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Simple Summary: The development of colorectal cancer (CRC) is influenced by the environment,
genetics and microbiota. Microbiome and metabolome analyses allowed for the finding of factors and
markers associated with adenoma and CRC risk, but the interaction of host genomics with those omic
layers remains unclear. Thus, our aim is to add host genome information to find new factors and
markers associated with adenoma and CRC risk or to propose biological mechanisms involved in the
risk. We found interactions between different omic layers that could be biologically relevant, and the
three layers gave complementary information to predict adenoma and CRC risk. Our findings will
help to find new markers for adenoma and CRC risk and to analyze biological mechanisms involved
in adenoma and CRC development.

Abstract: Background: Colorectal cancer (CRC), a major health concern, is developed depending on
environmental, genetic and microbial factors. The microbiome and metabolome have been analyzed
to study their role in CRC. However, the interplay of host genetics with those layers in CRC remains
unclear. Methods: 120 individuals were sequenced and association analyses were carried out for
adenoma and CRC risk, and for selected components of the microbiome and metabolome. The
epistasis between genes located in cholesterol pathways was analyzed; modifiable risk factors were
studied using Mendelian randomization; and the three omic layers were used to integrate their data
and to build risk prediction models. Results: We detected genetic variants that were associated to
components of metabolome or microbiome and adenoma or CRC risk (e.g., in LINC01605, PROKR2
and CCSER1 genes). In addition, we found interactions between genes of cholesterol metabolism, and
HDL cholesterol levels affected adenoma (p = 0.0448) and CRC (p = 0.0148) risk. The combination of
the three omic layers to build risk prediction models reached high AUC values (>0.91). Conclusions:
The use of the three omic layers allowed for the finding of biological mechanisms related to the
development of adenoma and CRC, and each layer provided complementary information to build
risk prediction models.
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1. Introduction

Colorectal cancer (CRC) is a major health concern that represents around 10% of the
cancer incidence in the world [1], and it is the second cause of cancer death in developed
countries [2]. CRC can be developed sporadically or as consequence of inflammatory
processes [3], and its development is influenced by environmental factors, such as physical
activity or diet [4], genetic factors and the microbiome composition [5]. Due to the burden
that CRC entails, different screening strategies and diagnostic biomarkers have been
developed to do an early detection of CRC [6].

As mentioned, genetic factors are involved in CRC risk and, therefore, they can
be appropriate biomarkers. The study of genetic markers and their role in CRC risk
have been carried out through the analysis of specific genetic variants [7–9] and genome-
wide association studies (GWAS) [10]. In addition, the effect of lipid level on colorectal
polyps [11] and CRC [12], as well as the effect of other modifiable risk factors [13], have
been detected through genetic Mendelian randomization analyses. Finally, based on the
information of those analyses, polygenic risk scores (PRS) have been developed to predict
the risk of CRC based on the carriership of risk genetic variants, among other factors [14,15].

In the search of non-invasive biomarkers, in our previous works, we have analyzed
the state, contribution and interaction of metabolome [16] and microbiome [17] to CRC
risk. We found that six metabolites, among others, metabolites of cholesterol metabolism,
and 16 bacteria genera that can be identified from fecal samples were able to discriminate
cases from healthy controls [16,17]. In addition, we found alterations in the presence of the
phyla Bacteroidete, Firmicutes and Fusobacteria in CRC or adenoma patients [17]. It has
been suggested that the state of one omic layer could affect the state of other layers and
their interplay could determine the final phenotype [18], e.g., the host genomic layer can
influence the microbiome layer [19]. In addition, it has been proposed that the enterocytes
are exposed to the metabolites produced by the diet, intestinal secretions and the digestion
done by microbes; and the enterocytes can interact directly with microbes [20,21], but the
effect of the host genetics in those interactions remains unclear, since, as far as we know,
analyses of genome, metabolome and microbiome and their interplay are scarce in CRC,
and limited to animal models [22].

Thus, our aim in this work is to add the information from host genomic layer to
our previous results in metabolomic and microbiome layers to further characterize their
interplay and effect in adenoma an CRC risk and development.

2. Materials and Methods
2.1. Samples

The patients included in this study were recruited from the COLONPREDICT study [23]
and from the Biobank of the Instituto de Investigación Sanitaria Galicia Sur (http://www.
iisgaliciasur.es/home/biobank-iisgs/?lang=en accessed on 3 December 2021). Those pa-
tients were referred to a colonoscopy due to gastrointestinal symptomatology; and patients
with the following characteristics were excluded: age under 18, pregnancy, patients with
previous history of colonic disease, patients requiring hospital admission, patients whose
symptoms had ceased within three months of evaluation, and patients who declined to
participate after reading the informed consent form. This study was approved by the
Clinical Research Ethics Committee of Galicia (Code 2011/038).

