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Abstract: Behavioural research of pigs can be greatly simplified if automatic recognition systems
are used. Systems based on computer vision in particular have the advantage that they allow an
evaluation without affecting the normal behaviour of the animals. In recent years, methods based on
deep learning have been introduced and have shown excellent results. Object and keypoint detector
have frequently been used to detect individual animals. Despite promising results, bounding boxes
and sparse keypoints do not trace the contours of the animals, resulting in a lot of information being
lost. Therefore, this paper follows the relatively new approach of panoptic segmentation and aims
at the pixel accurate segmentation of individual pigs. A framework consisting of a neural network
for semantic segmentation as well as different network heads and postprocessing methods will be
discussed. The method was tested on a data set of 1000 hand-labeled images created specifically for
this experiment and achieves detection rates of around 95% (F1 score) despite disturbances such as
occlusions and dirty lenses.

Keywords: computer vision; deep learning; image processing; pose estimation; animal detection;
precision livestock

1. Introduction

There are many studies that show that the health and welfare of pigs in factory farming can
be inferred from their behaviour. It is therefore extremely important to observe the behaviour
of the animals in order to be able to intervene quickly if necessary. A good overview of
the studies, the indicators found, and the possibility of automated monitoring is provided
by [1]. Similarly, there are studies examining the various environmental factors (housing, litter,
and enrichment) and how these factors affect behaviour [2–4].

Observing the behaviour of the animals over long periods of time cannot be done manually,
so automated and sensor-based systems are usually used. Classical ear tags or collars can locate
their position but have the disadvantage that the transmitter cannot provide information about the
orientation of the remaining parts of the animal’s body. In addition, the sensor must be purchased and
maintained for each individual animal. This is why computer vision is increasingly used, where the
entire barn with all animals can be monitored with a few cameras. An overview of different applications
with computer vision in the pig industry can be found in [5].

Based on 2D or 3D images, the position of the individual animals and their movements can be
detected. From the positions alone, a lot of information can be extracted. By means of defined areas,
the position can be used to identify, e.g., food or water intake [6]. Furthermore, interactions and
aggression between the animals can be detected if they touch each other in certain ways (mounting and
chasing) [7–9]. The behaviour of the entire group can also be evaluated. Certain patterns when lying
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down can reveal certain information about the temperature in the barn [10], or changes in positions
over time can be converted into an activity index [11] or locomotion analysis [12].

Even though camera recording has many advantages due to its low-cost operation and
noninvasive observation, the task of detecting animals reliably, even in poor lighting conditions
and with contamination, is difficult. Previous work used classical image processing such as contrast
enhancement and binary segmentation using thresholds or difference images to separate the animals
from the background [6,9,13,14]. Later, the advantage of more sophisticated detection methods based
on learned features or optimization procedures were presented [15,16]. With the recent discoveries
in the field of deep learning, the detection of pigs with neural networks has also been addressed.
The established object-detector networks were either applied directly to the pigs, or the detections
found were postprocessed to visually separate touching pigs [17–19]. Although the detection rate with
these object detection methods is very good, the resulting bounding boxes are suboptimal because,
depending on the orientation of the animal, the bounding box may contain large areas of background
or even parts of other animals (see Figure 1). Therefore, Psota et al. [20] proposed a method that avoids
the use of bounding boxes and tries to directly detect the exact pose of the animal with keypoints on
specific body parts (e.g., shoulder and back).

In this work, we close the gap between the too large bounding boxes and the sparse keypoints
and try to identify the animals’ bodies down to the pixel level. We believe that the exact body outlines
can help to classify the animals’ behaviour even better. The movement of individual animals can
be depicted much better than with a bounding box, and the body circumference resulting from the
segmentation can also be used to draw conclusions about the size and weight of the animals.

The main contribution of this thesis is the presentation of a versatile framework for different
segmentation tasks on pigs together with the corresponding metrics.

The remainder of this work is organized as follows. In Section 2, the basic concepts of object
detection based on bounding boxes, pixel-level segmentation, and key-points are listed. The proposed
method is described in Section 3 followed by the evaluation in Section 4. The findings are discussed
and concluded in Sections 5 and 6.

(a) Original image part (b) Ellipses (c) Bounding boxes (d) Keypoints
Figure 1. Visualization of different types of detection on an example image part (a); The proposed
ellipses (b) provide more information about the pigs (like a weight-approximation) than the classic
bounding boxes (large overlap) (c) or keypoints (d) where the affiliation to the individual animals has
to be resolved afterwards.

