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Abstract. The pair distribution function (PDF) is a key quantity for the analysis of correlation
effects of a quantum system both in equilibrium and far from equilibrium. We derive an
expression for the PDF in terms of the single-particle Green functions—the solutions of the
Keldysh/Kadanoff-Baym equations in the two-time plane—for a one- or two-component system.
The result includes initial correlations and generalizes previous density matrix expressions from
single-time quantum kinetic theory. Explicit expressions for the PDF are obtained in second
Born approximation.

1. Introduction
In recent years, the interest in correlated quantum many-body systems has increased steadily
due to the observation of correlation effects such as liquid and crystal formation, superfluidity of
Bose systems or bound states. Examples of systems include nuclear matter [1, 2], solid state
systems [3] and dense astrophysical, laboratory dusty plasmas or the quark gluon plasma, for a
recent overview see [4, 5]. A quantity sensitive to spatial correlations is the pair distribution
function (PDF) h(r)—the probability to find an arbitrary pair of particles at a distance r.

Of particular current interest is the short-time behavior of correlated systems following
external perturbation such as excitation by intense radiation, e.g., [6, 7]. In quantum systems
such as atoms or solids, this is often connected with rapid electron thermalization coupled to the
dynamics of electronic correlations. Time and space-resolved measurement techniques detecting
chemical reaction products, nuclear collision fragments or electrons and ions produced by laser
ionization, e.g., [8], are becoming increasingly powerful. This brings the direct measurement of
time-dependent pair correlations described by the nonequilibrium generalization of the PDF,
h(r, t), within reach and increases the need for theoretical and computational tools that are able
to predict h(r, t).

From the theory side, PDFs are routinely computed for nonideal classical systems using, e.g.,
Monte Carlo or molecular dynamics simulations, e.g., [4]. Extensions to quantum systems in
equilibrium are available, e.g., in the frame of quantum Monte Carlo methods. However, there is
still a high demand for accurate nonequilibrium simulations. Theoretical access to nonequilibrium
PDFs is straightforwardly reached within density operator theory, e.g., [9, 10, 11]. An alternative
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approach to quantum many-body systems out of equilibrium is based on nonequilibrium Green
functions (NEGF). Apart from exact time-dependent numerical calculations, e.g., [12], which
are limited to a few particles, numerical results for the two-time NEGF are expected to be the
most accurate ones for strongly correlated quantum systems in nonequilibrium. This concerns,
in particular, full two-time calculations, i.e. direct solutions of the Keldysh/Kadanoff-Baym
equations (KBE) which, after the pioneering work of Danielewicz [1], have now become routine
[2, 13, 14, 15, 16, 17, 18]. They yield the single-particle Green functions and all one-particle
observables, including the spectral function, as a function of time. A number of two-particle
quantities can also be computed, taking advantage of the two-time structure of the equations,
most importantly the interaction energy. However, in this approach, the two-particle Green
function is eliminated by introduction of the selfenergy Σ (the integration contour C and the
arguments of the functions will be explained in Sec. 2),

± i
∫
C
d2V (1− 2)G(12, 1′2+) =

∫
C
d2 Σ(1, 2)G(2, 1′) . (1)

This concept of the selfenergy has proven extremely successful for reducing the many-particle
problem to an effective single-particle one (quasiparticle picture) which forms the basis of Green
function theory and the Feynman diagram technique. At the same time, the direct access to
the pair distribution function—which contains important additional information beyond the one
carried by the single-particle Green function—is lost. Due to this reason, so far, no NEGF results
for the full pair distribution function have been obtained which go beyond the computation of
double occupancies, accessible from Eq. (1) [19].

In this paper we solve this problem. Starting from the Bethe-Salpeter equation for the
two-particle Green function, we demonstrate in Sec. 2 how, from a given time-dependent solution
for the single-particle Green function in a chosen approximation for the selfenergy Σ, the PDF
in the same approximation can be reconstructed. In this paper, we choose, as an example, the
second order Born selfenergy approximation Σ2B which includes the interaction up to second
order (Σ2B ∝ V 2). Our results include the standard PDF h(r) in equilibrium, and its extension
h(r1, r2) to inhomogeneous systems and to multicomponent systems where the PDF becomes a
matrix hab(r1, r2), a, b labeling the particle species. Further, we obtain results for an arbitrary
nonequilibrium system where the PDF becomes time-dependent, hab → hab(t). Finally, the
results are directly generalized to two-time PDF’s, hab(r1, r2) → hab(r1, r2, t). Our results
selfconsistently include the influence of a correlated initial state, and they describe the decay
of initial correlations which is particularly important at the initial stage of the relaxation.
This problem was studied in detail for the single-time PDF within density operator theory
[9, 10, 11, 20], and these results are contained in our theory as a special case.

