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Vorwort des Herausgebers

Die vorliegende Promotionsschrift von Herrn Dr.-Ing. Dinesh Shrestha ist dem Forschungs-
und Arbeitsgebiet „Bodenmechanik“ und der „Energie-Geotechnik“ zuzuordnen. Die in der
Arbeit zugrundeliegende Problemstellung hatte sich in der Bearbeitung von offenen Fragen
auf dem Gebiet der Energie-Geotechnik und den darin zu bestimmenden physikalischen
Bodenparametern in poröser Medien ergeben. Die Zielstellung der Promotionsarbeit liegt
in der Entwicklung einer Methodik zur Vereinheitlichung in Modellierung der Wärmeleit-
fähigkeit in granularen Bodenmaterialien unter unterschiedlichen Materialzuständen, wie
Sättigung oder Porosität. Neben einer umfangreichen experimentellen Versuchsdurchführung,
wurde eine große Anzahl von unterschiedlichen physikalisch basierten Modellen analysiert.
Zur Verallgemeinerung der unterschiedlichen Zustände und Bodentypen erfolgte letztlich
der Übergang zur Entwicklung eines lernfähigen Modells basierend auf künstlichen neu-
ronalen Netzen. Nach einer entsprechenden Trainingsphase des Modells auf Grundlage
der experimentellen Daten, konnte das Modell sehr genau die experimentellen Ergebnisse
wiedergeben und für weitere Prognosen genutzt werden. Perspektivisch kann das Modell
mit weiteren Bodentypen bzw. Zustandsdaten ergänzt werden, so dass eine umfassende Ab-
bildung der sättigungsabhängigen Wärmeleitfähigkeit beliebiger Materialien erfolgen kann.
Für die vorgestellte Herangehensweise ist das Modell ein numerisches ‚Black-Box‘ Mod-
ell, welches leider keinen Einblick in die physikalischen Zusammenhänge erlaubt, aber die
bisherig zu Verfügung stehende semi-empirischen, physikalischen und numerischen Mod-
elle im Hinblick auf die Verallgemeinerung von Zuständen deutlich erweitert. Neben der
numerischen Methodenentwicklung erfolgte eine ausführliche Validierung anhand unter-
schiedlicher Geomaterialien und Randbedingungen.

Die Dissertationsschrift beinhaltet die konsequente Weiterentwicklung und Kopplung
von bisherigen Ansätzen und Modellen zur Bestimmung der effektiven Wärmeleitfähigkeit
in ungesättigten Böden. In zahlreichen Validierungsstudien wurde durch verschiedene ex-
perimentelle Analysen die Leistungsfähigkeit und hohe Prognosefähigkeit der entwickel-
ten Methode in der Dissertationsschrift dokumentiert. Mit der Entwicklung der neuen
Methodik zur Bestimmung effektiver thermischer Leitfähigkeiten basierend auf künstlichen
neuronalen Netzen ist ein sehr kraftvolles, weiterhin lernfähiges Werkzeug entstanden, um
zukünftige Bauvorhaben in der Energie-Geotechnik effektiv unterstützen zu können.

Kiel, im Dezember 2021 Frank Wuttke
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Abstract
Soil thermal conductivity has an important role in geo-energy applications such as high-
voltage buried power cables, oil and gas pipelines, nuclear waste disposal facilities, shallow
geo-energy storage systems and ground source heat pumps and heat transfer modelling. Es-
pecially, the efficiencies and performances of high-voltage buried power cables are strongly
influenced by the thermal conductivity of the soil in which they are placed. Most soils have
a very low thermal conductivity at lower saturation (especially in a dry state) as compared
to that in a saturated condition. Due to a reduction in thermal conductivity, the cable fails or
breakdowns since heat is produced faster than it is dissipated away. Therefore, it is essential
to improve the soil thermal conductivity in the dry state as well as lower saturation levels
for the optimum performance and safe operation of the cable. On the other hand, energy
piles used as ground heat exchangers also lose their efficiency up to 40% in a dry condi-
tion as compared to that in a fully saturated condition. The efficiency loss as a result of soil
desaturation needs to be addressed by improving the thermal conductivity of backfill soils,
especially at the lower saturation level.

As the heat transfer in granular media is dominated by grain to grain contact conduc-
tance, the improvement in thermal conductivity could be achieved by enhancing the quality
of the contacts and increasing the number of contacts among the grains. In this thesis, we
investigate the effect of the fillers, mineralogy and particle gradation on the thermal con-
ductivity of sand as an innovative improvement method. Porosity and saturation are other
dominating factors besides these. An extensive laboratory study is performed to develop
geomaterials with higher dry thermal conductivity by modifying particle size distribution
into fuller curve gradation and adding fine particles in an appropriate ratio as fillers. The
experimental results clearly show a significant improvement in the thermal conductivity at
dry and lower saturation degrees and a considerable improvement in the case of full satu-
ration. An improvement of (20-180) % in thermal conductivity of modified geomaterials for
the full range of saturation whereas (25-230) % is observed in the dry state.

An artificial neural network as a novel approach is proposed to predict thermal conduc-
tivity of geomaterials for the dry and full range of saturation since the existing theoretical
and semi-empirical prediction models don’t show a good agreement with the measured
thermal conductivity. Two ANN models, individual and generalised models are proposed.
The feed-forward network with a Back-propagation algorithm is chosen to train the model,
whilst a cross-validation technique is used as stopping criteria to develop the ANN models.
Both proposed individual and generalised ANN models show a good agreement with the
measured thermal conductivity values. Additionally, a result of a thermal simulation for
a single cable clearly shows a large improvement in heat dissipation for modified soil as
compared to original sand.
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Zusammenfassung
Die Wärmeleitfähigkeit des Bodens spielt eine wichtige Rolle bei Geoenergieanwendungen
wie erdverlegten Hochspannungskabeln, Öl- und Gaspipelines, oberflächennahen Geoen-
ergiespeichern und Erdwärmepumpen sowie bei der Modellierung der Wärmeübertragung.
Insbesondere die Effizienz und Leistung von erdverlegten Hochspannungskabeln wird stark
von der Wärmeleitfähigkeit des Bodens beeinflusst, in dem sie verlegt werden. Die meisten
Böden haben eine sehr niedrige Wärmeleitfähigkeit bei niedrigerer Sättigung (insbesondere
im trockenen Zustand) im Vergleich zu einem gesättigten Zustand. Durch die Verringerung
der Wärmeleitfähigkeit kommt es zum Ausfall des Kabels, da die Wärme schneller pro-
duziert als abgeführt wird. Daher ist es für eine optimale Leistung und einen sicheren Be-
trieb des Kabels unerlässlich, die Wärmeleitfähigkeit des Bodens im trockenen und niedrige-
rer Sättigung Zustanden zu verbessern. Andererseits verlieren Energiepfähle, die als Erd-
wärmetauscher eingesetzt werden, im trockenen Zustand bis zu 40 % ihrer Effizienz im
Vergleich zu einem vollständig gesättigten Zustand. Der Effizienzverlust infolge der Entsät-
tigung des Bodens muss durch die Verbesserung der Wärmeleitfähigkeit der Aufschütungs-
böden, insbesondere im unteren Sättigungsbereich, behoben werden.

Da die Wärmeübertragung in körnigen Medien von der Kontaktleitfähigkeit zwischen
den Körnern dominiert wird, könnte die Verbesserung der Wärmeleitfähigkeit durch eine
Verbesserung der Qualität der Kontakte und eine Erhöhung der Anzahl der Kontakte erre-
icht werden. In dieser Arbeit untersuchen wir die Auswirkungen von Füllstoffen, Mineralo-
gie und Partikelabstufung auf die Wärmeleitfähigkeit als innovative Verbesserungsmeth-
ode. Es wird eine umfangreiche Laborstudie durchgeführt, um Verfüllböden mit einer
höheren trockenen Wärmeleitfähigkeit zu entwickeln, indem die Partikelgrößenverteilung
in eine Fuller Kurvenabstufung modifiziert und feine Partikel in einem geeigneten Ver-
hältnis als Füllstoffe hinzugefügt werden. Die experimentellen Ergebnisse zeigen deut-
lich eine signifikante Verbesserung der Wärmeleitfähigkeit im trockenen Zustand und bei
niedrigeren Sättigungsgraden sowie eine beträchtliche Verbesserung im vollständigen Sät-
tigung. Die Wärmeleitfähigkeit der modifizierten Geomaterialien verbessert sich bei voller
Sättigung um (20-180)%, während sie im trockenen Zustand um (25-230)% steigt.

Ein Künstliches Neuronales Netz (KNN) als neuartiger Ansatz wird vorgeschlagen, um
die Wärmeleitfähigkeit von Geomaterialien für den vollständigen Sättigungsbereich vo-
herzusagen, da die bestehenden theoretishcen und semiempirishcen Vorhersagemodelle
keine gute Übereinstimmung mit der gemessenen Wärmeleitfähigkeit aufweisen. Es wer-
den individuelle und generalisierte KNN-Modelle vorgeschlagen. Das Feed-Forward-Netz
mit einem Back-Propagation-Algorithmus wird zum Trainieren des Modells gewählt, währ-
end eine Kreuzvalidierungstechnik als Abbruchkriterium für die Entwicklung der KNN-
Modelle verwendet wird. Sowohl entwickelte individuelle als auch generalisierte KNN-
Modelle zeigen eine gute Übereinstimmung mit den gemessenen Wärmeleitfähigkeitswerte-
n. Darüber hinaus zeigt das Simulationsergebnis für ein einzelnes Kabel eine deutliche
Verbesserung der Wärmeableitung für modifizierte Geomaterialien im Vergleich zu sand.
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Chapter 1

Introduction

1.1 Background and motivation

Soil thermal properties have an important role in many geoengineering projects including
thermal effects, such as high voltage buried power cables, heat exchanger piles, small and
large scale ground heat storage, oil and gas pipelines and nuclear waste disposal facilities.
A thorough understanding of thermal properties is thus essential to understand the process
of heat transfer in soils and to design the thermal facilities. Soil thermal properties mainly
consist of thermal conductivity, diffusivity and specific heat capacity. Among them, ther-
mal conductivity is a vital property in heat transfer modelling, geomaterials designing and
design of geothermal related earth structures. The performances and efficiencies of these
applications depend on the thermal conductivity of soil where they are built. Depending
upon the application and desired purpose of such projects, the materials with either low or
high thermal conductivity are being used. For example, materials with high thermal con-
ductivity are desirable in the case of high voltage buried power cables, while ground heat
energy storage needs materials with moderate thermal conductivity and high heat capacity
to hinder heat energy loss.

Over the years, the use of underground power cables has grown significantly across
the world with a rapid increase in demand for electric energy and the trend for large in-
frastructures and vast expansion of metropolitan areas. High voltage underground power
cable, alternatives to an overhead power cable, needs proper backfill materials. Since the
thermal behaviour of backfill materials affect the design, performance and economics of
underground cables, the focus on designing corrective backfill materials has given more
attention. The main problem of underground cables is heat, that is generated inside the ca-
ble which should be dissipated to surrounding soil. Otherwise, it may lead to cable failure
thermally. Heat is generated due to power losses in the conductors, insulation, sheath and
other components of the cable system (Sandiford, 1981; Mozan et al., 1997; Afa, 2010). The
performance and efficiency of the underground power cable are critically influenced by the
thermal conductivity of the medium in which it is placed. In fact, the better the heat dis-
sipation by the medium the lower the maximum temperature reached by the cable, which
ultimately limits risks of cable failure. The thermal conductivity of the soil where the cable
is embedded usually accounts for more than 50% of the total temperature rise of the ca-
ble conductor. Due to the poor thermal conductivity of backfill materials, the cable fails or
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breakdowns as heat is produced faster in the cable than it dissipates away. Thus, the thermal
conductivity of backfill soil should be, in principle, higher than the surrounding soils. The
role of backfill soils is to dissipate the heat into the surrounding soil for the efficient and safe
operation of the cable. However, the thermal conductivity is highly moisture dependent
and the thermal conductivity decreases most significantly with the soil saturation degree
approaching zero (dry state). The reduction in the thermal conductivity largely influences
the current capacity of the underground cables (Sandiford, 1981; De León and Anders, 2008)
as well as the cable life (Karahn and Kalenderli, 2011). A similar situation is observed in the
case of underground energy storage like borehole heat exchangers, underground thermal
energy storage, geothermal heat pumps. The efficiency of these applications depends upon
the thermal conductivity of the material surrounding the transporting pipes. These appli-
cations require 30% - 50% less energy for heating compared with air-to-air pumps with the
current grouting materials around the pipes (Sarbu and Sebarchievici, 2014). On the other
hand, energy piles used as ground heat exchangers also lose their efficiency up to 40% in a
dry condition as compared to that in a fully saturated state (Akrouch et al., 2015; Venuleo
et al., 2015). The decreasing efficiency of these applications as a result of soil desaturation
needs to be addressed by improving the thermal conductivity of backfill soils, especially at
the lower saturation levels. Therefore, the backfill materials or materials used in these ap-
plications should be modified prior to use. This could be achieved by introducing the fine
fillers, cementing agent and modification of gradation (Drefke et al., 2015; Shrestha et al.,
2016; Shrestha et al., 2019).

Soil thermal conductivity is a function of several factors such as soil fabric, porosity (or
dry density), water content, mineralogy and temperature (Kersten, 1949; De Vries, 1963; Jo-
hansen, 1975; Farouki, 1981; Rao and Singh, 1999; Côté and Konrad, 2005a; Lu et al., 2007;
Dong et al., 2015). Heat transfer in granular media is mainly governed by the particle to par-
ticle conduction and particle-liquid-particle in presence of the liquid, water (Yun and Santa-
marina, 2007). The number of contacts per soil volume and quality of inter-particle contacts
controls the thermal conduction in granular media. Dong et al. (2015) highlighted that the
soil constituent, water content, soil type and particle contacts are the key governing factors,
which control the effective thermal conductivity of soil. Most of the soils have a very low
thermal conductivity in a dry state as compared to that in wet conditions. It is due to fact that
the water bridges formed between soil solid particles improve contact between the particles
and the thermal conductivity of water is twenty-five times higher than that of air. Adams
and Baljet (1968) analysed the different backfill soils used by utilities for underground power
cables and found that the dry thermal conductivity values (0.2-0.5 W m−1 K−1) were very
lower than moist thermal conductivity for all investigated soils. It is noticed that the typical
order of soil thermal conductivity is λair < λdrysoil < λwater < λsat−soil < λmineral as the
thermal conductivity of soil constituents vary over two orders of magnitude like λair = 0.024
W m−1 K−1, λwater = 0.594 W m−1 K−1 and λmineral > 3 W m−1 K−1. The thermal conductivity
of minerals is considerably very high than that of other soil constituents. The thermal con-
ductivity of dry soils typically ranges from 0.07-0.5 W m−1 K−1 (Rao and Singh, 1999; Naidu
and Singh, 2004; Cortes et al., 2009), creating a need to develop geomaterials with higher
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dry thermal conductivity, which is the first objective of this study.
Improvement in thermal conductivity could be achieved by enhancing the quality of

the contacts and increasing the number of contacts among the grains. A bigger size, well-
graded grain size distribution, higher solid thermal conductivity, lower porosity, saturation,
and effective stress are the factors to enhance the thermal conduction and thus increase the
thermal conductivity of soils (Yun and Santamarina, 2007; Nasirian et al., 2015). Keeping
these facts in consideration, the grain size distribution of the sand is modified into fuller
curve gradations (Fuller and Thomson, 1907), which consists of a wide range of particle ar-
rangements (coarse to fine particles) contributing to lower porosities (or dense mixes) and
higher inter-particle contacts. The design mixes are prepared utilizing the concept of fuller
curve gradation to achieve lower porosities and adding fine materials as fillers in appro-
priate proportion to improve the denseness (Shrestha et al., 2016). The fine materials act as
thermal bridges between the grains to increase the overall thermal connectivity of the soil
solid matrix. The fine materials bentonite and stone-dust are added following the Fuller
maximum density optimization scheme. Sand as prime geomaterials is selected because it
often uses as backfill material. The experimental results suggest that by lowering the poros-
ity of the system and by adding fillers, the thermal conductivity is significantly enhanced in
the dry and partially saturated states.

It is always challenging to predict the soil thermal conductivity since it is dependent of
several factors as mentioned above. Many attempts have been made in the past to quan-
tify the effects of various factors on thermal conductivity of different soils and to correlate
the thermal conductivity with those factors (De Vries, 1963; Farouki, 1981; Johansen, 1975;
Rao and Singh, 1999; Côté and Konrad, 2005a; Lu et al., 2007; Dong et al., 2015). Earlier
researchers have put more effort on developing models based on basic geotechnical index
properties (De Vries, 1963; Farouki, 1981; Johansen, 1975; Rao and Singh, 1999). Like, Côté
and Konrad (2005a) indicated that the effects of grain mineralogy and fabric should be con-
sidered while predicting the thermal conductivity of soils. So, basically, three types of ap-
proaches such as analytical/theoretical, empirical/semi-empirical and numerical methods
have been in use to predict the thermal conductivity of soils. The analytical models are
more complex which are adopted from other physical models and involve more calculation
parameters. In contrast, empirical models are mostly developed from experimental data
regression. These models are, however, more specific to certain boundary conditions and
only exhibit satisfactory performance on certain soil types, or they are only applicable to
either coarse-grained soils, fine-grained soils or high-quartz soils. Consequently, they are
unable to predict the thermal conductivity for artificial or designed geomaterials used for
buried power cables or borehole heat exchangers, etc. Many models include some empirical
coefficients to describe the impact of some soil properties on the thermal conductivity of
unsaturated soils. For example, Côté and Konrad (2005a) and (Lu et al., 2007) proposed dif-
ferent values of κ and α for different soil types. Apart from these models, Dong et al. (2015)
proposed the conceptual model based on soil water retention curves (SWRC) which can be
further used to develop quantitative thermal conductivity models for unsaturated soils. The
numerical approach is accurate but it needs very good knowledge and understanding of the
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methods and significant computational power. It can be said that the prediction model that
is simple in application, accurate in prediction result and applicable for all types of soil is
needed for assessing the thermal conductivity of soils effectively. Therefore, artificial neural
networks (ANNs) as a novel approach are proposed in this study to predict the soil thermal
conductivity of the sand and modified geomaterials for the dry and full range of saturation.

ANNs have achieved great popularity in the last decade because of an attractive alter-
native to the previous modelling approaches due to their high parallelism robustness, their
inherent ability to extract from the experimental data, the highly non-linear and complex
relationships between the variables of the problem without any detailed knowledge of the
system (Najjar and Basheer, 1996; Grabarczyk and Furmanski, 2013; Shahin et al., 2002a).
Since ANN models have learning capability that physics-based and other constitutive mod-
els lack, they have been successfully used in solving many engineering problems. Not only
in the field of engineering, it has been also used in various other fields such as science, eco-
nomics, agriculture, etc (Yoon et al., 1990; Fisha et al., 1995; Denton et al., 1995; Cavalieria
et al., 2003). It has been massively used in civil engineering areas including geotechnical
engineering, highway engineering, water resources, structural engineering, fluid mechan-
ics, etc (Shahin et al., 2002a; Najjar and Basheer, 1996; Wang and Rahman, 1999; Goh, 1995;
Attoh-Okine, 1999; Lee et al., 2001; Shahin et al., 2002b; Baziar and Nilipour, 2003; Kim et
al., 2001; Lee, 2003; Holger and Graeme, 1996; Benning et al., 2001; Gontarski et al., 2000;
Nejad et al., 2009). Shahin et. al. predicted settlement of shallow foundations on granu-
lar soils using ANN and found better prediction than the traditional method (Shahin et al.,
2002a; Shahin et al., 2002b). Other researchers predicted the liquefaction potential of soil
(Goh, 1995; Wang and Rahman, 1999; Baziar and Nilipour, 2003), the permeability of clay
liners (Najjar and Basheer, 1996), pavement performance (Attoh-Okine, 1999), settlements
of ground surfaces due to tunnelling (Kim et al., 2001), pile settlement (Nejad et al., 2009),
the factor of safety of slope (Jason and Wilson, 2018), concrete strength (Lee, 2003) and fore-
casting of ocean tide level (Lee and Jeng, 2002; Lee et al., 2002) using ANN. ANN model has
been also developed to predict the electrical resistivity of soils (Erzin et al., 2010; Bian et al.,
2015; ApalooBara et al., 2019). However, over the last decade, very few studies have been
done for predicting the thermal conductivity of soils using ANN (Erzin et al., 2008; Singh
et al., 2011; Grabarczyk and Furmanski, 2013; Mishra et al., 2017; Zhang et al., 2020a). Some
of the researchers used ANN to predict the thermal conductivity of food, textiles and rocks
(Fayala et al., 2008; Sablani et al., 2002; Singh et al., 2007; Scott et al., 2007; Sablani and Rah-
man, 2003). Grabarczyk and Furmanski (2013) successfully applied ANN modelling for the
prediction of thermal conductivity of dry granular media. Based on the ANN approach, the
unified thermal conductivity model was developed to determine the relationship between
the thermal conductivity of soils and its influence factors including dry density, porosity,
saturation degree, quartz content, sand content and clay content (Zhang et al., 2020a). Erzin
et al. (2008) reported that the thermal resistivity of different types of soils obtained from
ANN models was found to be superior while comparing with those computed from the
empirical thermal conductivity models. Singh et al. (2011) developed ANN models with
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different combinations of training functions and activation functions and found that the ef-
fective thermal conductivity of moist porous materials predicted by ANN models had very
good agreement with the available experimental data.

In this study, two separate ANN models (individual and generalised) are proposed to
predict the thermal conductivity of newly developed geomaterials, which will be used as a
backfill to bury high voltage power cables, for dry and moist states. In order to achieve this
goal, the design and training of the networks are performed using the Matlab programming
environment (version R2019a) with Neural Networks Toolbox. The data used in developing
the models are obtained from the experimental work as well as from the literature survey.
The thermal conductivity of original and modified soils is measured in the laboratory at
room temperature by varying different parameters namely porosity, water content, quartz
content, particle gradation. There are two measurement techniques namely: the transient
method and the steady-state method to determine the thermal conductivity of the soils in
the laboratory. Since the transient method is fast and convenient as compared to the steady-
state method, the transient method is selected in this study. A thermal needle probe (KD2
pro device) is used to measure the thermal conductivity of all designed geomaterials in dry
as well as in the moist state. The parameters mentioned earlier are fed into the ANN models
as input variables to determine the relationships between input variables and thermal con-
ductivity as output. Several configurations of ANN models were trained and tested while
developing the optimal ANN model. ANN models are composed of multilayers with the
Feed-forward network structure while the Back-Propagation algorithm is used for training.
The Back-propagation algorithm is usually implemented using the Levenberg-Marquardt
method, which combines the gradient descent method and the Gaus-Newton optimization
method (Levenberg, 1944; Marquardt, 1963). The cross-validation technique(Stone, 1974),
which has been successfully employed by several researchers (Erzin et al., 2008; Erzin et al.,
2010; Zhang et al., 2020b) developing ANN models, is used as stopping criteria to stop the
training. The optimum number of hidden layers and number of neurons in each hidden
layer will be determined by using performance indices such as mean squared error (MSE),
the coefficient of determination (R), and mean absolute error (MAE) as a measure of predic-
tion accuracy. The predicted values of thermal conductivity obtained from optimal ANN
models for independently measured data are compared with the values calculated from
existing soil thermal conductivity prediction models. The ANN models show satisfactory
results over the prediction models.

Furthermore, thermal simulation is performed for a single cable using Finite Element
Methods software (Comsol multiphysics) to observe the heat dissipation characteristics around
underground high voltage power cable with original and modified backfill materials (devel-
oped geomaterials). A result of thermal simulation for a single cable clearly shows a large
improvement in heat dissipation for modified soil as compared to original sand.

1.2 Objective

The main objectives of this dissertation are:
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• to study and analyse the effect of various factors on thermal conductivity of soils and
generalization of existing thermal conductivity models.

• to design thermal backfill geomaterials with higher thermal conductivity, especially at
the lower saturation level which is the critical state.

• to study ANN architecture and its application to the engineering field and its devel-
opment so far.

• to propose a new ANN model as a new tool for predicting the thermal conductivity of
designed geomaterials based on different input parameters obtained from the experi-
ment conducted in the lab.

• simulation of High voltage power cables with original sand and developed backfill
geomaterials.

In order to achieve these objectives, the dissertation is structured accordingly as shown
in the next section.

1.3 Organization of Dissertation

The dissertation consists of seven chapters, of which the contents are summarized as below:

• Chapter 1: introduces the background, motivation and objectives of the thesis.

• Chapter 2: presents a literature review on the heat transfer process in soil, thermal
properties of soil, current backfill in use for embedded high voltage power cables, var-
ious factors affecting thermal conductivity, discussing the existing prediction models
and their development, measurement techniques.

• Chapter 3: presents background, literature review, structure/architecture and pro-
vides insight into the artificial neural network along with ANN application to engi-
neering as well as other fields.

• Chapter 4: presents the materials analysis, measurement equipment used and experi-
mental methodology to obtain the desired geomaterials.

• Chapter 5: presents the results and key findings of the study with a focus on material
behaviours and thermal conductivity improvement. The results are also compared
with prediction models and discussion is made.

• Chapter 6: presents the development of ANN models to predict the thermal conduc-
tivity of original and modified sand (developed geomaterials) from the parameters
obtained from experimental work.

• Chapter 7: presents finite element simulation of underground high voltage power ca-
bles with original sand and developed geomaterials.
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• Chapter 8: concludes the thesis by providing a summary of outputs of the study and
recommendations for future works.
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Chapter 2

State of the art

2.1 Introduction

This chapter deals with a review of heat transfer in soil, thermal properties of soil and var-
ious factors influencing on soil thermal properties. It also briefly discusses about the mea-
surement technique and calculation (or prediction) of thermal conductivity and heat trans-
fer in the buried pipe. It reviews the current backfill materials used in the embedded power
cables.

2.2 Thermal properties of soil

Soil thermal properties are of great importance in many geo-engineering projects and energy
applications such as underground high voltage cables, radioactive waste disposal, ground
heat pumps that involve heat transfer in soil. Soil itself is complex in nature because of its
composition, structure, heterogeneity and fluid movement in soil. So, the heat transfer in
soil is very complicated. Three coupling processes i.e. thermo-hydro-mechanical (THM)
processes are developed within the system. A thorough understanding of the thermal be-
haviour of soil is essential to deal with and solve the problems related to heat transfer in
soil.

Soil thermal properties consist of thermal conductivity, specific heat capacity and dif-
fusivity. The thermal conductivity of soil is the rate at which heat transfer through a unit
thickness of the medium per unit area per unit temperature difference. It is the ability of
soil to conduct heat. A high value of thermal conductivity indicates that the soil can trans-
fer heat in a faster manner while a low value indicates it has high resistance to heat flow.
For example, water can transfer heat twenty-five times faster than air. The measurement
and calculation of thermal conductivity and factors affecting them will be discussed in next
sections 2.5 & 2.4.

Under a steady condition, the temperature at a point doesn’t vary with time. If it is
changed with time, soil itself is either gaining or losing heat depending on the heat capacity
of the element. The heat capacity, C, per unit volume of soil is defined as the heat energy
needed to raise the temperature of this unit volume by 1°C. Mathematically, it is a product
of the mass specific heat, c (J kg−1 K−1), and the density, ρ (kg m−3). The heat capacity of
three-phase soil is given by:
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C = xsCs + xwCw + xaCa (2.1)

where xs, xw, xa are volume fractions of the solid, water and air components present in
unit soil volume and Cs, Cw, Ca are their respective heat capacities per unit volume.

In an unsteady condition, the thermal behaviour of soil is governed by both thermal
conductivity and heat capacity. The ratio of the thermal conductivity and heat capacity is
termed as the thermal diffusivity, α (m2 s−1). A high value of thermal diffusivity means a
capability for fast and considerable changes in temperature. Soil may have much greater
thermal diffusivity in frozen condition than in unfrozen one because of the higher thermal
conductivity of frozen soil and the lower specific heat of the ice as compared with liquid
water. Ice has a thermal diffusivity about eight times greater than liquid water.

The thermal conductivity is a very important parameter amongst them when you deal
with heat transfer in soils. Heat transfer in soil plays an important role in many types of
problems. It will be explained next.

2.3 Heat transfer in soil

Heat as the form of energy transfers from a higher temperature region to slower one. No
heat transfer when two regions reach the same temperature. Conduction, convection and
radiation are the mechanisms through which heat can be transferred. All mechanisms need
temperature differences for heat transfer. Not only the temperature levels, the soil structure
and composition also affect the contribution of each possible mechanism to heat transfer.
Figure 2.1 shows the region of influencing mechanisms in the field according to soil texture
and degree of saturation. The numbers denoted in Figure 2.1 represent 1- thermal redis-
tribution of moisture, 2- vapour diffusion due to moisture gradients, 3- free convection in
water, 5- heat radiation.

FIGURE 2.1: Region of influencing heat transfer mechanisms with respect to
degree of saturation and soil grain size, after Farouki (1981).
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Yun and Santamarina (2007) explained particle level heat flow in granular materials as
shown in Figure 2.2. The different alphabetical character denotes different mechanism in
granular materials. They are as follows:

a. Conduction along the mineral

b. particle-fluid-particle conduction across the fluid near contacts.

c. particle-to-particle conduction across contacts.

d. fluid convection within large pores.

e. particle-fluid conduction

f. conduction along with the pore fluid within the pore space (hydrostatic and advecting
pore fluid)

It is evident that heat transfer in soil by conduction is the predominating mechanism.
Convection and radiation generally have relatively small or negligible influences but they
might have remarkable effects in certain conditions.

FIGURE 2.2: Primary particle-level heat transfer process in granular materials,
after Yun and Santamarina (2007).

2.3.1 Conduction

Conduction is a transfer of energy from more energetic particles to less energetic ones due to
interactions between the particles. Conduction occurs in all three soil constituents, i.e. solids
(soil grains), liquids (water) and gases (the pore air). It is the primary mode of heat transfer
in soils. Heat is conducted in solids in two ways: the lattice vibrational waves induced
by the vibrational motions of the molecules and the energy transported through the free
flow of electrons in the solid, while in air or water vapour, it is conducted by a process of
collision between the molecules and a consequent increase in their mean kinetic energy as
heat passes from higher temperature region to lower region. A similar mechanism is partly
responsible for heat conduction in liquid water, but energy transfer by breaking and making
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hydrogen bonds in water also contributes to heat conduction. The behaviour of liquid water
lies between that of gases and solids.

The amount of heat transferred by conduction increases with an increase in soil dry den-
sity and degree of saturation. Heat is conducted in soil through all available paths as shown
in Figure 2.2. Solid grains to solid grains provide the major path of heat conductive trans-
fer (Yun and Santamarina, 2007). Other paths available are solid grains to fluid-filled pore,
particle-fluid-particle and so on. Therefore, in this study, heat conduction is considered.

2.3.2 Convection

Convection is the transfer of energy between a solid surface and the adjacent fluid (liquid
or gas) that is in motion. It includes the combined effects of conduction and fluid motion.
The faster the fluid motion, the higher the convection. The transfer of heat between the
solid surface and the adjacent fluid in the absence of bulk fluid motion is purely conduction.
Convection is of two types, forced convection and natural or free convection. If the fluid
is forced to flow over the solid surface by external means, it is called forced convection. In
contrast, if the fluid flows freely because of buoyancy forces that are induced by density
difference due to variation of temperature in the fluid is called free convection. Convection
in soils through air or water is usually negligible. It is dominated by conduction and it
will be considered in the coarse-grained material where D50 ≥ 6mm (Yun and Santamarina,
2007). Heat transfer due to convection is not considered in this study.

2.3.3 Radiation

Radiation is the transfer of energy in the form of electromagnetic waves or photons due to
the changes in the electronic configuration of atoms or molecules. Unlike conduction and
convection, it doesn’t need the presence of an intervening medium. A body emits radiation
because of its temperature. All bodies with the temperature above 0° K emit energy accord-
ing to Stefan-Boltzmann. The temperature of the radiating body plays the most important
factor since the heat flow is proportional to the fourth power of the absolute temperature. In
this study, radiation is not considered as it makes a negligible contribution to heat transfer
in soils for the temperature below 727°C.

2.3.4 Heat transfer equation

The rate of heat conduction through a medium is dependent of geometry of the medium,
thickness and material type of the medium as well as the temperature difference across the
medium. The heat flux (q) is the rate of heat transfer (Q) per unit area (A). The area (A) is al-
ways normal to the direction of heat flow. According to Fourier’s law of heat conduction for
one-dimensional heat flow, the heat flux is directly proportional to the temperature gradient
in the direction of heat flow and expressed by the following equation:

q = −λ∇T = −λ
∆T
∆x

(2.2)
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where q (W m−2) is the heat flux, λ (W m−1 K−1) is the thermal conductivity of the
medium, ∇T is the temperature gradient, T (K) is the temperature, x (m) is the medium
thickness. Heat flows in the direction of lower temperature and the temperature gradient be-
comes negative when temperature decreases with increasing x. So, the negative sign ensures
that heat flows in the positive x-direction is a positive quantity. For a three-dimensional heat
flow, the heat flux is given by:

q = −λ

(
∆T
∆x

+
∆T
∆y

+
∆T
∆z

)
(2.3)

Equation for conservation of heat energy results in a general expression for soil heat flow
where soil temperature may vary in time and space,

ρc
∂T
∂t

= − ∂q
∂x

(2.4)

where ρ is denisty (kg m−3) of medium, and c (J kg−1 K−1) is the specific heat of medium.
Combining Equations 2.2 and 2.4 we get:

ρc
∂T
∂t

=
∂

∂x

(
λ

∂T
∂x

)
= λ

(
∂2T
∂x2

)
(2.5)

In the Equation 2.5, the terms ρc and λ can be replaced by thermal diffusivity, α (m2 s−1),
by definition and the Equation 2.6 becomes heat transfer equation for one dimensional flow.(

1
α

)
∂T
∂t

=
∂2T
∂x2 (2.6)

For three-dimensional heat flow, the heat transfer equation derived by Fourier in 1822 is
given by: (

1
α

)
∂T
∂t

=
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 (2.7)

For the transient state, the temperature changes with time. However, in steady state the
temperature doesn’t change with the time and the term ∂T/∂t becomes zero.

2.4 Factors affecting soil thermal conductivity

Soil is mainly composed of three-phases including solid phase, liquid phase and gas phase.
In cold regions, ice might present in the soil as a solid phase, but this is not considered in
this study because all the works are performed at room temperature (about 20±2oC). Solid
grains surround the pore spaces which contain either water or air and both water and air.
The solid particles are composed of mineralogy such as quartz, feldspar, etc. That’s why the
solid phase possesses the best heat conduction and has the highest thermal conductivity as
compared to both liquid and gas phases. The soil exit in nature in a certain arrangement of
the solid particles. Various changes in soil structure and therefore in porosity or density oc-
cur naturally. Soil thermal conductivity is affected by several particle-level and macro-scale
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factors such as porosity (or dry density), water content (or saturation), soil composition and
texture, soil gradation, cementation, mineralogy, effective stress and temperature (Kersten,
1949; De Vries, 1963; Johansen, 1975; Farouki, 1981; Côté and Konrad, 2005a; Lu et al., 2007;
Hailemariam et al., 2015; Dong et al., 2015). The key governing factors that control the ther-
mal conductivity of soils are thermal conductivity of soil constituent (i.e., solids or minerals,
liquid and air), soil type, water content and particle contacts (Dong et al., 2015). Other fac-
tors also significantly affect the thermal conductivity of the soils.

2.4.1 Effect of dry density and saturation on thermal conductivity

The dry density and saturation which govern the soil thermal conductivity are among the
most influential factor . An increase in either dry density or saturation increases thermal
conductivity regardless of soil types. A dry density is one of the engineering properties used
to represent the degree of denseness of soils. By definition, it is the mass of soil particles per
unit volume, while saturation is the amount of moisture contained in the soil. Sometimes
porosity instead of dry density may be used to show the variation of thermal conductivity.
As the porosity increases, the thermal conductivity of the soils decreases. Many researchers
in the past investigated the influences of saturation and dry density on thermal conductiv-
ity for different types of soil. It is also important to account for these parameters for the
development of prediction models.

