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Abstract
The algebraic reformulation ofmolecular QuantumElectrodynamics (mQED) atfinite temperatures
is applied toNuclearMagnetic Resonance (NMR) in order to provide a foundation for the
reconstruction ofmuchmore detailedmolecular structures, than possible with currentmethods.
Conventional NMR theories are directly related to the effective spinmodel, which idealizes nuclei as
fixed points in a lattice 3. However, the delocalization of spins due to the thermal energy ismore
realistically described by the amplitude square of the nuclear wave function |Ψβ(X)|2 with Î X n3 ,
instead offixed points in 3. In addition, the phenomenological integration of thermalization only
allows an investigation of themolecular structure based on the position of the punctiform center of an
NMR signal, but not based on thewidth and shape ofNMR signals. Hence, a lot information on
molecular structures remain hidden in experimental NMRdata. In this document it is shownhow
|Ψβ(X)|2, Î X n3 can be reconstructed fromNMRdata. To this end, it is shown howNMR spectra
can be calculated directly frommQEDatfinite temperatures without involving the effective
description. The newmethod connects all data points—the positions, widths, heights and shapes—of
NMR signals directly with themolecular structure, which allowsmore detailed investigations of the
underlying system. Furthermore, it is shown that the presentedmethod corrects wrong predictions of
the effective spinmodel. The fundamental problemof performing numerical calculationswith the
infinite-dimensional radiation field is solved by using a purified representation of aKMS state on a
W*-algebra. It is outlined that the presentedmethod can be applied to anymolecular systemwhose
electronic ground state can be calculated using a common quantumchemicalmethod. Therefore, the
presentedmethod can replace the effective descriptionwhich forms the basis forNMR theory
since 1950.

1. Introduction

Advances in chemistry, pharmacy, structure-based drug design andnanoscience often depend on the detailed
knowledge of amolecular structure, which is determined by the spatial distribution of the nuclei [1]. In
particular, the pharmacological properties of drugs depend heavily on small details of the charge distribution in
themolecular structure [2]. In 1946, the experimental technique ofNuclearMagnetic Resonance (NMR)
spectroscopywas developed, which is nowadays one of themost used andmost advancedmethods formolecular
structure determination [3, 4]. NMRdata contain highly detailed information on the spatial distribution of the
nuclei including binding lengths, binding angles, bond rotations,molecular vibrations, proton exchange and the
electronic influence of neighboringmolecules [5]. From1950 to 1953NormanRamsey calculated the chemical
shift observed inNMR from the energy of the ground state, equation (2), and thus laid a foundation for today’s
NMR theory for structural analysis [6–9]. However, even 74 years after the invention ofNMR,much
information aboutmolecular structures cannot be decoded and remains hidden in experimental NMRdata.
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This concerns especiallymolecular structures where the positions of the nuclei cannot adequately be described
asfixed points in space. Due to thefinite temperature the nuclei of amolecule are generally distributed in space
to all positionswhich are accessible through thermal energy. Such delocalization ismade possible in particular
by bond rotations,molecular vibrations and proton exchange. Thus, a change of the temperature causes
interconversions of superpositions of different conformations of amolecule. This has two effects onNMR
signals, which typically have the shape of a Lorentz function: The position as well as thewidth (shape) of the
NMR signal is influenced [10–12]. Delocalization of protons due to exchanging protons shows both effects on
the signals as well.While the effects on the position of the signal can be investigated based on the electronic
structure usingmodernmethods of quantum chemistry [6, 13], modernNMR theory is so far unable to directly
connect the shape of theNMR signals with the electronic structure [14–17]. Conventional NMR theory used for
line shape analysis is highly phenomenological andmainly based on notions of Classical Physics. For example,
bond rotations are described such that the nuclei rotate with a certain frequency and hence have time-dependent
positions. Such concepts are integrate in conventional NMR theory in the formof rate constants. This is similar
for proton exchange. However, in themore realistic theory ofQuantumStatisticalMechanics bond rotations are
included inwave functionsΨβwhose amplitude square |Ψβ(X)|2 provides the continuous probability distribution
tofind the nuclei with conformationX. Thus, the description of delocalized nuclei using a spatial probability
distribution |Ψβ(X)|2 is obviouslymore realistic andmore detailed compared to an idealization as fixed point
particles in combinationwith phenomenological rate constants.

However, conventional NMR theories are based on or are directly related to the effective spinmodel,
equation (1), which idealizes nuclei as point particles atfixed positions xi andwhose thermal states are almost
independent from the temperature [6–9]. The effective spinmodel had certainly great success over the last
decades [18], but it also suffers from the fact that delocalization of nuclei due to bond rotations, vibrations and
proton exchange can only be included phenomenologically [19, 20]. The phenomenological description in the
formof rate constants gives a rough insight into these effects [21], but it also prevents a desirable analysis of the
more realistic, continuous probability density |Ψβ(X)|2 for the spatial distribution of the nuclei. The effective
model [22, 23]
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contains themagnetic shieldingσi, which is caused by surrounding electrons. Themagneticmoments of these
electrons show into the opposite direction of the externalmagnetic field and henceweakens the external field at
the position of a nucleus. The indirect spin-spin couplings Jij are also caused by electrons and enable energy
exchange between nuclei at i and j. The tensorDij describes themagnetic dipole-dipole interactions between the
nuclear spins


Ii and


Ij,

Bext is a classical, externalmagnetic field and γ is the gyromagnetic ratio [6, 24]. In the

mostwidely used approach the effective parameters are calculated according to second order derivatives of the
ground state energy (Taylor-expansion) [6–9, 25]:
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During the last decades therewere donemanyworks on the optimization of equation (2) by including relativistic
[26–28] andQEDeffects [29–32] to the effectiveNMRparameters. Also numericallymore efficient alternatives
were introduced [33, 34]. All these effects are integrated in the formof corrections to the effective parametersσ
and J and are therefore still inside the effective descriptionwhich possesses a discrete energy spectrum. This is the
same for the integration of the temperature [13], where the correctionsΔβσ andΔβJ are calculated according to

∣ ( )∣ ( ) ∣ ( )∣ ( ) ( )ò òs s sD = Y - D = Y -b b b bd X X X J d X X J X Jand . 3n n3 2
eq

3 2
eq

HereΨβ is the nuclear wave function andσeq as well as Jeq are the values at the equilibrium geometry, which
corresponds to the configuration of lowest energy of the potential energy surface (PSE) and can be calculated
according to equation (2). Themultiplication operatorsσ(X) and J(X) give just the values of the corresponding
effective parameters for the positions (configuration)X of the nuclei. The valuesσ(X) and J(X) are calculated also
according to equation (2) except that the configurationX is not the point of lowest energy in the PSE.Hence, this
approach is able to analyze the impact of the temperature on the position of anNMR signal but not on the shape
of anNMR signal. A detailed discussion on the similarity and differences of this approach to the presented
approach is given in the appendix. To this end, conventional NMR theory strongly requires phenomenology
which does not connect themolecular geometry but phenomenological parameters with the line shape.We do
not describe thesemethods here in detail but refer to the literature [15–17, 35]. In order to obtain any line shape
offinite width from the Fourier transformation of the nuclear spin dynamics—as it is done inNMRexperiments
—thermalization of the nuclear spinsmust be contained in the calculated spin dynamics.However, the unitary
dynamics generated by (1) has bad thermalization properties because theHamiltonian has a discrete energy
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spectrum. Small systems consisting of a few spins does not thermalize at all and larger systems thermalize only
approximately in very specific cases [36]. In order to include return to equilibrium (thermalization) anyway [37]
the vonNeumann equationwasmodified phenomenologically by introducing relaxation superoperatorsΓ
[38, 39]:

( ) [ ( )] ( ( ) ) ( )r
r r r= - - G -


d t

dt

i
H t t, . 4eff 0

Thefinal state ρ0 towhich the system shall evolvemust be chosen ”by hand”. Certainly, it is preferable when the
correctfinal state is an outcome and not an input of a theory. In all thesemethods, themicroscopic origin of
NMR line shapes is completely neglected and replaced by phenomenological parameters like rate constants k or
relaxation parametersT1 andT2. To conclude, in conventional NMR theory only some data points of theNMR
spectrum—the positions of theNMR signals given byσ and J - are directly connected to themolecular geometry
while the line shapes have so far no direct connection to the underlyingmolecular geometry. Line shapes are
described phenomenologically. This is basically due to the fact that thermalization is included phenomenologi-
cally by equation (4) instead of coupling the spins to the quantized electromagnetic field atfinite temperatures.

Illustrative examples where all data points—whichmeans also thewidth of theNMR signals—contain
important information on the underlying structure andwere a description just in formofσ and J is incomplete
are shown infigure 1(a). In the realmolecule (which is furfural in this example) all bond angles can be occupied
via bond rotations (b).We know fromquantummechanics that every bond angle has a specific energy and the
laws of thermodynamics provide the information aboutwhich of these bond angles are preferably occupied.
Conventional NMR theory like the Bloch-McConnell equations, however, simplifies themolecule usually by
using two different structures withfixed point positions for the nuclei and a rate constant k (left side (c) in
figure 1). This rate constant describes the time required for themutual conversion of these structures. Hence, the
important informationwhich bond angles aremore andwhich are less preferred at a given temperature
(compare alsofigure 7) cannot be decoded from experimental NMRdata by using conventional NMR theory.
This is because a description of the changes in theNMR spectrum just in terms of the positions of theNMR
signals is incomplete. In the case of furfural, also the line shapesmust be connected to themolecular structure in
order to obtain a complete structure investigation.Otherwise not all details of themolecular structure can be
decoded using conventional NMR theory such that they remain hidden in the experimental data. This is similar
in the case of proton exchange (right side offigure 1, (d), (e) and (f)).

In this document it is shownhow the probability distribution |Ψβ(X)|2 for the positionsX of the nuclei can be
analyzed and reconstructed fromNMR spectra. To this end, it is shown how theNMR signal can be calculated
directly frommolecular QuantumElectrodynamics (mQED) atfinite temperatures without using the effective
spinmodel or effectiveNMRparameters. Hence, the presentedmethod can be used to obtain amore detailed
molecular structure fromNMRdata than currently possible with conventional NMR theory.Mathematically,
thismeans that the lattice L, which serves for the restricted positions of the nuclei in the effective description, is
replaced by the continuous space 3 inwhich the nuclei can be distributed continuously. A reconstruction of
|Ψβ(X)|2 fromNMRdata is of special interest, because inmost cases it is not possible to solve the nuclear
Schrödinger equation. An outlook how amore detailed structure determinationmay look like is presented in
section 8.

