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Abstract: Platelet concentrate products are increasingly used in many medical disciplines due to
their regenerative properties. As they contain a variety of chemokines, cytokines, and growth factors,
they are used to support the healing of chronic or complicated wounds. To date, underlying cellular
mechanisms have been insufficiently investigated. Therefore, we analyzed the influence of Platelet-
Released Growth Factors (PRGF) on human dermal fibroblasts. Whole transcriptome sequencing
and gene ontology (GO) enrichment analysis of PRGF-treated fibroblasts revealed an induction of
several genes involved in the formation of the extracellular matrix (ECM). Real-time PCR analyses
of PRGF-treated fibroblasts and skin explants confirmed the induction of ECM-related genes, in
particular transforming growth factor beta-induced protein (TGFBI), fibronectin 1 (FN1), matrix
metalloproteinase-9 (MMP-9), transglutaminase 2 (TGM2), fermitin family member 1 (FERMT1),
collagen type I alpha 1 (COL1A1), a disintegrin and metalloproteinase 19 (ADAM19), serpin family
E member 1 (SERPINE1) and lysyl oxidase-like 3 (LOXL3). The induction of these genes was time-
dependent and in part influenced by the epidermal growth factor receptor (EGFR). Moreover, PRGF
induced migration and proliferation of the fibroblasts. Taken together, the observed effects of PRGF
on human fibroblasts may contribute to the underlying mechanisms that support the beneficial
wound-healing effects of thrombocyte concentrate products.

Keywords: platelet-released growth factors (PRGF); wound healing; extracellular matrix (ECM);
fibroblasts

1. Introduction

Platelet concentrate products, such as Platelet-Rich Fibrin (PRF) or Platelet-released
growth factors (PRGF), are increasingly used worldwide in many areas of regenera-
tive medicine [1] because they contain a multitude of growth factors, cytokines, and
chemokines [2]. In the context of wound healing, it has been shown that 70% of chronic or
complicated wounds heal or become smaller under the treatment of PRF [3,4]. However,
the underlying mechanisms for these positive wound healing effects under treatment
with platelet concentrate products remain poorly understood. So far, we have shown that
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the treatment of human keratinocytes with PRGF and PRF leads to an induction of the
antimicrobial peptides human beta-defensin-2 (hBD-2) [5], hBD-3 [6] and psoriasin [7] in
keratinocytes and thus to a strengthening of the epithelial barrier function. Furthermore,
we could demonstrate that the treatment of keratinocytes with PRGF leads to an acceler-
ated differentiation in keratinocytes and thus keratinization of the skin [8]. In contrast, the
proliferation of keratinocytes was inhibited by PRGF [9]. The beneficial effects of PRGF
may also be attributed to its capacity to induce various factors in keratinocytes, which are
essential for the formation of the extracellular matrix (ECM) during wound healing [10].
According to our previous results on keratinocytes, the aim of this study was to assess
the influence of PRGF on human fibroblasts. To this end, we used whole transcriptome
sequencing to get an overview of PRGF-regulated genes in human primary fibroblasts. As
a result, we conclude that PRGF induces various ECM-associated factors in fibroblasts.
Furthermore, the proliferation and migration of the fibroblasts were enhanced by PRGF.

2. Results
2.1. PRGF Mediates the Induction of ECM-Associated Factors in Human Primary Fibroblasts

To obtain an unbiased overview about the genes in fibroblasts that are regulated by
PRGF, a whole transcriptome analysis was performed with fibroblasts stimulated with
PRGFs derived from 5 different donors. This revealed a significant change in PRGF-
mediated expression levels of 3664 genes (Table S1). A subsequent gene ontology (GO)
enrichment analysis revealed the induction of various genes involved in the organization
of the extracellular matrix. Specifically, transforming growth factor beta-induced protein
(TGFBI), fibronectin 1 (FN1), matrix metalloproteinase-9 (MMP-9), transglutaminase 2
(TGM2), fermitin family member 1 (FERMT1), collagen type I alpha 1 (COL1A1), a dis-
integrin and metalloproteinase 19 (ADAM19), serpin family E member 1 (SERPINE1 or
plasminogen activator inhibitor 1, PAI-1) and lysyl oxidase-like 3 (LOXL3) were induced
by PRGF (Figure 1).
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Figure 1. Whole transcriptome sequencing of PRGF-treated fibroblasts revealed induction of ECM-
related genes. Human primary fibroblasts were treated with or without PRGF for 24 h. After
stimulation, total RNA was isolated and used for whole transcriptome sequencing. Shown are means
of the number of reads ± s.e.m. (n = 5, ** p < 0.01, ns = non-significant, Mann-Whitney U test).