2. Background

In recent years, methods based on neural networks have gained enormous importance in the field
of image processing. Based on the good results in classification tasks, adapted network architectures
were developed, which can also be used for the detection of objects [21,22]. The current generation of
detection networks uses a combination of region proposals (bounding boxes) and classification parts,
which evaluate the proposed regions [23–25]. With Deepmask [26,27] and Mask-RCNN [28], even object
detectors have been shown which generate a pixel-level segmentation mask for each region found.
Although these detectors provide very good results, the generated region proposals have the problem
that only one object can be found at each position. This limitation is usually irrelevant because, in a
projective image, each pixel is assigned to exactly one object anyway and two objects at the same
position cannot be seen. However, if two elongated objects overlap orthogonally, the center of the
objects may fall on the same pixel, which cannot be mapped by such a region proposal network.
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Another area in which neural networks are very successful is (semantic) segmentation, in
which each pixel is assigned a class (pixelwise classification) [29–31]. However, the classic semantic
segmentation does not distinguish between individual objects but only assigns a class to each pixel.
In order to separate the individual objects, an instance segmentation must be performed. For this
purpose, the semantic segmentations are extended, for example, such that the output of the network
is position-sensitive in order to identify the object boundaries [32]. Another solution is to count and
recognize the animals in a recursive way. For this purpose, one object after the other is segmented and
stored until no more objects can be found [33,34]. Since the networks are designed to predict certain
classes, the classes can also be chosen to help distinguish the instances. Uhrig et al. [35], for example,
use the classes to encode the direction to the center of the corresponding object for each pixel. Since the
direction to the center of the object is naturally different at object boundaries, the individual instances
can be separated. To assign the pixels to individual instances, a high-dimensional embedding can also
be used. As described by De Brabandere et al. [36], a high-dimensional feature space is formed,
and for each pixel in the image, the network predicts the position in space. Via discriminative
loss, pixels belonging to the same object are pushed together in the embedding space and pixel
clusters of different objects are pushed apart. With a subsequent clustering operation, the instances
in the embedding can then be separated. The relatively new definition of panoptic segmentation [37]
defines the instance segmentation as a combination of semantic segmentation and instance segmentation.
This combined approach has also been directly implemented recently [38–40]. However, the output of
an object detector is often used as a reference, so these approaches probably also have problems when
objects share the same position in space.

Another approach for the segmentation of individual instances is the detection of certain
key points, which are then meaningfully combined into the individual instances using skeleton
models [41–43].

As described in the introduction, detection with bounding boxes and detection via key points has
already been demonstrated on pigs. This work follows the definition of panoptic segmentation and aims
at the pixel accurate segmentation of individual pigs based on pixel embedding as described in [36].

3. Proposed Method

The goal of the proposed method is a panoptic segmentation [37] of all pigs in images of a
downward-facing camera mounted above the pen. Panoptic segmentation is defined as a combination of
semantic segmentation (assigning a class label to each pixel) and instance segmentation (detecting and
segmenting each object instance). Therefore, the semantic segmentation part differentiates between the
two classes background and pig, whereby the instance segmentation part is used to distinguish the
individual pigs (see Figure 2b,d).

(a) Original image
part

(b) Binary
segmentation

(c) Categorical
segmentation

(d) Instance
segmentation

(e) Body part
segmentation

Figure 2. Visualization of the different experiments presented in this work: (a) original image;
(b) The binary segmentation distinguishes only between foreground and background; A categorical
segmentation can be used to separate the individual animals (c) or to classify body parts (e);
(d) The network is trained to directly tell the affiliation of the pixels to the individual animals.

The proposed method for the panoptic segmentation is an extension of classical semantic
segmentation. Therefore, in this paper, the complexity of segmentation is increased step by step,
resulting in four separate experiments. First, a simple binary segmentation is tested (see Figure 2b).
In the second experiment, the individual animals are extracted from a semantic (or categorical)
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segmentation (see Figure 2c). The third experiment shows a pixel precise instance segmentation based
on a combination of the binary segmentation and pixel embedding. The learned pixel embedding
serves as input for a clustering postprocessing step, which groups the pixels belonging to the individual
animals (see Figure 2d). In the last experiment, the embedding is combined with a body part
segmentation (see Figure 2e), which adds an orientation recognition to the instance segmentation.

All experiments are based on the same network architecture. Only the last layers are adjusted
to obtain the required output. This way, the presented framework can be easily adapted to each of
the experiments. An overview of the framework is given in Figure 3. As described above, the inputs
are fed through the network with one or more of the different heads, depending on the experiment.
Then the outputs are combined if necessary and in a post-processing step the instances are extracted
as ellipses.

Figure 3. Schematic representation of the proposed framework. The auto-encoder is an U-Net
architecture (depiction adopted from [44]). The individual stages consist of several blocks, each
with several layers. Scaling down or up is done between the stages. Skip connections are used to
combine the results of the encoder and decoder stages. The network is equipped with different heads
for the different experiments. The output is processed afterwards to yield the desired results.

3.1. Representation of the Pigs

In order to perform panoptical segmentation instance by instance and as accurately as possible,
manual annotation should contain such instance information with pixel accuracy. Since the choice of
annotation method always requires a trade-off between effort and accuracy, a pixel accurate annotation
is preferable but also very costly. In contrast, bounding boxes can be drawn quickly but would contain
large background areas in addition to the marked pig, especially if the pig is standing diagonally to
the image axes (see Figure 1c). Based on existing work [6,10,13], ellipses were therefore chosen as
annotations. They are also very easy to draw (due to the two main axes) and adequately reproduce the
pigs’ bodies on the images of a downward facing camera. Except for small mistakes (e.g., when the
animal turns its head to the side), the pixels belonging to the individual animals can thus be easily
captured. Since the area of the ellipses correlates approximately with the volume of the animals,
the ellipses have the further advantage of allowing conclusions to be drawn about the volume and the
weight of the animals. Although pixel accurate segmentation was the objective, the network can of
course only learn segmentation based on the annotated ellipses. However, as shown in Section 4.5,
the network adapts to the contours of the animals rather than strictly following the elliptical shape.
Therefore, the advantage of simple annotation outweighs the slight loss of accuracy. Of course,
all subsequent steps could also be performed on the segmentation label generated on the basis of the
annotated ellipses. In this paper, however, ellipses were deliberately extracted from the segmentation
produced by the network to simplify storage and processing for later steps. For subsequent tracking
or position evaluations, the five parameters per ellipse are completely sufficient, so there is no need
to store the complete segmentation. By aligning the ellipse (first main axis), the orientation of the
animals is also stored during manual annotation. If animals overlap, the order in which the pixels
in the label image are drawn must correspond to the reversed order of the animals in the camera’s
visual axis. This ensures that the pixels of the animals on top overwrite the pixels of the covered
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animals (see Figure 2b,d). Therefore, the order with respect to the camera’s visual axis is also included
in the annotation.