However, up to now it was not known how the spin dynamics can be calculated numerically when the spins
interact with the infinitely dimensional, quantized electromagnetic field (EMF)with a continuous spectrum at
finite temperatures. Two basic reasons for that are the occurrence of divergences in perturbation series and the
infinite number of field quanta involved infinite temperatureQEDprocesses. In certain cases onemay avoid the
numerical andmathematical problems related to quantizedfields atfinite temperatures by using the ground
state instead [40, 41]. However, inNMRat room temperature the nuclear spins are far away from their ground
state and the temperature of the quantized electromagnetic field determines the temperature of the final state of
the nuclear spins after equilibration [42]. Hence, the approach of using a ground state for the quantized EMF is
obviously unsuitable forNMRat room temperature. There are several works on amethod called Thermo Field
Dynamics (TFD) [43–45]which is about quantizedfields atfinite temperatures.While this approach is widely
used it also involves a large number offield quanta in the construction of the thermal vector stateΩβ.
Furthermore, in TDF the stateΩβ is constructed using a discrete set of energy values En. An extension of the TFD
methods to the continuous case is not possible. The use of a discrete energy spectrum for the quantized EMF and
the limitation to a few (usually 1-100) frequencies is the common approximationmade in current numerical
methods. The discrete spectrumdrastically simplifies themathematical structure. No numericalmethodwas
found in the literature that uses a continuous energy spectrum for the quantized EMF to calculate the spin
dynamics.However, as it turns out later in this document a discrete spectrumdoes not lead to satisfying results
in the calculation ofNMR spectra. Indeed, the incorporation of a continuous spectrum for the quantized EMF is
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of paramount importance for theNMR linewidthwhich is directly relatedwith return to equilibriumproperties
and determines the life time of excited spins.Hence, TFD is unsuitable for the calculation ofNMR spectra.

In the present document the following problems for numericalmethods are solved by using the
mathematical structure from algebraicQuantumField Theory [42, 46–51]:

(I) Numerical calculations with the infinite-dimensional, quantized EMF atfinite temperatures.

(II) Numerical calculations with a continuous energy spectrum for the quantized EMF.

(III) Convergence of theQEDperturbation series.

Recent works investigated and avoided the occurrence of divergences by using appropriate smearing functions
[42, 52, 53]. It remained to showwhich effect these restrictions have on expectation values, whichwill be done in
this work. Recently, a perturbation series for interacting,massive quantumfields was constructed by
Fredenhagen and Lindner [49]. This approach solved a long-standing problem and its extension to theDirac
field is of interest for relativistic effects fromheavy nuclei inNMR. Further important structural developments
were achieved in [54]. In this document it is shown that a purified formof theAraki-Woods representation [55],
denoted by ( )H pb,AW AW , enables the numerical calculations involving bosonicfields atfinite temperatures with
striking advantages: In each order of the perturbation series atmost one ”Araki-Woods boson” is produced

Figure 1. Limitations of conventionalNMR theory:NMRdata contain information about the bond angles of furfural at different
temperatures [11, 12]not only in the positions of the peaks (σ1 andσ2), but also in the shape of the peaks (a). The relative heights and
shapes of the signals are directly relatedwith (unequal) occupation probabilities of the continuous bond angle q Î which can
change due to bond rotations (b). Thus, a detailed description is that each bond angle θ is occupiedwith a certain probability |Ψβ(θ)|2.
However, in conventional NMR theory (c) this situation is simplifiedwith twofixed structures (which allows just two bond angles)
with fixed points for the positions of the spins and a rate constant k describing the time required for the interconversion of these two
structures. The idea, that the bond (marked by the curved red arrow) is rotatingwith a certain frequency, is based onClassical Physics.
Thus, in conventional NMR theory onlyσ1 andσ2 are directly relatedwith themolecular structurewhile k is used for a
phenomenological fit to reproduce the line shapes. Any attempt to describe the changes in (a) from195K to 240K by using just two
numbers (σ1 andσ2) is incomplete [11] in view of the electronic structure. Therefore, with conventional NMR theory, only some, but
not all, of the data points can be used for structure determination. This is similar for proton exchange (d, e). TheNMR signal of the
COOHproton of pyruvic acid becomes significantly broader if an exchangewith other labile protons takes place (here propargyl
alcohol). Quantum chemicalmethods can only associate the shift of the signal with a change of the electronic structure. The change of
the shape of the signal is so far investigated phenomenologically (f) in the form of a rate constant k andfixed structures for the
molecules. In summary, the occupation probability of certain bond angles at a given temperature cannot be decoded from
experimental NMRdata by using establishedNMR theories. In addition, changes in the probability distributions caused by proton
exchange can be investigatedwith conventionalmethodswith only some, but not all, data points of theNMR spectrum. Thismotivates
the use of the algebraic reformulation ofmQEDatfinite temperatures to getmore detailed insights intomolecular systems (see also
figure (7)).
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while small coupling constants, connecting spins and the quantized electromagnetic field, reduce higher order
contributions. The representation ( )H pb,AW AW rigorously respects the continuous energy spectrumof the
quantized electromagnetic field atfinite temperatures and reduces the required computational resources for
numerical calculations strongly. To summarize, this document shows that the application of the algebraic
reformulation ofmQED toNMRoffers the following advantages over conventional NMR theory:

(I) The drawback of a nearly temperature-independent initial state from which conventional NMR theory
suffers (effective spinmodel) is repealed. Instead, the temperature-dependent probability density for the
spatial distribution of the nuclei (the amplitude square of the nuclear wave function) can be used directly for
the calculation of the spin dynamics.

(II) In contrast to conventional NMR theory, the presented method directly connects all data points of the
NMR spectrumwith themolecular structure. Thismeans that there is a direct and causal connection
betweenNMR line shapes and the investigatedmolecular structure. Hence, no phenomenological
parameters prevent the reconstruction of the spatial distribution of delocalized nuclei. This is due to the
natural (not phenomenological) thermalization [42, 56] of the spin dynamics inmQED.

(III) The above points (I) and (II) basically enable a much more detailed reconstruction of the molecular
structure contained inNMRdata than possible with establishedmethods.

(IV) Molecular rotations, vibrations and proton exchange are included in the probability density for the spatial
distribution of the nuclei. Hence, the simplification that the positions of nuclei are restricted tofixed points
is repealed in the calculation of the spin dynamics.

2.Molecular quantum electrodynamics

In order to use the perturbation theory developed byAraki, Bratelli, Robinson andKishimoto theHamiltonian
will be separated intoH=H0+HInt. The physical systemwill be described by a combination of a Pauli-Fierz
and a generalized Spin-Bosemodel inCoulomb gauge [52, 56]. The resultingmolecularQEDHamiltonian is
given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ · ( ) ( ) ( ) ( )

( )

       

òå å å å åg m w= - + + + + +
l

l l
= = = = =




H I B d k k a k a k
p

m

P

M
V X X

2 2
,

5

j

K

j j
i

E

i
i

E
i

j

K
j

j
0

1 1
J ext

1,2

3

1

2

e 1

2

e
3

*

and

⎛
⎝⎜

⎞
⎠⎟· ( ) ( ) · ( ( )) · ( ) ( )

          
å åg m= - +  + -j j j j
= =


H I B x i

e

m
A x

e

m
A x B x

2
. 6

j

K

j j j
i

E

i i i i iInt
1 1 e

e e 2

e

e 2
J

e

Thefirst term inH0 couples theKnuclear spins

Ij and theE totalmagneticmoments ( )  
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of the electrons to the classical, externalmagnetic field

Bext. For highfield strengths of the externalmagnetic

field, i.e., >B 3Text
z , spin–orbit couplings can be neglected due to the Paschen–Back effect. The second term

describes the energy of the quantized, electromagnetic field. ( )
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Zj is the number of protons in nucleus j,


xi
e is the coordinate of electron i and


xj of nucleus j. xij

e and xij are the
distances between electrons or nuclei and the other constants can be found in the literature [57].HInt couples the
independent terms and enables energy exchange between the nuclear spins and the rest of the system.Weuse the
definition ( ) ( )

 

 

=j jA x A x , 0j j0 and for the quantized vector potential the free time evolution provides
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where ( )j Î L2 3 is the coupling functionwith suitable IR andUVbehavior [56–58] to prevent divergences in
the individual terms of the perturbation series. The presentedmodel is independent of a specific choice of the
polarization vectors. Using the notation ( ) ( ( ))  

w= =x x t k k k, , , and Einstein’s sum convention
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Since the commutator function is linked to the Feynman propagator wewill have the interpretation for the
probability for the propagation offield quanta between the nuclear spins located at x and y.

3. Algebraic quantumfield theory

Operator algebras are central objects in the algebraic reformulation ofQuantumStatisticalMechanics and
QuantumField Theory. Several structural elements of operator algebras are required for the numerical
calculations in the application ofmQEDat finite temperatures toNMR. Themost central objects of operator
algebras are briefly reviewed from [46] and [47] before the Field Theory is described. Furthermathematical
structures that are required for the numerical calculations can be found in the appendix.

Basics ofOperator Algebras.The commutant of an algebra A is denoted by A¢ andwe have ( )A A¢ ¢ = ¢¢.
The set of bounded operators on aHilbert space H is denoted by ( )B H .

Definition 1.A vonNeumann algebra on aHilbert space H is a *-subalgebraM of ( )B H such that

( )M M= . 13

The terminologyW*-algebra is often used for the abstractly defined algebra and then the name vonNeumann
algebra is reserved for the operator algebras. Note that a C*-algebra is a closed set in the norm topology and a
W*-algebra is weakly closed. A bounded observableA is a selfadjoint element of a C*- or aW*-algebra A. A
stateω is a positive, normalized, and linear functional on A, i.e., Aw Î *, where A* is the dual of A. An
expectation value is given by

( ) ( ( ) ) ( )w y p y= w w wA A, , 14

where ( )A B Hp w: and Hy Îw w. The indexω on yw, w and pw denotes the association of the
representation ( )pw w , and the vector yw with the stateω. However, wewill neglect this index for simplicity
because no confusion can appear. The space Hw is called the representation space and the operator examples

( )p A are called the representatives of A. A *-isomorphism of an algebra A into itself is called a *-automorphism
τ. The time evolution of a physical system is given by a one-parametric group of *-automorphisms tt , which is
generated by a derivation δ. Thus, the derivation δ contains the information of theHamiltonianH and one
formally has ( ) ( ) t = dA A e At

t
.

Definition 2.AW*-dynamical system is a pair ( )M t, , whereM is aW*-algebra and ( )Mt G: Aut ,
 tG g g is a weakly continuous representation of a locally compact groupG as *-automorphisms acting

onM.

Note that aC*-dynamical system ( )A t, is defined in a similar fashion. In this case A is aC*-algebra and τ is a
strongly continuous representation of a locally compact group as *-automorphisms acting on A. In order to
proceedwith equilibrium states we define the strip { ∣ ( ) }I b= Î < <b S z z0 .