An increase in dry density of soil results in an increase in the thermal conductivity due
to three factors; more solid grains per unit soil volume, less pore (or void) per unit soil vol-
ume and better heat conductive transfer between the grain contacts (Farouki, 1981). Kersten
(1949) after numerous tests found that at constant moisture content, the logarithm of the
thermal conductivity increased linearly with the dry density (Figure 2.3). The slope of the
linear relation for different water contents is approximately the same for given soil. How-
ever, the slope is different for different types of soil. It is cleared from Figure 2.3 that the
effect of dry density is independent of moisture content. In the case of dry soils, the dry
density has a particularly important effect on the thermal conductivity as it implies more
solid particles per unit volume and better thermal contacts. Estimating the thermal conduc-
tivity of dry soils is more sensible because of variations in dry density and microstructure
such as shape differences. Over the last few decades, the prediction models for dry soils has
been proposed incorporating microstructure effect, shape factors, soil types and the volu-
metric fraction of solid and pore (De Vries, 1963; Johansen, 1975; Farouki, 1981; Côté and
Konrad, 2005a; Lu et al., 2007). For example, De Vries (1963) model predicted that thermal
conductivity of dry soils increases linearly at low densities and the rate of increase becomes
more rapid as the soil solids volume fraction increases. Johansen (1975) incorporated mi-
crostructure and shape factors while proposing the thermal conductivity of dry soil. The
thermal conductivity prediction models for dry soil are discussed briefly in section 2.6.

On the other hand, an increase in dry density for fully saturated soils means that the
soil grains replace some of the water in pores. An increase in thermal conductivity is only
noticed if the thermal conductivity of a solid is higher than that of water. As clayey and
sandy soils have higher thermal conductivity than water (for sand and clay, λ is fifteen and
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(A) Sandy soils (B) Clayey soils

FIGURE 2.3: Thermal conductivity of sandy and clayey soils against dry den-
sity at constant water content, after Farouki (1981).

four times that of water, respectively), the thermal conductivity of saturated soils increases
with an increase in dry density. As sandy soils have a thermal conductivity about fifteen
times that of water because of quartz content, the rate of increase in thermal conductivity
with dry density is greater than clay soils, but this effect may not be marked. If the soil
becomes oversaturated with water (for example ocean sediments), there is a rapid decrease
in the thermal conductivity as dry density drops (Farouki, 1981). It is particularly observed
if the solid material is quartz which is being replaced by water. In case of organic soils or
peat, there will be a slight increase in the thermal conductivity despite doubling or tripling
of solid fractions since peat contains much water and thermal conductivity of peat is only
about half that of water (Farouki, 1981).

Water as a liquid phase in soil exits in three states: ice, liquid water and water vapour.
In this study, we deal with liquid water only. The amount of water in the soils is usually
expressed in one of three ways: moisture (or water) content (w), volumetric water content
(θ) or degree of saturation (Sr). Water plays a major role in determining the thermal con-
ductivity of soils. The earliest recognition was made by Patten (1909), Bouyoucos (1915) and
Beskow (1935). An increase in moisture content leads to an increase in the thermal conduc-
tivity because of mainly two factors: a) air is displaced by liquid water which has a thermal
conductivity twenty-five times higher than air and b) the presence of a small amount of
moisture improves the thermal conduction because of the formation of water bridges at the
contact points.

The effect of increasing water content depends on the soil type. It means that the rate of
increase in thermal conductivity will be different according to types of the soil. For example,
the thermal conductivity increases abruptly with moisture content in sand, while in clay it
will increase slowly. As shown in Figure 2.4, there is a high rate of increase in thermal con-
ductivity at the beginning (at lower water contents) due to the formation of water bridges at
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the contact points in case of coarse-grained soils. However, the increase in thermal conduc-
tivity at lower water content is more gradual in the case of fine-grained soils (Lu et al., 2007).
The reason behind the behaviour is that the fine-textured soils have larger surface areas and
more water is needed before water bridges are formed between solid particles. In order
to understand the effect of water on thermal conductivity, the saturation level (0-100)% is
generally divided into three regimes: a) the pendular regime Sr ≤ 0.2, characteristics by the
substantial variation in thermal conductivity with respect to Sr; b) the funicular regime Sr

= 0.2-0.7, characterized by the mild conduction changes; c) the capillary regime Sr ≥ 0.7,
characterized by no significant conduction changes. During the pendular regime, the ther-
mal conductivity of soils increases rapidly due to the reasons that the addition of water will
inevitably replace a portion of the air from the pore in soils and generate water films and
water bridges among soil particles which is beneficial for better thermal conduction as the
thermal conductivity of water is relatively higher than that of air (Farouki, 1981; Lu et al.,
2007). Further increase in moisture after this regime, will reach the funicular regime. In this
regime, the increase in thermal conductivity mainly depends on the replacement of air by
water and the soil particles are completely connected with bridges. As a result, the thermal
conductivity increases slowly or moderately. Further increase in moisture increases insignif-
icantly thermal conductivity and the maximum thermal conductivity value is reached in the
capillary regime. The moisture content corresponding to the state, where changing of the
slope of increment of thermal conductivity, is commonly known as critical moisture content,
which is shown in Figure 2.6.

The relationship between thermal conductivity and water content has been explored by
many researchers over the few decades. Kersten (1949) found that the thermal conductiv-
ity is linearly related to the logarithm of water content at a constant dry density. Johansen
(1975) introduced Kersten number, soil-type dependent parameter, to develop the relation-
ship between thermal conductivity and degree of saturation from the known values of dry
and saturated thermal conductivity. This method is very famous and followed by Côté and
Konrad (2005a) and Lu et al. (2007) later. The estimation of thermal conductivity as a func-
tion of saturation is explained in section 2.6.

Farouki (1981) found that the effect of water content on the thermal conductivity of some
kind of soil is also dependent of hysteresis i.e. whether the soil is in the process of wetting
or drying. The thermal conductivity of quartzitic gravel and sand with 8% binder is higher
during the drying process than wetting.

2.4.2 Effect of soil composition and texture on thermal conductivity

Soils are broadly classified as coarse-textured and fine-textured soils. Two noticeable effects
of texture on thermal conductivity were found by Lu et al. (2007) a) the coarse-textured soils
have higher thermal conductivity than the fine-textured soils, b) the increment in thermal
conductivity of fine-textured soils increases gradually at lower water contents as compared
to coarse-textured soils (Figure 2.4).

The thermal conductivity is affected by grain size distribution and soil type. A well-
graded soil has lower thermal resistivity (reciprocal of thermal conductivity) than other
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FIGURE 2.4: Thermal conductivity as function of volumetric water content for
coarse-textured (soil-1,2) and fine-textured (soil-5,8) soils, after Lu et al. (2007).

gradation (Figures 2.5 & 2.6). The shape and size of the particles also affect the thermal
conductivity. With a decrease in particle size, the number of contact points will increase
within a soil volume. The thermal resistance of these contact points will be much higher
than that of the internal soil particles. Therefore, heat flow through soil becomes more dif-
ficult and it results in a decrease in the thermal conductivity of soil. This is the reason that
sandy soils have higher thermal conductivity as compared to that of clayed soils as shown
in Figure 2.6. Heat transfer through soil particles mainly depends on the contact points,
especially in dry soils, because the thermal conductivity of air is extremely lower than that
of soil particles. An increase in number of contact points will help to improve the thermal
conduction of soils. Moreover, adding binders will improve thermal conduction of the soils
because of the generation of more stable soil structure. Larger particles lead to higher ther-
mal conductivity as conductive heat flow is proportional to the particle radius and inversely
proportional to the inter-contact distance. The well-graded granular soils with fine particle
fractions of 8-10% show good thermal conduction and stability (Adams and Baljet, 1968).
The addition of fine grains to uniform sized material fill the voids between the larger grains
and thus providing more solid matter per unit volume, which leads to improving the ef-
fective thermal conductivity of mixed materials (Shrestha et al., 2016; Shrestha et al., 2019).
However, an optimum amount of fine content should be determined prior to use. With a
wide range of sizes and continuous grading of grain sizes, a lower porosity or dense pack-
ing may be obtained which may have higher thermal conductivity. In addition, soil thermal
conductivity is significantly improved if the solid grains are cemented together by clay or
other cementing binders.
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FIGURE 2.5: Grain-size distribution of different soils, after Adams and Baljet
(1968).

FIGURE 2.6: Thermal resistivity (reciprocal of thermal conductivity) of dif-
ferent types of soil, after Adams and Baljet (1968) (arrows represent critical

moisture content).

2.4.3 Effect of structure on thermal conductivity

As explained earlier, heat conduction through two-phase soils depends on the thermal con-
ductivity of each phase and on the structure of the solid matrix. The structure of soils is
generally associated with the combined effect of fabric, soil composition and inter-particle
forces. The fabric represents to arrangements of particles, particle groups and pore space.
The fabric and structure of the soils are affected by the size and shape of particles and the ag-
gregation of particles with or without cementing agents. The cementing agent could be from
natural origin (calcites, silicates, etc) or industrial/artificial origin (cement, bitumen, lime).
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(A) Rounded/sub-rounded parti-
cles

(B) Angular/sub-angular parti-
cles

(C) Cemented particles

FIGURE 2.7: A schematic structure of porous media, after Côté and Konrad
(2009).

The shape of particles found in natural soil deposits could be rounded and sub-rounded
while that obtained from the manufacturing process could be angular and sub-angular.
Therefore, the structure can be divided into three categories viz: (a) rounded/sub-rounded
particles, (b) angular/sub-angular particles, and (c) cemented particles as shown in Figure
2.7. As solid to solid contact area of angular particles is greater than that of rounded parti-
cles, the thermal conductivity of crushed particles (i.e. angular) is higher than that of nat-
ural particles (rounded) (Adams and Baljet, 1968; Johansen, 1975; Côté and Konrad, 2005a;
Côté and Konrad, 2009). This contact area will increase further in the presence of bound-
ing (cementing) agent. Therefore, the thermal conductivity is generally higher in cemented
materials than in other normal materials (Smith, 1942; Woodside and Messmer, 1961; Jo-
hansen, 1975). The impact of structure on the effective thermal conductivity of two-phase
porous media increases with increasing solid/fluid thermal conductivity ratios (Woodside
and Messmer, 1961). Côté and Konrad (2009) demonstrated that the effect of structure in-
creases with decreasing fluid/solid thermal conductivity ratios and the effect is negligible
when the ratio is 1/15 (=0.0667) and higher. They proposed the relationship to determine
the thermal conductivity of two-phase porous geomaterials accounting structure parameter,
which is discussed in next section 2.6. It means the structure effect is more in presence of
air instead of water as the fluid/solid thermal conductivity ratios (λ f /λs=0.003) with air is
relatively less than that with water (λ f /λs=0.076), taking these values λs= 7.7 (W m−1 K−1),
λa= 0.024 (W m−1 K−1), λw= 0.59 (W m−1 K−1). They also observed that there will be no
significant effect of particle size and pore-size distribution effects on the effective thermal
conductivity of two-phase porous geomaterials.

2.4.4 Effect of mineralogy on thermal conductivity

As explained earlier, the solid phase of soil consists of different minerals like quartz, kaoli-
nite, feldspar, calcite, mica, etc. Therefore, mineralogy has remarkable a influence on the
thermal conductivity performance of the solid particles (Côté and Konrad, 2005a; Lu et al.,
2007). The quartz is of most important mineral in the soil as it has the thermal conductivity
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of 7.69 W m−1 K−1, which is the highest among all the soil minerals and the thermal conduc-
tivity of other soil minerals do not change considerably (i.e. around 2.0-3.0 W m−1 K−1). A
soil with high quartz contain possesses a high value of thermal conductivity (Horai and Sim-
mons, 1969). The quartz content controls the thermal conductivity of soil solids. Sand with
high quartz content has a higher thermal conductivity then sand with low quartz content.
It can be observed from Figure 2.4 that the discrepancy between soil 1 and soil 2 in terms of
thermal conductivity is obvious under the same moisture content because soil 1 has a higher
percentage of quartz content than soil 2. Johansen (1975) proposed a generalised geometric
model to estimate the thermal conductivity of soil solids based on the thermal conductivity
of quartz only. Côté and Konrad (2005a) further improved the model by proposing another
model which requires thermal conductivity of each mineral contained within the soils. This
model is only applicable and accurate than Johansen model when thermal conductivity val-
ues of each mineral present in soil are known. The method to calculate the thermal con-
ductivity of soil solids is discussed in section 2.6. However, these prediction models need
a volumetric fraction of quartz content. Accurate determination of quartz content in the
soil is very difficult and a lack of data for quartz content is another critical issue, hinder-
ing the successful application of the existing models. Consequently, the quartz content is
assumed to be equal to the mass fraction of sand (Peters-Lidard et al., 1998; Usowicz et al.,
2006; Lu et al., 2007). However, this assumption leads to an overestimation of soil thermal
conductivity (Tarnawski et al., 2009; Zhang et al., 2017). The quartz content in soils can be
experimentally determined by chemical or X-ray diffraction (XRD) methods and to a lesser
extent, by petrographic analysis. Chemical methods are generally more precise, but time-
consuming, whereas XRD techniques are more rapid but fairly accurate (Hardy, 1992). A
new approach was discussed to determine the quartz content using measured thermal con-
ductivity data which are reliable and accurate (Tarnawski et al., 2009). The approach was
reverse-modelling of quartz content from thermal conductivity data, assessing the Ke − Sr

functions against complete experimental thermal conductivity data.

2.4.5 Effect of other factors on thermal conductivity

The effects of some other factors including temperature, salt content and organic matter on
soil thermal conductivity are discussed in this section. The thermal conductivity of soils is
considerably varied with temperature since the temperature changes will affect the thermal
movement of molecules. Generally, an increase in temperature may accelerate the thermal
movement of molecules, which facilitates heat transfer through the materials. Mitchell and
Soga (2005) identified that all crystalline minerals in soils show decreasing thermal conduc-
tivity with an increase in temperature. In addition, the liquid phase and gas phase have
different responses to temperature rise in terms of thermal conduction. Specifically, the
thermal conductivity of saturated air increases markedly with an increase in temperature,
whereas the thermal conductivity of water increases slightly under the same condition. The
net effect is that the thermal conductivity of unsaturated sandy soils increases somewhat
with increasing temperature. However, some researchers reported contradictive findings
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with the above-mentioned comment. For example, Smits et al. (2013) and Hiraiwa and Ka-
subuchi (2000) measured thermal conductivity of sandy soils over a wide range of temper-
atures (5°C–75°C) and found an obvious increment in thermal conductivity with increasing
temperature of the tested samples. As explained earlier, the comment on the evolution of
thermal conduction of soils with the increasing temperature has not been unified to date,
thus, further researches are needed to explore the correlations between thermal conductiv-
ity and temperature.

The presence of salt concentration and organic matter in the soils reduces thermal con-
ductivity. An increase in organic matter and salt contents decrease the thermal conductivity
of soils (Abu-Hamdeh and Reeder, 2000). However, the concentration of salt also plays a
major role on thermal conductivity. Noborio and McInnes (1993) discovered that the appar-
ent thermal conductivity of soils decreases with an increase in salt concentrations (CaCl2,
MgCl2, NaCl or Na2SO4) from 0,1 mol kg−1 to solubility limits. On the other hand, Rooyen
and Winterkorn (1959) found that there was no noticeable effect of salt on the thermal con-
ductivity of quartz sand at high solution contents with the concentration of CaCl2 up to 0.18
mol kg−1 or with NaCl up to 0.34 mol kg−1. Globus and Rozenshtok (1989) concluded that
the quartz sand saturated with 0.25 mol kg−1 solution of KOH has lower thermal conduc-
tivity than that of quartz sand with water.

2.5 Measurement of thermal conductivity

In order to measure the thermal conductivity of the soils, two methods are mainly existed;
steady-state and transient method (Mitchell and Kao, 1978; Farouki, 1981) .

2.5.1 Steady-state method

Steady-state method includes the application of one-directional heat flow across a sample
and the observation of temperature gradient across the sample when a steady-state condi-
tion is reached (Mitchell and Kao, 1978; Farouki, 1981; Low et al., 2013; Hailemariam et
al., 2016c). It follows Fourier’s law to calculate the thermal conductivity of the sample. This
method will be more reliable and accurate if the temperature of the sample doesn’t vary with
time (McGuinness et al., 2014; Hailemariam et al., 2016c). The only limitation of the method
is that it requires a very good setup of equipment and considerable time to reach steady-state
condition. Moisture migration is another problem in the case of unsaturated soil due to the
considerable time and the relatively high-temperature difference needed to reach the steady
state. As a result, the resulting thermal conductivity would be lower than the value corre-
sponding to the average moisture content (De Vries, 1963). This method is further divided
into absolute and comparative methods (Alrtimi, 2008). In the absolute steady-state method,
the power and temperature distribution across the sample is determined directly from the
input power and temperature parameters. Guarded hot plate (GHP) test, unguarded hot
plate test, cylindrical arrangement, in-situ sphere test and heat meter test are examples of
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the absolute steady-state method. The GHP test is generally considered as accurate. How-
ever, it is quite time consuming and suitable for laboratory use. In situ, sphere test and heat
meter test are used to measure the thermal conductivity of soil in situ.

On the other hand, the comparative method uses a series of reference materials of known
thermal conductivity aligned in series with the sample (Momose et al., 2008; McGuinness
et al., 2014; Hailemariam et al., 2016c). The divided bar apparatus and the guarded com-
parative longitudinal heat flow are examples of this method. Most recently, an advanced
steady-state device was also developed to measure the vertical stress, thermal conductiv-
ity, coefficient of thermal expansion, deformation and other hydro-mechanical properties
simultaneously (Stegner et al., 2011; Sass and Stegner, 2012; Hailemariam et al., 2016b). This
device based on the principle of the divided bar apparatus has been successfully used to
measure the thermal conductivity of porous media, unconsolidated rocks, and bedding ma-
terials (Stegner et al., 2011; Sass and Stegner, 2012; Hailemariam et al., 2016c; Hailemariam
et al., 2016b) without matric suction controlled. Later, the device was modified to measure
the thermal conductivity with matric suction controlled (Hailemariam and Wuttke, 2018).

2.5.2 Transient state method

Transient method is faster and more versatile than the steady-state method and can be eas-
ily performed. This method involves the application of heat to the sample and recording
the temperature changes over time and later uses these data to determine the thermal con-
ductivity of the sample by using an analytical solution to the thermal diffusivity equation
(Mitchell and Kao, 1978; Farouki, 1981; Low et al., 2013). A thermal probe (single or dual) ,
hot wire method and transient plane source method are examples of the transient method.
A needle probe (single or dual probes) method is one of the most common and convenient
methods for measuring the thermal conductivity of soils in the laboratory or situ. This
method has been widely used for the past centuries and successfully used in many research
(Farouki, 1981; Lu et al., 2007). A needle consists of a heater producing thermal energy at a
constant rate and a thermocouple recording the temperature changes over time. The rate of
temperature changes of the probe depends on the thermal conductivity of the surrounding
medium, where it is inserted. Due to short measurement time and lower temperature dif-
ference, moisture migration will not take place in the unsaturated state (Farouki, 1981). The
theory of the probe method is based on an infinite line heat source placed in a semi-infinite,
homogeneous and isotropic medium.

According to Fourier’s law, the heat equation for one dimensional flow in the x direction
is given by:

∂T
∂t

= α
∂2T
∂x2 (2.8)

where T is temperature at time t. For cylindrical configuration, the equation 2.7 becomes

∂T
∂t

= α

(
∂2T
∂r2 +

1
r

∂T
∂r

)
(2.9)
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where r is the radial distance from the line source. Assuming heat is produced from t=0
at constant rate of thermal energy, q, per unit length of probe, the solution to above equation
gives the temperature change, ∆T, of the medium as below:

∆T =
q

4πλ

[
−Ei

(
− r2

4αt

)]
(2.10)

where Ei is an exponential integral, and λ is the thermal conductivity of the medium. For
a large value of time, the exponential integral will be approximately a logarithm function.
The temperature changes become proportional to the logarithm of time at constant k with
space and time. A plot of temperature rise against the logarithm of time gives the straight
line and the slope gives thermal conductivity of the medium according to equation 2.10.

λ =
q

4π (T2 − T1)
ln

(
t2

t1

)
(2.11)

In the probe, the device gives directly the thermal conductivity value by recording tem-
perature rise over time.

2.6 Existing thermal conductivity models

Since the measurement of thermal conductivity in the laboratory or situ is time-consuming
and difficult, several researchers have proposed different predictive models predicting ther-
mal conductivity based on several parameters such as porosity, water content, mineralogy,
particle gradation, etc. which are easily obtainable from the measurement. Accurate predic-
tion of soil thermal conductivity is very crucial to the design of geo-energy applications such
as nuclear disposal sites, energy piles, borehole thermal energy storage, ground source heat
pumps, etc. These models are further classified as theoretical or analytical, semi/empirical
and numerical models. The theoretical models are developed based on approximate models
wherein the actual soil structure is simplified in such a way as to permit a mathematical
analysis. On the other hand, the empirical models are developed directly from empirical fits
to the experimental data to establish the relationship between soil thermal conductivity and
influencing factors.

2.6.1 Theoretical prediction models

Many theoretical prediction models have been developed, basically based on the volumetric
fractions of soil constituent phases as well as the fabric of the medium in the past (Farouki,
1981; Yun and Santamarina, 2007; Abuel-Naga et al., 2008).

Some theoretical models like series and parallel are considered as boundary models and
especially used for the two-phase state. The series (Equation 2.13) model represents the
lower boundary while the parallel model (Equation 2.12) represents the upper boundary
of theoretical models. These equations are based on volumetric fraction and thermal con-
ductivity of soil constituents. In the equations, the volumetric fractions are represented by
porosity (n), which is the ratio of the pore to soil volume.



Chapter 2. State of the art 23

λparallel = nλ f + (1 − n) λs (2.12)

1
λseries

=
n

λ f
+

(1 − n)
λs

(2.13)

where, λ f (W m−1 K−1) is the thermal conductivity of fluid (for water, λw = 0.594 W m−1 K−1

and for air, λa = 0.024 W m−1 K−1 at 20oC), λs (W m−1 K−1) is the thermal conductivity of
solid particles. Series heat flow is dominant at high λs/λ f ratios, whereas parallel flow is
dominant at low λs/λ f (Farouki, 1981). These two boundaries are also called Wiener bounds
and are independent of the pore structure of the porous medium. Equations 2.13 and 2.12
corresponds to lower and upper Wiener bounds.

An average of series and parallel heat flow models is obtained by taking the geometric
mean (GM) (Farouki, 1981). The GM equation has been widely used for predicting the
thermal conductivity of various types of soils. This model is also adopted to predict the
saturated thermal conductivity and the thermal conductivity of soil solid particles. The GM
equation is given by:

λ = λn
f λ

(1−n)
s (2.14)

In case of three-phase soil, i.e. solid, liquid and air, the geometric mean method is ex-
pressed as:

λ = λ1−n
s λSrn

w λ
(1−Sr)n
a (2.15)

Maxwell (1954) developed the electrical conductivity models for a mixture of uniform
spheres dispersed at random in a continuous fluid, which can be used to calculate the ther-
mal conductivity of two-phase soils. It is famously known as Maxwell equation, given by:

λ = λs

[
λ f + 2λs + 2n

(
λ f − λs

)
λ f + 2λs − n

(
λ f − λs

) ]
(2.16)

Hashin and Shtrikman (1962) also proposed narrow boundary equations for the upper
and lower bounds of thermal conductivity. The upper HS-U and lower HS-L equations are
given below:

λU = λs +
n

1
(λ f −λs)

+ (1−n)
3λs

(2.17)

λL = λ f +
n

(1−n)
(λs−λ f )

+ n
3λ f

(2.18)

The equations (2.12 - 2.18) unless as stated can be used for both dry soils and saturated
soils with corresponding thermal conductivity of air and water, respectively. The pore is
filled by water in case of saturated soils, while it is filled by air in case of dry soils.
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FIGURE 2.8: Thermal conductivity (λ) vs porosity (n) of dry soils using theo-
retical models.

De Vries (1963) expressed that soil solid particles were uniformly distributed in continu-
ous pore fluid in soils and proposed a soil thermal conductivity model (Equation 2.19 ) for
two-phase soil according to the Maxwell equation.

λ =
∑N

i=0 Kixiλi

∑N
i=0 Kixi

(2.19)

where, xi is the volume fraction of each constituent, λi is the thermal conductivity of
each constituent and Ki is the weighting factor, depend on the shape and orientation of the
granules of soil constituent and on the ratio of the conductivities of the constituents, which
is given by:

Ki =
1
3 ∑

a,b,c

[
1 +

(
λi

λo
− 1

)
ga

]−1

; ga + gb + gc = 1 (2.20)

where, ga, gb, gc are the grain shape coefficients and usually taken as 1/3 for spherical
soil particles.

Gori and Corasaniti (2004) developed the cubic cell model to predict the effective thermal
conductivity of dry soils.

λd =

 (βd − 1)
λaβd

+
βd

λa

[
(βd)

2 − 1
]
+ λs

−1

; βd =

[
1

1 − n

]1/3

(2.21)

Yun and Santamarina (2007) also proposed the volume fraction (VF) model (Equation
2.22) and the log-model (Equation 2.23) to estimate the effective thermal conductivity of the
dry soils. Both models are based on fitting parameters.

λd = [nλs
a + (1 − n) λs

s]
1/s ; s = −0.25 (2.22)
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λd = −a ln (n) + p; a = −0.291W m−1 K−1& p = 0.026W m−1 K−1 (2.23)

Tong et al. (2009) investigated the thermal conductivity of multiphase porous media
and developed a generalized thermal conductivity model considering the effects of water
content, porosity, degree of saturation, temperature and pressure based on Wiener bound
model. The thermal conductivity equation is given by:

λ = η1(1 − n)λs + (1 − η2) [1 − η1 (1 − n)]2[
(1 − n) (1 − η1)

λs
+

nSr

λw
+

n (1 − Sr)

λa

]−1

+ η2 [(1 − n) (1 − η1) λs + nSrλw + n (1 − Sr) λa]

(2.24)

where, λs, λw and λa are the thermal conductivities of solid, water and air, respectively, n
is the porosity, Sr is the degree of saturation, η1 is the coefficient describing the pore structure
characteristic of mixture of solid and air, 0 < η1(n) < 1, η2 is the function of pore structure,
degree of saturation and temperature, 0 < η2(n,Sr,T) < 1.

Haigh (2012) derived a theoretical thermal conductivity model (Equation 2.25 ) for sands
from a three-phase soil contact unit cell. He considered the interaction among soil solid,
water and air during heat conduction in his model.

λ

λs
= 2 (1 + ξ)2{

αw

(1 − αw)
2 ln

[
(1 + ξ) + (αw − 1) x

ξ + αw

]
+

αa

(1 − αa)
2 ln

[
(1 + ξ)

(1 + ξ) + (αa − 1) x

]}

+
2 (1 + ξ)

(1 − αw) (1 − αa)
[(αw − αa) x − (1 − αa) αw]

(2.25)

x =

(
1 + ξ

2

)(
1 + cos θ −

√
3 sin θ

)
; ξ =

2e − 1
3

(2.26)

cos 3θ =
2 (1 + 3ξ) (1 − Sr)− (1 + ξ)3

(1 + ξ)3 (2.27)

where, λs is the thermal conductivity of solid, αw = λw/λs & αa = λa/λs, λa and λw are
thermal conductivities of air and water, ξ and x are the coefficients related to the thickness
of water film and degree of saturation (Sr), and e is the void ratio.

2.6.2 Semi/empirical prediction models

Semi-empirical models predict more accurately than theoretical models because of the in-
clusion of soil fabric and gradation but are usually applicable for limited types of soil under
certain given conditions. These models predict the thermal conductivity of the soils based
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on water content or saturation, porosity or dry density, mineral contents, grain-size distri-
bution, particle shape and size (Kersten, 1949; De Vries, 1963; Johansen, 1975; Farouki, 1981;
Rao and Singh, 1999; Côté and Konrad, 2005a; Lu et al., 2007). The models are developed
based on empirical fits to experimental data of natural soils.

For example, Kersten (1949) proposed an empirical relationship between thermal con-
ductivity and moisture content and dry density based on a large number of laboratory mea-
surements. For silt-clay soils,

λ = 0.1442 [0.9 log w − 0.2] 100.6243ρd (2.28)

where, λ (W m−1 K−1) is the thermal conductivity of soil, w (%) is water content, and ρd

(g cm−3) is the dry density. For sandy soils,

λ = 0.1442 [0.7 log w + 0.4] 100.6243ρd (2.29)

The proposed equations for silt-clay and sandy soils are valid only with w ≥ 7% and
w ≥ 1%, respectively. Rao and Singh (1999) improved the Kersten equation by introducing
empirical parameters to fit experimental data for different types of soil based on particle size
distribution. They established a relationship between thermal resistivity instead of thermal
conductivity and moisture content and dry density for clay type to sandy soils and then the
thermal conductivity model was derived according to the reciprocal correlation between
thermal conductivity and thermal resistivity. The proposed equation is valid only for silt
and clay with w ≥ 10% and for sand w ≥ 1% and predicts resistivity values with an absolute
difference of 10-15 % from experimental data. These models, which are developed mostly
for fine-grained soils and sands, are generally not suitable for the predicting thermal con-
ductivity of dry soils. Later, Naidu and Singh (2004) suggested one more empirical equation
for dry soils depending on dry density and soil type (i.e. silt and clays only). The proposed
relationship is only applied for fine-grained soils, not for coarse-grained soil.

Johansen (1975) proposed a concept of normalized conductivity as Kersten number to
predict the thermal conductivity of soils in unsaturated condition using logarithm function
of saturation degree. Because of the logarithm function, the model couldn’t predict the
thermal conductivity less than 10%. Farouki (1981) observed that the Johansen model was
±25% accurate when compared to the large database on the thermal conductivity of soils.

λ = (λsat − λd)Ke + λd (2.30)

Ke = C log (Sr) + 1.0 (2.31)

where, λ (W m−1 K−1) is the thermal conductivity of soil, λsat (W m−1 K−1) is the thermal
conductivity of saturated soil, λd (W m−1 K−1) is the thermal conductivity of dry soils, Ke is
the Kersten number which is a dimensionless parameter, C is a constant parameter depend-
ing on the soil types (C=0.7 & 1.0 for coarse and fine-grained soils, respectively), Sr is the
degree of saturation (in fraction).
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For the dry soils, Johansen (1975) suggested semi-empirical equations to predict the ther-
mal conductivity based on dry density and solid density of the soils. He noted that the dry
density or porosity (i.e. microstructure) was a major factor in determining the thermal con-
ductivity of dry soils. The solid particle conductivity has less effect as compared to the
microstructure effect. So, he developed two separate equations for dry natural soils and
crushed rock materials. For dry natural soils, he proposed the following equation based on
Maxwell-Fricke’s equation.

λd =
0.135ρd + 64.7
ρs − 0.947ρd

(2.32)

where, ρb (kg m−3) is the dry density of soil, ρs (kg m−3) is the soil solid density. For dry
crushed rock materials, he developed the following equation based on porosity (n) only. He
found that the thermal conductivity for crushed rock materials is higher than dry natural
soils at the same porosity.

λd = 0.039n−2,2 (2.33)

As Johansen (1975) found that variations in microstructure had little effect on the thermal
conductivity of saturated soils, he used the geometric mean (GM) equation to calculate the
thermal conductivity of saturated soil and soil solid based on the volumetric fraction of
water and solid, and quartz content and thermal conductivity of quartz, respectively.

λsat = λn
wλ

(1−n)
s (2.34)

λs = λ
q
qλ

(1−q)
o (2.35)

where, λsat (W m−1 K−1) is the thermal conductivity of saturated soil, λs (W m−1 K−1) is
the thermal conductivity of soil solid, λw (W m−1 K−1) is the thermal conductivity of wa-
ter, λq (W m−1 K−1) is the thermal conductivity of quartz mineral (λq = 7.7 W m−1 K−1), n
is the porosity, q is the volumetric fraction of quartz content and λo is the thermal conduc-
tivity of other minerals (λo=2.0 W m−1 K−1 or 3.0 W m−1 K−1 for soils with q>0.2 or q<0.2,
respectively).

Midttomme and Roaldset (1998) investigated the impact of the grain size on thermal
conductivity of quartz sands and silts and proposed an empirical relationship between the
thermal conductivity of solid and mean grain size of samples based on thermal test results
of saturated quartz sands.

λs = 0.215 log (dm) + 1.93 (2.36)

where, λs (W m−1 K−1) is the thermal conductivity of solid and dm (µm) is the mean grain
size of samples. He found that the influence of the grain sizes was more for the finer and
less for the coarse material.
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FIGURE 2.9: Thermal conductivity (λ) vs porosity (n) of dry soils using semi-
empirical models.

Gavriliev (2004) proposed a purely empirical equation for predicting the thermal con-
ductivity of dry mineral soils based on dry density (ρd) by fitting experimental data. This
equation is only valid for the mineral soils with dry density lower than 2.0 g cm−3.

λd = 0.025 + 0.238ρd − 0.193ρ2
d + 0.114ρ3

d (2.37)

Côté and Konrad (2005a) used the concept of normalized thermal conductivity, first pro-
posed by Johansen (1975), to predict the thermal conductivity of unsaturated soils, but sug-
gested a new empirical function for the Kersten number eliminating logarithm function and
enabling the equation to be used for the full range of saturation.

Ke =
κSr

1 + (κ − 1) Sr
(2.38)

where, κ is a soil texture dependent parameter with values of 4.60, 3.55, 1.90 and 0.60
for gravel and coarse sands, medium and fine sands, silty & clayey soils, and for organic
soils in unfrozen state, respectively, Sr is the degree of saturation. Côté and Konrad (2005a)
suggested an empirical relationship for estimating the thermal conductivity of dry soils and
construction materials according to soil types and particle shape. He found that the min-
eral content of solid particles had little effect on the thermal conductivity of dry soils and
therefore, developed the equation based on porosity for different types of soils.

λd = χ10−ηn (2.39)

where, χ (W m−1 K−1) and η are particle shape effect parameters depending on types of
materials with values of 1.70 (W m−1 K−1) and 1.80 for crushed rock materials, 0.75 (W m−1 K−1)
and 1.20 for natural mineral soils and 0.30 (W m−1 K−1) and 0.87 for organic fibrous soils.
For the saturated thermal conductivity, Côté and Konrad used the same GM Equation 2.34.
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However, they recommended different equations for the thermal conductivity of soil solid
based on the volumetric fraction of different minerals and their respective thermal conduc-
tivity.

λs = ∏
j

λ
xj
mj; ∑

j
xj = 1 (2.40)

where, λm (W m−1 K−1) is the thermal conductivity of rock-forming mineral j and xj is
the volumetric fraction of mineral j. They found that Johansen’s Equation 2.35 was quite
reliable for fine-grained soils and was particularly useful in the presence of quartz content.
However, the new generalized geometric mean method was very useful for rock materials
with quartz content lower than 20%.

Zhang et al. (2015) simply modified Côté and Konrad (2005a) model for sands with ex-
tremely high quartz content by suggesting new values of κ, χ and η after fitting the exper-
imental data obtained by the Thermo TDR probe method. The respective new values are
6.0, 8.12 W m−1 K−1 and 3.2, which are much greater than those in Côté and Konrad (2005a)
owing to the quartz content effect.

Balland and Arp (2005) modified Johansen (1975) model considering the effects of or-
ganic matter on thermal conductivity of soil. The proposed Kersten equation based on de-
gree of saturation and volumetric fraction of organic matter and sand with empirical param-
eters is as follows:

Ke = S
0.5(1+Vom−αbVsand−Vc f )
r

[(
1

1 + exp (−βbSr)

)3

−
(

1 − Sr

2

)3
]1−Vom

(2.41)

where, αband βb are coordination coefficients, Vsand and Vc f are volumetric fractions of
sand and coarse particles in the solid phase. They established equations to calculate the
thermal conductivity of dry soil based on thermal conductivity of solids, dry density and
specific gravity.

