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Introduction

Forecasting macroeconomic conditions in real-time is a crucial prerequisite for the conduct

of economic policy. The interest in and importance of timely and accurate forecasts have

led to active research in the areas of macroeconomics and econometrics. My dissertation

makes a contribution to three strands in this literature:

i) the improvement of macroeconometric forecasting models by considering the ques-

tion of variable selection in the context of large factor models,

ii) the econometric methodology by extending so-called precision samplers to applica-

tions with missing observations and

iii) the incorporation of external information into macroeconometric models by evalu-

ating forecasts from a large macroeconometric model conditional on professional fore-

casters’ view on key variables like the growth rate of the gross domestic product (GDP)

and consumer price index (CPI) inflation.

Common to all my papers and in line with a growing trend in the field is the use of Bayesian

estimation techniques. Moreover, the forecast evaluations are conducted in real-time, i.e.

they exactly replicate the information set available at the time the forecasts were made, thus

yielding a more accurate measure of the predictive performance.

In the first chapter of my dissertation - Real-time nowcasting with sparse factor models -

I address the issue of variable selection in factor models. While factor models do not suffer

from the "curse of dimensionality" like, say, vector autoregressions (VAR) and can therefore

in principle be estimated with a large number of macroeconomic time series, some papers

have shown that preselection of variables - using expert judgment or statistical procedures

- may yield more precise estimates of the underlying factors and better forecasts. My pa-

per addresses this issue by combining model estimation and variable selection in a single

step rather than preselecting variables or relying on the complete cross-section of available

macroeconomic variables. I do so in a Bayesian framework by employing so-called sparse

priors on the elements of the loadings matrix that maps the observables to the factors. These

priors concentrate considerably more mass at zero (compared to Normal priors) while still

retaining fat tails (in contrast to shrinkage priors which merely "shove" the entire distribution

towards 0 as is often done when estimating larger VAR to reduce parameter uncertainty).
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In effect, this allows to filter out irrelevant variables, i.e. those that do not adhere to the

factor structure and are irrelevant for forecasting. In a real-time nowcasting excercise for

GDP growth in the United States and Germany, however, I find only small gains in terms of

point and density accuracy from employing these sparse priors compared to Normal priors

commonly used in the literature. These findings suggest that the approach in parts of the

literature to estimate factor models with large cross-sections - in practice often close to or

more than 100 time series - is justified.

Precision-based sampling with missing observations: A factor model application, the

second chapter in my dissertation and coauthored with Dr. Christian Schumacher of the

Deutsche Bundesbank, makes a methodological contribution to the literature on the Bayesian

estimation of state space models. Precision samplers have been proposed in the literature

as an alternative to Kalman filter-based methods to draw from the conditional distribution

of unobserved components given data and parameters. These samplers, increasingly used

in macroeconomics, exploit the fact that the precision matrix - the inverse of the covariance

matrix - of the vector of unobserved components is typically sparse and banded in macroe-

conomic applications. Modern programming languages like MATLAB or Julia can exploit

this structure to solve systems of linear equations or perform operations like the Cholesky

decomposition efficiently. This makes sampling from the desired distribution feasible, often

computationally more efficient and numerically stable than existing samplers based on the

Kalman filter. Up to now, however, the literature on precision samplers has only considered

applications involving complete datasets. Our contribution is to show how the sampler can

be used when some of the observations in the data are missing, greatly increasing the range

of applications of precision samplers. To this end we derive permutations of the vector of

observables that preserve the bandedness of the precision matrix and thus still allow for

efficient sampling. In simulations, we analyze the properties of two different approaches:

joint sampling of states and missing observations as well as sequentially drawing missing

observations (conditional on the states) and states (conditional on a complete dataset). We

apply our sampler to the synchronization of business cycles across countries using a large,

unbalanced dataset.

Since future values of time series - unconditional or conditional on some other variables in

the model - can be thought of as missing values, the precision sampler outlined in Chapter II

can also be applied to obtain density forecasts. In the last chapter of my dissertation - How

useful is external information from professional forecasters? Conditional forecasts in

large factor models - I propose algorithms to obtain draws from the predictive density in

the context of a large factor model. Simulations show that this approach compares favor-

ably to Kalman filter-based approaches typically used in the literature. The insights are then

used to investigate to what extent the predictions of professional forecasters regarding GDP

growth and CPI inflation contain information for other macroeconomic variables such as

the components of gross domestic product or gross value added, the corresponding defla-

2



tors as well as production or labor market indicators. In a real-time forecast evaluation I

find that conditioning on professional forecasts yields more accurate predictions for those

variables for which the model already produces relatively accurate unconditional forecasts

(real activity indicators and some price series). However, these gains in predictive accuracy

are only significant when we evaluate the entire predictive distribution; for point forecasts,

this is is not the case. Robustness checks reveal that while the choice of model specification

has no bearing on the results, the evaluation period does: when the global financial crisis

is excluded from the analysis the conditional forecasts are on average less accurate and in

some cases the model forecasts do not outperform the autoregressive benchmark.

If I had to summarize my dissertation for a general, non-expert audience in a few lines, I

would focus on two points - both backed up by my year’s of experience as a forecaster and

undoubetedly shared by many colleagues in the profession. Firstly, as Chapter I of my dis-

sertation highlights, it is difficult to find a small subset from the multitude of available time

series that consistently forecasts macroeconomic activity well. Indeed, my research seems

to support the notion that macroeconomic data that are commonly used to forecast macroe-

conomic activity are dense, not sparse. Instead, analysts of macroeconomic should (and

typically do!) monitor a large number of indicators and incorporate these into their mod-

els. Secondly, while macroeconometric models have their place in business cycle analysis,

practicioners should be aware of their limits in terms of forecast performance. As the third

chapter of my dissertation shows, even when we condition on the forecasts of professional

forecasters for GDP growth and inflation, it is difficult to find significant improvements for

other variables - at least in terms of point forecast accuracy which practicioners still pre-

dominantly focus on. As such, macroeconomic models should be viewed as a complement

not a substitute to expert judgment when it comes to short-term forecasting.

3



Chapter I

Real-time nowcasting with sparse factor

models

The first chapter of my dissertation is single-authored. It has been published as an Econ-
Stor Direct Working & Discussion Paper1. I would like to thank Christian Schumacher for
many helpful comments and discussions as well as sharing MATLAB code for the point mass
Normal mixture and horseshoe priors with me. I am also grateful for Max Schröder who
provided research assistance as well as Albrecht Mengel and Simone Knief for giving me
access to the University of Kiel’s high-performance computating facilities.

Abstract

Factor models feature prominently in the macroeconomic nowcasting literature, yet no

clear consensus has emerged regarding the question of how many and which variables

to select in such applications. Examples of both large-scale models, estimated with data

sets consisting of over 100 time series as well as small-scale models based on only a

few, pre-selected variables can be found in the literature. To adress the issue of vari-

able selection in factor models, in this paper we employ sparse priors on the loadings

matrix. These priors concentrate more mass at zero than those conventionally used

in the literature while retaining fat tails to capture signals. As a result, variable selec-

tion and estimation can be performed simultaneously in a Bayesian framework. Using

large data sets consisting of over 100 variables, we evaluate the performance of sparse

factor models in real-time for US and German GDP point and density nowcasts. We

find that sparse priors lead to relatively small gains in nowcast accuracy compared to

a benchmark Normal prior. Moreover, different types of sparse priors discussed in the

literature yield very similar results. Our findings are compatible with the hypothesis

that large macroeconomic data sets typically used in now- or forecasting applications

are not sparse but dense.

Keywords: factor models, sparsity, nowcasting, variable selection

JEL classification: C11, C53, C55, E37.

1Available under http://hdl.handle.net/10419/251551
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CHAPTER I. REAL-TIME NOWCASTING WITH SPARSE FACTOR MODELS

I.1 Introduction

Professional forecasters and policy-makers require timely assessements of the current state

of the macroeconomy. However, short-term forecasting or nowcasting of the gross domestic

product (GDP) - arguably the best single indicator of macroeconomic developments and

central in guiding economic policy decisions - faces numerous challenges. The GDP is subject

to a considerable publication delay, with a first estimate usually provided roughly four weeks

after the end of the respective quarter. At the same time, the information from a large

number of potentially informative indicators is available that can be exploited in a more

timely manner to improve estimates of current macroeconomic conditions. Often, however,

such series are published in an asynchronous manner giving rise to an unbalanced panel

or "ragged edge". For example, survey-based sentiment indicators are typically released

much sooner after (or even within) the reference period than "hard" indicators such as

industrial production or retail sales. Moreover, these time series are usually sampled at

higher frequencies than the target variable GDP, e.g. monthly or daily. Nowcasts that reflect

on the latest available information need to be able to handle this data flow in real-time,

mixing information from different frequencies.

Factor models feature prominently in the nowcasting literature as they can address all

the aforementioned issues in a unified modelling framework. Furthermore, they have a

proven track record in terms of nowcasting GDP (Giannone et al., 2008; Schumacher and

Breitung, 2008; Camacho and Perez-Quiros, 2010; Banbura and Rünstler, 2011; Kuzin et al.,

2011; Aastveit et al., 2014, 2018; Marcellino et al., 2016). Notwithstanding this extensive

literature, there is no firm consensus about how many and which variables to select when

nowcasting GDP. From an asymptotic point of view a larger cross-section should lead to more

precise estimates of the underlying factors and, hence, more accurate nowcasts. Boivin and

Ng (2006), however, find both in simulations and a real-time forecasting excercise that

factors extracted from smaller data sets perform as well or even better than those extracted

from a much larger panel. In line with these findings, Bai and Ng (2008) advocate penalized

regressions to identify a subset of variables that is closely related to the target series prior

to factor extraction ("targeted predictors"). Schumacher (2010) demonstrates that such

targeted predictors can improve nowcasts of German GDP when considering a large panel

of international data. Similarly, Caggiano et al. (2011) provide evidence for a number of

countries that pre-selection of variables can substantially improve forecast performance. In

contrast, Alvarez et al. (2016) find no clear benefit from using aggregate headline series

representing different economic categories as opposed to a large disaggregated data set in

a forecasting excercise for the United States. Rünstler (2016) adresses the issue of variable

selection by focusing on the prediction weights inherent in a factor model. Selecting those

variables with the largest marginal predictive gains for GDP growth, he finds only moderate

gains in forecasting accuracy for short horizons.

As a result of this on-going debate, examples of both approaches can be found in the

literature: "large-scale"" factor models comprised of around 70 to 80 time series or more

5



CHAPTER I. REAL-TIME NOWCASTING WITH SPARSE FACTOR MODELS

(Giannone et al., 2008; Banbura and Rünstler, 2011; Kuzin et al., 2011; Aastveit et al.,

2014, 2018) or "small-scale " models with up to 10 or 20 variables, pre-selected by expert

judgement, statistical procedures or a combination thereof (Camacho and Perez-Quiros,

2010; Marcellino et al., 2016; Bok et al., 2018).

In this paper, the issue of variable selection is adressed by exploring the role sparsity

plays in factor models. We investigate to what extent the Bayesian estimation of factor

models with sparse priors on the loadings matrix can serve as an alternative to pre-selection

of variables. Compared to Normal priors commonly used in the literatur, sparse priors place

considerably more mass near zero while still allowing for fat tails to capture signals. Based

on the work by George and McCulloch (1993, 1997) on variable selection priors in a mul-

tiple regression framework, West (2003) proposes mixtures of Normal distributions and a

point mass at zero to induce sparsity in factor models. Employing these priors in a macroe-

conomic application, Kaufmann and Schumacher (2017) identifiy relevant variables in large

panels of international GDP growth rates and disaggregate US CPI data. Global-local shrink-

age priors have been proposed as a continuous approximation to discrete variable selection

priors (Polson and Scott, 2010) and have been widely used in macroeconomic forecasting

applications with Bayesian vector autoregressions (BVAR), e.g. Kastner and Huber (2020),

Huber and Feldkircher (2019), Cross et al. (2020) or Chan (2021) in combination with

conventional Minnesota-type shrinkage priors.

To assess the performance of sparse factor models, we conduct a real-time evaluation of

point and density nowcasts for US and German GDP. Our contribution to the literature can

be viewed in two ways: from the methodological side, we perform variable selection and

estimation simultaneously in a real-time factor model setting. As such, it follows the recent

contributions of Kristensen (2017) and Thorsrud (2020). The former estimates factors non-

parametrically via sparse principal components and finds gains in forecasting performance

while the latter induces time-varying sparsity in a Bayesian factor model using a latent

threshold mechanism (Nakajima and West, 2013). A further novel aspect of our paper is

a comparsion of different sparse priors that have been proposed in the literature, with a

particular focus on their performance in nowcasting applications. On a conceptual level,

we contribute to the current debate about the degree of sparsity in macroeconomic data

and its implications for now- and forecasting (Giannone et al., 2018).

The real-time evaluation of nowcasts for US and German GDP suggests that while the

factor models outperform autoregressive benchmarks, sparse priors lead to relatively small

gains in nowcast accuracy compared to our benchmark Normal prior. Moreover, different

types of sparse priors discussed in the literature yield very similar results. Our findings

are thus compatible with the hypothesis that large macroeconomic data sets typically used

in now- or forecasting applications are not sparse but dense. The remainder of this paper

is structured as follows: Section 2 discusses the different sparse priors and lays out their

conditional posterior distributions. The results from the real-time nowcast evaluation for

US and German GDP along with a number of robustness checks are presented in Section 4.

Section 5 concludes.
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Notation: Let z1:T = [z1, . . . , zT ]
′ refer to the T×N matrix where zt is an N×1 vector, and

zi,1:T = [zi1, . . . , ziT ]
′ to the vector of length T corresponding to the i-th column of z1:T . Fi-

nally, let 0k (Ik) denote a zero column vector (identity matrix) of dimension k. Furthermore,

let Ai j refer to the element in the i-th row and j-th column of matrix A. Conversely, Ai· and

A· j denote the i-th row and j-th column, respectively. Additionally, we denote by N
�

µ,σ2
�

the Normal distribution with mean µ and variance σ2. Furthermore, let N
�

x;µ,σ2
�

denote

the value of the probability density function (pdf) of N
�

µ,σ2
�

evaluated at x . We denote

by U(a, b) the continuous uniform distribution on the interval a to b and by G (u, U) the

Gamma distribution with shape and rate parameters u and U , respectively. Its pdf is given

by

G (x; u, U) =
Uu

Γ (u)
xu−1 exp (−U x) .

Similarly, let G−1 (u, U) denote the Inverse Gamma distribution with pdf

G−1 (x; u, U) =
Uu

Γ (u)
x−u−1 exp

�

−
U
x

�

.

B (a, b) denotes the Beta distribution with pdf

B (x; a, b) =
Γ (a+ b)
Γ (a) Γ (b)

x a−1 (1− x)b−1 .

Also, let C+ (µ,γ) denote the half-Cauchy distribution with location and scale parameters,

µ and γ, respectively and pdf equal to

C+ (x;µ,γ) = 2
�

πγ
�

1+ ((x −µ)γ)2
��−1

.

I.2 Sparse factor models

I.2.1 Factor model

Let x t denote an N × 1 vector of time series observed at time t = 1, . . . , T . The idea of a

factor model is that x t can be expressed as the sum of two orthogonal elements: a common

and an idiosyncratic component, i.e.

x t = λ ft + εt , εt ∼N (0,Σε) (I.1)

Ψ(L) ft = ηt , ηt ∼N
�

0,Ση
�

(I.2)

where λ is the N×R loadings matrix linking the R×1 vector of factors, ft to the observables

in x t . The product of loadings and factors constitutes the common component of the model

while εt captures variable-specific, idiosyncratic developments. The dynamics of the factors

are given by stationary vector autoregressions of order P. Σε is a diagonal matrix, implying

that the idiosyncratic components are independent of each other and we denote by σ2
i the
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element corresponding to the i-th variable. Furthermore, the innovations to the common

factors and the idiosyncratic components are uncorrelated, i.e. E
�

ηtε
′
t

�

= 0. Lastly, to

identify the scale of the factors we set Ση = IR.

I.2.2 Sparse priors

From a Bayesian perspective, there are two main sparse prior alternatives: discrete mixtures

and pure shrinkage priors. The former prior combines a point mass at zero or a continuous

distribution with small variance and an absolutely continuous prior providing tail mass,

whereas the latter is solely based on a continuous prior providing shrinkage towards zero

(Carvalho et al., 2009).

A standard example for a discrete-mixtures prior is the variable selection prior for mul-

tiple regression proposed by George and McCulloch (1993) and George and McCulloch

(1997). This prior was adopted and modified for factor models by West (2003) and has the

following form:

λir |ρ j,τr ∼ (1−ρr)δ0(λir) +ρrN (0,τr), (I.3)

ρr |r0s0 ∼ B(r0s0, r0(1− s0)) (I.4)

τr |a0, b0 ∼ G−1(a0, b0). (I.5)

The unit point mass at zero is denoted as δ0(·), and nonzero loadings on factor j are drawn

from a Normal prior with variance τr . Following the applications in Kaufmann and Schu-

macher (2017) and Kaufmann and Schumacher (2019), the probability of non-zero loading

ρr is factor-specific as well as the variance τr . ρr is the probability of non-zero loading and

follows a Beta distribution, and scale τr an inverse Gamma. An extension to element-wise

ρir is discussed in Carvalho et al. (2008). However, simulation results in Kaufmann and

Schumacher (2017) do not show huge differences in practice. From here on, we call the

prior (I.3) the point-mass normal mixture prior, or PMNM prior in brief.

Global-local shrinkage priors are typically normal distributions, with a global and a local

variance component (Polson and Scott, 2010). The idea is that global shrinkage handles

the noise, whereas local variances act to detect the signals. Thus, the two components solve

the trade-off between shrinking the noise toward zero leaving the large signals unshrunk.

The literature on global-local shrinkage priors mainly focusses on the application for

multiple regression problems, not on factor models. An exception is the global-local prior

by Bhattacharya and Dunson (2011):

λir |φir ,κr ∼N (0,φ−1
ir κ

−1
r ), κr =

∏r

l=1
δl , (I.6)

δ1|a1 ∼ G(a1, 1) (I.7)

δl |a2 ∼ G(a2, 1) for l = 2, . . . , r, (I.8)

φir ∼ G(w/2, w/2). (I.9)
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In this prior, global shrinkage is governed factor-specific through κr . By the multiplicative

gamma structure with δ1, . . . ,δr , the κrs are stochastically increasing under the restriction

a2 > 1, which favours more shrinkage as the column index of the loading matrix increases.

Local shrinkage is governed by loading-specific φir , which follows a Gamma distribution.

From here on, we call this prior the multiplicative-gamma prior, or MG prior in brief.

The horseshoe prior proposed by Carvalho et al. (2009) and Carvalho et al. (2010) is

based on a standard half-Cauchy distribution for the local and the global scales. It has the

hierarchical representation

λir |ζ2
ir ,υ

2 ∼ N(0,ζ2
irυ

2) (I.10)

ζir ∼ C+(1), υ∼ C+(1). (I.11)

With respect to its shrinkage properties, the Cauchy tails in ζir allow strong signals to remain

large a posteriori. At the same time, its infinitely tall spike at the origin provides severe

shrinkage for the zero elements of λir . Note that the global variance parameter υ is applied

to the whole set of loadings, not to columns of the loading matrix, and also follows a half-

Cauchy distribution. Note that the horseshoe prior is free of user-chosen hyper parameters

(Carvalho et al., 2010). An extension to accommodate more sparsity is the horseshoe+ prior

by Bhadra et al. (2017). It is defined as (I.10) and (I.11) before, but with an augmented prior

for ζir according to ζir |χir ∼ C+(0,χir) and χir ∼ C+(0, 1). From here on, we abbreviate the

two priors as HS for horseshoe and HS+ for horseshoe+.

A natural benchmark to the sparse priors discussed above is a Normal prior on the ele-

ments of the loadings matrix, i.e. λir ∼ N (0, Vir). Uninformative priors - common in the

nowcasting literature with Bayesian factor models - are imposed by setting Vir to a large

value. A hierarchical alternative is to consider Vir = τr with τr ∼ G−1(g0, G0) ∀ r = 1, . . . , R
and ∀ i = 1, . . . , N . We will refer to the benchmark prior as Normal-Inverse Gamma (NIG).

Discussion of the alternative priors

In the literature, discrete mixture priors play a prominent role due to their theoretical prop-

erties. In particular, point-mass mixture priors are highly appealing by allowing for separate

control of the level of sparsity and the size of the signal coefficients (Bhattacharya et al.,

2015). In a multivariate normal mean model context, Castillo and van der Vaart (2012)

show that the point-mass mixture prior with an appropriate beta prior on the inclusion

probability and suitable tail conditions on the normal component leads to a optimal rate of

posterior contraction. The posterior of the location parameter concentrates most of its mass

on a ball around its true value. When inferring about sparsity on the true covariance matrix

implied by a factor model, Pati et al. (2014) show that the point-mass mixture prior on the

factor loadings leads to a consistent estimation of the covariance matrix when N > T .

In Polson and Scott (2010), the point-mass mixture prior serves as a benchmark to

compare alternative global-local shrinkage priors. Following Polson and Scott (2010), the

global-local shrinkage priors implying a weaker concept of sparsity than the point-mass
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mixture prior, since all of the entries are assumed to be nonzero, yet most of them small

compared to a few large signals. In addition, as argued in Polson and Scott (2010) and

Bhattacharya et al. (2015), the global-local shrinkage priors can offer computational sav-

ings over point-mass priors.

In practice, the question is which sparsity prior should be chosen. There is a huge and

growing literature on sparse priors with a number of proposals regarding new default priors

and different fields of applications. However, simulation results and empirical evidence

seems to be not fully conclusive. In the factor model context followed in this paper, we focus

on the comparison between the Normal Inverse-Gamma prior, which serves as a benchmark

in the factor models literature, on the one hand, and a range of prominent sparse priors on

the other hand to consider the variety of priors available in the recent literature.

In Figure I.1, we compare the alternative priors by histograms obtained from sampling

from the priors. By looking at the central bin on the left panel of the Figure I.1, we can see

how the sparse priors concentrate mass near zero compared to the normal prior. The PMNM

and HS+ concentrate considerably more mass than the MG near zero and the Normal prior.

The tail behaviour is shown in the right panel. The HS+ and HS have heavier tails than the

MG, the PMNM and the Normal prior. By construction, the PMNM converges to zero quicker

the Normal prior due to the mass at zero and the same specifications for the variance in the

Normal distribution.

I.2.3 Estimation and conditional posteriors

In order to estimate the model in (I.1) we need to derive the joint posterior distribution of

the parameters of the model and the factors. By assumption, the prior on the loadings and

the remaining parameters of the model, denoted by Θ =
�

Ψ,Ση,Σε
	

, are independent of

each other. The likelihood is given by

L (x1:T | f1:T ,λ,Θ) =
T
∏

t=1

p(x t | ft ,λ,Θ) (I.12)

p(x t | ft ,λ,Θ) =
1

(2π)N/2 |Σε|
1/2

exp

¨

−
1
2

N
∑

i=1

[(x i t −λ ft)]
2

σ2
i

«

. (I.13)

Combining the likelihood with the prior on the parameters (and implicitly the factors) yields

the joint posterior

p(λ,Θ, f1:T |x1:T , f1:T )∝ L (x1:T | f1:T ,λ,Θ) p( f1:T |λ,Θ) p(λ) p(Θ). (I.14)

Draws from it can be obtained using Gibbs Sampling techniques, i.e. sequentially sampling

the parameters conditional on the factors and then conditioning on the draw of the param-

eters to sample the latent factors. Specifically, at each iteration m the Gibbs Sampler cycles

through the following steps or blocks:

B1: draw f (k)1:T |x1:T ,Θ(k−1),λ(k−1)
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Figure I.1: Alternative prior distributions
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Note: The Figure shows histograms of draws from the prior distributions for 2×106 draws. The width of each
bin is 0.04, the median bin is centered around zero. The frequency for each bin is shown on the vertical axis.
PMNM is the point mass normal mixture prior with hyper parameters r0 = 3, s0 = 0.25, a0 = 2, b0 = 0.5. HS
and HS+ denote the horseshoe and horseshoe+ priors, respectively. MG is the multiplicative gamma prior for
the first factor with hyper parameters a1 = 10, a2 = 2, and υ = 3. The Normal prior has mean zero and the
variance follows an inverse Gamma distribution with a0 = 2 and b0 = 0.5 as in the PMNM prior. Details on
the priors are provided in Section I.2.2 of the main text.
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B2: draw Ψ(k)| f (k)1:T and Σ(k)
ε
|x1:T , f (k)1:T ,λ(k−1)

B3: draw λ(k)|x1:T , f (k)1:T ,Σ(k)
ε

B4: update the hyperparameters of the prior on λ

B1 and B2 are standard and draws from the respective posterior distributions easily ob-

tained. We leave the details of these blocks to the Appendix and focus here on the condi-

tional posterior distributions of the loadings matrix λ and the hyperparameters governing

the different priors (B3 and B4).

We start with the Normal-Inverse Gamma, Multiplicative Gamma and horseshoe(+) pri-

ors where standard Bayesian linear regression results can be employed, before turning the

point mass-Normal mixture which requires a different treatment. Under a (conditionally)

Normal prior, the posterior of λi· is given by (e.g. Kroese and Chan, 2013)

λi·|· ∼ N (mi, Mi) (I.15)

Mi =

�

Dp +
1
σ2

i

∑T

t=J+1
f ′t ft

�−1

(I.16)

mi = Mi

�

1
σ2

i

∑T

t=J+1
f ′t x i,t

�

(I.17)

where Dp is the prior precision matrix of λi· and depends on the hyperparameters of the

respective priors p = {N IG, MG, HS(+)}.
For example, under the Normal-Inverse Gamma prior DN IG = diag(τ−1

1 , . . . ,τ−1
R ). In turn,

conditional on a draw of the loadings we can update the hyperparameters by sampling from

their Inverse-Gamma posterior distribution, i.e.

τr |λ ∼ G−1
�

g0 + 0.5N , G0 + 0.5
∑N

i=1
λ2

ir

�

(I.18)

for all r = 1, . . . , R.

In the case of the MG prior, the prior precision consists of an additional term reflecting

the variable-specific, local shrinkage component. Thus, DMG = diag(κ1φi1, . . . ,κRφiR) and

updating the hyperparameters requires draws from the conditional posterior distributions

given by

φir |λ,κ ∼ G
�

w+ 1
2

,
w+ κrλ

2
ir

2

�

∀ i = 1, . . . , N , r = 1, . . . , R (I.19)

δ1|λ,κ,φ ∼ G
�

a1 +
NR
2

,1+
1
2

∑R

l=1
κ
(1)
l

∑N

i=1
φilλ

2
il

�

(I.20)

δr |λ,κ,φ ∼ G
�

a2 +
N
2
(R− r + 1), 1+

1
2

∑R

l=1
κ
(r)
l

∑N

i=1
φilλ

2
il

�

∀ r > 1, (I.21)

where κ(r)l =
∑l

k=1,k 6=r δk ∀ r = 1, . . . , R.
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Recall that for both the horseshoe and the horseshoe+ prior, DHS(+) = υ2diag(ζ2
i1, . . . ,ζ2

iR).
To update the hyperparameters, we follow Makalic and Schmidt (2016), who exploit a

scale-mixture representation of the half-Cauchy distribution: if x2|a ∼ G−1(1/2,1/a), a ∼
G−1(1/2, 1/A2) then x ∼ C+(0, A) (Wand et al., 2011). Therefore, by introducing the auxil-

iary variables βζ,βυ we can rewrite the prior in (I.11) as

ζ2
ir |β

ζ
ir ∼ G−1(1/2, 1/βζir)

υ2|βυ ∼ G−1(1/2, 1/βυ)

β
ζ
11, . . . ,βζNR,βυ ∼ G−1(1/2, 1).