The ellipses must be able to overlap in the manual annotation to capture all pixels belonging to
an animal (see Figure 4a). While depth sorting, described above, ensures that each pixel is uniquely
assigned to a single animal (see Figure 4b), the pixel-level segmentations cannot be compared to the
originally annotated ground truth ellipses anymore. If the animals overlap, the annotated ellipses
and the found segmentations differ in size. In order to generate comparable data for the evaluation,
new ellipses were extracted from the generated label images by fitting ellipses into the segmentations
(see Figure 4a–c). These adapted ground truth ellipses are used to compare the ellipses extracted from
the segmentation output of the networks to the manual annotations.

(a) Manual annotated
ellipses

(b) Label images for
instance segmentation

(c) Adapted ground truth
ellipses

(d) Predicted ellipses by
the proposed method

Figure 4. Two examples of the manually annotated ellipses (a); the label images created for instance
segmentation (b); the extracted ground truth ellipses (c) and the results (d). The filled part of the
ellipses shows the identified orientation of the animals. Note the adjusted overlaps in (c), which allow
a comparison with the predicted ellipses. The lower picture in (d) shows a faulty detection.

3.2. Network Architecture

The typical network architecture for semantic segmentation consists of an encoder and a decoder
part. The encoder transforms the input image into a low-dimensional representation, which the decoder
then converts into the desired output representation (this combination is often also called auto-encoder).
The encoder is structured similarly to a classification network, whereas the decoder is a combination
of layers symmetrical to the encoder but with upsampling steps instead of the downsampling steps.
To further improve the segmentation results, skip connections are often added. To make the information
from the different resolution levels usable, these connections merge the intermediate results of the
encoder with the corresponding upsampling levels in the decoder. Well-known versions of such
networks are for example U-Net [30] and LinkNet [45]. Another approach to use the information from
the different downsampling layers from the encoder aiming at obtaining dense segmentation in the
original resolution is called Feature Pyramid Network (FPN) [46]. The predictions in this approach
are computed at different scales and merged afterwards. In a similar way, the Pyramid Scene Parsing
Network (PSPN) [47] uses a pyramid pooling module to access extracted features at different scales.
To capture objects and background at different scales, the DeepLab network family [31,48–50] also
uses pyramid pooling but combined with dilated convolutions. The latest version DeepLabv3+ [50]
uses the predecessor DeepLabv3 [31] as an encoder and adds a special decoder. With this setup,
the network achieves state-of-the-art results. Image segmentation can also be improved by attention
modules. This allows networks to weigh features from previous layers and to thus improve the
emphasis and gathering of information. Attention can be combined with pyramids [51], or different
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attention modules work in parallel [52] or one after the other [53]. A good overview of the latest
developments in network architectures for semantic segmentation is provided in [54].

A U-Net with different encoder architectures was used in this work because it gave the most
stable results on the data set used. However, the presented framework can also be combined with
any other network architecture for image segmentation. To do so, the auto-encoder in the pipeline
would simply be replaced (see Figure 3). More details on the implemented architecture can be found
in Section 4.4. In Section 4.8, an ablation study evaluates additional backbones and hyperparameters.
The possibility of using a different network architecture is also discussed.

3.3. Binary Segmentation

A binary segmentation is the basis for many of the classical approaches to pig detection [6,10,13,14].
At the same time, it is a comparably simple task for a neural network. Once solved, however,
foreground segmentation can also be used to simplify more complex procedures, e.g., to apply them
only to the important areas of the image (see Section 3.5).

For the binary segmentation, the network learns which pixels belong to the pigs and which
belong to the background. Therefore, for each pixel xi, it predicts a probability p(xi) to which the pixel
belongs to a pig (with the corresponding opposite probability (1− p(xi)) that the pixel belongs to
the background). The training data consist of binary label images based on the manually annotated
ellipses (see Figure 2b), where each pixel in the label image is a binary variable yi, indicating whether
the pixel belongs to the background (value 0) or to a pig (value 1).

The network is set up with the architecture described in Section 3.2 but with only one output
layer. The output has the same spatial dimension as the input but with only one channel and a sigmoid
activation function that generates the probability estimate for each pixel. The loss function is the
cross-entropy loss:

L = − 1
N

N

∑
i=1

yi · log(p(xi) + (1− yi) · log(1− p(xi)) (1)

During inference, the predicted probability values are thresholded to create the final
binary segmentation.

3.4. Categorical Segmentation

In the second experiment, a semantic or categorical segmentation is applied to be able to separate
the individual instances. Based on the direction-based classes described in Uhrig et al. [35], the semantic
segmentation is set up with the classes background, outer edge of an animal, and inner core of an animal (see
Figure 2c) to recognize the outer boundaries of the animals. In other words, it defines a distance-based
classification which encodes the distance to the pigs center in discrete steps, whereby the inner-core
area is just a scaled down version of the original manually annotated ellipse. With these three classes,
the training data are categorical label-images with an one-hot vector ti at each pixel, indicating one
positive class and two negative classes.