λd =
(aλs − λa) ρd + λaρp

ρp − (1 − a) ρd
(2.42)

where, λs (W m−1 K−1) and λa (W m−1 K−1) are thermal conductivities of solid and air,
respectively, ρd (kg m−3) is dry density of the soil, ρp (kg m−3) is particle density, and a is
dimensionless parameter with a = 0.053. Balland and Arp (2005) used the same GM Equa-
tion 2.34, proposed by Johansen (1975), to calculate the thermal conductivity of saturated
soils, but proposed another equation incorporating volumetric fraction and thermal con-
ductivity of organic matter in addition to quartz and other minerals to calculate the thermal
conductivity of solid.

λs = λVom
om λVq

q λ
(1−Vom−Vq)
min (2.43)

where, λom (W m−1 K−1), λq(W m−1 K−1), λmin(W m−1 K−1) are thermal conductivities of
organic matter, quartz and other minerals, respectively, Vom and Vq are volumetric fraction
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of organic matter and quartz content in the solid phase.
Lu et al. (2007) proposed another Kersten number equation different from Johansen

(1975) and Côté and Konrad (2005a) based on soil texture and shape. Lu et al. (2007) found
that their new model provided better prediction than Côté and Konrad model in the unsat-
urated state, especially for the fine-textured soils at lower saturation degree.

Ke = exp
{

αs

[
1 − S(αs−1.33)

r

]}
(2.44)

where, αs is a soil texture dependent parameter with values of 0.96 and 0.27 for coarse-
textured and fine-textured soils, respectively, and 1.33 is a shape parameter. Lu et al. (2007)
suggested a simple linear equation to predict the thermal conductivity of the dry soils based
on the porosity, which is valid only between porosities of 0.2 and 0.6.

λd = −aln + bl (2.45)

where, al and bl are empirical parameters with values of 0.56 and 0.51, respectively. Lu
et al. (2007) used the same Equations 2.34 and 2.35 , proposed by Johansen (1975), to predict
the saturated thermal conductivity (λsat) and soil solid thermal conductivity (λs).

Chen (2008) developed an empirical model for quartz sand based on experimental ther-
mal conductivity data obtained in the laboratory using the thermal probe method. He found
that the porosity (n) of tested sand is linearly varied with the logarithm of measured thermal
conductivity and the slope of the linear trend was affected by the degree of saturation (Sr).
He included some empirical parameters to fit experimental data and presented the equation
as below.

λ = λsat [(1 − bc) Sr + bc]
ccn (2.46)

where, bc and cc are empirical parameters withbc = 0.0022 and cc = 0.78 for quartz sands,
λsat (W m−1 K−1) is the thermal conductivity of saturated sand, which is calculated using
Equation 2.34, proposed by Johansen (1975).

Côté and Konrad (2009) assessed the impact of structure on thermal conductivity of two-
phase porous geomaterials that include natural soils, natural rock, crushed rock, cement
rock, etc. They proposed the semi-empirical equation 2.47 to determine the thermal conduc-
tivity of two-phase porous geomaterials considering the structure effect parameter, which is
denoted by κ2P.

λ =

(
κ2Pλs − λ f

)
(1 − n) + λ f

1 + (κ2P − 1)− (1 − n)
(2.47)

where, λ f & λs are thermal conductivity of fluid and solid, respectively and n is poros-
ity. They established simplified a relationship (Equation 2.48 ) between κ2P and fluid/solid
thermal conductivity ratios by incorporating empirical parameter, β, which is dependent of
λ f /λs ratio. The values of β are 0.46 for all materials when λ f /λs > 1/15 and 0.81, 0.54 &
0.34 for round/sub-rounded, angular/sub-angular, & cemented materials when λ f /λs ≤
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1/15. It is observed that the structure effect increases with decreasing λ f /λs ratio and no
structure effect on the thermal conductivity appears when λ f /λs > 1/15.

κ2P = 0.29
(

λ f

λs

)β

(2.48)

Zhang et al. (2017) expressed that the existing prediction models couldn’t predict ther-
mal conductivity for a wide range of soil types due to the gaps in measured thermal con-
ductivities between any two tested natural soils. They proposed a generalized soil thermal
conductivity model based on extensive laboratory experiments on sand, kaolin clay and
sand-kaolin clay mixtures using new Thermo-time domain reflectometry (TDR) probe. They
also used the concept of normalized thermal conductivity, first proposed by Johansen (1975),
to estimate soil thermal conductivity in the unsaturated state based on the degree of satu-
ration and quartz content. They simply modified Kersten Equation 2.38, proposed by Côté
and Konrad (2005a), based on quartz content, rather than empirical soil texture dependent
parameter (κ).

κ = 2.168 ∗ 10−5 ∗ exp
( xq

7.903

)
+ 1.252 (2.49)

Ke =

[
2.168 ∗ 10−5 ∗ exp

(
xq

7.903

)
+ 1.252

]
Sr

1 +
[
2.168 ∗ 10−5 ∗ exp

(
xq

7.903

)
+ 0.252

]
Sr

(2.50)

where, xq (%) is the quartz or sand content. In this model, the sand content is assumed
to be identical to quartz content. The thermal conductivity of dry soils (Equation 2.39),
proposed by Côté and Konrad (2005a), is further formulated based on quartz content, which
is expressed as follows:

λd =
[
1.216 ∗ 10−6 ∗ exp

( xq

6.599

)
+ 3.034

]
10[−0.003∗exp(

xq
16.452 )−1.840]n (2.51)

For saturated soils, the equation 2.34 is recalculated based on quartz content as follows:

λsat = λn
w

(
λ

xq/100
q λ

1−xq/100
k

)(1−n)
(2.52)

where λq (W m−1 K−1) & λk (W m−1 K−1) are thermal conductivities of quartz and kaolin
with assumed values of 7.5 W m−1 K−1 & 2.9 W m−1 K−1, respectively. The limitation of this
model is that it may not provide very satisfactory results when quartz content is much less
than sand content for a given type of soil.

2.6.3 Numerical models

The third approach to predict the thermal conductivity of the soil is numerical models which
include particle shape, particle distribution and orientation in space as well as material prop-
erty (anisotropy) apart from other soil properties. Finite element method (FEM), boundary
element method (BEM), fluid dynamics method (FDM), discrete element method (DEM)
and more recently lattice element method (LEM) are the techniques to calculate the effective
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thermal conductivity of the soils and other granular materials based on different systems
and configurations.

FEM has been used for particle and fibre filled composites (Kumlutas and Tavman, 2006),
polymer composites (Xu et al., 2006), the effect of the filler concentrations (Karkir et al., 2011)
to study thermal conduction in granular matter. In this method, each individual grain dis-
cretize into small particle counts. However, it is challenging to model heat transfer in granu-
lar material with a large number of particles due to an excessively large scale finite element
model resulting from the discretization of each particle. BEM method was also applied to
predict the effective thermal conductivity of packed beds and it was found that the model
showed a relatively high accuracy than others (Zhou et al., 2007). DEM is a particle-based
method in which the microstructure is modelled with regular arrays of simple shapes like
spheres, cubes or cylinders. For example, Feng et al. (2008) developed a new mathematical
algorithm in conjunction with the DEM approach, which contains many spherical particles
of different sizes, to simulate the heat conduction process in 2D space and then derived
the formula to calculate thermal conductivity. Shamy et al. (2013) also used the DEM tech-
nique to study the effect of shear-induced anisotropy on soil thermal conductivity. Choo et
al. (2012) studied the evolution of stress-related thermal conductivity of soil in DEM mod-
elling. The oversimplification of particle representation as isothermal spheres/disks loses
the mathematical rigour but is computationally efficient. Therefore, the knowledge of shape,
size, distribution and conductance of each particle is required to model heat transfer in gran-
ular materials, which is sometimes difficult and cumbersome as the packing of the granular
matter is very complex with wide ranges of size and shape, distribution and thermal proper-
ties. In order to make this complexity into a simplified way, the LEM is developed to predict
the effective thermal conductivity of the sands and modified backfill materials (Rizvi et al.,
2018; Shrestha et al., 2019). In this method, 2D and 3D simulations are conducted to anal-
yse and identify the differences resulting from model simplification. The effective thermal
conductivity is determined considering the volume and shape of each constituting portion.

2.6.4 Artificial Neural Network (ANN) models

The theoretical or analytical models are more complex which are developed from other
physical models wherein the actual soil structure is simplified in such a way as to permit
a mathematical analysis and include more calculation parameters. In contrast, the empiri-
cal models are developed directly from experimental data regression in order to establish a
relationship between soil thermal conductivity and influencing factors. These models are,
however, more specific to certain boundary conditions and only exhibit satisfactory per-
formance on certain soil types, or they are only applicable to either coarse-grained soils,
fine-grained soils or high-quartz soils. Consequently, they are unable to predict the thermal
conductivity for special designed and artificial materials. Many models include some em-
pirical coefficients to describe the impact of some soil properties on the thermal conductivity
of unsaturated soils. For example, Côté and Konrad (2005a) and (Lu et al., 2007) proposed
different values of κ and α for different soil types. The numerical approach is accurate but
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it needs very good knowledge and understanding of the methods and significant computa-
tional power. It can be said that the prediction model that is simple in application, accurate
in prediction result and applicable for all types of soil is needed for assessing the thermal
conductivity of soils effectively. Therefore, the fourth approach could be artificial neural
networks (ANNs) as a novel tool that is developed to estimate the thermal conductivity of
the soils and artificial or designed materials in dry as well as in moist case. ANN is briefly
explained in Chapter 3.

2.7 Material design under consideration of thermal conductivity

The material design is a very important aspect in the case of thermal related facilities, espe-
cially in the underground high voltage power cables, which is explained next.

2.7.1 Importance of thermal conductivity on underground high voltage power
cables

The performance and efficiency of underground high voltage cable depend on the thermal
conductivity of the medium where it is placed. The knowledge of heat transfer in cable and
soils is also required to develop the backfill materials which is used to bury the cables.

High voltage buried power cable which is alternatives to overhead power cable, needs a
proper burial. Otherwise, improper installations often can lead to cable failure due to heat
generated from the cable, though the underground cables are designed for a 30 years life.
The cables are designed to achieve a certain temperature at the full load requirement such
that no deterioration occurs to the cable insulation. For example, polymeric cables may be
allowed to rise to 90°C while oil/paper insulated cables to 85°C (Sandiford, 1981). Exceed-
ing these temperatures can lead to insulation failure and breakdowns of cable conductors.
Heat is generated in the cable due to many factors such as power losses in the conductors,
insulation power losses, sheath losses and other components of the cable system (Sandiford,
1981; Mozan et al., 1997; Afa, 2010). The ability of the backfill soil to transfer the heat de-
termines whether the cables remain cool or overheat. The thermal conductivity of the soil
where the cable is embedded usually accounts for more than 50% of the total temperature
rise of the cable conductor. Therefore, it is very essential to design the proper backfill ma-
terials and to know the thermal behaviour of soil. In order to take away the heat from the
cable to the surrounding environment for the safe and efficient operation of the cable, the
medium where it is placed should have high thermal conductivity (Drefke et al., 2015). In
fact, the better the heat dissipation, the lower the maximum temperature reached by cable,
which ultimately protects the cable failure. When the thermal conductivity of the medium
is poor, the heat is produced in the cable faster than the heat dissipates away. Therefore, the
thermal conductivity of the medium should be, in principle, higher than the surrounding
soil in a dry as well as the moist state.

Under unfavourable conditions, a significant migration of moisture away from the im-
mediate vicinity of the cable due to heat flux forms dry zones around the cable in which
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the thermal conductivity of soil is reduced to that of its dry state (Adams and Baljet, 1968;
Radhakrishna et al., 1980; Gouda, 1986; Anders and Radhakrishna, 1988). The temperature
gradient around an embedded cable, which is generated by heat losses, may induce mois-
ture migration away from the immediate vicinity of the cable. Consequently, zones of low
moisture content can develop, considerable decreasing the thermal conductivity of the soil
to well below that assumed in the design of the cable. The resulting increase in the tem-
perature gradient will cause further drying of the backfill soil and the temperature of the
cable may arise to a value far more than its safe operating level, which consequently leads
to damage or failure of the cable. The schematic diagram of the underground power cable
is shown in Figure 2.10.

FIGURE 2.10: Schematic diagram of underground power cable.

The reduction in thermal conductivity largely influences the current carrying capacity of
the underground cables (Sandiford, 1981; De León and Anders, 2008) as well as cable life
(Karahn and Kalenderli, 2011). In Figure 2.11, the current carrying capacity decreases with a
decrease in thermal conductivity. The most crucial reduction of current-carrying capacity is
noticed when the thermal conductivity is below 2 W m−1 K−1. Improving the thermal con-
ductivity of backfill soils results in 10-30 % increase in cable ampacity. The soils only have
thermal conductivity above 2 W m−1 K−1 when it is in the moist state. It means the partial
drying state or complete dry state is very crucial in the design of backfill materials. The
cable life is exponentially increased with the increase of thermal conductivity and the cable
has a comparatively larger life of 30 years at the soil thermal conductivity of 1 W m−1 K−1 as
compared to 5 years at 0.8 W m−1 K−1 (Figure 2.12). Actually, most soils have a very lower
thermal conductivity in dry states as compared to that in a saturated condition. It is due
to fact that the water bridge formed between solid particles improves the contact quality
by replacing air and water has thermal conductivity about 25 times higher than that of air.
Adams and Baljet (1968) analysed different backfill soils used for underground power cables
and found that the dry thermal conductivity data (0.2-0.5)W m−1 K−1 were extremely lower
than moist thermal conductivity. The thermal conductivity of dry soils typically ranges from
(0.07-0.5) W m−1 K−1 (Rao and Singh, 1999; Naidu and Singh, 2004; Cortes et al., 2009; Waite
et al., 2009). Therefore, the thermal conductivity of backfill materials in the dry state is more
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crucial for the best performance of underground power cables. This is the reason more at-
tention is particularly given to the dry state while designing the granular backfill materials
in this study.

FIGURE 2.11: Effect of thermal conductivity on cable ampacity of under-
ground power cable, after Sandiford (1981).

FIGURE 2.12: Effect of thermal conductivity on cable life of underground
power cable, after Karahn and Kalenderli (2011).

2.7.2 Materials used to bury underground cables

The backfill material used to bury underground high voltage power cables plays an im-
portant role with respect to the ampacity of a cable system. The selected materials, which
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are placed systematically to meet the cable guidelines and specifications, are called ’ther-
mal backfill’ or ’corrective backfill’. Besides for low-voltage power high cables, the exca-
vated materials are always replaced by thermal backfills. However, in some cases, the ex-
cavated/native soils are also used as backfill materials to avoid the additional cost incurred
by disposal of these materials in another site. But, these soils are thermally very poor as it
dries out easily under high cable loads. In the past, the backfill materials commonly used
to bury the underground power cables were natural sand, manufactured sands, or stone
screening, etc. depending on its availability. Adams and Baljet (1968) investigated the typ-
ical thermal backfills (e.g. uniform sand, manufacture sand, fine stone screening, regular
stone screening) used for underground power cables by utilities. They found that well-
graded granular materials behaved the best. Limestone screening, a by-product from rock
quarries, was particularly found to have better thermal conductivity than other materials
(Figure 2.6). They also concluded that the well-graded granular soils with a clay fraction of
8-10 % are considered as good thermal backfills. In current practice, the well-graded sands
are also widely used in many places where crushed rock products are not easily available.
It is evident that good gradation of particle size and the degree of compaction ensure high
thermal conductivity and good thermal stability (Adams and Baljet, 1968). There are some
other backfill materials like sand-gravel with cementing materials, sand with some other ad-
ditives (fly ash, bentonite), liquid soil, weak flowable concrete which have been in practice.
In recent years, fluidized thermal backfill (FTB), developed by Radhakrishna (1981) have be-
come more common. It is one of the example of controlled low strength materials (CLSM).
It is a slurry backfill composed of natural aggregate, sand, a small amount of cement, wa-
ter and fluidizer (fly ash, bentonite, or polymer ) or metal-based additives (iron ore pellets,
hematite powder, magnetite dust, or metal filling steel fibres). The fluidizer and additives
help to improve the flow and thermal properties of the backfill. The main advantage of FTB
over other granular backfills are FTB doesn’t need proper compaction and long-distance
haulage which are major tasks in the case of granular materials or stone screening. Over the
last couple of years, many commercial products like Thermocrete, Powercrete, Cable-cem
are available in the market. These products are expensive though these materials have good
thermal performance and stability.

Due to the diffusion of water vapour and the decrease of the capillary suction tension,
the excavated soils, as well as sands, tend to dry out partially when critical temperatures are
exceeded. This kind of material shows a strong decrease in thermal conductivity when dry-
ing out. The effect of moisture migration of some backfill materials on thermal conductivity
is shown in Figure 2.13. In Figure 2.13, all the materials have lower thermal conductivity
than FTB over the entire range of moisture content. FTB is good backfill material due to
high thermal conductivity in both dry and moist states. However, it is not economically fea-
sible and might have a future maintenance problem. Quality control is also needed during
mixing and installation to ensure thermal performance.

In order to enable higher current ratings of power cable by avoiding a partial drying out
of the cable trench, a wax treatment has been developed to maintain the high thermal con-
ductivity (Mitchell et al., 1981). Waxes were found to be more effective than other additives.
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FIGURE 2.13: Effect of moisture on thermal conductivity of backfill materials,
after Sandiford (1981)(FTB: Fluidized thermal backfill).

A variety of backfill treatments such as hot-mixed slack wax, cold-mixed emulsified slack
wax, and a granulated refined wax was used with crushed limestone screening and silty
clay soil.

In this study, without adding cement and applying wax treatment, the thermal conduc-
tivity of the granular materials like sand has been improved by just modifying the gradation
and adding fine materials. As said earlier, a particular focus is given on dry state as dry sand
has a thermal conductivity of about one-tenth that of moist sand. The design of materials is
explained in detail in chapter 3. The factors considering to enhance the thermal conductivity
of the soils are described next.

2.8 Factors consideration enhancing thermal conductivity

As explained in earlier section 2.4, the thermal conductivity is affected by various factors,
which are very crucial parameters to enhance the thermal conductivity of the geo-materials.
The factors which can enhance the thermal conductivity are particle shape and size, distri-
bution, mineralogy, packing density or porosity, moisture content or saturation, cementing
agent and applied pressure (Yun and Santamarina, 2007; Nasirian et al., 2015). Researchers
have found that the bigger particles, as well as gradation, can increase the thermal conduc-
tion due to good contacts between the particles (Adams and Baljet, 1968; Yun and Santama-
rina, 2007; Nasirian et al., 2015). For example, sand has a bigger size than clay or silty soil,
which leads to better heat conduction through the grains to grains and at contact points. The
inclusion of larger particles is also effective to improve conduction as conductive heat flow
is proportional to the particle radius and inversely proportional to the inter-contact distance.
Another factor with relationship to granular materials is their physical shape, whether the
material is composed of generally well-rounded particles or generally angular particles or
particles which fall more in the angular range rather than the well-rounded range. In well-
rounded particles, particles have no or few rough edges and being generally round and
smooth in shape while the shape of angular particles is predominantly not rounded and in
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fact the particles contain many sharp points or projections at their surface. It has generally
been found that granular materials like sand with predominantly angular shaped particles
are preferred rather than sand with well-rounded particles since a greater interparticle con-
tact area may be provided with angular particles as compared with rounded particles. Such
a greater interparticle contact area allows for greater interparticle thermal heat conduction.
Well graded limestone screening, a by-product from rock quarries, was particularly found to
have better thermal conductivity than other materials like well-graded sand, uniform sand
(Adams and Baljet, 1968). So, the gradation of soil is another important aspect for enhancing
thermal conductivity. With a wide size range and a continuous grading of particle sizes, a
lower porosity or a denser mix can be obtained. This kind of mix can be determined from
the Fuller gradation curves developed by Fuller and Thomson (1907), which is explained in
detail in Chapter 3. It results an increase in dry density and the number of contact points per
unit volume. This gradation is very popular in producing dense materials in concrete tech-
nology. That’s why these factors particle shape and size and gradation are interrelated to
another factor porosity or dry density, which is the most important factor to be considered.
Reducing porosity increase the thermal conductivity of the soils because the heat transfer
process was facilitated by an increase in the number of inter-particle physical contact points
as porosity reduced. Apart from fuller curve gradation, another is mixing coarse and fine-
grained soils in appropriate proportion. Minimum porosity is attained for the mass fraction
of fine particles (FRmass= 30-40%) and larger size ratio FRd = Dlarge/Dsmall (Guyon et al.,
1987; Santamarina et al., 2001). Adams and Baljet (1968) found that the well-graded gran-
ular soils with fine particles of 8-10 % have higher thermal conductivity than other normal
soils. These factors are more sensible in the case of dry soils as the thermal conductivity of
air is relatively very small than that of solid soils.

In the case of granular materials as backfill, proper compaction plays a major role to
ensure good thermal performance. In order to achieve desired maximum dry density and
optimum moisture content, compaction of backfill should be done in a proper way. Another
factor is using bonding agents like cement, bentonite, fly ash, etc. A sand or stone screening
with a small amount of cement also improve the thermal conductivity of these materials
since the solid to solid contact area is increased due to cementing agent. FTB and liquid soil
are examples of cemented stabilized sand. As said earlier, a small fraction of clay particles
in the sand also improves the thermal conductivity of sand. As an example, the sand at a
dry density of about 2 g cm−3 without binder has a thermal conductivity of 0.91 W m−1 K−1

while it is 2 W m−1 K−1 with 8% kaolin as a binder for the same moisture content less than
about 4% (Farouki, 1981).

The rock-forming minerals with higher solid thermal conductivity are another factor
to be considered (Yun and Santamarina, 2007; Nasirian et al., 2015). The quartz mineral
has the highest thermal conductivity than other rock-forming minerals. Using geomaterials
with high quartz content is another good way to enhance thermal conduction. Sand usually
posses high quartz contain than other soils. Therefore, sand or stone screening has been
commonly used as backfill materials for embedded high voltage power cables. The details
of thermal conductivity of rock-forming minerals are given in Horai and Simmons (1969).
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TABLE 2.1: Thermal conductivity of some rock-forming minerals (Côté and
Konrad, 2005b).

Mineral λ (W m−1 K−1)

Quartz 7.69
Dolomite 5.51
Chlorite 5.15
Olivine 4.57
Pyroxene 4.52
Calcite 3.59
Amphibole 3.46
Feldspar 2.25
Mica 2.03
Plagioclase 1.84
Plagioclase (labradorite) 1.53

Some of the important minerals’ thermal conductivity are presented in Table 2.1, where
quartz has the highest thermal conductivity than other minerals.

The inclusion of water also improves the thermal conductivity of the soil, which is al-
ready explained in section 2.4. The critical moisture content is important since the thermal
conductivity is reduced abruptly at the water content below this point. Another factor to
be considered is avoiding organic matter in the backfill materials since the thermal conduc-
tivity of organic matter is relatively very low than that of soil and the presence of organic
matter further reduces the effective thermal conductivity of soil.

2.9 Summary

The chapter reviewed the fundamental of heat transfer in soils and buried pipes, thermal
properties of soils and factors affecting thermal conductivity. A further discussion on mea-
surement and calculation (or prediction )of thermal conductivity was also presented. Fur-
thermore, factors that need to be considered to improve the thermal conductivity of the soil
and materials currently using as backfill materials were discussed.
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Chapter 3

State and structure of Artificial Neural
Network

3.1 Introduction

This chapter deals with background, literature review, structure and provides insight of
artificial neural network. It reviews ANN application to engineering as well as other fields
and the importance of ANN. It also provides basic knowledge about ANN architecture,
methodology and finally its advantages and limitations.

3.2 Background

As discussed earlier in chapter 2.6, predicting the thermal conductivity of soil and geomate-
rials is a very difficult and challenging task due to the dependence of thermal conductivity
on several factors. In the literature, various analytical, empirical and numerical models have
been developed for the estimation of thermal conductivity of the soils. However, most of
the available methods discussed in chapter 2.6 simplify the problem by including several as-
sumptions associated with the aforementioned factors that affect the thermal conductivity
of soils. Consequently, most of the existing methods fail to consider inherent characteris-
tics of particle behaviour contacts, microstructure, etc. In addition, the numerical models
require either the finite element (FE) or discrete element simulations to estimate the ther-
mal conductivity and these simulations are computationally intensive and time-consuming.
An alternative simple method that has shown to have some degree of success and is based
on the data alone to determine the structure and parameters of the model is needed. The
method is known as artificial neural network (ANN), which model complex and non-linear
problems where the relationship between the model variables is not known (Hunick 1992).
ANN models may be used as an alternative method in engineering analysis and predic-
tions. The main advantage of this method is that it is a powerful tool to solve non-linear
multidimensional problems. Another advantage is their ability to handle large and complex
systems with many interrelated parameters. They can simply ignore excess data that are of
less significance and concentrate instead on the more important inputs. It is comparatively
fast and accurate than other available methods.
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Over the last few years, artificial neural networks (ANNs) have been applied success-
fully in various fields of mathematics, engineering, medicine, science, economics, meteorol-
ogy and many others. It was first introduced by Warren McCulloch and Mathematician Wal-
ter Pitts in 1943 by developing simple neural networks using electrical circuits. However, re-
search into the application of ANN to real-world problems has significantly increased since
the introduction of the back-propagation (BP) training algorithm for feed-forward (FF) arti-
ficial neural network by Rumelhart et al. (1986). Therefore, it is considered a relatively new
tool in various fields. Since 1990’s, ANNs have been extensively used to solve a wide vari-
ety of real-world problems. Not only in the field of engineering and science but it has been
also used to solve problems in the economics and business sector. Predicting stock market
price (Yoon et al., 1990), classifying discriminant analysis and logistic regression (Fisha et
al., 1995), determining the employment status of workers for tax purposes (Denton et al.,
1995), estimating production costs in the automotive industry (Cavalieria et al., 2003) are
some of the examples of ANN application in the economics and business sector. Not all the
contributions of ANN in the various field can be discussed here, however, some significant
contributions in the field of engineering are discussed next.

In the case of the field of engineering and science, ANNs have been extensively used
to solve many complex engineering problems. This area can be divided into geotechnical
engineering, structural engineering, water resources and coastal engineering. In particu-
lar, ANNs have been successfully applied to many geotechnical engineering problems like
settlement of foundations, pile capacity prediction, slope stability, design of tunnels and
underground openings, liquefaction, soil permeability, hydraulic conductivity, soil proper-
ties and behaviour, site characteristics, and earth retaining structure. Goh (1995) investi-
gated the feasibility of ANNs to model the complex relationship between the seismic and
soil parameters, and the liquefaction potential. He used a simple back propagation neural
network algorithm with more input variables and found that the neural network model was
more reliable than conventional dynamic stress method. ANN model was developed for the
prediction of horizontal ground displacement induced by liquefaction (Wang and Rahman,
1999). They used a large database containing the case histories of lateral spreads observed
in eight major earthquakes to develop the ANN model. It was found that the ANN model
had a more significant improvement in the estimation of horizontal ground displacement
than the traditional multiple linear regression model. Later in 2002, they established an
ANN model for the assessment of earthquake-induced liquefaction potential training case-
history data (Rahman and Wang, 2002). The results showed that the ANN models are found
to be reasonably good prediction model when compared to predicted data with the actual
field observation data. Baziar and Nilipour (2003) proposed an ANN model to evaluate
the liquefaction potential based on Cone Penetration Test (CPT) data and concluded that
the model can find the relation between basic parameters of a multi-factor problem. How-
ever, they also recommended that the collection of more CPT data is required to impvrove
the proposed ANN model in both generalization and applicability. A computational neural
network was developed to predict the permeability of clay liners from known sets of soil
properties (Najjar and Basheer, 1996). They highlighted the advantages of computational
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neural networks over the regression models. ANN model was successfully proposed to
predict the factor of safety of a slope from various slope parameters namely slope angle,
pore-water pressure, cohesion, internal friction angle and water content (Jason and Wilson,
2018). They evaluated that the most significant parameters modifying the factor of safety
are pore-water pressure and water content from the ANN models results. They found that
ANN models were relatively accurate and could be utilized in the development of early
warning systems.

Kim et al. (2001) established ANN model for the prediction of ground surface settlements
due to tunnelling and found that the capability of making accurate predictions depends en-
tirely on the quality and quantity of data used in training the model. Shahin et al. (2002b)
developed an ANN model for the prediction of the settlement of shallow foundations on
cohesionless soils. They evaluated the effect of neural network geometry and some internal
parameters on the performance of ANN models and the relative importance of the factors
influencing settlement by performing a sensitivity analysis. They also compared the perfor-
mance of the ANN model with some of the most commonly used traditional methods and
found that ANN had significant advantages over traditional one that make them a power-
ful and practical tool for settlement prediction of shallow foundations. Nejad et al. (2009)
developed an ANN model to predict the pile settlement based on Standard Penetration Test
(SPT) data and compared it with those given by several traditional methods. It is found that
the ANN model outperforms the traditional methods and provides accurate pile settlement
predictions.

Attoh-Okine (1999) investigated the effect of learning rate and momentum term on back-
propagation neural network algorithm, which is developed for the prediction of flexible
pavement performance. He used real pavement condition and traffic data and specific ar-
chitecture. The results indicated that the learning rate of around 0.2 to 0.5 and momentum
term of around 0.4 to 0.5 provide better pavement performance prediction as an extremely
low learning rate around 0.001 and relatively high momentum term between 0.5 and 0.9
don’t provide an satisfactory results for a three-layered network.

In structural engineering, the ANN model has been successfully used for the prediction
of structural behaviour of sub-girder system, concrete strength, ultimate shear strength of
reinforced concrete (Lee et al., 2001; Lee, 2003; Mansour et al., 2004). Lee et al. (2001) con-
cluded that the ANN model can be successfully used to solve many empirical and uncer-
tainty problems including approximation structural analysis that needs both an acceptable
margin of error and fast calculation. Lee (2003) developed ANN model for the prediction
of concrete strength that provides in-situ concrete strength. For this, he used multiple ANN
architecture and found that the prediction results are well agreed with 90 cases of actual re-
sults from cylinderical concrete strength test. Another application of ANN is to successfully
predict the ultimate shear strength of reinforced concrete beams with transverse reinforce-
ment within the range of input parameters being investigated (Mansour et al., 2004).

Simulation of an industrial wastewater treatment plant (Gontarski et al., 2000), and pre-
diction of water quality parameters (Holger and Graeme, 1996) are examples of ANN appli-
cation to the area of water resources engineering. Holger and Graeme (1996) reviewed the
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difference between traditional forecast methods, like time series and physically based mod-
els and ANN models. They applied the ANN model for forecasting salinity in the River
Murray at Murray Bridge, South Australia and concluded that the ANN model was a more
useful tool for forecasting salinity in the river despite having difficulty in determining the
appropriate model inputs. Later, they improved the model by investigating the relative
performance of various training algorithms using feed-forward network model for forecast-
ing salinity (Holger and Graeme, 1999). Zhang and Stephen (1999) found that the ANN
model, which forecasts the raw-water quality parameter for the North Saskatchewan River
in Canada, is a fast and flexible way to include multiple input and output parameters into
one model. Benning et al. (2001) used the ANN model and a conventional numerical method
to investigate initial studies for modelling flow fields and concluded that ANN had advan-
tages in fluid fields, such as shortening the computation time. ANN models have been also
successfully applied in forecasting tidal level in the ocean using short-term tidal data (Lee
and Jeng, 2002; Lee et al., 2002).

Chauhan et al. (2016b) applied seven different machine learning algorithms including
ANN to study phase segmentation and analysis of Tomographic Rock Images. It was a
classification problem and the problem was solved by using Levenberg-Marquardt back-
propagation method and the network was the feed-forward network (FFN). The research
showed that the porosity values obtained from seven machine learning techniques are in
good agreement with the experimental results. For the ANN, the accuracy was up to 97%.
While investigating the performance and accuracy of different machine learning algorithms,
the classification performed by ANN was good despite of low accuracy i.e. high MSE error
(Chauhan et al., 2016a).

ANNs are also applied for predicting the thermal resistivity of soils from different soil
parameters (Erzin et al., 2010; Bian et al., 2015; ApalooBara et al., 2019). Two ANN mod-
els namely Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks were
developed to predict soil electrical resistivity from meteorological data (ApalooBara et al.,
2019). They found that MLP has the best result compared to the RBF. ANN model was suc-
cessfully proposed to predict the electrical resistivity of fine-grained soils from three basic
soil parameters like water content, porosity and degree of saturation, which were obtained
by different laboratory tests (Bian et al., 2015). Erzin et al. (2010) employed ANN models
for estimating the soil electrical resistivity based on its soil thermal resistivity and the de-
gree of saturation. It was found that ANN models yield better results as compared to the
generalized relationships proposed by the earlier researches.

Regarding the prediction of the thermal conductivity of the soils using ANN, compara-
tively a very few studies have been done to date (Erzin et al., 2008; Singh et al., 2011; Grabar-
czyk and Furmanski, 2013; Mishra et al., 2017; Zhang et al., 2020a). In the literature, ANN
has been used for predicting the thermal conductivity of heterogeneous materials such as
food, textiles and rocks (Fayala et al., 2008; Sablani et al., 2002; Singh et al., 2007; Scott et al.,
2007; Sablani and Rahman, 2003). Fayala et al. (2008) developed an ANN model to predict
the thermal conductivity of a knitting structure from the input parameters such as poros-
ity, air permeability, yarn conductivity and weight per unit area. ANN modelling has been
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successfully applied to the prediction of the thermal conductivity of pistachio (Chayjan et
al., 2007), fruits and vegetables (Hussain and Rahman, 1999) and bakery products (Sablani
et al., 2002). The thermal conductivity of sedimentary rocks from a set of geophysical Well
logs was also predicted using ANN. Grabarczyk and Furmanski (2013) successfully applied
ANN modelling to predict the effective thermal conductivity of dry granular media as a
function of the ratio of thermal conductivity of solid grains (discontinuous phase) to fluids
(either liquid or gas), porosity and coordination number. Based on the ANN approach, the
unified thermal conductivity model was developed to determine the relationship between
the thermal conductivity of soils and its influence factors including dry density, porosity,
saturation degree, quartz content, sand content and clay content (Zhang et al., 2020a). Their
ANN models considered the effects of various influence factors on the thermal conductivity
of soils in a quantitative and systematic way. Erzin et al. (2008) reported that the thermal
resistivity of different types of soils obtained from ANN models was found to be superior
while comparing with those computed from the empirical thermal conductivity models.
The ANN models were developed based on influencing factors such as types of soils, parti-
cle size distribution, dry density and moisture content. Singh et al. (2011) developed ANN
models with different combinations of training functions and activation functions based on
the volume fraction of filler and the ratio of thermal conductivity of the constituents as in-
put parameters and found that the effective thermal conductivity of moist porous materials
predicted by ANN models had very good agreement with the available experimental data.

3.3 Architecture of ANN

An artificial neural network is a form of artificial intelligence (AI), which attempts to simu-
late the biological structure of the human brain and nervous system. The biological neural
network is the mechanism through which the human’s nervous system functions, leading
complex tasks to be performed instinctively. The central processing unit of the nervous sys-
tem is called a ’neuron’ or ’cell’. The human brain consists of billions of interconnected
neurons which transmit information from one to neighbouring neurons. The neurons them-
selves have no storage capability. These neurons are connected to each other by ’Synapses’.
The human brain has around a trillion of Synapses. These connections control the human
body and its abilities like identification, thinking, and applying previous experiences to ev-
ery action. Figure 3.1 shows the relationship of a single neuron of the brain to its four basic
elements, known by their biological names: dendrites (Input), soma (Process), axon (Turn
input into output) and Synapses (Contact each neuron). The axon is the output path of a
neuron that branches out through axon collateral which in turn connect to the dendrites or
input paths of neurons through a junction or a gap known as the synapse. In short, ANN
attempts to simulate the learning process of the human brain. They operate like a ’black
box’ model that requires no detailed information about the system. Instead, ANN models
learn the relationship between the input parameters and the controlled and uncontrolled
variables by studying old data. A biological neuron is so complex that even current super-
computers cannot model a single neuron. Therefore, researchers have simplified neuron
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models in designing ANNs. The single neuron of the brain with its elements can be com-
pared with a schematic diagram of single layer feed-forward neural network architecture as
shown in Figure 3.2. The basic unit of ANN is simulated from the biological model but is
much simpler.