In Sec. 6, we discuss, as an illustration, the possible application of the PDF reconstruction
algorithm to a two-component system of electrons and holes in a bilayer structure. This system
has attracted substantial interest in recent years, because it exhibits strong electron-electron
and hole-hole correlations leading to spatial ordering and, at the same time, electron-hole bound
states (excitons). There have been detailed investigations of the phase diagram [21, 22, 23, 24],
of exciton and hole crystallization [22, 25, 26], of collective excitations [27, 28] and of exciton
Bose condensation and superfluidity, e.g., [25, 29]. We conclude with a summary and discussion
in Sec. 7.

2. Bethe-Salpeter equation
In nonequilibrium Green functions theory, the PDF of particle species “a” and “b” is obtained
from the two-particle correlation function [5] taken at four equal times t1 = t2 = t′1 = t′2 = t,

hab(r1, r2, r′1, r′2, t) = i2gab,<(1, 2, 1′, 2′) (2)
= 〈Ψ†a(1′)Ψ

†
b(2′)Ψb(2)Ψa(1)〉 ,
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where Ψ†a and Ψa are fermionic or bosonic creation and annihiliation operators, and we introduced
the short-hand notation 1 = r1, sz1, t1. To determine the two-particle correlation function gab,<

in nonequilibrium, we start from the more general two-particle Green function gab on the
Schwinger-Keldysh contour C which consists of a Hartree-Fock and a correlation part

gab(12, 1′2′) = gab
HF(12, 1′2′) + gab

corr(12, 1′2′) , (3)
gab

HF(12, 1′2′) = ga(1, 1′)gb(2, 2′)± δabg
a(1, 2′)gb(2, 1′) , (4)

where we allow for four different time arguments, t1, t2, t′1, t′2, all located on the contour C. The
correlation part, gab

corr, obeys the Bethe-Salpeter equation, e.g., [34],

gab
corr(12, 1′2′) = i

∫
C
d1̄d2̄d1̃d2̃ ga(1, 1̄)gb(2, 2̄)Kab(1̄2̄, 1̃2̃) gab(1̃2̃, 1′2′) , (5)

which presents a formal closure of the second equation of the Martin-Schwinger hierarchy for the
two-particle Green function. Compared to Ref. [34], we also restored the exchange term where
plus (minus) refers to bosons (fermions). In the language of Feynman diagrams, the effective
interaction kernel Kab contains all irreducible two-particle diagrams. This approach on the
two-particle level can directly be used to formulate the corresponding Dyson equation for the
one-particle Green function, involving a selfenergy Σab. For a given Kab, the corresponding Σab

is consistently determined by, cf. [5],

±
∫
C
d1̄d2̄ ga(1, 1̄) δΣ

ab(1̄2̄)
δV ab(2′2)

gb(2̄, 1′) =
∫
C
d1̄d2̄d1̃d2̃ ga(1, 1̄)gb(2, 2̄)Kab(1̄2̄, 1̃2̃)gab(1̃2̃, 1′2′) ,

(6)

where V ab is the particle interaction.
Returning to Eq. (5), it is evident that the solution of the BSE for gab

corr(t1 = t2 = t′1 = t′2)
at four equal times yields the PDF, cf. Eq. (2). The direct solution of the BSE is though
highly involved, since, even in the mentioned case of equal times, it requires the knowledge of
the time-offdiagonal three-time elements gab(t1̃, t2̃, t′1t′1). To reduce this complexity and make
a reconstruction from single-particle quantities possible, in the following, we will simplify the
structure of the general dynamic interaction Kab.

