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Abstract
Gridded population projections constitute an essential input for climate change impacts,
adaptation, and vulnerability (IAV) assessments as they allow for exploring how future changes in
the spatial distribution of population drive climate change impacts. We develop such spatial
population projections, using a gravity-based modeling approach that accounts for rural-urban
and inland-coastal migration as well as for spatial development patterns (i.e. urban sprawl). We
calibrate the model (called CONCLUDE) to the socioeconomically diverse Mediterranean region,
additionally considering differences in socioeconomic development in two geographical regions:
the northern Mediterranean and the southern and eastern Mediterranean. We produce
high-resolution population projections (approximately 1 km) for 2020–2100 that are consistent
with the Shared Socioeconomic Pathways (SSPs), both in terms of qualitative narrative
assumptions as well as national-level projections. We find that future spatial population patterns
differ considerably under all SSPs, with four to eight times higher urban population densities and
three to 16 times higher coastal populations in southern and eastern Mediterranean countries
compared to northern Mediterranean countries in 2100. In the South and East, the highest urban
density (8000 people km−2) and coastal population (107 million) are projected under SSP3, while
in the North, the highest urban density (1500 people km−2) is projected under SSP1 and the
highest coastal population (15.2 million) under SSP5. As these projections account for internal
migration processes and spatial development patterns, they can provide new insights in a wide
range of IAV assessments. Furthermore, CONCLUDE can be extended to other continental or
global scales due to its modest data requirements based on freely available global datasets.

1. Introduction

The future impacts of climate change will be driven
by physical changes in climatic conditions as well
as by changes in socioeconomic development (Field
et al 2014). Recent studies found that socioeconomic
development can be the dominant factor in driving
impacts, in particular in the first half of the 21st
century when climatic changes still take place at a

slower pace (Marsha et al 2018, Rohat et al 2019c)
and in regions with rapid population growth (Brown
et al 2018, Jones et al 2018, Monaghan et al 2018,
Rohat et al 2019a). To assess future impacts in a
comprehensive manner, it is therefore important to
explore the range of uncertainty regarding changes
in socioeconomic conditions in locations that are
exposed to climate hazards (Moss et al 2010, Ebi et al
2014).
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The current state-of-the-art socioeconomic scen-
arios in climate change research, the Shared Socioeco-
nomic Pathways (SSPs), provide a suitable basis for
exploring this uncertainty (O’Neill et al 2014, 2020).
Five global-scale SSPs describe plausible alternative
trends in socioeconomic development in the course
of the 21st century based on societal challenges to cli-
mate changemitigation and adaptation. Each SSP has
an underlying narrative that describes the socioeco-
nomic developments of the SSP in qualitative terms
(O’Neill et al 2017; SM1); furthermore, the narratives
have been quantified to produce national-level pro-
jections of key variables in impacts, adaptation, and
vulnerability (IAV) research (Van Ruijven et al 2014)
such as population (Kc and Lutz 2017), urbanization
(Jiang and O’Neill 2017), and gross domestic product
(Crespo Cuaresma 2017, Dellink et al 2017, Leimbach
et al 2017).

However, national-level projections can be
applied in IAV research to a limited degree as these
assessments require spatially downscaled projections
of key variables (Van Vuuren et al 2010, Van Ruijven
et al 2014), with population being one of the most-
used indicators for characterizing future impacts, for
instance with regard to heat stress (Jones et al 2015,
Rohat et al 2019a), water scarcity (Hanasaki et al 2013,
Veldkamp et al 2016, Chen et al 2018), river flood-
ing (Jongman et al 2015, Winsemius et al 2016), and
coastal flooding (Hinkel et al 2014, Neumann et al
2015, Tiggeloven et al 2020). A number of previous
studies have spatially downscaled population projec-
tions to the grid cell level, using the national-level SSP
projections as boundary conditions, for example at
global scale (Jones and O’Neill 2016, Murakami and
Yamagata 2019), with a focus on coastal population
growth (Merkens et al 2016); at continental scale, for
Africa (Boke-Olén et al 2017), Europe (Lückenkötter
et al 2017, based on Batista E Silva et al 2016), and
the Mediterranean region (Reimann et al 2018); and
at national scale, for the US (Zoraghein and O’Neill
2020a, 2020b) and China (Chen et al 2020).