In the existing network architecture, only the last layer is adapted such that the number of
channels corresponds to the number of classes (C = 3) defined in the experiment. Since each pixel
can only belong to one of the C classes, the vector xi along the channel axis at each pixel location is
interpreted as a probability distribution over the C classes. Such a probability distribution can be
generated with the softmax activation function on the output layer. The loss function is the categorical
cross-entropy loss over all N pixels and the C classes:

L = − 1
N

N

∑
i=1

C

∑
j=1

ti,j · log(xi,j) (2)
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While in the binary segmentation the individual instances blend when they overlap, the centers of
the animals and thus the individual instances can still be reconstructed with this method. A detailed
description of the extraction process follows in Section 4.3.

3.5. Instance Segmentation

Categorical segmentation is a rather naive approach, where the boundaries should prevent the
individual animals from blending together. Therefore, in the third experiment, each pixel in the image
should be assigned to a specific animal (or the background). For this task, De Brabandere et al. [36]
have introduced a discriminating loss function which uses a high dimensional feature space in which
the pixels of the input image are projected in (pixel embedding). The network learns to place the pixels
belonging to one object in this space as closely together as possible, while pixels belonging to other
objects are placed as far away as possible (see Figure 5).

Figure 5. Illustration of the forces acting on the pixels to form the clusters (image adopted from [36]):
With the variance term (yellow arrows), the pixels are drawn in the direction of the cluster mean
(crosses). The distance term (red arrows) pushes the different clusters apart. Both forces are only active
as long as the threshold values are not reached (inner circle for the cluster variance and outer circle for
the distance).

The loss function is a weighted combination of three terms, which act based on the individual
instances given by the annotated data:

1. Variance term The variance term penalizes the spatial variance of the pixel embeddings belonging
to the same instance. For all pixels that belong to the object (according to the annotated data), the
mean is calculated, and then for all object pixels, the distance to the mean is evaluated. This forces
the points in the feature space to cluster.

2. Distance term The distance term keeps the calculated means of the clusters at a distance.
3. Regularization term The regularization term keeps the expansion of all points in the feature

space within limits and prevents them from drifting apart.

Following the definition from [36], for each training example, there are C objects (or classes) to
segment (the pigs plus the background). Nc is the number of pixels covering object c, and xi is one
pixel embedding in the feature space. For each object c, there is a mean of all its pixel embeddings µc.
‖·‖ is the L1 norm. In addition, the loss is hinged to be less constrained in the representation. The pixel
embeddings of the objects do not need to converge to exactly one point but should reach a distance
below a threshold δv. In the same way, the distance between two different mean embeddings must only
be greater than or equal to the threshold δd. This is mapped with the hinge-function [x]+ = max(0, x).
Now the three terms can be formally defined as follows:
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Lreg =
1
C

C

∑
c=1
‖µc‖ (3)

Lvar =
1
C

C

∑
c=1

1
Nc

Nc

∑
i=1

[‖µc − xi‖ − δv]
2
+ (4)

Ldist =
1

C(C− 1)

C

∑
cA=1

C

∑
cB=1

cA 6=cB

[2δd − ‖µcA − µcB‖]
2
+ (5)

The final loss function L with weights α, β and γ is given as follows:

L = α · Lvar + β · Ldist + γ · Lreg (6)

3.5.1. Postprocessing

After the network has been used to create the pixel embedding on an input image, the individual
instances must be extracted from it. De Brabandere et al. [36] propose the use of the mean-shift
algorithm to identify cluster centers and afterwards to assign all pixels belonging to the cluster (in
terms of the δv threshold) to the same object. In this work, the hierarchical clustering algorithm
HDBSCAN [55] is used instead, as it shows improved performance in high-dimensional embedding
spaces. HDBSCAN is density based hierarchical clustering and therefore optimally suited for the
required clustering. It starts with a thinning of the non-dense areas. Then, the dense areas are linked
to a tree, which is converted into a hierarchy of linked components. Thus, a condensed cluster tree
can be created by the parameter of minimum cluster size, and from this tree, the final flat clusters can
be extracted.

3.5.2. Combined Segmentation

Since each pixel is mapped in the embedding, there are many data points that have to be
clustered. At normal HD camera resolutions, this quickly adds up to a million data points. To accelerate
clustering, a combined solution of discriminating and binary segmentation was designed. With the
binary segmentation, a mask is created that contains only the pixels that belong to the animals.
Thus, only those pixels are fed into the clustering process that are relevant for the differentiation of
the individual animals. Figure 6 shows an example of the distribution of pixels in a two-dimensional
embedding and the clustering applied to the binary segmentation.

The network architecture only needs to be adapted slightly, since the architectures of the two
experiments only differ in the last layer. In order to generate both outputs simultaneously, the network
is equipped with two heads, which generate the corresponding outputs from the outputs of the
autoencoder. The two heads are trained with the appropriate loss functions and feed the gradient
updates equally weighted into the auto-encoder network.

3.6. Orientation Recognition

If the pixel segmentation approximates to an ellipse shape, the major axis of the final extracted
ellipse will match the orientation of the animal. However, since ellipses are symmetrical with a rotation
of 180 degrees, the orientation of the animals can only be detected correctly up to this 180 degree
ambiguity. Since the correct orientation was captured during manual annotation, this ambiguity
can also be resolved. Therefore, the combined method described in the previous section uses a
categorical segmentation with the classes background, body, and head instead of a binary segmentation
(see Figure 2e). In postprocessing, the classes then can be used to determine the orientation of the
animals as described in Section 4.3.
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Figure 6. Results of the combined segmentation. On the left the original input image and below the
ground truth label are shown. The top row depicts a two-dimensional embedding space. The bottom
row depicts the corresponding binary segmentation and the assignment of the clusters. The snapshots
are created after 1, 2, 3, 10 and 80 gradient updates. The network was trained solely on the shown
input image to generate the results shown here for illustration purposes.

