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Abstract. The nonequilibrium description of quantum systems requires, for more than two
or three particles, the use of a reduced description to be numerically tractable. Two possible
approaches are based on either reduced density matrices or nonequilibrium Green functions
(NEGF). Both concepts are formulated in terms of hierarchies of coupled equations—the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for the reduced density operators
and the Martin-Schwinger-hierarchy (MS) for the Green functions, respectively. In both cases,
similar approximations are introduced to decouple the hierarchy, yet still many questions
regarding the correspondence of both approaches remain open.

Here we analyze this correspondence by studying the generalized Kadanoff–Baym ansatz
(GKBA) that reduces the NEGF to a single-time theory. Starting from the BBGKY-hierarchy we
present the approximations that are necessary to recover the GKBA result both, with Hartree-
Fock propagators (HF-GKBA) and propagators in second Born approximation. To test the
quality of the HF-GKBA, we study the dynamics of a 4-electron Hubbard nanocluster starting
from a strong nonequilibrium initial state and compare to exact results and the Wang-Cassing
approximation to the BBGKY hierarchy presented recently by Akbari et al. [1].

1. Introduction
The ab initio time-dependent description of quantum many-body systems has been a major focus
in the physics and chemistry communities since the invention of quantum mechanics. Despite
many efforts, up to the present time, the exact (analytic or numerical) solution of the underlying
equation of motion for the wavefunction |Ψ〉S (t) of the system—the Schrödinger equation—is,
in general, restricted to only very few particles, due to the exponentially growing complexity
with the particle number, e.g. [2]. To overcome this limitation a great variety of methodologies
have been developed to approximately describe systems of larger particle numbers. This includes
time-dependent density functional theory [3], time-dependent Hartree-Fock [4, 5, 6, 7, 8], multi-
configuration time-dependent Hartree-Fock [9], time-dependent coupled cluster theory [10],
Møller-Plesset many-body perturbation theory [11], density matrix renormalization group based
approaches [12] or dynamical mean field theory, e.g. [13].
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In this article, we focus on two different closely related powerful methods: nonequilibrium Green
functions (NEGF) [14] and reduced density operators (DO), e.g. [15, 16, 17, 18], respectively.
Both methods involve the solution of a coupled hierarchy—the MS and BBGKY hierarchy,
respectively—of reduced quantities, where the solution of the full hierarchy is equivalent to the
solution of the N -particle Schrödinger equation or von Neumann equation, in the case of pure or
mixed states, respectively. To reduce the complexity, both methods aim at simplifications via a
physically motivated truncation of the hierarchy. Since both approaches are selfcontained and
independent, comparisons of the two are of great interest for applications. NEGF are commonly
regarded as more accurate, however, nonequilibrium solutions of the two-time equations of
motion—the Keldysh-Kadanoff–Baym equations (KBE)—are computationally very expensive.
While there has been remarkable progress during the last decade for homogeneous [19, 20]
and inhomogeneous systems, e.g. [21, 22, 23], the two-time structure puts strong limits on the
achievable propagation time. In contrast, the single-time density operator approach does not
suffer this problem. Furthermore, recent solutions of the KBE for finite systems [24, 25] indicated
unphysical long-time behavior (damping). Here, again solutions using single-time equations [26]
are, apparantly, closer to the exact result. It is, therefore, important to understand how the
two-time and single-time approximations to the hierarchy are related to each other and whether
and when single-time solutions are justified.

The recipe how to derive the single-time approximation from the NEGF for an arbitrary
selfenergy is the so-called generalized Kadanoff–Baym ansatz (GKBA) derived by Lipavsky,
Spicka and Velicky [27, 28]. The GKBA has, so far been used for spatially homogeneous systems,
for electron-phonon scattering and for Coulomb scattering in the second Born approximation.
Numerical comparisons for the case of Coulomb scattering have shown satisfactory agreement
[29, 30, 31]. Similar observations have been recently made for finite systems [26]. Nevertheless,
a systematic analysis is still missing. The aim of this paper is two-fold. First, we discuss the
relation between NEGF and DO (on the level of the second Born approximation). We take
the opposite route, compared to Lipavsky et al. [27, 28] and derive the GKBA result, starting
from the BBGKY-hierarchy and identifying the approximations necessary to obtain the GKBA.
Second, we consider, as an example of the quantum dynamics of a finite system, the evolution of
a 4-site Hubbard nano-cluster—computed with Green functions and the GKBA—and compare
them to BBGKY-based results by Akbari et al. [1] using the Wang/Cassing approximation.

