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Abstract

The algebraic reformulation of molecular Quantum Electrodynamics (mQED) at finite temperatures
is applied to Nuclear Magnetic Resonance (NMR) in order to provide a foundation for the
reconstruction of much more detailed molecular structures, than possible with current methods.
Conventional NMR theories are directly related to the effective spin model, which idealizes nuclei as
fixed points in a lattice Z°. However, the delocalization of spins due to the thermal energy is more
realistically described by the amplitude square of the nuclear wave function |[I’(X)|* with X € R3",
instead of fixed points in Z>. In addition, the phenomenological integration of thermalization only
allows an investigation of the molecular structure based on the position of the punctiform center of an
NMR signal, but not based on the width and shape of NMR signals. Hence, alot information on
molecular structures remain hidden in experimental NMR data. In this document it is shown how
|‘I’/3 X0 2 X € R3 can be reconstructed from NMR data. To this end, it is shown how NMR spectra
can be calculated directly from mQED at finite temperatures without involving the effective
description. The new method connects all data points—the positions, widths, heights and shapes—of
NMR signals directly with the molecular structure, which allows more detailed investigations of the
underlying system. Furthermore, it is shown that the presented method corrects wrong predictions of
the effective spin model. The fundamental problem of performing numerical calculations with the
infinite-dimensional radiation field is solved by using a purified representation of a KMS state on a
W*-algebra. It is outlined that the presented method can be applied to any molecular system whose
electronic ground state can be calculated using a common quantum chemical method. Therefore, the
presented method can replace the effective description which forms the basis for NMR theory

since 1950.

1. Introduction

Advances in chemistry, pharmacy, structure-based drug design and nanoscience often depend on the detailed
knowledge of a molecular structure, which is determined by the spatial distribution of the nuclei[1]. In
particular, the pharmacological properties of drugs depend heavily on small details of the charge distribution in
the molecular structure [2]. In 1946, the experimental technique of Nuclear Magnetic Resonance (NMR)
spectroscopy was developed, which is nowadays one of the most used and most advanced methods for molecular
structure determination [3, 4]. NMR data contain highly detailed information on the spatial distribution of the
nuclei including binding lengths, binding angles, bond rotations, molecular vibrations, proton exchange and the
electronic influence of neighboring molecules [5]. From 1950 to 1953 Norman Ramsey calculated the chemical
shift observed in NMR from the energy of the ground state, equation (2), and thus laid a foundation for today’s
NMR theory for structural analysis [6—9]. However, even 74 years after the invention of NMR, much
information about molecular structures cannot be decoded and remains hidden in experimental NMR data.
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This concerns especially molecular structures where the positions of the nuclei cannot adequately be described
as fixed points in space. Due to the finite temperature the nuclei of a molecule are generally distributed in space
to all positions which are accessible through thermal energy. Such delocalization is made possible in particular
by bond rotations, molecular vibrations and proton exchange. Thus, a change of the temperature causes
interconversions of superpositions of different conformations of a molecule. This has two effects on NMR
signals, which typically have the shape of a Lorentz function: The position as well as the width (shape) of the
NMR signal is influenced [10—12]. Delocalization of protons due to exchanging protons shows both effects on
the signals as well. While the effects on the position of the signal can be investigated based on the electronic
structure using modern methods of quantum chemistry [6, 13], modern NMR theory is so far unable to directly
connect the shape of the NMR signals with the electronic structure [14—17]. Conventional NMR theory used for
line shape analysis is highly phenomenological and mainly based on notions of Classical Physics. For example,
bond rotations are described such that the nuclei rotate with a certain frequency and hence have time-dependent
positions. Such concepts are integrate in conventional NMR theory in the form of rate constants. This is similar
for proton exchange. However, in the more realistic theory of Quantum Statistical Mechanics bond rotations are
included in wave functions U whose amplitude square |\IJ*3(X) |* provides the continuous probability distribution
to find the nuclei with conformation X. Thus, the description of delocalized nuclei using a spatial probability
distribution [¥”(X)|? is obviously more realistic and more detailed compared to an idealization as fixed point
particles in combination with phenomenological rate constants.

However, conventional NMR theories are based on or are directly related to the effective spin model,
equation (1), which idealizes nuclei as point particles at fixed positions x; and whose thermal states are almost
independent from the temperature [6-9]. The effective spin model had certainly great success over the last
decades [18], but it also suffers from the fact that delocalization of nuclei due to bond rotations, vibrations and
proton exchange can only be included phenomenologically [19, 20]. The phenomenological description in the
form of rate constants gives a rough insight into these effects [21], but it also prevents a desirable analysis of the
more realistic, continuous probability density [W*(X)|? for the spatial distribution of the nuclei. The effective
model [22, 23]

Hee = =Y %L1 — 0)Bex + 270> JyLi - I + > LDyI, (1)
i

i<j i<j

contains the magnetic shielding o;, which is caused by surrounding electrons. The magnetic moments of these
electrons show into the opposite direction of the external magnetic field and hence weakens the external field at
the position of a nucleus. The indirect spin-spin couplings J;; are also caused by electrons and enable energy
exchange between nuclei at i and j. The tensor D;; describes the magnetic dipole-dipole interactions between the
nuclear spins I and fj, B, is a classical, external magnetic field and +yis the gyromagnetic ratio [6, 24]. In the
most widely used approach the effective parameters are calculated according to second order derivatives of the
ground state energy (Taylor-expansion) [6-9, 25]:

ad azEO

b _ o~ _
0 = W and i’ = hyivj——— a, 6 =X,Y, 2 2

aus duj

During the last decades there were done many works on the optimization of equation (2) by including relativistic
[26-28] and QED effects [29-32] to the effective NMR parameters. Also numerically more efficient alternatives
were introduced [33, 34]. All these effects are integrated in the form of corrections to the effective parameters o
and J and are therefore still inside the effective description which possesses a discrete energy spectrum. This is the
same for the integration of the temperature [13], where the corrections Ao and A”J are calculated according to

ABg = f XV (X)Po(X) — 0y and A = f XX T (X) = Jeg- 3)

Here U7 is the nuclear wave function and Oeqas well as Jq are the values at the equilibrium geometry, which
corresponds to the configuration of lowest energy of the potential energy surface (PSE) and can be calculated
according to equation (2). The multiplication operators o(X) and J(X) give just the values of the corresponding
effective parameters for the positions (configuration) X of the nuclei. The values (X) and J(X) are calculated also
according to equation (2) except that the configuration X is not the point of lowest energy in the PSE. Hence, this
approach is able to analyze the impact of the temperature on the position of an NMR signal but not on the shape
of an NMR signal. A detailed discussion on the similarity and differences of this approach to the presented
approach is given in the appendix. To this end, conventional NMR theory strongly requires phenomenology
which does not connect the molecular geometry but phenomenological parameters with the line shape. We do
not describe these methods here in detail but refer to the literature [15—17, 35]. In order to obtain any line shape
of finite width from the Fourier transformation of the nuclear spin dynamics—as it is done in NMR experiments
—thermalization of the nuclear spins must be contained in the calculated spin dynamics. However, the unitary
dynamics generated by (1) has bad thermalization properties because the Hamiltonian has a discrete energy
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spectrum. Small systems consisting of a few spins does not thermalize at all and larger systems thermalize only
approximately in very specific cases [36]. In order to include return to equilibrium (thermalization) anyway [37]
the von Neumann equation was modified phenomenologically by introducing relaxation superoperators I'
[38,39]:

dp(t '
Z(t = _%[Heff, p®)] = T(p(t) — py). @

The final state p, to which the system shall evolve must be chosen by hand”. Certainly, it is preferable when the
correct final state is an outcome and not an input of a theory. In all these methods, the microscopic origin of
NMR line shapes is completely neglected and replaced by phenomenological parameters like rate constants k or
relaxation parameters T} and T5. To conclude, in conventional NMR theory only some data points of the NMR
spectrum—the positions of the NMR signals given by o and J - are directly connected to the molecular geometry
while the line shapes have so far no direct connection to the underlying molecular geometry. Line shapes are
described phenomenologically. This is basically due to the fact that thermalization is included phenomenologi-
cally by equation (4) instead of coupling the spins to the quantized electromagnetic field at finite temperatures.

Ilustrative examples where all data points—which means also the width of the NMR signals—contain
important information on the underlying structure and were a description just in form of o and J is incomplete
are shown in figure 1(a). In the real molecule (which is furfural in this example) all bond angles can be occupied
via bond rotations (b). We know from quantum mechanics that every bond angle has a specific energy and the
laws of thermodynamics provide the information about which of these bond angles are preferably occupied.
Conventional NMR theory like the Bloch-McConnell equations, however, simplifies the molecule usually by
using two different structures with fixed point positions for the nuclei and a rate constant k (left side (c) in
figure 1). This rate constant describes the time required for the mutual conversion of these structures. Hence, the
important information which bond angles are more and which are less preferred at a given temperature
(compare also figure 7) cannot be decoded from experimental NMR data by using conventional NMR theory.
This is because a description of the changes in the NMR spectrum just in terms of the positions of the NMR
signals is incomplete. In the case of furfural, also the line shapes must be connected to the molecular structure in
order to obtain a complete structure investigation. Otherwise not all details of the molecular structure can be
decoded using conventional NMR theory such that they remain hidden in the experimental data. This is similar
in the case of proton exchange (right side of figure 1, (d), () and (f)).

In this document it is shown how the probability distribution [¥”(X)|? for the positions X of the nuclei can be
analyzed and reconstructed from NMR spectra. To this end, it is shown how the NMR signal can be calculated
directly from molecular Quantum Electrodynamics (mQED) at finite temperatures without using the effective
spin model or effective NMR parameters. Hence, the presented method can be used to obtain a more detailed
molecular structure from NMR data than currently possible with conventional NMR theory. Mathematically,
this means that the lattice L, which serves for the restricted positions of the nuclei in the effective description, is
replaced by the continuous space R? in which the nuclei can be distributed continuously. A reconstruction of
|W?(X)|? from NMR data is of special interest, because in most cases it is not possible to solve the nuclear
Schrodinger equation. An outlook how a more detailed structure determination may look like is presented in
section 8.

