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Kurzfassung
Die sensorbasierte Erfassung des Nahfeldes im Kontext des hochautomatisierten Fahrens
erfährt einen spürbaren Trend bei der Integration von Radarsensorik. Fortschritte in
der Mikroelektronik erlauben den Einsatz von hochauflösenden Radarsensoren, die durch
effiziente Verfahren sowohl im Winkel als auch in der Entfernung und im Doppler die Mess-
genauigkeit kontinuierlich ansteigen lassen. Dadurch ergeben sich neuartige Möglichkeiten
bei der Bestimmung der geometrischen und kinematischen Beschaffenheit ausgedehnter
Ziele im Fahrzeugumfeld, die zur gezielten Entwicklung von automotiven Sicherheitssyste-
men herangezogen werden können.

Im Rahmen dieser Arbeit werden ungeschützte Verkehrsteilnehmer wie Fußgänger und
Radfahrer mittels eines hochauflösenden Automotive-Radars analysiert. Dabei steht die
Erscheinung des Mikro-Doppler-Effekts, hervorgerufen durch das hohe Maß an kinema-
tischen Freiheitsgraden der Objekte, im Vordergrund der Betrachtung. Die durch den
Mikro-Doppler-Effekt entstehenden charakteristischen Radar-Signaturen erlauben eine
detailliertere Perzeption der Objekte und können in direkten Zusammenhang zu ihren
aktuellen Bewegungszuständen gesetzt werden. Es werden neuartige Methoden vorgestellt,
die die geometrischen und kinematischen Ausdehnungen der Objekte berücksichtigen und
echtzeitfähige Ansätze zur Klassifikation und Verhaltensindikation realisieren.

Wird ein ausgedehntes Ziel (z.B. Radfahrer) von einem Radarsensor detektiert, können aus
dessen Mikro-Doppler-Signatur wesentliche Eigenschaften bezüglich seines Bewegungszu-
standes innerhalb eines Messzyklus erfasst werden. Die Geschwindigkeitsverteilungen
der sich drehenden Räder erlauben eine adaptive Eingrenzung der Tretbewegung, deren
Verhalten essentielle Merkmale im Hinblick auf eine vorausschauende Unfallprädiktion
aufweist. Ferner unterliegen ausgedehnte Radarziele einer Orientierungsabhängigkeit, die
deren geometrischen und kinematischen Profile direkt beeinflusst. Dies kann sich sowohl
negativ auf die Klassifikations-Performance als auch auf die Verwertbarkeit von Parametern
auswirken, die eine Absichtsbekundung des Radarziels konstituieren. Am Beispiel des Rad-
fahrers wird hierzu ein Verfahren vorgestellt, das die orientierungsabhängigen Parameter
in Entfernung und Doppler normalisiert und die gemessenen Mehrdeutigkeiten kompensiert.

Ferner wird in dieser Arbeit eine Methodik vorgestellt, die auf Grundlage des Mikro-
Doppler-Profils eines Fußgängers dessen Beinbewegungen über die Zeit schätzt (Tracking)
und wertvolle Objektinformationen hinsichtlich seines Bewegungsverhaltens offenbart.
Dazu wird ein Bewegungsmodell entwickelt, das die nichtlineare Fortbewegung des Beins
approximiert und dessen hohes Maß an biomechanischer Variabilität abbildet. Durch
die Einbeziehung einer wahrscheinlichkeitsbasierten Datenassoziation werden die Radar-
Detektionen ihren jeweils hervorrufenden Quellen (linkes und rechtes Bein) zugeordnet und
eine Trennung der Gliedmaßen realisiert. Im Gegensatz zu bisherigen Tracking-Verfahren
weist die vorgestellte Methodik eine Steigerung in der Genauigkeit der Objektinformationen
auf und stellt damit einen entscheidenden Vorteil für zukünftige Fahrerassistenzsysteme
dar, um deutlich schneller auf kritische Verkehrssituationen reagieren zu können.



Abstract
Sensor-based detection of the near field in the context of highly automated driving is
experiencing a noticeable trend in the integration of radar sensor technology. Advances in
microelectronics allow the use of high-resolution radar sensors that continuously increase
measurement accuracy through efficient processes in angle as well as distance and Doppler.
This opens up novel possibilities in determining the geometric and kinematic nature of
extended targets in the vehicle environment, which can be used for the specific development
of automotive safety systems.