4. Experimental Results

4.1. Dataset

The data used in this work was obtained from a previous study on the influence of different
rearing systems on pig welfare: Influence of different farrowing and rearing systems on animal welfare,
animal health and economy in pig production (Inno-Pig) funded by the Federal Office for Agriculture
and Food of Germany and the Landwirtschaftliche Rentenbank (project no. 2817205413 and 758914).
The pictures were taken in a research facility that meets the standards of conventional pig rearing.
The authors declare that the experiments were carried out strictly following international animal
welfare guidelines (in consultation with the animal welfare officer of the Chamber of Agrigulture
Schleswig-Holstein, Rendsburg, Germany).

Five cameras were installed, with each camera covering two 5.69 m2 pens, each with a maximum
of 13 animals. The animals were housed at the age of 27 days and remained in the facility for 40 days.
The recordings of this data set covered a period of four months. From all available videos, 1000 frames
with a resolution of 1280 × 800 pixels were randomly selected and manually annotated. The images
from one of the five cameras were declared as a test set, so that the evaluation is based on images
of pens that the network never saw during the training. The images of the remaining four cameras
make up the training and validation set. The data sets contain normal color images from the daytime
periods and night vision images with active infrared illumination from the night periods. In addition,
the cameras occasionally switched to night vision mode during the day due to dirty sensors. In the
evaluation, however, a distinction is only made between color images and active night vision regardless
of the time of day. An overview can be found in Table 1.

Table 1. Data set statistic for the 1000 randomly selected and annotated images: The images of the test
set are taken from a different camera than the images of the training and validation set.

Data Set Total Daylight Night Vision

Train 606 361 245
Validation 168 96 72
Test 226 108 118

In Figure 7, some example images from the data set are shown. Some of the challenges of
working in pigsties can be clearly seen. For one thing, the camera position cannot always be chosen
optimally so that occlusions cannot be avoided. Furthermore, the lighting and the natural incidence
of light cannot be controlled, so the exposure conditions are sometimes difficult. Last but not least,
the cameras get dirty over time, resulting in disturbances and malfunctions (such as the erroneously
active night vision).
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Figure 7. Some sample images from the data set used: Note the poor lighting conditions, the dense
grouping of the animals, and the distortions during active night vision caused by dirt on the lens.

4.2. Evaluation Metrics

For the task of panoptic segmentation, Kirillov et al. [37] also proposed a metric called panoptic
quality (PQ). It is very similar to the well-known F1 score but takes into account the special characteristic
that each pixel can only be assigned to exactly one object. It first matches the predicted segments with
the ground truth segments and afterwards calculates a score based on the matches.

Since each pixel can only be assigned to one object, the predicted segments cannot overlap.
Therefore, it can be shown that there can be at most one predicted segment for each ground
truth segment, with an intersection over union (IoU) of strictly greater than 0.5 [37]. Each ground
truth segment for which there is such a matching predicted segment counts as a true positive (TP).
Predicted segments that do not sufficiently overlap any ground truth segment count as false positives
(FP), and uncovered ground truth segments count as false negatives (FN). For all the predicted segments
p and the ground truth segments g, PQ is defined as follows:

PQ =
∑(p,g)∈TP IoU(p, g)

|TP|+ 1
2 |FP|+ 1

2 |FN|
(7)

For better comparability with other work, the F1 score, precision, and recall are also evaluated in the
experiments (see Section 4.5). F1, precision, and recall are based on the same TP, FP, and FN as the PQ.

4.3. Ellipse Extraction

As described in Section 3.1, the detected poses should be stored as ellipses.
Therefore, the individual ellipses are extracted from the network outputs in a subsequent step.
For categorical segmentation, all pixels of the class inner core of an animal (see Section 3.4) are searched
first using a blob search. The individual separate blobs are then interpreted as individual animals.
For this, an ellipse is fitted to the segmented pixel with the algorithm of Fitzgibbon [56]. Since the
core of an animal was generated from the scaled-down version of the manually annotated ellipse,
the ellipse adapted from the blob can then simply be scaled up accordingly.

When using the segmentation with the discriminative loss and the clustering, the ellipses can
simply be fitted to the pixels of the individual clusters after backprojecting the pixels from the
embedding into image-space. As described in Section 3.5, the binary mask of the combined approach
is used here to process only the pixels that belong to the animals while masking out the background.
If the orientation of the animals is also detected, the classes body and head can be combined to achieve
the binary segmentation. Once the ellipses are fitted, the original categorical segmentation can be used
to identify the side of the ellipse where the head was detected.

Depending on the complexity of this postprocessing, the runtime of the entire process changes.
The exact runtimes are therefore given in Section 4.6.
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4.4. Implementation Details

As described in Section 3.2, a U-Net was used, as its modular design allows the use of different
classification architectures as encoders. Thus, it is possible to benefit from the latest developments in
this field. With ResNet34 [57] and Inception-ResNet-v2 [58], two established classification networks
were used as encoder backbones. They both consist of single blocks that combine different convolution
operations with a shortcut connection. With these shortcut connections, the optimizer does not have to
learn the underlying mapping of the data but simply a residual function [57]. The blocks are organized
in different stages, and each stage is followed by a downscaling. The decoder part imitates the stages
but uses an upscaling layer instead of downscaling. Via the skip connections, the stages of the encoder
are connected to the stages of the decoder where they are combined with the results of the encoder
(see the auto-encoder in Figure 3). Exact details on the structure of the blocks in the encoder backbones
can be found in the corresponding papers.

The network was implemented with the segmentation models library [44]. For all experiments,
the Adam-Optimizer [59] with an initial learning rate of 0.00001 was used.

