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Zusammenfassung

Die steigende Nutzung der formalen Analyse von Programmen, welche
in modernen Programmiersprachen, die vielfach auf den Datentyp der
Strings zurückgreifen, führt zur erweiterten Nachfrage an effizienteren
und zuverlässigeren Methoden zur Lösung der entstehenden Formeln.
Dies stellt insbesondere für das Lösen von industriellen Instanzen ein
Problem dar. Die Entwicklung von Algorithmen für das (im Allgemeinen
unentscheidbare) Entscheidungsproblem von Formeln in Logik erster Stu-
fe über den Theorien der Wortgleichungen, linearen Ungleichungen und
regulären Nebenbedingungen erfordert ein tiefgreifendes Verständnis je-
ner Strukturen. In dieser Dissertation präsentieren wir einige Ansätze, um
die vormals genannten Probleme zu lösen: Wir stellen einen Algorithmus
vor, welcher das Erfüllbarkeitsproblem der beschränkten Wortgleichun-
gen auf ein Erreichbarkeitsproblem über einem nichtdeterministischen
endlichen Automaten reduziert. Anschließend beschreiben wir, wie die
Erreichbarkeitsfrage im resultierenden Automaten in die Aussagenlogik
überführt und mithilfe des SAT Lösers Glucose gelöst wird.

Weiterführend präsentieren wir ein Transformationssystem zum Lösen
von Wortgleichungen, welches auf Basis eines aus der Theorie der Kom-
binatorik von Wörtern, weitgehend als Lemma von Levi bekannt, erstellt
wird. Wir erweitern die induzierten Regeln um weitere, aus der Theorie
bekannte klassische Lemmata, um Transitionsschritte zu vereinfachen.
Des Weiteren bietet unser Transitionssystem nicht nur die Möglichkeit
Wortgleichungen zu lösen, sondern auch das Lösen von linearen Unglei-
chungen, welche über den Variablen der Wortgleichungen formuliert sind.
Die Effizienz dieses Ansatzes wurde weiter verbessert, indem wir externe
Wortgleichungslöser bei Bedarf mittels Heuristiken hinzuziehen.

Im dritten Teil untersuchen wir die Struktur einer Menge von Instanzen,
welche in verwandter Literatur vorgestellt wurde und reguläre Member-
ship Constraints enthalten, und identifizierten verschiedenste Teiltheorien
des untersuchten Fragments der String Constraints. Zu vielen der ent-
deckten Theorien konnten wir deren Entscheidbarkeit beziehungsweise
Unentscheidbarkeit nachweisen. Für einige der resultierenden Theorien
konnten wir sogar die PSPACE-Vollständigkeit beweisen. Hervorzuheben
ist an dieser Stelle, dass die überwiegend aus kommerzieller Nutzung
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stammenden untersuchten Instanzen in eine der PSPACE-vollständigen
Theorien einzubetten sind. Wir haben dieses Wissen genutzt und unsere
Beweisstrategie in einem der meistgenutzten SMT Löser Z3str3 imple-
mentiert.

Während der Auswertung unserer Methoden ist uns aufgefallen, dass
es keine Möglichkeiten gibt, unsere Algorithmen mit bereits vorhandenen
Lösern zu messen. Um dies zu ändern, haben wir die Literatur nach Instan-
zen, die in verschiedenen Szenarios zur Evaluation von Wortgleichungslö-
sern verwendet wurden, durchsucht und diese gesammelt. Des Weiteren
haben wir ein Werkzeug entwickelt, welches die faire Auswertung der
individuellen Leistung der verschiedenen Löser über den gesammelten
Instanzen ermöglicht. In dieser Arbeit nutzen wir unser Werkzeug, um die
Effizienz, Zuverlässigkeit und Leistung der hier vorgestellten Methoden
zu evaluieren.
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Abstract

Widespread use of string solvers in formal analysis of string-heavy pro-
grams has led to a growing demand for more efficient and reliable tech-
niques which can be applied in this context, especially for real-world cases.
Designing an algorithm for the (generally undecidable) satisfiability prob-
lem for systems of string constraints requires a thorough understanding
of the structure of constraints present in the targeted cases. In this thesis
we target the aforementioned case in different perspectives: We present
an algorithm which works by reformulating the satisfiability of bounded
word equations (also called string equations) as a reachability problem
for nondeterministic finite automata, and then carefully encoding this
as a propositional satisfiability problem, which we then solve using the
well-known Glucose SAT-solver.

Secondly, we present a transformation-system-based technique to solv-
ing string constraints, by reformulating a classical combinatorics on words
result, the lemma of Levi. We further enrich the induced rules by sim-
plification steps based on results from the combinatorial theory of word
equations, as well as by the addition of linear length constraints. This
transformation-system approach cannot solve all equations efficiently by
itself. To improve the efficiency of our transformation-system approach
we integrate existing successful string solvers, which are called based on
several heuristics.

Thirdly, we investigate benchmarks presented in the literature con-
taining regular expression membership predicates, extract different first
order logic theories, and prove their decidability, resp. undecidability. No-
tably, the most common theories in real-world benchmarks are PSPACE-
complete. We use the strategy of the proof to design an efficient algorithm
which was integrated into Z3str3, one of the state of the art string solvers.

While evaluating our experimental implementations of the aforemen-
tioned approaches, we realised that a common framework to compare
string solvers seems to be missing. To cope with this, we gathered a set of
relevant benchmarks and introduce our new benchmarking framework to
address this purpose. We used this framework to showcase the power of
our algorithms via an extensive empirical evaluation over a diverse set of
benchmarks.
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Chapter 1

Introduction

“Raise your glass to the night time
and the ways, to choose a mood and
have it replaced.”

Balthazar

A word equation is a pair of strings (called the sides of the equation)
consisting of symbols of two types: constant letters and variables. The
word equation satisfiability problem is to determine whether we can unify
the two strings, i.e., transform them into two equal strings containing
constant letters only, by substituting the variables consistently by strings
of constants. For example, consider the equation defined by the two
strings x1abx2 and ax1x2b, denoted x1abx2 =̇ ax1x2b, with variables x1, x2
and constants a and b. It is satisfiable because x1 can be substituted by a and
x2 by b, which produces the equality aabb = aabb. In fact, substituting x1 by
an arbitrary number of a and x2 by an arbitrary number of b’s unifies the
two sides of the equation. As another example, the equation ax1x1 =̇ x1bx2
is not satisfiable. A set (or system) of equations is satisfiable if there exists a
substitution of the variables which solves all the equations simultaneously.
In general we are concerned with the S1, respectively quantifier free
fragment of first order logic formulae having word equations as the only
atom.

The satisfiability problem for word equations is an important problem
in both mathematics and computer science. For instance, in an attempt
to solve Hilbert’s tenth problem [61] in the negative, Markov showed a
reduction from word equations to Diophantine equations (see [70, 85, 87]),
in the hope that word equations would prove to be undecidable. However,
Makanin [87] proved in 1977 that the satisfiability of word equations is,
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1. Introduction

in fact, decidable. Considerable effort has also been spent identifying the
complexity of deciding the satisfiability of a word equation. After a series
of intermediate results [85], Plandowski [94] showed that this problem is
in PSPACE. In a series of recent papers [65, 66], Jeż applied a new elegant
technique called recompression to word equations to show that word
equations can be solved in non-deterministic linear space. However, there
is a mismatch between the aforementioned upper bounds and the only
known lower bound: solving word equations is NP-hard.

In more recent years, word equations have gained attention from
the formal verification and security community, because word equations
naturally occur during symbolic execution of high-level languages. A
variety of analysis, testing, and verification methods have been proposed
to address this problem [12, 26, 38, 49, 71, 96, 99, 103, 117], many of those
depend on a tool which is able to solve word equations. These tools are
commonly called string constraint solvers or, for short string solvers.

In practice, more functionality than just solving word equations is
required, so the theory of word equations is often extended with multiple
other theories. String solvers usually support a rich quantifier free first
order logic theory over word equations, linear integer arithmetic over
word length, and regular expression membership constraints. A quantifier
free first order logic formula over these theories is called a string con-
straint. Due to the complexity of solving this combined theories and the
undecidability of some of these extensions, no solver provides a complete
algorithm. Prominently, the decidability of the theory of word equations
enhanced with a length function remains a major open problem in theory,
despite many attempts to solve it over the last 50 years [89]. Solely looking
at the quantifier free theory of word equations and regular expression
membership predicates is known to be decidable [85]. Unfortunately, it is
not known whether the satisfiability problem for string constraints involv-
ing all aforementioned theories is decidable or not. However, already in
the presence of other simple and natural constraints, like string-number
conversion, this problem becomes undecidable (cf. [41]).

According to the literature Satisfiability Modulo Theories (SMT) solvers
seem to be the most successful string solvers. The general idea of these
solvers is integrating a sub solver for each particular theory, e.g. a solver
which explicitly handles word equations. To ease handling of real-world
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inputs many string solvers support additional functions such as integer
to string conversion and predicates such as string containment which are
used within source code. These operations are commonly called higher
order operations.

Despite their difficulty, much research has been done on techniques for
solving string constraints obtained from many real-world analysis, testing,
verification, and synthesis applications [49, 83, 99, 117]. Examples of such
solvers are Hampi [71], Stranger [120], Z3seq [123], CVC4 [80], Norn [4],
Trau [2], S3 [114], and Z3str3 [23], each with varying strengths and
weaknesses. Precisely, because solving string formulae is hard in general,
solver designers have come up with a diverse set of practical algorithms
that incorporate a variety of tradeoffs. Some of these methods work well
for pure word equations, but not so well for integer constraints over string
length. Other methods work well for a mix of word equations and integer
constraints, but perform poorly on more complicated constraints involving
higher order operations. Given these weaknesses, within this work we
enrich the area with new solving strategies, new theoretical insights, and
to the best of our knowledge, the first framework for evaluating and testing
string solvers.

This document is organised as follows: In Chapter 2 we introduce the
formal background. After establishing the general notations used in this
work, we present the underlying first order logic theories forming string
constraints, as well as the commonly used higher order operations.

Chapter 3 continues embedding string constraints into their practical
applications. Firstly, we motivate why string constraints are an important
aspect when verifying real-world applications. We also show, how string
constraints are derived based on real-world source code. We continue
introducing the most used string solvers and their underlying procedures.
This chapter closes with a presentation of two general solving strategies
which heavily influence the procedures presented in this work.

In Chapter 4 we present a collection of techniques we created to solv-
ing string constraints. The first approach is built on top of a SAT solver
encoding string constraints into a propositional logic formula. We con-
tinue elaborating a technique which solves word equations by building a
transition system based of rules induced by the famous lemma of Levi [78].

3



1. Introduction

We enrich the transition system by several heuristics to invoke an exter-
nal solver to speed up the search. Afterwards, we analyse several string
solving benchmarks with respect to regular expression membership con-
straints and identify sub theories. We prove the decidability, respectively
undecidability of some of the revealed fragments. Furthermore, we use
the proof for the decidability of one of the largest occurring fragments
to design an algorithm which was directly implemented into the Z3str3
SMT solver.

Chapter 5 establishes a framework for comparing, evaluating, and de-
bugging string solvers. We explain how we built this tool and explain the
underlying mechanisms. Furthermore, we present a collection of bench-
marks previously published in the literature which was incorporated into
our framework. We close this chapter by evaluating our framework based
on the needs of string solvers.

Specifically targeting the techniques estabilished in Chapter 4, we em-
pirically evaluate the performance of our approaches using the benchmark
framework introduced in Chapter 5 in Chapter 6. We showcase that even af-
ter several years of publishing our techniques, we built reliable techniques
performing very well with respect to other string solvers.

Each chapter has a conclusion itself, but in Chapter 7 we conclude the
overall picture of this work and name some future directions with respect
to the presented approaches.

4



Chapter 2

Preliminaries

“You think you know somethin’ you
don’t.”

Sharon Van Etten

Within this chapter we fix the basic notion used. We start with an
introduction of mathematical notations. Afterwards, we fix the terminology
of propositional and first order logics. Moreover, we introduce particular
logical theories considered in this work.

Let N be the set of natural numbers (including 0), [n] be the set
{ 0, 1, . . . , n }, and [n]0 = [n]z { 0 }. Let n P Nz { 0 } and M a set. Let
Mn = ’iP[n]0 M denote the set of all n-tuples. Furthermore, we have
M0 = { () }. For an infinite set M and a finite subset N Ä M let N Ä̈ M
denote N’s finiteness. For arbitrary sets M,N and a relation r Ñ M ˆ N we
call r a partial function (denoted by r : M á N) if for all x P M 1. there
exists a unique y P N such that r(x) = y, 2. or r(x) is undefined. Let
dom(r) = { x P M | D y P N : r(x) = y } denote the domain of r.

An alphabet D is a set of symbols, where a P D are called letters. By
D˚ we denote the set of all finite words over D and let # P D˚ denote the
empty word. For n P N let w = a1 . . . an P D˚ such that ai P D for i P [n]0
be a word, i.e a finite sequence . By w[i] = ai we refer to the letter at the
ith position of w. Furthermore let w[i : j] = ai . . . aj for i, j P [n]0 and i § j
refer to the factor starting at position i and ending at position j in w. Note,
whenever i = j we have w[i : j] = w[i] = ai. Moreover, to ease readability
we let w[: j] denote w[1 : j] and w[i :] denote w[i : n]. Let | ¨ | : D˚

Ñ N

5



2. Preliminaries

defined by
|w| =

(
0 if w = #,
1 + |w[2 :]| else.

denote the length of a word w. Furthermore, let | ¨ |a : D˚
Ñ N defined by

|w|a = Â
iP[|w|]0

(
1 if w[i] = a,
0 else.

denote the the occurrences of a letter a in w. By wR = anan´1 . . . a1 we refer
to the reversal of the word w. Let ¨ : D˚

ˆ D˚
Ñ D˚ defined by u ¨ v = uv

be the concatenation of words. Clearly, ¨ is an associative operation and we
have u ¨ # = u = # ¨ u. Therefore, # forms the unit element. Consequently,
D˚ = (D˚, ¨, #) is a monoid. Let factors(w) = { w[i : j] | i, j P [n]0 , i § j }
denote the set of all factors of w. Moreover, let prefix(w) = { w[: j] | j P [n] }
respectively suffix(w) = { w[i :] | i P [n] } denote the set of all prefixes
respectively suffixes of w. Let D1 be an alphabet. A mapping h : D˚

Ñ D1˚

satisfying h(uv) = h(u)h(v) for all u, v P D˚ is called a morphism. In
particular, for a morphism h we have h(#) = # and by defining h for each
a P D the mapping is completely specified.

We call the function parikh : D˚
ˆ D Ñ N defined by parikh(w, a) = |w|a

the Parikh vector for w P D˚ and a P D.

A finite automaton is a structure M = (Q, D, d, q0, F) where Q is the set
of states, D an alphabet, d : Q ˆ D Ñ 2Q a transition function, q0 P Q the
initial state, and F Ñ Q a set of accepting states. We call M a deterministic
finite automaton (DFA) if for all q P Q and a P D we have (q, a) P dom(d)
and |d(q, a)| = 1. Otherwise, M is a non-deterministic finite automaton (NFA).
We say M accepts a word w P D if there is a path via d leading from q0 to
some f P F via edges labelled by w[i] for each i P [|w|]0 (shortly w P L(M)).

Let M = (Q, D, d, q0, F) be an NFA. Whenever |D| = | { a } | = 1, we
call M a unary automaton. Without loss of generality, we assume q0 R d(q, a)
for all q P Q. The automaton M is in Chrobak normal form [34] if there exists
a path q0, . . . , qn P Q such that d(qi, a) = { qi+1 } for all i P [n ´ 1] and
n P O

�
|Q|

2�. Secondly, M contains ` § |Q| cycles qj
j0

, . . . , qj
jmj

for j P [`]

and mj P N such that d(qj
ji
, a) =

n
qj

ji+1

o
for i P [m ´ 2], d(qj

jmj
, a) =

n
qj

j0

o
,

6



2.1. Logics

q0 q1 . . . qn

q1
10

q1
11

q1
12

. . .

q``0

q``1

q``2

q``3

cycle 1

cycle `

a a a

a

a

a

a

a

a

a a

aa

O
�|Q|2�

Figure 2.1. Automaton in Chrobak normal form

and qj
j0

P d(qn, a). Additionally, we have
T

jP[`]

n
qj

ji

��� i P [mj]
o

= H and

q R
S

jP[`]

n
qj

ji

��� i P [mj]
o

for q P { q0, . . . , qn }, as well as ÂjP[`]
�
mj + 1

�
§

|Q|. Such an automaton is given in Figure 2.1.
We shall generally distinguish between two alphabets, namely a finite

set A = { a, b, c, . . . } called terminals or constants and a possibly infinite
set X = { x1, x2, . . . } called variables such that A X X = H. We call a word
a P PatA = (A Y X )˚ a pattern.

2.1 Logics

Within this section we follow the outline made in [46]. A finite nonempty
set consiting of relations – anotated with their arity e.g. R/n for an n-ary
relation R, functions – annotated with their arity e.g f //n for an n-ary
function f , and constants are called vocabularies. On top of a vocabulary
V let A be a (single-sorted) structure (for short V-structure) consisting of a
nonempty set A, called domain of A, an n-ary relation RA for every n-ary
relation R/n P V , an n-ary function f A for every n-ary function f //n P V
and an element cA for each constant c P V . For ease of readability we use
infix and prefix notions of functions and relations interchangeably.

In various cases we are interested in expressing claims using constants,
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2. Preliminaries

functions and relations ranging over arbitrarily but finitely many different
domains A1, . . . , An for n P Nz { 0 }. To this extend we introduce many-
sorted structures A for a vocabulary V (for short many-sorted V-structure)
where our structure A might contain more than one domain. To grasp
the types within a many-sorted structure A holding domains A1, . . . , An
for n P Nz { 0 }, we define analogously to the single-sorted V-structure an
m-ary relation RAi1 ...Aim for ij, j P [n]0 for every m-ary relation R/m P V ,
an k-ary function f Ai1 ...Aik

ÑA` for ij, j, ` P [n]0 for every k-ary function
f //k P V and an element cA` for at least one ` P [n]0 and each constant
c P V for m, k P N. Whenever we consider an m-ary relation RAi1 ...Aim such
that Ai1 = . . . = Aim holds, we simply – as for the single-sorted structures
– write RAi1 . Consequently, for an k-ary function f Ai1 ...Aik

ÑA` whenever
Ai1 = . . . = Aik = A` we write f Ai1 .

2.1.1 Propositional logic

Let Pl = { 0̇, 1̇ } be a vocabulary purely holding two constants. We de-
fine the set of propositional logic formulae of the vocabulary Pl, namely PL,
inductively as follows: 1. 0, 1 P PL, 2. x P PL for each x P X , 3.  j P PL
for a formula j P PL, and 4. j _ y P PL for formulae j, y P PL. Note,
that the commonly known connectives can be derived by the above def-
inition. For formulae j, y P PL let j ^ y, j Ñ y, and j Ø y be abbre-
viations for  ( j _ y),  j _ y, and (j Ñ y) ^ (y Ñ j), respectively.
Let vars : PL Ñ 2X denote all variables within a propositional logic
formula, defined inductively as follows: 1. vars (0) = vars (1) = H,
2. vars (x) = { x } for all x P X , 3. vars ( j) = vars (j) for all j P PL,
and 4. vars (j _ y) = vars (j) Y vars (y) for all j, y P PL.

We will now introduce the semantics of propositional logic formulae
PL. To achieve this, we define a satisfaction relation |ù for a formula j P PL.
Let B = { 0, 1 } be a set and B =

n
B, 0̇B, 1̇B

o
be a PL-structure such that

0̇B = 0 and 1̇B = 1. An assignment h : A YX Ñ A is a morphism such that
h(x) P B and h(b) = b for bB P

n
0̇B, 1̇B

o
holds. To extend and modify a

partial assignment we define for a variable x P X and b P B the notation

8



2.1. Logics

0

1

2

3 4

Figure 2.2. Directed Graph G as an example to model a propositional logic formula

h
⇥ x

b
⇤
= { x1

fiÑ h(x1) | x1
P dom(h)z { x } } Y

�
x fiÑ bB

 
. Let

HB =
n

h
��� h : A Y X Ñ A morphism, @ b P B : h(b) = bA

o

denote the set of all assignments.
Let h P HB be an assignment. We define h |ù j inductively for variables

x P X , constants b P B, and formulae j, y P PL by

h |ù b iff b = 1,
h |ù x iff h(x) = 1,

h |ù  j iff not h |ù j, and
h |ù j _ y iff h |ù j or h |ù y.

We call a propositional logic formula satisfiable if there exists an assign-
ment h P HB such that h |ù j holds. Consequently, we call j unsatisfiable
if there does not exist an assignment h P HB such that h |ù j holds and
shortly write �|ù j.

Example 2.1. As an example how to use propositional logic in practice,
we model a reachability question within the directed graph G given in
Figure 2.2. We can model this graph by the propositional logic formula

jG = x0 Ñ x1 ^ x0 Ñ x4 ^ x1 Ñ x2 ^ x2 Ñ x3

^ x4 Ñ x0 ^ x4 Ñ x2 ^ x4 Ñ x3,

using propositional logic variable xi P X for each node i P [4]. The formula
jG models each edge of the graph G as a logical consequence. This allows

9



2. Preliminaries

moving between the nodes.
We now ask ourselves whether we can reach node 3 starting at node 0.

To do so we simply ask whether any assignment satisfying the formula

(jG ^ x0)

also satisfies x3 which is indeed fulfilled. Consequently, we have

(jG ^ x0) |ù x3

and therefore we can find a path from node 0 to node 3.

2.1.2 First order logic

Let V be a vocabulary. A term of a vocabulary is a variable within our set
X , a constant in V or an n-ary function f //n P V , shortly called V term.
We define the set of first order logic formulae of the vocabulary V , namely
FO(V), inductively as follows: 1. t0

.
= t1 P FO(V) for V terms t0 and t1,

2. R(t0, . . . , tn) P FO(V) for V terms t0, . . . , tn P V and relation R/n P V
for n P N, 3.  j P FO(V) for a formula j P FO(V), 4. j _ y P FO(V) for
formulae j, y P FO(V), and 5. D x . j for a formula j P FO(V). All formulae
obtained by the inductive base cases 1. and 2. are called atomic formulae.
Again, as stated in the previous section for propositional logic, we can
derive derive the commonly known operations by the above definition.
For formulae j, y P FO(V) let j ^ y, j Ñ y, j Ø y, and @ x . j be
abbreviations for  ( j _ y),  j _ y, (j Ñ y) ^ (y Ñ j), and  D x . j,
respectively. Let vars (j), as for propositional logic formulae, denote all
variables within a formula j P FO(V). By bounded (j) we refer to all
bounded variables occurring in j being bound by a quantifier Q P { D, @ },
formally defined as follows:

bounded (j) =

8
>>>><

>>>>:

H if j is a V term,
bounded (y) if j =  y,
bounded (y1) Y bounded (y2) if j = y1 _ y2,
{ x } Y bounded (y) if j = D x . y.

By free (j) = vars (F) zbounded (j) we denote the free variables within j.
Furthermore, we denote the set of all atoms in j by atoms (j)

10



2.1. Logics

We will now introduce the semantics of first order logic formulae
FO(V) over our vocabulary V . To achieve this, we define a satisfaction
relation |ù for a V-structure A and a formula j P FO(V). Let A be a
V-structure having the domain A. An assignment h : A Y X Ñ A is a
morphism such that h(x) P A and h(c) = cA holds. To extend and modify
a partial assignment we define for a variable x P X and c P A the notation
h
⇥ x

c
⇤
= { x1

fiÑ h(x1) | x1
P dom(h)z { x } } Y

�
x fiÑ cA  . Let

HA =
n

h
��� h : A Y X Ñ A morphism, @ c P A : h(c) = cA

o

denote the set of all assignments.
Let h P HA be an assignment. We define A, h |ù j inductively for terms

t0, . . . , tn, R/n P V for n P N and formulae j, y P FO(V), by

A, h |ù t0
.
= t1 iff h(t0) = h(t1),

A, h |ù R(t0, . . . , tn) iff RA(h(t0), . . . , h(tn)),
A, h |ù  j iff not A, h |ù j (for short A, h �|ù j),

A, h |ù j _ y iff A, h |ù j or A, h |ù y, and

A, h |ù D x . j iff there exists an c P A such thatA, h
hx

c

i
|ù j.

We call a V formula in a V-structure A satisfiable if there exists an assign-
ment h P HA such that A, h |ù j holds and use A |ù j as a short form. In
this case we also call h a solution of j. Consequently, we call j unsatisfiable
if there does not exist an assignment h P HA such that A, h |ù j holds and
shortly write A �|ù j. A set F Ñ FO(V) of V formulae is satisfiable within
a V-structure A if there exists an assignment h P HA such that A, h |ù j
holds for all j P F and we denote this by A |ù F. Otherwise, the set of
formulae F is unsatisfiable within the V-structure A (A �|ù F). Continuing
this trail, a formula j is a consequence of F (A, F |ù j) if whenever A |ù F
we have A |ù j. If j is true in all structures under all assignments we call
it valid (|ù j).

For the remainder of this work let J denote a constant such that |ù J

and K denote a constant such that �|ù K, meaning J is a formula which is
always valid and K is always unsatisfiable.
Remark 2.2. Within this work we usually omit restating the V-structure
A whenever it is clear from the context. Therefore for a V formula j P

11
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FO(V) and an assignment h P HA instead of A, h |ù j we write h |ù j.
Consequently, we omit the V-structure A whenever talking about the
general satisfiability of a formula and write |ù j instead of A |ù j.

Whenever the connection of constant cA, functions f A or relation RA

to its V-structure is clear from context we omit the superscript A and
simply write c, f , and R, instead of cA, f A, and RA, respectively.

There exist several normal forms for first order logic formulae. A form
which plays an important role in specifying the fragments of formulae is
the prenex normal form, that is a formula Q1 x1 . Q2 x2 . . . . Qn xn . y where
Qi P { D, @ } and n P N, i P [n] and y does not contain any quantifiers. It
can be shown that for any first order logic formula, we are able to gather
an equivalent formula in prenex normal form. Based on formulae j =
Q1 x1 . Q2 x2 . . . . Qn xn . y in prenex normal form we define the Sk fragment
for k P [n]. j is part of the Sk fragment if it contains at most k consecutive
quantifier blocks where each quantifier block consists of either existential
or universal quantifiers, adjacent block contain different quantifiers, and
the initial block holds existential quantifiers, e.g. D x1 . D x2 . @ x3 . D x4 . y
where y is quantifier free is part of the S3 fragment.

Example 2.3. Let V = { E/2 } be the vocabulary of a graph containing
the 2-ary relation E. The V-structure G = (V, EV) represents undirected
graphs, whenever 1. for all v P V it does not hold EV(v, v), and 2. for
all v1, v2 P V if EV(v1, v2) we have EV(v2, v1). These conditions form our
axioms of undirected graphs and lead to the formalisation 1. @ x1 . E(x1, x1),
and 2. @ x1 . @ x2 . (E(x1, x2) Ñ  E(x2, x1)) within FO(V).

Considering the above given V-structure G = (V, EV) such that V =
{ 0, 1, 2, 3, 4 } and

EV = {(0, 1), (1, 0), (4, 0), (0, 4), (1, 2), (2, 1), (2, 3),
(3, 2), (4, 2), (2, 4), (4, 3), (3, 4)}

– an undirected version of the graph seen in Example 2.1 and an assignment
h = { x1 fiÑ 0, x2 fiÑ 3 } we have G, h |ù D x3 . E(x1, x3) ^ E(x3, x2), meaning
we are asking whether there exists a path from node 0 to node 3 by
traversing one node.

12
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2.2 Logical Theories

Within this work the basis is formed by three different logical theories,
namely word equations, linear inequalties (also called linear length con-
straints), and regular membership constraint. This section introduces these
theories as instances of first order logic, meaning we introduce a vocabu-
lary and an axiomatisation for each theory and instantiate it by defining
an appropriate structure.

2.2.1 Word equations
Given the vocabulary W = { ¨//2, #̇ }. For ease of readability we write ¨ as
infix operation. We consider the S1 fragment of the first order logic formu-
lae FO(W) having the axioms 1. @ x1 . @ x2 . @ x3 . (x1 ¨ x2) ¨ x3

.
= x1 ¨ (x2 ¨x3),

and 2. @ x1 . #̇ ¨ x1
.
= x1 ^ x1 ¨ #̇

.
= x1, that are the associativity of ¨//2 and

the existence of a neutral element. In other words we expect our structure
to form a monoid. Consider the W-structure A

.
= =

�
A˚, ¨

A, #̇A  , where
¨
A is defined as the concatenation of words seen in the previous section.

Clearly, this structure meets our axioms choosing #̇A = # as the neutral
element. In generally within the first order logic theory we are interested
in checking whether we can unify two pattern to make them equal in
terms of our alphabet A. The only atomic formula is a word equation
formally given as follows:

Definition 2.4. Let a, b P PatA be W terms. The formula a
.
= b is called a

word equation. Furthermore, we call a set of word equations E a system of
word equations.

By left hand side respectively right hand side (or short sides) of the
word equation a

.
= b we refer to the pattern a, respectively b. Let WEQA =

PatA ˆ PatA denote the set of all word equations over PatA. The length of
a word equation is a natural extension of the length function defined for
words. For a word equation a

.
= b the length is given by |a| + |b| and the

length of a system of word equations E is given by Âa
.
=bPE (|a| + |b|). The

length of a solution h of a WE a
.
= b is given by 2 ¨ |h(a)| which naturally

extends to system of word equations. We call a solution h minimal whenever
there does not exist another solution with shorter length. Recall, in this
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section we only consider the W-structure A
.
= and therefore omit A

.
= while

using the satisfiability relation |ù.

Example 2.5. Consider the system of word equations

E = { x1abx2 =̇ ax1x2b, x1b .
= ax2 }

and substitution h = { x1 fiÑ a, x2 fiÑ b }. By applying the substitution to
the system of word equations we get

h (x1abx2) = h (x1) ab h (x2) = aabb = a h(x1) h(x2) b = h(ax1x2b)

and h(x1b) = ab = h(ax2).

Therefore h |ù E, since h is a solution to both equations.

Karhumäki, Mignosi, and Plandowski [68] showed that for every sys-
tem of word equations, a single equation can be constructed which is
satisfiable if and only if the initial system was satisfiable. The solution to
the constructed word equation can be directly transferred to a solution of
the original word equation system. Therefore, systems of word equations
do not add expressiveness. The following theorem states this results.

Theorem 2.6. [68] Let e1 = a1
.
= b1, e2 = a2

.
= b2 P WEQA and let a, b P A

such that |e1|a = |e2|a = |e1|b = |e2|b = 0 then we have

h |ù e1 ^ h |ù e2 iff h |ù a1 a a2a1 b a2
.
= b1 a b2b1 b b2.

The satisfiability problem for word equations is an important problem
in both mathematics and computer science. For instance, in an attempt
to solve Hilbert’s tenth problem [61] in the negative, Markov showed
a reduction from word equations to Diophantine equations (see [70, 85,
87]), in the hope that word equations would prove to be undecidable.
However, Makanin [87] proved in 1977 that the satisfiability of word
equations is, in fact, decidable. Considerable effort has also been spent
identifying the complexity of deciding the satisfiability of a given equation.
After a sequence of intermediate results [85], Plandowski [94] showed
that this problem is in PSPACE. In a series of recent papers [65, 66], Jeż
applied a new elegant technique called recompression to word equations
to show that word equations can be solved in non-deterministic linear
space. However, there is a mismatch between the aforementioned upper
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bounds and the only known lower bound: solving word equations is
NP-hard.

2.2.2 Linear Diophantine inequalities

Given the vocabulary L =
�
+//2,§/2, 0̇

 
. We consider the S1 fragment

of the first order logic formulae FO(L) being characterised by the following
axioms 1. @ x1 . @ x2 . @ x3 . (x1 + x2) + x3

.
= x1 + (x2 + x3), 2. @ x1 . @ x2 .

x1 + x2
.
= x2 + x1, and 3. @ x1 . 0̇ + x1

.
= x1 ^ x1 + 0̇ .

= x1, that are the
associativity and commutativity of +//2 and the existence of a neutral
element. Secondly, we are axiomatising § /2 to be an total ordering on
our domain by adding 1. @ x1 . x1 § x1, 2. @ x1 . @ x2 . x1 § x2 _ x2 § x1,
and 3. @ x1 . @ x2 . @ x3 . (x1 § x2 ^ x2 § x3) Ñ x1 § x3, that are reflexivity,
symmetry and transitivity of §. Moreover, we have monotonicity, that is
@ x1 . @ x2 . @ x3 . x1 § x2 Ñ x1 + x3 § x2 + x3. Consider the L-structure Al =�
Z,+Z,§Z, 0̇Z

 
, where +Z and §Z are defined as the commonly known

addition respectively total ordering within Z. Clearly, this structure meets
our axioms choosing 0̇Z = 0 as the neutral element. As an abbreviation
for repeated addition we introduce the multiplication by a constant using
¨, e.g. we write x1 + x1 + x1 as 3 ¨ x1. In general we are interested in finding
positive integer solutions to linear inequalities – commonly called linear
Diophantine inequalities which meet the two axioms of FO(L) and are
defined as following:

Definition 2.7. A linear Diophantine (in)equality is defined by

Â
xPX

cx ¨ x ôŸ c

where c, cx P Z, ôŸ P {§, .
= } and x P X are variables. We denote the set

of all linear (in)equalities by LinC.

Note, the commonly known orderings can be derived by using § of
our vocabulary L. Using the rules described in [6] allows us to use the
orderings †,°,• as abbreviations as following:

Â
xPX

cx ¨ x
.
= c reduces to Â

xPX
cx ¨ x § c and Â

xPX
cx ¨ x • c,

Â
xPX

cx ¨ x † c reduces to Â
xPX

cx ¨ x § c + (´1),
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Â
xPX

cx ¨ x • c reduces to Â
xPX

´cx ¨ x § ´c,

Â
xPX

cx ¨ x ° c reduces to Â
xPX

´cx ¨ x § ´c + (´1).

Nevertheless, for the remainder of this work we restrict our setting, without
loss of generality, to linear Diophantine inequalities with § as the only
operator.

Example 2.8. Consider the system of linear inequalities

L = { x1 + 2 ¨ x2 § 3, x1 + 2 § 5 }

and substitution h = { x1 fiÑ 2, x2 fiÑ 0 }. By applying the substitution to L
we get h (x1 + 2 ¨ x2) = 2 + 2 ¨ 0 = 2 § 3

and h(x1 + 2) = 2 + 2 § 5.

Therefore h |ù L, since h is a solution to both linear inequalities.

Finding solutions to linear inequalities can be divided into two ques-
tions: mapping all variables to 1. integer solutions over Z, and 2. postive
integer solutions over N. Considering integer solutions is known to be
solvable in deterministic polynomial time [36], whereas it was proven to
be NP-complete due to a reduction based on the subset sum problem if we
restrict ourselves to positive solutions (cf. [67] and the references therein).

2.2.3 Regular membership constraints

As for word equations regular membership constraints are built on top of
two disjoint alphabets: terminals A and variables X . In general a regular
constraints asks whether a pattern a P PatA is a member of a regular
language defined by a regular expression over PatA.

Given the vocabulary Re =
�

¨//2, Y//2, ˚//1, //1, Ṗ /2, Ḣ, #̇
 

. We
consider the S1 fragment of the first order logic formulae FO(R) be-
ing axiomatized as 1. associativity and the existence of a neutral element
#̇ of ¨//2, 2. associativity, commutativity, the existence of a neutral ele-
ment Ḣ and idempotents @ x1 . x1 Y x1

.
= x1 of Y//2 and, 3. distribu-

tivity, @ x1 . @ x2 . @ x3 . x1 ¨ (x2 Y x3)
.
= (x1 ¨ x2) Y (x1 ¨ x3), 4. annihilation
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by Ḣ, @ x1 . x1 ¨ Ḣ
.
= Ḣ ^ Ḣ ¨ x1

.
= Ḣ, 5. @ x1 . x1 § x1. In order to for-

mally define our many-sorted Re-structure we define regular expressions
RegExCA over four operations, namely the concatenation ¨ : RegExCA ˆ

RegExCA Ñ RegExCA, union Y : RegExCA ˆ RegExCA Ñ RegExCA, Kleene
star ˚ : RegExCA Ñ RegExCA, and complement : RegExCA Ñ RegExCA. On
top of these operations we define the set of regular expressions RegExCA
inductively as follows: we have #, H, a P RegExCA for a P A. Furthermore,
given R1, R2 P RegExCA we have R1 ¨ R2, R1 Y R2, R˚

1 , R1 P RegExCA.

Consider the many-sorted Re-structure

Ae = { RegExCA, A˚, ¨
A, #̇A, ¨

RegExCA , Y
RegExCA ,

˚
RegExCA , RegExCA , Ḣ

RegExCA , #̇RegExCA , Ṗ
A RegExCA },

where ¨
A is defined as the concatenation of words seen in the previous

section and #̇A = # P A˚. Our regular expressions operations over RegExCA
are defined as commonly known, as well as the constants Ḣ

RegExCA and
#̇RegExCA

The semantics L : RegExCA Ñ 2PatA are given by L(a) = { a } for
a P A Y { # }, L(H) = H. For R1, R2 P RegExCA, let R1 ¨ R2 = { a ¨ b

�� a P

L(R1), b P L(R2) }, R1 Y R2 = L(R1) Y L(R2), L(R˚

1 ) = L(R1)˚, and
L(R1) = A˚

zL(R1). Note, all regular expression terms must be grounded
(i.e. cannot contain variables). The relation Ṗ

A RegExCA is defined as the
classical set membership predicate P.

Clearly, this many-sorted structure meets our axioms, as they form a
combination of the previously seen monoid and a classical Kleene-algebra,
together with a new membership predicate Ṗ

A RegExCA .
We are now ready to define a regular membership constraint.

Definition 2.9. Let a P PatA and R P RegExCA. We call

a Ṗ
A RegExCA R

a regular membership constraint. Let RegA denote the set of all regular
membership constraints.

Example 2.10. Consider the set of regular membership constraints

R = { x1abx2 Ṗ a(a Y b)˚, x1b Ṗ a˚b˚ }

17
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and substitution h = { x1 fiÑ #, x2 fiÑ b }. By applying the substitution to R
we get h (x1abx2) = h (x1) ab h (x2) = abb Ṗ a(a Y b)˚ and h(x1b) = b Ṗ a˚b˚.
Therefore h |ù R, since h satisfies the set of regular membership constraints
R.

Finding a solution within the theory of regular expression membership
predicates is known to decidability [4]. Within this work, we reprove this
result purely using classical automata-based methods in Section 4.3. There
are many extensions for this theory influenced by practical needs, whereas
for some of them we prove their decidability respectively undecidability
in the aforementioned section.

2.3 Combination of logical theories

Typically the logical theories discussed in the previous section are com-
bined to new many-sorted structures. Motivated by applications in formal
verification, the expressiveness of the previously introduced theories alone
is not sufficient. In the following we introduce a combination of linear in-
equalties with word equations and regular membership constraints as well
as the combination of all aforementioned theories. Linear inequalties are
introduced to reason about the length of a potential solution to a variable.
Consequently, we introduce a new function mapping patterns to an integer.
Let lenAÑZ be the length function defined for a pattern a P PatA and an
assignment h P HA by lenAÑZ(a) = |h(a)|. Linear constraints using the
length function are commonly called linear length constraints and formally
defined as follows:

Definition 2.11. A linear length constraints is defined by

Â
xPX

cx ¨ len(x) ôŸ c

where c, cx P Z, ôŸ P {§, .
= } and x P X . We denote the set of all linear

length constraints by Lin.

Note, a length constraint over an arbitrary pattern a P PatA can easily
be brought into the above form by considering its integer abstraction, being
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defined by
absA(a) =

 

Â
xPX

|a|x

!
¨ len(x) + Â

aPA
|a|a.

In terms of decidability even though the theories themselves are de-
cidable their combination might even be undecidable or of unknown
status.

2.3.1 Word equations with length constraints
Consider the vocabulary

WL = W Y L Y { len//1 } =
�

¨//2, #̇,+//2,§ /2, 0̇, len//1
 

.

We consider the S1 fragment of the first order logic formulae FO(WL)
having the axioms for the aforementioned fragments for word equa-
tions and linear Diophantine inequalties as introduced in Section 2.2.1
and 2.2.2. Note, the new function len//1 derives its axiom from the
fragment of linear Diophantine inequalties. Consider the WL-structure
A

.
=
l =

n
A˚,Z, ¨

A, #̇A,+Z,§Z, 0̇Z, lenAÑZ
o

, again simply being a combi-

nation of the two previously introduced fragments A
.
= and Al , together

with the function lenAÑZ. We denote the set all word equations with
length constraints by WLA = WEQA Y LinC Y Lin.
Example 2.12. We revisit the system of word equations

E = { x1abx2 =̇ ax1x2b, x1b .
= ax2 }

seen in Example 2.5 equipped with the set of linear length constraints

L = { len(x1) + 3 § len(x2) } .