1.) The first simplification is to introduce the screened ladder approximation, Kab(1̄2̄, 1̃2̃)→
V ab(1̄2̄)δ(1̄− 1̃)δ(2̄− 2̃). Suppressing for a moment the space integration and spin summation
(they are implied by the repeated arguments 1̄ and 2̄ under the integral), we obtain from Eq. (5)

gab
corr(12, 1′2′) = i

∫
C
dt̄1dt̄2 ga(1, 1̄)gb(2, 2̄)V ab(1̄2̄) gab(1̄2̄, 1′2′) . (7)

We mention that this approximation is crucial for the successful reconstruction of gab
corr(12, 1′2′)

from single-particle quantities, since, according to Eq. (6), the knowledge of Σab(1, 1′) only
implicitly determines two degrees of freedom of Kab(1̄2̄, 1̃2̃). This is sufficient only in the case
Kab(1̄2̄, 1̃2̃) ∝ δ(1̄ − 1̃)δ(2̄ − 2̃). Nevertheless, this approximation already yields rich physics
corresponding to the screened ladder approximation. Despite this simplification, Equation (7)
still contains strong binary correlations (T-matrix) and dynamical screening effects leading to a
complicated integro-differential equation.

2.) Our next simplification is to neglect dynamic effects in the potential (dynamical screening,
related to the GW approximation) which leads to the replacement V ab(1̄2̄)→ V ab(r̄12)δ(t̄1 − t̄2),
where r̄12 = |r1 − r2|,

gab
corr(12, 1′2′) = i

∫
C
dt̄ ga(1, 1̄)gb(2, 2̄)V ab(r̄12) gab(1̄2̄, 1′2′) , (8)
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and under the integral t̄1 = t̄2 = t̄. This equation corresponds to a static T-matrix approximation
for the two-particle Green function and the pair correlations, i.e. to a complete summation of
the Born series. It can be noted that, for times t1 = t2 and t′1 = t′2, Eq. 8 now constitutes a
closed equation of Dyson-type for the two-time correlation Green function gab

corr(t1, t1, t′1t′1).
3.) Since our goal is to reconstruct the pair distributions from a solution of the two-time KBE

for the single-particle Green functions in second order Born approximation, we limit ourselves to
the first iteration of the integral equation (8), i.e. we replace, under the integral, the two-particle
Green function by the Hartree-Fock approximation:

gab(12, 1′2′) = i
∫
C
dt̄ ga(1, 1̄)gb(2, 2̄)V ab(r̄12)gab

HF(12, 1′2′) , with t̄1 = t̄2 = t̄ . (9)

We can bring this equation to a more compact form by introducing the following new functions

Gab
0 (12, 1′2′) = ga(1, 1′)gb(2, 2′), (10)

Σab
0 (12, 1′2′) = V ab(r12)

{
Gab

0 (12, 1′2′)± δabG
ab
0 (12, 2′1′)

}
, (11)

where Gab
0 is the Hartree approximation for the two-particle Green function (gab

HF without exchange
terms) and Σab

0 the first-order two-particle selfenergy. With these definitions, Eq. (9) becomes

gabcorr(12, 1′2′) = i
∫
C
dt̄ Gab

0 (12, 1̄2̄)Σab
0 (1̄2̄, 1′2′) , with t̄1 = t̄2 = t̄ . (12)

We underline that all expressions, so far, are written on the Schwinger-Keldysh contour, i.e. all
single-particle Green functions are 3× 3 matrices whereas the two-particle functions contain 34

Keldysh matrix elements. To obtain the nonequilibrium pair correlation function, we now have
to extract, from Eq. (12), functions depending on the real physical time. In particular, according
to Eq. (2), we need only the two-particle correlation function gab,< which we consider in the
following.

3. Reduction of the time structure of the two-particle correlation function gab,<

In order to compute the pair distribution function, Eq. (2), the two-particle correlation function
gab,< at four equal times is needed. To this end, we first determine the equation of motion for
the two-time two-particle correlation function gab,<(t, t′) and then specialize to the one-time
two-particle correlation function gab,<(t).

3.1. Two-time two-particle correlation function gab,<(t, t′)
The problem of the large number of Keldysh matrix elements of gab can be simplified drastically in
the static Born approximation. As a first step in simplifying the time dependencies we specialize
to functions with pairwise equal time arguments, t1 = t2 = t, and t′1 = t′2 = t′. Then it is clear
from Eq. (12) that the functions Gab

0 and Σab
0 depend only on two times in the following way

Gab
0 (r1r2; r′1r′2; tt′) = ga(r1t; r′1t′)gb(r2t; r′2t′) , (13)

Σab
0 (r1r2; r′1r′2; tt′) = V ab(r12)