2. Theory
In this section, we give a brief overview of the theoretical foundations of the two aforementioned
methods for the statistical description of quantum many-body systems. One of the most basic
differences between these two approaches is the incorporation of the spin statistics of the particles,
which, e.g., for Fermions leads to the effect of Pauli blocking [34]. While the Green function
method, which will be described in Sec. 2.2, has the spin statistics intrinsically build in by use of
bosonic/fermionic creation- and annhilation-operators, the reduced density operator theory is
formulated for spinless particles, which requires an explicit (anti-)symmetrization of the equations.
This advantage of the former approach is at least partly counterfeited by the more complicated
structure of the equations for the Green function G(t, t′), which depends—apart from the physical
time t—on an additional time argument t′, e.g., providing access to the corresponding ionized
system. Numerically, this leads to comparatively more involved calculations with the Green
function approach. To make up for that, the introduction of the GKBA for the single-particle
Green function allows for a simple approximate reconstruction of the two-time Green function
from its time-diagonal value, by which a scaling of computation time comparable to density
operator theory is achieved.
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2.1. Density operator theory
For an N -particle quantum system in a mixed state (in contact with a stationary environment),
the proper fundamental quantity is the N -particle density operator

ρ1...N =
∑
k

Wk

∣∣∣Ψ(k)
1...N

〉〈
Ψ(k)

1...N

∣∣∣ ∑
k

Wk = 1, (1)

where
∣∣∣Ψ(k)

1...N

〉
is a possible micro-state compatible with a given macro-state of the whole system

including the bath, and Wk denotes the probability of its realization. This description is valid
if the interaction of the system with the bath is weak. The density operator obeys the von
Neumann equation

i~∂tρ1...N −
[
H1...N , ρ1...N

]
(t) = 0 , (2)

where H1...N is the Hamiltonian of the N -particle system and
[
· , ··

]
denotes the standard

commutator. For a given initial state ρ1...N (t0) = ρ
(0)
1...N , the solution of this equation completely

determines the time evolution of the system and is equivalent to the solution of the Schrödinger
equation for all possible micro-states.

2.1.1. Nonequilibrium quantum BBGKY-Hierarchy. Instead of the full N -particle density
operator, it is usually useful to consider reduced density operators, the s-particle operator F1...s
being defined as a partial trace over the N -body density operator ρ1...N [17],

F1...s = VsTrs+1...Nρ1...N ,
1
Vs

Tr1...sF1...s = 1 , (3)

where V denotes the volume, and the partial trace Tr1...sA of an operator A in an arbitrary basis
of states |x〉 = |x1〉|x2〉 . . . |xN 〉 is defined as

Tr1...sA1...N =
∑
x1...xs

A(x1 . . . xs, xs+1 . . . xN ;x1 . . . xs, x
′
s+1 . . . x

′
N ) . (4)

The density operators obey a system of equations of motion—the BBGKY hierarchy that follows
from taking the partial trace over Eq. (2)

i~∂t F1 −
[
H1 , F1

]
= nTr2

[
V12 , F12

]
, (5)

i~∂t F12 −
[
H12 , F12

]
= nTr3

[
V13 + V23 , F123

]
, (6)

. . . . . . . . .

F1(t0) = F 0
1 , F12(t0) = F 0

12 , . . .

and so on. It is obvious that the whole hierarchy is equivalent to the von Neumann equation.
Note that this system of equations is local in time, all functions depend on a single physical time
t, and it has to be complemented by initial conditions F1(t0), F12(t0) and so on. Here H1 is the
single-particle Hamiltonian whereas the two-particle Hamiltonian is given by H12 = H1 +H2 +V12.
As mentioned before, Eqs. (5) and (6) are written for spinless particles to make the mathematical
structure more transparent. We will add the appropriate exchange contributions in the next
section where we consider the (anti-)symmetrization and approximations to the BBGKY hierarchy
via a cluster expansion.

Progress in Nonequilibrium Green’s Functions V (PNGF V) IOP Publishing
Journal of Physics: Conference Series 427 (2013) 012008 doi:10.1088/1742-6596/427/1/012008

3



2.1.2. (Anti-)Symmetrization and Cluster expansion of the BBGKY hierarchy. For the practical
analytical or numerical solution of the BBGKY hierarchy, it is obvious that it has to be truncated
to become tractable. A suitable approach consists in performing the so-called cluster expansion
to separate the two-particle, three-particle and higher correlations from the ideal part of the
density operator which is given by a product of single-particle operators,

F12(t) = F1(t)F2(t) + c12(t) ,
F123(t) = F1(t)F2(t)F3(t) + F1(t)c23(t) + F2(t)c13(t) + F3(t)c12(t) + c123(t) ,