Next, we used a real-time PCR to verify the PRGF-mediated induction of the genes
identified by whole transcriptome sequencing. This confirmed the induction of all in-
vestigated genes in primary fibroblasts after 24 h of PRGF stimulation (Figure 2A,B). To
determine whether gene induction resulted also in increased protein release, we measured
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protein concentration of fibronectin 1 (FN1) and the collagen type I alpha 1 (COL1A1) in
the supernatants of the fibroblasts stimulated with five different PRGFs. This revealed an
increased PRGF-mediated protein secretion (Figure 2C).
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Figure 2. PRGF induces expression of various ECM-related factors in human fibroblasts. Human primary fibroblasts
were stimulated for 24 h with PRGF (1:10) from 5 different donors (PRGF #1-PRGF #5). Relative gene expressions were
determined by real-time PCR (A,B). Shown are induction levels of separate donors (A) or combined of all five different
donors (B). Secretion of COL1A1 and FN1 was determined by ELISA (C). Shown are means ± s.e.m. (n = 5, * p < 0.05,
** p < 0.01, Mann-Whitney U test).

2.2. The PRGF-Mediated Induction of ECM-Related Genes in PRGF-Treated Fibroblasts Is
Time-Dependent

A time kinetic study from 6 h to 48 h revealed a significant PRGF-mediated induction
of all investigated genes (Figure 3). Except for FN1, all genes were induced already after
6 h of PRGF treatment. The PRGF-mediated induction of all genes persisted up to 48 h.
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Figure 3. Time kinetics of PRGF-induced ECM-related factors in human fibroblasts. Human primary fibroblasts were
stimulated with PRGF from two donors for the indicated periods. Relative gene expression was analyzed by real-time PCR.
Shown are means ± s.e.m of three stimulations (* p < 0.05, ** p < 0.01, *** p < 0.001, ns = non-significant; ANOVA with
Bonferroni’s multiple comparisons test).

2.3. The PRGF-Mediated Induction of ECM-Related Factors in Human Fibroblasts Is Influenced by
the Epidermal Growth Factor Receptor (EGFR)

In previous studies, we observed a relevant influence of the epidermal growth factor
receptor (EGFR) on the PRGF-mediated induction of antimicrobial peptides and ECM-
related factors in keratinocytes [5–7,10]. Therefore, in this study we aimed to analyze
the influence of the EGFR on the observed PRGF-mediated induction of ECM-associated
genes in fibroblasts. To this end, we used the monoclonal EGFR-antibody cetuximab
to block and inactivate signal transduction by the EGFR. The blockade of the EGFR by
cetuximab caused a significant inhibition of the PRGF-mediated gene induction of MMP9
in human fibroblasts. In contrast, treatment with cetuximab revealed a significant influence
to enhance the PRGF-induced gene expression of TGFBI, TGM2, ADAM19 and LOXL3
(Figure 4).
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Figure 4. The EGFR influences the PRGF-induced expression of TGFBI, MMP-9, TGM2, ADAM19 and LOXL3 in
human fibroblasts. Human primary fibroblasts were stimulated for 24 h with PRGF from a single donor in the presence or
absence of the EGFR blocking antibody cetuximab. Relative gene expression was analyzed by real-time PCR. Shown are
means ± s.e.m of three stimulations (* p < 0.05, *** p < 0.001; ns = non-significant, Student’s t-test).

2.4. PRGF Induces ECM-Related Factors in Ex Vivo Skin Explants

To evaluate whether PRGF also induces ECM-related genes in total skin, we used
skin explants derived from surgery and treated them with PRGF for 24 h. This revealed
induction of SERPINE1, ADAM19 and LOXL3 gene expression (Figure 5). This aligns with
our recent data showing induction of other ECM-related factors such as TGFBI, MMP9 and
FERMT1 in ex vivo skin explants [10].
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Figure 5. PRGF induces expression of ECM-related genes in skin explants. Human skin explants
were stimulated with PRGF for 24. Gene expression was analyzed by real-time PCR. Shown are
means ± s.e.m (n = 9–14; * p < 0.05, ** p < 0.01, Mann-Whitney U test).