This leads to convenient posterior distributions for the hyperparameters of the form:

ζ2
ir |λ,βζir ∼ G−1

�

1 ,
1

β
ζ
ir

+
λ2

ir

2υ2

�

(I.22)

υ2|λ,βυ ∼ G−1

�

NR+ 1
2

,
1
βυ
+

1
2

R
∑

r=1

N
∑

i=1

λ2
ir

ζ2
ir

�

. (I.23)

Similarly, the conditional posteriors of the auxiliary variables βυ and βζ are also Inverse-

Gamma and given by

β
ζ
ir |ζir ∼ G−1

�

1 , 1+
1
ζ2

ir

�

∀ i = 1, . . . , N , r = 1, . . . , R (I.24)

βυ|κ ∼ G−1
�

1 , 1+
1
κ2

�

. (I.25)

For the HS+ prior, the formula for each βζir needs to be adjusted to reflect the additional

half-Cauchy prior on χir , which in turn governs the prior on ζir . To this end, we introduce

another set of G−1(1/2, 1) auxiliary variables, βχ . In this case, the conditional posterior

distribution for ζ2
ir remains unchanged as we are still only conditioning on βζir . However,

the rate parameter of the latter’s conditional Inverse-Gamma posterior now also depends

on χir , i.e.

β
ζ
ir |ζir ,χir ∼ G−1

�

1 ,
1
χ2

ir

+
1
ζ2

ir

�

∀ i = 1, . . . , N , r = 1, . . . , R (I.26)

while χ2
ir itself and the corresponding auxiliary variables can be updated at each iteration
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of the Gibbs Sampler as follows:

χ2
ir |β

χ

ir ∼ G−1

�

1,
1
β
χ

ir

+
1

β
ζ
ir

�

(I.27)

β
χ

ir |χ
2
ir ∼ G−1

�

1,1+
1
χ2

ir

�

, (I.28)

again for all i = 1, . . . , N , r = 1, . . . , R.

The conditional posterior under the PMNM is more involved due to the mixture in (I.33).

We start by defining the transformed observation x∗i t = x i,t −
∑R

l=1,l 6=r λil fl,t = λir fr,t + εi t

which isolates the impacts of the factors other than r and the corresponding observation

density p
�

x∗i t |·
�

= N
�

λir fr t ,σ
2
i

�

. Then, combining the marginal prior on λir with the like-

lihood yields

p(λir |·) =
T
∏

t=J+1:T

p(x∗i t |·) {(1−ρr)δ0(λir +ρrN (0,τr)} (I.29)

= P (λir = 0|·)δ0 (λir) + P (λir 6= 0|·)N (mir , Mir) (I.30)

with

Mir =

�

τ−1 +
1
σ2

i

∑T

t=J+1
f ′r,t fr,t

�−1

(I.31)

mir = Mir

�

1
σ2

i

∑T

t=J+1
f ′r,t x

∗
i,t)

�

. (I.32)

In order to sample from this distribution, we need to evaluate the posterior odds ratio of a

non-zero loading, i.e.

POir =
P (λir 6= 0|·)
P (λir = 0|·)

=
p (λir) |λir=0

p (λir |·) |λir=0

ρr

1−ρr
=

N (0;0,τr)
N (0; mir , Mir)

ρr

1−ρr
(I.33)

A draw of λir is then obtained by sampling from N (mir , Mir) and keeping the draw if u ≤
POir/(1+ POir), where u is a draw from U (0, 1). Otherwise, we set λir = 0.

I.3 Empirical application: nowcasting GDP

In this section, we use the sparse factor models outlined above to nowcast the quarterly

gross domestic product (GDP) in the United States (US) and Germany. We first give an

overview of the monthly indicators that are included in the dataset along with the GDP

(Section I.3.1). Next, in Section I.3.2 we highlight how the factor model can be estimated

while accouting for mixed frequency data. The real-time evaluation set-up and results are
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discussed in Section I.3.3 and I.3.4, respectively. Lastly, we provide robustness checks to

our results for different model specifications such as the transformation of survey variables

or the estimation window in Section I.3.5.

I.3.1 Data

To nowcast the US GDP, we use the monthly real-time data set provided by McCracken

and Ng (2016) of more than 100 time series covering a broad spectrum of macroeconomic

activity and mostly ranging back until January 1959. Vintages for this dataset are available

from November 1999 onwards. For the German economy we construct a dataset based

on vintages from the Deutsche Bundesbank’s Real-Time Database, covering series such as

production, orders, turnover, prices and the labor market. These vintages are available on

a broad basis from the end of 2005 onwards. To these, we add financial market indicators

also sourced from the Deutsche Bundesbank. For both countries, we augment the monthly

datasets with survey-based sentiment indicators which have proven useful in nowcasting

applications due to their timely release.

The estimation samples for the United States and Germany start in January 1985 and

1992, respectively, and are recursively expanded. While the two datasets are similar in terms

of economic categories, there are some differences regarding the importance of individual

groups. For example, in the German data there is more detailed coverage of production,

orders and turnover of the industrial sector, while FRED-MD contains more disaggregated

labor market series. A detailed description of the variables we use and the transformations

applied to the series prior to estimation can be found in Appendix I.C.

I.3.2 Bayesian estimation of mixed-frequency factor models

In order to combine the monthly indicators with our quarterly target variable - quarter-on-

quarter GDP growth - we need to adjust the model in (I.1) to account for mixed frequencies.

This is done by formulating the model at the highest frequency, i.e. monthly, and treating

quarterly variables as monthly time series with occasionally missing observations. Thus, we

essentially convert the mixed-frequency problem into a missing-value problem which can

easily be handled by state space methods. Appendix I.A documents the mixed-frequency

factor model and the resulting state space representation. Draws from the predictive density

of GDP growth can be obtained from a Gibbs Sampler which alternately draws from the

posterior distribution of the factors conditional on the parameters and then updates the

parameters given the sampled factors (see Appendix I.B for details). We iteratively draw

from the conditional posterior distributions 15000 times, discarding the first 5000 draws as

a burn-in. The rest of the Markov chain is thinned by storing every 10-th iteration, yielding

a total of G= 1000 draws for posterior inference.2

2By and large, our Gibbs Sampler shows no signs of poor mixing or non-convergence. See Appendix I.E for
detailed MCMC diagnostics.
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In terms of model specification, we estimate the models for all R = 1 : 10; the number

of lags in the factor VAR is set to one, i.e. P = 1. Furthermore, for each prior we combine

the ten individual densities into an equally-weighted pool (denoted as "pool" below).

To benchmark the performance of the different priors, we estimate a simple univariate

Bayesian autoregressive model of order 1, estimated with loose priors on the autocovariance

coefficient - N (0,3) - and the residual variance - G−1(1,0.01). This model is subsequently

denoted as B-AR(1). Additionally, we also consider the factor model with a Normal prior

on the loadings that features a relatively high and fixed variance, e.g. Amisano and Geweke

(2017) and Marcellino et al. (2016). In the notation of Section I.2, the prior precision Dp

is given by 1
c IR where c is some large number, independent of any hyperparameters. We set

c = 10 and label this "diffuse" prior in what follows as Nd.

The hyperparameters of the remaing priors are as follows: The variance of the loadings

in the Normal-Inverse Gamma (NIG) is parametrized as G−1(2,1). For the Multiplicative-

Gamma (MG) prior we choose a1 = 5, a2 = 2 and w = 3. In the case of the point mass-

Normal mixture (PMNM) we set r0 = 5, s0 = 0.5, while the prior on τr is given by G−1(2, 1).
As discussed above, the horseshoe prior (HS+) requires no hyperparameters.

I.3.3 Evaluation set-up

The evaluation period ranges from the first quarter of 2000 (2000Q1) to the fourth quarter

of 2018 (2018Q4) in the US. Reflecting the shorter estimation sample for Germany (and

lack of available real-time vintages earlier on), we begin to evaluate nowcasts starting in

2006Q1. In both cases, we focus on nowcasts made at the end of the first month of a given

quarter e.g. January for nowcasts of GDP growth in Q1. That is to say, the forecast horizon

in months is h= 2.

The accuracy of the different models/priors is assessed in terms of point and density

nowcasts. For the former, we compute the root mean squared forecast error (RMSFE) of

model/prior m= {B-AR(1),Nd, NIG,MG, PMNM,HS+} defined as

RMSFEm =

�

1
S

S
∑

s=1

(y f ,Q
m,T+s|Ωvs

− yQ
T+s)

2

�
1
2

for a sequence of S nowcasts, where y f ,Q
m,T+s|Ωvs

is the mean of the predictive density of GDP

growth at time T + s, conditional on the information set Ωvs
available in real-time at date vs

when the nowcast for period T +s was made. The corresponding realization of GDP growth

which we take to be the first release is denoted by yQ
T+s .3

Density nowcasts are evaluated by two scoring rules commonly used in the forecasting

literature: the log score (logS) and the continuous ranked probability score (CRPS). The

former is simply the predictive density of model m for period s evaluated at the realization

3Given that the mean absolute revision between first and second release are quite small for both countries,
our results are robust to using the latter as the realization. Results are available upon request.
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and then averaged over the evaluation period, i.e.

logSm =
1
S

S
∑

s=1

�

−log pm,T+s(y
Q
T+s)

�

where pm,T+s(yQ) is estimated from yQ(1)
m,T+s|Ωvs

, . . . , yQ(G)
m,T+s|Ωvs

using the theta kernel den-

sity estimator described in Botev et al. (2010). Furthermore, note that we flip the orien-

tation of the log score to bring its interpretation in line with the RMSFE and CRPS: After

premultiplying with −1, lower (higher) values of logS indicate a higher (lower) predictive

accuracy.

The CRPS is calculated as (see Krüger et al., 2016):

CRPSm =
1
S

S
∑

s=1

�

1
G

G
∑

i=1

�

�

�yQ(i)
m,T+s|Ωvs

− yQ
T+s

�

�

�−
G
∑

i=1

G
∑

j=1

�

�

�yQ(i)
m,T+s|Ωvs

− yQ( j)
m,T+s|Ωvs

�

�

�

�

I.3.4 Results

The results of the nowcast evaluation for US and Germany GDP are presented in Table I.1.

For the sake of readability, we only show the results for a selected number of factors as

well as the pooled nowcasts.4 Overall, the factor models in both countries perform well

with root mean squared forecast errors relative to the benchmark B-AR(1) as low as 0.7

and 0.5 for US and German GDP, respectively. Density nowcasts yield similar relative gains

when evaluated in terms of the CRPS while they are generally even larger under the log

score. For the United States, the predictive accuracy generally increases in the number of

factors R - both in terms of point and density forecasts. For Germany, the models with

R = {5, 8} also perform much better than the model with only one factor but for R = 2

the performance is similar to the bigger models. Noteworthy is that in both countries the

equal-weight pool performs very well, often achieving relative gains almost as large as those

of the best individual specification.

Turning to the question of whether sparsity-inducing priors like the MG, PMNM or HS+
generate more accurate nowcasts than convential priors like the NIG or Nd, we find mixed

evidence across the two countries. For the United States, the sparse priors do not perform

better as the NIG prior. Indeed, for up to R= 5 there are virtually no differences between the

five priors we consider across both point and density nowcasts. For R= 8 we find that a) the

PMNM, HS and the NIG do perform slightly better than the Normal-diffuse prior in terms

of all three forecast accuracy measures and b) the MG prior’s performance deteriorates

markedly. This weaker performance carries over to the equal-weight pool where the MG

prior’s poor performance stands out in terms of the log score and CRPS. To some extent

these results hold for the case of Germany as well. There are also no differences between

the sparse prior and the NIG. They do, however, outperform the Normal-diffuse prior by

a larger amount when considering point and density nowcasts. In contrast to the findings

4The results for the remaining specifications are available upon request.
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Table I.1: Nowcasting results for US (top) and German (bottom) GDP

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.45 0.64 0.25 0.32 0.50 0.19

R=1 Nd 0.85 0.79 0.89 1.11 0.98 1.07
NIG 0.85 0.79 0.89 1.10 0.96 1.06
MG 0.85 0.80 0.89 1.08 0.97 1.05
PMNM 0.86 0.79 0.89 1.10 0.97 1.06
HS+ 0.86 0.82 0.90 1.10 1.02 1.07

R=2 Nd 0.90 0.82 0.92 1.10 0.95 1.06
NIG 0.91 0.84 0.93 1.10 0.93 1.05
MG 0.86 0.81 0.89 1.08 0.95 1.04
PMNM 0.90 0.82 0.92 1.13 0.96 1.07
HS+ 0.85 0.78 0.89 1.11 0.91 1.05

R=5 Nd 0.82 0.72 0.85 1.03 0.80 0.99
NIG 0.81 0.69 0.83 0.94 0.72 0.92
MG 0.78 0.70 0.82 0.99 0.81 0.96
PMNM 0.79 0.68 0.82 0.99 0.76 0.95
HS+ 0.79 0.69 0.83 1.01 0.78 0.97

R=8 Nd 0.76 0.65 0.79 1.02 0.79 0.97
NIG 0.77 0.66 0.80 1.03 0.78 0.98
MG 0.88 0.78 0.88 0.99 0.85 0.97
PMNM 0.73 0.62 0.77 0.95 0.70 0.91
HS+ 0.74 0.60 0.77 0.93 0.67 0.90

pool Nd 0.76 0.68 0.80 0.96 0.80 0.95
NIG 0.77 0.68 0.80 0.92 0.77 0.91
MG 0.80 0.72 0.83 0.98 0.83 0.96
PMNM 0.75 0.68 0.79 0.92 0.79 0.92
HS+ 0.76 0.66 0.79 0.94 0.74 0.92

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.86 1.73 0.41 0.49 0.89 0.29

R=1 Nd 0.86 0.90 0.89 0.86 0.95 0.93
NIG 0.86 0.89 0.89 0.85 0.94 0.93
MG 0.88 0.81 0.91 0.90 0.97 0.97
PMNM 0.89 0.97 0.91 0.88 0.96 0.95
HS+ 0.89 1.00 0.92 0.90 0.97 0.97

R=2 Nd 0.57 0.40 0.65 0.79 0.62 0.78
NIG 0.52 0.36 0.61 0.76 0.59 0.75
MG 0.52 0.37 0.61 0.75 0.60 0.75
PMNM 0.54 0.37 0.62 0.78 0.58 0.77
HS+ 0.54 0.38 0.63 0.77 0.62 0.77

R=5 Nd 0.65 0.46 0.74 0.90 0.75 0.89
NIG 0.55 0.38 0.63 0.73 0.59 0.74
MG 0.64 0.41 0.69 0.71 0.61 0.73
PMNM 0.55 0.37 0.62 0.72 0.58 0.73
HS+ 0.53 0.37 0.61 0.68 0.57 0.70

R=8 Nd 0.56 0.42 0.66 0.85 0.73 0.85
NIG 0.51 0.37 0.59 0.71 0.62 0.73
MG 0.56 0.39 0.64 0.74 0.63 0.76
PMNM 0.49 0.35 0.57 0.68 0.57 0.71
HS+ 0.49 0.33 0.57 0.67 0.54 0.69

pool Nd 0.51 0.42 0.62 0.73 0.74 0.79
NIG 0.47 0.37 0.57 0.63 0.64 0.71
MG 0.54 0.37 0.61 0.67 0.63 0.72
PMNM 0.48 0.36 0.56 0.62 0.61 0.69
HS+ 0.47 0.35 0.55 0.59 0.59 0.67

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and continuous ranked probability
score. All entries for the factor models are relative to the B-AR benchmark (see text for details) and negatively orientated
so that a value in the table below 1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. For the US (Germany) the full sample period is 2000Q1 (2006Q1)-2018Q4. In both cases the post-crisis sample
starts in 2010Q1 and ends in 2018Q4.
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for US GDP, we do see that the nowcasts from the sparse model perform better than those

from the NIG when evaluated in terms of the RMSFE and the log score or CRPS. Similar to

the US, however, between the PMNM and HS+ priors there are virtually no differences in

predictive accuracy while the MG’s poorer performance stands out for larger R.

Lastly, we find that when excluding the Global Financial Crisis (GFC) from the evalua-

tion the gains in predictive accuracy relative to the B-AR(1) are less pronounced for most

factor models - for the United States some of the models do not outperform the autoregres-

sive benchmark in terms of point nowcast accuracy. Our main findings with regard to the

question whether sparsity matters for nowcasting, however, are unaltered. Focusing only

on the post-crisis sample the sparse priors yield highly similar results in terms of all three

performance measures considered. In the US, we still find that there are also no large dif-

ferences between the sparse priors and the NIG or Nd in terms of predictive accuracy, while

for German GDP the PMNM and HS+ priors continue to produce much better nowcasts than

the Nd and somewhat better nowcasts than the NIG for R= 8 and the equal-weight pool.

I.3.5 Robustness analysis

The results discussed above were obtained under specific modelling/specifications choices.

In our application, these concern the transformation applied to the survey indicators or the

choice of estimation window. We find, however, that alternative specifications in this regard

- such as not first-differencing the survey indicators or estimating the models with a rolling

window - do not have a material impact on the results neither in quantitative nor qualitative

terms. We discuss these choices and briefly comment on the results below. Details and tables

similar to Table I.1 for the different robustness checks can be found in Appendix I.D.

First, in our baseline specification we included survey indicators in first differences.

While this brings their time series behavior more in line with the rest of the dataset, an

alternative is to keep the series in levels, as these indicators are by construction stationary.

Examples of both approaches can be found in the literature. In our application we find that

the nowcast performance overall deteriorates uniformly across models when the surveys are

not first-differenced. However, the main findings are unaltered: the differences between the

sparse priors and the NIG are very small. In the case of Germany the sparse priors and the

NIG perform much better than the Normal-diffuse prior which for large R fails to beat the

autoregressive benchmark when the surveys enter the models in levels. Second, while a

recursively expanded estimation window leads to lower estimation uncertainty, a rolling es-

timation window might guard against structural instabilities in the forecasting models and

therefore generate better nowcasts. However, there is no indication that these instabilities

play a large role in our application as the nowcast performance only improves marginally in

some cases for the United States, in particular for the smaller models, i.e. R≤ 2; in addition

the MG prior performs much better under a rolling window. But the performance of the

equal-weight pool, for example, is virtually identical. For Germany, with the exception of

R = 1 the accuracy of point and density nowcasts is somewhat higher when the models’
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parameters are estimated with a recursively expanding window. For both countries, the

choice of estimation window does not have an impact on the performance of the sparse

priors relative to the Normal alternatives.

I.4 Conclusion

In this paper, we have explored the role that sparsity plays in factor models. In a real-time

nowcasting evaluation we find that estimating the model with sparse priors on the loadings

matrix in a Bayesian framework does not lead to large gains in nowcast accuracy. Fur-

thermore, we found very similar results for different sparse priors that have been proposed

in the literature. This suggests that the practice in parts of the literature of considering

large cross sections when nowcasting GDP is justified. Our findings are compatible with the

hypothesis that large macroeconomic data sets typically used in now- or forecasting appli-

cations are not sparse but dense. However, we caution against generalising our findings too

far, as sparsity has been shown to play a role in other macroeconomic settings (Kaufmann

and Schumacher, 2017). Moreover, the recent Covid-19 pandemic has accelated a trend

in macroeconomic forecasting applications of considering new, unconvential data originat-

ing from newspapers, social media, mobile phones or internet search queries. These data

sources typically provide vast numbers of time series ("big data"). We leave it to future re-

search to address the issue of variable selection and the role that sparsity plays in such an

environment.

Appendix

I.A Mixed-frequency factor model

In the following, we outline the mixed-frequency factor model used in the nowcasting ap-

plication. For the reader’s convenience we begin by restating the original model

x t = λ ft + εt , εt ∼N (0,Σε) (I.34)

Ψ(L) ft = ηt , ηt ∼N
�

0,Ση
�

where we now make it explicit that x t is a vector of NM stationary monthly variables. To

combine the monthly time series with quarterly GDP growth, yQ
t , we formulate the model

at the highest frequency, e.g. monthly. However, we only observe yQ
t every third period,

e.g. at the last month of each quarter. Let T be the number of observations for which at

least one monthly variable is available. Assuming for the sake of expostion that the sample

starts in the first month a quarter and ends in the third, say January and December, we thus

have yQ
1:T =

�

NaN,NaN, yQ
3 ,NaN, NaN, yQ

6 , . . . ,NaN, NaN, yQ
T

�

.
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Furthermore, we assume that yt , the unobserved monthly analogue of yQ
t , adheres to the

same factor structure as x t . That is to say, we assume that (unobserved) month-on-month

GDP growth can be expressed as

yt = λ
y ft + ε

y
t , ε y

t ∼N (0,Σε y ) . (I.35)

The unobserved yt are linked to the quarterly observations yQ
t via the following time aggre-

gation rule (Mariano and Murasawa, 2003):

yQ
t ≈

1
3

yt +
2
3

yt−1 +
3
3

yt−2 +
2
3

yt−3 +
1
3

yt−4 ,∀ t= 3, 6,9, . . . , T. (I.36)

By putting together (I.34), (I.35) and (I.36), the model can be cast into state space form

with measurement equation
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and transition equation
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When running the Kalman filter or smoother, missing observations can easily be dealt

with by either i) removing the missings elements from the vector of observations and ad-
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justing the dimensions of Z and H or ii) replacing them with arbitrary values, say 0, and

setting the corresponding element in H to a very large number. We found the former to be

numerically more stable in our application.

I.B Gibbs Sampler

The model is estimated by a Gibbs Sampler which alternately draws from the conditional

posterior distribution of the parameters given the factors and the factors given the param-

eters. Draws from the predictive density of any variable of interest - in our application,

quarterly GDP growth - can then be obtained conditional on these values. Let λ denote the

N × R matrix of factor loadings belonging to the monthly variables while λy is the load-

ing of unobserved monthly GDP. The remaining parameters of the model are collected in

Θ = {Ψ,Σε,Σε y}. Furthermore, let ϕ denote the prior hyperparameters. x1:T is the N × T
matrix of monthly observations - some of which may be missing due different publication

delays or because a series has only been collected over part of the estimation sample - where

T is the maximum number of periods for which at least one observation is available. Fur-

thermore, yQ
1:T denotes quarterly GDP growth at the monthly frequency, where we follow

the convention in the literature and assume that the quarterly observations are available in

the last month of each quarter, otherwise, yQ
t = NaN; the monthly analogue of quarterly

GDP growth is denoted as y1:T (see Appendix I.A for more details on the temporal aggrega-

tion). The forecast horizon in months is denoted by H, i.e. T + h corresponds to the third

month of the quarter that is being nowcasted.

The Gibbs Sampler then cycles through the following steps or blocks to draw from the

predictive density p(yQ
T+h|x1:T , yQ

1:T ):

Step 1: p( f1:T , y1:T |λ,λy ,Θ, x1:T , yQ
1:T )

Conditional on the observed monthly and quarterly data, x1:T and yQ
1:T , and a draw of the

parameters, we can sample from the conditional posterior distribution of f1:T using the

state space model described in (I.37) and (I.38) and the simulation smoother in Durbin and

Koopman (2002). As a by-product of the sampled state vector, we also obtain a draw of the

monthly analogues of the quarterly time series.

Step 2: p(x+1:T | f1:T ,λ,Σε)
As some of the elements of x1:T may be missing, we also sample them conditional on the

factors. This yields a complete data set x+1:T which is then used in the subsequent steps.

Given the normality of observations and states, the posterior distribution of a generic miss-

ing observation x i,t conditional on the factor is also Normal with mean λi ft . Furthermore,

its variance does not depend on the realizations of the conditioning arguments and is simply

given by the i-th diagonal element of Σε.
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Step 3: p(Ψ| f1:T )
Conditional on a draw of the factors, we can sample the parameters of the factor VAR. De-

note byψ∗ = vec( [ψ1, . . . ,ψR] ) the vectorized matrix of coefficients. Then, given a Normal

prior

p(ψ∗)∝ det
�

¯
Vψ∗
�− 1

2 exp
§

−
1
2
(ψ∗ −

¯
bψ∗)

′

¯
V−1
ψ∗
(ψ∗ −

¯
bψ∗)

ª

the (conditional) posterior is Normal with variance and mean given by

V̄ψ∗ =
�

¯
V−1
ψ∗
+ IR ⊗ X ′X

�−1
, b̄ψ∗ = V̄ψ∗

¦

¯
V−1
ψ∗ ¯

bψ∗ + IR ⊗ X ′X bOLS

©

where X = [ fP:T−1, . . . , f1:T−P], y = fP+1:T and bOLS = vec
�

(X ′X )−1X ′ y
�

. We follow the

literature on Bayesian VAR and impose a Minnesota type prior on ψ∗. That is to say, the

prior mean is set equal to 0 and the prior variance depends on the lag length. Specifically,

for p = 1 : P, we have

Var(ψr,i j) =

(

π0
r2 , if i = j
π0π1

r2 , otherwise.

Common values in the literature are π0 = 0.2 and π1 = 0.1, thus shrinking coefficients on

the lags of other factors stronger towards 0.

Step 4a: p(λ,λy | f1:T , x+1:T , y1:T ,Σε,Σε y ,ϕ)
Conditional on the factors, data, parameters and hyperparameters we can sample the load-

ings from their conditional posterior distribution. See Section I.2 of the main text for details.

Step 4b: p(ϕ|λ,λy)
Conditional on a draw of the loadings, we can update the hyperparameters of the different

priors that govern the degree of sparsity. We again refer to the main text for the conditional

posterior distributions.

Step 5: p(Σε,Σε y |λ,λy , f1:T , x+1:T , y1:T )
Conditional on the idiosyncratic components εi,1:T we can sample the diagonal elements of

the covariance matrix Σε by drawing from

σ2
i ∼ G−1

 

u+ T
2

,
U +

∑T
t=1 ε

2
i,t

2

!

where u and U are the prior shape and rate. In an analogous manner, we can sample Σε y

given εy
1:T . We set u = 2 and U = 1 so that the prior is centered around one but relatively

diffuse.

Step 6: p(yQ
T+h|x1:T , yQ

1:T )
Draws from the h-step ahead predictive density of yQ are obtained by iterating forward
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Table I.2: List of US survey indicators

mnemonic description transformation
gacdna current general activity diff
gafdna future general activity diff
nocdna current new orders diff
nofdna future new orders diff
shcdna current shipments diff
shfdna future shipments diff
dtcdna current delivery time diff
dtfdna future delivery time diff
ivcdna current inventories diff
ivfdna future inventories diff
uocdna current unfilled orders diff
uofdna future unfilled orders diff
ppcdna current prices paid diff
ppfdna future prices paid diff
prcdna current prices received diff
prfdna future prices received diff
necdna current employment diff
nefdna future employment diff
awcdna current workhours diff
awfdna future workhours diff
cefdfna future capital expenditures diff

Notes: The table lists the survey indicators from the
Federal Reserve Bank of Philadelphia’s Manufacturing
Business Outlook Survey that are used in nowcasting
US GDP growth. For the historical data and further in-
formation, see https://www.philadelphiafed.
org/research-and-data/regional-economy/
business-outlook-survey/historical-data.

(I.34) and using (I.35) and (I.36) to compute yQ
T+h (Del Negro and Schorfheide, 2013).