(7)

and analogously for the higher-order density operators.
To correctly account for the spin statistics of bosons (fermions) we now (anti-)symmetrize

all expressions. This can be done by introducing matrix representations with respect to an
(anti-)symmetrized system of basis states defined in Fock space. Alternatively, (anti-)symmetric
expectation values of observables can be computed with standard Hilbert space states when the
respective operators are (anti-)symmetrized [35]. Here we follow the latter idea as it leads to
more compact expressions. The (anti-)symmetrization of the density operators is achieved by
replacing

F12 −→ F12Λ±12 ,

c12 −→ c12Λ±12 ,

F123 −→ F12Λ±123 ,

c123 −→ c123Λ±123 ,

(8)

where the binary/ternary (anti-)symmetrization operator is defined by its action on an arbitrary
two-particle/three-particle state |12〉 and |123〉, respectively,

Λ±12 |12〉 = (1± P12) |12〉 = |12〉 ± |21〉 ,
Λ±123 |123〉 = Λ±12(1± P13 ± P23) |123〉

(9)

and the upper/lower sign applies to bosons/fermions.
We now introduce these cluster expansions (7) with the (anti-)symmetrized density operators

into the BBGKY-hierarchy (5 , 6). We limit ourselves to the first three equations where the
decoupling is achieved by neglecting four-particle correlations, c1234 = 0, (for details, see Ref.
[17]),

i~∂t F1 −
[
H̄0

1 , F1
]

= nTr2
[
V12 , c12

]
Λ±12 , (10)

i~∂t c12 −
[
H̄0

12 , c12
]

= V̂12F1F2 − F1F2V̂
†

12 + nTr3
[
V13 + V23 , c123

]
P13;23 (11)

+L12 + Π12 , (12)
i~∂t c123 −

[
H̄0

123 , c123
]

= V̂ †12F1F2F3 +
(
V̂ †13 + V̂ †23

)
F3c12

∓nF3 (F1V13 + F2V23) c12 ∓ n (c13V13 + c23V23) c12 (13)
+Π123 + L123 + P123(rhs.)− h.c.(rhs.) ,

F1(t0) = F 0
1 , c12(t0) = c0

12 , c123(t0) = c0
123, P13;23 = (1± P13 ± P23) ,

L12, L123 = ladder terms , Π12,Π123 = polarization terms ,
P123(rhs.) = cyclic permutation of 1, 2, 3 in all terms on the rhs. ,
h.c.(rhs.) = hermitean conjugate of all terms on rhs. including P123(rhs.) .
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Since below we will focus on the second Born approximation we do not explicitly write out
the ladder and polarization terms [17] since they will be neglected. On the left-hand sides we
introduced mean field Hamiltonians which are renormalized by a Hartree-Fock potential UHF,

H̄0
1 = H1 + UHF

1 , UHF
1 = nTr2V12F2Λ±12 , (14)

H̄0
12 = H̄0

1 + H̄0
2 , H̄0

123 = H̄0
1 + H̄0

2 + H̄0
3 (15)

and the non-hermitian operator V̂12 = (1±nF1±nF2)V12 which takes into account the exchange
renormalization of the pair interaction giving rise, e.g., to Pauli blocking.

Below we will consider two approximations: first, c123 ≡ 0, which leads to the second Born
(2B) approximation of NEGF theory together with the Hartree-Fock GKBA (HF-GKBA, i.e.
with HF propagators), see Sec. 2.2. Second, we include in c123 all relevant terms that give rise to
2B plus GKBA with full propagators (HF plus 2B). We start with the second approximation
since the first follows from it as a special case. To this end, we solve the third hierarchy equation
by retaining on the r.h.s. only terms that are proportional to c12:{(

V̂ †13 + V̂ †23

)
F3 ∓ nF3 (F1V13 + F2V23)∓ n (c13V13 + c23V23)

}
c12 − h.c. (16)

These terms describe the coupling of the pair 1–2 to third particles including medium effects
which will give rise to energ renormalization (selfenergy). This expression can be rewritten using
the definition of V̂ , and neglecting the ladder-type corrections involving products c13V13 and
c23V23, yielding

{(1± nF1) (1± nF3)V13F3 ∓ F1F3V13 (1± nF3)} c12 − h.c. + (1⇔ 2)
=:
(
S>13 ∓ S<13 + S>23 ∓ S<23

)
c12 − h.c. ,

(17)

where we defined
S≷
ab := F≷

a F
≷
b VabF

≷
b . (18)