2.5. PRGF Treatment Induced Proliferation and Migration of Primary Human Fibroblasts

Furthermore, we asked if the PRGF treatment caused proliferation of primary human
fibroblasts. To answer this question, we analyzed Ki-67 gene expression after stimulation
of the fibroblasts with PRGF from five different donors (PRGF #1- PRGF #5, Figure 6A,B).
These experiments revealed a significant Ki-67 gene induction in the fibroblasts after 24 h
of PRGF stimulation (Figure 6B). A time-kinetic analysis of the PRGF-mediated Ki-67 gene
induction in PRGF-treated fibroblasts revealed significant gene inductions after 24 and 48 h
(Figure 6C).
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Figure 6. PRGF treatment of primary human fibroblasts induced Ki-67 gene expression. (A,B) Hu-
man primary fibroblasts were stimulated with PRGF from five different donors (PRGF #1-PRGF
#5) for 24 h. Ki-67-gene expression was analyzed by real-time PCR. Shown are induction levels of
separate donors (A) or combined of all 5 different donors (B) (n = 5; ** p < 0.01, Mann-Whitney U
test). (C) Primary human fibroblasts were stimulated with PRGF from two donors for 6, 12, 24 and
48 h. Ki-67-gene expression was analyzed by real-time PCR. Shown are means ± s.e.m of three
stimulations (** p < 0.01, *** p < 0.001; ns = non-significant, ANOVA with Bonferroni’s multiple
comparisons test).
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To determine whether PRGF leads to an increased cell migration of fibroblasts, a
scratch assay was performed. After inserting a gap in a confluent layer of cultured human
fibroblasts by a pipette tip, the subsequent gap closure was monitored over time. This
revealed a significantly faster gap closure by PRGF treatment after 30 h and 48 h incubation
time (Figure 7).
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Figure 7. PRGF enhanced migration of human primary fibroblasts in scratch assays. Cultured
human fibroblasts were Scheme 6. 24, 30 and 48 h. (n = 3, * p < 0.05, ** p < 0.01, ns = non-significant,
ANOVA with Bonferroni’s multiple comparisons test).

3. Discussion

Thrombocyte products as Platelet-Rich Fibrin (PRF) or Platelet-released growth fac-
tors (PRGF) have been proven to be effective for the treatment of chronic or complicated
wounds [3,4,11]. Underlying mechanisms are still insufficiently investigated. Data on
the influence of thrombocyte concentrate products on the ECM physiology are especially
rare. Recently, we have shown that PRGF induced several factors in primary human
keratinocytes that play a role in ECM formation and we speculated that this might be
one reason for the beneficial wound healing properties of thrombocyte concentrate prod-
ucts [10]. In the present study, we demonstrate that PRGF also induces several ECM-related
factors in primary human fibroblasts. As fibroblasts are one of the major cellular players
responsible for ECM formation, PRGF may strengthen ECM-formation also by its capacity
to enhance the expression of ECM-associated factors in fibroblasts. In turn, this may con-
tribute to the wound healing properties of thrombocytes-derived products [3,4,11,12]. In
this study, we focused on nine factors that have been identified by whole transcriptome
sequencing to be induced in PRGF-treated fibroblasts and which are all associated with
ECM physiology. In the following, we will separately discuss these factors in more detail.

3.1. TGFBI

Transforming growth factor beta-induced protein (TGFBI) is an extracellular matrix
protein secreted by several cells [13–25] that influences keratinocyte function [14], plays an
essential role in extracellular matrix physiology [16] and increases the adhesion, migration
and proliferation of epithelial cells [17]. A decreased TGFBi expression in fibroblasts was
detected in chronic wounds [18], which supports the potentially important role of TGFBi
in skin wound healing [18–20]. Thus, the observed PRGF-mediated induction of TGFBI
in fibroblasts may contribute to the beneficial effects of thrombocytes-derived factors to
support wound healing.
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3.2. FN1

Fibronectin 1 (FN1) is an extracellular matrix molecule produced by various cell types,
including fibroblasts and keratinocytes, that builds a bridge between cell surface receptors
as integrins or collagens and other focal adhesion molecules. It plays an important role in
the ECM synthesis and formation and regulates cell adhesion and migration [21–23]. FN1
promotes opsonization of tissue debris as well as migration, proliferation and contraction of
cells involved in the complex processes of angiogenesis and wound healing [22,24]. Taken
together, FN1 plays a crucial role in supporting epidermal injury repair processes [25–32].
Stimulation of the fibroblasts with PRGF caused the highest FN1 gene induction after 48 h,
suggesting that an indirect paracrine or autocrine mechanism may be responsible for the
observed induction. Accordingly, EGFR was not required for FN1 induction, suggesting
that a direct activation by EGFR ligands plays no role in this context.