I.C Data

This section describes the data sets used in the empirical nowcasting application. The US

data set (Section I.C.1) is based on FRED-MD. Real-time vintages for Germany (Section

I.C.2) are compiled from the Deutsche Bundesbank’s Real-Time Database. Both datasets

are augmented with survey-based sentiment indicators; to guarantee the real-time nature

of the evaluation, the raw, unadjusted series are seasonally adjusted in real-time using X11-

ARIMA. Furthermore, while the datasets are broadly stable in terms of available series,

there are some changes as vintages for some series are added or removed over the period

of the evaluation sample. Additionally, for the estimation of the models we require that

every variable is available for at least half of the estimation sample. As such, the exact

composition of the data sets varies slightly over time. The individual series used in each

vintage are available upon request.
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I.C.1 United States

Real-time vintages of GDP growth are obtained from ALFRED. Besides the target variable,

our data set includes a large number of monthly time series covering various aspects of

economic activity. Specifically, we use the large, monthly, real-time data set constructed by

McCracken and Ng (2016) and regularly updated by the Federal Reserve Bank of St. Louis.5

It includes series from categories such as output and income, prices, labor markets, housing

and financial markets. Vintages of the "FRED-MD" data set are available from December

1999 onwards, reflecting the information available at the end of the respective month. Re-

garding transformations prior to estimation, we mainly follow the suggestions in McCracken

and Ng (2016). However, given that our sample starts in 1985, some modifications are in

order to reflect the shorter span of the time series. For example, in the original FRED-MD

dataset some price series and average hourly earnings indicators are included in second

(log) differences to achieve stationarity. Over our shorter, "Great Moderation" sample, the

means and variances of the log differences are constant so that we do not need to differ-

ence these series twice. In contrast, housing starts and permits are included in log levels

in the original dataset. Over the shorter sample used in the estimation of the nowcasting

models, the log of the series exhibits large and persistent swings around the long-run mean.

We therefore consider it more appropriate to difference the series to achvieve stationarity.

These modifications bring our dataset more in line with the recent literature on nowcasting

US GDP growth, e.g. Aastveit et al. (2018).

As the nowcasting literature has emphasized the importance of "soft", survey-based sen-

timent indicators, we supplement the McCracken and Ng (2016)-dataset with the Federal

Reserve Bank of Philadelphia’s Manufacturing Business Outlook Survey. While regional in

nature, these indicators are available over a long period of time and provide potentially

useful information for the gross domestic product as they are published very timely, usually

in the middle of the reference month. We include all 20 series covering e.g. firms’ assesse-

ment of current and future activity, orders, etc (Table I.2). All in all, this yields a monthly

real-time data set containing roughly 130 variables, though as mentioned above the exact

number varies slightly over the course of the evaluation period.

I.C.2 Germany

Nowcasts of German GDP growth are based on a real-time dataset comprised of over 100

monthly variables similar to that employed by Schumacher (2007). Vintages are compiled

from the Deutsche Bundesbank Real-Time Database and augmented with financial market

and the survey-based ifo indicators. Real-time vintages for a sufficiently large number of

variables are available as of November 2005. For others, these become available over the

course of the evaluation period. As a result, the size of the dataset increases somewhat from

167 monthly variables in the January 2006 vintage to 172 series as of December 2017. The

5All vintages can be downloaded from https://research.stlouisfed.org/econ/mccracken/
fred-databases/.
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Table I.3: Real-time data, Germany: production

variable/sector adj. trafo 1st obs. 1st vintage
industrial production p,s,c 3 Jan 1991 6.2.1995
industrial production and construction p,s,c 3 Jan 1991 6.2.1995
total construction p,s,c 3 Jan 2010 3.8.2013
main construction industry p,s,c 3 Jan 1991 6.2.1995
finishing trade p,s,c 3 Jan 2010 3.8.2013
building construction p,s,c 3 Jan 1991 7.11.2005
civil engineering p,s,c 3 Jan 1991 7.11.2005
industry p,s,c 3 Jan 1991 6.2.1995
intermediate goods p,s,c 3 Jan 1991 6.2.1995
investment goods p,s,c 3 Jan 1991 6.2.1995
consumption goods p,s,c 3 Jan 1991 6.2.1995
durable goods p,s,c 3 Jan 1991 6.2.1995
non-durable goods p,s,c 3 Jan 1991 6.2.1995
energy p,s,c 3 Jan 1991 6.2.1995

Source: Deutsche Bundesbank.

Table I.4: Real-time data, Germany: orders

variable/sector adj. trafo 1st obs. 1st vintage
industry p,s,c 3 Jan 1991 6.9.2001
industry (domestic) p,s,c 3 Jan 1991 6.9.2001
industry (abroad) p,s,c 3 Jan 1991 6.9.2001
intermediate goods p,s,c 3 Jan 1991 8.6.1995
intermediate goods (domestic) p,s,c 3 Jan 1991 8.6.1995
intermediate goods (abroad) p,s,c 3 Jan 1991 8.6.1995
investment goods p,s,c 3 Jan 1991 8.6.1995
investment goods (domestic) p,s,c 3 Jan 1991 8.6.1995
investment goods (abroad) p,s,c 3 Jan 1991 8.6.1995
consumption goods p,s,c 3 Jan 1991 8.6.1995
consumption goods (domestic) p,s,c 3 Jan 1991 8.6.1995
consumption goods (abroad) p,s,c 3 Jan 1991 8.6.1995
building construction p,s,c 3 Jan 1991 22.11.2005
civil engineering p,s,c 3 Jan 1991 22.11.2005
residential construction p,s,c 3 Jan 1991 22.11.2005
construction industry (private) p,s,c 3 Jan 1991 22.11.2005
construction industry (public) p,s,c 3 Jan 1991 22.11.2005

Source: Deutsche Bundesbank.

starting point of our sample is January 1992.

Below we list the time-series comprising the seven groups of our dataset. The second

column refers to the type of adjustment that have been applied to the time series (price-

adjusted, seasonally adjusted, calendar adjusted) while the third columns lists how each

series is transformed to achieve stationarity (3 = difference of logarithm, 2 = difference, 1

= level). Furthermore, we also highlight if a series has a later starting point than January

1991 or if the vintages do not go back as far as November 2005 to indicate that the variable

is only included in part of the evaluation period.
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Table I.5: Real-time data, Germany: turnover

variable/sector adj. trafo 1st obs. 1st vintage
industry s,c 3 Jan 1991 4.11.2005
industry (domestic) s,c 3 Jan 1991 4.11.2005
industry (abroad) s,c 3 Jan 1991 4.11.2005
intermediate goods s,c 3 Jan 1991 4.11.2005
intermediate goods (domestic) s,c 3 Jan 1991 4.11.2005
intermediate goods (abroad) s,c 3 Jan 1991 4.11.2005
investment goods s,c 3 Jan 1991 4.11.2005
investment goods (domestic) s,c 3 Jan 1991 4.11.2005
investment goods (abroad) s,c 3 Jan 1991 4.11.2005
consumption goods s,c 3 Jan 1991 4.11.2005
consumption goods (domestic) s,c 3 Jan 1991 4.11.2005
consumption goods (abroad) s,c 3 Jan 1991 4.11.2005
durable goods s,c 3 Jan 1991 4.11.2005
non-durable goods s,c 3 Jan 1991 4.11.2005
residential construction s,c 3 Jan 1991 22.11.2005
construction industry (private) s,c 3 Jan 1991 20.11.2005
construction (public) s,c 3 Jan 1991 4.11.2005
retail sales p,s,c 3 Jan 1994 17.11.2005
retail sales excluding cars p,s,c 3 Jan 1994 17.11.2005
retail sales: cars p,s,c 3 Jan 1994 17.11.2005

Source: Deutsche Bundesbank.

Table I.6: Real-time data, Germany: prices

variable/sector adj. trafo 1st obs. 1st vintage
consumper price index (CPI) s,c 3 Jan 1991 28.11.1995
CPI excl. energy s 3 Jan 1991 28.1.1999
CPI excl. energy and food s 3 Jan 1995 13.4.2017
CPI: food s 3 Jan 1991 28.1.1999
CPI: other non-durables and durables s 3 Jan 1995 14.11.2003
CPI: energy s,c 3 Jan 1991 29.2.2008
CPI: services s,c 3 Jan 2010 13.4.2017
CPI: services (excluding rents) s 3 Jan 2000 14.11.2003
CPI: rents s 3 Jan 1991 11.11.2005
CPI: rents excl. ancillary costs s 3 Jan 1995 16.4.2008
produer price index (PPI): industrial products s 3 Jan 1991 18.11.2005
PPI: industrial products excl. energy s 3 Jan 1994 18.11.2005
PPI: agricultural products s 3 Jan 1968 7.11.2005
export price index s 3 Jan 1970 24.11.2005
import price index s 3 Jan 1970 24.11.2005

Source: Deutsche Bundesbank.

Table I.7: Real-time data, Germany: labor market

variable/sector adj. trafo 1st obs. 1st vintage
employment s 3 Jan 1991 8.8.1995
employment: manufacturing and mining s 3 Jan 1991 16.11.2005
employment: main construction industry s 3 Jan 1991 22.11.2005
hours worked s,c 3 Jan 1991 22.11.2005
hours worked: manufacturing and mining s,c 3 Jan 1991 16.11.2005
hours worked: main construction industry s,c 3 Jan 1991 22.11.2005
employees subject to social security contributions s 3 Jan 1991 30.3.2006
gross wages and salaries: manufacturing and mining s,c 3 Jan 1991 16.11.2005
gross wages and salaries: main construction industry s,c 3 Jan 1991 22.11.2005

Source: Deutsche Bundesbank.
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Table I.8: Real-time data, Germany: financial markets

variable/sector adj. trafo 1st obs. 1st vintage
yields on debt securities issued by residents none 2 Jan 1991 -
yields: bank debt securities none 2 Jan 1991 -
yields: mortgage Pfandbriefe none 2 Jan 1991 -
yields: public Pfandbriefe securities none 2 Jan 1991 -
yields: special purpose credit institutions none 2 Jan 1991 -
yields: other bank debt securities none 2 Jan 1991 -
yields: corporate debt securities none 2 Jan 1991 -
yields: public debt securities none 2 Jan 1991 -
yields: state government securities none 2 Jan 1991 -
government bond yields: 6 month maturity none 2 Jan 1991 -
government bond yields: 1 year maturity none 2 Jan 1991 -
government bond yields: 2 year maturity none 2 Jan 1991 -
government bond yields: 3 year maturity none 2 Jan 1991 -
government bond yields: 4 year maturity none 2 Jan 1991 -
government bond yields: 5 year maturity none 2 Jan 1991 -
government bond yields: 6 year maturity none 2 Jan 1991 -
government bond yields: 7 year maturity none 2 Jan 1991 -
government bond yields: 8 year maturity none 2 Jan 1991 -
government bond yields: 9 year maturity none 2 Jan 1991 -
government bond yields: 10 year maturity none 2 Jan 1991 -
CDAX index none 3 Jan 1991 -
Nominal effective exchange rate (narrow) none 3 Jan 1991 -
Nominal effective exchange rate (broad) none 3 Jan 1991 -

Source: Deutsche Bundesbank.
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Table I.9: Real-time data, Germany: survey indicators

variable/sector adj. trafo 1st obs. 1st vintage
ifo: manufacturing, current situation s 2 Jan 1991 -
ifo: manufacturing, climate s 2 Jan 1991 -
ifo: manufacturing, expectations s 2 Jan 1991 -
ifo: manufacturing, demand s 2 Jan 1991 -
ifo: manufacturing, prices s 2 Jan 1991 -
ifo: manufacturing, employment expectations s 2 Jan 1991 -
ifo: manufacturing, export expectations s 2 Jan 1991 -
ifo: manufacturing, orders from abroad s 2 Jan 1991 -
ifo: manufacturing, inventories s 2 Jan 1991 -
ifo: manufacturing, orders s 2 Jan 1991 -
ifo: manufacturing, production expecations s 2 Jan 1991 -
ifo: manufacturing, orders (m/m) s 2 Jan 1991 -
ifo: manufacturing, production (m/m) s 2 Jan 1991 -
ifo: manufacturing, price expectation s 2 Jan 1991 -
ifo: wholesale, current situation s 2 Jan 1991 -
ifo: wholesale, climate s 2 Jan 1991 -
ifo: wholesale, expectations s 2 Jan 1991 -
ifo: wholesale, employment expectations s 2 Jan 1991 -
ifo: wholesale, inventories s 2 Jan 1991 -
ifo: wholesale, order expectations s 2 Jan 1991 -
ifo: wholesale, price expectations s 2 Jan 1991 -
ifo: wholesale, inventories s 2 Jan 1991 -
ifo: wholesale, prices (m/m) s 2 Jan 1991 -
ifo: wholesale, turnover (m/m) s 2 Jan 1991 -
ifo: retail, current situation s 2 Jan 1991 -
ifo: retail, climate s 2 Jan 1991 -
ifo: retail, expectations s 2 Jan 1991 -
ifo: retail, employment expectations s 2 Jan 1991 -
ifo: retail, inventories s 2 Jan 1991 -
ifo: retail, order expectations s 2 Jan 1991 -
ifo: retail, price expectations s 2 Jan 1991 -
ifo: retail, inventories s 2 Jan 1991 -
ifo: retail, prices (m/m) s 2 Jan 1991 -
ifo: retail, turnover (m/m) s 2 Jan 1991 -
ifo: construction, current situation s 2 Jan 1991 -
ifo: construction, climate s 2 Jan 1991 -
ifo: construction, expectations s 2 Jan 1991 -
ifo: construction, prices s 2 Jan 1991 -
ifo: construction, capacity utilisation s 2 Jan 1991 -

All series are seasonally adjusted in real-time using X-11-ARIMA. Source: ifo-Institute.
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I.D Additional results

This section presents the results of the nowcasting evaluation for several robustness checks

discussed in Section I.3.5.

United States

surveys in first differences, rolling estimation sample, P=1, first release
surveys in levels, recursive estimation sample, P=1, first release
surveys in levels, rolling estimation sample, P=1, first release

Germany

surveys in first differences, rolling estimation sample, P=1, first release
surveys in levels, recursive estimation sample, P=1, first release
surveys in levels, rolling estimation sample, P=1, first release
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Table I.10: Additional results: United States (first, diff, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.47 0.69 0.26 0.32 0.55 0.20

R=1 Nd 0.81 0.82 0.86 1.04 0.97 1.02
NIG 0.92 0.89 0.93 1.05 0.94 1.02
MG 0.84 0.82 0.88 1.09 0.97 1.05
PMNM 0.86 0.85 0.89 1.06 0.95 1.03
HS+ 0.84 0.83 0.88 1.03 0.99 1.03

R=2 Nd 0.86 0.83 0.89 0.96 0.89 0.96
NIG 0.89 0.85 0.91 0.99 0.87 0.98
MG 0.84 0.80 0.87 0.98 0.88 0.97
PMNM 0.84 0.81 0.88 1.05 0.93 1.02
HS+ 0.84 0.80 0.87 1.02 0.92 1.00

R=5 Nd 0.81 0.80 0.87 1.08 0.87 1.03
NIG 0.79 0.75 0.84 1.12 0.86 1.05
MG 0.79 0.72 0.83 1.12 0.85 1.04
PMNM 0.79 0.74 0.84 1.09 0.87 1.03
HS+ 0.79 0.73 0.84 1.10 0.84 1.03

R=8 Nd 0.84 0.88 0.89 1.04 0.97 1.03
NIG 0.80 0.75 0.83 1.05 0.82 1.00
MG 0.75 0.70 0.80 1.02 0.78 0.98
PMNM 0.72 0.66 0.77 0.87 0.66 0.87
HS+ 0.74 0.66 0.78 0.94 0.69 0.90

pool Nd 0.80 0.85 0.86 1.03 0.95 1.01
NIG 0.76 0.74 0.81 0.99 0.81 0.96
MG 0.75 0.71 0.80 1.00 0.82 0.97
PMNM 0.74 0.70 0.79 0.95 0.76 0.93
HS+ 0.77 0.70 0.81 1.01 0.77 0.96

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2000Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table I.11: Additional results: United States (first, level, rec)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.45 0.64 0.25 0.32 0.50 0.19

R=1 Nd 1.04 1.13 1.05 0.99 1.07 1.03
NIG 1.04 1.08 1.04 0.97 1.08 1.01
MG 1.03 1.10 1.03 0.99 1.09 1.03
PMNM 1.02 1.09 1.02 0.92 1.04 0.98
HS+ 1.01 1.10 1.01 0.91 1.04 0.98

R=2 Nd 0.93 0.89 0.96 1.20 1.04 1.14
NIG 0.95 0.93 0.99 1.21 1.06 1.15
MG 0.94 0.93 0.98 1.19 1.05 1.13
PMNM 0.94 0.89 0.97 1.13 0.96 1.08
HS+ 0.93 0.88 0.96 1.15 0.98 1.09

R=5 Nd 0.83 0.75 0.86 1.07 0.86 1.01
NIG 0.87 0.80 0.90 1.19 0.98 1.11
MG 0.83 0.76 0.86 0.97 0.81 0.95
PMNM 0.87 0.79 0.90 1.19 1.00 1.13
HS+ 0.86 0.77 0.89 1.19 0.97 1.12

R=8 Nd 0.81 0.72 0.85 1.02 0.80 0.98
NIG 0.80 0.68 0.83 1.02 0.78 0.98
MG 0.91 0.85 0.93 1.04 0.91 1.00
PMNM 0.80 0.69 0.84 1.01 0.76 0.97
HS+ 0.78 0.67 0.82 1.03 0.78 0.98

pool Nd 0.80 0.75 0.84 1.02 0.88 0.99
NIG 0.81 0.76 0.85 1.03 0.87 1.00
MG 0.89 0.84 0.91 1.05 0.95 1.02
PMNM 0.80 0.75 0.85 1.02 0.86 0.99
HS+ 0.80 0.74 0.84 1.01 0.84 0.98

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2000Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table I.12: Additional results: United States (first, level, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.47 0.69 0.26 0.32 0.55 0.20

R=1 Nd 0.88 0.97 0.93 0.87 1.05 0.98
NIG 0.87 0.96 0.92 0.87 1.07 0.99
MG 0.87 0.96 0.93 0.87 1.07 0.98
PMNM 1.00 1.06 1.02 0.90 1.10 1.00
HS+ 0.99 1.08 1.01 0.88 1.09 0.99

R=2 Nd 0.84 0.83 0.88 0.97 0.86 0.96
NIG 0.84 0.83 0.89 0.97 0.87 0.96
MG 0.84 0.83 0.88 0.97 0.88 0.97
PMNM 0.91 0.88 0.94 1.07 0.94 1.03
HS+ 0.87 0.83 0.90 1.01 0.87 0.98

R=5 Nd 0.80 0.76 0.85 0.92 0.70 0.90
NIG 0.74 0.68 0.79 0.91 0.69 0.89
MG 0.74 0.67 0.79 0.95 0.70 0.92
PMNM 0.86 0.78 0.89 1.04 0.80 0.99
HS+ 0.80 0.72 0.84 1.00 0.74 0.95

R=8 Nd 0.86 0.92 0.92 1.11 0.94 1.06
NIG 0.77 0.75 0.82 1.01 0.80 0.97
MG 0.74 0.71 0.80 1.01 0.77 0.96
PMNM 0.81 0.75 0.85 1.04 0.81 1.00
HS+ 0.74 0.66 0.79 0.96 0.73 0.93

pool Nd 0.75 0.84 0.83 0.92 0.88 0.95
NIG 0.75 0.76 0.81 0.90 0.79 0.91
MG 0.73 0.74 0.79 0.90 0.80 0.92
PMNM 0.80 0.78 0.85 0.97 0.86 0.96
HS+ 0.78 0.75 0.82 0.93 0.79 0.92

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2000Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table I.13: Additional results: Germany (first, diff, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.91 1.35 0.45 0.52 1.04 0.32

R=1 Nd 0.73 0.69 0.78 0.96 0.68 0.88
NIG 0.72 0.69 0.77 0.92 0.66 0.85
MG 0.71 0.66 0.76 0.92 0.65 0.85
PMNM 0.73 0.76 0.78 0.93 0.66 0.86
HS+ 0.72 0.70 0.76 0.91 0.62 0.83

R=2 Nd 0.60 0.58 0.66 0.85 0.60 0.80
NIG 0.54 0.51 0.60 0.76 0.53 0.72
MG 0.55 0.51 0.61 0.78 0.54 0.73
PMNM 0.56 0.52 0.62 0.81 0.55 0.75
HS+ 0.56 0.54 0.63 0.81 0.57 0.75

R=5 Nd 0.77 0.64 0.78 0.97 0.71 0.89
NIG 0.58 0.50 0.61 0.69 0.50 0.66
MG 0.60 0.50 0.63 0.69 0.48 0.66
PMNM 0.59 0.53 0.63 0.73 0.53 0.70
HS+ 0.61 0.53 0.64 0.70 0.50 0.68

R=8 Nd 0.66 0.65 0.72 1.04 0.78 0.94
NIG 0.55 0.49 0.58 0.74 0.53 0.69
MG 0.58 0.49 0.60 0.72 0.50 0.68
PMNM 0.54 0.49 0.59 0.66 0.52 0.66
HS+ 0.62 0.52 0.63 0.67 0.50 0.65

pool Nd 0.59 0.59 0.65 0.82 0.67 0.79
NIG 0.54 0.49 0.58 0.68 0.52 0.66
MG 0.55 0.49 0.59 0.68 0.51 0.66
PMNM 0.57 0.52 0.61 0.71 0.55 0.69
HS+ 0.57 0.51 0.61 0.67 0.51 0.66

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2006Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table I.14: Additional results: Germany (first, level, rec)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.86 1.73 0.41 0.49 0.89 0.29

R=1 Nd 0.88 0.66 0.98 1.10 1.01 1.09
NIG 0.88 0.70 0.98 1.10 1.01 1.10
MG 0.88 0.66 0.98 1.10 1.00 1.08
PMNM 0.88 0.66 0.97 1.09 1.01 1.08
HS+ 0.88 0.69 0.97 1.06 1.01 1.07

R=2 Nd 0.87 0.65 0.92 1.02 0.99 1.01
NIG 0.74 0.53 0.79 0.82 0.85 0.88
MG 0.70 0.51 0.75 0.81 0.84 0.87
PMNM 0.75 0.53 0.80 0.82 0.85 0.87
HS+ 0.76 0.53 0.80 0.81 0.85 0.87

R=5 Nd 1.01 0.86 1.14 1.18 0.96 1.08
NIG 0.74 0.53 0.82 0.92 0.74 0.87
MG 0.68 0.53 0.81 1.05 0.92 1.04
PMNM 0.74 0.53 0.82 0.82 0.69 0.80
HS+ 0.71 0.50 0.79 0.85 0.70 0.82

R=8 Nd 1.17 0.87 1.17 1.28 1.04 1.21
NIG 0.68 0.51 0.75 0.92 0.76 0.89
MG 0.73 0.52 0.80 0.86 0.80 0.88
PMNM 0.51 0.37 0.60 0.75 0.62 0.76
HS+ 0.51 0.36 0.59 0.72 0.59 0.73

pool Nd 0.69 0.55 0.82 0.85 0.88 0.90
NIG 0.55 0.45 0.66 0.73 0.76 0.80
MG 0.59 0.48 0.70 0.82 0.83 0.87
PMNM 0.51 0.44 0.63 0.61 0.70 0.72
HS+ 0.50 0.42 0.61 0.65 0.68 0.73

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2006Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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Table I.15: Additional results: Germany (first, level, rolling)

full sample post-crisis sample
RMSFE logS CRPS RMSFE logS CRPS

h=0 h=0 h=0 h=0 h=0 h=0

B-AR 0.91 1.35 0.45 0.52 1.04 0.32

R=1 Nd 0.89 1.07 0.97 1.09 0.98 1.07
NIG 0.88 1.11 0.97 1.08 0.99 1.07
MG 0.89 1.12 0.96 1.07 0.96 1.04
PMNM 0.87 1.20 0.95 1.01 0.96 1.01
HS+ 0.87 1.20 0.94 1.01 0.95 1.01

R=2 Nd 0.76 0.77 0.83 0.99 0.76 0.93
NIG 0.65 0.68 0.71 0.89 0.76 0.87
MG 0.65 0.69 0.71 0.88 0.77 0.86
PMNM 0.73 0.73 0.79 0.94 0.77 0.90
HS+ 0.65 0.68 0.70 0.87 0.72 0.84

R=5 Nd 0.97 1.00 1.05 1.23 0.97 1.17
NIG 0.62 0.64 0.68 0.77 0.64 0.76
MG 0.60 0.61 0.66 0.73 0.62 0.73
PMNM 0.62 0.61 0.67 0.71 0.59 0.71
HS+ 0.58 0.63 0.65 0.70 0.61 0.71

R=8 Nd 0.87 0.85 0.96 1.39 1.08 1.32
NIG 0.58 0.55 0.64 0.82 0.63 0.78
MG 0.61 0.56 0.66 0.76 0.58 0.73
PMNM 0.57 0.55 0.62 0.70 0.55 0.69
HS+ 0.62 0.57 0.66 0.70 0.53 0.68

pool Nd 0.61 0.77 0.75 0.90 0.92 0.94
NIG 0.53 0.58 0.61 0.66 0.67 0.72
MG 0.56 0.60 0.63 0.67 0.65 0.71
PMNM 0.53 0.58 0.60 0.62 0.63 0.68
HS+ 0.55 0.59 0.62 0.63 0.61 0.68

RMSFE is the root mean squared forecast error, logS and CRPS are the average log score and
continuous ranked probability score. All entries for the factor models are relative to the B-AR
benchmark (see text for details) and negatively orientated so that a value in the table below
1 corresponds to a better performance than the benchmark. The forecast horizon h is in
months. The full sample period is 2006Q1-2018Q4, the post-crisis sample starts in 2010Q1
and ends in 2018Q4.
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I.E MCMC diagnostics

To assess the performance of the Gibbs Sampler in terms of convergence and mixing, we calculate the

inefficiency factors of the draws from the predictive density in the nowcasting application in Section

I.3. The inefficiency factor is defined as (e.g. Chib, 2011):

Ineff(ĥG) =
Var(ĥG)

s2/G
(I.39)

where G is the length of the chain, s2 its sample variance and Var(ĥG) an estimate of the variance

of the simulation error taking into account autocorrelation in the Markov chain. For independent

draws from the posterior distribution the inefficiency factor is equal to 1; higher values of Ineff(ĥG)
thus signal autocorrelation in the chain as result of poor mixing or lack of convergence. An estimate

of the inefficiency factors is given by the sum of the autocorrelation coefficients ρ of the posterior

draws, i.e.

Ineff(ĥG) = 1+ 2
L
∑

l

ρl (I.40)

where L is some suitably chosen upper bound. Alternatively, the inefficiency factor can also be

expressed as

Ineff(ĥG) =
G

ESS(ĥG)
(I.41)

where ESS(ĥG) is the "effective sample size" of the Markov chain. The latter can readily be

computed using the R package coda (Plummer et al., 2006).

Figure I.2 shows boxplots of the inefficiency factors for the predictive densities from the different

priors and model specifications. The majority of inefficiency factors of the predictive densities are

concentrated at the lower end of the scale, indicating close to independent draws from the posterior

distribution. There are a few outliers - defined as any observations that exceeds the median by 1.5

times the interquartile range and highlighted in the plot by a dot - for each specification, with some

inefficiency factors as high as 50 or even 100 in one case. But overall the chains appear to mix well.