Definition 3. Let ( )A t, be a C*- or aW*-dynamical system. A state wb on A, supposed to be normal in the
W*-case, is a ( )t b, -KMS state for some b Î + if the following holds. For any AÎA B, there exist a function

( )bF A B z, ; which is analytic on the strip Sβ, continuous on its closure and satisfies theKubo–Martin–Schwinger
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condition
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on the boundary of Sβ.

Description of thefield theory. A single photon is described as a square integrable function
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Hilbert space H is called the 1-particle Hilbert space. The n-particle Hilbert space Hn is given by the n-fold tensor
product of Hwith itself, i.e., H H H H= Ä Än . The projection H H=+ +P n n [47] onto totally symmetric
n-particle wave functions reflects that the particles obey the Bose–Einstein statistics. The photon Fock-space is
then defined by

( ) ⨁ ( )F H H=+
=

¥

+. 16
n

n

0

with vacuum ( )F HW Î +0 . The smeared creation and annihilation operators are defined by

( ) ( ) ( ) ( ) ( ) ( ) ( )
   

ò ò= =l l l l l l l la f d k f k a k a f d k f k a kand 173 3* * *

for HÎf . ( )


la k* and ( )


la k satisfy the commutation relations in equation (7), which translates to

[ ( ) ( )] ∣ [ ( ) ( )] [ ( ) ( )] ( )d= á ñ = =l l l l l l l l l l l l l l l l¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢a f a g f g a f a g a f a g, and , , 0 18,* * *

with

∣ ( ) ( ) ( )
 

òá ñ =l l l l
f g d k f k g k . 193

3

Afield operatorΦ( f ) is given by

( ) ( ( ) ( )) ( ) åF = +
l

l l l l
=

f a f a f
1

2
20

1,2

*

and the notation for the quantizedmagneticfield in section II, equation (10), is recovered by
( ) ( )( ) 

º Fj
a

j
aB x t b, x t

0
, withα= x, y, z. According to equation (10) the functions ( )

jl
a  b :x t, 3 are given by

( )
( )

( ( )) ( )

( )
( )( )


    




p
j

w
a= ´ =jl

a
l

a - m
m




k b k i k k
k

k
e

2
and x, y, z. 21x t ik x,

0
3

Since thefield operators are unbounded one introduces the boundedWeyl operators

( ) ( ( )) ( ) ( ) ( ) ( )( ∣ )I H= F = +- á ñW f i f W f W g e W f gexp , satisfying . 22i f g

In order to rigorously define equilibrium states the one-particleHilbert space has to be restricted by
{ }H H Hw= Î Î-f f;r 1 2 , which ensures a suitable infrared behavior. This basicallymeans to ”reduce or

neglect” extremely low energetic photons.However, in this document no infrared divergences were found in the
numerical calculations and the restriction of j

ab x to Hr can be chosen such that the influence of the restriction on
the expectation value is arbitrarily small.We define aC*-algebra AEM for the quantized electromagnetic field by

( ) { ( ) } ( )·
A H H  = = Î W f fspan ; , 23EM

r r

where the closure is taken in the uniformnorm P · P for bounded operators on the bosonic Fock space ( )F H+
r .

The dispersion relation is given by ( ) ∣ ∣
 

w =k c k where c is the speed of light and the free fieldHamiltonian is
given by

( ) ( ) ( ) ( ) ( )
  

òåw w= G º
l

l l
=




H d d k k a k a k . 24EM
1,2

3
3

*

dΓ(ω)provides an infinitesimal generator δEM, formally given by δEM= [HEM, · ], that generates the one-
parameter group { }t Ît t

EM for the quantized electromagnetic field.

TheGNS-representation ( )H pb,AW AW which is induced by the (τEM,β)-KMS state wb
EM on AEM was found

byAraki andWoods [55] and is therefore referred as Araki-Woods representation. The representation space is
given by

( ) ( ) ( )H F H F H= Ä+ + , 25AW
r r

the annihilation operators are given by

( ( )) ( ) ˆ ˆ ( ¯ ) ( )p r r= + Ä + Äb
l l l b l l b la f a f a f1 1 1 26AW *
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and the creation operators are given by

( ( )) ( ) ( ¯ ) ( )p r r= + Ä + Äb
l l l b l l b l
* *a f a f a f1 1 1 . 27AW

^ ^

The function ρβ is a physical input which ensures that Planck’s law for the thermal radiation density andBose–
Einstein statistics is satisfied andwe have

( ) ( )
( )


r =
-

b bw
k

e

1

1
. 28

k

The vector representative Wb
AW of wb

EM is cyclic and separating for theweak closure ( )Ap ¢¢b
AW EM of AEM and it

turns out that ( ( ) { ◦ } )Ap p t¢¢b b
Î, t tAW EM AW

EM is aW*-dynamical system [42]. Using ( )H pb,AW AW it can be
derived that

( ( ( ( )))) ( ( ( ))) ( ( ) ( )( ( ))

( ) ( ) ( )) ( )

( ) ( )

( ) ( )

    

  

 

 

å òw t t r

r

F F = +

+

b
j
a

j
g

l
jl
a

jl
g

b

jl
g

jl
a

b

=
b x b y d k b k b k k

b k b k k

1

2
1

. 29

z z
x z y z

y z x z

EM
EM EM

1,2

3 , ,

, ,

2 1 3
2 1

1 2

For later purpose we define themagnetic quantum exchange m ´ ´ ´ ´ jb
ag    Z Z: 3 3 3 with the

stripZ= [0,∞ )× [0, iβ) in the complex plane  by

( )

( ) ( ) ( ( ) ( )( ( )) ( ) ( ) ( )

( ) ( )( ( )) ( ) ( ) ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m
  

   


     

     

   

   

å r r

r r

= + +

+ + +

jb
ag

l
jl
a

jl
g

b jl
g

jl
a

b

jl
g

jl
a

b jl
a

jl
g

b

=

30

x z y z k x z y z k b k b k k b k b k k

b k b k k b k b k k

, , , , , , , ,
1

2
1

1 .

x z y z y z x z

y z x z x z y z

2 1 2 1
1,2

, , , ,

, , , ,

2 1 1 2

2 1 1 2

The following useful symmetry is valid: ( ) ( )m m
     

=jb
ag

jb
agx z y z k x z y z k, , , , , , , ,2 1 1 2 . In applications toNMR it

turns out that the family { }mjb
ag

a g=, x,y,z takes a central role for the strength and occurrence of themagnetic
shielding (chemical shift) and determines return to equilibriumproperties.

4.Quantum spin systems and spin boson systems

In the perturbation series used in this documentQuantumSpin Systems (QSS) occur as subsystems of Spin
Boson Systems (SBS)while SBS occur as subsystems of themQED systems.

QuantumSpin Systems.Themathematical framework forQSS is taken from [47, 59]. A quantum spin
system consists of particles on a lattice d.We associate with each point Î x d aHilbert space Hx of dimension
2s(x)+ 1 andwith afinite subset { }l = ¼ Ì x x, , v

d
1 we associate the tensor product space ⨂H H=L

ÎLx
x

i

i
. The

lattice can be equibedwith ametric d( · , · ). The local physical observables are contained in the algebra of all
bounded operators acting on HL, that is the localC

*-algebra ⨂ ( )A @L
ÎL

+M
x

s x2 1

i

i
inwhichMn denote the algebra

of n× n complexmatrices. If L Ç L = Æ1 2 , then H H H= ÄÈL L L L1 2 1 2
and AL1

is isomorphic to the

C*-subalgebra ˆA ÄL L1
1 2

of A ÈL L1 2
, where ˆL1

2
denotes the identity operator on HL2

. IfΛ1⊆Λ2 then A AÍL L1 2

and operators with disjoint support commute, i.e. [ ]A A =L L, 0
1 2

whenever L Ç L = Æ1 2 .Wemay define the
algebra of ”all local observables” as ⋃A A=

LÌ
L


loc

d

. The operator normof an element AÎ LA is given by

{ }H     = Y Y Î Y =LA Asup ; , 1 . An interactionΦ is defined to be a function from afinite subset
Ì X d into the hermitian elements of A such that ( ) AF ÎX X . TheHamiltonian associatedwith the regionΛ

is then given by

( ) ( ) ( )åL = FF
ÍL

H X . 31
X

An interaction of a spinwith a classical, externalmagnetic field [36, 60–62] is given by

({ }) · ({ }) · ( )
   

g
m

F = F =


j I B i g S Bfor nuclear spins and for spins of electrons. 32j j iext S
B

ext

AnNMRpulse induces a time-dependent interaction Pt involving spins and oscillating, externalmagnetic fields
[63, 64]

({ }) ({ }) · ( ) ( )
 

å g= F F =
=

P j j I B t, where . 33t
j

K

t t j j
1

P P
ext

For example, a single pulse in x-direction, which is switched on from time t= 0 to t= t0, is described by a
magnetic field of the form
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( ) ( ) ( ) ( ) ( )ò w w q w f= +B t B d f t t t, 0, cos . 34ext
y

P P P 0 P

θ is the step function,BP provides the amplitude of the pulse (somemilli Tesla),f is the phase of themagnetic
field at t= 0 and f provides the frequency distribution of the pulse. Often, the frequency distribution provided by
f is of rectangular form and of course it has to cover the excitation frequencies of the nuclei which shall be
excited. The dynamical evolution of an observable AÎ LA for a systemwith time-independentHamiltonian

( ) AL ÎF LH can be described by theHeisenberg relations

( ) ( )
( ) ( )

A A t t =L
L L

L -F L F L
 A A e Ae: , . 35t t

S S itH itH

Thus themap  tÎ Lt t
S is a one-parameter group of *-automorphisms of thematrix algebra AL and S

denotes that this automorphism group acts only on the quantum spin algebra. The corresponding derivation is
denoted by δΛ and ( )A tL

L, t
S is aC*-dynamical systembecause t L

t
S is strongly continuous forfinite external

fields. Since effective spin-spin couplings are absent in themQEDHamiltonian equation (5) and (6) a spin
system consisting ofK nuclei andE electrons forms a subsystemof (5)whose equilibrium state is given by

⨂ ( )w w=b b

=

+
. 36

j

K E

jS
1

S

wb
jS is the (τS j,β)-KMS state of the single nucleus or electron enumerated by j. The representationwhich is

induced by wb
S is denoted by ( )H p,S S .