3.3. MMP9

MMP9 (matrix metalloproteinase 9) is a protease secreted by several cell types (e.g.,
fibroblasts) that is involved in many physiological processes including remodeling of the
ECM. It degrades ECM proteins such as gelatin, collagen and elastin [33] and is essential
for the removal of the fibrinogen matrix [34]. Furthermore, it is involved in keratinocyte
migration and granulation tissue remodeling [35] and displays a key tissue remodeling
enzyme that is indispensable for wound healing [36]. PRGF stimulation of primary human
fibroblasts led to a significant MMP9 gene induction; after six hours, it was mediated by
the EGFR. This suggests a direct activation of MMP9 by EGFR ligands present in the PRGF,
a hypothesis that remains to be proven. It is noteworthy that we observed huge differences
in the relative induction level of MMP9 in different experiments. This may be related to the
fact that the MMP9 inducing EGFR ligands are highly donor-dependent, which is not the
case for the other factors where EGFR activation is not necessary for induction by PRGF.

3.4. TGM2

TGM2 (transglutaminase 2) is a multifunctional cross-linking enzyme [37] that is
involved in many biological processes in the human body [38,39], including the complex
process of wound healing [39–42]. TGM2 causes tissue’s resistance to proteolytic degra-
dation and enhances its’ mechanical strength [43]. In this context, it is involved in ECM
stabilization by mediating the interaction of integrins with fibronectin [44]. In general, it
is supposed to enhance wound healing and angiogenesis [38,45]. The TGM2 gene expres-
sion in fibroblasts was induced by PRGF after only 6 h, indicating a direct activation of
expression by factors present in the PRGF. However, EGFR ligands seem to play no role as
stimuli since blocking the EGFR by cetuximab did not decrease but rather increased the
PRGF-mediated TGM2 induction. Thus, activation of the EGFR by PRGF may dampen the
induction of TGM2 in this context.

3.5. FERMT1

FERMT1 (fermitin family member 1 or kindlin-1) is a focal adhesion protein that is
involved in the assembly of the extracellular matrix (ECM) and re-epithelialization during
wound healing as well as in the survival, proliferation, and differentiation of participating
cells [46,47]. It plays a major role in the activation of integrins [48]. A FERMT1 deficiency
is associated with severe cutaneous diseases and intestinal epithelial dysfunction [49,50].
In our experiments, we observed a very early FERMT1 gene induction in PRGF treated
fibroblasts after only 6 h of stimulation. This induction was not dependent on the EGFR.
Similarly, as discussed above for TGM2, this suggests a direct stimulation of FERMT1 by
PRGF-provided stimuli.

3.6. COL1A1

Collagens are abundantly expressed by fibroblasts and form the scaffold of the ECM.
Collagen type I alpha 1 chain (COL1A1) is involved in the formation of type I collagen
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fibers and is a major constituent of the dermis [51]. It plays also a critical role in wound
healing [52]. The high expression of COL1A1 by fibroblasts is also reflected in the high
amounts detected in the fibroblast culture supernatant by ELISA, which accords with a
recent study demonstrating PRGF-mediated secretion of collagen type I by skin fibrob-
lasts [53]. The increased release of COL1A1 by PRGF-stimulated fibroblasts indicates the
beneficial influence of PRGF on collagen synthesis.

3.7. ADAM19

ADAM19 is a metalloproteinase of the ADAM (A disintegrin and metalloproteinase)
family. As an endoprotease, it cleaves and activates growth factors. In addition, it is impli-
cated in ECM degradation and reconstruction [54]. However, an abnormal high expression
of ADAM19 is also linked to inflammation [54]. This may be related to the capacity of
ADAM19 to shed tumor necrosis factor (TNF)-alpha [55]. Thus, one may speculate that
the observed PRGF-mediated induction of ADAM19 may have positive effects on wound
healing by facilitating remodeling of the ECM and promoting inflammatory events, which
are critical steps in wound healing.