Besides their different regional contexts, these
gridded population projections differ in terms of spa-
tial resolution, input data, and modeling approaches
used. The spatial resolution of the projections ranges
from 100 m (Chen et al 2020) to 0.5◦ (Murakami
and Yamagata 2019), depending on the complex-
ity of the modeling approach, the intended applica-
tion of the projections, and the regional focus of the
study. Modeling approaches range from simple res-
caling techniques (Lückenkötter et al 2017) to more
data-intensive approaches using distance measures
from existing settlements, roads, and other infra-
structure as modeling variables (Boke-Olén et al
2017, Murakami and Yamagata 2019, Chen et al
2020). The approach of Merkens et al (2016) (also
used in Reimann et al 2018) employs a rescaling tech-
nique that differentiates population development in
coastal versus inland locations. However, it does not

include spatial changes in settlement patterns (i.e.
urban sprawl), which are accounted for in the gravity-
based approach used by Jones and O’Neill (2016)
(also used in Zoraghein and O’Neill 2020a, 2020b).
The approaches of Merkens et al (2016) and Jones
and O’Neill (2016) have modest data requirements,
primarily relying on spatial population distributions
of two time steps as model input; therefore both
approaches are suitable for applications at continental
to global scales where consistent input data are often
lacking (Vafeidis et al 2008, Leyk et al 2019).

None of the above-mentioned approaches
account for both urban development patterns and
inland-coastal migration, although these two pro-
cesses are considered key drivers of future climate
change impacts, in particular in coastal locations
(Seto et al 2011, Neumann et al 2015, Merkens et al
2018). Historically, coastal locations have experi-
enced high population growth, resulting in higher
population densities and urbanization levels com-
pared to inland locations (McGranahan et al 2007,
Kummu et al 2016). Accordingly, the majority of
megacities (>8 million inhabitants) are located in
low-lying coastal areas (Brown et al 2013). With urb-
anization projected to increase in the course of the
21st century under all SSPs (Jiang and O’Neill 2017),
these settlement patterns are expected to continue in
the future (Nicholls et al 2008, Merkens et al 2016).

We address this gap by extending the gravity-
based approach of Jones and O’Neill (2016) to
account for distinct changes in settlement patterns
(i.e. urban sprawl) in coastal versus inland loca-
tions; we name the extended version of the model
CONCLUDE4. For capturing inland-coastal as well as
rural-urban migration processes, we refine the spa-
tial resolution from a resolution of 7.5 arc minutes
(approximately 15 km at the equator) to 30 arc
seconds (approximately 1 km). We use freely avail-
able global-scale input data to calibrate the model
to observed changes in spatial population patterns in
coastal and inland locations, using theMediterranean
region, a socioeconomically diverse region charac-
terized by a densely populated and highly urbanized
coastal zone (European Environment Agency 2014,
Lange et al 2020), as a case study.

This regional focus allows us to calibrate
the model to two geographical regions based on
the largest current differences in socioeconomic
development across the region, the northern5 and

4 The model of Jones and O’Neill (2016) has recently been referred
to as INCLUDE (Jones 2020). To reflect that our model extension
accounts for inland-coastal migration, we name our extended ver-
sion of the model CONCLUDE (i.e. COastal iNCLUDE).
5 Northern Mediterranean countries include Andorra, Croatia,
Cyprus, France, Greece, Italy, Malta, Monaco, San Marino,
Slovenia, Spain, The Vatican, and the British overseas territory
Gibraltar.
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the southern and eastern6 Mediterranean (Reimann
et al 2018). Based on the calibratedmodel parameters
for the two geographical regions and coastal versus
inland locations, we produce gridded population pro-
jections in ten-year time steps from 2020 to 2100
for each SSP that reflect the development patterns
described in the SSP narratives. These projections
explore the uncertainty space regarding plausible
future population patterns, and can be used in a wide
range of IAV assessments.

In the methods section, we describe the model-
ing approach inmore detail, includingmodel calibra-
tion, validation, and modifications made to produce
the population projections. In the results section, we
present the spatial population patterns by SSP and
geographical region, focusing particularly on devel-
opments in urban population density and in coastal
population across the SSPs and the 21st century.
We then critically evaluate the model for producing
meaningful spatial population projections in the con-
text of IAV research by comparing our results to pre-
vious work and by reflecting upon the model limita-
tions. Last, we conclude with ideas of how to further
refine the model in future work.

2. Methods

The following sections provide an overview of the
extensions implemented in the gravity-based model
CONCLUDE to be able to produce spatial population
projections that account for spatial development pat-
terns (i.e. urban sprawl) as well as for rural-urban and
inland-coastal migration. Please consult supplement-
ary materials 2–7 available online at stacks.iop.org/
ERL/16/074025/mmedia for further methodological
detail (as referenced in the text).

2.1. Modeling approach
We used and extended the gravity-based popula-
tion model INCLUDE described in Jones and O’Neill
(2013), Jones and O’Neill (2016) and Rigaud et al
(2018). Demographic gravity models are based on
Newton’s law of gravity and gravitational potential,
assuming that densely populated locations are more
attractive for human settlement than less densely
populated locations (so-called ‘population potential’
(Grübler et al 2007)), and that relative attractive-
ness decreases with increasing distance between loca-
tions (Anderson 2011). The basic notion underlying
this assumption is that factors such as transport costs
and travel times determine the spatial interaction of
two places, which decreases with increasing distance
(Rich 1980). This effect is called ‘distance-decay’ and
is often represented with a negative exponential func-
tion (Skov-Petersen 2001, Iacono et al 2008).