Perturbative description of Spin Boson Systems.AC*-algebra ASB for spins located inΛ interactingwith
bosons from the quantized electromagnetic field is given by

{ ( )∣ } ( )· ( )A A H A AB H  = Ä Î Î = ÄL LA W f A fspan , , 37SB
r

EMSB

where H H H= ÄLSB AW
r is a representation space. The indexΛ is neglected for simplicity. The free time

evolution t t t= ÄL
t t t
SB S EM, with derivation δSB= δΛ+ δEM, acts on ASB andwe have ( ( )) At Ä ÎA W ft

SB
SB

[42]. Interactions of the form

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

 

å å åg
m

= Ä F + Ä F
a

a
j
a a

j
a

= = = 
H I b g S b 38

j

K

j j
x

i

E

i
x

Int
SB

x,y,z 1 1
S

Bj i
e

enable energy exchange between spins and bosons. Note that, for the sake of simplicity, we do not state the
dependence on spatial coordinates on the left-hand side of this equation. Interactions given by (38) are
unbounded and if the derivation induced by HInt

SB is denoted by dSB
Int then the evolution group { }t Ît

I
t

SB

generated by d d d= +I
SB SB

f
SB
Int does not necessarily leaves ASB invariant. However, if some general conditions

are satisfied [42] ( )t At
ISB lies in theweak closure A ¢¢SB , i.e. ( )A At Í ¢¢t

ISB
SB SB . Furthermore, if the conditions

from [42] are satisfied the convergence of the right hand side of

( ) ( ) [ ( ) [ [ ( ) ( )]]] ( ) ò ò òåt t t t t= +
-


A A i dt dt dt H H A, , 39t

I
t

n

n
t t t

n t t t
SB SB

1 0
1

0
2

0

SB
Int
SB SB

Int
SB SBn

n

1 1

1

towards ( )t At
ISB holds strongly on vectors of the form |Ω〉= |ΩΛ〉⊗ |Ω0〉 and observables of the form

A= I⊗W( f ), where AÎ LI and ∣ HW ñ ÎL L. For a large class of coupling functionsj [42] the pair

( ( ) ◦ ) ( )Ap p tb b, 40I
SB SB SB

SB

is aW*-dynamical system and p p p= Äb b
SB S AW. An important state ŵ bI

SB on the vonNeumann algebra
( )Ap ¢¢b

SB SB is given by [47]

ˆ ( ) ˆ ( ) ( ) ˆ ( ˆ ( ) ˆ ( )) ( )ò ò òåw w w t t= + - ¼b b
b

b b b-


A A ds ds ds A H H1 , , , , 41I

n

n
s s

n is isSB SB
1 0

1
0

2
0

T,SB
SB

Int
SB SB

Int
SBn

n

1 1

1

where ŵ b
SB is the extension of w w w= Äb b b

SB S EM on ASB to ( )Ap ¢¢b
SB SB , ˆ ◦t p t=b bSB

SB
SB, ( )ApÎ ¢¢bA SB SB andT

denotes that truncated functions are used [47]. If the conditions from [42] are satisfied onefinds for a large class
of states η and observablesA return to equilibrium for the interacting system, formally given by

◦ ( ) ( ) ( )h t w= b

¥
A Alim . 42

t
t
I ISB

SB

In this case w bI
SB is a (τ

ISB,β)-KMS state. For applications toNMRwedefine the evolution group { }t ÎPt
I

t
SB

which is generated by d d+I
PtSB . For AÎ LA wehave δPt(A)= i[Pt,A] and AÎ = Î Lt P Pt t* is a one-

parameter family of selfadjoint elements which contains the information of the pulse sequence given by
equation (33). Fromnowonwemake the identificationM A= ¢¢SB . Although there exist not yet a rigorous
proof it seems to be obvious [65] that if ( ( ) ◦ )Ap p t¢¢b b, I

SB SB SB
SB is aW*-dynamical system then

( ( ) ◦ )Mp p tb b, P
I

SB SB
SB is aW*-dynamical system for a suitable class of pulse sequences P.
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5. Application toNMR

A typicalNMR experiment consists basically ofmolecules interacting with externalmagnetic fields. Inmost
experiments the interacting system is in thermal equilibrium at the beginning of the experiment. Themolecular
structures are then investigated by the application of a pulse sequencewhich consists of oscillating, external
magnetic fields. Pulse sequences provide an out of equilibriumnuclear spin dynamics and they act only for a
short time at the beginning of the experiment.When the pulse sequence isfinished the system is again governed
by the equilibriumdynamics which is then responsible for a return to equilibrium. This equilibration process is
experimentally detected inNMRand referred as free induction decay (FID). Inmost experiments the x- and
y-components of the nuclear spins are recorded, while the z-component is not recorded. The detected FID is
calledNMR signal, 〈M+〉(t), and its Fourier transformprovides theNMR spectrum S(ν). AnNMR spectrometer
detects the radiation from themagnetically excited nuclear spins which is identical to the time evolution of the x-
and y-components of the nuclear spins. Therefore, theNMR spectrometer records theNMR signal

( ) ( )á ñ = å á ñ+ +M t I tj j which consists of expectation valueswith observables ( ) ( ) ( )= ++I t I t iI tj j j
x y . The real

and imaginary parts of theNMR signal are given by ( ( )) ( )R á ñ = å á ñ+M t I tj j
x and ( ( )) ( )I á ñ = å á ñ+M t I tj j

y

respectively. In certain cases, theNMR spectrum contains only very sharp peaks of ”Lorentzian shape”. NMR
spectrawhich show any other distributionmay be obtained by (continuous) superpositions of Lorentz
functions. It is usually seen that the positions of the peaks are shifted towards lower frequencies compared to the
Larmor frequency ∣ ∣g=v B0 ext

z . This is called chemical shift and it is a direct consequence of themagnetic shielding
which is caused by the electrons: In the presence of an externalmagnetic field themagneticmoments of electrons
show into the opposite direction compared to themagneticmoments of the nuclei. Hence, the externalmagnetic
field at the position of a nucleus is reduced (shielded) by electrons.

Figure 2 shows exemplary 1HNMR-data of 12 μl benzyl azidewith impurities in dimethyl sulfoxide-D6.
TheNMR signal 〈M+〉(t) is shown in (a) and the spectrum S(ν) in (b). An exponentially fast thermalization for
〈M+〉(t) can be seen on the left image. Note that this is the thermalization for the expectation values of x- and
y-components of nuclear spin operators. The z-component needs an equal ormore time for return to
equilibrium. The Fourier transform (right image)provides the frequencies involved in the nuclear spin
dynamics during thermalization. It can be seen that the peaks possess different widths and positions. The
domain around 1 and 3 ppm is generated only by a few protons but the description of this domain by a discrete
spectrum is not accurate. Hence,model-calculations involving a continuous spectrum are desirable for a
detailed analysis of this spectrum. The different line widths contain important information about the
distribution of the electrons and nuclei.

According to the description of an experimental NMR setup themQED system in the algebraic framework is
applied as follows. At times before pulse sequences, t� 0, the description of themolecular system interacting
with the classical and quantized electromagnetic fieldwill be described by theHamiltonian = +H H H0 Int

SB

from equation (5) and (38). HInt
SB contains the same interactions asHInt from equation (6) except the interactions

which does not involve spins.Hence, itmay be referred as Spin Boson approximation ofmQED. This
approximation is based on the assumption that the energy of a pulse sequence is too low to change the

Figure 2.Example of an experimental 1HNMR signal 〈M+〉(t) (left side) and the correspondingNMR spectrum S(ν) (right side).
There is an exponentially fast return to equilibriumof 〈M+〉(t) (a). The peaks in the spectrum (b) possess different linewidths and
originate fromprotonswith different electronic environment. A discrete spectrum is unable to give an accurate description of the
domain around 1 ppm. The presence of several peaks provides oscillations in theNMR-signal decay. A smooth exponential decay is
obtained if only identical protons contribute to the signal, e. g. the protons fromwater.
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momentum and geometry of the investigated electronic structure. This approximation is alsomade by the
effective spinmodel and there seems to be no obvious reasonwhy this approximation should be unsuitable. For
t= 0 the system is in thermal equilibrium and the equilibrium stateΩβ is determined byH. Pulse sequences are
initiated at t= 0, such that for t> 0 the system is described byH+ Pt. The time-dependent operatorPt from
equation (33) contains the information of the pulse sequence. Hence, the time-dependence of a nuclear spin
operator, e.g., Iz(t) or I+(t), during a pulse sequence is determined byH+ Pt.

In the application toNMR the Born-Oppenheimer approximationwill be used. Thewave functionψ of the
electronswill be approximated by the ground state but use a temperature dependent nuclear wave functionΨβ.
Hence, ourmolecular system is described by thewave function HyY Ä Îb

M. Ideally the KMS state is used for
the nuclei. However, inmost cases it is practically not possible to estimate this KMS state explicitly. This is
because the nuclear Schrödinger equation can only be solved for very simplemolecules. Therefore, a suitable
proceduremay be usedwhich approximates the square |Ψβ(X)|2 of the vector representative of the KMS state. A
suitable initial choicemay be given by inserting the potential energy surface (PSE) into the classical Gibbs state at
inverse temperatureβ. If a |Ψβ(X)|2 is foundwhich shows agreement between experimental and calculatedNMR
spectra then a suitable approximation for the probability distribution of the nuclei is obtained. Let ( )B HM

denote the set of bounded operators on theHilbert space HM ofmolecular systems. The spatial structure of the
molecular system is contained in the state ( )B Hw b :M M . For a function ( )B HÎf M the expectation value is
given by

( ) ∣ ( )∣ ∣ ( )∣ ( ) ( )ò òw y= Yb bf d x d x X X X f X X, , . 43K E
M

3 3 e 2 e 2 e

Remember that the dependence of tPt
ISB and ŵ bI

SB on the coordinates (X,Xe)was so far neglected in the notation
for simplicity. For themain result this dependence is nowwritten explicitly for clarity. Usually the temperature
dependence is not explicitly indicated for theNMR-signal butwewill do this in the following.

MainResult (NMR-signal frommQED):
Assume that ( )M t, P

ISB is a W*-dynamical system and that w bI
SB is a (τ

ISB,β)-KMS state. Furthermore, let

( ) ˆ ( ) ( )M M M B H B Ht p w  b b and: , : : 44Pt
I ISB

SB SB SB SB

be constructed as in section 4 and let ( )L A B Hb
L:t M , ( ) ( )A L B H Îb

L  A At M be given by

( ) ( ) ( )( ) ˆ ( ◦ ( ))( )
( )

L L w p t´  ´ ºb b b b     A with X X A X X A X X: , , , .

45
t

K E K E
t

I
Pt
I3 3 3 3 e e

SB SB
SB e

We calculate ŵ bI
SB according to equation (41) and ( )t APt

ISB according to equation (39), by using +H PtInt
SB instead of

HInt
SB. For amolecular system described by wb

M according to equation (43) theNMR signal 〈M+〉β(t) is defined by

( ) ( ( )) ( )L å wá ñ =b
b b+

=

+M t I . 46
j

K

t j
1

M

A reconstruction of the probability density |Ψβ(X)|2 for the spatial distribution of the nuclei is achieved by identifying
an wb

M which provides a sufficient agreement between the calculated and the experimental NMR spectrum.