To speed up the calculation of the network and any subsequent clustering, the images were scaled
down to a resolution of 640 × 512 pixels. Additionally, the training images were augmented during
the training with the imgaug library [60] to achieve a better generalization. The augmentation included
different distortions, affine transformations, and color changes (e.g., grayscale to simulate active infrared
illumination) and increased the amount of training images by a factor of 10. For all the image-related
pre- and postprocessing tasks (such as the ellipse fitting), the OpenCV-library [61] was used.

For pixel embedding, an eight-dimensional space was used. The thresholds in the discriminative
loss in Equations (4) and (5) were set to δv = 0.1 and δd = 1.5. The weights in the final loss term in
Equation (6) were set to α = β = 1.0 and γ = 0.001. The values were taken from the original paper [36],
except for the threshold δv, which was decreased to improve the density-based clustering. For clustering,
the HDBSCAN implementation from McInnes et al. [62] was used with the minimal cluster size set to 100.
The influence of these hyperparameters is evaluated in the ablation studies in Section 4.8.

4.5. Evaluation

In order to evaluate the methods described in Section 3, they were all run on the test data set.
To investigate the influence of different backbones, all experiments were performed with both backbones.
A distinction was also made between day and night vision images to test the robustness of the methods.

4.5.1. Binary Segmentation

In binary segmentation, the network predicts a probability that a particular pixel belongs to a pig
or the background. This probability is converted into a final decision using a threshold value of 0.5.
The binary pixel values can then be compared with the ground truth images using the Jaccard index.
The accuracy results of the binary segmentation are listed in Table 2.

Table 2. Accuracy results of the binary segmentation experiment (measured with the Jaccard index):
The experiment was carried out on all test images and separately on the daylight (D) and night vision
(N) images only. Best results in bold.

Backbone Acc Acc (D) Acc (N)

ResNet34 0.9730 0.9771 0.9692
Incep.-RN-v2 0.9735 0.9774 0.9699

The ellipses cover the body of the animals only approximately (see Section 3.1).
Therefore, the network sometimes receives ambiguous information, where pixels that can be clearly
recognized as background still have the label pig. The network produces mainly elliptical predictions,
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but the segmented areas also follow the body of the animals (see Figure 8b). Since the label images
only contain undistorted ellipses, an accuracy of 100% is never achievable for the network.

(a) Original image
part

(b) Binary
segmentation

(c) Categorical
segmentation

(d) Orientation
recognition

(e) Combined
segmentation

Figure 8. Results from the different experiments on an example image (cropped) (a); Depicted are the
simple binary segmentation (b); the categorical segmentation with classes outer edge of an animal and
inner core of an animal (c); the body part segmentation for the orientation recognition with classes head
and rest of the body (d) and the combined segmentation with the results of the clustering, masked with
the binary segmentation (e).

4.5.2. Categorical Segmentation

For categorical segmentation, the class inner core of an animal was set to 50% of the size of the
ellipses (see Figure 8c). The results are shown in the upper part of Table 3. Besides the accuracy of
the categorical segmentation (again measured with the Jaccard index), now also the extracted ellipses
(see Section 4.3) were compared to the manually annotated ellipses using the panoptic quality metric.
F1 score, precision, and recall are listed in detail in Table 8.

Table 3. Detection results for the ellipses extracted with categorical segmentation and the combined
segmentation: Regardless of the selected backbone, detection rates of about 95% (F1 score) are achieved.
For detailed information about precision and recall, see Table 8. It is noticeable that, with the combined
segmentation approach, the accuracy of the binary segmentation remains unaffected, although the
segmentation head and the pixel-embedding head jointly influence the weights in the backbone.
The experiments were carried out on all test images and separately on the daylight (D) and night vision
(N) images only.

Categorical PQ PQ (D) PQ (N) F1 F1 (D) F1 (N) Cat. Acc Cat. Acc (D) Cat. Acc (N)

ResNet34 0.7920 0.8124 0.7738 0.9550 0.9619 0.9487 0.9612 0.9664 0.9565
Incep.-RN-v2 0.7943 0.8165 0.7742 0.9541 0.9614 0.9475 0.9612 0.9664 0.9564

Combined PQ PQ (D) PQ (N) F1 F1 (D) F1 (N) Bin. Acc Bin. Acc (D) Bin. Acc (N)

ResNet34 0.7966 0.8181 0.7774 0.9513 0.9588 0.9446 0.9722 0.9761 0.9687
Incep.-RN-v2 0.7921 0.8179 0.7689 0.9481 0.9566 0.9404 0.9707 0.9752 0.9666

4.5.3. Instance Segmentation

For this experiment, a combined network was trained to predict the association of each pixel
with the individual animals in an eight-dimensional space together with the binary segmentation.
The results are shown in the lower part of Table 3. F1 score, precision, and recall are listed in the lower
part of Table 8. It is important to note that the combined processing of pixel embedding and binary
segmentation in a shared backbone does not affect the accuracy of the binary segmentation. Therefore,
a synergy effect of the two tasks can be assumed.

4.5.4. Orientation Recognition

For orientation recognition, the same combined network as before was used but the binary
segmentation was replaced with body part segmentation (see Figure 8d). The orientation of the ellipses
is reconstructed as described in Section 4.3. To evaluate the accuracy of the orientation recognition,
the orientation of all correctly identified pigs (true positives) was assessed over the complete test set.
The results are summarized in Table 4. Although a categorical segmentation is now applied instead
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of binary segmentation, a comparison with the values in Table 3 shows that the accuracy of ellipse
detection is not affected.