3.8. SERPINE1

The SERPINE1 gene encodes the plasminogen activator inhibitor 1 (PAI-1). PAI-1 is a
serine protease inhibitor (serpin) and plays a major role as an inhibitor of the fibrinolytic
system by inhibiting tissue plasminogen activator (tPA) and urokinase plasminogen activa-
tor (uPA) [56]. PA-I contributes to control the synthesis of the ECM and is induced upon
wounding and has a profound influence on ECM remodeling by blocking proteolytical
collagen degradation [57]. PA-I also facilitates the migration of keratinocytes during wound
healing and promotes epidermal injury repair [58–60]. PAI-1 is abundantly expressed by
fibroblasts and its gene induction by PRGF suggests a regulative effect of PRGF on ECM
remodeling during wound healing.

3.9. LOXL3

Lysyl oxidase-like 3 (LOXL3) is an amine oxidase that is required for the crosslinking of
collagen and elastin in the ECM [61]. This is mediated by catalyzing the post-translational
oxidative deamination of peptidyl lysine residues in precursors of elastin and different
types of collagens [62]. Interestingly, the blockade of the EGFR by cetuximab increased the
PRGF-mediated LOXL3 induction, suggesting an inhibitory influence of EGFR activation
on LOXL3 expression. The possible interplay between EGFR and LOXL3 warrants further
investigation.

In summary, all of the investigated factors, which are induced in PRGF-treated fibrob-
lasts, play a role in the formation and remodeling process of the ECM. ECM reorganization
is a crucial step during wound healing [63,64] and the above-mentioned studies reflect the
potential functional impact and importance of these factors for generation and homeosta-
sis of the ECM. Thus, the induction of these factors through thrombocytes extracts may
promote the wound healing process by exerting beneficial effects on formation of the ECM.

Thrombocyte concentrate products contain a variety of growth factors, cytokines, and
chemokines [65–67]. As we have recently demonstrated, the induction of antimicrobial
peptides [5,6] and several factors involved in the ECM formation [10] in keratinocytes
are dependent on the EGFR; in this study, we asked if the EGFR influences also the
induction of the analyzed factors in fibroblasts. Surprisingly, except for MMP-9, the PRGF-
mediated induction of all investigated genes was not inhibited after blocking the EGFR
and some factors were even higher induced. This is in contrast to keratinocytes, where the
PRGF-mediated induction of FN1, TGM2 and FERMT1 was dependent on the EGFR [10]
indicating functional differences of the EGFR in keratinocytes and fibroblasts.

A huge difference regarding the influence of PRGF on fibroblasts and keratinocytes
was also observed in the expression of Ki-67. In contrast to keratinocytes, where we
observed a PRGF-mediated inhibition of Ki-67 expression [9], fibroblasts stimulated with
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PRGF revealed an induced Ki-67 expression. This was accompanied by increased migration
in a scratch assay. These data are in line with the reported effects of PRGF to promote
skin fibroblast proliferation and migration [53,68]. Since proliferation and migration of
fibroblasts is important for wound closure, promotion of these steps may likely underlie
the beneficial effects of thrombocytes extracts on wound healing.

In summary, our data indicate that PRGF caused significant induction of several genes
in primary human fibroblasts that are essential for ECM formation. PRGF also promotes the
proliferation and migration of the fibroblasts. These PRGF-mediated effects on fibroblasts
can be another reason for the beneficial healing effects of chronic or complicated wounds
under therapy with thrombocyte concentrate products such as PRGF or PRF.

4. Material and Methods
4.1. Preparation of PRGF

We produced PRGF from supernatants of freshly donated human thrombocyte con-
centrates as described before [8]. Briefly, thrombocyte concentrates were transferred into
falcon tubes and centrifuged for 10 min at 2000 g. After the removal of the supernatant
the thrombocyte pellet was washed twice with a sodium citrate buffer (0.11 mM, pH 5.5)
and centrifuged again for 10 min at 2000 g. Thereafter, we removed the supernatant and
resuspended the thrombocytes in half the volume of the initial thrombocyte concentrate
volume using PBS. These resuspended thrombocytes were stored on ice, lysed by ultra-
sound, and stored at −80 ◦C for 24 h. The next day, we thawed the suspension, repeated
the ultrasound procedure, and stored the suspension again at −80 ◦C for 24 h. On the
third day, we thawed the suspension again and centrifuged it for 1 min at 18,000 g. The
supernatant, the PRGF, was then removed and cryoasservated at −20 ◦C.