An identification of wb
M may initially be based on approximations for the nuclear wave function as described

in [13] or by inserting the PES into the classical Gibbs statewith subsequentmanual adaptions until the
calculated spectrum shows sufficient agreement with the experimental spectrum.Note that Lb0 gives thermal

equilibrium at the beginning of the experiment and Lb
>t 0 describes the time-evolution during the experiment.

The notation ( )( )Lb A X X,t
e is unconventional but easier to read in later applications. A conventional notation is

given by ( ) ( )( )L Lºb
bX X A X X, ,t

A
t

e e but this ismore difficult to readwhen dealingwith ( )Lwb
b

+

t
I

M
j . As usual the

(1-dimensional)NMRspectrum, Sβ(ν), is calculated as the Fourier transform

( ) ( ) ( )òn = á ñb b
n

¥
+ -S dt M t e . 47i t

0

The structural validity of themain result will nowbe checked in the next two sections.

6. Breakdownof the effective spinmodel

The breakdownof the effective spinmodel is shown for the time-independent expectation value in thermal
equilibrium aswell as for the out of equilibrium spin dynamics. One observes that themQEDperturbation series
contains several termswhich have a similar structure as individual interactions contained in the effective spin
model equation (1). For example, it is possible to extract terms of the form ÄJ I Iij i j

zz z z from themQED
perturbation series (see equation (55)) and Jij

zz contains probabilities for the propagation ofmagnetic field
quanta between the spins. Analogous terms formagnetic shielding can also be found (see equation (49)). Hence,
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the effective spinmodel is in some sense contained in themQEDmodel butwith quantum radiative corrections
and other types of corrections. Of course, themQEDmodel is not an effective description since all interactions
are naturally generated by the fundamental theory ofmQED. This is investigated inmore detail in this section.
Details of the calculations are shifted to the appendix.

In thermal equilibrium the expectation value of the z-component of a nuclear spin of amolecule is reduced,
if compared to the casewhere the spin is isolated. This is due to the action of the externalmagnetic field on the
magneticmoments of the surrounding electrons, which then reduce the externalmagnetic field at the positions
of the nuclei. For diagonalσj the effectivemodel from equation (1) provides

( ) ( ) ( )
( ( ))

( )r bg s r
b
b

á ñ = » - =
-
-

b b
I I B

H

H
Tr

4
1 where

exp

Tr exp
. 48j j j j

z
eff eff

z
2

ext
z zz

eff
eff

eff

Higher order terms can be neglected in the high temperature approximation. The effectivemagnetic shielding
(chemical shift) constant is always small and positive, i. e.,  s >1 0j

zz . Hence, the expectation value of an
isolated nuclear spin is reduced in themolecular systemby s j

zz.
In this document the hydrogen atom is used as basic example formQEDcalculations. One finds similar

results for aHelium atomand a discussion on that can be found in the appendix. Remember that Iz denotes the
z-component of the spin operator of the protonwhile Sz denotes the operator from the electron.While thefirst
order of equation (41) is zero forA= Iz one derives in the zeroth and second order that (details are given in the
appendix)

( ( )) ( ) ( ) ( )Lw w w= - +b b b b
j
bI I S r ... 49M 0

z
S

z
S

z

( ) ( )bg» - j
b

B a
4

1 . 50
2

ext
z

The dots (...) denote higher order terms from the perturbation series. j
br and j

ba differ by a constant and the high

temperature approximation ismade for ( )wb IS
z and ( )wb SS

z . It can be seen that j
ba , derived non-effectively from

mQED, replaces the effective parameter s j
zz which is commonly derived according to equation (2). This is easily

verified by comparing equation (48)with (49) and amore detailed discussion of this can be found in the
appendix. It can be checked that j

ba is dimensionless and therefore j
ba can be given in ”parts permillion” (ppm)

in analogy toσzz. One finds

∭ ∭ ∭ ∣ ( )∣ ∣ ( )∣ ( )

( )

m
     

ò ò
m

y= Yj
b

b
b

jba
g

ds ds d x d x d k x x x x is x is k
4

, , , , , .

51

s
s2

B
2

0
1

0
2

R

3

R

3 e

R

3 2
100

e 2 zz
2

e
1

1

3 3 3

In case of a hydrogen atom j
ba is indeed independent from a particular choice of the nuclear wave functionΨβ.

This reflects the fact that themagnetic shielding is independent from the position of the atom in the
homogeneous externalfield. The distribution of the electron is chosen to be the 1-s orbital of the hydrogen atom,
i. e.

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ∣ ( )   

y
p

=
- -

x x
a

x x

a
,

1
exp , 52100

e

B
3

e

B

where aB is the Bohr radius.
Observation 1
A comparison provides a further advantage for the non-effectivemodel. For  ¥Bext

z we have
s  ¥Bzz

ext
z . Hence, the effectivemodel predicts that themagnetic fieldwhich originates from the electron and

reduces themagnetic field at the position of the proton tends to infinity. This is certainly wrong because there is a
maximummagnetic field strengthwhich can be produced by the electron and themaximum is achievedwhen
the spin of the electrons is completely in the |+ 1/2〉 or |− 1/2〉 state. In contrast themQEDmodel contains
this effect and the limit is given by ( )rb STr 22

z in equation (49). In this case the high temperature

approximationmade in j
ba is unsuitable and equation (49) providesmore accurate predictions than

equation (50). Thus, for low temperatures and high externalmagneticfields themQEDmodel ismuchmore
realistic. The deviation from the non-linear regime for s  ¥Bzz

ext
z may bemeasured experimentally and

validates themore realistic description of themQEDmodel. This is of potential relevance forNMRat low
temperatures, e. g. DynamicNuclear Polarization (DNP).
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Observation 2
Wehave >j

ba 0 for all ( )j Î L2 3 which follows from the fact thatj enters j
ba with ∣ ( )∣


j k 2 and
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In equation (53) spherical coordinates were introduced for

k and all integrals except the one for kwere

evaluated. Furthermore, we have assumed thatj depends only on ∣ ∣

k which is a natural and common choice.

This is a nice result, because the non-effectivemagnetic shielding j
ba needs to be positive is any case andj is a

free parameter inmQED.
Numerical investigation of j

ba .
It is important to know that for any givenmolecular structure the coupling functionj from equation (10) is

the only free parameters and—of course -j is independent ofΨ andψ. Thus, a particular choice forjwhich
accurately reproduces awell-understood experiment can be used to predict or analyzeNMRdata of proposed or
unknownmolecular structures.We have ·m m p » -g c6 7.271 326 950 237 399 10 Å

s
2

B
2

0
2 8 2, where Å is the

unit Ångström. For the numerical calculationswe choose

⎧⎨⎩( ) ( )j
d d

d d
d d d=

<  >
Î > Î+ +   k

g k

k k
g

for

0 for
, and . 54IR UV

IR UV
UV UV IR 0

δIR and δUV are the infrared and ultraviolett cutoff respectively and normalization ofj implies
g= 1/(δUV− δIR). For the numerical calculations in this document the infrared cutoff δIR can be chosen
arbitrarily small (and also zero) such that it has a negligible influence on j

ba .

Figure 3 shows the dependence of j
ba on δUV for a hydrogen atom. The unit of δUV ismillimeter−1

(1mm−1≈ 0.001 24 eV). The temperature is chosen to be T= 293K (room temperature) and the infrared cutoff
is chosen to be zero, δIR= 0. There is a linear increase of j

ba for increasing δUVwhich is in agreementwith the
dynamical calculations shownbelow. The ppm (parts permillion) scale is chosen such that the Larmor
frequency v0 is located at zero.Higher order contributions should increase themagnetic shielding.

The dynamic case.Analytically the breakdown of the effectivemodel can, for example, be seen by the
occurrence of direct spin-spin interactions (dipole-dipole interactions) in the second order of equation (39).
Onefinds,

[ ( ) [ ( ) ( )]] ( ) ( )åt t t = Ä ++

<

H H I J t t t I I, , , , ... 55t t t
i j

ji j i
SB

Int
SB SB

Int
SB SB zz

1 2
z z

2 1

with

( ) ( ) ¯ ( )([ ( ) ( )] [ ( ) ( )]) ( )   g g= - +j j j jJ t t t u t u t B x t B x t i B x t B x t, , , , , , , , . 56ji j i j j i j i j
zz

1 2 1 0
z

2 0
x

1 0
z

2 0
y

1

and similar terms for the x- and y-components. Following the calculations from [66] the direct coupling
 
I D Ii ij j

from the effectivemodel equation (1) is obtainedwith quantum radiative corrections. Indirect spin-spin

Figure 3.Themagnetic shielding j
ba is shown as a function of δUV. It can be seen that there is a linear dependencewhich is in

agreement with the dynamical calculations shown below.
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couplings occur in the fourth order of equation (39) in a similar fashion. For themagnetic shielding in the
dynamic case the numerical investigation of the breakup of the effective spinmodel is detailed shown in the next
section.

7.NMR spectra frommolecularQuantumElectrodynamics atfinite temperatures

The real-time nuclear spin dynamics as well as the spectra according to equation (47) are calculated in the second
order of equation (39) and the second order of equation (41) according to equation (46) and equation (47). After
long-lasting calculationsNMR-spectra are obtained from terms of the form
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where ( ) = -u t e itv0 and J Î 1 . In case of the hydrogen atomonefinds again that Sβ(ν) is independent ofΨ
β

whichmeans that the chemical shift does not depend on the position of the hydrogen atom in the homogenous
externalfield. Formoleculeswith twoormore nuclei Sβ(ν)depends onΨ

β and a discussion on the computational
efforts for complexmolecules is given in the appendix.

Figure 4 shows theNMR spectra Sβ(v) from equation (46)with equation (47) for a hydrogen atom. The ppm
scale is chosen such that the Larmor frequency v0 is located at zero ppm. The spectra is calculated for the values
δUV= 4, 5, 6, 7, 8, 9, 10, 11 (a) and δUV= 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.01, 0.011with unitmegameter−1

(Mm−1). The temperature is chosen to beT= 293K (room temperature), =B 20ext
z T (Tesla) and the infrared

cutoff is chosen to be zero, δIR= 0. In every case it can be seen that a Lorentz distribution is obtained as observed
inNMRexperiments. Small variations of δIR only had a negligible impact on themagnetic shielding. As in the
case for j

ba the strength of themagnetic shielding increases linear with δUV. Furthermore, the ”FullWidth atHalf
Maximum” (FWHM)Δν increases linearly with increasing δUV. Remember thatΔν is directly relatedwith the
life-time of an excited spinwhichwill be checked later. Comparing the left figure (a) and the rightfigure (b) one
finds that if δUV is reduced by a factor of 100 thenΔν aswell as strength of themagnetic shielding (distance of the
peak to 0 ppm) is also reduced by a factor of 100. Themaximumvalue (height) of each peak is nearly the same.
This a result of the normalization ofj and itmakes sense because these small changes of themagnetic field
strength should not have a significant impact on the amplitude of theNMR signal. This is also in agreement with
experimental data.

