g l i b : : real_2d_array v l ;

a l g l i b : : real_2d_array vr ;

a l g l i b : : real_2d_array vr2 ;

// I n i t i a l i z a t i o n of A

a l g l i b : : real_2d_array a ;

a . setlength (d , d ) ;

for ( i n t i = 0 ; i < d ; i ++)

{

for ( i n t j = 0 ; j < d ; j ++)

{

a [ i ] [ j ] = ( double )C[ i ] [ j ] ;

}

}

// Eigen−decomposition

a l g l i b : : rmatrixevd (

a , / / real_2d_array a ,

d , / / ae_int_t n ,

1 ,// ae_int_t v needed ,

wr ,

wi ,

vl ,

vr ) ; // eigenvectors are columns

// F i l l i n g of matrix of eigen−vectors

for ( i n t i = 0 ; i < d ; i ++)

{

for ( i n t j = 0 ; j < d ; j ++)

{

// in U eigenvectors are rows

ortB [ j ] [ i ] = ( f l o a t ) vr [ j ] [ i ] ;

D[ j ] [ i ] = 0 . f ;

}

D[ i ] [ i ] = s q r t f ( ( f l o a t )wr [ i ] ) ;

}

}
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void AdaptiveEncoding (

f l o a t ** B, f l o a t ** x , f l o a t ** C, f l o a t * p ,

f l o a t * m, f l o a t * w, i n t mu, i n t d , i n t * i n i t i a l i z e )

{

f l o a t ** invB = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) invB [ i ] = new f l o a t [d ] ;

f l o a t * invB_m = new f l o a t [d ] ;

f l o a t ** invB_x = new f l o a t * [mu] ; // 2 * d

for ( i n t i = 0 ; i <mu; i ++) invB_x [ i ] = new f l o a t [d ] ;

f l o a t ** D = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) D[ i ] = new f l o a t [d ] ;

f l o a t * m_ = new f l o a t [d ] ;

f l o a t ** z = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) z [ i ] = new f l o a t [d ] ;

f l o a t ** Cmu = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) Cmu[ i ] = new f l o a t [d ] ;

f l o a t c_p = 1 . f / s q r t f ( ( f l o a t )d ) ;

f l o a t c_1 = 0.5 f / ( f l o a t )d ;

f l o a t c_mu = 0.5 f / ( f l o a t )d ;

i f ( * i n i t i a l i z e )

{

for ( i n t i = 0 ; i <mu; i ++) { w[ i ] = 1 . f / mu; }

for ( i n t i = 0 ; i <d ; i ++) { p[ i ] = 0 . f ; }

for ( i n t i = 0 ; i <= d − 1 ; i ++)

{

for ( i n t j = 0 ; j <= d − 1 ; j ++)

{

i f ( i != j ) { C[ i ] [ j ] = 0 . f ; }

e lse { C[ i ] [ j ] = 1 . f ; }

i f ( i != j ) { B[ i ] [ j ] = 0 . f ; }

e lse { B[ i ] [ j ] = 1 . f ; } ;

}

}
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// for ( i n t i =0; i <mu; i ++)

// for ( i n t j =0; j <d ; j ++)

// m[ j ] = m[ j ] + x [ i ] [ j ] * w[ i ] ;

* i n i t i a l i z e = 0 ;

// return 0 ;

}

for ( i n t i = 0 ; i <= d − 1 ; i ++)

{

for ( i n t j = 0 ; j <= d − 1 ; j ++)

{

i f ( i != j ) { Cmu[ i ] [ j ] = 0 . f ; }

e lse { Cmu[ i ] [ j ] = 0 . f ; }

// i f ( i ! = j ) { B[ i ] [ j ] = 0 . f ; } e lse {B[ i ] [ j ] = 1 . f ; }

}

}

for ( i n t i = 0 ; i <= d − 1 ; i ++)

m_[ i ] = m[ i ] ;

for ( i n t j = 0 ; j <d ; j ++) m[ j ] = 0 . f ;

for ( i n t i = 0 ; i <mu; i ++)

{

for ( i n t j = 0 ; j <= d − 1 ; j ++)

m[ j ] = m[ j ] + x [ i ] [ j ] * w[ i ] ;

}

// inversion of B

Inverse_matrix (B, invB , d ) ;

Product_1 (invB_m , invB , m, m_, d ) ;

f l o a t norm_1 = Norm_v(invB_m , d ) ;

// Matrix Z

for ( i n t j = 0 ; j <= d − 1 ; j ++)

i f ( (m[ j ] − m_[ j ] ) != 0 . f )

z [ j ] [ 0 ] =

( s q r t f ( ( f l o a t )d) *
(m[ j ] − m_[ j ] ) ) / norm_1 ;

else

z [ j ] [ 0 ] = −1. f ;
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Product_2 ( invB_x , invB , x , m_, d , mu) ;

for ( i n t i = 1 ; i <= mu − 1 ; i ++)

{

f l o a t norm_2 = 0 . f ;

for ( i n t j = 0 ; j <d ; j ++)

norm_2 =

norm_2 +

( invB_x [ i ] [ j ] * invB_x [ i ] [ j ] ) ;

norm_2 = sqrt (norm_2 ) ;

for ( i n t j = 0 ; j <d ; j ++)

i f ( ( x [ i ] [ j ] − m_[ j ] ) != 0 . f )

z [ j ] [ i ] =

( s q r t f ( ( f l o a t )d) *
( x [ i ] [ j ] − m_[ j ] ) ) /

norm_2 ;

else

z [ j ] [ i ] = −1. f ;

}

// Eigen−direction

for ( i n t i = 0 ; i <= d − 1 ; i ++)

p[ i ] = ( 1 . f − c_p ) * p[ i ] +

s q r t f ( c_p * ( 2 . f − c_p ) ) *
z [ i ] [ 0 ] ;

// P a r t i a l covariance matrix

f l o a t sum = 0 . f ;

for ( i n t i = 0 ; i <mu; i ++)

{

// zz [ j ] [ k ] = z [ j ] * z [ k ] ;

for ( i n t j = 0 ; j <d ; j ++)

for ( i n t k = 0 ; k<d ; k++)

Cmu[ j ] [ k ] =

Cmu[ j ] [ k ] +

w[ i ] * z [ j ] [ i ] * z [ k ] [ i ] ;

}

// New covariance matrix

for ( i n t i = 0 ; i <= d − 1 ; i ++)

for ( i n t j = 0 ; j <= d − 1 ; j ++)

{

C[ i ] [ j ] =

( 1 . f − c_1 − c_mu) *
C[ i ] [ j ] +
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c_1 * p[ i ] * p[ j ] +

c_mu * Cmu[ i ] [ j ] ;

}

// Eigen decomposition

Eigen_decomposition (C, invB , D, d ) ;

// New B

Product_3 (B, invB , D, d ) ;

for ( i n t i = 0 ; i <= d − 1 ; i ++) m[ i ] = m_[ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] invB [ i ] ;

delete [ ] ( invB_m ) ;

for ( i n t i = 0 ; i <mu; i ++) delete [ ] invB_x [ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] D[ i ] ;

delete [ ] (m_) ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] z [ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] Cmu[ i ] ;

}

void ACiD( i n t d , i n t mu, f l o a t ** bound)

{

f l o a t k_succ = 1.2 f , k_unsucc = 0.5 f ;

f l o a t ** B = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) B[ i ] = new f l o a t [d ] ;

f l o a t ** C = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) C[ i ] = new f l o a t [d ] ;

f l o a t ** x = new f l o a t * [ 1 0 0 0 ] ;

for ( i n t i = 0 ; i <d ; i ++) x [ i ] = new f l o a t [d ] ;

f l o a t * p = new f l o a t [d ] ;

f l o a t * m = new f l o a t [d ] ;

f l o a t * w = new f l o a t [ 1 0 ] ;

f l o a t * sigma = new f l o a t [d ] ;

f l o a t * x_ = new f l o a t [d ] ;

// srand ( ( unsigned ) time ( NULL ) ) ;
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for ( i n t i = 0 ; i <d ; i ++)

{

/* f l o a t min = x [ i ] [ 0 ] , max = x [ i ] [ 0 ] ;

for ( i n t j =0; j <mu; j ++)

{

i f ( x [ i ] [ j ] >max) max = x [ i ] [ j ] ;

i f ( x [ i ] [ j ] >max) max = x [ i ] [ j ] ;

} * /

m[ i ] = bound[ i ] [ 0 ] + ( f l o a t ) rand ( ) /

(RAND_MAX + 1) * (bound[ i ] [ 1 ] − bound[ i ] [ 0 ] ) ;

sigma [ i ] = (bound[ i ] [ 1 ] − bound[ i ] [ 0 ] ) / 4 . f ;

}

f l o a t f_best = ( f l o a t ) objective_func (

/ * 3 . f */m[ 0 ] , m[ 1 ] / * 1 . 4 f * / , m[ 2 ] / * 0 . 9 5 f * / ,

2/*m[ 1 ] * / , 0 .02 ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( printout ) {

cout << "gkk = " << m[ 0 ] <<

" rho = " << m[ 1 ] << " gkk = " <<

m[ 2 ] << " r s s = " << f_best << endl ;

}

i n t counter = 2 ;

for ( i n t i = 0 ; i <= d − 1 ; i ++)

{

for ( i n t j = 0 ; j <= d − 1 ; j ++)

{

i f ( i != j ) { C[ i ] [ j ] = 0 . f ; }

e lse { C[ i ] [ j ] = 1 . f ; }

i f ( i != j ) { B[ i ] [ j ] = 0 . f ; }

e lse { B[ i ] [ j ] = 1 . f ; } ;

}

}

f l o a t f_1 = 0 . f , f_2 = 0 . f ;

f l o a t * prod = new f l o a t [d ] ;

i n t i n i t i a l i z e = 1 ;
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f l o a t ** x_a = new f l o a t * [ 2 * d ] ;

for ( i n t i = 0 ; i <2 * d ; i ++)

x_a [ i ] = new f l o a t [d ] ;

f l o a t * x_1 = new f l o a t [d ] ;

f l o a t * x_2 = new f l o a t [d ] ;

f l o a t * f_a = new f l o a t [2 * d ] ;

// for ( i n t i = 0 ; i <d ; i ++)

f_a [ i ] = new f l o a t [d ] ;

f l o a t * buf_x = new f l o a t [d ] ;

i n t i_x = 0 ;

while ( f_best >= 0.000001)

{

i f ( i_x == d) i_x = 0 ;

// x_a [ 0 ] [ 2 * i_x + 1] = 0 . f ;

for ( i n t i = 0 ; i <d ; i ++) x_ [ i ] = 0 . f ;

x_ [ i_x ] = −sigma [ i_x ] ;

Product_m_v (B, x_ , prod , d ) ;

for ( i n t j = 0 ; j <d ; j ++)

x_1 [ j ] = m[ j ] + prod [ j ] ;

f l o a t f_1 = ( f l o a t ) objective_func (

/ * 3 . f */ x_1 [ 0 ] , x_1 [ 1 ] / * 1 . 4 f * / , x_1 [ 2 ] / * 0 . 9 5 f * / ,

2/*m[ 1 ] * / , 0 .02 ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( printout ) {

cout << " [ " << x_1 [ 0 ] << " , " <<

x_1 [ 1 ] << " , " << x_1 [ 2 ] <<

" ] r s s = " << f_1 << " prod [ " <<

i_x << " ] = " << prod [ i_x ] <<

" k = " << counter << endl ;

counter = counter + 1 ;

}

x_ [ i_x ] = sigma [ i_x ] ;

Product_m_v (B, x_ , prod , d ) ;

for ( i n t j = 0 ; j <d ; j ++)
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x_2 [ j ] = m[ j ] + prod [ j ] ;

f l o a t f_2 = ( f l o a t ) objective_func (

/ * 3 . f */ x_2 [ 0 ] , x_2 [ 1 ] / * 1 . 4 f * / , x_2 [ 2 ] / * 0 . 9 5 f * / ,

2/*m[ 1 ] * / , 0 .02 ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( printout ) {

cout << " [ " << x_2 [ 0 ] << " , " <<

x_2 [ 1 ] << " , " << x_2 [ 2 ] <<

" ] r s s = " << f_2 << " prod [ " <<

i_x << " ] = " << prod [ i_x ] <<

" k = " << counter << endl ;

counter = counter + 1 ;

}

i n t succ = 0 ;

i f ( f_1 <f_best )

{

f_best = f_1 ;

for ( i n t i = 0 ; i <d ; i ++) m[ i ] = x_1 [ i ] ;

i f ( printout ) {

cout << "gkk = " << m[ 0 ] <<

" rho = " << m[ 1 ] <<

" gkk = " << m[ 2 ] <<

" r s s = " << f_1 << endl ;

}

succ = 1 ;

}

i f ( f_2 <f_best )

{

f_best = f_2 ;

for ( i n t i = 0 ; i <d ; i ++) m[ i ] = x_2 [ i ] ;

i f ( printout ) {

cout << "gkk = " << m[ 0 ] <<

" rho = " << m[ 1 ] <<

" gkk = " << m[ 2 ] <<

" r s s = " << f_2 << endl ;

}

succ = 1 ;

}
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i f ( succ == 1 ) {

sigma [ i_x ] = k_succ * sigma [ i_x ] ;

e lse

{

sigma [ i_x ] = k_unsucc * sigma [ i_x ] ;

i f ( prod [ i_x ] <= 0.0001)

{

i n i t i a l i z e = 1 ;

sigma [ i_x ] =

(bound[ i_x ] [ 1 ] −
bound[ i_x ] [ 0 ] ) / 4 . f ;

i f ( printout ) {

cout <<

" R e i n i t i a l i z a t i o n ! " <<

endl ;

}

}

} ;

for ( i n t j = 0 ; j <d ; j ++)

{

x_a [2 * i_x ] [ j ] = x_1 [ j ] ;

x_a [2 * i_x + 1 ] [ j ] = x_2 [ j ] ;

}

f_a [2 * i_x ] = f_1 ;

f_a [2 * i_x + 1] = f_2 ;

i f ( i_x == d − 1)

{

for ( i n t i = 0 ; i <2 * d ; i ++)

for ( i n t j = 0 ; j <2 * d − 1 ; j ++)

i f ( f_a [ j ] > f_a [ j + 1 ] )

{

f l o a t buf_f = f_a [ j ] ;

for ( i n t k = 0 ; k<d ; k++)

buf_x [ k ] = x_a [ j ] [ k ] ;

f_a [ j ] = f_a [ j + 1 ] ;

for ( i n t k = 0 ; k<d ; k++)

x_a [ j ] [ k ] = x_a [ j + 1 ] [ k ] ;

f_a [ j + 1] = buf_f ;

for ( i n t k = 0 ; k<d ; k++)

x_a [ j + 1 ] [ k ] = buf_x [ k ] ;
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} ;

AdaptiveEncoding (

B, x_a , C, p , m, w, mu, d , &i n i t i a l i z e ) ;

}

i_x = i_x + 1 ;

}

for ( i n t i = 0 ; i <d ; i ++) delete [ ] B[ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] C[ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] x [ i ] ;

delete [ ] ( p ) ;

delete [ ] (m) ;

delete [ ] (w) ;

delete [ ] ( sigma ) ;

delete [ ] ( x_ ) ;

delete [ ] ( prod ) ;

for ( i n t i = 0 ; i <2 * d ; i ++) delete [ ] x_a [ i ] ;

delete [ ] ( f_a ) ;

delete [ ] ( x_1 ) ;

delete [ ] ( x_2 ) ;

delete [ ] ( buf_x ) ;

delete [ ] ( f_a ) ;

}

// The main function

void SPSA(

f l o a t a , f l o a t c , f l o a t chat , f l o a t A ,

f l o a t alpha , f l o a t gamma,

f l o a t * theta , i n t n , i n t d)

{

f l o a t a_k = 0 . f , c_k = 0 . f , chat_k = 0 . f ,

yplus = 0 . f , yminus = 0 . f , yplus1 = 0 . f ,

yminus1 = 0 . f , ycenter1 = 0 . f ;

f l o a t * thetaplus = new f l o a t [d ] ;

f l o a t * thetaminus = new f l o a t [d ] ;

f l o a t * thetaplus1 = new f l o a t [d ] ;

f l o a t * thetaminus1 = new f l o a t [d ] ;

f l o a t * thetacenter1 = new f l o a t [d ] ;

f l o a t * delta = new f l o a t [d ] ;

f l o a t * deltahat = new f l o a t [d ] ;

f l o a t * deltahat2 = new f l o a t [d ] ;
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f l o a t * ghat = new f l o a t [d ] ;

f l o a t * ghat_k = new f l o a t [d ] ;

f l o a t * ghat_k1 = new f l o a t [d ] ;

f l o a t * ghat_plus = new f l o a t [d ] ;

f l o a t * ghat_minus = new f l o a t [d ] ;

i n t k_lag = 5 ;

f l o a t ** ghat_k_lag = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <= k_lag ; i ++)

ghat_k_lag [ i ] = new f l o a t [ k_lag ] ;

f l o a t ** H = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++)