However, up to now it was not known how the spin dynamics can be calculated numerically when the spins
interact with the infinitely dimensional, quantized electromagnetic field (EMF) with a continuous spectrum at
finite temperatures. Two basic reasons for that are the occurrence of divergences in perturbation series and the
infinite number of field quanta involved in finite temperature QED processes. In certain cases one may avoid the
numerical and mathematical problems related to quantized fields at finite temperatures by using the ground
state instead [40, 41]. However, in NMR at room temperature the nuclear spins are far away from their ground
state and the temperature of the quantized electromagnetic field determines the temperature of the final state of
the nuclear spins after equilibration [42]. Hence, the approach of using a ground state for the quantized EMF is
obviously unsuitable for NMR at room temperature. There are several works on a method called Thermo Field
Dynamics (TFD) [43—45] which is about quantized fields at finite temperatures. While this approach is widely
used it also involves a large number of field quanta in the construction of the thermal vector state 2.
Furthermore, in TDF the state ©2” is constructed using a discrete set of energy values E,,. An extension of the TFD
methods to the continuous case is not possible. The use of a discrete energy spectrum for the quantized EMF and
the limitation to a few (usually 1-100) frequencies is the common approximation made in current numerical
methods. The discrete spectrum drastically simplifies the mathematical structure. No numerical method was
found in the literature that uses a continuous energy spectrum for the quantized EMF to calculate the spin
dynamics. However, as it turns out later in this document a discrete spectrum does not lead to satisfying results
in the calculation of NMR spectra. Indeed, the incorporation of a continuous spectrum for the quantized EMF is
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Figure 1. Limitations of conventional NMR theory: NMR data contain information about the bond angles of furfural at different
temperatures [11, 12] not only in the positions of the peaks (0 and o), but also in the shape of the peaks (a). The relative heights and
shapes of the signals are directly related with (unequal) occupation probabilities of the continuous bond angle § € R which can
change due to bond rotations (b). Thus, a detailed description is that each bond angle § is occupied with a certain probability [T7(6)|2.
However, in conventional NMR theory (c) this situation is simplified with two fixed structures (which allows just two bond angles)
with fixed points for the positions of the spins and a rate constant k describing the time required for the interconversion of these two
structures. The idea, that the bond (marked by the curved red arrow) is rotating with a certain frequency, is based on Classical Physics.
Thus, in conventional NMR theory only o and o, are directly related with the molecular structure while k is used for a
phenomenological fit to reproduce the line shapes. Any attempt to describe the changes in (a) from 195 K to 240 K by using just two
numbers (0, and 0,) is incomplete [11] in view of the electronic structure. Therefore, with conventional NMR theory, only some, but
not all, of the data points can be used for structure determination. This is similar for proton exchange (d, e). The NMR signal of the
COOH proton of pyruvic acid becomes significantly broader if an exchange with other labile protons takes place (here propargyl
alcohol). Quantum chemical methods can only associate the shift of the signal with a change of the electronic structure. The change of
the shape of the signal is so far investigated phenomenologically (f) in the form of a rate constant k and fixed structures for the
molecules. In summary, the occupation probability of certain bond angles at a given temperature cannot be decoded from
experimental NMR data by using established NMR theories. In addition, changes in the probability distributions caused by proton
exchange can be investigated with conventional methods with only some, but not all, data points of the NMR spectrum. This motivates
the use of the algebraic reformulation of mQED at finite temperatures to get more detailed insights into molecular systems (see also
figure (7)).

of paramount importance for the NMR line width which is directly related with return to equilibrium properties
and determines the life time of excited spins. Hence, TFD is unsuitable for the calculation of NMR spectra.

In the present document the following problems for numerical methods are solved by using the
mathematical structure from algebraic Quantum Field Theory [42, 46-51]:

(I) Numerical calculations with the infinite-dimensional, quantized EMF at finite temperatures.

(II) Numerical calculations with a continuous energy spectrum for the quantized EMF.

(III) Convergence of the QED perturbation series.

Recent works investigated and avoided the occurrence of divergences by using appropriate smearing functions
[42,52,53]. It remained to show which effect these restrictions have on expectation values, which will be done in
this work. Recently, a perturbation series for interacting, massive quantum fields was constructed by
Fredenhagen and Lindner [49]. This approach solved a long-standing problem and its extension to the Dirac
field is of interest for relativistic effects from heavy nuclei in NMR. Further important structural developments
were achieved in [54]. In this document it is shown that a purified form of the Araki- Woods representation [55],
denoted by ($aw, Thy), enables the numerical calculations involving bosonic fields at finite temperatures with
striking advantages: In each order of the perturbation series at most one ”Araki-Woods boson” is produced
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while small coupling constants, connecting splns and the quantized electromagnetic field, reduce higher order
contributions. The representation ($aw, 7Tay) rigorously respects the continuous energy spectrum of the
quantized electromagnetic field at finite temperatures and reduces the required computational resources for
numerical calculations strongly. To summarize, this document shows that the application of the algebraic
reformulation of mQED to NMR offers the following advantages over conventional NMR theory:

(I) The drawback of a nearly temperature-independent initial state from which conventional NMR theory
suffers (effective spin model) is repealed. Instead, the temperature-dependent probability density for the
spatial distribution of the nuclei (the amplitude square of the nuclear wave function) can be used directly for
the calculation of the spin dynamics.

(ID) In contrast to conventional NMR theory, the presented method directly connects all data points of the
NMR spectrum with the molecular structure. This means that there is a direct and causal connection
between NMR line shapes and the investigated molecular structure. Hence, no phenomenological
parameters prevent the reconstruction of the spatial distribution of delocalized nuclei. This is due to the
natural (not phenomenological) thermalization [42, 56] of the spin dynamics in mQED.

(III) The above points (I) and (II) basically enable a much more detailed reconstruction of the molecular
structure contained in NMR data than possible with established methods.

(IV) Molecular rotations, vibrations and proton exchange are included in the probability density for the spatial
distribution of the nuclei. Hence, the simplification that the positions of nuclei are restricted to fixed points
is repealed in the calculation of the spin dynamics.

2. Molecular quantum electrodynamics

In order to use the perturbation theory developed by Araki, Bratelli, Robinson and Kishimoto the Hamiltonian
will be separated into H = Hy + Hi,,,. The physical system will be described by a combination of a Pauli-Fierz
and a generalized Spin-Bose model in Coulomb gauge [52, 56]. The resulting molecular QED Hamiltonian is
given by

—.2 —'2

K E
{Z%‘Tj + Z/fn] “Bew + /4 ) f dPPkw (k) af (k) ar (k) + Z + Z L 41 vExs, X)
j=1 i=1

A=1,2 Zme j=1<M;

)

and

Hiy = —Z ’y]I B, o(%5) + Z( mﬁA (xe) V + E(A (xe))z . B (x )) (6)

i=1

The first term in H, couples the K nuclear spins f] and the E total magnetic moments /z;; = — i / 7 (g5 + lj-)
of the electrons to the classical, external magnetic field Biy. For high field strengths of the external magnetic
field, i.e., BS, > 3T, spin—orbit couplings can be neglected due to the Paschen—Back effect. The second term

describes the energy of the quantized, electromagnetic field. ay (k) and a, (k) are the common creation and
annihilation operators with commutation relations

[ay(K), afi(K)] = 6k — KNy [ar(K), ay(K)] =0, and [af(k), afi(K)] = 0 )

and with momentum k € R3and polarization A = 1, 2. The last three terms provide the non-relativistic

Schrodinger-Operator. Thus, p, is the momentum operator of electron i, P, is the momentum operator of

nucleus jand the potential V(X%, X) depending on coordinates X° of E electrons and X of K nuclei is given by
Z j€ 2 K Z i Zie 2

_yy Ly e ®)

dmeoxi 2 1j=1 47T€0Hx —xj||  igj Ameoxij

E e?
VX, X)=),

i<j

Z;is the number of protons in nucleus j, xj—e is the coordinate of electron iand X; of nucleus j. x;; and x;;are the
distances between electrons or nuclei and the other constants can be found in the literature [57]. Hy,, couples the
independent terms and enables energy exchange between the nuclear spins and the rest of the system. We use the
definition A¢ () = 2099 (xj, 0) and for the quantized vector potential the free time evolution provides
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- N VA 5,7 E Tt A - ST= T -
Agp (%, 1) = /_250(_27r)3 Az;z j;@ P F) 90((]?)) (e =g+ K + eii—w®rng, (§)). )
=1 \’w

The quantized magnetic field is given by Eﬁ =V x Av and we have

Bop =i 3 [ k(K x 2 i sngl(E) — o0 @), (10)
260(27{') A=1,2 R lw(k)

where ¢ € L?(R%) is the coupling function with suitable IR and UV behavior [56-58] to prevent divergences in
the individual terms of the perturbation series. The presented model is independent of a specific choice of the
polarization vectors. Using the notation x = (X, t), k = (k, w(k)) and Einstein’s sum convention
kix, = k - X — w(k)t wehave
(B0, Bl = = 3 [dkef B (Ridetx - ») (1)
A=1,2

with 95 (k) = (7 /) p(k)(k x & (K)* a,v=x,y,zand

—ikl(x,—y,) _ ikl (x,—y,)
iNGx—ypy =S¢ T 1 (12)
2m)? 2w (k)

Since the commutator function is linked to the Feynman propagator we will have the interpretation for the
probability for the propagation of field quanta between the nuclear spins located at x and y.