Figure 5(a) shows the long-time dynamics of 〈Ix〉(t) (real part ofNMR-signal) for δUV= 0.1Mm (orange
line) and δUV= 0.05Mm (blue line). All other parameters are the same as for the calculations forfigure 4. In
both cases there is an exponentially fast return to equilibrium as observed inNMRexperiments. The starting
point at t= 0 is chosen to be directly after the 90◦-pulse hasfinished. The amplitudes are normalized to the value
0.5 at t= 0 corresponding to the excitation of a single nucleus. The thermalizationwhich is associatedwith the
orange line happens twice as fast as the thermalizationwhich is associatedwith the blue line.Hence, doubling the

Figure 4.NMR-spectra Sβ(v) of a hydrogen atom calculated from equation (46)with equation (47) for different values of δUV. All
peaks have a Lorentz shapewhich is in agreement with experimental data. The chemical shift andΔν increase linearwith δUV.
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value δUV halves the life-time (T2 inNMR language) of the excited spin. The nuclear spin can release energy in a
frequency rangewith double length.

Figure 5(b) shows the short-time dynamics ( ) ( ( ))Iá ñ = á ñb+I t M ty and ( ) ( ( ))Rá ñ = á ñb+I t M tx for the same
parameters whichwere used for the orange line from figure 5(a). The cross shows that there is an exact 90◦ phase
shift between 〈Iy〉(t) and 〈Ix〉(t) as it should be. The frequency is slightly reduced compared to the Larmor
frequencywhich can also be seen from figure 4(b).

8.Outlook

In this section it is outlined how the new approach can serve for amore detailedmolecular structure
determination compared to conventional NMR theory. To obtain an approximated amplitude square |Ψβ(X)|2

of the nuclear KMS state, the potential energy surface (PES), EPES(X), or rotational energies, Erot(θ), from
QuantumChemistrymay be inserted in to the classical Gibbs state ρβ at inverse temperatureβ (figure 6).

FromQuantumStatisticalMechanics we know that for different temperaturesT1< T2< Tc< T3 there are
different probabilities |Ψβ(θ)|2 for themolecule to have a certain bond angle θ (figure 6). Such effects can be
observed inNMR, because the green and the redmethyl groups (a) can have different electronic environments
which depends on the temperature. The probability |Ψβ(θ)|2 is time-independent in chemical and
thermodynamic equilibrium such that themolecule is in a superposition of several bond angels. This is in

Figure 5. (a) Long-time spin dynamics from the real part of theNMR-signal, ( ( )) ( )R á ñ = á ñb
+M t I tx , for δUV = 0.1Mm (orange line)

and δUV = 0.05Mm (blue line). Doubling the value δUVhalves the life-time of theNMR-signal. (b) Short time spin dynamics 〈Iy〉(t)
(orange line) and 〈Ix〉(t) (blue line) for the same parameters as used for the orange line fromfigure (5)a). There is an exact 90◦ phase
shift between 〈Iy〉(t) and 〈Ix〉(t) as it should be. The very smooth exponential decay is due to the fact that theNMR signal contains only
one peak. Several peaks provide oscillations as infigure (2).

Figure 6. InmQED all bond angles of amolecule (a) are consideredwith a continuous probability distribution |Ψβ(X)|2, which
depends on the temperature ((b) and (c)). For each bond angle θ there is an energy Erot(θ)which often has a similar form like the blue
line in (b) and (c). The approximation ρβ(Erot(θ)) = |Ψβ(θ)|2 provides the following: For relatively low temperaturesT1 compared
with Erot, the probabilities are such thatmainly bond angles with lower energy are populated (black line Yb

1
1 or dashed black line Yb

2
1

in (b)). If the temperature increases (T2), then neighboring bond angles becomemore andmore occupied (red line Yb
1

2 or dashed red
line Yb

2
2 in (b)). If the temperature increases increases evenmore (Tc), also bond angles with highest energy become significantly

occupied (black line Ybc in (c)). Finally, if the temperatureT3 is high, then all bond angles become nearly equally populated (red line
Yb3 in (c)). This is due to themaximization of the entropy.
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contrast to conventional NMR theory, where theN-Ph bond rotates with a certain frequency. The probability
distribution ρβ(Erot(θ)) fromfigure (6) is only a rough approximation for themore realistic, quantum
mechanical probability distribution |Ψβ(θ)|2. Hence, in a second second step, the distribution ρβ can be slightly
changed until the calculatedNMR spectra agree with experimental NMRdata.Hence, the probability
distribution |Ψβ(X)|2 can be reconstructed fromNMRdata by usingmQEDatfinite temperatures. A significant
advantage ofmQED is that the impact of the temperature on themolecular structure is taken into accountmuch
more realistically compared to conventional NMR theory. The result is thatmore realistic andmore detailed
molecular structuresmay be decoded from experimental NMRdata. As amotivation for the presentedmethod a
heuristic illustration for amore detailed structure determination is outlined infigure 7.NMR spectra of such a
molecule are not calculated in this document, but structural validity is shown.

In the zero temperature limit only the bond angle with the lowest energy is occupied (lowest row, (a) in
figure 7). Such ground state structures are obtained from commonquantum chemical calculations (likeDFT).
At low temperatures (second row frombelow, (b) infigure 7), wheremainly low energetic bond angles are
occupied (figure 6), themagnetic field generated by the ring is different for the green and the redmarkedmethyl

Figure 7.Molecules with a structure similar to that shown in the bottom end of themiddle column typically generate temperature-
dependentNMR spectra, as shown in themiddle column. The thermal energy influences the spatial distribution of themethyl protons
which causes a change not only in the positions of theNMR signals but also of the line shapes of theNMR signals.While the positions
of theNMR signals can be calculated using quantum chemistry, conventional NMR theory cannot directly link the line shapes to the
molecular structure. This is due to the fact that the spins are restricted to point positions and because thermalization is integrated
phenomenologically by equation (4) instead of coupling the spins to the quantized electromagnetic field atfinite temperatures. The
result is that the underlyingmolecular structure can only be roughly reconstructed. This is different inmQEDwhere the distribution
of the spins is described by a continuous probability density |Ψβ(θ)|2 (right column). The quantized EMFprovides a natural
thermalization such that all data points of theNMR spectrum (including the line shape) is directly connected to the underlying
molecular structure. Hence,muchmore detailed investigations of the underlyingmolecular systembecome possible. The structural
validity of this initially heuristic explanation is shown in sectionsVI, VII andVIII.
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group.Hence, bothmethyl groups have clearly distinctNMR signals. In contrast, conventional NMR theory
assumes that the ring is slowly rotatingwith afixed frequency.Hence,mQEDand commonNMR theory
provide two different structures for the same situation. InmQED, bond angles with higher energies become
more andmore occupiedwith increasing temperature (third row frombelow, (c) infigure 7). Hence, each of the
methyl groups comes closer to the opposite side of the ring. As a result both peaks on the spectrum come closer
to each other. In conventional NMR theory, the rotation frequency is just slightly enhanced.However, inmQED
there are still some bond angles which are nearly unoccupied ((b) infigure 6 and third row frombelow, (c) in
figure 7). InNMR there is a specific temperature called ”coalescence temperature”Tc, where the two peaks start
tomerge. At this temperature, also bond angles with higher energy are occupied but lower energetic bond angles
are still preferred inmQED (black line in (c) offigure 6 and (d) infigure 7). This is not contained in conventional
NMR theory, where the rotation frequency k is simply increased. At high temperature the two peaksmerge
completely and provide one sharp peak in the experimental NMR spectrum. In the interpretation of
conventional NMR theory, the rotation frequency ismuch higher than the temporal resolution of theNMR
spectrometer such that only one averaged signal is observed. The interpretation inmQED is that nearly all
bonding angles are equally occupied in order tomaximize the entropy. In this case, the resultingmagnetic field is
for bothmethyl groups the same, because it is spatially averaged.Hence, bothmethyl groups have the same
chemical shift. The structural validity of this initially heuristic explanation is underpinned by an illustration
(figure 8)which ismathematically verified in sections VI, VII andVIII.

In a regionwhere themagnetic field is homogeneous theNMRpeaks are independent from the spatial
distribution of the nuclei ((a) and (c) infigure 8). Note that for high temperatures the distribution associated
withT3 infigure 6 generates a homogenousmagnetic field in the region of bothmethyl groups ((e) infigure 7).
Hence, both peaks are equal. However, if themagnetic field is inhomogeneous in the region of themethyl
groups, because the spatial probability distribution depends on the bond angle (figures 6, 7 and 8), themethyl
groups do not generate the same peak in theNMR spectrum S(ν). For relatively low temperatures themethyl
groups are strongly localized in an inhomogeneous field. TheNMRpeakswill broadenwith increasing
delocalization of themethyl groups in an inhomogeneousmagnetic field (figure 8) and hence have clearly
distinct peaks. At the coalescence temperatureTc there are delocalizedmethyl groups in an inhomogeneous

Figure 8.Two different spatial probability distributions ∣ ( )∣Yb X1
2 and ∣ ( )∣Yb X2

2 are placed in a homogenousmagnetic field (a) and in
an inhomogeneousmagneticfield (b). InmQED, theNMR spectrum S(ν) is independent from the spatial distribution of the nuclei if
themagneticfield is homogenous (c). If themagnetic field depends on position in space (because of the distribution of electrons), then
different spatial distributions of the nuclei generate (in general) different NMRpeaks (d). This schematic (andnot precise) illustration
will bemathematically verified in sectionVI andVII.
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magnetic field.With increasing temperature themagnetic field generated from the ring becomesmore andmore
homogenous until both peaksmerge to a single sharp peak atT4.

9. Conclusion

In this document it was shownhow all data points of anNMR spectrum aremathematically connected via
mQEDatfinite temperatures with the amplitude square |Ψβ(X)|2 of the nuclear wave functionΨβ. Since |Ψβ(X)|2

represents the quantum statistical and temperature-dependent probability density on the continuous space  K3

for the spatial distribution of the nuclei, the presentedmethodmay be used for amuchmore detailed
reconstruction ofmolecular structures than possible with currentmethods.We briefly recall theweak points of
conventional NMR theorywhich are improved by the presentedmethod.