The assignment h = { x1 fiÑ a, x2 fiÑ b } does not yield a solution since
len(h(x1)) + 3 = |a| + 3 = 4 ⇥ 1 = |b| = len(h(x2)). In general the added
length constraint disallows any solution to solely looking at the word
equation. The word equation x1b .

= ax2 is only satisfiable whenever an
assignment h satisfies |h(x1)| = |h(x2)|.

Prominently, the decidability of the theory of word equations enhanced
with a length function remains a major open problem in theory. Catching
up Markov’s ideas, in [88, 89] a reduction from the more powerful theory
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of word equations with linear length constraints to Diophantine equations
is shown.

2.3.2 Regular membership and length constraints

As for word equations and length constraints, the combination of regular
expression membership constraints and length constraints over string
variables is achieved by merging the two vocabularies R and L, as well as
adding the new length function. Let

RL = Re Y L Y { len//1 }
=
�

¨//2, Y//2, ˚//1, //1, Ṗ /2, Ḣ, #̇,+//2,§ /2, 0̇, len//1
 

be a vocabulary. We consider the S1 fragment of the first order logic
formulae FO(RL) having the axioms introduced for regular membership
constraints and linear Diophantine inequalties in Section 2.2.3 and 2.2.2.
We define the many-sorted RL-structure

Ael = { RegExCA, A˚,Z¨
A, #̇A, ¨

RegExCA , Y
RegExCA , ˚

RegExA , RegExCA ,

Ḣ
RegExCA , #̇RegExCA , Ṗ

A RegExCA ,+Z,§Z, 0̇Z, lenAÑZ },

again simply being a combination of the two previously introduced frag-
ments Ae and Al , together with the function lenAÑZ. We denote the set of
all regular expression membership constraints with length constraints by
RLA = RegA Y LinC Y Lin.

Example 2.13. Consider the set of regular membership constraints seen in
Example 2.10 R = { x1abx2 Ṗ a(a Y b)˚, x1b Ṗ a˚b˚ }

and the linear length constraints

L = { len(x1) + 3 § len(x2) } .

The assignment h = { x1 fiÑ #, x2 fiÑ aaa } yields a solution since h(x1ab
x2) = abaaa Ṗ a(a Y b)˚, h(x1b) = b Ṗ a˚b˚ and len(x1) + 3 = len(#) + 3 =
3 § 3 = len(aaa) = len(x2). Therefore h |ù R Y L, since h satisfies the set of
regular membership constraints R and the length constraints L.

The decidability of this combination was also proven in [4]. In Sec-
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tion 4.3 we reprove the decidability, again purely using automata-based
methods. The proof for this theory will be used to design a decision
procedure leading to an implementation of a solver for regular expres-
sion membership constraints involving linear length constraints over our
variables.

2.3.3 Word equations combined with regular membership
and length constraints

The largest and most expressive theory considered in this work is the
combination of all aforementioned theories. In this sense the considered
vocabulary WRL is the union of the theories combining word equations
and length constraints and the combination of regular membership con-
straints and length constraints, meaning WRL = WL Y RL. Following
this trail the logic formulae over FO(WRL) derive their axioms from
the previously mentioned theories, too. Consequently, the many-sorted
WRL-structure A

.
=
el is again obtained by the union of A

.
=
l and Ael . We

denote the set of all so called string constraints by WRLA = RLA Y WLA.

Example 2.14. Consider the word equation ax1abx2abx1b .
= x2bax1aabbx1,

the length constraint len(x1) ¨ 2 § len(x2), and the regular expression
membership constraint x1 Ṗ b˚. The assignment h = { x1 fiÑ bb, x2 fiÑ abba }
is a solution to the conjunction of all constraints since we have

h(ax1abx2abx1b) = abbababbaabbbb = h(x2bax1aabbx1),
len(x1) ¨ 2 = |bb| ¨ 2 = 4 § 4 = |abba| = len(x2), and

h(x1) = bb Ṗ b˚.

Solely considering the theory of word equations and regular expression
membership predicates is known to be decidable [85]. We do not explicitly
state this combination here, since it is of minor interest for the following
chapters. However, it is not known whether the satisfiability problem for
word equations involving all aforementioned theories is decidable or not.
Moreover, already in the presence of other simple and natural constraints,
like string-number conversion, which we will introduce in the next section,
this problem becomes undecidable (cf. [41]).

Remark 2.15. To ease readability whenever we consider many-sorted the-
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Table 2.1. Overview of the introduced theories.

Vocabulary name Vocabulary components Structure name

Word equations W { ¨//2, #̇ } A
.
=

Linear Diophantine inequalities L
�
+//2,§/2, 0̇

 
Al

Regular membership constraints Re
�

¨//2, Y//2, ˚//1, //1, Ṗ /2, Ḣ, #̇
 

Ae
Word equations with length constraints WL W Y L Y { len//1 } A

.
=
l

Regular membership and length constraints RL Re Y L Y { len//1 } Ael
Word equations with regular membership and length constraints WRL WL Y RL A

.
=
el

ories and not only reason about variables within pattern over PatA, we
distinguish between string variables x and integer variables x̄ by adding a
bar to the variable.

In Table 2.1 we overview all introduced theories. Next to the used
abbreviation for the vocabulary and the structure of a theory, we provide
the actual components of the corresponding vocabulary to ease lookup.

2.4 Higher order functions and relations

A recent trend supplements word equations, length- and regular member-
ship constraints with higher order string operations. These operations are
introduced within the SMT-LIB [111] standard and consists of commonly
used operations used in programming languages to cope with strings.
Within this section we introduce the used operations as abbreviations
which make use of the operations discussed in the logical theory forming
string constraints. Some of the newly operations contain existential quanti-
fiers and therefore, due to negation within our formulae might introduce
universal quantifiers. Consequently, even restricting certain theories to not
cope with the full defined spectrum but the expressiveness of the following
operations lead to new combined fragments not being as powerful as the
whole combination described in the previous section but still lead to an
undecidable sub theory. Many of these smaller combined theories are
discussed in [41] and the references therein and classified in regards to
their decidability status.

The first function at : PatA ˆZ Ñ A simply takes a pattern a P PatA
and an integer i P Z and returns a single constant of the unified pattern
by an assignment h P HA at the ith position, namely h(a)[i]. If i R [|h(a)|]
the function at simply returns the empty word #. Formally we define this
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function by

at(a, i) = b iff (0 † i § len(a) Ñ (D x1 . D x2 . a
.
= x1 ¨ b ¨ x2

^ len(x1) = i ´ 1
^ len(b) = 1
^ len(x2) = len(a) ´ i))

((0 § i _ i • len(a)) Ñ b = #),

for a P PatA, i P Z, and b P A.
The second function substr : PatA ˆ Z ˆ Z Ñ A˚ takes a pattern

a P PatA and two integers i, n P Z and returns a unified pattern b P A˚

by a h P HA such that b is a factor of h(a) starting at the ith position and
having at most length n (|b| § n). Whenever the integer i R [|h(a)|] or
n § 0 the function substr return # (b = #). Formally the function is defined
by

substr(a, i, n) = b iff ((0 † i § len(a) ^ n ° 0) Ñ (D x1 . D x2 . a
.
= x1 ¨ b ¨ x2

^ len(x1) = i ´ 1
^ len(x2) = max(len(a) ´ ((i ´ 1) + n)), 0)

^ ((0 • i _ i • len(a) _ n § 0) Ñ b = #),

for a P PatA, i, n P Z, and b P A˚.
The next three relations are satisfied, whenever for two, by an assign-

ment h P HA unified, patterns a, b P PatA, the pattern a is a factor, prefix,
or suffix of b, respectively. Formally these relations contains : PatA ˆ PatA,
prefixof : PatA ˆ PatA, and suffixof : PatA ˆ PatA are defined as follows:

contains(a, b) iff D x1 . D x2 . b
.
= x1 ¨ a ¨ x2,

prefixof(a, b) iff D x1 . b
.
= a ¨ x1, and

suffixof(a, b) iff D x1 . b
.
= x1 ¨ a,

for pattern a, b P PatA.
The function indexof : PatA ˆ PatA ˆ Z Ñ Z takes two patterns

a, b P PatA and an integer i P Z and returns the initial position of the
first occurrence of h(b) in h(a) after position i, if any, using a suitable
substitution h P HA. Whenever h(a) does not contain the factor h(b) after
position i the function indexof simply returns ´1. Note, if i R [|h(a)|] we
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also return ´1. Formally this function is defined by

indexof(a, b, i) = j iff (contains(b, a) Ñ D x1 . D x2 . D x3 . a = x1 ¨ x2 ¨ x3

^ len(x1) = i ´ 1
^ (contains(b, x2) Ñ (D x4 . D x5 . x2

.
= x4 ¨ x5

^ contains(b, x4)

^ prefixof(b, x5)

^ j = i + len(x4)))

^ ( contains(b, x2) Ñ j = ´1))
^ ( contains(b, a) Ñ j = ´1),

for pattern a, b P PatA and i, j P Z.
The replace : PatA ˆ PatA ˆ PatA Ñ PatA takes three pattern a, b, g P

PatA. For an assignment h P HA we replace the first occurrence of h(b)
in h(a) by h(g), if h(b) is a factor of h(a). Whenever b = #, replace
simply returns a ¨ g. Otherwise, if h(b) is not a factor of h(a), we return a.
Formally the replace function is defined by

replace(a, b, g) = d iff (b = # Ñ d
.
= a ¨ g)

^ (( b
.
= # ^ contains(b, a)) Ñ d

.
= a)

^ (( b
.
= # ^ contains(b, a)) Ñ

(D x1 . D x2 . a
.
= x1 ¨ b ¨ x2

^ contains(b, x1)

^ d
.
= x1 ¨ g ¨ x2)),

for pattern a, b, g, d P PatA.

The next functions and relations describe conversions between pattern
PatA and integers Z. To ease readability of the following definitions in-
stead of decimal numbers we restrict ourselves to binary numbers ranging
over { 0, 1 }. As commonly known this does not restrict expressiveness. Fur-
thermore we assume the existence of a function code : Letters Ñ { 0, 1 }˚

over a set of symbols Letters Ñ A, mapping each c P Letters to the
binary representation of a unique positive integer i P N without lead-
ing zeros, i.e. Letters = { a, b, c } and code = { a fiÑ 0, b fiÑ 1, c fiÑ 10 }.
Within the SMT-Lib Standard 2.6, which introduced the Unicode standard
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we address 196608 different characters. Therefore, in this case we have
|Letters| = 196608.

The first relation isDigit : PatA simply checks whether a pattern a P

PatA is a single constant which has a binary representation by using the
function code. Formally we define the relation by

isDigit(a) iff len(a) = 1 ^ a Ṗ dom(code),

for a pattern a P PatA.
Since our goal is to use the previously discussed function code as a

total function on all possible constants within our pattern a P PatA, as well
as a conversions from a binary sequence to the corresponding character
(whenever present in our alphabet Letters), we define two functions
fromCode : Z Ñ A˚ and toCode : A˚

Ñ Z. Thereby, fromCode maps a
binary number i P Z to its constant addressed by code and to the empty
word #, whenever the input i is not in the image of code. Consequently,
toCode maps a pattern a P PatA to its binary representation made by
code and to ´1 if a R dom(code). Formally these functions are defined as
follows:

fromCode(i) = a iff (i • 0 ^ i § |dom(code)| Ñ i = code(a))

^ (i † 0 _ i ° |dom(code)| Ñ a = #)

and

toCode(a) = i iff (isDigit(a) Ñ i = code(a))

^ ( isDigit(a) Ñ i = ´1)

for a P PatA, i P Z.
The remaining two functions, toInt : PatA Ñ Z and fromInt : Z Ñ

PatA allow us converting a positive integer into its string representation,
simply by using its binary representation over { 0, 1 }, and a string only
consisting of digits within { 0, 1 } (possibly having leading zeros) to its
positive integer representation. Whenever the above mentioned criteria
are not met, we return ´1 and the empty word #, respectively. To ease
readability let numstring : Nˆ { 0, 1 }˚ be a relation, which contains all
pairs of positive integers i P N and words w P { 0, 1 }˚ where w – again,
possibly having leading zeros – is the binary representation of i. Formally
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this relation is defined by

numstring(i, w) iff w Ṗ(0 Y 1)˚
^ |w| ° 0 ^ Â

jP[|w|]

at(w, j) ¨ 2|w|´j = i.

Based on this we define

toInt(a) = n iff ( a
.
= # ^ a Ṗ(0 Y 1)˚

Ñ numstring(n, a))

^ (a
.
= # _ a Ṗ(0 Y 1)˚

Ñ n = ´1)

and

fromInt(n) = a iff (n • 0 Ñ numstring(n, a))

^ (n † 0 Ñ a = #)

for a pattern a P PatA and n P Z.

Remark 2.16. As mentioned before, in practice the conversions functions
do not convert to binary but decimal representation. To ease readability
we defined the above functions to cope with binary numbers.
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Chapter 3

String Constraints in Practice

“The fact that we survive at all is
kind of a surprise.”

RVIVR

Stated in [8] and the references therein the first applications of string
constraint solving goes back to the late 1980s, the time where constraint
programming [98] arose, by the authors of Trilogy [115] – a language pro-
viding strings, integer, and real constraints. After many years of stagnation
and only minor interest into the topic, in 2010 string constraints started
playing a central role within the formal verification community. In this
chapter we will cover the most general applications of string constraints,
solving strategies, and commonly used solvers.

3.1 Verification of String Inputs

Nearly any broadly used programming language deals with the datatype
of strings and operations such as comparison, membership and manip-
ulation of strings. Consequently analysing nowadays software involves
the investigation of this datatype which strictly leads us to the need of
ensuring correct handling of strings. Following [29] the common uses of
strings in program verification are input sanitisation and validation (cf.
[90]), query generation for databases (cf. [56]), and dynamic code and
data generation (i.e XML, JSON, and HTML) (cf. [92]). These use cases
are closely related to each other: most modern software applications al-
low users to provide input via forms. Based on the input the application
generates database queries, data being presented within the application,

27



3. String Constraints in Practice

Figure 3.1. XKCD [119] comic visualising an SQL injection

or in a server-client side scenario of web applications even code which is
executed on the users devices. As user input always gives the opportunity
of gaining unwanted access, submitting malicious or removing data from
the servers, avoiding errors within applications using strings is crucial.
Unfortunately, like many other program analysis problems, the problem of
determining the set of all unwanted inputs is undecidable [29]. In general
identifying potential security vulnerabilities within these tasks is called
string analysis within the formal verification community.

Taking a closer look at all reported security related vulnerabilities listed
in the Common Vulnerabilities and Exposures Repositories (CVE) [37]
two of the most occurring issues are related to strings. That are Cross-site
Scripting and SQL injection. For a Cross-site Scripting attack an attacker
inserts malicious data into an HTML website. A rather common attack
in this regards is publishing a link pointing to a malicious JavaScript file
which is executed on the victims client whenever clicked and possibly
revealing sensitive data to the attacker. A more concrete example is given
in Listing 3.1 originally taken from [29].

1 <?php
2 $www = $_GET["www"];
3 $l_otherinfo = "URL";
4 $www = preg_replace("/[^A-Za -z0 -9�.-@:/]/",

,Ñ "", $www);
5 echo $l_otherinfo . ":�" . $www;
6 ?>

Listing 3.1. A server-side input sanitisation code snippet in PHP taken from [29]
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The example shows vulnerable code from a web application called My-
EasyMarket [15] and was used to sanitize user’s input. In line 2 the
application fetches an external parameter called www into the variable
$www. Within the next line we assign a constant string URL to a variable
$l_otherinfo. Line 5 is supposed to sanitize the input stored in $www.
The PHP function preg_replace replaces every string matching a regular
language with a given string. Within the example every string within the
variable $www matching the regular expression /[ˆA-Za-z0-9 .-@:/]/ will
be erased (replacement by the empty string). In line 5 we output URL
and the sanitized input of the variable $www. The aforementioned error lies
within the sanitisation step made in line 5: the stated regular expression
does not meet the developers intention of removing everything other than
alphanumeric characters and the symbols ., -, @, :, and /. The developer
missed the special semantics of - within a regular expression. Instead of
listing all unwanted symbols by .-@, we specified the union of all symbols
lying between . and @ within the present order. Since < is within this
range an attacker has the possibility of invoking HTML-code to gather
private data. The correct regular expression using proper escaping has the
following form /[ˆA-Za-z0-9 .\-@:/]/.

An SQL injection attack describes the automatic generation of a data-
base query based on a user’s input which contains possibly malicious
data. A well known example depicted in Figure 3.1 was published by
XKCD [119]. The user’s input

Robert’); DROP TABLE Students;--

finishes an internal SELECT query and executes the removal of all students
data. The previous attack scenarios, also the on visualised in Figure 3.1, are
caused by insufficient validation and sanitisation of the input and again
show the need of a proper input analysis. Especially the error within the
regular expression in Listing 3.1 is extremely hard to spot. This calls for
proper automatic string analysis mechanisms.

Due to the ever growing importance of strings many analysis tech-
niques have been developed – still often not used as we discussed previ-
ously.

In the following we highlight the common used techniques:
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1. automata-based (cf. [33]) string analysis uses the source code and bui-
lds an over approximation of the program using a symbolic finite
automaton per string variable to detect possible vulnerabilities. In that
sense each finite automaton represents the set of possible solutions to a
string variable.

2. relational string analysis extends the automata-based approach by the
ability of tracking relationships between variables by using a multi-
track-automata, each track modelling a single string variable instead of
a simple finite state automaton per variable not being coupled, and

3. string constraint solving [8] which verifies the satisfiability of a formula
in first order logic being a representation of the source code. The
formula is obtained by performing symbolic execution on a string
manipulating program.

Since string constraint solving builds the core of the presented work
we will focus on this type of string analysis. The next section introduces
the commonly used underlying mechanisms for solving string constraints.

3.2 Underlying Mechanisms for Solving String
Constraints

According to [8] solving formulae involving string constraints is primarily
achieved by using constraint logic programming (CP) [98] and satisfiability
modulo theories (SMT) [20] solvers. Within this section we briefly introduce
both mechanisms and their extensions to deal with string constraints.

3.2.1 Strings in Constraint Logic Programming
Constraint Logic Programming was first introduced in the 1970s within
the context of artificial intelligence [53] but found its first practical appli-
cations on scalable systems in the late 1990s accommodating tools like
Gecode [101] and Chuffed [35]. Within CP solving we ask whether a
constraint satisfaction problem (CSP), a structure consisting of variables,
finite variable domains and constraints over the given variables, is sat-
isfiable. A CSP is satisfiable if we are able to find an assignment for all
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{ x1 + 2 ¨ x2 § 3, x1 + 2 § 5 }

{ 2 ¨ x2 § 3 } { 1 + 2 ¨ x2 § 3 } { 2 + 2 ¨ x2 § 3 }

SAT UNSAT

x1

x2

0
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2

0, 1
2

0, 1 2

0

1, 2

Figure 3.2. Solving the linear inequalties given in Example 3.1

variables mapping to values within the attached domains such that the
constraints are satisfied. More formally speaking a CSP is a triple (X, D, C)
consisting of a tuple of variables X = (x1, . . . , xn) such that xi P X for
i P [n]0, a finite tuple of domains D = (D1, . . . , Dn) for the variables X,
and a finite set of constraints C = { C1, . . . , Cm } for n, m P N. Moreover,
each constraint Ci = (Si, Ri) is a tuple consisting of Si = (yi1 , . . . , yi`)
with 0 † ` § n and there exists k P [n] such that yij = xk for all j P [`]
the tuple of variables appearing in Ci and Ri an |Si|-ary relation over
the variables of Si. A mapping h : X Ñ

S
D such that h(xi) P Di for

all i P [n] is called a solution to (X, D, C) if for all (Si, Ri) P C we have
(h(y1), . . . , h(y`)) P Ri. The set of constraints is usually stated implicitly,
e.g. for variables x1, x2 both having the domain [3] we simply write x1 = x2
instead of ({ x1, x2 } , { (0, 0), (1, 1), (2, 2), (3, 3) }. The general mechanism
of a CP solver is the combination a basic backtracking while keeping track
of a partial solution and the propagation of gained knowledge to prune
the domains by removing infeasible values.

Example 3.1. Given a CSP P = ((x1, x2), ([2], [2]), { x1 + 2 ¨ x2 § 3, x1 +
2 § 5 }). In Figure 3.2 we depict the graph dealing within all possible
assignments with our given domains by first branching on variable x1 and
afterwards on x2. A CP solver initially selects an assignment for a variable,
let us say it sets h(x1) = 0. Afterwards he propagates the reduced linear
inequality which immediately leads to a reduction of possible assignments
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for x2 within the given domain, namely { 0, 1 }. The solver afterwards
simply selects one of the values and, i.e. returns h = { x1 fiÑ 0, x2 fiÑ 1 }
which is indeed a solution to the CSP.

We have h(x1) = 0 P [2], h(x1) = 1 P [2],

h(x1) + 2 ¨ h(x2) = 0 + 2 ¨ 1 = 2 § 3,

and h(x1) + 2 = 0 + 2 § 5.

Therefore h |ù P.
The above example looks similar to Example 2.8 seen within the intro-

duction of our logical theories. In fact all that is required additionally to
encode linear (in)equalities into a CSP are the finite domains.

Let (X, D, C) be a CSP. To cope with strings (cf. [9] and the references
therein) we define an equality predicate over our terminal alphabet A˚ as
seen in Section 2.2.1. Considering all possible solution to the variables xi
in X leads to an infinite domain for all variables within the tuple X, i.e.
the domain A˚. Therefore, a classical approach is either defining an exact
bound k (i.e. Ak ) or an upper bound k (i.e. A§k = { w P A˚

| |w| § k })
for some k P N. This naturally leads to finite domains. The actual solving
of a CSP is now done in exactly the same way as described previously
- we prune the domain of possible solutions by propagating gathered
knowledge.
Example 3.2. Let A = { a, b, c } and

P = ((x1, x2), (A§2, A§2), { ax1abx2abx1b .
= x2bax1aabbx1 })

a CSP. Since we are not able to propagate knowledge at this initial position
in the search, we assume the solvers starts branching on x1. Following the
assignment h(x1) = # reveals the word equation aabx2abb .

= x2baaabb. A
smart propagator is know able to prune the domain of x2 to the set { aa },
since any other assignment within A§2 directly leads to an unsatisfiable
substitution of x2. Thus, by following this path, we obtain the solution
h(x1) = # and h(x2) = aa.

The main drawback of CP approaches with respect to string solving is
the finite domain which needs to be fixed in advanced. On the good end
this naturally leads to decidability even if considering the combination
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of all fragments presented in the previous chapter. Moreover, the finite
domains directly lead to an NP upper bound.

3.2.2 Strings in Satisfiability Modulo Theories
Within the propositional logic satisfiability problem (see Section 2.1.1) we
aim to decide whether a formula containing propositional logic variables
and classical connectives is satisfiable or not. In our case (String Constraint
Solving) and also many other problems we relay on a richer language to
express our goals. This is where satisfiability modulo theories (SMT) comes
into play. The key insight is to incorporate theories (as seen in Section 2.2)
into the classical DPLL algorithm [39] by Davis, Putnam, Logemann, and
Loveland to support a more expressive input language. To this extend most
modern SMT solvers implement an extension of this well known algorithm
called DPLL(T) [93]. The core idea is the interaction of the theory solvers
which decompose their parts of the input formula into a propositional
logic satisfiablity problem by building an over approximation, asking
the core SAT solver about the satisfiability and a model, respectively, of
their abstraction, and then checking feasibility of the original formula [44].
Therefore, word equations get their attention within a sub solver handling
exactly the theory introduced in Section 2.2.1.

Example 3.3. We will review the interleaving within a DPLL(T) SMT-solver
and the general behaviour. Consider a variant of the Example 2.14 con-
sisting of the word equation ax1abx2abx1b .

= x2bax1aabbx1 and the length
constraint len(x1) ¨ 2 § len(x2). Firstly, the solver builds a propositional
logic abstraction to check whether the formula is – in principle – satisfiable.
In that sense each atom of the formula is represented by a propositional
logic variable. In our setting this leads to the introduction of two proposi-
tional logic variables b1 and b2 representing the word equation and the
length constraint, respectively. The conjunction of both constraints lead to
the resulting formula b1 ^ b2 which is satisfiable if both constraints are sat-
isfied. Secondly, the constraints which need to be satisfied according to the
model produced for the abstraction are distributed to their theory solvers.
Since in our example both constraints has to be satisfied we distribute the
word equation to the string solving theory solver and the linear inequalty
to the arithmetic solver. The theory solvers try to deduce an assignment.
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During the search, the theory solvers assert so called theory lemmas back
to the core algorithm which triggers the initially discussed abstraction
and distribution of atoms again. Our string solver can for example de-
duce a theory lemma stating len(x2) • 2 which is then distributed to the
arithmetic solver. This interleaving is repeated iteratively until we either
deduce the satisfiability, unsatisfiability, or run into a resource limit.

As also seen in Section 2.2 considering combinations of the discussed
theories might lead to an undecidable satisfiability problem, (i.e. the
combination of word equations, (in)equalties, and regular membership
constraints). Given this, termination is not guaranteed when dealing with
these theories, which also forms one of the major disadvantages when
comparing CP and SMT approaches.

Within the next section we introduce several state of the art string
solvers and embed them with respect to their solving strategy.

3.3 String Constraint Solvers

Since string constraints arose practical attention there had be numerous
attempts of solving them in a efficient way. In general all approaches fall
into one of three categories: 1. automata-based, 2. word-based, and 3. un-
folding-based [8]. Within the first approach each variable is represented
by a finite automaton which describes suitable solutions. The formula in
question maps directly to the respective automaton. The second approach
reasons mostly algebraically on a particular constraint, centralising the
structure of words while determining satisfiability. Knowledge obtained
from theoretical observations of particular theories are directly applied
to the input formula. Unfolding-based approaches are characterised by
encoding string constraints into well established formats where efficient
solvers exist. These are for example propositional logic formulae, arith-
metic expression, or bit-vectors.

Each of the introduced category can be divided into three strategies
targeting the length of a solution of a particular variable – A solver either
assumes 1. a fixed length, 2. an upper bound, or 3. an unbounded length
for the solution of the variables. As discussed at the end of Section 3.2.1
having an upper bound on the length of the solution simplifies the solving
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Figure 3.3. Grouping of established solvers based on their behaviour

process drastically but a solver might miss potential solutions larger than
the given bounds.

In practice, all variants are not only used solely but also a combination
of the presented approaches. The most prominent tools (according to the
literature) implementing a word-based approach are CVC4 [16], S3 [113],
and Norn [4] which are all SMT-solvers reasoning about unbounded length
solutions for the variables. The algorithm of CVC4 is based on derivation
rules which are iteratively applied until unsatisfiability is detected or
no further rule can be applied. In the latter case, also called saturated
configuration, the input formula is satisfiable. S3 is build on top of Z3-
str [123] which was the first module to solving string constraints in Z3 [45],
a general purpose SMT-solver. The strategy of Z3-str is treating strings as
primitive types. Each string of constants is systematically broken into sub-
strings, while variables are split into multiple variables until a solved form
is reached. S3 extends Z3-str to cope with regular membership predicates
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and higher level functions used in program analysis. Norn performs
a depth-first search on the given input formula. During the search the
solver applies a sequence of rules, first checking the arithmetic constraints,
followed by an elimination of inequalities, a splitting procedure for word
equations as well as for regular membership constraints to ease the search.
In the end it performs a satisfiability check of the remaining constraints.

In the category of unfolding based approaches we find Gecode [101],
Kaluza [99], and HAMPI [71]. Except for HAMPI, which assumes fixed
length variables, the other tools require an upper bound on the length
of the solution. Both, HAMPI and Kaluza encode string constraints di-
rectly into bit-vector. Gecode, the only CP-solver for string constraints we
overview, uses the concept of dashed strings, which are concatenations of
sets of strings to minimise the domain size for the solver.

Within the automata-based approach the solvers mentioned most often
are Stranger [120], ABC [11], and Slog [116]. All tools also reason on
unbounded length. The tool Stranger is not a string solver but integrates
a technique for solving string constraints within the static analysis of
PHP applications. It implements an automata-based symbolic analysis of
string constraints by computing all possible values a string expression
might have. The tool Slog is build around NFA manipulations represented
by logic circuits. To this extend they avoid determinisation as long as
possible and purely relay on the underlying logic circuits for solving string
constraints. ABC implements a model counting approach, by iteratively
refining an automaton it describes all potential solutions to the considered
input formula.

Next to these solvers, there exist many other approaches which use
interleaving techniques from the above mentioned categories. The tool
PASS [79] only uses automata to speed up the search for a solution of
word equations and regular expression membership constraints. The key
architecture relays on an encoding into parametrized arrays. The solver
does not reason upon unbounded length but requires an upper bound.

The solver Z3-Trau [1], Sloth [62], and OSTRICH [30] are build upon
SMT-solvers but use automata to represent certain structures. Z3-Trau
uses parametric flat automata to deal with string constraints. Sloth [62]
and OSTRICH [30], which is a successor of Sloth [62], use alternating
finite state automata to handle string constraints.
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On the other end the SMT-solvers Z3str3 and Z3seq combine word-
based and unfolding-based approaches. Z3seq reduces word equations
to the theory of sequences and characters. Secondly, it uses Brzozowski
derivatives to solving regular expression membership constraints. Z3str3
uses a technique called theory aware branching. It applies a technique similar
to the rules induced by Levi’s lemma (called arrangements) to simplify
an equation. The resulting word equations are rated according to their
complexity. Z3str3 prioritises simpler word equations over harder ones in
order to speed up the search. Secondly, it uses a fixed length reduction to
bit-vectors to construct the resulting model for a given string constraint.

An exception in all of these categories is a solver called Z3str4 [25].
This solver can be seen as portfolio solver, since it leverages different
solving strategies implemented within Z3, namely Z3str3 [23], Z3seq [45],
and a novel implementation of the length abstraction solver which is an
implementation of filling the positions approach (details will be discussed
in Section 3.5.1) combined with a blocking of used bounds based on previ-
ously discovered counter-examples. Z3str4 uses four different sequences
of solvers (called arms). The arms are selected based on structural proper-
ties of the input formula via probes. Notably, the solver uses the technique
for solving regular membership constraints we establish in Section 4.3.

We overview all mentioned solvers in Figure 3.3.

Nowadays, the most used solvers in literature and industrial applica-
tions are Z3str3 and Z3seq both being part of the Z3-family [45] developed
by Microsoft Research and CVC4 and open source project lead by Clark
Barrett and Cesare Tinelli. Their active development and efficient algo-
rithms make them unavoidable in the area of string solvers. Since both
solvers build up on an SMT infrastructure the developers had a personal
interest in developing a uniform input format. The authors of CVC4 made
a first attempt in establishing a uniform language in 2010 [18, 19] which
was not accommodating strings. After a meeting of developers of Z3
and CVC4 at MOSCA 2019 [58] the SMT-LIB standard in version 2.6 was
released in early 2020 [111] incorporating formal definitions for string
constraints. The SMT-LIB standard incorporates the theory seen in Sec-
tion 2.3.3 together with the associated higher order functions introduced
in Section 2.4. In Figure 3.4 we provide a grammar for the basic operations
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F ::= Atom | (and F F) | (or F F) | (not F)
Atom ::= (= tstr tstr) | Aint | Aext | (str.in_re tstr RE)
Aint ::= (= tint tint) | (< tint tint)
Aext ::= (str.contains tstr tstr) | (str.prefixof tstr tstr) |

(str.suffixof tstr tstr)
tint ::= m | x̄ | (str.len tstr) | (+ tint tint) | (* m tint) |

(str.indexof tstr tstr tint) |

(str.to_int tstr),
with m P Z and x̄ P X

tstr ::= “w” | x | (str.++ tstr tstr) | (str.from_int tint) |

(str.replace tstr tstr tstr) | (str.at tstr tint) |

(str.substr tstr tint tint),
with w P A˚ and x P X

RE ::= “w” | (re.none) | (re.++ RE RE) | (re.comp RE) |

(re.union RE RE) | (re.inter RE RE) | (re.* RE),
with w P A˚

Figure 3.4. Basic SMT-LIB syntax for string constraints.

within the string standard of SMT-LIB 2.6. All operations directly map to
the ones introduced in Section 2.4, which also defines their semantics.

Within the next section we will observe how source code involving
the data type of strings can be translated into a first order logic formula.
The resulting formula will mostly be formatted in SMT-LIB to directly
involve one (or more) of the aforementioned string solvers to search for
vulnerabilities.

3.4 Source Code Verification Involving Strings

We briefly mentioned in Section 3.1 that in order to obtain a formula based
on a programs source code we preform a program analysis called symbolic
execution [72]. We will coarsely cover the intuition of this technique and
will not elaborate the formal background but give a sophisticated intro-
duction by using a concrete example. Symbolic execution is a technique
allowing us to determine what sets of values cause a program to execute
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a particular path. Instead of trying different concrete values it assumes
symbolic ones as inputs and expressions encountered during a symbolic
run will be treated as functions of the corresponding symbolic variables.
A particular location of a symbolic run is represented by the program
counter and a path condition accommodating the symbolic variables. The
path condition corresponding to a location is a constraint which must be
satisfiable whenever we are able to reach the programs location. A graph
representing all possible executions of a program using path conditions is
called symbolic execution tree.

In the following we consider a program written in Python 3 to get an
impression on how a symbolic execution leads us to a formula consisting
of string constraints.

1 def exec_prog(cmd):
2 p = "/servers/dir/to/bin"
3 i = -1 if not "/" in cmd else cmd.rindex("/")

,Ñ # referenced as cmd.indexof ("/")
4 if i == -1:
5 r = cmd
6 else:
7 r = cmd[i:]
8 t = r.startswith("rm")
9 if t:

10 raise RuntimeError("You’re not allowed to
,Ñ remove things!")

11 exec(p + r)

Listing 3.2. Example Python 3 program to remotely execute a program

In Listing 3.2 we present a function influenced by an example given
in [29] which executes a binary on the server running the above script
based on a user’s input. After initialising a constant p to the string /servers

,Ñ /dir/to/bin in line 2 we initialise a variable i to the index of the last
occurrence of a slash. Doing this gives us the index within the string to the
passed path to the binary. If the passed string does not contain a slash we
simply set i to -1. Afterwards, starting in line 4 we either set the variable
r to the suffix of the passed string, starting at position i or just use the
passed input. We want to disallow to execute the program rm. Therefore
in line 8 we check whether our input binary has a prefix rm. An attempt to
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P = "/servers/dir/to/bin" :2
I = cmd.indexof("/") :3

I == -1 :4

R = CMD :5
T = R.startswith("rm") :8

R = CMD[I:] :7
T = R.startswith("rm") :8

T :9
raise RuntimeError
,Ñ ("...") :10

exec(P + R) :11

T :9
raise RuntimeError
,Ñ ("...") :10

exec(P + R) :11

PC0 : true

PC1 : I = ´1 PC4 : I ‰ ´1

PC2 : I = ´1 ^ T

PC3 : I = ´1 ^ T

PC5 : I ‰ ´1 ^ T

PC6 : I ‰ ´1 ^ T

Figure 3.5. Symbolic execution tree corresponding to Listing 3.2

execute rm results in an exception given in line 10. Otherwise the binary
stored in r is executed on the server.

Performing a symbolic execution of the program reveals the symbolic
execution tree depicted in Figure 3.5. Within this figure we represent the
program variables with symbolic variable indicated by uppercase letters
(e.g. cmd by CMD). Rectangle nodes represent expressions updating the
variables and diamond nodes correspond to branching points within the
program. The matching line numbers are written after each condition,
or, respectively expression. By PCi for i P [6] we reference the path con-
dition which is updated while traversing the graph. The graph reveals
four feasible runs guarded by the path conditions PC2, PC3, PC5, and P6
where PC2 : I = ´1 ^ T and PC5 : I ‰ ´1 ^ T guard the exception and
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therefore the possible exploits which we want to avoid. Analysing these
path constraints by unfolding their corresponding functions and predicates
leads to our first order logic formula

indexof(CMD, /, 1) = ´1 ^ R
.
= CMD ^ prefixof(rm,R) (PC2)

and

indexof(CMD, /, 1) ‰ ´1
^ R

.
= substr(CMD, indexof(CMD, /, 1), len(CMD))

^ prefixof(rm,R). (PC5)

Note, we directly used the higher order functions introduced in Sec-
tion 2.4 and as we observed there many of these functions are extremely
difficult to solve. Thus, even for a toy example we clearly see the need for
a proper string analysis.

As we will show later within this work many benchmarks are directly
constructed by using a symbolic execution tool to obtain test data. A rather
prominent example is the tool PyEx [13] – a symbolic executor for Python
programs – used by Reynolds et al. [97] to generate a hard to solve set
for state of the art string solvers (named after the tool – PyEx) of real-life
benchmarks.

3.5 Solving Strategies

In the nature of our many-sorted structure of string constraints we natu-
rally develop algorithms which target a specific theory, i.e word equations,
linear length constraints or regular membership constraints. In the setting
for SMT-solvers there is a permanent interleaving and knowledge sharing
between the different solving strategies, e.g. an algorithm for solving word
equations only needs to consider a certain subset of solutions if there a
restrictions by regular membership constraints on certain string variables.
Within this section, we cover algorithms which directly influenced the
presented work, that are in particular two techniques for solving word
equations. Both algorithms for solving word equations stem from lemmas
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stated within the theory of combinatorics on words.

3.5.1 Filling the positions

Plandowski [94] showed an upper bound of 22O(n4)
on the length of the

shortest solutions of a word equation of length n. It is, however, a widely
accepted conjecture that the length of the shortest solution of a word
equation is, in fact, exponential in n (which would imply, according to [95],
that the satisfiability of word equations is in NP). In this context, one of
the standard methods for solving word equations is the technique of filling
the positions (see [68, 95]). Essentially, this consists of non-deterministically
fixing the length of variables, and then arranging the individual positions
of a solution, as referenced by their origin (e.g. the third letter of the vari-
able x) into equivalence classes connecting them, either by their occurrence
on the same position in different copies of the same variable, or by their
occurrence on corresponding positions on the two sides of the equation.

Let e = a
.
= b P WEQA and vars (e) = { x | |ab|x ‰ 0 } be the set of

string variables occurring within the equation e. The algorithm assumes the
existence of a mapping z : vars (e) Ñ N assigning a length to each variable
occurring within the equation e. Furthermore, let fLenz(a) : PatA Ñ N

defined by

fLenz(a) =

8
><

>:

z(x) if a = x P X ,
1 if a P A,
ÂiP[`]0 fLenz(a[i]) if |a| = ` P N°1,

be a function calculating the length of a pattern being filled with re-
spect to z. Based on this function we define another function having
the ability of querying a specific position of a pattern under z, namely
fPosa

z : [fLenz(a)]0 Ñ Nˆ (A Y X ) defined by the following equivalence

fPosa
z (i) = (j, x) iff D p P [fLenz(a)] . fLenz(a[1 : p]) † i § fLenz(a[1 : p + 1])

^ j = i ´ fLenz(a[1 : p]) ^ a[p + 1] = x.

We shall call the sequence obtained by fPosa
z (1) . . . fPosa

z (fLenz(a)) the
filled pattern under z. The next step is defining an equivalence relation
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Rz Ñ NˆN as follows

(i, j) P Rz iff fPosa
z (i) = fPos

b
z (j)

_ fPosa
z (i) = fPosa

z (j)

_ fPos
b
z (i) = fPos

b
z (j).

Two positions of a filled pattern are in relation Rz whenever they reference
the same variable at the same position or the same constant letter. Using
the relation Rz we are able to obtain an assignment h such that |h(x)| =
z(x) for each x P vars (e) by considering the equivalence classes of Rz.
To acquire the corresponding constants to a position let constants(i) =
{ a | a = p2(fPos

a
z (j)) P A, j P [i]Rz } denote the constants corresponding

to a single equivalence class. The word equation e only has a solution with
fixed length z if |constants(i)| § 1 holds for all i P [fLen(a)]0. Moreover, if
the condition holds, we are able to acquire an assignment for each variable
x P vars (e) such that h(x) = g P A˚ and |g| = z(x) by

g[i] =

(
a if j P [fLen(a)]0, fPosa

z (j) = (i, x), { a } = constants(j),
b else for any arbitrary b P A.