3. Algebraic quantum field theory

Operator algebras are central objects in the algebraic reformulation of Quantum Statistical Mechanics and
Quantum Field Theory. Several structural elements of operator algebras are required for the numerical
calculations in the application of mQED at finite temperatures to NMR. The most central objects of operator
algebras are briefly reviewed from [46] and [47] before the Field Theory is described. Further mathematical
structures that are required for the numerical calculations can be found in the appendix.

Basics of Operator Algebras. The commutant of an algebra 2/ is denoted by 21’ and we have ()’ = ".
The set of bounded operators on a Hilbert space $) is denoted by B (£)).

Definition 1. A von Neumann algebra on a Hilbert space ) is a “-subalgebra 2t of B ($)) such that
M =M. (13)

The terminology W*-algebra is often used for the abstractly defined algebra and then the name von Neumann
algebra is reserved for the operator algebras. Note that a C*-algebra is a closed set in the norm topology and a
W*-algebra is weakly closed. A bounded observable A is a selfadjoint element of a C*- ora W*-algebra 2. A
state wis a positive, normalized, and linear functional on 2, i.e., w € 2A*, where 2* is the dual of 2. An
expectation value is given by

W(A) = (wwr Ww(A)¢w)a (14)

where m: A — B(H)and ¢, € H,,. Theindexw on 1), H,, and 7, denotes the association of the
representation (H,,, m,) and the vector 1, with the state w. However, we will neglect this index for simplicity
because no confusion can appear. The space ), is called the representation space and the operator examples

7 (A) are called the representatives of 2. A *-isomorphism of an algebra 2l into itselfis called a *-automorphism
7. The time evolution of a physical system is given by a one-parametric group of *-automorphisms 7, which is
generated by a derivation 6. Thus, the derivation § contains the information of the Hamiltonian H and one
formallyhas A — 7,(A) = ei%(A).

Definition 2. A W*-dynamical system is a pair (9, 7), where M1 isa W*-algebraand 7: G — Aut(9M),
G > g — 7, isaweakly continuous representation of a locally compact group G as *-automorphisms acting
on IN.

Note thata C*-dynamical system (2, 7) is defined in a similar fashion. In this case 2 isa C*-algebraand Tisa
strongly continuous representation of alocally compact group as “-automorphisms acting on 2. In order to
proceed with equilibrium states we define the strip S3 = {z € C|0 < J(2) < 3}.

Definition 3. Let (2, 7) bea C*- ora W*-dynamical system. A state w” on 2, supposed to be normal in the
W-case,isa (7, 3)-KMS state for some 5 € R if the following holds. Forany A, B € 2l there exist a function
F3(A, B; z) which is analytic on the strip Sg, continuous on its closure and satisfies the Kubo—Martin—Schwinger

6
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condition
F5(A, B; t) = wP(A7(B)) and F3(A, B; t + i) = w’((B)A) (15)

on the boundary of S;.

Description of the field theory. A single photon is described as a square integrable function
fen=LR x {1,2}), K, \) — I (k) € C with momentum k € R3and polarization A € {1,2}. The
Hilbert space §is called the 1-particle Hilbert space. The n-particle Hilbert space $)" is given by the n-fold tensor
product of $ withitself,i.e., H” = H ® H --- RH. The projection P, H" = §'| [47] onto totally symmetric
n-particle wave functions reflects that the particles obey the Bose—Einstein statistics. The photon Fock-space is
then defined by

5.(9) = éosai. (16)
with vacuum 2 € F(9). The smeared creation and annihilation operators are defined by
&) = [Pk fEaE and an(f) = [d%fEaE (17)
for f € 9. af (E )and a, (E ) satisfy the commutation relations in equation (7), which translates to
[ax(f)> a(g)] = o (filgy) and  [ar(f), av(g)] = [a(f), ax(g\)] = 0 (18)
with
(hlg) = [, a0z E). (19)
A field operator ®( f) is given by
(f) = %Azljzms"( £+ a(h) (20)

and the notation for the quantized magnetic field in section II, equation (10), is recovered by
B, (X, t) = @(b“(x’t)) witha =x,y,z. According to equation (10) the functions bg/{x’t): R3 — Caregiven by

h”<“>(k)_z/ (kx (k))‘“ 0 e®% and a=x7y,z @1
w(k)

Since the field operators are unbounded one introduces the bounded Weyl operators

W(f) = exp(i®(f)), satisfying W(HW(g) = e PDIW(f+ g). (22)

In order to rigorously define equilibrium states the one-particle Hilbert space has to be restricted by

H'={fe H; w f € $}, which ensures a suitable infrared behavior. This basically means to “reduce or
neglect” extremely low energetic photons. However, in this document no infrared divergences were found in the
numerical calculations and the restriction of bg" to $)' can be chosen such that the influence of the restriction on
the expectation value is arbitrarily small. We define a C*-algebra gy for the quantized electromagnetic field by

Apy = W) = span{W () fe )1, (23)

where the closure is taken in the uniform norm || - || for bounded operators on the bosonic Fock space §.(9").

The dispersion relation is given by w (k) = c|k|where cis the speed oflight and the free field Hamiltonian is
given by

Hpy = dT(w) = 4 Y f &k w(E)a (k) ay (). 24)

A=1,2

dI'(w) provides an infinitesimal generator gy, formally given by dgy = [Hgwm, - 1, that generates the one-
parameter group {7} ;< for the quantized electromagnetic field.

The GNS-representation ($Haw wa) which is induced by the (7™, 3)-KMS state ng on Ay was found
by Araki and Woods [55] and is therefore referred as Araki-Woods representation. The representation space is
given by

Haw = F+(H) @ F1(H), (25)
the annihilation operators are given by
Taw @ () = ax(JT+ psf) @ T+ 1@ af (751 (26)
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and the creation operators are given by

Taw @ () = ax(JT+ ) ® 1+ 1@ av((p51)- (27)

The function pgis a physical input which ensures that Planck’s law for the thermal radiation density and Bose—
Einstein statistics is satisfied and we have

g(k) = ————. 28
o) = —— (28)
The vector representative {25, of Wiy is cyclic and separating for the weak closure 7w @) of Apy and it
turns out that (ﬂ'iw Aen)”,s {7rjzw or™} p)isa W*-dynamical system [42]. Using ($aw> wgw) itcanbe
derived that

EM(T (<I>(b“(x))))7‘ ((I)(bv(}/))) _ = Z f d3k( ba(x zz)(k)b“l)(\}_",zﬂ(]_(')(l + pﬂ(]_('))

2 \=12
bv(y zl)(k)bﬂ(x ZZ)(k)pg(E))- (29)

For later purpose we define the magnetic quantum exchange mw',: R x ZxR x Zx R — Cwiththe
strip Z = [0, 00 ) x [0,i(3) in the complex plane C by

&, 20, ¥> 215 E) — mgg(j{, 2, 7> 215 E) = Z (ba(x zz)(k)hr(}’ Zl)(k)(l + pd(k)) + b,(y Z‘)(k)baif’ZZ)(l?)pﬁ(l?)
)\ 1,2
+ b0 OB K (1 + py(K)) + BAE )BT (k) py (K.
(30)

The following useful symmetry is valid: m o ﬂ(x 2, ¥, 2, k) =m" J(x 2, ¥, 22 k) In applications to NMR it
turns out that the family {m}} o ,—yy,, takes a central role for the strength and occurrence of the magnetic
shielding (chemical shift) and determines return to equilibrium properties.

4. Quantum spin systems and spin boson systems

In the perturbation series used in this document Quantum Spin Systems (QSS) occur as subsystems of Spin
Boson Systems (SBS) while SBS occur as subsystems of the mQED systems.

Quantum Spin Systems. The mathematical framework for QSS is taken from [47, 59]. A quantum spin
system consists of particles on a lattice Z?. We associate with each point x € Z? a Hilbert space $), of dimension

2s(x) + 1 and with a finite subset A = {xi,...,x,} C Z we associate the tensor product space ), = &) §,,. The
xi€EN
lattice can be equibed with a metric d( - , - ). The local physical observables are contained in the algebra ofall

bounded operators acting on $),, thatis the local C*-algebra 2y =~ &) Ma;(x,)+1in which M,, denote the algebra
xi€A

of n X n complex matrices. If Ay N A; = @, then H), 4, = HDa, © H, and Ay, isisomorphic to the

C*-subalgebra 2y, ® i A, of A5, A, where i A, denotes the identity operator on §,,. If A} € A, then 2, C Ay,

and operators with disjoint support commute, i.e. [, 25,] = 0 whenever A; N A; = @. We may define the

algebra of "all local observables” as A, = |J 2. The operator norm of an element A € 2, is given by
AcZd
Al = sup{||A¥||; ¥ € $y, [|¥]| = 1}. Aninteraction P is defined to be a function from a finite subset

X C Z%into the hermitian elements of 2 such that ®(X) € 2lx. The Hamiltonian associated with the region A
is then given by

Ho(A) = ) &(X). (3D

XCA

An interaction of a spin with a classical, external magnetic field [36, 60—62] is given by

o({j}) = 'yjfj - Boy for nuclear spinsand ®({i}) = gs%gi - By for spins of electrons. (32)

An NMR pulse induces a time-dependent interaction P; involving spins and oscillating, external magnetic fields
[63,64]

K
= ST ®F({j}), where ®[({j}) =L - Bex(t). (33)
j=1

For example, a single pulse in x-direction, which is switched on from time t = 0 to t = t,, is described by a
magnetic field of the form
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Bl (1) = Bp f dwp f (wp)B(t, 0, to)cos(wpt + B). (34)

0 is the step function, Bp provides the amplitude of the pulse (some milli Tesla), ¢ is the phase of the magnetic
field at t = 0 and fprovides the frequency distribution of the pulse. Often, the frequency distribution provided by
fis of rectangular form and of course it has to cover the excitation frequencies of the nuclei which shall be
excited. The dynamical evolution of an observable A € 2, for a system with time-independent Hamiltonian
Hg(A) € 2 can be described by the Heisenberg relations

rer( A) itHp ()

TSAI Ay — Ay, A— TtA(A) i Ae i . (35)

Thusthemap t € R +— 75" is a one-parameter group of *-automorphisms of the matrix algebra 2y and S

denotes that this automorphism group acts only on the quantum spin algebra. The corresponding derivation is
denoted by 6, and (y, 75*) is a C*-dynamical system because 75" is strongly continuous for finite external
fields. Since effective spin-spin couplings are absent in the mQED Hamiltonian equation (5) and (6) a spin
system consisting of K nuclei and E electrons forms a subsystem of (5) whose equilibrium state is given by

K+E

wi=Q® wsﬁj. (36)
=1

wsdj is the (7%, ﬂ) KMS state of the single nucleus or electron enumerated by j. The representation which is
induced by w ) is denoted by (9s, 7).