An exception is the Multiplicative Gamma prior in the case of the United States where the number

of outliers is much larger. We note, however, that this is only the case for models with P = 1,

a recursive estimation sample and the survey indicators in levels. Furthermore, judging from the

tables presented in Appendix I.D this does not seem to have impacted the nowcasting performance

in a substantial way as the results are qualitatively and quantitatively similar to those obtained for

the other specifications where the inefficiency factors are smaller.
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Figure I.2: Boxplots of inefficiency factors for different model specifications
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Note: The figure shows the inefficiency factors for the different model specifications. rec/rolling: recursive or

rolling estimation window, level/diff : survey indicators in levels or first differences. The different priors are

denoted as follows: HS+ = horseshoe plus, MG = multiplicative Gamma, NIG = Normal Inverse Gamma, Nd

= Normal diffuse, PMNM = point mass normal mixture. The number of lags in the factor VAR equals P = 1.

For details, see the main text.
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Chapter II

Precision-based sampling with missing

observations: A factor model application

This chapter of my dissertation is co-authored with Christian Schumacher (Deutsche Bun-
desbank). It has been published as Deutsche Bundesbank Discussion Paper No. 11/2021.

Abstract

We propose a new approach to sample unobserved states conditional on available

data in (conditionally) linear unobserved component models when some of the obser-

vations are missing. The approach is based on the precision matrix of the states and

model variables, which is sparse and banded in many economic applications and allows

for efficient sampling. The existing literature on precision-based sampling is focused

on complete-data applications, whereas the proposed samplers in this paper provide

draws for states and missing observations by using permutations of the precision ma-

trix. The approaches can be easily integrated into Bayesian estimation procedures like

the Gibbs sampler. By allowing for incomplete data sets, the proposed sampler expands

the range of potential applications for precision-based samplers in practice. We derive

the sampler for a factor model, although it can be applied to a wider range of empirical

macroeconomic models. In an empirical application, we estimate international factors

in GDP growth in a large unbalanced data set of about 180 countries.

Keywords: Precision-based sampling, Bayesian estimation, state-space models, missing

observations, factor models, banded matrices

JEL classification: C32, C38, C63, C55.
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II.1 Introduction

In the recent literature, conditional samplers for unobserved states given data and parame-

ters based on the precision matrix have received considerable attention. First applications

of precision-based samplers to address economic questions have been provided by Chan

and Jeliazkov (2009) and McCausland (2012), building on seminal work by Rue (2001)

and Rue and Held (2005) on Gaussian Markov random fields. There is now a huge number

of applications of precision-based samplers in the empirical macroeconomic literature. Re-

cent examples of state-space models with unobserved components such as output gaps or

inflation trends and time-varying parameters are Chan et al. (2013, 2016), Grant and Chan

(2017), and Chan et al. (2018b) or time-varying parameter vector autoregressive (VAR)

models with a vast number of applications such as Chan and Eisenstat (2018), Chan (2020),

Chan et al. (2020) and references cited therein. Factor model applications are provided by

Chan and Jeliazkov (2009), McCausland (2015), and Kaufmann and Schumacher (2017,

2019). These application typically employ precision-based sampling of states given data

as part of a Bayesian estimation procedures like the Gibbs sampler, whose aim is to draw

from the posterior density p(θ ,η|x), where η are the unobserved states, x denotes data,

and θ are model parameters. A standard Gibbs sampler iterates between drawing from

the conditional posteriors p(η|x ,θ ) and p(θ |x ,η). Drawing from p(η|x ,θ ) can be carried

out efficiently by precision-based samplers, as the underlying precision matrix of states and

variables is banded in many economic models and allows for the application of fast sparse

matrix techniques (Rue, 2001).

The literature cited above applies precision-based samplers to complete data sets. In

practice, however, observations in multivariate data sets can often be missing. In this case,

an analyst has the choice of removing all time series with missing observation and using

balanced data only. This, however, implies a loss of information. The alternative is to use

the larger unbalanced data, but this raises the need for estimation methods that can tackle

missing observations.

In this paper, we propose a precision-based sampler for unobserved states in the pres-

ence of partly missing observations. In line with the literature cited above, the state-space

model is assumed to be (conditionally) linear and the disturbances follow normal distribu-

tions. If the data are completely available, the states can be sampled from a conditional

distribution of a multivariate normal using fast band-matrix computation as in Rue (2001)

and Chan and Jeliazkov (2009). Important alternative samplers from the literature based

on the Kalman filter are provided in the seminal papers Carter and Kohn (1994), Frühwirth-

Schnatter (1994), and Durbin and Koopman (2002). The main contribution of this paper is

the extension of the literature on precision-based samplers by considering missing observa-

tions. We do so by implementing an efficient reordering of states, observed and unobserved

variables that facilitates fast band-matrix computation. The sampler provides draws from

the conditional posterior distribution p(η, xm|xo,θ ) for the states and the missing observa-

tions xm conditional on observed data xo and parameters. Thus it can easily be integrated
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into Gibbs samplers to tackle missing data as proposed by Little and Rubin (2002).

To illustrate the sampling method, we use a factor model with vector autoregressive

(VAR) dynamics for the factors and autoregressive (AR) idiosyncratic components in a

Bayesian framework (McCausland, 2015; Kaufmann and Schumacher, 2019). Alternative

missing-data approaches for factor models in the literature are Angelini et al. (2006) and

Marcellino (2007) for backdating and interpolation in a principal-components framework,

see also Bai and Ng (2019) for a recent contribution. In a Bayesian framework, Otrok and

Pourpourides (2017) interpolate data in panel data and Müller et al. (2019) interpolate in-

ternational long-run growth data. Further approaches based on the Kalman filter have been

proposed by Jungbacker et al. (2011) and Banbura and Modugno (2014), amongst others.

For the factor model, we derive alternative precision-based samplers for the factors and

missing values in the data, which differ with respect to the permutations of η, xm and

xo in the precision matrix. We compare the accuracy and computational efficiency of the

precision-based samplers in simulations. As an empirical application, we estimate inter-

national factors in GDP growth along the lines of the literature on international business

cycles with Bayesian techniques (Kose et al., 2003, 2008; Francis et al., 2017; Müller et al.,

2019). We compare estimation results based on balanced data for about 50 country-GDP

time series using the standard precision-based sampler and results on a larger, unbalanced

data set consisting of more than 180 GDP time series. We check whether results based on

balanced data are robust when using the larger information set.

The paper proceeds as follows. In Section II.2, we introduce the factor model, whereas

Section II.3 describes its estimation using Bayesian methods given complete data with a fo-

cus on precision-based sampling of the unobserved factors. Section II.4 provides alternative

precision-based samplers for partly missing observations. A simulation exercise to compare

the alternative precision-based samplers is provided in Section II.5. In Section II.6, we dis-

cuss the results of the empirical application. Section II.7 briefly discusses the calculation

of the marginal likelihood and extensions to other models such as time-varying parameter

(TVP) Bayesian VAR models. Section II.8 concludes.

II.2 The factor model

The factor model explains the (N × 1)−dimensional vector of variables x t = (x1,t , x2,t , . . . ,

xN ,t)T in time period t according to

x t = ληt + εt , (II.1)

ηt = φηt−1 + uη,t , εt =ψεt−1 + uε,t . (II.2)

The (r×1)−dimensional vector of factors is denoted as ηt , and λ is the (N×r)−dimensional

matrix of factor loadings. The factor representation (Equation (II.1)) holds for t = 1, . . . , T .

The factors follow a VAR(1) process with the (r × r)−dimensional lag parameter matrix

φ. The factor VAR disturbances are distributed as uη,t ∼ N (0r×1,ωη). The idiosyncratic
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components collected in the (N ×1)−dimensional vector εt = (ε1,t ,ε2,t , . . . ,εN ,t)T each fol-

low AR(1) processes such that the (N × N)−dimensional coefficient matrix ψ is diagonal

containing the AR(1) lag parameters ψi for i = 1, . . . , N on the main diagonal. The one-lag

specification only serves to illustrate the methods. The empirical applications later in the

paper will consider a factor VAR(p) with AR(q) idiosyncratic components where p, q > 1.

The idiosyncratic disturbances are distributed as uε,t ∼N (0N×1,ωε), where ωε is also diag-

onal with diagonal elementsωε,i for i = 1, . . . , N . We assume that uη,t and uε,t are mutually

independent and that the VAR and AR processes in (Equation (II.2)) are stationary. In addi-

tion, the equations in (Equation (II.2)) are defined for time periods t = 2, . . . , T . For t = 1,

let η1 ∼ N (η1|0,ϑη,1|0) and ε1 ∼ N (ε1|0,ϑε,1|0), respectively. The means of the distributions

are set equal to their unconditional mean, which is zero in our case, so η1|0 = 0r×1 and

ε1|0 = 0N×1, respectively. As the processes underlying (Equation (II.2)) are stationary, ϑη,1|0

and ϑε,1|0 are set equal to the unconditional covariances implied by the model equations:

For the states, we define ϑη,1|0 = ϑη, where ϑη is equal to the solution of the vector equation

ϑη = φϑηφT +ωη, and ϑε,1|0 is a diagonal matrix with ωε,i/(1−ψ2
i ) on the main diagonal

for i = 1, . . . , N .

For compact notation, we stack all time periods for the variables x t into one (N T ×
1)−dimensional vector according to x = (xT

1 , xT
2 , . . . , xT

T )
T. In the same way, define the

(Tr ×1)−dimensional stacked vector of factors η= (ηT1 ,ηT2 , . . . ,ηTT )
T and the idiosyncratic

components, ε= (εT1 ,εT2 , . . . ,εTT )
T. We collect all the model parameters in the vector θ .

II.3 Precision-based sampling with complete data

For Bayesian estimation of the factor model, we first assume the data are complete and

later generalize to the case when some observations are missing. Complete or balanced

data means that we have one observation x o
i,t available for each variable explained in the

model x i,t = x o
i,t for all i = 1, . . . , N and t = 1, . . . , T , or x = x o in brief.

Our aim is to sample from the posterior distribution

p(η,θ |x)∝ L(x |η,θ )p(η|θ )p(θ ), (II.3)

where the likelihood function L(x |η,θ ) is implied by (Equation (II.1)) and (Equation (II.2)),

and the priors are chosen closely in line with the existing factor model literature, see Sec-

tion II.A for details. To obtain draws from the posterior distribution, we sample sequentially

from the following conditional posterior distributions:

1. p(η|x ,θ )

2. p(θ |x ,η)

The precision-based sampler to draw from p(η|x ,θ ) is discussed in detail below, whereas

details on the samplers for p(θ |x ,η) and further model specifications are provided in Sec-

tion II.A.
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To prepare the application of conditional sampling from partitioned multivariate nor-

mals, we follow McCausland (2015) and define the joint vector

z =

�

η

x

�

=

�

ITr 0Tr×T N

Λ IT N

��

η

ε

�

(II.4)

as a function of unobserved factors and idiosyncratic components. The matrix Λ is given

by the Kronecker product Λ = IT ⊗ λ. According to (Equation (II.4)), the joint vector

z = (ηT, xT)T is an affine transformation of (ηT,εT)T, which are Gaussian and mutually

independent. Hence, z also follows a multivariate normal distribution by

z|θ ∼N
�

0T (r+N)×1,Q−1
�

, (II.5)

where Q−1 is the (T (r + N)× T (r + N))−dimensional covariance matrix and Q the corre-

sponding precision matrix, which is conditional on model parameters. To facilitate efficient

sampling, we have to find a tractable blocked expression for the precision matrix Q, which

will allow us to apply general rules for sampling from partitioned Gaussian vectors.

We start by deriving the covariance matrix of z and write the factor VAR as Φη = uη,
where uη|θ ∼N (0Tr×1,Ωη),

Φ=

















Ir

−φ Ir

−φ . . .
. . . Ir

−φ Ir

















, and Ωη =











ϑη,1|0

ωη
. . .

ωη











. (II.6)

In stacked form, the vector of factors follows the distribution η|θ ∼N (0Tr×1,Φ−1ΩηΦ
−T),

where Φ has full rank and, hence, is invertible. Similarly, the stacked idiosyncratic compo-

nents are defined as Ψε= uε where uε|θ ∼N (0T N×1,Ωε), and Ωε is a matrix containing the

matrix ϑε,1|0 on the first main diagonal block and the matrices ωε on the final t = 2, . . . , T
main diagonal blocks. Ψ is constructed in a similar way as Φ above, but the main diagonal

blocks consist of IN matrices, and all the subdiagonal blocks are equal to −ψ. It follows that

the vector of idiosyncratic components is distributed as ε|θ ∼N (0T N×1,Ψ−1ΩεΨ
−T).

We obtain the covariance matrix Q−1 of the joint vector z = (ηT, xT)T in (Equation (II.5))

by

Q−1 =

�

I 0

Λ I

��

Φ−1ΩηΦ
−T 0

0 Ψ−1ΩεΨ
−T

��

I ΛT

0 I

�

, (II.7)

and we can directly derive the partitioned precision matrix

Q =

�

ΦTΩ−1
η
Φ+ΛT(ΨTΩ−1

ε
Ψ)Λ −ΛT(ΨTΩ−1

ε
Ψ)

−(ΨTΩ−1
ε
Ψ)Λ ΨTΩ−1

ε
Ψ

�

=

�

Qηη Qηx

Q xη Q x x

�

. (II.8)
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Given complete data, we can make use of the general rules for conditional sampling

from a partitioned multivariate normal distribution as in Anderson (2003), Theorem 2.5.1.

In terms of the partitioned precision matrix, Rue (2001), Section 3.1.1, provides the condi-

tional distribution of η given x = x o defined as

p(η|x = x o,θ )
D
=N

�

−Q−1
ηη

Qηx x o,Q−1
ηη

�

. (II.9)

To efficiently draw a sampleη∗ from this distribution, Rue (2001) and Chan and Jeliazkov

(2009) propose the application of fast band-matrix techniques. In the factor model, Qηη =
ΦTΩ−1

η
Φ+ΛT(ΨTΩ−1

ε
Ψ)Λ is a block-banded matrix. Sampling proceeds as follows: Compute

first the sparse Cholesky decomposition Qηη = LLT, which implies a banded Cholesky factor

L. Then, following Rue (2001), solve Lw = −Qηx x o for w with a matrix equation solver.

Afterwards, solve LTµ= w for µ. Solve LTv = v∗ for v, where v∗ is drawn from the standard

normal distribution N (0Tr×1, ITr). Finally, a draw of the factors is provided by η∗ = µ+ v.

To compute the Cholesky decomposition and solve for the factors as outlined above,

matrix programming languages such as Matlab can exploit the sparse structure of Qηη effi-

ciently, see Chan and Jeliazkov (2009) and McCausland et al. (2011) for details.

II.4 Precision-based sampling with missing observations

Now consider the case when we do not observe all values in x i,t for i = 1, . . . , N and t =
1, . . . , T . We assume a fraction κ - chosen such that κT N is an integer - of the observations

is missing, and the missing observations can be distributed randomly across the indexes

(i, t) as in Angelini et al. (2006) and Marcellino (2007). We do not model the process

which generates the missing observations explicitly, and rather take the patterns of missing

observations as given in the data. Following Rubin (1976), we thereby assume that the

missing-data mechanism is ignorable, which is common when using macroeconomic data.

We define those model variables with missing observations as xm, whereas variables with

available observations are denoted as xo. In the presence of missing observations, we mod-

ify the posterior sampler from Section II.3 along the lines of Little and Rubin (2002). The

general Gibbs sampler by Little and Rubin (2002) starts by sampling values for missing

observations from their conditional posterior distribution. In subsequent steps, these sam-

ples are combined with observed data, and enter the conditional posterior distributions for

sampling the remaining model parameters.

In our case of the factor model Equations (II.1)–(II.2), we want to sample from the poste-

rior distribution p(η, xm,θ |xo). Following Little and Rubin (2002), we do so by sequentially

sampling factors, missing observations, and model parameters from their conditional pos-

terior distributions:

1. p(η|xo, xm,θ )

2. p(xm|xo,η,θ )
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3. p(θ |xo, xm,η)

Alternatively, we provide a joint sampler for factors and missing observations conditional

on parameters and observed data in a single step. In this case, the conditional distribution

p(η, xm|xo,θ ) replaces the first two in the sampler above.

Our general sampling strategy works as follows: Given complete data in Section II.3, we

have used the variable ordering z = (ηT, xT)T, where variables x were ordered last. In the

presence of missing observations, the main idea is to permute the variables in z and obtain

reordered or permuted zPz
such that we can apply the same techniques for conditional sam-

pling as in Section II.3. In particular, we move those variables with available observations

xo to the bottom of zPz
and apply the same rules for conditional sampling from a Gaussian

as in (Equation (II.8)) and (Equation (II.9)).

The reordering of variables in the vector z can be implemented by using a properly de-

fined permutation matrix Pz such that zPz
= Pzz. In general, a permutation matrix Pz is

defined as a square binary matrix that has exactly one entry of 1 in each row and each col-

umn and zeros elsewhere. Permutation matrices are orthogonal matrices such that P−1
z = PT

z

and Pz PT
z = PT

z Pz = I . The permutation by Pz implies a linear transformation of z in (Equa-

tion (II.5)), and the distribution of the transformed Gaussian zPz
becomes

zPz
|θ ∼N

�

0T (r+N)×1, PzQ
−1PT

z

�

, (II.10)

following standard rules for linear transformations of Gaussian vectors as in Anderson (2003),

Theorem 2.4.1. Note that PzQ
−1PT

z is equal to the row- and column-permuted covariance

matrix of z since

PzQ
−1PT

z = ((P
T
z )
−1QP−1

z )
−1 = (PzQPT

z )
−1 =Q−1

z . (II.11)

Thus, the permuted covariance is equal to the inverse of the permuted precision matrix. A

variable ordering and permutation in z is associated with a column- and row-permutation

of the elements in the precision matrix. After permutation, we can partition the permuted

precision matrix and apply a similar conditional sampling from a Gaussian as in (Equa-

tion (II.9)).6

All the permutations we consider order the variables with observed data xo last in zPz
. The

reordering of variables in x into variables with missing observations xm above the variables

with available observations xo can be implemented by using the permutation matrix Px

defined as

xPx
=

�

xm

xo

�

= Px x =

�

Pxm

Pxo

�

x . (II.12)

6Note that we show matrix permutations in the paper only for expositional purposes. The Matlab com-
puter codes underlying the quantitative results in the paper are based on equivalent, but more efficient index
permutations (Golub and Van Loan, 2013). Let P be a permutation matrix of dimension (K × K) and p be a
permutation vector defined as p = (1,2, . . . , K)×PT. For a (K×K)-dimensional matrix S, indexing by S(p,:)
in Matlab is equivalent to row permutation PS, and S(:,p) is equivalent to column permutation SPT. To
reverse the original permutation, we can use the inverse of the permutation matrix PT or the corresponding
index r defined as r(p)=1:K;.

45



CHAPTER II. PRECISION-BASED SAMPLING WITH MISSING OBSERVATIONS: A FACTOR MODEL
APPLICATION

The matrix Pxo
has T N columns corresponding to the T N elements in x = (xT

1 , xT
2 , . . . , xT

T )
T,

and the number of rows is equal to (1 − κ)T N , the number of observations available for

estimation. If observations were available for all variable values, Px would equal the identity

matrix. To construct Px in the presence of missing observations, we can set Pxo
equal to the

identity matrix and remove all those rows for which the corresponding observations are

missing in the empirical data set. The matrix Pxm
just consists of these removed rows. Note

that the position of missing observations in the data set is the only necessary information to

derive the permutation matrix Px . In particular, the permutation does not depend on model

parameters.

Apart from the position of xo, different sampling schemes can be derived depending on

how the factors and variables with missing values are ordered. In this paper, we discuss two

alternative samplers in the subsequent sections of the text:

1. Sequential 2-step sampler in Section II.4.1 in the spirit of Little and Rubin (2002):

(a) p(η|xo, xm,θ ): Sampling factors conditional on a sample of missing values, ob-

served data, and parameters. No permutation is needed in this step.

(b) p(xm|xo,η,θ ): Conditionally sampling of missing observations given factors,

data, and parameters using the permutation zP2s
= (xT

m,ηT, xT
o )

T.

2. Joint sampling from p(η, xm|xo,θ ) using the period-wise time permutation zPτ =
(ηT1 , xT

m,1,ηT2 , xT
m,2, . . . ,ηTT , xT

m,T , xT
o )

T, see Section II.4.2.

Of course, both samplers aim at drawing from the same conditional posterior distribution

p(η, xm|xo,θ ). Differences between the samplers can arise with respect to a) convergence

and mixing of the Markov chain, and b) computational efficiency. Concerning a), sequen-

tial samplers are in many cases easy to implement, because conditional distributions can

generally be easier derived than joint distributions. On the other hand, sequentially sam-

pling in two blocks using conditional distributions might lead to more correlated samples

and slower convergence compared to sampling from the joint distribution in one block.

Concerning b), computational efficiency, the joint sampler relies on the sparse Cholesky

decomposition of one huge precision matrix, whereas the sequential sampler is based on

decompositions of two smaller precision matrices for factors and missing observations, re-

spectively. In addition, the alternative permutations of variables can influence the speed of

the sparse Cholesky decomposition (McCausland et al., 2011). Furthermore, set-up costs

to fill the precision matrices in each step of the Gibbs sampler vary between the samplers.

Finally, there are differences between the samplers with respect to model evaluation using

the marginal likelihood.

We will provide details on the samplers in the next subsections. A discussion of their

differences is provided in Section II.5 by using simulation experiments. Details on how the

marginal likelihood can be derived using the joint sampler are provided in Section II.7.

46



CHAPTER II. PRECISION-BASED SAMPLING WITH MISSING OBSERVATIONS: A FACTOR MODEL
APPLICATION

II.4.1 Sequential sampling of factors and missing observations

This precision-based sampler iterates between sampling factors conditional on interpolated

missing values from p(η|xo, xm,θ ) and, thereafter, values for missing observations condi-

tional on factors from p(xm|xo,η,θ ):

1. p(η|xo, xm,θ ): Assume we have a draw for missing values xm = xm∗. We can stack

the interpolated missing data and the observed data in x∗Px
= ((xm∗)T, (x o)T)T. By

reversing the data permutation from (Equation (II.12)) according to P−1
x = PT

x , we

can move the interpolated values to the positions of the missing observations in the

original data set using x∗ = PT
x x∗Px

. Given the partly interpolated data, we can use the

complete-data sampler from (Equation (II.9)) to draw factors conditional on the data

and parameters from

p(η|xo = x o, xm = xm∗,θ ) = p(η|x = x∗,θ )
D
=N

�

−Q−1
ηη

Qηx x∗,Q−1
ηη

�

. (II.13)

Note that the moments in (Equation (II.13)) differ from those in the complete-data

case (Equation (II.9)) only with respect to x∗ in the mean.

2. p(xm|xo,η,θ ): We draw values for missing observations conditional on a factor sam-

ple η∗ from step 1 and observed data. We use the permutation zP2s
= (xT

m,ηT, xT
o )

T,

where the variables corresponding to missing observations in the data are ordered

first, whereas factors and observed data are ordered last. We permute by zP2s
= P2sz

with permutation matrix

P2s =





0κT N×Tr Pxm

ITr 0Tr×T N

0(1−κ)T N×Tr Pxo



 , (II.14)

where the permutation matrices Pxm
and Pxo

decompose the model variables as in

(Equation (II.12)). As (Equation (II.10)) holds for any permutation matrix, the dis-

tribution of the transformed Gaussian zP2s
is

zP2s
|θ ∼N

�

0T (r+N)×1, P2sQ
−1PT

2s

�

, (II.15)

and the permuted covariance is equal to the inverse of the permuted precision matrix

by P2sQ
−1PT

2s = (P2sQPT
2s)
−1 = Q−1

2s . The precision matrix can be derived as the inverse

of a block matrix product by

Q2s = P2s

�

I −ΛT

0 I

��

Qη 0

0 Qε

��

I 0

−Λ I

�

PT
2s

=







Pxm
QεP

T
xm

−Pxm
QεΛ Pxm

QεP
T
xo

−ΛTQεP
T
xm

Qη +ΛTQεΛ −ΛTQεP
T
xo

Pxo
QεP

T
xm

−Pxo
QεΛ Pxo

QεP
T
xo






, (II.16)
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where we have defined Qε = (Ψ−1ΩεΨ
−T)−1 = ΨTΩ−1

ε
Ψ and Qη = (Φ−1ΩηΦ

−T)−1 =
ΦTΩ−1

η
Φ to simplify notation from (Equation (II.7)). The variable ordering in zP2s

=
(xT

m,ηT, xT
o )

T is useful for conditional sampling, as the first block contains the vari-

ables with missing observations, whereas the rest contains the conditioning informa-

tion, namely, factors and observed data. We thus partition the precision matrix by

Q2s =

�

Q xm,xm
Q xm,ηxo

Qηxo ,xm
Qηxo ,ηxo

�

, (II.17)

where the top-left (κT N ×κT N)-dimensional block is defined as Q xm,xm
= Pxm

QεP
T
xm

.

Similarly to (Equation (II.9)), we can derive the conditional distribution of missing

observations conditional on factors and observed data

p(xm|xo = x o,η= η∗,θ )
D
=N

�

−Q−1
xm,xm

Q xm,ηxo
((η∗)T, (x o)T)T,Q−1

xm,xm

�

. (II.18)

Note that in the precision matrix Q xm,xm
, the matrix Qε = ΨTΩ−1

ε
Ψ is the precision matrix

of the idiosyncratic components’ prior distribution. Since the idiosyncratic components fol-

low a VAR(1) process, the precision matrix is block-banded (Chan and Jeliazkov, 2009).

Permutation using P2s just selects those idiosyncratic components corresponding to missing

observations in the data and thus leaves the precision matrix Q xm,xm
= Pxm

QεP
T
xm

block-

banded.

In the subsequent parts of the text, we call this method ’Sequential 2-step sampling’.

II.4.2 Joint sampling of factors and missing observations with time

permutation

To efficiently sample from the joint distribution, we permute z such that factors and missing

values are ordered together for each time period t, (ηTt , xT
m,t)

T. These vectors are stacked

for t = 1, . . . , T and placed on top of the variables with observed data xo. We obtain

the permuted vector of variables zPτ = (η
T
1 , xT

m,1,ηT2 , xT
m,2, . . . ,ηTT , xT

m,T , xT
o )

T. Note that the

variables in z = (ηT, xT)T are already ordered period-wise within the blocks for factors

η = (ηT1 ,ηT2 , . . . ,ηTT )
T and variables x = (xT

1 , xT
2 , . . . , xT

T )
T in (Equation (II.4)). To reorder

the variables, we permute by zPτ = Pτz with

Pτ =































Pη,1 0r×N T

0Nm,1×rT Pxm,1

Pη,2 0r×N T

0Nm,2×rT Pxm,2
...

...

Pη,T 0r×N T

0Nm,T×rT Pxm,T

0(N−∑t Nm,t )×rT Pxo































, (II.19)
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where Nm,t denotes the number of missing values in x at time t.
The matrices Pη,t for t = 1, . . . , T are equal to the rows from the identity matrix IrT =

IT ⊗ Ir matrix corresponding to period t such that

Pη,t =
�

0r×r(t−1) Ir 0r×r(T−t)

�

. (II.20)

Note that the matrix Pη,t can be considered as a block row vector having T blocks, each

consisting of r columns. The period-t block is just the (r × r) identity matrix, because all r
factor values are ordered first in (Equation (II.19)) in each period.

The matrices Pxm,t for t = 1, . . . , T contain the block rows of the matrix Pxm
as defined in

(Equation (II.12)) that correspond to missing observations in x t according to

Pxm
=











Pxm,1

Pxm,2
...