A proof of the correctness of the induced algorithm is given in [68]. This
definition might seem complex but the intuition behind it is surprisingly
simple as we highlight in the follow example.

Example 3.4. Consider the word equation

a = ax1abx2abx1b .
= x2bax1aabbx1 = b

and the mapping z = { x1 fiÑ 1, x2 fiÑ 3 }. Therefore we have

fLenz(a) = 11 = fLenz(b).

By calculating fPosa
z and fPos

b
z for all i P [fLenz(a)]0, respectively, we

obtain the structure given in Figure 3.6. With respect to Rz this leads
to two equivalence classes, namely [1]Rz = { 1, 3, 5, 7, 8 } and [2]Rz =
{ 2, 4, 6, 9, 10, 11 } corresponding to a and b, respectively. We now obtain
the solution h = { x1 fiÑ b, x2 fiÑ aba } visualised in Figure 3.7. We are able
to observe that both sides of the word equation have been unified correctly.

Filling the position gives us a straight forward algorithm to solving
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(1, a) (1, x1) (1, a) (1, b) (1, x2) (2, x2) (3, x2) (1, a) (1, b) (1, x1) (1, b)
1 2 3 4 5 6 7 8 9 10 11

x1 x2 x1

(1, x2) (2, x2) (3, x2) (1, b) (1, a) (1, x1) (1, a) (1, a) (1, b) (1, b) (1, x1)

1 2 3 4 5 6 7 8 9 10 11

x2 x1 x1

Figure 3.6. Initial setup for the filling the poistions algorithm

a b a b a b a a b b b

x1 x2 x1

a b a b a b a a b b b

x2 x1 x1

Figure 3.7. Propagated constants within the given word equation

word equations whenever we know about the exact bounds of the vari-
ables being present. In practice, bounds are mostly not known but as we
have seen within the theory of word equations containing linear length
constraints, variables are often upper bounded which makes a stepwise
approximation to the given upper bounds possible and the presented
algorithm feasible in practice.

3.5.2 Levi’s Lemma
A transformation-system for solving systems of word equations is induced
by Levi’s lemma [78], a classical result in the combinatorial theory of words
(sometimes also called the Nielsen transformation, by analogy to a tech-

44



3.5. Solving Strategies

nique from combinatorial group theory). The lemma as used nowadays is
given as follows:

Lemma 3.5 (Levi’s lemma [32]). Let u, v, x, y P PatA. If uv = xy then there
exists a word t P PatA such that u = xt and tv = y, or x = ut and v = ty.

Informally Levi’s lemma non-deterministically guesses on the prefixes
of the two sides of the word equation, and therefore introduces a rewriting
relation Ñ Ñ PatA ˆ PatA. The goal is to introduce a set of rewriting
rules based on Lemma 3.5 such that if for a word equation a

.
= b we have

|ù a
.
= b then there exists a finite sequence using Ñ leading to the trivial

word equation #
.
= #. Formally we use the reflexive transitive closure of Ñ

denoted by Ñ
˚ to apply the relation Ñ exhaustively, which is defined by

1. for all e P PatA we have e Ñ
˚ e, and 2. for all e1 Ñ e2 and e2 Ñ e3 we

have e1 Ñ
˚ e3 . We are now ready to define the actual rules.

Let e be a word equation. The first rule eliminates equal prefixes that is
if our word equation e is of the following form: e = xa

.
= xb for x P A YX

and a, b P PatA. The rule itself is given by

xa
.
= xb Ñ a

.
= b. (1)

In that sense we have |ù xa
.
= xb iff |ù a

.
= b.

The second rule erases a variable occurring as prefix on one side of
the word equation, that is if e has the form xa

.
= b or a

.
= xb for x P X

and a, b P PatA. Let r : PatA Ñ PatA be morphism such that r(x) = # and
r(a) = a for all a P A Y X z { x } then the rule is given by

xa
.
= b Ñ r(a) .

= r(b) and a
.
= xb Ñ r(a) .

= r(b) (2.1, 2.2)

We have the the following equality: there exists a solution h P HA such
that h(x) = # fulfilling h |ù e iff |ù r(a) .

= r(b).
The third rule propagates a constant occurring as prefix on one side

and a variable on the other side of the word equation, that is if e has
the form aa

.
= xb or xa

.
= ab for x P X , a P A, and a, b P PatA. Let

r : PatA Ñ PatA be a morphism such that r(x) = ax and r(a) = a for all
a P A Y X z { x } then the rule is given by

xa
.
= ab Ñ xr(a) .

= r(b) and aa
.
= xb Ñ r(a) .

= xr(b) (3.1, 3.2)
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We have the the following equality: there exists a solution h P HA such
that h(x)[1] = a fulfilling h |ù xa

.
= ab iff |ù xr(a) .

= r(b) and h |ù aa
.
= xb

iff |ù r(a) .
= xr(b).

The fourth rule makes an assumption on the prefix of our word equa-
tion if both sides starting with a variable, that is if e has the form x1a

.
= x2b

for x1, x2 P X and a, b P PatA. Let r1, r2, r3 : PatA Ñ PatA be a morphisms
such that r1(x1) = x2x1, r2(x2) = x1x2, r3(x1) = x2, r1(a) = r3(a) = a for
all a P A Y X z { x1 } and r2(a) = a for all a P A Y X z { x2 }. Then the rules
are given as follows:

x1a
.
= x2b Ñ x1r1(a)

.
= r1(b), (4.1)

x1a
.
= x2b Ñ r2(a)

.
= x2r2(b) and (4.2)

x1a
.
= x2b Ñ r3(a)

.
= r3(b). (4.3)

We have the the following equality: there exists solutions h1, h2, h3 P HA
such that h1(x2) P prefix(h1(x1)), h2(x1) P prefix(h2(x2)), and h3(x2) =
h3(x1) fulfilling h |ù x1a

.
= x2b iff |ù x1r1(a)

.
= r1(b), h |ù x1a

.
= x2b iff

|ù r2(a)
.
= x2r2(b), and h |ù x1a

.
= x2b iff |ù r3(a)

.
= r3(b).

As stated below each rule, transformations are preserving satisfiability.
Whenever for a word equation e1 we have |ù e1 then the word equation e
such that e Ñ

˚ e1 we have |ù e1, meaning e is also satisfiable.
The above rules cover all word equations except for the trivially satisfi-

able word equation #
.
= #, and word equations of the form aa

.
= bb for all

a, b P PatA and a, b P A such that a ‰ b, in which we have �|ù aa
.
= bb due

to mismatching prefixes. Moreover, for a word equation e1 we have: |ù e1
iff there exists word equations e2, . . . , en for n P N such that en = #

.
= # and

ei Ñ ei+1 for all i P [n ´ 1]0. Therefore, our ultimate goal is applying rules
in such a way, that the length of the resulting word equation decreases in
every step. The algorithm itself is now straightforward: we simply apply
the reflexive transitive closure of the rules presented (Ñ˚).

To grasp the idea behind the underlying algorithm using the above
rules we discuss solving a word equation within the next example.

Example 3.6. Consider the word equation

a = ax1abx2abx1b .
= x2bax1aabbx1 = b

also seen in Example 3.4. Evaluating the transition rules exhaustively

46



3.5. Solving Strategies

ax1abx2abx1b .
= x2bax1aabbx1

x1abax2abx1b .
= x2bax1aabbx1 ax1ababx1b .

= bax1aabbx1

x1abax2abx2x1b .
= bax2x1aabbx2x1 abax1x2abx1b .

= x2bax1aabbx1

x1abax2abx2bx1b .
= ax2bx1aabbx2bx1 abax1abx1b .

= bax1aabbx1 bax1ax2abx1b .
= x2bax1aabbx1

... abax2abx2b .
= bax2aabbx2

x1b .
= bx1

#
.
= #

x2 fiÑ ax2
x2 fiÑ #

x1 fiÑ x2x1

x2 fiÑ x1

x2 fiÑ x1x2

x1 fiÑ bx1

x1 fiÑ #
x2 fiÑ #

x2 fiÑ ax2

x2 fiÑ #

x2 fiÑ bx2

x1 fiÑ #

x1 fiÑ bx1

Figure 3.8. Applying the transformation rules until a solution is found

leads to the huge graph. Usually, in practice applying the rules is stopped
whenever a solution is found or – in case of an unsatisfiable word equation
– all leafs are marked as unsatisfiable. We depict the graph resulting by
applying our rules to the word equation a

.
= b in Figure 3.8. Note, we omit

extra nodes for erasing prefixes (Rule 1) to ease readability. Nodes in light
grey indicate unsatisfiable word equations, whereas dark grey indicates a
satisfiable one. Each node is annotated with the corresponding rule leading
there. We can now obtain the solution by traversing the graph starting
at our satisfiable dark grey node labelled # = # to our initial node being
labelled by the word equation we try to solve. It reveals the assignment
h = { x1 fiÑ #, x2 fiÑ aa } which is indeed a solution. This small extraction
of the graph reveals infinitely many solutions since it contains self edges
(i.e the node x1b .

= bx1) and a loop (highlighted with doubled arrows in
Figure 3.8). We immediately get h(x1) P { b }˚. Furthermore, following the
loop we get h(x2) P { a h(x1) a(ba h(x1) a)˚ } for any h(x1) P { b }˚. This
example shows that the graph induced by the above mentioned rewrite
rules allows analysing more than just a single solution.

For specific classes of word equations the termination of an exhaustive
application of the given rules is known. Also many word equations en-
countered in practice are of a particular form. Well studied forms, where
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termination is known are quadratic and regular word equations [89]. A
word equation a

.
= b P PatA is called quadratic if |ax| + |bx| § 2 for all

x P X and regular if a variable occurs at most once per side. For quadratic
word equations, the graphs obtained by applying the rules of our trans-
formation system and in particular the rules derived from Levi’s lemma
contain some natural structure. In particular, it is well-known that the
length of the equations never increases when following an edge, mean-
ing the graph is finite. This is of course not necessarily true for word
equations in general. It means that the graphs can be decomposed into
individual layers corresponding to word equations of a given length. Each
layer consisting of possibly several connected components. A path from
the original equation to a trivial one will necessarily travel through each
layer in order. For regular equations (each variable occurs at most once per
side), the connected components of each layer will each be strongly con-
nected, meaning that all equations in that component are equisatisfiable.
This suggests a probable high number of inconsequential choices when
searching the graph for a path to a trivial equation.

Empirical observations also seem to indicate that, at least for regular
word equations with less than 10 variables, the diameter of the graphs
is low, and the graphs are typically very well connected. By considering
certain regular equations, it can also be observed that applying Levi’s
lemma to both prefixes and suffixes of the equation has the effect of
increasing the out-degree of vertices, and the number of vertices, without
necessarily having any positive effect on the diameter, and thus it might be
expected that applying the transformations only in one direction is more
efficient. This is not restricting the set of possible solutions. Consider a
word equation a

.
= b P PatA with a solution h, then hR =

n
X fiÑ h(X)R

o

is a solution to the reversed word equation aR
.
= bR. However, in practice,

due to our empirical studies, it is mostly more efficient to apply both,
prefix and suffix rules.

Unfortunately, the useful structures found in quadratic and regular
equations are not necessarily present any more in the general case, where
the length of the equation will often increase when following an edge.
This makes it much harder to predict the structure of the graph, and to
determine whether similar symmetries and high connectivity are present.
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Of course, if the graph is not neccessarily finite, then neither is the diameter
of the graph. On the other hand, there are some reasonable guesses, or
assumptions about the graph which might provide an indication as to
how effective performance may be achieved when searching for paths in
these graphs. Firstly, as the equations become longer, it is possible that
more conflicts or contradictions may arise, meaning that this area of the
graph is not worth exploring, or similarly, that a simpler solution will
exist, meaning a shorter path to a trivial equation will exist elsewhere.
Similarly, for variables with a similar number of occurrences on both sides
of the equation, it is not unreasonable to expect that often solutions exist
for which each of the variables is (slightly) longer than the other. Thus
there may also be a number of equisatisfiability symmetries in the general
graphs, although more restricted and harder to pinpoint than in the graphs
of regular equations. Finally, since many practical examples will either be
quadratic, respectively regular, or mostly quadratic, respectively regular,
it is also possible that often, large parts of the graph will be similar to
the graphs of quadratic, respectively regular equations, and thus display
similarly desirable properties.

This introduction to solving strategies closes the chapter covering the
application based embedding of string constraints. The procedures we will
dicuss in the next chapter build on top of these algorithms, following our
goal to design specialised methods to solving string constraints.
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Chapter 4

Different Techniques to Solving
String Constraints

“The one-way culture must be
stopped.”

The Movement

In recent years, word equations have gained attention from the formal
verification and security community, because word equations naturally
occur during symbolic execution of high-level languages. We covered
basic approaches to solving word equations and also the most prominent
tools in the previous section. As we observed the approaches to solving
a particular formula varies heavily. Nevertheless, all tools try to achieve
the same goal: determining whether a word equation (possibly involving
extra constraints) is satisfiable or not. Within this chapter we enrich this
landscape by presenting novel approaches to target this area. The first
section of this chapter presents a hybrid automata- and unfolding-based
approach encoding string constraints into a propositional logic formula.
The second section introduces a word-based approach being derived from
Levi’s lemma. In the third section we identify several sub-theories of string
constraints involving regular membership predicates based on real-world
benchmarks and prove decidability for some of the resulting theories.
Furthermore, we use our proofs to extend Z3str3’s algorithm for solving
regular membership predicates.

In particular, because solving string formulae is believed to be hard
in general, solver designers have come up with a diverse set of practical
algorithms that incorporate a variety of tradeoffs. Some of these methods
work well for pure word equations, but not so well whenever adding
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additional constraints. This diversity of algorithms for solving string con-
straints immediately leads to the goal of understanding each of them in a
better way what we try to achieve with our contributions.

This chapter is based on work being published at RP 2019 [40], For-
maliSE 2020 [42], CAV 2021 [24], and WORDS 2021 [22].

4.1 Encoding String Constraints into SAT

This section presents an approach to solving the theory of word equation
with linear length constraints A

.
=
l which was discussed in Section 2.3.1.

Keep in mind that deciding whether a word equation involving a linear
length constraint still remains a major open problem.

The key idea of our procedure is an unfolding-based approach en-
coding word equations and length constraint into a single propositional
logic formula in order to use a SAT solver to obtain a solution. In par-
ticular, we are guessing the maximal length of variables and encode a
variation of the filling the positions method (presented in Section 3.5.1) into
an automata-construction, thereby reducing the search for a solution to
a reachability question of this automata. Preliminary experiments with
a pure automata-reachability-based approach revealed however, that this
does not scale, even for small word equations.

We propose an algorithm solving the bounded word equation problem.
In this section, we describe an approach for transforming a word equation
a =̇ b for patterns a, b P PatA into a finite automaton, which is then
directly encodable into propositional logic. Consider an equation a =̇ b. If
it is satisfiable then there exists a substitution h P HA such that h(a) = h(b)
as well as a function L : X Ñ N which assigns a positive integer length `x
to each variable x P X . It is rather easy to see that it is enough to know
the precise length of the image of each variable in order to see whether
the word equation has a solution or not because knowning exact length of
each variable lets us obtain a solution by using the technique presented
in Section 3.5.1. As such, finding the function L is as hard as solving the
word equation.

Coming back to formal background presented for word equations in
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Section 2.2.1, this enriched setting changes our vocabulary to

W̌ = { ¨//2,L//1, len//1,§ /2, #̇ } ,

adding a new function L taking care of our bounds and a function len
known from Section 2.3.1, the combination of word equations and length
constraints allows to reason about the length of a solution for a variable.
To express the constraint we also need a comparison relation §. The S1
fragment of FO(W̌) therefore additionally contains the axiom

@ x1 .L(x1) § len(x1)

accommodating the newly added functions. Additionally, we require §
to be a total order. Therefore, we add the corresponding axioms given in
Section 2.2.2. Consider the many-sorted W̌-structure

Aw̌ =
n

A˚,N, ¨
A, #̇A,§N,LXÑN, lenXÑN

o
,

having the semantics given in Section 2.3.1, and LXÑN is an arbitrary,
total mapping of our variables to a positive integer. This first order logic
fragment is given for the sake of completeness. Following the shape of this
work and to ease readability, we will usually omit the instantiation of the
structure.

The rest of this section is structured as follows: we describe our ap-
proach by first solving bounded word equations, and secondly, we discuss
a minor change, that allows solving word equations with linear constraints
as discussed in Section 2.3.1. Before concluding, we take a brief look at
closely related work and provide details on our experimental implementa-
tion of the presented approach.

4.1.1 Solving Bounded Word Equation

Recall that a bounded word equation consists of a word equation a =̇ b
along with a set of equations {len(x) § bx|x P X} providing upper bounds
for the solution of each variable x P X . In our approach we use these
bounds to create a finite automaton which has an accepting run if and
only if the bounded word equation is satisfiable.

Before the actual automata construction can be presented, we need
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some convenient transformations of the word equation itself.

Definition 4.1. Let L : X Ñ N be a length bound function. Let bx denote
the length bound for a variable x with respect to L, i.e. L(x) = bx. We
call the set X̌ =

n
x(i)

��� x P X , i P [bx]
o

filled variables alphabet, where for

a variable x we call each x(i) for i P [bx] a filled variable.
Let ˇPatA =

�
A Y X̌

�˚ denote the set of filled patterns.

Note, whenever we state bx for a variable x P X we refer to x’s corre-
sponding length bound indicated by a length bound function L : X Ñ N.

Conveniently, when considering a word equation a
.
= b for a, b P PatA

we obtain the corresponding word equation over its filled pattern by simply
mapping each variable to it corresponding sequence of filled variables,
formally defined as follows.

Definition 4.2. Let a P PatA and L : X Ñ N be a length bound function.
We obtain the filled pattern by

ǎ =

8
><

>:

# if a = #,
a ¨ ǎ[2 :] if a = a[1] P A,
x(0) . . . x(bx´1)

¨ ǎ[2 :] if x = a[1] P X and L(x) = bx.

To be consistent with respect to the original word equation we restrict
filled variables to only be substituted by either a single letter or the empty
word.

Definition 4.3. Let l R A be a fresh symbol and set Al = A Y { l },
h P HA and L : X Ñ N be a length bound function. We canonically define
the induced substitution ȟ : ˇPatA Ñ Al for filled patterns by

1. ȟ (a) = h(a) for all a P A,

2. ȟ
⇣
x(i)
⌘
= h(x)[i] for all x(i) P X̌ and i P

h
|ȟ (x)|

i
, and

3. ȟ
⇣
x(j)
⌘
= l for all x(j)

P X̌ and |ȟ (x) | § j † L(x).

Here, l is a new symbol to indicate an unused position at the end
of a filled variable. Note that the substitution of a single filled variable
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always maps to exactly one character from Al, and, as soon as we discover
ȟ
⇣
x(j)
⌘
= l for j P [bX ] it also holds that ȟ

⇣
x(i)
⌘
= l for all j § i † bX . In

a sense, the new element l behaves in the same way as the neutral element
of the monoid over A˚, being actually a place holder for the element #. In
the other direction, if we have found a satisfying filled substitution to our
word equation, the two filled patterns obtained from the left hand side
and the right hand side of an equation, respectively, we can transform it
to a substitution for our original word equation by defining our solution
as the concatenation of our filled substitution in which each occurrence of
l is simply removed.

Definition 4.4. Let ȟ : ˇPatA Ñ Al be a filled substitution. We obtain the
substitution h P HA for each variable x P X having a length bound bx by

h(x) = ȟ(x(0)) . . . ȟ(x(i´1)),

for i P [bx] such that ȟ(x(j)) = l for all i § j † bx and ȟ(x(i´1)) ‰ l.

Our goal is now to build an automaton which calculates a suitable sub-
stitution for a given equation. During the calculation there are situations
where a substitution does not form a total function. To extend a partial
substitution h P HA we define for x P X and a P A the notation

h
h x

b

i
=

(
h Y { x fiÑ b } if x R dom(h),
h otherwise.

This definition can be naturally applied to filled substitutions.
In order to fully define our automaton we need a congruence relation

which sets variables and letters in relation whenever their substitution
with respect to a partial substitution ȟ is equal or undefined. Formally this
relation is expressed as follows.

Definition 4.5. We define ȟ
„Ñ ˇPatAl

ˆ ˇPatAl
by

a
ȟ
„ b iff ȟ (a) = ȟ (b) or ȟ (b) R Al or ȟ (a) R Al,

for all a, b P ˇPatAl
Y { l } and ȟ : ˇPatAl

Ñ Al.

We are now ready to define our automaton which encodes a particular
word equation.
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Definition 4.6. For a word equation a =̇ b for a, b P PatA and a mapping
L : X Ñ N defining the bounds L(x) = bx, we define the equation
automaton A(a =̇ b,L) = (Q, d, I, F) where Q =

�
[|ǎ| + 1] ˆ [|b̌| + 1]

�
ˆ�

ˇPatAl
á Al

�
is a set of states consisting of two integers which indicate

the position inside the two words ǎ and b̌ and a partial substitution, the
transition function d : Q ˆ Al Ñ Q defined by

d (((i, j) , h) , a) =

8
>>>><

>>>>:

⇣
(i + 1, j + 1) , h

h
ǎ[i]

a

i h
b̌[j]

a

i⌘
if ǎ[i] ȟ

„ b̌[j] ȟ
„ a,

⇣
(i + 1, j) , h

h
ǎ[i]
l

i⌘
if ǎ[i] ȟ

„ l = a,
⇣
(i, j + 1) , h

h
b̌[j]
l

i⌘
if b̌[j] ȟ

„ l = a,

an initial state I = ((0, 0) , { a fiÑ a | a P Sl }) and the set of final states
F =

n ⇣
(i, j) , ȟ

⌘ ��� i = |ǎ|, j = |b̌|

o
.

The definition of the final states assumes that all variables in X are used
inside the given equation meaning vars (a) Y vars (b) = X . Therefore,
throughout this section we consider X being finite. We can of course
assume this without restriction. The state space of our automaton is finite
since the filled substitution ȟ maps each input to exactly one character in
Al. The automaton is nondeterministic, as the three choices we have for a
transition are not necessarily mutually exclusive.

As an addition to Definition 4.6, we introduce the notion of location
as a pair of integers (i, j) corresponding to two positions inside the two
pattern ǎ and b̌. A location (i, j) can also be seen as the set of states of the
form ((i, j), h) for all possible partial substitutions h.

A run of the above nondeterministic automaton constructs a partial
substitution for the given equation which is extended with each change of
state. The equation has a solution if one of the accepting states (|ǎ|, |b̌|, h),
where h P HA is a total substitution, is reachable, because the automaton
simulates a walk through our input equation left to right, with all its
positions filled in a coherent way.

Example 4.7. Consider the equation a =̇ b for a = ax3x1b, b = ax1ax2 P

PatA. We choose the bounds bx1 = bx2 = bx3 = 1. This will give us the
words ǎ = ax3

(0)x1
(0)b and b̌ = ax1

(0)ax2
(0). Figure 4.9 visualizes the

corresponding automaton. A run starting with the initial substitution hi =
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a x3
(0) x1

(0) b

a

x1
(0)

a

x2
(0)

(0, 0)

hi

(1, 1)

hi

(2, 1)

hi

"
x3

(0)
l

#

(1, 2)

hi

"
x1

(0)
l

#
(2, 2)

hi

"
x3

(0)
l

# "
x1

(0)
l

#

hi

"
x3

(0)
a

# "
x1

(0)
a

#

hi

"
x3

(0)
b

# "
x1

(0)
b

#

(3, 2)

hi

"
x3

(0)
l

# "
x1

(0)
l

#

(2, 3)

hi

"
x3

(0)
a

# "
x1

(0)
l

#
(3, 3)

hi

"
x3

(0)
a

# "
x1

(0)
a

#

hi

"
x3

(0)
a

# "
x1

(0)
l

#

(4, 4)

hi

"
x3

(0)
a

# "
x1

(0)
a

# "
x2

(0)
b

#

hi

"
x3

(0)
a

# "
x1

(0)
l

# "
x2

(0)
b

#

a

l

l

l

a

b

a

l

a

l

b

b

Figure 4.1. Automaton for the word equation ax3x1b =̇ ax1ax2, with the states
grouped according to their locations. Only reachable states are shown.

{ a fiÑ a | a P Al } reaching one of the final states gives us a solution to the
equation. In this example we get the substitutions x3 fiÑ a, x1 fiÑ a, x2 fiÑ b
and x3 fiÑ a, x1 fiÑ #, x2 fiÑ b.

As stated, the construction of the equation automaton clearly translates
the search for a suitable solution into a reachability problem. The correct
behaviour of this translation is implied by the following theorem.

Theorem 4.8. Given a bounded word equation a =̇ b for a, b P PatA, with
bounds L : X Ñ N, then in the automaton A(a =̇ b,L) an accepting state is
reachable if and only if there exists h such that h |ù a =̇ b and |h(x)| § L(x) for
all x P X .

In order to argue about the correctness of our construction it is enough
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to note that the transitions of the automaton from a state ((i, j), h) increase
at least one of the components i or j, and while doing so, they align two
identical symbols from the left hand side and right hand side, respectively,
of the filled equation, either by assigning a value to one or both of them,
or by processing an identical symbol in both sides. Clearly, a final state
is reached if and only if an assignment that makes the two sides equal
is reached. A formal proof of the above theorem can be done easily by
induction, and is left to the reader.

In the next section we will encode the automaton and a corresponding
run into propositional logic, which allows us using a SAT solver to obtain
a solution to a bounded word equation.

4.1.2 SAT Encoding
We now encode the solving process into propositional logic. For that
we impose an ordering on the finite alphabets A = { a0, . . . , an´1 } and
X = { x0, . . . , xm´1 } for n, m P N. Using the upper bounds given for all
variables x P X , we create the filled variables alphabet X̌ .

To improve readability and not confuse with variables within our word
equations let XB denote the finite set of propositional logic formulae
and B = 2XBˆ{ 0,1 } denote the set of all propositional logic assignments.
Further, we create the propositional logic variables

Ka
x(i)

P XB,

for all x(i) P X̌ , a P Al and i P [bx]. Intuitively, we want to construct our
formula such that an assignment s P B sets Ka

x(i)
to 1, if the solution of

the word equation, which corresponds to the assignment s, is such that at
position i of the variable X an a is found, meaning ȟ

⇣
X(i)

⌘
= a.

To make sure Ka
X(i) is set to 1 for exactly one a P Al we define the

clause _

aPAl

Ka
x(i)

which needs to be assigned true, as well as the constraints

Ka
x(i)

Ñ  Kb
x(i)

,

for all a, b P Al, x P X , i P [bx] where a ‰ b, which also all need to be true.
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To match letters we add the variables

Ca,a Ø J and Ca,b Ø K

for all a, b P Sl with a ‰ b. As such, the actual encoding of our equation
can be defined as follows: for w P

�
ǎ, b̌

 
and each position i of w and

letter a P Al we introduce a variable which is true if and only if w[i] will
correspond to an a in the solution of the word equation. More precisely,
we make a distinction between constant letters and variable positions and
define:

worda
w[i] Ø

(
Cw[i],a if w[i] P Al,
Ka

w[i] if w[i] P X̌ .

The equality of two characters corresponding to position i in a and, re-
spectively, j in b, is encoded by introducing a propositional logic variable
wmi,j P XB such that

wmi,j Ø

_

aPSl

worda
a[i] ^ worda

b[j]

for appropriate i P [|ǎ|], j P [|b̌|].
As seen in Definition 4.6 we process both sides of the equation simulta-

neously, from left to right. Based on this setup, we assign a propositional
logic variable to each location of the automaton. As such, for a given
equation a =̇ b we create n ¨ m = (|ǎ| + 1) ¨

�
|b̌| + 1

�
many propositional

logic variables
Si,j

for i P [n] and j P [m]. The location (0, 0) is our initial location and
(|ǎ|, |b̌|) our accepting location. The goal is to find a path between those
two locations, or, alternatively, a satisfying assignment s P B, which sets
the variables corresponding to these locations to 1. Every path between
the location (0, 0) and another location corresponds to matching prefixes
of a and b under proper substitutions. We will call locations where an
assignment s sets a variable Si,j to 1, active locations. Our transitions are
now defined by a set of constraints. We fix i P [n] and j P [m] in the
following. The constraints are given as follows: The first constraint ensures
that every active location has at least one active successor.

Si,j Ñ Si+1,j _ Si,j+1 _ Si+1,j+1. (4.1)

59



4. Different Techniques to Solving String Constraints

The next three constraints ensure the validity of the paths we use: from
a location we can only proceed to exactly one other location, in order to
find a satisfying assignment; therefore we disallow simultaneous steps in
multiple directions.

�
Si,j ^ Si,j+1

�
Ñ
�
 Si+1,j+1 ^ Si+1,j

�
(4.2)

�
Si,j ^ Si+1,j

�
Ñ
�
 Si+1,j+1 ^ Si,j+1

�
(4.3)

�
Si,j ^ Si+1,j+1

�
Ñ
�
 Si,j+1 ^ Si+1,j

�
(4.4)

We also forbid using an l-transition whenever there is another possibility
of moving forward

Si,j ^ wordl
a[i] Ñ  Si+1,j and Si,j ^ wordl

a[i] ^ wordl
b[j] Ñ Si+1,j, (4.5)

Si,j ^ wordl
b[j] Ñ  Si,j+1 and Si,j ^ wordl

a[i] ^ wordl
b[j] Ñ Si,j+1. (4.6)

In the same manner we guide the path for two matching l. This part
is especially important for finding substitutions which are smaller than
the given bounds. The idea applies in the same way for matching letters,
whose encoding is given in (4.8).

Si,j ^ wordl
a[i] ^ wordl

b[j] Ñ Si+1,j+1 (4.7)

Si,j ^ Si+1,j+1 Ñ wmi,j (4.8)

The actual transitions which are possible from one state to another are
encoded by using our propositional logic words match variables wmi,j
which are true for matching positions in the two sides of the equation

Si,j Ø
�
Si´1,j´1 ^ wmi´1,j´1

�

_
�
Si,j´1 ^ wmi,j´1

�

_
�
Si´1,j ^ wmi´1,j

�
. (4.9)

This constraint allows us to move forward in both words if there was a
match of two letters in the previous location. When the transitions are
pictured as movements in the plane, this corresponds to a diagonal move.
A horizontal or vertical move corresponds to a match with the empty
word. The last constraint ensures a valid predecessor. This is supposed to
help the solver in deciding the satisfiability of the obtained formula, i.e., to
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4.1. Encoding String Constraints into SAT

Figure 4.2. Solver computation on x1ax1bx2bx3 =̇ ax1x2x2bx3x3baa

guide the search in an efficient way. It can be seen as a local optimization
step.

Si+1,j+1 Ñ Si,j _ Si+1,j _ Si,j+1. (4.10)

The final formula is the conjunction of all constraints defined above.
This formula is true iff location (n, m) is reachable from location (0, 0),
and this is true iff the given word equation is satisfiable w.r.t. the given
length bounds.

Lemma 4.9. Let a =̇ b be a word equation, L : X Ñ N be the function giving
the bounds for the word equation variables, and j the corresponding formula
consisting of the conjunction (4.1) - (4.10) and the earlier defined constraints in
this section, then j ^ S0,0 ^ S

|ǎ|,|b̌|
has a satisfying assignment if and only if in

the automaton A(a =̇ b,L) an accepting state is reachable.

Example 4.10. Consider the word equation a =̇ b where a = x1ax1bx2bx3
and b = ax1x2x2bx3x3baa P PatA where A = { a } and X = { x1, x2, x3 }.
Using the approach discussed above, we find the solution h(x1) = aaaa
aaaa, h(x2) = aaaa and h(x3) = aa using the bounds bx1 = 8 and bx2 =
bx3 = 6. We set up an automaton with 32 ¨ 38 = 1216 states to solve the
equation. In Figure 4.2 we show the computation of the SAT solver. Light
grey markers indicate states considered in a run of the automaton. In this
case only 261 states are needed. The dark grey markers visualize the actual
path in the automaton leading to the substitution. Non-diagonal stretches
are l transitions.
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4.1.3 Refining Bounds and Guiding the Search

Initial experiments revealed a major inefficiency of our approach: most of
the locations were not used during the search but increased the encoding
time. The many white markers in Figure 4.2, indicating unused locations,
visualize this problem. Since we create all required variables x P X and
constraints for every position i † bx, we can reduce the automaton size
by lowering these upper bounds. Abstracting a word equation by the
length of the variables gives us a way to refine the bounds bx for some of
the variables x P X . By only considering length we obtain a Diophantine
equation (see Definition 2.7) in the following manner: we assume an
ordering on the variable alphabet X = { x0, . . . , xn´1 } and associate to
each word equation variable xj an integer variable x̄j.

Definition 4.11. For a word equation a =̇ b with X = { x0, . . . , xn´1 } we
define its length abstraction by

Â
jP[n]

⇣
|a|xj ´ |b|xj

⌘
¨ x̄j = Â

aPS
|b|a ´ |a|a.

If a word equation has a solution h P HA then so does its length
abstraction with variable x̄j = |S(xj)|. Our interest is computing upper
bounds for each variable xk P X relative to the upper bounds of the
bounded word equation problem. To this end consider the following
natural deductions

Â
jP[n]

⇣
|a|xj ´ |b|xj

⌘
¨ x̄j = Â

aPS
(|b|a ´ |a|a)

ñ x̄k =
ÂaPS (|b|a ´ |a|a)

|a|xk ´ |b|xk

´

ÂjP[n]zk

⇣
|a|xj ´ |b|xj

⌘
¨ x̄j

|a|xk ´ |b|xk

ùñ x̄k §
ÂaPS (|b|a ´ |a|a)

|a|xk ´ |b|xk

´

ÂjPk

⇣
|a|xj ´ |b|xj

⌘
¨ bxj

|a|xk ´ |b|xk

= bSxk
,

where k = {m P [n]zk | ( |a|xk ´ |b|xk ) ¨ (|a|xm ´ |b|xm) † 0 }. Whenever we
have 0 † bSXk

† bXk , we use bSxk
instead of bxk to prune the search space.

The length abstraction is also useful because it might give information
about the unsatisfiability of an equation: if there is no solution to the
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Diophantine equation, there is no solution to the word equation. We use
this acquired knowledge and directly report this fact to the solver. Unfor-
tunately whenever |a|x ´ |b|x = 0 holds for a variable x P X we cannot
refine the bounds, as they are not influenced by the above Diophantine
equation.

The length abstraction used to refine upper bounds can also be used to
guide the search in the automaton. In particular, it can restrict the allowed
length of one variable based on the length of others. We refer to the
coefficient of variable x̄j in Definition 4.11 by Coa,b(x̄j) =

⇣
|a|xj ´ |b|xj

⌘
.

To benefit from the abstraction of the word equation inside our propo-
sitional logic encoding we use Reduced Ordered Multi-Decision Diagrams
(MDD) [6]. An MDD is a directed acyclic graph, with two nodes having
no outgoing edges (called true and false terminal nodes). A node in the
MDD is associated to exactly one variable x̄j, and has an outgoing edge
for each element of x̄j’s domain. In the MDD, a node labelled x̄j is only
connected to nodes labelled x̄j+1. Formally an MDD is defined as follows.

Definition 4.12. Let X̄ = { x̄0, . . . , x̄n´1 } for n P N be a set of integer
variables and D : X Ñ { d | d Ä̈ Z } a function assigning an integer
domain to each variable. A Reduced Ordered Multi-Decision Diagrams (MDD)
is a acyclic graph M = (V, E) having nodes

V = { true, false } Y { (x̄, i) | x̄ P X , i P D(x̄) }

and edges

E Ñ { ((x̄k, i), (x̄k+1, j)) | k P [n ´ 1], x̄k, x̄k+1, P X , i P D(x̄k), j P D(x̄k+1) }
Y { ((x̄n´1, i), true), ((x̄n´1, i), false) | i P D(x̄n´1) }

such that | { ((x̄, i), v) P E | i P D(x̄) } | = |D(x̄)| for all x̄ P X̄ .

For an MDD (V, E) let a row be a subset of nodes corresponding to a
certain variable x̄, written r(x̄) Ñ { ((x̄, i), v) P E | i P D(x̄) }.

We create the MDD following Definition 4.11 for a word equation a
.
= b

by recursively creating the rows. An MDD node is a tuple consisting of a
variable x̄j and an integer corresponding to the partial sum which can be
obtained using the coefficients and position information of all previous
variables x̄k for 0 § k † j P [|X |]. We introduce a new variable x̄´1 labelling
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the initial node of the MDD. The computation is done as follows:

r(x̄i) = { (x̄i, s + k ¨ Coa,b(x̄i)) | s P
�

s1
�� (x̄i´1, s1) P r(x̄i´1)

 
,

k P [bxi ] }

and r(x̄´1) = { (x̄´1, 0) }. Since x̄j is associated to the word equations
variable xj, we let r(xj) = r(x̄j). We denote the whole set of nodes in the
MDD by MC =

S
xPXY{ x̄´1 } r(x). The true node of the MDD is (x̄n´1, s#),

where s# = ÂaPS |b|a ´ |a|a. If the initial creation of nodes did not add this
node, the given equation (Definition 4.11) is not satisfiable hence the word
equation has no solution given the set bounds. Furthermore there is no
need to encode the full MDD, when only a subset of its nodes can reach
(x̄n´1, s#). For reducing the MDD nodes to this subset, we calculate all
predecessors of a given node (x̄i, s) P MC as follows

pred((x̄i, s)) =
�
(x̄i´1, s1)

�� s1 = s ´ k ¨ Coa,b(x̄i´1), k P [bxi´1 ]
 

.

The minimized set M = F(T) of reachable nodes starting at the only
accepting node T = { (x̄n´1, s#) } is afterwards defined through a fixed
point by

T Ñ F(T) ^

⇣
@ p P F(T) : q P pred(p) ^ q P MC

ñ q P F(T)
⌘

(*)

We continue by encoding this into a propositional logic formula. For
that we need information on the actual length of a possible substitution.
We reuse the propositional logic variables of our filled variables x P X̌ .
The idea is to introduce bx + 2 many Boolean variables

OHi(0), . . . ,OHi(bX + 1)

for each xi P X , where OHi(j) is true if and only if h(xi) has length j in the
actual substitution h P HA. This kind of encoding is known as a one-hot
encoding. To achieve this we add a constraint forcing substitutions to have
all l in the end. This directly corresponds to the definition of the filled
substitution ȟ. We force our solver to adapt to this by adding clauses

Kl
x(j) Ñ Kl

x(j+1)

for all j P [bx ´ 1] and x(j)
P X̌ . The actual encoding is done by adding the
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constraints
OHi(0) Ø Kl

x(0)i
and OHi(bxi ) Ø  Kl

x(bxi ´1) ,

which fix the edge cases for the substitution by the empty word and no l
inside it. For all j P [bxi ]0, we add the constraint

OHi(j) Ø Kl

X(j)
i

^ Kl

X(j´1)
i

,

which marks the first occurrence of l.

The encoding of the MDD is done nodewise by associating a proposi-
tional logic variable

Mi,j

for each i P [|X |], where (x̄i, j) P M. Our goal is now to find a path inside
the MDD from node (x̄´1, 0) to (x̄n´1, s#). Therefore we enforce a true
assignment for the corresponding variables M´1,0 and Mn´1,s# by adding

�
M´1,0 ^ Mn´1,s#

�
Ø J.

A valid path is encoded by the constraint

Mi´1,j ^ OHi(k) Ñ Mi,s

for each variable xi P X , k P [bxi ]0, where s = j + k ¨ Coa,b(xi) and (x̄i, s) P

M. This encodes the fact that, whenever we are at a node (x̄i´1, s) P M
and the substitution for a variable x̄i has length k (|h(x̄i)| = k), we move
on to the next node, which corresponds to xi and an integer obtained by
taking the coefficient of the variable x̄i, multiplying it by the substitution
length, and adding it to the previous partial sum s.

Whenever there is only one successor to a node (x̄i, j) within our MDD,
we directly force its corresponding one hot encoding to be true by adding

Mi´1,j Ñ OHi(j).

This reduces the amount of guesses on variables.