Table 4. Results of orientation recognition: The network can correctly recognize orientation in 94% of
the correctly found animals (true positive).

Backbone Orien. Acc PQ Cat. Acc

ResNet34 0.9428 0.7958 0.9644
Incep.-RN-v2 0.9226 0.7898 0.9601

4.6. Runtime Evaluation

Due to the already efficient implementation of the neural networks and the use of suitable
hardware (e.g., GPUs), the runtime of the inference of the networks can hardly be improved. In the
different experiments, the networks differ only in the last layers, so that the postprocessing steps for
ellipse extraction (see Section 4.3) have decisive influence on the runtime. To show these differences,
the runtime of the individual components was assessed during the evaluation of the test set and
summarized in Table 5. The evaluation was performed on a desktop PC with an Intel i7-6700K CPU @
4.00GHz CPU and a NVIDIA GeForce GTX TITAN X GPU.

Table 5. Runtime evaluation of the proposed experiments for categorical segmentation and combined
instance segmentation: All values are given as mean runtime and standard deviation over the 226
images of the test set.

Categorical Network Inference (ms) Postprocessing (ms)

ResNet34 32.47± 0.31 2.47± 0.22Incep.-RN-v2 88.91± 0.23

Combined Network Inference (ms) Postprocessing (incl. Clustering) (ms) Clustering (ms)

ResNet34 41.98± 1.12 2115.73± 448.26 2068.53± 443.72Incep.-RN-v2 101.39± 2.41

With approx. 35 ms, the categorical version can be evaluated completely in real-time (24 fps) with
the ResNet34 backbone. With the much more complex Inception-ResNet-v2 backbone, still more than 10
frames per second can be processed, which is one of the common recording rates for surveillance video. In
the combined approach, clustering alone is responsible for a large part of the postprocessing runtime, with
over two seconds. This approach is therefore completely unsuitable for online processing of video data.

4.7. Cross-Validation

To further prove the robustness of the proposed method, a cross-validation was performed on the
five cameras contained in the data set. In each run, one of the cameras was declared as the test set and
the images from the four remaining cameras were used to provide the training and validation set.

The values listed in Table 6 confirm the results shown in the evaluation for all runs of the
cross-validation. For all metrics, the standard deviation is very small.

Table 6. Results for a five-fold cross-validation on the data set: In each row, one of the cameras was declared
as the test set, and the images from the four remaining cameras were use for training and validation.

Test Set PQ F1 Precision Recall

Camera 1 0.7849 0.9571 0.9566 0.9575
Camera 2 0.7976 0.9602 0.9616 0.9588
Camera 3 0.7966 0.9513 0.9544 0.9482
Camera 4 0.7653 0.9344 0.9357 0.9331
Camera 5 0.8002 0.9544 0.9540 0.9548

Average 0.7889 0.9515 0.9525 0.9505
STD 0.0129 0.0090 0.0088 0.0094
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4.8. Ablation Studies

The experiments conducted with the two differently complex encoder architectures already
suggest that the influence of the backbone is marginal. Nevertheless, additional experiments were
carried out to confirm this assumption. To increase the speed of the tests, the resolution of the input
images was further reduced to 320 × 256 pixels. The results are summarized in Table 7.

4.8.1. Classification Backbone

As described in Section 3.2, the chosen U-Net architecture can be set up with different classification
backbones. In addition to the classification backbones already introduced, the experiments were also
carried out with the EfficientNet [63] backbone.

4.8.2. Network Architecture

Although the U-Net architecture delivers good results, the framework was tested with different
network architectures (see Section 3.2). All three backbones were additionally evaluated with the FPN
architecture. With this architecture, very similar results were achieved (see Table 7).

Experiments with more complex architectures like DeepLabv3+ did not show any improvements.
Due to the small amount of training data, overfitting quickly occurred.

Table 7. Results of the ablation study with the combined segmentation on the test data set: For this
evaluation, a reduced image resolution of 320× 256 pixels was used. The results highlight the marginal
impact of the different architecture choices (U-Net vs. Feature Pyramid Network (FPN)) as well as the
different backbones.

Combined U-Net PQ F1 Precision Recall Cat. Acc

ResNet34 0.7863 0.9457 0.9559 0.9358 0.9694
Incep.-RN-v2 0.7685 0.9326 0.9501 0.9157 0.9674
EfficientNet-B5 0.7768 0.9404 0.9471 0.9337 0.9692

Combined FPN PQ F1 Precision Recall Cat. Acc

ResNet34 0.7824 0.9442 0.9556 0.9332 0.9709
Incep.-RN-v2 0.7784 0.9414 0.9511 0.9319 0.9700
EfficientNet-B5 0.7861 0.9451 0.9556 0.9347 0.9709

4.8.3. Clustering Hyperparameters

To optimize the density-based clustering, the thresholds δv and δd in the discriminative loss are
available as hyperparameters (see Section 3.5). They control how close the clusters are moved together
or how much distance different clusters have to keep from each other. As shown in Figure 5, the two
parameters must actually only be sensibly adjusted to each other. Scaling the parameters ultimately
only leads to a scaling of the embedding space and does not change the separation of the clusters.This
assumption is supported by a grid search with δv ∈ [0.05, 0.25] and δd ∈ [1.0, 2.5] showing PQ values
around 0.7931 with a standard deviation of σ = 0.0027 (see Figure 9b).