In this work, vulnerable road users such as pedestrians and cyclists are analyzed using a
high-resolution automotive radar. The focus is on the appearance of the micro-Doppler
effect, caused by the objects’ high kinematic degree of freedom. The characteristic radar
signatures produced by the micro-Doppler effect allow a clearer perception of the objects
and can be directly related to their current state of motion. Novel methods are presented
that consider the geometric and kinematic extents of the objects and realize real-time
approaches to classification and behavioral indication.

When a radar sensor detects an extended target (e.g., bicyclist), its motion state’s funda-
mental properties can be captured from its micro-Doppler signature within a measurement
cycle. The spinning wheels’ velocity distributions allow an adaptive containment of the
pedaling motion, whose behavior exhibits essential characteristics concerning predictive
accident prediction. Furthermore, extended radar targets are subject to orientation depen-
dence, directly affecting their geometric and kinematic profiles. This can negatively affect
both the classification performance and the usability of parameters constituting the radar
target’s intention statement. For this purpose, using the cyclist as an example, a method
is presented that normalizes the orientation-dependent parameters in range and Doppler
and compensates for the measured ambiguities.

Furthermore, this paper presents a methodology that estimates a pedestrian’s leg motion
over time (tracking) based on the pedestrian’s micro-Doppler profile and reveals valuable
object information regarding his motion behavior. To this end, a motion model is developed
that approximates the leg’s nonlinear locomotion and represents its high degree of biome-
chanical variability. By incorporating likelihood-based data association, radar detections
are assigned to their respective evoking sources (left and right leg), and limb separation is
realized. In contrast to previous tracking methods, the presented methodology shows an
increase in the object information’s accuracy. It thus represents a decisive advantage for
future driver assistance systems in order to be able to react significantly faster to critical
traffic situations.
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CHAPTER 1
Introduction

The ongoing progress in driver assistance systems results in a tremendous augmentation of
automotive sensor technology. Forward-looking, contactless interpretation of the vehicle
periphery has undergone a substantial innovation stimulation in the last few years. Sophis-
ticated driver assistance systems such as “adaptive cruise control”, “blind spot detection”,
or “automated emergency braking” significantly increase the driver’s comfort and the
safety of each occupant. These systems are summarized under the term advanced driver
assistance systems (ADAS) [109].
Whereas ADAS were exclusive to luxury category vehicles in the past, there is now a strong
trend towards equipping medium and compact vehicle types. The realization of autonomous
driving and the associated complexity of the surrounding’s gathered information requires
comprehensive sensor technology that contributes to a granular perception of the vehicle
environment. The aim is to merge exteroceptive sensory elements such as ultrasound, lidar,
camera, and radar to generate a detailed environment model for highly automated driving
(HAD) [109].
Besides the vehicle’s possibility of self-localization in complex territories, a detailed envi-
ronment model enables the acquisition of object parameters, e.g., position, velocity, and
type, which can be employed to determine hazardous situations and potential collisions.
There are concepts for incorporating predictive sensor technology into pre-crash detection
to enable early intervention of the vehicle’s guidance and activation of active and passive
safety systems in order to prevent or considerably mitigate the accident for all involved [75].
The overall objective in current safety development is to detect a potential accident with
foresight and gain valuable, often decisive milliseconds for the activation of safety systems.
In developing efficient sensor technology for environment detection and suitable object
recognition methods, specific questions regarding the vehicle’s periphery’s situational un-
derstanding must always be answered [68]. What traffic participants surround the vehicle?
What might be their intentions? What conclusions can the sensors derive from them?
In contrast to clearly structured roads and motorways, urban traffic poses major challenges
for the design of the mentioned sophisticated sensor technologies and reliable object detec-
tion algorithms. The ambitious task of automated driving in urban traffic encompasses
the mastering of substantially more complex road layouts and scenarios. From a driver’s
point of view, urban roads denote high traffic density, large distraction potential, and a
dynamic and lively environment. The variety of urban road users comprising the most
vulnerable participants, such as pedestrians and cyclists (vulnerable road user (VRU)),
and their interaction in unclear confined spaces constitute a host of complexities for HAD
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2 Chapter 1 Introduction

functions.
Considering the fact that more than 50% of all road traffic fatalities occur among VRU,
it is precisely the urban surrounding whose accident prevention formulates the highest
priority concerning future autonomous vehicles [110]. Consequently, sophisticated sensor
applications and object detection systems for VRU enter the spotlight of comprehensive
next-generation ADAS.