FIGURE 3.1: Structure of single neuron in brain.

FIGURE 3.2: Structure of single layer feed- forward ANN model.

Similarly, ANN is a computing system made up of highly interconnected processing ele-
ments (PEs) which process the information through their dynamic state response to external
inputs. These elements are known as ’neurons’ or ’nodes’ which are usually arranged in
layers. ANN consists of basically single or multi-layers neural networks: input and output
layers for single layer; input, hidden and output layers for multi-layers. The typical struc-
ture of single layer feed-forward network is shown in Figure 3.2, where Xi represents input
parameters, and Z is output in the output layer. The purpose of each layer is

• input layer: receives information from an external source, and passes this information
to the successive layers (networks) for processing.

• hidden layer(s): are the layers between input and output layers, which are not acces-
sible from the outside of the neural network. It receives information from the input
layer and processes the information within the network. Depending on the problem
being investigated, the number of hidden layers will be defined.
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• output layer: receives processed information from the previous (hidden) layers and
transmits the results as output.

A connection medium that connects each neuron in a given layer to all the neurons in
the next layer is known as weight (W). This connection can deliver the calculation results to
the next layer completely. The input parameters (X) will be processed in neurons to get the
outputs (Y) by using the following equation:

Yi = Fi
(
∑ WiXi + bi

)
(3.1)

where, W is the weight connecting neurons, b is bias (or threshold value) of neurons,
and F is the activation function (or transfer function) of neuron. There are various types of
activation functions, such as linear function, threshold (step) function, and sigmoid func-
tions (Haykin, 1999). These activation functions are explained in the next section 3.3.1. The
number of neurons in input layer and output layer is decided by several input variables
and output, whereas the number of neurons in hidden layers and the number of hidden
layers depend on the complexity of the problems and is decided based on trial and error. In
Equation 3.1, the inputs are multiplied by their specified connection weight and the product
is added to bias and then the activation function is used to generate output. This equation
indicates that the information with a greater weight has a greater effect. Finally, the values
from the output layer will be compared with known values. When the error (the difference
between the output and the known values) is larger than the tolerance level, the weight fac-
tors are adjusted through the repeated training until the error is within an acceptable range.
In this way, the network learns from input data and use these data to adjust weight in or-
der to capture the relationship between the model input and corresponding outputs. This
process is known as the learning rule, which is explained in section 3.4.5. Consequently,
ANNs don’t require any prior special knowledge about the nature of the relationship be-
tween input and output variables, which is one of the advantages of ANN over empirical
and analytical methods. ANNs also perform their tasks simultaneously which makes them
very fast.

3.3.1 Transfer function

A transfer function, also known as the activation function, convert a summation of the
weighted inputs of the neuron to output. It is required in every node of the network and
determines the behaviour of the node. The output is set at one of two levels, depending on
whether the input is greater or less than some threshold value. Without transfer function,
the whole neural network could be linear function and couldn’t learn non-linear relation-
ships. The transfer functions at neurons in the hidden layers are often non-linear and pro-
vide the non-linearities for the network. It maps any real numbers into a domain normally
bounded by 0 to 1 or -1 to 1. There are a variety of these functions. The most commonly used
functions are the linear function, the threshold function, the log-sigmoid function and the
tanh-sigmoid function. The selection of the transfer function depends on the application. In
this study, the tanh-sigmoid and linear function have been used.



Chapter 3. State and structure of Artificial Neural Network 47

The linear transfer function (Figure 3.3) is a simple function that will not alter the output
in the network. Hidden layers become ineffective when they have an activation function
as linear activation function. It is normally used in the input and output layer. The output
range of this function lies between -∞ to ∞ and the equation is given by

f (x) = x (3.2)

FIGURE 3.3: Linear activation function, range (-∞,∞).

The threshold transfer function computes only 1 and 0 as shown in Figure 3.4. It reflects
a sort of "all-or-nothing" ability with a neural network. This activation function was used by
a perceptron model, the early ANN model. The function is given by

f (x) =

{
1, if x ≥ 0

0, if x < 0
(3.3)

FIGURE 3.4: Threshold activation function, range (0,1).

Sigmoid functions are the most common transfer functions used in ANN models. The
sigmoid functions are continuous, real-valued functions whose domains are the reals, whose
derivates are always positive and whose range is bounded (Masters, 1993). The shape of
the function has little effect on a network although it can have a significant impact on the
speed of training (Masters, 1993). These functions can never reach their theoretical limit
values and the values that are close to the limits should be considered as reaching those
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values. For example, the log-sigmoid function has a limiting value of 0 to 1, a neuron should
be considered to be fully activated at values around 0.9 and 0.1. Logistic and hyperbolic
tangent(tanh) are examples of sigmoid functions.

Log-sigmoid transfer function converts the sum of weighted input into the output in the
range of 0 to 1. It makes a very soft transition as shown in Figure 3.5. It will be given by the
following equation.

f (x) =
1

1 + e−x (3.4)

It remains the most commonly applied in ANN models due to ease in computing its
derivative: f’(x) = f(x)(1-f(x)).

FIGURE 3.5: Log-sigmoid activation function, range (0,1).

Tanh (tangent hyperbolic)-sigmoid transfer function can give a negative output (Figure
3.6 ). The output of the function lies in the range of (-1,1). The function represents as follows:

f (x) =
ex − e−x

ex + e−x (3.5)

FIGURE 3.6: tanh-sigmoid activation function, range (-1,1).

3.3.2 Types of network

There are generally three fundamentally different classes of networks based on the struc-
ture of network: single layer feed-forward, multi-layer feed-forward and recurrent neural
network (Haykin, 1999) .
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• Single layer feed-forward network: The network is called feed-forward because the
information is processed from input to output. A single layer feed-forward network
(SLFFN) has a single layer of artificial neurons (input layer) and it processes to out-
put layer in the forward direction (Figure 3.7 ). The main disadvantage of SLFFN is
the disability of solving non-linear functions or problems. The complexity of a single
layer network is not big enough to solve greater categorization problems. In order to
solve these problems, more layers have to be created in the network. This network is
commonly referred as a multi-layer feed-forward network.

FIGURE 3.7: A typical single-layer feedforward ANN architecture.

• Multi-layer feed-forward network: When hidden layers are added to a single layer
neural network, it becomes multi-layer feed-forward network (MLFFN). Therefore, it
consists of an input layer, hidden layer(s) and output layer. Figure 3.8 shows the typ-
ical MLFFN, where Yi and Yj are the neurons in hidden layers. This kind of network
is mostly used to solve much more difficult and complex problems. The hidden layers
allow the network to extract features from the input. The neural network with a single
hidden layer is known as a shallow neural network or vanilla neural network, whereas
with more than a single layer is known as a deep neural network. This classification
came from the historical background of development. The neural network started as
a single-layer neural network and evolved to the shallow neural network, later fol-
lowed by the deep neural network. In the layered network, the information enters the
input layer, transmits through the hidden layers, and leaves through the output layer.
During the process, the information advances layer by layer. The nodes or neurons on
one layer receive the information simultaneously and send the processed information
to the next layer at the same time. The number of neurons in input and output lay-
ers is decided according to the number of input variables and outputs, respectively.
However, the optimum number of the hidden layers and neurons in hidden layers
has to be chosen on a trial and error basis because of no standard rules or theories
in determining the number of neurons, but sometimes depends on the complexity of
the problems. There are some thumb rules which select the number of neurons in the
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hidden layers suggested by various ANN researchers which will be elaborated in next
section 3.4.3.

FIGURE 3.8: A typical multi-layer feedforward ANN architecture.

• Recurrent neural network: It is similar to the feed-forward neural network, the only
difference is that it has at least one feedback loop as shown in Figure 3.9. This feedback
connection propagates the outputs of nodes or the network back to the inputs layers
or nodes to carry out repeated computations. An input presented in the recurrent
network at time ’t’ will affect the output of the network for future time steps greater
than t. Therefore, the RNN has to be operated over time.

FIGURE 3.9: A typical Recurrent network architecture.

3.4 Training of the ANN model

An ANN has to be configured in a way that the application of a set of inputs produces de-
sired set of outputs. The propagation of information starts from the input layer where the
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input parameters are presented. The network adjusts its weight on the basis of the training
data set and uses a learning rule to find a set of weights that produce input/output results
that has the possible lowest error. This process is called learning or training, which attempts
to capture the relationship between the model input variables and the corresponding out-
puts. The output will be processed using Equation 3.1. The philosophy of ANN modelling
is quite similar to conventional statistical models in the way that both try to capture the
relationship between the historical set of model inputs and corresponding outputs (Shahin
et al., 2001). It is very easy to understand from this example given by Shahin et al. (2001).

Let’s assume a set of input variables, x and corresponding output values, y in 2D space,
where y = f(x) where ’f’ is an unknown function that is needed to find. In a linear regression
model, the function ’f’ will be obtained by adjusting the slope (m) and intercept (c) of the
straight line equation (y = mx + c) (Figure 3.10a) so that the error between the known outputs
and outputs obtained from a straight line is minimized. The same principle is used in ANN
models. ANNs can set a simple linear regression model by having one input, one output and
no hidden layer nodes with a linear activation function such as a single layer network with
x, y and w as input, output and weight, respectively (Figure 3.10b ). The connection weight
’w’ and threshold ’b’ in the ANN model are equivalent to the slope (m) and intercept (c) of
the linear regression model. ANN adjust the weight using input data in order to minimise
an error between the known outputs and outputs predicted by the ANN model.

(A) (B)

FIGURE 3.10: Linear regeression model (a) Vs. ANN models representing
linear regression model (b).

If the relationship between x and y is non-linear, a regression analysis can only be suc-
cessfully applied if prior knowledge of the nature of the non-linearity is known. In contrast,
this prior knowledge of the nature of the non-linearity is not necessary for ANN models as
the degree of non-linearity can be easily addressed by changing the transfer function and
the number of hidden layer nodes. Thus the ANN models can be used to deal with complex
and highly non-linear problems. In addition, ANN models can be upgraded from univariate
to multivariate by extending the number of input nodes.

The performance of the trained model will be validated using independent testing set
after accomplishing the training step of the model. Once the structure of ANN is designed,
it is necessary to adjust the weights and bias values of its neuron. This adjustment process is
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known as training and three kinds of training are available, supervised, unsupervised, and
reinforcement training.

3.4.1 Types of Training

Supervised training

It is so far the most common type of training in ANNs. Both inputs and outputs are known
in supervised training, where the actual output of ANN is compared to the desired output,
therefore it attempts that desired solution is known for the training sets. This method also
tries to minimise the current errors of all processing elements. Such a global error reduc-
tion is created over time by continuously adjusting the input weights until an acceptable
network accuracy is reached. Most representative supervised training algorithms use the
back-propagation algorithm, which has been used since it was first introduced by Rumel-
hart et al. (1986). Supervised training has been used in this study.

Unsupervised training

In contrast, the training data of unsupervised training contains only inputs and no correct
output data set (i.e. the outputs are unknown). Indeed the underlying structures in the data
or correlations between the patterns in the data are investigated and organised into cate-
gories. This method is especially useful and applicable when the solutions are not known.
It is not as popular as supervised training and has not been used in this study and hence
will not be considered further.

Reinforced training

It is a hybrid learning method in which no desired outputs are given to the network, but the
network is set if the computed output is going in the correct direction or not. It is not used
in this study and hence will not be considered further.

3.4.2 ANN Parameters

Learning rate

Learning functions mostly have some term for a learning rate, which is positive and lies
between 0 and 1. It determines how much the weight is changed per time during training.
If small values of the learning rate are selected, more time is needed in training an ANN
but it tends to decrease the chance of overshooting the optimal solution and thus the results
will be more stable. At the same time, they increase the likelihood of becoming stuck at
local minima. The training takes less time with a faster learning rate, but the accuracy of the
results will be not good. However, several other factors can play a role in determining how
long it will take to train a network such as network complexity (size of the network), size
of data, network architecture and type of learning rule. The adaptive learning rate varies
according to the amount of error being created. The larger the error, the smaller the values
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and vice-versa. Therefore, if the ANN is processing towards the optimal solution it will
accelerate, while it will decelerate when it is heading away from the optimal solution.

Momentum

Momentum is one of the methods to adjust the weights. The benefits of using this kind
of weight adjustment formula are to keep higher stability and faster speeds in the training
process of the neural network. The momentum value determines how much of the previous
corrective term should be remembered and carried on in the ongoing training. The larger
the momentum value, the more emphasis is placed on the current correction term and the
less on previous terms. It serves as a smoothing process that ‘brakes’ the learning process
from heading in an undesirable direction.

Input noise

Random noise is used to perturb the error surface of the neural net to jolt it out of local
minima. It also helps the ANN to generalize and avoid curve fitting.

Training and testing tolerances

The training tolerance is the amount of accuracy that the network is required to achieve
during its learning stage on the training data set. The testing tolerance is the accuracy that
will determine the predictive result of the ANN on the test data set.

3.4.3 Data Selection

ANN models have to be developed in a systematic way to improve the performance of the
model. In order to achieve this, determination of adequate model inputs, data division and
pre-processing, set up of network architecture, selection of ANN parameters that control the
optimization method, stopping criteria and model validation are major steps.

The selection of data input variables is also an important step to develop the good ANN
models. Normally, the input variables that have the most significant influence on the model
output will be selected. However, a large number of input variables may increase the net-
work size, resulting in a decrease in processing speed and a reduction in the efficiency of the
network. Various techniques have been recommended in the literature to solve this condi-
tion. But, this is not the case in this study as there are no more variables and the selection
of variables are selected based on prior knowledge. One approach available in the litera-
ture can be used to find which input variables have more influence on the model output.
The method includes training of many neural networks with different combinations of in-
put variables and selecting the network with the best performance (Goh, 1995; Najjar and
Basheer, 1996). Another useful technique is to employ a genetic algorithm (GA) to find the
best sets of input variables (NeuralWare, 1997).
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Data division

While training the ANN model, the model might tend to memorization rather than general-
ization because the number of degrees of freedom of the model is large compared with the
number of data points used for training (Shahin et al., 2002b). Consequently, a separated
validation set is required to ensure that the model can generalize within the range of the
training data. That’s why it is common practice to divide the available data into groups
namely training and validation sets (Twomey and Smith, 1997; Maier and Dandy, 2000) .
The training set is used to build a neural network model while an independent validation
set to assess the model performance in the deployed environment. However, dividing the
data into only two subsets may lead to model overfitting. Overfitting makes multi-layer
neural networks begin to memorize training patterns rather than generalization to the new
data (Banimahd et al., 2005). In order to overcome this problem, another method for the
data division, a cross-validation technique (Stone, 1974) has been used for developing ANN
models (Erzin et al., 2008; Zhang et al., 2020b; Shahin et al., 2002b). This is also one of the
methods of stopping criterion to decide when to stop the training process (Shahin et al.,
2002b). It is the most valuable tool to ensure overfitting does not occur.

In the cross-validation technique, the training data are divided into three sets viz. Train-
ing set, Testing set and Validation set. The training data is utilized to adjust the weights
of networks to reduce error (MSE) and the updating process is monitored by the error of
validation data (Figure 3.11 ). The training will not stop until the error of validation data
in the validation set begins to increase, at which point the model generalization is consid-
ered to reach its best stage. Finally, the performance of developed networks is evaluated by
feeding the testing data into it. The overall process is shown in Figure 3.12. Therefore, the
cross-validation technique is used for developing ANN models in this study.

FIGURE 3.11: Behaviour of MSE with overtraining in Crossvalidation tech-
nique.

There is no proper way to find the proportion of data to be used for training, testing and
validation. Shahin et al. (2004) investigated the impact of the proportion of data to find the
optimal proportion of the data used for training, testing and validation and found no clear
relationship between the proportion of data and model performance. They recommended
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FIGURE 3.12: Cross validation technique process.

using 20% of data as a validation set and the remaining data were divided into 70% for
training and 30% for testing which gave the best result. Some of the researchers also used
70:15:15 as training, testing and validation set. This method is acceptable when you have
enough data to distribute into three subsets. In many situations, the data available are small
enough to distribute data into training, testing and validation. In order to overcome this
situation, Masters (1993) proposed the ’leave-k-out’ method which involves holding back
a small fraction of the data for validation and using the remaining data for training. After
training, the performance of the trained model has to be evaluated with a validation set.
Then, a different small subset of data is held back and the network is trained and tested
again. This process is repeated many times with different subsets until an optimal model
can be achieved from the use of all available data.

In the majority of ANN applications in geotechnical engineering, the data are distributed
into their subsets on an arbitrary basis. However, recent researches show that the way the
data are distributed may have a significant influence on the results obtained (Tokar and
Johnson, 1999). Since ANNs have difficulty extrapolating beyond the range of the data used
for calibration, all of the patterns that are contained in the available data need to be included
in the calibration set in order to develop the best ANN model. As an example, if the avail-
able data contain extreme data points that were excluded from the calibration data set, the
model cannot be expected to perform well, as the validation data will test the model’s ex-
trapolation ability and not its interpolation ability. If all of the patterns that are contained
in the available data are contained in the calibration set, the toughest evaluation of the gen-
eralization ability of the model is if all the patterns (and not just a subset) are contained in
the validation data. In addition, if the cross-validation technique is used as the stopping cri-
terion, the results obtained using the testing set have to be representative of those obtained
using the training set, as the testing set is used to decide when to stop training i.e. which
model architecture or learning rate is optimal. Consequently, the statistical properties (e.g.
mean and standard deviation) of the various data subsets (e.g. training, testing and valida-
tion) need to be similar to ensure that each subset represents the same statistical population
(Masters, 1993). If this is not the case, it may be difficult to judge the validity of ANN models
(Maier and Dandy, 2000).

Many researchers have used the ’ad-hoc’ method to ensure that the data used for cali-
bration and validation have the same statistical properties (Braddock et al., 1998; Tokar and
Johnson, 1999; Ray and Klindworth, 2000). Masters (1993) also strongly confirms the above
strategy of data division. Masters (1993) used a genetic algorithm (GA) to minimize the
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difference between the means and standard deviations of the data in the training, testing
and validation sets. While this approach ensures that the statistical properties of the various
data subsets are similar, there is still a need to choose which proportion of the data to use
for training, testing and validation. In order to solve this, a self-organizing map (SOM) was
used to cluster high dimensional input and output data in two-dimensional space and di-
vided the available data so that values from each cluster are represented in the various data
subsets (Kocjancic and Zupan, 2000; Bowden et al., 2002). This method ensures that data in
the different subsets are representative of each other and has the additional advantage that
there is no need to decide what percentage of the data to use for training, testing and valida-
tion. The major drawback of this method is that there are no guidelines for determining the
optimum size and shape of the SOM, which can significantly impact the results obtained, as
the underlying assumption of the approach is that the data points in one cluster provide the
same information in high-dimensional space. However, if the SOM is too small, there may
be significant intra-cluster variation. Conversely, if the map is too large, too many clusters
may contain single data points, making it difficult to choose representative subsets. To over-
come the problem of determining the optimum size of clusters associated with using SOMs,
a data division approach that utilizes a ’fuzzy clustering’ technique was proposed so that
data division can be carried out in a systematic manner (Shahin et al., 2004).

Data pre-processing

Once the available data have been divided into their subsets (i.e. training, testing and vali-
dation), it is important to pre-process the data in a suitable form before they are applied to
the ANN as data pre-processing is necessary to make sure all variables receive equal atten-
tion during the training process (Maier and Dandy, 2000). Moreover, data pre-processing
usually, accelerate the learning process. Pre-processing can be in various forms such as data
scaling, normalization and transformation (Masters, 1993). Scaling the output data is essen-
tial, as they have to be commensurate with the limits of the transfer functions used in the
output layer (For example, output data between –1.0 to 1.0 for the tanh-sigmoid transfer
function and 0.0 to 1.0 for the log-sigmoid transfer function). Scaling the input data is not
necessary but it is almost always recommended. In some cases, the input data need to be
normally distributed in order to obtain optimal results. Normalization is done to ensure that
there is no effect of input units and get equal attention during the training process.

3.4.4 Determination of ANN architecture

Determining the network architecture is one of the most important and difficult tasks in
ANN model development, which involves the selection of the optimum number of layers
and the number of nodes in each of these. There is no unified approach or standard rule or
theories for the determination of an optimal ANN architecture. It is generally achieved by
fixing the number of layers and choosing the number of nodes in each layer on a trial and
error basis. It has been shown that one hidden layer is sufficient to approximate any contin-
uous function provided that sufficient connection weights are given. (HechtNielsen, 1989)
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showed that a single hidden layer of neurons using a sigmoid activation function is suffi-
cient to model any solution surface of practical interest. On the contrary, some researches
noted that there are many solution surfaces that are extremely difficult to model using a
sigmoidal network using one hidden layer and recommended that the use of more than one
hidden layer provides the flexibility needed to model complex functions in many situations
(Flood and Kartam, 1994; Chester, 1990). According to Chester (1990), the first hidden layer
is used to extract the local features of the input patterns while the second hidden layer is
useful to extract the global features of the training patterns. However, Masters (1993) stated
that using more than one hidden layer often slows the training process dramatically and
increases the chance of getting trapped in local minima.

The number of nodes in the input and output layers is decided by the number of model
inputs and outputs, respectively. As said earlier, there is no direct and precise way of deter-
mining the best number of nodes in each hidden layer. A trial-and-error procedure, which
is generally used in geotechnical engineering to determine the number of hidden layers and
neurons in each hidden layer can be used. The neural networks with a large number of
free parameters (connection weights) are more subject to overfitting and poor generaliza-
tion (Masters, 1993). Consequently, keeping the number of hidden nodes to a minimum is
always better which provides satisfactory performance because of following reasons:

• It reduces the computational time needed for training;

• It helps the network achieve better generalization performance;

• It helps avoid the problem of overfitting and

• It allows the trained network to be analyzed more easily.

For single hidden layer networks, there are a number of rules-of-thumb to obtain the
best number of neurons in the hidden layer.

• First approach is to assume the number of hidden nodes to be 75 % of the number of
input units (Salchenberger et al., 1992).

• Second approach suggests that the number of hidden nodes should be between the
average and the sum of the nodes in the input and output layers (Berke and Hajela,
1991).

• A third approach is to fix an upper bound and work back from this bound. It was
suggested that the upper limit of the number of hidden nodes may be taken as (2I+1)
in a single hidden layer network, where I is the number of inputs (HechtNielsen, 1989;
Azoff, 1994).

• The best approach was to start with a small number of nodes and to slightly in-
crease the number until no significant improvement in model performance is achieved
(Nawari et al., 1999).
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For networks with two hidden layers, the network topology or architecture with the
geometric pyramid shape can be used (Nawari et al., 1999; Shih, 1994). The notion behind
this method is that the number of nodes in each layer follows a geometric progression of
a pyramid shape, in which the number of nodes decreases from the input layer towards
the output layer. It means the network should have the greatest number of neurons in the
initial layers and fewer in the later layers. The number of neurons in each layer should be a
number from mid-way between previous and succeeding layers to twice the number of the
preceding layer. For example, a network with 12 neurons in its previous layer and 3 neurons
in the succeeding layer should have 6 to 24 neurons in the intermediate layer.

Another way of determining the optimal number of hidden neurons is to relate the num-
ber of hidden nodes to the number of available training data. This method can result in good
model generalization and avoid over-fitting. Researchers suggested a number of thumb
rules to related the training data to the number of connection weights. For example, the
required minimum ratio of the number of training data to a number of connection weights
should be 2 and the minimum ratio of the optimum training data to the number of connec-
tion weights should be 4 (Masters, 1993). Other researchers recommended that this ratio
should be 10 (Hush and Horne, 1993) and at least 30 to avoid overfitting (Amari et al., 1993).
No specific ratios were found by either researcher. It could depend on the complexity of the
problems.

There are some other approaches available in the literature to determine automatically
the optimal configuration of network architecture. The adaptive method of architecture
determination (Ghaboussi and Sidarta, 1998), Bayesian approaches (Kingston et al., 2008),
Pruning (Karnin, 1993), adaptive spline modelling of observation data (ASMOD) (Kavli,
1993), Cascade-Correlation (Fahlman and Lebiere, 1990) are some available automatic meth-
ods for determining optimal network architecture.

However, most of the researchers argued that there is no way to determine a good net-
work topology from just the number of inputs and outputs. Starting with a small number
of hidden neurons and then increase gradually only if the ANNs don’t seem to ’learn’ is the
best way to create the network. Previous studies also recommend one or two hidden layers
are enough for solving most of the civil engineering problems (Habibagahi and Bamdad,
2003; Zhang et al., 2020b; Erzin et al., 2008; Erzin et al., 2010).

3.4.5 Learning algorithms (rules)

The process of determining the neural network model is called the learning rule. In another
word, the systematic approach to modify or adjust the weights according to the given infor-
mation is called the learning rule. The learning algorithm determines how the weights are
adjusted normally depending on the size of the error in the network output to the desired
output. The aim of the learning algorithm is to minimize this error to an acceptable value.
Although a variety of learning algorithms (rules) are available in the literature, the two most
important and useful learning rules have been discussed in this section viz. (1) Delta rule
and Generalized delta rule, (2) Back-propagation (BP) algorithm. Both rules use supervised
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training and work iteratively to update their weights. By far, the back-propagation algo-
rithm is the most popular learning algorithm for multi-layer networks, while the delta rule
is generally used for single-layer networks.

Before starting Delta rule and Back-propagation algorithm, let’s briefly discuss Percep-
tron algorithm, invented by Frank Rossenbalt in 1958. It is supervised learning for binary
classification applications. A single layer perceptron (SLP) can only be used to implement
linearly separable functions. It consists of a single layer neural network with one output
node. It is composed of nonlinear artificial neurons, which uses threshold transfer func-
tion. Because of the thresfold function, the output results as 0 or 1. Figure 3.13 shows the
perceptron with one neuron and threshold activation function.

FIGURE 3.13: A Perceptron learning rule.

Steps to be followed in this rule:

1. Assign initially the weight with random values.

2. Calculate the output ’Y’ using equation 3.1 and determine the error ’en’ from the
known output ’dn’ using the following equation.

en = dn − Yn (3.6)

where n is the iteration number.

3. Adjust the weight to reduce the error using equation 3.7 below, where αl is the learning
rate.

Wn+1 = Wn + αlenXn (3.7)

4. Perform steps 2-3 for all training data.
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3.4.6 Delta rule & Generalized delta rule

Delta rule is one of the most commonly used learning rule methods for the single-layer neu-
ral network. This rule updates the weights in a way that minimize the mean squared error
of the network. So, the rule is also known as Least Mean Square (LMS) Learning rule. The
delta rule is also called as Adaline rule as well as Widrow-Hoff rule as the LMS algorithm
was first proposed by Widrow and Hoff in 1960 when they introduced the ADALINE (Adap-
tive Linear). It is superior to Rosenblatt’s perceptron learning algorithm in terms of speed
but it also could not be used on multi-layer networks. In this rule, the threshold activation
function is replaced by a linear activation function. Kim (2017) explained training process
of delta rule and generalized delta rule with Matlab examples in a simple way. The steps of
the learning rules are briefly explained next to understand the learning process clearly.

Steps to be followed during the training process for the single-layer network (Figure 3.14
) using delta rule:

FIGURE 3.14: A single-layer network.

1. Assign initially the weights with random values.

2. Calculate the output using equation 3.1 and determine the error using the following
equation, where dj is known-output.

ej = dj − Yj (3.8)

3. Determine the weight updates using the equation below, where αl is the learning rate
(0<αl ≤1).

∆Wji = αlejXi (3.9)

4. Update and adjust the weights using the following equation,

Wji+1 = Wji + ∆Wji (3.10)
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5. Repeat steps 2-4 for all training data.

6. Repeat steps 2-5, which is called epoch until the error reaches within an acceptable
range.

This rule is also called gradient descent method. The modified version of the Delta rule
is known as the generalized delta rule. This rule uses sigmoid function instead of linear
function as an activation function. All the steps described in the delta rule are also applied
in this rule except calculating the weight update (∆Wji). The weight update is calculated as
follows:

∆Wji = αlδjXi; δj = f ′(vj)ej = f (vj)
(
1 − f (vj)

)
ej; vj = ∑ WjXj + bj (3.11)

If this rule uses linear activation function, f(x)=x, it becomes the delta rule as δj = ej since
f’(x) = 1. Using new weight update, Equation 3.10 becomes for the sigmoid function as:

Wji+1 = Wji + αl f (vj)
(
1 − f (vj)

)
ejXi (3.12)

This is the learning rule for the generalized delta rule.

3.4.7 Weight update method

There are three different methods to calculate the weight update (Kim, 2017). They are:

• Stochastic Gradient Descent (SGD): In this method, the weight is adjusted ’n’ times
if the network has the same ’n’ training data. All the previous delta rules are based
on the SGD approach. Equation 3.11 is used to calculate the weight updates for corre-
sponding training data.

• Batch: Each weight update is calculated for all errors of the training data and the aver-
age of weight updates is used for updating the weights using the equation 3.13. This
method uses all of the training data and updates only one time. It spends a significant
amount of time training the data.

∆Wji =
1
N

N

∑
k=1

∆Wji(k) (3.13)

where ∆Wji(k) is the weight update for k training data and N is the total number of
the training data.

• Mini Batch: It is actually a combination of SGD and batch methods. The training data
are distributed in the batch and weight is adjusted by using the average weight update
of each batch. Finally, these weights are adjusted again for the number of batches
since the batches are considered as training data in the SGD method. The benefit of
this method is to get the speed from the SGD and stability from the batch. This is the
reason, Deep learning often uses this method.
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All these three methods are more clear to understand from Figure 3.15.

FIGURE 3.15: Weight update method: SGD (left), Batch (middle), Mini Batch
(right), after Kim (2017).

3.4.8 Back-propagation Algorithm

The most popular and powerful training algorithms in the neural network are back-propagation
(BP) algorithm, which is applied to train a multilayer feed-forward network. It is part of a
supervised neural network. It was first proposed by Rumelhart et al. (1986) in 1986. This al-
gorithm is usually implemented using the Levenberg-Marquardt method, which combines
the gradient descent method and the Gaus-Newton optimization method (Levenberg, 1944;
Marquardt, 1963).

This algorithm solves the problems and difficulties of the perceptron model that were
pointed out by Minsky and Papert (1969) by allowing multi-layer perceptron models to
learn. The previous delta rule or generalized delta rule is also ineffective for the training of
the multilayer network. The reason behind this is that there is no defined rule to calculate
the error in the hidden layer(s) in the delta rule. The error of output is calculated as the
difference between the correct (known) output and the output obtained from the neural
network. However, training data doesn’t provide correct outputs for the hidden layer nodes,
and hence the error can’t be calculated using the approach used in the delta rule. Therefore,
the back-propagation algorithm is developed as a solution to train the multi-layer feed-
forward network. The feed-forward networks trained with the back-propagation algorithm
have already been applied successfully to many geotechnical engineering problems (Erzin
et al., 2008; Najjar and Basheer, 1996; Grabarczyk and Furmanski, 2013; Zhang et al., 2020b).
So, the back-propagation algorithm is used for optimizing the connection weights in this
study.

The details of the back-propagation algorithm can be found in many publications (e.g.
Fausett (1994) and Kim (2017)). The training data used as inputs are transmitted through
the network, layer by layer and a set of outputs is obtained. During this forward pass, the
weights of the network are assumed with random values. The transfer function used in the
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back-propagation algorithm is the sigmoid function. The obtained outputs are compared
with the desired outputs and, as a backward pass; the difference between desired outputs
and calculated outputs, i.e error, is used to adjust the weights of the network in order to
reduce the level of the error (Figure 3.16). This is an iterative process, which continues until
an acceptable level of errors will be obtained. Each time the network processes, the whole
set of data (both a forward and a backward pass) is called an epoch. In this way, the network
is trained and the error is reduced by every epoch until an acceptable level of error will be
achieved. Kim (2017) explained the basic principle and training process of back-propagation
in a simple way with Matlab examples. The steps of training process are described next to
understand the back-propagation algorithm clearly.

FIGURE 3.16: Back-propagation network.

Steps to be followed during the training process for the multi-layer network using back-
propagation algorithm:

1. Assign initially the weights with random values.

2. Calculate the output using equation 3.1 and determine the error and delta using Equa-
tions 3.14 & 3.15, where d is correct (known) output.

e = d − Y (3.14)

δ = f ′(v)e; v = ∑ WjXj + bj (3.15)

3. Propagate the output node delta (δ) backwards and calculate the errors and deltas of
immediate next nodes (last hidden layer). ’k’ denotes the number of hidden layers.
Repeat the process until it reaches the first hidden layer.

e(k) = WTδ (3.16)

δ(k) = f ′(vk)e(k) (3.17)

4. Calculate weight updates using the equation below, where αl is learning rate (0<αl

≤1).
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∆Wji = αlδjXi (3.18)

5. Update the weights using this equation,

Wji+1 = Wji + ∆Wji (3.19)

6. Perform steps 2-5 for all training data.

7. Repeat steps 2-6, which is called epoch until the error reaches an acceptable tolerance
range.

In the above steps, apart from step 3, all the steps are similar to the generalized delta
rule. Step 3 describes how the output delta propagates backwards to obtain the hidden
node delta. Therefore, it is called back-propagation.

3.4.9 Cost function

As said earlier, supervised training of neural networks is a process of adjusting and updating
’weight (W)’ to reduce the error of the training data. In this context, the measure of the error
of the neural network is the cost function. The greater the error of the neural network, the
larger the value of the cost function. It is also known as loss function and objective function.
There are two primary types of cost functions for supervised training, given by Equations
3.20 & 3.21 (Kim, 2017).

J =
M

∑
j=1

1
2
(
dj − Yj

)2 (3.20)

J =
M

∑
j=1

{
−djln(Yj)−

(
1 − dj

)
ln

(
1 − Yj

)}
(3.21)

where, Yj & dj are output obtained from neural network and correct (known) output,
respectively, M is the number of output modes. The first cost function given by Equation
3.20 is the square of the difference between the correct (known) output (d) and calculated
output (y) from the neural network. If the calculated output and correct output are the same,
the error is zero, while a greater difference between those two values implies higher errors.
Hence, the cost function value is proportional to the error. This function is commonly used
in the Regressions problem and in this study.

The second cost function is known as the cross-entropy function and is mainly used in
classification problems. It uses a combination of sigmoid and softmax transfer functions for
the best solution. It yields better performance than the sum of squared error in most cases.

3.4.10 Stopping Criteria

Stopping criteria are used to decide when to stop the training process. They determine
whether the model has been optimally or sub-optimally trained (Maier and Dandy, 2000).
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Many approaches like Bayesian Information Criterion, Akaike’s Information Criterion and
Final Prediction Error can be used to determine when to stop training. Training can be ba-
sically stopped in three ways viz. (a) after the presentation of a fixed number of training
records, (b) when the training error reaches a sufficiently small value or less than the de-
sired value, and (c) when no or slight changes in the training error occur. However, the
above examples of stopping criteria may lead to the model stopping prematurely or over-
training. As mentioned earlier, the cross-validation technique developed by Stone (1974) is
an approach that can be used to overcome such problems. Many researchers have success-
fully used this approach (Erzin et al., 2008; Erzin et al., 2010; Zhang et al., 2020b; Shrestha
and Wuttke, 2020). It is considered to be the most valuable tool to make sure that overfitting
does not occur . Amari et al. (1993) recommended that there are clear benefits in using cross-
validation when limited data are available, which is the case for many real-life case studies.
As mentioned earlier, the cross-validation technique requires that the data shall be divided
into three sets viz. training, testing and validation. The training set is used to adjust the
connection weights, while the validation set measures the ability of the model to generalize,
and the performance of the model is checked at many stages of the training process using
the testing set. The training process is stopped when the error of the validation set starts
to increase. The testing set is finally fed into the networks to assess model performance,
once training has been accomplished. The aim of the cross-validation method is to ensure
that the model has the capability to generalize within the limits set by the training data in
a robust fashion, rather than simply memorizing the input-output relationships which are
contained in the training data (Shahin et al., 2002b). Unlike cross-validation, other methods
like Bayesian Information Criterion, Akaike’s Information Criterion and Final Prediction
Error require the data be divided into only two sets i.e. training set and independent vali-
dation set. A training set is used to construct the model, whereas an independent validation
set is used to test the validity of the model in the deployed environment. The basic aim of
these stopping criteria is that model performance should balance model complexity with
the amount of training data and model error.