The samples and the clinical information were obtained from COLONPREDICT study
and from the biobank. Patients were classified in three categories: normal, advanced ade-
noma (≥10 mm, villous histology or high-grade dysplasia) and colorectal cancer (invasive
adenocarcinoma). Unfortunately, information regarding the CRC stage or the characteris-
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tics of the advanced adenomas was not available in the samples obtained from the biobank.
Thus, this information could not be incorporated into the analyses.

2.2. Data Generation

The procedure to obtain metabolome and microbiome was described elsewhere [16,17].
Briefly, metabolomics analysis was carried out analyzing chloroform/methanol extracts us-
ing a UHPLC−time-of-flight (TOF)-MS-based platform. In the case of microbiome, variable
regions V1 and V2 of the 16S rRNA gene were sequenced using Illumina MiSeq v3 (Illumina
Inc., San Diego, CA, USA). Both omic layers were retrieved from matched fecal samples.
Fecal hemoglobin (f-Hb) concentration was determined within the COLONPREDICT study
in all patients using the automated OC-SENSOR MICRO analyser (Eiken Chemical Co.,
Ltd., Tokyo, Japan).

DNA of the individuals included in this study was extracted from blood. The Illumina
Global Screening Array on Illumina iScan high-throughput screening system was used to
genotype the individuals in the Institute of Clinical Molecular Biology (Kiel, Germany). The
raw intensities were then analyzed using Illumina GenomeStudio software and GenCall
algorithm was applied to call the alleles.

Once genotyped, samples and markers were analyzed using the quality control
(QC) criteria usually applied in our group: exclusion of samples with ≥15% missing
rates; exclusion of markers with non-called alleles; exclusion of markers with missing call
rates > 0.05; exclusion of samples with ≥5% missing rates; exclusion of related samples
(PI-HAT > 0.1875); exclusion of samples whose genotyped sex could not be determined;
exclusion of samples with high heterozygosity rate (more than three times SD from the
mean); only autosomal SNPs were kept; removal of markers with Hardy-Weinberg equilib-
rium p < 1 × 10−5; removal of markers whose P of difference in missingness between cases
and control was <1 × 10−5; and removal of samples which were outliers, identified using
principal component analysis (deviation of more than 6 times interquartile range).

The QCed samples were imputed using the Sanger Imputation service. Haplo-
type Reference Consortium release 1.1 was used as reference panel and the pipeline
EAGLE2 + PBWT was used to do the imputation. From the imputation we retrieved
markers with INFO score ≥ 0.80 and biallelic markers.

After genotyping, quality control and imputation, 5,411,755 SNPs from 120 individuals
(39 patients with adenomas, 41 colorectal cancer cases, and 40 controls) were kept. From
those individuals, 104 (36 adenomas, 34 colorectal cancer and 34 controls) had available
information for metabolome and microbiome.

2.3. Analyses

In genetic association analyses of adenoma and CRC, all genotyped individuals
were used, regardless of the availability of metabolome and microbiome information.
The analyses of adenoma vs. controls (N = 79), CRC vs. controls (N = 81), CRC vs.
adenoma (N = 80) and CRC + adenoma vs. controls (N = 120) were carried out using
logistic regression implemented in Plink [24], adjusting by age, sex and first 4 principal
components.

In addition, linear regression implemented in Plink [24], adjusting by age, sex and the
first four principal components was used to analyze the proportional abundance of Bac-
teroidetes (N = 104) and Firmicutes (N = 104); values of the Shannon index (N = 104); and
the levels of ChoE(18:1) (N = 116), ChoE(18:2) (N = 116), ChoE(20:4) (N = 116), PE(16:0/18:1)
(N = 116), SM(42:3) (N = 116) and TG(54:1) (N = 116); and logistic regression, adjusting by
age, sex and the first four principal components, to analyze the presence of Fusobacteria
(N = 104).

Analyses of epistasis of SNPs located in genes of interest were carried out using
Plink [24]. In the case of “cholesterol esters metabolism” pathway, 1860 available SNPs
were interrogated for interactions between them; and in the case of “Glycerophospho-
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lipid, Sphingolipid metabolism, Glycosylphosphatidylinositol(GPI)-anchor biosynthesis”
pathway, 1925 SNPs.

For carrying out Mendelian randomization (MR) analyses, TwoSampleMR [25] and
gsmr [26] packages from R language were used [27]. First, the instruments (SNPs) for the
traits of interest that are known to affect CRC (BMI, cholesterol, triglycerides, selenium,
iron, vitamin B12, metabolism, body fat percentage, waist circumference, IL6 receptor and
height [13]) available in MRC-IEU (https://gwas.mrcieu.ac.uk accessed on 15 April 2021)
were retrieved through TwoSampleMR [25], and the analysis was carried out if 10 or more
instruments were available. Then HEIDI outlier analysis was used to discard heterogenous
instruments. With those instruments we carried out the MR analysis using MR Egger, as
done in CRC previously [13]. The analysis was done for each comparison (adenoma vs.
controls, CRC vs. controls, CRC vs. adenoma, and CRC + adenoma vs. controls).