1. Conventional NMR theory based on Quantum Chemistry uses a discrete set of numbers (σi and Jij) to
approximate the continuousNMR spectrum.Hence, only the (punctiform) positions ofNMR signals are
directly connectedwith themolecular structure. However, also the line shapes of the signals contain
information about themolecular structure.

2. So far, line shapes are investigated highly phenomenological such that only a rough notion of the
investigated system can be obtained from this type of analysis.

3. Spin dynamics is conventionally based on the effective model which restricts the nuclei to fixed points in a
lattice, requires phenomenological parameters for relaxation and delocalization and the initial state is at
room temperature nearly temperature independent.

Explicit examples were the presentedmethod should have advantages (should providemoremolecular details)
are the structure determination of furfural at different temperatures as shown infigure 1 or structure
determinations ofmolecules similar to the ones shown infigure 7. Additional applications can be found in spin
dynamics simulation for hyperpolarizedMRI.

Themain result (page 11) provides the structural application ofmolecularQuantumElectrodynamics and
QuantumStatisticalMechanics in the algebraic reformulation toNuclearMagnetic Resonance. Analytical and
numerical calculations as well as comparisons with experimental NMRdata showed the validity of this
approach. Furthermore, wrong predictions of the effective spinmodel are corrected by the new approach
(observation 1) and several striking advantages against establishedNMR theorywere discussed. The presented
methodmakes use of the physical approximation that the energy of anNMRpulse is tooweak to change the
molecular geometry which is also used in the effective spinmodel and obviously realistic forNMR. The
important process of return to equilibrium is included in a natural andmicroscopic way instead
phenomenologically as in equation (4). This provides a basis for amore detailed research towards optimized
polarization transport and stable spin structures which are of basic interest in hyperpolarizedMRI67. Chemical
shifts (magnetic shieldings) as well as spin-spin couplings occur naturally andmust not be described effectively.
Hence, quantum radiative corrections are naturally included in the calculatedNMR spectrum.

The fundamental problemof performing numerical calculations with the infinite-dimensional radiation
field atfinite temperatures was solved by using a purified version of the Araki-Woods representationwhich
served as a key element. The perturbation series equation (39) in combinationwith equation (41) generates
combinations of sums and products of expectation values for individual spins instead of generating a
complicated, sharedmatrix for the spinswhich increases exponentially with increasing number of spins. Thus,
the presentedmethod is not limited by the system size concerning the number of spins. Instead it is limited by
the availability of a quantum chemicalmethodwhich is able to calculate the electronic ground state for a given
configurationX of the nuclei (see appendix). Thus, the developedmethodmay be applied tomolecular systems,
which are currently investigated in chemistry, pharmacy, nanoscience or biomedicine.
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Appendix

Mathematical structures that are required for the numerical calculations
A *-morphismπ between two *-algebras C andB is defined as amapping ⟶ ( )C Bp pÎ ÎA A: for all
CÎA such thatπ(αA+ γC)= απ(A)+ γπ(C),π(AC)= π(A)π(C), and ( ) ( )p p=A A* * for all CÎA C, and

a g Î , . The kernel of a *-morphism is given by the set ( ) { ( ) }Ap p= Î =ker A A; 0 . A representation is
said to be faithful if, and only if,πω is a

*-isomorphism between A and ( )Ap , i.e., if, and only if, ( ) { }p =wker 0 .
A faithful representation satisfies Pπω(A)P= PAP, for all AÎA . If ( )H p, is a representation of theC*-algebra
A and if H0 is a subspace of H, then H0 is said to be invariant underπ if ( )H Hp ÍA 0 0 for all AÎA . Hence,
if H0 is invariant underπ and H^ is the orthogonal complement of H0, i.e., {H H x x y= Î á ñ =^ ; ,

}Hy" Î0, 0 , thenwe have 〈ξ,π(A)ψ〉= 0 for all AÎA and all Hx Î ^, Hy Î 0. The group { }t Ît t
EM

provides the free field dynamics and the action is given by

( ) ( ( )) ( ) ( ) ( ( )) ( ) ( ) t t= F F = Fw wW f W f W e f f f e fwhich implies . 58t
i t

t
i tEM EM

This is also known as Bogoliubov transformation.Note that the group { ∣ }t Î tt
EM is not strongly continuous

because PW( f )−W(g)P= 2∀g≠ f and hence ( ( ) )H t ,r EM is not aC*-dynamical system.
Computational efforts for the numerical calculations involving complexmolecules.
According to themain result of this article the time-dependentNMR signal of amolecule consisting ofK

nuclei andE electrons canwritten in the general form

( ) ∣ ( )∣ ∣ ( )∣ ( )( ) ( )Lò yá ñ = Yb
b b+M t d Xd X X X X A X X, , , 59K E

t
3 3 e 2 e 2 e

where ( )Y Îb  L ,K2 3 , ( )y Î  L ,E2 3 and ( )L ´ b   A :t
K E3 3 . Remember that ( ) 

= ¼X x x, , K1 ,

Î xi

3 and ( )
 

= ¼X x x, , E
e
1

e ,


Î x j
e 3. The integral kernel ( )( )Lb A X X,t

e consists basically of expectation
values of spins interacting with the quantizedmagnetic field.Due to the structure of the perturbation series
equation (39) and (41), the structure of the purifiedAraki-Woods representation and the fact that the variables
s1,K,sn and ¼ ¢t t, , n1 are contained in exponential functions the integrals on s1,K,sn and ¼ ¢t t, , n1 do not provide
any challenge (at least for thefirst few orders). The used perturbation series does not generate any expectation
values containing amatrix larger than a single spin operatorwhich is due equation (36),(41) and (39). For
example, if the investigatedmolecule contains only nuclei with spin 1/2, then the largestmatrix which occurs in
the calculation of the expectation values is of size 2 x 2 (or can be reduced to that size due to a tensor product with
the unity operator). Hence, it is possible the determine the integral kernel ( )( )Lb A X X,t

e analytically.
Furthermore, due to the perturbation series the integral kernel can be decomposed into the following sum
(wherewe neglect to denote the dependence ofA on the right hand side and in the further text for simplicity)
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In the calculations in this document the constant c0 contained information on thefinal state which describes the
system after thermalization. The functions c(t) and ( )f t x,i i did not contributed and cancelled out. An example

of an explicit part of ( ) bf t x x, ,
ij i j1

is shown in equation (56) and an example of an explicit part of ( ) bf t x x, ,
ij i j2

e is

shown in equation (57). Further terms of these integral kernels differmainly by other combinations of the x-, y-
and z-components of the spin andfield operators. The computational effort for the evaluation of the integrals in
equation (59) can be strongly reduced if we accept a common approximation that thewave functionψ (and
potentially alsoΨβ) is given by tensor products of single electronwave functions as it is the case for the Slater
determinant. In this case, the large number of integrals on the spatial coordinates

 
= ¼X x x, , E

e e
1

e of theE
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electrons can be strongly reduced. For example

∣ ( )∣ ∣ ( )∣ ( ) ∣ ( )∣ ∣ ( )∣ ( ) ( )    
ò òy yY = Yb b b bd Xd X X X X f t x x d Xd x X X x f t x x, , , , , , . 63K E

ij i j
K

j j j ij i j
3 3 e 2 e 2

2
e 3 3 e 2 e 2

2
e

The evaluation of these integrals can be donewith any suitable standard numericalmethod. It remains to
estimate up towhich order the perturbation series needs to be calculated. For this purpose we use the fact that
each term in the perturbation series has a clear physical interpretation that can also be verifiedmathematically:

1. ( ) bf t x x, ,
ij i j1

generates magnetic dipole-dipole interactions (direct couplings) between the nuclear spins i

and j.

2. ( ) bf t x x, ,
ij i j2

e generates amagnetic shielding on nuclear spin i caused by the electron j.

3. ( )
 bf t x x, ,

ij i j3
e e generatesmagnetic interactions between spins of electron i and j.

4. ( )  bf t x x x, , ,
ijl i j l4

e generates indirect spin-spin couplings between the nuclear spins i and lwhich ismediated

via electron j

5. ( )  bf t x x x, , ,
ijl i j l5

e e generates different kinds of interactions between the nuclear spin i and electron spins j

and l.

The above terms occur in thefirst few orders of the perturbation series and each higher order can generate
additional coordinates. From this point of view itmay seem to be sufficient to perform the calculations up to
orders which generate terms that contain spatial coordinates of three particles or four particles. However, this is
only an assumption. Since themultiplication operator f can be determinedwithout numerical limitations up to
high orders the numerical limitation of the presentedmethod is primary given by the calculation of the
amplitude square of thewave function |Ψβ(X)|2|ψ(X,Xe)|2 and the numerical integrations. The estimation of the
electronicwave functionψ can be donewith any commonmethod ofQuantumChemistry. In agreement with
conventional NMR theory the presentedmethod assumes that the temperature dependence of thewave function
ψ for electrons can be neglected due to high excitation energy of electrons in amolecule. This approximation is
not necessary but reduces the computational complexity. Also the nuclear wave functionΨβmay be calculated
with any commonmethod ofQuantumChemistry. Unfortunately, with currentmethods the exact calculation
ofΨβ can only be done for relative small and simple systems.However, this does not limit the presentedmethod
because only the amplitude square |Ψβ(X)|2 needs to be explored. Indeed, it is sufficient to initially approximate
|Ψβ(X)|2 using any suitablemethod. For example, the PSEmay be inserted into the classical Gibbs state. In
further steps this approximation can bemademore realistic, using artificial intelligence ormanual adaptions,
until there is sufficient agreement between the calculated spectrum and the experimental data.

Themaintenance of gauge invariance can be quite a challenge in the conventional calculation ofNMR
parameters inQuantumChemistry. This problemdoes not occur in themQEDperturbation series for the
calculation of f β, which is easily checked by the structure of equation (41) and (39). The only possibility where a
challenge concerning themaintenance of gauge invariancemay enter the presentedmethod is in the calculation
ofψ by conventional QuantumChemistry. Here it should be noted that ( )y Î L E2 3 is without spin degree of
freedomwhich strongly simplifies the determination ofψ. Especially, for the calculation ofψ one is free to
choose aQuantumChemistrymethodwhich has no or little problemswith themaintenance of gauge
invariance. In addition, the presentedmethod reduces problems concerning themaintenance of gauge
invariance forQuantumChemistry for the case were these problems occur because of the interactionwith spin
degrees of freedom.Due to the fact that each term can be calculated in parallel the author concludes that the
presentedmethod has basically the same numerical limitations as currentmethods ofQuantumChemistry used
to determineψ and the corresponding PSE.

Comparison of themagnetic shielding derived as temperature-dependent, effective parameter using
QuantumChemistry and themQEDapproach in thermal equilibrium.