We now rewrite Eq. (11) in static second Born approximation, neglecting all polarization and
ladder terms and retaining, on the r.h.s., only the selfenergy contributions 17,

i~∂t c123 −
{
H̄0,eff

123 c123 − c123H̄
0,eff†
123

}
=
(
S>13 ∓ S<13 + S>23 ∓ S<23

)
c12 − h.c. , (19)

where we have introduced an effective (non-hermitian) three-particle Hamiltonian H̄0,eff
123 =

H̄1 + H̄2 + H̄3. We can now formally solve this equation for c123 in terms of c12,

c123(t) = U0+
123(tt0)c0

123U
0−
123(t0t)

+ 1
i~

∫ t

t0
d t̄ U0+

123(tt̄)
{(
S>13 ∓ S<13 + S>23 ∓ S<23

)
c12 − h.c.

} ∣∣∣∣
t̄

U0−
123(t̄t) ,

(20)

where we introduced the propagators U0±
123 with the properties

U0±
123(tt′) =

[
U0∓

123(t′t)
]†
, U0±

123(tt′) = U±1 (tt′)U±2 (tt′)U±3 (tt′) . (21)

The single-particle propagators obey effective one-particle Schrödinger-type equations{
i~∂t − H̄1(t)

}
U+

1 (tt′) = 0 , U+
1 (tt) = 0 , (22)

U−1 (t′t)
{

i~∂t′ + H̄†1(t′)
}

= 0 , U−1 (tt) = 0 , (23)
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where, in the second equation, the time derivative acts onto operators placed left of it. The
definition of the effective one-particle Hamiltonian H̄1 will be derived in the following.

We now turn to the second hierarchy equation (11), inserting the formal result for c123(t) on
the r.h.s. and again neglect the polarization and ladder terms,

i~∂tc12 −
[
H̄0

1 + H̄0
2 , c12

]
= I>12 − I<12 + nTr3

{[
U0+

123(tt0)c0
123U

0−
123(t0t)

]}
Λ±123

+ n

i~

t∫
t0

dt̄Tr3
{[
V13 + V23 , U

0+
123(tt̄)

{(
S>13 ∓ S<13 + S>23 ∓ S<23

)
c12 − h.c.

} ∣∣∣∣
t̄

U0−
123(t̄t)

]}
Λ±123 .

(24)

Here, the first term on the r.s.h. of Eq. (11) has been transformed according to

V̂12F1F2 − F1F2V̂
†

12 = (1± nF1) (1± nF2)V12F1F2 − F1F2V12 (1± nF1) (1± nF2) =: I>12 − I<12 ,
(25)

where we introduced the greater- and less-collision integral operators, I>12 and I<12

I≷ab = F≷
a F

≷
b VabF

≶
a F

≶
b ,

F<a = Fa ,

F>a = 1± nFa .
(26)

Inspection of the integral term in Eq. (24) reveals that it has the structure of a selfenergy
operator, Σ̃12, acting on c12:

Σ̃12(t)c12(t) =
∫ t

t0
dt̄
{

Σ+
12(tt̄)c12(t̄)U−12(t̄t)− h.c.

}
, (27)

which we can decompose into one- and two-particle contributions,

Σ̃12 = Σ̃1 + Σ̃2 + Σ̃cor
12 , Σ±12 = Σ±1 U±2 + Σ±2 U±1 + Σ±,corr12 (28)

which are, in turn, given by (cf. Eq. (24)),

Σ+
1 (tt̄) = n

i~Tr3
{
V13U

0+
13 (tt̄)

(
S>13 ∓ S<13

) ∣∣∣∣
t̄

U−3 (t̄t)
}

Λ±13 ,

Σ+
2 (tt̄) = n

i~Tr3
{
V23U

0+
23 (tt̄)

(
S>23 ∓ S<23

) ∣∣∣∣
t̄

U−3 (t̄t)
}

Λ±23 ,

Σcor+
12 (tt̄) = n

i~Tr3
{
V23U

0+
123(tt̄)

(
S>13 ∓ S<13

) ∣∣∣∣
t̄

U−3 (t̄t)
}

Λ±123 + 1⇔ 2 .