6 Southern and eastern Mediterranean countries include Algeria,
Albania, Bosnia and Herzegovina, Egypt, Israel, Lebanon, Libya,
Montenegro, Morocco, Palestine, Syria, Tunisia, and Turkey.

In addition to the distance-decay effect, we
accounted for the contribution of local characterist-
ics to the attractiveness of a location. Accordingly, we
calculated a population potential v for each grid cell
i and time step t that represents the attractiveness of
any given location:

vi (t) = li

∑
j∈Ni

Pj (t)e
−βdij +AiPi (t)

 (1)

where li is the proportion of cell i available for human
settlement7, P is the population of cell j or i at time t,β
is a parameter reflecting the strength of the distance-
decay effect, dij is the distance between cells i and j,
and Ai is a factor reflecting the local attractiveness of
cell i. The number of neighboring cell indices Ni is
determined by the gravity window within which the
distance-decay effect applies.

We calculated vi (t) separately for urban and rural
populations, based onunique urban and ruralβ para-
meters for coastal and inland locations8, and distinct
gravity windows for the two geographical regions (see
next section for further detail). We then spatially dis-
tributed the national-level population of t+1 to each
grid cell proportional to vi (t).

2.2. Calibration
The model was calibrated to historical changes in
population patterns; therefore, spatial population
data for at least two time steps were required. We
used the global human settlement layer (Florczyk et al
2019) population data (GHS-POP) of the years 1990,
2000, and 2015, available at a spatial resolution of
30 arc seconds (WGS84 coordinates) (Schiavina et al
2019). GHS-POP was developed by spatially distrib-
uting the population of the Gridded Population of the
World (GPW) (Center for International Earth Science
Information Network—CIESIN—Columbia Univer-
sity 2017) based on built-up area identified with the
help of satellite imagery for each time step (Freire
et al 2016). As we calibrated the model to two ten-
year time steps (i.e. 1990–2000; 2000–2010), we estab-
lished the population distribution of 2010 by linearly
interpolating the GHS-POP data of the years 2000
and 2015.

Following Jones and O’Neill (2016), we calibrated
the model separately to urban versus rural changes in
population patterns. Therefore, we defined the urban
population per grid cell using the GHS-based set-
tlement model (GHS-SMOD) (Florczyk et al 2019,
Pesaresi et al 2019). To harmonize the total urban
population per country based on GHS-SMOD with
the UN World Urbanization Prospects’ (WUP) urb-
anization level for each country (United Nations,

7 Please see SM2 for a description of how the spatial mask (li) was
produced.
8 Please see SM3 for a description of the coastal zone definition
used in this study.
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Department of Economic and Social Affairs, Popu-
lation Division 2019), we added (deducted) popula-
tion from densely populated neighboring grid cells to
(from) the urban population in a series of three steps
until the urban population numbers matched those
of the WUP (SM4).

We established the distance parameterβ for urban
and rural locations by minimizing the sum of the
squared errors produced by the model at the grid
cell level for each ten-year calibration period, follow-
ing Jones and O’Neill (2016). As not all countries
were equally suitable for this procedure due to differ-
ences in the currency and spatial detail of the census
and administrative unit data underlying GHS-POP
(Center for International Earth Science Information
Network—CIESIN—Columbia University 2017), we
selected one country per geographical region (i.e.
Spain, Tunisia) as representative of themigration pro-
cesses in the region. We tested different gravity win-
dows for each region, assuming that (a) daily trip
distances in the Mediterranean are shorter than the
100 km window used by Jones and O’Neill9, and
(b) daily trip distances are shorter in the southern
and eastern Mediterranean compared to the north-
ernMediterranean, using the lowermotorization rate
as a proxy for trip distances (Eurostat 2019) due to a
lack of consistent region-wide data. We found a grav-
ity window of 20 km for the northern and 10 km for
the southern and eastern parts of the region to best
reflect the distance-decay effect. Finally, we averaged
the established urban and rural β parameters across
the two calibration periods and modified them to be
able to account for differences in population devel-
opment patterns in coastal versus inland locations
(SM5).

In a next step, we calculated the local attract-
iveness factor Ai in urban and rural locations for
each country and grid cell by eliminating the grid-cell
error εi produced when accounting for the distance-
decay effect only. Therefore, we ran equation (1)
for the calibration period, applying the established
coastal rural (CR), inland rural (IR), coastal urban
(CU), and inland urban (IU) β parameters in the
respective settlement type (i.e. CR, IR, CU, IU). As Ai

attained extremely high (low) values in some cells, we
applied a two-step post-processing approach. First, to
remove outliers, we used the middle 50% (so-called
interquartile range) of the Ai distribution per coun-
try. Second, we scaledAi to values ranging from−100
to 100, while retaining the original distribution of Ai

per country. Using this approach, we avoided overfit-
ting themodel to the historical changes in population
patterns observed during the calibration period.