1.1 Automotive environmental perception
Current automated vehicles are usually equipped with an advanced sensor suite consisting
of various sensors for elaborate environmental perception tasks. Most of the contactless
sensors used can be divided into two groups according to their resolvable range. For the
vehicle’s immediate vicinity up to approximately 5 m, ultrasonic and capacity sensors
are employed for parking assistance tasks on which basis complete automated parking
systems are already realized [8]. Besides ultra short-range applications, state-of-the-art
exteroceptive sensor technologies for demanding object detection in road scenery consist
of cameras, lidars, and radars. Each sensor technology tackles the extensive process from
raw sensor data acquisition to object-level differently and contributes distinctive strengths
to the overall perception system. The concept of complementary sensor networking, in
which the data of all sensors are fused and applied, is ubiquitous in the focus of the current
development.

Camera: Cameras belong to the most intuitive sensor types and can be divided according
to their spectral configuration into visible spectrum (VS) and infrared (IR) cameras. VS
cameras denote the majority of the currently used vision-based systems and are usually
integrated behind the vehicle’s windshield. For dedicated VRU detection purposes, VS
cameras typically provide a large field of view and high resolution capabilities. VS cameras
may be designed in stereo arrangement with lateral offsets enabling depth perception.
However, VS cameras suffer from insufficient sensitivity in poor lighting conditions due to
their limited dynamic range, i.e., the ability to reproduce both dark and bright areas in
the images [109]. A possible solution is the use of IR cameras that operate in the infrared
spectral range. The traffic scenery is illuminated with infrared light where the thermal
radiation image of pedestrians and animals can be directly received and forwarded to
specific safety functions [109].
In the automotive field, cameras are primarily used for the task of VRU detection and
classification [22], [34], [80]. The tremendous progress in the domain of artificial intelligence
establishes deep learning architectures as an integral part of the vehicle’s perception system.
Elaborate convolutional neural network techniques, such as YOLO or fast R-CNN enable
real-time object classification and outperform traditional computer-vision object detection
procedures [82], [84], [114].

Lidar: Lidar sensors illuminate their environment with optical pulses and measure the
characteristics of the reflected return signals. The distances are computed based on the
light’s travel time. Due to the small wavelength of the collimated laser light in the range



1.1 Automotive environmental perception 3

of 800− 1500 nm, lidar sensors provide an extremely high spatial resolution and can detect
even non-metallic objects, such as pedestrians, in considerable detail. Current solid-state
lidars employ semiconductor materials, eliminating the need for spinning mechanical parts
and hence cumbersome implementations. Though, lidars’ range performance is significantly
influenced by the intensity of the emitted light pulse, whereas eye safety requirements limit
the pulse power [109]. Moreover, if there is an increased attenuation of the atmosphere due
to rain or fog, individual pulses interfere with the water droplets in the air leading to severe
damping of the luminous power. Besides, as with all active sensors, the transmitted power
must travel the distance again in the opposite direction after reflection from a particle
yielding further damping.
Theoretically, the Doppler effect can be utilized to determine the radial relative velocities
of surrounding objects. However, the increased requirements and the costs involved in
measuring the Doppler frequency in the light spectrum prevent its implementation [109].