3.4.11 Selection of ANN model

For the selection of best performing ANN model, three performances parameters such as
Mean Square Error (MSE), Mean Absolute Error (MAE) and R (coefficient of determination)
are calculated for each model. These parameters were used to compare network usefulness
in the prediction of thermal conductivity after training. These parameters are computed for
all training, validation and testing data. The first one was the Mean Squared Error (MSE).
It is defined as the arithmetic mean of the squared differences between the outcome (pre-
dicted values) and the measured values. The smaller the value of this parameter the more
accurate the network to predict the thermal conductivity of soils. It describes the absolute
difference between measured and prediction values. The second one was R which describes
the linear regression line between predicted values from the ANN model. When R is equal
to 1, the accurate relationship is obtained, while when it is close to 0, no clear relationship is
obtained. It may also be understood as the tangent of the linear function that approximates
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the correlation between the outcome and measured values. The third one was a mean abso-
lute error (MAE). The MSE is the most popular measure of error for statistical analysis and it
has the advantage that the large errors get more attention than small errors (HechtNielsen,
1989). In contrast, MAE eliminates the emphasis given to large errors. The RMSE and MAE
are desirable when the data evaluated are smooth or continuous (Twomey and Smith, 1997).
The mathematical expressions of these parameters are given below.

R =

√√√√1 − ∑n
1
[
λm − λp

]2

∑n
1 [λm − λmean]

2 (3.22)

MSE =
1
n

n

∑
1

[
λm − λp

]2 (3.23)

MAE =
1
n

n

∑
1

[
λm − λp

]
(3.24)

where λm (W m−1 K−1) is the measured thermal conductivity, λp (W m−1 K−1) is the pre-
dicted thermal conductivity, λmean is the mean value of measured thermal conductivity and
n is the number of measurements.

3.5 Deep Learning

A neural network with more than a single hidden layer is known as a deep neural network.
In other words, the deep neural network is a multilayer network with two or more hid-
den layers. The problem of training the deep neural network (multilayered network) was
solved when a back-propagation algorithm was introduced in 1986. However, the back-
propagation training with additional hidden layers often yielded poor performance. Many
methods have been attempted to solve the problems, including the addition of nodes in the
hidden layer and addition of hidden layers. However, none of them worked because the
deep neural network was not properly trained. There are three primary difficulties in the
training process of deep neural networks using the Back-propagation algorithm (Kim, 2017).
They are

• Vanishing gradient

• Overfitting

• Computation load

Deep learning is introduced, which provides the solution to the above problems. It is a
simple feed-forward neural network with the addition of new types of networks viz. Con-
volutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term
Memory Network (LSTM), etc. It is used in supervised, unsupervised and reinforcement
learning models. The training is usually done by optimizing a cost function using some
form of gradient descent.
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In vanishing gradient, output errors cannot reach the first hidden layer and hence the
’weights’ can’t be adjusted. Therefore, the hidden layer close to the input cannot be trained
properly. In order to solve the problem, Rectified Linear Unit (ReLU) function as an activa-
tion function has to be employed in the network (Kim, 2017). In addition to this, the cross
entropy-driven learning rules can be employed to improve the performance of the deep
neural network (Kim, 2017). The use of the advanced gradient descent method, which is a
numerical approach that better achieves optimal value, is also beneficial to overcome this
problem.

f (x) =

{
0, if x ≤ 0

x, if x > 0
(3.25)

FIGURE 3.17: ReLU activation function, range (0,∞).

Increasing the number of hidden layers and neurons will not solve the complex non-
linear problems, rather it leads to complicated network model because of more weights.
A complicated model is more vulnerable to overfitting. Dropout or regularization is the
solution to overfitting (Kim, 2017). The adequate percentage of Dropout is approximate
50% and 25% for hidden and input layers, respectively. Another method is regularization
which simplifies the neural network’s architecture as much as possible and hence reduces
the possibility of overfitting. Mathematically, adding the sum of the weights to the cost
function is referred as regularization.

The complicated model also requires a longer time for training the network. The more
computation the Neural network performs, the longer the training takes. High-performance
hardware such as GPU and an algorithm such as batch normalization are required to solve
this problem (Kim, 2017).

3.6 Application of ANN

ANN has different types of application. The two most common types of application are
classification and prediction or regression. Both classification and regression are part of su-
pervised learning which means they both have input and correct ouput. The main difference
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is the type of correct outputs; classification needs classes, while the prediction needs values.
Others are data association and data filtering. Brief driscription are given below:

• Prediction: is one of the applications of supervised learning. It is also known as re-
gression which doesn’t determine the class. Instead, it basically predicts output using
input data. It is mostly used in the engineering field to predict the output based on sev-
eral input values. The BP algorithm is most commonly used for solving engineering
problems which uses a multi-layer architecture. In the current study, the ANN models
have been developed to generalize the thermal conductivity based on this category.

• Classification: is also the application of supervised learning. It uses input data to de-
termine the class. It focuses on finding the classes to which the data belongs. Some of
the examples are pattern recognition, face or image recognition and spam mail filtering
service.

• Data association: It simulates the classification, while also recognising data that con-
tains errors.

• Data Filtering: This method analysis input data and makes them smooth for the output
such as taking the noise out of telephone signals.

3.7 Advantages and disadvantages of ANNs

3.7.1 Advantages

ANNs are easy to construct and can deal very well with a large amount of data. The main
advantage of the artificial neural network is that it can handle complex tasks with many
parameters and solve non-linear multidimensional problems. They can simply ignore ex-
cess data that are of less significance and concentrate instead on the more important inputs.
Instead of complex rules and mathematical formulations, ANNS are able to learn the key in-
formation patterns within a multidimensional information domain. Further, they have the
capability to successfully classify objects, even with the distribution of objects with noisy
parameters. They work well for problems where there are no known rules. They are adap-
tive in nature. ANN can be handled with ease and it requires less human intervention than
does a traditional analysis. One doesn’t need to be competent in the mathematical back-
ground and computational analysis. ANN software packages are also relatively easier to
use than the typical statistical packages. Researchers can successfully use ANNS software
without requiring a full understanding of the learning algorithms, which makes them more
accessible to a wider variety of researches. That’s why it is becoming popular in every field.

It is comparatively fast and accurate than other available methods. It provides several
advantages over more conventional computing techniques. For most traditional mathemat-
ical models, the lack of physical understanding is usually supplemented by either simplify-
ing the problem or incorporating several assumptions into the models. Consequently, many
mathematical models fail to simulate the complex behaviour of most practical and engi-
neering problems. In contrast, ANNs are a data-driven approach in which the model can
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learn input-output relationships with previous data to determine the structure and param-
eters of the model. In this case, no need to either simplify the problem or incorporate any
assumptions. Moreover, ANNs can always be updated to obtain better results by training
with newly available data. These factors combine to make ANNs a powerful modelling tool
in every field, especially in civil engineering.

The training process of an ANN itself is relatively simple. However, the pre-processing
of data including data selection and representation to the ANN and the post-processing of
the outputs require an ample amount of work. But, constructing a problem with ANNs is
still assumed to be easier than modelling with conventional statistical methods. There are
many statisticians who argue that ANNs are nothing more than the special case of statistical
models, and thus the rigid restrictions that apply to those models must be applied to ANNs
as well. However, there are probably more successful novel applications using ANNs than
conventional statistical tools.

3.7.2 Disadvantages

Despite the good performance of ANNs in many situations, they have a number of draw-
backs including mainly time-consuming, the limited ability to extract knowledge from the
trained network models, inability to extrapolate beyond the range of the data used for model
training and dealing with uncertainty.

The main disadvantage of artificial neural networks is that it requires a lot of time, par-
ticularly finding a good ANN structure, as well as the pre-processing and post-processing
of the data, though ANNs are easy to construct. For example, the training or learning is
repeated until the desired output data is reached. Another significant disadvantage is the
difficulty of determining how the network is making its decision, i.e. lack of interpretability.
It only provides results but does not give any reasonable interpretations between input and
output variables. So, the neural network works as a black box. Consequently, it is hard to
determine which of the input data are important and useful for the classification as well as
prediction, and which are worthless. It has no ability to extrapolate beyond the range of
data used for the training model. Whilst this is not unlike other models, it is nevertheless
an important limitation of ANNS, as it restricts their applicability and usefulness. Extreme
value prediction is particularly concerned in many fields of civil engineering such as flood
forecast, liquefaction potential assessment, etc.

There are also limitations with training data. As an example, the ability of ANN to
identify indications of an intrusion is entirely dependent on the accurate training of the
system. Thus, the training data and methods are critical to effective outcomes. Therefore,
qualified training data sets are essential to meet the desired results.

3.8 Summary

In this chapter, the background and development, application to many fields including engi-
neering field, advantage and disadvantage of ANN as well as description and methodology
of ANN were explained.
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Chapter 4

Design of granular materials with
enhanced thermal conductivity

4.1 Introduction

This chapter explains the methodology to improve the thermal conductivity of granular
materials. The materials used, measurement technique used and experimental work steps to
achieve thermally conductive materials are discussed. The experimental program covered
the study of different mix proportions of granular soils, binder, additives to achieve the
desired properties.

4.2 Materials used

The selection of materials was based on the knowledge that higher thermal conductivity can
be achieved with bigger and round-shaped particles, well-graded soils, minerals with higher
thermal conductivity, an appropriate proportion of fine particles and (dense packing), which
are discussed in Chapter 2 . It was also kept in mind that utilizing of naturally available
materials is also key in the design process so that it will be more economical and practical. In
this study, the design mixes were prepared following the concept of fuller curve gradation
to achieve lower porosities and adding fine materials as fillers in appropriate proportion
to improve denseness. Sand was selected as prime geomaterials because it often uses as
backfill materials and Bentonite and stone dust, which are fine materials, were selected as
fillers. Another reason to select sand and stone dust was that they had high quartz content
than other materials. The quartz content in the materials was experimentally determined
by the X-ray diffraction (XRD) method. The most important factor to be considered was
to increase the packing density or reduce the porosity as reducing porosity increases the
thermal conductivity of the soils, which was fulfilled by Fuller curve gradation.

4.2.1 Analysed materials

Three different sand from different sites with different mineral compositions were selected
in this study for the experimental program. They were Sand A from Weimer, Germany, Sand
B and Sand C from Kiel, Germany. The physical properties of all the sand are presented
in Table 4.1 and the particle size gradation are presented in Figure 4.4. It is noticed from
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(A) Sand A (B) Sand B (C) Sand C

FIGURE 4.1: Analysed materials.

TABLE 4.1: Sand properties.

Properties Sand-A Sand-B Sand-C

Specific gravity, Gs 2.65 2.65 2.65
D50 0.65 0.99 0.51
D10 0.28 0.30 0.23
D60 0.80 1.30 0.64
D30 0.41 0.54 0.34
Cu 2.86 4.33 2.78
Cc 0.75 0.75 0.79
Quartz content, qc >99 70 80

Figure 4.4 that all three sand were uniform. The specific gravity (or solid density) of all
three sand was found to be 2.65. The mineral composition of the sand was determined semi-
quantitatively by X-ray diffraction (XRD) analysis. The XRD reports of sand are presented
in Figures 4.8a-4.8c. From these reports, it is concluded that Sand A has a higher percentage
(i.e. greater than 99%) of quartz. The others two Sands B and C have lower contains of
quartz of 70% and 80%, respectively. In Sand B, the other minerals are calcite of 10% and
albite of 20% while in Sand C, the other minerals are calcite of 20%. The aim of the selection
of sand with different mineralogy is to check the influence of mineralogy on the thermal
conductivity of the sand.

The fine materials used in this study were bentonite, stone-dust and kieselghur (Figure
4.2 ). The bentonite is basically a very fine material with high clay content (basically mon-
tomorollite). That’s why it has swelling characteristics when in contact with water and it
is highly impermeable. The bentonite was used as filler for the thermal modification of the
sand in the dry state and the results were published in Shrestha et al. (2016). As a replace-
ment for bentonite, stone-dust was used which is obtained during the crushing of stone or
rock from the crusher manufacture company. It is like waste and will be economically viable
to use with sand. The XRD of stone-dust was also done and the report is shown in Figure
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(A) Bentonite (B) Stonedust (C) Kieselghur

FIGURE 4.2: Analysed fine materials.

4.9. It contains 80% quartz and 20% zeolite. The stone-dust shows no swelling characteris-
tics and water is easily flowable through the sample (Shrestha et al., 2019).

Another material used in this study was Silicon carbide (SiC), which possess a very high
thermal conductivity of more than 100 W m−1 K−1 when it is in solid form. But, here in this
study, it is in the crushed-state and size ranges from (0.5-1) mm. The particle size distri-
bution is shown in Figure 4.4. The thermal conductivity is relatively very low when it is
measured in a granular state because of higher porosity and small grains. The reason for
using SiC is to check whether it can improve the thermal heat conduction or not.

FIGURE 4.3: SiC.

4.2.2 Design of materials

The modification of the original sand was done by changing the original gradation first and
then adding fine materials in appropriate proportions. The original gradation of sands was
first modified with the Fuller curve gradation using Equation 4.1 proposed by Fuller and
Thomson (1907).

Pi = (di/D)0.5 (4.1)

where P is percentage passing through sieve i of diameter (d) and D is the maximum
particle diameter of the fuller mix. For example, D is 8mm for 8mm fuller curve gradation.

Three different kinds of fuller curve gradation owing maximum size of particles with
8mm, 4mm and 2mm were developed in this study, of which gradations are shown in
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FIGURE 4.4: Particle size distribution.

Figure 4.4. Three gradations owing maximum size of 8mm, 4mm and 2mm are referred
as 8mmF, 4mmF and 2mmF, respectively. Thus, sand A and B have 8mmF, 4mmF and
2mmF, whereas sand C has only 4mmF and 2mmF because of lack of the bigger parti-
cles in sand C. Gravel-A was used to prepare 8mmF of sand-A as both were from the
same query. Thus, altogether eight new mixtures of three sand were prepared, named
as sandA_8mmF, sandA_4mmF, sandA_2mmF, sandB_8mmF, sandB_4mmF, sandB_2mmF,
sandC_4mmF, and sandC _2mmF. It is very difficult to obtain the fine particles below 125
µm in the desired amount from the sand gradation. In order to solve this problem, the fine
materials bentonite and stone-dust were added in appropriate proportion following Fuller
curve gradation modification. For 8mmF, 4mmF and 2mmF, the fine particles proportions
were 12.5%, 17.68% and 25% by volume, respectively for all three sand. The details in the
calculation to prepare fuller gradation of 8mmF, 4mmF and 2mmF using standard sieves
(DIN-18123) in the laboratory is presented in Table 4.2. The bentonite was added to all mod-
ified sands while the stone-dust was added to only modified sands of sand A and sand B.
The added fillers act as inter-granular bridges to enhance the thermal conduction path by
improving the quality and quantity of contacts due to an increase in number of contact paths
because of large surface area. Hereafter, the developed sand after modification of gradation
is called modified fuller sand whereas the sand with original gradation is called original or
natural sand.

Apart from fuller curve gradation, the mixture of coarse and fine materials was also
prepared with different proportions. For this purpose, sand A was used to mix with fine
particles in different proportions. The fine particles used for this purpose were bentonite,
stone-dust and kieselghur. The effect of fine content on thermal conductivity can be ob-
served from these tests. Another material SiC was also added to modified fuller sands
sandA_8mmF, sandA_4mmF, and sandA_2mmF in 11% by volume in order to know the
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TABLE 4.2: Design of Fuller curve gradation.

particle size [mm] 8mmF [%] 4mmF [%] 2mmF [%]

4-8 29.29 0.00 0.00
2-4 20.71 29.29 0.00
1-2 14.64 20.71 29.29
0.5-1 10.36 14.64 20.71
0.25-0.5 7.32 10.36 14.64
0.125-0.25 5.18 7.32 10.36
< 0.125 12.50 17.68 25.00

importance of highly conductive minerals. The dry thermal conductivity of SiC only was
also measured in the laboratory and it was found to be between 0.20-0.35 W m−1 K−1 for the
dry density of 1.45-1.70 g cm−3, which is very low thermal conductivity. This is due to the
large void contained in the matrix which is filled by air and the air has a higher resistance to
thermal heat conduction because of very low thermal conductivity (λair = 0.024 W m−1 K−1).
Another reason may be that the higher dry density cannot be achieved due to the uniform
gradation of SiC. It contains sizes between 0.5-1.0 mm. The thermal conductivity of SiC was
found to be more than 7.0 W m−1 K−1 when measured in a wet state.

4.3 Equipment used

In order to measure the thermal conductivity of investigated materials, the transient method
was selected due to its fast measurement time and easy handling. The method can be hydro-
mechanically controlled as well. The thermal conductivity of studied mixes was measured
with a thermal needle probe, Decagon KD2 Pro, based on transient line source measurement
technique in compliance to ASTM D 5334 - 08 (2008) and IEEE 442 (1981) standards. Many
researchers have successfully used this device to measure the thermal conductivity of dif-
ferent kinds of materials from fine-grained soils to coarse-grained soils, cementing materials
and mixed materials (Hailemariam et al., 2017; Hailemariam et al., 2016a). The specifications
serve to ensure the best possible process for the most precise measurement results. The KD2
Pro measuring the thermal conductivity of the samples is shown in Figure 4.5. The device
has ability to measure thermal conductivity at a constant interval, which can be set manu-
ally or with the help of a computer. The number of measurements, as well as waiting time
for the first measurement, can be also set in the device. The waiting time is very important
to bring the sample and needle temperature to equilibrium. A specification recommends 15
minutes of waiting time before the first measurement. A thermal needle probe, TR-1 (single
needle), with a length of 100 mm and a diameter of 2.4 mm was used to measure the thermal
conductivity of the samples. The sufficient needle length to diameter ratio ensures that con-
ditions for an infinitely long and infinitely thin heating source are met. The measurement
error recorded for all samples was kept well below the 0.015% limit. The KD2 Pro includes
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a linear heat source and a temperature measuring element with a resolution of 0.001oC, and
computes the thermal conductivity of the analysed materials using the following equations.

λ =
Q (ln t2 − ln t1)

4π (∆T2 − ∆T1)
(4.2)

∆T =
Q

4πλ

[
−Ei

(
− r2

4αt

)]
(4.3)

where, λ (W m−1 K−1 is the thermal conductivity of the sample, Q (W m−1) is the con-
stant rate of application of heat, ∆T (K) is the temperature response of the source over time,
t (s) is the amount of time that has passed since the heating has started, Ei is an exponen-
tial integral, r (m) is the radial distance from the line source and α (m2 s−1) is the thermal
diffusivity of the sample.

FIGURE 4.5: KD2 Pro device with TR1 needle.

4.4 Experimental procedure

All the samples were prepared in cylindrical mould and the thermal conductivity of these
samples was measured using the KD2pro device in the laboratory. A mould used in this
study was a cylindrical mould with 5cm in diameter and 14 cm in height. The minimum
dimension required for the cylindrical mould according to specifications is shown in Figure
4.6. The height of the mould should be at least 2cm longer than the length of a needle. The
needle is supposed to place at the centre of the mould so that it has at least 2.0 cm gap
between the needle and the wall of the mould. It ensures no effect from the boundary on the
heat distribution of the needle and measurement of thermal conductivity. The samples were
prepared with different compaction techniques in a dry state as well as in a moist state. In
the dry state, the samples were prepared in the combination of compaction and vibration to
vary the dry density and attain maximum dry density in order to see the influence of dry
density or porosity on the thermal conductivity of original and modified fuller sands.
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FIGURE 4.6: Schematic diagram of the sample cylinder

On the other hand, two methods are existed to prepare the sample for the measurement
of thermal conductivity over different moisture contents. They are listed as below:

• Single sample method: The first method is known as the single sample method, where
the thermal conductivity and mass of the sample will be monitored and measured
continuously at a certain interval as the sample dries from saturation to dry state. It
is based on the evaporation method. The sample is prepared in the dry state and then
saturated with water by allowing water to flow from bottom to top. The amount of
test time depends on the method of drying, boundary conditions, soil type and initial
water content. The schematic diagram of the saturation process is presented in Fig-
ure 4.7. This method requires filter paper, porous stone, water inlet and outlet. The
drying process is a natural air-dry process and finally, the sample is oven-dried to mea-
sure final water content. The thermal conductivity is also measured at a dry state. In
this method, the needle is kept inside the sample throughout the measurement from
saturation to dry state. The method is more accurate as the sample remains undis-
turbed and the measurement is continuous without taking out the needle. However,
it is time-consuming and might have a variation of moisture distribution across the
sample. A significant moisture variation across the length of the sample during the
thermal conductivity measurement using the vertical probes was observed in the case
of coarse-grained soils than fine-grained soils (Woodward et al., 2013; Yao et al., 2014).
The moisture variation is a function of the height/depth of the sample. The longer
the sample, the higher the moisture variation. The effect can be minimized by reduc-
ing the height of the sample. For example, the average volumetric water content and
thermal resistivity of the soil specimen are 0.14 mm3 mm−3 and 36 °C cm W−1 which
are the overestimation of the actual volumetric water content (0.11 mm3 mm−3) and
actual thermal resistivity (40 °C cm W−1) along the length of the sensor (Woodward
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et al., 2013). The sample length is 20.3 cm, 10 cm longer than the needle length. If
the specimen length is reduced from the bottom and the average volumetric water
and the average thermal resistivity are recalculated, the recalculated values are 0.12
mm3 mm−3 and 39.5 °C cm W−1 respectively indicating closer to the actual values. In
this study, the sample length is just 2.5cm longer than the needle length (10 cm) and
also 2.5 cm wider from the needle in the radial direction. It helps somehow to mini-
mize the moisture variation. However, the study of moisture variation depending on
the length of the sample and its effect on the thermal conductivity could be the scope
of future work. Woodward et al. (2013) also found that moisture is consistent through
a specimen in the case of fine-grained soil. In this study, the modified fuller sand is the
mixture of sand and fine materials. Because of these reasons, it can be assumed that
there will be less moisture variation and not affecting the effective thermal conductiv-
ity of the samples. The measured water content would be average water content along
the length of the needle and the needle provides effective thermal conductivity of the
specimen.

• Multiple sample method: It is the second method to prepare the samples in which
the samples are prepared at different water contents and the thermal conductivity and
corresponding water content of each sample are measured. The first method is accu-
rate and the sample remains undisturbed i.e. dry density remains constant throughout
the test. The needle used in this method is TR1 which is long enough to give the ef-
fective thermal conductivity at average water content. The second method is fast as
compared to the first method but it is difficult to control the same dry density when
every new sample is prepared and the sample remains disturbed which changes the
microstructure of the sample completely. Consequently, it gives different thermal con-
ductivity. Therefore, the first method ’single sample method’ was chosen in this study
to measure the thermal conductivity at various moisture contents.

All the samples prior to use were oven-dried. In order to measure the thermal con-
ductivity of dry samples at various porosity, the sample was prepared in the mould by a
combination of compaction and mechanical vibration. The sample was compacted into the
mould in four equal layers to achieve the desired porosity using conventional compaction
procedures and mechanical vibration was applied when dense packing was needed. It was
required to attain the lowest porosity. The mass of the sample was recorded, once the sample
preparation was finished. The needle probe (TR1) was then inserted vertically in the sample
and the thermal conductivity readings were taken. Thermal needle proble (TR1) is always
calibrated prior to use to check the accuracy of the needle. A drill press was sometimes used
to ease the insertion of the needle in case of a dense or stiff sample. The measurement of
thermal conductivity was done at room temperature and atmospheric pressure conditions
and was repeated at least three times for each sample. The longer reading time was selected
to minimize errors from contact resistance in granular samples. The minimum interval time
kept for each measurement is 30 minutes. The measurement was always started after 15
minutes of needle insertion. In the case of dry samples, the main problem was an error in
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measurement due to contact resistance. To avoid this problem, the gel provided by KD2 was
also coated around the needle prior to use, which helps to reduce error during the measure-
ment.

FIGURE 4.7: The schematic diagram of sample saturation process (Shrestha
et al., 2019).

In order to measure the thermal conductivity in an unsaturated and saturated state, the
’single sample’ method was selected. The sample was first prepared like dry samples and
the mass of the samples was recorded. The dry density was kept 2.08 g cm−3, 2.04 g cm−3,
1.95 g cm−3 & 1.71 g cm−3 for sandA_8mmF, sandA_4mmF, sandA_2mmF and the origi-
nal sand A, whereas 2.08 g cm−3, 2.02 g cm−3, 1.92 g cm−3 & 1.71 g cm−3 for sandB_8mmF,
sandB_4mmF, sandB_2mmF and sand B, respectively. The sample was enclosed by placing
caps at both ends of it, after placing the porous stones and the filter papers at both ends of
the sample as shown in Figure 4.7 and then saturated by allowing distilled water to flow
from the bottom through a pipe from the tank, elevated at a height of 1m. The sample was
assumed to be saturated once the water started to come from the top. The advantage of
saturating the sample from the bottom is to remove the entrapped air within the sample.
The needle probe was then inserted into the sample vertically at the centre after removing
the top cap of the mould after waiting for certain hours. The weight was recorded before
and after insertion of the needle to know the mass of water in the sample. The water content
was known at the beginning. The attention was given while inserting the needle into the
samples and the needle was not taken out until the final measurement. The measurement
of thermal conductibility was done as described in the case of dry samples. The only differ-
ence is that over a period of time, additional thermal conductivity readings and weightings
were recorded, as the sample dried. During the measurement process, the water content
was reduced by air drying and finally, the sample was oven-dried at 60 °C to measure final
water content. The thermal conductivity of the sample was again measured at a dry state.

Measuring the thermal conductivity at proctor density and various water content is a
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very important step while designing the thermal backfill as the backfill materials are com-
pacted in the site using proctor density and optimum water content. Some samples were
also prepared with the proctor compaction method to obtain thermal conductivity at max-
imum dry density and corresponding optimum moisture content. Once these parameters
are known, it is very useful for field application. This method was applied to the samples
sandA_8mmF, sandA_4mmF, sandA_2mmF, sandB_4mmF, and sandB_2mmF. In the field,
the backfill materials are laid using proctor compaction to get desired dry density. So, it
is essential to know the corresponding thermal conductivity. The measurement of thermal
conductivity was similar to that applied to dry samples.

4.5 XRD analysis

Accurate determination of mineral content in the soil is very essential to estimate the thermal
conductivity of soil. It was a quite difficult process in the past. Consequently, the quartz
content was assumed to be equal to the mass fraction of sand (Peters-Lidard et al., 1998;
Usowicz et al., 2006; Lu et al., 2007). However, this assumption leads toan overestimation of
soil thermal conductivity (Tarnawski et al., 2009; Zhang et al., 2017).

The quartz content in soils can be experimentally determined by chemical or X-ray
diffraction (XRD) methods and to a lesser extent, by petrographic analysis. Chemical meth-
ods are generally more precise, but time-consuming, whereas XRD techniques are more
rapid but fairly accurate (Hardy, 1992). Here, the XRD method was used to determine the
mineral contents of the analysed materials. The results of the XRD test on three sand, stone-
dust and kieselghur are presented in Figures 4.8-4.10. It was concluded from this analysis
that sand A had almost all quartz content of more than 99%; sand B had 70% quartz, 10%
calcite and 20% albite; sand C had 80% quartz, 10% albite and 10% calcite; and stonde-dust
consists of 80% quartz and 20% zeolite. The bentonite and kieselghur consist of mostly
montomorillonite.

4.6 SEM image analysis

A Scanning Electron Microscopy (SEM) is a test process that produces a magnified image
of a sample for analysis by scanning the surface with an electron beam. The electron beam
is scanned in a raster scan pattern, and the beam position is combined with the intensity
of the detected signal to generate an image. The method is also known as SEM analysis
and SEM microscopy, which is used very effectively in microanalysis and failure analysis
of solid inorganic materials. Electron microscopy is conducted at high magnifications, pro-
duces high-resolution images and precisely measures very small features and objects. In
this study, the new backfill materials sandA_2mmF with bentonite and stone-dust were se-
lected for SEM analysis to see the bonding or connection between the grains and fines of
mixed geomaterials which ensures the improvement in thermal conductivity of designed
geomaterials.
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(A)

(B)

(C)

FIGURE 4.8: XRD analysis of sand A (a), sand B (b) and sand C (c) .

4.7 Mechanical tests

Odometer tests (1D consolidation test) were carried out to investigate the mechanical strength
of designed materials by determining odometer parameters such as compressibility index
(Cc) , regression index (Cr) and swelling index (Cs) of natural sand and developed materials.
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FIGURE 4.9: XRD analysis of stone-dust.

FIGURE 4.10: XRD analysis of kieselghur.

It characterizes the soil stress-strain behaviour during one-dimensional compression. The
purpose is to predict how the modified fuller sand deforms in response to a change in effec-
tive stress in the field application scenario. Due to the addition of different proportions of
fine particles to the modified fuller sand, a reduction in mechanical strength is expected. The
test was carried out according to DIN-18135. As it is one-dimensional compression, there is
no lateral deformation during loading. When stress is applied to the sample, the soil grains
pack together reducing voids and the sample gets deformed. The tests were carried out for
the modified fuller sand (with stone-dust) and original sand of A and B. In order to deter-
mine odometer parameters, the test was performed with loading, unloading and reloading.
The sample was first loaded until 400 kPa starting with 12 kPa and unloaded up to 25 kPa
and finally reloaded till 800 kPa. The loading, unloading and reloading are done to deter-
mine the compression, swelling, and regression indices, respectively. For each loading step,
the sample was left for 24 hours before going for the next loading. The same procedure was
applied to the unloading and reloading steps. All the samples were prepared at maximum
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dry density and corresponding optimum moisture content.

4.8 Summary

This chapter explained the properties and characteristics of the geomaterials and the design
methodology to develop the granular composite geomaterials. Moreover, the measurement
technique and steps to be followed to measure the thermal conductivity in a dry and moist
state were also explained. The results or outcomes of the experimental work are discussed
in next chapter 4.
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Chapter 5

Experimental material design analysis
and discussions

5.1 Introduction

In this chapter, the outcomes of experimental investigations are presented and discussed in
detail. Moreover, a focus on thermal conductivity enhancement is given. Furthermore, the
experimental results are compared with existing theoretical and empirical prediction models
which are described in section 2.6.

5.2 Thermal conductivity measurement results

5.2.1 Effect of porosity on thermal conductivity in dry state

With bentonite

Figure 5.1 shows thermal conductivity measurement results as a function of porosity in the
dry state for original and modified fuller sands with bentonite. As stated earlier in the sec-
tion 2.4.1, the dry thermal conductivity values of original sands increase in a quasi-linear
fashion with decreasing porosity. However, the dry thermal conductivity values of mod-
ified fuller sands tend to follow an exponential increase with a decrease in porosity (i.e.
increase in dry density). The thermal conductivity data of dry original sand are lower than
0.4 W m−1 K−1, range from 0.28-0.39 W m−1 K−1 for the porosities between 0.45 and 0.3. As
stated earlier in section 2.7, all the granular soils generally have thermal conductivity less
than 0.5 W m−1 K−1 in the dry state (Rao and Singh, 1999; Naidu and Singh, 2004; Cortes
et al., 2009; Waite et al., 2009). For the developed mixes (modified fuller sands) with all
three sand A, B, and C, the measured dry thermal conductivity data ranges from 0.4-1.1
W m−1 K−1 for porosities between 0.4 and 0.2, which is significantly higher than that of ordi-
nary dry soils. The experimental results clearly state that there is a significant improvement
in thermal conductivity for modified fuller sand in dry conditions. It is noted that about two
to threefold increment in dry thermal conductivity of modified sands as compared to that of
original sand.

It is also observed that the increase in maximum particle size of fuller gradation pro-
duces a lower porosity and the lowest porosities of about 0.21 are attained with 8mm fuller
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FIGURE 5.1: Thermal conductivity as function of porosity in dry state for orig-
inal sands and modified sands with bentonite.

gradation of designed mixes. For 4mmF and 2mmF, the lowest porosities are 0.22 and 0.25,
respectively for all three sand. Therefore, the dry thermal conductivity values also increase
with the increase in maximum particle size of fuller gradation and 8mmF of both sand A and
B has the highest thermal conductivity of 1.12 W m−1 K−1 and 1.11 W m−1 K−1, respectively.
However, the dry thermal conductivity values for the same porosity are not remarkably af-
fected by the maximum particle size of fuller gradation. For example, thermal conductivity
values are 0.64 W m−1 K−1, 0.61 W m−1 K−1 and 0.60 W m−1 K−1 at a porosity of 0.27 for
sandB_8mmF, sandB_4mmF and sandB_2mmF fuller gradations respectively (Figure 5.1b).
The porosity is the main factor affecting the dry thermal conductivity of the modified sand
and this kind of design mixes helps to produce dense packing and consequently, achieves
higher thermal conductivity (Shrestha et al., 2016; Rizvi et al., 2018).

The significant increase in thermal conductivity with a reduction in porosity reflects the
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(A) (B)

FIGURE 5.2: SEM images obtained for the modified 4mmF of sand A: (a) ben-
tonite filling the pore space between the sand grains and (b) bentonite filling

the gaps within the grain.

increase in the number of contacts per volume and the improvement in heat conduction ef-
ficiency. Actually, the number of contacts per volume and contact quality depends on the
porosity, particle shape and grain size distributions (Yun and Santamarina, 2007). Because
of the fuller graduation and the fine particles filled in the interstitial space that increases
the grain to grain conduction path, the thermal conductivity is abruptly increased with de-
creasing porosity for all modified fuller sands. This phenomenon can be observed through
SEM observations. Figure 5.2 represents the SEM images obtained for a modified 4mmF of
sand A (sandA_4mmF). In Figure 5.2b, the bentonite filling the gaps of irregularly shaped
grains improves the heat conduction path and in Figure 5.2a, the bentonite filled the gap
among the grains to bridge the gap by increasing the contact among the grains. In this case,
heat is transmitted through much large contact areas rather than through distinct contact
points. The advantage of a wide range of particle arrangements in fuller gradation is to at-
tain denser packing and a higher coordination number as the number of contacts per unit
volume and inclusion of high conductivity mineral helps to improve the quality of contacts.
The fine particles (fillers) act as the bridge at contacts to improve the quality and quantity
of interparticle contacts. Hence, the fuller curve gradation with fine particles enhanced the
thermal conduction path for granular type soils.

It is also noticed from Figure 5.1d that, the dry thermal conductivity values of modified
fuller sands can be arranged in order of sand A > sand B > sand C. For the same fuller gra-
dation mixes, the dry thermal conductivity values of modified sands are different according
to the types of sands. The modified sand obtained from sand A has maximum dry ther-
mal conductivity than that of sand B and sand C. For example, 4mmF of sand A, sand B
and sand C has the thermal conductivity of about 0.95 W m−1 K−1 > 0.86 W m−1 K−1 > 0.80
W m−1 K−1 at the same porosity of 0.22. This observation might be due to the particle shape
and size of the sands since there is no big difference in thermal conductivity despite dif-
ferent quartz contents of the original sands. The quartz content of sands can be ordered in
sand A > sand C > sand B. In dry soils, the microstructure is a more influencing parameter
than other factors like mineralogy ((Johansen, 1975; Farouki, 1981; Côté and Konrad, 2009)).
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The mineralogical effect on thermal conductivity of soils in dry as well as in moist state is
discussed in next section 5.2.5.

With stonedust

Figure 5.3 shows the relationship between thermal conductivity and porosity of the orig-
inal sand and modified fuller sands with stone-dust in the dry state. As shown in Fig-
ure 5.3a, the thermal conductivity of modified fuller sand A increases exponentially with a
decrease in porosity and attains the maximum thermal conductivity of 1.1 W m−1 K−1 for
8mmF modified sand. In the same manner, all the modified fuller sands have significantly
higher thermal conductivity than the original sands (Figure 5.3). The measured dry ther-
mal conductivity of modified fuller sands are in the range of from 0.4-1.1 W m−1 K−1 for
porosities between 0.4 and 0.2.