4.2. Culture and Stimulation of Primary Human Fibroblasts

Waste skin explants from surgeries were used to isolate human primary fibroblasts.
The use of waste skin was approved by the local ethics committee of the Medical Faculty,
University of Kiel, Germany (D 414/09; D 442/16) in concordance with the Declaration
of Helsinki guidelines. The obtained samples were washed with phosphate-buffered
saline, cut into defined pieces (0.25 cm2) and transferred into a 50 mL centrifuge tube
containing a pre-prepared solution of 1 mL 2.5% trypsin and 25 mL PBS. After overnight
incubation at 4 ◦C, 20 mL Dulbecco’s Modified Eagle’s Medium (DMEM, ThermoFisher
Scientific, Dreieich, Germany) containing 10% FCS was added to neutralize the trypsin.
The dermis was then mechanically separated from the epidermis and placed skin-side up
in 6-well cell culture plates, with each well containing 6 dermis pieces. DMEM medium
supplemented with 10% FCS (Capricorn Scientific, Ebersdorfergrund, Germany) and 1%
Pen/Strep (ThermoFisher Scientific, Dreieich, Germany) was added (2 mL per well) and
replaced twice a week. Incubation was conducted at 37 ◦C with 5% CO2. The dermis pieces
were removed after a week. The outgrown fibroblasts were split at a confluence of 70–90%
and transferred into cell culture flasks (75 cm2) for further cultivation. For stimulation,
fibroblasts were seeded in 12-well tissue culture plates (BD Biosciences, Franklin Lakes,
NJ, USA) in RPMI. At 90–100% confluence, the fibroblasts were stimulated with PRGF
(1:10 diluted in RPMI) for the indicated period. To analyze the influence of the epidermal
growth factor receptor (EGFR), we used the EGFR-blocking antibody cetuximab (Merck,
Darmstadt, Germany) at a concentration of 20 µg/mL.

4.3. Real-Time PCR

After stimulation, total RNA was isolated and reverse transcribed in cDNA as de-
scribed [69]. The cDNA served as a template in a real-time PCR using a fluorescence-
temperature cycler (StepOne Plus; ThermoFisher Scientific, Dreieich, Germany) as de-
scribed [69]. PCR was conducted using an annealing temperature of 60 ◦C for all reactions
and serial dilutions of cDNA were used to obtain gene-specific standard curves for relative
quantification of gene expression. The expression levels of the indicated genes were ad-
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justed to the expression of the house-keeping gene RPL38 (ribosomal protein L38). The
sequences of the used intron-spanning primer are shown in Table 1.

Table 1. Primer sequences used for gene expression analyses of the indicated ECM-related factors by real-time PCR.

Gene Forward Primer Reverse Primer

Transforming Growth Factor Beta Induced,
TGFBI ACCCAGAAGCCCTGAGAG TGCAGCCCACCTCCAGTG

Fibronectin 1, FN1 ACAACGTCATAGTGGAGGCA CATCCGTAGGTTGGTTCAAG

Matrix Metalloproteinase 9, MMP9 GACACGCACGACGTCTTCCA CACTGCAGGATGTCATAGGTCA

Transglutaminase 2, TGM2 CTCAACCTGGAGCCTTTCTC AGGGCCCGCACCTTGATGA

Fermitin Family Member 1, FERMT1 GATTCCAGTGACAACATGGAG TCAAACTCGATGACCACCTG

Lysyl Oxidase Like 3, LOXL3 TACAGCGAGCTGGTGAATGG CAGATGCGGCCTGTTCCA

A Disintegrin And Metallo-proteinase 19,
ADAM19 GCAATGCCTCTAATTGTACCCTG GAGCCAACAGCTTACACTGG

Serpin Family E Member 1, SERPINE1 CCTGGTTCTGCCCAAGTTCT CGTGGAGAGGCTCTTGGT

Ki67 TGACTTCCTTCCATTCTGAAGAC TGGGTCTGTTATTGATGAGCC

Ribosomal protein L38, RPL38 TCAAGGACTTCCTGCTCACA AAAGGTATCTGCTGCATCGAA

4.4. Enzyme-Linked Immunosorbent Assay (ELISA) Analysis

The concentration of fibronectin 1 (FN1) and collagen type I alpha 1 (COL1A1) in
the supernatants of PRGF-treated fibroblasts were determined by ELISA (R&D Systems,
Minneapolis, MN; catalog no. DY1918-05 and DY6220-05). ELISA was performed according
to the manufacturer’s protocol.