To integrate the data from the three omic layers studied in this work (genome,
metabolome and microbiome) MOFA2 package [28,29] of R language [27] was used. In
genome, SNPs that where genotyped and have a MAF > 0.05 were included, in total 98,966
SNPs; in metabolome, 90 metabolites were included; and in microbiome 120 microbial
genera were included, after removing the less variable genera using nearZeroVar function
included in the package “caret” (https://CRAN.R-project.org/package=caret accessed on
28 June 2021) of R language. The analysis in MOFA2 was carried out using default settings.

Polygenic risk scores (PRS) were calculated using PRSice software [30]. As base
summary statistics, 397 SNPs associated to CRC retrieved from GWAS Catalog [31] were
used; the additive model was tested; and the analysis was adjusted by age, sex and the first
four principal components. The analyses were performed in adenoma vs. controls, CRC vs.
controls, CRC vs. adenoma, and CRC + adenoma vs. controls.

To build and test predictive models using metabolome (ChoE(18:1), ChoE(18:2),
ChoE(20:4), PE(16:0/18:1), SM(42:3) and TG(54:1) levels), microbiome (Fusobacterium,
Gemella, Blautia, Butyrivibrio, Clostridium, Coprococcus, Dorea, Peptococcus, Peptostreptococcus,
Staphylococcus, Streptococcus, Parvimonas and Selenomonas genera abundance) and genome
(PRS and PC1-PC4) data, a logistic regression was used in R language [27] for each com-
parison (adenoma vs. controls, CRC vs. controls, CRC vs. adenoma, and CRC + adenoma
vs. controls). The models tested were sex, age, metabolome and microbiome (Model1);
age, sex, metabolome, microbiome and fecal hemoglobin (Model 1 + f-Hb); age, sex and
genetics (Model 2); age, sex, genetics and fecal hemoglobin (Model 2 + f-Hb); sex, age,
metabolome, microbiome and genetics (Model 1 + Model 2); and age, sex, metabolome,
microbiome, genetics and fecal hemoglobin (Model 1 + Model 2 + f-Hb). To calculate the
performance of the model, the sensitivity, the specificity and the area under de curve pROC
package of R language [27] was used.

3. Results
3.1. Genetic Associations of Adenoma and Colorectal Cancer

In the genetic analyses of adenoma vs. healthy controls (AD vs. C), colorectal cancer
vs. healthy controls (CRC vs. C), colorectal cancer vs. adenoma (CRC vs. AD) or adenomas
and colorectal cancer vs. controls (CRC + AD vs. C) there was not any genome-wide signif-
icant SNP (p < 5 × 10−8). The best SNP in each analysis were rs7178030 (p = 9.76 × 10−5),
rs11125152 (p = 0.0001), rs33603 (p = 8.59 × 10−5) and rs6510888 (p = 1.58 × 10−5), respec-
tively.

Among the SNPs previously associated with CRC (Supplementary Table S1), 2 of
them had nominal p-value (p < 0.05), in AD vs. C, 3 in CRC vs. C, 1 in CRC vs. AD and 1
in CRC + AD vs. C. In the case of SNPs associated with CRC in Spanish cohorts, none of
them were significant.

When the association of SNPs located in genes of interest were inspected significant
results (p < 0.05) were found. In the case of genes involved in cholesterol esters metabolism
pathway, in AD vs. C 7 genes had SNPs with p < 0.05 value, 6 in CRC vs. C, 7 in CRC vs.
AD and 7 CRC + AD vs. C (Table 1). In the case of genes involved in Glycerophospholipid,

https://gwas.mrcieu.ac.uk
https://CRAN.R-project.org/package=caret
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Sphingolipid metabolism, Glycosylphosphatidylinositol(GPI)-anchor biosynthesis, in AD
vs. C 8 genes had SNPs with p < 0.05 value, 10 in CRC vs. C, 6 in CRC vs. AD and
9 CRC + AD vs. C (Table 2).

Table 1. Association study results of significant SNPs in genes of “Cholesterol esters metabolism
pathway”. AD vs. C, adenoma vs. healthy controls; CRC vs. C, colorectal cancer vs. healthy controls;
CRC vs. AD, colorectal cancer vs. adenoma; CRC + AD vs. C, adenomas and colorectal cancer vs.
controls. OR, odds-ratio; CI 95%, 95% of confidence interval of odds-ratio.

Gene Analysis SNP p OR (CI 95%)

LIPA AD vs. C rs2246833 0.019 2.9 (1.2–7.1)
LIPA CRC vs. AD rs885561 0.028 0.4 (0.2–0.9)