{
Gab

0 (r1r2; r′1r′2; tt′)± δabG
ab
0 (r1r2; r′2r′1; tt′)

}
, (14)

where we also restored the coordinate arguments (spin variables are not written explicitly). Then
Eq. (12) turns into

gab
corr(r1r2; r′1r′2; tt′) = i

∫
C
dt̄ Gab

0 (r1r2; r̄1r̄2, tt̄)Σab
0 (r̄1r̄2; r′1r′2; t̄t′) . (15)
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With this result, Eq. (3) for gab can be rewritten as

gab(r1r2; r′1r′2; tt′) = gab
HF(r1r2; r′1r′2; tt′) + gab

corr(r1r2; r′1r′2; tt′) , (16)

where gab
corr is completed by the Hartree-Fock contribution which, in the new notation, acquires

the form

gab
HF(r1r2; r′1r′2; tt′) = Gab

0 (r1r2; r′1r′2; tt′)± δabG
ab
0 (r1r2; r′2r′1; tt′) . (17)

According to Eq. (2), gab(tt′) reads in terms of creation and annihilation operators (suppressing
spatial arguments),

gab(tt′) = i2〈Ψ†a(t′)Ψ
†
b(t′)Ψb(t)Ψa(t)〉 . (18)

It is important to notice that, due to its structure, this quantity is different from the double
occupancy, which is directly accessible using the single-particle selfenergy, cf. [19],

d(1) ∝
∫
C
d3 Σ(13)g(31+) . (19)

Now, to compute the pair distribution function from Eq. (16), we have to extract gab,< from the
Keldysh matrix and, in particular, the “<” component from the contour integral in Eq. (15). The
solution of this problem is well known for one-particle functions, and for two-particle functions it
has been solved in Ref. [34]. However, the latter results are not needed here. Indeed, although we
are dealing with two-particle functions Gab

0 and Σab
0 , in the present approximation, they have the

same time-dependence (they depend just on t, t′) as occurs in the case of single-particle functions
in the integral term of the Keldysh Kadanoff-Baym equations. As a consequence, both these
functions are 3× 3 Keldysh matrices and, therefore, also the two-particle Green function gab,
Eq. (15), is a 3× 3 Keldysh matrix.

The Keldysh components are classified by location of the two time-arguments on the contour
C. They include correlation functions, “>,<” with two real arguments, “d, e” having one real
and one imaginary time argument and the Matsubara component, α = M, where both arguments
lie on the imaginary track. Below, we will need only the “<” component which determines the
time-dependent nonequilibrium PDF and the Matsubara component which yields the PDF in
thermodynamic equilibrium. We start the analysis with the former and consider the latter in
Sec. 5.

Each of the nine components Gab,α
0 of the matrix Gab

0 is of the product form

Gab,α
0 (r1r2; r′1r′2; tt′) = ga,α(r1t; r′1t′)gb,α(r2t; r′2t′) , (20)

which allows for an easy matrix multiplication of Gab
0 and Σab

0 under the integral in Eq. (15).
Since each component α has the same dependence on the coordinates as in Eq. (15), we will
suppress the space arguments and integrations in the remainder of this section.

The result for the “<” component is well known (Langreth rules) and consists of an initial
correlation and a collision term

gab,<
corr (t, t′) = gab,<

IC (t, t′) + gab,<
col (t, t′) , (21)

which arise, respectively, from the imaginary and real part of the contour C,

gab,<IC (t, t′) = −i
∫ β

0
dτ Gab,e

0 (t, τ)Σab,d
0 (τ, t′) , (22)

gab,<col (t, t′) =
∫ ∞

0
dt̄
{
Gab,<

0 (t, t̄)Σab,A
0 (t̄, t′) +Gab,R

0 (t, t̄)Σab,<
0 (t̄, t′)

}
. (23)
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Here, Gab,<
0 denotes the product of two single-particle correlation functions ga,<, gb,<, both

having two real time arguments, whereas the components e and d describe products of functions
depending on one real and one complex (τ) time argument describing the propagation of initial
correlations, for a detailed discussion, see, e.g., Refs. [11, 17]. Further, we introduced retarded
and advanced functions defined by

aR/A(t, t′) = ±Θ
[
±(t− t′)

] {
a>(t, t′)− a<(t, t′)

}
. (24)