Example 4.13. Consider the equation a =̇ b for a = ax2x0b, b = ax0ax1 P

PatA, where A = { a, b } and X = { x0, x1, x2 }. The corresponding linear
equation therefore has the form 0 ¨ x̄0 + (´1) ¨ x̄1 + 1 ¨ x̄2 = 0 which gives
us the coefficients Coa,b(x0) = 0, Coa,b(x1) = ´1 and Coa,b(x2) = 1. For
given bounds bx0 = bx1 = bx2 = 2 the induced MDD has the form shown
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(I
´1, 0)

(I0, 0)

(I1, ´1)(I1, 0) (I1, ´2)

(I2, 0) (I2, ´1) (I2, ´2)(I2, 1)(I2, 2)

truefalse

I0 P [2]

I1 = 0
I1 = 1

I1 = 2

I2 = 0I2 = 1
I2 = 2

I2 = 1 I2 = 0I2 = 2
I2 = 2

I2 = 1
I2 = 0

Figure 4.3. The MDD for ax2x0b .
= ax0ax1

in Figure 4.3. In this example s# = 0, and therefore (x̄2, 0) is the only node
connected to the true node. The minimization of the MDD by using the
fixed point previously described removes all grey nodes, since they are
not reachable starting at the true node. The solver returns the substitution
h(x0) = #, h(x0) = b and h(x0) = a. It took the centred path consisting of
the nodes (x̄´1, 0), (x̄0, 0), (x̄1, ´1), (x̄2, 0), true inside the MDD.

This optimisation does not always lead to a reduction of the state space.
Whenever the occurrences of variables on both sides of the equations
are the same, we cannot draw a conclusion on the optimised bounds.
Nevertheless, the MDD still guides the search by reducing unnecessary
guesses.

We will now show how to easily add the MDD encoding to cope with
linear length constraints.

4.1.4 Adding Linear Length Constraints

Until now we have only concerned ourselves with general bounded word
equations. As mentioned, bounded equations with linear constraints are
of interest as well. In particular, without loss of generality we restrict to
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�
Preprocessing

�
Encoding

�
SAT-Solver

Input
Model

Woorpje

unsat
sat

sat

unsat

unknown

Figure 4.4. Architecture of Woorpje

linear constraints of the form (see Section 2.2.2 for details)

Â
x̄PX̄

cx̄ ¨ x̄ § s#

where s#, cx̄ P Z are integer coefficents and x̄i are integer variables with a
domain Di = { m P N | 0 § m § di } and a corresponding di P N. Since we
are now in a similar setting to the one discussed in Section 2.3.1, each x̄i
corresponds to the length of a substitution to a variable of the given word
equation.

Notice that the structure of the linear length constraints is similar to
that of Definition 4.11. For handling linear constraints we can adapt the
generation of MDD nodes to keep track of the partial sum of the linear
constraint, and define the accepting node of the MDD as the one where
all rows have been visited and the inequality is true. We simply extend
the set T which was used in the fix point iteration in (*) in the previous
section to the set

T =
n
(x̄n´1, s)

��� (x̄n´1, s) P MC
^ s § s#

o
.

After this tweak the generation of the MDD is done exactly in the same
way as we previously did for the length abstraction.

4.1.5 Experimental Implementation

The approach described in the previous sections has been implemented
in the tool Woorpje. The inner workings of Woorpje are visualised in
Figure 4.4. Woorpje starts with a preprocessing step where obviously
satisfiable, respectively, unsatisfiable word equations are immediately
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reported. Firstly, reduce prefixes and suffixes according to rule 1 of
Lemma 3.5 (Levi’s lemma). For a word equation a

.
= b, if there exists

pattern g, a1, b1
P PatA such that a = ga1 and b = gb1. We have |ù a

.
= b

iff |ù a1 .
= b1. Therefore, it is sufficient to continue solving the latter equa-

tion. Similarly if a = a1g and b = b1g we can remove the suffix of the word
equation a

.
= b. In that sense an equation is trivially satisfiable whenever

both sides are the same, meaning in the above cases a1 = b1 = #.
Next we use several simple lemmas from the theory of combinatorics

on words to quickly determine unsatisfiability of a word equation.

Lemma 4.14. Let a
.
= b and a, b P PatA be a word equation. If a

.
= b satisfies

any of the following constraints, we have �|ù a
.
= b.

1. If there exist g, d P A˚ such that g ‰ d,|g| = |d|, and (g P prefix(a)^
d P prefix(b)) hold,

2. if a P A˚ and there exists g P A such that g P factor(b) and  g P factor(a)
hold,

3. if there exists ` P [min(|a|, |b|)] such that for all 1 § m § ` and x P X we
have parikh(a[: m], x) = parikh(b[: m], x) but parikh(a`, a) ‰ parikh(b`, a)
for some a P A.

Since these lemmas are obtained from the classical literature on combi-
natorics on words (cf. [32]) we will omit the proofs here. Nevertheless, we
will state some examples to express their usability within our implementa-
tion.

Example 4.15. The following three examples characterise the impact of
Lemma 4.14.

1. Consider the word equation abx1 =̇ aabx2. There is a mismatch of the
second letters within the sides of the equation. Therefore, we have
�|ù abx1 =̇ aabx2, since we cannot find a suitable substitution.

2. Consider the word equation ababab =̇ x1aabx2. We have aab R factor(aba-
bab) but aab P factor(x1aabx2).

3. Consider the word equation ax1 =̇ x1b. We have a mismatch within the
Parikh vector at index 2 with respect to the letters a and b. Visualising
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the Parikh vector for all suitable length has the following form:

0

@

1 2

a 1 1
b 0 0
x1 0 1

1

A and

0

@

1 2

a 0 0
b 0 1
x1 1 1

1

A

After the preprocessing step, Woorpje starts an iterative search based
on the length of a possible solution for a variable of the given constraints. If
a solution is found, it is reported. The maximal value of i is user definable,
and by default set to 2n where n is the length of the given equation. If
Woorpje reaches the given bound without a verdict, it returns unknown.
Currently the search is starting at 12 = 1. The idea of just going up, in
our search, to a single-exponential bound on the length of the solutions is
supported by the widely believed conjecture that the satisfiability of word
equations is in NP and the length of the solution of an equation is at most
exponential in the length of the equation.

The current bound B P N defines the upper bounds of the domains for
our variables, meaning for each x P X we have 0 § |h(x)| § B. Based on
these bounds we use the length abstraction of Definition 4.11 to tighten
the bounds. Our new bounds are now used to build the MDD running
Algorithm 1 which is an implementation of the steps explained in Sec-
tion 4.1.3. We build each row of the MDD going from top to bottom, while
removing nodes which are not reachable from the bottom on the fly. The
MDD might potentially allow us to optimise the bounds for each solution
again.

Lastly, we encode the resulting information of the MDD and the word
equations using the optimised bounds into a propositional logic formula
and solve it with Glucose Audemard and Simon [10] for increasing maxi-
mal variable lengths (i2 = B, where i is the current iteration). Note that our
approach is not skipping any possible smaller substitutions because of the
defined l-padding in the images of the variables under a substitution. As
soon as we find a valid solution to the equation, we report it. Whenever we
find a bound-independent argument for the unsatisfiability of the equation,
we print it as well.
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Algorithm 1: Calculation of the MDD for a bounded word equa-
tion a

.
= b

Data: a
.
= b P PatA , L : X Ñ N

Result: nodes v, edges e
1 r := dictionary();
2 i := 0;
3 v, e := H, H;
4 r[x̄´1] := { (x̄´1, 0) };
5 while i † [|X |] do
6 preds := H;
7 tmp_edges := H;
8 forall (x̄i´1, s) P r(x̄i´1) do
9 forall k P [L(x̄i)] do

10 s f := s + k ¨ Coa,b(x̄i);
11 sp := s ´ k ¨ Coa,b(x̄i);
12 r[x̄i ] :=

�
(x̄i , s f )

 
;

13 preds := preds Y
�
(x̄i´1, sp)

 
;

14 tmp_edges := tmp_edges Y
�
((x̄i´1, s), (x̄i , s f ))

 
;

15 r[x̄i´1] := r[x̄i´1] X preds;
16 e := e Y { (v1, v2) P tmp_edges | v1 P r[x̄i´1] };
17 i := i + 1;

18 j := ´1;
19 while j † [|X | ´ 1] do
20 forall (x̄, s) P r[(x̄j)] do
21 v := v Y x̄;

4.1.6 Releated Work

To the best of our knowledge directly encoding string constraints into a
propositional logic formula has not been evaluated before. There exist
similar approaches like the tools Kaluza [99] or Hampi [71] which target
solving bounded word equations. Rather than encoding string constraints
directly, both tools encode the given input formula into bit vectors. No
doubt, our techniques are inspired approaches coming from the area of
CP-solving (cf. [9] and references therein). Especially the usage of MDDs
to encode linear length constraints is a common practice within the CP
world. Overall, our approach combines these areas nicely and enriches the
string solving community in an unseen way.
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4.1.7 Conclusion

In this section we presented a method for solving word equations by using
a SAT-Solver. Our idea shows that we can draw certain benefits by carefully
encoding a specific problem into propositional logic, while exploiting
problem-specific insights, instead of using a more general approach.

Since we currently only implement a preprocessing technique to check
for unsatisfiability, our next step is the enrichment of this part. In the
future, we aim to extend our approach to include regular constraints. As
our approach relies on automata theory, it is expected that this is achiev-
able. Another step is the enrichment of our linear constraint solving. We
currently do a basic analysis by using MDDs. There are a few refinement
steps described in [6] which seem applicable. A next major step is to de-
velop a more efficient encoding of the alphabet of constants. Currently the
state space explodes due to the massive branching caused by the usage of
large alphabets. The same problem occurs in other approaches to solving
word equations (such as the recompression technique [66]), and it seems
that overcoming it could require some new significant theoretical insights
from which all approaches will benefit.

4.2 Rule-based Solving of String Contraints

The most successful string solvers, according to the latest results reported
by the developers, are all based on the idea of integrating the word
equation solver into an SMT solver which can then be naturally used by
standard software verification tools. The integration into an SMT solver
has influenced the solving strategy, and it seems that solving length-
constrained word equations is mostly based on enhancing the set of initial
linear equations by a series of other linear length constraints induced by
the word equations, and then using the very efficient arithmetic solver of
the SMT solver on this enlarged linear system.

In this section we describe a different path: we solve word equations
enhanced with length constraints, meaning we consider the theory es-
tablished in Section 2.3.1, but have solving the word equation by word-
oriented transformations as our main focus and only update the existing
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system of linear constraints after each transformation.
As such we present a transformation-system for solving systems of

word equations with length constraints. Our system is built starting from
Levi’s lemma which we discussed earlier in Section 3.5.2. We enrich the
initial rules being presented, inspired by combinatorial results from the
theory of word equations (see, e.g., [32]) and then extend them to work
in the framework of linear length constraints. On top of this, we apply
further reduction steps to keep the search space of our system as small as
possible.

We also enhance our transformation-system by integrating three of
the major SMT solvers handling word equations, that are CVC4 [16],
Z3str3 [23] and Z3seq [45], which we call according to empirically found
heuristics. We implemented these ideas and show, by running our imple-
mentation on a set of benchmarks, that the aforementioned state of the art
solvers are largely improved by our approach.

This section is organised as follows: we introduce our transition system
including the handling of length constraints. Afterwards, we describe
the design of our transitions rules for the aforementioned system. The
rules are split into two categories: 1. rules influenced by Levi’s lemma,
and 2. simplification rules. Moreover, in the preceding section, we explain
how we identify our terminating nodes within the induced graph of the
transition system. Before concluding, we explain how we implemented
our approach and briefly talk about related work.

4.2.1 Transformation Systems

In this section, we present the framework which forms the basis for
our approach. We introduce it for systems of word equations first and,
subsequently, extend it to support systems of word equations with length
constraints.

As the starter we, define a partial function r which allows us to reason
about certain states of our ultimate solution to a word equation within our
transformation system.

Definition 4.16. Let E, E1
Ä̈WEQA be systems of word equations. A partial

function r : X á PatA is called an r-replacement from E1 to E if
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1. if r(x0) is defined then for all x1 P X z { x0 } we have |r(x1)|x0 = 0, and

2. whenever there exists a h1
P HA such that h1

|ù E1 then h1
‘ r |ù E where

�
h1

‘ r
�
(x0) =

(
h1(r(x0)) if x0 P dom(r),
h1(x0) otherwise.

We denote this relationship between r, E and E1 by (E mr E1).

An r-replacement naturally extends to pattern PatA. A partial function
r : PatA á PatA simply has to fulfil the requirements of a morphism,
meaning r(a) = a for all a P A# and for pattern a, b P PatA we have
r(ab) = r(a)r(b), as well as the requirements made in the above definition.
To ease understanding we denote the r-replacement for a pattern a P PatA
by r((a)).

This operation replaces all occurrences of x0 by r(x0), when it is defined.
We generalise this to a system of word equations E by

r((E)) = { r((a)) .
= r((b)) | a

.
= b P E } .

To grasp this definition we present the application of an r-replacement
in an example.
Example 4.17. Consider the system of word equations E = { x0b .

= ax1 },
the partial function r = { x0 fiÑ ax0 } and the system of word equations
E1 = { ax0b .

= ax1 } which has a solution h1 = { x0 fiÑ a, x1 fiÑ ab } P HA.
Then condition 1 holds since r(x1) is not defined. Condition 2 holds as
well since

h1(r(x0))b = h1(ax0)b = aab = ah1(x1) = ah1(r(x1))

and therefore h1
‘ r |ù E.

In this section we use SAT ÑWLA (respectively UNSAT ÑWLA) to denote
the set of all satisfiable (respectively unsatisfiable) word equations with (a
possibly trivial set of) length constraints.

We are now ready to define the framework of this section: the transition
system.

Definition 4.18 (Transformation System). Let X be a finite set of variables,
then a transformation system is a tuple (S, Ñ,S,U) where
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1. S = 2WEQA is the set of states,

2. Ñ Ñ S ˆ { X á PatA } ˆ S with (E, r, E1) P Ñ implies that (E mr E1) is
a transformation relation,

3. S Ñ SAT a set of word equations guaranteed to be satisfied, and

4. U Ñ UNSAT a set of word equations guaranteed not to be satisfied.

To ease readability we write E r
›Ñ E1 whenever (E, r, E1) P Ñ. If E =

{ a
.
= b } and E1 = { a1 .

= b1 } we write a
.
= b

r
›Ñ a1 .

= b1 instead of
{ a

.
= b } r

›Ñ { a1 .
= b1 }.

The modification of the r function seen in Example 4.17 is directly
correlating to a transformation step E r

›Ñ E1 introduced in the above
definition. The ultimate goal is constructing a substitution to an initial
system of word equations by performing transformation steps until we
reach a trivially satisfiable system of word equations. Afterwards we
construct the solution backwards by iteratively applying the ‘ operation
starting with the solution h = H. The following examples gives an intuition
of our transition system and the described intentional behaviour.
Example 4.19. Let (S, Ñ,S,U) be a transformation system. Let the sys-
tem of word equations E = { x0b .

= ax1 }, E1 = { ax2b .
= ax1 }, E2 =

{ aab .
= aab } P S. Consider the partial functions r = { x0 fiÑ ax2 } and

r1 = { x2 fiÑ a, x1 fiÑ ab } such that E r
›Ñ E1 and E1 r1

›Ñ E2. Clearly, we have
h2 = H |ù E2 . We can obtain the solution h such that h |ù E by using the
‘ operator as follows: h = (h2

‘ r1) ‘ r.

Therefore we get

h(x0) = h(r1(r(x0))) = h2(r1(ax2)) = h(aa) = aa

and h(x1) = h(r1(r(x1))) = h2(r1(ab)) = h(ab) = ab.

To cope with length constraints we modify our transition-system given
in Definition 4.18 as follows:

Definition 4.20 (Extended Transformation System). Let X be a finite set
of variables, then a transformation system is a tuple (S, Ñ,S,U) where
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1. S = 2WEQAˆLinC is the set of states,

2. Ñ Ñ S ˆ { X á PatA } ˆ S with ((E, L), r, (E1, L1)) P Ñ implies (E mr
E1) is a transformation relation and for each (ÂxiPX cix̄i § c) P L we
have

Â
xiPdom(r)

ci ¨

���r(xi)|{xi}

��� ¨ x̄i (1)

+ Â
xiPX zdom(r)

0

@ci + Â
xjPdom(r)

⇣
cj ¨

���r(xj)|{xi}

���
⌘
1

A ¨ x̄i (2)

§ c ´

0

@ Â
xiPdom(r)

ci ¨

���r(xi)|A

���

1

A (3)

in L1,

3. S Ñ SAT a set of word equations guaranteed to be satisfied, and

4. U Ñ UNSAT a set of word equations guaranteed to not be satisfied.

We modify the set of states in the new transformation system and
require that the linear constraint part is modified to accommodate for the
transformations performed on word equation part. In particular, (E, L) r

›Ñ

(E1, L1) is a valid transformation rule if E r
›Ñ E1 and L1 modified according

to the definition. Thereby, part (1) handles the variables modified by
r. Intuitively, we count the self-replacements of a variable. Whenever a
variable of the domain of r occurs a least once in its image, the linear
length constraint is affected accordingly. Part (2) takes care of possible
occurrences of variables in the image of r, not being present within the
domain. Whenever a variable x P dom(r) is affected by the image, the
linear length constraint needs a modification according to the coefficient
of the domain’s variable. The right hand side of the linear constraints
is simply the old right hand side c from which we subtract all terminal
symbols within the image of r. These are the positions inside the given
system of word equations which are fixed.

We briefly give an intuition of how this inequality is derived. Let
X = { x1, . . . , xn }, c1x̄1 + . . . + cnx̄n § c P L and dom(r) Ñ X . By using
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Definition 4.11 we obtain

r̄(xi) = |r(xi)|A| + Â
xPX

|r(xi)|{ x }| ¨ x̄

for xi P dom(r) forms a length generalisation of the image of r. For an
arbitrary xi P dom(r) we have:

c1x̄1 + . . . + cir̄(xi) + . . . + cnx̄n § c

ñ c1x̄1 + . . . + ci

 
|r(xi)|A| + Â

xPX
|r(xi)|{ x }| ¨ x̄0

!
+ . . . + cnx̄n

§ c
§ c ´ ci ¨ |r(xi)|A|

Which indicates the correctness of our transformations purely done based
on the r function for given linear constraints.

Example 4.21. Let T = (S, Ñ,S,U) be a transformation system such that
S = WLA. Let the system of word equations E = { x0b .

= ax1 },E1 =
{ ax0b .

= ax1 }. Consider the partial function r = { x0 fiÑ ax0 } such that
E r
›Ñ E1 is a valid transformation and the set of linear length constraints

L = { 2 ¨ x̄0 + 1 ¨ x̄1 § 5 }, then there exists a transformation step in (E, L)
r
›Ñ (E1, L1) in T with L1 the set of linear length constraints obtained by the
above given rules as follows:

c0 ¨

���r(x0)|{x0}

��� ¨ x̄0 (1)

+
⇣

c1 + c0 ¨

���r(x0)|{x1}

���
⌘

¨ x̄1 (2)

§ 5 ´ c0 ¨

���r(x0)|A

��� (3)

and substituting variables (2 ¨ 1) ¨ x̄0 + (1 + 2 ¨ 0) ¨ x̄1 § 5 ´ 2 ¨ 1 which leads
to the actual modified length constraint

l1 = 2 ¨ x̄0 + 1 ¨ x̄1 § 3

such that L1 = { l1 }.

If we are given a transformation system (S, Ñ,S,U), then solving
a system of word equations (systems of word equations with length
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constraints) E0 equates to finding a transformation sequence

E0
r0
›Ñ E1

r1
›Ñ . . .

rn´1
›››Ñ En,

where En P J. Whenever linear constraints are involved we solve a system
of linear equations over integers to determine En P S. Traversing this
sequence of transformations backwards generates a solution for E0, by
obtaining a solution for Ei´1 from the solution for Ei, for all 1 § i § n. The
following Lemma captures this explanation and proves soundness and
completeness of the transformation system.

Lemma 4.22. Given a transformation system T = (S, Ñ,S,U) and a system of
word equations (systems of word equations with length constraints) E0, we say T
is sound if

1. there is a sequence s = E0
r0
›Ñ E1

r1
›Ñ . . .

rn´1
›››Ñ En, with En P S, implies |ù E0,

and

2. for all sequences s = E0
r0
›Ñ E1

r1
›Ñ . . .

rn´1
›››Ñ En, with En P U, implies �|ù E0,

Proof. A sequence of length 0 implies E0 P S. By definition there exists a
solution h such that h |ù E0. Therefore, |ù E0. Now let s = E0

r0
›Ñ E1

r1
›Ñ

. . . rn
›Ñ En+1 such that En+1 P S. By definition there exists a solution h

such that h |ù En+1. Since s is a valid sequence in T we obtain a solution
h1 = h ‘ rn such that h1

|ù En. By induction hypothesis we get |ù E0.
Since |ù E0 there exists a solution h such that h |ù E0. Consider the system
of word equations E = h((E0)). Since h maps the solution from E0 to E
there is a transformation step E0

h
›Ñ E in T. Moreover, we have a, b P A˚

for all a
.
= b P E. Therefore, E P S.

The proof for part two follows analogously.

The setup of our transformation system essentially states the question
whether we can find a path within the graph leading to a trivial system of
word equations (possibly including linear length constraints). Thus, we
are targeting a classical reachability problem. In that sense the core of
our technique is relying of a reachability algorithm given in Algorithm 2.
Notice that applying Algorithm 2 for a sound transformation does guaran-
tee correct results being returned, but it does not guarantee termination.
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Algorithm 2: Classic reachability algorithm. Equations that have
not been explored (but found) are kept in the set Waiting, and
states that have already been processed are kept in Passed.

Data: Equation System: E
1 Passed := H;
2 Waiting := {E};
3 while Waiting ‰ H do
4 Let Ec P Waiting;
5 Waiting := Waitingz{Ec};
6 Passed := PassedY { Ec };
7 if Ec P S then
8 return tt

9 if Ec R U then
10 Waiting := WaitingY {E1

| Ec
r

›Ñ E1};
11 Waiting := WaitingzPassed

12 return ff

In the case of systems of pure word equations (without any other type
of constraints) termination can also be shown for an instantiation of the
system. However, in the case of equations with length constraints, showing
the termination of our algorithm, for a particular transformation system,
would solve the aforementioned open problem of deciding word equations
with length constraints.

In order to solve a system of word equations we need to define a
transformation system as discussed in this section. To target the actual
goal we have to define three parts, namely

1. transformation rules,

2. identifying the set of satisfiable system of word equations S, and

3. identifying the set of unsatisfiable system of word equations U.

In the next section we start by defining the transformation rules of our
transformation system.

4.2.2 Transformation rules
The transformation rules (Ñ) used in our setup are split into two cate-
gories: a set (ÑL) developed around Levi’s lemma and a set (ÑS) based
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on simple rules about prefixes and suffixes of words. We describe both of
them in the following, but note that they are unified into Ñ=ÑL Y ÑS. In
both cases, we provide the transformation rules for general word equations
but, as previously seen in Definition 4.20, they can be adapted to word
equations with length constraints.

The rules ÑL

Given a word equation a
.
= b, Levi’s lemma makes an assumption regard-

ing the prefix (suffix) of the possible solution h P HA: either h(a) is a prefix
(suffix) of h(b) or vice versa. In Section 3.5.2 we discussed all details with
respect to this famous lemma. The following definition is an adaptation of
the mentioned rules to our transformation system.

Definition 4.23. Let E be a system of word equations and let x2 P X be a
fresh variable not occurring in E.

For E = E1
Y {x0a

.
= x1b} we have the following rules.

E r
›Ñl1pre r((E1)) Y { x1x2r((a)) .

= x1r((b)) } (r = { x0 fiÑ x1x2 })

E r
›Ñl2pre r((E1)) Y { x0r((a)) .

= x0x2r((b)) } (r = { x1 fiÑ x0x2 })

E r
›Ñl3pre r((E1)) Y { x1r((a)) .

= x1r((b)) } (r = { x0 fiÑ x1 })

For E = E1
Y {ax0

.
= bx1} we have the following rules:

E r
›Ñl1suf r((E1)) Y { r((a))x2x1

.
= r((b))x1 } (r = { x0 fiÑ x2x1 })

E r
›Ñl2suf r((E1)) Y { r((a))x0

.
= r((b))x2x0 } (r = { x1 fiÑ x2x0 })

E r
›Ñl3suf r((E1)) Y { r((a))x1

.
= r((b))x1 } (r = { x0 fiÑ x1 })

For E = E1
Y {x0a

.
= ab}, with a P A, the rules are:

E r
›Ñl4pre r((E1)) Y { ax2r((a)) .

= ar((b)) } (r = { x0 fiÑ ax2 })

E r
›Ñl5pre r((E1)) Y { r((a)) .

= ar((b)) } (r = { x0 fiÑ # })

For E = E1
Y {ax0

.
= ba}, with a P A, the rules are as follows:

E r
›Ñl4suf r((E1)) Y { r((a))x2a .

= r((b))a } (r = { x0 fiÑ x2a })

E r
›Ñl5suf r((E1)) Y { r((a)) .

= r((b))a } (r = { x0 fiÑ # })
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We define ÑL= YxP{ lipre,lisuf | iP[6]0 } Ñx.

Nearly each rule introduces a new variable x2 P X , but removes a
present variable (namely x0 from the ones used above). The number of
variables never increases, which, in practice, allows reusing eliminated
variables without introducing new ones. The following examples gives an
intuition on our transformation rules and clarifies how we reuse variables.

Example 4.24. Consider the system of word equations E = { x0abx1 =̇ ax0x1
b, x0b .

= ax1 }. The equation x0abx1 =̇ ax0x1b allows applying rule l4, which
gives the mapping r = { x0 Ñ ax0 }. The reachable state is

E = { ax0r((abx1)) =̇ ar((x0x1b)), r((x0b)) .
= r((ax1)) }

= { ax0abx1 =̇ aax0x1b, ax0b .
= ax1}.

We reused x0 instead of introducing a new variable x2.

As observed in Example 3.6 the graph induced by the transition rules
might become huge, infeasible for our computers. Therefore, we introduce
assisting rules to stop the search early. We do so by observing syntactical
patterns within our systems of word equations where either a solution can
be directly obtained or none exists.

The rules ÑS

These rules are used for simplifying system of word equations. We state
them for prefixes only (indicated by pre), but they apply analogously to
suffixes (indicated by suf).

Lemma 4.25. Given a system of word equations E, for e = a1a2
.
= b1b2 P E

we have:

1. E H
›Ñs1 Ez { e }, if a1a2 = b1b2,

2. E H
›Ñspre2

Ez { e } Y { a2
.
= b2 } if a1 = b1,

3. E H
›Ñs3 Ez { e } Y { a1

.
= b1, a2

.
= b2 } if |a1|x0 = |b1|x0 for all x0 P X and

(ÂaPA |a1|a ´ |b1|a) = 0 , and

4. E r
›Ñspre4

r((Ez { e })) where r = { a1 fiÑ b1b2 } if a1 P X and a2 = #.
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The proofs of these simplification rules are omitted since they directly
follow by simple length arguments. In fact, we gave an intuition on the
first two rules in the beginning of Section 4.1.5 since we used similar
arguments in our SAT solving based approach (whenever applicable) in
the previous section.

In practice, these rules are never applied individually but always used
in a sequence until no more rules can be used. The iteration of these rules
until a fix-point is reached is defined as follows.

Definition 4.26. Let  s=
S

xP{ s1,spre2 ,ssuf2 ,s3,spre4 ,ssuf4 } Ñx be the joint set
of simplification rules and

simp =
n

E Ä̈WEQA

���  DE1, r : E r s E1

o

be the set of system of word equations which can not be simplified further
with respect to the given rules. The complete simplification rule (ÑS) from

a system of word equations E0 to Ek for k P N is defined by E0
r
›ÑS Ek if

Ek P simp, and there exists a trace of simplifications Ei
ri+1 s Ei+1 for i P [k]

and r = rk ˝ rk´1 ˝ . . . ˝ r1.

As previously mentioned, our approach can be seen as a reachability
problem in a graph whose nodes are the systems of equations we can
obtain via the described transformations. Empirical observations suggest
that, at least for regular word equations with less than 10 variables (i.e.,
equations where each variable occurs at most twice, once in every side),
the diameter of the graphs is low, and the graphs are typically very well
connected. So, in a sense, the path from the initial node to the node that
enables us to make a decision should be short. For certain regular equa-
tions, it can also be observed that applying Levi’s lemma to both prefixes
and suffixes of the equation has the effect of increasing the branching
factor of vertices, and the number of vertices, without necessarily having
any positive effect on the diameter, and thus it might be expected that ap-
plying the transformations only in one direction is more efficient without
restricting the set of possible solutions. Interestingly enough, our empirical
studies have shown that it is (from the point of view of the run-time) more
efficient to apply both prefix and suffix rules.

We will now review the simplification rules within an example.
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Example 4.27. Consider the system of word equations E = { x0
.
= ab, ax0

.
=

x1b }. By using rule s
pre
4 to the word equation x0

.
= ab we derive the

function r = { x0 fiÑ ab }. This leads to the successor E1 = r((Ez { x0 }
.
=

ab)) = r(({ ax0
.
= x1b })) = { aab .

= x1b }. Applying rule ssuf4 leads to
E2 = { aa .

= x1 }. The system of word equations allows another application
of spre4 which results in a function r1 = { x1 fiÑ aa } and E3 = H. Backtrack-
ing the solution as seen in Example 4.19 gives us h = { x0 fiÑ ab, x1 fiÑ aa }
which is indeed a solution to E.

The simplification rules potentially decrease the length of a path to
a trivially satisfiable or unsatisfiable system of word equations. This can
be seen as short cuts within our search. The next step is raising the well
known unsatisfiable systems of word equations within our transition
system to speed up the search.

4.2.3 Identification of the sets U and S

The following conditions determine the unsatisfiability of a system of
word equations E, i.e., whether E P U.

Definition 4.28. A system of word equations E fulfils E P U if an external
solver decides �|ù E or there exists an equation a

.
= b P E such that at least

one of the following cases holds:

1. There exists a1 P prefix(a) X A˚ and b1 P prefix(b) X A˚ such that
|a1| = |b1| but a1 ‰ b1

2. There exists a1 P suffix(a) X A˚ and b1 P suffix(b) X A˚ such that
|a1| = |b1| but a1 ‰ b1,

3. We have |a|x0 = |b|x0 for all x0 P X , but there exists a letter a P A such
that |a|a ‰ |b|a.

4. if a P A˚ and there exists a word b1 P factor(b)X A˚ and b1 R factor(a).

The first condition specifies a mismatch of terminals in the prefixes,
whereas the second one characterises this behaviour for suffixes. The third
case catches word equations where the amount of all variables is the same
on both sides, but the letter-counts of some terminal in the two sides differ.
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In all these cases we trivially cannot find a solution to the original system
of word equations E. All conditions are in a sense variants of Lemma 4.14,
adjusted to the current setting of the previously seen conditions.

The set of satisfiable system of word equations S is defined as follows.

Definition 4.29. A system of word equations E fulfils E P S if E = H or
an external solver decides |ù E.

In general the simplification rules s lead to the trivial satisfiable sys-
tem of word equations H. Therefore, in our framework we let the trivially
satisfied system of word equations H be in S. As our transformation rules
guarantees that if E0 P SAT, then there exists a sequence E0

r0
›Ñ . . .

rn´1
›››Ñ H,

having S = {H}. However, this sequence may be too long so we addi-
tionally let systems of word equations E P S if an external solver decides
|ù E.

Remark 4.30 (Word Equations with Length Constraints). Whenever we
reach a systems of word equations with length constraints (H, L), i.e. an
empty set of word equations with the system with length constraints
L, we check if the length constraints are satisfiable. If they are, then
(E, L) P S otherwise (E, L) P U. In practice, we check the length constraints
satisfiability with an external integer solver.

If the right hand side of a constraint l P L side evaluates to zero,
we simply check whether H |ù l holds. This is the case if a P A˚ for a
corresponding variable x P X . If there is a linear constraint l P L such
that �|ù l the word equation system with linear constraints does not have
a solution. Whenever applying a transition rule to the system of word
equations, we modify all linear constraints l P L according to the r-function
given in Definition 4.20. If E1 = H, but �|ù L1, the equation system with
linear constraints is not satisfiable. Therefore, (E1, L1) P U.

Checking the above mentioned condition on the two new equations
might give us a quicker way of determining unsatisfiability of a word
equation system. This allows us to refine the set U. Consider for example
the word equation ax1x2b .

= x1bax2. Simply applying the above rules
does not lead to an unsatisfiable result. Applying s3 first gives us the
two equations ax1

.
= x1b and x2b .

= ax2, where the first one is clearly
unsatisfiable by the third condition given in Definition 4.28.
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A system (E, L) Ñ WLA is also deemed unsatisfiable ((E, L) P U) if
there exists (Âx0PX cx0 ¨ x̄0 § r) P L where for all x0 P X we have cx0 = 0
and r † 0.

Example 4.31. Consider the systems of word equations with length con-
straints (H, L) with L = { 3 ¨ x̄0 § 3 }. Substituting x̄0 by 0 immediately
leads to 0 § 3 and therefore (H, L) P S. Now consider the systems
of word equations with length constraints ({ x0a .

= baa, x1a .
= ax0 } , L).

The computed substitution will map x0 to ba giving us the system of
word equations E1 = { x1a .

= aba }. The modifications to L accomodat-
ing for this transformation gives the set of linear length constraints
L1 = {0 § 3 ´ (3 ¨ 2)} = {0 § ´3}. L1 is obviously unsatisfiable and
therefore (E1, L1) P U.

Example 4.32. Consider the terminal alphabet A = { a, b, c, d, e }, the vari-
able alphabet X = { x1, x0 } and the systems of word equations with
length constraints (E, L) with E = {x0adax0x1

.
= cadacex0bc} and length

constraints L = {x̄0 • 1, x̄1 • 3}. The graph induced by our transforma-

x0adax0x1
.
= cadacex0bc

x̄0 • 1, x̄1 • 3

x0adacx0x1
.
= adacecx0bc

x̄1 • 3
x0adax0x1

.
= cadacex0b

x̄0 • 1, x̄1 • 2
x0adax0

.
= cadacex0bc

x̄0 • 1, 0 • 3
adax1

.
= cadacebc

0 • 1, x̄1 • 3

x1
.
= ecbc

x̄1 • 3
x0adacx0x1

.
= adacecx0b

x̄1 • 2
x0adax0

.
= cadacex0b

x̄0 • 1, x̄1 • 2
x0adacx0

.
= adacecx0bc

0 • 3
adax1

.
= cadaceb

0 • 1, x̄1 • 2
x0adax0x1

.
= cadacex0

x̄0 • 1, x̄1 • 1

x0 fiÑ cx0

x1 fiÑ x1c
x1 fiÑ #

x0 fiÑ #

x0 fiÑ #

x1 fiÑ x1c
x1 fiÑ #

x0 fiÑ x0c
x1 fiÑ # x0 fiÑ #

x1 fiÑ x1b

Figure 4.5. Levis’s graph for Example 4.32

tions rules is depicted in Figure 4.5. Within this graph dark grey nodes
indicate satisfiable systems of word equations, light grey nodes unsatisfi-
able systems of word equations, and white nodes unknown status. Starting
at the initial systems of word equations with length constraints we are able
to apply the rules l4pre , l4suf ,l5pre , and l5suf , other rules are not applicable at
that point due to the structure of the word equation and the corresponding
length constraints. Nevertheless, the erasing rule directly leads to unsatis-
fiable system of word equations. Consider applying l5pre which leads to
the word equation adax1

.
= cadacebc and a partial substitution r(x0) = #.
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Therefore, r violates the linear constraint x̄0 • 1. The reasoning is exactly
the same for rule l5suf .

Continuing with rule l4pre leads to a word equation cx0adacx0x1
.
=

cadacecx0bc and the partial substitution r(x0) = cx0. By applying the sim-
plification rules (in this case s1pre) we get the simplified word equation
x0adacx0x1

.
= adacecx0bc without any modifications to the partial sub-

stitution r. According to r, the linear constraint x̄0 • 1 is modified to
x̄0 • 1 ´ 1 = 0. Since this constraint does not restrict the possible solutions,
it is not present in the successor systems of word equations with length
constraints. Continuing with the analysis of this systems of word equations
with length constraints we are able to apply either rule l5pre , l4pre , or l4suf .
Applying rule l5pre will lead to the systems of word equations with length
constraints consisting of a word equation adacx1

.
= adacecbc with linear

constraint x̄1 • 3. The simplification rule s1pre first minimises the word
equation to x1

.
= ecbc. The rule s4pre simplifies further to a trivial satisfiable

word equation #
.
= # with solution r(x1) = ecbc. The modification of the

linear constraint x̄1 • 3 changes depending on r to x̄1 • 3 ´ 4 = ´1 and
trivially evaluates to true. By backtracking this path, combining r functions,
we get the solution h = { x0 fiÑ c, x1 fiÑ ecbc }.

In Figure 4.5 we visualise the whole layer of applicable transitions.
However, in practice, we will terminate as soon as we found a suitable
solution. We can try exploring the graph further by considering the white
nodes within the lowest layer.

4.2.4 Implementation

The preceding sections presented our framework for solving systems
of word equations. However, we left the algorithm underspecified by
relying on non-determinism. In this section, we present how we extended
Woorpje with this technique and, as part of this, we describe how the
non-determinism of Algorithm 2 is managed. For the remainder of the
section by Woorpje we refer to the algorithm presented here. Woorpje
uses CVC4, Z3str3, and Z3seq as assisting string constraint solvers. The
assisting SMT solver doubles as arithmetic solver for the check mentioned
in Remark 4.30. In the theoretical discussion of our technique, we only
mentioned using external string solvers, but never elaborated on when or
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how they are called. In regards to when, Woorpje can be configured to use
one of five different heuristics for calling the external solver:

1. A predefined depth d P N of the transformation system is reached.

2. In a system of word equations E each equation e P E has exceeded a
bound b P N, i.e. b § |e|.

3. For a transformation between two system of word equations E and
E1 with an r-function E r

›Ñ E1, the length of each word equation e P E
increased too quickly, meaning that, for a predefined factor s P Q, we
get (ÂePE |e|) ¨ s † (ÂePE1 |e|). This gives us an indicator to the presence
of a long solution, where applying our rules might take longer.

4. While performing a transformation step E r
›Ñ E1 the ratio between

variables and terminals changes to an unfortunate extent w.r.t. our
rules, meaning for s P Q, we have t(E) =

⇣
ÂePE |e|A|

⌘
and v(E) =

⇣
ÂePE |e|X |

⌘
and t(E)

v(E) ¨ s † t(E1)
v(E1) . If this happens, we know about a

massive increase of letters in the middle of at least one side of the word
equation, thus it is not useful to apply our rules.

5. Never call the SMT solver. This is mainly useful for the evaluation of
the heuristics, to obtain a baseline.

The first heuristic provides a mechanism to directly using the assisting
solver at a specific depth of the graph induced by our transformation rules,
meaning after visiting d successors of the initial system of word equations,
we involve an external solver. It allows us to split the search after reaching
a predefined level. Our empirical evaluation of this technique has shown,
that the external solvers often struggle on doing the initial decisions. This
heuristic takes care of these initial steps and involves the external solver at
a later point of solving a system of word equations.

The second heuristic calls an external solver if a system of word equa-
tions reaches a certain length. Long word equations usually require many
applications of our transformation rules. By using this heuristic, we might
be able to avoid exploring this long transformation-path and maybe reach
a solution faster.
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4.2. Rule-based Solving of String Contraints

The third and the fourth heuristic target equations whose length are
rapidly increasing. Consider for example the equation

x0ax0bx1bx2
.
= ax0x1x1bx2x2baa.

This equation has a minimal solution h = {x0 fiÑ aaaaaaaa, x1 fiÑ aaaa,
x2 fiÑ aa} (the general form of this word equation (see Proposition 1 of
[43]) has a minimal solution which is exponential in the length of the word
equation). Solving this equation by only applying our transformation rules
would potentially lead to an exponentially long chain of applications of
l4pre rules. By using appropriate parameters for the given heuristic we are
able to prune the search with a call to an external solver.

In principle the external solver could run until it reaches a conclusion.
This is, however, not necessarily a good idea. Sometimes Woorpje can solve
equations, using the transformation system, quicker than the time needed
by the external solvers for reaching their conclusion. Therefore, Woorpje
gives the external solver a time limit (also affecting the arithmetic solver)
within which it has to reach a verdict. In case the external solvers times
out, Woorpje simply puts the system of word equations into Waiting, and
eventually reconsiders it.