9 Jones and O’Neill (2013) established the gravity window size
based on daily trip distances in the US (see their supplementary
data).

2.3. Validation
We validated the model by projecting the 2010 pop-
ulation based on the calibration period 1990–2000.
Figure 1 presents scatter plots of the modeled versus
the observed population for the total population, for
urban populations, and for rural populations (see
SM6 for corresponding Q-Q plots). The plots illus-
trate better model performance for urban popula-
tions compared to rural populations, with the best
performance achieved when combining urban and
rural populations (panel a), as reflected in R2 and
the root mean squared error. These findings agree
with the findings of Jones and O’Neill (2013). A
map presenting the error per grid cell relative to the
observed population per cell (=relative absolute error
(RAE)) for the entire Mediterranean region can be
found in SM6.

We calculated further error metrics for the region
to evaluate model performance in rural (CR, IR)
and urban (CU, IU) locations as well as the entire
Mediterranean region (supplementary table 3). In the
entire Mediterranean region, the model produced a
mean absolute error of 6.6, and a weighted mean
absolute percentage error (WMAPE) (weighted by
the population) of 14.7%, which compared well with
the original version of the model that produced a
WMAPE of 11.6% at the US level (Jones and O’Neill
2013). These error metrics also illustrated better
model performance in urban versus rural locations
(WMAPE of 18.3% versus 34.4%) as well as in coastal
versus inland locations (WMAPE of 30.9% in CR
versus 35.7% in IR; 18% in CU versus 18.5% in IU).

2.4. Population projections
To produce downscaled population projections with
CONCLUDE that are consistent with the SSPs, we
used the national-level population (Kc and Lutz
2017) and urbanization (Jiang and O’Neill 2017)
projections provided in the SSP database (Interna-
tional Institute for Applied Systems Analysis 2018)
as boundary conditions. These projections differen-
tiate developments in high-fertility, rich OECD low-
fertility, and other low-fertility countries, and include
assumptions on fertility, mortality, education levels,
and international migration (Kc and Lutz 2017). To
reflect the future spatial development patterns per
SSP, we modified the calibrated β parameters for
each SSP by interpreting the qualitative assumptions
described in the global SSP narratives (Jiang and
O’Neill 2017, O’Neill et al 2017) and the Mediter-
ranean coastal SSP narratives (Reimann et al 2018),
and by conducting a sensitivity analysis (SM7). Addi-
tionally, we applied SSP-specific population density
thresholds per grid cell based on the observed max-
imum population density of 2015, and accounted
for future changes in habitability under the SSPs by
adjusting the spatial mask li. Finally, we produced
population projections in ten-year time steps from
2020 to 2100 and for each SSP bymodeling urban and
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Figure 1. Scatter plots of the total population, urban populations, and rural populations, along with R2 and the root mean
squared error (RMSE). Blue line represents the perfect fit.

rural populations separately based on the respective
coastal and inlandβ parameters.We further redefined
some rural and urban population cells after each time
step based on population density and contiguity (fol-
lowing Jones and O’Neill 2016) before combining
them to obtain the total population.

3. Results

The spatial population projection datasets produced
for each SSP and ten year time step are publicly avail-
able at Reimann et al 2021 The following sections first
describe the spatial population patterns per SSP and
then provide amore detailed description of the urban
as well as coastal population patterns in the two geo-
graphical regions.

3.1. Spatial population patterns
Figure 2 presents a selected set of the population pro-
jections, including the baseline distribution (2010)
along with each SSP in 2100. These spatial popula-
tion patterns reflect the national-level population (Kc
and Lutz 2017) and urbanization projections (Jiang
and O’Neill 2017) (SM8) as well as the qualitative
assumptions regarding spatial development patterns
described in each SSP (O’Neill et al 2017). In SSP1,
countries experience rapid urbanization, with urban-
ization levels of around 95% (2100) across the entire
region. Effective management combined with popu-
lation decline in the second half of the century res-
ults in high-density, compact urban settlements. In
SSP2, urbanization is less rapid, with higher urb-
anization levels in the northern parts of the region
(ca. 93%) compared to the South and East (roughly
85%). Population growth is mixed across countries
and spatial development is slightly more concen-
trated than observed in historical patterns, leading
to urban sprawl in countries with high urbanization
levels and a growing population (e.g. France, Israel).
SSP3 is characterized by low urbanization rates, with
urbanization levels of roughly 84% in the northern
Mediterranean and 65% in the southern and east-
ern Mediterranean. Population declines in almost all
northern countries and increases rapidly in southern

and eastern countries, resulting in sprawling devel-
opment in the South and East. In SSP4, urbaniz-
ation increases rapidly, with urbanization levels of
around 93% across the region. Population decreases
in most countries, notable exceptions being France
and countries of the Middle East, where high urban
sprawl can be observed until 2100. SSP5 is character-
ized by urbanization levels similar to those in SSP1,
combined with rapid population growth in northern
countries and theMiddle East, which leads to consid-
erable urban sprawl, particularly in northern parts of
the region.