Pxm,T











. (II.21)

The number of rows of Pxm,t , Nm,t , is equal to the number of missing values in x t at time t,
whereas the number of columns is equal to T N . Note that Pxm,t can also be considered as a

block row vector having T column blocks, each consisting of N columns, according to

Pxm,t =
�

0Nm,t×(t−1)N Pxm,(t,t) 0Nm,t×(T−t)N

�

, (II.22)

where the (Nm,t×N) matrix Pxm,(t,t) selects the missing observations in period t, as implicitly

defined in (Equation (II.12)), taking into account the stack of variables x = (xT
1 , xT

2 , . . . , xT
T )

T

in (Equation (II.4)).

Note that all vectors and matrices above follow the convention that a block matrix with

zero row or column size implies the matrix is empty, and the corresponding blocks in the

matrices above represent empty placeholders. This applies to either time periods without

any missing observations or time periods without data observations.

Given the permutation matrix Pτ, we can obtain the permuted vector of variables zPτ =
Pτz and the permuted precision matrix Qτ = PτQPT

τ
. In Section II.B, we derive the precision

matrix Qτ by exploiting the period-wise block structure implied by zPτ .

Our aim is to jointly sample factors and values for missing observations from the con-

ditional distribution p(η, xm|xo = x o,θ ). The final block in the vector zPτ is xo and the

corresponding observations serve as the conditioning set. Thus, the permuted precision

matrix Qτ can be partitioned in the following way

Qτ =

�

Qηxm,ηxm
Qηxm,xo

Q xo ,ηxm
Q xo ,xo

�

, (II.23)

where the upper-left block Qηxm,ηxm
has dimensions (rT +

∑T
t=1 Nm,t) × (rT +

∑T
t=1 Nm,t),
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and we can directly derive the conditional distribution

p(η, xm|xo = x o,θ )
D
=N (−Q−1

ηxm,ηxm
Qηxm,xo

x o,Q−1
ηxm,ηxm

) (II.24)

for factors and missing values conditional on observed data. In Section II.B, we show that

Qηxm,ηxm
is a block-banded matrix. In particular, it has block bandwidth equal to one, thus,

representing a block tridiagonal matrix (Golub and Van Loan, 2013). The reason is that

the reduced form of the factor model can be written as a VAR process of order one in the

factors and explained variables. Following Rue and Held (2005), precision matrices of AR

processes have a bandwidth equal to the lag order of the AR process. In the appendix, we

show that this result also holds in the factor model (Equation (II.1)) and (Equation (II.2))

with missing observations, where the precision matrix is block tridiagonal.

In the subsequent parts of the text, we call this method ’Joint sampling, time permuta-

tion’.

II.5 Comparing the precision-based samplers by simula-

tions

Based on simulations, we compare the convergence properties, the computing time of the

precision-based samplers as well as their equivalence in terms of mean-squared errors of

simulated factors and missing observations.

II.5.1 Data-generating process and model estimation

The data-generating process (DGP) has a factor structure with r = 2 factors, which follow

a VAR process with one lag. The idiosyncratic components each follow AR processes with

one lag. The variables x i,t for i = 1, . . . , N are simulated according to

x i,t = λi·ηt + εi,t , (II.25)

ηt =

�

0.4 0

0 0.8

�

ηt−1 + uη,t , uη,t ∼N (0, I2), (II.26)

εi,t = 0.4εi,t−1 + uε,i,t , uε,i,t ∼N (0,ωε). (II.27)

For the loading matrix λ, we specify a point-mass normal mixture distribution often used

for variable selection as in George and McCulloch (1993, 1997), and Geweke (1996):

p(λi j)
D
= (1−ρ j)δ0(λi j) +ρ j N (m j, M), (II.28)

p(ρ j)
D
= B(r0s0, r0(1− s0)), (II.29)

where δ0(·) represents the Dirac function with point mass at zero and ρ j is a factor-specific

probability of a non-zero loading. The inclusion probabilities ρ j follow a beta distribution,
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B(r0s0, r0(1− s0)), with mean s0 = 0.5 and precision r0 = 30. The non-zero factor loadings

are simulated out of the normal distributions N (m j, M) with m1 = 0.60, m2 = 0.40, and

M = 0.01. The variance M = 0.01 is relatively tight in order to clearly separate zero and

non-zero loadings. For the variances of the idiosyncratic components, we assume an inverse

gamma distribution according to ωε ∼ IG(2,0.5).
Concerning sample size, we consider T = 100 time-series observations and N = 100 vari-

ables. Given this specification, we sample factorsηDGP and data xDGP from (Equation (II.25))

and (Equation (II.27)). To address missing observations, we assume that 20% of observa-

tions are missing, κ = 0.20. We randomly set κN T observations in the sample xDGP to

missing values, yielding the data set x o used for Bayesian estimation of factors and missing

observations. In the experiment, we sample K = 100 times from the DGP and estimate the

factor model on each data set. We ran further experiments with different specifications for

(T, N ,κ) and alternative priors. As the results in the alternative experiments are very similar

compared to the baseline case summarized below, we only report the baseline results.

In the simulation experiments, the factor model is estimated using the posterior sampler

outlined in Section II.A for each data x o,(k) set sampled from the DGP for k = 1, . . . , K . Each

time, we draw G = 10000 times from the posterior. We obtain samples for factors, miss-

ing values, and parameters according to η(k,g), xm,(k,g),θ (k,g) ∼ p(η, xm,θ |xo = x o,(k)) for

g = 1, . . . , G and k = 1, . . . , K . To address convergence and computing time depending on

the number of draws, we consider different partitions of the raw posterior draws. In par-

ticular, we compare alternative numbers of burn-in draws Gburn-in and numbers of posterior

evaluation draws Geff.

II.5.2 Comparing inefficiency factors

We compute inefficiency factors to discuss convergence and mixing of the Gibbs Sampler.

The inefficiency factor can be defined as in Chib (2001) by

IEη, j,t,k = 1+ 2
M
∑

m=1

(1−
m
M
)ρη, j,t,k(m), (II.30)

where ρη, j,t,k(m) is the estimated autocorrelation at lag m of the posterior draws for model

factors η(k,g)
j,t |xo = x o,(k) over the draws g = Gburn-in + 1, . . . , Gburn-in + Geff. The maximum

lag order is M = 150. Values of IEη, j,t,k greater than one indicate autocorrelation in the

chain that might be due to poor mixing or lack of convergence. We compute inefficiency

factors for the posterior samples of the model factors for j = 1, 2, time periods t = 1, . . . , T ,

and for k = 1, . . . , K samples from the DGP. In the left panel of Figure II.1, we show box

plots for the whole distribution of inefficiency factors for model factors IEη, j,t,k across j, t,
and k and for different numbers of burn-in and evaluation draws. In the right panel of

Figure II.1, we show box plots for the inefficiency factors of posterior draws of values for

missing observations.

The results for model factors in the left panel of Figure II.1 show that a number of burn-in
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Figure II.1: Inefficiency factors for posterior samples of model factors and missing observa-
tions.
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Note: In the left figure, box plots of inefficiency factors are based on the posterior samples of model factors
for different numbers of burn-in and posterior evaluation draws. The first number shown in the labels of the
horizontal axis refers to the number of burn-in draws Gburn-in, whereas the second number refers to the number
of draws used for posterior evaluation after burn-in Geff. In the right figure, box plots show inefficiency factors
for the estimated values of missing observations.
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draws greater or equal than Gburn-in = 1000 generally leads to a median of inefficiency factors

around 10 for all three precision-based samplers. The upper bound of the interquartile

ranges are in most cases below 20 for Gburn-in ≥ 1000. Across different posterior sample

splits, there are differences with respect to the whiskers of the boxplots, which mark the 5th

and 95th percentiles. However, with increasing numbers of burn-in and evaluation draws,

the bands tend to become smaller, and we find no systematic differences between the two

precision-based samplers. For sample splits with zero or 1000 burn-in draws, Gburn-in, the

upper bounds of the interquartile ranges for the 2-step precision-based sampler are higher

than for the joint time-permutation sampler. For Gburn-in > 1000, we see no substantial

differences in terms of convergence in the model factors between the two precision-based

samplers.

The results for missing observations in the right panel of Figure II.1 show that conver-

gence is very fast for all precision-based samplers. The median of the inefficiency factors

is slightly greater than one, the upper bound of the interquartile range is about 1.3, and

the bound of the upper whisker is slightly below 3. Note that the convergence for miss-

ing observations is substantially faster than for model factors. Convergence issues in fac-

tor models are often due to the lack of identification between factor loadings and factors,

because ληt = (λH)(H−1ηt) holds for any invertible H as documented in Lopes and West

(2004); Ghosh and Dunson (2009); Bai and Wang (2014); Conti et al. (2014); Kastner et al.

(2017); Chan et al. (2018a), amongst others. As discussed in parts of this literature, blocked

sequential sampling of model factors conditional on loadings and subsequently loadings con-

ditional on factors can sometimes lead to correlated draws and poor convergence, whereas

joint sampling of model factors and loadings generally improves convergence, albeit mak-

ing more complicated samplers necessary (Ghosh and Dunson, 2009; Chan and Jeliazkov,

2009; Conti et al., 2014; Kastner et al., 2017). This paper has a conceptually different focus

on sampling missing values in the data and model factors given factor loadings. The key

point is that the missing values in the data are a function of the common components, not

of either the factors or the loadings alone. In Figure II.2, we show the inefficiency factors

for factor loadings and the common components to address this issue. The inefficiency fac-

tors of the loadings are comparable in magnitude to the inefficiency factors of the model

factors, whereas the inefficiency factors of the common components are close to one, and

thus comparable to the inefficiency factors of the estimated missing values.

Overall, the simulation results indicate that convergence of estimates of missing values

and common components do not to seem to be affected by any loadings-factor identification

issue as mentioned above. Despite the fact that loadings and model factors show slower

convergence, we see no major convergence issues for a reasonably chosen number of burn-

in draws in general. The two precision-based samplers perform quite similar.
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Figure II.2: Inefficiency factors for posterior samples of model factor loadings and common
components.
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Note: In the left figure, box plots of inefficiency factors are based on the posterior samples of model factor
loadings for different numbers of burn-in and posterior evaluation draws. The first number shown in the
labels of the horizontal axis refers to the number of burn-in draws Gburn-in, whereas the second number refers
to the number of draws used for posterior evaluation after burn-in Geff. In the right figure, box plots show
inefficiency factors for the common components.
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II.5.3 Comparing computing time

In Figure II.3, the average computing time needed for posterior sampling is shown for differ-

ent numbers of burn-in draws Gburn-in and evaluation draws Geff for the precision-based sam-

plers. A box plot in the figure refers to the distribution of computing time across k = 1, . . . , K
data sets sampled from the DGP.

Figure II.3: Average computing time for posterior samples for different numbers of posterior
draws.
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Note: Figure shows hours of computing time averaged over K = 100 estimation experiments. For each dataset
from the DGP, we measure the elapsed time to draw from the posterior given alternative numbers of posterior
draws. The first number shown in the labels of the horizontal axis refers to the number of burn-in draws
Gburn-in, whereas the second number refers to the number of draws used for posterior evaluation after burn-in
Geff.

The results in Figure II.3 show an overall better performance of the 2-step precision-based

sampler than the time permutation sampler. The median and the bounds of the interquartile

ranges of the 2-step sampler are in the majority of cases smaller than those of the time

permutation sampler. Despite some overlap of the 90% intervals, which are marked by the

whiskers of the boxplots, the results overall indicate some computational advantages of the

2-step precision-based sampler.

To get an understanding of the better performance of the 2-step approach, we have a

closer look at the flops needed for precision-based sampling as in Rue (2001); McCausland

et al. (2011). In general, the Cholesky factorization Q = LLT of a banded, symmetric, and
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positive definite matrix Q with dimensions (K × K) and bandwidth b implies K b2 flops,

where the bandwidth is the maximum number of off-diagonals, which have non-zero ele-

ments. For the forward and backward substitutions outlined at the end of Section II.3, we

need 4K b flops, and we need K b2 + 4K b flops in total. The 2-step sequential approach of

Section II.4.1 requires two samples based on different precision matrices, whereas time-t
permutation sampling requires one decomposition only. Both the matrix size and the band-

width have a positive effect on the computing time according to the formulae for the overall

flops. However, as the bandwidth also enters the formulae K b2 + 4K b squared, it has a

comparatively huge impact on the overall computing time. The farther away non-zero ele-

ments are from the main diagonal, the more computing time is need for decomposing and

solving. In Figure II.4, we show the precision matrices for 2-step and time-t sampling. Each

entry in the figures receives a blue sign, if the corresponding entry of the precision matrix

is non-zero. Panel A and B show the two precision matrices for the sequential 2-step sam-

pler. Panel C shows the precision matrix for the time-permutation sampler. The top-left

blocks highlighted by a black rectangle refer to the submatrix, which will be decomposed

by sparse Cholesky factorization. The dimensions of theses submatrices are K2s,η = 200 and

K2s,xm
= 2000 for the 2-step sampler, and Kτ = 2200 for the time-permutation sampler. Note

that the position of the missing κN T = 2000 observations is chosen randomly in the data

and thereby affects the shape of the precision matrices and bandwidths. To highlight the

bandwidth near the main diagonal, a subplot in the top-right of Figure II.4 zooms the first

top-left (100×100)-dimensional block of elements of the precision matrix. In the figure, the

bandwidth of the precision matrix underlying the time-permutation sampler is larger than

the bandwidths of the precision matrices used for 2-step sampling. In detail, the bandwidths

are b2s,η = 3 and b2s,xm
= 31 for the 2-step sampler, and bτ = 59 for the time-permutation

sampler. Thus, the comparatively large bandwidth of the time-permutation sampler con-

tributes to the slower computational performance. Note, however, that the bandwidth of

the precision matrix is only one source to explain the differences in computing time. There

are also set-up costs to fill the precision matrix with model parameters every recursion of

the sampler, which contribute to the computing time in the simulations. In the same way,

permuting the moments of z at each draw is also costly. Note, however, that the permuta-

tion matrices depend only on the position of missing observations in the dataset, not the

model parameters, and thus only have to be computed once for Bayesian estimation. The

simulation results reflect all these different determinants of the overall computing time.

II.5.4 Comparing samples of factors and missing observations

As a final check of the accuracy of the precision-based samplers, we compare the mean-

squared error MSEη,t, j for the factor posterior samples defined as

MSEη, j,t =
1

Geff

Gburn-in+Geff
∑

g=Gburn-in+1

(ηDGP, j,t −η
(g)
j,t |xo = x o)2, (II.31)
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Figure II.4: Precision matrices after permutation
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C. Time permutation, PτQPT
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Note: The figure shows the non-zero elements in the precision matrices used in the alternative samplers. The
top-left blocks highlighted by a black rectangle refer to the submatrices, which will be decomposed by Cholesky
factorization. In Panel A, the highlighted part of the precision matrix is the block Qηη in (Equation (II.13)). In
Panel B, the highlighted part of the precision matrix is Q xm,xm

in (Equation (II.18)). In Panel C, the highlighted
part shows the block Qηxm,ηxm

under the joint time-permutation sampler in (Equation (II.24)). To show the
structure and bandwidth of these submatrices near the main diagonal in more detail, a subplot in the top-right
of the figure zooms the first top-left (100× 100)-dimensional block of elements of the precision matrix.
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for each factor indexed by j for j = 1, 2 and time period t = 1, . . . , T . In the MSE, the poste-

rior samples of the factor η(g)j,t |xo = x o are subtracted from the "true" factor values sampled

from the DGP ηDGP, j,t . As the samplers should provide draws from the same posterior distri-

bution, we expect very similar values for large Geff. Accordingly, we also compute the MSE

for the missing observations by subtracting the sampled values drawn by the conditional

samplers from the true values simulated from the DGP.

The results presented below are based on one data set and factors sampled from the DGP.

We take G = 10000 raw draws from the posterior and discard the first Gburn-in = 5000 as

burn-in. The MSEs are computed over the remaining Geff = 5000 draws. The left panel

of Figure II.5 provides the MSEs for the first of the two factors obtained from the different

samplers for each time period. As expected, the samplers yield very similar MSEs for all

t = 1, . . . , T . The results show no signs of any systematic differences between the samplers.

We obtain very similar results when looking at the MSEs for the missing observations in the

right panel of Figure II.5, where the MSEs of the first 50 missing observations in the data

are shown. The results indicate a very high similarity across the precision samplers.

Figure II.5: MSE comparison for one simulated dataset and posterior samples of first model
factor and missing observations.
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Note: In the left figure, the mean-squared errors (MSE) are computed by averaging the squared difference
between Geff = 5000 posterior draws for the first model factor and the corresponding factor sample from
the DGP as defined in (Equation (II.31)). The effective samples used are obtained by taking G = 10000 raw
samples from the posterior and discarding the first Gburn-in = 5000 as burn-in. In the right figure, the MSE is
shown for posterior draws of 50 randomly chosen missing values.
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To sum up the simulation results, we only find differences between the samplers with

respect to the computing time. In this regard, the 2-step sampler tends to be faster than

the time-permutation sampler. However, the precision-based samplers yield similar MSEs

for factors and missing observations, and inefficiency factors indicate no major convergence

issues for a reasonably chosen number of burn-in draws. Due to these similarities in the

simulations, we only consider the 2-step sampler in the empirical application below.

II.6 Empirical application: Bayesian estimation of interna-

tional factors in GDP growth

To illustrate the precision-based sampler in the presence of missing observations in data, we

estimate the factor model with Bayesian techniques on multi-country GDP growth data. The

application follows the literature on international business cycles estimated in large factor

models (Kose et al., 2003, 2008; Francis et al., 2017; Müller et al., 2019).

II.6.1 Data and motivation for the empirical exercise

Francis et al. (2017) estimate global and regional business cycles from a large set of country-

specific annual GDP growth series. We follow these authors and choose the Penn World

Tables (PWT) to construct the data set. We use PWT version 9.1 (Feenstra et al., 2015) and

take annual real GDP (output concept) series for all available countries. Growth rates are

computed by taking first differences of the logarithm of the series in levels. We end up with

T = 67 time series observations for the years 1951 to 2017 and N = 182 countries in the

cross section. The data is unbalanced with respect to available observations per country.

Overall, 2391 of the observations are missing, which is 19.6% in relation to T N = 12194

potential values in the data. The number of missing observations at each period in time are

shown in Figure II.6.

In the data we find that observations are mostly missing in earlier periods of the sample:

In 1951 we have 127 observation missing out of 182, whereas no observations are missing

at the end of the sample after 2005. The decline of the number of missing observations

in the intermediate time periods can be roughly described as being step-wise across the

covered decades. From 1952 to 1960, there are more than 100 observations missing per

year, whereas the number of missing observations drops to about 70 until 1970. Between

1970 and 1990, slightly more than 20 time series observations are missing.

Compared to the existing literature by Kose et al. (2003) and Francis et al. (2017), the

data set used here contains a larger number of variables with Nunbal = 182 and thus more

cross-country information. If we remove all time series with any missing observations over

the sample period 1951 and 2017, we end up with a balanced data set of Nbal = 55 time

series, which is very close to the countries covered in Kose et al. (2003) and Francis et

al. (2017). We estimate the factor model with these two different data sets and compare
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Figure II.6: Missing observations in international GDP growth data
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Note: The bars in the figure show the sum of missing observations in each time period. The maximum number
of cross-section observations per period is equal to Nunbal = 182.

the results. In general, time-series data with partially missing observations encompasses

balanced time-series data where all time series with any missing observations have been

removed. Thus, estimation methods, which can tackle missing observations, can take into

account larger data sets and use more information to estimate models. Note that in general

we cannot expect that larger data always improves factor estimation. Whether additional

information is beneficial for factor estimation, depends - amongst other things - on the

number of missing observations as well as the information content in the additional data.

Boivin and Ng (2006) show that noisy data can even deteriorate accuracy of factor estimates.

The empirical comparison proceeds along several dimensions: We compare the factor

estimates obtained from using the two different information sets. We also identify the rele-

vant and irrelevant variables in both data sets along the lines of Kaufmann and Schumacher

(2017). Irrelevant variables are defined as not being related to factors via the loading matrix

and generally cannot contribute to estimating the factors in a state-space model (Koopman

and Harvey, 2003). We also investigate how variables, which are part of both information

sets, are explained by the different factor estimates. In particular, we estimate the com-

mon and idiosyncratic components and investigate how the variance contributions of the

common components differ for the two different information sets.

60



CHAPTER II. PRECISION-BASED SAMPLING WITH MISSING OBSERVATIONS: A FACTOR MODEL
APPLICATION

II.6.2 Model specification and Bayesian estimation

In the model for the empirical application, the loading matrix has a group structure with

r = 6 factors. Following the literature on international business cycles like Kose et al. (2003)

and Francis et al. (2017), we define the first factor in the model as the global factor, such that

all variables can load on this factor. Accordingly, there are no zero restrictions in the first

column of the loading matrix. The other five factors are continental factors for Africa, Asia,

Europe, North America, and South America. The continental group structure is imposed by

zero restrictions: Each country GDP variable can load on only one of the continental factors

in addition to the global factor. For each continental factor, those country GDP variables not

belonging to this particular continent receive a zero loading element in the corresponding

column of the loading matrix. Given these zero restrictions from the continental factor

structure, the factor model is identified according to the Bekker criterion outlined in Bai

and Wang (2014).

In the application, we use a more general model than specified in (Equation (II.1)) and

(Equation (II.2)). We use p = 2 lags in the factor VAR and q = 2 lags in the AR equations

for idiosyncratic components. Details on the extended model and the posterior sampler

can be found in Section II.A. In the empirical application, we take 100000 draws from the

posterior density, discard the first 50000 draws as burn-in, and take the remaining draws

for final posterior evaluation. We estimate the factor model on balanced and unbalanced

data and compare the results.

II.6.3 Results

The estimated factors using the balanced and unbalanced data set can be compared in Fig-

ure II.7. We show the median of the posterior samples together with 90% posterior bands.

The majority of the factors look similar when estimating the model on balanced and unbal-

anced data: The global factor, the European factor, and the two American factors do not

change considerably with respect to the median and the posterior intervals. The African

and Asian factors, however, are different when comparing balanced and unbalanced data.

Based on balanced data, the African and Asian factors are hardly different from zero in

terms of 90% posterior intervals across time periods. Based on the larger unbalanced data,

both factors are more precisely estimated and exhibit more pronounced cyclical swings.

Given the posterior draws of the loadings, we investigate the relevance or irrelevance of

variables in the model. Following Kaufmann and Schumacher (2017), we define irrelevant

variables as having only zero factor loadings, whereas relevant variables are related to at

least one factor. Irrelevant variables are not explained by the factors and, vice versa, do not

contain information for factor estimation. To distinguish irrelevant from relevant variables,

we compute 90% highest posterior density (HPD) intervals for each element in the loading

matrix to check whether the loading element is different from zero. We define relevant vari-

ables as having at least one non-zero factor loading in the corresponding row of the loading

matrix. In Table II.1, the number of relevant variables is shown for different continents.
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Figure II.7: Factors estimated on balanced and unbalanced data
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Note: The straight lines refer to the median of the posterior distribution of the factors. The shaded ares cover
the 90% posterior intervals.
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Within geographic regions, we observe some heterogeneity: Among African GDP growth

series in the balanced data set, we find only one out of nine (11%) relevant variables. In

the unbalanced data set, we have 50 African GDP growth time series, and the proportion of

relevant variables is 18% (9 of 50). In the balanced data, the proportion of relevant Asian

GDP series in the model is 20% and thus a bit higher compared to African GDP series. Using

unbalanced data implies an increase of the number of Asian GDP time series from 10 to

50. The proportion of relevant variables compared to balanced data increases to 38% (19

of 50). For Europe and North America, we observe a relatively large proportion of relevant

variables compared to the other continents when using balanced data. However, there are

very few relevant time series in the additional unbalanced data. For Europe, for example,

the proportion of relevant variables decreases from 89% to 63% when adding unbalanced

data. The results are similar for American GDP growth data. We summarize by looking at

results for all variables in the two models: Overall we find 55% relevant variables in the

balanced data, whereas we have only 37% relevant variables in the unbalanced data. This

indicates that only some of the added unbalanced GDP growth time series provide additional

information for factor estimation on top of the balanced data only.

Table II.1: Relevant variables

Data Unbalanced data Balanced data
Method Sequential 2-step Standard precision-based

Africa 0.18 (9 of 50) 0.11 (1 of 9)
Asia 0.38 (19 of 50) 0.20 (2 of 10)
Europe 0.63 (25 of 40) 0.89 (16 of 18)
North America 0.23 (7 of 31) 0.50 (5 of 10)
South America 0.64 (7 of 11) 0.75 (6 of 8)

All variables 0.37 (67 of 182) 0.55 (30 of 55)

Note: Entries in the table are equal to the proportion of relevant variables in the geographical region. We
compute highest posterior density (HPD) intervals for each element in the loading matrix to check whether
the loading element is significantly different from the zero. We define relevant variables as having at least one
significant non-zero factor loading in the corresponding row of the loading matrix.

We also look at the role of the common and idiosyncratic components for each time

series in the data set. Figure II.8 and Figure II.9 show variance shares of common compo-

nents, defined as the variance of the common component of a country GDP growth time

series divided by the overall variance of the time series. The difference between one and

the variance shares of common components provides the variance share of country-specific

idiosyncratic components (Kose et al., 2003). Thus, the larger the variance share of com-

mon components, the more variance of GDP growth is explained by common factors and

co-movements with other countries’ GDP growth. The smaller the number, the more impor-

tant are country-specific sources of GDP fluctuations. To summarize the posterior variability

of variance shares of common components, we provide box plots. Green boxes refer to the
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results based on balanced data, whereas yellow boxes refer to the results based on un-

balanced data. Figure II.8 shows the variance share of the common components for those

countries which are part of both the balanced an unbalanced data sets. Generally, European

countries (abbreviated by EU in the table) have a comparatively high share of common com-

ponent variances, followed by South American (SA) countries. African (AF) and Asian (AS)

countries’ GDP growth have a comparatively low variance share of common components on

average. When comparing estimates for balanced and unbalanced data, the box plots are

often quite similar. For a large number of GDP growth series, there is no clear advantage

from using larger unbalanced data with respect to the variance share of common compo-

nents. This holds, for example, for the big developed countries USA, Canada, France, and

Germany, amongst others. In Figure II.9, we look at the variance share of the common

components for those countries which are only part of the unbalanced data set. These are

Nunbal−Nbal = 182−55= 127 countries. We can see that there are some country GDP series

with a considerable variance share of the common components, for example, Brunei, Geor-

gia, and several Asian countries. The majority of GDP series, however, shows quite small

numbers only up to 0.2, indicating a big role of idiosyncratic country-specific movements

for many countries in the unbalanced data set.

To sum up the empirical results, many GDP series for Asian and African countries are not

related to the factors. However, the proportion of Asian and African countries related to

the factors is larger when using the unbalanced data rather than the balanced data. In the

results based on unbalanced data, we generally find that the idiosyncratic components seem

to dominate for the majority of countries, despite some country GDP growth series having a

high variance share of the common components. The additional unbalanced data also has

no strong effect on the commonality of the variables that are part of both the balanced and

unbalanced data set. If an analyst were mostly interested in results for G7 countries, it might

suffice to look at the posterior results from the smaller balanced data and using the simpler

estimation methods. The use of the factor model based on the larger unbalanced data and

the more demanding sampling methods to tackle missing observations may provide relevant

insights, if the countries, which are exclusively part of the unbalanced data, are interesting

in themselves to an analyst.