H[ i ] = new f l o a t [d ] ;

f l o a t ** HT = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++)

HT[ i ] = new f l o a t [d ] ;

f l o a t ** Hbar_k = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++)

Hbar_k [ i ] = new f l o a t [d ] ;

f l o a t ** Hbar_k1 = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++)

Hbar_k1 [ i ] = new f l o a t [d ] ;

f l o a t ** invH = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++)

invH [ i ] = new f l o a t [d ] ;

// Optimization procedure

for ( i n t k = 0 ; k <= n ; k++)

{

a_k = a / ( ( f l o a t )pow(A + ( f l o a t ) k + 1 . f , alpha ) ) ;

c_k = c / ( ( f l o a t )pow( ( f l o a t ) k + 1 . f , gamma) ) ; / / }

chat_k = chat / ( ( f l o a t )pow( ( f l o a t ) k + 1 . f , gamma) ) ; / / }

// Objective fcn in 4 points

for ( i n t p = 0 ;p<d ; p++)

{

delta [p] = 2 . f * round ( ( f l o a t ) rand ( ) /

( ( f l o a t )RAND_MAX + 1 . f ) ) − 1 . f ;

deltahat [p] = 2 . f * round ( ( f l o a t ) rand ( ) /

( ( f l o a t )RAND_MAX + 1 . f ) ) − 1 . f ;

deltahat2 [p] = 2 . f * round ( ( f l o a t ) rand ( ) /

( ( f l o a t )RAND_MAX + 1 . f ) ) − 1 . f ;



372 C. Code listings

thetaplus [p] = theta [p] + c_k * delta [p ] ;

thetaminus [p] = theta [p] − c_k * delta [p ] ;

thetaplus1 [p] = theta [p] + c_k * delta [p] +

chat_k * deltahat [p ] ;

thetaminus1 [p] = theta [p] − c_k * delta [p] +

chat_k * deltahat [p ] ;

}

i f ( k ! = 0) cout << " " ;

yminus = ( f l o a t ) objective_func (3

/* thetaminus [ 0 ] * / , ( double ) thetaminus [ 0 ] / * 1 . 4 f * / ,

/* x_2 [ 2 ] * / / * thetaminus [ 2 ] * / 0.95 ,

0.05/*m[ 1 ] * / ,

/*0.02 f * / ( double ) thetaminus [ 1 ] ,

lambda_real , nu_real ,

model , NumOfPoints1 , NumOfPoints2 ) ;

i f ( k ! = 0) cout << " * " ;

yplus = ( f l o a t ) objective_func (

3/* thetaplus [ 0 ] * / ,

( double ) thetaplus [ 0 ] / * 1 . 4 f * / ,

/* x_2 [ 2 ] * / / * thetaplus [ 2 ] * / 0.95 ,

0.05 ,

/*0.02 f * / ( double ) thetaplus [ 1 ] ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( k ! = 0) cout << " * " ;

yminus1 = ( f l o a t ) objective_func (

3/* thetaminus1 [ 0 ] * / ,

( double ) thetaminus1 [ 0 ] / * 1 . 4 f * / ,

/* x_2 [ 2 ] * / / * thetaminus1 [ 2 ] * / 0 . 9 5 ,

0.05/* thetaminus1 [ 3 ] / * 2 . f /*m[ 1 ] * / ,

( double ) thetaminus1 [ 1 ] ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( k ! = 0) cout << " * " ;

yplus1 = ( f l o a t ) objective_func (

3/* thetaplus1 [ 0 ] * / ,

( double ) thetaplus1 [ 0 ] / * 1 . 4 f * / ,

/* x_2 [ 2 ] * / / * thetaplus1 [ 2 ] * / 0.95 ,

0.05/* thetaplus1 [ 3 ] / * 2 . f /*m[ 1 ] * / ,

( double ) thetaplus1 [ 1 ] ,
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lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( k != 0) cout << " * " ;

// Derivatives approximations

// Averaging of few SA gradients

i n t k_average = 2 ;

i f ( yminus <= 0.1 f ) { k_average = 3 ; }

i f ( yminus <= 0.01 f ) { k_average = 4 ; }

i f ( yminus <= 0.001 f ) { k_average = 5 ; }

for ( i n t p = 0 ;p<d ; p++)

ghat [p] = ( yplus − yminus ) /

( 2 . f * c_k * delta [p ] ) ;

for ( i n t ka = 2 ; ka <= k_average ; ka++)

{

for ( i n t p = 0 ;p<d ; p++)

{

delta [p] = 2 . f * round ( ( f l o a t ) rand ( ) /

( ( f l o a t )RAND_MAX + 1 . f ) ) − 1 . f ;

thetaplus [p] = theta [p] + c_k * delta [p ] ;

thetaminus [p] = theta [p] − c_k * delta [p ] ;

}

yminus = ( f l o a t ) objective_func (

3/* thetaminus [ 0 ] * / ,

( double ) thetaminus [ 0 ] / * 1 . 4 f * / ,

/* x_2 [ 2 ] * / / * thetaminus [ 2 ] * / 0 . 9 5 ,

0.05/*m[ 1 ] * / ,

/*0.02 f * / ( double ) thetaminus [ 1 ] ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;

i f ( k != 0) cout << " * " ;

yplus = ( f l o a t ) objective_func (

3/* thetaplus [ 0 ] * / ,

( double ) thetaplus [ 0 ] / * 1 . 4 f * / ,

/* x_2 [ 2 ] * / / * thetaplus [ 2 ] * / 0.95 ,

0.05 ,

/*0.02 f * / ( double ) thetaplus [ 1 ] ,

lambda_real , nu_real ,

model ,

NumOfPoints1 , NumOfPoints2 ) ;
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i f ( k != 0) cout << " * " ;

for ( i n t p = 0 ;p<d ; p++)

ghat [p] = ghat [p] + ( yplus − yminus )

/ ( 2 . f * c_k * delta [p ] ) ;

}

for ( i n t p = 0 ;p<d ; p++)

{

ghat_plus [p] = ( yplus1 − yplus ) /

( chat_k * deltahat [p ] ) ;

ghat_minus [p] = ( yminus1 − yminus ) /

( chat_k * deltahat [p ] ) ;

ghat [p] = ghat [p] / ( f l o a t ) k_average ;

}

// I n i t i a l i z a t i o n of Hessian approximation

i f ( k == 0) {

for ( i n t p1 = 0 ; p1<d ; p1++) {

for ( i n t p2 = 0 ; p2<d ; p2++) {

H[ p1 ] [ p2 ] = ( ghat_plus [ p1 ] − ghat_minus [ p1 ] ) /

( 2 . f * c_k * delta [ p2 ]

HT[ p2 ] [ p1 ] = H[ p1 ] [ p2 ] ;

}

}

for ( i n t p1 = 0 ; p1<d ; p1++) {

for ( i n t p2 = 0 ; p2<d ; p2++) {

Hbar_k1 [ p1 ] [ p2 ] = (H[ p1 ] [ p2 ] + HT[ p1 ] [ p2 ] ) / 2 . f ;

}

}

}

e lse {

// Hessian approximation

for ( i n t p1 = 0 ; p1<d ; p1++) {

for ( i n t p2 = 0 ; p2<d ; p2++) {

H[ p1 ] [ p2 ] = ( ghat_plus [ p1 ] − ghat_minus [ p1 ] ) /

( 2 . f * c_k * delta [ p2 ] /* chat_k * deltahat [ p2 ] * / ) ;

HT[ p2 ] [ p1 ] = H[ p1 ] [ p2 ] ;

}

}

for ( i n t p1 = 0 ; p1<d ; p1++) {

for ( i n t p2 = 0 ; p2<d ; p2++) {

Hbar_k [ p1 ] [ p2 ] = ( ( f l o a t ) k /

( ( f l o a t ) k + 1 . f ) ) * Hbar_k1 [ p1 ] [ p2 ] +

( 1 . f / ( ( f l o a t ) k + 1 . f ) ) *
/ * ( * /H[ p1 ] [ p2 ] /*+ HT[ p1 ] [ p2 ] ) / 2 . f * / ;
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Hbar_k1 [ p1 ] [ p2 ] = Hbar_k [ p1 ] [ p2 ] ;

}

}

// Inverse of Hessian

Inverse_matrix ( Hbar_k , invH , d ) ;

// New i t e r a t i o n

for ( i n t p1 = 0 ; p1<d ; p1++)

{

f l o a t s = 0 . f ;

for ( i n t p2 = 0 ; p2<d ; p2++)

{

s = s + invH [ p1 ] [ p2 ] * ghat [ p2 ] ;

}

// i f ghat [0] <=1. f { ghat [ 0 ] = 1.01 f }

theta [ p1 ] = theta [ p1 ] − a_k * s /* ghat [ p1 ] * / ;

i f ( theta [ 0 ] <= 1 . f ) { theta [ 0 ] = 1.01 f ; }

i f ( theta [ 0 ] >= 2 . f ) { theta [ 0 ] = 1.99 f ; }

i f ( theta [ 1 ] <= 0.0001 f ) { theta [ 1 ] = 0.0001 f ; }

i f ( theta [ 1 ] >= 3.0001 f ) { theta [ 1 ] = 3.0001 f ; }

i f ( theta [ 2 ] <= 0 . f ) { theta [ 2 ] = 0.01 f ; }

i f ( theta [ 2 ] >= 1 . f ) { theta [ 2 ] = 0.99 f ; }

// i f ( theta [3] <=0. f ) { theta [ 3 ] = 0.0001 f ; }

}

i f ( printout ) {

cout << " | " << k << " | m_0 = " <<

theta [ 0 ] << " sigma = " << theta [ 1 ] <<

" RSS = " << yminus << " | | [ " <<

ghat [ 0 ] << " , " << ghat [ 1 ] <<

" ] " << endl ;

}

}

}

delete [ ] ( thetaplus ) ;

delete [ ] ( thetaminus ) ;

delete [ ] ( thetaplus1 ) ;

delete [ ] ( thetaminus1 ) ;

delete [ ] ( thetacenter1 ) ;

delete [ ] ( delta ) ;

delete [ ] ( deltahat ) ;
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delete [ ] ( deltahat2 ) ;

delete [ ] ( ghat ) ;

delete [ ] ( ghat_k ) ;

delete [ ] ( ghat_k1 ) ;

delete [ ] ( ghat_plus ) ;

delete [ ] ( ghat_minus ) ;

for ( i n t i = 0 ; i <= k_lag ; i ++) delete [ ]

ghat_k_lag [ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] H[ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] HT[ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] Hbar_k [ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] Hbar_k1 [ i ] ;

for ( i n t i = 0 ; i <d ; i ++) delete [ ] invH [ i ] ;

}

// === Calculation of Likelihood functions L^R and L^O ===

// see Section 2 . 6 . 1

// The function returns 1 i f two numbers are not

// s i g n i f i c a n t l y d i f f e r e n t , otherwise 0

i n t Indicator (

double a_ , double b_ )

{

i f ( abs ( a_ − b_) <0.000001 )

{

return ( 1 ) ;

} e lse { return ( 0 ) ; }

}

// The function ca l cu l a t e s vector of t r a n s i t i o n p r o b a b i l i t i e s gkk

void vGamma(

double gkk_ , double b_ , i n t model_ ,

i n t kmax_ , double * gk )

{

i f ( model_ >= 2) {

for ( i n t k = 0 ; k < kmax_−1; k++) {

gk [ k ] = pow( 2 , k + 1 − kmax_ ) ; }

gk [kmax_−1] = gkk_ ;

}
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// MSM / AMSM1

i f ( model_ <= 1) {

gk [ 0 ] = 1 − pow( 1 − gkk_ , pow( b_ , 1 − ( double )kmax_ ) ) ;

for ( i n t k = 1 ; k < kmax_−1; k++) {

gk [ k ] = 1 − pow(1 − gk [ 0 ] , pow( b_ , ( double ) ( k + 1 − 1) ) ) ;

gk [kmax_ − 1] = gkk_ ;

} // then a l l gk are also == 0 !

} ;

}

// The function ca l cu l a t e s the probabi l i ty m̂ j_k − m_0

// see the equations (2.62) − (2 .64)

double PM(

double mjk_ , double m0_, double rho_ ,

double lambda_ , i n t model_ , double r_t1_ ,

double rf_ , double sigma_t1_ )

{

// AMSM2

i f ( model_ != 1 ) { return ( 0 . 5 ) ; }

e lse {

// AMSM1

i f ( abs ( mjk_ − m0_) <( double )0.000001 ) {

return (

1 − phi ( rho_ * ( r_t1_ − r f _ −
lambda_* sigma_t1_ +

pow( sigma_t1_ , 2)/2) /

sigma_t1_ ) ) ; }

e lse {

return (

phi ( rho_ * ( r_t1_ − r f _ −
lambda_* sigma_t1_ +

pow( sigma_t1_ , 2)/2) /

sigma_t1_ ) ) ; } ;

} ;

}

// Matrix of possible s t a t e s of Mkt for kmax up to 5

void mM2_(

double m0, i n t kmax_ , double ** M,

s t r i n g razm , i n t place )

{

// i n t d = ( i n t )pow( 2 , kmax_ ) ;

i f (kmax_ == 1) {

M[ 0 ] [ 0 ] = m0;
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M[ 1 ] [ 0 ] = 2 − m0;

}

i f (kmax_ == 2) {

M[ 0 ] [ 0 ] = m0; M[ 0 ] [ 1 ] = m0;

M[ 1 ] [ 0 ] = m0; M[ 1 ] [ 1 ] = 2 − m0;

M[ 2 ] [ 0 ] = 2 − m0; M[ 2 ] [ 1 ] = m0;

M[ 3 ] [ 0 ] = 2 − m0; M[ 3 ] [ 1 ] = 2 − m0;

}

i f (kmax_ == 3) {

M[ 0 ] [ 0 ] =m0; M[ 0 ] [ 1 ] =m0;

M[ 0 ] [ 2 ] =m0;

M[ 1 ] [ 0 ] =m0; M[ 1 ] [ 1 ] =m0;

M[ 1 ] [ 2 ] = 2 − m0;

M[ 2 ] [ 0 ] =m0; M[ 2 ] [ 1 ] = 2 − m0;

M[ 2 ] [ 2 ] =m0;

M[ 3 ] [ 0 ] = 2 − m0;M[ 3 ] [ 1 ] =m0;

M[ 3 ] [ 2 ] =m0;

M[ 4 ] [ 0 ] =m0; M[ 4 ] [ 1 ] = 2 − m0;

M[ 4 ] [ 2 ] = 2 − m0;

M[ 5 ] [ 0 ] = 2 − m0;M[ 5 ] [ 1 ] =m0;

M[ 5 ] [ 2 ] = 2 − m0;

M[ 6 ] [ 0 ] = 2 − m0;M[ 6 ] [ 1 ] = 2 − m0;

M[ 6 ] [ 2 ] =m0;

M[ 7 ] [ 0 ] = 2 − m0;M[ 7 ] [ 1 ] = 2 − m0;

M[ 7 ] [ 2 ] = 2 − m0;

}

i f (kmax_ == 4) {

M[ 0 ] [ 0 ] = m0; M[ 0 ] [ 1 ] = m0;

M[ 0 ] [ 2 ] = m0; M[ 0 ] [ 3 ] = m0;

M[ 1 ] [ 0 ] = m0; M[ 1 ] [ 1 ] = m0;

M[ 1 ] [ 2 ] = 2 − m0; M[ 1 ] [ 3 ] = m0;

M[ 2 ] [ 0 ] = m0; M[ 2 ] [ 1 ] = 2 − m0;

M[ 2 ] [ 2 ] = m0; M[ 2 ] [ 3 ] = m0;

M[ 3 ] [ 0 ] = 2 − m0; M[ 3 ] [ 1 ] = m0;

M[ 3 ] [ 2 ] = m0; M[ 3 ] [ 3 ] = m0;

M[ 4 ] [ 0 ] = m0; M[ 4 ] [ 1 ] = 2 − m0;

M[ 4 ] [ 2 ] = 2 − m0; M[ 4 ] [ 3 ] = m0;

M[ 5 ] [ 0 ] = 2 − m0; M[ 5 ] [ 1 ] = m0;

M[ 5 ] [ 2 ] = 2 − m0; M[ 5 ] [ 3 ] = m0;

M[ 6 ] [ 0 ] = 2 − m0; M[ 6 ] [ 1 ] = 2 − m0;