(29)

With this, we can rewrite Eq. (24) by collecting all terms acting on c12 into an effective
two-particle hamiltonian,

i~∂tc12(t)−
{
H0,eff

12 (t)c12(t)− c12(t)H0,eff
12 (t)

}
= I>12(t)− I<12(t) , (30)

with the definition

H0,eff
12 (t)c12(t) = H̄0

12(t)c12(t) +
∫ t

t0
dt̄Σ+

12(tt̄)c12(t̄)U0−
12 (t̄t). (31)
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This hamiltonian consists of three parts, H0,eff
12 = H̄1 + H̄2 + H̄0cor

12 ,

H̄1(t)c12(t) = H̄0
1 (t)c12(t) +

∫ t

t0
dt̄Σ+

1 (tt̄)U+
2 (tt̄)c12(t̄)U0−

12 (t̄t) ,

H̄2(t)c12(t) = H̄0
2 (t)c12(t) +

∫ t

t0
dt̄ U+

1 (tt̄)Σ+
2 (tt̄)c12(t̄)U0−

12 (t̄t) ,

H̄0cor
12 (t)c12(t) =

∫ t

t0
dt̄Σcor+

12 (tt̄)c12(t̄)U0−
12 (t̄t) .

(32)

To preserve the additivity of H0,eff
12 resulting from the Born approximation, it is necessary to

neglect the term H̄0cor
12 c12, which yields a result that is consistent with our previous definition of

the effective three-particle hamiltonian,

H0,eff
12 c12 =

(
H̄1 + H̄2

)
c12 ,

H0,eff
123 c123 =

(
H̄1 + H̄2 + H̄3

)
c123 .

(33)

This result can now be used to solve the equations of motion, Eq. (22), for the renormalized
one-particle propagator U+

1 (tt′) which transforms into{
i~∂t − H̄0

1
}
U+

1 (tt′)−
∫ t

t0
dt̄Σ+

1 (tt̄)U+
1 (t̄t′) = 0 . (34)

Using the definition of S≷, we can write out the selfenergy Σ+
1 in second Born approximation

explicitly (neglecting initial value terms),

Σ+
1 (tt′) = n

i~
Tr3

{
V13U

+
1 (tt′)U+

3 (tt′)
[
F>1 F

>
3 V13F

<
3 ∓ F<1 F<3 V13F

>
3
]
U−3 (t′t)

∣∣∣∣
t′

}
. (35)

The structure of Σ+
1 suggests to define new quantities

g>a (tt′) = U+
a (tt′)F>a (t′)− F>a (t)U−a (tt′) ,

g<a (t′t) = U+
a (tt′)F<a (t′)− F<a (t)U−a (tt′) ,

(36)

giving rise to a compact and symmetric expresssion

Σ+
1 (tt′) = n

i~
Tr3V13

{
g>1 (tt′)g>3 (tt′)V13g

<
3 (t′t)∓ g<1 (tt′)g<3 (tt′)V13g

>
3 (t′t)

}
=: Σ>

1 (tt′)∓ Σ<
1 (tt′) ,

(37)

where we defined the greater- and less-selfenergy Σ>
1 (tt′) and Σ<

1 (tt′). With these definitions one
can finally write down the equation of motion for the single-particle density operator F1, which
reads according to Eq. (10),

i~∂t F1 −
[
H̄0

1 , F1
]

= nTr2
[
V12 , c12

]
Λ±12

=
(
nTr2

{
V12U

0+
12 (t, t0)c0

12U
0−
12 (t0, t)

}
− nTr2

{
U0+

12 (t, t0)c0
12U

0−
12 (t0, t)V12

})
Λ±12

+ in

~

∫ t

t0
dt̄Tr2

({
V12U

0+
12 (tt̄)

[
F>1 F

>
2 V12F

<
1 F

<
2 − F<1 F<2 V12F

>
1 F

>
2
] ∣∣
t̄
U0−

12 (t̄t)Λ±12
}

−
{
U0+

12 (tt̄)
[
F>1 F

>
2 V12F

<
1 F

<
2 − F<1 F<2 V12F

>
1 F

>
2
] ∣∣
t̄
U0−

12 (t̄t)V12Λ±12
})

=
∫ t

t0
dt̄
{
Σ>

1 (t, t̄)g<(t̄, t)− Σ<
1 (t, t̄)g>(t̄, t)

}
.

(38)
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Here we have used, after the first line, the formal solution c12(t) of Eq. (30) that includes initial
correlations, c0

12 and scattering contributions (the time integral).
In the next section, we will see, that this equation of motion for the reduced single-particle

density operator has the same form as the result obtained within the NEGF formalism for the
time-diagonal limit of the function G< in second Born approximation, after applying the GKBA.
Thereby it turns out that the full result, as derived above, corresponds to the GKBA with
full second-Born propagators. In contrast, the HF-GKBA follows if the propagator equation
(34) is solved after neglecting the selfenergy correction, which is equivalent to decoupling the
BBGKY-hierarchy by requiring c123 = 0, cf. Sec. 2.2.