Perturbatlve description of Spin Boson Systems. A C*-algebra 2 for spins located in A interacting with
bosons from the quantized electromagnetic field is given by

Q[SB . span{A ) W(f)lA c Q[A,fe g‘)r}\l-\lwmsw — Q(A X Q[EM) (37)

where Hsg = 9 ® )/ Aw b is arepresentation space. The index A is neglected for simplicity. The free time
evolution Tt = Tt ® 7'[ M with derivation dsp = 65 + g, acts on g and we have 7 B(A ®@ W(f)) € Asp
[42]. Interactions of the form

K E N
Hpi= Y (Zw ® P(b2Y) + ng%si“ ® D(bo™) (38)
i=1

a=xy,z\ j=1

enable energy exchange between spins and bosons. Note that, for the sake of simplicity, we do not state the
dependence on spatial coordinates on the left- hand side of this equation. Interactions given by (38) are
unbounded and if the derivation induced by Hi>® is denoted by 8ty then the evolution group {7/°%} ;cr
generated by 6% = 655 + 61 does not necessarily leaves 2(sg invariant. However, if some general conditions
are satisfied [42] 7/5B(A) lies in the weak closure sg”, i.e. 78 (Asp) C Asg”. Furthermore, if the conditions
from [42] are satisfied the convergence of the right hand side of

7w =P+ i [ [ [U D, P ED SO 69

nzl1

towards 7/°" (A) holds strongly on vectors of the form |Q2) = |24} ® |Q2o) and observables of the form
A=1® W(f),whereI € 2, and|Q) € $,.Foralarge class of coupling functions ¢ [42] the pair

(mp(Asp)”, TepoT!5P) (40)

is a W*-dynamical system and 755 = 75 @ 7y, An important state &y on the von Neumann algebra
7TSB (RUsp)” is given by [47]

g sy Syt
oA = 0dK) + S (- 1)"f0 dslfo dszn-j; dsy Of gy (A, #IB(HSD), .. 70BHSDY),  (41)

n>1

where 04, is the extension of wgy = w§ @ wiy;on Wgp to 78, Asp)”, 7P = 750758, A € 70 (Asp)” and T
denotes that truncated functions are used [47]. If the conditions from [42] are satisfied one finds for a large class
of states 17and observables A return to equilibrium for the interacting system, formally given by
ISB 18
thm noT,> (A) = wip(A). (42)
—00

In this case ww isa (778, 3)-KMS state. For applications to NMR we define the evolution group { Tf)stB} teR

which is generated by 6¢g + 6p;. For A € Ay we have §p(A) = i[P, Aland t € R — P, = P}* € 2, isaone-
parameter family of selfadjoint elements which contains the information of the pulse sequence given by
equation (33). From now on we make the identification 9t = 2sp"’. Although there exist not yet a rigorous
proof it seems to be obvious [65] that if (55 (Asp)”’, 7o 07'SP) is a W*-dynamical system then

(7r QIR 77513 o75B) isa W*-dynamical system for a suitable class of pulse sequences P.

9
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Figure 2. Example of an experimental 1H NMR signal (M *)(#) (left side) and the corresponding NMR spectrum S() (right side).
There is an exponentially fast return to equilibrium of (M™)(#) (a). The peaks in the spectrum (b) possess different line widths and
originate from protons with different electronic environment. A discrete spectrum is unable to give an accurate description of the
domain around 1 ppm. The presence of several peaks provides oscillations in the NMR-signal decay. A smooth exponential decay is
obtained if only identical protons contribute to the signal, e. g. the protons from water.

5. Application to NMR

A typical NMR experiment consists basically of molecules interacting with external magnetic fields. In most
experiments the interacting system is in thermal equilibrium at the beginning of the experiment. The molecular
structures are then investigated by the application of a pulse sequence which consists of oscillating, external
magnetic fields. Pulse sequences provide an out of equilibrium nuclear spin dynamics and they act only for a
short time at the beginning of the experiment. When the pulse sequence is finished the system is again governed
by the equilibrium dynamics which is then responsible for a return to equilibrium. This equilibration process is
experimentally detected in NMR and referred as free induction decay (FID). In most experiments the x- and
y-components of the nuclear spins are recorded, while the z-component is not recorded. The detected FID is
called NMR signal, (M ")(#), and its Fourier transform provides the NMR spectrum S(v/). An NMR spectrometer
detects the radiation from the magnetically excited nuclear spins which is identical to the time evolution of the x-
and y-components of the nuclear spins. Therefore, the NMR spectrometer records the NMR signal

MH@®) =% y (I f (t)) which consists of expectation values with observables T ]-*(t) =I7(t) + iny (t). The real
and imaginary parts of the NMR signal are given by R((M™) (¢)) = > (I}‘ ®))and I((MT) (¥)) = Y (ij ®))
respectively. In certain cases, the NMR spectrum contains only very sharp peaks of ”Lorentzian shape”. NMR
spectra which show any other distribution may be obtained by (continuous) superpositions of Lorentz
functions. Itis usually seen that the positions of the peaks are shifted towards lower frequencies compared to the
Larmor frequency vy = 7|B%,|- This is called chemical shift and it is a direct consequence of the magnetic shielding
which is caused by the electrons: In the presence of an external magnetic field the magnetic moments of electrons
show into the opposite direction compared to the magnetic moments of the nuclei. Hence, the external magnetic
field at the position of a nucleus is reduced (shielded) by electrons.

Figure 2 shows exemplary 1H NMR-data of 12 ul benzyl azide with impurities in dimethyl sulfoxide-Dé.
The NMR signal (M ") (t) is shown in (a) and the spectrum S(v) in (b). An exponentially fast thermalization for
(M")(#) can be seen on the left image. Note that this is the thermalization for the expectation values of x- and
y-components of nuclear spin operators. The z-component needs an equal or more time for return to
equilibrium. The Fourier transform (right image) provides the frequencies involved in the nuclear spin
dynamics during thermalization. It can be seen that the peaks possess different widths and positions. The
domain around 1 and 3 ppm is generated only by a few protons but the description of this domain by a discrete
spectrum is not accurate. Hence, model-calculations involving a continuous spectrum are desirable for a
detailed analysis of this spectrum. The different line widths contain important information about the
distribution of the electrons and nuclei.

According to the description of an experimental NMR setup the mQED system in the algebraic framework is
applied as follows. At times before pulse sequences, t < 0, the description of the molecular system interacting
with the classical and quantized electromagnetic field will be described by the Hamiltonian H = H, + H®
from equation (5) and (38). Hlsnl? contains the same interactions as Hy,, from equation (6) except the interactions
which does not involve spins. Hence, it may be referred as Spin Boson approximation of mQED. This
approximation is based on the assumption that the energy of a pulse sequence is too low to change the

10
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momentum and geometry of the investigated electronic structure. This approximation is also made by the
effective spin model and there seems to be no obvious reason why this approximation should be unsuitable. For
t = 0 the system is in thermal equilibrium and the equilibrium state ©2” is determined by H. Pulse sequences are
initiated at t = 0, such that for ¢ > 0 the system is described by H + P,. The time-dependent operator P, from
equation (33) contains the information of the pulse sequence. Hence, the time-dependence of a nuclear spin
operator, e.g., () or I (), during a pulse sequence is determined by H + P,.

In the application to NMR the Born-Oppenheimer approximation will be used. The wave function ¢ of the
electrons will be approximated by the ground state but use a temperature dependent nuclear wave function U”,
Hence, our molecular system is described by the wave function ¥’ ® 1 € $1. Ideally the KMS state is used for
the nuclei. However, in most cases it is practically not possible to estimate this KMS state explicitly. This is
because the nuclear Schrédinger equation can only be solved for very simple molecules. Therefore, a suitable
procedure may be used which approximates the square \\Ifﬁ (X)|? of the vector representative of the KMS state. A
suitable initial choice may be given by inserting the potential energy surface (PSE) into the classical Gibbs state at
inverse temperature 3. Ifa |[U”(X)|? is found which shows agreement between experimental and calculated NMR
spectra then a suitable approximation for the probability distribution of the nuclei is obtained. Let B ()
denote the set of bounded operators on the Hilbert space $y of molecular systems. The spatial structure of the
molecular system is contained in the state wf,[: B(Hy) — C.Forafunction f € B(Hy) the expectation value is
given by

() = [d% [@EAVICO P, XOPS (X, X). (43)

Remember that the dependence of 75° and dzs[g on the coordinates (X, X°) was so far neglected in the notation

for simplicity. For the main result this dependence is now written explicitly for clarity. Usually the temperature
dependence is not explicitly indicated for the NMR-signal but we will do this in the following.