M[ 6 ] [ 2 ] = m0; M[ 6 ] [ 3 ] = m0;

M[ 7 ] [ 0 ] = 2 − m0; M[ 7 ] [ 1 ] = 2 − m0;
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M[ 7 ] [ 2 ] = 2 − m0; M[ 7 ] [ 3 ] = m0;

M[ 8 ] [ 0 ] = m0; M[ 8 ] [ 1 ] = m0;

M[ 8 ] [ 2 ] = m0; M[ 8 ] [ 3 ] = 2−m0;

M[ 9 ] [ 0 ] = m0; M[ 9 ] [ 1 ] = m0;

M[ 9 ] [ 2 ] = 2 − m0; M[ 9 ] [ 3 ] = 2−m0;

M[ 1 0 ] [ 0 ] = m0; M[ 1 0 ] [ 1 ] = 2 − m0;

M[ 1 0 ] [ 2 ] = m0; M[ 1 0 ] [ 3 ] = 2−m0;

M[ 1 1 ] [ 0 ] = 2 − m0; M[ 1 1 ] [ 1 ] = m0;

M[ 1 1 ] [ 2 ] = m0; M[ 1 1 ] [ 3 ] = 2−m0;

M[ 1 2 ] [ 0 ] = m0; M[ 1 2 ] [ 1 ] = 2 − m0;

M[ 1 2 ] [ 2 ] = 2 − m0; M[ 1 2 ] [ 3 ] = 2−m0;

M[ 1 3 ] [ 0 ] = 2 − m0; M[ 1 3 ] [ 1 ] = m0;

M[ 1 3 ] [ 2 ] = 2 − m0; M[ 1 3 ] [ 3 ] = 2−m0;

M[ 1 4 ] [ 0 ] = 2 − m0; M[ 1 4 ] [ 1 ] = 2 − m0;

M[ 1 4 ] [ 2 ] = m0; M[ 1 4 ] [ 3 ] = 2−m0;

M[ 1 5 ] [ 0 ] = 2 − m0; M[ 1 5 ] [ 1 ] = 2 − m0;

M[ 1 5 ] [ 2 ] = 2 − m0; M[ 1 5 ] [ 3 ] = 2−m0;

}

i f (kmax_ == 5) {

M[ 0 ] [ 0 ] = m0; M[ 0 ] [ 1 ] = m0;

M[ 0 ] [ 2 ] = m0; M[ 0 ] [ 3 ] = m0;

M[ 0 ] [ 4 ] = m0;

M[ 1 ] [ 0 ] = m0; M[ 1 ] [ 1 ] = m0;

M[ 1 ] [ 2 ] = 2 − m0; M[ 1 ] [ 3 ] = m0;

M[ 1 ] [ 4 ] = m0;

M[ 2 ] [ 0 ] = m0; M[ 2 ] [ 1 ] = 2 − m0;

M[ 2 ] [ 2 ] = m0; M[ 2 ] [ 3 ] = m0;

M[ 2 ] [ 4 ] = m0;

M[ 3 ] [ 0 ] = 2 − m0; M[ 3 ] [ 1 ] = m0;

M[ 3 ] [ 2 ] = m0; M[ 3 ] [ 3 ] = m0;

M[ 3 ] [ 4 ] = m0;

M[ 4 ] [ 0 ] = m0; M[ 4 ] [ 1 ] = 2 − m0;

M[ 4 ] [ 2 ] = 2 − m0; M[ 4 ] [ 3 ] = m0;

M[ 4 ] [ 4 ] = m0;

M[ 5 ] [ 0 ] = 2 − m0; M[ 5 ] [ 1 ] = m0;

M[ 5 ] [ 2 ] = 2 − m0; M[ 5 ] [ 3 ] = m0;

M[ 5 ] [ 4 ] = m0;

M[ 6 ] [ 0 ] = 2 − m0; M[ 6 ] [ 1 ] = 2 − m0;

M[ 6 ] [ 2 ] = m0; M[ 6 ] [ 3 ] = m0;

M[ 6 ] [ 4 ] = m0;

M[ 7 ] [ 0 ] = 2 − m0; M[ 7 ] [ 1 ] = 2 − m0;

M[ 7 ] [ 2 ] = 2 − m0; M[ 7 ] [ 3 ] = m0;

M[ 7 ] [ 4 ] = m0;
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M[ 8 ] [ 0 ] = m0; M[ 8 ] [ 1 ] = m0;

M[ 8 ] [ 2 ] = m0; M[ 8 ] [ 3 ] = 2 − m0;

M[ 8 ] [ 4 ] = m0;

M[ 9 ] [ 0 ] = m0; M[ 9 ] [ 1 ] = m0;

M[ 9 ] [ 2 ] = 2 − m0; M[ 9 ] [ 3 ] = 2 − m0;

M[ 9 ] [ 4 ] = m0;

M[ 1 0 ] [ 0 ] = m0; M[ 1 0 ] [ 1 ] = 2 − m0;

M[ 1 0 ] [ 2 ] = m0; M[ 1 0 ] [ 3 ] = 2 − m0;

M[ 1 0 ] [ 4 ] = m0;

M[ 1 1 ] [ 0 ] = 2 − m0; M[ 1 1 ] [ 1 ] = m0;

M[ 1 1 ] [ 2 ] = m0; M[ 1 1 ] [ 3 ] = 2 − m0;

M[ 1 1 ] [ 4 ] = m0;

M[ 1 2 ] [ 0 ] = m0; M[ 1 2 ] [ 1 ] = 2 − m0;

M[ 1 2 ] [ 2 ] = 2 − m0; M[ 1 2 ] [ 3 ] = 2 − m0;

M[ 1 2 ] [ 4 ] = m0;

M[ 1 3 ] [ 0 ] = 2 − m0; M[ 1 3 ] [ 1 ] = m0;

M[ 1 3 ] [ 2 ] = 2 − m0; M[ 1 3 ] [ 3 ] = 2 − m0;

M[ 1 3 ] [ 4 ] = m0;

M[ 1 4 ] [ 0 ] = 2 − m0; M[ 1 4 ] [ 1 ] = 2 − m0;

M[ 1 4 ] [ 2 ] = m0; M[ 1 4 ] [ 3 ] = 2 − m0;

M[ 1 4 ] [ 4 ] = m0;

M[ 1 5 ] [ 0 ] = 2 − m0; M[ 1 5 ] [ 1 ] = 2 − m0;

M[ 1 5 ] [ 2 ] = 2 − m0; M[ 1 5 ] [ 3 ] = 2 − m0;

M[ 1 5 ] [ 4 ] = m0;

M[ 1 6 ] [ 0 ] = m0; M[ 1 6 ] [ 1 ] = m0;

M[ 1 6 ] [ 2 ] = m0; M[ 1 6 ] [ 3 ] = m0;

M[ 1 6 ] [ 4 ] = 2 − m0;

M[ 1 7 ] [ 0 ] = m0; M[ 1 7 ] [ 1 ] = m0;

M[ 1 7 ] [ 2 ] = 2 − m0; M[ 1 7 ] [ 3 ] = m0;

M[ 1 7 ] [ 4 ] = 2 − m0;

M[ 1 8 ] [ 0 ] = m0; M[ 1 8 ] [ 1 ] = 2 − m0;

M[ 1 8 ] [ 2 ] = m0; M[ 1 8 ] [ 3 ] = m0;

M[ 1 8 ] [ 4 ] = 2 − m0;

M[ 1 9 ] [ 0 ] = 2 − m0; M[ 1 9 ] [ 1 ] = m0;

M[ 1 9 ] [ 2 ] = m0; M[ 1 9 ] [ 3 ] = m0;

M[ 1 9 ] [ 4 ] = 2 − m0;

M[ 2 0 ] [ 0 ] = m0; M[ 2 0 ] [ 1 ] = 2 − m0;

M[ 2 0 ] [ 2 ] = 2 − m0; M[ 2 0 ] [ 3 ] = m0;

M[ 2 0 ] [ 4 ] = 2 − m0;

M[ 2 1 ] [ 0 ] = 2 − m0; M[ 2 1 ] [ 1 ] = m0;

M[ 2 1 ] [ 2 ] = 2 − m0; M[ 2 1 ] [ 3 ] = m0;

M[ 2 1 ] [ 4 ] = 2 − m0;

M[ 2 2 ] [ 0 ] = 2 − m0; M[ 2 2 ] [ 1 ] = 2 − m0;
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M[ 2 2 ] [ 2 ] = m0; M[ 2 2 ] [ 3 ] = m0;

M[ 2 2 ] [ 4 ] = 2 − m0;

M[ 2 3 ] [ 0 ] = 2 − m0; M[ 2 3 ] [ 1 ] = 2 − m0;

M[ 2 3 ] [ 2 ] = 2 − m0; M[ 2 3 ] [ 3 ] = m0;

M[ 2 3 ] [ 4 ] = 2 − m0;

M[ 2 4 ] [ 0 ] = m0; M[ 2 4 ] [ 1 ] = m0;

M[ 2 4 ] [ 2 ] = m0; M[ 2 4 ] [ 3 ] = 2 − m0;

M[ 2 4 ] [ 4 ] = 2 − m0;

M[ 2 5 ] [ 0 ] = m0; M[ 2 5 ] [ 1 ] = m0;

M[ 2 5 ] [ 2 ] = 2 − m0; M[ 2 5 ] [ 3 ] = 2 − m0;

M[ 2 5 ] [ 4 ] = 2 − m0;

M[ 2 6 ] [ 0 ] = m0; M[ 2 6 ] [ 1 ] = 2 − m0;

M[ 2 6 ] [ 2 ] = m0; M[ 2 6 ] [ 3 ] = 2 − m0;

M[ 2 6 ] [ 4 ] = 2 − m0;

M[ 2 7 ] [ 0 ] = 2 − m0; M[ 2 7 ] [ 1 ] = m0;

M[ 2 7 ] [ 2 ] = m0; M[ 2 7 ] [ 3 ] = 2 − m0;

M[ 2 7 ] [ 4 ] = 2 − m0;

M[ 2 8 ] [ 0 ] = m0; M[ 2 8 ] [ 1 ] = 2 − m0;

M[ 2 8 ] [ 2 ] = 2 − m0; M[ 2 8 ] [ 3 ] = 2 − m0;

M[ 2 8 ] [ 4 ] = 2 − m0;

M[ 2 9 ] [ 0 ] = 2 − m0; M[ 2 9 ] [ 1 ] = m0;

M[ 2 9 ] [ 2 ] = 2 − m0; M[ 2 9 ] [ 3 ] = 2 − m0;

M[ 2 9 ] [ 4 ] = 2 − m0;

M[ 3 0 ] [ 0 ] = 2 − m0; M[ 3 0 ] [ 1 ] = 2 − m0;

M[ 3 0 ] [ 2 ] = m0; M[ 3 0 ] [ 3 ] = 2 − m0;

M[ 3 0 ] [ 4 ] = 2 − m0;

M[ 3 1 ] [ 0 ] = 2 − m0; M[ 3 1 ] [ 1 ] = 2 − m0;

M[ 3 1 ] [ 2 ] = 2 − m0; M[ 3 1 ] [ 3 ] = 2 − m0;

M[ 3 1 ] [ 4 ] = 2 − m0;

}

// return (M) ;

}

// This recursive function returns the matrix of possible s t a t e s

// of Mkt for any kmax

// Allocation with repeats

i n t count__ ;

void mM2( f l o a t m0, i n t k , f l o a t ** mMi2)

{

i n t d = ( i n t )pow( 2 , k ) ;

i n t d1 = ( i n t )pow( 2 , k − 1 ) ;

f l o a t ** mMi1 = new f l o a t * [ d1 ] ;

for ( i n t i = 0 ; i <d1 ; i ++) mMi1[ i ] = new f l o a t [ k−1];
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i f ( k > 1) {

mM2(m0, k − 1 , mMi1) ;

for ( i n t i = 0 ; i < d1 ; i ++) {

for ( i n t j = 0 ; j < k−1; j ++) {

mMi2[ i ] [ j ] = mMi1[ i ] [ j ] ;

mMi2[ d1 + i ] [ j ] = mMi1[ i ] [ j ] ;

}

mMi2[ i ] [ k − 1] = m0;

mMi2[ d1 + i ] [ k − 1] = 2 − m0;

}

}

e lse {

mMi2[ 0 ] [ 0 ] = m0;

mMi2[ 1 ] [ 0 ] = 2−m0;

}

for ( i n t i = 0 ; i <d1 ; i ++)

delete [ ] mMi1[ i ] ;

}

// The function ca l cu l a t e s the t r a n s i t i o n p r o b a b i l i t i e s of

// {Mt} from the s t a t e m̂ i to the s t a t e m̂ j ,

// see Equation ( 2 . 6 1 )

void mP(

double m0_, double rho_ , double lambda_ ,

i n t model_ , i n t kmax_ , double r_t1_ , double rf_ ,

double * sigma_t1_ , f l o a t ** m_,

double * gamma_, double ** P)

{

//m = mM(m0_, kmax_)

i n t d = ( i n t )pow( 2 , kmax_ ) ;

//gamma = vGamma( 0 . 9 5 , 3 , model_ , kmax_)

for ( i n t i = 0 ; i < d ; i ++) {

for ( i n t j = 0 ; j < d ; j ++) {

P[ i ] [ j ] = 1 ;

for ( i n t k = 0 ; k < kmax_ ; k++) {

P[ i ] [ j ] =

P[ i ] [ j ] *
( ( double ) Indicator (

( double )m_[ i ] [ k ] ,

( double )m_[ j ] [ k ] ) *
(1 − gamma_[ k ] ) +

gamma_[ k ] *
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PM(

( double )m_[ j ] [ k ] ,

m0_, rho_ , lambda_ ,

model_ ,

r_t1_ , rf_ ,

sigma_t1_ [ i ] ) ) ;

}

}

} ;

}

// The function ca l cu l a t e s the returns density function omega^{ i j } _t

// see Equations (2.52 −2.60)

void mOmega(

double m0_, double sigma0_ , double rho_ , double lambda_ ,

i n t model_ , i n t kmax_ , double * r , i n t t , double rf_ ,

double * sigma_t1_ , f l o a t ** m_, double ** omega)

{

//Number of s t a t e s of Mt

i n t d = ( i n t )pow( 2 , kmax_ ) ;

// ofstream outOmega( "Omega. t x t " ) ;

// Omega values for each possible t r a n s i t i o n from i to j

for ( i n t i = 0 ; i < d ; i ++) {

for ( i n t j = 0 ; j < d ; j ++) {

// The product of a l l m_k components

double prod = 1 ;

for ( i n t l = 0 ; l < kmax_ ; l ++) {

prod = prod * ( double )m_[ j ] [ l ] ; }

double sigma_t_ = 0 . 0 ;

i f ( model_ != 2) {

// AMSM1 ( eq . 2 . 6 0 )

sigma_t_ = sqrt ( prod ) * sigma0_ ;

} e lse {

// AMSM2 ( eq . 2 . 5 8 )

sigma_t_ =

sqrt ( prod ) *pow(

rho_ * ( r [ t − 1] − r f _ −
lambda_* sigma_t1_ [ i ] +

pow( sigma_t1_ [ i ] , 2)/2) /

sigma_t1_ [ i ] −
sqrt ( sigma0_ ) , 2 ) ;
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}

// Eq. 2 . 5 6

omega[ i ] [ j ] = dnorm(

r [ t ] ,

r f _ + lambda_* sigma_t_ − pow( sigma_t_ , 2 ) / 2 ,

sigma_t_ ) ;

}

}

}

// The function ca l cu l a t e s log−l ikel ihood function L^R

// see Equations (2.71) − (2 .72)

double AMSMlikRet (

double m0__, double sigma0__ , double rho__ , double lambda__ ,

i n t model__ , i n t kmax__ , double * r__ , double rf__ , i n t tmax )

{

// Memory al lo cat i on and variables i n i t i a l i z a t i o n

i n t d = ( i n t )pow( 2 , kmax__ ) ;

// Vector of t r a n s i t i o n p r o b a b i l i t i e s of v o l a t i l i t y

// frequency components g_k

double * gamma = new double [ kmax__ ] ;

vGamma( 0 . 9 5 , 3 , model__ , kmax__ , gamma) ;

// Matrix of a l l s t a t e s of v o l a t i l i t y

// frequency components of Mkt

f l o a t ** m = new f l o a t * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) m[ i ] = new f l o a t [ kmax__ ] ;

mM2( ( f l o a t )m0__, kmax__ , m) ;

double * sigma_t1 = new double [d ] ;

for ( i n t i = 1 ; i <= d ; i ++) {

sigma_t1 [ i − 1] = sigma0__ ; } ;

double * sigma_t = new double [d ] ;

for ( i n t i = 1 ; i <= d ; i ++) {

sigma_t [ i − 1] = sigma0__ ; } ;

d = ( i n t )pow( 2 , kmax__ ) ;

double ** PI = new double * [ tmax + 1 ] ;

for ( i n t i = 0 ; i <tmax + 1 ; i ++){

PI [ i ] = new double [d ] ;