The detailed implementation of algorithmic step 10 in Algorithm 2
is visualised in more detail in Figure 4.6. We randomly pick a system
of word equations E from the Waiting set. Afterwards, within our core
simplifier, we apply the rules defined by s. Whenever these rules detect
Es P U or Es P S the result is reported to an observer. Otherwise, the
simplified system of word equations Es is forwarded to the unit, which
handles the linear constraints as described in Example 4.2.1. To check
for general satisfiability of the provided length constraints, we use an
external integer solver. Within the current setup, based on the users choice,
either CVC4 or Z3. Again, whenever this unit detects Es P U or Es P S

the result will be reported to the observer. The modified system of word
equations El is then forwarded to the heuristics unit. This part of the
algorithm triggers the external SMT solver, whenever a heuristic presented
above is triggered. Within the given time limit the external solver tries
to classify El . Success is reported to the heuristics unit and forwarded
to the observer. In the next step Levi’s rules, presented in Section 4.2.2,
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 sat(El , rl )

sat(En , rn )
sat(Eo , ro )

substitution h

(E
n
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)

 sat(Eo , ro ) ^ E = H

check satisfiability of length constraints

check satisfiability of (El , rl )

external SMT solver

main algorithm of Woorpje

Figure 4.6. Architecture of Woorpje

are applied to El . In order to get the Waiting set as small as possible we
are applying ÑL only based on one word equation at a time rather than
branching according to the transformation ÑL defined for all equations
e P El . By just choosing one word equation, and transforming the system
according to the rules this equation induces, we do not restrict ourselves:
we serialise the case distinctions and analyse the result, instead of applying
rules simultaneously. This might lead to an earlier detection of dead-ends,
but, in general, it leads to the same complete case analysis as considering
all possible rules simultaneously. Whenever a derived system of word
equations is trivially satisfiable, the result is reported to the observer. All
not trivially unsatisfiable system of word equations are pushed into the
Waiting set. The observer forms the core of the algorithm. If one of the
units reports the existence of an unsatisfiable system of word equations,
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the observer reports unsat if Waiting does not hold any other system of
word equations. If it receives a positive answer, the solution to the equation
is rebuilt as seen in Example 4.19. Woorpje reports sat and the solution
in this case.

4.2.5 Related Work

There are many string solvers levering the rules induced by Levi’s Lemma
(cf. [30]) and also the fact of choosing solvers based on heuristics (cf. [25]) is
not a novel approach. From our point of view the novelty of our approach
is that we centre word equations and simply modify other constraints
while solving the system of word equations. This allows us to efficiently
explore the induced graph. Given this fact, we analyse the structure of the
graph and identify word equations where using our rules solely, simply
results in reaching a resource limit. This is where we add our heuristics to
invoke other solvers, using other solving procedures. To the best of our
knowledge, this type of interleaving has not been analysed before.

4.2.6 Conclusion

In this section we present a transformation-system-based approach to solve
a subset of string constraints, or, in other words, word equations with
length constraints. The method is implemented in the tool Woorpje and
initial tests indicate its value (see Section 6.3). The instances we are able to
solve with this technique, and were not solved before using solvers such as
Z3str3 and CVC4, are evidence supporting our claim that implementing
this approach into existing string solvers is beneficial. As such, it seems
that our approach enriches in a non-trivial way the current landscape of
string solving.

In the future, we aim to extend our approach to include regular con-
straints, making it applicable to industrial case studies. Initial experiments
reveal that this extension can be done similarly to the addition of length
constraints: the modification of regular constraints through our transfor-
mations is purely influenced by the movement inside our transformation-
system. Furthermore, an extension to the identification of U systems is
required. We believe the transformation system could work very well
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in collaboration with the existing string theory solver of SMT solvers, if
structural properties of the system of word equations under which the
SMT solver works could be identified. A natural step for our work is
thus to identify such structural properties. Related to this is exploiting the
structure of the transformation graph during the search for a solution.

4.3 Automata-based solving of regular expression
membership constraints

As many of the theories discussed in this work, theories including regular
expression membership predicates are an active topic of research, posing
interesting questions. Solely considering the theory of regular expression
membership predicates, an elegant proof of their decidability is given in
[4]. The theory of word equations and regular expression membership
predicates is known to be decidable [85]. It is not known if the satisfiability
problem for string constraints involving all aforementioned theories is
decidable or not. However, already in the presence of other simple and
natural constraints, like string-number conversion as seen in Section 2.4,
this problem becomes undecidable (cf. [41]).

Driven by practical relevance and the need of more efficient algorithms,
we analysed 56993 string solving instances from industrial applications and
solver developers containing regular expression membership predicates,
which we will introduce in detail in Chapter 5, and identified numerous
relevant sub-theories based around regular membership predicates. In
particular, we identified theories which may have a string-number con-
version predicate numstr, a string length function or string concatenation,
and prove decidability, respectively undecidability, for certain sub-theories.
The value of this theoretical analysis of present data is massive, since
the sub-theory occurring the most within these benchmarks is actually
PSPACE-complete, as we show within this section. Most notably, these re-
sults directly influenced the implementation of an algorithm implemented
within Z3str3 showing superior performance compared to its competitors,
as we showcase in Section 6.4. The algorithm itself was directly formed by
the ideas we used in the proofs of the theorems presented in this section.

In the following subsections we show that the theory of complement-
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free-regular expression membership predicates with linear length con-
straints and concatenation is PSPACE-complete. Furthermore, if we addi-
tionally allow complement, we prove decidability and an NSPACE( f (n))

lower bound, where f (n) is a tetration 222...2

| {z }
k times

cn

= 2 "k (cn) whose height

k depends on the number of stacked complements (and c is a constant).
Continuing this trail, we prove PSPACE-completeness for the theory of
complement-free regular expression membership predicates and a string-
number conversion predicate, which naturally leads to decidability when
considering complements. We show the corresponding lower bound in this
case, too. At the opposite end of our spectrum, we show that the theory
of regular expression membership predicates, linear length constraints,
concatenation and string-number conversion is in fact undecidable.

To summarise, our analysis of the benchmarks not only revealed these
theories, but also shows that most considered real-world string constraints
actually fall into a decidable fragment. Out of 56993, about 51% lay in
a decidable fragment. Only considering string constraints without word
equations (30540 of 56993 instances), 26140 of these instances (85%) fall
into a decidable fragment. Therefore, our theoretical analysis gives an
intuition with respect to the performance of our solver.

4.3.1 Identification of Relevant Theories

During the development of an extension to cope with regular member-
ship constraints within Z3str3RE, we analysed a huge set of over 100000
industrial influenced benchmarks and identified 22425 instances contain-
ing at least one regular expression membership constraint. This set in-
cludes instances from the AppScan [121], BanditFuzz [102], JOACO [110],
Kaluza [99], Norn [4], Sloth [62], Stranger [120], and Z3str3-regression [23]
benchmarks. Additionally, we generated 19979 benchmarks based on a
collection of real-world regular membership queries collected by Loris
D’Antoni from the University of Wisconsin, Madison, USA. Thirdly, we
applied StringFuzz’s [27] transformers to instances supplied by Ama-
zon Web Services related to security policy validation to obtain roughly
15000 instances. All benchmark sets and their origin will be introduced in
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Chapter 5.
We analysed the benchmarks according to their structure, as well as

predicates and functions. We identified sets which contain string-number
conversion, string concatenation, or linear length constraints over variables
used within the regular expression membership predicate. The benchmarks
contained combinations of these operations. The goal is now to group
them into different first order logic theories.

The resulting first order logic theories.

The basis of the following theories is built by As, the theory of simple
regular expressions, which removes the complement operation of regular
expressions from the theory Ae introduced in Section 2.2.3. The reasons
why considering these restrictions is manifold: 1. removing the comple-
ment often allows us to prove an exact PSPACE-bound for these theories,
2. it seems that within real-world applications of string constraints the
presence of stacked complements can be neglected (as we will see in the
following analysis).

The vocabulary of simple regular expressions is given by

Rs =
�

¨//2, Y//2, ˚//1, Ṗ /2, Ḣ, #̇
 
Ñ Re.

The axioms of this theory also stay the same except for the ones affecting
the complement. Let RegExA denote the set of all regular expressions
without complement. Naturally, this continues with our many-sorted Rs-
structure

As = { RegExA, A˚, ¨
A, #̇A, ¨

RegExA , Y
RegExA ,

˚
RegExA , Ḣ

RegExA , #̇RegExA , Ṗ
A RegExA } Ñ Ae.

Based on our extended regular expressions Re and simple regular
expressions Rs, while categorising the benchmarks, we identified three
important, (partially) disjoint theories, forming extensions of the afore-
mentioned theories.

In practice solutions to variables are often restricted by linear inequal-
ities ranging over the length of potential solutions. Therefore, a natural
extension is adding a function to our our vocabularies allowing to reason
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about length. Let

Ril = Ri Y {Z,+//2,§/2, 0̇, len//1 }

be a vocabulary where i P { e, s }, being characterised by previously de-
fined axioms and additionally the associativity and commutativity of +//2,
the existence of a neutral element, and the requirement that § be a total
and monotonic ordering on our domain. The many-sorted Ril-structure of
regular expressions with length is defined by

Ail = Ai Y { +Z,§Z, 0̇Z, lenAÑZ },

where +Z,§Z are defined as commonly used operations over Z, 0̇Z = 0 P

Z, and the length function lenAÑZ defined in Section 2.3.
A second addition often occurring in real-world program analysis is a

string-number conversion predicate. To this extend let

Rin = Ri Y { numstr/2 }

whereas i P { e, s, el, sl } be a vocabulary. The axioms are derived from
the corresponding base theory. The many-sorted Rin-structure of regular
expressions with number conversation is defined by

Ain = Ai Y

n
N, numstrN A˚ o

,

whereas numstrN A˚ is a relation, which holds for all positive integers
i P N and words w P { 0, 1 }˚ where w – possibly having leading zeros – is
the binary representation of i, as formally defined in Section 2.4.

Naturally, not only in real-world applications it is interesting to ask
whether a pattern a P PatA possibly containing variables is bound by a
regular language. This leads to the last extension we are considering in
this section. Let Ric = Ri Y { ¨//2 }

whereas i P { e, s, el, sl, eln, sln, en, sn } be a vocabulary, having the addi-
tional axioms induced by (PatA, ¨

A, #) forming a monoid. The many-sorted
Ric-structure of regular expressions with concatenation is defined by

Aic = Ai Y

n
¨
A, #̇A

o
,

whereas ¨
A is defined as the classical concatenation over PatA and #̇A =
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Figure 4.7. Distribution of instances among their theories. (a) instances with word
equations (b) instances without word equations.

# P A˚. These theories are again naturally combined with the theory of
word equations by simply considering the union of their components.

The following example gives an intuition with respect to the theories.

Example 4.33. Consider the string constraint C = x1 Ṗ 1˚
^ numstr(15, x1)^

len(x1) • 3 where x1 P X and 1 P A. A solution h P HA is given by
h(x1) = 1111, since h(x1) = 1111 P L(1˚), numstr(15, 1111) because 1111
is the binary representation of 15, and h(x1) • 3. Therefore Asln, h |ù C.

Throughout this section to ease readability, we write a �̇P R instead of
 (a Ṗ R) for a P PatA and R P RegA.

Benchmark analysis

The analysis of the 56993 instances reveals that 30540 instances are solely a
member of one of our regular expression theories, while 26453 additionally
contained word equations. In Figure 5.7 we plot the distribution of all
instances with respect to their theory. We display the instances according
to the presence of word equations into two bars (a) and (b). The width
of a single block within a bar corresponds to the instance count of the
smallest theory. Since some of the theories are disjoint (e.g. Asl and Asn)
the diagram does not visualise inclusions.

Within formulae only containing regular membership constraints, the
most frequented theory is As holding 24256 instances. As we will see
in this work, this theory and also its successor Asl with 4327 instances
are PSPACE-complete and raises hope for efficient solving strategies. The
theories Aelnc and Aslnc, for which we prove undecidability within this
work, do not seem to have a high relevance in application since they do
not occur at all within our analysed set of benchmarks.
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Figure 4.8. Visualization of relationship and decidability of various extensions of
As, with arrows leading from stronger theories to theories which they contain.

On the other hand, the instances containing word equations are also
based around simple regular expressions. The most prominent theory is
A

.
=
sl holding 22604 instances, followed by A

.
=
s containing 2813 instances.

Unfortunately, the decidability of the largest set of instances is not known.
Notably, the total set only contains nine instances based on the theory Ae
where stacked complements are actually needed. All other instances can
be rewritten to simply avoid the complement.

4.3.2 Embedding of the Discussed Theories
In this section, we characterise the related quantifier-free first-order the-
ories introduced in Section 4.3.1 according to their decidability. The con-
tributions are summarised in Figure 4.8. The arrows lead from stronger
and more expressive theories to weaker ones. Theories in the upper box
are undecidable, while those in the lower box are decidable (similarly, the
theories within the inner dashed box are PSPACE-complete). We proceed
with a summary of the theorems we prove and some discussion of the
motivation and intuition for the proofs.

In an attempt to move from simpler to more complicated theories, we
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will begin our journey with the theory without complement operation
for regular expressions. We will start be considering Aslc. The motivation
for approaching this theory first (formalized later in Theorem 4.39) is
that for more general theories, which include regular expressions with
complement operations, even simple tasks (like checking whether there
exists a common string in the languages of two given expressions) require
an exponential amount of space. One way to understand this is that the
exponential blow-up with respect to the size of the regular expressions
comes from transforming this expression into an NFA, determinising it,
and then computing its complement. In fact, we will see that any other
approach inherently leads to such an exponential blow-up. We can state
the following result.

Lemma 4.34. The satisfiability problems for Aslc and Asl of simple regular ex-
pressions, linear integer arithmetic, string length, and concatenation are decidable
in PSPACE.

Proof. We first show this result for Aslc. Consider a formula j from Aslc.
We will give a non-deterministic algorithm that decides whether j is
satisfiable in polynomial space. However, for a simpler presentation, we
first discuss an algorithm deciding the satisfiability of j without the space
restriction.

Firstly, we convert the formula j into an equivalent formula j1 in
negation normal form. Therefore, j1 consists only of a Boolean combination
(_ and ^) of atoms of the form a Ṗ R or a �̇P R, where a P PatA and
R P RegExA, as well as atoms encoding arithmetic constraints. Clearly,
|j1

| P O(|j|).
Secondly, we non-deterministically choose an assignment of truth

values for all atoms such that the Boolean abstraction of j1 is satisfiable.
As such, we get from our formula a list Lr of atoms of the form a Ṗ R or
a �̇P R, where a P PatA and R P RegExA, that have to evaluate to true; if
an atom a Ṗ R was assigned false in the assignment we chose, then we
put a �̇P R in the list, and if a �̇P R was assigned false in our assignment,
then we put a Ṗ R in the list, while all the atoms that are assigned true
are added to the list as they are. We similarly construct a second list Ll
containing a set of arithmetic linear constraints that should be evaluated
to true. If, and only if, we find an assignment of the variables occurring in
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these two lists such that all the atoms they contain are evaluated to true, j
is satisfiable.

Thirdly, if a Ṗ R is a regular membership constraint of Lr, let MR be an
NFA such that L(R) = L(MR). Solving the constraint a Ṗ R is equivalent
to solving a P L(MR). If a �̇P R is in Lr, let MR be an NFA such that
L(R) = L(MR), since solving the constraint a �̇P R is equivalent to solving
a P L(MR). Essentially, the list Lr can be seen as a list of constraints
a P L(M), where a P PatA and M is an NFA. Without loss of generality,
we assume each of the NFAs appearing in Lr has exactly one initial state,
one final state, and no #-transitions.

Now, consider the constraint a Ṗ L(M) for M = (Q, A, d, q0, { f }) from
our list, and note that a is either a single string variable or the concatena-
tion of several string variables. It is clear that if |ù a Ṗ L(M) there is a way
of building an assignment h P HA such that for each variable x P vars (a)
there exists a path h(x) in M and the entire pattern h(a) forms a path
leading from q0 to f in M. Therefore, h(a) P L(M).

Let a = x1 . . . xk for k P N and xi P vars (a). We non-deterministically
choose a starting state qx,i P Q and a final state fx,i P Q for each occurrence
i § k of each variable x P vars (a), such that there exists a wx,i P A˚ and
d(qx,i, w) Ñ { fx,i } and d(q0, wx1,1 . . . wxk ,i) Ñ { f } for i = |a|xk .

Each variable x P vars (a) must have an assignment that is accepted
by all NFAs Mx,j, constructed for each of its occurrences j § `x =
Â(a Ṗ R)PLr |a|x from each constraint a P L(M). Hence, we intersect all NFAs
Mx,j for all x and all j P [`x] and get a new NFA Ax = (Qx, A, dx, q0x , Fx).

Further, let Bx = (Qx, { a } , d1
x, q0x , Fx) be the unary NFA obtained

by re-labelling all transitions in Ax with a single letter a, namely d1
x =

{(q, a) fiÑ p | q, p P Q, b P A, d(q, b) Ñ { p }}. It is clear that the paths of Ax

correspond bijectively to the paths of Bx. Let m = |Qx| be the number of
states of Ax and Bx. A well known result, related to the Chrobak normal
form of unary automata [34], is that all accepting paths in Bx that go through
a state q P Qx from the initial state q0x of Bx to the final state fx of Bx can
be succinctly represented as the shortest path from q0x going through q to
fx, whose length is `

q
p § 2m, and the shortest cycle containing q, whose

length is `
q
c § m (see, for instance, the statement and proof of Lemma 1

of [55]). Thus, for each state q of Bx (or, equivalently, Ax), we can find the
smallest `q

c § 2m such that there is a path from q0x going through q to fx
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and the smallest `q
p § m such that there is a cycle containing q of length

`
q
p. Then, we get that all accepting paths going through q in Bx as well as

in Ax (and consequently, all the corresponding words) have lengths of the
form `

q
p + r`q

c , for r P N. Conversely, there exists an accepting path in Bx

going through q of length `
q
p + r`q

c for all r P N, and a word w P A such
that |w| = `

q
p + r`q

c and w P L(Ax). This means that for each variable x we
get a disjunction of length constraints of the form len(x) = `

q
p + r`q

c for
some state q P Qx and r P N. We add the length restrictions obtained for
each variable x occurring in each constraint within the list Lr to the list Ll .

It remains to check whether the linear arithmetic constraints of Ll are
satisfiable, which is decidable (see [36]). If all arithmetic constraints are
satisfied, it automatically means that there exists an assignment for each
variable x such that the regular membership constraints are satisfied, too.
So, j is satisfiable.

The above non-deterministic algorithm is clearly sound and terminates,
but it does not run in polynomial space. There are several steps where
we obviously may use exponential space; for instance, computing MR
from MR or computing the intersection automaton Ax. Also, deciding
the satisfiability of Ll can be done in polynomial space w.r.t. |j| if all the
coefficients of the linear constraints in Ll can be represented in a number
of bits polynomial in |j|; thus, we need to show that this holds.

We will now explain how to implement the algorithm above in poly-
nomial space. The first difference occurs when switching from regular
expressions to automata in the list Lr. If a Ṗ R or a �̇P R is a regular mem-
bership constraint of Lr, let MR be an NFA such that L(R) = L(MR).
Clearly, obtaining an appropriate NFA can be carried out in polynomial
time (cf. [57]). The constraint a Ṗ R is equivalent to a Ṗ L(MR), while a �̇P R
is equivalent to a �̇P L(MR). So, in this implementation, the list Lr is seen
as a list of constraints a Ṗ L(M) or a �̇P L(M), where a P PatA and M is
an NFA. In this way, we avoid constructing the automaton MR for any
regular expression R P RegExA. We do not need to construct MR, as we
can simulate it using MR.

Let MR = (Q, A, d, q0, F) be an NFA. If we want to construct the
DFA DR (e.g. using the powerset construction) and then compute the
complement DFA DR, we would get that the states of DR are tuples of (at
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most |Q|) states of MR, the transitions are the transitions of MR applied
on the components of the tuples, and a tuple (q1, . . . , q`) P Q` for some
` P [|Q|] is final if and only if qi R F for i P [`]. Similarly, instead of working
directly with the NFAs MR from constraints a P L(MR), we will work
with the corresponding DFAs DR. Again, we simulate them, because we
know that their states are tuples of states from MR, and we can simulate
their transitions by executing the transitions of MR on the components of
the tuples. Consequently, we only store the current position within the
simulation of an automaton DR.

Following the strategy above, we cannot explicitly construct the NFA Ax

for a variable x. On the one hand, we have not obtained all the automata
we intersected in order to construct Ax, and on the other hand, as a
variable might have O(|j|) occurrences and the NFAs associated with its
occurrences have O(|j|) states, the automaton Ax may be of exponential
size. But even if we cannot effectively build Ax, we can simulate it. In
the previous construction, Ax was obtained as the intersection of the
NFAs corresponding to the occurrences of the variable x. We will now
construct Ax as an intersection of DFAs, so it will also be deterministic.
More precisely, its states are tuples of states corresponding to all automata
DRx,i for any occurrence x within our simulation. In such a tuple, the
position corresponding to an occurrence of x in a constraint a P L(MR)
stores a state of DR, which can be seen as a tuple of states of MR. The
position corresponding to an occurrence of x in a constraint a �̇P L(MR)
stores a state of DR, so, once more, a tuple of states of MR. The transitions
in Ax can be simulated by executing the transitions on components, using
the corresponding automata, and a state of Ax is final if all its components
are final. Clearly, the size of each state of Ax (i.e., the number of elements
in each tuple representing a state) is O(|j|

2). The states, final states, and
transitions of Bx are the same as the ones of Ax. The value of m, the number
of states of Bx and Ax, is O(|j|

|j|
2
). Note that m can be represented

with O(|j|
2 log |j|) bits. Also, note that, in this implementation, Ax is

deterministic, while Bx is not, since all transitions now have the same
label.

Finally, we need to show how the assignment of each variable x is
done. We non-deterministically choose a state of Ax (and Bx) such that
the word assigned to x labels a path that must go through q. Then we
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non-deterministically guess the corresponding `
q
p and `

q
c (whose value can

be represented on a polynomial number of bits, according to the upper
bounds `

q
p § 2m and `

q
c § m) and check if there is a path of length `

q
p

from the initial state through q to the final state, and a cycle of length
`

q
c containing q. Finally, we add the constraint len(x) = `

q
p + r`q

c for some
state q P Qx and r P N to Ll . We do this for all variables.

It can be shown by standard methods (cf. [36]) that if the integer
program defined by Ll has a solution, then there is a solution contained
inside the sphere of radius c|j|¨L centred in the origin, where c is a constant
and L is polynomial in the total number of bits needed to write the
coefficients of the constraints in Ll . So, it is enough to look for a solution
to Ll inside the sphere of radius c|j|¨L. This means that the value of each
variable from Ll can be written (in binary) in a polynomial number of
bits. It is enough to guess an assignment for these variables (which can
be stored in polynomial space) and then check if this is a solution to the
integer programming problem (which can be done polynomial space). If
the guess was correct, then j is satisfiable.

This modified implementation now runs in polynomial space, so this
concludes the proof for Aslc. The result for Asl follows immediately.

This ends the proof of the upper bound.

Lemma 4.35. The satisfiability problems for Aslc and Asl of simple regular ex-
pressions, linear integer arithmetic, string length, and concatenation are PSPACE-
hard.

Proof. The following problem is PSPACE-complete [60, 74] – no matter
whether the regular languages are given as regular expressions, determin-
istic, or non-deterministic finite automata.

Let L1, . . . , Ln be n regular languages over an alphabet A for
n P N. Decide whether there exits a word a P A˚ such that

a P

\

1§i§n
Li.

This problem can be reduced to the satisfiability problem for the quantifier-
free theory Asl . Let Ri P RegExA be a regular expression such that L(Ri) =
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Li, for all i P { 1, . . . , n }. We now define a formula

j =
^

1§i§n
x Ṗ Ri

where x P X . Clearly, j is satisfiable if and only if
\

1§i§n
Li ‰ H.

This ends the proof of the lower bound.

Theorem 4.36. The satisfiability problems for Aslc and Asl of simple regu-
lar expressions, linear integer arithmetic, string length, and concatenation are
PSPACE-complete.

Proof. Immediate consequence of Lemma 4.34 and Lemma 4.35.

When we allow arbitrary complements in the regular expressions, we
can still prove the decidability of the respective theories but the complexity
increases.

Theorem 4.37. The satisfiability problems for Aelc and Ael of regular expressions,
linear integer arithmetic, concatenation, and string length are decidable.

Proof. The idea is to use the same strategy as explained above for Aslc.
Since regular expressions may now contain complements, when construct-
ing the automaton MR associated with a regular expression R P RegExA
we might have an exponential blow-up in size, even if the alphabet of
the regular expression (resp. NFA) is binary and only one complement
is used (as shown, for instance, in [63]). We can no longer guarantee the
polynomial space complexity of our approach, but the decidability result
holds.

The last theorem is supplemented by the following remark, which
shows upper and, more interestingly, lower bounds for the space needed
to decide the satisfiability problem for a formula in the quantifier-free
theories Ael and Aelc.
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Remark 4.38. Let g : N°0 ˆQ Ñ Q recursively defined by g(1, c) = 2c

and g(k + 1, c) = 2g(k,c) for k P N°0 and c P Q. Informally this mapping
corresponds to the following tower of powers (a.k.a. tetration)

g(k, c) = 222...2

| {z }
k times

c

= 2 "k c.

For a regular expression R P RegExCA, define the complement-depth
cDepth : RegExCA Ñ N recursively as follows. If R P { H, #, a } for a P A
let cDepth(R) = 0. Otherwise if R P { R1 Y R2, R1 ¨ R2 } let cDepth(R) =
cDepth(R1) + cDepth(R2), if R = R˚

1 let cDepth(R) = cDepth(R1), and if
R = R1 let cDepth(R) = 1 + cDepth(R1) for appropriate R1, R2 P RegExCA.
For a formula j in the quantifier-free theory Aelc (as well as Ael) we let
cDepth(j) be the maximum depth of a regular expression in j.

One can show, using for instance our approach from the proofs of
Theorems 4.36 and 4.37, that the satisfiability problem for formulae j
from the quantifier-free theory Aelc (and Ael as well), with size n P N and
cDepth(j) = k P N, is in NSPACE( f (g(k ´ 1, 2n))), where f is a polynomial
function. However, there exists a positive rational number c P Q such
that the respective problem is not contained in NSPACE(g(k ´ 1, cn)).
This lower bound follows from [107]. There, the following problem is
considered: Given a regular expression R P RegExCA, of length n, with
cDepth(R) = k P N over an alphabet A, decide whether L(R) = A˚. It
is shown that there exists a positive rational number c P Q such that the
respective problem cannot be solved in NSPACE(g(k, cn)). So, deciding
whether a formula j of Ael consisting of the atoms a Ṗ R and a P A˚, where
R P RegExCA is a regular expression of length n with cDepth(R) = k ´ 1, is
not contained in NSPACE(g(k ´ 1, cn)) (note that, in this case, the length
of the formula j is also O(n)).

Intuitively, this lower bound shows that if the complement-depth of a
formula of length n is k, then checking its satisfiability inherently requires
an amount of space proportional to the value of the exponentiation tower
of height k ´ 1, and with the highest exponent cn. Ÿ

Let g be defined as given in Remark 4.38. Based on the classical results
from [107], we can derive the following theorem.
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Theorem 4.39. There exists a positive rational number c P Q such that the
satisfiability problem for the fragments of Ael and Aelc allowing only formulae of
complement-depth at least k is not in NSPACE(g(k ´ 1, cn)).

Proof. This is a direct consequence of Remark 4.38.

This theorem shows that, in fact, when deciding the satisfiability prob-
lem for the quantifier-free theories Aelc and Ael the automata-based proof
we presented is relatively close to the space-complexity lower bound for
this problem. Any other approach, automata-based or otherwise, would
still face the same obstacle: the space complexity of any algorithm deciding
the satisfiability of formulae of complement-depth k cannot go under the
NSPACE(g(k ´ 1, cn)) bound. This, on the one hand, explains our interest
in analysing the theory Asl (and its variants): as soon as we consider
stacked complements, we are out of the PSPACE complexity class. On the
other hand, this also explains the reason why in developing a practical
solution for the satisfiability problem of Ael formulae within our tool
Z3str3RE we use many heuristics. While the result of Theorem 4.37 was
known from [82], our approach seems to provide a deeper understanding
of the hardness of this problem, where this stems from, and of the ways
we can deal with it.

Next we consider the case of replacing the length function by a string-
number predicate. The lower bound of Theorem 4.39 applies also to the
case of Aen. So one cannot hope to solve the satisfiability problem for this
theory in polynomial space, as soon as we allow arbitrary complements
in our regular expressions. However, we can show that the satisfiability
problem for Aen is decidable, and in PSPACE when only simple regular
expressions are allowed.

Theorem 4.40. The satisfiability problem for Asn (resp. for Aen) of (simple)
regular expressions and a string-number predicate is PSPACE-complete (resp.
decidable).

Proof. The lower bound follows as in Theorem 4.36. We now show the
PSPACE upper bound.

Let j be a formula of length n P N in the theory Asn. Firstly, once
more, convert j into an equivalent formula j1 in negation normal form
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which consists of a Boolean combination of atoms of the form a Ṗ R or
a �̇P R, where a P PatA and R P RegExA (thus R is not containing any
complement), as well as atoms encoding arithmetic constraints, and string-
number predicates. Clearly, |j1

| P O(|j|).
Similar to the proof of Lemma 4.34, secondly, we non-deterministically

guess the truth assignment of all atoms (regular constraints, arithmetic
constraints, or string-number predicates) such that j1 evaluates to true.
We can construct a list Lr of atoms of the form a Ṗ R or a �̇P R, where a is a
string term and R is a simple regular expression, that all have to evaluate
to true. We also construct a second list Ll containing a set of arithmetic
linear constraints that should all be true.

Thirdly, we process the string-number conversion predicates of the
form numstr(m, a) and  numstr(m, a), where m is an integer term and
a P A˚

Y X . Note, since we do not allow concatenation, a can only be a
word consisting of constants or a single variable. If m is neither a variable
nor a constant, we add a new integer variable xm and replace numstr(m, a)
(respectively,  numstr(m, a)) by the predicate numstr(xm, a) (respectively,
 numstr(xm, a)) and the arithmetic atom xm = m. A similar processing
can be done to replace the constant strings from string-number predicates
by variables. In this way, we obtain a new formula j2, still of size O(|j|).
After this, each term in every numstr predicate is either a constant or
variable of the appropriate sort.

Now, in j2, if we have a string-number predicate numstr(m, a) (re-
spectively,  numstr(m, a)) where m P Z is a constant, we let bin(m) be
the constant string consisting of the shortest binary representation of m.
We add a Ṗ 0˚bin(m) (respectively, a �̇P 0˚bin(m)) to the list of regular con-
straints Lr. We remove numstr(m, a) (respectively,  numstr(m, a)) from
j2. If we have numstr(x, a) (respectively,  numstr(x, a)) where x is an inte-
ger variable, we add a Ṗ 0˚(0, 1)˚ (respectively, a �̇P 0˚(0, 1)˚) to the regular
constraints Lr. We remove numstr(x, a) (respectively,  numstr(x, a)) from
j2, but store in a new list Lb the information that the binary representation
of x fulfils the same regular constraints as a (e.g., if we have a Ṗ R we add
x Ṗ R as well), or, respectively, the complement of the regular constraints of
a. In the latter case, it is worth noting that if we have a restriction a �̇P R,
the binary representation of x must be in the language defined by R, so
we will not obtain regular expressions with stacked complements.
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In this way we obtain a list of regular constraints that need to be true,
a list of arithmetic linear constraints that need to be true, as well as a
list of constraints stating that the binary representation of certain integer
variables must also fulfil the same regular constraints as certain variables.

So far, all transformations can be clearly carried out in polynomial
space with respect to |j|. So, in Ll , all coefficients can be represented in a
polynomial number of bits, by the same reasons as before. Let s P Z be the
sum of the absolute values of all the constants occurring in the arithmetic
constraints. Clearly s can be represented in a number of bits polynomial
in |j|. The list Lb remains unchanged.

Unlike the algorithm presented in Lemma 4.34, we will not solve the
integer linear system defined by Ll using integer programming tools.
Instead, we use the fact that deciding whether the set of linear constraints
is satisfiable is equivalent to checking whether the language accepted by
a finite synchronized multi-tape automaton A is empty or not (cf. [54]).
This automaton has as states p-tuples of integers ranging over the set
{ i P Z | ´` § i § ` }p for an appropriate ` P Z, where p P N is the number
of variables occurring in Lr. Therefore, each state can be represented in a
polynomial number of bits with respect to |j|. Each tape of the automaton
corresponds to a variable occurring in the set of linear constraints. For a
certain input, the automaton checks whether the binary strings found on
the tapes can be used as the binary representations of the corresponding
variables in an assignment that satisfies the linear constraints. We assume
that the representations of these variables are with leading 0s, so that
their least significant bits are aligned. Intuitively, we encode a system of
the form A~x § ~bT , where A is the coefficient matrix, ~x is the (column)
vector of all variables, and ~b is the vector of integers. The state of the
automaton computes A~y(1..i), where ~y is a vector of integers whose binary
representations are on the tapes of the automata, and ~y(1..i) is the vector
containing each component, respectively, the integer whose representation
consists of the most representative i bits from the representation of integer
found at the corresponding position in ~y. In order for ~y to be a solution,
each component of the computed value A~y(1..i) must stay between ´`
and `. Moreover, the transition from a state corresponding to A~y(1..i) to
the state corresponding to A~y(1..i + 1) can be computed from the current
state and ~y(i + 1). More detail on the construction of A is given in [54].
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In our case, we additionally need to enforce that both the regular
constraints on the binary representation of certain variables from Lb, as
well as the regular constraints on the other string variables that are not
involved in any numstr predicate, are fulfilled.

Therefore, we augment the automaton described above in the following
way: 1. We add a tape for each string variable y P X which does not
occur in any string-number predicate, but appears in a linear length or
regular membership constraint. From the point of view of the arithmetic
part implemented by the automaton, these tapes are treated as if they
represent variables which occur with coefficient 0 in the equations of
the linear system we want to solve. In this context, as the letters on the
respective tape are not involved in any arithmetic operation, we do not
need to restrict the respective letters to the bits { 0, 1 }. 2. We assume that
the words on the tapes of the automaton have their last letters aligned.
To this end, we can assume that our strings are padded with a prefix of
special blank symbols, so that they all have the same length. The arithmetic
part implemented by the automaton treats these blanks as 0s. The part of
the automaton which checks the regular constraints simply neglects these
blanks.

We will now explain how the automaton works. The arithmetic part
was already described. The part checking the regular constraints works as
follows. Suppose that the binary representation of the variable x, which
corresponds to the jth tape of A, must be in the language defined by
a regular expression R P RegExA (or, alternatively, not in the language
defined by R). To this end, while A reads the representation of x, as soon
as we reach the first non-blank symbol on that tape, we also simulate
the computation on x of the deterministic automaton corresponding to
R or, respectively, to R (i.e., we construct the NFA MR for R, and then
simulate the transitions corresponding to R or R on the DFA obtained via
the powerset construction from MR as in the proof of Theorem 4.36). We
accept the representations given as input to A if and only if A accepts them
and they are also accepted by the automaton checking the components
corresponding to variables that occur in Lb. We simulate the states of
the automata to enforce that the constraints from Lb have a polynomial
number of components, and their total number is also polynomial.
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The tapes corresponding to string variables which do not occur in
string-number predicates are processed similarly. We simply simulate the
computation of the deterministic automaton corresponding to the regular
constraint on the string found on that tape.

To check whether there exists an input accepted by A in this way, we
non-deterministically guess an input for A, by selecting one by one, from
the most representative (left) to the least representative (right), the letters
on the tapes of the automaton while storing at each step just the current
guess, without saving the past guesses, and keep track of the current state
of all the automata we simulate.

This process is clearly correct from the information we gave, and all
the information we store fit in a polynomial number of bits. However, it
is not clear that it terminates. For this, we show that we can bound the
number of states of the automaton by a polynomial. Each of the automata
corresponding to regular constraints, which we run when using A, has
at most P(|j|)R(|j|) states for some polynomials P and R, and we run
them in parallel on the tapes of A. The state corresponding to the linear
system is a number between ´` and `. We accept a guessed content of the
tapes if and only if all automata accept it and the linear system is satisfied.
Hence, we are essentially simulating a run of the product of these at most
Z(|j|) automata, where Z is another polynomial. This product automaton
accepts a non-empty language if and only if it accepts a word (sequence
of columns of bits) whose length is at most its number of states. So, we
must check whether it accepts a sequence of columns of bits of length
P(|j|)Q(|j|)Z(|j|). By keeping a binary counter, we can count how many
guesses we have made, and stop (without having found a word) when we
need to use more than Q(|j|)Z(|j|) log P(|j|) bits for this counter.

If we can guess an assignment of the variables that satisfies Lb and Ll
and the remaining regular constraints, then j is satisfiable. If we cannot
find any assignment, j is not satisfiable.

Clearly, the decision procedure described works also in the case of
the regular expressions containing complements. However, we cannot
show the polynomial upper bound on the space we use. Therefore, Aen is
decidable.

While the general idea to prove the above result is based on a similar
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construction to that in Theorem 4.36, in this case we need to use a different
strategy to work with the linear arithmetic constraints (due to the fact that
string-number predicates are involved, and their fundamentally different
nature with respect to the length function).

It is natural to ask whether the decidability result extends to the the-
ories Aenc (and Asnc), which also allow concatenation. While we leave this
open, one can make two interesting observations. Firstly, these theories
are expressive enough to define a predicate checking if two strings have
equal length. Moreover, Aenc (and likewise Asnc) has equivalent expres-
sive power to the theory of word equations with regular constraints, a
predicate allowing the comparison of the length of string terms, and the
string-number predicate. The decidability of word equations with string-
length comparisons is a long standing open problem, so we also consider
it worthwhile to address the decidability of the slightly stronger theory
Aenc. According to [41], the theory of word equations, length constraints,
and the string-number conversion is undecidable; the difference is that in
that theory, one can check whether the length of a string term equals an
integer term, which seems more general than what one can model in Aenc.
We get the following.

Theorem 4.41. The satisfiability problem for Aslnc of regular expressions, linear
integer arithmetic, a string-number predicate and concatenation is undecidable.

Proof. We begin by looking at the theory Asnc and define a predicate
eqLen Ñ PatA ˆ PatA defined by

eqLen(a, b) iff len(a) = len(b)

for a, b P PatA. We can express eqLen(a, b) as:

eqLen(a, b) = (z P 1{0}˚)

^ numstr(i, z) ^ numstr(j, z0) ^ numstr(na, 1a)

^ numstr(nb, 1b)

^ (i § na) ^ (na + 1 § j) ^ (i § nb) ^ (nb + 1 § j),

for integer variables i, j, na, nb and string variables z. Indeed, for a potential
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assignment h P HAYZ, we have

h(i) = 2len(z) and h(j) = 2len(z)+1.

Then, we have

h(na) = 2len(a) + A and h(nb) = 2len(b) + B,

where numstr(A, a) and numstr(B, b) are true. Therefore,

2len(z) § 2len(a) + A † 2len(z+1) and 2len(z) § 2len(b) + B † 2len(z)+1.

It is immediate that len(a) = len(b) = len(z), so our claim holds. We can
also show that the theory of word equations with regular constraints and
numstr predicate is equivalent to the theory Aenc.

For one direction, we need to be able to express an equality predicate
between string terms eq Ñ PatA ˆ PatA. The regular constraints as well
as those involving the numstr predicate are canonically encoded. This
predicate is encoded as follows:

eq(a, b) = eqLen(a, b) ^ numstr(i, 1a1b) ^ numstr(j, 1b1a) ^ (i = j),

for a, b P PatA. Indeed, this tests for a potential assignment h P HAYZ that

len(a) = len(b) and h(1a1b) = h(1b1a).

If these are true, it is immediate that h(a) = h(b).

For the converse, it is easy to see that each regular expression member-
ship constraint a Ṗ R (respectively, a �̇P R), where a P PatAand R P RegExCA,
can be expressed as the word equation a

.
= xR, where xR P X is a fresh

variable, which is constrained by the regular language defined by R (re-
spectively, by the regular language defined by R).

This allows us to define a stronger length-comparison predicate leqLen Ñ
PatA ˆ PatA, whose semantics are defined by

leqLen(a, b) iff len(a) § len(b),

for a, b P PatA. We can express leqLen(a, b) by

leqLen(a, b) = (z P {0, 1}˚) ^ eqLen(az, b).

Finally, we can now move on to Aelnc and show our statement. Ac-
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cording to [41] the quantifier-free theory of word equations expanded
with numstr predicate and length function (not only a length-comparison
predicate) and linear arithmetic is undecidable. Thus, if we consider Aelnc,
this undecidability result immediately holds according to the above.

In conclusion, Aenc and Aeln are the only fragments of Aelnc where the
decidability status of the satisfiability problem remains open.

4.3.3 Design of an Algorithm Using Ideas of the Proof

As we have seen in the previous section, the complement with a regular
expression does not play a significant role in practice. Therefore, we use
the ideas within the decision procedure used in the proof of Lemma 4.34
to directly implement an algorithm to determine satisfiability of regular
membership predicates together with length constraints.