Radar: Since its first market-ready use as a mere adaptive cruise control system for highway
driving in 1998, radar sensors have undergone continuous development and are utilized
for various ADAS applications [77]. State-of-the-art radars emit frequency-modulated
millimeter waves in the chirp sequence mode, which achieves the best exploitation of the
signal power, measuring time, and bandwidth among all waveform designs [109]. The
steady advances in microelectronic architecture development and semiconductor technology
provide powerful integrated circuits and voltage-controlled oscillators, enabling large signal
bandwidths and hence considerable range resolution. However, in contrast to pronounced
diffuse backscattering at small wavelengths, as in lidar sensors, automotive radars’ millimeter
waves cause enhanced specular scattering when the radiated power impinges upon a target.
As a result, the reflected wave is subject to multipath propagation, leading to temporally
shifted receiving components [31], [61]. Moreover, the received power amplitudes typically
possess significant fluctuations in dynamic scenarios and may vary over time and aspect
angle.
While radar-based vehicle applications were initially limited to the 24 GHz band, the global
market now utilizes the 77 GHz band. In the next few years, a further transition to the
already allocated 79 GHz wideband (77-81 GHz) will be realized, resulting in a drastic
increase in range, velocity, and angular resolution [99], [109]. The trend towards fast chirp
sequence modulations, sophisticated antenna structures, and higher processable data rates
give rise to advanced applications and places high-performance radars in the spotlight
regarding environmental scene understanding for HAD. The utilization of objects’ micro-
motions induced by the micro-Doppler (𝜇D) effect is one of the most promising topics in
the current radar signal processing domain [77]. In pedestrians, the 𝜇D effect is manifested
by the periodic limb motions while walking, which generate unique pedestrian identifying
signatures in the radar return signal [15], [50], [53]. Those additive frequency components in
the low-level data enable VRU specialized detection algorithms that improve the derivation
of potential collision-related object features for integral vehicle safety systems. With
their unique characteristics such as high robustness to weather conditions and accurate
measurements of range, radial relative velocity, and angle in multi-target scenarios, next-
generation radar sensors take a key role in future HAD systems.
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1.2 Contributions of this work
Automated driving requires the interpretation of situations and the consideration of each
conceivable scenario when interacting with highly agile targets such as pedestrians and
cyclists. There are radar systems that can detect and classify pedestrians in some situations.
These systems partially incorporate Doppler and 𝜇D information to distinguish pedestrians
from other surrounding objects. However, despite the compelling potential of the 𝜇D effect,
its use in pedestrian detection systems of current automotive radars is not yet widespread,
as it is still unclear how reliable and effective 𝜇D information are in field usage.
Next-generation radar sensors provide high-resolution capabilities, whereas additional fea-
tures such as identifying extremities’ motions are to be determined and used for improved
classification of VRU.
This work’s contribution is the detailed analysis of high-resolution 𝜇D signatures of pedes-
trians and cyclists in urban scenarios regarding their spectral composition by characteristic
limb motions or wheel and pedal spinning, respectively. The potential of 𝜇D-based
short-range pedestrian and cyclist perception is demonstrated, and novel approaches for
algorithmic use are revealed. The results of this work enable a more detailed object
detection than conventional radar-based signal processing techniques provide and hence
help to increase the safety of pedestrians, cyclists, and occupants in automated functions.
Existing radar systems are mostly limited to the detection and classification of the current
situation. However, besides the mere perception of the vehicle environment, the sensory
detectability of predictive features of VRU would be highly desirable concerning fatal
collision avoidance and the overall goal of creating social acceptance for autonomous
vehicles of the future. Pedestrians and cyclists exhibit high motion maneuverability with
the result that any auxiliary information regarding their behavior intention is welcome to
reduce the uncertainty. This raises the question on how to teach an autonomous vehicle
to predict the intention of pedestrians who communicate solely with their head and the
position of their feet to express intentions in road traffic. The specific detection of a change
in movements, such as a pedestrian who may intend to leave the assumed track or a cyclist
increasing his speed to make it through a green light still, denotes significant relevance for
active safety systems that cover a range of possible actions from low-level driver warnings
to autonomous emergency braking.
This work addresses the interaction between the involved protagonists in urban traffic
and presents 𝜇D-based possibilities for a more precise determination of a VRU’s intended
behavior within a few sensor cycles. Particularly, the objects’ kinematic properties, such as
a human’s spatial locomotion while walking or a cyclist’s pedaling motion, are considered
to develop sophisticated algorithms with low computational effort that allow the implemen-
tation in automotive series sensors and reveal valuable object information that significantly
enhances VRU safety functions of the future. The presented algorithms are analytically
developed and provide transparent structures. In contrast to artificial intelligence methods,
they possess a chronological computation sequence and allow traceable decision making,
which is crucial for irreversible automotive safety functions.
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1.3 Thesis overview
This section provides a structural overview of this thesis. The structure is pictorially
illustrated in Figure 1.1. The gray boxes refer to chapters, which provide a review of
state-of-the-art and cover the context of this thesis’s addressed problems. The black boxes
comprise original contributions.