}

double ** P = new double * [ d ] ;
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for ( i n t i = 0 ; i <d ; i ++) P[ i ] = new double [d ] ;

double ** Omega = new double * [ d ] ;

for ( i n t i = 0 ; i <d ; i ++) Omega[ i ] = new double [d ] ;

// I n i t i a l i z a t i o n of PI^ i _ t ( see eq . ( 2 . 6 5 ) )

for ( i n t j = 0 ; j < d ; j ++) {

double prod__ = 1 ;

for ( i n t k = 0 ; k < kmax__ ; k++) {

prod__ = prod__ * PM(

( double )m[ j ] [ k ] , m0__, rho__ , lambda__ ,

model__ , rf__ , rf__ , sigma0__ ) ; }

PI [ 0 ] [ j ] = prod__ ;

} ;

double l i k = −1000000001;

i n t f i r s t _ l i k = true ;

// Logging

// ofstream outDen( "Den. t x t " ) ;

// ofstream outPI ( " PI . t x t " ) ;

for ( i n t t = 1 ; t < tmax ; t ++) {

// Sigma_t vector calculat ion

for ( i n t i = 0 ; i < d ; i ++) {

double prod = 1 ;

for ( i n t l = 0 ; l < kmax__ ; l ++) {

prod = prod * ( double )m[ i ] [ l ] ; }

i f ( model__ != 2) {

sigma_t [ i ] = sqrt ( prod ) * sigma0__ ; }

e lse {

sigma_t [ i ] = sqrt ( prod ) *pow(

rho__ * ( r__ [ t − 1] − r f _ _ −
lambda__* sigma_t1 [ i ] +

pow( sigma_t1 [ i ] , 2)/2) /

sigma_t1 [ i ] − sqrt ( sigma0__ ) , 2 ) ; }

}

// Omega_t and P_t matrices calculat ion

mOmega(

m0__, sigma0__ , rho__ , lambda__ , model__ , kmax__ ,

r__ , t , rf__ , sigma_t1 , m,

Omega ) ;

mP(

m0__, rho__ , lambda__ , model__ , kmax__ ,
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r__ [ t − 1 ] , rf__ , sigma_t1 , m,

gamma, P ) ;

// PI_t formula numerators and denominator calculat ion

double Den = 0 ;

for ( i n t j = 0 ; j < d ; j ++) {

PI [ t ] [ j ] = 0 ;

for ( i n t i = 0 ; i < d ; i ++) {

PI [ t ] [ j ] = PI [ t ] [ j ] + PI [ t −1][ i ] * P[ i ] [ j ] * Omega[ i ] [ j ] ; }

Den = Den + PI [ t ] [ j ] ;

}

//outDen << Den << endl ;

i f (Den != Den) { Den = 0 ; } ;

// PI_t calculat ion

for ( i n t j = 0 ; j < d ; j ++) {

i f (Den != 0) { PI [ t ] [ j ] = PI [ t ] [ j ] / Den; }

e lse { PI [ t ] [ j ] = PI [ 0 ] [ j ] ; }

// outPI << PI [ t ] [ j ] << " , " ;

}

// outPI << endl ;

// Likelihood calculat ion

// i f ( l i k >= 0.000000001) { l i k = l i k + log (Den ) ; }

i f (Den > 0) {

i f ( f i r s t _ l i k ) {

l i k = log (Den ) ;

f i r s t _ l i k = f a l s e ;

}

e lse {

l i k = l i k + log (Den ) ;

}

}

// Re−i n i t i a l i z a t i o n i f a l l PI_t^ j are zeros

boolean f l a g = true ;

for ( i n t j = 0 ; j < d ; j ++) {

i f ( PI [ t ] [ j ] != 0 ) { f l a g = f a l s e ; } }

i f ( f l a g ) { for ( i n t j = 0 ; j < d ; j ++) {

PI [ t ] [ j ] = PI [ 0 ] [ j ] ; } ; }

for ( i n t j = 0 ; j < d ; j ++) {

sigma_t1 [ j ] = sigma_t [ j ] ; }
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}

//outDen . close ( ) ;

// outPI . close ( ) ;

// Cleaning

delete [ ] ( gamma ) ;

for ( i n t i = 0 ; i <d ; i ++)

delete [ ] m[ i ] ;

delete [ ] ( sigma_t1 ) ;

delete [ ] ( sigma_t ) ;

for ( i n t i = 0 ; i <tmax + 1 ; i ++)

delete [ ] PI [ i ] ;

for ( i n t i = 0 ; i <d ; i ++)

delete [ ] P[ i ] ;

for ( i n t i = 0 ; i <d ; i ++)

delete [ ] Omega[ i ] ;

return(− l i k ) ;

}

// The function ca l cu l a t e s l ikel ihood L^O,

// see Equations (2.75 −2.78) , weights are option prices

double AMSMlikOpt(

double m0, double sigma0 , double rho ,

double lambda_ , double nu_ , i n t model)

{

double r s s = 0 . f ; double y_MC = 0 ; double f i = 0 ;

for ( i n t i = NumOfPoints1 ; i <= NumOfPoints2 ; i ++)

{

// Option price

y_MC = function_temp (

( f l o a t ) 3 . 0 , ( f l o a t )m0, ( f l o a t ) 0 . 9 5 , ( f l o a t ) rho ,

( f l o a t ) sigma0 , ( f l o a t ) lambda_ , ( f l o a t )nu_ ,

model , ( f l o a t ) i ) ;

// WRSS

f i = (y_MC − y [ i − 1 ] ) / y [ i − 1 ] ;

r s s = r s s + f i * f i ;

}

double l i k =

− ( NumOfPoints2 − NumOfPoints1 + 1)/2 *
( log ( r s s /( NumOfPoints2 − NumOfPoints1 + 1) ) + 1 ) ;
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return(− l i k ) ;

}

// The function ca l cu l a t e s l ikel ihood L^O,

// see Equations (2.75 −2.78) , weights are Black−Scholes Vegas

double AMSMlikOptBSV(

double m0, double sigma0 , double rho ,

double lambda_ , double nu_ , i n t model)

{

double r s s = 0 . f ; double y_MC = 0 ; double f i = 0 ;

f l o a t s t r i k e ; i n t T ; f l o a t i n t e r e s t ;

double BSV ;

for ( i n t i = NumOfPoints1 ; i <= NumOfPoints2 ; i ++)

{

y_MC = function_temp (

( f l o a t ) 3 . 0 , ( f l o a t )m0, ( f l o a t ) 0 . 9 5 , ( f l o a t ) rho ,

( f l o a t ) sigma0 , ( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) i ) ;

DataPoint ( i , &T , &s t r i k e , &i n t e r e s t ) ;

BSV = BS_Call_Option_Vega (

( double ) i n i t P r i c e , ( double ) s t r i k e , i n t e r e s t , sigma0 , ( double )T ) ;

f i = (y_MC − y [ i − 1 ] ) / BSV ;

r s s = r s s + f i * f i ;

}

double l i k =

−(NumOfPoints2 − NumOfPoints1 + 1) / 2 *
( log ( r s s / ( NumOfPoints2 − NumOfPoints1 + 1 ) ) + 1 ) ;

return(− l i k ) ;

}

// AMSM paths simulation , the sequences of uniform

// and Gaussian random numbers are generated outside

void AMSM(

i n t NumberOfObservations , double x0 , double rf ,

double m0, double sigma0 , double rho , double lambda ,

double b , double gkk , i n t model , i n t kmax,

double * urv , double * nrv , double * x )

{

// I n i t i a l i z a t i o n

i n t n_ = NumberOfObservations + 1 ;

double * sigma = new double [ n_ ] ;

double * gk = new double [kmax ] ;
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vGamma( 0 . 9 5 , 3 , model , kmax, gk ) ;

x [ 0 ] = x0 ;

sigma [ 0 ] = sigma0 ;

// Switching p r o b a b i l i t i e s

double * Next = new double [kmax ] ;

for ( i n t i = 0 ; i < kmax ; i ++) {

Next [ i ] = 1 ; } ;

double * Prev = new double [kmax ] ;

for ( i n t i = 0 ; i < kmax ; i ++) {

Prev [ i ] = 1 ; } ;

// ofstream sample ( "sample . csv " ) ; / / Logging

for ( i n t j = 0 ; j < NumberOfObservations−1; j ++) {

// MSM or AMSM1

i f (model <= 1) {

sigma [ j + 1] = sigma0 ; }

// AMSM2

i f (model == 2) {

sigma [ j + 1] =

pow( rho * ( nrv [ j ] /*− lambda * / ) −
sqrt ( sigma0 ) , 2 ) ; }

// AMSM3

// i f (model == 3) {

//sigma [ j + 1] =

// abs ( rho * ( nrv [ j ] − lambda) −
// sqrt ( sigma [ 0 ] ) ) ; }

// i f (model == 4) {

//sigma [ j + 1] =

// alpha * (mu − sigma [ j ] ) +

//pow( rho * ( nrv [ j ] − lambda) −
// sqrt ( sigma [ 0 ] ) ) , 2 ) ; }

// Calculate sqrt of product of M_i , t

for ( i n t i = 0 ; i < kmax ; i ++) {

i f ( urv [ j * 2 * kmax + i ] <= gk [ i ] )

{

// MSM or AMSM2

i f (model != 1) {

i f ( urv [ j * 2 * kmax + i + kmax] <= 0 . 5 ) {

Next [ i ] = m0; }

e lse {

Next [ i ] = 2 − m0; } }
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// AMSM1

i f (model == 1) {

i f ( urv [ j * 2 * kmax + i + kmax] <= 1 − phi (

rho * ( nrv [ j ] /*− lambda * / ) ) ) {

Next [ i ] = m0; }

e lse {

Next [ i ] = 2 − m0; } }

}

e lse { Next [ i ] = Prev [ i ] ; }

Prev [ i ] = Next [ i ] ;

sigma [ j + 1] = sigma [ j + 1] * sqrt ( Next [ i ] ) ;

}

// Calculate return

x [ j + 1] = x [ j ] * exp (

r f + lambda*sigma [ j + 1] −
sigma [ j + 1 ]* sigma [ j + 1 ] / 2 . 0 +

nrv [ j + 1] * sigma [ j + 1 ] ) ;

//sample << x [ j ] << endl ;

}

//sample . close ( ) ;

// Memory clean up

delete [ ] ( sigma ) ;

delete [ ] ( gk ) ;

delete [ ] ( Prev ) ;

delete [ ] ( Next ) ;

}

// Wrapper to the function AMSM,

// which generates uniform and Gaussian sequences

void AMSM_logreturns (

i n t n_ , double m0_, double sigma0_ , double rho_ ,

double lambda_ , i n t model_ , i n t kmax_ ,

double i n i t P r i c e , double rf_ , double * df_ )

{

i n t n__ = n_ + 1 ;

double * x_amsm = new double [ n__ ] ;

i n t n___ = ( n_ + 2) * 2 * kmax_ ;

double * urv_ = new double [ n___ ] ;

double * nrv_ = new double [ n_ + 1 ] ;

//////////////////////////////

// Random Sample Generation
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boost : : random : : mt19937 gen ;

boost : : random : : mt19937 gen2 ; // seed i t once

// seed = PrimesSampleArr [SeedNumber − 1 ] ;

// 2834947879; //4294967291; ////2984140826;

//1 586 349 558; //4294967291; //3715061396;

// Use the seed from the array PrimesSampleArr

// in order to provide d i f f e r e n t sample paths

// for Monte Carlo experiments

gen . seed ( PrimesSampleArr [SeedNumber − 1] ) ;

gen2 . seed ( PrimesSampleArr [SeedNumber] ) ;

boost : : random : : uniform_int_distribution <> ud( 1 , 45000000);

boost : : random : : normal_distribution <double> nd( 0 . 0 , 1 . 0 ) ;

// I n i t i a l i z e two Mersenne−Twister generators

// the f i r s t for uniform sequence , another for Gaussian

boost : : variate_generator <

boost : : random : : mt19937&,

boost : : random : : uniform_int_distribution <>>

randUniform ( gen , ud ) ;

boost : : variate_generator <

boost : : random : : mt19937&,

boost : : normal_distribution <double>>

randNormal ( gen2 , nd ) ;

for ( i n t j = 0 ; j < n_+1; j ++){

nrv_ [ j ] = randNormal ( ) ; }

for ( i n t j = 0 ; j < ( n_ + 1) * 2 * kmax_ + 1 ; j ++) {

urv_ [ j ] = ( double ) randUniform ( ) / 45000000; }

AMSM(

n_+1 , i n i t P r i c e , rf_ , m0_, sigma0_ , rho_ , lambda_ , 3 , 0 .95 ,

model_ , kmax_ , urv_ , nrv_ , x_amsm ) ;

// Write the simulated sample path to the f i l e

std : : ofstream outfi leData (

getexepath ( ) . append(

" \\ Simulations \\ RealDataSimulated . t x t " ) . c _ s t r ( ) ) ;

s t r i n g s = " [ " ;

for ( i n t j = 0 ; j < n_ ; j ++) {

df_ [ j ] = log ( x_amsm[ j + 1] / x_amsm[ j ] ) ;
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i f ( j != n_−1) { s = s + FloatToStr ( ( f l o a t ) df_ [ j ] ) + " , " ; }

e lse { s = s + FloatToStr ( ( f l o a t ) df_ [ j ] ) ; } ;

}

s = s + " ] \n" ;

outfi leData << s << endl << endl ;

outfi leData . close ( ) ;

// Memory clean up

delete [ ] ( x_amsm ) ;

delete [ ] ( urv_ ) ;

delete [ ] ( nrv_ ) ;

}

// Generates a r t i f i c i a l prices of options cross section ,

// based on an assumption the process i s AMSM process

// for the array defined in the function DataPoint ,

// write them in the f i l e

double Cross_section_prices (

double b , double m0, double gkk ,

double rho , double sigma ,

double lambda_ , double nu_ ,

i n t model , i n t from , i n t to )

{

// I n i t i a l i z a t i o n of var iables

i n t Maturity = 0 ;

f l o a t S t r i k e = 0 , I n t e r e s t = 0 ;

double y_MC = 0 , r s s = 0 , Time = 0 ;

_int64 t1 = ( _int64 ) 0 ;

_int64 TotalTimer = ( _int64 ) 0 ;

// S t a r t timer

StartTimer(&TotalTimer ) ;

// Open the f i l e for write

std : : ofstream outfi leData (

getexepath ( ) . append(

" \\ Simulations \\ Cross_section_prices . t x t " ) . c _ s t r ( ) ) ;

// Simulate option prices and write to the f i l e

for ( i n t i = from ; i <= to ; i ++)

{

StartTimer(& t1 ) ;
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// Calculate the option price

y_MC = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho ,

( f l o a t ) sigma , ( f l o a t ) lambda_ , ( f l o a t )nu_ ,

model , ( f l o a t ) i ) ;

Time = StopTimer ( t1 ) ;

// WRSS

r s s = r s s + (y_MC − y [ i − 1 ] ) * (y_MC − y [ i − 1 ] ) /

( y [ i − 1] * y [ i − 1 ] ) ;

// Read Maturity , Str ike , I n t e r e s t

DataPoint ( i , &Maturity , &Strike , &I n t e r e s t ) ;

// Write them to the f i l e

outfi leData << i << " , " << y_MC << " , " << y [ i −1] <<

" , " << Maturity << " , " << S t r i k e << " , " << I n t e r e s t <<

" , " << Time << endl ;

} ;

outfi leData << r s s << " , " << " " << " , " << " " << " , " <<

" " << " , " << StopTimer ( TotalTimer ) << endl ;

outfi leData . close ( ) ;

return ( 0 ) ;

}

// Generates a r t i f i c i a l prices of options cross section ,

// based on an assumptiom the proces i s AMSM process

// for the array defined in the function DataPoint ,

double Cross_section_prices2 (

double b , double m0, double gkk ,

double rho , double sigma ,

double lambda_ , double nu_ ,

i n t model , i n t from , i n t to ,

ofstream &simulations )

{

// I n i t i a l i z a t i o n of var iables

i n t Maturity = 0 ;

f l o a t S t r i k e = 0 , I n t e r e s t = 0 ;

double y_MC = 0 , r s s = 0 , Time = 0 ;

_int64 t1 = ( _int64 ) 0 ;

_int64 TotalTimer = ( _int64 ) 0 ;
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// S t a r t timer