Within the proof we construct a propositional logic abstraction of our
input formula. This procedure is similar to the first step of a DPLL(T)
procedure implemented within SMT-solvers. Formally we realise the ap-
proximation by using a mapping between atoms and propositional logic
variables. In the following we specify this abstraction for arbitrary first
order logic formulae.

Definition 4.42. Let V be a vocabulary. For a formula j P FO(V) such that
bounded (j) = H let vPL : atoms (j) Ñ { xi | xi P X , i P [|atoms (j) |] } be
a bijective mapping assigning a propositional logic variable to each atom
of j.

We define the propositional logic abstraction jPL P PL of j inductively

jPL =

8
><

>:

vPL(j) if j is an atom,
 j1

PL if j =  j1,
j1

PL _ j2

PL if j = j1
_ j2.

Note, this definition fully specifies all quantifier-free propositional logic
abstractions according to Remark 4.38 in Section 2.1.2. The key idea behind
this abstraction is the fact that it allows us to identify whether an atom has
to be satisfied by an assignment of the original propositional logic formula
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or not. Furthermore, if there not exists an assignment to the abstraction,
the first order logic formula cannot be satisfiable, too.

Example 4.43. Consider the string constraint C = x1 Ṗ 1˚
^ numstr(15, x1)^

len(x1) • 3 where x1 P X and 1 P A seen in Example 4.33. We get the set

atoms (C) = { x1 Ṗ 1˚, numstr(15, x1), len(x1) • 3 }

of atoms. We might obtain the abstraction

vPL = { x1 Ṗ 1˚
fiÑ y1, numstr(15, x1) fiÑ y2, len(x1) • 3 fiÑ y3 } .

for fresh variables y1, y2, y3 P X . All together we obtain the propositional
logic abstraction CPL = y1 ^ y2 ^ y3.

We outline the idea of this procedure including the split of the atoms into
separate sets as seen in the proof in Algorithm 3.

Algorithm 3: Procedure to split an input formula into linear and
regular membership constraints with respect to their satisfiability.

Input : Formula j in conjunctive normal form over theory Ae
Output : Sets LR and LL of regular membership predicates and linear length constraints

1 jPL = calculateBooleanAbstraction(j);
2 if not checkSAT(jPL) then
3 return H, H

4 b = getAssignment(jPL);
5 LR , LL := H, H;
6 forall a Ṗ R P atoms (j) do
7 if b(vPL(a Ṗ R)) then
8 LR = LR Y { a Ṗ R }
9 else

10 LR = LR Y
�

a Ṗ R
 

11 forall ÂxPX cx ¨ xôŸ c P atoms (j) do
12 if b(vPL(ÂxPX cx ¨ xôŸ c)) then
13 LL = LL Y

�
ÂxPX cx ¨ xôŸ c

 

14 else
15 LL = LL Y

�
ÂxPX cx ¨ x �ôŸ c

 

16 return LR , LL

Solving regular expression membership predicates in practice is an
expensive task. The natural way of constructing a deterministic finite
automaton based on a regular expression to ease the satisfiability suffers
not only space but also time. To this extend we tried to postpone the
construction of a deterministic finite automaton as much as possible. To do
so we enriched the above mentioned decision procedure by a refinement
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step, mostly to quickly determine unsatisfiability of an input formula, but
also to leverage information we usually obtain by expensive automata
constructions.

The idea is similar to the idea we use in Section 4.1.2 in Definition 4.11
for word equations: we construct a length abstraction based on a regular
expression membership predicate. This abstraction allows avoiding the
construction of the unary automata we use in the proof to obtain the
length constraints via Chrobak normal form [34]. We will first show how
to get a length approximation of a regular expression.

Definition 4.44. Let R P RegExCA be a regular expression. We define the
length abstraction of a regular expression recursively by

rAbs(R) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

{ 1 } if R = a P A,
{ 0 } if R = #

H if R = H,
rAbs(R1) Y rAbs(R2) if R = R1 Y R2,
{ n + m | n P rAbs(R1), m P rAbs(R2) } if R = R1 ¨ R2,
{ ` ¨ n | ` P N°0, n P rAbs(R1) } Y { 0 } if R = R˚

1 ,
NzrAbs(R1) if R = R1.

for R1, R2 P RegExCA.

We naturally combine Definition 4.11 and the abstraction for regular
expressions as follows.

Definition 4.45. Let a Ṗ R be a regular membership predicate for a P PatA
and R P RegExCA. Furthermore let a# = ÂxPX |a|x ¨ x̄+ ÂaPA |a|a be the
length abstraction of a. We call the system of linear equalities

{ a# ´ r = 0 | r P rAbs(R) }

the length abstraction of a Ṗ R.

Whenever �|ù { a# ´ r = 0 | r P rAbs(R) } for a regular membership
predicate a Ṗ R, we immediately get the unsatisfiability of a Ṗ R, since
the corresponding regular expression R does not represent a suitable
length for our pattern a. It is worth mentioning that whenever we want
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to solve a negated regular membership predicate a �̇P R we use the same
method as presented above but solve a Ṗ R.

In practice, whenever we encounter a Kleene star within a regular
expression, we introduce a fresh integer variable. It is worth mentioning
that nested stars do not break the requirement of forming a linear equality.
We simply reuse a previous variable. The following example gives an
intuition.

Example 4.46. Consider the regular membership predicate

x1abx2 Ṗ a(a˚
Y b)˚.

The abstraction of the pattern x1abx2 is given by x̄1 + x̄2 + 2. The abstraction
of the regular expression is constructed as follows:

rAbs (a(a˚
Y b)˚)

=
�

1 + m
��m P

�
` ¨ n

�� n P
�

1 ¨ `1
�� `1

P N0
 

Y { 0 } , ` P N0
 

Y { 1 } Y { 0 }
 

=
�

1 + m
�� m P

�
` ¨ `1

�� `, `1
P N0

 
Y { 0 }

 

= { 1 + m | m P N }

It is easy to see, that is is sufficient to introduce a single variable ȳ1 instead
of introducing a single one for each Kleene-star occurring within the
regular expression. In total we obtain the length abstraction

x̄1 + x̄2 + 2 = 1 + ȳ1

describing all suitable length for our solutions to the initial regular mem-
bership predicate.

In Algorithm 4 we outline the idea of using the length abstraction. Note,
that this algorithm is not necessary to form a decision procedure for
formulae over Aelc but delivers a valuable addition, allowing to quickly
check whether a formula is unsatisfiable.

Continuing with the ideas seen in the proof of Lemma 4.34, whenever
the string constraint C contains multiple regular expression membership
constraints asking whether the same pattern a P PatA belongs to multiple
regular languages indicated by regular expressions R1, . . . , Rk P RegExCA
for k P N, meaning a Ṗ R1, . . . , a Ṗ Rk, we have to ensure all constrains
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Algorithm 4: Procedure to determine unsatifiablity of a set of
regular membership predicates and linear length constraints.

Input : Sets LR and LL of regular membership predicates and linear length constraints
Output : UNSAT or UNKNOWN

1 Rabs = calculateLengthAbstraction(LR );
2 if not checkSAT(

V
lPRabsYLL

l) then
3 return UNSAT

4 return UNKNOWN

q0

q0
1

q1
1

q2
1

q0
2

q1
2

q2
2

. . .

q0
|a|´1

q1
|a|´1

q2
|a|´1

q0
|a|

q1
|a|

a[1] a[2] a[|a|]

Figure 4.9. Selecting initial and accepting state for all letters and variables within
our pattern a.

simultaneously. As seen in the proof, we construct non-deterministic au-
tomata Ai such that L(Ai) = L(Ri) for all i P [k] and simply combine them
by using the product automaton construction (cf. [104]) to construct an
automaton A such that L(A) =

T
iP[k] L(Ai). We construct this automaton

lazily on the fly, which potentially also reveals useful information about
our constraints: whenever no accepting state in the product automaton A
is reachable, a Ṗ R1, . . . , a Ṗ Rk cannot be fulfilled at the same time. If the
intersection is not empty we constructed the whole automaton A which
we will reuse later within our decision procedure. To this extend we will
now focus on solving a P L(A) instead of solving a Ṗ R1, . . . , a Ṗ Rk. The
general idea of this algorithm is outlined in Algorithm 5.

The next step is non-deterministically guessing starting states for each
letter or variable a[i] for i P [|a|] within each pattern a P PatA of question in
the reformulated regular membership predicate a P L(A). Our algorithm
determines this step by trying all different combinations of states such that
all together they form a valid path from the initial state to an accepting
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Algorithm 5: Procedure for constructing the intersection automa-
ton for a set of regular membership constraints

Input : Set LR containing regular membership predicates over theory Ae
Output : A set LAut containing tuples of pattern and product automaton for all equal left hand sides

1 LAut = H

2 forall a P PatA such that there exists R P RegExCA and a Ṗ R P atoms (j) do
3 forall a Ṗ Ri P atoms (j) do
4 Ai = calculateFiniteAutomaton(Ri )

5 A = calculateProductAutomaton(R1, . . . , Rk );
6 if L(A) = H then

/* Empty intersection, formula unsatisfiable */
7 return H

8 LAut = LAut Y (a, A);

9 return LAut

state through the automaton A. Therefore, we obtain several automata,
each of them corresponds to a single possible solution wi P A˚ such that
h(a[i]) = wi. Whenever, a variable is occurring multiple times within a
pattern a, we intersect the resulting automata for each variable occurrence
i in a. Thus, if the intersection is non empty, we obtain an automaton again
describing all possible solutions for the considered variable within the
current split which fulfils the regular expression membership predicate.
We visualise this idea in Figure 4.9, where for each letter or variable a[i]
we pick a state qi and check whether there is a path to the previous state
qi´1. Not all sub-automata lead to an accepting state as visualised with
the dashed states. Moreover, if we are not able to construct such automata,
the initial formula does not have a solution.

Naturally, whenever more than one regular membership constraint is
involved we have to check whether all of them accept at least a single com-
mon word. To this extend we intersect all resulting automata describing
a potential solution to a variable. Once again, if the product automaton
does not accept a single word, the initial formula does not have a solution.

The idea of this procedure is outlined in Algorithm 6. Line 2-21 con-
struct all possible automata for each variable, while line 24-45 check
whether there is a common solution. The following example deepens the
idea.

Example 4.47. Consider the regular membership constraint

a = x1x2x1 Ṗ(# Y bb˚) Y (a Y bb˚a)b((a Y bb˚a)b)˚(# Y bb˚) = R.
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Figure 4.10. Automata accepting the same language as the regular expression
(# Y bb˚) Y (a Y bb˚a)b((a Y bb˚a)b)˚(# Y bb˚) and example splits.

In Figure 4.10 a we visualise the automaton A such that L(R) = L(A). We
are assuming our algorithm selected the sequence q0, q3, q2, q3 as potential
splits for our pattern a. Therefore, we have to construct automata such that
there exists sub-automata for x1 having the initial state q0 and accepting
state q3, for x2 having the initial state q3 and accepting state q2, and
for the second occurrence of x1 an automaton having the initial state q2
and accepting state q3. Luckily, all chosen accepting and initial states
are connected within our original automaton A. Therefore, we extract
the sub-automata visualised in Figure 4.10 b - d describing all potential
solutions to our variables. Selected states are highlighted in light grey and
unreachable states, respectively states not having a path to the accepting
state are faded. Since x1 is occurring more than once in our pattern a, we
have to intersect all automata corresponding to x1. The result is exactly
the automaton depicted in Figure 4.10 b. Now we can pick two arbitrary
words being accepted by our automata to obtain a solution to our regular
expression membership predicate a Ṗ R. We might pick h(x1) = bab and
h(x2) = ab, which is a suitable assignment. Therefore, h |ù a Ṗ R.

Whenever we find a valid set of potential solutions, we again use
the length abstraction seen in Definition 4.45. As also seen in the proof,
this is sufficient, since these abstractions now directly correspond to a
potential solution for each variable. We simply use an integer solver and
ask whether at least one of the abstractions of our automata combined
with the linear length constraints stated within our original formula j is
satisfiable. We outline this idea in Algorithm 7.

In order to obtain an assignment for all variables, we can simply use
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Algorithm 6: Procedure to calculate potential solutions to a set of
regular membership constraints

Input : Set LR containing regular membership predicates over theory Ae
Output : A set LAut containing tuples of patterns and product automaton for all equal left hand sides

1 sols, symbols = H, H

2 forall (a, A) P LAut do
3 Let A = (Q, A, d, q0, F);
4 n = |a|;
5 M = H;
6 symbols = symbols Y { a[i] | i P [|a|] }
7 forall q1, q2, . . . , qn´1 P Qn´1 do
8 forall qn P F do
9 C = { a[i] fiÑ H | i P [n] } forall i P [n] do

10 if D w P (A Y X )˚ . d(qi´1, w) = qi then
11 break and select new states (if any left)

12 Aa[i] = (Q, A, d, qi´1,
�

qi
 
)

13 if C(a[i]) ‰ H then
14 Ia[i] = calculateProductAutomaton(Aa[i] , C(a[i]))

15 if L(Iai ) = H then
16 break and select new states (if any left)
17 else
18 C(a[i]) = Ia[i]

19 else
20 C(a[i]) = Aa[i]

21 M = M Y { C }

22 if M = H then
/* we have not found a single matching split */

23 return H

24 if sols ‰ H then
25 C = H

26 forall S P sols do
27 forall S1

P M do
28 CC = H

29 forall x P symbols do
30 if x P dom(S) then
31 Ix = calculateProductAutomaton(S(x), S1(x))
32 if L(Ix ) = H then
33 CC = H;
34 break and select a new set S1 (if any)
35 else
36 CC(x) = Ix

37 else
38 CC(x) = S(x)

39 C = C Y { CC }

40 if C ‰ H then
41 sols = C
42 else

/* the intersection of the solutions is empty; formula unsatisfiable */
43 return H

44 else
45 sols = M

46 return sols
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Algorithm 7: Procedure to check the validity of calculated solu-
tions with respect to given linear constraints

Input : Set sols of automata describing potential solutions to our initial formula and a set of linear length constraints LL
Output : SAT or UNSAT of the original formula

1 forall S P sols do
2 if checkSAT(

S
xPdom(S) calculateLengthAbstraction(x P S(x)) Y LL ) then

3 return SAT

4 return UNSAT

the constructed automata for each variable and take an arbitrary accepted
word. Note, we naturally have to use the automata where our procedure
in Algorithm 7 reached line 3 and therefore determined satisfiability of
the input formula.

We now presented a couple of algorithms which all together form
a decision procedure for Aelc. We simply connect Algorithm 3 and Al-
gorithm 5-7. The soundness of the procedure follows directly from the
proof of Lemma 4.34. Termination is also guaranteed, since we are always
iterating over finite sets.

4.3.4 Related Work

Closely related to our work is the decidability result of Aelc in [4]. Unfor-
tunately, no proof is given within their publication. From their description
we deduce the choice of another proof strategy. Other strongly related
complexity results to ours are presented in [83, 84]. Furthermore, [41]
investigates sub-theories involving regular membership constraints. Con-
trary to our work, none of the above mentioned publications mentions a
directly derived implementation of their proof ideas. On the other end,
many modern solvers typically handle regular expression membership
constraints via an automata-based approach (cf. [11]). Automata-based
methods are powerful and intuitive, but solvers must handle two key
practical challenges in this setting, which we also highlighted earlier: the
first challenge is that many automata operations, such as intersection, are
computationally expensive, yet handling these operations is required in
order to solve constraints that are relevant to real-world applications. The
second challenge relates to the integration of length information with
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regular expression membership constraints. Length constraints derived
from automata may imply a disjunction of linear constraints, which is
often more challenging for solvers to handle than a conjunction. Both of
these challenges where efficiently handled as we showcase in Section 6.4
which again highlights the novelty of our approach.

4.3.5 Conclusion
The analysis of several string solving benchmarks containing regular ex-
pression membership queries revealed relevant sub-theories based around
regular membership predicates. It turned out that the most frequently
occurring sub-theory is actually decidable. Next to proving the PSPACE-
completeness of this theory, we used the ideas of these proofs directly
to develop an SMT-solver for regular expression membership predicates
which outperforms several state of the art string solver (see Section 6.4).
Therefore, we show that an interleaving between theory and practice po-
tentially leads to new interesting solutions in both worlds. Our future
work will continue on this trail to obtaining relevant sub-theories used in
practice, always in the hope of finding decidable sub-theories which lead
to the design of new decision procedures for solving practically relevant
string constraints.
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Chapter 5

Ensuring the Correctness of
String Solvers

“In einer Freundschaft wie dieser
gibt es kein Zurück.”

Tocotronic

During the development of the techniques presented in Chapter 4 we
realised that it was relatively hard to test our implementation against
existing solvers due to a few reasons:

ô there was no general collection of standard string solving benchmarks:
it seemed very hard to identify the relevant benchmarks for string
solving tasks, without considering a high amount of literature, and
collecting from each paper the input data they used to test their tools;

ô the benchmarks we found in the way described above were largely
uncategorised as to which kind of string constraints they contained;

ô benchmarks from different tools use different input formats or slight
variations of the same core format (SMT-LIB);

ô the satisfiability/unsatisfiability verdicts provided by the tools used in
the literature were wrong on many benchmarks; and, finally,

ô benchmarks were huge and it is really hard to get an overview where
one solver was better than the other.

Naturally, this is a result of a field growing organically and a lack of
standardisation. Luckily, efforts gradually have converged and, for instance,
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currently we have a unified string logic standard as part of SMT-LIB. That is
however only one step towards easily comparing string solvers, addressing,
at least partly, the second and third item from the above list.
To help this effort of making the testing and evaluation of string solvers
easier and standardised, we have developed ZaligVinder. At its core,
ZaligVinder has a collection of benchmarks, extracted from the literature
related to many different tools. It allows running all of the established
string solvers on the benchmark-sets and it includes a graphical overview
of the results. Also, to overcome the problem that the existing benchmarks
verdict is wrong ZaligVinder includes a cross-validation mechanism for
asserting what is the correct result for inputs with unknown verdicts. We
use this mechanism to annotate the benchmarks with reliable results. While
doing so we apply mechanisms to automatically ease human readability.
Our approach, thus, addresses the first, second, fourth, and fifth items
from our list.

In this chapter we start by explaining our benchmarking framework
ZaligVinder. We give an introduction on how to perform an analyse
using ZaligVinder, how to analysis the resulting data with our tool by
explaining the different techniques. Afterwards, we summarise the set of
collected benchmarks which consist of a total of 114,475 instances split over
152 different benchmark sets. Unfortunately, these benchmarks are often
annotated with false results. In the next Section we extract a sophisticated
set of 112,831 benchmarks, annotated, this time, with reliable results: the
SAT-instances are provably correct, while the UNSAT-instances are labelled
according to the result reported by the majority of the state-of-the-art
solvers. We note that solving formulae involving strings usually consists
(although not always explicitly stated) in executing several algorithms in
sequence. In particular, it seems that a good preprocessor, which simplifies
and restructures the input data in a more concise way, often leads to
a better performance of a string solver. Thus – as a proof of concept
– we extended the tool our tool to cope with swappable preprocessing
techniques – not only to use it for performance tests of string solvers, but
also to export the resulting mutated instances. This extension is presented
in Section 5.1.2. In Section 5.3 we perform two case studies on how to
use ZaligVinder for a specific analysis of a string solver and how to
extend the tool to use the resulting data for further post processing steps.
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Before concluding, we evaluate our framework based on several research
questions and address related work.

This chapter ist based on [76] published at AST 2020 and on [77]
published in the Journal of Software: Evolution and Process 2021.

5.1 ZALIGVINDER

One of the main focal points is collecting existing benchmarks and set-
ting up a framework for easy comparison of string solvers. In this sec-
tion we show how to setup our framework ZaligVinder with the tools
(CVC4 [16]and Z3str3 [23]), and the collected benchmarks. We also discuss
how to extend the number of tools and the benchmark-sets. Finally we
show how to start the graphical comparison interface of ZaligVinder and
review individual components of our framework.

5.1.1 Performing an analysis
After downloading ZaligVinder from

https://github.com/zaligvinder/zaligvinder

the first thing one has to do is setup a benchmark-setup file. This is a
Python 3 script that sets up which benchmark-sets constitutes the current
test setup, selects which solvers to execute on, and a common timeout for
each tool.

1 import utils
2 import storage
3 import voting.majority as voting
4 from runners.base import TheRunner as

,Ñ testrunner
5 import summarygenerators
6 import startwebserver
7

8 import tools.z3str3
9 import tools.cvc4

10 import tools.z3seq
11 import models.woorpje

123

https://github.com/zaligvinder/zaligvinder


5. Ensuring the Correctness of String Solvers

12

13 timeout = 30
14 ploc = utils.JSONProgramConfig ()
15 voter = voting.MajorityVoter ()
16 verifiers = ["cvc4","z3seq"]
17

18 store = storage.SQLiteDB ("Example")
19

20 summaries = [ summarygenerators.terminalResult ,
,Ñ

21 store.postTrackUpdate]
22

23 tracks = models.woorpje.getTrackData ("Woorpje
,Ñ Word Equations")

24

25 solvers = {}
26 for s in [tools.z3str3 ,tools.cvc4]:
27 s.addRunner (solvers)
28

29 testrunner ().runTestSetup (tracks ,solvers ,voter
,Ñ ,summaries ,store ,timeout ,ploc ,verifiers)
,Ñ

30 startwebserver.Server (store.getDB ()).
,Ñ startServer ()

Listing 5.1. Basic setup script

In Listing 5.1 we show a basic benchmark-setup file. The file starts
with importing helper modules for storage, and a voting mechanism for
deducing reference results for input models which we do not know the
correct categorisation of (“satisfied” or “not satisfied”) for.

The Kaluza benchmark-set 5.2 is known to be an example of wrongly
provided answers. In lines 8 to 11 we import the Z3str3, Z3seq and
CVC4 driver module and a collection of models called woorpje. In line 13
through line 16 we set the timeout, pick a configuration manager, a voting
mechanism including the verification procedure and specify the validating
solvers. The configuration manager (utils.JSONProgramConfig) object is used
to locate binaries on the host machine. The storage mechanism (an SQLite
database) is setup in line 18 and in line 20 we setup a number of functions

124



5.1. ZaligVinder

that will be run after each track. In particular, we will generate an output
to the terminal and perform a postTrackUpdate to the storage. The later one
updates the results according to the validation result. In line 25 through
line 27 we pick up all the tracks (lists of input files) from the models.woorpje

module and collects them under the common name Woorpje Word Equations

and put the Z3str3 and CVC4 solvers into the collection of solvers that
will be executed. In line 29 we execute this entire benchmark. Finally, after
having executed the benchmarks a webserver is started where the results
can be inspected.

Adding Benchmark Input Files

In ZaligVinder we represent an input file to the tools as a TrackInstance

object which consist of a name, a path to the input file and an expected
result (True for satisfiable, False for not satisfiable and None for unknown).
The TrackInstance objects are gathered into Track objects having a name,
the TrackInstance objects and a benchmark name. This benchmark name is
useful for grouping several tracks under a common name for presentation
purposes.

To make new input files available to ZaligVinder, a Python sub-
module should be added, namely the models module of ZaligVinder.
The initialisation file (__init__.py) of the sub-module should contain a
function getTrackData accepting a single parameter being the name we
want to group the tracks under. A prototypical implementation of such an
__init__.py can be seen in Listing 5.2. It simply iterates over all files in the
directory, and if the filename suggests it being a SMT instance then a track
instance is made. Finally, a list containing only a single Track is returned.

1 import os
2 import utils
3 dir_path = os.path.dirname(os.path.realpath(

,Ñ __file__))
4

5 def getTrackData (bname = ""):
6 filest = []
7 for root , dirs , files in os.walk(dir_path ,

,Ñ topdown=False):
8 for name in files:
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9 if name.endswith (".smt"):
10 filest.append(utils.

,Ñ TrackInstance(name ,os.
,Ñ path.join(root ,name)))

11

12 return [utils.Track("Track 1",filest ,bname)
,Ñ ]

Listing 5.2. Prototypical file to add input files to ZaligVinder

Adding a Solver

In ZaligVinder the driver interface is encapsulated into sub-modules of
the tools module. The driver module must expose one function addRunner

accepting a dictionary and add a runnable under a solver specific name.
The runnable added to this dictionary must accept four parameters eq,

timeout,ploc,wd where eq is the path to an input file, timeout is the user
specified timeout, ploc is the configuration manager from Listing 5.1 and wd

is a directory the solver can use for temporary storage. Here we will not go
into details about how each individual solver is run, but show a standard
structure for the solver file in Listing 5.3. What should be mentioned
is, that the runnable (run function) returns a utils.Result object which
encapsulates the verification result, the time it took, whether the solver
timed out, the standard output stream from the tool and the generated
model of the tool.

1 import subprocess
2 import tempfile
3 import os
4 import utils
5 import sys
6 import timer
7

8 def run (eq ,timeout ,ploc ,wd):
9 path = ploc.findProgram ("Solvername")

10

11 time = timer.Timer ()
12 try:

126



5.1. ZaligVinder

13 out = subprocess.check_output ([path ,eq
,Ñ ],timeout=timeout).decode ().
,Ñ strip()

14 except subprocess.TimeoutExpired:
15 return utils.Result(None ,timeout ,True

,Ñ ,1)
16 except subprocess.CalledProcessError:
17 return utils.Result(None ,timeout ,False

,Ñ ,1)
18

19 time.stop()
20

21 if "unsat" in out:
22 return utils.Result(False ,time.getTime

,Ñ (),False ,1,out)
23 elif "sat" in out:
24 return utils.Result(True ,time.getTime ()

,Ñ ,False ,1,out ,"\n"
25 .join(out.split

,Ñ ("\n")
,Ñ [1:]))

26 return utils.Result(None ,time.getTime (),
,Ñ False ,1,out)

27

28 def addRunner (addto):
29 addto[’Solvername ’] = run

Listing 5.3. Prototypical Solver file

Using multiple cores

In Listing 5.1, line 4 we load the runner for handling the execution of a
particular solver. In this example we load our base runner which holds a
function to subsequently execute a solver on all instances of an asked track.
To shorten the evaluation time ZaligVinder offers a multi core setup
being based on Pythons multiprocessing package. Switching to our multi
core setup is made as easy as possible. We simply load the multi runner
by replacing line 4 by from runners.multi import TheRunner as testrunner.
TheRunner which now takes an optional integer which corresponds to the
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amount of cores being used during the analysis. ZaligVinder has now
successfully been configured for a multi core run.

Verification

Many of our gathered benchmark sets do not contain expected associated
results. As written above, some of them even contain incorrect classifica-
tions. In order to find misclassified instances by a solver ZaligVinder
offers two different techniques: 1. model validation 2. result voting. When-
ever a solver classifies an instances as satisfiable the string solving guide-
lines expect the solver to return a valid model. To check validity of a model
the corresponding variables are substituted into the input formula. The re-
sulting variable free formula is then asserted and a set of solvers – seen in
Listing 5.1, line 16 – verifies its satisfiability. If all verification solvers treat
a model as valid, ZaligVinder marks the instances as correctly solved.
Since string solvers are not required to produce a proof for non satisfiable
cases, we can not use a similar procedure as described above. Therefore,
ZaligVinder performs a majority voting considering all results returned
for an instance. If at least one solver returned a valid model, being verified
by the above procedure, we treat an instance as satisfiable. A majority
voting is performed between instances being classified as unsatisfiable
or unknow, respectively, timeout, we treat an instances as unsatisfiable if
more solvers were able to classify an instances as unsatisfiable. However,
an expected result is only set whenever the above conditions are met.

5.1.2 Further analysis mechanisms

Most state of the art string solvers support an extensive set of high-level
string operations. These operations can often be reduced to simpler forms
only with a few different operations (cf. [97]). Consider, e.g., the equality
u .
= replace(v, u, v) for arbitrary string terms u and v, as implemented

within CVC4; clearly, it is sufficient to solve u .
= v due to the semantics of

replace. There exist a multitude of such rules, which drastically simplify
and clarify the input data, and are usually applied before or during the
actual run. Generally, these reductions can be seen as a separate algorithm,
and – in principle – should be interchangeable between different solvers.
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Our goal is to allow users applying a sequence of different algorithms to
test the abilities of their own string solver.

Within this section we describe an initial step, by presenting a mecha-
nism allowing us to use different preprocessing algorithms.

Swappable preprocessing

We introduce an extension for ZaligVinder which allows applying prepro-
cessing algorithms before the string solvers starts the search for a solution.
We implemented a new class Preprocessor which is invoked within the
solver setup seen in Listing 5.3 within the run function as outlined in
Listing 5.4.

1 from preprocessor.preprocessor import *
2 def run (eq ,to ,ploc ,wd ,store_instances=False):
3 ...
4 tempd = tempfile.mkdtemp ()
5 ppfile = os.path.join (tempd ,"pp.smt")
6 p = Preprocessor(ploc ,"solver",["add","pars

,Ñ "])
7 p(eq ,ppfile ,store_instances)
8 time = timer.Timer ()
9 ...

Listing 5.4. Prototypical Solver file including an external preprocessor

Next to importing the preprocessing class in line 1 all that is needed is
creating a temporary directory (line 5), instantiating the preprocessor (line
6), and calling that instance (line 7). The instance requires three parame-
ters, the first two being the program location setup ploc which is simply
looking up the name given as second parameter within the program con-
figuration of ZaligVinder. The third parameter holds a list of additional
parameters. These parameters might be needed to only trigger a specific
algorithm of the external solver. We expect the preprocessing procedure
to output its results as an SMT-LIB instance which will directly be used
within the actual solver call. The call to the preprocessing technique gets
the instance path, an output path, and an optional parameter indicating
whether the resulting preprocessed instance should be stored in the file
system, creating a new set of mutated testing instances.
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The preprocessing class itself performs the following steps:

1. The input instances are cleaned up, since we cannot always expect an
instance to only contain SMT-LIB operators a particular solver is able to
handle. This step removes all comments, sets the SMT-logic to the most
general one (ALL), and removes some SMT-LIB operations, e.g., asking
to quit the search early, etc.. Afterwards we translate all operations and
escape sequences not following the SMT-LIB 2.5 syntax into appropriate
ones.

2. The resulting formula is then passed to an external preprocessing
mechanism, which is expected to return an SMT-LIB-formula as well.

3. Lastly, a postprocessing-step behaving similar to the preprocessing
step is executed. This procedure cleans the resulting output file from
operations causing undesired behaviour.

For example, consider x1
.
= str.replace(x2, x1, x2) ^ x1

.
= aba where,

again x1, x2 are variables and a, b are constants, then applying the afore-
mentioned simplification rule leads to solving a much simpler string
constraint x1

.
= x2 ^ x1

.
= aba.

5.1.3 Post-Processing
ZaligVinder stores the benchmarking results into an SQLite database as
this enables easy post-processing of the data. Next to a REST API offering
relevant data in JSON format we have implemented a basic graphical user
interface (GUI) using this database. Thirdly, we provide a collection of
Python3 scripts to generate LATEX plots and tables as well as a Markdown
website to review and share the results of a run. The GUI and the API
are started by running python startwebserver.py dbfile, where dbfile is
the database file created by ZaligVinder and guide a web browser to
http://localhost:80811.

Database

The database model was designed to ease the post processing abilities. In
Figure 5.1 we depict our database as an entity relationship diagram.

1A demonstration and further explanations are available at http://zaligvinder.github.io
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Result

instanceid solver

. . .

(1,1)
TrackInstance

(0,*)

id name filepath

expected

(1,1)
Track

(1,*)

id name bgroup

TrackInstanceMap

Figure 5.1. Entity relationship diagram of ZaligVinder’s database schema. For
ease of readability the Result entity omits the attributes timeouted, result, time,
output, and model.

The database holds the four tables Result, TrackInstance, TrackInstanceMap,
and Track, where TrackInstanceMap forms the relationship between Track

and Instances. The Results entity holds a specific result of a solver on a
particular instance. We store the running times, the solver’s returned result,
a flag, whether the solver timeouted, the solver’s output on this particular
instances, the model – in case of determining the instance as satisfiable,
and a verified flag. The result is threefold: it can either be SAT, UNSAT, or
UNKNOW. Due to undecidabilty of certain string solving fragments, all string
solvers implement incomplete algorithms. Therefore, the result UNKNOW
requires further investigation: it either indicates an early give up to finding
a solution or a timeout. The later fact can be observed by considering
the timeouted flag which is only true whenever a solver got an external
kill signal. The verified flag indicates whether a return model is valid.
However, for an instance which is declared unsatisfiable we fall back to
the majority voting as described in 5.1.1.

The TrackInstance entity holds all registered formulae being identifiable
by an id. The instance holds a name – usually the file name of the input
formula, a location path within the file system, and the expected result of
the instance. If this result is not known prior to the run we use the same
procedure as described in 5.1.1 to fill the expected result. Thus, it cannot
be fully trusted.

The Track entity consists of track names and their corresponding bench-
mark groups. The instances of each track are linked via the relation
TrackInstanceMap using the corresponding primary keys.
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Table 5.1. Rest API entry points and their functionalities

Endpoint Additional get parameters Functionalities
solvers – List of solver names
tracks – List of tracks including name, id, corresponding benchmark set,

and all instances
tracks/ids – List of all track ids
tracks/groups – List of all benchmark set ids
tracks/info – List of all benchmark sets, their track ids and names
instances – List of all instances including their name, id, and expected result
instances/ids/track/<trackID> – List of all instances ids of track trackID
instances/ids/group/<benchmarkID> – List of all instances ids of benchmark group benchmarkID
instances/solvers/<instanceID> solvers Dictionary mapping the instanceID to a solver’s result dictionary

holding timeouted, result and time
instances/<instanceID>/model.smt – Shows the input formula of instance instanceID
results – List of all results including solver name, instanceid, and a

Result dictionary holding timeouted, result and time
results/<trackID> – Restricts the results to track trackID
results/reference/<instanceID> – Dictionary holding expected result and satisfying solvers

and unsatisfying solvers for instance instanceID
results/<solverName>/<instanceID>/output– Shows solverNames output on instance instanceID
results/<solverName>/<instanceID>/model – Shows solverNames model on instance instanceID
summary/<solverName> – Show the accumulated results for solverName holding timeouted,

satisfied, unsatisfiable, error, unknown, time, and total
instances

summary/solverName/trackID – Show the accumulated results for solverName on track trackID
holding the summary data

chart/cactus format (e.g png), solver
names

Shows a cactus plot in the given format (default: plain jSON) for
solvers (default: all solvers)

chart/distribution/<benchmarkID> – Shows a distribution diagram for <benchmarkID>
chart/keywords format (e.g png) Shows a barchart with accumulated keywords in the given format

(default: plain jSON)
chart/scattered solvers, format (e.g png) Prints a scattered plot of two solvers
ranks/trackID – List of solver name and Par2 score points for trackID

REST API

The API offers an easy way to processing the data generated by ZaligVin-
der externally. In Table 5.1 we review the basic functionalities of the
API.

We offer endpoints to the most general information being present within
the database such as solver information, track and instance details, as well
as a refurbished look on the results of the considered run e.g. summary
data of a run. Next to these features we offer an access to various chart
representations – namley cactus, distribution and scattered plots – of the
results. The user can either access the plain data or an image rendered by
using matplotlib. An unrelated but interesting view in regards to string
solving is the ability of accessing a chart visualising the most used string
functions within a run by visiting chart/keywords.

As ZaligVinder was build to be highly extensible, the implemented
set of API endpoints forms only a start without limits to enhancing it.
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a. Benchmark summary view b. Instance comparison view

Figure 5.2. Web GUI

GUI

To ease the comparison of different solvers, we implemented a basic graph-
ical user interface (GUI) using the data of the created SQLite database.
The GUI offers two categories to review the results: a benchmark sum-
mary view and a tool comparison view. The benchmark summary view
– depicted in Figure 5.2 a – shows a summary for all benchmark sets
and tracks. The sub navigation on the right hand side allows choosing a
specific track or the summary for a whole set of benchmarks. Each page
offers an overview table of grouped instances. The table contains the tool
name, how many instances are declared as satisfiable resp. unsatisfiable,
unknown instances (the solver terminates without a result before getting
killed by the timeout limit), soundness errors (error), timed out instances,
the total count of instances within a track resp. set of benchmarks, and the
overall solving time. The second table shows a ranking for each solver par-
ticipating in a track resp. benchmark set. The grading is easily modifiable
and currently following a modified par2 score which is calculated using
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the results rs for a specific solver s as follows

par2(s) = Â
iPc

itime + Â
iPt

2 ¨ TO+ Â
iPe

5 ¨ TO

where c Ñ rs is the amount of correctly solved instances, t Ñ rs are in-
stances declared as unknown or timeout and e being misclassified instances.
TO is the predefined timeout.
The first diagram shows a distribution for each solver distinguishing
between satisfiable, unsatisfiable and unsolved (timed out and unknown)
instances. The next set of diagrams show the same distribution as before
but as a pie diagram to ease identification in some cases. A cactus diagram
follows. In these kind of plots all instances are sorted by their solving time
and listed ascending as a point within a line diagram. The cactus plot lists
all instances of a track resp. benchmark set excluding instances where a
solver was not able to return an answer. It gives an intuition of how quick
a solver comes up with the correct answers. By clicking on a label of the
graph, the user is able to active resp. deactivate a specific solver.

The second view – the tool comparison view, depicted in Figure 5.2 b –
offers the opportunity to compare different solvers per instances. This
helps finding out what instances are causing unwanted behaviour for a
particular solver. The navigation between different tracks and benchmark
summaries is done by using the side navigation as explained previously.
The top box allows as before to choose between the available solvers.
Clicking a label activates or deactivates a solver. Solvers highlighted in
green are part of the current comparison, whereas white labelled solvers
are not.

The comparison table contains the instance name (corresponding to
the input file name). A click reveals the definition of the input formula.
The following columns are repeated for each solver being part of the
comparison. We display the classification of a solver including a judgement
whether a classification is correct by an icon. The � indicates that a solver
classified an instances as satisfiable whether � indicates its unsatisfiability.
An instance marked with ? means that the corresponding solver was
unable to identify an answer within the given timeout. Whenever an
instance was correctly declared as satisfiable the model is available by
clicking �. An incorrect model is indicated by �, whereas the absence is
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AwesomeSolver Z3seq Z3str3 CVC4
sat 538 574 519 595

unsat 163 163 171 164
unknown 0 0 12 0
timeout 108 72 107 50

soundness error 1 0 8 0
program crashes 0 0 0 0

Total correct 700 737 682 759
Time (s) 2257.38 1653.25 2272.39 1077.90

Time w/o timeouts (s) 97.38 213.25 132.39 77.90

Figure 5.3. Automatic table and cactus plot generation of ZaligVinder.

marked by �.
Another feature is a highlighting of particular rows. Light blue rows

mark instances where no solver being part of the comparison was able
to find an answer. Light green rows mark instances where only on solver
of the comparison was able to return an answer, whereas the witnessing
solver is marked with a bold icon �, respectively �. A red highlighting
indicates the presence of one solver which either misclassified an instance
or produced a wrong model. The corresponding solver is again highlighted
with a bold icon �, respectively �.

Commandline Tools

Another advantage of storing the data in an SQLite database is that it
can be used for generating tables and plots for papers. As an example of
this, Figure 5.3 was automatically generated by ZaligVinder. We provide
a Python script – called tablegen.py – based on the package npyscreen
allowing the generation of multiple visuals for external usage. After se-
lecting a ZaligVinder database file and an output file name, the user
selects benchmark groups and solvers being part of the external visuals.
Currently we offer three selectable techniques:

1. summary tables of the results in LATEX,

2. cactus plots of the results in LATEX using TikZ, and

3. a summary page including cactus plots in AsciiDoctor [7] format.
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Table 5.2. Summary of the collected benchmarks including the most used string
operations

Benchmark Name #Sets #Instances Most used string operations (Avarage occurence)
1st 2nd 3rd 4th 5th

Leetcode 43 2666 len (44.31) at (25.3) indexof (10.06) substr (9.2) ++ (2.93)
PyEx 57 25421 len (361.29) substr (349.18) indexof (334.44) contains (34.17) ++ (20.46)
AppScan 1 8 to.re (9.5) ++ (1.75) suffixof (1.12) in.re (1.0) indexof (1.0)
AutomatArk 2 19979 to.re (25.2) in.re (2.25)
BanditFuzz 1 357 indexof (3.31) len (2.86) at (2.36) replace (2.21) substr (2.1)
Cashew 1 394 ++ (13.59) to.re (2.81) in.re (2.3) len (1.78)
JOACO 1 94 to.re (26.26) ++ (8.39) in.re (0.81) len (0.13) to.int (0.05)
Kaluza 4 47284 to.re (33.53) ++ (12.72) len (6.94) in.re (4.38)
Kausler 1 120 ++ (197.88) substr (10.27) len (1.98)
Trau Light 1 100 ++ (12.0)
Norn 5 1027 to.re (14.88) in.re (4.77) ++ (2.77) len (1.09)
Pisa 1 12 contains (2.25) ++ (1.08) substr (0.83) replace (0.83) len (0.67)
Sloth 1 40 in.re (0.97) ++ (0.93) to.re (0.82) replace (0.42) replaceall (0.17)
Stranger 1 4 to.re (78.0) ++ (13.0) in.re (1.0)
StringFuzz 17 1065 ++ (66.2) to.re (41.39) at (33.61) len (32.05) in.re (1.38)
StringFuzz Regex Generated 7 4170 to.re (160.99) in.re (6.25) len (0.37)
StringFuzz Regex Transformed 2 10682 to.re (1.88) in.re (1.41) len (0.74) to.int (0.2) ++ (0.15)
Woorpje 5 809 ++ (43.04) len (0.95)
Z3str2 1 243 ++ (1.19) len (0.6) to.re (0.38) contains (0.29) in.re (0.25)

Total 152 114475 len (75.36) substr (68.96) indexof (66.94) to.re (25.46) ++ (11.19)

5.2 Benchmark Sets

We searched the literature to identify existing benchmarks, used by the
different string solvers. These benchmarks have been incorporated into
our tool ZaligVinder. We first overview their origin and briefly discuss
which constraints are used within each of them and summarise the details
in Table 5.2.