3.2. Urban population density
The population development patterns described in
section 3.1 are further illustrated in figure 3 which
presents urban population densities per SSP and geo-
graphical region. In the baseline year (2010), urban
population density is about four times higher in
southern and eastern Mediterranean countries than
in countries of theMediterraneanNorth (figure 3(a));
this difference is projected to increase until 2100
under all SSPs, with the largest difference in SSP3,
where urban settlements are projected to be eight
times more densely populated in the South and
East. In northern countries, urban population dens-
ity increases in SSP1 and decreases in all other SSPs
in 2100, compared to the baseline. The highest urban
population density (1600 people km−2) is projec-
ted in SSP1 and the lowest density of roughly 700
people km−2 in SSP5. These results reflect the con-
tinuation of high urban sprawl (except in SSP1), in
combination with population decline in the second
half of the century in SSPs 1–4. In the South and East,
urban population density increases in SSPs 1–3 and
decreases in SSPs 4 and 5 until 2100, compared to
2010. The highest urban population density of over
8000 people km−2 is projected in SSP3, the scenario
with the highest expected population growth in these
countries; the lowest density of ca. 4150 people km−2

is projected under SSP4.
Figure 3(b) presents the development of urban

population densities in the course of the century,
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Figure 2. Population per grid cell in the baseline year (2010) and for each SSP in 2100. Resolution: 30 arc seconds (WGS84).

differentiating between coastal and inland locations.
In both geographical regions, density is higher in
coastal locations compared to inland locations under
all SSPs and time steps except the base year. In the
Mediterranean North, urban population density in
coastal locations first increases in SSPs 1–4, before it
decreases in the second half of the century; in inland
locations, density decreases in the course of the cen-
tury in all SSPs except SSP1 where it first increases
and starts to decrease in 2080. In the South and East,
urban population density increases in coastal and
inland locations under SSPs 1–3, with a rapid increase
in coastal locations, which levels off in SSP1 from
2080 onwards. Under SSPs 4 and 5, urban population
density experiences some increase in coastal locations
until 2070 and remains on a similar level in inland loc-
ations in the course of the century.

3.3. Coastal population
Comparing the population in coastal locations across
SSPs and geographical regions (figure 4), we observe,
similar to urban population density, a population
three orders of magnitude higher in coastal loca-
tions in southern and eastern countries compared
to the Mediterranean North in 2010 (figure 4(a)).
This difference is projected to increase until 2100
under all SSPs except SSP5 where coastal popula-
tion increases considerably in the northern Mediter-
ranean as well, resulting in the highest coastal pop-
ulation (15.2 million) in 2100. Further, the number
of people in coastal locations in the North increases
slightly in SSP1 and SSP2 and decreases in SSPs 3
and 4 compared to the baseline, with the lowest num-
ber of roughly 6.5 million people in coastal locations
under SSP3. In the South and East, we observe the

6
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Figure 3. Urban population density in each SSP and geographical region (a) in 2100 compared to 2010, (b) development
2010–2100 in coastal versus inland locations. Coastal= low elevation coastal zone (see SM3; McGranahan et al 2007). Please note
different scales of the y-axes.

Figure 4. Coastal population in each SSP and geographical region (a) in 2100 compared to 2010, (b) development 2010–2100,
differentiating urban versus rural populations. Coastal= low elevation coastal zone (see SM3; McGranahan et al 2007). Please
note different scales of the y-axes.

opposite development: the highest coastal population
of over 100 million in 2100 is projected under SSP3,
whereas we find the lowest coastal population of ca.
42.7 million under SSP5. Nonetheless, the number of
people in coastal locations of southern and eastern
countries increases under all SSPs compared to the
baseline. These results reflect the higher attractive-
ness of coastal locations compared to inland locations
in both geographical regions, which is amplified in
the southern and eastern Mediterranean by a limited
land area available for human settlement in inland
locations (SM2), and superimposed by country-level
population decline in the northern Mediterranean
under SSPs 3 and 4 (SM8).

In figure 4(b), the development of the coastal
population in the course of the century is shown
for urban versus rural populations. In the northern

Mediterranean, the coastal population lives primarily
in urban settlements under all SSPs. It first increases
under all SSPs except SSP3, where it decreases gradu-
ally in the course of the century. In the second
half of the century, the urban population in coastal
locations also declines in SSPs 1, 2, and 4. The
coastal population in rural settlements decreases
slowly under all SSPs. In southern and eastern
countries, a similar share of the coastal popula-
tion lives in urban and rural settlements in 2010,
which changes considerably until 2100, when the
vast majority of people in coastal locations are pro-
jected to live in urban settlements under all SSPs
except SSP3. Urban population in coastal locations
increasesmarkedly under all SSPs and starts to decline
in 2080 under SSPs 1, 4, and 5. The coastal popula-
tion in rural settlements continuously increases under

7
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SSP3 until 2100, and gradually decreases under all
other SSPs, in particular in the second half of the
century.