StartTimer(&TotalTimer ) ;

// Simulate option prices and write to the f i l e

for ( i n t i = from ; i <= to ; i ++)

{

StartTimer(& t1 ) ;

y_MC = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho ,

( f l o a t ) sigma , ( f l o a t ) lambda_ , ( f l o a t )nu_ ,

model , ( f l o a t ) i ) ;

Time = StopTimer ( t1 ) ;

r s s = r s s + (y_MC − y [ i − 1 ] ) * (y_MC − y [ i − 1 ] ) /

( y [ i − 1] * y [ i − 1 ] ) ;

// Read Maturity , Str ike , I n t e r e s t

DataPoint ( i , &Maturity , &Strike , &I n t e r e s t ) ;

simulations << i << " , " << y_MC << " , " << y [ i − 1] <<

" , " << Maturity << " , " << S t r i k e << " , " << I n t e r e s t <<

" , " << Time << endl ;

} ;

// Write the r s s and time consumption in experiment log

simulations << r s s << " , " << " " << " , " << " " << " , " <<

" " << " , " << StopTimer ( TotalTimer ) << endl ;

return ( 0 ) ;

}

// The wrapper to various objective functions and estimated

// model parameters

// std : : ofstream outfi leData ( getexepath ( ) . append(

// " \\ Simulations \\RSS . t x t " ) . c _ s t r ( ) ) ;

double objective_func (

double b , double m0, double gkk , double rho , double sigma ,

double lambda_ , double nu_ , i n t model , i n t from , i n t to )

{

// I n i t i a l i z a t i o n

double ss = 0 ; double r s s = 0 , y_MC = 0 ;

// Boundaries of parameters values

i f ( (m0 <= LoBoundary [ 0 ] ) | | (m0 >= UpBoundary [ 0 ] ) ) {
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r s s = 200000; return ( r s s ) ; }

i f ( ( sigma <= LoBoundary [ 1 ] ) | | ( sigma >= UpBoundary [ 1 ] ) ) {

r s s = 200000; return ( r s s ) ; }

i f ( ( rho < LoBoundary [ 2 ] ) | | ( rho >= UpBoundary [ 2 ] ) ) {

r s s = 200000; return ( r s s ) ; }

i f ( Par_number >= 4) {

i f ( ! lambda_external ) {

i f ( ( lambda_ < LoBoundary [ 3 ] ) | | ( lambda_ >= UpBoundary [ 3 ] ) ) {

r s s = 200000; return ( r s s ) ; }

} e lse {

i f ( ( nu_ < LoBoundary [ 3 ] ) | | (nu_ >= UpBoundary [ 3 ] ) ) {

r s s = 200000; return ( r s s ) ; } }

}

i f ( Par_number >= 5) {

i f ( ( nu_ < LoBoundary [ 4 ] ) | | (nu_ >= UpBoundary [ 4 ] ) ) {

r s s = 200000; return ( r s s ) ; }

}

// ==Objective function choice ==

// L^R likel ihood based on log−returns

i f ( ObjFcn . find ( " l i k R e t " ) != std : : s t r i n g : : npos ) {

r s s = AMSMlikRet (

m0, sigma , rho , lambda_ ,

model , khat , r , ( double ) i n t e r e s t , path_length ) ;

} ;

// L^O likel ihood based on option prices

i f ( ( ObjFcn . find ( " likOpt " ) ! = std : : s t r i n g : : npos ) &&

( ObjFcn . find ( " likOptBSV" ) == std : : s t r i n g : : npos ) ) {

r s s = AMSMlikOpt( m0, sigma , rho , lambda_ , nu_ , model ) ;

}

// L^O likel ihood based on option prices with

// Black−Scholes Vegas as weights

i f ( ObjFcn . find ( " likOptBSV" ) ! = std : : s t r i n g : : npos ) {

r s s = AMSMlikOptBSV( m0, sigma , rho , lambda_ , nu_ , model ) ;

}

// L M̂ l ikel ihood based on log−returns and option prices

i f ( ( ObjFcn . find ( " likMixed " ) ! = std : : s t r i n g : : npos ) &&

( ObjFcn . find ( "likMixedBSV" ) == std : : s t r i n g : : npos ) ) {

double rss1 = ( double ) 0 ;

// Run calculat ion of L^R l ikel ihood in p a r a l l e l

std : : future <double> r e t = std : : async (
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AMSMlikRet , m0, sigma , rho , lambda_ ,

model , khat , r , i n t e r e s t , path_length ) ;

// Calculation of L^O likel ihood

double rss2 = AMSMlikOpt(

m0, sigma , rho , lambda_ , nu_ , model ) ;

rss1 = r e t . get ( ) ;

i f ( likMixed == 1) {

r s s =

( path_length + NumOfPoints2 − NumOfPoints1 + 1) /

(2 * path_length ) * rss1 +

( path_length + NumOfPoints2 − NumOfPoints1 + 1) /

(2 * ( NumOfPoints2 − NumOfPoints1 + 1 ) ) * rss2 ;

}

i f ( likMixed == 2) {

r s s = rss1 / path_length + rss2 /

( NumOfPoints2 − NumOfPoints1 + 1 ) ;

}

i f ( likMixed == 3) {

r s s = rss1 + rss2 ;

}

cout << " rss1 " << rss1 << " rss2 " <<

rss2 <<" r s s " << r s s << endl ;

}

// L M̂ l ikel ihood based on log−returns and option prices with

// Black−Scholes Vegas as weights

i f ( ObjFcn . find ( "likMixedBSV" ) != std : : s t r i n g : : npos ) {

// Calculate L^R likel ihood

double rss1 = AMSMlikRet (

m0, sigma , rho , lambda_ ,

model , khat , r , ( double ) i n t e r e s t , path_length ) ;

// Calculate L^O likel ihood

double rss2 = AMSMlikOptBSV(

m0, sigma , rho , lambda_ , nu_ ,

model ) ;

// Various methods to construct mixed l ikel ihood

i f ( likMixed == 1) {

r s s =

( path_length + NumOfPoints2 − NumOfPoints1 + 1) /

(2 * path_length ) * rss1 +

( path_length + NumOfPoints2 − NumOfPoints1 + 1) /

(2 * ( NumOfPoints2 − NumOfPoints1 + 1 ) ) * rss2 ;
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}

i f ( likMixed == 2) {

r s s =

rss1 / path_length +

rss2 / ( NumOfPoints2 − NumOfPoints1 + 1 ) ;

}

i f ( likMixed == 3) {

r s s = rss1 + rss2 ;

}

}

// Weighted Sum of Squared Residuals as objective fcn

i f ( ObjFcn . find ( "WRSS" ) != std : : s t r i n g : : npos ) {

i f ( ! ( Method . find ( "LM" ) != std : : s t r i n g : : npos ) ) {

// Calculate whole cross−section basket of option prices and

// sum up squared residuals

for ( i n t i = from ; i <= to ; i ++)

{

y_MC = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho , ( f l o a t ) sigma ,

( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) i ) ;

i f (y_MC == 0 . 0 ) y_MC = 20000;

r s s =

r s s +

(y_MC − y [ i − 1 ] ) * (y_MC − y [ i − 1 ] ) /

( y [ i − 1] * y [ i − 1 ] ) ;

} ;

} e lse {

// Calculate the only option with the number "from"

// in the basket for Levenberg−Marquardt optimizer

r s s = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho , ( f l o a t ) sigma ,

( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) from ) ;

}

}

// Root Mean Square Error as objective fcn

i f ( ObjFcn . find ( "RMSE" ) != std : : s t r i n g : : npos ) {

i f ( ! ( Method . find ( "LM" ) != std : : s t r i n g : : npos ) ) {

double * y_MC_arr = new double [ to − from + 1 ] ;

double * y_arr = new double [ to − from + 1 ] ;

// Calculate whole cross−section baasket of option prices and

// sum up squared residuals

for ( i n t i = from ; i <= to ; i ++)

{
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y_MC_arr [ i − from ] = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho , ( f l o a t ) sigma ,

( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) i ) ;

i f (y_MC == 0 . 0 ) y_MC = 20000;

y_arr [ i − from ] = y [ i − 1 ] ;

} ;

r s s = RMSE( y_arr , y_MC_arr , to − from + 1 ) ;

delete [ ] y_MC_arr ;

delete [ ] y_arr ;

}

e lse {

// Calulate the only option with the number "from"

// in the basket for Levenberg−Marquardt optimizer

r s s = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho , ( f l o a t ) sigma ,

( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) from ) ;

}

}

// Print on screen

i f (Method . find ( "LM" ) != std : : s t r i n g : : npos ) {

// counter1 = counter1 + 1 ;

// i f ( ( counter1 ) % 8 == 0) {

// counter1 = counter1 + 1 ;

// std : : cout << " m0 = " << m0 << " sigma = " <<

//sigma << " rho = " << rho << " model = " <<

// model << " RSS = " << r s s << " k = " <<

// counter1 << " Time = " << StopTimer ( Timer ) << endl ;

/ / }

}

e lse {

i f (Method . find ( "BFGS" ) != std : : s t r i n g : : npos ) {

counter1 = counter1 + 1 ;

i f ( printout ) {

i f ( Par_number == 3) {

i f ( ( counter1 − 1) % 13 == 0) {

std : : cout << " m0 = " << m0 << " sigma = " << sigma <<

" rho = " << rho << " lambda = " << lambda_ <<

" nu = " << nu_ << " model = " << model <<

" RSS = " << r s s << " k = " << counter1 <<

" Time = " << StopTimer ( Timer ) << endl ;

} ;

}
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i f ( Par_number == 4) {

i f ( ( counter1 − 1) % 17 == 0) {

std : : cout << " m0 = " << m0 << " sigma = " << sigma <<

" rho = " << rho << " lambda = " << lambda_ <<

" nu = " << nu_ << " model = " << model <<

" RSS = " << r s s << " k = " << counter1 <<

" Time = " << StopTimer ( Timer ) << endl ;

} ;

}

i f ( Par_number == 5) {

i f ( ( counter1 − 1) % 21 == 0) {

std : : cout << " m0 = " << m0 << " sigma = " << sigma <<

" rho = " << rho << " lambda = " << lambda_ <<

" nu = " << nu_ << " model = " << model <<

" RSS = " << r s s << " k = " << counter1 <<

" Time = " << StopTimer ( Timer ) << endl ;

} ;

}

}

}

e lse {

counter1 = counter1 + 1 ;

i f ( printout ) {

std : : cout << " m0 = " << m0 << " sigma = " << sigma <<

" b = " << b << " gkk = " << gkk << " rho = " << rho <<

" lambda = " << lambda_ << " nu = " << nu_ <<

" model = " << model << " RSS = " << r s s <<

" k = " << counter1 << " Time = " <<

StopTimer ( Timer ) << endl ;

}

}

}

i f ( ! _isnan ( r s s ) ) { return r s s ; }

e lse { return 200000; }

}

// The wrapper to various objective functions and estimated

// r isk−premiums

double objective_func2 (

double b , double m0, double gkk , double rho , double sigma ,

double lambda_ , double nu_ , i n t model , i n t from , i n t to )

{

// I n i t i a l i z a t i o n

double ss = 0 ; double r s s = 0 , y_MC = 0 ;



400 C. Code listings

// Boundaries

i f ( Par_number == 1) {

i f ( lambda_external ) {

i f ( ( lambda_ < LoBoundary2 [ 0 ] ) | | ( lambda_ > UpBoundary2 [ 0 ] ) ) {

r s s = 100000; return ( r s s ) ; }

}

e lse {

i f ( ( nu_ < LoBoundary2 [ 0 ] ) | | (nu_ > UpBoundary2 [ 0 ] ) ) {

r s s = 100000; return ( r s s ) ; }

}

}

i f ( Par_number >= 2) {

i f ( ( lambda_ < LoBoundary2 [ 0 ] ) | | ( lambda_ > UpBoundary2 [ 0 ] ) ) {

r s s = 100000; return ( r s s ) ; }

i f ( ( nu_ < LoBoundary2 [ 1 ] ) | | (nu_ > UpBoundary2 [ 1 ] ) ) {

r s s = 100000; return ( r s s ) ; }

}

// L^O likel ihood based on option prices as objective function

i f ( ObjFcn2 . find ( " likOpt " ) ! = std : : s t r i n g : : npos ) {

r s s = AMSMlikOpt(m0, sigma , rho , lambda_ , nu_ , model ) ;

}

// L^O likel ihood based on option prices as objective function

// with Black−SCholes Vegas as weights

i f ( ObjFcn2 . find ( "LikOptBSV" ) ! = std : : s t r i n g : : npos ) {

r s s = AMSMlikOptBSV(m0, sigma , rho , lambda_ , nu_ , model ) ;

}

// Weighted Sum of Squared Residuals as objective fcn

i f ( ObjFcn2 . find ( "WRSS" ) != std : : s t r i n g : : npos ) {

i f ( ! ( Method2 . find ( "LM" ) != std : : s t r i n g : : npos ) ) {

// Calculate whole cross−section basket of option prices and

// sum up squared residuals

for ( i n t i = from ; i <= to ; i ++)

{

y_MC = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho , ( f l o a t ) sigma ,

( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) i ) ;

r s s = r s s +

(y_MC − y [ i − 1 ] ) * (y_MC − y [ i − 1 ] ) / ( y [ i − 1] * y [ i − 1 ] ) ;

} ;

}

e lse {
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// Calculate the only option with the number "from"

// in the basket for Levenberg−Marquardt optimizer

r s s = ( double ) function_temp (

( f l o a t )b , ( f l o a t )m0, ( f l o a t ) gkk , ( f l o a t ) rho , ( f l o a t ) sigma ,

( f l o a t ) lambda_ , ( f l o a t )nu_ , model , ( f l o a t ) from ) ;

}

}

// Print on screen

i f (Method2 . find ( "LM" ) != std : : s t r i n g : : npos ) {

// counter1 = counter1 + 1 ;

// i f ( ( counter1 ) % 8 == 0) {

// counter1 = counter1 + 1 ;

// std : : cout << " m0 = " << m0 << " sigma = " <<

// sigma << " rho = " << rho << " model = " <<

// model << " RSS = " << r s s << " k = " <<

// counter1 << " Time = " << StopTimer ( Timer ) << endl ;

/ / }

}

e lse {

i f (Method2 . find ( "BFGS" ) != std : : s t r i n g : : npos ) {

counter1 = counter1 + 1 ;

i f ( printout ) {

i f ( Par_number == 1) {

i f ( ( counter1 − 1) % 5 == 0) {

std : : cout << " lambda = " << lambda_ <<

" nu = " << nu_ << " model = " << model <<

" RSS = " << r s s << " k = " << counter1 <<

" Time = " << StopTimer ( Timer ) << endl ;

} ;

}

i f ( Par_number == 2) {

i f ( ( counter1 − 1) % 9 == 0) {

std : : cout << " lambda = " << lambda_ <<

" nu = " << nu_ << " model = " << model <<

" RSS = " << r s s << " k = " << counter1 <<

" Time = " << StopTimer ( Timer ) << endl ;

} ;

}

}

}

e lse {

counter1 = counter1 + 1 ;
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i f ( printout ) {

std : : cout << " lambda = " << lambda_ <<

" nu = " << nu_ << " model = " << model <<

" RSS = " << r s s << " k = " << counter1 <<

" Time = " << StopTimer ( Timer ) << endl ;

}

}

}

i f ( ! _isnan ( r s s ) ) { return r s s ; }

e lse { return 100000; }

}

// The function parses the f i l e with s e t t i n g s

i n t ParseSettings ( ofstream &simulations , ifstream &s e t t i n g s )

{

t r y { s e t t i n g s . open( getexepath ( ) . append( " \\ Sett ings . i n i " ) . c _ s t r ( ) ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Sett ings . i n i f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

s t r i n g l i n e ;

while ( g e t l i n e ( sett ings , l i n e ) )

{

istr ingstream i s _ l i n e ( l i n e ) ;

s t r i n g key ;

i f ( g e t l i n e ( i s _ l i n e , key , ’ ’ ) )

{

s t r i n g value ;

i f ( g e t l i n e ( i s _ l i n e , value , ’ = ’ ) ) {

g e t l i n e ( i s _ l i n e , value ) ;