NCEH1 AD vs. C rs17756312 0.019 12.3 (1.5–100.7)
NCEH1 CRC vs. C rs522028 0.017 3.8 (1.3–11.2)
NCEH1 CRC vs. AD rs630736 0.049 0.3 (0.1–1.0)
NCEH1 CRC + AD vs. C rs522028 0.014 2.8 (1.2–6.2)
CES5A AD vs. C rs34266217 0.013 0.1 (0.0–0.6)
CES5A CRC vs. C rs34266217 0.016 0.2 (0.0–0.7)
CES5A CRC vs. AD rs11864688 0.003 0.1 (0.0–0.4)
CES5A CRC + AD vs. C rs34266217 0.004 0.2 (0.1–0.6)
SOAT1 CRC vs. C rs61824389 0.012 5.4 (1.5–20.2)
SOAT1 CRC vs. AD rs61824371 0.028 2.6 (1.1–6.0)
ABCA1 AD vs. C rs4149297 0.011 0.2 (0.0–0.7)
ABCA1 CRC vs. C rs2487060 0.029 9.4 (1.2–70.3)
ABCA1 CRC vs. AD rs2515617 0.007 0.3 (0.1–0.7)
ABCA1 CRC + AD vs. C rs4149297 0.011 0.3 (0.1–0.7)

SCARB1 AD vs. C rs1031605 0.012 15.8 (1.8–136.2)
SCARB1 CRC vs. C rs7485656 0.021 0.3 (0.1–0.8)
SCARB1 CRC vs. AD rs1031605 0.006 0.2 (0.0–0.6)
SCARB1 CRC + AD vs. C rs7485656 0.012 0.4 (0.2–0.8)
STARD3 CRC + AD vs. C rs11556624 0.04 0.1 (0.0–0.9)

NPC2 AD vs. C rs8008540 0.025 2.5 (1.1–5.6)
NPC2 CRC + AD vs. C rs10139122 0.026 0.4 (0.1–0.9)

OSBPL5 AD vs. C rs11025414 0.012 0.2 (0.1–0.7)
OSBPL5 CRC vs. C rs7122180 0.03 0.1 (0.0–0.8)
OSBPL5 CRC vs. AD rs11025414 0.003 5.5 (1.8–16.6)
OSBPL5 CRC + AD vs. C rs111415444 0.035 0.3 (0.1–0.9)

Table 2. Association study results of significant SNPs in genes of “Glycerophospholipid, Sphingolipid
metabolism, Glycosylphosphatidylinositol(GPI)-anchor biosynthesis pathway”. AD vs. C, adenoma
vs. healthy controls; CRC vs. C, colorectal cancer vs. healthy controls; CRC vs. AD, colorectal cancer
vs. adenoma; CRC + AD vs. C, adenomas and colorectal cancer vs. controls. OR, odds-ratio; CI 95%,
95% of confidence interval of odds-ratio.

Gene Analysis SNP p OR (CI 95%)

LPCAT1 AD vs. C rs2962043 0.022 0.3 (0.1–0.8)
LPCAT1 CRC vs. C rs13170616 0.047 0.3 (0.1–1.0)
LPCAT1 CRC vs. AD rs55707452 0.02 14.4 (1.5–136.8)
LPCAT1 CRC + AD vs. C rs2962043 0.018 0.4 (0.2–0.8)

PLA2G12B CRC vs. AD rs77284811 0.02 0.1 (0.0–0.6)
PLA2G4C AD vs. C rs1985341 0.016 3.2 (1.2–8.2)
PLA2G4C CRC vs. C rs8110925 0.006 0.0 (0.0–0.4)
PLA2G4C CRC + AD vs. C rs8110925 0.005 0.1 (0.0–0.5)

PLB1 AD vs. C rs1528178 0.009 16.6 (2.0–138.4)
PLB1 CRC vs. C rs10176136 0.006 6.7 (1.7–25.9)
PLB1 CRC vs. AD rs7607457 0.001 7.6 (2.3–25.7)
PLB1 CRC + AD vs. C rs80005535 0.014 0.1 (0.0–0.6)
PLD1 AD vs. C rs9823312 0.022 4.2 (1.2–14.2)
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Table 2. Cont.

Gene Analysis SNP p OR (CI 95%)

PLD1 CRC vs. C rs416158 0.007 0.2 (0.1–0.6)
PLD1 CRC vs. AD rs41273601 0.008 4.1 (1.4–11.4)
PLD1 CRC + AD vs. C rs416158 0.005 0.3 (0.1–0.7)

PNPLA7 CRC vs. C rs12685481 0.033 0.2 (0.0–0.9)
PNPLA7 CRC + AD vs. C rs2488592 0.04 0.4 (0.2–1.0)
PLPP1 CRC vs. C rs111922583 0.019 13.9 (1.6–125.3)
PLPP1 CRC + AD vs. C rs4865950 0.026 0.0 (0.0–0.7)
PLPP3 CRC vs. C rs149181632 0.03 0.1 (0.0–0.8)
PLPP3 CRC vs. AD rs17429642 0.029 0.2 (0.0–0.8)
CERS4 AD vs. C rs7250035 0.017 4.2 (1.3–13.4)
CERS4 CRC vs. C rs11666971 0.01 4.5 (1.4–14.1)
CERS4 CRC + AD vs. C rs7250035 0.022 3.5 (1.2–10.1)
PIGK AD vs. C rs72683932 0.024 6.4 (1.3–31.7)
PIGK CRC vs. C rs12562725 0.014 0.2 (0.1–0.7)
PIGK CRC + AD vs. C rs72683932 0.008 6.5 (1.6–26.5)
PIGZ AD vs. C rs746037 0.006 3.5 (1.4–8.6)
PIGZ CRC vs. C rs76347663 0.032 7.9 (1.2–52.3)
PIGZ CRC + AD vs. C rs746037 0.008 2.7 (1.3–5.8)