4. Discussion

Our spatially downscaled population projections
account for important migration processes within
countries (i.e. rural-urban and inland-coastal) as
well as for plausible future spatial development pat-
terns (i.e. urban sprawl). As such they constitute
improved representations of future population dis-
tributions and are useful for a wide range of IAV
assessments. The spatial resolution (30 arc seconds)
is suitable for capturing these development trends
and patterns while avoiding a misleading impres-
sion of certainty as future socioeconomic devel-
opments are highly uncertain (Preston et al 2011,
Sherbinin et al 2019). Therefore, we anticipate that
the developed projections are particularly meaning-
ful for assessments at continental to regional scales,
for example for analyzing exposure to extreme heat,
water scarcity, and flooding (coastal, fluvial, plu-
vial). In such assessments, it is important to con-
sider different SSPs in order to represent the range of
uncertainty in future exposure. The insights of these
assessments can support decision-making by identi-
fying hotspots of future exposure where adaptation
is urgently needed. Therefore, decisions can be made
that are robust under a wide range of plausible futures
(Moss et al 2010, Walker et al 2013, Haasnoot et al
2020). However, to inform local-scale decisions such
as the implementation of specific adaptation meas-
ures, more refined modeling approaches are needed
that allow for integrating local characteristics based
on more refined scenario assumptions (e.g. Reimann
et al 2021) and more detailed input data to further
downscale the developed population projections (e.g.
Merkens and Vafeidis 2018).

Our results suggest higher future climate change
exposure in southern and eastern Mediterranean
countries compared to northern Mediterranean
countries due to consistently higher urban densit-
ies and coastal population under all SSPs. However,
exposure would differ markedly across SSPs, depend-
ing on the socioeconomic challenges for adaptation
that result from differences in the effectiveness of
policies and institutions, economic growth, and tech-
nological change among others (O’Neill et al 2017).
Assuming that an increase in urban population dens-
ity increases the urban heat island (UHI) effect, there-
fore leading to higher urban heat stress, which will
exacerbate due to climate change (Chapman et al
2017, Koomen and Diogo 2017, Vanos et al 2020),
heat exposure would be highest under SSP3 in the
South and East and SSP1 in the North. As SSP1
is characterized by sustainable development with
well-managed, compact urban areas and low adapt-
ation challenges, it would result in potentially lower

exposure than SSP3 (assuming all else equal), as SSP3
is characterized by high adaptation challenges due to
slow economic growth, low technological develop-
ment, and weak policies and institutions. Similarly,
coastal exposure would be highest in the South and
East under SSP3, with a large share of the coastal
population living in rural settlements, where coastal
protection is expected to be rarely pursued as costs
often exceed benefits (Lincke andHinkel 2018). In the
North, coastal exposure would be highest under SSP5
and SSP1, which are both characterized by low adapt-
ation challenges. Due to high urban sprawl in SSP5,
we expect coastal adaptation to be more challenging
than in SSP1. Furthermore, as SSP5 experiences rapid
economic growth, residual risk would be high, lead-
ing to high damages in case of adaptation failure
during coastal flooding. While we are aware that the
future lies somewhere between (or even beyond) the
five SSPs (O’Neill et al 2017, 2020), our results suggest
that future spatial population patterns will contrib-
ute to higher exposure in the southern and eastern
Mediterranean, which may exacerbate already exist-
ing disparities between the two geographical regions
(MedECC 2020).

To be able to further contextualize these res-
ults, the population projections can be enriched by
additional demographic and socioeconomic variables
important for IAV research, such as age, sex, race,
education, poverty, and income. Such extensions are
limited in the current literature, with few examples
that have downscaled IAV variables with the help
of SSP-based population projections at national (i.e.
the US) (Hauer 2019, Jiang et al 2020), European
(Hurth et al 2017, Rohat et al 2019b), and global scales
(Murakami and Yamagata 2019). Furthermore, our
projections do not account for the potential impacts
of climate change on migration, which is expected to
increase once impacts such as flooding, heat stress,
and droughts become more severe (Black et al 2011,
McLeman 2019). To account for this effect, plaus-
ible future changes in climatic conditions based on
the Representative Concentration Pathways (RCPs)
(Van Vuuren et al 2011) can be integrated into the
model to produce projections that account for climate
change-induced migration, a first example being the
work of Rigaud et al (2018). Such integrated assess-
ments can additionally explore potential feedbacks
between climate change, adaptation strategies, and
migration patterns, which are expected to influence
future impacts substantially (Aerts et al 2018). An
aspect that we have not included in this study is
the influence of shocks such as conflict, economic
crises, or pandemics (e.g. COVID-19) on socioeco-
nomic development as shocks are, by definition, not
captured in the plausible10 descriptions of the SSPs.