II.7 Extensions: Integrated likelihood, other state-space

models

II.7.1 Integrated likelihood

The methods discussed in this paper can also be employed for model evaluation using the

marginal likelihood. Following Chan and Grant (2016), the integrated likelihood function,

obtained by integrating the unobserved states out of the conditional or complete likelihood

function, p(x |θ ) =
∫

p(x ,η|θ )dη =
∫

p(x |η,θ )p(η|x ,θ )dη, is the key quantity to derive
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Figure II.8: Variance share of the common components, countries covered in both balanced
and unbalanced data

Note: The figure shows box plots reflecting the posterior sample variability of the of the common components’
variance divided by the overall variance of each GDP growth time series. The whiskers refer to 90% posterior
interval bounds. Abbreviations for continents: AF Africa, AS Asia, EU Europe, NA North America, SA South
America.
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Figure II.9: Variance share of the common components, countries only covered in unbal-
anced data

Note: The figure shows box plots reflecting the posterior sample variability of the of the common components’
variance divided by the overall variance of each GDP growth time series. The whiskers refer to 90% posterior
interval bounds. Abbreviations for continents: AF Africa, AS Asia, EU Europe, NA North America, SA South
America.
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the marginal likelihood. For factor models and given complete data for estimation, Chan

and Grant (2016) and McCausland (2012) show that the integrated likelihood function has

a normal distribution function. Given the quantities derived in this paper, we can show that

the model (Equation (II.1)) and (Equation (II.2)) given missing observations also implies a

normal density for the observed data.

In Section II.4, we have used joint normals for factors, variables with missing observa-

tions, and variables with observed data to derive conditional samplers. The permutations

of variables zP2s
= (xT

m,ηT, xT
o )

T and zPτ = (η
T
1 , xT

m,1,ηT2 , xT
m,2, . . . ,ηTT , xT

m,T , xT
o )

T have all in

common that the variables with observed data xo are ordered last.

According to (Equation (II.10)), the permuted vector zP is distributed as

zPz
|θ ∼N

�

0T (r+N)×1,Q−1
z

�

, (II.32)

with Qz = PzQPT
z and the corresponding covariance matrix Ωz = Q−1

z . For later use, we

define the partitions

Qz =

�

Qηxm,ηxm
Qηxm,xo

Q xo ,ηxm
Q xo ,xo

�

, Ωz =

�

Ωηxm,ηxm
Ωηxm,xo

Ωxo ,ηxm
Ωxo ,xo

�

. (II.33)

If variables jointly follow a normal distribution, the marginal distributions are also normal

distributions, and the moments of the marginal distributions can be taken from the partitions

of the joint moments (Anderson, 2003, Theorem 2.4.3). In our case, we obtain the marginal

distribution of the variables with observed data p(xo|θ ) according to

p(xo|θ )
D
=N

�

0(1−κ)T N×1,Ωxo ,xo

�

. (II.34)

It implies the log integrated likelihood function

log p(xo = x o|θ ) =−
(1− κ)T N

2
log(2π)−

T
2

log
�

�

�Ω−1
xo ,xo

�

�

�−
1
2
(x o)TΩ−1

xo ,xo
x o. (II.35)

To evaluate the integrated likelihood function, we can make use of the time-permutation

sampler from Section II.4.2. From the definition of the covariance and precision matrix

�

Ωηxm,ηxm
Ωηxm,xo

Ωxo ,ηxm
Ωxo ,xo

��

Qηxm,ηxm
Qηxm,xo

Q xo ,ηxm
Q xo ,xo

�

= I (II.36)

we obtain four matrix equations. From them, we can derive Ω−1
xo ,xo

as an expression of the

components of the precision matrix according to

Ω−1
xo ,xo
=Q xo ,xo

−Q xo ,ηxm
Q−1
ηxm,ηxm

Qηxm,xo
, (II.37)

67



CHAPTER II. PRECISION-BASED SAMPLING WITH MISSING OBSERVATIONS: A FACTOR MODEL
APPLICATION

and the log integrated likelihood function becomes

log p(xo = x o|θ ) =−
(1− κ)T N

2
log(2π)−

T
2

log
�

�

�Q xo ,xo
−Q xo ,ηxm

Q−1
ηxm,ηxm

Qηxm,xo

�

�

�

−
1
2
(x o)T

�

Q xo ,xo
−Q xo ,ηxm

Q−1
ηxm,ηxm

Qηxm,xo

�

x o. (II.38)

Evaluating the quantities is straightforward using the results from the time-permutation

sampler. In Section II.B, we show that Qηxm,ηxm
is block-banded, so the methods outline

before can be directly applied in line with McCausland (2012) and Chan and Grant (2016).

Note that these results also allow to estimate a factor model with stochastic volatility as

proposed in Chan and Eisenstat (2018).

II.7.2 Other state-space models

The methods in the paper were so far applied to a factor model. However, they can be easily

adopted to other state-space models in applications with missing data.

If we set ψ = 0N×N in (Equation (II.2)), we obtain a general state-space model, where

ηt represents the state vector. In this case, we have Ψ = IT N , which simplifies the precision

matrix in (Equation (II.8)). We can also consider cases where the number of disturbances

in the state equation is smaller to the number of states, for example, if ηt = φηt−1 + Rtuη,t

with the number of columns in Rt and the length of uη,t smaller than r, as in the general

state-space models discussed in Durbin and Koopman (2002).

In a similar way, we can generalize the TVP-BVAR models as in Chan and Eisenstat (2018)

to applications with missing observations in the data. Consider the model

B0,t yt = µt + B1,t yt−1 + · · ·+ Bp,t yt−p + εt , εt ∼N (0,Σt), (II.39)

where yt is an N -dimensional vector of model variables, µt is a vector of time-varying in-

tercepts, B1,t , . . . , Bp,t are time-varying VAR coefficient matrices, B0,t is a lower triangular

matrix with ones on the diagonal, and time-varying volatilities Σt for t = 1, . . . , T . In the

literature such as Chan and Eisenstat (2018); Chan (2020); Chan et al. (2020), estimation

of the VAR coefficients using precision-based samplers given complete data proceeds by

conditioning on lags of yt on the right-hand side. If some of the observations are missing,

this conditioning is not feasible. In this case, the methods developed in this paper can be

adopted to obtain a Gibbs sampler for TVP-BVAR models in the presence of partly missing

observations along the lines of Little and Rubin (2002). In particular, we can provide a sam-

pling step for missing observations in yt . Given augmented data, the samplers as proposed

in the papers cited above can be applied for Bayesian estimation of the model parameters

in (Equation (II.39)).

To derive the conditional posterior distribution for missing observations, rewrite the

model (Equation (II.39)) in stacked form with y = (yT
1 , yT

2 , . . . , yT
T )

T and µ̃y = (µT1 ,µT2 , . . . ,
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µTT )
T as

Φy y = µ̃y + εy (II.40)

with

Φy =



























B0,1

−B1,1 B0,2

−B2,1 −B1,2 B0,3
...

. . . . . . . . .

−Bp,1
. . . . . . . . .

. . . . . . . . . B0,T−1

−Bp,T−p · · · −B2,T−2 −B1,T−1 B0,T



























, (II.41)

εy ∼N (0,Σ), and Σ= diag(Σ1,Σ2, . . . ,ΣT ).
Given model parameters θy , we have y|θy ∼ N (µy ,Φ−1

y ΣΦ
−T
y ) with µy = Φ−1

y µ̃y and

precision matrix Q y = (Φ−1
y ΣΦ

−T
y )

−1 = ΦTyΣ
−1Φy . We can now reorder the variables in y

into variables with missing observations ym above the variables with available observations

yo as in (Equation (II.12)) by

yPy
=

�

ym

yo

�

= Py y =

�

Pym

Pyo

�

y (II.42)

such that the transformed vector yPy
is distributed as

yPy
|θy ∼N

�

Pyµy , (PyQ y PT
y )
−1
�

. (II.43)

We can now partition the mean and the precision matrix as in (Equation (II.42)) and

obtain

Pyµy =

�

µm

µo

�

, PyQ y PT
y =

�

Q ym,ym
Q ym,yo

Q yo ,ym
Q yo ,yo

�

, (II.44)

which provides us with the moments of the distribution for the missing observations ym

conditional on the observations yo = y o and the model parameters. The conditional distri-

bution of the missing values is given by

p(ym|yo = y o,θy)
D
=N

�

µm −Q−1
ym,ym

Q ym,yo
(y o −µo),Q

−1
ym,ym

�

. (II.45)

Note that it is not straightforward to jointly sample missing values and time-varying VAR

parameters in the TVP-BVAR model. The reason is that products of missing values and

time-varying VAR parameters are present on the right-hand side of the TVP-BVAR model,

rendering the resulting state-space system non-linear.
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II.8 Conclusions

We propose a simple and efficient precision-based sampler for unobserved states and miss-

ing observations conditional on available data. The approach extends the existing literature

on precision-based sampling, which typically considers complete-data applications. By al-

lowing the investigation of incomplete data sets, the sampler proposed here expands the

range of potential applications for precision-based samplers in practice.

The approach can be applied to a wide range of state-space models such as time-varying

parameter BVARs, as their corresponding precision matrix has a block-banded structure. In

this paper we apply the sampler to a large dynamic factor model. To facilitate sampling in

the presence of missing observations, we reorder the variables in the precision matrix by

alternative permutations. Based on the permuted precision matrices with small bandwidth,

we can employ fast band-matrix computing techniques to draw from the conditional distri-

butions of factors and missing observations given available data. In the simulations, a 2-step

precision-based sampler, which sequentially samples factors and missing observations, turns

out to be computationally efficient. On the other hand, a joint sampler based on time per-

mutation is slower, but facilitates computing the integrated likelihood for model comparison

more easily. Both can be directly integrated into Bayesian estimation procedures like the

Gibbs sampler.

Appendix

II.A Posterior sampler

A more general specification of the factor model than (Equation (II.1)) and (Equation (II.2))

has p ≥ 1 lags in the factor VAR and q ≥ 1 AR lags in the equations for idiosyncratic

components. We obtain the model equations

x t = ληt + εt , (II.46)

φ(L)ηt = uη,t , ψ(L)εt = uε,t . (II.47)

with polynomials φ(L) = Ir −φ1 L − . . .−φp Lp and ψ(L) = IN −ψ1 L − . . .−ψq Lq in the

lag operator Lyt = yt−1. The polynomial matrices in ψ(L) are assumed to be diagonal. The

factor VAR disturbances are distributed as uη,t ∼N (0r×1,ωη), and we assume for simplicity

ωη = Ir . With respect to the idiosyncratic components we assume uε,t ∼ N (0N×1,ωε),
where ωε is also diagonal with blocks ωε,i for i = 1, . . . , N on the main diagonal.

Concerning the prior specifications of the model, we follow closely the existing factor

model literature. We use sparse priors for the elements in the loading matrix as in George

and McCulloch (1993, 1997); Geweke (1996); Carvalho et al. (2008); Kaufmann and Schu-

macher (2017, 2019). The hierarchical prior for the loadings is denoted as p(λ|θλ) with a

prior for hyper-parameters p(θλ). The factors and missing observations follow multivariate
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normal priors given model parameters, p(η|θ+) and p(xm|θ+), where further model param-

eters are collected in θ+: It contains the factor VAR polynomial parameters φ(L) and the

idiosyncratic components AR polynomial parameters ψ(L), which follow normal distribu-

tions truncated to the stationary region (Litterman, 1986). θ+ also contains the variances

of the innovations in the idiosyncratic components AR models ωε,i for i = 1, . . . , N . We use

an inverse gamma distribution as the prior. Details regarding the prior specifications can be

found in the subsections below.

Given available data xo, we want to obtain samples from the posterior distribution

p(η, xm,λ,θλ,θ+|xo)∝ L(xo|η, xm,λ,θλ,θ+)p(xm|θ+)p(λ|θλ)p(η|λ,θ+)p(θ+)p(θλ).
(II.48)

The sampler closely follows the Gibbs sampler proposed by Little and Rubin (2002) to tackle

missing data. In a first step, Little and Rubin (2002) sample missing observations for xm, and

combine these samples with observed data. In subsequent steps, complete-data conditional

posterior distributions are used for sampling the remaining model parameters. The use

of the complete-data conditional posterior distributions in these steps is valid because the

product of L(xo|η, xm,λ,θλ,θ+) and p(xm|θ+) in (Equation (II.48)) equals the complete-

data likelihood L(xo, xm|η,λ,θλ,θ+), as implied by the model equations (Equation (II.46))

and (Equation (II.47)).

In our case, we expand on Little and Rubin (2002) by also estimating unobserved factors

in the first block of the Gibbs sampler along with the missing observations. The sampler

proceeds with the following three steps:

1. p(η, xm|xo,λ,θλ,θ+): To sample factors and missing observations, we have two op-

tions:

(a) When applying time permutation precision-based sampling, we provide a joint

draw of η, xm|xo,λ,θλ,θ+ in a single step.

(b) When applying the 2-step precision-based sampling, we sample sequentially from

p(η|xo, xm,λ,θλ,θ+) and p(xm|xo,η,λ,θλ,θ+).

2. p(λ|xo, xm,η,θλ,θ+), p(θλ|xo, xm,λ): Sampling the loadings λ, and hyper-parameters

related to the hierarchical prior for the loadings θλ given loadings λ.

3. p(θ+|xo, xm,η,λ,θλ): Sampling the rest of the model parameters.

II.A.1 Factors and missing observations: p(η, xm|xo,λ,θλ,θ+)

With lag orders p, q > 1 in the factor model, the precision-based samplers as described in

the main text for p = q = 1 have to be modified only in terms of the precision matrix Q. With
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respect to the stacked factors, we have η|φ(L),ωη,ϑη,1|0 ∼N (0Tr×1,Φ−1ΩηΦ
−T), where

Φ=



























Ir

−φ1 Ir

−φ2 −φ1 Ir
...

. . . . . . . . .

−φp
. . . . . . . . .

. . . . . . . . . Ir

−φp · · · −φ2 −φ1 Ir



























, Ωη =











ϑη,1|0

ωη
. . .

ωη











. (II.49)

The matrix entries for the VAR lag polynomial φ(L) are taken from the previous Gibbs draw.

We setωη = Ir . As the initial covariance of factors ϑη,1|0 = ϑη, we use the covariance matrix

of factors and their lags implied by the VAR in companion form











ηt

ηt−1
...

ηt−p











︸ ︷︷ ︸

η̃t

=











φ1 · · · · · · φp

Ir 0
...

...

Ir 0











︸ ︷︷ ︸

φ̃











ηt−1

ηt−2
...

ηt−(p+1)











+











uη,1

0
...

0











︸ ︷︷ ︸

ũη,t

. (II.50)

The VAR innovations in the companion form ũη,t have the (pr × pr) covariance matrix

ω̃η = Var(ũη,t), which containsωη in the top-left block and zeros elsewhere. The companion

form implies the (pr× pr) second-moment matrix of stacked factors lags ϑ̃η = Var(η̃t) from

solving the equation vec(ϑ̃η) = [I(pr)2 − φ̃ ⊗ φ̃T]−1 × vec(ω̃η). As the initial covariance of

factors ϑη,1|0 = ϑη, we use the first (r × r) block-diagonal element in ϑ̃η.

With respect to the stacked idiosyncratic components, we have ε|ψ(L),ωε,ϑε,1|0 ∼N (0T N×1,Ψ−1ΩεΨ
−T),

where Ψ and Ωε are constructed along the lines of (Equation (II.49)). The matrix entries

for the lag polynomial φ(L) and the innovation variances ωε are taken from the previous

Gibbs draw. To initialize the second moments of the idiosyncratic components by ϑε,1|0, we

use the second moments implied by the AR models for the idiosyncratic components, which

can be computed using a companion form in the same way as for the factors.

Given Φ, Ωη, Ψ, and Ωε, we define the precision matrix Q in the same way as in (Equa-

tion (II.7)) and (Equation (II.8)) in the main text and can apply the alternative precision-

based samplers accordingly.

II.A.2 Loadings: p(λ|xo, xm,η,θλ,θ+), p(θλ|xo, xm,λ)

Following George and McCulloch (1993, 1997); Geweke (1996); Kaufmann and Schumacher

(2019), we use a sparse point-mass normal mixture prior on the loadings with a common
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probability of non-zero loading on factor j across variables according to

p(λi j)
D
= (1−ρ j)δ0(λi j) +ρ j N (0,τ j), (II.51)

p(ρ j)
D
= B(r0s0, r0(1− s0)), (II.52)

where the Dirac delta function δ0(·) assigns all probability mass to zero. To capture po-

tential factor-specific scaling of loadings, we specify an inverse gamma distribution for

τ j ∼ IG(g0, G0). The expected probability of non-zero factor loading, s0, and precision

r0 are hyperparameters. In the empirical application, we specify s0 = 0.5, r0 = 3.0, g0 = 2,

and G0 = 0.5. We define the hyper-parameters by θλ = {ρ j,τ j} for j = 1, . . . , r.

Given complete data x , which combines samples of missing data and the observed data,

we can sample from p(λ|x ,η,θ ,θλ) in the following way. The posterior odds of a non-zero

factor loading in (Equation (II.51)) are given by

P(λi j 6= 0|x , ·)
P(λi j = 0|x , ·)

=
p(λi j)|λi j=0

p(λi j|·)|λi j=0

ρ j

1−ρ j
=

N (0;0,τ j)

N (0; mi j, Mi j)

ρ j

1−ρ j
, (II.53)

where the moments mi j and Mi j are

Mi j =

�

1
σ2

i

T
∑

t=q+1

�

ψi(L)η j t

�2
+

1
τ j

�−1

, mi j = Mi j

�

1
σ2

i

T
∑

t=q+1

�

ψi(L)η j t

�

x∗i t

�

, (II.54)

and x∗i t is a transform of the variables by

x∗i t =ψi(L)x i t −
k
∑

l=1,l 6= j

λilψi(L)ηl t = λi jψi(L)η j t + εi t ,

which isolates the effect of factor j on variable i. Note that the conditional sampler in the

empirical application is applied only to those elements in λ, which are not fixed to zero in

the continental group factors.

We choose λi j 6= 0 if U ≤ POi j/(1+POi j), where U is a draw from the uniform distribution

over [0,1]. If we choose λi j 6= 0, λi j is drawn from N (mi j, Mi j), otherwise it is set equal to

zero.

Given λi j, we can update the hyper-parameters θλ. The conditional posterior of ρ j is

p(ρ j|x , ·) D
= B(r1 j, r2 j) with r1 j = r0s0+S j, r2 j = r0(1− s0)+N j−S j, and N j is the number of

loading elements not fixed to zero a-priori in the continental factors for j = 2, . . . , 6, whereas

for the global factor indexed by j = 1, we have N1 = N . We also define S j =
∑N

i=1 I
�

λi j 6= 0
	

.

In the simulation experiments in Section II.5, we do not set zero restrictions in the loadings.

In that case, we have to use r2 j = r0(1− s0) + N − S j.

The conditional posterior of the τ j is p(τ j|x , ·) D
= IG(g j, G j) with g j = g0 + 0.5N j and

G j = G0 + 0.5
∑N

i=1λ
2
i j.
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II.A.3 Further parameters: p(θ+|xo, xm,η,λ,θλ)

In the VAR polynomial for the factors and the AR polynomial for the idiosyncratic compo-

nents, we employ a standard Minnesota prior specification (Litterman, 1986). The prior

variance for the first autoregressive lag is set to ϑ2
0 = 0.09, whereas the shrinkage factor for

the prior variance on lags of other variables is equal to ϑ2
1 = 0.03. The normal prior mo-

ments for the VAR polynomial parameters are mean zero and variance Var(φl,i, j) = ϑ2
0/l

2

for i = l at lag l, and Var(φl,i, j) = ϑ2
1ϑ

2
0/l

2 for i 6= l at lag l.
With respect to the variance of the innovations in the idiosyncratic components AR model,

we choose p(ωε,i)
D
= IG(2.0,1.0) for i = 1, . . . , N . The conditional posteriors are standard

in the literature and not reported here. More details can be found in Appendix A.3 in

Kaufmann and Schumacher (2019).

II.B Precision matrix of joint time-permutation sampler

Given the permutation matrix Pτ, we obtain the permuted precision matrix Qτ = PτQPT
τ

for sampling factors and missing observations. Below we show that Qτ is a block-banded

matrix. In particular, it is a block tridiagonal matrix with varying block dimensions, having

blocks in the lower diagonal, main diagonal and upper diagonal, and all other blocks being

zero matrices (Golub and Van Loan, 2013, Chapter 4.5).

To derive Qτ, first note that the precision matrix Q from (Equation (II.8)) is a function

of the prior precision matrices Qη and Qε according to

Q =

�

ΦTΩ−1
η
Φ+ΛT(ΨTΩ−1

ε
Ψ)Λ −ΛT(ΨTΩ−1

ε
Ψ)

−(ΨTΩ−1
ε
Ψ)Λ ΨTΩ−1

ε
Ψ

�

=

�

Qη +ΛTQεΛ −ΛTQε
−QεΛ Qε

�

. (II.55)

As factors and idiosyncratic components follow VAR(1) processes, both precision matrices

Qη and Qε are block tridiagonal (Chan and Jeliazkov, 2009). In particular, we have

Qη = Φ
TΩ−1

η
Φ

=

















ϑ−1
η,1|0 +φ

Tω−1
η
φ −φTω−1

η

−ω−1
η
φ ω−1

η
+φTω−1

η
φ −φTω−1

η

. . . . . . . . .

−ω−1
η
φ ω−1

η
+φTω−1

η
φ −φTω−1

η

−ω−1
η
φ ω−1

η
+φTω−1

η
φ

















,

(II.56)

and Qε = ΨTΩ−1
ε
Ψ can be written accordingly.

Given Qη and Qε, we can show that the four submatrices of Q in (Equation (II.55)),

Q =

�

Qη +ΛTQεΛ −ΛTQε
−QεΛ Qε

�

=

�

Qηη Qηx

Q xη Q x x

�

, (II.57)

74



CHAPTER II. PRECISION-BASED SAMPLING WITH MISSING OBSERVATIONS: A FACTOR MODEL
APPLICATION

are also block tridiagonal matrices each. Note that Λ is a block-diagonal matrix. Pre- and

post-multiplying the block tridiagonal matrix Qε by Λ leads to a block tridiagonal matrix

without altering the block bandwidth. The sum of two block tridiagonal matrices Qη +
ΛTQεΛ is also a block tridiagonal matrix. In particular, we obtain

Qηη =





















Qηη,(1,1) Qηη,(1,2)

Qηη,(2,1) Qηη,(2,2) Qηη,(2,3)

Qηη,(3,2) Qηη,(3,3) Qηη,(3,4)
. . . . . . . . .

Qηη,(T−1,T−2) Qηη,(T−1,T−1) Qηη,(T−1,T )

Qηη,(T,T−1) Qηη,(T,T )





















(II.58)

with

Qηη,(1,1) = ϑ
−1
η,1|0 +φ

Tω−1
η
φ +λT(ϑ−1

ε,1|0 +ψ
Tω−1

ε
ψ)λ, (II.59)

Qηη,(t,t) =ω
−1
η
+φTω−1

η
φ +λT(ω−1

ε
+ψTω−1

ε
ψ)λ for t = 2, . . . , T, (II.60)

Qηη,(t,t+1) = −φTω−1
η
−λT(−ψTω−1

ε
)λ for t = 1, . . . , T − 1, (II.61)

Qηη,(t+1,t) = −ω−1
η
φ −λT(ω−1

ε
ψ)λ for t = 1, . . . , T − 1. (II.62)

Accordingly, the non-zero submatrices of Qηx =
�

Qηx ,(t1,t2)

�

t1,t2=1,...,T
are given by

Qηx ,(1,1) = −λT(ϑ−1
ε,1|0 +ψ

Tω−1
ε
ψ), (II.63)

Qηx ,(t,t) = −λT(ω−1
ε
+ψTω−1

ε
ψ) for t = 2, . . . , T, (II.64)

Qηx ,(t,t+1) = λ
T(ψTω−1

ε
) for t = 1, . . . , T − 1, (II.65)

Qηx ,(t+1,t) = λ
T(ω−1

ε
ψ) for t = 1, . . . , T − 1, (II.66)

and all other submatrices are zero blocks, Qηx ,(t1,t2) = 0 for |t1− t2|> 1. Finally, the non-zero

submatrices of Q xη =
�

Q xη,(t1,t2)

�

t1,t2=1,...,T
are given by

Q xη,(1,1) = −(ϑ−1
ε,1|0 +ψ

Tω−1
ε
ψ)λ, (II.67)

Q xη,(t,t) = −(ω−1
ε
+ψTω−1

ε
ψ)λ for t = 2, . . . , T, (II.68)

Q xη,(t,t+1) = (ψ
Tω−1

ε
)λ for t = 1, . . . , T − 1, (II.69)

Q xη,(t+1,t) = (ω
−1
ε
ψ)λ for t = 1, . . . , T − 1, (II.70)

and Q xη,(t1,t2) = 0 for |t1 − t2|> 1.
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The precision matrix Qτ = PτQPT
τ

can be obtained by block multiplication

Qτ =





























Pη,1 0

0 Pxm,1

Pη,2 0

0 Pxm,2
...

...

Pη,T 0

0 Pxm,T

0 Pxo





























�

Qηη Qηx

Q xη Q x x

��

PT
η,1 0 PT

η,2 0 · · · PT
η,T 0 0

0 PT
xm,1 0 PT

xm,2 · · · 0 PT
xm,T PT

xo

�

(II.71)

with Pη,t =
�

0r×r(t−1) Ir 0r×r(T−t)

�

and Pxm,t =
�

0Nm,t×(t−1)N Pxm,(t,t) 0Nm,t×(T−t)N

�

. Note

that the permuted variables zPτ permutation matrix Pτ can be considered as having T + 1

row blocks, where T row blocks contain model factors ηt and variables corresponding to

missing observations xm,t for each period t, and the (T +1)-st row block contains variables

corresponding to observed data xo. This blocking is implied by the variable ordering in

zPτ = (η
T
1 , xT

m,1,ηT2 , xT
m,2, . . . ,ηTT , xT

m,T , xT
o )

T. Given the blocking in Pτ, the corresponding

precision matrix can be partitioned in the same way. We obtain Qτ as

Qτ =

























Qτ,(1,1) Qτ,(1,2) Qτ,(1,T+1)

Qτ,(2,1) Qτ,(2,2) Qτ,(2,3) Qτ,(2,T+1)
. . . . . . . . .

...

Qτ,(T−2,T−3) Qτ,(T−2,T−2) Qτ,(T−2,T−1) Qτ,(T−2,T+1)

Qτ,(T−1,T−2) Qτ,(T−1,T−1) Qτ,(T−1,T ) Qτ,(T−1,T+1)

Qτ,(T,T−1) Qτ,(T,T ) Qτ,(T,T+1)

Qτ,(T+1,1) Qτ,(T+1,2) . . . Qτ,(T+1,T−1) Qτ,(T+1,T ) Qτ,(T+1,T+1)

























,

(II.72)

with (T +1)×(T +1) blocks. Note that the dimensions of the blocks in Qτ are time-varying,

depending on the number of missing observations in each period, Nm,t .