SMPD3 AD vs. C rs9940621 0.048 0.3 (0.1–1.0)
SMPD3 CRC vs. AD rs7200932 0.006 0.3 (0.1–0.7)

Moreover, epistatic interactions between the genes of those pathways were analyzed
(Figure 1). The landscape of the interaction between genes was slightly different in each
analysis, for example, the connections between SOAT1 and SCARB1 was different in
CRC vs. C and in CRC vs. AD. On the whole, the number of interactions was higher in
AD + CRC vs. C than in the rest of comparisons and all genes carried SNPs that interact
with SNPs of other genes, with the exception of CEL and LIPE genes in cholesterol esters
metabolism pathway; and SMPD1 gene in Glycerophospholipid, Sphingolipid metabolism,
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis, as well as PLA2G3 and PLA2G12B
genes but only in CRC vs. C (Figure 1).
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Figure 1. Epistatic interaction between SNPs of genes of cholesterol esters metabolism and Glycerophospholipid, Sphin-
golipid metabolism, Glycosylphosphatidylinositol(GPI)-anchor biosynthesis pathways.
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3.2. Genetic Associations of Selected Microbiome and Metabolome Traits

Among the 34 suggestive signals found in the 4 traits related to the microbiome
(abundance of Bacteroidetes 9 suggestive loci, abundance of Firmicutes 8, and values of
Shannon index 17; while there was not any suggestive signal in the presence of Fusobacteria)
there were six signals that showed nominal significance in adenoma or CRC (Table 3):
rs2470641, which decreases the abundance of Bacteroidetes, decreases the risk of CRC
(p = 0.049, OR = 0.3); four SNPs which were involved in the abundance of Firmicutes, were
associated with higher AD risk (rs9538330 and rs7166734), or they had different frequencies
in CRC and AD (rs2662642 and rs13280938); and rs73523611, which increases the Shannon
diversity index, was significant in AD vs. C (p = 0.044, OR = 3.5).

Table 3. Suggestive SNPs associated to microbiome and metabolome traits, which are significant (p < 0.05) in adenoma or
colorectal cancer. AD vs. C, adenoma vs. healthy controls; CRC vs. C, colorectal cancer vs. healthy controls; CRC vs. AD,
colorectal cancer vs. adenoma; CRC + AD vs. C, adenomas and colorectal cancer vs. controls. OR, odds-ratio; CI 95%, 95%
of confidence interval of effect or odds-ratio.

Association with Trait
Traits SNP Gene p Effect (CI 95%) Analysis p OR (CI 95%)

Bacteroidetes rs2470641 LOC105376940 1.7 × 10−6 −0.086
(−0.119–0.053) CRC vs. C 0.049 0.3 (0.1–0.9)

Firmicutes rs2662642 SPAG16 1.1 × 10−7 0.072 (0.048–0.097) CRC vs. AD 0.034 2.2 (1.1–4.5)
Firmicutes rs13280938 LINC01605 1.6 × 10−6 0.14 (0.087–0.194) CRC vs. AD 0.034 6.8 (1.2–39.8)

Firmicutes rs9538330 - 4.6 × 10−6 −0.073
(−0.103–0.044) AD vs. C 0.025 3.5 (1.2–10.6)

Firmicutes rs7166734 LOC107983974 2.5 × 10−6 −0.077
(−0.107–0.047) AD vs. C 0.0389 2.7 (1.1–6.9)

Shannon rs73523611 CRAT37 7.66 × 10−7 0.42 (0.26–0.57) AD vs. C 0.044 3.5 (1.0–11.9)

ChoE(18:1) rs142370545 - 1.97 × 10−6 −3.1 (−4.4–1.9) CRC + AD vs. C 0.049 0.1 (0.01–0.9)
ChoE(18:1) rs691563 SLC39A12 1.14 × 10−6 1.0 (0.6–1.3) CRC vs. C 0.010 5.5 (1.5–20.4)
ChoE(18:1) rs691563 SLC39A12 1.14 × 10−6 1.0 (0.6–1.3) CRC + AD vs. C 0.022 3.4 (1.2–10.2)
ChoE(18:1) rs6085078 PROKR2 1.73 × 10−6 0.69 (0.42–0.96) CRC vs. C 0.021 2.9 (1.2–7.2)
ChoE(18:1) rs6085078 PROKR2 1.73 × 10−6 0.69 (0.42–0.96) CRC + AD vs. C 0.037 2.0 (1.0–3.8)
ChoE(18:2) rs62249239 LOC100130207 1.17 × 10−6 1.7 (1.0–2.3) CRC vs. AD 0.036 9.8 (1.1–83.6)
ChoE(20:4) rs2146594 LOC102724520 4.36 × 10−6 −1.1 (−1.6–0.8) CRC vs. C 0.007 0.2 (0.1–0.7)
ChoE(20:4) rs56191847 PCDH15 3.24 × 10−6 −1.4 (−2.0–0.9) CRC vs. C 0.020 0.3 (0.1–0.8)
ChoE(20:4) rs56191847 PCDH15 3.24 × 10−6 −1.4 (−2.0–0.9) CRC + AD vs. C 0.032 0.4 (0.2–0.9)