(A) (B)

(C) (D)

FIGURE 5.3: Thermal conductivity as function of porosity in dry state for orig-
inal sands and modified sands with stonedust.
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The behaviour or the characteristics of a trend of increasing thermal conductivity is quite
similar to that of modified fuller sand with bentonite. Because of the graduation and the fine
particles filled in the interstitial space that increases the grain to grain conduction path, the
thermal conductivity is abruptly increased for all modified fuller sands. Another reason
could be the reduction of air voids by the fine particles and the thermal conductivity of air
is considerably negligible as compared to that of fine particles. This phenomenon can be
observed through SEM observations. Figure 5.7 represents the SEM images obtained for a
modified 2mmF of sand A (sandA_2mmF) with stone-dust. In Figure 5.7a, the stone-dust
filling the cracks of grains improves the heat conduction path and in Figure 5.7b, the stone-
dust filled the gap among the grains to bridge the gap by increasing the contact among
the grains. In this case, heat is transmitted through much large contact areas rather than
through distinct contact points. It can be said that from the results obtained with bentonite
and stone-dust, the adding of fine is important to increase the thermal conductivity of the
granular soils regardless of the type of fine content. Though the stone dust consists of higher
quartz content (see section 4.5) as compared to bentonite, no remarkable effect is observed
due to high quartz content in stone-dust. As explained earlier in Chapter 2, in the dry state
the microstructure is a dominant parameter than mineralogy and in this case, the fine par-
ticles act as the bridge to improve the quality of contacts and hence improve the thermal
conduction between grains. As explained earlier, the mineralogy of the main constituent
(sand in this mix) is more attributed to enhance the thermal conductivity of the mixed geo-
materials.

With SIC

Figure 5.4 shows the relationship between thermal conductivity and porosity of modified
fuller sand with SiC and original sand. The modified fuller sands consist of bentonite in-
stead of stone-dust in this case. It shows that the thermal conductivity increases exponen-
tially with a decrease in porosity. For the 8mm fuller sand, the highest thermal conductivity
is achieved at a porosity of 0.22. For the same mix (sandA_8mmF with bentonite), the maxi-
mum dry thermal conductivity is 1.12 W m−1 K−1 whereas that is 1.33 W m−1 K−1 when SiC
is added. So, it can be clearly said that this improvement in thermal conduction is entirely
due to the mineralogy of SiC. It is worth noting that adding SiC has also a great impact on
dry thermal conductivity as it is increased by 30% for the material of the same porosity. The
highest dry thermal conductivity value (=1.33 W m−1 K−1) for porosity 0.22 attained in this
study is also close to that of Fluidized thermal backfill (FTB), liquid cement-sand mixture
(Radhakrishna, 1981). This proves that mineralogical composition plays a key role in en-
hancing thermal conduction if the mineral has very high thermal conductivity. The SiC has
high mineral thermal conductivity than quartz mineral. However, this effect on dry ther-
mal conductivity decreases with increasing porosity and the thermal conductivity values
converge at a porosity of about 0.35.
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FIGURE 5.4: Thermal conductivity as fuction of porosity in dry state for orig-
inal sand and modified fuller sand with SiC.

5.2.2 Effect of fine contents on thermal conductivity

In order to know the effect of fine content on the thermal conductivity of dry sand, the
different proportion of fine content was added to sand A and the measurement was done.
The fine added were bentonite, stone-dust, and kieselguhr. The results shown in Figure 5.5
are from the dense packing for all mixes. The addition of fine particles slightly improve the
thermal conductivity in the dry state, but not like in fuller gradation. The stone-dust shows
a higher thermal conductivity than others and the content is 30%. At 30% of stone-dust, the
optimum thermal conductivity is found to be 0.62 W m−1 K−1, which is higher than that of
original sand (= 0.39 W m−1 K−1). With the increase in fine content, the thermal conductivity
increases and reaches optimum value and again starts to decrease. This is typical behaviour
of coarse and fine mixtures, which was also noticed by Yun and Santamarina (2007). The
optimum content of the fine is different for different fine particles i.e. 30% for stone dust
and bentonite and 10% for kieselguhr. The bentonite and stone-dust produce higher dry
thermal conductivity than that of kieselguhr, they are used as fine particles in the modified
fuller sand.

5.2.3 Effect of saturation on thermal conductivity

Figure 5.6 summaries the experimental results obtained for the thermal conductivity values
with respect to the degree of saturation of the original and modified sands for both sand
A and B. It shows that full saturation is not achieved for the orginial as well as modified
fuller sand. It depends on many factors like soil types, porosity, saturation methods, sample
preparation methods, etc. The saturation is reached up to 90 % only because of the saturation
method used in this study and the lower porosity. The water is flowing from 1 m height to
the specimen which is 10 kPa pore water pressure and that couldn’t be enough to replace the
entrapped air completely within the soil. However, the saturation reached in this study is in



Chapter 5. Experimental material design analysis and discussions 89

FIGURE 5.5: Thermal conductivity at different fine contents in dry state.

the range of the capillary regime as the range of capillary regime for sand is around 80-100
% and 85-100 % for silt and clay (Dong et al., 2015). In this regime, no further increment of
thermal conductivity is found as the pore-water replaces most of the air in the voids.

As expected, the thermal conductivity shows an ascending trend with an increase in
the degree of saturation. Moreover, the obtained results follow a general trend of the three
saturation regimes. i.e. the pendular regime Sr ≤ 0.2, characteristics by the substantial vari-
ation in thermal conductivity with respect to degree of saturation Sr, the funicular regime
Sr = 0.2–0.7, characterized by the mild conduction changes and the capillary regime Sr ≥
0.7, characterized by no significant conduction changes (Shrestha et al., 2019). The thermal
conductivity values for the modified fuller sands are higher than that of the original sand
across the full range of saturation (0-100 %). The obtained dry thermal conductivity values
for the modified 8mmF, 4mmF and 2mmF of sand A are 1.02 W m−1 K−1, 0.85 W m−1 K−1

and 0.65 W m−1 K−1, higher than that (0.365 W m−1 K−1) of the original sand A, whereas
those for the sand B are 0.96 W m−1 K−1, 0.73 W m−1 K−1 and 0.51 W m−1 K−1 also higher
than 0.33 W m−1 K−1 of the original sand B. The results show an improvement of 183%,
136% and 80% for 8mmF, 4mmF and 2mmF of sand A, while 191%, 121% and 54% for the
8mmF, 4mmF and 2mmF of sand B in the dry state. Shrestha et al. (2016) also found the im-
provement of (50– 180) % in the dry state with bentonite. In a similar fashion, the obtained
thermal conductivity data for the 8mmF, 4mmF and 2mmF of sand A are 2.54 W m−1 K−1,
2.5 W m−1 K−1 & 1.5 W m−1 K−1, which are comparatively higher than that of the original
sand A, 1.2 W m−1 K−1 at 10% degree of saturation. On the other hand, at the same 10% de-
gree of saturation, the measured thermal conductivity data for 8mmF, 4mmF and 2mmF of
sand B are 1.92 W m−1 K−1, 1.75 W m−1 K−1 & 1.25 W m−1 K−1, which are also higher than
that of original sand B ( 0.7 W m−1 K−1). However, it is cleared that sand B and its modified
fuller sand have lower thermal conductivity values than sand A due to quartz content and
dry density (Shrestha et al., 2019; Shrestha et al., 2018).

During the pendular regime, the thermal conductivity of modified sands increases rapidly
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(A)

(B)

FIGURE 5.6: Thermal conductivity as function of degree of saturation for mod-
ified and original sand A (a) and sand B (b) with stonedust.

than that of original sand as heat is transmitted through the solid phase via the contact points
between the grains. Because of the graduation and the fine particles filled in the interstitial
space that increases the grain to grain conduction path and the addition of moisture starts to
bridge between soil grains. This phenomenon can be observed through SEM observations.
Figure 5.7 represents the SEM images obtained for a modified 2mmF of sand A. In Figure
5.7a, the stone dust filling the cracks of grain improve the heat conduction path and in Fig-
ure 5.7b, the stone dust filled the gap among the grains to bridge the gap by increasing the
contact among the grains. In this case, heat is transmitted through much large contact ar-
eas rather than through distinct contact points. The thermal conductivity of the 8mmF and
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(A) (B)

FIGURE 5.7: SEM images obtained for the modified 2mmF of sand A: (a) stone
dust filling the cracks in grain and (b) stone dust filling the pore space between

the sand grains.

4mmF has sharply increased while that of the 2mmF has not increased in the range (0–5) %
of saturation because the 2mmF has more fine particles than the 4mmF % 8mmF and it needs
more water to bridge the soil grains. Lu et al. (2007) also noticed this phenomenon with fine-
textured soils. After this regime, the increase in thermal conductivity depends mainly on
the replacement of air by water, and as a result, the thermal conductivity increases slowly
during the funicular regime. That’s why the rate of increment is almost identical for the
modified and the original sand. No more conduction changes are observed during the cap-
illary regime because most solid particles are already connected and the addition of water
will not increase the thermal conductivity. It is also observed that the thermal conductivity
values of sandA_8mmF and sandB_8mmF are slightly higher than that of sandA_4mmF and
sandB_4mmFhas at various water content, though 8mmF has remarkably higher dry ther-
mal conductivity than that of 4mmF for both sand A and B. This could be because of dense
packing in both fuller gradations and a small amount of water is enough to trigger a change
in thermal conductivity in both cases. The thermal conductivity of the original, as well as
the modified sand for sand B, are less than that of sand A over the full range of saturation
because sand B has comparatively less quartz content than sand A. As explained earlier in
Chapter 2, the mineral plays a vital role to enhance the thermal conductivity in the moist
state.

5.2.4 Effect of dry density and saturation on thermal conductivity

Figure 5.8 shows the relation between the thermal conductivity and dry density at different
degrees of saturation for sand A and B. In the figures, the variation in dry densities rep-
resents the densities of modified fuller sands of 8mmF, 4mmF, & 2mmF and sand. These
densities are the maximum possible densities that can be attained with conventional com-
paction for respective modified fuller sand and original sand. The highest dry density (ρd =
2.08 g cm−3 ) was achieved for 8mmF and the dry density is decreased with decreasing max-
imum particle size of fuller sands. For example, the fuller sandA_4mmF owing maximum
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particle size of 4mm has a dry density of 2.04 g cm−3, the dry density of 2mmF owing maxi-
mum particle size of 2mm is 1.95 g cm−3 and finally, that of sand-A is 1.71 g cm−3. Similarly,
for sand-B, the dry densities of sandB_8mmF, sandB_4mmF, sandB_2mmF, and sand-B are
2.08 g cm−3, 2.02 g cm−3, 1.92 g cm−3 and 1.71 g cm−3, respectively. As expected, the thermal
conductivity increases with an increase in dry density at various water content (or degree of
saturation). It is noticed that the change in thermal conductivity is mild at lower (below 2
g cm−3) and higher densities (above 2 g cm−3). However, the thermal conductivity increases
drastically from lower to higher densities (1.95 to 2.04 g cm−3). The increment in the ther-
mal conductivity between the saturation degree of 0 and 25% is relatively high than other
saturation degrees regardless of dry density. This increment is even very high in the case
of higher densities greater than 2.0 g cm−3. The reason behind this increment is that heat is
transmitted through the solid phase via the contact points between the grains. The dense
density is achieved due to gradation and the fine particles filled in the interstitial space that
increases the grain to grain conduction path and the addition of moisture starts to bridge
between soil grains which leads to increase the thermal conductivity.

5.2.5 Effect of mineralogy on thermal conductivity

As discussed earlier in chapter 2, the mineralogy also affects the thermal conductivity of
soils. From the experimental results obtained in this study, two key findings are noticed
regarding the mineralogy effects. The first one is that despite the difference in quartz con-
tent in original sand, no significant difference in thermal conductivity is found in the dry
state. Figure 5.9 shows the thermal conductivity as a function of porosity in the dry state
for all modified and original sand. The conductivity is sharply increased with a decrease in
porosity in the case of modified fuller sand, while a gradual increase is noticed in the case
of original sand. In both cases, the mineralogy has less influence on the dry thermal con-
ductivity of modified and original sand. Sand A has almost all of the quartz (99% quartz)
whereas sand B and sand C have respectively quartz contents of 70% and 80%. In dry soils,
the microstructure is more prominent than mineralogy (Johansen, 1975; Farouki, 1981; Yun
and Santamarina, 2007; Côté and Konrad, 2009).

But it is also evident that if the highly conductive material is added to soil, the difference
in thermal conductivity is somehow noticed. In this study, SiC was added to modified fuller
sand A and the thermal conductivity of that mix was measured. The results are shown in
Figure 5.10. The effect is more significant at the lowest porosity. For example, the maxi-
mum dry thermal conductivity of the sample sandA_8mmF is 1.12 W m−1 K−1 whereas that
is 1.33 W m−1 K−1 for the same porosity of 0.22 when SiC is added to the same mix. So, it
can be clearly said that this improvement in thermal conduction is completely due to the
mineralogy of SiC. It is worth noting that adding SiC has also a great impact on dry ther-
mal conductivity as it is increased by 30% for the material of the same porosity. However,
this effect on dry thermal conductivity decreases with increasing porosity and the thermal
conductivity values converge at a porosity of about 0.35.

The second one is that the mineralogical effect is noticed in unsaturated as well as in the
saturated state. Figure 5.11 shows the thermal conductivity measurement of modified fuller
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FIGURE 5.8: Thermal conductivity as function of dry density at different sat-
uration of degree for (a) sand A and (b) sand B.

sand A and B with stone-dust. The thermal conductivity of modified as well as original
sand A is remarkably higher than that of sand B fur the full range of degree of saturation.
This is due to the mineralogical content of sands. Sand A has higher quart content than
sand B (Table 4.1). As explained earlier, quartz is the dominant minerals in the soil as it
has a thermal conductivity of 7.7 W m−1 K−1. That’s why most of the prediction models
which consider the effect of minerals and include the thermal conductivity of quartz are
more successful than other models. Like Johansen (1975), Côté and Konrad (2005a), Lu
et al. (2007), Balland and Arp (2005), and Haigh (2012) are some prediction models which
consider the thermal conductivity of minerals.
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FIGURE 5.9: Thermal conductivity as function of porosity for original sands
and modified fuller sands with stonedust.

FIGURE 5.10: Thermal conductivity as function of porosity for modified fuller
sands with and without SiC.

5.3 Improvement in thermal conductivity

The improvement in thermal conductivity can be discussed in two different conditions; (a)
dry state and (b) moist state, because it is noticed from the experimental results that the
improvement is higher in the dry state as compared to the moist state.

5.3.1 Dry state

The improvement in the thermal conductivity of modified fuller sands can be distinctively
observed from Figures 5.12 & 5.13 with bentonite and stone-dust, respectively in dry condi-
tion. The improvement in thermal conductivity (I) is calculated using Equation 5.1 , where
the thermal conductivity of original sand is taken as the average measured thermal conduc-
tivity of original sands A, B and C.
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FIGURE 5.11: Thermal conductivity vs degree of saturation for modified fuller
sands A and B with stonedust.

I =
λmodi f ied − λoriginal

λoriginal
(5.1)

where λmodi f ied (W m−1 K−1) and λoriginal (W m−1 K−1) are thermal conductivity of mod-
ified fuller sand and original sand, respectively, I (%) is an improvement in thermal con-
ductivity. The average thermal conductivity values are 0.342 W m−1 K−1, 0.342 W m−1 K−1

and 0.343 W m−1 K−1 for sand A, B and C, respectively. The thermal conductivity values are
increased by 10- 230% for all modified fuller sands. From the figures 5.12 & 5.13, it is clearly
noted that the greatest improvement (about 230%) is found with the 8mmF of sand A & B at
their lowest porosity while the lowest improvement is found with 2mmF of sand A & B at
their highest porosity. It confirms that the bigger particle sizes enhance thermal conduction
better. The thermal conductivity is decreased with a decrease in maximum particle size and
consequently, 2mmF has the lowest improvement in thermal conductivity.

According to the denseness of the materials, the improvement in thermal conductivity
varies. In the loose state (i.e. maximum porosity), the improvement is less and this keeps
increasing with decreasing porosity and it becomes maximum at the lowest porosity (i.e.
dense packing). This characteristic is noticed with all modified fuller sand. For the porosities
range from 0.2-0,35, the improvements in thermal conductivity for 8mmF, 4mmF and 2mmF
of sand A with both bentonite and stone-dust are 90-230 %, 50-170% and 25-120%. The main
advantage of adding fine particles is to act as a bridge at contacts to improve the quality and
quantity of contacts. In this case, heat is conducted through much large contact areas rather
than through distinct contact points. Despite the different types of fine materials, both fine
materials contribute in the same way. So, the main important factor is a certain amount
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FIGURE 5.12: Improvement in thermal conductivity vs. porosity for modified
fuller sands with bentonite.

of fine particles can enhance the thermal conductivity with wide a range of particles by
attaining lower porosity (i.e dense packing).

A significant improvement in thermal conductivity is achieved for modified fuller sand
of both sand A and B in dry conditions. The maximum dry thermal conductivity of 1.12
W m−1 K−1, which is itself 230% increment from the original thermal conductivity, is at-
tained at the lowest porosity (dense packing) for 8mmF modified sand. Even in the loose
state for 8mmF, the thermal conductivity is about 0.6 W m−1 K−1 , still improved by 80% than
the thermal conductivity of original sand. (Drefke et al., 2015) also found the improvement
in the thermal conductivity in the dry state in the case of coarse-grained liquid soil only as
it predominantly consists of well-graded quartz sand. So, the shape and size of the parti-
cles and mineral content are the vital factors to affect the thermal conductivity. As stated
earlier in chapter 2, the dry thermal conductivity of natural soil is less than 0.5 W m−1 K−1.
In this study, the dry thermal conductivity of natural sand is significantly enhanced by just
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FIGURE 5.13: Improvement in thermal conductivity vs. porosity for modified
fuller sands with stonedust.

changing gradation and adding fillers, which is the main objective of this study.

5.3.2 Moist state

The thermal conductivity values for both modified sand A and B are found to be higher than
that of original sand across the full range of saturation. Figure 5.14 shows the improvement
in thermal conductivity over the various degree of saturation for modified fuller sands of
A and B. In this case, the improvement is calculated using the same Equation 5.1, where
the thermal conductivity of the original sand is taken as the measured thermal conductivity
of original sand A and B at the respective degree of saturation. For example, the obtained
thermal conductivity data for the 8mmF, 4mmF and 2mmF of sand A are 2.54 W m−1 K−1,
2.5 W m−1 K−1 & 1.5 W m−1 K−1, which are comparatively higher than that of the original
sand, 1.2 W m−1 K−1 at 10% saturation. It means about 112%, 108% and 25% improvements
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are achieved for the 8mmF, 4mmF and 2mmF respectively at 10% saturation. For the full
range of saturation, the improvement of (22–80) % for the sandA_2mmF, (35–136)% for the
sandA_4mmF and (40–180)% for the sandA_8mmF are achieved. The improvement is high-
est at the dry state and decreases with an increase in the saturation degree. This observation
is due to the filling of air void (λ = 0.0024 W m−1 K−1) with the stone dust of dominant
quartz content (λq = 7.7 W m−1 K−1). The improvements of 22%, 35% and 40% are achieved
for the 2mmF, 2mmF and 8mmF of sand A, whereas 15%, 30% and 40% are achieved in
the 2mmF, 4mmF and 8mmF of sand B, respectively at full saturation. In the same manner,
(Drefke et al., 2015) also found the improvement in thermal conductivity in the wet state
in the case of both materials; coarse-grained liquid soil and fine-grained backfill material
by adding highly heat-conductive additives. So, the shape and size of the particles and
mineral content are the vital factors to affect the thermal conductivity. The obtained dry
thermal conductivity values for the modified 8mmF, 4mmF and 2mmF of sand A are 1.02
W m−1 K−1, 0.85 W m−1 K−1 and 0.65 W m−1 K−1, higher than that (0.365 W m−1 K−1) of the
original sand A, whereas those for the sand B are 0.96 W m−1 K−1, 0.73 W m−1 K−1 and 0.51
W m−1 K−1 also higher than a thermal conductivity (0.33 W m−1 K−1) of the original sand B.
The results show an improvement by 183%, 136% and 80% for 8mmF, 4mmF and 2mmF of
sand A, while 191%, 121% and 54% for the 8mmF, 4mmF and 2mmF of sand B in the dry
state. This shows a significant improvement in the dry and the lower saturation states and
a moderate improvement in the high saturation. In the same manner, there is an improve-
ment of (15–56) % for the 2mmF, (30–121) % for the 4mmF and (40–191) % for the 8mmF
in case of sand B. The thermal conductivity of the original, as well as the modified sands
for sand B, are less than that of sand A over the full range of saturation because sand B has
comparatively less quartz content than sand A.

For the backfill materials used for underground power cables, the problem is the dryness
of the materials as it has a very low thermal conductivity in the dry state as compared to the
moist state. In this study, the greatest improvement is achieved in a dry state as compared
to a moist state, which is a very essential requirement in terms of backfill materials devel-
opment. This improvement helps underground power cables to carry the current to full
capacity and increase the life of the cable by dissipating the heat generated from the cable to
the surrounding soil.

5.4 Relation between proctor density, water content and thermal
conductivity

Measuring the thermal conductivity at proctor density and various water content is a very
essential step while designing the thermal backfills as the backfill materials are compacted
in the site using proctor density and optimum water content. The thermal conductivity
values were measured at various proctor densities and corresponding moisture contents.
The results are shown in Figure 5.15 for modified fuller sands of sand A.

The samples were prepared at different water contents and subjected to the same com-
paction effort. The density, therefore, varies with water content and showing a maximum
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FIGURE 5.14: Improvement in thermal conductivity as function of degree of
saturation for modified fuller sands A and B with stonedust.

dry density at the optimum water content. The maximum dry densities of modified fuller
sands:sandA_8mmF, sandA_4mmF, and sandA_2mmF are 2.09 g cm−3, 2.01 g cm−3 and 1.96
g cm−3 at corresponding optimum water contents of 7.0%, 8.2% and 9.5%, respectively while
that of original sand A is 1.71 g cm−3 at an optimum water content of 11%. The dry den-
sities including peak dry density of sandA_8mmF are higher than that of sandA_4mmF,
sandA_2mmF and original sand A. With an increase in maximum particle size of fuller gra-
dation, the dry densities increase for the same water content. It can be said that a wide range
of particles with fine materials can produce dense packing (i.e. lowest porosity).

The thermal conductivity of modified sands also varies with density. The highest ther-
mal conductivity value coincides with maximum dry density at optimum water content; 4
W m−1 K−1 for both 8mmF and 4mmF and 3.4 W m−1 K−1 for 2mmF of sand A. At the dry
side of optimum, the thermal conductivity varies abruptly with water content and dry den-
sity. For example, the thermal conductivity of 8mmF of sand A is about 3.63 W m−1 K−1 at
a water content of 4.6% and dry density of 2.05 g cm−3. When the water content is changed
from 4,6% to 2.6%, the thermal conductivity is reduced drastically to 1.98 W m−1 K−1. How-
ever, at the wet side of optimum, the thermal conductivity values don’t vary with water
content and density since most solid particles are already connected and the addition of
water will not increase the thermal conductivity. Adams and Baljet (1968) also noticed the
same behaviour for well-graded sand and stone screening. Obviously, for a particular soil,
the thermal conductivity depends on both density and moisture content. But, the more in-
fluencing factor is moisture content (Johansen, 1975; Farouki, 1981; Côté and Konrad, 2005a;
Lu et al., 2007). This is also proved from the results obtained in this study. The thermal con-
ductivity of modified fuller sand and original sand A can be arranged in order of 8mmF >
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(A)

(B)

FIGURE 5.15: Dry density (a) and thermal conductivity (b) at various water
content for modified fuller sands and original sand A with stonedust.

4mmF > 2mmF > sand-A. The same observations are also noticed in the Figure 5.6a as shown
earlier. However, the thermal conductivity of 8mmF is slightly higher than that of 4mmF at
wet side of optimum. The fuller gradation owning maximum particle size (8mmF in this
study) attain the lowest porosity and hence produces the highest thermal conductivity than
others.

5.5 Comparison of experimental results with prediction models

In this section, all the experimental results obtained are compared to existing theoretical and
semi-empirical prediction models. The thermal conductivity prediction models have been
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already described in detail in the previous chapter’s section 2.6.

5.5.1 Two phase prediction models

As described in section 2.6, several two-phase models for the predicting thermal conductiv-
ity of soils exist. Soil exits in either two or three phases. These models are especially for
two-phase soils, consist of fluid and continuous solid medium. The state is defined accord-
ing to the fluid-filled by either air or water. The state is defined as dry when it is filled by
air while that is defined as saturated when it is filled by water. In this study, the measured
thermal conductivity in the dry state is compared with the most commonly used and pop-
ular prediction models; theoretical and semi-empirical prediction models. Most theoretical
models have been developed for two-phase soils (Hashin and Shtrikman, 1962; Gori and
Corasaniti, 2004; Maxwell, 1954; De Vries, 1963; Yun and Santamarina, 2007; Smith, 1942;
Woodside and Messmer, 1961; Kunii and Smith, 1960) while few models for three-phase
soils (Mickley, 1951; Tong et al., 2009; Haigh, 2012) have been developed.

Theoretical prediction models

Figure 5.16 presents a comparison of all measured thermal conductivity values of modified
and original sands with theoretical models. The theoretical models are computed assuming
that the thermal conductivity of quartz and air are λmineral = 7.7 W m−1 K−1 and λmineral =
0.024 W m−1 K−1 at 20oC. The thermal conductivity of solid particles is calculated by using
the geometric mean (GM) equation proposed by Johansen (1975). The thermal conductivity
of all samples drops sharply from that of quartz (Figure 5.16). As expected, all measured
thermal conductivity values are between Weiner bound (series and parallel flow model) and
Hashin and Shtrikman Bound (Hashin and Shtrikman, 1962). The geometric mean yields the
values between parallel and series models. The three models series, parallel and GM have
been used by many researchers as a basis to develop other theoretical and semi-empirical
models. The geometric mean method overestimates the thermal conductivity of all studied
samples while cubic cell (Gori and Corasaniti, 2004) underestimates the measured thermal
conductivity. The geometric mean method only gives satisfactory results when the ratio of
thermal conductivity of solids to that of fluids (either liquid or gas), λs/λ f < 15 (Côté and
Konrad, 2005a). In this case, the air being fluid, λs/λ f > 100 leads to an overestimation of
thermal conductivity. However, the GM model has a good prediction for saturated cases
(Johansen, 1975; Farouki, 1981; Côté and Konrad, 2005a; Balland and Arp, 2005; Lu et al.,
2007). Maxwell (1954) model is identical to Hashin and Shtrikman (1962) upper boundary
model.

The Volume Fraction (VF) model with fitted parameter ’s=-0.25’ gives average predic-
tion for all modified fuller sands but not for original sands. Since the VF model considers
volumetric fractions and bulk conductivity of each phase, the model can predict the average
thermal conductivity of modified fuller sands but without providing any significant mean-
ing of the fitting parameter. On the other hand, the Log model predicts well for original
sand but underestimates the thermal conductivity of modified fuller sand. The Log model
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FIGURE 5.16: Comparison of experimental results with theoretical models.

is also fitted with fitting parameters. It is also observed from Figure 5.16 that the theoretical
models provides the boundary of thermal conductivity values.

Empirical prediction models

Figure 5.17 shows experimental thermal conductivity values against the porosity with em-
pirical thermal conductivity models. All the models for soils except Balland and Arp (2005)
model underestimate experimental thermal conductivities of modified fuller sands. Never-
theless, these models are able to show good agreement with experimental data for original
sand. This is probably due to the fact that these models are primarily based on dry density
(or porosity) of media and lack considerations of inherent presence of contacts quality and
quantity in dry soils. Balland and Arp (2005) overestimates the experiment results of both
original and modified sand as the model depends on empirical parameters which govern
the thermal conductivity of solid particles. The Balland and Arp (2005) model is based on
the mainly dry density of the soils and thermal conductivity of solid soils. If the thermal
conductivity of solid soils is considered as 3 W m−1 K−1, it will give the same prediction as
Johansen (1975) model. In this case, the thermal conductivity of solid soil is calculated us-
ing Equation 2.35 taking thermal conductivity of quartz 7.7 W m−1 K−1 and 2.0 W m−1 K−1

for other minerals. The reason for overestimating thermal conductivity values is taking a
higher value of thermal conductivity of soil solids (λs = 6.29 W m−1 K−1) in this case. How-
ever, the Balland and Arp (2005) model cab be referred to as boundary models for thermal
conductivity of modified fuller sand.

The comparison between theoretical and experimental results suggest that thermal con-
ductivity models should not only consider volumetric function and bulk conductivity of
each constituent but also the inherent presence of contacts in granular materials. On the
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FIGURE 5.17: Comparison of experimental results with semi-empirical mod-
els.

other hand, the comparison between empirical and experimental results shows the impor-
tance of microstructure effects as well as porosity (dry density). The development of ther-
mal conductivity models in dry soils must identify that interparticle contacts play a decisive
role in heat transfer. Most of the models discussed here simplify the problems by includ-
ing several assumptions associated with the aforementioned factors that affect the thermal
conductivity of soils. Consequently, most of the existing methods fail to consider inherent
characteristics of particle behaviour contacts, microstructure, etc. That’s why an alternative
simple method is needed to fulfil this gap. Therefore, an artificial neural network approach
has been developed in this study to effectively model the dry thermal conductivity of mod-
ified fuller sand.

5.5.2 Theoretical and empirical prediction models over full range of saturation

The measured thermal conductivity values are also compared with semi-empirical predic-
tion models as depicted in Figures 5.18 and 5.19. The thermal conductivity is plotted against
the degree of saturation in these figures. The saturated thermal conductivity (λsat) and
solid thermal conductivity (λs) were calculated using Equation 2.34 and 2.35, respectively
for all semi-empirical prediction models used for the comparison. Since the dry densities
and quartz contents of sand A & B and modified fuller sand; sandA_2mmF, sandA_2mmF,
sandA_2mmF, sandA_2mmF, sandA_2mmF, sandA_2mmF are different (ref Chapter 3), the
prediction models were calculated using these values and the results are presented in Fig-
ures 5.18a - 5.18d and 5.19a - 5.19d.

All semi-empirical models show good agreement with natural sands A & B as well as
modified sands 2mmF of both sand. But, Haigh (2012) model couldn’t predict the effective
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(A) (B)

(C) (D)

FIGURE 5.18: Comparision of experimental results with semi-empirical mod-
els for (a)sand-A, (b)2mmF, (c)4mmF & (d)8mmF.

thermal conductivity for the modified fuller sand (2mmF,4mmF,8mmF) due to higher den-
sities of modified fuller sand. The model produces imaginary values when the dry density
is higher than 1.90 g cm−3. As the dry density increases in the order of sand < 2mmF <
4mmF < 8mmF, the thermal conductivity also increases in the same order for the full range
of saturation and attain the highest thermal conductivity for 8mmF regardless of the degree
of saturation. It implies that the higher the density, the higher the thermal conductivity. The
measured and predicted thermal conductivity is also increased with an increase of the de-
gree of saturation and attain maximum thermal conductivity at full saturation. Hence, it is
certain that the dry density and saturation affects the thermal conductivity of the soils. All
remaining three models (Johansen (1975), Côté and Konrad (2005a), Lu et al. (2007)) underes-
timate measured thermal conductivity values for modified sand (4mmF and 8mmF) of both
sand A and B until 30% of the degree of saturation and then provides the best correlation
to the measured thermal conductivity for the remaining degree of saturation. It is evident
that these prediction models especially cannot predict for a lower degree of saturation (Sr

below 30%). Due to the higher density of the modified sand samples, the small amount of
water can facilitate a good conduction path by forming bridges between solid particles and
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hence the thermal conductivity increases abruptly than conventional prediction models at a
lower degree of saturation. The degree of saturation at which a sharp thermal conductivity
increase begins is greater for the 2mmF modified sand than for the 4mmF and 8mmF mod-
ified sand. It is due to fact that the 2mmF modified sand has larger surface areas and more
water is required before water bridges are formed between solid particles.

(A) (B)

(C) (D)

FIGURE 5.19: Comparision of experimental results with semi-empirical mod-
els for (a)sand-B, (b)2mmF, (c)4mmF & (d)8mmF.

All three predictions models developed in the past are based on some assumptions to
simplify the problems and they are developed for a specific type of soil and boundary con-
ditions. So, these models couldn’t predict well in the case of modified fuller sands, especially
for the lower side of saturation. This is probably due to the fact that these models lack con-
siderations of the inherent presence of contacts quality and quantity in soils. Therefore, an
artificial neural network (ANN) as a simple method is proposed to predict the thermal con-
ductivity of modified sands for the full range of saturation. The development of the ANN
model is discussed in detail in the next chapter 6.
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5.6 Mechanical test results

The Odometer tests were also performed to investigate the mechanical stability of selected
developed materials in this study. The tests were carried out for the modified fuller sands
with stone-dust and original sand and the results are shown in Figure 5.20. As expected,
there is a reduction in the strength for the modified fuller sands as compared to the strength
of the original sand. It is observed that there is less deformation with 8mmF as compared
to other fuller gradation mixes since the 8mmF has fewer fine materials by volume. The
deformation increases with an increase in the content of fine materials as 8mmF, 4mmF
and 2mmF contain 12%, 17% and 25% fine content by volume. It is more clear from the
compression index parameter (Table 5.1). The Cc for the sandA is 0.0329 and those for 8mmF,
4mmF & 2mmF are 0.0365, 0.0396 and 0.0465, respectively. The strength decreases with an
increase in fine content. The deformation for modified fuller sand is considerably higher
at greater stresses, whilst at lower stress, no significant deformations are observed. For
example, at 100kPa, the vertical strain for sandA is 1.1%, whereas that for modified fuller
sands lies between 1.5 & and 2.2 %.

(A)

(B)

FIGURE 5.20: Vertical stress vs strain for for modified fuller sands with stone-
dust and original sand A (a) and sand B (b).
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TABLE 5.1: Odometer parameters for modified fuller and original sands.

Materials Cc Cs Cr

sand-A 0.0329 (400-800 kPa) 0.0058 0.0060
sandA_2mmF 0.0465 (200-800 kPa) 0.0070 0.0088
sandA_4mmF 0.0396 (200-800 kPa) 0.0060 0.0074
sandA_8mmF 0.0365 (200-800 kPa) 0.0070 0.0085
sand-B 0.0217 (100-800 kPa) 0.0060 0.0073
sandB_2mmF 0.0264 (200-800 kPa) 0.0035 0.0042
sandb_4mmF 0.0299 (200-800 kPa) 0.0041 0.0055
sandB_8mmF 0.0272 (100-800 kPa) 0.0056 0.0065

Cc = Compression index; Cs = Swelling index; Cr = Recompression index

The Odometer parameters are presented in Table 5.1. The swelling index properties are
almost the same for modified fuller and original sand.

5.7 Summary

This chapter explained almost all the outcomes and discussed them to provide actual insight
of the results. Furthermore, it explained the factors affecting the thermal conductivity of
the materials and discussed about the current prediction models and its limitation in the
estimation of designed geomaterials. These experimental data have been further used to
develop ANN models, described in Chapter 6.
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Chapter 6

Development of new conductivity
models for granular materials by using
ANNs

6.1 Introduction

This chapter explains the ANN methodology used to predict the thermal conductivity of
designed geomaterials as well as sand based on different input parameters. The proposed
ANN models have been validated on new experimental data and performance assessment
of proposed ANN models with other existing prediction models have been also made to
reinforce the applicability and superiority of the ANN models.

6.2 ANNs model setup

Basically, an ANN consists of layers and neurons that are organized in a certain structure
to perform a particular function at a given time. Different ANNs are distinguished from
each other in terms of the number of layers, method of determining the weights between
the neurons of different layers, a connection between the neurons of the layers, the direction
of information flow and the transfer function used to get the output from the neurons (Sinha
et al., 2015).

Setting up or constructing the ANN model basically has the following major steps pro-
cedure.

1. At first, the data to be used need to be defined and presented to the ANN as a pattern
of input data with the desired outcome or target. It is also called pre-processing of
data which contains normalization of all input and output data.