// Model parameters

i f ( ( key == "m0_real" ) && ( ! s i l e n t ) )

m0_real = StrToFloat ( value ) ;

i f ( ( key == " sigma_real " ) && ( ! s i l e n t ) )

sigma_real = StrToFloat ( value ) ;

i f ( ( key == " rho_real " ) && ( ! s i l e n t ) )

rho_real = StrToFloat ( value ) ;

i f ( ( key == "model" ) && ( ! s i l e n t ) )

model = ( i n t ) StrToFloat ( value ) ;

i f ( key == " khat " )

khat = ( i n t ) StrToFloat ( value ) ;
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i f ( ( key == "lambda" ) && ( ! s i l e n t ) )

lambda_real= StrToFloat ( value ) ;

i f ( ( key == "nu" ) && ( ! s i l e n t ) )

nu_real = StrToFloat ( value ) ;

i f ( ( key == " i n i t P r i c e " ) && ( ! s i l e n t ) )

i n i t P r i c e = StrToFloat ( value ) ;

i f ( ( key == " i n t e r e s t " ) && ( i n t e r e s t == 0 . f ) )

i n t e r e s t = StrToFloat ( value ) ;

// Computation parameters

i f ( key == " maxCalculations " )

maxCalculations = ( i n t ) StrToFloat ( value ) ;

i f ( ( key == " path_length " ) && ( ! s i l e n t ) )

path_length = ( i n t ) StrToFloat ( value ) ;

i f ( key == "data_gen" )

data_gen = ( i n t ) StrToFloat ( value ) ;

i f ( key == " ControlVariates " )

ControlVariates = ( i n t ) StrToFloat ( value ) ;

// Optimization parameters

i f ( key == " i n i t P o i n t " ) {

IPo = value . c _ s t r ( ) ; }

i f ( key == " scale " ) {

s = value . c _ s t r ( ) ; }

i f ( key == "loBoundary" ) {

LoBoundary = value . c _ s t r ( ) ; }

i f ( key == "upBoundary" ) {

UpBoundary = value . c _ s t r ( ) ; }

i f ( key == " ini tPo int2 " ) {

IPo2 = value . c _ s t r ( ) ; }

i f ( key == " d i f f s t e p " ) {

d i f f s t e p = ( double ) StrToFloat ( value ) ; }

i f ( key == " scale2 " ) {

s2 = value . c _ s t r ( ) ; }

i f ( key == "loBoundary2" ) {

LoBoundary2 = value . c _ s t r ( ) ; }

i f ( key == "upBoundary2" ) {

UpBoundary2 = value . c _ s t r ( ) ; }

i f ( key == " d i f f s t e p 2 " ) {

d i f f s t e p 2 = ( double ) StrToFloat ( value ) ; }

i f ( key == " lambda_external " )

lambda_external = ( i n t ) StrToFloat ( value ) ;

i f ( key == " acctype " )

acctype = ( i n t ) StrToFloat ( value ) ;

i f ( key == " likMixed " )

likMixed = ( i n t ) StrToFloat ( value ) ;

i f ( key == " printout " )
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printout = ( i n t ) StrToFloat ( value ) ;

i f ( key == "Memory" )

Memory = value ;

i f ( key == " b_gkk_est " )

b_gkk_est = ( i n t ) StrToFloat ( value ) ;

}

}

}

s e t t i n g s . close ( ) ;

// Open s e t t i n g s f i l e

t r y { s e t t i n g s . open( getexepath ( ) . append( " Sett ings . i n i " ) ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Real Data f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

// Add few s e t t i n g s to log with simulation

// experiment r e s u l t s f i r s t

i f ( s i l e n t ) {

simulations <<

" i n i t P r i c e = " << i n i t P r i c e <<endl<<

" path_length = " << path_length << endl<<

"model = " << model << endl <<

"RNG ="<<RNG<< endl <<

" i n t e r e s t = " << i n t e r e s t << endl ;

}

// Add the r e s t s e t t i n g s

while ( g e t l i n e ( sett ings , l i n e ) )

{

i f ( s i l e n t ) {

i f ( ( ( ( l i n e . find ( " i n i t P r i c e " ) == s t r i n g : : npos ) &&

( l i n e . find ( " path_length " ) == s t r i n g : : npos ) ) &&

( l i n e . find ( "model" ) == s t r i n g : : npos ) ) &&

( l i n e . find ( " i n t e r e s t " ) == s t r i n g : : npos ) ) {

simulations << l i n e << endl ;

}

}

e lse {

simulations << l i n e << endl ;

}

}
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s e t t i n g s . close ( ) ;

return 1 ;

}

using namespace std ;

// ==== The main function ====

i n t

main( i n t argc , char * argv [ ] )

{

// I n i t i a l i z a t i o n

i n t IP = 1 ;

i n t MC_iterations1 = 1 , MC_iterations2 = 2 ;

double FSSE_m0 = 0 . 0 , FSSE_sigma = 0 . 0 , FSSE_rho = 0 . 0 ,

FSSE_lambda = 0 . 0 , FSSE_nu = 0 . 0 ;

double RMSE_m0 = 0 . 0 , RMSE_sigma = 0 . 0 , RMSE_rho = 0 . 0 ,

RMSE_lambda = 0 . 0 , RMSE_nu = 0 . 0 ;

double med_m0 = 0 . 0 , med_sigma = 0 . 0 , med_rho = 0 . 0 ,

med_lambda = 0 . 0 , med_nu = 0 . 0 ;

double m0_av = 0 . 0 , sigma_av = 0 . 0 , rho_av = 0 . 0 ,

lambda_av = 0 . 0 , nu_av = 0 . 0 ;

price_calc_counter = 0 ;

// Seed I n i t i a l i z a t i o n

ifstream PrimesSample ;

s t r i n g app_path = getexepath ( ) ;

directory = app_path . c _ s t r ( ) ;

app_path . append( " \\PrimesSample . t x t " ) ;

t r y { PrimesSample . open( app_path . c _ s t r ( ) ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Seed Data f i l e found ! Exception

opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

char * buffer = new char [1000000];

for ( i n t i = 0 ; i < 200; i ++) {

PrimesSample >> PrimesSampleArr [ i ] ; }

// Read returns and option prices data

ifstream i n f i l e ;
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app_path = getexepath ( ) ;

app_path . append( " \\ RealData . t x t " ) ;

t r y { i n f i l e . open( app_path . c _ s t r ( ) ) ; }

catch ( ios_base : : f a i l u r e e ) {

cout << "No Real Data f i l e found !

Exception opening/ reading / closing f i l e ! \ \ \ \n" ;

getch ( ) ;

return 0 ;

}

i n f i l e . g e t l i n e ( buffer , 1000000);

x = buffer ;

i n f i l e . g e t l i n e ( buffer , 1000000);

y = buffer ;

i n t count ;

// === Parse command l i n e arguments ===

// In the s i l e n t model most of parameters are read

// from the command l i n e arguments , namely not f

// rom the Sett ings f i l e or manual choice on screen

for ( count = 1 ; count < argc ; count++)

i f ( s t r i n g ( argv [ count ] ) == " / s i l e n t " )

s i l e n t = 1 ;

// Performance measurement regime

for ( count = 1 ; count < argc ; count++)

i f ( s t r i n g ( argv [ count ] ) == " /nper" )

performance = 0 ;

// Estimation regime

for ( count = 1 ; count < argc ; count++)

i f ( s t r i n g ( argv [ count ] ) == " / nest " )

estimation = 0 ;

f l o a t mult ipl ier ;

i n t devType ;

i f ( s i l e n t )

{

for ( count = 1 ; count < argc ; count++) {

// Which device to use f o t computations (CPU or GPU)

s t r i n g tmp = s t r i n g ( argv [ count ] ) ;

i f ( s t r i n g ( argv [ count ] ) == "−−device " ) {

i f ( ( s t r i n g ) argv [ count + 1] == "cpu" ) {
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devType = 1 ; }

e lse {

devType = 2 ; }

}

// "#paths (1 − 16K, 2 − 32K, 3 − 48K, 4 − 64K and etc ) : " ;

i f ( s t r i n g ( argv [ count ] ) == " /np" ) {

GLOBAL_MEMORY_SIZE_Y =

( i n t )(32 * StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ) ;

mult ipl ier = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

}

// #Options & # I t e r a t i o n s

// #Options in the basket (1 to 70) From :

i f ( s t r i n g ( argv [ count ] ) == " /no1" )

NumOfPoints1 = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// To :

i f ( s t r i n g ( argv [ count ] ) == " /no2" )

NumOfPoints2 = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// # I t e r a t i o n s From :

i f ( s t r i n g ( argv [ count ] ) == " / ni1 " )

MC_iterations1 = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// To :

i f ( s t r i n g ( argv [ count ] ) == " / ni2 " )

MC_iterations2 = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// Meth . Opt . ( ASA , SA , TA,GD, EV ’ , ’ LM, BFGS as 2nd i f necessary )

i f ( s t r i n g ( argv [ count ] ) == " /mo1" )

Method = ( s t r i n g ) argv [ count + 1 ] ;

// Obj . Fcn (WRSS, l ikRet , likOpt , likMixed , likOptBSV , likMixedBSV )

i f ( s t r i n g ( argv [ count ] ) == " / of1 " )

ObjFcn = ( s t r i n g ) argv [ count + 1 ] ;

// Meth . Opt . ( ASA , EV ’ , ’ LM, BFGS as 2nd i f necessary )

i f ( s t r i n g ( argv [ count ] ) == " /mo2" )

Method2 = ( s t r i n g ) argv [ count + 1 ] ;

// Obj . Fcn 2 ( WRSS, likOpt , likOptBSV )

i f ( s t r i n g ( argv [ count ] ) == " / of2 " )

ObjFcn2 = ( s t r i n g ) argv [ count + 1 ] ;

// Random Number Generator ( 1 − Pseudo , 2 − Quasi )

i f ( s t r i n g ( argv [ count ] ) == " /rng" )
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RNG = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// Spot price S0

i f ( s t r i n g ( argv [ count ] ) == " /S0" )

i n i t P r i c e = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// logreturns h i s t o r i c a l path length

i f ( s t r i n g ( argv [ count ] ) == " / plen " )

path_length = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// c l u s t e r i n g parameter

i f ( s t r i n g ( argv [ count ] ) == " /m0" )

m0_real = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// long−run v o l a t i l i t y

i f ( s t r i n g ( argv [ count ] ) == " /sigma0" )

sigma_real = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// leverage parameter

i f ( s t r i n g ( argv [ count ] ) == " /rho" )

rho_real = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// r isk−premium (ERP)

i f ( s t r i n g ( argv [ count ] ) == " /lambda" )

lambda_real = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// v o l a t i l i t y r isk−premium (VRP)

i f ( s t r i n g ( argv [ count ] ) == " /nu" )

nu_real = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// AMSM1/AMSM2 model

i f ( s t r i n g ( argv [ count ] ) == " /model" )

model = ( i n t ) StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

// Risk−f r ee i n t e r e s t rate

i f ( s t r i n g ( argv [ count ] ) == " / r f " )

i n t e r e s t = StrToFloat ( ( s t r i n g ) argv [ count + 1 ] ) ;

}

argc = 5 ;

}

e lse

{

// Pick Platform & Device

cout << "Device type (1−CPU, 2−GPU,
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3−CPU( p l a t f . 1 ) , 4−GPU( p l a t f . 1 ) ) : " ;

cin >> devType ;

i f ( devType == 1) {

argc = 5 ;

argv [ 1 ] = "−−platformId " ; ;

argv [ 2 ] = "0" ;

argv [ 3 ] = "−−device " ;

argv [ 4 ] = "cpu" ;

}

i f ( devType == 2) {

argc = 5 ;

argv [ 1 ] = "−−platformId " ; ;

argv [ 2 ] = "0" ;

argv [ 3 ] = "−−device " ;

argv [ 4 ] = "gpu" ;

}

i f ( devType == 3) {

argc = 5 ;

argv [ 1 ] = "−−platformId " ;

argv [ 2 ] = "1" ;

argv [ 3 ] = "−−device " ;

argv [ 4 ] = "cpu" ;

}

i f ( devType == 4) {

argc = 5 ;

argv [ 1 ] = "−−platformId " ;

argv [ 2 ] = "1" ;

argv [ 3 ] = "−−device " ;

argv [ 4 ] = "gpu" ;

}

i f ( devType == 5) {

argc = 5 ;

argv [ 1 ] = "−−platformId " ;

argv [ 2 ] = "2" ;

argv [ 3 ] = "−−device " ;

argv [ 4 ] = "cpu" ;

}

i f ( devType == 6) {

argc = 5 ;

argv [ 1 ] = "−−platformId " ;

argv [ 2 ] = "2" ;

argv [ 3 ] = "−−device " ;

argv [ 4 ] = "gpu" ;

}



410 C. Code listings

// Further parameters are manually inputted

// from the screen using keyboard

// Number of sample paths

cout << "# T r a j e c t o r i e s (1 − 16K, 2 − 32K,

3 − 48K, 4 − 64K and etc ) : " ;

cin >> mult ipl ier ;

GLOBAL_MEMORY_SIZE_Y = ( i n t )(32 * mult ipl ier ) ;

// #Options & # I t e r a t i o n s

cout << "#Options in the basket (1 to 70) From : " ;

cin >> NumOfPoints1 ;

cout << "To : " ;

cin >> NumOfPoints2 ;

cout << "# I t e r a t i o n s From : " ;

cin >> MC_iterations1 ;

cout << "To : " ;

cin >> MC_iterations2 ;

// Optimization method

cout << "Meth . Opt . ( ASA , SA , TA,GD, EV ’ , ’ LM, BFGS as 2nd i f necessary ) : " ;

cin >> Method ;

// Objective function

cout << "Obj . Fcn (WRSS, l ikRet , likOpt , likMixed , likOptBSV , likMixedBSV ) : " ;

cin >> ObjFcn ;

// Method of optimization for sequential optimization

// namely global f i r s t , l o c a l second

cout << "Meth . Opt . ( ASA , EV ’ , ’ LM, BFGS as 2nd i f necessary ) : " ;

cin >> Method2 ;

// Objective function

cout << "Obj . Fcn 2 ( WRSS, likOpt , likOptBSV ) : " ;

cin >> ObjFcn2 ;

// Type of random number generator

cout << "Random Number Generator ( 1 − Pseudo , 2 − Quasi ) : " ;

cin >> RNG;

}

// I f used r e a l data from RealData . t x t
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i f ( data_gen == 0) {

i n f i l e . g e t l i n e ( buffer , 1000000); // maturities

real_1d_array tmp = buffer ;

number_of_C = ( i n t )tmp . length ( ) ;

DataPointArr = new double * [ number_of_C ] ;

for ( i n t i = 0 ; i <number_of_C ; i ++) DataPointArr [ i ] = new double [ 3 ] ;

DataPointRead ( DataPointArr , number_of_C ) ;

}

// I f simulated and estimated only log−returns data

i f (RNG == 1) { max_maturity = ( i n t ) 1 ; }

// I f simulated and estimated option prices data

i f (RNG == 2) {

f l o a t s t r i k e ; f l o a t i n t e r e s t ;

DataPoint ( NumOfPoints2 , &max_maturity , &s t r i k e , &i n t e r e s t ) ;

// max_maturity = ( i n t ) NumOfPoints2 * 3 ;

} // NumOfPoints2 − NumOfPoints1 ?

cout << endl ;

// Memory al lo cat i on for estimation r e s u l t s arrays

i n t itRange = MC_iterations2 − MC_iterations1 + 1 ;

double ** m0 = new double * [ itRange ] ;

for ( i n t i = 0 ; i <itRange ; i ++) m0[ i ] = new double [ IP ] ;

double ** sigma = new double * [ itRange ] ;

for ( i n t i = 0 ; i <itRange ; i ++) sigma [ i ] = new double [ IP ] ;

double ** rho = new double * [ itRange ] ;

for ( i n t i = 0 ; i <itRange ; i ++) rho [ i ] = new double [ IP ] ;

double ** lambda = new double * [ itRange ] ;

for ( i n t i = 0 ; i <itRange ; i ++) lambda [ i ] = new double [ IP ] ;

double ** nu = new double * [ itRange ] ;

for ( i n t i = 0 ; i <itRange ; i ++) nu[ i ] = new double [ IP ] ;

double ** err = new double * [ itRange ] ;

for ( i n t i = 0 ; i <itRange ; i ++) err [ i ] = new double [ IP ] ;

// Create f i l e with logs of the experiment
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_int64 t1 ; _int64 TotalTimer = ( _int64 ) 0 ;

StartTimer ( &t1 ) ; StartTimer(&TotalTimer ) ;

// Create unique f i l e name containing some experiments s e t t i n g s

// and data /time of the experiment

time_t t = time ( 0 ) ; // get time now

s t r u c t tm * now = localtime ( & t ) ;

s t r i n g t t 1 = IntToStr ( ( i n t )(64 * 32 * 8 * mult ipl ier ) ) ;

s t r i n g t t 2 = " ( " + IntToStr ( ( i n t ) NumOfPoints1 ) + " , " +

IntToStr ( ( i n t ) NumOfPoints2 ) + " ) " ;

s t r i n g t t 3 = IntToStr ( MC_iterations1 ) ;

s t r i n g t t 4 = IntToStr ( MC_iterations2 ) ;

s t r i n g t t ;

i f ( s i l e n t )