PE(16:0/18:1) rs145994977 - 6.89 × 10−7 −3.5 (−4.8–2.2) CRC + AD vs. C 0.035 0.1 (0.005–0.8)
PE(16:0/18:1) rs17450393 SNX2 1.33 × 10−6 −3.1 (−4.3–1.9) CRC + AD vs. C 0.036 0.1 (0.01–0.8)
PE(16:0/18:1) rs2048236 EPM2A 3.21 × 10−6 −1.7 (−2.4–1.1) AD vs. C 0.027 0.09 (0.01–0.8)
PE(16:0/18:1) rs2048236 EPM2A 3.21 × 10−6 −1.7 (−2.4–1.1) CRC vs. C 0.030 0.1 (0.004–0.8)
PE(16:0/18:1) rs2048236 EPM2A 3.21 × 10−6 −1.7 (−2.4–1.1) CRC + AD vs. C 0.005 0.1 (0.01–0.4)
PE(16:0/18:1) rs73153821 CREB3L2 3.31 × 10−6 −2.4 (−3.4–1.5) CRC + AD vs. C 0.022 0.1 (0.01–0.7)

SM(42:3) rs17018424 CCSER1 2.28 × 10−6 −1.7 (−2.4–1.1) CRC vs. AD 0.012 0.3 (0.1–0.8)
SM(42:3) rs186239 - 1.13 × 10−6 1.7 (1.1–2.4) CRC vs. C 0.028 5.1 (1.2–21.6)
SM(42:3) rs186239 - 1.13 × 10−6 1.7 (1.1–2.4) CRC vs. AD 0.041 2.7 (1.0–7.2)
SM(42:3) rs4745374 CARNMT1 2.77 × 10−6 1.5 (0.9–2.2) CRC vs. C 0.014 3.4 (1.3–9.3)
SM(42:3) rs4745374 CARNMT1 2.77 × 10−6 1.5 (0.9–2.2) CRC vs. AD 0.015 3.1 (1.2–7.6)
SM(42:3) rs11058736 - 1.53 × 10−6 2.4 (1.4–3.3) CRC vs. C 0.030 5.1 (1.2–21.9)
SM(42:3) rs11058736 - 1.53 × 10−6 2.4 (1.4–3.3) CRC vs. AD 0.014 7 (1.5–33.1)
SM(42:3) rs6085078 PROKR2 2.32 × 10−6 1.3 (0.8–1.7) CRC vs. C 0.021 2.9 (1.2–7.2)
SM(42:3) rs6085078 PROKR2 2.32 × 10−6 1.3 (0.8–1.7) CRC + AD vs. C 0.037 2.0 (1.0–3.8)
SM(42:3) rs118183318 - 1.75 × 10−6 −2.5 (−3.5–1.5) CRC vs. C 0.012 0.03 (0.002–0.5)
SM(42:3) rs118183318 - 1.75 × 10−6 −2.5 (−3.5–1.5) CRC vs. AD 0.027 0.1 (0.01–0.7)
SM(42:3) rs118183318 - 1.75 × 10−6 −2.5 (−3.5–1.5) CRC + AD vs. C 0.032 0.3 (0.1–0.9)
TG(54:1) rs117956865 EPS15L1 2.73 × 10−8 −3.1 (−4.1–2.1) CRC vs. AD 0.039 12.1 (1.1–127.7)

In the case of the metabolites analyzed, among the 168 suggestive signals (25 loci in
ChoE(18:1), 3 in ChoE(18:2), 12 in ChoE(20:4), 41 in PE(16:0/18:1), 12 in SM(42:3), 58 in
TG(54:1)), 17 signals showed an association with adenoma or CRC (Table 3). Three SNPs
involved in the levels of ChoE(18:1) had p < 0.05 in CRC vs. C or CRC + AD vs. C analyses.
In the case of ChoE(18:2) rs62249239 had p < 0.05 in CRC vs. AD (p = 0.036; OR = 9.8). Four
SNPs that affect PE(16:0/18:1) levels had p < 0.05 in AD vs. C, CRC vs. C or CRC + AD vs.
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C analyses. Six SNPs that affect SM(42:3) levels had p < 0.05 in CRC vs. C, CRC vs. AD
or CRC + AD vs. C analyses. In the case of TG(54:1), rs117956865 had an association in
CRC vs. AD (p = 0.039, OR = 12.1). Among those SNPs, rs6085078 was associated with the
increase of ChoE(18:1) and SM(42:3) levels and it was associated in CRC vs. C analysis
(p = 0.021, OR = 2.9) and CRC + AD vs. C (p = 0.037, OR = 2.0).