10 Plausible developments are defined as developments that ‘could
happen’ based on the current knowledge and understanding of the
world (Voros 2003).
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Figure 5.Mediterranean coastal population in 2100 based
on Merkens et al (2016), Reimann et al (2018), Jones and
O’Neill (2016) (downscaled projections of Gao 2017), and
the approach used in this study. Coastal= low elevation
coastal zone, based on MERIT DEM (Yamazaki et al 2017).

However, as we explore a large range of uncertainty
by projecting spatial population patterns under the
five SSPs, we assume that the effects of most shocks
are covered by this uncertainty range, as pointed out
by O’Neill et al (2020).

To evaluate the performance of the model in pro-
ducing spatial population projections, we compared
our results to those of previous work that accoun-
ted either for inland-coastal migration (Merkens et al
2016, Reimann et al 2018) or for urban sprawl (Jones
and O’Neill 2016, downscaled by Gao 2017). As two
studies do not provide projections that distinguish
between urban and rural populations, we focus on
the coastal population. We find that the population
numbers projected in coastal locations in 2100 for
each SSP are similar across the four studies, but also
show marked differences (figure 5). Similar to Jones
and O’Neill, we project the highest coastal popula-
tion of 108 million in SSP3 and the lowest popu-
lation of 51 million in SSP4. However, we project
a 13%–25% higher coastal population than Jones
and O’Neill under all SSPs except SSP3 where our
projected population is 0.9% lower. These patterns
reflect the higher attractiveness of coastal locations
implemented in our approach, as established dur-
ing model calibration (SM5). In SSP3, this effect is
superimposed by rapid population decline in north-
ern Mediterranean countries in SSP3 (section 3.1),
which leads to a higher decline in coastal population
in our approach compared to Jones and O’Neill as
population decline takes place relative to attractive-
ness (i.e. more attractive locations experience higher
decline). This potential model limitation needs fur-
ther analysis which is currently inhibited by a lack of
empirical evidence regarding the spatial patterns dur-
ing phases of population decline (Grübler et al 2007,
Jones and O’Neill 2013).

In contrast to our approach, the coastal approach
of Merkens et al and Reimann et al projects the
lowest coastal population of 41/35 million in SSP1,
based on the assumption that the implementation

of regulatory policies leads to sustainable and effect-
ive management of coastal areas, thereby reducing
their attractiveness. The number of coastal inhab-
itants is about 30%–40% lower compared to our
approach. This difference reflects one limitation of
the gravity approach, which models aggregate popu-
lation trends primarily based on the distance-decay
effect (section 2.1) and does not account for the
effects of policy on a location’s attractiveness. Future
work can integrate such effects into the model as an
additional model layer similar to the spatial mask
(li), in which the population potential in effectively
managed locations could be set to 0. Further, SSP5
is the only scenario where the coastal approach res-
ults in roughly the same or a slightly higher num-
ber of coastal inhabitants (5%) as it assumes coastal
locations to be very attractive, while not accounting
for the sprawling development that we assume under
SSP5.

Of the four approaches, our approach spans the
narrowest uncertainty range across the SSPs with
regard to the population projected in coastal locations
in 2100 (i.e. 56.5 million versus 61.1–64 million),
which suggests that accounting for several processes
that drive spatial population patterns can reduce the
range of uncertainty. As our approach results in the
highest number of coastal inhabitants under almost
all SSPs, we expect these results to be particularly
meaningful from a risk-management perspective as
strategies for reducing risk can be developed based
on ‘worst-case’ conditions (Hinkel et al 2015). Com-
parison of the spatial population patterns projected
under the four approaches further supports that our
approach produces plausible results (supplementary
figure 9). However, it also illustrates the limited com-
parability of the fourmodeling approaches due to dif-
ferent input data used, which result in distinct spatial
population patterns.

When using our population projections, the fol-
lowing additional limitations need to be considered.
First, we calibrated the model to a relatively short
period of twenty years due to a lack of long-term grid-
ded population data. This period was characterized
by population growth in most Mediterranean coun-
tries. As we expect to see declining population num-
bers in the second half of the century under almost
all SSPs, the observed changes in population pat-
terns are not necessarily indicative of future patterns.
Second, since we were not able to calibrate the β para-
meters for each country individually, the calibrated
parameters may not reflect the spatial development
patterns in all countries of the respective geograph-
ical region to the same degree. Similarly, we had to
post-process the calibrated parameters to reflect dif-
ferences in development patterns in coastal versus
inland locations as our calibration procedure did not
produce plausible parameters for these locations. We
assume the reason for this being the small strip of land
defined as coastal compared to its inland counterpart,
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which may impede finding the optimal β parameter
(section 2.2; SM5). Third, we would like to point
out that the redefinition of grid cells into urban
and rural populations after each projection time step
(section 2.4) can follow a different algorithm than the
one used in this study, one example being the ‘degree
of urbanization’ (Pesaresi et al 2016).