3.2. One-time two-particle correlation function gab,<(t)
We now perform the final step on the way to the nonequilibrium PDF—taking the time-diagonal
limit, t = t′, in the above equations for gab,< which has the general structure

gab,<(t) = gab,<
HF (t) + gab,<

IC (t) + gab,<
col (t) . (25)

Expressing the time-diagonal part of the single-particle correlation function by the single-particle
density matrix ρa(t) = ±i ga(t, t), where the upper (lower) sign refers to bosons (fermions), we
obtain for the two-particle correlation function on the time-diagonal

Gab,<
0 (t, t) = −ρa(t)ρb(t) . (26)

With this relation and Eq. (17), we first obtain the nonequilibrium Hartree-Fock pair distribution
function

gab,<
HF (r1r2; r′1r′2; t) = −ρa(r1r′1, t)ρb(r2r′2, t)∓ δabρ

a(r1r′2, t)ρb(r2r′1, t) . (27)

The second contribution to Eq. (25) is due to the initial correlations follows from Eq. (22) and is
given by

gab,<
IC (r1r2; r′1r′2; t) = −i

β∫
0

dτ
∫

d3r̄1d3r̄2V
ab(r̄12)ga,e(r1t; r̄1τ)gb,e(r2t; r̄2τ) (28)

×
{
ga,d(r̄1τ, r′1, t)gb,d(r̄2τ, r′2; t)± δabg

a,d(r̄1τ, r′2, t)gb,d(r̄2τ, r′1; t)
}
.

Finally, the scattering contribution (23) contains two real-time integrals extending to t and t′,
respectively. Since now both times are equal, a partial cancellation is possible. Indeed, taking
advantage of relation (24) allows to cancel all contributions with products of four “>” or four
“<” functions, and we obtain

gab,<
col (r1r2; r′1r′2; t) = i

t∫
0

dt̄
∫

d3r̄1d3r̄2V
ab(r̄12)

{
ga,>(r1t; r̄1t̄)gb,>(r2t; r̄2t̄) (29)

×
[
ga,<(r̄1t̄, r′1, t)gb,<(r̄2t̄, r′2; t)± δabg

a,<(r̄1t̄, r′2, t)gb,<(r̄2t̄, r′1; t)
]

−(>↔<)
}
.

This expression is readily understood: the first term describes the correlation build-up due to
scattering of a particle pair a, b out of state |r̄1〉 |r̄2〉 into state |r1〉 |r2〉, whereas the second
contribution which is obtained by interchanging functions with the indices “<” and “>” describes
the opposite process. The integral has the familiar non-Markovian structure (“memory”)
indicating that scattering processes from all times prior to the current one do contribute although
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their weight decreases since the single-particle Green function decay with increasing difference of
their time arguments. Expression (29) has exactly the same structure as known from density
operator theory [11]. The binary density operator in Born approximation is recovered, if the
two-time correlation functions are eliminated using the generalized Kadanoff-Baym ansatz [39],
see also Refs. [40],[41]. The present result is more general, because this reconstruction ansatz,
which is only valid approximately and becomes increasingly inaccurate with increasing correlation
effects, is avoided.

4. Nonequilibrium pair distribution function
The nonequilibrium pair distribution function hab(t) follows immediately from the two-particle
correlation function according to Eq. (2) and the results (25), (27), (28) and (29). Explicit results
depend on the choice of a basis. We start from the coordinate representation.

4.1. Coordinate representation
To obtain the standard pair distribution function, which is defined in configuration space, we set
r1 = r′1 and r2 = r′2 in all expressions

hab(r1, r2, t) =ρa(r1r1, t)ρb(r2r2, t)± δabρ
a(r1r2, t)ρb(r2r1, t)

− gab,<
IC (r1r2; r1r2; t)− gab,<

col (r1r2; r1r2; t) .
(30)

In a spatially inhomogeneous system, it is advantageous to introduce center of mass and relative
coordinates, R = (r1 + r2)/2 and r = r1 − r2, leading to the replacements r1,2 = R ± r/2, on
the right hand side. Then hab(R, r) is understood as the local probability to find a particle pair
at distance r around space point R.