Leetcode Wei-Cheng Wu used the concolic execution engine Conpy [31]
and PyExZ3 [13] to generate 43 different sets consisting of a total of
2666 instances. The basis are interview questions from the website http:

//leetcode.com. The length constraint heavy set consists of challenging 881
satisfiable and 1785 unsatisfiable instances forming a good regression test
to make sure the interleaving theories of an SMT solver behave correctly.

PyEx Reynolds et al. [97] used the tool PyEx [13] - a symbolic executor for
Python programs - to generate a set of 25,421 benchmarks. They used 19
target functions sampled from four popular Python packages to generate
the resulting benchmark set.

AppScan Zheng et al. [123] generated a second set of benchmarks using
the output of security warnings generated by IBM Security AppScan
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Source Edition [64]. They ran the tool on popular websites to obtain
traces of program statements which where translated into SMT formulae.
The traces reflect potentially vulnerable information flows and therefore
represent common real-world constraints. The set consists of 8 instances
containing string functions and disequality constraints over strings.

BanditFuzz BanditFuzz [102] is a reinforcement learning driven fuzzing
system for SMT solvers. The authors share a set of string benchmarks
being generated by using their tool. The resulting 357 instances heavily
containing the indexof predicate which makes them unique within our
gathered instances.

Cashew Brennan et al. [28] used their tool called Cashew to normalise
(in terms of their tool) 18,896 extracted benchmarks by Luu et al. [86] from
the Kaluza benchmark set. By constructing this subset the authors aimed
to eliminate the redundancy in the original set. The set varies between
easy and difficult string constraints, with Boolean constraints, without
using string operations.

JOACO In order to evaluate their tool JOACO, a tool to detect injection
vulnerabilities, Thomé et al. [110] created a set of 94 instances based on 11
open-source Java Web applications and security benchmarks used in the
literature. It displays a variety of instances containing string constraints,
regular expressions and string operations.

Kaluza Saxena et al. [99] used their tool Kudzu, a symbolic execution
framework for JavaScript, to generate more than 50,000 string solving
problems. The instances were obtained by lowering JavaScript operations
from real world AJAX web applications and are available on their website
[100]. The instances are build around string constraints, membership in
regular languages (given as regular expressions), and inequalities involv-
ing length constraints on string variables. While the size of the formulae
varies per instance, the variety in the used string operations is rather small.
The resulting set of benchmarks was translated by Liang et al. [81] into
the SMT-Lib format. It uses string, boolean and linear constraints together
with a small amount of string operations.
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Kausler Kausler and Sherman [69] generated a set of benchmarks to
evaluate string constraint solvers in terms of symbolic execution. The
set was brought down to 120 instances by Thomé et al. [110]. It contains
constraints from 8 Java programs via dynamic symbolic execution, aiming
for real word application. The set mostly contains Boolean and string
constraints without string operations.

Light TRAU Within this set of benchmarks generated by Abdulla et al. [2]
each instance holds multiple easy, mostly unsatisfiable formulae consisting
only of string constraints. The set aims for testing the ability of declaring
inputs as unsatisfiable, which is in general harder than finding a solution.

NORN Abdulla et al. [4] share a set of 5 tracks consisting of queries
generated during verification of string-processing programs [5]. Each
formula is rather small compared to those in other sets of benchmarks,
but makes heavy use of regular expressions containing Kleene stars. This
makes it a challenging one for all solvers.

PISA Zheng et al. [123] generated a set of benchmarks using constraints
from real-world Java sanitizer methods which where used to evaluate the
PISA system [108]. It contains 12 complex instances including multiple dif-
ferent string operations like indexOf, substring as a result of the sanitiser
structure.

SLOTH The string solver Sloth [62] handles the so called straight line
fragment of string constraints, that is essentially a formula which cor-
responds to a sequence of program assignments in SSA form including
the assertion of regular constraints [84]. Their regression test suite con-
tains 40 instances including the corresponding string operations. However,
string solvers like CVC4 and Z3str3 are not able to handle the present
str.replaceAll function which is present in 7 instances and allows only
using 33 out of 40 instance for a comparison between all solvers.

STRANGER Yu et al. [120] used this set of 4 real-world PHP web appli-
cations to evaluate their tool Stranger - a tool detecting and sanitising
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vulnerabilities in PHP applications. Thomé et al. [110] manually translated
these instances into the SMT-LIB format. The result was a set containing
string operations, regular expression membership constraints, and string
constraints.

STRINGFUZZ Blotsky et al. [27] introduced a tool called StringFuzz
to generate and transform SMT-LIB instances of string problems imple-
mented in Python. The authors share a set of benchmarks generated using
their tool, which aims to address typical industrial instances, potentially
challenging for solvers. The set contains 17 tracks ranging from instances
containing pure string constraints to hard to solve regular expression
constraints. They aim for generating instances which follow structures
hard to handle by some solvers (e.g. tree-like instances).

Z3str2 This set by the authors of Z3str2 [121] was initially generated
as a regression test for their tool. Nowadays it seems to have a broader
audience due to the evenly distributed occurrences of multiple string and
regular expression predicates. The set consists of a single track holding
243 instances in total.

Within our work on string solvers, we extended this collection of
benchmarks by the following sets.

WOORPJE We created a set of benchmarks to test the abilities of our
approaches. The set contains 5 tracks with instances containing mostly
word equations, but also linear length constraints. Running this set on
their competitors revealed its difficulty. The set is generated using sev-
eral hard involved examples developed in the theoretical study of word
equations. The first track (I) was produced by generating random strings,
and replacing factors with variables at random, in a coherent fashion. This
guarantees the existence of a solution. The generated word equations have
at most 15 variables, 10 letters, and length 300. The second track (II) is
based on the idea in Proposition 1 of [43], where the equation

XnaXnbXn´1bXn´2 ¨ ¨ ¨ bX1

= aXnXn´1Xn´1bXn´2Xn´2b ¨ ¨ ¨ bX1X1baa
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is shown to have a minimal solution of exponential length w.r.t. the length
of the equation. The third track (III) is based on the second track, but each
letter b is replaced by the left hand side or the right hand side of some
randomly generated word equation (e.g., with the methods from track (I)).
In the fourth track (IV) each benchmark consists of a system of 100 small
random word equations with at most 6 letters, 10 variables and length
60. The hard aspect of this track is solving multiple equations at the same
time. Within the fifth track (V) each benchmark enriches a system of 30
word equations by suitable linear constraints, as presented in this paper.
This track is inspired by the Kaluza benchmark set in terms of having
many small equations enriched by linear length constraints. All tracks,
except track II which contains 9 instances, consist of 200 benchmarks.

AutomatArk In the need of regular expression heavy benchmarks we
generated SMT-LIB benchmarks based on real-world regular expression
queries collected by Loris D’Antoni. The set consists of two tracks – a
simple and a hard track – having a total of 19979 instances. The simple
track holds instances having a single regular expression membership
constraint, and the hard track holds up to 5 membership constraints over
a single variable per instance.

STRINGFUZZ regex instances In 2020 we extended the StringFuzz suite
by two regex heavy sets having a total of 15052 instances. The StringFuzz-
regex-generated set contains randomly fuzzed instances only coping
regular expressions and length constraints. The StringFuzz-regex-trans-
formed set is the result of a transformation of instances supplied by Ama-
zon Web Services related to security policies, being inspired by real-world
input vulnerability violations.

5.3 Use cases

In this section we present two empirical studies on how to use ZaligVin-
der to debug a string solver. We highlight the abilities of the GUI to
determine performance issues and soundness errors within the string
solver of choice. Secondly, we demonstrate the extensibility of ZaligVin-
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Figure 5.4. Detailed analysis of ran instances. The line highlighted in grey indicates
an error in a solver.

Figure 5.5. Generated models within ZaligVinders frontend

ders infrastructure and implement an analysis technique to discover more
insights of our string solver and use this data for further external analysis.

5.3.1 Using the GUI

We are developers of the fictional solver AwesomeSolver and just finished
implementing a new feature. To measure its performance we set up a run
comparing against some of the state of the art string solvers, namely CVC4,
Z3str3 and Z3seq, on the Woorpje benchmark set.
Following Section 5.1 allows us setting up a run easily since all competing
solvers and the benchmark set are already preconfigured. Therefore, we
create a new solver file following the template presented in Listing 5.3
and add all competing solvers as shown in line 8 to our new runner script.
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Once the run finishes ZaligVinder automatically starts a web server
showing the website being depicted in Figure 5.2. The presented diagrams
indicate an insufficient performance of our string solver. Moreover, the
summary table reveals an error within our solver.

We change our view to the Tool Comparison website and select appropri-
ate filters as presented in Table 5.1.3. ZaligVinder presents the summary
being depicted in Figure 5.4: our solver produces an invalid model on one
instance. The produced model is revealed as soon as we click on the brick
wall icon (Figure 5.5). Our solver tries substituting all variables by the
empty word. Quickly comparing against the successfully validated model
of CVC4 by clicking on the model icon highlights our wrongly presented
solution further. The instance indicating the wrong model production is
now used for debugging AwesomeSolver.

5.3.2 Extending the API for an individual post analysis
Adding a completely new individual analysis to ZaligVinder requires
three modifications:

ô setting up appropriate database queries,

ô creating a controller for handling the results being returned by the
database queries, and

ô adding an endpoint to the webserver.

We are interested in getting all file names where a particular solver
produced a wrong model. To add this view to our API, firstly we come
up with the database query to our model. To achieve this we add the
function implemented in Listing 5.5 to our SQLite interface located in
storage.sqlite.

1 def getUnverifiedSATInstances(self ,solver):
2 query = ’’’SELECT Result.instanceid ,

,Ñ TrackInstance.filepath FROM Result ,
,Ñ TrackInstance WHERE Result.solver =
,Ñ ? AND Result.result = true AND
,Ñ Result.verified = false AND Result.
,Ñ instanceid = TrackInstance.id ’’’
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3 rows = self._db.executeRet (query ,(solver ,)
,Ñ )

4 return {t[0] : {"filepath" : t[1]} for t in
,Ñ rows}

Listing 5.5. Adding a new database query to the model storage.sqlite

We simply ask for all instances where a solver returned SAT but the
verification procedure was not able to validate the model. Secondly, we
specify our internal controller logic, which is done by adding the function
given in Listing 5.6 to the results controller located in webserver.controllers

,Ñ .results.

1 def getUnverifiedSATInstancesForSolver (
,Ñ self ,params):

2 return webserver.views.jsonview.
,Ñ JSONView (self._results.
,Ñ getUnverifiedSATInstances (
,Ñ params["solver"]))

Listing 5.6. Adding a new logic implementation to the results controller
controller.results

The controller again is a simple task, since all that is needed is forwarding
the database result to the included JSON view. The view translates the
passed Python 3 dictionary into an appropriate JSON format. The last
step is adding an endpoint. We simply add the line given in Listing 5.7

1 app.addEndpoint (webserver.routing.RegexMatch("
,Ñ my_analysis/unverified /(?P<solver >[^/]+)
,Ñ "),self._rcontroller.
,Ñ getUnverifiedSATInstancesForSolver)

Listing 5.7. Adding a new endpoint to startwebserver.py

to the file startwebserver.py. It listens to the URL http://localhost:8081/my_

analysis/unverified/SOLVERNAME, where SOLVERNAME is an arbitrary string. When-
ever this endpoint is called the previously implemented function of our
result controller is called and the solver name passed on. Guiding our
browser to the URL http://localhost:8081/my_analysis/unverified/AwesomeSolver

returns in the running example of this section the following string {"558":
{"filepath": "/home/mku/wordy/models/woorpje/track04/04_track_119
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.smt"}} – our previously described instance where AwesomeSolver re-
turns a wrong model.

5.4 Analysis of the presented Framework and
the Benchmark sets

Up to this point we discussed many details on how to apply our frame-
work to string solvers, what a user’s output looks like, and how the
generated data can be used for a custom post analysis. We also introduced
19 benchmark sets and briefly introduced their origin, as well as the used
operations. In this section we are looking at our framework and also the
benchmarks from a different perspective and rate the quality and quantity
of both.

5.4.1 Our Framework

We built the tool ZaligVinder to solve an issue when comparing our
own implementations of string solving algorithms with respect to the
performance of already published tools. While searching the literature
we were not able to find a tool which is able to reliably compare string
solvers with their special needs as for example validating models. To this
extend we designed ZaligVinder tailored towards string solvers with
the goal of not only comparing string solvers but also to ease the whole
development procedure. As discussed in this chapter, our tool features
many different techniques to identify performance issues and soundness
errors in a user friendly way. We not only designed our framework to ease
extensibility but also to easily perform a sufficient post analysis including
several mechanism to export the data into a LATEX article.

Given these facts we evaluate our framework based on the following re-
search questions: 1. Are we able to reliability compare string solvers? 2. Are
we able to identify bugs within string solvers? 3. Are we able to gather
insights about the string solvers performance? 4. Are the post-processing
mechanisms sufficient?
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Table 5.3. Comparison of CVC4, Z3seq, and Z3str3 on all benchmarks.

CVC4 Z3seq Z3str3

sat 76466 76627 52464
unsat 30318 30070 24271

unknown 64 61 33506
timeout 7627 7717 4234

soundness error 0 7 9
program crashes 0 9 9

Total correct 106784 106690 76726
Time (s) 178364.27 215301.37 93145.69

Time w/o timeouts (s) 25824.18 60961.37 8465.69

RQ 1: Are we able to reliability compare string solvers?

With the goal of comparing string solvers in an easy way we simply follow
the steps explained in Section 5.1.1. Once the run is finished we are able to
review the results within the Web-GUI, simply generate LATEX tables and
plots or generate an AsciiDoctor website. Whatever data visualisation we
choose, we are able to see which solver has the best performance, identify
potential performance issues, or review insights on certain misclassified
instances.

In Table 5.3 and Figure 5.6 we visualise a run of the major SMT-solver
binaries CVC4 1.8, Z3seq 4.8.10, and Z3str3 4.8.10 on all of our collected
benchmarks. Clearly, we are able to observe all required details of the run.

Overall we think our goal of building a tool to compare string solvers
was achieved in this sense.

RQ 2: Are we able to identify bugs within string solvers?

One of the key requirements when building a solver is its reliability. To
this extend a solver is supposed to be sound and stable. Since we are
facing an undecidable theory, non of the solvers has a warranty for a
terminating algorithm, which we dealt with by enforcing hardware limits
(e.g. a timeout). While developing our tool Woorpje our techniques prove
to be extremely valuable. As an example when we extended Woorpje
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Figure 5.6. Cactus plot summarizing performance of CVC4, Z3seq, and Z3str3 on
all benchmarks.

by a new simplification technique, ZaligVinder reported invalid models
on a few amount at instances. Looking into the details presented within
our Web-GUI revealed the instances on the actual error. Within this subtle
error, variables where not fully substituted within the model. Having the
abilities to review all affected instance made fixing this bug fairly easy.

Another interesting bug was revealed by looking at our competing
solvers. Even though the solver developers agreed on the SMT-LIB 2.6
standard many issues especially related to Unicode support are not sorted
out. As an example the solver CVC4 is using the escape sequence \u{5c}
within the found model instead of using a backslash (\). The string theories
within Z3 use the actual backslash symbol. Having said that, the solvers
where not able to reason about the counterpart, and therefore reported
an invalid model whenever the above situation occurs. To us, this is an
unintended behaviour and needs to be resolved in future versions.

We not only discovered soundness issues but also many solver crashes
during our tests. Looking again at Z3str3 within our tests we detected
several segmentation faults on the considered benchmarks.

The run visualised in Table 5.3 and Figure 5.6 also reveals some solver
errors. Z3seq classifies 7 instances of WoorpjeBench as unsatisfiable
eventhough they are satisfiable. Z3str3 classifies 8 instances also on Woor-
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pjeBench wrongly as unsatisfiable. Furthermore, it produces an invalid
model on the Kausler benchmark suite.

RQ 3: Are we able to gather insights about the string solvers perfor-
mance?

The design of the arm2 selection method implemented within Z3str4 was
heavily relying on empirical observations made by using ZaligVinder.
As a short recap, Z3str4 probes which analyse syntactical structures of
the input instances and upon that select a sequence of different solvers. To
build the probes and sequences of solvers we used the insights gathered
about the benchmarks in Section 5.2 and analysed the performance of
each individual solver with respect to the higher order functions and
relations, as well as occurrences of word equations, regular membership,
and length constraints. Without having a framework like ZaligVinder
this work would have been very tedious.

RQ 4: Are the post-processing mechanisms sufficient?

Our post-processing techniques introduced in Section 5.1.3 where devel-
oped incrementally while analysing string solvers. We started only having
a rudimentary comparison view displaying the basic information of a
run and extended it to visualising models, soundness issues, as well as
the score of a solver according to the par2 measurement. On of the latest
addition is an extra table listing only the details of solver crashes and
soundness issues to ease debugging specific cases. The output of results
was also refined over time. Within a cactus plot the user is able to choose
between multiple different display modes. The LATEX summary tables them-
selves where extended to contain many required inputs to ease comparing
string solvers also purely based on the article. In total, we are certain that
the current setup features all required tools. Secondly, the incrementally
process of achieving the perfect analysis shows the extensibility of our
framework.

Looking at our framework from the aforementioned perspectives high-
lights the achievement of our requirements. Nevertheless, we believe that

2An arm is referred to a set of different string solvers being executed in a sequence.
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there are still many features we can add to make the usability even better.

5.4.2 Benchmark Sets

The SMT-LIB standard in version 2.6 was released in early 2020 [111], and,
next to introducing new high-level string operations such as str.to_code
and str.from_code and renaming of operations, it introduces Unicode
character support. However, many state of the art string solvers still
only support the former version 2.5. Adding axioms for new functions
or support for a different naming schema is not the biggest issue the
solvers have to this end, but moving to Unicode support involves deep
modifications of the SMT-solver core. Making steps into this direction
requires manpower which, after optimising, debugging and analysing
many different solvers, does not seem to be of highest priority: nearly
all state-of-the-art string solver contain a multitude of soundness, parser
and other sorts of errors. Analysing the benchmark sets introduced in
Section 5.2 immediately let to the following research questions: 1. Are the
gathered instances usable for all solvers supporting SMT-LIB? 2. What can
we say about the general quality of the benchmark sets with respect to
uniqueness, covered cases, and real life applications? 3. Can we reliably
use these instances for testing string solvers?

Within this section we will describe the analysis of our benchmarks
and furthermore perform steps to targeting raised issues.

RQ1: Are the gathered instances usable for all solvers supporting SMT-
LIB? Even though, all collected instances are supposed to follow at least
the unofficial SMT-LIB 2.0 standard, many instances are not parsable
by all solvers, nor follow the conventions. Since within SMT-LIB we are
facing the quantifier free fragment of string constraints, there should
not be a single quantifier. The instances reveal a different view: some of
them contain quantifiers. An exceptional example are the benchmarks
of the Norn benchmark suite. Many of them quantify integer variables.
Therefore, parsers as the one being implemented by the developers of
CVC4 simple reject such an instance. Another example of insufficient
designed instances are the Z3str2 regression tests. Within these instances
we observe several occurrences of wrongly parametrised indexof functions
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Table 5.4. Hash duplicates within the collected benchmarks

Benchmark Name #Instances #Duplicates

Leetcode 2666 14 (0.53%)
PyEx 25421 2864 (11.27%)
AppScan 8 0 (0.0%)
AutomatArk 19979 6626 (33.16%)
BanditFuzz 357 0 (0.0%)
Cashew 394 2 (0.51%)
JOACO 94 26 (27.66%)
Kaluza 47284 32712 (69.18%)
Kausler 120 7 (5.83%)
Trau light 100 0 (0.0%)
Norn 1027 0 (0.0%)
Pisa 12 0 (0.0%)
Sloth 40 0 (0.0%)
Stranger 4 0 (0.0%)
StringFuzz 1065 220 (20.66%)
StringFuzz Regex Generated 4170 59 (1.41%)
StringFuzz Regex Transformed 10682 4379 (40.99%)
Woorpje 809 0 (0.0%)
Z3str2 243 2 (0.82%)

Total 114475 46911 (40.98%)

(e.g. (str.indexof X "ab")). As we discussed in Section 2.4 as well as in
Section 3.3 the function indexof takes three parameters, two patterns over
PatA and an integer. Within these instances the developers missed the
integer parameter, such that most solvers cannot handle the query. There
are other examples of not well defined higher level functions within the
set of benchmarks such that a proper usage requires an identification of
insufficient definitions.

RQ2: What can we say about the general quality of the benchmark sets
with respect to uniqueness, covered cases, and real life applications?
Most of the gathered sets stem from solver developers trying to showcase
the performance of their solver in a particular setting. There are only a few
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exceptions as we also pointed out in Section 5.2. In Table 5.2 we review
the most used string operations within these benchmarks. Notably, an op-
eration directly enforcing the correct handling of word equations, namely
substr, is not the most prominent operator in these string benchmarks. In
general, if a solver developer considers all sets of benchmarks for testing
the abilities of a string solver, we think that our set forms a sophisticated
basis. All commonly used operators are present and the instances are
diverse in their own rights, again, when considering all sets. Nevertheless,
when analysing all sets with respect to redundancy we cannot count on
these instances. We performed an obvious comparison over all sets by
simply computing the MD5 hash value of an instance. These results are
visualised in Table 5.4. This simple method shows that out of 19 sets 11 sets
contain duplicates. Moreover, out of 114475 instance more than 40% are
duplicates. Overall, this is a huge drawback on the gathered instances and
also questions the empirical evaluations reported within the publication
of a certain benchmark set.

RQ3: Can we reliably use these instances for testing string solvers? We
analysed the set of gathered benchmarks with respect to the standardised
notion (set-info :status x) where x is either sat or unsat. We discovered
that 47,534 instances where annotated with a possible result. A deeper look
revealed that 13,725 instances were, in fact, wrongly tagged – meaning
again only 33,809 instances were correctly annotated. To identify a wrongly
classified instance we used the three leading SMT-solvers, namely CVC4,
Z3str3, and Z3seq, and ran them on these instances. If one of the string
solvers was able to produce a model, we validated it by using the other
competitors. Afterwards, we compared the verified results with the ones
being present within the instance. In total, this high count of misclassified
instances made the prior knowledge unusable, and proved the benchmarks
as not being a reliable source for testing string solvers.

In the following we introduce a solution to the detected issues such
that solver developers can safely use our modified set of the present
benchmarks within solvers supporting SMT-LIB 2.5.
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Figure 5.7. Visualisation of classified and cleaned-up instances

Solving some of the raised issues

To both ease the testing progress of string solvers as well as to make a
step forward to implementing the new standard, we reconsidered the
benchmark sets introduced in Section 5.2 and

A. structure the instances and remove or, respectively, replace non-stand-
ard operations to achieve parsability by the common state-of-the-art
string solvers as well as readability by humans, and

B. annotate the benchmarks with reliable results.

C. remove identified duplicates.

We analysed the set consisting of 114,475 benchmarks and were able
to annotate 112,556 instances by using the standardized notion (set-info
:status x) where x is either sat or unsat. Overall we extracted 82,271
satisfiable and 30,285 unsatisfiable instances. During the analysis we dis-
covered that 65,297 instances had no known result – meaning that 49,178
instances where annotated with a possible result. As pointed out earlier
13,725 instances were wrongly tagged. The high count of misclassified
instances made this knowledge unusable. We visualise this in Figure 5.7.

To clean up the instances we wrote an SMT-LIB parser based on the
ANTLR grammar of Thomé [109] in Python. While parsing the input
we removed partially unsupported commands. Consequently, we also
replace all SMT-LIB 2.6 operations by the widely supported SMT-LIB 2.5
operations. This is possible, since non of the analysed sets contains any of
the newly introduced high-level string operators. To increase human read-
ability we added handy line breaks and folded declaration and assertion
part of the instances.

To validate a result in a satisfiable case we made sure at least one solver
returns a valid model, which was verified by substituting the computed

151



5. Ensuring the Correctness of String Solvers

model into the original instance, and checking if we obtain a trivially
satisfiable formula (for a valid model) or not (for an invalid model). Since
the theory of strings is, in general, an undecidable problem, the verification
of unsat-cases is not fully achievable. Thus, we added instances where
no state-of-the-art solver produced a solution, and most solvers agreed
on unsatisfiability. Moreover, we analysed the unsat-proofs produced by
some of these solvers, and it is our intention to expand our approach to
(partially) check and assert how reliable some of these proofs are.

The hash equivalent duplicates we identified in the previous section
where simply removed from the respected sets. Therefore, the benchmarks
are at least free of obvious redundant cases. In the future we plan to deepen
this analysis by transforming each instance in some sort of a normal form.
As a start we plan to rename all variables and sort each sub-formula by a
predefined measure.

Overall the structured set obtained in this way eases the testing process
for string solvers and offers new challenges to look at. On the practical side,
these instances can – now having correctly annotated results – be used for
a learning based approach to solving string constraints. As the sat-cases
are correctly labelled, and the unsat-cases are obtained via the agreement
of the existing solvers, we could hope to obtain, based on this training data,
a solver which is at least as reliable as the existing ones. On the theoretical
side, cleaned and human readable structured input offers a chance of
identifying new sub-theories of string constraints which might not only
form a decidable fragment, but also lead to more efficient algorithms to
use for real-world problems, similar to the analysis seen in Section 4.3.

5.5 Related Work

Due to the amount of different string solvers it is surprising that we have
not found a single tool incorporating the needs of comparing, debugging
and analysing string solvers. The literature around string solvers mostly
reports empirical data based on custom scripts which are not publicly
available. A single tool which is also used for evaluating solvers at SMT-
COMP is BenchExec [118]. A drawback of this tool is that it only features
head-to-head comparisons of different solvers without being tailored to-
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wards string solving. As for SMT-COMP there is for example no validation
of models. Secondly, since it is a pure benchmarking framework, it does
not support the post-processing abilities our tool has to offer. Another
closely related tool is called BenchKit [73] which is used for the Model
Checking Contest [112]. The main drawback of this tool is again that it is
primarily build to compare running times of solvers without allowing any
further analysis. Secondly, it does not seem to be made to cope with SMT
solvers.

With respect to the benchmark collection the SMT-LIB Initiative shares
some sets of string solving benchmarks featured of the logics QF_S and QF_-
SLIA within their GIT repositories [105]. Meanwhile some of the explained
benchmarks in this paper made it to their repository but not all of them.
We plan to submit all collected sets after getting the permission of the
respected authors to their repositories, too.

5.6 Conclusion

The set of string benchmarks now – for the first time – being available at
a single place has been incorporated into our own, novel, benchmarking
framework ZaligVinder. Next to this we made this set more reliable by
annotating each instance with a result and improved human-readability of
each instance. Having this huge database of cleaned up, annotated, and
improved human-readable benchmarks is fundamental to the develop-
ment and testing of novel and reliable string solving algorithms. From a
theoretical point of view, this also offers a way to identifying new classes
of string constraints, defined by, e.g., structural restrictions determined by
the benchmarks, which could lead to algorithms to solve string constraints
more efficiently.

Since 2020 when the first version of ZaligVinder was published in
[76] our tool has proven to be reliable and easily extensible – not only due
to being completely build in Python but also the easy ways to adapt the
code structure we had chosen. Producing the output data of a virtual best
solver, extracting all file paths of timed out instances, or printing the error
messages a solver produced within a run had been some of the third-party
extensions to ZaligVinder. One of the the most recent extensions is a
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swappable preprocessing mechanism. It permits the analysis and testing
of the core of different string solving algorithms. Also the analysis of
formulae, which were already simplified by different techniques, creates
room for novel approaches within this field. Overall we still believe that
ZaligVinder provides the basis for the development of an extended
platform, to be used in comparing string solvers, in a more objective and
complete manner.

In the future we plan to change the GUI infrastructure to provide
a publicly available service. This gives the abilities to not only share
the produced AsciiDoctor pages but also the complete visualised data
with others. Secondly, an addition to perform a distributed run with
ZaligVinder is a valuable extension to its core. This allows using not just
one server but many to gather insights quicker than ever before.
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Chapter 6

Analysing the Techniques

“Your face is drawn and ready for
the next attack.”

The Cure

In Chapter 4 we developed three different techniques to solving string
constraints. Each of these mechanisms approaches string constraints from
a different perspective. Starting with a purely SAT based approach in
Section 4.1, we went over to a rule-based strategy in Section 4.2. Both
techniques centre word equations and allow additional linear constraints
over the length of string variables. In the last section of Chapter 4 we
used the ideas of a PSPACE-completeness proof to develop an algorithm
for solving regular expression membership constraints, a sub-theory of
string constraints. While each algorithm is interesting in its own rights, a
technique has a higher impact if it is not only elegant but also applicable
in practice, meaning an implementation which performs well on particular
problems with respect to its competitors.

We devote this section to evaluate the performance and the practical
impact of our techniques using the framework presented in Chapter 5.
Note, that we do not replicate the data reported in the aforementioned
publications but evaluate each technique within a homogeneous environ-
ment, against the most recent versions of string solvers. Since not only
our results have been published a while ago but also developers of other
solvers made improvements to their tools, there might be a variance within
the results reported in this chapter.
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6.1 Empirical Setup

In this section we briefly introduce the environment of our empirical eval-
uation. We start by introducing competing solvers and explain our choice.
We move on to introducing the setup of the benchmarking framework and
close this section by introducing the interpretation of our evaluation data.

6.1.1 Competing Solvers

We compare our techniques against six other leading string solvers avail-
able today. Our choice of competitors was influenced in multiple ways:

1. support for the theories of our approaches,

2. still maintained and available binaries, respectively compiling code,

3. support for SMT-LIB files.

Since we want to use the competing solvers throughout this section, our
competitors have to support word equations, linear length constraints over
string variables, and regular expression membership constraints combined
with linear length constraints, as well as the related higher level functions
and relations introduced in Section 2.4. We use CVC4 [80], a general-
purpose SMT solver which reasons about strings and regular expressions
algebraically. Secondly, we use Z3str3 [23], the latest mainline solver in
the Z3-str saga. Thirdly, we compare against the second solver of the Z3
portfolio, namely Z3seq [106] or Z3 sequence solver. It was implemented
by Nikolaj Bjørner and others at Microsoft Research, as part of the Z3
theorem prover. We also compare against the arm selection approach of
Z3str4 which incorporates Z3str3 and Z3seq. We use the commit b4e6d99
of the GIT repository https://github.com/mtrberzi/z3.git. The fifth solver, Z3-
Trau [1] is also based on Z3 and uses an automata-based approach known
as “flat automata” with both under- and over-approximations. Finally,
we compare against OSTRICH [30] which uses a reduction from string
functions (including word equations) to a model-checking problem that is
solved using the SLOTH tool and an implementation of IC3.
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We compare against CVC4’s version 1.8 compiled from their official
repositories, commit 59e9c87 of Z3str3, and the sequence solver, Z3-Trau,
commit 1628747, and OSTRICH version 1.0.1.

All of these tools support the full SMT-LIB standard for strings. We did
not compare against the Z3str2 [122] or Norn [4] solvers as neither tool
supports the str.to_int or str.from_int terms which represent string-
number conversion, which are used in some sanitiser benchmarks, and are
needed for the comparision within of our regular expression algorithm.
Secondly, both tools are not maintained any more. Additionally, Norn
does not support many of the other high-level string terms such as indexof
or substr which are used in the benchmarks. The ABC [11] solver handles
string and length constraints by conversion to automata. However, their
method over-approximates the solution set of the input formula which
may be unsound. Thus, we excluded ABC from our evaluation. We also
were unable to evaluate against Trau [3] as the provided source code
did not compile. We mention S3, Stranger, Sloth, Slog, Pass, Geocode,
Hampi, and Kaluza in Section 3.3. These solvers where either excluded
due to maintenance or lacking support for SMT-LIB input files.

6.1.2 ZALIGVINDER Setup

To evaluate our techniques we use the benchmark framework introduced
in Chapter 5. We use a server running Ubuntu 18.04.4 LTS with two AMD
EPYC 7742 processors and 2TB of memory. To ensure the correctness of the
results reported by each solver, we use the validation technique introduced
in Section 5.1.1. Each competing solver will also be used as validator to
maintain fairness. For each instance we use a timeout of 20 seconds, which
is a commonly used timeout for string solvers reported in multiple other
publications.

6.1.3 Evaluation Data

Within this chapter we accumulate the results of each solver according to
a track respectively benchmark set. The data we present corresponds to a
single run. For a random single instance, the sample variance in execution
time for 100 runs was 0.001 (0.07% of average execution time). Therefore,
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this fact is negligible. To visualise the data we use tables and cactus plots.
Both are standard tools to visualise the performance of string solvers (cf.
[21, 23, 24]).

For the tables each column corresponds to a particular solver while the
rows are dedicated to specific data. The basic setup contains 9 labels. 1. sat
corresponds to the count of instances reported as satisfiable by a solver,
2. unsat corresponds to the count of instances reported as unsatisfiable
by a solver, 3. unknown corresponds to the count of instances where the
solver stopped the search before the external limit (e.g. timeout) was
reached, 4. timeout corresponds to the count of instances where the solver
was stopped by an external timeout, 5. soundness errors correspond to
the count of instances where a solver either produced a wrong model
(validated by the other solvers) or reported unsatisfiability while another
solver produced a correct model, 6. program crash corresponds to the count
a solver terminated unexpected, 7. total correct reports the overall correctly
solved instances, 8. time reports the overall solving time in seconds, and
9. time w/o timeouts removes all timed out instances from the above total
time.

We mentioned cactus plots in Chapter 5 since ZaligVinder allows
exporting these plots. As short recap, a cactus plot is a diagram visualising
a solvers performance with respect to overall solved instances and the
time it took. The x-axis visualises the number of solved instances while the
y-axis measures cumulative time in seconds. Each solver is represented
by a single line which corresponds to the number of solved instances in
increasing order with respect to the time it took to solve it, meaning each
point within a line of a solver corresponds to a solved instance and the
cumulative time up to that point. A cactus plot is especially helpful to ease
comparison of the performance of multiple different solvers; solvers with
lines end further to the right and closer to the bottom of the plot have better
performance. Note, within these plots we only visualise instances, where
a solver returns a correct result with respect to the validation described
previously.

In some experiments we use the virtual best solver among a set of
solvers. The concept of the virtual best solver compares each instance of a
run and picks the solvers which was performing best. The virtual solver
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can be seen as a portfolio approach of running all solvers in parallel while
returning the result of the solver who finishes first with a correct result.
We use this concept to visualise the maximum performance one might
achieve by using the considered solvers.

6.2 Evaluation of the SAT based approach

We introduced a technique to solving string constraints restricted to the
theory of word equations and linear length constraints in Section 4.1.
We implemented this technique using C++ and used Glucose 3.0 as un-
derlying SAT-solver. In the following we will refer to the solver which
implements this algorithm as woorpjeSAT, instead of just calling it Woor-
pje to not confuse with other algorithms implemented within Woorpje.
The evaluation was performed on a newly created set of benchmarks
called WoorpjeBench (see Section 5.2) for details, and a subset of the
previously published Kaluza benchmarks. Since Kaluza is from a symbolic
execution engine, the benchmarks are not pure word equations with length
constraints but also involving variables with Boolean sorts, assignment
to Boolean variables and disjunctions over expressions originating from
the branching in programs. In order to use this benchmark set we thus
developed a very naive interpreter for SMT into Woorpje: the interpreter
simply enumerates all the possible systems of word equations that can
result from the SMT-file. These are afterwards checked for satisfiability,
and if satisfiable the resulting system of word equations is output in SMT-
format. These final output system of word equations is what we refer
to as our KaluzaBench set. The extraction procedure was run on the
small and satisfiable set of the full Kaluza benchmark set resulting in
KaluzaBench consisting of 10853 system of word equations. The larger
models contain features unsupported by Woorpje thus they were left out
from the extraction. These features are regular expression membership
constraints, Boolean constraints, and extended functions like contains,
replace, substr to name a few. Note, the set of benchmarks we used
in [42] originally contained 14793 instances. We analysed these queries
further and removed 3940 instances solely containing simple inequalities
over integers, since we are interested in evaluating the performance of our
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Figure 6.1. Cactus plot summarising performance on the complete WoorpjeBench
set.

Table 6.1. Results for the complete WoorpjeBench set.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 617 604 519 562 560 34 632
unsat 164 164 171 164 188 5 149

unknown 0 0 12 0 0 768 3
timeout 28 41 107 83 61 2 25

soundness error 0 0 8 0 51 0 0
program crashes 0 0 0 0 0 0 0

Total correct 781 768 682 726 697 39 781
Time (s) 733.88 1000.59 2248.01 1736.09 1785.39 2402.1 638.66

Time w/o timeouts (s) 173.88 180.59 108.01 76.09 565.39 2362.1 138.66

algorithm to solving word equations.

6.2.1 Detailed results of the evaluation

In Table 6.1 and Figure 6.1 we visualise the cumulative results on Woorp-
jeBench set. Even though our technique was published in 2019 it is still
heavily competitive. Together with CVC4 it solves the most cases (781
instances), but 0.15x faster overall and 0.25x faster removing timed out
instances. Thereby, CVC4 solves more unsatisfiable instances and woorp-
jeSAT more satisfiable cases (15 instances each). Their closest follower is
Z3seq solving 768 cases correctly. Overall woorpjeSAT solves 13 instances
more and is 0.57x faster. The gap to the third successor Z3str4 is even
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Figure 6.2. Cactus plot summarising performance on KaluzaBench.

Table 6.2. Results for KaluzaBench.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 10853 10853 10852 10853 10853 6998 10853
unsat 0 0 0 0 0 0 0

unknown 0 0 0 0 0 3855 0
timeout 0 0 1 0 0 0 0

soundness error 0 0 0 0 0 0 0
program crashes 0 0 0 0 0 0 0

Total correct 10853 10853 10852 10853 10853 6998 10853
Time (s) 147.25 503.59 564.85 447.04 335.29 14224.0 1147.57

Time w/o timeouts (s) 147.25 503.59 544.85 447.04 335.29 14224.0 1147.57

bigger: woorpjeSAT solves 55 instances more and is 1.72x faster. On the
bottom end we find OSTRICH only solving 39 instances on the woorpje
benchmark set. Not considering timeouts, woorpjeSAT is 16.04x times
faster than OSTRICH.

The benchmark set also reveals 8, respectively 51, soundness errors for
Z3str3, respectively Z3-Trau, while woorpjeSAT has none.

As explained in the corresponding Section 4.1, the woorpjeSAT mech-
anism to solving linear constraints is straight forward. If we only consider
Track 1 to 4, woorpjeSAT solves 10 more instance 0.7x faster than CVC4,
which again demonstrates the effectiveness of the approach to solving
word equations. Detailed data on all tracks can be found in Appendix B.1.

The KaluzaBench is visualised in Table 6.2 and Figure 6.2. On this
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Figure 6.3. Comapring disabled sharpen the bounds and simplifier against all
techniques on WoorpjeBench.

Table 6.3. Comapring disabled sharpen the bounds and simplifier against all
techniques on WoorpjeBench.

woorpjeSAT-no-bounds woorpjeSAT woorpjeSAT-no-simplify

sat 614 632 632
unsat 0 149 0

unknown 8 3 54
timeout 187 25 123

soundness error 0 0 0
program crashes 0 0 0

Total correct 614 781 632
Time (s) 4120.84 638.66 2888.51

Time w/o timeouts (s) 380.84 138.66 428.51

set all competing solvers, but OSTRICH and Z3str3 solve all instances.
Unfortunately, woorpjeSAT is 6.79x slower than the leader of the set
CVC4. The variance in running times compared to WoorpjeBench has two
potential reasons: 1. the competitors benefit from their strong arithmetic
components (most instances contain linear constraints), 2. specialised
rewrite rules are used to simplify the instances of this previously known
set of benchmarks (as e.g. seen in Section 5.1.2). As stated previously, in
order to catch up, we have to improve our technique to solve linear length
constraints over string variables.