There is some formal similarity between the conventional approach ofQuantumChemistry to integrate the
temperature, equation (3), and the results ofmQED for the expectation value in thermal equilibrium. It is
important to note that this similarity does not hold for the spin dynamics whose thermalization generates line
shapes in the Fourier transformed spectrum. For simplicity we assume the six-dimensional case,


=X x and

=X xe e. However, the 3n-dimensional case for n nuclei is in analogy. The effective parameter for themagnetic
shielding of reference [13] canwritten as sb

eff , were

∣ ( )∣ ( ) ( ) 
òs s s sº D + = Yb b bd x x x . 64eff eq

3 2
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Thus, sb
eff is generated by an expectation value of the nuclear wave functionwith amultiplication operator ( )s x .

Note that in the effective description only the nuclear wave function is temperature dependent, while ( )s x is
calculated at zero temperature. The expression j

ba (which has some similarities to sb
eff ) derived frommQED in

equation (51) can bewritten as

∣ ( )∣ ( ) ( ) 
ò s= Yj

b b bja d x x x , 653 2
qed

with

( ) ∣ ( )∣ ( ) ( )b



   
òs y=bj

jbx d x x x x x, , , 66qed
3 e e 2 zz e

where

( ) ( ) ( )b m
    

ò ò ò
m

=jb

b

jbx x
g

ds ds d k x is x is k,
4

, , , , . 67s
s

zz e
2

B
2

0
1

0
2

3 zz
2

e
1

1

The integral kernel ( )b
 

jb x x,zz e provides the strength of the z-component of quantizedmagnetic field at the

position

x of the nucleus, which is generated from the z-component of the electron spin at position


xe. Hence,

( )sbj xqed may be interpreted as the averaged strength of the z-component of quantizedmagnetic field at the

position

x of the nucleus. The average is done over all positions


xe of the electron andweightedwith the

probability ∣ ( )∣ 
y x x, e 2 tofind the electron at position


xe when the nucleus is at position


x . The integral in

equation (65) on the coordinates of the nucleus weights the strength of the z-component of the quantized
magnetic field at


x with the probability ∣ ( )∣Yb x 2 tofind the nucleus at this position


x . Here is the similarity to the

effective description, inwhichmagnetic shielding, effectively derived using the classicalmagnetic field, is
averaged


x with the probability ∣ ( )∣Yb x 2 tofind the nucleus at this position


x .

The advantage of ( )sbj xqed ofmQED is thatfinite temperature quantum fluctuations of the quantized
magnetic field are included. It would be an interesting future work to investigate inwhich cases these
fluctuations are relatively large or negligible. If thesefluctuations are negligible for a systemof interest, the
mQEDapproach seems to provide for the time-independent investigation in thermal equilibrium no advantage
over the effective description. However, anNMR spectrum is generated from the spin dynamics and
thermalization as well asmolecularmotion are closely related to line shapes. Remember that for the spin
dynamics there is no similarity between conventional NMR theory and themQEDdescription. This ismainly
due to the phenomenological integration of thermalization in the effective description in equation (4).

Intermediate steps in the calculation of j
ba for the hydrogen atom.

According to themain result we calculate ( ( ))Lwb b ItM
z for thermal equilibrium (t=0). For the hydrogen

atomwe have

∭ ∭( ( )) ∣ ( )∣ ∣ ( )∣ ˆ ( ◦ ( ))( ) ( )L
    

w y w p t= Yb b b b b

 
I d x d x x x x I x x, , 68I

P
I

M 0
z 3 3 e 2

100
e 2

SB SB 0
SB z e

3 3

and need to know the explicit formof the integral kernel ˆ ( ◦ ( ))( ) 
w p tb b I x x,I

P
I

SB SB 0
SB z e . Step by step calculations

provide

ˆ ( ◦ ( ))( ) ˆ ( ( ) ˆ)( ) ( )   
w p t w p= Äb b bI x x I x x, 1 , 69I

P
I I

SB SB 0
SB z e

SB S
z e

⎛

⎝

⎜⎜⎜
⎞

⎠

⎟⎟⎟

( )

ˆ ( ( ) ˆ ( ( ( ))) ˆ ( ( ( )))

ˆ ( ( ) ˆ ( ( ( ))) ˆ ( ( ( ))) ( )

  

 

  

 

  

ò ò år

w p t g t
m

w p t
m

t g

= -

´ Ä F Ä F

+ Ä F Ä F +

b
b

a d

b b b a
j
a b d

j
d

b b b d
j
d b a

j
a

=





I ds ds

I I b x g S b x

I g S b x I b x

Tr

, ,

, , ... 70

s

is is

is is

S
z

0th order
0

1
0

2
, x,y,z

T,SB SB
z SB SB

S
B e

2nd order

T,SB SB
z SB

S
B e SB

2nd order

1

2 1

2 1

and the dots represent 4th and higher order terms of the perturbation series equation (41). Thefirst termof the
integrant of the second order provides

ˆ ( ( ) ˆ ( ( ( ))) ˆ ( ( ( ))) ( ( ( )) ( ( ))

( )

 
w p t g t

m
g

m
r rÄ F Ä F =b b b a

j
a b d
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d b a b d

 
I I b x g S b x g I I is S is, , Tr Tr

71

is isT,SB SB
z SB SB

S
B e

S
B

S
z

2 S 12 1

( ) ( ( )) ( ( ))) ( )r r r- b b a b dI I is S isTr Tr Tr 72S
z

S 2 S 1
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( ( ( ( )))) ( ( ( ))) ( ) w t t´ F Fb
j
a

j
gb x b y . 73is isEM

EM EM
2 1

The second termof the integrant of the second order provides an analogous expression, where just some indices
are changed. Thus, we have

( ) ( ) ( ) ( ) ( )L m
  

ò òr g
m

r» - +b b b
b

jb
I I g S ds ds x is x is kTr Tr , , , , ... 74

s

0
z

S
z

S
B

S
z

0
1

0
2

zz
2

e
1

1

Using the high temperature approximation for rbS one obtains the results shown in equation (49) and (51). Note
that here it can be seen that no largematrix is generated even for largemolecules because of the tensor product
structure in equation (36).

NMRsignal of a heliumatom.
The dynamic calculations for the hydrogen atomof themainmanuscript are compared to the case of a

helium atom in order to get a first notion formore complex systems. If electron-electron interactions are
neglected the 1s orbital yZ

100 of an atomwith nuclear chargeZ is given by

⎛
⎝⎜

⎞
⎠⎟( ) ( )

∣ ∣   

y
p

= - -
x x

Z

a
e, . 75Z

100
e

3

0
3

1 2
Z x x

a
e

0

WehaveZ= 1 for hydrogen andZ= 2 for helium. In the case of a hydrogen atom the integral kernel bf
H
of

equation (60) has up to 6 spatial variables andwemaywrite

( ) ( ) ( )   
= +b bf t x x f t x x, , , , ..., 76

H
e

H,2
e

were the dots denote higher order termsHence, theNMR signal for the hydrogen atom, ( )á ñb+M tH , may be
approximated by

( ) ∣ ( )∣ ∣ ( )∣ ( ) ( )    
ò yá ñ » Yb

b b+M t d x d x x x x f t x x, , , 77H
3 3 e

H
2

100
1 e 2

H,2
e

For theHelium atomonefinds

( ) ( ) ( ) ( ) ( ) ( )           
» + + + +b b b b bf t x x x f t x x f t x x f t x x f t x x x, , , , , , , , , , , , ... 78

He
e
1

e
2 He,2

e
1 He,2

e
2 He,3

e
1

e
2 He,5

e
1

e
2

The functions fH,2 and fHe,2 just differ by a factor of γHe/γH. For the electrons of the helium atomwemay assume
the symmetric wave function y y y= ÄHe

S
100
2

100
2 for the spatial degrees of freedom,

( ) ( ) ( ) ( )      
y y y=x x x x x x x, , , , . 79He

S
1
e

2
e

100
2

1
e

100
2

2
e

Of course, the index 2 denotesZ= 2 and not the square. Asmentioned above the spin operators are already
contained as expectation values in themultiplication operator f.We derive

∣ ( )∣ ∣ ( )∣ ( ( ) ( )) ( )       
ò yY +b b bd x d x d x x x x x f t x x f t x x, , , , , , 803 3

1
e 3

2
e

He
2

He
S

1
e

2
e 2

He,2
e
1 He,2

e
2

( )∣ ( )∣ ∣ ( )∣ ( ) ∣ ( )∣ ( ) ( )        
ò ò òy y= Y +b b bd x x d x x x f t x x d x x x f t x x, , , , , , 813
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2 3

1
e

100
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1
e 2
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e 3

2
e

100
2

2
e 2

He,2 2
e
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ò y= Yb bd x d x x x x f t x x2 , , , 823 3 e

He
2

100
2 e 2
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e

andfind for theNMR signal ( )á ñb+M tHe of the helium atom

( ) ∣ ( )∣ ∣ ( )∣ ( ) ( )

( )

    

  


ò yá ñ » Yb
b b+

=á ñb+

M t d x d x x x x f t x x2 , , , 83
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2 e 2
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e
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Thefirst term, denoted by ( )á ñb+M tHe,1 , is very similar to the signal ( )á ñb+M tH of the hydrogen atom. It just differs
by a factor of 2, which arises because 2 electrons contribute, the valueZ= 2 of the nuclear charge and the value
γHe/γH. The function ( )á ñb+M tHe,1 describes theNMR signal of a helium atomwithout electric andmagnetic

electron-electron interactions. The latter ones are generated by ( )
 bf t x x, ,

3
e
1

e
2 and ( )  bf t x x x, , ,

5
e
1

e
2 .

Furthermore, one finds as in the case of hydrogen that ( )á ñb+M tHe,1 is independent of Yb
He. This is because a single

nucleus in a homogenous external field is considered and it can be foundmathematically by themultiplication
of ( )m

  
jb x is x is k, , , ,zz

2
e

1 with the exponential of the Fourier transform for Yb
He. Asmentioned above, theNMR

signal of amolecule with two ormore nuclei explicitly depends onΨβ. In this documentwe do not calculate the
corrections of themagnetic electron-electron interactions for ( )á ñb+M tHe but compare the spectra ( )bS tHe,1 and

( )bS tH (figure 9)which are generated as Fourier transformations of ( )á ñb+M tHe,1 with ( )á ñb+M tH according to
equation (47). Based on the numerical comparison of the spectra it seems to be important to include the
corrections ofmagnetic electron-electron interactions provided by ( )

 bf t x x, ,
3

e
1

e
2 and ( )  bf t x x x, , ,

5
e
1

e
2 . One

may expect that these corrections shift the position of the peak andmake the peakmuch thinner. Note that the
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unpaired electron of the hydrogen atom speeds up the thermalization process and a faster decay of theNMR
signal in the time-domain corresponds to a broader width of theNMRpeak in the frequency domain.
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