If spatial inhomogeneities are not relevant or not of interest, a space integration leads to the
space averaged nonequilibrium pair distribution

hab(r, t) =
∫

ddRhab(R, r, t) , (31)

where d is the dimensionality of the system. Note that hab is normalized to the total number of
particles according to ∫

ddhab(r, t) = Na {Nb − δab} . (32)

Finally, in some cases, just the dependence on the magnitude of the pair separation is of interest,
which is obtained by an angle integration. The result is called radial distribution function,
hab(r, t), and follows from Eq. (32) according to (we consider a two-dimensional system and
change to polar coordinates)

hab(r, t) =
∫ 2π

0
dφ rhab(r, φ, t) , (33)

with the normalization ∫ ∞
0

drhab(r, t) = Na {Nb − δab} , (34)

and similarly in 3D.
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4.2. Arbitrary basis
Let us now consider the case of an arbitrary orthonormal stationary basis {φi(r)}, which is of
relevance, in particular, for spatially inhomogenenous systems. Then, the single-particle Green
functions become matrices according to

gb,α(1, 1′) =
∑
ij

φi(r1)gb,α
ij (t1, t′1)φ∗i (r′1) , (35)

which holds for any Keldysh component “α”. Analogously, the two-particle single-time correlation
function is represented by a four-dimensional matrix

gab,<(r1r2; r′1r′2; t) =
∑
ijkl

φi(r1)φj(r2)gab,<
ijkl (t)φ∗k(r′1)φ∗l (r′2) . (36)

To compute the nonequilibrium PDF (25), we have to expand the Hartree-Fock, the initial
correlation and the scattering part in this basis. For the Hartree-Fock contribution, we obtain,
in analogy to (36),

gab,<
HF (r1r2; r′1r′2; t) =

∑
ijkl

φi(r1)φj(r2)gab,<
HF,ijkl(t)φ

∗
k(r′1)φ∗l (r′2) , (37)

gab,<
HF,ijkl(t) = ga,<

ik (t)gb,<
jl (t)± δabg

a,<
il (t)gb,<

jk (t) . (38)

Similarly, we obtain from Eq. (28) for the initial correlation contribution

gab,<
IC (r1r2; r′1r′2; t) =

∑
ijkl

φi(r1)φj(r2)gab,<
IC,ijkl(t)φ

∗
k(r′1)φ∗l (r′2) , (39)

gab,<
IC,ijkl(t) =

∫ β

0
dτ

∑
mnrs

V ab
mnrs g

a,e
m,i(t, τ)g

b,e
n,j(t, τ) × (40){

g
a,d
r,k(τ, t)g

b,d
s,l (τ, t)± δab g

a,d
r,l (τ, t)g

b,d
s,k(τ, t)

}
,

and from Eq. (29)

gab,<
col (r1r2; r′1r′2; t) =

∑
ijkl

φi(r1)φj(r2)gab,<
col,ijkl(t)φ

∗
k(r′1)φ∗l (r′2) , (41)

gab,<
col,ijkl(t) = i

t∫
0

dt̄
∑
mnrs

V ab
mnrs

{
ga,>
i,m (t, t̄)gb,>

j,n (t, t̄)×

[
ga,<
k,r (t̄, t)gb,<

l,s (t̄, t)± δab g
a,<
l,r (t̄, t)gb,<

k,s (t̄, t)
]

(42)

−(>↔< and g1,2 ↔ g2,1)
}
.

Basis expansions for inhomogeneous quantum many-body systems have been successfully applied
to electrons in quantum dots (“artificial atoms”), e.g., [35, 36, 37], and small atoms and molecules,
e.g., [16, 38]. For these systems, the Keldysh/Kadanoff-Baym equations are solved for the matrix
function g<ij(t, t′). Using these results and formulas (37),(39) and (41), the two-particle correlation
function, gab,< in configuration space, Eq. (36), can be reconstructed. Besides, also the matrix
elements gab,<

ijkl (t) themselves are of interest, as they carry extensive information on the many-body
system. For example, the matrix components gab,<

ijij (t) describe the correlation of two particles
“a,b” occupying the orbitals i and j, respectively, at a given moment t.
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5. Equilibrium pair distribution function
To compute the pair distribution in thermodynamic equilibrium from the Matsubara Green
function, we return to Eq. (15) for the Keldysh matrix and extract the Matsubara component.
According to Eq. (20), it is given by a product of one-particle Matsubara Green functions,