2.2. Nonequilibrium Green functions
In contrast to density operator theory, presented in the preceding section, the basic quantities
in the nonequilibrium Green function formalism are the creation/annihilation operators ai and
a†i , which create/annihilate a particle in the i-th one-particle orbital and obey the canonical
commutator/anticommutator relations for bosonic or fermionic particles,[

ĉ
(†)
i , ĉ

(†)
j

]
∓

= 0,
[
ci, ĉ

†
j

]
∓

= δi,j . (39)

With this, one can define the ensemble average of the combination N creation and annihilation
operators at 2N different points in time,〈

cj1(t′1) . . . cjN (t′N )c†iN (tN ) . . . c†i1(t1)
〉

=: GN,<i1...iN ;j1...jN (t1 . . . tN ; t′1 . . . t′N )

= Tr
{
ρcj1(t′1) . . . cjN (t′N )c†iN (tN ) . . . c†i1(t1)

}
,

(40)

as the less-part of the real-time N -particle thermal Green function GN,<. Here ρ is the density
operator of the system and the notation ”<” refers to the particular ordering of the operators.
For equal times (t1 = . . . = tN = t′1 = . . . = t′N ) the quantity iNGN,< is just the N -particle
density operator ρ1...N in the one-particle orbital basis. Analogous to the density operator theory,
one can define reduced Green functions involving fewer operators, so that the most basic quantity,
the single-particle two-time less Green function G<ij(t1, t2) can be defined as

G<ij(t1, t2) =
〈
c†j(t2)ci(t1)

〉
. (41)

The Green functions also obey a hierarchy of equations of motion, the Martin-Schwinger hierarchy
(MSH) [36], which for all N connects the N -particle Green function to the (N − 1)- and the
(N + 1)-particle Green functions. Since the complexity of the whole hierarchy—due to the
additional time-arguments— is computationally even more demanding, one again resorts to the
closure of the hierarchy equation on the single-particle level by a cluster expansion, stating the
two-particle Green function in terms of the one-particle Green function by introduction of a
suitable selfenergy functional Σ(G). With this, the equation of motion for the less Green function
attains the well known form of the Keldysh/Kadanoff–Baym equation (KBE) (initial correlations
can be included either via the density operator ρ, cf. Eq. (40), or by the technique of adiabatic
switching, for details see, e.g., [26, 32]),

i∂t1G<ij(t1, t2) =
∑
k

hik(t1)G<kj(t1, t2) +
∫

dt3 ΣR
ik(t1, t3)G<kj(t3, t2) +

∫
dt3 Σ<

ik(t1, t3)GA
kj(t3, t2) .

(42)
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The quantities GR and GA—the retarded and advanced Green functions—are defined as

G
R/A
ij (t1, t2) = ±θ (±(t1 − t2))

[
G>ij(t1, t2)−G<ij(t1, t2)

]
, (43)

G>ij(t1, t2) = −i
〈
ĉi(t1)ĉ†j(t2)

〉
, (44)

where hij is the ij-th matrix element of the Hartree-Fock part of the Hamiltonian. The
corresponding components of the selfenergy read in the second order Born approximation:

Σ2B,<
ij (t1, t2) =

∑
klmnrs

wikms(σ wrnlj − wrlnj)G<kl(t1, t2)G<mn(t1, t2)G>rs(t2, t1) ,

Σ2B,R
ij (t1, t2) =

∑
klmnrs

wikms(σ wrnlj − wrlnj)GR
kl(t1, t2)GR

mn(t1, t2)GA
rs(t2, t1) ,

(45)

where σ = {1, 2} for spin-polarized/spin-restricted systems. As an alternative formulation of the
KBE Lipavskii et al. proposed [27]

G<(t1, t2) =
∫ t1

t2
dt3

∫ t2

t0
dt4GR(t1, t3)Σ<(t3, t4)GA(t4, t2)

+ Θ(t1 − t2)
[
−GR(t1, t2)ρ(t2) +

∫ t1

t2
dt3

∫ t2

t0
dt4GR(t1, t3)ΣR(t3, t4)G<(t4, t2)

]
+ Θ(t2 − t1)

[
ρ(t1)GA(t1, t2) +

∫ t1

t2
dt3

∫ t2

t0
dt3G<(t, t3)ΣA(t3, t4)GA(t4, t2)

]
.