More broadly, gravity-based models have sev-
eral limitations that merit further discussion. First,
the underlying assumption that densely populated
locations are more attractive for human settlement
than less densely populated locations results in higher
population growth in large cities compared to smal-
ler cities, although small- and medium-sized cities
are expected to experience higher population growth
in the next decades (Birkmann et al 2016, United
Nations, Department of Economic and Social Affairs,
Population Division 2019, Gao and O’Neill 2020). To
account for this phenomenon, the population poten-
tial can be calculated conditional to the city size
(i.e. the total number of people residing in an urban
agglomeration), which could be implemented in the
model in follow-up work. However, by applying the
local attractiveness factor Ai and a population density
threshold per grid cell (SM7), our approach pro-
duces more diverse spatial patterns than a basic grav-
ity approach. Second, as population potential is cal-
culated based on observed settlement patterns, these
patterns consolidate in the future, and new settle-
ments can only emerge under very specific condi-
tions. While this limitation may result in implausible
spatial population patterns in less developed coun-
tries that are expected to experience rapid popula-
tion growth until 2100, we expect it to be negligible in
theMediterranean region as population is expected to
decline in the secondhalf of the century inmost coun-
tries and SSPs; in those countries that will experience
rapid growth (e.g. theMENA (Middle East andNorth
Africa) region under SSP3) land available for human
settlement is limited (supplementary figure 2); Medi-
terranean settlement patterns have developed since
antiquity (Cazenave 2014), thereby giving reason to
believe that new settlements are less likely to emerge.

Despite its limitations, CONCLUDE produces
plausible distributions of future population patterns
for each SSP, which can be updated once new know-
ledge and data become available. The model allows
for integrating additional model layers (e.g. a policy
layer) as a weight on the population potential (vi),
and can be extended to explore climate change-
induced migration, for example by correlating the
local attractiveness factor Ai to changes in environ-
mental conditions with the help of spatial regression
models (Rigaud et al 2018). Due to its modest data
requirements, we expect the model to be particularly
relevant for producing consistent projections in data-
scarce regions like the Mediterranean region, where
detailed region-wide data are often lacking (Lange
et al 2020). As we rely on freely available global input

data, the model can easily be extended to other con-
tinents, regions, or the global scale, given that suffi-
cient computing resources are available.

5. Conclusion

This paper presents SSP-based gridded popula-
tion projections that account for rural-urban and
coastal-inland migration processes as well as for
spatial changes in settlement patterns (i.e. urban
sprawl), which have been produced with CON-
CLUDE, an extended gravity-based model specific-
ally developed for this study. We apply the model
to the Mediterranean region, accounting for distinct
characteristics in northern versus southern and east-
ern Mediterranean countries. Our projections have a
spatial resolution of 30 arc seconds, a temporal res-
olution of ten-year time steps (2020–2100), and are
consistent with the five SSPs, both in terms of qual-
itative narrative assumptions as well as national-level
population projections. These projections explore the
range of uncertainty regarding plausible future spatial
population patterns in the 21st century and are use-
ful for a wide range of IAV assessments. The model
can be extended to account for the effects of climate
change or spatial policies on a location’s attractive-
ness for human settlement. As the model has modest
data requirements and is calibrated to freely avail-
able global input data, it can be extended to other
continental and/or global scales.

Future work can further refine the modeling
approach by addressing its limitations such as sep-
arately calibrating the model to coastal versus inland
locations; selecting a larger set of countries for the β
calibration; and calibrating the model separately to
phases of population growth and decline. Such refine-
ments can also include the use of higher-resolution
input data to be able to produce meaningful results
at regional to national scale. Suitable datasets may
be WorldPop (Tatem 2017) or a higher-resolution
version of GHS-POP (Schiavina et al 2019), which
are available at spatial resolutions of 3 arc seconds
and 9 arc seconds, respectively. Further, a system-
atic assessment of the model’s sensitivity to different
population input data, urban versus rural population
classification algorithms, and the choice of β para-
meters would provide useful insights for model users.
Moreover, the model can be extended for integrated
assessments to explore feedbacks between climate
change impacts, adaptation strategies, and migration
processes. For such assessments, different SSPs, RCPs,
and Shared Policy Assumptions (SPAs) (Kriegler et al
2014) can be combined, as envisaged as part of the
SSP-RCP-SPA scenario framework (Van Vuuren et al
2014, O’Neill et al 2020). Additionally, future research
can explore the potential of the model for produ-
cing spatial projections of other key variables in IAV
research. Last, we would like to encourage use of the
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developed population projections in Mediterranean
IAV assessments.
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