Main Result (NMR-signal from mQED):

Assume that O, TP isa W*-dynamical system and that wég isa (7758, 3)-KMS state. Furthermore, let

B oM — M, 7o M — B(Hsp) and 0L B(Hsp) — C (44)
be constructed as in section 4 and let L‘f: Ay — BHOm), AL D A — Sf(A) € B(Hn) begiven by
LlA): RF x RF — C with R¥ x R¥ 5 (X, X°) — LJA)(X, X°) = Odf (mgyoT 5P (A) (X, X©).
(45)
We calculate &5 according to equation (41) and T5° (A) according to equation (39), by using Hie + B, instead of
H;3. For a molecular system described by wy according to equation (43) the NMR signal (M) 5(t) is defined by

K
(M) = 37 wip(€7I). (46)

=1
A reconstruction of the probability density |W°(X)|? for the spatial distribution of the nuclei is achieved by identifying
an wy, which provides a sufficient agreement between the calculated and the experimental NMR spectrum.

An identification of w{; may initially be based on approximations for the nuclear wave function as described
in [13] or by inserting the PES into the classical Gibbs state with subsequent manual adaptions until the
calculated spectrum shows sufficient agreement with the experimental spectrum. Note that £7 gives thermal
equilibrium at the beginning of the experiment and 2{10 describes the time-evolution during the experiment.
The notation Qf (A)(X, X®)is unconventional but easier to read in later applications. A conventional notation is

given by Sf}t (X, X¢) = £7(A)(X, X°)but this is more difficult to read when dealing with w&(i}gt). Asusual the
(1-dimensional) NMR spectrum, S5(v), is calculated as the Fourier transform

Ss(v) = j; T dr (MY (e, (47)

The structural validity of the main result will now be checked in the next two sections.

6. Breakdown of the effective spin model

The breakdown of the effective spin model is shown for the time-independent expectation value in thermal
equilibrium as well as for the out of equilibrium spin dynamics. One observes that the mQED perturbation series
contains several terms which have a similar structure as individual interactions contained in the effective spin
model equation (1). For example, it is possible to extract terms of the form J;i* I ® I} from the mQED
perturbation series (see equation (55)) and J;i” contains probabilities for the propagation of magnetic field
quanta between the spins. Analogous terms for magnetic shielding can also be found (see equation (49)). Hence,

11
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the effective spin model is in some sense contained in the mQED model but with quantum radiative corrections
and other types of corrections. Of course, the mQED model is not an effective description since all interactions
are naturally generated by the fundamental theory of mQED. This is investigated in more detail in this section.
Details of the calculations are shifted to the appendix.

In thermal equilibrium the expectation value of the z-component of a nuclear spin of a molecule is reduced,
if compared to the case where the spin is isolated. This is due to the action of the external magnetic field on the
magnetic moments of the surrounding electrons, which then reduce the external magnetic field at the positions
of the nuclei. For diagonal o; the effective model from equation (1) provides

z z 52 z 7z 16 exp(—OH,
(I]->eff = Tr(pfffl-) ~ Tﬁfijm(l — 07") where . = p(=SHer)

= —_— (48)
" Tr(exp(— OHetr))

Higher order terms can be neglected in the high temperature approximation. The effective magnetic shielding
(chemical shift) constant is always small and positive, i.e., 1 >> o7* > 0. Hence, the expectation value of an
isolated nuclear spin is reduced in the molecular system by o".

In this document the hydrogen atom is used as basic example for mQED calculations. One finds similar
results for a Helium atom and a discussion on that can be found in the appendix. Remember that I” denotes the
z-component of the spin operator of the proton while S” denotes the operator from the electron. While the first
order of equation (41) is zero for A = I* one derives in the zeroth and second order that (details are given in the
appendix)

wy (E0U7) = wi(?) — wi(SHrY + ... (49)
2
~ LB - a) (50)

The dots (...) denote higher order terms from the perturbation series. rf and ag differ by a constant and the high

temperature approximation is made for wg (I*)and ng (8%). It can be seen that a,f , derived non-effectively from
mQED, replaces the effective parameter o5 which is commonly derived according to equation (2). This is easily
verified by comparing equation (48) with (49) and a more detailed discussion of this can be found in the

appendix. It can be checked that a,f is dimensionless and therefore a” can be given in ”parts per million” (ppm)

©
in analogy to . One finds

, g2u]23 s 51 - N o
al =28 f ds, f ds, ff/ &x //f dxe /f PHTIE) P00 (R, 56 PmZ(E, is, X°, isy, ).
4 0 0 R’ R R

(1)
In case of ahydrogen atom a,f is indeed independent from a particular choice of the nuclear wave function ",
This reflects the fact that the magnetic shielding is independent from the position of the atom in the
homogeneous external field. The distribution of the electron is chosen to be the 1-s orbital of the hydrogen atom,
ie.

v s e
b @ 7) = —= exp( X - '), (52)
Tag ap

where ag is the Bohr radius.

Observation 1

A comparison provides a further advantage for the non-effective model. For B%, — oo we have
0*B%, — 0. Hence, the effective model predicts that the magnetic field which originates from the electron and
reduces the magnetic field at the position of the proton tends to infinity. This is certainly wrong because there is a
maximum magnetic field strength which can be produced by the electron and the maximum is achieved when
the spin of the electrons is completely in the | + 1/2) or | — 1/2) state. In contrast the mQED model contains

this effect and the limit is given by Tr( pg <7 / 2 in equation (49). In this case the high temperature

approximation made in a,f is unsuitable and equation (49) provides more accurate predictions than

equation (50). Thus, for low temperatures and high external magnetic fields the mQED model is much more
realistic. The deviation from the non-linear regime for c**B%, — oo may be measured experimentally and
validates the more realistic description of the mQED model. This is of potential relevance for NMR at low

temperatures, e. g. Dynamic Nuclear Polarization (DNP).

12
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Figure 3. The magnetic shielding aj is shown as a function of éyy. It can be seen that there is a linear dependence which is in
agreement with the dynamical calculations shown below.

Observation 2
We have a,f > Oforall ¢ € L?(R?) which follows from the fact that ¢ enters ag with | (k)[? and

(33)

) 2,2 00 —2B/ick
al = —g;:zB;ZOJ; dk|g0(k)|2(e i e ik 0.5)(1 + 207 (k)

(1 + K?ag /4>

>0VkeR"

In equation (53) spherical coordinates were introduced for k andall integrals except the one for k were
evaluated. Furthermore, we have assumed that ¢ depends only on |1€ | which is a natural and common choice.
This is a nice result, because the non-effective magnetic shielding ag‘f needs to be positive is any case and ¢ is a
free parameter in mQED.

Numerical investigation of a,f .

Itis important to know that for any given molecular structure the coupling function ¢ from equation (10) is
the only free parameters and—of course - ¢ is independent of U and . Thus, a particular choice for ¢ which
accurately reproduces a well-understood experiment can be used to predict or analyze NMR data of proposed or
unknown molecular structures. We have gs2 ué Lo / 62 ~ 7.271 326 950 237 399 - 10~8 A, where A is the
unit Angstrom. For the numerical calculations we choose

ok) = {g for o <k < dyv

, buy € Rt d byv > 6k € R 54
0 for k<op Vk>oén W and ooy = IR & Ro (>4)

orr and Oy are the infrared and ultraviolett cutoff respectively and normalization of ¢ implies
g=1/(8uv — 6r). For the numerical calculations in this document the infrared cutoff é;z can be chosen
arbitrarily small (and also zero) such that it has a negligible influence on af .

Figure 3 shows the dependence of a,f; on éyy for a hydrogen atom. The unit of §yy is millimeter '
(1 mm~' 2 0.001 24 V). The temperature is chosen to be T = 293 K (room temperature) and the infrared cutoff
is chosen to be zero, ;g = 0. There is a linear increase of af for increasing dyy which is in agreement with the
dynamical calculations shown below. The ppm (parts per million) scale is chosen such that the Larmor
frequency v, is located at zero. Higher order contributions should increase the magnetic shielding.

The dynamic case. Analytically the breakdown of the effective model can, for example, be seen by the
occurrence of direct spin-spin interactions (dipole-dipole interactions) in the second order of equation (39).
One finds,

[P (H), [T (Hpw), 722D = S J7 (6 b, )7 @ I + ... (55)
i<j
with
JEt, ty 1) = —yiui (O (0) ([BE, (%5 1), B, (%> 0)] + i[BE (%55 1), B, t)]). (56)

and similar terms for the x- and y-components. Following the calculations from [66] the direct coupling EDi]-E
from the effective model equation (1) is obtained with quantum radiative corrections. Indirect spin-spin

13



10P Publishing

J. Phys. Commun. 5(2021) 025011 K Them

1.75{(a) 1 1.751(b) — 0.11
1.501 10 1.50 0.1
— 9 — 0.09
1.251 — 8 1.251 — 0.08
< 1.00 — 7 < 1.00 — 0.07
= — 6 = — 0.06
0 0.75+ 5 © 0.75 0.05
] R
0.50+ 0.50 0.04
ouv (1/Mm & 1/Mm
0.25 | " oas vv (1/Am)
0.00 0.00+
3.5 2.8 2.1 14 0.7 0 0.035 0.028 0.021 0.014 0.007 0
ppin ppm
Figure 4. NMR-spectra S;5(v) of a hydrogen atom calculated from equation (46) with equation (47) for different values of 6yy. All
peaks have a Lorentz shape which is in agreement with experimental data. The chemical shift and Av increase linear with dyy.

couplings occur in the fourth order of equation (39) in a similar fashion. For the magnetic shielding in the
dynamic case the numerical investigation of the breakup of the effective spin model is detailed shown in the next
section.