4.5. Scratch Assay

A scratch assay was performed with fibroblasts to investigate whether stimulation
with PRGF leads to increased cell migration. Fibroblasts were cultured in a 12-well plate
using DMEM (with 10% FCS, without antibiotics) until 90–100% confluence was reached.
The wells were scratched once using a 100 µL pipette tip to generate a standardized gap
in the cell layer. The cells were then left unstimulated or stimulated with 500 µL PRGF
(1:10 diluted in DMEM) and closure of the gap was microscopically analyzed after 6, 24,
30 and 48 h and documented by microscopic images. An analysis of the pictures was
conducted using AxioVision LE 4.2.8.0 software (Carl Zeiss Microscopy, Jena, Germany) by
measuring the size of the gap where no cells were present. By comparing the size of the
gap at different times of observation, the progress of the migration could be assessed.

4.6. Expression Analysis of ECM-Related Genes in Ex Vivo Skin Explants

Skin explants for ex vivo experiments were obtained as waste material from abdomen
or breast reduction surgeries. This approach was approved by the local ethics committee
of the Medical Faculty, University of Kiel, Germany (D 414/09; D 442/16). The obtained
samples were washed with phosphate-buffered saline and cut into defined pieces (0.25 cm2).
The samples were placed in reaction tubes filled with 240 µL DMEM without supplements
together with 60 µL of PRGF and incubated at 37 ◦C in a humidified atmosphere with
5% CO2 for 24 h. Subsequently, RNA Isolation was performed with NucleoSpin RNA Kit
(Macherey-Nagel, Düren, Germany), according to the manufacturer’s protocol. cDNA
analysis was performed as described above.

4.7. Whole Transcriptome Sequencing (RNA-Seq)

Fibroblasts were stimulated with PRGF, and total RNA was isolated using the Nu-
cleoSpin RNA Kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s
protocol. RNA libraries were prepared and sequenced on a hiSeq4000 (Illumina, San Diego,
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CA, USA) as described [10]. Raw mRNA sequencing data were processed using Cutadapt
(version 1.15) to trim Illumina standard adapters, Tophat2 [70] (version 2.1.1) together with
Bowtie 2 [71] (version 2.2.3) to map the reads to the human reference genome (GRCh38,
Ensembl release 91), Samtools [72] (version 1.5) to clean and sort the mapped reads, and
HTSeq [73] (version 0.10.0) to count the number of reads mapping to each gene. Genes were
annotated according to the Gencode version 27 annotation gtf file. Differential expression
analysis of stimulated vs. unstimulated fibroblasts was conducted using the DESeq2 [74]
Bioconductor package (version 1.24.0). The analysis was performed using the parametric
Wald test and independent filtering of the results. Differentially expressed genes were
defined by a false discovery rate (FDR as defined by Benjamini-Hochberg) <5% and an
absolute log2 fold change (LFC) >1 corresponding to a doubled or halved expression. Log
fold change estimates were corrected using the DESeq2 inbuilt LFC shrinkage function
with the apeglm [75] method. Gene enrichment analysis was performed using Clusterpro-
filer [76] Bioconductor package (version 3.12.0) for biological processes compiled from
Gene Ontology [77].

4.8. Statistics

Statistical analyses and graphs were generated using GraphPad Prism 8 (GraphPad
Software LLC, San Diego, CA, USA). Since the small sample size did not allow for reliable
analysis of distribution of the data the non-parametric Mann-Whitney U test was used to
analyze data shown in Figures 1, 2B,C, 5 and 6B. Due to the small sample size, which does
not allow for the use non-parametric tests, the other data where analyzed by Student’s
t-test or ANOVA with Bonferroni’s multiple comparisons test (when more than one group
was analyzed against an unstimulated control group, Figures 3, 6C and 7). A p-value < 0.05
was considered statistically significant.
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