2. The data are categorized to be either in the training set, validation and testing set. The
ANN only uses the training set in its learning process in developing the model. The
validation set is used to test the model for its predictive ability and when to stop the
training of the ANN. The testing set is used to assess the performance of the ANN
model.
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3. The ANN structure is defined by selecting the number of hidden layers to be con-
structed and the number of neurons for each hidden layer. Starting with 1 hidden
layer and 1 neuron.

4. Fourthly, all the ANN parameters are set before starting the training process.

5. Next, the training process is started. The training process involves the computation
of the output from the input data and the weights. The Levenberg-Marquardt back-
propagation algorithm is used to ‘train’ the ANN by adjusting its weights to minimize
the difference between the current ANN output and the desired output.

6. Finally, an evaluation process has to be conducted to determine if the ANN has ‘learned’
to solve the task at hand. This evaluation process may involve periodically halting
the training process and testing its performance until an acceptable result is obtained.
When an acceptable result is obtained, the ANN is then deemed to have been trained
and ready to be used. The selection of the best performing ANN model is done based
on standard error parameters.

The above steps are also shown in Figure 6.1 in the form of a flow chart which presents
the calculation process for the proposed ANN models. As there are no fixed rules in deter-
mining the ANN structure or its parameter values, a large number of ANNs may have to be
constructed with different structures and parameters with the activation function/s before
determining an acceptable model. The trial and error process can be a tedious, laborious
and time-consuming method. Determining when the training process needs to be halted
is of vital importance in obtaining a good model. If an ANN is overtrained, a curve-fitting
problem may occur whereby the ANN starts to fit itself to the training set instead of creating
a generalized model. This typically results in poor predictions of the test and validation data
set. On the other hand, if the ANN is not trained for long enough, it may settle at a local
minimum, rather than the global minimum solution. This typically generates a sub-optimal
model. By performing periodic testing of the ANN on the test set and recording both the
results of the training and test data set results, the number of iterations that produce the best
model can be obtained. All that is needed is to reset the ANN and train the network up to
that number of iterations.

As explained earlier, ANN users don’t need strong computational knowledge and back-
ground as commercial ANN software is available in the market. The use of this software
has been the most popular method for developing an ANN model. With the rapid develop-
ment of computer software, several ANN software which can be used for developing ANN
models have been developed in the past decade. Some of them are Neural-Ware Profes-
sional, Neural-Shell, Neuro-solution (Neuro-Dimension, Inc., Gainesville, FL), Matlab Neu-
ral network toolbox (MathWorks, Inc., Natick, MA), Statistica Neural Networks (StatSoft,
Inc., Tulsa, OK) and Neuro-Genetic Optimizer (BioComp Systems, Inc, Bloomington, MN).
In this study, the design and training of the networks were performed using the MatLab
programming environment (version R2019a) with Neural Networks Toolbox.
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FIGURE 6.1: Flow chart of ANN models calculation procedure.

6.3 Data division and pre-processing

The data used to train the ANN model were obtained from extensive experimental work
(chapter 3). Some of the data were also collected from the literature survey, especially the
thermal conductivity measurement for original sands. The tested sand samples were pre-
pared with different porosities and various water contents and subjected to thermal conduc-
tivity measurement as reported by previous researchers (Yun and Santamarina, 2007; Chen,
2008; Erzin et al., 2008; Tarnawski et al., 2013; Tarnawski et al., 2015; Alrtimi et al., 2016;
Zhang et al., 2015; Zhang et al., 2020b; Zhang et al., 2020a). After obtaining the data, the
variables were pre-processed by them to a suitable form and to eliminate their dimension
before they are applied to the ANN. The input variables are selected on the base of influ-
encing factors on thermal conductivity and the output variable is thermal conductivity. This
is explained in the next section when selecting the input parameters of each ANN model.
For the convenience of model calculation, both input and output parameters of each model
were normalized using equation 6.1 as suggested by earlier researchers to create value that
lies between 0 and 1 (Erzin et al., 2008; Zhang et al., 2020b).

xN =
x − xmin

xmax − xmin
(6.1)

where xn is the normalized value for model calculation, x is the actual input-output
value, xmin & xmax are the minimum and maximum values, respectively.

The data division was done using the cross-validation technique in which the was di-
vided into three sets viz. training set, validation set and testing set. The training set is used
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to update the connection weights and the updating process is monitored by the error of vali-
dation data. Training the model will stop when the error of validation data in the validation
set begins to increase, at which point the model generalization is considered to reach its best
stage. Finally, the testing set is used to evaluate the performance of the trained network. In
this study, training set, validation set, and testing set are account for 60%, 20%, and 20% of
the database in total, respectively.

6.4 Determination of ANN model Architecture

Determining the network architecture is one of the most important and difficult tasks in
ANN model development. It requires the selection of the optimum number of hidden layers
and the number of neurons in each hidden layer. However, The number of nodes in the
input and output layers are decided by the number of input variables and outputs. There
is no unified theory for the determination of an optimal ANN architecture (Shahin et al.,
2002b). When the neural network has too few hidden neurons, the model complexity is
not sufficient to extract the deterministic relationship between the input variables and the
outputs. On the other hand, a neural network with more hidden neurons could precisely
adjust the training data and fit the noise present in the data, but gave the ANN predictions
deprived of physical connotation. More hidden layers can also result in ’over-training’ (or
lack of generalization) and lead to large ’verification errors’. Therefore, its performance
depended largely on the particular training set.

In this study, separate ANN models were developed for dry and moist states respectively
since the dry thermal conductivity in the dry and unsaturated states is affected by different
factors. Therefore, the input variables are different for each model. Three error indicators
as explained earlier were used to compare network usefulness in the prediction of thermal
conductivity after training.

6.4.1 ANN architecture for dry materials

As discussed earlier, soil thermal conduction in the dry state is affected by many factors, viz.,
dry density or porosity, microstructure, a volumetric fraction of each constituent, quartz con-
tent, and particle size gradation. In this study, the prediction models based on the artificial
neural network were developed independently for modified fuller sand and original sand,
which were denoted as ANN-F for modified fuller sand and ANN-S for sand. Furthermore,
a generalized model denoted as ANN-G was also developed which accounts for both mod-
ified fuller and original sands. Two input parameters (porosity, n & quartz content, qc) were
set for individual models(ANN-F, ANN-S), while three input parameters (n, qc, & gradation
parameters, Cu) were utilized for the generalized model(ANN-G). It should be noted that
gradation parameters and quartz content were selected as input parameters for the ANN-G
model because these two parameters represent variations in the gradation and the miner-
alogy, respectively. The fine content ( fc) as additional parameters was added to individual
ANN-F model since the proportion of fine content in fuller curve is different by volume. All
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these models have one output parameter i.e. dry thermal conductivity (λdry). The bound-
aries for input and output parameters of the ANN models are listed in Table 6.1. The input
and output parameters of each ANN model were scaled to lie between 0 and 1 by using
equation 6.1. As said earlier, the dataset was divided to 60:20:20, the number of the dataset
used for training, testing and validation used for different ANN models are presented in
Table 6.2.

TABLE 6.1: Boundaries of the input & output paremeter for ANN models.

Model symbol Input/Output Min. Max.

ANN-F n 0.206 0.361
qc [%] 52.5 87.5
fc [%] 12.5 25
λ [W m−1 K−1] 0.389 1.153

ANN-S n 0.302 0.550
qc [%] 70 99
λ [W m−1 K−1] 0.14 0.40

ANN-G n 0.206 0.550
qc [%] 52.5 99
Cu 1.15 36.0
λ [W m−1 K−1] 0.14 1.153

ANNs-F ρd [g cm−3] 1.92 2.08
qc [%] 71.3 97.5
Sr [%] 0.0 100
λ [W m−1 K−1] 0.51 4.239

ANNs-S ρd [g cm−3] 1.20 1.80
qc [%] 35 100
Sr [%] 0.0 100
λ [W m−1 K−1] 0.14 3.37

ANNs-G ρd [g cm−3] 1.20 2.08
qc [%] 35 100
Sr [%] 0.0 100
Cu 1.15 36.0
λ [W m−1 K−1] 0.14 4.239

6.4.2 ANN architecture for moist materials

Three different ANN models namely ANNs-F, ANNs-S and ANNs-G were developed for
modified fuller sand, sand only and combined modified fuller and original sand. The first
two are individual models which predict independently for modified fuller sands and orig-
inal sands whereas the third one is generalised models which accounts for both modified
and original sand. As discussed in chapter 2, various factors like dry density, saturation,
mineral contents, particle size gradation, etc on thermal conductivity of soils. So, three in-
put parameters (dry density (ρd), quartz content (qc), and degree of saturation Sr) were set
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TABLE 6.2: Data division for different ANN models.

Model symbol Training Testing Validation train function

ANN-F 67 23 23 trainlm
ANN-S 46 15 15 trainlm
ANN-G 104 34 34 trainlm

ANNs-F 125 42 42 trainlm
ANNs-S 115 39 39 trainlm
ANNs-G 240 80 80 trainlm

for individual models (ANNs-F, ANNs-S), while four input parameters (ρd, Sr, qc, grada-
tion parameters, Cu) were utilized for the generalized model (ANNs-G). It should be noted
that gradation parameters and quartz content were selected as input parameters for the
ANNs-G model because these two parameters represent variations in the gradation and the
mineralogy, respectively. All these models have one output parameter i.e. effective thermal
conductivity of materials over the various degree of saturation. The boundaries for input
and output parameters of the ANN models are listed in Table 6.1. The input and output
paramters of each ANN model were scaled to lie between 0 and 1 by using equation 6.1. As
said earlier , the dataset was divided to 60:20:20, the number of dataset used for training,
testing and validation used for different ANN models are presented in Table 6.2.

TABLE 6.3: Artificial Neural Network Paramters.

Paramters Value

Learning rate 0.01 to 0.001
Momentum, mu 0.9
Maximum momentum, mu_max 1e10
Momentum decrease factor, mu_dec 0.8
Momentum increase factor, mu_inc 1.5
Maximum Epoch 1000
Maximum validation fail 30
Performacne goal 1e-5
minimum performance gradient 1e-7

Since it has been shown that a network with one hidden layer can approximate any
continuous function (Hornik et al., 1989; Lawrence, 1993), in this study, different neural
networks models with one hidden layer and several neurons in the hidden layer were de-
veloped. The optimum number of neurons in the hidden layer of each model was deter-
mined by varying their number between 1 and 10 with an increment of 1. This resulted in
a total of 10 networks for each ANN model besides ANN-S models. ANN-S has hidden
neurons between 1 and 20 with the increment of 2, 3 and 5 as shown in Table A.2. There-
fore, ANN-S has 8 network models. So, altogether 58 artificial neural network models were
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created for dry and moist states, 10 each for ANN-F, ANN-G, ANNs-F, ANNs-S and ANNs-
G. All of the networks were feed-forward and the Levenberg-Marquardt back-propagation
algorithm was used in the learning process. The Levenberg-Marquardt method, which com-
bines the gradient descent method and the Gaus-Newton optimization method (Levenberg,
1944; Marquardt, 1963) uses the supervised learning technique. In this method, the network
weights and bias are initialized randomly at the starting of the training phase and the net-
work is trained by adjusting its weights and bias to minimize the difference between the
current ANN ouptput and the desired output. The training function used in the matlab is
’trainlm’. The hyperbolic tangent function was used for all of the hidden and output layers
as the activation function. The maximum epochs set for training the networks was 1000.
The ANN parameters utilized in training the network are presented in Table 6.3. Since the
back-propagation algorithm uses a first-order gradient descent technique to adjust the con-
nection weights, it may get trapped in a local minimum if the initial starting point in the
weight space is unfavourable (Shahin et al., 2002b). Consequently, the model that has the
optimum momentum term and the learning rate is retrained several times with different
initial weights until no further improvement occurs.

6.5 Stop criteria

The criteria to stop the training process is called stopping criteria. It stops the training pro-
cess when the model has been optimally or sub-optimally trained. As said earlier, the cross-
validation technique was used in this study to stop the training. The training is stopped
when the validation set error has started to increase. The training is also stopped when
the performance goal is reached to the desired limit while using the ’trainlm’ function. The
’trainlm’ function is a network training function that updates weight and bias values ac-
cording to Levenberg-Marquardt optimization. The other conditions when the training is
stopped are a) when the maximum number of epochs is reached, b) when the momentum
exceeds mu_max and c) when the performance gradient falls below min_grad. Despite var-
ious stopping conditions, the validation set error and the performance goal are main criteria
to stop the training in this study.

6.6 Model optimization (Training)

The performance of the network during the training and testing processes was examined for
each network size until no significant improvement occurred. As said earlier, three perfor-
mance parameters MSE, R and MAE were used to check the performance of the developed
ANN models. The values are presented in Appendix A in tabular form. The values of R,
MSE and MAE are listed in Tables A.1 to A.6 for respective ANN-F, ANN-S, ANN-G (dry
ANN models) and ANNs-F, ANNs-S, ANNs-G (moist ANN models). It can be noted that the
individual models (ANN/s-F, ANN/s-S) and the generalized model (ANN/s-G) are quite
efficient in estimating thermal conductivity of sand and modified fuller sand in both dry and
moist states as their R are very close to unity and MSE are very close to zero. In each subset



Chapter 6. Development of new conductivity models for granular materials by using
ANNs

115

(i.e., training data, validation data, and testing data), predicted thermal conductivity values
show good agreement with the measured ones, which indicates that the cross-validation
technique is effective and feasible for developing these ANN prediction models.

6.6.1 For dry materials

It was found that the best ANN architecture for predicting the thermal conductivity of mod-
ified fuller sand in a dry state was constructed from one hidden layer with 6 neurons (bold
number in Table A.1 ) for ANN-F. The R values of training, validation and testing of se-
lected architecture are very close to unity than other architecture and their respective MSE
values are the lowest ones. Besides that, another ANN architecture with one hidden layer
and 7 neurons was also selected since the R, MSE and MAE are better than other networks.
Similarly for the individual models of sand, ANN-S, two ANN structures were selected one
hidden layer with 9 neurons and 20 neurons (bold number in Table A.2) providing good per-
formance indices than others. For generalised model ANN-G, two ANN architectures viz.
one hidden layer with 6 neurons and 9 neurons (bold number in Table A.3) were selected.
All these selected ANN models have used the trainlm function. As said earlier, one hidden
layer is sufficient to solve most of the engineering problems. It is observed from Tables A.1-
A.3 that one hidden layer with a various number of neurons is good enough to develop the
relationship between dry thermal conductivity and influencing factors like porosity, quartz
content and gradation. Another noticeable characteristic is that the generalised ANN mod-
els (ANN-G) performs better than the individual ANN models (ANN-S) for predicting the
thermal conductivity of dry original sand as the performances indices of ANN-G are better
than ANN-S. It could be due to the inclusion of gradation parameters in the generalised
models. As mentioned earlier, the dry thermal conductivity is greatly influenced by the
porosity and structure of the soils.

6.6.2 For moist materials

For predicting the thermal conductivity in the moist state (i.e. over the various degree of
saturation), various ANNs as explained earlier were created and their performances indices
are listed in Tables A.4-A.6. It is also observed from Tables A.4-A.6, one hidden layer is
quite enough to develop ANN models to estimate the thermal conductivity of modified
sand and original sand over various ranges of water content since the R-value of training,
testing and validation of all proposed structures are very close to unity, while MSE and
MAE are also close to zero. Two ANN architectures with one hidden layer with 7 and 9
neurons were selected for the individual model of modified sand (ANNs-F) since the three
performances indices R, MSE and MAE of selected structures are better than others (shown
bold in Table A.4). However, it is also noticed from Table A.4 that neural networks consist
of 3 neurons to 10 neurons show good performance indices values, which ensure that a
single hidden layer is able to solve this kind of problem. Similarly, for the original sand
(ANNs-S), two ANN structures with one hidden layer with 6 and 9 neurons were selected
based on better performances indices (shown bold in Table A.5). In the same manner, two
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ANN structures with one hidden layer with 6 and 8 neurons were selected (shown bold
in Table A.6. Not only the individual models show good agreement between predicted
and measured values, but also the generalised ANN models also show good agreement
between predicted and measured thermal conductivity values. The inclusion of gradation
parameters in generalised models differentiates the modified fuller sand and original sand.
So, the generalised ANN models are also applicable for estimating the thermal conductivity
of both modified and original sand. It is also evident that in all subsets (i.e., training data,
validation data, testing data), the predicted values agree well with measured values.

6.6.3 Comparison of experimental and predicted thermal conductivity using se-
lected ANN models

From these selected ANN models, a list of weights can be obtained and applied in a spread-
sheet to obtain a very accurate tool for predicting the thermal conductivity of geomaterials
in dry as well as in the moist case. However, in this study, the thermal conductivities are
calculated in MATLAB directly using selected ANN models. The selected ANN models for
ANN-F, ANN-S and ANN-G were used to calculate the thermal conductivity of samples
used in training, validation and testing for dry cases, while those for ANNs-F, ANNs-S and
ANNs-G were used to calculate the thermal conductivity of samples for the moist case.

(A) (B)

FIGURE 6.2: Comparison of measured and predicted thermal conductivity
using ANN-F models: (a) ANNF6L and (b) ANNF7L.

A comparison of experimental results with the results obtained from selected ANN mod-
els for training, validation and testing samples are shown in Figures 6.2-6.4 for dry case and
6.5-6.7 for various degrees of saturation. It is observed from these figures that, the predicted
thermal conductivity values are quite close to the measured thermal conductivity values for
all data including training, validation and testing indicating the high quality of the ANN
architectures. The validation and testing data are independent data, which are not used in
the training. The performances indices of these independent data also yield satisfactory. In
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(A) (B)

FIGURE 6.3: Comparison of measured and predicted thermal conductivity
using ANN-S models: (a) ANNS9L and (b) ANNS20L.

(A) (B)

FIGURE 6.4: Comparison of measured and predicted thermal conductivity
using ANN-G models: (a) ANNG6L and (b) ANNG9L.

the case of the dry state, the generalised ANN models (ANN-G) performs better than the
individual ANN models (ANN-S) for predicting the thermal conductivity of dry original
sand as the performances indices of ANN-G are better than that of ANN-S. It could be due
to the inclusion of gradation parameters in the generalised models. As discussed earlier in
the literature and experimental results, the dry thermal conductivity is more influenced by
microstructure and it should be accounted for while developing the prediction models. On
the other hand, the individual ANN models as well as generalised ANN models show good
agreement between measured and predicted thermal conductivity values for all datasets.
The inclusion of gradation parameters for generalised ANN models helps to predict the
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(A) (B)

FIGURE 6.5: Comparison of measured and predicted thermal conductivity
using ANNs-F models: (a) ANNs-F7L and (b) ANNs-F9L.

(A) (B)

FIGURE 6.6: Comparison of measured and predicted thermal conductivity
using ANNs-S models: (a) ANNs-S6L and (b) ANNs-S9L.

thermal conductivity of both modified fuller sand and original sand.

6.7 Validation of developed ANN models

The validation of developed ANN models was done using independent experimental data.
The thermal conductivity data obtained from laboratory measurement for modified fuller
sand B and C with stone-dust and three sand used in this study which was not part of
the developing the ANN models were selected to check the performance of the developed
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(A) (B)

FIGURE 6.7: Comparison of measured and predicted thermal conductivity
using ANNs-G models: (a) ANNs-G6L and (b) ANNs-G8L.

ANN models for dry state. On the other hand, the sandB_4mmF and sandA were used
for verifying the validity of the ANN models in the full range of saturation. These data
are completely independent and were fed into the developed models and their prediction
outputs were also compared with the laboratory-measured results. Three error indicators;
R, MSE and MAE as explained earlier were employed for further quantitatively checking the
reliability of the developed models. The performances indices of all the proposed models are
presented in Tables A.7-A.9 and A.10-A.12 of Appendix A for dry ANN models and moist
ANN models (individual and generalised), respectively while the selected ANN models’
parameters are presented in Table 6.4.

6.7.1 For dry materials

It is observed from the Table A.7-A.9 that the R values are greater than 0.96 and 0.92 for all
individual models ANN-F and ANN-S respectively besides ANN-F models with 1 and 10
neurons, while that for generalised model ANN-G is greater than 0.92 excepts the models
with 7 neurons. The MSE are also very low and less than 0.0040, 0.00031 and 0.0091 for
ANN-F, ANN-S and ANN-G, respectively. This shows that using the single hidden layer is
also sufficient to predict the thermal conductivity of modified fuller sand and original sand.
The selected ANN-F models ANNF6L and ANNF7L have R values of 0.9867 and 0.9773,
MSE of 0.0007 and .0012, and MAE of 0.0227 and 0.0286 indicating superior performance
in predicting the thermal conductivity of new independent data of modified and original
sand. Similarly, the selected ANN models ANNS9L and ANNS20L for predicting sand only
and ANNG6L and ANNG9L for predicting both sand and modified sand show better per-
formances indices value (Table A.8-A.9 ). The generalised ANN models (ANN-G) are able
to perform better than individual models (ANN-S) since their R values are slightly higher
than those of individual models (ANN-S).
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TABLE 6.4: Performance indices for different ANN models obtained for new
experimental data in dry as well as in moist case.

Model symbol Hidden nodes Exp. data R MSE MAE

ANNF6L 6 Fuller sands 0.9867 0.0070 0.0227
ANNF7L 7 Fuller sands 0.9773 0.0012 0.0286
ANNS9L 9 Sands 0.9223 0.0003 0.0139
ANNS20L 20 Sands 0.9199 0.0003 0.0153
ANNG6L 6 Fuller/sands 0.9353 0.0043 0.0435
ANNG9L 9 Fuller/sands 0.9594 0.0027 0.0388
ANNs-F7L 7 Fuller sands 0.9971 0.0041 0.0487
ANNs-F9L 9 Fuller sands 0.9962 0.0053 0.0572
ANNs-S6L 6 Sands 0.9676 0.0460 0.1861
ANNs-S9L 9 Sands 0.9141 0.1186 0.2943
ANNs-G6L 6 sandB_4mmF 0.9922 0.0110 0.0721
ANNs-G6L 6 sandA 0.9207 0.1099 0.2573
ANNs-G8L 8 sandB_4mmF 0.9540 0.0635 0.2231
ANNs-G8L 8 sandA 0.9149 0.1175 0.2871
dry case: ANNF, ANNS, ANNG; moist case: ANNs-F, ANNs-S, ANNs-G.

Figure 6.8 shows a comparison of measured thermal conductivity of independent data
with the thermal conductivity obtained from selected individual ANN models for dry mod-
ified fuller sands and original sands. The thermal conductivity obtained from selected gen-
eralised ANN models are also compared to experimental results and it is presented in the
Figure 6.9. As explained earlier, it is clearly seen from these figures that the selected ANN
models (ANN-F, ANN-S, ANN-G) show good agreement between measured and predicted
values of new experimental data. It is more clear when the predicted and measured thermal
conductivity values are plotted against porosity.

Figure 6.10 shows the measured thermal conductivity against the porosity with pre-
dicted thermal conductivity obtained from selected individual ANN models (i.e. ANN-F,
ANN-S) while Figure 6.11 shows the prediction of experimental data for the generalised
model, ANN-G in the dry state. These figures give a more clear picture that how well the
ANN models (ANN-F, ANN-S, ANN-G) can predict the measured values of new indepen-
dent data. With decreasing the porosity, the measured thermal conductivity of modified
fuller sand is exponentially increased and the same trend is followed by proposed ANN
models. The generalised ANN models can predict measured thermal conductivity in the
dry state for both modified and original sand within all given porosity ranges (0.20-0.45).
However, the individual models ANN-F and ANN-S predict the thermal conductivity of
modified fuller sand for the porosity range (0.20-0.36) and that of sand for the porosity range
(0.30-0.45).

6.7.2 For moist materials

On the other hand, the ANN models (ANNs-F, ANNs-S, ANNs-G) developed for the moist
state have also shown good agreement between predicted and measured values since the
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(A) (B)

FIGURE 6.8: Comparison of measured and predicted thermal conductivity
using individual models: (a)selected ANN-F and (b)selected ANN-S for inde-

pendent data.

performances indices R, MSE and MAE are within the acceptable level. The R values of
selected individual models ANNs-F are very close to unity i.e. higher than 0.99 showing
good agreement between predicted and measured values of modified fuller sands (Table
A.10), whereas those of selected ANNs-S (Table A.11 ) are also higher than 0.91. The gener-
alised models ANNs-G were separately tested with modified fuller sand and original sand
as shown in Table A.12. The R values of generalised models ANNs-G are slightly lower
than those of individual ANNs-F when predicting the thermal conductivity for modified
fuller sand, while the R values of both generalised ANNs-G and individual ANNs-S for es-
timating sand thermal conductivity are almost the same. This observation shows that the
generalized model predicts the thermal conductivity of both modified and original sand in
moist cases quite accurately. The selected generalised model ANNs-G6L has R values of
0.9922 and 0.9207 for predicting modified fuller sand (sandB_4mmF) and sand-A respec-
tively, while those for ANNs-G8L are 0.9540 and 0.9149. The MSE and MAE can be obtained
from Table A.12. The generalised model (ANNs-G6L) predicts more accurately than the
latter one (ANNs-G8L) for both modified and original sand. Another noticeable character-
istic is that the performances indices of all ANN models with three and more neurons are
satisfactory when predicting new independent data. It confirms the validation of proposed
ANN models with new experimental data.

Figure 6.12 shows a comparison of measured thermal conductivity of independent data
with the thermal conductivity obtained from selected individual ANN models for modified
fuller sands (Fig. 6.12a) and original sands (Fig. 6.12b) in moist case. The individual mod-
els ANNs-F7L & ANNs-F9L predict very well for independent data since R is very close to
unity, whereas the ANNs-S6L & ANNs-S9L slightly overestimates for the lower degree of
saturation. The thermal conductivity obtained from selected generalised ANN models are
also compared to measured thermal conductivity values of both modified fuller and original
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FIGURE 6.9: Comparison of measured and predicted thermal conductivity
using generalized model, ANN-G for independent data.

(A) (B)

FIGURE 6.10: Comparison of measured and predicted thermal conductivity
using individual models: (a)selected ANN-F and (b)selected ANN-S for inde-

pendent data.

sand in the moist case and it is presented in Figure 6.13. The generalised models ANNs-G6L
& ANNs-G8L estimates very well for modified fuller sand while the models slightly overes-
timate measured values between 1-2.6 W m−1 K−1 for sand. It is more clearly observed from
Figures 6.14 & 6.15. These figures show the measured and predicted values obtained from
selected individual ANN models (ANNs-F & ANNs-S) and generalised model (ANNs-G)
plotted against the degree of saturation for modified fuller and original sands. Both selected
models ANNs-F7L & ANNS-F9L perfectly match the experimental thermal conductivity of
modified fuller sand (sansB_4mmF) across the full range of saturation degrees. However,
in the case of individual ANN models for sand, ANNs-S9L slightly overestimates the mea-
sured value across the full range of saturation while ANNs-S6L overestimates slightly till
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FIGURE 6.11: Comparison of measured and predicted thermal conductivity
using generalized model, ANN-G for independent data.

(A) (B)

FIGURE 6.12: Comparison of measured and predicted thermal conductivity
using individual models: (a)selected ANNs-F and (b)selected ANNs-S for in-

dependent data.

60% degree of saturation and then-after slightly underestimates. This is due to the mea-
sured thermal conductivity data used to develop the ANN models have a sharp tendency to
increase in the thermal conductivity at lower saturation degrees. It is observed from Figure
6.15, the generalised ANN models are very good to predict the measured thermal conduc-
tivity values across the full range of saturation degrees for both modified and original sand.
For modified fuller sand, the predicted values obtained from ANNs-G6L agrees very well
with measured values, but ANNs-G8L slightly underestimates the measured values over
10% saturation degree. On the other hand, both selected ANNs-G6L and ANNs-G8L over-
estimate slightly until the degree of saturation of 70% and perfectly match after that. The
inclusion of one more parameter in generalised models seem to be good as the ANN models
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FIGURE 6.13: Comparison of measured and predicted thermal conductivity
using generalized model, ANNs-G for independent data

can predict the thermal conductivity for both modified and original sands.

(A) (B)

FIGURE 6.14: Comparison of measured and predicted thermal conductivity
using individual models: (a)selected ANNs-F and (b)selected ANNs-S for in-

dependent data.

6.8 Performance assessment of proposed ANN models

A comparison of proposed ANN models with existing prediction models was performed in
this study in order to reinforce the applicability and superiority of the proposed prediction
models.
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(A) (B)

FIGURE 6.15: Comparison of measured and predicted thermal conduc-
tivity using generalised models ANNs-G for (a) modified fuller sand

(SandB_4mmF) and (b) sand-A.

6.8.1 For dry ANN models

The most commonly used semi-empirical models proposed by earlier researchers (Johansen,
1975; Côté and Konrad, 2005a; Lu et al., 2007; Balland and Arp, 2005; Gavriliev, 2004) to
predict the dry thermal conductivity of the soils were selected as comparison models which
are explained in detail in chapter 2. The proposed ANN models, individual (ANN-F &
ANN-S) and generalised (ANN-G) ANN models, were deployed for independent measured
thermal conductivity data to obtain the predicted value and the results are shown in Figure
6.16.

Figure 6.16a presents the comparison of the predicted thermal conductivity from the
ANN-F & ANN-S and semi-empirical models with the independent measured thermal con-
ductivity for modified fuller sand with stone-dust and original sand. It is evident that the
proposed individual ANN Models yield much better matching with measured values as
compared to those calculated from empirical models since there are two separate ANN
models for modified fuller sand and original sand. On the other hand, the predicted thermal
conductivity from the ANN-G and empirical are compared with measured values (Figure
6.16b). It is observed from the figure that the ANN-G model predicts well for the measured
value of both modified fuller sand and original sand, though few higher measured thermal
conductivity values for the porosity between 0.25-0.30 are underestimated by the ANN-G
model. The empirical prediction models for sand can predict quite well for original sand
besides Balland and Arp (2005) models since the data obtained from this model used the
thermal conductivity of solids as 6.29 W m−1 K−1 and hence it overestimates the measured
values. As explained earlier, if the model use λsL = 3 W m−1 K−1, it can perfectly match for
the original sand. However, these prediction models cannot predict well and underestimate
the measured values for modified fuller sand. Since these models are not developed for the
specific type of soils and boundary conditions, they couldn’t predict the measured values
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(A)

(B)

FIGURE 6.16: Comparison of proposed ANN models and empirical models
with measured thermal conductivity value (a)ANN-F & ANN-S (b) ANN-G.

at the porosity below 0.30. It will be more clearly observed from Figure 6.17. The predicted
data obtained from ANN models are very close to 1:1 line, while for other prediction mod-
els, it is far from 1:1 line when the thermal conductivity is increased below the porosity
0.3. The predicted values obtained from mostly empirical models are below the 1:1 line,
underestimating the measured values. On contrary, Balland and Arp (2005) overestimates
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(A)

(B)

FIGURE 6.17: Comparison of proposed ANN models and empirical models
with measured thermal conductivity value (a)ANN-F & ANN-S (b) ANN-G.
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by showing predicted values over the 1:1 line.

6.8.2 For moist ANN models

A comparison of prediction performance between proposed ANN models in the moist case
and three semi-empirical (Johansen (1975), Côté and Konrad (2005a), and Lu et al. (2007))
and a theoretical model (Haigh (2012)) has been made for independent experimental data
and the results are presented in Figures 6.18 & 6.19.

The details about these prediction models are explained in Chapter 2. In these figures,
the thermal conductivity is plotted against the degree of saturation. It is evident that the
proposed ANN models yield much better matching with measured values as compared to
those calculated from empirical models in the case of modified fuller sand. The predicted
results of all three semi-empirical prediction models model have an obvious characteristic
of underestimation. However, in the case of sand, all four prediction models provide a good
fit to the experimental data (Figs. 6.18b & 6.19b). In addition, the predicted results of the
individual and generalised ANN models are acceptable when the degree of saturation of
the sandy soils are over 30%, whereas, below this value, the models slightly overestimate
the measured values. This is due to that the measured thermal conductivity data used to
develop the ANN models have a sharp tendency to increase in the thermal conductivity at
lower saturation degrees. It is also evident from Figure 6.20a that the ANN models slightly
overestimate the measured values when the thermal conductivity values of the sands are
between 0.80 W m−1 K−1 and 2.0 W m−1 K−1 and for the rest, the selected ANN models pro-
vide the best matching to new measured data. In contrast, the ANN models possess a supe-
rior prediction performance than the three empirical models in the case of modified fuller
sand. It is also observed from the Figure 6.20b that the predicted values obtained from the
ANN models are almost on the 1:1 line indicating a perfect prediction of the measured val-
ues while the semi-empirical prediction models underestimate the measured values. Haigh
(2012) model does not appear in Figures 6.18a & 6.19a because the model highly overesti-
mates measured thermal conductivity values of the modified fuller sand due to higher dry
density (ρd = 2.04g cm−3). At this dry density, the saturated thermal conductivity is 9.62
W m−1 K−1 which is not possible in the case of sandy soil. This is the limitation of Haigh
(2012) model, which is only valid for the sandy soils with a dry density below 1.90 g cm−3.
It is also evident that the ANN models (ANNs-G, ANNs-S) are very close to Haigh (2012)
model when predicting for the sand.

Statistical analysis was conducted to quantitatively assess the accuracy of the proposed
ANN models and prediction models in calculating the thermal conductivity of soils. Three
performances indices R, MSE and MAE as shown in Equations 3.22, 3.23 and 3.24, were
employed here to determine the prediction accuracy of each model. The statistical analysis
results of each prediction model in both dry and moist states are summarized in Table 6.5.
In the case of the dry condition, the analysis attests that the generalized model (ANN-G)
provides the best matching to the measured data of the modified fuller sand and original
sand because it possesses the lowest MSE value and highest R-value. Individual models
(ANN-F, ANN-S) also exert a good performance when predicting for modified fuller sand
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(A)

(B)

FIGURE 6.18: Comparison of proposed individual ANN models and semi-
empirical models with measured thermal conductivity values for (a) modified

fuller sand (SandB_4mmF) and (b) sand-A.
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(A)

(B)

FIGURE 6.19: Comparison of proposed generalised ANN models and semi-
empirical models with measured thermal conductivity values for (a) modified

fuller sand (SandB_4mmF) and (b) sand-A.
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(A)

(B)

FIGURE 6.20: Comparison of proposed ANN models and empirical mod-
els with measured thermal conductivity value for (a)sand (b) modified fuller

sand.
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and original sand separately. It is certain that Gavriliev (2004) and Côté and Konrad (2005a)
model for crushed rocks performs best in six empirical models, while predicted results of
other empirical models are unacceptable since their MSE values are too high (> 0.040 W/K
m).

TABLE 6.5: Performance indices of proposed ANN models and prediction
models in predicting thermal conductivity of modified fuller and original

sands in dry and moist case.

Model symbol State Materials R MSE MAE

ANN-F6L dry modified fuller sand 0.9867 0.0007 0.0227
ANN-S9L sand 0.9223 0.0003 0.0139
ANN-G9L both sands 0.9594 0.0027 0.0388
Johansen (1975) both sands - 0.0480 0.0185
Lu et al. (2007) both sands - 0.0906 0.2422
Côté and Konrad (2005a) both sands - 0.0893 0.2512
Côté and Konrad (2005a) both sands 0.7662 0.0174 0.0968
Balland and Arp (2005) both sands - 0.0570 0.2314
Gavriliev (2004) both sands 0.8655 0.0106 0.0800

ANNs-F7L moist sandB_4mmF 0.9971 0.0041 0.0487
ANNs-F9L sandB_4mmF 0.9962 0.0053 0.0572
ANNs-G6L sandB_4mmF 0.9922 0.0110 0.0721
ANNs-G8L sandB_4mmF 0.9540 0.0635 0.2231
Johansen (1975) sandB_4mmF 0.7951 0.2129 0.4534
Côté and Konrad (2005a) sandB_4mmF 0.9005 0.1335 0.3537
Lu et al. (2007) sandB_4mmF 0.7928 0.2622 0.4989
ANNs-S6L sandA 0.9676 0.0460 0.1861
ANNs-S9L sandA 0.9141 0.1186 0.2943
ANNs-G6L sandA 0.9207 0.1099 0.2573
ANNs-G8L sandA 0.9149 0.1175 0.2871
Johansen (1975) sandA 0.9910 0.0087 0.0762
Côté and Konrad (2005a) sandA 0.9901 0.0135 0.0941
Lu et al. (2007) sandA 0.9957 0.0058 0.0638
Haigh (2012) sandA 0.9342 0.0870 0.2592

In the case of the moist state, the generalised model (ANNs-G) shows the best agreement
predicting the measured thermal conductivity of both modified and original sand than other
prediction models as it has the highest R-value and the lowest MSE value. Individual model
ANNs-F provides the best matching to measured data of modified fuller sand than other
models. However, the other three models besides Haigh (2012) model show a good perfor-
mance than individual model ANNs-S when predicting for sand only. It means the existing
prediction models are still the best prediction models when used for natural soils as they
are developed specifically for that kind of material. Nevertheless, they couldn’t provide the
best matching for the measured value of designed materials in this study.