3.3. Mendelian Randomization

Traits that have been previously described to affect CRC were used in a Mendelian
randomization analysis to measure their effect in the adenoma and CRC traits of our
cohort (Figure 2). In the case of AD vs. C, BMI (P = 0.0197) and body fat percentage
(p = 0.0228) affected negatively, while HDL cholesterol affected positively (p = 0.0448); in
CRC vs. C HDL cholesterol affected positively (p = 0.0148); in CRC vs. AD standing height
affected negatively (p = 0.0387); and in CRC + AD vs. C HDL cholesterol affected positively
(p = 0.0238).
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Figure 2. Mendelian Randomization analyses in adenoma and colorectal cancer. AD vs. C, adenoma vs. healthy controls;
CRC vs. C, colorectal cancer vs. healthy controls; CRC vs. AD, colorectal cancer vs. adenoma; CRC + AD vs. C, adenomas
and colorectal cancer vs. controls. Between parenthesis, the source of the SNPs used as exposure in the analysis.

3.4. Multiomic Integration

The integration of the data from the three omic layers analyzed in this work showed
that microbiome, represented by microbial genera, was the layer which more variance
explained (Figure 3). In addition, the metabolome explained part of the variation, especially
in Factors 1 and 2, while the host genome did not explain the variation. Except for Factor 1
and 2 for metabolome and microbiome, there was not any shared covariance among the
different omic layers.

The distribution of the factors in the samples showed that some samples had extreme
values, while most of the samples had a similar distribution of the factors regardless their
status. Although some clustering can be identified (some AD samples had higher values
of Factor 3 and CRC samples in Factor 6), there was not any clear difference between the
different status (Figure 3).

In all the Factors the variable with most weight come from the microbiome layer
(Figure 3): Bacteroides for Factor 1 and Faecalibacterium for Factor 2 were the factors with
highest weight.
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Figure 3. Factors derived from the integration of genome, metabolome and microbiome data. (A) The variance explained
by each omic layer in each Factor. (B) the distribution of the values of the factors in each sample. CRC, colorectal cancer;
C, healthy controls; AD, adenoma. (C) The variable with the most weight in the Factor. “Unc genus”, genus that was not
classified, the identified lowest level is showed.

3.5. Polygenic Risk Scores and Predictive Model

Polygenic risk scores were computed using the information of SNPs previously associ-
ated to CRC and optimized for each analysis: in AD vs. CRC 147 SNPs were used, in CRC
vs. C 191 SNPs, in CRC vs. AD 69 SNPs, and in CRC + AD vs. C 147 SNPs. Based on those
SNPs the PRS for each individual and analysis was calculated.

Those PRS scores, as well as the genetic distance of the individuals (reflected in the first
4 PC components), were applied to build a predictive model. Compared with the previous
model built by our group using metabolome and microbiome data, the performance of the
use of genetic information was not better in any of the four comparisons (Table 4). The
inclusion of fecal hemoglobin (f-Hb) test as predictive value improved the performance of
genetic analyses, and the combination of genetics and f-Hb improved the combination of
microbiome and metabolome in CRC + AD vs. control (Table 4). Finally, the combination
of metabolome, microbiome and genetic data improved the predictive model in the four
comparisons (Table 4).

Table 4. Results of the area under curve (AUC) of the receiver operating characteristic (ROC) curve in the different models
tested. AD vs. C, adenoma vs. healthy controls; CRC vs. C, colorectal cancer vs. healthy controls; CRC vs. AD, colorectal
cancer vs. adenoma; CRC + AD vs. C, adenomas and colorectal cancer vs. controls. Model 1, sex, age, metabolome and
microbiome data as predictive values; Model 2, sex, age and genetic data (polygenic score and PC1–PC4 components) as
predictive values; f-Hb, fecal hemoglobin test as predictive value.

Model Measurement AD vs. C CRC vs. C AD vs. CRC CRC + AD vs. C

Model 1
AUC 0.91 (0.84–0.94) 0.87 (0.79–0.91) 0.76 (0.66–0.81) 0.91 (0.86–0.94)

Specificity 0.81 (0.67–1) 0.92 (0.81–1) 0.8 (0.66–0.91) 0.94 (0.69–1)
Sensitivity 0.94 (0.64–1) 0.83 (0.69–0.94) 0.72 (0.58–0.86) 0.79 (0.65–0.97)

Model 1 + f-Hb
AUC 1 1 0.77 (0.67–0.82) 0.81 (0.73–0.85)

Specificity 1 1 0.66 (0.49–0.8) 0.72 (0.58–0.86)
Sensitivity 1 1 0.89 (0.78–0.97) 0.9 (0.83–0.97)
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Table 4. Cont.