Gab,M
0 (r1r2; r′1r′2; τ) = ga,M(r1r′1, τ)gb,M(r2r′2, τ) , (43)

where τ = t − t′. Similarly as in nonequilibrium, the two-particle Matsubara Green function
consists of a Hartree-Fock and correlation part,

gab,M(τ) = gab,M
HF (τ) + gab,M

col (τ) (44)

where the latter is obtained from Eq. (20) using the Langreth rules, in analogy to Eq. (22),

gab,M
col (τ) = −i

∫ β

0
dτ̄ Gab,M

0 (τ − τ̄)Σab,M
0 (τ̄) . (45)

Restoring the coordinate arguments and using the definitions of Gab
0 and Σab

0 , Eqs. (10) and (11),
we obtain

gab,M
HF (r1r2; r′1r′2) = −ρa(r1r′1)ρb(r2r′2)∓ δabρ

a(r1r′2)ρb(r2r′1) , (46)

gab,M
col (r1r2; r′1r′2, τ) = −i

∫ β

0
dτ̄
∫

d3r̄1d3r̄2V
ab(r̄12)×{

ga,M(r1r̄1, τ − τ̄)gb,M(r2r̄2, τ − τ̄)× (47)

[
ga,M(r̄1r′1, τ̄)gb,M(r̄2r′2, τ̄)± δabg

a,M(r̄1r′2, τ̄)gb,M(r̄2r′1, τ̄)
]}
.

From this, the equilibrium PDF is obtained by introducing center of mass and relative coordinates
as was done in the nonequilibrium situation, cf. Sec. 4.1.

6. Numerical example: pair correlations in an electron-hole bilayer system
To illustrate the results obtained so far, we consider an example of a two-component system
where strong correlations play a prominent role. The system of interest consists of two layers
of zero thickness which contain an equal finite number N of negative (electrons) and positive
(holes) charged particles with a finite layer spacing d. In each plane, the particles are confined
by a harmonic potential of frequency Ω. Such electron-hole bilayers have been actively studied
in recent years, e.g., [21, 22, 23], because they allow to study strongly correlated excitons, which
may exhibit Bose condensation and superfluidity, as well as liquid-like and crystal-like behavior.
For more details, we refer to Refs. [26, 29].

6.1. Model
The Hamiltonian of the quasi-two-dimensional electron-hole bilayer is given by

H = He +Hh +Heh (48)

He =
Ne∑
i=1

1
2

(
−∆i,e + r2

i,e

)
+ λ

Ne∑
i<j=2

1√
(ri,e − rj,e)2

, (49)

Hh =
Nh∑
i=1

1
2

(
−m

∗
e

m∗h
∆i,h + m∗h

m∗e
r2
i,h

)
+ λ

Nh∑
i<j=2

1√
(ri,h − rj,h)2

, (50)

Heh = −λ
Ne∑
i=1

Nh∑
j=1

1√
(ri,e − rj,h)2 + d∗2

, (51)
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where we introduced dimensionless variables by rescaling length and energy by the units,

r0 =
√

~
meΩ

, E0 = ~Ω . (52)

The term m∗e/h denotes the effective mass of electrons/holes and d∗ is the effective distance
between the layers. Further, we introduced the coupling parameter λ measuring the strength of
the Coulomb interaction relative to the confinement energy

λ = r0
aB

, aB = ~2

mee2 . (53)

Here, aB is the Bohr radius of a Hydrogen-like bound state—an exciton (we use the electron
mass instead of the reduced mass).

The coupling parameter measures the strength of the Coulomb interaction among identical
particles in each layer as well as the correlation between electron and holes. Generally, one may
expect that for λ ≤ 1, i.e. for very strong confinement, there is a strong wave function overlap,
and the system approaches ideal gas like behavior. In the opposite case, λ� 1, the Coulomb
interaction dominates, and particles will tend to become localized. Finally, variation of the layer
separation gives an additional control of the many-particle state: for d→∞, both layers will
be decoupled, containing independent electron and hole populations, whereas for decreasing d,
Coulomb attraction plays an increasing role. This gives rise to formation of indirect excitons
which behave (approximately) as bosons and exhibit dipole interaction, e.g., [26, 29].