In summary, the generalized ANN models (ANN-G, ANNs-G) can be used to predict the
thermal conductivity of modified fuller sand as well as original sand in both dry and moist
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conditions, whereas the individual ANN models (ANN-F, ANN-S, ANNs-F, ANNs-S) can
predict the thermal conductivity of modified and original sands separately.

6.9 Summary

In this chapter, the separate ANN models for the dry and moist states were established. For
both models, individual and generalised ANN models were developed according to geo-
materials. Individual ANN models were applied to specific geomaterials (original sand and
modified fuller sand separately in this study) while generalised ANN models were applied
to both materials. The developed models are also verified with independent experimen-
tal data and produced satisfactory results. The performance assessment of proposed ANN
models with existing empirical, theoretical models was also done and it was found to be
better than the latter.
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Chapter 7

Applications of new materials design
for embedded cables

7.1 Introduction

This chapter deals with the thermal simulation of a single cable using Finite Method soft-
ware (Comsol multiphysics) to observe the heat dissipation characteristics around the un-
derground cable with original and modified backfill materials.

7.2 Background

The performance and efficiency of underground high voltage cable depend on the thermal
conductivity of the medium where it is placed. The thermal energy (heat) generated by the
cable should be dissipated from the cable for safe operation and durability of the cable by
maintaining the safe operating temperature of the cable. The current carrying capacity (or
the ampacity) of the cable is proportional to the amount of maximum operating temperature
of a cable, which is a function of the damage that the insulation of cable can suffer as a con-
sequence of high operating temperature. Thus, the cable may lead to failure. The remedial
cost of removing and replacing damaged cable and poor backfills are very high. In order
to avoid this problem, the thermal conductivity of the medium where the cable is placed
should have higher thermal conductivity than that of the surrounding soil. As explained
earlier in chapter 2, the thermal conductivity is moisture dependent and very dry soils are
usually characterized by low thermal conductivity due to interstitial air in the pores. A sat-
urated soil has a higher thermal conductivity than a dry one. Therefore, particular attention
has been given to heat transfer of the underground cables set in dry soils. It has not been
taken into consideration the presence of humidity in the soil. These types of soil can deter-
mine a certain kind of condition such as thermal stress experienced by electric cables, which
lead to a decrease in cable lifetime.

In order to study the thermal field in these circumstances, numerical simulation is done
to calculate the steady-state and transient temperature distribution in underground high
voltage power cables. The transient conditions are assumed to be caused by short-circuit
conditions which result in several circuit breaker reclosure cycles. The analysis is the re-
sult of an energy balance, which includes the cable and surrounding earth. The numerical
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simulation predicts the radial temperature distribution as a function of time with backfill
materials. Numerical analysis is a design tool, which can be used to predict possible cable
arrangement geometries, and operating conditions, which will lead to safe material temper-
atures under steady-state, and transient conditions. The numerical simulation also saves
time as compared to physical modelling done in the laboratory.

In this study, the model was set up using Comsol Multiphysics (FEM software) in order
to study and analysis of the phenomena of heat transfer with original and modified soils
where a single cable was installed.

7.3 2D Simulation

7.3.1 Model setup

Figure 7.1 shows the geometry of the model with mesh generation, which consists of single
cable, directly buried in the trench at 1.3m depth. The trench has a width of 0.5m and depth
of 1.5m, while the size of the model, which represents surrounding soil, is 6m in width and
5m in height. The trench was first filled with sand and then with modified sand for the
simulation. The trench is assumed to be in the dry state which is the worst-case scenario
of the high voltage buried cables. Therefore, no moisture movement is considered in the
simulation. Mechanical and thermal conductivity measurement was done on the proposed
material. The results of the experimental testing are used in the numerical model to predict
the behaviour of backfill material under various boundary conditions. The properties of the
material, used in this simulation, are presented in Table 7.1.

FIGURE 7.1: Geometry of model setup with mesh generation, after Shrestha
et al. (2016).

The geometry was simulated in a 2-D environment, while the influence of air thermal
conductivity was taken into consideration. Each material was assumed to be homogeneous
with constant thermal conductivity and specific heat. The cable temperature was fixed at
90oC, the maximum temperature the underground power cable can reach. The initial cable
temperature distribution is assumed to be the steady-state values, which exist when the
cable is operated without current fluctuations. At the boundary between the trench and
surrounding soil, continuity of heat flux and temperature was assumed. The soil surface
and other three sides were represented as an isothermal boundary at the temperature of



Chapter 7. Applications of new materials design for embedded cables 136

20oC and 15oC respectively. The transient heat transfer equation was solved numerically for
200 hrs using the Comsol Multiphysics software.

7.3.2 Results and discussions

Figure 7.2 show the outputs of the simulation showing the temperature distribution for 24
hrs, 72 hrs and 120 hrs respectively with unmodified sand (left) and modified sand (right).

(A)

(B)

(C)

FIGURE 7.2: Temperature distribution around the underground cable with
sand (left) and modified sand (right) at (a)24 hrs (b) 72 hrs (c) 120 hrs, after

Shrestha et al. (2016).

The heat generated from the cable is dissipated away in a faster manner in the presence
of modified fuller sand as compared to the original sand. It is due to the higher thermal
conductivity of the modified fuller sand. Because of the lower thermal conductivity of the
sand, the heat is generated in the cable faster than it dissipates away and a dry buffer zone
is created around the cable which leads the cable temperature beyond its safe limit. Conse-
quently, it leads to cable failure. At 120 hours, it is noticed that heat is accumulated around
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TABLE 7.1: Thermal properties of simulated geometry.

Material thermal conductivity Density Heat capacity at constant pressure

Unit W m−1 K−1 kg m−3 J kg−1 K−1

Soil 0.18 1450 900
Sand 0.36 1650 800
Modi f iedsand 1.0 2000 800

the vicinity of the cables in case of original sand, whereas heat is dissipating away from the
cables in case of modified fuller sand. Even at 24 hours, the heat is started to dissipate in
case of modified fuller sand from the vicinity of the cable, but in the case of original sand,
the dry buffer zone around the cable is started to create which will in long term affects the
current capacity of the power cables. The results clearly indicate that the large improvement
in heat dissipation for the modified soils which helps to prevent the cable overheated and
thus prevent the cable failure and extend their life.

FIGURE 7.3: Temperature versus time at two observation points for original
and modified sand, after Shrestha et al. (2016).

Two observation points OP-1 & OP-2 were plotted at depth of 0.5m & 1.5m respectively
as shown in Figure 7.1 to observe the temperature rise characteristics within the selected pe-
riod of 200hrs. Figure 7.3 shows temperature increment with respect to time at two selected
points for unmodified and modified sand. The heat dissipations in the case of modified
sand are faster as compared to unmodified sand in both observation points. At OP-2, there
is an abrupt change in temperature in the beginning and 63oC is reached in just 30 hrs for
modified sand, whereas 200 hrs are needed to reach the same temperature for unmodified
sand. Thereafter the temperature increases steadily after 50 hrs and 100 hrs for modified
and unmodified sand respectively. The temperature is gradually increasing at OP-1 and
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reaches to 50oC and 32oC for modified and unmodified sand respectively in 200 hrs. This
behaviour can be also verified with a big-box experiment simulating a single underground
cable. However, this is not the scope of this study.

7.4 Summary

A simple 2-D thermal simulation of a single underground cable was successfully done using
Finite method software (Comsol mutliphysics) and the results show great improvement in
heat dissipation away from the cable in case of modified fuller sand as compared to original
sand due to its higher thermal conductivity.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

The efficiency and performance of geo-energy applications like underground high voltage
power cables, heat storage facilities, nuclear waste disposal facilities, etc. depend on the
thermal conductivity of the soil where they are built. Especially, the underground high volt-
age power cables need backfill materials with high thermal conductivity because of their
influences on the designs, performances and economics of underground cables. The ther-
mal conductivity itself is dependent of several factors such as porosity, moisture content, soil
fabrics, mineralogy, temperature, etc. In this regard, the variation and correlation of these
factors on thermal conductivity was analysed theoretically and experimentally in order to
design the composite granular materials with high thermal conductivity. As the thermal
conductivity is mostly moisture dependent, the thermal conductivity is drastically reduced
with a decrease in moisture and attains very low thermal conductivity in a dry state. So,
the main focus was made in a dry state while developing the backfill materials as it is the
worst scenario in the case of the underground high voltage power cables. The extensive
experimental investigations that include materials selection, detailed planning of experi-
mental procedure, use of the right equipment were performed to obtain the desired goal of
this study. The granular materials with high thermal conductivity were developed and the
effect of various factors on its thermal conductivity was investigated.

In this study, the original sand was modified by changing its gradation into fuller curve
gradation and adding fine particles as fillers. This modification shows a strong effect on
increasing the thermal conductivity of sand for dry conditions as well as various moisture
content. Comparing the thermal conductivity of modified sand with that of original sand
shows improvement up to 230% in the dry case. In the case of the dry state, the filler types
don’t make any difference on thermal conductivity since the improvement achieved for the
dry case remains the same. The highest thermal conductivity achieved for 8mmF fuller sand
was 1.12 W m−1 K−1 at lowest porosity and for the same material, the thermal conductivity
was 0.6 W m−1 K−1 at loose state, i.e. 90% improvement. According to the denseness of the
materials, the improvement in the thrermal conductivity varies. Hence, the improvement in
thermal conductivity for 8mmF, 4mmF and 2mmF are in the range of 90-230%, 50-170%, 25-
120%. These thermal conductivity data of developed materials are significantly higher than
that of the original sand. Even in this study, the highest thermal conductivity for the sand
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is 0.4 W m−1 K−1. Therefore, even in the worst-case scenario of underground high voltage
cables, these developed materials could provide a better alternative since the major prob-
lems of the backfill used in this application is the dryness of the materials and the thermal
conductivity of soils, in this case, is below 0.5 W m−1 K−1.

These developed materials were also tested across the various moisture content. As ex-
pected, the thermal conductivity of the modified sands and the original sand increased with
increasing moisture content. However, the modified sand increased rapidly in the range
of 0–20% saturation than the original sand. An improvement of 80–136% was achieved for
the modified sand A whereas (54–120)% for the modified sand B in the dry state. A sig-
nificant improvement was noticed in the dry and lower saturation, whereas, a considerable
improvement was observed in the higher saturation. For the full range of saturation, the
improvement of (22–80)% for the 2mmF, (35–135)% for 4mmF and (40–180)% for 8mmF are
achieved with sand A. Even with sand B, the improvement of (15-191) % was achieved de-
spite having low quartz content than sand A. The improvement is highest at the dry state
and decreases with an increase in the moisture content. This characteristic is a very essential
requirement in terms of backfill materials development. The improvement achieved helps
underground power cables to carry the current to full capacity and increase the cable life.
Therefore, the developed material could be a better alternative where high thermal conduc-
tivity is needed even at a low saturation value.

The work presented in this study also confirms previous findings such as the decrease
in thermal conductivity with an increase in soil porosity, the increase in thermal conductiv-
ity with the increase in moisture content, the impact of high quartz content on the thermal
conductivity, the particle size distribution influence on the dry thermal conductivity, an im-
provement of quality of contacts due to addition of fine particles which in turn enhances
thermal conduction. The filler types don’t make any difference in dry thermal conductivity.
The use of bentonite and stone-dust produced the same results despite different characteris-
tics. However, in the case of moisture, the stone-dust was better due to the highly swelling
and impermeable characteristics of bentonite. The mineral has also a strong impact on the
thermal conductivity in the case of saturation and unsaturation case. However, in the case
of the dry state, no significant influence could be noticed unless using highly conductive
materials like SiC.

The experiment results were compared with existing prediction models and observed
that the existing empirical prediction models are unable to capture the increment of the ther-
mal conductivity and underestimate the measured thermal conductivity. The thermal con-
ductivity increases with decreasing void volume and increasing the filler content due to an
increase in the amount of contact area through which heat transfer can take place in granu-
lar matter. This study shows that effective thermal conductivity of dry granular matrix with
filler and voids not only depends upon total void volume (porosity) but it is influenced by
contact conductance, local particle and volume shape and the heat conduction path. These
parameters are not considered in semi-empirical modelling. Most of the existing prediction
models simplify the problem by including several assumptions associated with the afore-
mentioned factors that affect the thermal conductivity. Therefore, a reasonable agreement
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could not be obtained with existing semi-empirical models while comparing with experi-
mental results. The new prediction models for developed materials are developed on the
basis of artificial neural network (ANN) technology.

An Artificial neural network as an alternative simple method was selected to predict the
thermal conductivity of modified fuller sands as well as original sand. The developed artifi-
cial neural network (ANN) was capable of demonstrating its usefulness for the estimation of
the effective parameters. An individual and generalised ANN models were developed for
the dry and moist states and they were confirmed to describe the measured data as well. The
individual ANN models are only suitable for modified and original sand, whereas the gen-
eralised ANN model is applicable to both sand. The individual ANN models are suggested
to be used for predicting thermal conductivity when the gradation parameters of targeted
soils are not clear, whilst the generalized ANN model is preferable when the gradation pa-
rameters are known. The proposed ANN models have been verified and compared with
existing prediction models to reinforce their superiority and applicability using indepen-
dent data. All the developed ANN models show good agreement with experimental results
as their R is very close to 1 and MSE and MAE are also very low. The cross-validation tech-
nique used in this study is also useful to develop the ANN models. A single hidden layer
with multiple neurons is capable to predict the thermal conductivity of modified and orig-
inal sand in dry as well as the moist state. The ANN models proposed in this study are
only valid for the types of geomaterials discussed in this research. The applicability of the
proposed models to other types of geomaterials should be checked in future studies.

The output of thermal simulation done in this study for underground cable clearly indi-
cate that the large improvement in heat dissipation for the modified soils helps to prevent
the cable overheated and thus extend the cable life.

8.2 Recommendations for future work

In this research, the composite granular materials with enhanced thermal conductivity were
developed by analysing various influencing factors and incorporating those factors while
designing geomaterials and ANN models were also established for the prediction of thermal
conductivity of developed geomaterials. However, some recommendations for future work
on the improvement and extension of the present work are discussed below.

• The multi-purpose test including thermal conductivity and water potential measure-
ment can be done to obtain the water characteristics curve and thermal conductivity
curve of the same condition.

• Thermal stability test can be done for further validation of the use of the materials.

• A big box experiment can be performed to simulate the underground power cables in
order to know the suitability and applicability of developed materials.



Chapter 8. Conclusions and Recommendations 142

• Study of moisture variation across the length/depth of the sample depending on the
size of the sample and its effect on the thermal conductivity of the different types of
soils using the vertical thermal needle probe.

• Possibility of extension and validation of such improved method for fine-textured soils
such as silty clay.

• Assessment of the use of high conductive materials to improve further.

• ANN models can be expanded to other types of materials with more experimental
data to include all the available boundary conditions. ANN models developed here
are limited to some specific boundary conditions.

• More experimental data are needed to build a good database so that generalised ANN
models consisting of more factors can be developed with a wide range of boundary
conditions.

• ANN models with multi-layer and GA technologies for the prediction of thermal con-
ductivity of soils so that ANN can even solve complex problems.
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Appendix A

ANN models’ performance indices

A.1 Performances indices of different ANN models for Training,
Validation & Testing data

The performance indices (R, MSE, MAE) of the network are calculated for the training, vali-
dation and testing data for each proposed network size. The values of R, MSE and MAE are
listed in Tables A.1 to A.6 for respective ANN-F, ANN-S, ANN-G (dry ANN models) and
ANNs-F, ANNs-S, ANNs-G (moist ANN models). The ANN networks for different con-
ditions and materials are selected as per best performances indices and the selected ANN
networks are highlighted in bold letters in each Table.

A.2 Performances indices of different ANN models for new exper-
imental data

The performances indices of all the developed models are presented in Tables A.7-A.9 for
dry ANN models and A.10-A.12 moist ANN models (individual and generalised). These
indices check the validity of proposed ANN models by predicting the thermal conductivity
of new experimental (independent) data. The data has not been used while developing the
ANN models. The selected ANN models show good agreement with experimental data.
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TABLE A.1: Performance indices for different ANN-F models.

Model symbol Hidden nodes Data R MSE MAE

ANN-F 1 Training 0.9725 0.0018 0.0350
Validation 0.9438 0.0055 0.0536
Testing 0.9628 0.0026 0.0443

ANN-F 2 Training 0.9875 0.0010 0.0198
Validation 0.9864 0.0012 0.0260
Testing 0.9702 0.0015 0.0292

ANN-F 3 Training 0.9924 0.0006 0.0175
Validation 0.9851 0.0008 0.0174
Testing 0.9750 0.0022 0.0319

ANN-F 4 Training 0.9978 0.0002 0.0094
Validation 0.9956 0.0003 0.0121
Testing 0.9700 0.0013 0.0200

ANN-F 5 Training 0.9943 0.0004 0.0143
Validation 0.9887 0.0007 0.0174
Testing 0.9938 0.0005 0.0157

ANN-F 6 Training 0.9968 0.0002 0.0101
Validation 0.9900 0.0008 0.0198
Testing 0.9931 0.0005 0.0173

ANN-F 7 Training 0.9980 0.0004 0.0085
Validation 0.9932 0.0006 0.0153
Testing 0.9856 0.0011 0.0215

ANN-F 8 Training 0.9971 0.0002 0.0080
Validation 0.9922 0.0008 0.0211
Testing 0.9863 0.0008 0.0189

ANN-F 9 Training 0.9961 0.0003 0.0118
Validation 0.9876 0.0008 0.0185
Testing 0.9904 0.0007 0.0160

ANN-F 10 Training 0.9963 0.0003 0.0108
Validation 0.9838 0.0007 0.0183
Testing 0.9808 0.0007 0.0191
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TABLE A.2: Performance indices for different ANN-S models.

Model symbol Hidden nodes Data R MSE MAE

ANN-S 1 Training 0.8894 0.00062 0.0214
Validation 0.7710 0.00100 0.0279
Testing 0.6218 0.00057 0.0206

ANN-S 3 Training 0.9072 0.00042 0.0175
Validation 0.9187 0.00045 0.0194
Testing 0.9047 0.00068 0.0232

ANN-S 5 Training 0.9140 0.00055 0.0181
Validation 0.8328 0.00074 0.0200
Testing 0.7469 0.00043 0.0169

ANN-S 7 Training 0.9600 0.00025 0.0120
Validation 0.8317 0.00050 0.0181
Testing 0.8628 0.00063 0.0195

ANN-S 9 Training 0.9184 0.00037 0.0143
Validation 0.9412 0.00044 0.0152
Testing 0.8988 0.00051 0.0197

ANN-S 12 Training 0.9253 0.00031 0.0129
Validation 0.9571 0.00038 0.0151
Testing 0.8617 0.00056 0.0184

ANN-S 15 Training 0.8722 0.00054 0.0193
Validation 0.9288 0.00045 0.0192
Testing 0.9373 0.00044 0.0145

ANN-S 20 Training 0.9232 0.00034 0.0102
Validation 0.9362 0.00037 0.0150
Testing 0.9149 0.00063 0.0184
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TABLE A.3: Performance indices for different ANN-G models.

Model symbol Hidden nodes Data R MSE MAE

ANN-G 1 Training 0.9724 0.0030 0.0384
Validation 0.9658 0.0046 0.0475
Testing 0.9503 0.0048 0.0478

ANN-G 2 Training 0.9856 0.0018 0.0293
Validation 0.9615 0.0034 0.0468
Testing 0.9815 0.0017 0.0302

ANN-G 3 Training 0.9716 0.0030 0.0384
Validation 0.9745 0.0036 0.0413
Testing 0.9644 0.0039 0.0445

ANN-G 4 Training 0.9849 0.0016 0.0306
Validation 0.9757 0.0017 0.0354
Testing 0.9806 0.0034 0.0446

ANN-G 5 Training 0.9888 0.0012 0.0259
Validation 0.9815 0.0026 0.0372
Testing 0.9717 0.0027 0.0412

ANN-G 6 Training 0.9894 0.0012 0.0271
Validation 0.9880 0.0012 0.0288
Testing 0.9854 0.0018 0.0351

ANN-G 7 Training 0.9930 0.0008 0.0219
Validation 0.9928 0.0008 0.0190
Testing 0.9837 0.0016 0.0309

ANN-G 8 Training 0.9878 0.0013 0.0287
Validation 0.9937 0.0009 0.0237
Testing 0.9850 0.0015 0.0313

ANN-G 9 Training 0.9870 0.0013 0.0266
Validation 0.9761 0.0023 0.0361
Testing 0.9860 0.0019 0.0351

ANN-G 10 Training 0.9848 0.0018 0.0340
Validation 0.9798 0.0013 0.0291
Testing 0.9844 0.0020 0.0365
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TABLE A.4: Performance indices for different ANNs-F models.

Model symbol Hidden nodes Data R MSE MAE

ANNs-F 1 Training 0.9407 0.1042 0.2646
Validation 0.9609 0.0662 0.2103
Testing 0.9436 0.0841 0.2417

ANNs-F 2 Training 0.9918 0.0149 0.1001
Validation 0.9876 0.0159 0.1056
Testing 0.9925 0.0132 0.0906

ANNs-F 3 Training 0.9968 0.0054 0.0554
Validation 0.9967 0.0060 0.0568
Testing 0.9962 0.0064 0.0603

ANNs-F 4 Training 0.9977 0.0038 0.0469
Validation 0.9966 0.0061 0.0574
Testing 0.9974 0.0051 0.0569

ANNs-F 5 Training 0.9978 0.0037 0.0478
Validation 0.9973 0.0068 0.0703
Testing 0.9969 0.0041 0.0523

ANNs-F 6 Training 0.9982 0.0024 0.0396
Validation 0.9982 0.0024 0.0396
Testing 0.9982 0.0040 0.0536

ANNs-F 7 Training 0.9984 0.0026 0.0389
Validation 0.9988 0.0023 0.0376
Testing 0.9989 0.0020 0.0350

ANNs-F 8 Training 0.9990 0.0016 0.0325
Validation 0.9983 0.0036 0.0477
Testing 0.9978 0.0036 0.0425

ANNs-F 9 Training 0.9990 0.0019 0.0328
Validation 0.9988 0.0019 0.0338
Testing 0.9979 0.0028 0.0449

ANNs-F 10 Training 0.9992 0.0014 0.0280
Validation 0.9976 0.0032 0.0412
Testing 0.9981 0.0037 0.0412
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TABLE A.5: Performance indices for different ANNs-S models.

Model symbol Hidden nodes Data R MSE MAE

ANNs-S 1 Training 0.8987 0.1427 0.3043
Validation 0.9215 0.1167 0.2500
Testing 0.7767 0.1961 0.3483

ANNs-S 2 Training 0.9715 0.0389 0.1556
Validation 0.9776 0.0365 0.1316
Testing 0.9417 0.0609 0.2020

ANNs-S 3 Training 0.9874 0.0173 0.1025
Validation 0.9843 0.0282 0.1344
Testing 0.9731 0.0235 0.1173

ANNs-S 4 Training 0.9872 0.0177 0.1033
Validation 0.9912 0.0150 0.0954
Testing 0.9752 0.0232 0.1290

ANNs-S 5 Training 0.9918 0.0114 0.0752
Validation 0.9828 0.0212 0.1196
Testing 0.9856 0.0202 0.1108

ANNs-S 6 Training 0.9964 0.0046 0.0522
Validation 0.9813 0.0269 0.1145
Testing 0.9940 0.0091 0.0706

ANNs-S 7 Training 0.9910 0.0106 0.0737
Validation 0.9917 0.0156 0.1020
Testing 0.9894 0.0144 0.0973

ANNs-S 8 Training 0.9938 0.0102 0.0763
Validation 0.9816 0.0149 0.0957
Testing 0.9895 0.0113 0.0845

ANNs-S 9 Training 0.9947 0.0070 0.0603
Validation 0.9827 0.0183 0.1048
Testing 0.9919 0.0148 0.0943

ANNs-S 10 Training 0.9949 0.0070 0.0605
Validation 0.9820 0.0237 0.12162
Testing 0.9860 0.0207 0.1168
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TABLE A.6: Performance indices for different ANNs-G models.

Model symbol Hidden nodes Data R MSE MAE

ANNs-G 1 Training 0.9143 0.1770 0.3351
Validation 0.8944 0.1875 0.3329
Testing 0.9323 0.1521 0.3294

ANNs-G 2 Training 0.9829 0.0355 0.1429
Validation 0.9710 0.0496 0.1641
Testing 0.9841 0.0394 0.1450

ANNs-G 3 Training 0.9889 0.0219 0.1154
Validation 0.9908 0.0231 0.1182
Testing 0.9877 0.0266 0.1267

ANNs-G 4 Training 0.9942 0.0118 0.0834
Validation 0.9955 0.0115 0.0805
Testing 0.9907 0.0185 0.1016

ANNs-G 5 Training 0.9962 0.0082 0.0697
Validation 0.9925 0.0162 0.0950
Testing 0.9945 0.0110 0.0725

ANNs-G 6 Training 0.9957 0.0091 0.0684
Validation 0.9953 0.0092 0.0745
Testing 0.9968 0.0071 0.0653

ANNs-G 7 Training 0.9965 0.0071 0.0614
Validation 0.9969 0.0073 0.0684
Testing 0.9959 0.0089 0.0723

ANNs-G 8 Training 0.9966 0.0069 0.0593
Validation 0.9978 0.0054 0.0588
Testing 0.9957 0.0079 0.0703

ANNs-G 9 Training 0.9978 0.0046 0.0483
Validation 0.9960 0.0082 0.0618
Testing 0.9963 0.0088 0.0720

ANNs-G 10 Training 0.9976 0.0053 0.0493
Validation 0.9963 0.0081 0.0687
Testing 0.9937 0.0112 0.0796
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TABLE A.7: Performance indices for different ANN-F models obtained for
new experimental data.

Model symbol Hidden nodes R MSE MAE

ANNF1L 1 0.9270 0.0037 0.0489
ANNF2L 2 0.9746 0.0013 0.0297
ANNF3L 3 0.9796 0.0011 0.0279
ANNF4L 4 0.9817 0.0009 0.0277
ANNF5L 5 0.9755 0.0013 0.0270
ANNF6L 6 0.9867 0.0007 0.0227
ANNF7L 7 0.9773 0.0012 0.0286
ANNF8L 8 0.9695 0.0016 0.0327
ANNF9L 9 0.9842 0.0026 0.0404
ANNF10L 10 0.9198 0.0040 0.0364

TABLE A.8: Performance indices for different ANN-S models obtained for
new experimental data.

Model symbol Hidden nodes R MSE MAE

ANNS1L 1 0.96384 0.00027 0.0152
ANNS3L 3 0.93850 0.00025 0.0132
ANNS5L 5 0.93385 0.00024 0.0137
ANNS7L 7 0.93325 0.00023 0.0130
ANNS9L 9 0.92226 0.00027 0.0139
ANNS12L 12 0.93181 0.00023 0.0121
ANNS15L 15 0.92694 0.00027 0.0144
ANNS20L 20 0.91993 0.00031 0.0153

TABLE A.9: Performance indices for different ANN-G models obtained for
new experimental data.

Model symbol Hidden nodes R MSE MAE

ANNG1L 1 0.9709 0.0020 0.0325
ANNG2L 2 0.9624 0.0025 0.0354
ANNG3L 3 0.9749 0.0017 0.0316
ANNG4L 4 0.9503 0.0033 0.0438
ANNG5L 5 0.9438 0.0037 0.0474
ANNG6L 6 0.9353 0.0043 0.0435
ANNG7L 7 0.8567 0.0091 0.0576
ANNG8L 8 0.9224 0.0051 0.0476
ANNG9L 9 0.9594 0.0027 0.0388
ANNG10L 10 0.9482 0.0035 0.0445
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TABLE A.10: Performance indices for different ANNs-F models obtained for
independent data.

Model symbol Hidden nodes R MSE MAE

ANNs-F1L 1 0.9462 0.0740 0.2260
ANNs-F2L 2 0.9879 0.0170 0.1125
ANNs-F3L 3 0.9950 0.0071 0.0653
ANNs-F4L 4 0.9966 0.0049 0.0463
ANNs-F5L 5 0.9962 0.0054 0.0558
ANNs-F6L 6 0.9972 0.0039 0.0488
ANNs-F7L 7 0.9971 0.0041 0.0487
ANNs-F8L 8 0.9965 0.0050 0.0517
ANNs-F9L 9 0.9962 0.0053 0.0572
ANNs-F10L 10 0.9950 0.0071 0.0551

TABLE A.11: Performance indices for different ANNs-S models obtained for
new experimental data.

Model symbol Hidden nodes R MSE MAE

ANNs-S1L 1 0.8867 0.1543 0.315
ANNs-S2L 2 0.8882 0.1523 0.3007
ANNs-S3L 3 0.9398 0.0842 0.2273
ANNs-S4L 4 0.9318 0.0951 0.2323
ANNs-S5L 5 0.9022 0.1342 0.3074
ANNS6L 6 0.9676 0.0460 0.1861
ANNs-S7L 7 0.9100 0.1241 0.3028
ANNs-S8L 8 0.9225 0.1075 0.2838
ANNs-S9L 9 0.9141 0.1186 0.2943
ANNs-S10L 10 0.8188 0.2377 0.3621
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TABLE A.12: Performance indices for different ANNs-G models obtained for
new experimental data.

Model symbol Hidden nodes Exp. data R MSE MAE

ANNs-G1L 1 sandB_4mmF 0.9344 0.0896 0.2426
ANNs-G1L 1 sandA 0.7853 0.2766 0.4777
ANNs-G2L 2 sandB_4mmF 0.9798 0.0283 0.1419
ANNs-G2L 2 sandA 0.8805 0.1621 0.3866
ANNs-G3L 3 sandB_4mmF 0.9814 0.0260 0.1347
ANNs-G3L 3 sandA 0.9376 0.0873 0.2236
ANNs-G4L 4 sandB_4mmF 0.9778 0.0310 0.1445
ANNs-G4L 4 sandA 0.9385 0.0861 0.2176
ANNs-G5L 5 sandB_4mmF 0.9923 0.0108 0.0707
ANNs-G5L 5 sandA 0.9257 0.1032 0.2571
ANNs-G6L 6 sandB_4mmF 0.9922 0.0110 0.0721
ANNs-G6L 6 sandA 0.9207 0.1099 0.2573
ANNs-G7L 7 sandB_4mmF 0.9863 0.0192 0.1159
ANNs-G7L 7 sandA 0.9170 0.1147 0.2941
ANNs-G8L 8 sandB_4mmF 0.9540 0.0635 0.2231
ANNs-G8L 8 sandA 0.9149 0.1175 0.2871
ANNs-G9L 9 sandB_4mmF 0.9920 0.0112 0.0827
ANNs-G9L 9 sandA 0.9275 0.1008 0.2480
ANNs-G10L 10 sandB_4mmF 0.9852 0.0207 0.1305
ANNs-G10L 10 sandA 0.9253 0.1038 0.2710
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Soil thermal conductivity has an important role in geo-energy applications such as 
high voltage buried power cables, oil and gas pipelines, shallow geo-energy storage 
systems and heat transfer modelling. Hence, improvement of thermal conductivity of 
geomaterials is important in many engineering applications. In this thesis, an extensi-
ve experimental investigation was performed to enhance the thermal conductivity of 
geomaterials by modifying particle size distribution into fuller curve gradation, and by 
adding fine particles in an appropriate ratio as fillers. A significant improvement in the 
thermal conductivity was achieved with the newly developed geomaterials.

An adaptive model based on artificial neural networks (ANNs) was developed to ge-
neralize the different conditions and soil types for estimating the thermal conduc-
tivity of geomaterials. After a corresponding training phase of the model based on 
the experimental data, the ANN model was able to predict the thermal conductivity 
of the independent experimental data very well. In perspective, the model can be 
supplemented with data of further soil types and conditions, so that a comprehensive 
representation of the saturation-dependent thermal conductivity of any materials can 
be prepared. The numerical ‚black box‘ model developed in this way can generalize 
the relationships between different materials for later added amounts of data and soil 
types. In addition to the model development, a detailed validation was carried out 
using different geomaterials and boundary conditions to reinforce the applicability and 
superiority of the prediction models.


	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background and motivation
	Objective
	Organization of Dissertation

	State of the art
	Introduction
	Thermal properties of soil
	Heat transfer in soil
	Conduction
	Convection
	Radiation
	Heat transfer equation

	Factors affecting soil thermal conductivity
	Effect of dry density and saturation on thermal conductivity
	Effect of soil composition and texture on thermal conductivity
	Effect of structure on thermal conductivity
	Effect of mineralogy on thermal conductivity
	Effect of other factors on thermal conductivity

	Measurement of thermal conductivity 
	Steady-state method
	Transient state method

	Existing thermal conductivity models
	Theoretical prediction models
	Semi/empirical prediction models
	Numerical models
	Artificial Neural Network (ANN) models

	Material design under consideration of thermal conductivity
	Importance of thermal conductivity on underground high voltage power cables
	Materials used to bury underground cables

	Factors consideration enhancing thermal conductivity
	Summary

	State and structure of Artificial Neural Network
	Introduction
	Background
	Architecture of ANN
	Transfer function
	Types of network

	Training of the ANN model
	Types of Training
	Supervised training
	Unsupervised training
	Reinforced training

	ANN Parameters
	Learning rate
	Momentum
	Input noise
	Training and testing tolerances

	Data Selection
	Data division
	Data pre-processing

	Determination of ANN architecture
	Learning algorithms (rules)
	Delta rule & Generalized delta rule
	Weight update method
	Back-propagation Algorithm
	Cost function
	Stopping Criteria
	Selection of ANN model

	Deep Learning
	Application of ANN
	Advantages and disadvantages of ANNs
	Advantages
	Disadvantages

	Summary

	Design of granular materials with enhanced thermal conductivity
	Introduction
	Materials used
	Analysed materials 
	Design of materials 

	Equipment used
	Experimental procedure
	XRD analysis
	SEM image analysis
	Mechanical tests
	Summary

	Experimental material design analysis and discussions
	Introduction
	Thermal conductivity measurement results
	Effect of porosity on thermal conductivity in dry state 
	Effect of fine contents on thermal conductivity
	Effect of saturation on thermal conductivity
	Effect of dry density and saturation on thermal conductivity
	Effect of mineralogy on thermal conductivity

	Improvement in thermal conductivity
	Dry state
	Moist state

	Relation between proctor density, water content and thermal conductivity
	Comparison of experimental results with prediction models
	Two phase prediction models
	Theoretical and empirical prediction models over full range of saturation

	Mechanical test results
	Summary

	Development of new conductivity models for granular materials by using ANNs
	Introduction
	ANNs model setup
	Data division and pre-processing
	Determination of ANN model Architecture
	ANN architecture for dry materials
	ANN architecture for moist materials

	Stop criteria
	Model optimization (Training)
	For dry materials
	For moist materials
	Comparison of experimental and predicted thermal conductivity using selected ANN models

	Validation of developed ANN models
	For dry materials
	For moist materials

	Performance assessment of proposed ANN models
	For dry ANN models
	For moist ANN models

	Summary

	Applications of new materials design for embedded cables
	Introduction
	Background
	2D Simulation
	Model setup
	Results and discussions

	Summary

	Conclusions and Recommendations
	Conclusions
	Recommendations for future work

	ANN models' performance indices
	Performances indices of different ANN models for Training, Validation & Testing data
	Performances indices of different ANN models for new experimental data

	Bibliography