{

t t = " Simulations \\Opt=" + t t 2 + "_Seed=( " + t t 3 +

" , " + t t 4 + " ) _Trj=" + t t 1 + "_" + Method + "_"

+ ObjFcn + "_" + Method2 + "_"

+ ObjFcn2 + "_" + IntToStr (RNG) + "_"

+ IntToStr (now−>tm_year + 1900) + ’− ’

+ IntToStr (now−>tm_mon + 1) + ’− ’

+ IntToStr (now−>tm_mday) + " "

+ IntToStr (now−>tm_hour ) + "−"

+ IntToStr (now−>tm_min) + "−"

+ IntToStr (now−>tm_sec ) + " plen = "

+ IntToStr ( path_length ) + " . t x t " ;

}

e lse {

t t = " Simulations \\Opt=" + t t 2 + "_Seed=( " +

t t 3 + " , " + t t 4 + " ) _Trj=" + t t 1 + "_" + Method + "_"

+ ObjFcn + "_" + Method2 + "_"

+ ObjFcn2 + "_" + IntToStr (RNG) + "_"

+ IntToStr (now−>tm_year + 1900) + ’− ’

+ IntToStr (now−>tm_mon + 1) + ’− ’

+ IntToStr (now−>tm_mday) + " "

+ IntToStr (now−>tm_hour ) + "−"

+ IntToStr (now−>tm_min) + "−"

+ IntToStr (now−>tm_sec ) + " . t x t " ;

}

ofstream simulations ( getexepath ( ) . append( t t ) . c _ s t r ( ) ) ;

// Log some input s e t t i n g s
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simulations << "# Trajectories , " <<

64 * 32 * 8 * mult ipl ier <<endl ;

simulations << "#Options , " <<

NumOfPoints1 << " , " << NumOfPoints2 <<endl ;

simulations << "#IterationsFrom , " <<

MC_iterations1 << " , " << MC_iterations2 <<

endl <<endl ;

simulations << endl << " Objective FCN : " <<

ObjFcn << endl << endl ;

// Parse Sett ings . i n i f i l e

ParseSettings ( simulations , s e t t i n g s ) ;

simulations << endl << endl ;

// Data Generation ( x − returns , y − options prices )

// data_gen = 0 : r <= NULL/ Real ; y <= RealData . t x t

// data_gen = 1 : r <= simulated each experiment new; y <= simulated once

// data_gen = 2 : r <= simulated once ; y <= simulated once

// data_gen = 3 : r <= NULL/ Real y <= simulated once

// data_gen = 4 : r <= simulated each experiment new; y <= RealData . t x t

// data_gen = 5 : r <= simulated once ; y <= RealData . t x t

SeedNumber = 1 ;

// Asset returns data vector

r = new double [ path_length ] ;

// Read r e a l returns data from f i l e RealData . t x t ( f i f t h l i n e )

i f ( data_gen == 0) {

i n f i l e . g e t l i n e ( buffer , 1000000); // skip l i n e with id

i n f i l e . g e t l i n e ( buffer , 1000000); // skip option prices

i n f i l e . g e t l i n e ( buffer , 1000000); // skip maturit ies

stringstream ss ( buffer ) ;

vector <str ing > vect ;

while ( ss . good ( ) )

{

s t r i n g substr ;

g e t l i n e ( ss , substr , ’ , ’ ) ;

// Read and append to vect the value a f t e r comma

vect . push_back ( substr ) ;

}
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// Rewrite values from s t r i n g vector to f l o a t vector

for ( i n t i = ( i n t ) vect . s i z e ( ) − path_length ; i < ( i n t ) vect . s i z e ( ) ; i ++)

{

r [ i − ( ( i n t ) vect . s i z e ( ) − path_length ) ] = StrToFloat ( vect . at ( i ) ) ;

}

}

// Returns data generation

i f ( ( data_gen == 2) | | ( data_gen == 5 ) ) {

AMSM_logreturns (

path_length , m0_real , sigma_real , rho_real , lambda_real ,

model , khat , ( double ) i n i t P r i c e , ( double ) i n t e r e s t , r ) ;

}

// Options prices generation

i f ( ( ( data_gen == 1) | | ( data_gen == 2 ) ) | | ( data_gen == 3 ) ) {

// I n i t i a l i z a t i o n and launch of GPU kernel

i f (clMonteCarloAMSM . i n i t i a l i z e ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

// Parse command l i n e options

i f (clMonteCarloAMSM . parseCommandLine( argc , argv ) )

return SDK_FAILURE ;

i f (clMonteCarloAMSM . isDumpBinaryEnabled ( ) )

return clMonteCarloAMSM . genBinaryImage ( ) ;

e lse

{

// Memory al lo cat i on

i f (clMonteCarloAMSM . setupMonteCarloAMSM ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}

i f (clMonteCarloAMSM . setupCL ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

// Simulate cross−section of option prices

y = AMSM_option_data (

3 . f , ( f l o a t ) m0_real , 0.95 f , ( f l o a t ) rho_real ,

( f l o a t ) sigma_real , ( f l o a t ) lambda_real , ( f l o a t ) nu_real ,

model , NumOfPoints1 , NumOfPoints2 , s e t t i n g s ) ;

i f (clMonteCarloAMSM . cleanup ( ) != SDK_SUCCESS)

return SDK_FAILURE ;
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}

// Time−consumption measurement

i f ( performance ) {

// Pick a seed of RNG

SeedNumber = MC_iterations1 ;

seed = PrimesSampleArr [SeedNumber − 1 ] ;

// I n i t i a l i z a t i o n and launch of GPU kernel

i f (clMonteCarloAMSM . i n i t i a l i z e ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

// Parse command l i n e options

i f (clMonteCarloAMSM . parseCommandLine( argc , argv ) )

return SDK_FAILURE ;

i f (clMonteCarloAMSM . isDumpBinaryEnabled ( ) )

return clMonteCarloAMSM . genBinaryImage ( ) ;

e lse

{

// Memory al lo cat i on

i f (clMonteCarloAMSM . setupMonteCarloAMSM ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}

i f (clMonteCarloAMSM . setupCL ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

// Logging

simulations << endl << "m0_real = " << m0_real <<

" sigma_real = " << sigma_real << " rho_real = " <<

rho_real << " lambda_real = " << lambda_real <<

" nu_real = " << nu_real << " S0 = " << i n i t P r i c e <<

" AMSM" << model << " SeedNumber = " <<

SeedNumber << endl ;

Cross_section_prices (

3 , m0_real , 0 .95 , rho_real , sigma_real , lambda_real , nu_real ,

model , NumOfPoints1 , NumOfPoints2 ) ;

i f (clMonteCarloAMSM . cleanup ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}
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s t r i n g Method_tmp = Method ;

// Estimation experiment with d i f f e r e n t seeds

i f ( estimation ) {

for ( i n t SimN = MC_iterations1 ; SimN <= MC_iterations2 ; SimN++)

{

counter1 = 0 ;

SeedNumber = SimN;

// MLE data generation

i f ( ( data_gen == 1) | | ( data_gen == 4 ) ) {

AMSM_logreturns (

path_length , m0_real , sigma_real , rho_real , lambda_real ,

model , khat , ( double ) i n i t P r i c e , ( double ) i n t e r e s t , r ) ;

}

i f (clMonteCarloAMSM . i n i t i a l i z e ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

// Parse command l i n e options

i f (clMonteCarloAMSM . parseCommandLine( argc , argv ) )

return SDK_FAILURE ;

i f (clMonteCarloAMSM . isDumpBinaryEnabled ( ) )

return clMonteCarloAMSM . genBinaryImage ( ) ;

e lse

{

// Memory al lo cat i on

i f (clMonteCarloAMSM . setupMonteCarloAMSM ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}

i f (clMonteCarloAMSM . setupCL ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

i f (SimN == MC_iterations1 ) {

simulations << DevInf << endl << endl ;

}

// create and i n i t i a l i z e timer

StartTimer(&Timer ) ;

i f (SimN == MC_iterations1 ) cout << endl << t t << endl << endl ;

// Simulations counter
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cout << "Number of Simulation : " << SimN <<

" in ( " << MC_iterations1 << " , " << MC_iterations2 << " ) " << endl ;

seed = PrimesSampleArr [SeedNumber − 1 ] ;

// Save current array of estimates in tmp arrays

m0_tmp = m0_real ; sigma_tmp = sigma_real ;

rho_tmp = rho_real ; lambda_tmp = lambda_real ;

nu_tmp = nu_real ;

Stage = 1 ;

Par_number = ( i n t ) LoBoundary . length ( ) ;

// d i f f s t e p = d i f f s t e p 2 ;

// ==Global optimization==

i f (Method_tmp . find ( " , " ) != std : : s t r i n g : : npos ) {

i f (Method_tmp . find ( "ASA" ) ! = std : : s t r i n g : : npos ) { Method = "ASA" ; }

i f ( ( Method_tmp . find ( "SA" ) ! = std : : s t r i n g : : npos ) &&

(Method_tmp . find ( "ASA" ) == std : : s t r i n g : : npos ) ) {

Method = "SA" ;

}

// extremely imprecise

i f (Method_tmp . find ( "TA" ) != std : : s t r i n g : : npos ) { Method = "TA" ; }

// extremely imprecise

i f (Method_tmp . find ( "GD" ) != std : : s t r i n g : : npos ) { Method = "GD" ; }

i f (Method_tmp . find ( "EV" ) != std : : s t r i n g : : npos ) { Method = "EV" ; }

}

// Write arrays with search region boundaries and i n i t i a l points

// in arrays used by ASA

i f (Method . find ( "ASA" ) != std : : s t r i n g : : npos ) {

for ( i n t i = 0 ; i < Par_number ; i ++) { LBoundary [ i ] = LoBoundary [ i ] ; }

for ( i n t i = 0 ; i < Par_number ; i ++) { UBoundary [ i ] = UpBoundary[ i ] ; }

for ( i n t i = 0 ; i < Par_number ; i ++) { IPoint [ i ] = IPo [ i ] ; }

// Run external ASA optimization subroutine

main2 ( 0 , argv ) ;

}

// I f method i s TA, GD or EV run i t in the search region hypercube

// ( LoBoundary , UpBoundary)

i f (Method . find ( "TA" ) != std : : s t r i n g : : npos ) {

optTA (optimum, maxCalculations , seed , LoBoundary , UpBoundary ) ; }

i f (Method . find ( "GD" ) != std : : s t r i n g : : npos ) {

optGD(optimum, maxCalculations , seed , LoBoundary , UpBoundary ) ; }
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i f (Method . find ( "EV" ) != std : : s t r i n g : : npos ) {

optEV (optimum, maxCalculations , seed , LoBoundary , UpBoundary ) ; }

bool StochOpt = f a l s e ;

// I f stochast ic global optimization by SA , TA, GD, EV was conducted

// then print out the optimum on screen , log i t in the f i l e ,

// write i t in arrays with r e s u l t s (m0, sigma , . . . )

i f ( ( Method . find ( "SA" ) != std : : s t r i n g : : npos ) | |

(Method . find ( "TA" ) != std : : s t r i n g : : npos ) | |

(Method . find ( "GD" ) != std : : s t r i n g : : npos ) | |

(Method . find ( "EV" ) != std : : s t r i n g : : npos )

) {

StochOpt = true ;

// i f ( printout ) {

cout << "INITIAL POINT " << SimN

<< " : " << optimum[ 0 ]

<< " , " << optimum[ 1 ]

<< " , " << optimum[ 2 ]

<< " , " << optimum[ 3 ]

<< " , " << optimum[ 4 ]

<< endl ;

// }

simulations << "INITIAL POINT " << SimN

<< " , " << optimum[ 0 ]

<< " , " << optimum[ 1 ]

<< " , " << optimum[ 2 ]

<< " , " << optimum[ 3 ]

<< " , " << optimum[ 4 ]

<< " , " << BestRSS << " , " << seed << " , " <<

devType << " , " << Method << endl ;

m0[ SimN − MC_iterations1 ] [ 0 ] = optimum [ 0 ] ;

sigma [ SimN − MC_iterations1 ] [ 0 ] = optimum [ 1 ] ;

rho [ SimN − MC_iterations1 ] [ 0 ] = optimum [ 2 ] ;

lambda [ SimN − MC_iterations1 ] [ 0 ] = optimum [ 3 ] ;

nu[ SimN − MC_iterations1 ] [ 0 ] = optimum [ 4 ] ;

err [ SimN − MC_iterations1 ] [ 0 ] = BestRSS ;

m0_tmp = optimum [ 0 ] ;

sigma_tmp = optimum [ 1 ] ;

rho_tmp = optimum [ 2 ] ;

}



C.2. AMSM model 419

// ==Local optimization methods==

i f (Method_tmp . find ( " , " ) != std : : s t r i n g : : npos ) {

i f (Method_tmp . find ( "LM" ) != std : : s t r i n g : : npos ) {

Method = "LM" ; }

i f (Method_tmp . find ( "BFGS" ) ! = std : : s t r i n g : : npos ) {

Method = "BFGS" ; }

}

// I f global optimization was used then take i t s optimum

// as i n i t i a l point for l o c a l optimization method

real_1d_array c ;

i f ( StochOpt &&

( ( Method . find ( "LM" ) != std : : s t r i n g : : npos ) | |

(Method . find ( "BFGS" ) ! = std : : s t r i n g : : npos ) ) ) {

s t r i n g IPoString ;

IPoString = " [ " +

FloatToStr (optimum [ 0 ] ) + " , " +

FloatToStr (optimum [ 1 ] ) + " , " +

FloatToStr (optimum [ 2 ] ) + " ] " ;

const char * IPoChar = IPoString . c _ s t r ( ) ;

c = IPoChar ;

}

e lse {

c = IPo ;

}

// Levenberg−Marquardt l o c a l optimization method from AlgLib

i f (Method . find ( "LM" ) != std : : s t r i n g : : npos ) {

// This c r i t e r i o n guarantees that algorithm w i l l

// stop only near the minimum, independently

// i f how f a s t / slow we converge to i t .

//Second and third c r i t e r i a are l e s s r e l i a b l e

// because sometimes algorithm makes small

// steps even when f a r away from minimum.

double epsf = 0 ;

double epsx = 0 ;

double epsg = 0.00000000000000001;

// d i f f s t e p = 1.0 e−4; used from s e t t i n g s

ae_int_t maxits = ( ae_int_t ) maxCalculations / ( i n t ) 5 ;

minlmstate s t a t e ;

minlmreport rep ;

// ae_int_t acctype = 0 ; // acceleration i s switched o f f
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// LM method i s developed d i r e c t l y for minimization of

// sums of squares , so the squares are d i r e c t l y used as

// as an inputted rather then whole WRSS sum

i f ( ObjFcn . find ( "WRSS" ) != std : : s t r i n g : : npos ) {

minlmcreatev (

NumOfPoints2 − NumOfPoints1 + 1 ,

c ,

d i f f s t e p ,

s t a t e ) ;

}

e lse {

// I f l ikel ihood i s an objective function

minlmcreatev ( 1 , c , d i f f s t e p , s t a t e ) ; }

// Set boundaries , stop c r i t e r i o n s , scale of parameters

// and etc

minlmsetbc ( state , LoBoundary , UpBoundary ) ;

minlmsetcond ( state , epsg , epsf , epsx , maxits ) ;

minlmsetscale ( state , s ) ;

minlmsetacctype ( state , acctype ) ;

// Run optimization

minlmoptimize ( state , function1_fvec ) ;

// Col lect the r e s u l t s

minlmresults ( state , c , rep ) ;

// Write the optimum in the corresponding arrays

m0[SimN − MC_iterations1 ] [ 0 ] = c [ 0 ] ;

sigma [SimN − MC_iterations1 ] [ 0 ] = c [ 1 ] ;

rho [SimN − MC_iterations1 ] [ 0 ] = c [ 2 ] ;

err [SimN − MC_iterations1 ] [ 0 ] = ( double ) s t a t e . f ;

m0_tmp = c [ 0 ] ; sigma_tmp = c [ 1 ] ; rho_tmp = c [ 2 ] ;

i f ( Par_number == 4) {

i f ( ! lambda_external ) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c [ 3 ] ;

lambda_tmp = c [ 3 ] ;

}

e lse {

nu[SimN − MC_iterations1 ] [ 0 ] = c [ 3 ] ;

}

}
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i f ( Par_number == 5) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c [ 3 ] ;

nu[SimN − MC_iterations1 ] [ 0 ] = c [ 4 ] ;

}

// Log the r e s u l t of current i t e r a t i o n

simulations << SimN << " , " << c [ 0 ] << " , " <<

c [ 1 ] << " , " << c [ 2 ] << " , " << c [ 3 ] << " , " <<

c [ 4 ] << " , " << s t a t e . f << " , " << seed << " , " <<

devType << " , " << Method << endl ;

// Print on screen the r e s u l t of current i t e r a t i o n

i f ( printout ) {

p r i n t f ( "term . type = %d\n" , i n t ( rep . terminationtype ) ) ;

cout << "============================

==================================" <<

endl << endl ;

}

}

// BFGS l o c a l optimization method from AlgLib

i f (Method . find ( "BFGS" ) != std : : s t r i n g : : npos ) {

// This c r i t e r i o n guarantees that algorithm w i l l

// stop only near the minimum, independently

// i f how f a s t / slow we converge to i t .