To close this section we briefly compare the efficiency of the simplifica-
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tion rules on WoorpjeBench introduced in Section 4.1.5 and the bound
refinement within our algorithm introduced in Section 4.1.3. We com-
pare woorpjeSAT which uses these techniques against an implementation
where we disable these mechanisms. By woorpjeSAT-no-simplify we refer
to the solver not using any simplification steps, where woorpjeSAT-no-
bounds names the version not using the search guidance technique. The
results are given in Table 6.3 and Figure 6.3.

Overall woorpjeSAT is 3.52x faster than woorpjeSAT-no-simplify solv-
ing 149 more instances. The implemented search guidance pays off even
more woorpjeSAT is 5.45x faster than woorpjeSAT-no-bounds solving
167 more instances. Next to the fact, that our purely SAT based approach is
not able to determine the unsatisfiablity of an instance, this newly added
techniques not only give an option to cope with this problem, but also
speed up the satisfiable cases.

6.2.2 Conclusion

These refreshed experiments show even after two years that this purely
SAT-based approach is still viable and competitive with state-of-the-art
string solvers. The instances our solver solves, while the others do not,
show that our encoding could be a beneficial extension in a portfolio
approach to solving word equations. As such, it seems to us that our
approach enriches in a non-trivial way the current landscape of string solv-
ing. A potential candidate could be the solver Z3str4 where woorpjeSAT
could be used as one of the assisting solvers.

6.3 Evaluation of the Rule-based approach

The second algorithm was introduced in Section 4.2. The approach is
based on Levi’s lemma (see Section 3.5.2) and exhaustively applies the
aforementioned rules to a system of word equations possibly enriched
with linear constraints. The algorithm was implemented in C++ and po-
tentially allows using CVC4, Z3str3, and Z3seq as assisting SMT-solvers.
In the following we will refer to the implementation of this algorithm by
woorpjeLevi instead of just calling it woorpje. For the evaluation we again
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use the benchmark set WoorpjeBench and the previously introduced
subset of Kaluza called KaluzaBench. We used an additional set called
StringFuzzBench which is shared by Blotsky et al. [27], who used their
tool StringFuzz to generate instances. The previously presented set (see
Section 5.2) contains higher-level operations which are not supported by
our approach. We use their instances, restricted to the feature set woor-
pjeLevi is able to handle. They consist of instances named concats. The
structure of the system of word equations is either based on right-heavy,
deep tree concatenations of variables or balanced deep trees. Secondly they
generate instances, which consider large length constraints and a mixture
between length constraints and the previously mentioned concats. The
third style of benchmarks holds instances which contain overlapping solu-
tions within the substitutions of the variables. They share sets of satisfiable
and unsatisfiable instances.

6.3.1 Detailed results of the evaluation
For the evaluation we wanted partly to compare each of the transfor-
mation system with assisting SMT-Solver with different heuristics and
three different settings: the transformation system alone (without external
SMT-solvers), against the 3 SMT-solvers (CVC4, Z3str3, Z3seq) alone,
and the SMT-Solvers without guidance of the technique described in this
paper. We ran these tools on each benchmark set with an overall timeout
setting of 20 seconds for each system of word equations. The timeout for
woorpjeLevi’s calls to externals SMT-solver was set to 15 milliseconds.
This limit seems tight. Since our goal is to minimize the input system of
word equations to a form which is easy to handle by an SMT-Solver, the
limit is still appropriate. We measured the time used by each solver1 to
reach a verdict, the verdict and the number of SMT-solver calls. If a solver
times out we treat it as an “Unknown” verdict - although we will write it
in the result tables as a timeout. Afterwards, we gathered all of the results
and classified each instance as either satisfiable or unsatisfiable.

The individual results for WoorpjeBench, KaluzaBench, and String-
FuzzBench are in Table 6.4, Table 6.5, and Table 6.6, respectively. By a
superficial inspection of the listed results it is hard to get a definitive

1Here we refer to each instantiation woorpjeLevi as a different solver
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Table 6.4. Summary benchmark data for WoorpjeBench (809 Benchmarks): (�:
correctly classified, �: timeouted instances, �: incorrectly classified �: calls to the
external solver, �: total time in seconds)

Heuristic Number 2 4 3 1 5 –

Parameters 314 1123 15 2 400 20 1.075 2 0.15 3.14 0.15 1.12358 – –

CVC4

� 748 (92.46%) 749 (92.58%) 757 (93.57%) 764 (94.44%) 707 (87.39%) 747 (92.34%) 746 (92.21%) 709 (87.64%) 760 (93.94%) 764 (94.44%) 762 (94.19%) 762 (94.19%) 707 (87.39%) 781 (96.54%)
� 44 (5.44%) 39 (4.82%) 46 (5.69%) 44 (5.44%) 78 (9.64%) 45 (5.56%) 44 (5.44%) 77 (9.52%) 46 (5.69%) 44 (5.44%) 46 (5.69%) 46 (5.69%) 78 (9.64%) 28 (3.46%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 900 552 1279 1957 79 1808 1451 77 1987 1886 2001 1962 78 –
� 1216.4 1172.96 1111.77 1144.26 1908.76 1258.08 1273.25 1907.83 1221.66 1134.98 1156.13 1164.62 1911.38 732.98

Z3seq

� 757 (93.57%) 777 (96.04%) 749 (92.58%) 783 (96.79%) 769 (95.06%) 704 (87.02%) 782 (96.66%) 749 (92.58%) 710 (87.76%) 782 (96.66%) 783 (96.79%) 783 (96.79%) 708 (87.52%) 769 (95.06%)
� 36 (4.45%) 26 (3.21%) 39 (4.82%) 25 (3.09%) 26 (3.21%) 81 (10.01%) 25 (3.09%) 46 (5.69%) 76 (9.39%) 26 (3.21%) 25 (3.09%) 25 (3.09%) 77 (9.52%) 40 (4.94%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 827 2044 328 2411 2196 81 2511 1057 76 2329 2344 2397 77 –
� 1101.25 859.15 1251.33 962.1 948.7 1981.7 982.49 1266.6 1930.41 945.12 960.46 971.26 1920.54 1005.96

Z3str3

� 730 (90.23%) 742 (91.72%) 719 (88.88%) 751 (92.83%) 723 (89.37%) 703 (86.9%) 747 (92.34%) 708 (87.52%) 717 (88.63%) 748 (92.46%) 751 (92.83%) 751 (92.83%) 708 (87.52%) 684 (84.55%)
� 62 (7.66%) 61 (7.54%) 67 (8.28%) 57 (7.05%) 69 (8.53%) 81 (10.01%) 60 (7.42%) 76 (9.39%) 75 (9.27%) 59 (7.29%) 57 (7.05%) 56 (6.92%) 75 (9.27%) 103 (12.73%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 8 (0.99%)
� 666 1199 312 1626 1884 81 1671 76 943 1661 1611 1608 75 –
� 1688.45 1577.13 1818.98 1556.51 1876.46 2003.17 1620.49 1925.3 1895.0 1556.28 1563.71 1561.59 1907.98 2220.13

Table 6.5. Summary benchmark data for KaluzaBench (10853 Benchmarks): (�:
correctly classified, �: timeouted instances, �: incorrectly classified �: calls to the
external solver, �: total time in seconds)

Heuristic Number 2 4 3 1 5 –

Parameters 314 1123 15 2 400 20 1.075 2 0.15 3.14 0.15 1.12358 – –

CVC4

� 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 26 3 2420 8649 0 73 1861 0 8685 8673 8682 8681 0 –
� 421.4 454.63 401.32 454.37 466.78 465.83 449.46 473.95 460.32 449.45 449.9 450.45 459.29 316.09

Z3seq

� 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 10 350 1 8951 73 0 8991 1861 0 8916 8926 8929 0 –
� 591.82 588.47 598.46 837.05 613.4 612.82 857.6 667.04 623.8 863.76 863.16 865.94 606.02 599.93

Z3str3

� 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10853 (100.0%) 10852 (99.99%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.01%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 15 2305 0 8458 73 0 8480 0 1861 8480 8481 8481 0 –
� 611.23 652.45 628.58 823.76 616.56 611.91 836.79 625.94 656.05 852.46 853.24 852.13 613.41 605.39

picture of which heuristic strategy is better, and also in regards to which
assisting SMT-solver is the best choice.

On WoorpjeBench heuristics 2, that is the invoking of an SMT-Solver
whenever a system of word equations reaches a certain bound, is most
helpful for Z3str3 with a bound of 2. Using this setup Z3str3 solves 67
more instances and is 0.43x times faster with an amount of 1626 external
solver calls. For Z3seq heuristics 4, that is the ratio of newly introduced
terminals by performing a transformation step, with a ratio of 0.15 is
most helpful. Z3seq gains a speed-up of 5% and solves 14 more instances.
Applying our technique to CVC4 is not beneficial. The best setup using
our technique, is applying heuristics 4 with a ratio of 3.14. CVC4 is
0.55x faster without our technique and solves 17 more instances. It does
however appear that the errors we observed earlier within Z3str3 on
WoorpjeBench seem to be compromised by using our technique. This
raises hope that the errors within Z3str3 might be easy to fix, since our
rewrite rules avoid running into this trap. Recap, the given total times
while using heuristics 5 vary between different solvers, because we are
using the corresponding integer solver to verify linear length constraints.
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Table 6.6. Summary benchmark data for StringFuzzBench (600 Benchmarks): (�:
correctly classified, �: timeouted instances, �: incorrectly classified �: calls to the
external solver, �: total time in seconds)

Heuristic Number 2 4 3 1 5 –

Parameters 314 1123 15 2 400 20 1.075 2 0.15 3.14 0.15 1.12358 – –

CVC4

� 292 (48.67%) 293 (48.83%) 346 (57.67%) 358 (59.67%) 293 (48.83%) 302 (50.33%) 335 (55.83%) 292 (48.67%) 357 (59.5%) 357 (59.5%) 358 (59.67%) 359 (59.83%) 292 (48.67%) 539 (89.83%)
� 84 (14.0%) 84 (14.0%) 94 (15.67%) 96 (16.0%) 83 (13.83%) 93 (15.5%) 84 (14.0%) 84 (14.0%) 94 (15.67%) 94 (15.67%) 94 (15.67%) 94 (15.67%) 80 (13.33%) 61 (10.17%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 84 84 298 301 83 203 130 84 380 377 432 375 80 –
� 1943.28 1943.65 2180.83 2277.3 1998.64 2279.67 1943.89 1946.71 2234.09 2234.54 2235.77 2234.89 2013.37 2544.16

Z3seq

� 325 (54.17%) 407 (67.83%) 330 (55.0%) 403 (67.17%) 357 (59.5%) 328 (54.67%) 405 (67.5%) 366 (61.0%) 325 (54.17%) 409 (68.17%) 408 (68.0%) 403 (67.17%) 326 (54.33%) 231 (38.5%)
� 84 (14.0%) 84 (14.0%) 84 (14.0%) 87 (14.5%) 86 (14.33%) 85 (14.17%) 88 (14.67%) 84 (14.0%) 84 (14.0%) 86 (14.33%) 88 (14.67%) 90 (15.0%) 79 (13.17%) 321 (53.5%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 84 680 84 389 86 85 390 128 84 399 384 401 79 –
� 2037.15 2167.8 2038.9 2220.59 2214.38 2059.97 2229.32 2021.04 2031.76 2221.11 2225.22 2247.99 2063.55 6709.65

Z3str3

� 326 (54.33%) 359 (59.83%) 325 (54.17%) 364 (60.67%) 320 (53.33%) 321 (53.5%) 367 (61.17%) 325 (54.17%) 356 (59.33%) 363 (60.5%) 362 (60.33%) 359 (59.83%) 320 (53.33%) 375 (62.5%)
� 86 (14.33%) 105 (17.5%) 85 (14.17%) 103 (17.17%) 103 (17.17%) 84 (14.0%) 102 (17.0%) 84 (14.0%) 86 (14.33%) 105 (17.5%) 106 (17.67%) 107 (17.83%) 82 (13.67%) 222 (37.0%)
� 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
� 86 235 85 403 103 84 384 86 124 306 300 289 82 –
� 2034.28 2675.65 2035.83 2654.74 2568.03 2100.72 2667.25 2030.64 2044.83 2699.82 2719.21 2725.01 2094.29 4545.43
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Figure 6.4. Cactus plot summarising performance on WoorpjeBench.

It should be noted that the table sometimes indicates an increase in solving
time for an instance, whenever the count of SMT-solver calls goes up. In
this cases the SMT-solver was usually not able to find a solution within the
given timeout limits or simply was not able to draw any conclusion at all.

On KaluzaBench our technique does not seem to be helpful. All
solvers except for Z3str3, which fails on one instance, solve all instances
without our technique. Using heuristics 1, that is reaching a predefined
depth within the graph induced by applying our rules, with a bound of 314,
Z3str3 solves the remaining instance but is 1% (roughly 5 seconds) slower
by applying our technique. A remarkable result is that the transformation
without any external string solver is capable of classifying all of the
KaluzaBench instances, and does so in competitive time to the fastest
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Figure 6.5. Cactus plot summarising performance on KaluzaBench.
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Figure 6.6. Cactus plot summarising performance on StringFuzzBench.

SMT-solver, whose time is given in the last column marked with heuristic
– the technique presented in this paper is not used in that case.

The results look slightly better on StringFuzzBench. Our technique is
not helpful for CVC4 and Z3str3 but for Z3seq. Using again heuristics 4
with a ratio of 3.14, Z3seq is 2.02x faster and solves 178 more instances.
Z3str3 is performing best by applying heuristics 3, that is by applying
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one of our transition rules the length of the equation system increases
quicker than a threshold of 15%. It is 0.7x faster but fails on solving
8 cases instances compared to Z3str3 without applying our technique.
CVC4 gains a minor speed-up by using heuristics 4 with a ratio of 1.12358.
This setup is 14% faster overall than the SMT-Solver itself but fails on
solving 180 instances. These results are not strictly encouraging for our
technique, as they show our technique sometimes reduces the number of
correctly solved instances compared to the amount solved by each SMT-
solver individually. However, we analysed StringFuzzBench in depth
and observed that lots of equations in this benchmark set have a particular
structure namely

X0
.
= b and X0

.
= X1X2 . . .Xn,

where b is a sequence of terminals. Applying our rules to these examples
result in a huge search space - and no matter which path is taken in the
search space, a solution will be reached. The StringFuzzBench set thus
constitute a malicious example to our rewrite rules which might explain
the slowdown for CVC4.

We plot the results for WoorpjeBench, KaluzaBench, and String-
FuzzBench showing each of the SMT-Solvers without our technique, the
best performing technique, and purely using our rules where the SMT-
Solver plays an assisting role in Figure 6.4, Figure 6.5 and Figure 6.6. Purely
looking at these plots reveals the diversity of our benchmark selection.
While in general CVC4 has the best performance in total, Z3seq is able
to beat CVC4 on WoorpjeBench by using our technique. In general our
technique seems to improve the performance of Z3seq on word equations
such that integrating a rule-based solving strategy into its core is poten-
tially useful. Another interesting observation is the performance of Z3str3
on StringFuzzBench. While having nearly no slowdown on the instances
Z3str3 solves solely, it is able to beat Z3seq by using our technique. This
observation might point to the structure of this benchmark set which
seems to be harmful for the arrangement solving strategy Z3str3 uses. In
Figure 6.7 we plot all solvers together with the virtual best solver over all
heuristic runs using the corresponding solver as assisting SMT-solver. This
plot clearly shows that our technique is a valuable addition to Z3seq and
Z3str3. The related virtual best solver not only solves more instances but
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Figure 6.7. Cactus plot summarising performance on all benchmarks of the SMT-
Solvers including the virtual best solver of all heuristic runs per solver.

also needs less time to do so. Note, in order to achieve the performance of
the virtual best solver a natural next step is the detailed analysis of when
a certain heuristic (with respect to the input query) performs best.

6.3.2 Conclusion

While the results we report in [42] emphasises our technique in a brighter
light, the solver developers improved their solvers in such a way that
it copes with similar techniques. Especially the developers of CVC4 ex-
tended their abilities from version 1.7 which we compared against, to the
current version 1.8 which is used in this evaluation. Nevertheless, these
observations suggest that our transformation techniques will be useful
inside the string theory solver of existing SMT-solver - especially if it can
be determined a priori what particular class of equations (from a structural
point of view) can be handled by the SMT-solver most efficiently.
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6. Analysing the Techniques

6.4 Evaluation of the procedure for solving reg-
ular membership constraints

The proof for the sub-theory of string constraints only containing reg-
ular membership predicates, concatenation, and length constraints in
Section 4.3 directly lead to a decision procedure presented in Section 4.3.3.
The resulting algorithm was implemented into Z3str3 by Berzish. Within
the theory of strings we implemented an SMT-style sub-solver which now
handles all formulae involving regular expression membership predicates.
To not confuse, we refer to this implementation as Z3str3RE instead of
calling it Z3str3. It is worth mentioning that parts of our sub-solver are
already present in the mainline commit of Z3str3 we evaluate against in
this section. To speed up our solvers performance we developed several
heuristics to minimise the search space. In the following, heuristics which
are implemented within mainline Z3str3 are marked separately.

The evaluation of Z3str3RE was performed on the benchmark set
we analysed in Section 4.3.1. We restricted the set of benchmarks we
gathered in Section 5.2 to 22425 instances containing at least one regular
expression membership constraint. These are instances from AppScan,
Cashew, Joaco, Norn, Stranger, Sloth, StringFuzz, Z3str2 regres-
sion, Kaluza. Additionally, we added instances from the BanditFuzz
suite, which was obtained by private communication with the authors.
Furthermore, we used the AutomataArk, StringFuzz-regex-generated,
and StringFuzz-regex-transformed benchmarks, which are explained
in detail in Section 5.2.

6.4.1 Additional Heuristics
As pointed out in Section 4.3.3 computing the intersection of our automata
is extremely expensive. To this extend we introduce three heuristics which
primarily try to completely avoid this step, or at least ease this process.

Lazy Construction of the Intersection Automata

To potentially avoid building the product automaton, we measure the costs
of constructing an automaton based on a regular expression in advance.
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6.4. Evaluation of the procedure for solving regular membership
constraints

Afterwards we lazily construct all automata based on this measurement
and therefore, in case quickly determining the emptiness of an automata
intersection (e.g. by building an automaton for a regular expression H),
we might be able to completely avoid the expensive constructions. We
assign the costs to a regular expression R using the following function
costs : RegExCA Ñ N inductively defined by

costs(R) =

8
>>>>>><

>>>>>>:

0 if R P { H, # },
1 if R P A,
costs(R1) + costs(R2) if R = R1 ˛ R2 and ˛ P { ¨, Y, },
2 ¨ costs(R1) if R = R˚

1 ,
(costs(R1))2 if R = R1.

Note, in case we are not able to determine an empty intersection of our
automata, we construct the whole resulting intersection automaton to
maintain soundness.

Prefix and Suffix Over-Approximation

Many of the regular expressions occurring in practice allow a simple
inspection of their syntax in order to determine the emptiness of their
intersection. From an implementation point of view it is hard to grasp the
general structure of a regular expression but simple to analyse facts based
on a fixed length. To this extend we determine the first letter of all regular
expressions in question, as well as the last on. If the intersection of the
resulting sets is empty, a potential word within the intersection can only be
the empty word, which only is the case whenever all regular expressions
are either # or outermost nested by a Kleene-star. The following function
solpref : RegExCA Ñ 2A for a regular expression R defined by

solpref(R) =

8
>>>>>>>>><

>>>>>>>>>:

H if R P { H, # },
{ R } if R P A,
solpref(R1) if R = R1 ¨ R2,
solpref(R1) Y solpref(R2) if R = R1 Y R2,
solpref(R1) if R = R˚

1 ,
Azsolpref(R1) if R = R1
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calculates the set of potential letters for the prefix of length 1 for any
solution. A function for calculating the last letter of a potential solution
can be calculated analogously. The predicate eReg Ñ RegExCA is simply
defined for a regular expression R by

eReg(R) iff D R1 P RegExCA . R = R˚

1 _ R = #.

This allows us to quickly determine whether all regular expressions of
choice accept the empty word.

Again, this potentially allows avoiding the construction of the inter-
section automaton. Moreover, by using this construction we are able to
assert additional formulae to the core solver leaking information about the
potential solution of our product automaton.

Levering Length Information

Z3str3 needs to be capable to reason about more than just the decidable
theory of regular membership constraints, linear length constraints, and
concatenation. Therefore we cannot directly pick any solution from a set
of automata describing all solutions to a variable but try different length
within an automaton. Within the implementation we involve Z3’s arith-
metic solver: We ask for an integer assignment which is consistent with our
automata and afterwards try to construct a solution based on the gathered
length. If a solution proves invalid we assert a conflict clause blocking
this assignment within the integer solver and ask for a new solution. This
arithmetic solver integration is present in the current mainline version of
Z3str3.

6.4.2 Detailed results of the evaluation

Within our evaluation we first want to leverage the performance gains
Z3str3RE gets by using our heuristics. Afterwards we compare our im-
plementation on the previously described set of benchmarks against other
solver.

In Figure 6.8 and Table 6.7 we summarise the performance of our
heuristics. Once, we ran our solver disabling all heuristics and additionally
partially enable certain heuristics. For the solver we refer to as Z3str3RE
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Figure 6.8. Cactus plot summarising performance of our heuristics on all bench-
marks.

we enable all heuristics. If we disable all heuristics our solver gets 3.46x
slower and solves 3057 less instances compared to all heuristics enabled.
The automata length heuristic allows us solving only a couple more
instances, namely 77, and adds a minor speed-up: Z3str3RE is 13.0% faster
by using this heuristic. We achieve a boost of solved instances by activating
the prefix-/suffix heuristic. We solve 479 additional instances and gain a
speed-up overall of 75.0%. The most helpful heuristic is clearly the lazy
intersection of automata. Z3str3RE is 3.32x faster by using this heuristic
and solves 2567 additional instances. Overall these results demonstrate
the usefulness of our heuristics, both by solving more instances and total
solver runtime. Moreover, all heuristics can be used simultaneously for
maximum efficacy.

Table 6.7. Comparison of our heuristics on all benchmarks.

Automata length info off Lazy intersections off Prefix/suffix heuristic off All heuristics off All heuristics on

sat 33815 31509 33816 31013 33820
unsat 22266 22082 21863 22088 22338

unknown 285 323 287 315 291
timeout 890 3342 1290 3840 807

soundness error 0 0 0 0 0
program crashes 1 39 0 44 0

Total correct 56081 53591 55679 53101 56158
Time (s) 26475.22 101205.55 40934.03 104484.19 23419.8

Time w/o timeouts (s) 8675.22 34365.55 15134.03 27684.19 7279.8
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Figure 6.9. Cactus plot summarising performance on all benchmarks.

Comparing Z3str3RE against other solvers demonstrates the value
of our approach. Our tool has the best performance on the benchmarks
with respect to correctly classified instances and total time. The successor
Z3str4 solves 1251 less instances correctly and is 1.59x times slower than
Z3str3RE. It is worth mentioning again at this point, that Z3str4 uses the
same algorithm for solving regular expression membership predicates as
our tool does. Their arm selection procedure produces the overhead which
leads to fewer solved cases within our selected timeout of 20 seconds.
Secondly, within their arm for solving regular expression membership
predicates they use Z3seq as a preprocessor. The sequence solver itself fails
on solving 3804 compared to our solver. Moreover, it is 3.89x slower on our
selected benchmarks. Z3str3RE is 5.6x faster than CVC4 solving a total
of 5921 instances more. Comparing against Z3str3 which as mentioned

Table 6.8. Results summarising performance on all benchmarks.

CVC4 Z3seq OSTRICH Z3-Trau Z3str3 Z3str4 Z3str3RE

sat 28549 30726 22468 24184 30744 32664 33820
unsat 21688 21730 19284 21043 19162 22297 22338

unknown 5 6 10902 6517 588 38 291
timeout 7014 4794 4602 5512 6762 2257 807

soundness error 0 102 28 5329 166 54 0
program crashes 0 0 0 2485 0 0 0

Total correct 50237 52354 41724 39898 49740 54907 56158
Time (s) 154568.2 114437.0 297355.68 148134.88 147905.67 60627.72 23419.8

Time w/o timeouts (s) 14288.13 18557.0 205315.68 37894.88 12665.67 15487.72 7279.8
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constraints

before uses an earlier version of our algorithm, Z3str3RE solves 6418 more
instances within a total time which is 5.32x slower. Z3-Trau’s performance
on the selected benchmarks is slightly worth: the solver is 5.33x slower
compared to our implementation and solves 16260 fewer cases correctly.
Due to its Java implementation OSTRICH has the highest overall time. Our
algorithm is 1170.0% faster than their implementation, solving 14434 more
cases. A larger timeout might have gotten them some extra instance, but
the solving time would suffer even more. Notably, using our validation
setup we discovered multiple soundness issues within the competing
solvers. Only CVC4 and our implementation prove to be sound. Detailed
results on each benchmark set can be found in Appendix B.2.

It is worth mentioning, that these results differ compared to our work
in [24] since we used other versions of the competing solvers.

6.4.3 Conclusion
We empirically showcased the power of our algorithm for regular expres-
sion membership constraints and its implementation in Z3str3RE via an
extensive empirical comparison against six other state-of-the-art solvers
over a large and diverse benchmark of more than 56993 instances. Over
this entire benchmark suite, we show that Z3str3RE has the best overall
performance. The presented method is very general and has wide appli-
cability in the broad context of string solving. The challenges of using
automata-based methods is addressed via prudent use of our heuristics in
order to avoid performing expensive automata operations when possible.
Our solver takes advantage of the compactness of automata in represent-
ing regular expressions, while at the same time mitigating the effects of
expensive automata operations such as intersection by levering length
information and lazy heuristics.
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Chapter 7

Conclusion

“It’s over and that’s it. [...] I gave
what I could.”

Warhaus

In this thesis we went through different techniques of solving string
constraints. We discovered an approach which is purely based on carefully
encoding each required step into a propositional logic formula. Afterwards,
we elaborated an approach based on a transition system by combining
theoretical knowledge discovered decades ago with nowadays mechanisms
to efficiently cope with real-world input. Continuing this trail, we use
the ideas discovered while proving the decidability for certain theories
involving regular membership constraints to build an efficient decision
procedure for the aforementioned theory. To evaluate our approaches,
we not only introduced a framework but also provide sophisticated test
data collected from related literature. Furthermore, we analyse the test
data for weaknesses and propose ways of optimising them. By using our
infrastructure for testing and analysing string solvers, we showcase the
performance of our approaches which are – even after being published
some years ago – still perform equally or better then nowadays state of
the art string solvers.

In the future we plan to extend all of the presented techniques in many
ways: our first two proposals to solving string constraints are not able to
reason about regular membership constraints. Therefore, we plan to inte-
grate a similar method as we did within Z3str3RE into the propositional
logic approach and also the transition system based technique. Initial
experiments show that our automata based approaches we used for the
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7. Conclusion

SAT approach only needs a few modifications to cope with regular mem-
bership constraints. Also the second way raises hope: modifying regular
membership constraints in a similar to the linear length constraints seems
to be feasible. We elaborated several heuristics optimising the algorithm
implemented within Z3str3RE. In the future we plan to extend these
heuristics to further speed up the solver. On the theoretical side our goal
is to continue analysing real-world data to identify relevant sub theories,
always hoping to find decidable fragments again revealing interesting
algorithmic ideas to target industrial cases more efficiently.
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Appendix A

Further Research

During my time in Kiel I was involved in several other but closely related
activities. To keep this thesis streamlined we omitted these topics in the
earlier chapters. Within this chapter we briefly introduce these results.

A.1 More on String Solving

We developed Z3str4, a string SMT solver for the quantifier free first order
theory of strings, length constraints and regular membership predicates.
Z3str4 has three core features: first, a novel length-abstraction algorithm
that performs various string-length based abstractions and refinements
along with a bit-vector backend; second, an arrangement-based solver with
a bit-vector backend; third, an algorithm selection and constraint-sharing
architecture which leverages the above-mentioned solvers along with the
Z3 sequence solver. A paper describing all details was accepted at FM
2021 [91].

A.2 Prefix Normal Words

Prefix normal words are binary words in which each prefix has at least
the same number of 1s as any factor of the same length. Firstly introduced
in 2011, the problem of determining the index (amount of equivalence
classes for a given word length) of the prefix normal equivalence relation
is still open. We investigated two aspects of the problem, namely prefix
normal palindromes and so-called collapsing words (extending the notion
of critical words). We proved characterizations for both the palindromes
and the collapsing words and show their connection in [51].

179



A. Further Research

Furthermore, we investigate a generalisation for finite words over
arbitrary finite alphabets, namely weighted prefix normality. We prove that
weighted prefix normality is more expressive than binary prefix normality.
Moreover, we investigate the existence of a weighted prefix normal form,
since weighted prefix normality comes with several new peculiarities that
did not already occur in the binary case. We characterise these issues and
finally present a standard technique to obtain a generalised prefix normal
form for all words over arbitrary, finite alphabets in [48].

A.3 Source Code Analysis

We developed a bridge between source code and the engine of Uppaal
which is massively expanding the realm of more traditional model check-
ing technologies to include strategy synthesis algorithms — an aspect
becoming more and more needed as software becomes increasingly paral-
lel. Therefore, instead of reimplementing all these advances, we aim for
using the Uppaal ecosystem. Our approach uses the widespread interme-
diate language LLVM making Uppaal readily available to the analysis of
source code [75].

A.4 Participations in SAT and SMT solver com-
petitions

In 2020 we participated in the SAT-COMP [14] on the AWS cloud track.
We used a slightly modified version of TopoSAT2 [47] developed by Ehlers.
It is built on top of Glucose 3.0, but uses a bug-fixed version of the lockless
clause sharing mechanism from ManySAT [59] for communication on
one computation node rather than the lock-based implementation from
Glucose Syrup. The communication between nodes uses MPI. Using this
setup, we won a silver medal.

In 2020 and 2021 we entered SMT-COMP [17] using Z3str4 (see Sec-
tion A.1) on the quantifier free logic of strings (QF_S) and the quantifier
free logic of strings and linear arithmetic (QF_SLIA). In 2020 we finished
second, but only CVC4 entered on the aforementioned theories. During the
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time of the submission of this thesis the results for 2021 are not publicly
available.

A.5 Teaching at Kiel University

During my time in Kiel I assisted two undergraduate courses, namely
a course on theory of computation and a course on logic in computer
science. These courses form the basis for teaching formal methods in
Kiel. Over the last years, new study programs (computer science teacher
training, business information systems, computer science for international
students on master level) have been established, calling for changes to
the courses. Guided by the experience gathered over time, course syllabi
as well as teaching and examination formats and practices were adapted,
resulting in a complex scheme. We share our experiences in [52] and review
this development, with particular focus on managing heterogeneity and
bridging the gap between actual and required qualification of enrolling
students. Key ingredients of our teaching methods are a spiral approach,
frequent testing, supervised learning time, and a game.

In the beginning of 2020 when COVID-19 arose, after a short moment
of shock our university decided that the students have to be able to pursue
their studies for guaranteeing a degree in the expected time since most of
them faced immediate financial problems due to the loss of their student
jobs. This implied, for us as teachers, that we had to reorganise not only
the teaching methods from nearly one day to the next, but we also had
to come up with an adjusted way of examinations which had to take
place in person with pen and paper under strict hygiene rules. On the
other hand the correction should avoid personal contacts. We developed
a framework which allowed us to correct the digitalised exams safely
at home while providing the high standards given by the general data
protection regulation of our country. Moreover, the time spent in the
offices could be reduced to a minimum thanks to automatically generated
exam sheets, automatically re-digitalised and sorted worked-on exams. A
description of this frame work is available in [50].
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Appendix B

Detailed results of the empirical
evaluation

In this part of the appendix we present the performance of our approaches
on the specific benchmark sets, to show how diverse instances influence
the individual performance of our solvers.

Table B.1. Results for Woorpje Track 1.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 200 196 192 196 196 18 200
unsat 0 0 0 0 1 0 0

unknown 0 0 0 0 0 182 0
timeout 0 4 8 4 3 0 0

soundness error 0 0 0 0 9 0 0
program crashes 0 0 0 0 0 0 0

Total correct 200 196 192 196 188 18 200
Time (s) 5.87 125.15 170.96 86.67 112.55 281.14 17.33

Time w/o timeouts (s) 5.87 45.15 10.96 6.67 52.55 281.14 17.33

Table B.2. Results for Woorpje Track 2.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 4 4 0 4 3 0 5
unsat 0 0 0 0 3 0 0

unknown 0 0 9 0 0 9 0
timeout 5 5 0 5 3 0 4

soundness error 0 0 0 0 2 0 0
program crashes 0 0 0 0 0 0 0

Total correct 4 4 0 4 4 0 5
Time (s) 114.07 108.88 0.47 122.41 86.82 7.07 83.98

Time w/o timeouts (s) 14.07 8.88 0.47 22.41 26.82 7.07 3.98
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Table B.3. Results for Woorpje Track 3.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 134 128 83 92 134 1 147
unsat 44 44 43 44 46 3 42

unknown 0 0 2 0 0 196 2
timeout 22 28 72 64 20 0 9

soundness error 0 0 0 0 6 0 0
program crashes 0 0 0 0 0 0 2

Total correct 178 172 126 136 174 4 189
Time (s) 519.08 649.44 1466.46 1298.57 681.24 303.77 198.59

Time w/o timeouts (s) 79.08 89.44 26.46 18.57 281.24 303.77 18.59

Table B.4. Results for Woorpje Track 4.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 103 101 76 94 77 14 104
unsat 96 96 104 96 95 2 93

unknown 0 0 1 0 0 182 1
timeout 1 3 19 10 28 2 2

soundness error 0 0 8 0 5 0 0
program crashes 0 0 0 0 0 0 1

Total correct 199 197 172 190 167 16 197
Time (s) 87.52 85.79 439.23 219.9 592.94 1398.97 128.22

Time w/o timeouts (s) 67.52 25.79 59.23 19.9 32.94 1358.97 88.22

Table B.5. Results for Woorpje Track 5.

CVC4 Z3seq Z3str3 Z3str4 Z3-Trau OSTRICH woorpjeSAT

sat 176 175 168 176 150 1 176
unsat 24 24 24 24 43 0 14

unknown 0 0 0 0 0 199 0
timeout 0 1 8 0 7 0 10

soundness error 0 0 0 0 29 0 0
program crashes 0 0 0 0 0 0 0

Total correct 200 199 192 200 164 1 190
Time (s) 7.34 31.32 170.9 8.55 311.84 411.16 210.54

Time w/o timeouts (s) 7.34 11.32 10.9 8.55 171.84 411.16 10.54

B.1 Evaluation of the SAT approach

We visualise WoorpjeBench Track 1 in Table B.1, respectively Figure B.1.
woorpjeSAT solves as many instances as CVC4 (the best solver on this
track), but is 1.95x slower.

We visualise WoorpjeBench Track 2 in Table B.2, respectively Fig-
ure B.2. woorpjeSAT solves more instances than any other solver and is
25% faster compared to the second best solver CVC4.

We visualise WoorpjeBench Track 3 in Table B.3, respectively Fig-
ure B.3. woorpjeSAT is 1.61x faster than CVC4, the second best solver on
this track, and solves 11 more instances than CVC4.
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Figure B.1. Cactus plot summarising performance on Woorpje Track 1.
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Figure B.2. Cactus plot summarising performance on Woorpje Track 2.

We visualise WoorpjeBench Track 4 in Table B.4, respectively Fig-
ure B.4. woorpjeSAT fails on solving 2 instances CVC4 does (the best
solver on this track) and is 0.47x slower on this track.

We visualise WoorpjeBench Track 5 in Table B.5, respectively Fig-
ure B.5. woorpjeSAT fails on solving 10 instances CVC4 does (the best
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Figure B.3. Cactus plot summarising performance on Woorpje Track 3.
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Figure B.4. Cactus plot summarising performance on Woorpje Track 4.

solver on this track) and is 27.68x slower on this track. This drawback is
caused by the naive implementation of the linear constraint handling.
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Figure B.5. Cactus plot summarising performance on Woorpje Track 5.
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Figure B.6. Cactus plot summarising performance on AutomatArk.

B.2 Evaluation of the procedure for solving reg-
ular membership constraints

We visualise AutomatArk in Figure B.6, respectively Figure B.6. Z3str3RE
solves 45 instances less than Z3str4, but is 0.46x faster.

We visualise StringFuzz-regex-generated in Table B.7, respectively
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Figure B.7. Cactus plot summarising performance on Stringfuzz RegEx Generated.
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Figure B.8. Cactus plot summarising performance on Stringfuzz RegEx Trans-
formed.

Figure B.7. Z3str3RE solves 52 instances less than Z3str4, but is 0.49x
faster.

We visualise StringFuzz-regex-transformed in Table B.8, respectively
Figure B.8. Z3str3RE solves 7 more instances than Z3str4, but is 0.5x
slower.

We visualise Regex-Collected in Table B.9, respectively Figure B.9.
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B.2. Evaluation of the procedure for solving regular membership
constraints
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Figure B.9. Cactus plot summarising performance on RegEx Collected.

Table B.6. Results for AutomatArk.

CVC4 Z3seq OSTRICH Z3-Trau Z3str3 Z3str4 Z3str3RE

sat 14157 14261 11458 8172 12155 14457 14436
unsat 5282 5280 5382 3822 4407 5448 5421

unknown 5 6 16 5058 315 1 0
timeout 535 432 3123 2927 3102 73 122

soundness error 0 17 0 1304 11 3 0
program crashes 0 0 0 1071 0 0 0

Total correct 19439 19524 16840 10690 16551 19902 19857
Time (s) 14065.03 17747.98 153148.85 79156.71 67773.38 5921.77 4054.42

Time w/o timeouts (s) 3365.03 9107.98 90688.85 20616.71 5733.38 4461.77 1614.42

Table B.7. Results for Stringfuzz RegEx Generated.

CVC4 Z3seq OSTRICH Z3-Trau Z3str3 Z3str4 Z3str3RE

sat 768 1319 1979 1621 3285 3284 3232
unsat 441 697 821 824 32 830 830

unknown 0 0 1 192 0 6 0
timeout 2961 2154 1369 1533 853 50 108

soundness error 0 0 0 8 62 0 0
program crashes 0 0 0 192 0 0 0

Total correct 1209 2016 2800 2437 3255 4114 4062
Time (s) 61932.71 48019.13 52097.02 36600.02 20797.26 7597.63 5109.0

Time w/o timeouts (s) 2712.64 4939.13 24717.02 5940.02 3737.26 6597.63 2949.0

Z3str3RE solves 1341 more instances than Z3str4 and is 2.52x faster.
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B. Detailed results of the empirical evaluation

Table B.8. Results for Stringfuzz RegEx Transformed.

CVC4 Z3seq OSTRICH Z3-Trau Z3str3 Z3str4 Z3str3RE

sat 4625 4613 3899 3672 4334 4617 4599
unsat 6018 6005 4549 6282 4909 6062 6037

unknown 0 0 2233 721 1 0 6
timeout 39 64 1 7 1438 3 40

soundness error 0 82 5 1241 82 50 0
program crashes 0 0 0 718 0 0 0

Total correct 10643 10536 8443 8713 9161 10629 10636
Time (s) 1285.61 2042.52 20972.86 706.17 29601.24 719.72 1077.46

Time w/o timeouts (s) 505.61 762.52 20952.86 566.17 841.24 659.72 277.46

Table B.9. Results for RegEx Collected.

CVC4 Z3seq OSTRICH Z3-Trau Z3str3 Z3str4 Z3str3RE

sat 8999 10533 5132 10719 10970 10306 11553
unsat 9947 9748 8532 10115 9814 9957 10050

unknown 0 0 8652 546 272 31 285
timeout 3479 2144 109 1045 1369 2131 537

soundness error 0 3 23 2776 11 1 0
program crashes 0 0 0 504 0 0 0

Total correct 18946 20278 13641 18058 20773 20262 21603
Time (s) 77284.84 46627.37 71136.95 31671.98 29733.79 46388.6 13178.92

Time w/o timeouts (s) 7704.84 3747.37 68956.95 10771.98 2353.79 3768.6 2438.92
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60th Birthday. 2018, pp. 17–32.

[64] IBM AppScan Source web site. https://www.ibm.com/dk-
da/security/application-security/appscan.
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