The submatrices of Qτ are given by

Qτ,(t,t) =

�

Qηη,(t,t) Qηx ,(t,t)P
T
xm,(t,t)

Pxm,(t,t)Q xη,(t,t) Pxm,(t,t)Qε,(t,t)P
T
xm,(t,t)

�

(II.73)

for t = 1,2, . . . , T on the main diagonal, and

Qτ,(t,t+1) =

�

Qηη,(t,t+1) Qηx ,(t,t+1)P
T
xm,(t+1,t+1)

Pxm,(t,t)Q xη,(t,t+1) Pxm,(t,t)Qε,(t,t+1)P
T
xm,(t+1,t+1)

�

, (II.74)

Qτ,(t+1,t) =

�

Qηη,(t+1,t) Qηx ,(t+1,t)P
T
xm,(t,t)

Pxm,(t+1,t+1)Q xη,(t+1,t) Pxm,(t+1,t+1)Qε,(t+1,t)P
T
xm,(t,t)

�

, (II.75)

for t = 1, . . . , T − 1 on the upper and lower block diagonal, respectively. Furthermore,
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Qτ,(t1,t2) = 0 for |t1 − t2| > 1 and t1, t2 = 1, . . . , T . Concerning the (T + 1)-st row and

column, we obtain

Qτ,(T+1,T+1) = Pxo
QεP

T
xo

, (II.76)

Qτ,(T+1,t) = Pxo

�

Q xηPT
η,t QεP

T
xm,t

�

for t = 1, . . . , T, (II.77)

Qτ,(t,T+1) =

�

Pη,tQηx

Pxm,tQε

�

PT
xo

for t = 1, . . . , T. (II.78)

To sample from p(η, xm|xo = x o,θ ), the precision matrix Qτ will be partitioned according

to

Qτ =

�

Qηxm,ηxm
Qηxm,xo

Q xo ,ηxm
Q xo ,xo

�

, (II.79)

where the upper-left block Qηxm,ηxm
contains the first top-left T × T sub-blocks from (Equa-

tion (II.72)) and has dimensions (rT +
∑T

t=1 Nm,t)× (rT +
∑T

t=1 Nm,t), whereas the lower-

right block Q xo ,xo
has dimensions (N T −

∑T
t=1 Nm,t) × (N T −

∑T
t=1 Nm,t). The conditional

distribution becomes p(η, xm|xo = x o,θ )
D
= N (−Q−1

ηxm,ηxm
Qηxm,xo

x o,Q−1
ηxm,ηxm

). From (Equa-

tion (II.72)), we can see that Qηxm,ηxm
is block tridiagonal and thus facilitates precision-based

sampling efficiently.
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Chapter III

How useful is external information from

professional forecasters? Conditional

forecasts in large factor models

The last chapter of my dissertation is single-authored. It has been published as an EconStor

Direct Working & Discussion Paper7. I would like to thank Martin Ademmer for helpful sug-

gestions and Simone Knief from for providing access to Kiel University’s high-performanc

computing facilities.

Abstract

This paper evaluates forecasts from a factor model estimated with a large real-time

dataset of the German economy. The evaluation focuses on a broad cross-section of

variables such as activity series including components of the gross domestic product and

gross value added, deflators and other price measures as well as several labor market

indicators. In addition to unconditional forecasts for these variables, we also investi-

gate to what extent the forecast accuracy improves when we condition on professional

forecasters’ view on GDP growth and CPI inflation. We find that over the period from

2006 to 2017 the model’s unconditional forecasts are broadly in line with autoregressive

benchmarks for the majority of the 37 series that we focus on in the evaluation, in some

cases performing somewhat better and in others somewhat worse. For a few variables

capturing real activity and some price indicators, however, we find large gains in predic-

tive accuracy that persist for forecast horizons of up to two quarters ahead. Condition-

ing on external information tends to improve the forecast accuracy in some instances

but typically only for those series where the unconditional forecasts are already quite

accurate. For around a third of the variables under consideration, the differences in

forecast accuracy between conditional and unconditional forecasts are statistically sig-

nificant for density forecasts; for point forecasts on the other hand we find no significant

differences. From a methodological point of view, this paper proposes precision-based

sampling algorithms to draw from the predictive density - unconditional or conditional

7Available under http://hdl.handle.net/10419/251469
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on a subset of the system variables - in factor models and other models with unobserved

components. Simulations show that these algorithms perform favorably compared to

Kalman filter-based alternatives typically used in the literature.

Keywords: factor models, conditional forecasting, precision-based sampling

JEL classification: C11, C53, C55, E37.
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III.1 Introduction

Factor models feature prominently in macroeconomic now- and forecasting applications.

Typically, however, forecast evaluations in this literature focus only on a small subset of the

large number of time series that are used to estimate these models. For example, Stock

and Watson (2002) evaluate the forecast performance of industrial production, personal

income, manufacturing and trade sales and (nonagricultural) employment in the United

States. The factor-model based nowcasting literature has largely focused on predicting the

real gross domestic product (GDP) (see Giannone et al., 2008; Bok et al., 2018; Schumacher

and Breitung, 2008; Kuzin et al., 2013). While arguably the single most important measure

of economic activity, analysts or policy-makers are typically also interested in forecasts for

many other variables, e.g. concerning the labor market, price measures including deflators,

components of GDP or activity measures like industrial production or turnover. Moreover,

forecasts of these variables given a path of future real GDP growth and CPI inflation may

be used in scenario analysis or as consistency checks to other model-based forecasts. Such

conditional forecasts have received little attention in the factor model literature.

This paper therefore extends the literature on factor models by broadening the cross-

sectional dimension of the forecast evaluation to include series that are not commonly fea-

tured. We consider a total of 37 time series comprising labor market indicators, price mea-

sures such as the CPI or PPI as well components of gross domestic product such as consump-

tion, investment and exports as well gross value added of different sectors like construction

or manufacturing. In addition to an evaluation of unconditional forecasts for such variables,

we also investigate how the predictive accuracy changes when external information in the

form of professional forecasters’ views on activity and inflation is incorporated. Such an

evaluation captures both how well the model describes the joint dynamics of the data as

well as the accuracy of the conditioning information and thus gives a complete assessment

of the forecast accuracy for the variables under consideration in this study.

Specifically, in the empirical application we rely on external information from the Reuters

Poll of professional forecasters which collects the forecasts from private sector institutions

and research institutes on a quarterly basis. We supplement these historical forecasts with a

large real-time dataset consisting of roughly 80 time series that allows us to exactly replicate

the information available at the time the forecast survey was conducted. We then estimate

factor models with Bayesian methods to obtain forecasts both unconditional as well as con-

ditional on the GDP growth and CPI inflation forecasts from the Reuters Poll. This allows

us to assess how predictive accuracy improves both in terms of point and density forecast

accuracy when external information is included.

As such, we also contribute to the literature on conditional forecasting which has mostly

focussed on Bayesian vectorautoregressions - another class of popular macroeconmetric

methods. Banbura et al. (2015) consider conditional forecasts by conditioning on future

values they shed light on the stability of dynamic relationships in the Euro area. Similarly,

in their empirical application Clark and McCracken (2017) condition on realizations when
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testing for bias, efficiency and MSE accuracy of conditional versus unconditional forecasts.

Closer to the questions guiding our research are Krüger et al. (2017), Tallman and Zaman

(2020) and Ganics and Odendahl (2021) who combine model-based density forecasts with

external information in the form of forecast surveys. Using entropic tilting, these authors

tend to find gains in predictive accuracy even for those variables that are not directly tilted

to match the survey forecasts. However, common to both papers is the focus on only a few

time series within a Bayesian vector autoregression context.8 Our analysis differs in that we

work with factor models rather than vector autoregressions, condition on quarterly point

forecasts for GDP growth and CPI inflation and consider the impact on a much broader and

more disaggregated range of variables.

Besides the empirical contribution, this paper also proposes precision-based sampling

algorithms for conditional forecasting and scenario analysis. Precision-based sampling al-

gorithms (Chan and Jeliazkov, 2009; McCausland, 2012) that build on the seminal work

by Rue (2001) on Gaussian Markov random fields, are increasingly used in macroeconomic

applications. Hauber and Schumacher (2021) generalize these precision-samplers to ap-

plications with missing data. Since future values of variables can simply be considered as

missing, we show how draws from the predictive density - unconditional or conditional on

future values of a subset of the system’s variables - can be obtained. In a simulation study we

compare the performance of these algorithms to the Kalman-filter based implementations

proposed by Banbura et al. (2015).

The results of the forecast evaluation show that for the majority of time series under

consideration the factor model produces forecasts that are as accurate as an autoregressive

benchmarks, with relative root mean squared forecast errors (RMSFE) and continous ranked

probability scores (CRPS) ranging from 0.9 to 1.1. For a few variables we find much larger

gains compared to the benchmark and these persist as the forecast horizon increases. When

we incorporate external information in the form of GDP growth and CPI inflation forecasts

from a survey of professional forecasters, we generally find some improvements in forecast

accuracy for the variables of interest from categories such as real activity, prices and the

labor market. Only for a smaller number of series, however, do we find that conditioning

produces large gains and these are typically the series for which the model already produces

accurate unconditional forecasts. While the point and density forecast accuracy is broadly

comparable in the sense that relative gains compared to an autoregressive benchmark for

a given variable are similar, we find that when evaluating the entire predictive distribu-

tion the loss from the condtional forecasts is significantly lower than that of the model’s

unconditional predictions. For point forecasts, there is virtually no such evidence.

The remainder of this paper is structured as follows: Section III.2 illustrates the precision-

based sampling algorithms for conditional forecasting, while in Section III.3 we discuss the

datatset including the forecast survey used to condition the factor model forecasts as well

as the evaluation set-up. Section III.4 discusses the results and several robustness checks

8The latter two also consider medium-sized VAR with 10 and 14 variables, respectively as a robustness
check and find similar results to their smaller baseline models.
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while Section III.5 concludes.

III.2 Precision-based sampling algorithms for conditional

forecasting

In this section, we lay out the precision-based sampling algorithms to obtain conditional

forecasts. To fix notation and ideas, we first review the general precision-based sampler in

Section III.2.1 before turning to forecasting applications (Section III.2.2). Lastly, we also

discuss how repeated draws from the predictive density given parameters can be obtained

(Section III.2.3).

III.2.1 Precision-based sampling

We outline the precision-based algorithms through the lens of a dynamic factor model but

the analysis can be generalized to other state space models with unobserved components.

Factor models feature prominently in the macroeconomic literature. For an overview of their

methodological developments and applications, see Stock and Watson (2016). Precision-

based sampling applications include Chan and Jeliazkov (2009); McCausland (2015); Kauf-

mann and Schumacher (2017, 2019).

A dynamic factor model is defined as

yt =
K
∑

k=0

λk ft−k + et (III.1a)

ft =
P
∑

p=1

φp ft−p +υt (III.1b)

et =
J
∑

j=0

ψ j et− j + εt (III.1c)

where ft denotes an R×1 vector of unobserved factors which summarizes the co-movement

of the observables yt . The dynamics of the factors are modelled as a vector autoregression

of order P. The idiosyncratic components, et are modeled as independent autoregressive

processes of order J , i.e. ψ1, . . . ,ψJ are diagonal matrices. The N × R loadings matrices

λk capture the dynamic relationships between observables and factors. Setting K = 0, so

that the variables only load contemporaneously on the factors, yields a static factor model.
The innovations εt , υt are Normal, uncorrelated at all leads and lags and their covariance

matrices given by Ω and Σ, respectively.

Stacking the observables, factors and idiosyncratic components over t yields

y=Mf+ e (III.2)
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where

M=


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
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The vector of idiosyncratic components can be written as He e= ε with

He =






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


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









and ε ∼ N (0N T , IT ⊗ Ω). It follows that e is Normal, with mean 0 and covariance matrix

Ve = (HT
e (IT ⊗Ω−1)He)−1.

In a similar fashion, the vector of factors is distributed as

f∼N
�

0, (HT
f (IT ⊗Σ−1)Hf)

−1
�

with

Hf =




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
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Define

z :=

�

f

y

�

=

�

ITR 0

M IT N

��

f

e

�

. (III.3)

It follows that z is Normal with mean 0 and covariance matrix Vz. The corresponding

precision matrix is the inverse of the covariance matrix:
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Bayesian estimation of Equations (III.1a)–(III.1c) requires a draw from the distribution

of the factors conditional on the observations and parameters Θ, p(f1, . . . , fT |y1, . . . ,yT ,Θ).
"Simulation smoothing" methods based on the Kalman filter/smoother have been proposed

by Carter and Kohn (1994) and Durbin and Koopman (2001) and are widely used in the

literature. Precision-based sampling algorithms (Chan and Jeliazkov, 2009; McCausland,

2012) provide an alternative to these methods.

Using standard results for multivariate Normal distributions (e.g. Bishop, 2006, pp. 86-

87), we can derive the desired conditional distribution:

p (f | y,Θ)∼N
�

Q−1
f

�

Qfµf −Qfy

�

y−µy

��

,Q−1
f

�

:=N
�

µf|y,Q
−1
f|y

�

with (see also Chan and Jeliazkov, 2009, eqn. 6-8):

Qf|y = Qf

= HTV−1
υ

H+MTV−1
ε

M

µf|y = Q−1
f Qf c̃+MTV−1

ε
y

Draws from this distribution can be obtained efficiently since the T · S × R matrix Qf is

banded and its inversion not required. Specifically, calculate the conditional mean following

Rue and Held (2005, Algorithm 2.1). This requires the computation of the lower Cholesky

factor L of Qf . Then draw v ∼ N (0, ITR), solve LTx = v for x and set µf|y + x, yielding a

draw of f conditional on y (Rue and Held, 2005, Algorithm 2.4).
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III.2.2 Forecasting

In addition to a draw of the factors conditional on the data, macroeconomic applications

may require forecasts - both unconditional and conditional on future paths of a subset of the

observables - from the model in Equations (III.1a)–(III.1c). Examples include projections of

inflation which take assumptions regarding the macroeconomic environment into account

(Giannone et al., 2014) or external nowcasts as "jump-off" points for longer-term forecasts

in reduced form or structural models (Faust and Wright, 2009; Wolters, 2015; Del Negro

and Schorfheide, 2013); Knotek and Zaman (2019) show how macroeconomic forecasts

can be improved by conditioning on nowcasts for financial variables.

Let yo = [yT1 , . . . ,yTT ]
T

denote the available observations through T . For the forecast

periods h= 1 : H, yc,t ∀t = T + 1 : T +H are the observations which are being conditioned

on. The entire conditioning set is given by

yc = [yTc,T+1, . . . ,yTc,T+H]
T

with N c = dim(yc). Conversely, y−c,t = yt /∈ yc,t denotes the observations for which no condi-

tioning information is available at time t and which are being forecast: yf = [yT−c,T+1, . . . ,yT−c,T+H]
T

.

In what follows, we will not be concerned with the estimation of model parameters and

assume that random draws from p(Θ|yo) are readily available. Also, for the sake of exposi-

tion, assume that between periods t = 1 and t = T all observations are available. Situations

where this is not the case, e.g. because some series start at a later date in the sample or

because outlying observations have been removed by setting them to missing, can naturally

be accommodated.

From a Bayesian perspective, forecasting boils down to sampling from the predictive

density given by (see e.g. Geweke and Whiteman, 2006)

p(yf |yo,yc)∝
∫

Θ

p(yf |yo,yc,Θ)p(Θ|yo,yc)dΘ. (III.4)

Note that this density takes into account that the conditioning set yc contains information

about which Θ are more likely a posteriori. Draws from this density can be obtained by ap-

plying the insights in Hauber and Schumacher (2021) who generalize the precision sampler

outlined above to applications with missing data. Since future values of the variables can

simply be considered as missing, draws from the joint distribution of states and forecasts

conditional on the data (and possibly the future paths of a subset of the variables) can be

sampled efficiently.

To evaluate Equation III.4, derive the joint distribution of states and observations from

t = 1 : T +H:

z= [fT,yT]
T

= [f1, . . . , fT+H ,y1, . . . ,yT+H]
T
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It follows that the distribution of z is Normal with mean µz = 0 and precision matrix Qz

as in Section III.2.1. To sample from the conditional distribution p
�

yf , f | yo,yc,Θ
�

requires

a permutation of z. To this end, define the permutation matrix P that reorders z such that

the states and elements of yf - ordered by time period t - are placed first. That is to say,

zP := Pz= [fT1 , . . . , fTT , fTT+1,yT-c,T+1, . . . , fTT+H ,yT-c,T+H ,yT1 , . . . ,yTT+H ,yTc,T+1, . . . ,yTc,T+H]
T

.

Note that the conditioning arguments yo,yc are now ordered last. The permuted vector

of states and observations is also Normal with (permuted) moments given by

zP ∼N
�

Pµz,
�

PQzPT
�−1�

where we have made use of the fact that the inverse of a permutation matrix is equal to

its transpose. The precision matrix of zP can be partitioned as follows:

QzP
:= PQzPT

=

�

Qfyf Qfyf ,yo

QT
fyf ,yo Qyo

�

where Qfyf ,yo is a T ·R+H ·N × T ·N matrix and Qfyf and Qyo are square with dimensions

T ·R+H ·N and T ·N , respectively.

Similarly, the mean of zP can be partitioned as

µzP =

�

µfyf

µyo

�

Denote by z∗ a draw from the conditional distribution (surpressing the dependence on

the parmeters Θ for the sake of readability)

zfyf |yo,yc ∼N
�

Q−1
fyf

�

Qfyfµfyf −Qfyf ,yo
�

yo −µyo
��

,Qfyf

�

.

Then by reversing the permutation, i.e











f

y1
...

yT+H











= P−1





z∗

yo

yc





we can back out the draws of f and yf = [y-c,T+1, . . . ,y-c,T+H].
Note that by having placed those components of z which are conditionally dependent

close to each other, the bandwidth of Qfyf is kept small. Figure III.1 shows the precision

matrix of zP for a factor model with T = 100, N = 100 and R = 10, a forecast horizon of
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H = 20 and conditioning on the first 10 variables9, i.e.

yc = [y1,T+1, . . . , y10,T+1, . . . , y1,T+20, . . . , y10,T+20].

The precision matrix Qfyf is highlighted by the square.

Figure III.1: Precision precision matrix in the case of a dynamic factor model

0 2000 4000 6000 8000 10000 12000
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Note: The figure shows the precision matrix of the permuted vector of observations and states zP for a factor
model with T = 100, N = 100 and R = 10. Highlighted is the (T + H) · R+ N c × (T + H) · R+ N c partition
corresponding to zfyf .

Similar to Waggoner and Zha (1999, Algorithm 1) and Banbura et al. (2015, p.745),

draws from the predictive density p(yf |yo,yc) can then be obtained by the following algo-

rithm:

9For the sake of illustration we set P = 1, J = 0, S = 0.
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Algorithm 1: Draws from the predictive density p(y f |yo,yc)

Initialize Θ0 from p(Θ|y o). For g = 1 : (G0 + G)

1. Construct the system matrices H,M,Vε,Vυ, c̃,d given the parameters Θ(g−1)

2. Compute the mean µz and precision matrix Qz of the joint distribution of z =
[α,y]

3. Permute z, yielding zP ′ ∼N (µz′P
,Q−1

z′P
) with partitions [zT

αy f ,y
o,yc]T

4. Sample from the conditional distribution zαy f |yo,yc,Θ(g−1) using (Rue and Held,

2005, Algorithm 2.1 and 2.4) and reverse the permutation to back out the draws

of yf and α

5. Draw Θ(g) from p(Θ|yo,yc,yf
(g)

,α(g))

Discard the first G0 draws as burn-in.

If the sample information and prior dominate the information in yc, the impact of the

conditioning arguments on the posterior distribution of the parameters is likely to be negli-

gible and p(Θ|yo,yc)≈ p(Θ|yo) (Del Negro and Schorfheide, 2013; Banbura et al., 2015). In

such applications, draws from Equation III.4 can then be obtained by skipping step 5 at each

iteration in Algorithm 1. Similarly, when yc is empty, Step 5 can obviously be skipped as

well and the algorithm returns unconditional forecasts, i.e. draws from the density p(y f |yo).
While the discussion above has focussed on dynamic factor models, it can easily be ex-

tended to general state space models of the form:

yt = Zαt + εt, εt ∼N (0, H) (III.5a)

αt+1 = Tαt +ηt , ηt ∼N (0,Q) (III.5b)

by setting P = 1, J = S = 0.

Lastly, note that Hauber and Schumacher (2021) also propose a sequential sampler that

first draws the missing observations conditional on the states and then the states given a

complete data set. This approach performs somewhat better in terms of runtime and could

in principle be used in Algorithm 1, which in any case requires a Gibbs sampling step if

the parameters are updated given the conditioning set. However, the gains in performance

from faster sampling of states and forecasts may not outweigh the longer burn-in required

due to the additional block in the Gibbs Sampler.
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III.2.3 Soft conditions and repeated samples from p(y f |yo,Θ(g))

So far we have considered conditional forecasts that fix the future values of some of the

endogeneous variables at single points. Waggoner and Zha (1999) labels these "hard" con-

ditions to distinguish them from soft conditions where each element of yc is merely restricted

to lie within a pre-specified range, i.e. yfl ≤ yf ≤ yfu. Draws from the unconditional predictive

density p(y f |yo,Θ(g)) can be obtained until the conditions are satisfied.10

The precision-sampling algorithms outlined above are particularly suited to this task since

the bottleneck in the calculations is the Cholesky factorization of the band matrix Qfyf which

requires ((T + H)R+ NH) · b2
w floating point operations where bw is the lower bandwidth

of Qf,yf (Golub and Van Loan, 2013, 4.3.5). However, it only needs to be computed once,

irrespective of the number of desired draws (Rue, 2001). Repeated samples thus come at a

significantly reduced computational burden, consisting only of (T +H)S+NH independent

draws from the standard Normal distribution, band backward substitution - which requires

2((T + H)S + NH) · bw floating point operations (Golub and Van Loan, 2013, 4.3.2)- and a

vector addition.

III.2.4 Comparison with Kalman filter-based simulation smoothers

In simulations to determine the computational efficiency of the algorithms outlined above

in comparison to Kalman filter-based simulation smoothers, we find that the former is com-

putationally more efficient in terms of runtime for both large and small factor models and

forecast horizons. The gains in computational efficiency are particularly pronounced for soft

conditioning, where repeated draws from the predictive density are required. See Appendix

III.C for details of the simulation study.

III.3 Real-time evaluation of unconditional and conditional

forecasts

In this section, we present the data used in the forecast evaluation and provide details on

the Bayesian estimation. Furthermore, we discuss the set-up of the real-time evaluation.

III.3.1 Data

Real-time dataset for the German economy

To estimate the factor model, we construct a large quarterly real-time dataset covering dif-

ferent aspects of the macroeconomy. Beyond real gross domestic product, the main building

10Similarly, hard and soft conditions can be combined, e.g. if inflation forecasts are produced conditional
on an oil price path and subject to the restriction that the Federal Funds rate is positive. In such a scenario,
draws from p(y f |yo,yc ,Θ(g)) are obtained until the soft restrictions are satisfied.
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block of the dataset are other series from the national accounts such as the entire expendi-

ture side components, e.g. private and public consumption, gross fixed capital formation,

export and imports. From the production side of GDP we can only include gross value

added in the industrial and construction sector as well as trade, transport and hospitality as

real-time vintages for other sectors are only available from 2011 onwards.11

In addition to the chained volume indices we also include the corresponding deflators of

the expenditure and production side components. Furthermore, our dataset contains series

on real activity such as industrial production, turnover or orders as well as construction,

headline CPI and PPI indices as well as the corresponding core indices and a measure of

prices in the construction sector as well as labor market indicators such as economy-wide

employment and wages and hours worked in the industrial and construction sector.

In addition, data are supplemented with financial indicators such as interest rates, ex-

change rates and stock market indices. Lastly, we also include a few survey-based indicators

provided by the European Commission (ESI) and covering the industrial, construction and

services sectors as well as a measure of firms’ employment expectations (EEI). Note that for

the latter two sources, there is no real-time problem, as financial indicators are not revised

subsequent to their original publication. Similarly, the European Commission’s survey indi-

cators are only revised due the seasonal adjustment procedure. That is to say, the survey

responses for May 2006 as reported in 2018 might differ (slightly) from those originally

published as the seasonal factors have since been updated. While this violates the real-

time assumption, such revisions are likely to be small. We therefore abstract from these

subsequent changes in what follows and rely on the seasonally adjusted indices.

Altogether, our dataset contains 57 series. All of them are transformed to stationarity

prior to estimaton. In most cases, this involves taking the first difference of the logarithm

of the original series, though in some cases, e.g. interest rates or survey indicators, we take

simple differences.12 Details of the time series, their sources as well as the transformation

employed can be found in Appendix III.A.

Professional forecasts from the Reuters Poll

As conditioning information, we rely on the Reuters Poll of forecasts for German GDP and

CPI inflation. The survey compiles the views of around twenty different professional fore-

casters from the private sector and research institutes. It is conducted once a quarter during

the first month, i.e. January, April, July and October. Until mid-2014, the respondents

submit their views during the first few days of the month; from then on the survey date is

around the middle of the month.13

For GDP, the forecasts are given in terms of quarter-on-quarter (q/q) growth rates and we

can thus use the median forecast directly to obtain conditional forecasts from the model out-

11The three mentioned sectors comprise roughly 50 percent of total gross value added.
12The Deutsche Bundesbank’s real-time database includes vintages of chained volume indices and nominal

values for the national accounts. The implicit deflators are calculated by dividing the nominal series with the
chained volume index and taking the first differenc of the logarithm of the resulting series.

13A complete list of the dates when the forecast polls were conducted is available upon request.
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lined above. The inflation forecasts, however, are reported as year-over-year (y/y) growth

rates of the consumer price index. To bring the forecasts in line with the treatment of CPI in-

flation in the model, we have to transform the individual forecasts. Specifically, we interpret

the y/y forecasts of inflation, x y/y
t , as describing the four-quarter change in the quarterly

consumper price index X , i.e. x y/y
t = log(X t/X t−4). Thus, given a sequence of y/y forecasts

we can back out the implicit forecasts of the (log of the) consumer price index and derive

the corresponding q/q forecasts, i.e. xq/q
t = log(X t/X t−1) for each participant in the survey.

We then use the median of these transformed values in the conditional forecasting exercise.

Figure III.2: GDP growth and CPI inflation forecasts from the Reuters Poll of professional
forecasters

GDP growth

CPI inflation
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Note: The figure shows the median forecast from the Reuters Poll of professional forecasters for quarter-on-
quarter change in the comsumer price index (top panel) and quarter-on-quarter GDP growth. The forecast
horizon h is in quarters and relative to the reference period. For details, see the main text. Source: Thomson
Reuters, author’s calculations.

Figure III.2 plots the median forecast of q/q CPI inflation (top row) and GDP growth

(bottom row). The lines correspond to different forecast horizons relative to the reference

period and are given in quarters. That is to say, the h = 1 forecast for the first quarter in

2010 was made at the start of October 2009.

III.3.2 Estimation

The parameters of the factor model outlined above are estimated with Bayesian methods.

Draws from the joint posterior distribution of factors and parameters are obtained via a

Gibbs Sampler which alternately draws from the conditional posterior of the factors given

the parameters and vice versa. For the estimation, we set J = 1 and S = 0 and R= 2 and run

the Gibbs Sampler for a total of 20000 iterations. We discard the first 10000 as burn-in and

of the remaining, store every second draw, yielding 5000 from the posterior distribution

of the parameters, p(Θ|y). As the priors used in the estimation as well as the resulting
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conditional posterior distributions are standard in the literature, we relegate a discussion to

Appendix III.B.