6.2. Equilibrium PDF of the electron-hole bilayer—Comparison to Path Integral Monte-Carlo
results
Preliminary results for the equilibrium PDF of the electron-hole bilayer according to Sec. 5 were
obtained recently [43], however they still require further numerical tests. Therefore, to illustrate
the physical content of the PDF, in this section, we show some results obtained from path integral
Monte-Carlo (PIMC) calculations by Böning et al. [29]. Their approach to the description of the
bilayer system is different to the one presented in Sec. 6, as they assume beforehand, that the
layer separation d and the interaction strength λ in Eq. (48) between the electrons and holes,
respectively, induce the formation of indirect excitons, i.e. quasiparticles, comprised of strongly
bound but spatially separated electron-hole pairs. The excitons exhibit an interaction, which for
large distances is of dipole type and for small distances approaches a soft Coulomb potential,
for details see Ref. [29]. With these assumptions, Böning et al. compute the equilibrium PDF
hXcX(r) of one exciton X relative to a fixed exciton Xc in the center for different values of the
exciton density n in a ZnSxSe1−x/ZnSe quantum well with doping factor x = 0.3. The density
is measured in units of a∗−2

B = 1.06 · 1017m−2, where a∗B = ~2ε/(e2m∗e) is the electronic Bohr
radius with the material constants ε = 8.7 and m∗e = 0.15m0. The temperature is chosen to be
kBT = 0.001Ha∗, where the energy unit is defined as Ha∗ = e2/(εa∗B) = 53.93meV, resulting
in a temperature of T = 0.63K. In Fig. 6.2, hXcX(r) is shown for different densities. One can
see that, for low densities, the excitons in the system are melted, showing no localization or
radial ordering. If the density is increased, an exciton crystal starts to form, due to pressure
crystallization. For further increased density, this exciton crystal melts again, which is an effect
of the Coulomb-like character of the exciton-exciton interaction at short distances, the excitons
undergo quantum melting. The advantage of the PDF is clear from this figure: different phases
of the system can be clearly distinguished, which is not possible on the basis of single-particle
quantities such as the density.

PIMC is very efficient for computing the thermodynamic properties and also spectral properties
[44] of bosons, such as excitons. However, at high densities, excitons break up and form an
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Figure 1. Radial Exciton-Exciton PDF hXcX(r) in a ZnS0.3Se0.7/ZnSe quantum well at
T = 0.63K with layer separation d = 40.83 nm. Densities in units of 1.06 · 1017m−2: (a)
0.84 · 10−3, (b) 1.3 · 10−3, (c) 1.7 · 10−3, (d) 3.2 · 10−3, (e) 3.6 · 10−3, (f) 4.0 · 10−3. The radial
length is measured in units of the so called Brueckner parameter rs = 3.26 · 108 × a, where a is
the mean interparticle distance. The illustration is taken from Ref. [29].

electron-hole plasma (Mott effect) consisting of fermions. PIMC simulations of fermions at
low temperatures are still hampered by the notorious sign problem [45]. In contrast, with
nonequilibrium Green functions, this regime is easily accessible ,whereas limitations arise
with increasing coupling strength. Therefore, PIMC and NEGF have complementary areas
of applicability. Moreover, NEGF should allow one to access the time-evolution of the PDF, as
demonstrated above.

7. Discussion
In this paper, we presented an approach to the pair distribution function of a quantum many-body
system in the frame of the nonequilibrium real-time Green functions. This problem is complicated
due to the fact that the standard approach used in NEGFs uses a formal decoupling of the
Martin-Schwinger hierarchy on the level of the first equation: the two-particle Green function is
eliminated by introduction of the single-particle selfenergy, cf. Eq. (1). With this elimination,
direct access to the pair correlations is also lost. Thus, one has to reconstruct the pair correlations
form the single-particle Green function within a chosen approximation for the selfenergy.

To solve this reconstruction problem, we started the analysis from the equation of motion of
the two-particle Green function—the Bethe-Salpeter equation and simplified it systematically. Its
solution for the two-particle Green function requires an initial value gab(t0), which is consistently
determined from the (known) initial values of the single-particle Green function and the selfenergy,
ga,b(t0) and Σa,b

[
ga,b(t0)

]
, respectively, using Eq. (9). To further include more general arbitrary

initial conditions for gab(t0), we refer the reader to, e.g., [5, 46].
Concerning the selfenergy, we concentrated on the case of the static second Born approximation,
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because for it a large number of numerical solutions of the KBE exist, for which it would be
desirable to evaluate the PDF. It was shown that in second Born approximation a closed expression
for the nonequilibrium PDF can be derived, which can be straightforwardly evaluated. The
result involves combinations of four single-particle functions and is computationally expensive.
Numerical results will be presented in a forthcoming paper.
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