//Second and third c r i t e r i a are l e s s r e l i a b l e

// because sometimes algorithm makes small

// steps even when f a r away from minimum.

double epsf = 0 ;

double epsx = 0 ;

double epsg = 0.000000001;

// d i f f s t e p = 1.0 e−4; used from s e t t i n g s

ae_int_t maxits = ( ae_int_t ) maxCalculations / ( i n t ) 1 0 ;

minlbfgsstate s t a t e ;

minlbfgsreport rep ;

// Set boundaries , stop c r i t e r i o n s , scale of parameters

// and etc

minlbfgscreatef (

Par_number , // number of optimized parameters

Par_number ,

c ,

d i f f s t e p ,

s t a t e ) ;
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minlbfgssetscale ( state , s ) ;

minlbfgssetprecscale ( s t a t e ) ;

// minlbfgssetprecdiag ( state , d ) ;

minlbfgssetcond ( state , epsg , epsf , epsx , maxits ) ;

// Run optimization

minlbfgsoptimize ( state , function1_func ) ;

// Col lect the r e s u l t s

minlbfgsresults ( state , c , rep ) ;

// Write the optimum in the corresponding arrays

m0[SimN − MC_iterations1 ] [ 0 ] = c [ 0 ] ;

sigma [SimN − MC_iterations1 ] [ 0 ] = c [ 1 ] ;

rho [SimN − MC_iterations1 ] [ 0 ] = c [ 2 ] ;

err [SimN − MC_iterations1 ] [ 0 ] = ( double ) s t a t e . f ;

m0_tmp = c [ 0 ] ; sigma_tmp = c [ 1 ] ; rho_tmp = c [ 2 ] ;

i f ( Par_number == 4) {

i f ( ! lambda_external ) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c [ 3 ] ;

lambda_tmp = c [ 3 ] ;

}

e lse {

nu[SimN − MC_iterations1 ] [ 0 ] = c [ 3 ] ;

}

}

i f ( Par_number == 5) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c [ 3 ] ;

nu[SimN − MC_iterations1 ] [ 0 ] = c [ 4 ] ;

}

// Log the r e s u l t of current i t e r a t i o n

simulations << SimN << " , " << c [ 0 ] << " , " <<

c [ 1 ] << " , " << c [ 2 ] << " , " << c [ 3 ] << " , " <<

c [ 4 ] << " , " << s t a t e . f << " , " << seed <<

" , " << devType << " , " << Method << endl ;

}

//Method "SPSA"

i f (Method . find ( "SPSA" ) != std : : s t r i n g : : npos ) {

/*
i n t dim = 3 , mu = 2 * dim ;
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f l o a t ** bounds = new f l o a t * [dim ] ;

for ( i n t i =0; i <dim ; i ++) bounds [ i ] = new f l o a t [ 2 ] ;

bounds [ 0 ] [ 0 ] = 2.2 f ;

bounds [ 0 ] [ 1 ] = 2.7 f ;

bounds [ 1 ] [ 0 ] = 1.1 f ;

bounds [ 1 ] [ 1 ] = 1.3 f ;

bounds [ 2 ] [ 0 ] = 0.85 f ;

bounds [ 2 ] [ 1 ] = 0.99 f ;

//bounds [ 0 ] [ 0 ] = 0.9 f ;

//bounds [ 0 ] [ 0 ] = 0.9 f ;

ACiD(dim , mu, bounds ) ;

delete [ ] ( bounds ) ;

*/

i n t dim = 2 ;

f l o a t * theta = new f l o a t [dim ] ;

// I n i t i a l i z a t i o n

f l o a t a = 10. f , c_par = /*0.00005 f */0.00025 f ,

chat_par = 0.01 f , A = 2 . f , alpha = 0.602 f /* 1 . f * / ,

gamma = 0.101 f /* 1/6 * / ;

theta [ 0 ] = 1.8 f ; theta [ 1 ] = 0.01 f ;

// theta [ 2 ] = 0.8 f ; / / , theta [ 3 ] = 0.01 f ;//1.35148 f ;

// Run optimization

SPSA( a , c_par , chat_par , A , alpha , gamma, theta , 4000 , dim ) ;

delete [ ] ( theta ) ;

}

// ===Sequential optimization===

// In t h i s case r i s k premium i s estimated

// a f t e r model parameters )

// Find out number of parameters by the length of

// search region boundary vector

Par_number = ( i n t ) LoBoundary2 . length ( ) ;

Stage = 2 ;

double epsf = 0.0000000001;

double epsx = 0 . 0 ;
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double epsg = 0 . 0 ;

// I f Levenberg−Marquardt i s used for the second stage

i f (Method2 . find ( "LM" ) != std : : s t r i n g : : npos ) {

ae_int_t maxits = ( ae_int_t ) maxCalculations ; / / / ( i n t ) 5 ;

minlmstate s t a t e ;

minlmreport rep ;

// ae_int_t acctype = 1 ; // acceleration i s switched o f f

// Set boundaries , stop c r i t e r i o n s , scale of parameters

// and etc

i f ( ObjFcn2 . find ( "WRSS" ) != std : : s t r i n g : : npos ) {

minlmcreatev (

NumOfPoints2 − NumOfPoints1 + 1 ,

c2 ,

di f fs tep2 ,

s t a t e ) ;

}

e lse { minlmcreatev ( 1 , c2 , di f fs tep2 , s t a t e ) ; }

minlmsetbc ( state , LoBoundary2 , UpBoundary2 ) ;

minlmsetcond ( state , epsg , epsf , epsx , maxits ) ;

minlmsetscale ( state , s2 ) ;

minlmsetacctype ( state , acctype ) ;

// Run optimization

minlmoptimize ( state , function1_fvec2 ) ;

// Col lect the r e s u l t s

minlmresults ( state , c2 , rep ) ;

// Write the optimum in the corresponding arrays

i f ( Par_number == 1) {

i f ( lambda_external ) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c2 [ 0 ] ;

}

e lse {

nu[SimN − MC_iterations1 ] [ 0 ] = c2 [ 0 ] ;

}

}

i f ( Par_number == 2) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c2 [ 0 ] ;

nu[SimN − MC_iterations1 ] [ 0 ] = c2 [ 1 ] ;

}
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// Log the r e s u l t of current i t e r a t i o n

simulations << SimN << " , " <<

lambda [SimN − MC_iterations1 ] [ 0 ] << " , " <<

nu[SimN − MC_iterations1 ] [ 0 ] << " , , , , " <<

seed << " , " << devType << " , " << Method << endl ;

i f ( printout ) {

cout << "==========================

================================

====" << endl << endl ;

}

}

// I f BFGS i s used for the second stage

i f (Method2 . find ( "BFGS" ) != std : : s t r i n g : : npos ) {

ae_int_t maxits = ( ae_int_t ) maxCalculations / ( i n t ) 1 5 ;

minlbfgsstate s t a t e ;

minlbfgsreport rep ;

// Set boundaries , stop c r i t e r i o n s , scale of parameters

// and etc

minlbfgscreatef (

Par_number ,

Par_number ,

c2 , di f fs tep2 , s t a t e ) ;

minlbfgssetscale ( state , s2 ) ;

minlbfgssetprecscale ( s t a t e ) ;

// minlbfgssetprecdiag ( state , d ) ;

minlbfgssetcond ( state , epsg , epsf , epsx , maxits ) ;

// Run optimization

minlbfgsoptimize ( state , function1_func2 ) ;

// Col lect the r e s u l t s

minlbfgsresults ( state , c2 , rep ) ;

// Write the optimum in the corresponding arrays

i f ( Par_number == 1) {

i f ( lambda_external ) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c2 [ 0 ] ;

}

e lse {

nu[SimN − MC_iterations1 ] [ 0 ] = c2 [ 0 ] ;



426 C. Code listings

}

}

i f ( Par_number == 2) {

lambda [SimN − MC_iterations1 ] [ 0 ] = c2 [ 0 ] ;

nu[SimN − MC_iterations1 ] [ 0 ] = c2 [ 1 ] ;

}

// Log the r e s u l t of current i t e r a t i o n

simulations << SimN << " , " << lambda [SimN − MC_iterations1 ] [ 0 ] <<

" , " << nu[SimN − MC_iterations1 ] [ 0 ] << " , , , , " << s t a t e . f <<

" , " << seed << " , " << devType << " , " << Method << endl ;

}

// I f stochast ic optimization (EV) i s used for the second stage

i f (Method2 . find ( "EV" ) != std : : s t r i n g : : npos ) {

optEV2 (

optimum,

maxCalculations ,

seed ,

LoBoundary2 , UpBoundary2 ) ; }

// I f stochast ic optimization (ASA) i s used for the second stage

i f (Method2 . find ( "ASA" ) != std : : s t r i n g : : npos ) {

for ( i n t i = 0 ; i < Par_number ; i ++) { LBoundary [ i ] = LoBoundary2 [ i ] ; }

for ( i n t i = 0 ; i < Par_number ; i ++) { UBoundary [ i ] = UpBoundary2 [ i ] ; }

for ( i n t i = 0 ; i < Par_number ; i ++) { IPoint [ i ] = IPo2 [ i ] ; }

main2 ( 0 , argv ) ;

// Print out om=n screen

cout << "INITIAL POINT " << SimN

<< " : " << optimum[ 0 ]

<< " , " << optimum[ 1 ]

<< " , "

<< " , "

<< " , "

<< endl ;

// Write the optimum in the corresponding arrays

i f ( Par_number == 1) {

i f ( lambda_external ) {

lambda [SimN − MC_iterations1 ] [ 0 ] = optimum [ 0 ] ;

}

e lse {

nu[SimN − MC_iterations1 ] [ 0 ] = optimum [ 0 ] ;
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}

}

i f ( Par_number == 2) {

lambda [SimN − MC_iterations1 ] [ 0 ] = optimum [ 0 ] ;

nu[SimN − MC_iterations1 ] [ 0 ] = optimum [ 1 ] ;

}

// Log the r e s u l t of current i t e r a t i o n

simulations << SimN << " , " <<

lambda [SimN − MC_iterations1 ] [ 0 ] << " , " <<

nu[SimN − MC_iterations1 ] [ 0 ] << " , , , , " <<

BestRSS << " , " << seed << " , " << devType <<

" , " << Method << endl ;

}

// Clean up OpenCL objects

i f (clMonteCarloAMSM . cleanup ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}

// Calculate error metrics for each cal ibrated / estimated parameter

StandardErrorsMed (

m0, 0 , itRange , m0_real , &m0_av ,

&FSSE_m0, &RMSE_m0, &med_m0) ;

StandardErrorsMed (

sigma , 0 , itRange , sigma_real , &sigma_av ,

&FSSE_sigma , &RMSE_sigma , &med_sigma ) ;

StandardErrorsMed (

rho , 0 , itRange , rho_real , &rho_av ,

&FSSE_rho , &RMSE_rho, &med_rho ) ;

StandardErrorsMed (

lambda , 0 , itRange , lambda_real ,

&lambda_av , &FSSE_lambda , &RMSE_lambda, &med_lambda ) ;

StandardErrorsMed (

nu , 0 , itRange , nu_real , &nu_av ,

&FSSE_nu , &RMSE_nu, &med_nu ) ;

// Log error metrics

simulations << endl << "m0_real = " << m0_real <<

" sigma_real = " << sigma_real << " rho_real = " <<

rho_real << " lambda_real = " << lambda_real <<

" nu_real = " << nu_real << " AMSM" << model << endl ;
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simulations << endl ;

simulations << "m0 = " << m0_av << " sigma = " <<

sigma_av << " rho = " << rho_av << " lambda = " <<

lambda_av << " nu = " << nu_av << endl ;

simulations << "FSSE = " << FSSE_m0 << " FSSE = " <<

FSSE_sigma << " FSSE = " << FSSE_rho << " FSSE = " <<

FSSE_lambda << " FSSE = " << FSSE_nu << endl ;

simulations << "RMSE = " << RMSE_m0 << " RMSE = " <<

RMSE_sigma << " RMSE = " << RMSE_rho << " RMSE = " <<

RMSE_lambda << " RMSE = " << RMSE_nu << endl ;

simulations << "Median = " << med_m0 << " Median = " <<

med_sigma << " Median = " << med_rho << " Median = " <<

med_lambda << " Median = " << med_nu <<

endl << endl << endl ;

simulations << "Average c a l i b r a t i o n time : " <<

StopTimer ( TotalTimer ) / itRange << endl ;

simulations << "Average option calculat ion time : " <<

StopTimer ( TotalTimer ) / price_calc_counter << endl ;

}

// Calculate option prices for whole cross−section

// for the best set of parameters ( in the sense of error s i z e )

i f ( estimation ) {

double best_err = 1000000;

i n t b e s t _ i t e r = MC_iterations1 ;

for ( i n t i = 0 ; i < itRange ; i ++) {

i f ( err [ i ] [ 0 ] < best_err ) {

b e s t _ i t e r = i ;

best_err = err [ i ] [ 0 ] ; }

}

SeedNumber = MC_iterations1 + b e s t _ i t e r ;

seed = PrimesSampleArr [SeedNumber − 1 ] ;

// I n i t i a l i z e OpenCL

i f (clMonteCarloAMSM . i n i t i a l i z e ( ) != SDK_SUCCESS)

return SDK_FAILURE ;
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// Parse command l i n e options

i f (clMonteCarloAMSM . parseCommandLine( argc , argv ) )

return SDK_FAILURE ;

i f (clMonteCarloAMSM . isDumpBinaryEnabled ( ) )

return clMonteCarloAMSM . genBinaryImage ( ) ;

e lse

{

// Memory al lo cat i on

i f (clMonteCarloAMSM . setupMonteCarloAMSM ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}

i f (clMonteCarloAMSM . setupCL ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

// Log the best estimates

simulations << endl << "m0_best = " << m0[ b e s t _ i t e r ] [ 0 ] <<

" sigma_best = " << sigma [ b e s t _ i t e r ] [ 0 ] << " rho_best = " <<

rho [ b e s t _ i t e r ] [ 0 ] << " lambda_best = " << lambda [ b e s t _ i t e r ] [ 0 ] <<

" nu_best = " << nu[ b e s t _ i t e r ] [ 0 ] << " S0 = " << i n i t P r i c e <<

" AMSM" << model << " SeedNumber = " << SeedNumber << endl ;

// Run calculat ion

Cross_section_prices2 (

3 , m0[ b e s t _ i t e r ] [ 0 ] , 0 .95 , rho [ b e s t _ i t e r ] [ 0 ] ,

sigma [ b e s t _ i t e r ] [ 0 ] , lambda [ b e s t _ i t e r ] [ 0 ] ,

nu[ b e s t _ i t e r ] [ 0 ] ,

model , NumOfPoints1 , NumOfPoints2 ,

simulations ) ;

// Clean up OpenCL

i f (clMonteCarloAMSM . cleanup ( ) != SDK_SUCCESS)

return SDK_FAILURE ;

}

// Clean up memory

for ( i n t i = 0 ; i <itRange ; i ++) delete [ ] m0[ i ] ;

for ( i n t i = 0 ; i <itRange ; i ++) delete [ ] sigma [ i ] ;

for ( i n t i = 0 ; i <itRange ; i ++) delete [ ] rho [ i ] ;

for ( i n t i = 0 ; i <itRange ; i ++) delete [ ] lambda [ i ] ;

for ( i n t i = 0 ; i <itRange ; i ++) delete [ ] nu[ i ] ;

for ( i n t i = 0 ; i <itRange ; i ++) delete [ ] err [ i ] ;

for ( i n t i = 0 ; i <number_of_C ; i ++) delete [ ] DataPointArr [ i ] ;
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delete [ ] buffer ;

delete [ ] r ;

// Close of a l l opened f i l e s

simulations . close ( ) ;

s e t t i n g s . close ( ) ;

PrimesSample . close ( ) ;

i n f i l e . close ( ) ;

return SDK_SUCCESS;

}
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