(46)

To further simplify this equation, they introduced the generalized Kadanoff–Baym ansatz (GKBA),
which is equivalent to solving Eq. (46) in first order,

G(1),<(t1, t2) =
∫ t1

t2
dt3

∫ t2

t0
dt4GR(t1, t3)Σ(0),<(t3, t4)GA(t4, t2)

+ Θ(t1 − t2)
[
−GR(t1, t2)ρ(0)(t2) +

∫ t1

t2
dt3

∫ t2

t0
dt4GR(t1, t3)ΣR(t3, t4)G(0),<(t4, t2)

]
,

+ Θ(t2 − t1)
[
ρ(0)(t1)GA(t1, t2) +

∫ t1

t2
dt3

∫ t2

t0
dt3G(0),<(t, t3)ΣA(t3, t4)GA(t4, t2)

]
,

(47)

with the result

G(0),<(t1, t2) = Θ(t1 − t2)
[
−GR(t1, t2)ρ(0)(t2)

]
+ Θ(t2 − t1)

[
ρ(0)(t1)GA(t1, t2)

]
, (48)

ρ(0)(t1) = −iG(0),<(t1, t1) . (49)

One notices that Eq. (47) is only formally closed in terms of the single-particle density matrix ρ,
since the propagators GR/A still obey a two-time equation of a similar degree of complexity as
the original KBE. To circumvent this we introduce a further approximation, replacing the full
propagators by the HF propagators GR/A

HF , which are defined as

G
R/A
HF (t1, t2) = ∓iθ[±(t1 − t2)]T exp

(
−i
∫ t1

t2
dt3 h(t3)

)
, (50)

Correspondingly, this approximation will be called HF-GKBA.
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Then the numerical solution of Eq. (47) can be obtained, using a finite time step ∆, in the
following way [21],

G<(t+ ∆, t+ ∆) = U(t)G<(t, t)U †(t)
− i∆U(t)I<(t, t)U †(t)− i∆U(t)

[
I<(t, t)

]†
U †(t) ,

(51)

where

X(t+ ∆, t) = exp
(
−i
∫ t+∆

t
dt̄ h(t̄)

)
= e−ih(t)∆ =: U(t) , (52)

for a small time step ∆� 1, and the HF-Hamiltonian h is assumed not to change between t and
t+ ∆. The collision integral I(t, t) is given by

I(t, t) =
∫ t

t0
dt̄
{

Σ>,0(t, t̄)G<,0(t̄, t)− Σ<,0(t, t̄)G>,0(t̄, t)
}
, (53)

where in all the two-time quantities under the integral the GKBA reconstruction according to
Eq. (48) is used.

When comparing Eq. (53) with the right-hand side of Eq. (38), one immediately recognizes
that it is of exactly the same structure, with the identifications

Σ≷,0(t, t̄) = Σ≷
1 (t, t̄) ,

GR(t, t̄) = −Θ(t− t̄)U+(t, t̄) ,
G≷,0(t, t̄) = g≷(t, t̄) .

(54)

Moreover, the GKBA, Eq. (48) appeared naturally in our density operator theory, cf. Eq. (36).
While this equivalence holds for general propagators U+ defined by Eq. (34), neglect of the
renormalization (selfenergy term)—which is equivalent to decoupling the BBGKY-hierarchy by
using c123 = 0—directly leads to HF-propagators and to the HF-GKBA of nonequilibrium Green
functions theory.

3. Numerical example: 4-site Hubbard model
To illustrate the findings obtained in sections 2.1 and 2.2, in this section we show some results
for a 4-site Hubbard nano-cluster obtained from the Green function method with the GKBA
applied and compare to density operator results by Akbari et al. [1]. The Hubbard model
[37, 38] is a commonly used simplified description of a narrow-band solid-state system, where
the motion of the electrons in the solid is mapped onto a hopping process between adjacent
atomic sites with just one orbital for each spin projection. The Coulomb interaction between
the electrons is assumed to be shielded so that it is mainly restricted to on-site interaction.
Despite of these simplifications, this description is able to cover much of the rich behavior
of these systems, for example the phase transition between a conductor and Mott insulator
through the interplay of hopping and on-site interaction in two and three dimensions. Also in
1D, the system is—depending on the interaction strength—strongly coupled and, therefore, the
theoretical description needs to treat correlations between the electrons.