7.NMR spectra from molecular Quantum Electrodynamics at finite temperatures

The real-time nuclear spin dynamics as well as the spectra according to equation (47) are calculated in the second
order of equation (39) and the second order of equation (41) according to equation (46) and equation (47). After
long-lasting calculations NMR-spectra are obtained from terms of the form

S,(v) = j;oo dte‘i”tfog ds, J; ds, fot dt j;” dts [[f, dx [[f. e [, @ f]f, '

X [WAE) 21100 (X, X°)|? x
X (M, isy, X6, isy, Kw§ (DT (19) + mY5(R, isy, X5, isi, K)wd (17, (1)) %

xS QL R)(@EK) + il (K)IAL(E, B) — & D)u®ak) + .. (57)

A=1,2

where u(t) = e"™ and ¢J; € C.In case of the hydrogen atom one finds again that S5(v) is independent of N
which means that the chemical shift does not depend on the position of the hydrogen atom in the homogenous
external field. For molecules with two or more nuclei S5() depends on " and a discussion on the computational
efforts for complex molecules is given in the appendix.

Figure 4 shows the NMR spectra S5(v) from equation (46) with equation (47) for a hydrogen atom. The ppm
scale is chosen such that the Larmor frequency v, is located at zero ppm. The spectra is calculated for the values
buv=4,5,6,7,8,9,10, 11 (a) and dyyy = 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.01, 0.011 with unit megame‘[er71
(Mm ™). The temperature is chosen to be T = 293 K (room temperature), B%, = 20 T (Tesla) and the infrared
cutoffis chosen to be zero, o;g = 0. In every case it can be seen that a Lorentz distribution is obtained as observed
in NMR experiments. Small variations of 6z only had a negligible impact on the magnetic shielding. Asin the
case for af the strength of the magnetic shielding increases linear with dyy. Furthermore, the ”Full Width at Half
Maximum” (FWHM) Avincreases linearly with increasing éyy. Remember that Av is directly related with the
life-time of an excited spin which will be checked later. Comparing the left figure (a) and the right figure (b) one
finds that if 6y is reduced by a factor of 100 then Av as well as strength of the magnetic shielding (distance of the
peak to 0 ppm) is also reduced by a factor of 100. The maximum value (height) of each peak is nearly the same.
This a result of the normalization of ¢ and it makes sense because these small changes of the magnetic field
strength should not have a significant impact on the amplitude of the NMR signal. This is also in agreement with
experimental data.

Figure 5(a) shows the long-time dynamics of (I")(¢) (real part of NMR-signal) for 6y = 0.1 Mm (orange
line) and 6y = 0.05 Mm (blue line). All other parameters are the same as for the calculations for figure 4. In
both cases there is an exponentially fast return to equilibrium as observed in NMR experiments. The starting
pointat t = 0 is chosen to be directly after the 90°-pulse has finished. The amplitudes are normalized to the value
0.5 att = 0 corresponding to the excitation of a single nucleus. The thermalization which is associated with the
orange line happens twice as fast as the thermalization which is associated with the blue line. Hence, doubling the
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Figure 5. (a) Long-time spin dynamics from the real part of the NMR-signal, R((M")3(¢)) = (I*) (¢), for éyy = 0.1 Mm (orange line)
and 6yy = 0.05 Mm (blue line). Doubling the value éy halves the life-time of the NMR-signal. (b) Short time spin dynamics (I')(¢)
(orange line) and (I)(#) (blue line) for the same parameters as used for the orange line from figure (5)a). There is an exact 90° phase
shift between (I")(¢) and (I*)(¢) as it should be. The very smooth exponential decay is due to the fact that the NMR signal contains only
one peak. Several peaks provide oscillations as in figure (2).
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Figure 6. In mQED all bond angles of a molecule (a) are considered with a continuous probability distribution [#”(X)|%, which
depends on the temperature ((b) and (c)). For each bond angle 6 there is an energy E,(f) which often has a similar form like the blue
line in (b) and (¢). The approximation p H(E, o) = |\I!‘3 ()] 2 provides the following: For relatively low temperatures T} compared
with E,o, the probabilities are such that mainly bond angles with lower energy are populated (black line W1 or dashed black line W#!
in (b)). If the temperature increases (T), then neighboring bond angles become more and more occupied (red line \1113 2 or dashed red
line ¥42 in (b)). If the temperature increases increases even more (T, also bond angles with highest energy become significantly
occupied (black line W% in (c)). Finally, if the temperature T3 is high, then all bond angles become nearly equally populated (red line
U5 in (c)). This is due to the maximization of the entropy.

value dyy halves the life-time (T2 in NMR language) of the excited spin. The nuclear spin can release energy in a
frequency range with double length.

Figure 5(b) shows the short-time dynamics (IV) (t) = J((M")3(¢)) and (I*) (t) = R((M*)5(1)) for the same
parameters which were used for the orange line from figure 5(a). The cross shows that there is an exact 90° phase
shift between (I)(#) and (I*)(#) as it should be. The frequency is slightly reduced compared to the Larmor
frequency which can also be seen from figure 4(b).

8. Outlook

In this section it is outlined how the new approach can serve for a more detailed molecular structure
determination compared to conventional NMR theory. To obtain an approximated amplitude square [¥”(X)|?
of the nuclear KMS state, the potential energy surface (PES), Epgs(X), or rotational energies, E,(6), from
Quantum Chemistry may be inserted in to the classical Gibbs state p” at inverse temperature (3 (figure 6).
From Quantum Statistical Mechanics we know that for different temperatures T; < T, < T, < T there are
different probabilities | U’(6)|? for the molecule to have a certain bond angle 6 (figure 6). Such effects can be
observed in NMR, because the green and the red methyl groups (a) can have different electronic environments
which depends on the temperature. The probability [¥”(8)|* is time-independent in chemical and
thermodynamic equilibrium such that the molecule is in a superposition of several bond angels. This is in
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Figure 7. Molecules with a structure similar to that shown in the bottom end of the middle column typically generate temperature-
dependent NMR spectra, as shown in the middle column. The thermal energy influences the spatial distribution of the methyl protons
which causes a change not only in the positions of the NMR signals but also of the line shapes of the NMR signals. While the positions
of the NMR signals can be calculated using quantum chemistry, conventional NMR theory cannot directly link the line shapes to the
molecular structure. This is due to the fact that the spins are restricted to point positions and because thermalization is integrated
phenomenologically by equation (4) instead of coupling the spins to the quantized electromagnetic field at finite temperatures. The
result is that the underlying molecular structure can only be roughly reconstructed. This is different in mQED where the distribution
of the spins is described by a continuous probability density [#%(6)|? (right column). The quantized EMF provides a natural
thermalization such that all data points of the NMR spectrum (including the line shape) is directly connected to the underlying
molecular structure. Hence, much more detailed investigations of the underlying molecular system become possible. The structural
validity of this initially heuristic explanation is shown in sections VI, VII and VIII.

contrast to conventional NMR theory, where the N-Ph bond rotates with a certain frequency. The probability
distribution p HE,o(0)) from figure (6) is only a rough approximation for the more realistic, quantum
mechanical probability distribution |I"’()|. Hence, in a second second step, the distribution p” can be slightly
changed until the calculated NMR spectra agree with experimental NMR data. Hence, the probability
distribution [W”(X)|* can be reconstructed from NMR data by using mQED at finite temperatures. A significant
advantage of mQED is that the impact of the temperature on the molecular structure is taken into account much
more realistically compared to conventional NMR theory. The result is that more realistic and more detailed
molecular structures may be decoded from experimental NMR data. As a motivation for the presented method a
heuristic illustration for a more detailed structure determination is outlined in figure 7. NMR spectra of such a
molecule are not calculated in this document, but structural validity is shown.

In the zero temperature limit only the bond angle with the lowest energy is occupied (lowest row, (a) in
figure 7). Such ground state structures are obtained from common quantum chemical calculations (like DFT).
Atlow temperatures (second row from below, (b) in figure 7), where mainly low energetic bond angles are
occupied (figure 6), the magnetic field generated by the ring is different for the green and the red marked methyl
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Figure 8. Two different spatial probability distributions |¥¥(X)|* and |UJ(X) ]? are placed in a homogenous magnetic field (a) and in
an inhomogeneous magnetic field (b). In mQED, the NMR spectrum S(v) is independent from the spatial distribution of the nuclei if
the magnetic field is homogenous (). If the magnetic field depends on position in space (because of the distribution of electrons), then
different spatial distributions of the nuclei generate (in general) different NMR peaks (d). This schematic (and not precise) illustration
will be mathematically verified in section VIand VII.

group. Hence, both methyl groups have clearly distinct NMR signals. In contrast, conventional NMR theory
assumes that the ring is slowly rotating with a fixed frequency. Hence, mQED and common NMR theory
provide two different structures for the same situation. In mQED, bond angles with higher energies become
more and more occupied with increasing temperature (third row from below, (c) in figure 7). Hence, each of the
methyl groups comes closer to the opposite side of the ring. As a result both peaks on the spectrum come closer
to each other. In conventional NMR theory, the rotation frequency is just slightly enhanced. However, in mQED
there are still some bond angles which are nearly unoccupied ((b) in figure 6 and third row from below, (c) in
figure 7). In NMR there is a specific temperature called "coalescence temperature” T,, where the two peaks start
to merge. At this temperature, also bond angles with higher energy are occupied but lower energetic bond angles
are still preferred in mQED (black line in (c) of figure 6 and (d) in figure 7). This is not contained in conventional
NMR theory, where the rotation frequency k is simply increased. At high temperature the two peaks merge
completely and provide one sharp peak in the experimental NMR spectrum. In the interpretation of
conventional NMR theory, the rotation frequency is much higher than the temporal resolution of the NMR
spectrometer such that only one averaged signal is observed. The interpretation in mQED is that nearly all
bonding angles are equally occupied in order to maximize the entropy. In this case, the resulting magnetic field is
for both methyl groups the same, because it is spatially averaged. Hence, both methyl groups have the same
chemical shift. The structural validity of this initially heuristic explanation is underpinned by an illustration
(figure 8) which is mathematically verified in sections VI, VII and VIII.