Model Measurement AD vs. C CRC vs. C AD vs. CRC CRC + AD vs. C

Model 2
AUC 0.85 (0.76–0.89) 0.85 (0.76–0.89) 0.67 (0.55–0.73) 0.84 (0.76–0.88)

Specificity 0.82 (0.61–0.92) 0.82 (0.61–0.97) 0.7 (0.32–0.92) 0.79 (0.61–0.95)
Sensitivity 0.86 (0.7–0.97) 0.82 (0.6–0.98) 0.7 (0.35–0.97) 0.84 (0.65–0.96)

Model 2 + f-Hb
AUC 0.92 (0.86–0.95) 0.95 (0.9–0.98) 0.75 (0.64–0.81) 0.94 (0.89–0.96)

Specificity 0.82 (0.68–0.92) 0.95 (0.82–1) 0.8 (0.65–0.98) 0.84 (0.68–1)
Sensitivity 0.97 (0.89–1) 0.9 (0.78–1) 0.7 (0.43–0.86) 0.94 (0.7–1)

Model 1 + Model 2
AUC 0.97 (0.94–0.99) 1 1 0.96 (0.93–0.98)

Specificity 0.97 (0.83–1) 1 1 1 (0.89–1)
Sensitivity 0.89 (0.78–1) 1 1 0.86 (0.77–0.97)

Model 1 + Model 2
+ f-Hb

AUC 1 1 1 0.93 (0.87–0.96)
Specificity 1 1 1 0.89 (0.78–0.97)
Sensitivity 1 1 1 0.97 (0.93–1)

4. Discussion

In the present study we have taken advantage of adding host genetic information to the
omic layers that we studied previously, namely, the metabolome [16] and microbiome [17].
As far as we know, the interplay between those layers in CRC have been analyzed in
animal models [22], but not in humans. On that study two mice strains were compared,
since they showed differences in the number of intestinal adenomas, although one strain
was the founder of the other; and the two strains have gut microbiota from two different
sources [22]. The number of adenomas was influenced by the genetic variation and
microbiome, and the metabolome was useful to identify the relevant biological functions
affected by genetic variation [22]. In our case, it was expected that the heterogeneity
of genome and microbiome would be higher and, therefore, the results could not be
completely comparable. However, in both works the multi-omic approach has been useful
to find biological functions relevant for the development of adenoma or colorectal cancer.

Due to our sample size the statistical power of our analyses was limited. As a conse-
quence, we were not able to find new significant genetic variants associated to adenoma or
CRC, or to find significant results for genetic variants previously associated to CRC [7–9],
but we were able to find connections with other layers, to measure the effect of modifiable
risk factors, and to predict the risk of CRC. In addition, we could not include histopatho-
logical characteristics to our analyses due to the lack of information in some samples, and
we only compare the three categories (controls, adenoma and CRC). Although some biases
could be present in the statistical analyses due to the sample size, the most relevant findings
were consistent with previous works.

Among the SNPs that were associated to microbiome or metabolome traits and had
nominal association with adenoma or CRC, we found genetic variants in genes associated
with CRC: rs13280938 is located in the long non-coding RNA LINC01605, which has been
described as important regulator in CRC [32]; rs6085078 of PROKR2 gene, a receptor which
is associated with colorectal progression [33]; and rs17018424 of CCSER1 gene, a gene
involved in cell division defect [34], and the overexpression of a deletion in this gene
results in overexpression of adenocarcinoma associated genes [35]. Thus, our approach
allowed to propose biological mechanisms that could link components of different layers.
Those biological mechanisms could explain the detection of the risk of developing adenoma
and colorectal cancer by different omic layers and, therefore, their utility as risk biomarkers.
The present results could be a basis to suggest follow-up analyses and analyses in cell- and
animal-models to understand such mechanisms and the implications for adenoma and
CRC risk.

In the case of modifiable risk factors, we were able to detect the effect of the levels
of HDL cholesterol, body fat percentage and BMI in adenoma and CRC, results that are
consistent with previous studies [11–13]. Thus, host genome and metabolome indicated
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the importance of the role of cholesterol in adenoma and CRC risk, since some relevant
metabolites from the metabolome analysis were cholesterol products [16]. When we
scrutinized the SNPs of genes of pathways related to cholesterol metabolism, there were
some significant (p < 0.05) SNPs, but more interestingly, the epistatic interactions between
SNPs of those genes were significant. Thus, the results observed in the metabolome layer
could be an effect of interaction between genes, rather than the effect of individual genetic
variants; and that cholesterol levels are a risk factor also in adenoma.

When genetic information was used to build the predictive model of risk, the genetic
markers used were not as good as the model built using metabolome and microbiome [17]
information. However, when the information of the three layers was combined, the
performance was higher than when they were separated. That could suggest that the
risk factors captured by each omic layer is slightly different and complementary. This
complementarity of the omic layers is consistent with the lack of covariance we observed
in the integration of the three layers.

5. Conclusions

In conclusion, using the information of three omic layers, we were able to detect
some interactions between them to propose biological mechanisms implicated in the
development of adenoma and CRC which could be interesting to analyze in follow-up
studies and to build an informative model for predicting the risk to adenoma and CRC.
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