The Hamiltonian of a one-dimensional Hubbard cluster comprised of N sites at electronic
half-filling is given by

Ĥ = −t
N∑
ij

∑
α

hij ĉ
†
iαĉjα + U

N∑
i

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ , (55)
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Figure 1. Density response on the first site n1 from strong nonequilibrium initial state for the
4-site Hubbard chain with a coupling strength Ũ = 0.1. The GKBA and the HF results are
depicted by the solid red lines and green dashed lines, respectively. In blue the exact results from
Akbari et al. [1] is shown.

where ĉ(†)
iα denotes the annihilation (creation) operator in the single-particle orbital on site i with

spin α and hij = δ〈i, j〉 is the hopping matrix between nearest neighbor sites with the convention,
δ〈i, j〉 = 1, if (i, j) are nearest neighbors, and δ〈i, j〉 = 0, otherwise. The first term originates
from the single-particle energies in the periodic lattice structure and incorporates the hopping
amplitude −t. The second term describes the on-site interaction of the electrons, which is given
in terms of the interaction strength U .

In the following, we consider a (N = 4)-site cluster with weak interaction, U = 0.1, at zero
temperature with periodic boundary conditions. For this system we are interested in the study
of strong nonequilibrium situations. To this end, we prepare the system in an initial state, where
all the 4 electrons are forced to the left-most two sites and afterwards examine the free evolution
of the system. For this setup, Green function solutions within the HF–GKBA, as well as HF
results are easily achieved. In Figs. 1 and 2, the time-evolution of the density n1(T ) on the
first site—summed over the two orbitals for different spin orientations—measured in terms of
the inverse hopping amplitude t−1 are shown. In Fig. 1 we present HF-GKBA results together
with the exact solutions and time-dependent HF simulations. In Fig. 2 the HF-GKBA data are
compared to exact results as well as to density operator results [1] within the Wang-Cassing
(WC) decoupling of the BBGKY-hierarchy [18].
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Figure 2. Density response on the first site n1 from strong nonequilibrium initial state for the
4-site Hubbard chain with a coupling strength Ũ = 0.1. The GKBA results are depicted by the
solid red lines. The blue pluses and brown dots represent the exact results and the ones obtained
from the WC approximation to the BBGKY hierarchy by Akbari et al. [1].

4. Discussion
The results show that the HF-GKBA performs very well for the propagation of a strong
nonequilibrium initial state, especially in comparison with time-dependent Hartree-Fock, that
does not show a decrease of the oscillation amplitude at all, present in the exact solution.
Comparing the amplitudes with the exact ones, the GKBA overestimates them, though. In the
part from T = 40 on, the GKBA cannot describe the oscillations sufficiently well, but always
keeps a good phase agreement with the exact solution. Comparing with the WC approximation in
Fig. 2, it is obvious that the WC solution has a very good agreement of the oscillation frequency
up to T = 80, but the height of the peaks is much overestimated for time T > 40, both compared
to the exact ones as well as to those computed with the GKBA.

A main issue of the BBGKY based methods like the WC approximation, pointed out by
Akbari et al. [1], is the occurrence of negative or above-maximum site occupations and, for
sufficiently long time propagation, eventual divergence. The divergence occurred for times around
500 t−1 (for U = 0.1) and even earlier, for large values of U . In contrast, we have tested the
GKBA–HF algorithm for a propagation time of 1000 t−1 and find that it is stable and the total
energy is conserved with no measurable deviation. The site occupancies stay within the allowed
boundaries (0 to 2) for the whole time propagation with only one exception, where they are
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violated by no more than 2 percent. This seems to have no negative effect on the subsequent
propagation, though. A more detailed discussion, including a broader range of values of U , will
be given in a forthcoming paper [39], in which we analyze the abilities of the GKBA–HF method
for the time-dependent description of Hubbard nano-clusters far from equilibrium.

5. Conclusion and Outlook
In this paper we have shown that, within the second order Born approximation, we can establish
a one-to-one correspondence between nonequilibrium Green functions within the GKBA and
reduced density operator theory, yielding the same formulas for the equation of motion of the
single-particle density matrix. On the example of the free evolution of a four-electron quantum
dot from a strong nonequilibrium initial state we have shown the overall satisfactory agreement
of the HF-GKBA to the exact dynamics of the system far away from equilibrium, for weak
interaction strength. This is encouraging since the HF-GKBA allows for long propagation times
that are impossible to achieve with full two-time calculations and it retains most of the attractive
properties of NEGF, such as time reversibility, total energy conservation and memory effects, e.g.
[40, 17]. In the future, it will be very interesting to examine the potential of the GKBA for higher
order selfenergy schemes such as GW - or T -matrix (ladder) approximation. For the T-matrix
approximation for homogeneous macroscopic systems, a similar correspondence has been found
previously [41, 17]. It will be interesting to extend this correspondence to inhomogeneous finite
systems in order to achieve long propagations also for strongly coupled systems and to verify
whether the GKBA is here able, as well, to remove the unphysical damping observed in two-time
calculations [24].
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