There is also the minimal cluster size, which refers to the number of pixels that at least belong to
one pig. This parameter is therefore primarily dependent on the resolution of the input images and
the size of the pigs and can only be set to a limited extent as a hyperparameter. As this is a minimum
value, it must be chosen according to the size of the smallest animals in the processed data. As shown
in Figure 9a, the value is stable in a large interval. Since HDBSCAN also takes outliers and noise into
account, the minimum cluster size in this interval only affects the membership of individual pixels.
Clusters are incorrectly split or merged only if the deviation from the stable interval is large. For the
data set used here, a value of 100 has been proven to be reasonable, since the animals were observed
over a longer period of time and therefore appear in different ages and sizes (see Figure A1).
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(a) Evaluation of the minimum cluster size,
measured in Panoptic Quality (PQ)

(b) Grid search for loss parameters,
measured in Panoptic Quality (PQ)

Figure 9. (a) Evaluation of the minimum cluster size (on the reduced 320 × 256 px images) showing a
stable interval in the range 80 to 200; (b) Panoptic Quality (PQ) for different thresholds δv and δd which
control the distances in the discriminative loss.

5. Discussion

As shown in Table 3, the quality of the extracted ellipses of the categorical segmentation and
that of the combined approach are comparable on average. For more complex overlaps, in particular,
the categorical segmentation theoretically reaches its limits when the core part of the pig is hardly
visible (see Figure 10b). In such situations, pixel embedding should have shown its strengths but these
situations hardly seem to occur in the actual data set. Therefore, the network was not able to learn
these cases and produces correspondingly bad results (see Figure 11c). More visual results can be
found in the Appendix A.

(a) Original image part with
annotated ellipses

(b) Label image for the categorical
segmentation

(c) Label image for instance
segmentation

Figure 10. Example of the fragility of the categorical segmentation in case of strong overlaps. If the
center of the animals is not visible, the segmentation cannot provide meaningful information about the
hidden animal (b). The instance segmentation, on the other hand, does not have this problem (c).

The cross-validation, the different backbones, and the architectures all deliver approximately the
same results (see Tables 6 and 7). This indicates a certain robustness of the presented method. However,
the small amount of training data is problematic, as the more complex backbones or architectures
cannot be used effectively due to the lack of variance in the images.

The choice of the PQ as evaluation metric makes sense with the methods presented, since the exact
evaluation of the intersection over union provides information about how precisely the pixel accurate
segmentation works. Unfortunately, this novel metric does not allow a direct comparison to other
works. However, in order to allow a rough comparison, classical metrics like precision and recall
are listed in Table 8. The authors of the only paper with a publicly accessible data set [20] give 91%
precision and 67% recall for their test set. With our methods on our data set, we achieve values around
95% for both metrics. However, it should be noted that, although the test data in our data set comes
from a different camera, the images in the test set do not differ fundamentally from the images in the
training set. In [20], the images in the test set seem to deviate more from the training data. A direct
comparison on the data set from [20] was not possible because ellipses cannot be reconstructed easily
from the given key points. To our knowledge, other public data sets of pigs do not exist.
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Table 8. Detailed listing of F1 score, precision, and recall: The experiment was carried out on all test
images and separately on the daylight (D) and night vision (N) images only.

Categorical F1 F1 (D) F1 (N) Prec Prec (D) Prec (N) Recall Recall (D) Recall (N)

ResNet34 0.9550 0.9619 0.9487 0.9586 0.9678 0.9503 0.9514 0.9560 0.9472
Incep.-RN-v2 0.9541 0.9614 0.9475 0.9577 0.9626 0.9532 0.9505 0.9601 0.9418

Combined F1 F1 (D) F1 (N) Prec Prec (D) Prec (N) Recall Recall (D) Recall (N)

ResNet34 0.9513 0.9588 0.9446 0.9544 0.9645 0.9454 0.9482 0.9531 0.9438
Incep.-RN-v2 0.9481 0.9566 0.9404 0.9495 0.9598 0.9402 0.9466 0.9535 0.9405

In general, the correct evaluation is difficult because there is no defined set of rules for annotation.
In [20], for example, the pigs that are in the field of view but not in the observed bay were not annotated.
A network that recognizes these pigs anyway would be punished with false positives here. Furthermore,
there are also borderline cases in our data set where pigs are hardly visible but still marked by the
human annotators. If such pigs are not found due to sanity checks like a minimum pixel number
in clustering or a bad segmentation, false negatives are counted (see Figure 11b). Here, a publicly
accessible data set with fixed rules would be useful in the future.

(a) Example of an error
caused by the blending of
two animals in the top left
group.

(b) Example of animals
that are lying at the edge
of the field of view (left)
and are therefore difficult
to recognize.

(c) Example of complex
overlaps (top left and
bottom right).

Figure 11. Examples of the difficulties that the data set contains: The pictures show from top to bottom
the original image, the prediction of the categorical segmentation, the ellipses extracted from the
categorical segmentation, the prediction of the combined segmentation, and the ellipses extracted from
the combined segmentation.
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6. Conclusions

The methods shown here have achieved good results on the data used and offer a pixel
accurate segmentation of the animals instead of bounding boxes or keypoints (see Figure A1). A key
advantage over the existing methods is that more information can be extracted from the segmentation,
e.g., conclusions can be drawn about the volume and thus the weight of the animals. Weight gain and
other health factors can thus be determined and evaluated.
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Appendix A

(a) (b) (c) (d) (e)
Figure A1. Examples of the results on images from the test set: The pictures show from left to right (a)
the original image; (b) the prediction of the categorical segmentation; (c) the ellipses extracted from
the categorical segmentation; (d) the prediction of the combined segmentation; and (e) the ellipses
extracted from the combined segmentation (including orientation recognition). The filled part of the
ellipses shows the identified orientation of the animals.
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