In aregion where the magnetic field is homogeneous the NMR peaks are independent from the spatial
distribution of the nuclei ((a) and (c) in figure 8). Note that for high temperatures the distribution associated
with T3 in figure 6 generates a homogenous magnetic field in the region of both methyl groups ((e) in figure 7).
Hence, both peaks are equal. However, if the magnetic field is inhomogeneous in the region of the methyl
groups, because the spatial probability distribution depends on the bond angle (figures 6, 7 and 8), the methyl
groups do not generate the same peak in the NMR spectrum S(v). For relatively low temperatures the methyl
groups are strongly localized in an inhomogeneous field. The NMR peaks will broaden with increasing
delocalization of the methyl groups in an inhomogeneous magnetic field (figure 8) and hence have clearly
distinct peaks. At the coalescence temperature T, there are delocalized methyl groups in an inhomogeneous
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magnetic field. With increasing temperature the magnetic field generated from the ring becomes more and more
homogenous until both peaks merge to a single sharp peak at T,.

9. Conclusion

In this document it was shown how all data points of an NMR spectrum are mathematically connected via
mQED at finite temperatures with the amplitude square |\I'3 (X)|? of the nuclear wave function 0. Since |\If5 X)?
represents the quantum statistical and temperature-dependent probability density on the continuous space R3K
for the spatial distribution of the nuclei, the presented method may be used for a much more detailed
reconstruction of molecular structures than possible with current methods. We briefly recall the weak points of
conventional NMR theory which are improved by the presented method.

1. Conventional NMR theory based on Quantum Chemistry uses a discrete set of numbers (o; and Jj;) to
approximate the continuous NMR spectrum. Hence, only the (punctiform) positions of NMR signals are
directly connected with the molecular structure. However, also the line shapes of the signals contain
information about the molecular structure.

2.So far, line shapes are investigated highly phenomenological such that only a rough notion of the
investigated system can be obtained from this type of analysis.

3. Spin dynamics is conventionally based on the effective model which restricts the nuclei to fixed points in a
lattice, requires phenomenological parameters for relaxation and delocalization and the initial state is at
room temperature nearly temperature independent.

Explicit examples were the presented method should have advantages (should provide more molecular details)
are the structure determination of furfural at different temperatures as shown in figure 1 or structure
determinations of molecules similar to the ones shown in figure 7. Additional applications can be found in spin
dynamics simulation for hyperpolarized MRI.

The main result (page 11) provides the structural application of molecular Quantum Electrodynamics and
Quantum Statistical Mechanics in the algebraic reformulation to Nuclear Magnetic Resonance. Analytical and
numerical calculations as well as comparisons with experimental NMR data showed the validity of this
approach. Furthermore, wrong predictions of the effective spin model are corrected by the new approach
(observation 1) and several striking advantages against established NMR theory were discussed. The presented
method makes use of the physical approximation that the energy of an NMR pulse is too weak to change the
molecular geometry which is also used in the effective spin model and obviously realistic for NMR. The
important process of return to equilibrium is included in a natural and microscopic way instead
phenomenologically as in equation (4). This provides a basis for a more detailed research towards optimized
polarization transport and stable spin structures which are of basic interest in hyperpolarized MRI67. Chemical
shifts (magnetic shieldings) as well as spin-spin couplings occur naturally and must not be described effectively.
Hence, quantum radiative corrections are naturally included in the calculated NMR spectrum.

The fundamental problem of performing numerical calculations with the infinite-dimensional radiation
field at finite temperatures was solved by using a purified version of the Araki-Woods representation which
served as a key element. The perturbation series equation (39) in combination with equation (41) generates
combinations of sums and products of expectation values for individual spins instead of generating a
complicated, shared matrix for the spins which increases exponentially with increasing number of spins. Thus,
the presented method is not limited by the system size concerning the number of spins. Instead it is limited by
the availability of a quantum chemical method which is able to calculate the electronic ground state for a given
configuration X of the nuclei (see appendix). Thus, the developed method may be applied to molecular systems,
which are currently investigated in chemistry, pharmacy, nanoscience or biomedicine.
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Appendix

Mathematical structures that are required for the numerical calculations

A "-morphism 7 between two *-algebras € and B is defined as a mapping m: A € € — 7w(A) € Bforall
A € €such that m(@A + vC) = an(A) + ym(C), 7(AC) = m(A)m(C), and 7 (A*) = 7 (A)*forall A, C € € and
a, 7 € C.Thekernel ofa *-morphism is given by the set ker (7) = {A € 2; 7(A) = 0}. Arepresentation is
said to be faithful if, and only if, 7, is a *-isomorphism between 2l and 7 (), i.e., if, and only if, ker (m,) = {0}.
A faithful representation satisfies || (A)|| = ||A]|, forall A € . If (£}, 7)is arepresentation of the C*-algebra
2 and if £, is a subspace of ), then ) is said to be invariant under 7if w (A) ), C $H, forall A € 2. Hence,
if £ is invariant under 7wand $)* is the orthogonal complement of $), i.e., H* = {£ € 9; (&, ) =
0, V1) € $}, then we have (& m(A))) = 0forall A € Aandall € € H1, ¢ € H. Thegroup {71} cr
provides the free field dynamics and the action is given by

W(f) — 1MW (f)) = W(e™f) whichimplies ®(f) — 7EM(@(f)) = P(e™'f). (58)

This is also known as Bogoliubov transformation. Note that the group {7F™|¢ € R} is not strongly continuous
because || W(f) — W(g)|| = 2 Vg = fand hence WW($"), 7EM)is not a C*-dynamical system.

Computational efforts for the numerical calculations involving complex molecules.

According to the main result of this article the time-dependent NMR signal of a molecule consisting of K
nuclei and E electrons can written in the general form

(MF)s(t) = fd3KXd3EXeI‘I’ﬁ(X)|2|¢(X, X)PL/ AKX, X9, (59)

where U7 € [2(RX, C), 1 € 2R, C)and £7(A): R* x R* — C.Remember that X = (%,...,X),

X € RPand X = (x°,...,x%g), x° i € R%. The integral kernel £5(A) (X, X¢) consists basically of expectation
values of spins interacting with the quantized magnetic field. Due to the structure of the perturbation series
equation (39) and (41), the structure of the purified Araki-Woods representation and the fact that the variables
Spy-.->Spand #,...,t, are contained in exponential functions the integrals on sy,...,s, and t,....,t,» do not provide
any challenge (at least for the first few orders). The used perturbation series does not generate any expectation
values containing a matrix larger than a single spin operator which is due equation (36),(41) and (39). For
example, if the investigated molecule contains only nuclei with spin 1/2, then the largest matrix which occurs in
the calculation of the expectation values is of size 2 x 2 (or can be reduced to that size due to a tensor product with
the unity operator). Hence, it is possible the determine the integral kernel £7(A)(X, X¢) analytically.
Furthermore, due to the perturbation series the integral kernel can be decomposed into the following sum
(where we neglect to denote the dependence of A on the right hand side and in the further text for simplicity)

LHAVX, X = fP(t, X, XO) = co + c(t) + D fi(t, %) (60)
i
+ fr % Z) + 3 [ %X )+ D0 fil(h X% x°) (61)
ij=1,....K i=1,....K i,j=1,....E
i=j j=1..., E i=j
+ fzgjl(t’ R x5 %)+ > fg%,(t, Xiy X<jy X)) + ... (62)
il=1,..., K;i=l i=1,..., K
j=1,...,E jl=1,....Ej=l

In the calculations in this document the constant ¢, contained information on the final state which describes the
system after thermalization. The functions ¢(¢) and f(t, X;) did not contributed and cancelled out. An example
of an explicit part of ffj (t, X;, X;) is shown in equation (56) and an example of an explicit part of fzj] (t, %, x° i)is
shown in equation (57). Further terms of these integral kernels differ mainly by other combinations of the x-, y-
and z-components of the spin and field operators. The computational effort for the evaluation of the integrals in
equation (59) can be strongly reduced if we accept a common approximation that the wave function ¢ (and
potentially also ) is given by tensor products of single electron wave functions as it is the case for the Slater
determinant. In this case, the large number of integrals on the spatial coordinates X¢ = 9?61,. XC pofthe E
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electrons can be strongly reduced. For example
[ERXAEXNICO R (X, XOPL 0 B 55) = [dXBWIOO RIS X, DPI(E T ¥, (63)

The evaluation of these integrals can be done with any suitable standard numerical method. It remains to
estimate up to which order the perturbation series needs to be calculated. For this purpose we use the fact that
each term in the perturbation series has a clear physical interpretation that can also be verified mathematically:

8 o5 o C g . . . . . ..
L. ffij (t, X;, X;) generates magnetic dipole-dipole interactions (direct couplings) between the nuclear spins i
andj.

2. fzf] (t, X, x° ;) generates a magnetic shielding on nuclear spin i caused by the electron j.
3. f;?] (t, x¢), x° ;) generates magnetic interactions between spins of electron iand j.

4. f fijl (t, Xjp x° j» X1) generates indirect spin-spin couplings between the nuclear spins i and / which is mediated
via electron j

5. fg%,(t) X, x¢ i x%) generates different kinds of interactions between the nuclear spin 7 and electron spins j
andl.

The above terms occur in the first few orders of the perturbation series and each higher order can generate
additional coordinates. From this point of view it may seem to be sufficient to perform the calculations up to
orders which generate terms that contain spatial coordinates of three particles or four particles. However, this is
only an assumption. Since the multiplication operator fcan be determined without numerical limitations up to
high orders the numerical limitation of the presented method is primary given by the calculation of the
amplitude square of the wave function [¥”(X)|*|4/(X, X°)|? and the numerical integrations. The estimation of the
electronic wave function 1) can be done with any common method of Quantum Chemistry. In agreement with
conventional NMR theory the presented method assumes that the temperature dependence of the wave function
1 for electrons can be neglected due to high excitation energy of electrons in a molecule. This approximation is
not necessary but reduces the computational complexity. Also the nuclear wave function ¥’ may be calculated
with any common method of Quantum Chemistry. Unfortunately, with current methods the exact calculation
of U can only be done for relative small and simple systems. However, this does not limit the presented method
because only the amplitude square |\II'S(X) |* needs to be explored. Indeed, it is sufficient to initially approximate
|W’(X)|? using any suitable method. For example, the PSE may be inserted into the classical Gibbs state. In
further steps this approximation can be made more realistic, using artificial intelligence or manual adaptions,
until there is sufficient agreement between the calculated spectrum and the experimental data.