III.3.3 Evaluation set-up

Given a vintage reflecting the data available to forecasters at the time the Reuters Poll was

conducted and corresponding draws from the posterior distribution p(Θ|y), we generate

draws from the predictive density as described in Section III.2.1 for all national accounts,

price, labor market and activity indicators. These forecasts are unconditional as well as

conditional on the values from the Reuters Poll for GDP growth and CPI inflation for the

current and following two quarters, i.e. h= {0,1, 2}. The evaluation sample starts in 2006

from which point on real-time vintages are available on a broad basis. It ends in the fourth

quarter of 2017 as afterwards the number of missing entries in the Reuters Poll increases

considerably.

Within the sample, there are also a few data irregularities. For example, in the third

quarter of 2013 no CPI inflation forecasts were recorded in the Reuters Poll. We therefore

exclude 2012Q3, 2012Q4 and 2013Q1 from the evaluation. Note also that for two labor

market series there are some vintages which are released outside of the regular publica-

tion calendar. For example, the employment vintage scheduled for release at the end of

December was not published until the first week of January, most likely due to the original

publication date falling on a bank holiday. As such, when the professional forecasters were

asked by Reuters to submit their forecasts by January 1st, the latest available information

for this series was published at the end of November. For hours worked in the manufactur-

ing sector, all vintages between March 3rd 2009 and March 4th 2010 are missing. As these

irregularities alter the information set and effective forecast horizon compared to the other

quarters, we do not consider the affected vintages for these two series. For the remaining

series, however, we have a total of 41 quarters to be evaluated for all horizons.

To benchmark the performance of the different priors, we consider a simple univariate

Bayesian autoregressive model of order 2 for all the series. i.e.

yi,t = β0 + β1 yi,t−1 + β2 yi,t−2 + εt; εt ∼N (0,σ2) (III.6)

The parameters β = [β0,β1,β2] and σ2 are estimated via a Gibbs Sampler with diffuse

priors given by β ∼ N (0, 10 · I3) and σ2 ∼ G−1(3, 0.01). Draws from the h-step ahead

predicitve density are obtained by plugging in draws from the posterior distribution of the

coefficients and iterating Equation III.6 forward.

Both the point and density forecast performance is evaluated. For the former, we compute

the root mean squared forecast error (RMSFE) defined as

RMSFE=

�

1
S

S
∑

s=1

( ŷi,T+s|Ωv − y ′i,T+s)
2

�
1
2
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for a sequence of S nowcasts, where ŷi,T+s|Ωv is the mean of the predictive density of variable

i at time T + s, conditional on the information set Ωvs
available in real-time at date vs when

the forecast for period T + s was made. The corresponding realization, given by the first

release, is denoted by y ′i,T+s. Density forecasts are evaluated by the continuous ranked

probability score (CRPS) which is given by (see Krüger et al., 2016):

CRPS=
1
S

S
∑

s=1

�

1
G

G
∑

k=1

�

�

�y (k)i,T+s|Ωv − y ′i,T+s

�

�

�−
G
∑

k=1

G
∑

j=1

�

�

�y (k)i,T+s|Ωv − y ( j)i,T+s|Ωv

�

�

�

�

.

To calculate the CRPS given draws from the predictive density as well a realization, we

use the R package scoringRules (Jordan et al., 2019).

Finally, to compare the accuracy of the conditional and unconditional forecasts more

formally, we follow Ganics and Odendahl (2021) and run Diebold-Mariano tests (Diebold

and Mariano, 1995). Let Lt(y c
i,t+h) denote the loss associated with the conditional forecasts

made at time for variable i and horizon h. In the case of point forecasts, this is simply given

by the squared forecast error; for density forecasts by the corresponding CRPS. Similarly,

define Lt(yu
i,t+h) as the loss for the unconditional forecast and dt = Lt(y c

i,t+h)− Lt(yu
i,t+h) the

loss differential. The test statistic can then be written as

DMi,h =
1
T

∑T
t=1 dt

Æ

σ̂2
d

where σ̂2
d is an estimate of the variance of dt . We test the null hypothesis of equal predic-

itve ability against the one-sided alternative that the conditional forecasts yield a lower loss.

III.4 Results

In this section we present the results of the forecast evaluation. We begin with point forecast

performance before looking at how the evaluation changes when we focus on the entire

predictive distribution. Lastly, we consider several robustness checks like the evaluation

period as well as the model size (i.e. the number of factors).

III.4.1 Point forecast accuracy

Turning to the peformance of the unconditional forecasts first, we find that for all horizons

and the majority of variables, the factor model produces forecasts that perform similar to the

autoregressive benchmark with relative RMSFE between 0.9 and 1.1 (Figure III.3). Outliers

in this context are the headline and "core", i.e. excluding energy, producer price indices at

h = 0 where the performanc is considerably worse than the benchmark. Conversely, for a

few series there are noteworthy gains over the simple univariate AR(2) model and these

persist or even increase for larger horizons. For example, for h = 0 the relative RMSFE

for the construction price index and gross value added in the industrial sector is around
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0.6. Smaller but still sizeable improvements can also be found for two series from the

expenditure side of the national accounts: equipment investment as well as the deflator

for residential investment. For larger h, these relative gains even increase: the relative

RMSFE for the construction subcomponent of the PPI reaches 0.35; for gross value added

in the industrial sector is 0.4. In addition to these variables, at h= 2 there also noteworthy

improvements for series that are likely highly correlated to gross industrial value added like

production in the industrial and construction sector as well as industrial turnover. Note,

however, that these improvements are partly due to the fact that the performance of the

benchmark generally worsens as the forecast horizon increases.

For comparison, the model’s unconditional forecasts for GDP growth lead to substantial

relative gains of up to 20 percent relative to the autoregressive benchmark. For h = 0,

the professional forecasters are considerably more accurate (relative RMSFE of 0.65) but

for larger horizons the performance is similar to the unconditional forecasts. The picture

for CPI inflation is similar: the professional forecasters are more accurate than the model’s

unconditional forecast at h = 0 but by a much smaller margin; for h = {1, 2}, the forecasts

from the Reuters Poll are considerably (slightly) worse than the autoregressive benchmark

(the model’s unconditonal) forecasts.

Focusing on how the forecast performance increases when we condition on professional

forecasters’ views on GDP growth and CPI inflation, we find that there are only large differ-

ences in the relative RMSFE between the unconditional and conditional forecasts for h= 0.

Perhaps not surprisingly gains to conditioning arise for those series for which the models

already produce decent forecasts (relative to autoregressive benchmarks) and are mainly

concentrated to series from the national accounts group and - to some extent - indicators

capturing real activity (but not part of the national accounts). For the labor market indica-

tors and CPI and PPI inflation, we find much smaller gains from conditioning. Filled entries

in the above plot correspond to those variables for which the null hypothesis of the Diebold-

Mariano test can be rejected at the 5 percent level in favor of the altnerative that the loss of

the conditional forecasts is lower. This is almost never the case for any of the 37 variables

we consider irrespective of the forecast horizon (Table III.1). At h = 0, i.e. forecasts that

are made in the reference quarter, we reject the null for the gross value added in the trade,

transport and hospitality sector; at h = 2 for gross value added in the trade, transport and

hospitality sector and employment.

III.4.2 Density forecast accuracy

By and large, the results obtained in terms of point forecast accuracy carry over when we

evaluate the entire predictive density. In particular, the performance relative to the bench-

mark as well as the gains from conditioning as measured by the average CRPS are very

similar (Figure III.4). Contrary to the findings for point forecasts, however, we do find

significant differences between the conditional and unconditional forecast performance, at

least for h = {0,1}, again highlighted in the figure by the filled dots. For example, at h = 0
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Figure III.3: Point forecast evaluation

h=0 h=1 h=2

0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25 0.50 0.75 1.00 1.25

0.50

0.75

1.00

1.25

RMSFE, unconditional forecasts

R
M

S
F

E
, c

on
di

tio
na

l f
or

ec
as

ts

activity labor market prices

Note: The figure shows the root mean squared forecast errors (RMSFE) corresponding to unconditional
forecasts (x-axis) and forecasts conditional on professional forecasters’ view on GDP growth and CPI inflation
(y-axis) for different time series. For each series, the RMSFE is relative to an autoregressive benchmark.
Entries above (below) the 45-degree line indicate that conditional forecasts perform worse (better) than the
unconditional ones. Filled points correspond to those variables for which the null hypothesis of the Diebold-
Mariano test can be rejected at the 5 percent level. For details, see the main text.
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Table III.1: Point forecast evaluation

category/horizon h=0 h=1 h=2

activity 1/20 0/20 1/20
labor market 0/4 0/4 1/4
prices 0/13 0/13 0/13
total 1/37 0/37 2/37

The table shows the fraction of times the null hypothesis of
the Diebold-Mariano test is rejected at the 5 percent signifi-
cance level against the one-sided alternative that the condi-
tional forecasts yield a lower loss. For details, see the main
text.

the null of equal predictive accuracy is rejected for a third of all the variables that we con-

sider, mainly concentrated in the activity group. For one-quarter ahead forecasts the number

decreases slightly but for many activity series we still find significant gains (Table III.2).

Figure III.4: Density forecast evaluation
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Note: The figure shows the average continuous ranked probability score (CRPS) corresponding to uncondi-
tional forecasts (x-axis) and forecasts conditional on professional forecasters’ view on GDP growth and CPI
inflation (y-axis) for different time series. For each series, the CRPS is relative to an autoregressive bench-
mark. Entries above (below) the 45-degree line indicate that conditional forecasts perform worse (better)
than the unconditional ones. Filled points correspond to those variables for which the null hypothesis of the
Diebold-Mariano test can be rejected at the 5 percent level. For details, see the main text.

III.4.3 Robustness checks

As a first robustness check, we drop the global financial crisis of 2008-09 from the evalu-

ation sample, to see if the gains in predictive accuracy for point and density forecasts are

also apparent in more tranquil times. Figure III.5 presents the results for the evaluation
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Table III.2: Density forecast evaluation

category/horizon h=0 h=1 h=2

activity 10/20 8/20 1/20
labor market 1/4 1/4 2/4
prices 2/13 0/13 0/13
total 13/37 9/37 3/37

The table shows the fraction of times the null hypothesis of
the Diebold-Mariano test is rejected at the 5 percent signifi-
cance level against the one-sided alternative that the condi-
tional forecasts yield a lower loss. For details, see the main
text.

subsample ranging from 2011Q1 to 2017Q4.

Figure III.5: Robustness check: post-crisis evaluation sample
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Note: The figure shows the root mean squared forecast errors (RMSFE) over the evaluation sample 2011Q1-
2017Q4 corresponding to unconditional forecasts (x-axis) and forecasts conditional on professional forecast-
ers’ view on GDP growth and CPI inflation (y-axis) for different time series. For each series, the RMSFE is
relative to an autoregressive benchmark. Entries above (below) the 45-degree line indicate that conditional
forecasts perform worse (better) than the unconditional ones. Filled points correspond to those variables for
which the null hypothesis of the Diebold-Mariano test can be rejected at the 5 percent level. For details, see
the main text.

Overall, the forecast performance declines markedly relative to the autoregressive bench-

marks but for some series, gains from conditioning still arise. However, for h = {1,2} we

also find that for many series - particularly from the activity group - conditional forecasts

are on average less accurate. Rejection of the null of the Diebold-Mariano test still occurs

but with a fex exceptions, this occurs in cases where the autoregressive benchmark actually

performs better than the factor model. As such, it is fair to say that developments during the

financial crisis exert some influence on the results presented above for the entire evaluation
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sample.

Besides the evaluation period, the results presented above may also be sensitive to the

model specification. In particular, they were obtained under a given number of factors,

R= 2. However, differently specified models yield similar forecast performance. Figure III.6

shows the relative RMSFE of the model with R = 2 on which the results above are based

as well as both smaller (R = 1) and larger (R = 5, 8) models. There is little indication that

model specification systematically alters the forecast performance. Conditional forecasts at

h = 0 for the change in the producer index improve substantially when R = 8 with the

relative RMSFE decreasing by 0.25. To a lesser extent this also holds for the unconditional

forecasts with the relative RMSFE dropping by around 0.1. However, this is the exception

and for other horizons and variables we find much smaller differences in either way. Con-

sequently, the points corresponding to the relative RMSFE for R = 1,5, 8 in Figure III.6 all

hug the 45-degree line, which indicates identical forecast performance, quite closely.

Figure III.6: Robustness check: different R
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Note: The figure shows the root mean squared forecast error (RMSFE) relative to the autoregressive bench-
marks for different number of factors. On the x-axis are the values of the RMSFE for the model with 2 factors
on which the main results are based. On the y-axis are the RMSFE for alternative model specifications, differ-
entiated by colors. Entries above (below) the 45-degree line indicate that the model with 2 factors performs
better (worse) than the alternative models.

III.5 Conclusion

In this paper we assess the forecast performance of factor models in real-time for Germany

covering the period 2006-2017. We contribute to the literature by broadening the horizon of

the forecast evaluation to include a large number of the variables that are used to estimate

98



CHAPTER III. HOW USEFUL IS EXTERNAL INFORMATION FROM PROFESSIONAL FORECASTERS?
CONDITIONAL FORECASTS IN LARGE FACTOR MODELS

the model. In addition, we also investigate to what extent the forecast performance of

the model improves when we incorporate external information in the form of professional

forecasters’ views on GDP growth and CPI inflation. Conditioning on forecasts rather than

actual realized values gives an accurate assessement of the uncertainty around conditional

forecasts that is relevant to policy-makers by capturing both how accurate the model can

summarize the comovement of the time series as well as the accuracy of the forecasts on

which we condition.

Our results show that the factor model produces forecasts for most of the series and

horizons that are as accurate as those from autoregressive benchmarks. In some cases they

outperform the benchmark by a large margin. When conditioning on the forecasts of profes-

sional forecasters for GDP growth and CPI inflation, we generally find some improvements in

forecast accuracy for the variables of interest from categories such as real activity, prices and

the labor market. Only for a smaller number of series, however, do we find that conditioning

produces large gains. Moreover, for point forecasts the differences are statistically insignifi-

cant for virtually all series. When evaluating the predictive densities with the CRPS, we do

find significant gains at h = 0 (h = 1) for around a third (a quarter) of the variables under

consideration. To some extent the results appear to be driven by the large drop in output in

the wake of the Global Financial Crisis. as the forecast performance deteriorates relative to

the benchmark when we shorten the evaluation sample to 2011-2017. On the other hand,

the results are robust to model specification in the sense that increasing or decreasing the

number of factors from R = 2 as in the baseline specification does not systematically alter

the forecast performance.

Lastly, this paper proposes precision-based sampling algorithms for conditional and un-

conditional forecasts in factor models and more broadly state space models with unob-

served components. Treating forecasts as missing observations, the insights in Hauber and

Schumacher (2021) can be obtained directly to obtain draws from the relevant predictive

densities. Simulations document that these algorithms can be more efficient from a com-

putational point of view than simulation smoothers based on the Kalman filter. While the

exact quantitative results of the excercise may vary depending on platform and implemen-

tation, the qualitative results indicate that precison-based sampling algorithms are a viable

alternative in such applications.

Appendix

III.A Data

This Appenix provides detail on the real-time dataset used in the empirical application. The

57 time series can be grouped in to the following categories: activity which includes the

gross domestic product as well as expenditure- and production-side components of output.

In addition, series like industrial production, turnover and orders also form part of this cat-
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egory. The prices category contains the (implicit) deflators corresponding to the chained

volume indices of the national accounts mentioned above as well as consumer and producer

price series. The labor market is covered by series on total employment, wages as well as

hours worked in the industrial and construction sector. These are the series which we focus

on in the forecast evaluation and their vintages are all sourced from the Deutsche Bundes-

bank’s Real-Time Database (RTD). Moreover, to capture the financial side of the economy,

we include series such as interest rates, commodity prices and the CDAX stock market in-

dex. These series are also sourced from the Deutsche Bundesbank’s website. Lastly, survey

indicators are taken from the European Commission’s Business and Consumer Surveys. We

focus on the components of the Economic Sentiment Indicator (ESI) which capture confi-

dence in the industrial, consumer, services, retail trade and construction sectors. In addition,

we also include the employment expectations index (EEI).14 Table III.3 lists the data series

used in the empirical application, the group the indicators belong to, their source as well as

any transformation applied to the series prior to estimation, e.g. whether series are in logs

and/or differenced (diff).

14The series were downloaded on April 27th, 2021 from https://ec.europa.eu/economy_
finance/db_indicators/surveys/documents/series/nace2_ecfin_2106/main_indicators_
sa_nace2.zip
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III.B Gibbs Sampler

This Appendix details how to sample from the posterior distribution of the parameters of the

factor model, p(Θ|y). For the reader’s convenience, I repeat the model description before

discussing the blocks of the Gibbs Sampler. Setting J = 1, P = 2 and S = 0, the following

equations constitute the model:

yt = λ ft + et (III.7a)

ft = φ1 ft−1 +φ2ft−2 +υt (III.7b)

et =ψet−1 + εt (III.7c)

The Gibbs Sampler then cycles through the following blocks to draw from the conditional

posterior distributions15:

Step 1:p(f|y,Θ)
Conditional on the parameters, the factors are drawn from their posterior distribution fol-

lowing the precision sampler outlined in Section III.2.1 of the main text.

Step 2: p(λ|y, f,ψ,Σ)
Given the factors, the observation equations of the model are independent and the loadings

can be sampled variable by variable. Let the prior on the loadings be given by N (0,P−1
λ
)

and let Pei
= (HT

ψ
σ−2

i Hψ)−1 denote the T × T precision matrix of ei, where


















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



IN

-ψi IN

-ψi IN

. . . . . . -ψi IN

. . . . . . -ψi IN .

























Using standard linear regression results (see Kroese and Chan, 2013), the conditional pos-

terior for the i-th equation is given by

λi|· ∼ N
�

mλ
i ,Mλ

i

�

(III.8)

Mλ
i = (Pλ + fTPei

f)−1 (III.9)

mλ
i = Mλ

i (f
TPei

yi). (III.10)

We set Pψ = IR for all variables.

15Initial values for the coefficients Θ are obtained from principal component estimates of the factors.
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Step 3: p(ψ|y, f,λ,Σ)
Conditional on a draw of the loadings, for each series we can back out the idiosyncratic com-

ponents e and updateψ. Given a Normal prior forψi with mean 0 and precision matrix Pψ,

the resulting posterior is given by

ψi·|· ∼ N
�

mψ

i , Mψ

i

�

(III.11)

Mψ

i =

�

Pψ +
1
σ2

i

∑T−1

t=1
e2

i,t

�−1

(III.12)

mψ

i = Mψ

i

�

1
σ2

i

∑T

t=2
e′i,t−1ei,t

�

. (III.13)

For all variables, we set Pψ = 1.

Step 4: p(Σ|y, f,λ,ψ)
Each diagonal elements of Σ can be sampled by drawing from

σ2
i ∼ G−1

 

u+ T − 1
2

,
U +

∑T
t=2 ε

2
i,t

2

!

where u and U are the prior shape and rate. We set u = 3, U = 0.5 so that the prior mean

and standard deviation equal 0.25.

Step 5: p(φ1,φ2|f,Ω)
Let Xt = IR⊗[fTt−1, fTt−2] denote the lags of the factors and X= [X1, . . . ,Xt]. Then given a Nor-

mal prior p(φ) ∼ N (0,P−1
φ
), the coefficients of the factor VAR can be sampled by drawing

from φ|· ∼N (mφ,Mφ) where

Mφ = (Pφ + XT(IT ⊗Ω−1)X)−1, mφ =Mφ(XT(IT ⊗Ω−1)f)

In line with the literature on Bayesian vectorautoregressions, we impose a Minnesota-type

prior on the VAR coefficients. The prior mean is set equal to 0 and the prior precision

increases in the lag length. Specifically, the prior variance of the elements of φ for p = 1 : P
is given by:

Var(φp,i j) =

(

π0
p2 , if i = j
π1
p2 , otherwise.

Common values in the literature are π0 = 0.2 and π1 = 0.1, thus shrinking coefficients on

the lags of other factors stronger towards 0.
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III.C Computational efficiency analysis

This Appendix compares the computational efficiency of the precision-sampling algorithms

outlined in the main text to simulation smoothers such as Carter and Kohn (1994) and

Durbin and Koopman (2002) that rely on the Kalman-filter and are commonly used in the

literature. Previous work in this area has analyzed the computational advantages of such

simulation smoothers compared to the algorithms for conditional forecasting given in Wag-

goner and Zha (1999) in the context of a vector autoregressions (Banbura et al., 2015);

McCausland et al. (2011) analyzes the performance of precision-based samplers in the con-

text of a time-varying parameter regression and dynamic factor models and compares the

performance to the Durbin and Koopman (2002) simulation smoother.

The focus lies on both small factor models with N = 20 variables and R = 2 factors as

well as two variants of larger factor models with N = 100 , R = 2 (large N factor model)
and N = 100 , R = 2 (large factor model). We evaluate the runtime of obtaining 100 draws

from the predictive density p(y f |y o, y c) given a sample size T = 100 and forecast horizons

H = {5, 20,50} conditional on a share κ = 0.1 of the observables (hard conditioning).16

Furthermore, we also consider the costs of producing repeated samples from the predictive

density given the parameters as would be the case when on top of the conditioning set

yc = [y1,T+1, . . . , yκ·N ,T+1, . . . , y1,T+H , . . . , yκ·N ,T+H]

restrictions are imposed on the remainining observables to lie within a prespecified range

(soft conditioning).

The dynamics of the factor model outlined in Section III.2 are given by a VAR(1) with

parameters φ1 = 0.7 · IR and Σ= IR. The elements of the loadings on the contemporaneous

factors λ0 are drawn from independent Normal distributions with mean 0.5 and variance

0.1; all remaining loadings are set to 0, i.e. K = 0. Setting J = 0, the idiosyncratic com-

ponents are i.i.d and ωi is chosen such that the common component - λ0,i·ft - explains 2⁄3 of

the total variation in the i-th variable.

Details on the implementation of the Carter and Kohn (1994) and Durbin and Koopman

(2002) simulation smoothers are provided in Appendix III.D.

Each model is simulated 10 times.17 Figure III.7 shows the relative runtime for hard (left

column) and soft (right column) conditioning as boxplots. The precision-based algorithms

performs compared to the Kalman-filter based simulation smoothers for all horizons, with

gains in computational efficiency up to a factor of 10. When repeated draws from the

predictive density are required as in the case of soft conditioning, the gains in computational

efficiency are much larger.

16The size of the conditioning set does not have a large impact on the relative runtime and in the interest
of space I do not report results for κ= {0.5,0.75}. They are available upon request.

17The simulations were run using Matlab2020a on an Intel Core i5 2.3 Ghz with 8 GB of RAM. To time the
execution of the code, we used the function timeit().
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Figure III.7: Computational efficiency analysis of different simulation smoothers
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Note: The figure shows the time it takes to generate draws from the predictive density p(yf |yo,yc) for
different forecast horizons H using the Carter and Kohn (1994) and Durbin and Koopman (2002) simula-
tion smoothers relative to the precision sampler outlined in the main text. The conditioning set yc con-
sists of the first 0.1 · N variables (left column). For the small factor model, the number of variables is
N = 20 and the number of static factors is R = 2; for the large N factor model, the number of variables is
N = 100, while the large factor model also has R= 10. The runtime measures the entire procedure of generat-
ing a draw from the predictive density, including building the system matrices. For the precision-sampler this
includes the costs of setting up the permutation matrices which is incurred only once. In the case of soft con-
ditioning (right column), the runtime of producing 100 draws given the same parameters is reported. For de-
tails, see the main text.
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III.D Kalman-filter based simulation smoothers

This appendix provides details on the Carter and Kohn (1994) and Durbin and Koopman

(2002) simulation smoothers that are used in the simulations in Appendix III.C. Although

both the Carter and Kohn (1994) and Durbin and Koopman (2002) simulation smoothers

rely on the Kalman filter and smoother to produce a draw from the conditional distribution

of the states, there are important conceptual differences between the two.

Let at|s = E[αt |y1, . . . ,ys] and Pt|s = Var[αt |y1, . . . ,ys] denote the conditional mean and

variance of the state at time t conditional on information up to time s which can be obtainted

from the Kalman filter or smoother. In addition, let at denote a draw from the conditional

distribution p(αt |y1, . . . ,yT+H).

Carter and Kohn (1994) simulation smoother

Given the parameters of the state space modelΘ and at|t , Pt|t∀t = 1, . . . , T+H, the algorithm

in Carter and Kohn (1994) generates aT+H from

p(αT+H |y1, . . . ,yT+H)

with

E[αT+H |y1, . . . ,yT+H] = aT+H|T+H

Var[αT+H |y1, . . . ,yT+H] = PT+H|T+H .

For t = T +H − 1, . . . , 1 at is generated from p(αt |yt , at+1). For details on how to derive

the moments of the conditional distributions given the output of the Kalman filter, see the

original paper as well as the textbook treatment in Kim and Nelson (1999).

Durbin and Koopman (2002) simulation smoother

The Durbin and Koopman (2002) simulation smoother produces a draw from the condi-

tional distribution of the states by first simulating the state space model in Equation III.5,

producing a draw from the joint distribution of states and observables

p(α1, . . . ,αT+H ,y1, . . . ,yT+H).

Denote this joint draw by a+1 , . . . , a+T+H , y+1 , . . . , y+T+H . Running the Kalman smoother

recursions yields at|T+H and a+t|T+H where a+t|T+H = E[α+t |y
+
1 , . . . , y+T+H]. By setting at =

at|T+H − a+t|T+H + a+ adjusts the mean of a+t to yield a draw from the desired conditional dis-

tribution. In practice, it is more efficient to first construct y∗ = y − y+ and run the Kalman

smoother only once, yielding a∗t|T+H = E[a∗t |y
∗]. A draw from p(α1, . . . ,αT+H |y1, . . . ,yT+H) is

then obtainted by setting at = a∗t|T+H+a+t . Note that since only an estimate of the smoothed
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mean of the states is required, more efficient smoothing recursions can be employed which

do not require the storage of at|t and Pt|t (see Durbin and Koopman, 2002, ch. 4.4.2).

Drawing from the (conditional) predictive density p(y f |I ,Θ)

Under the common assumption of uncorrelated measurement errors, draws from the pre-

dictive density p(y f
t | at , y o, y c,Θ) can be obtained by sampling the measurement errors in-

dependently from N (0,ωi)∀i such that yi,t /∈ yc,t and adding them to the draw of the state

vector (see Banbura et al., 2015, for the general case of a full covariance matrix Ω). For the

Durbin and Koopman (2002) simulation smoother the generated artifical observations y+

can be re-used, since Fa∗t|T+H + y+t is a draw of the observations conditional on the sampled

states.

Multiple draws from p(y f |I ,Θ)

Additional draws from the (conditional) predictive density given the same set of parameters

Θ can be produced recursively from the Carter and Kohn (1994) simulation smoother by

independently sampling at as many times as required and conditioning on the draw to gener-

ate y f
t . In the case of the Durbin and Koopman (2002) simulation smoother, each additional

draw requires new simulated values of the states and observations, a+1 , . . . , a+T+H , y+1 , . . . , y+T+H .

Given these, the entire filtering and smoothing recursions need to be re-run. However, com-

putational savings still arise as the state covariances Pt|t and functions thereof that are cal-

culated during the recursions do not depend on the observations. As such they only need be

calculated once and can be passed on to subsequent runs of the Kalman filter and smoother

(Durbin and Koopman, 2002, p. 606).

Initialisation

The Kalman filter is initialized by setting a1|0 and P1|0 equal to the unconditional mean and

variance, respectively, of the factor VAR.
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