The maintenance of gauge invariance can be quite a challenge in the conventional calculation of NMR
parameters in Quantum Chemistry. This problem does not occur in the mQED perturbation series for the
calculation of f°, which is easily checked by the structure of equation (41) and (39). The only possibility where a
challenge concerning the maintenance of gauge invariance may enter the presented method is in the calculation
of 1) by conventional Quantum Chemistry. Here it should be noted that ¢ € L?(R*F) is without spin degree of
freedom which strongly simplifies the determination of 1. Especially, for the calculation of 1) one is free to
choose a Quantum Chemistry method which has no or little problems with the maintenance of gauge
invariance. In addition, the presented method reduces problems concerning the maintenance of gauge
invariance for Quantum Chemistry for the case were these problems occur because of the interaction with spin
degrees of freedom. Due to the fact that each term can be calculated in parallel the author concludes that the
presented method has basically the same numerical limitations as current methods of Quantum Chemistry used
to determine ¢y and the corresponding PSE.

Comparison of the magnetic shielding derived as temperature-dependent, effective parameter using
Quantum Chemistry and the mQED approach in thermal equilibrium.

There is some formal similarity between the conventional approach of Quantum Chemistry to integrate the
temperature, equation (3), and the results of mQED for the expectation value in thermal equilibrium. Itis
important to note that this similarity does not hold for the spin dynamics whose thermalization generates line
shapes in the Fourier transformed spectrum. For simplicity we assume the six-dimensional case, X = X and
X¢ = x¢. However, the 3n-dimensional case for n nuclei is in analogy. The effective parameter for the magnetic
shielding of reference [13] can written as a?ff, were

Ufff = AP + Oeq = fd3x|\I/‘3(5c’)|20(9?). (64)

20



10P Publishing

J. Phys. Commun. 5(2021) 025011 K Them

Thus, afff is generated by an expectation value of the nuclear wave function with a multiplication operator o (X).
Note that in the effective description only the nuclear wave function is temperature dependent, while o (X) is
calculated at zero temperature. The expression af (which has some similarities to o'fff) derived from mQED in
equation (51) can be written as

! = [ @ Po; @), (65)

with
o0 = [ @@, XU E, 59, (66)

where
o3, x°) = g MBI dslf ds, fd3km (R, sy, XC, sy, k). (67)

The integral kernel b73(X, x¢) provides the strength of the z-component of quantized magnetic field at the

posmon X of the nucleus, which is generated from the z-component of the electron spin at position x¢. Hence,
qe ¥ (%) may be interpreted as the averaged strength of the z- component of quantized magnetic field at the

position ¥ of the nucleus. The average is done over all positions x° of the electron and weighted with the
probability |1 (X, x°) * to find the electron at position x¢ when the nucleus is at position X. The integral in
equation (65) on the coordinates of the nucleus weights the strength of the z-component of the quantized
magnetic field at X with the probability [¥#(¥) |? to find the nucleus at this position X. Here is the similarity to the
effective description, in which magnetic shielding, effectively derived using the classical magnetic field, is
averaged X with the probability |[¥#(¥) |? to find the nucleus at this position X.

The advantage of U;i*’d (%) of mQED is that finite temperature quantum fluctuations of the quantized
magnetic field are included. It would be an interesting future work to investigate in which cases these
fluctuations are relatively large or negligible. If these fluctuations are negligible for a system of interest, the
mQED approach seems to provide for the time-independent investigation in thermal equilibrium no advantage
over the effective description. However, an NMR spectrum is generated from the spin dynamics and
thermalization as well as molecular motion are closely related to line shapes. Remember that for the spin
dynamics there is no similarity between conventional NMR theory and the mQED description. This is mainly
due to the phenomenological integration of thermalization in the effective description in equation (4).

Intermediate steps in the calculation of a,g for the hydrogen atom.

According to the main result we calculate wﬁ (2? (I%)) for thermal equilibrium (t=0). For the hydrogen
atom we have

egun = [l ax [I] d @ P 29Pog e um e £ (68)
and need to know the explicit form of the integral kernel (:}slg (wgB o BB (I%)(X, x°). Step by step calculations
provide

Ol (mgpoThy I (F, x°) = &df (ms(I?) ® D(F, x°) (69)

= Tr(pSIZ) —f dslf ds,

Oth order @ 5 Xy

X | &1 s (me (), 7P (I @ DS (), ”’S‘*(gs P60 @ (b2

isy

2nd order

isy

T DU, P E S © BELE), HPOI © 2RIE) |+ - (70)

2nd order

and the dots represent 4th and higher order terms of the perturbation series equation (41). The first term of the
integrant of the second order provides

Of (T D), TP (I @ BB (F))), 7P (g “Bsé ® O(b(x%)) = " P8 (Te(pg I71° (is)) Tr(p $° (isy))
71)

= Tr(pd I Tr(pg 1 (is)) Tr(py S° (is1))) (72)
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X Wi T @2 @) M@ (5] (7). (73)

The second term of the integrant of the second order provides an analogous expression, where just some indices
are changed. Thus, we have

B(12Yy A" Brzy _ Hp B oz B A 2= i e s T
LoI*) = Tr(pgI?) ygs?Tr(psS ) A ds . dsomZ5(X, isy, x6, isp, k) + ... (74)

Using the high temperature approximation for pg one obtains the results shown in equation (49) and (51). Note
that here it can be seen that no large matrix is generated even for large molecules because of the tensor product
structure in equation (36).

NMR signal of a helium atom.

The dynamic calculations for the hydrogen atom of the main manuscript are compared to the case ofa
helium atom in order to get a first notion for more complex systems. If electron-electron interactions are
neglected the 1s orbital 175, of an atom with nuclear charge Z is given by

3\/2
Yiho(%, x°) = (2—3) e (75)
Tag
Wehave Z = 1 for hydrogen and Z = 2 for helium. In the case of a hydrogen atom the integral kernel fg of
equation (60) has up to 6 spatial variables and we may write

ft B, %) = £l (6 % X) + .oy (76)

were the dots denote higher order terms Hence, the NMR signal for the hydrogen atom, (M;} )3 (t), may be
approximated by

Mty () ~ [ dx ExIWHE PltoE, £)RF (0 %, £ 77)
For the Helium atom one finds

Fl (6 % X0, X69) & fib (1 R, x4 + flh, (6 % X9) + fia (6 X% X69) + fig (6 R, %, %9) + .. (78)

The functions fi; , and f. » just differ by a factor of v/ yy. For the electrons of the helium atom we may assume
the symmetric wave function 13}, = ¥y, ® 12y, for the spatial degrees of freedom,

s o % o B T

Vi (%, X1 %) = Yigo(Es %) Pigo (%, X7). (79)
Of course, the index 2 denotes Z = 2 and not the square. As mentioned above the spin operators are already
contained as expectation values in the multiplication operator f. We derive

f dx dPxf d*SIUE) Pluie &, x5 x5) P, % X49) + fl (1 %, %)) (80)

= [ @ P( [@xitvtn P 0 % x5 + [Pxivin@ P62 D) 6D

=2 [dx AN @ PIURo G KL, (0 F, 50 (82)
and find for the NMR signal (M;}.)3 (¢) of the helium atom
(MiE)a(0) ~ 2 [[dx dxWEE Pl G XL, (0 %, 59 (83)
= (M, 1)s()
+ f dx dxf dxSIVGE) PR R, x5, x5 P (6 X6 %9) + f1, (8, &, 55, X)) + .. (84)

The first term, denoted by (Ml ;)3 (t), is very similar to the signal (Mg )5 (t) of the hydrogen atom. It just differs
by a factor of 2, which arises because 2 electrons contribute, the value Z = 2 of the nuclear charge and the value
Yre/ Y- The function (M, )3 (¢) describes the NMR signal of a helium atom without electric and magnetic
electron-electron interactions. The latter ones are generated by ff (t, X%, x°,) and f; (f, B, X, x%).
Furthermore, one finds as in the case of hydrogen that (M, )5 (¢) is independent of Uy, . This is because a single
nucleus in a homogenous external field is considered and it can be found mathematically by the multiplication
of mifg(a? , 18y, €, isy, k) with the exponential of the Fourier transform for \I!ﬁe. As mentioned above, the NMR
signal of a molecule with two or more nuclei explicitly depends on ¥, In this document we do not calculate the
corrections of the magnetic electron-electron interactions for (M, )5 (¢) but compare the spectra Sﬁe, ,(t)and
S5 () (figure 9) which are generated as Fourier transformations of (Mg 1)5 (t) with (Mgy)5(¢) according to
equation (47). Based on the numerical comparison of the spectra it seems to be important to include the
corrections of magnetic electron-electron interactions provided by ff (t, x;, x%,)and ff (t, ¥, x°, x,). One
may expect that these corrections shift the position of the peak and make the peak much thinner. Note that the
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Figure 9. The spectrum of a helium atom without magnetic electron-electron interactions (orange line) is compared with the
spectrum of a hydrogen atom (blue line) for the same smearing function ¢. One may speculate that the corrections of the magnetic
electron-electron interactions of the helium atom cause a shift of the position and strongly reduce the width of the orange signal.

unpaired electron of the hydrogen atom speeds up the thermalization process and a faster decay of the NMR
signal in the time-domain corresponds to a broader width of the NMR peak in the frequency domain.
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