In Chapter 2, the physical fundamentals of automotive radar are given in order to empower
the reader to understand the contributions in the following chapters. A detailed derivation
of the underlying theories is provided. This includes an overview of the radiation and
reception of electromagnetic waves in automotive radars as well as the phenomenon of the
𝜇D effect, which is derived in detail. Next, the radar measurement model is introduced,
which comprises the theory of frequency-modulated waveforms for modern driver assistance
systems. Besides, a general array signal model for direction-of-arrival estimation is presented.
Subsequently, high-resolution radars’ repercussions regarding what extent an object is
detected are introduced, and corresponding pre-processing techniques for target extraction
are presented.
In Chapter 3, we cover the occurrence of 𝜇D distributions at cyclists in field-relevant
scenarios. The most prominent 𝜇D sources are physically derived and employed in novel
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Chapter 1
Introduction

Chapter 2
Automotive radar,

Chapter 3

Chapter 4

Cyclist 𝜇D
applications
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applications

3.2 Cyclist
feature extraction
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leg tracking

4.2 Pedestrian
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Figure 1.1: Structural overview of the thesis, gray boxes represent review and introductory
parts, black boxes possess original contributions.

signal processing techniques for radar-based feature extraction. A real-time procedure for
adaptive pedaling extraction is demonstrated in Section 3.2, and its relevance regarding
the specific detection of behavior intents is presented using real radar data in controlled
experiments. The orientation’s effect on extended targets is described and discussed.
In Section 3.3, a procedure for the normalization of orientation-dependent ambiguities
at cyclists is introduced, enabling a spectral representation with static parameters for
enhanced radar-based classification and feature extraction tasks, respectively.
Chapter 4 analyzes high-resolution 𝜇D signatures of human walking and presents limb
extraction procedures for enhanced pedestrian tracking and intent estimation. For this
case, in Section 4.4, we present a model-based tracking approach with low computational
complexity that utilizes the 𝜇D signatures of a human’s lower body locomotion to estimate
the foot’s spatial and kinematic propagation. The provided procedure’s performance
is analyzed with corresponding motion capture data in different movement trajectories,
revealing real-time intent estimation features.
Finally, the conclusions of this thesis’s contributions are given in Chapter 5, and an outlook
to possible future work is drawn.





CHAPTER 2
Automotive radar

This chapter presents the fundamental principles of an automotive radar system for
detailed environment perception. After deriving the physical foundations of electromagnetic
wave propagation, a radar measurement model is introduced that comprises the emitting
and processing of radar signals to infer essential information of surrounding targets.
The principle of the frequency-modulated continuous wave (FMCW) design and the
chirp sequence modulation as its efficient implementation is introduced in detail. A
parameterizable FMCW radar system is used throughout this work, providing high-
resolution measurement capability in several dimensions. As a consequence, targets may
appear as extended, i.e., they give rise to a vast number of reflections making the point-
target assumption obsolete. A signal processing routine including power detection and
object clustering for target extraction is provided and exemplary applied to a real radar
measurement.

2.1 Physical fundamentals
This section addresses the physical fundamentals of automotive radars and establishes basic
definitions and nomenclature used throughout this work. The phsyical principles introduced
in the following give a brief overview of the radiation and reception of electromagnetic
energy in the context of automotive radars. The radar cross-section (RCS) as a measure for
a target’s reflectivitiy is introduced and utilized to formulate the radar equation. Moreover,
the phenomenon of the micro-Doppler effect is defined in detail as it lays the fundament
for this work.

2.1.1 Radar cross section
A radar-based vehicle environment detection system is based on the reflection of bundled
electromagnetic waves by other road users and peripheral objects. The echoes reflected by
these radar targets are received and evaluated. The reflectivity of a radar target, described
by its RCS 𝜎, has a significant influence on detectability. The RCS is defined by the
Institute of Electrical and Electronics Engineers (IEEE) as [60]

𝜎 = lim
𝑟→∞

4𝜋𝑟2 |𝐸𝑟|2

|𝐸𝑖|2
, (2.1)

where 𝑟 is the radial range between source and target and 𝐸𝑟 and 𝐸𝑖 are the far-field
scattered and incident electric field intensities, respectively. The unity of 𝜎, m2, illustrates
that the value depends primarily on the size of the illuminated area. Moreover, geometry,

9
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the target’s material, polarization, the wavelength 𝜆, and orientation are further factors
influencing the RCS. Table 2.1 shows examples of orders of magnitude of typical objects in
the vehicle environment in both linear and logarithmic units. The following applies to the
specification in dBsm

𝜎

dBsm = 10 · log10

(︁ 𝜎

1m2

)︁
. (2.2)

Generally, the RCS is subject to an intense phase sensitivity to any radial movements. As a
consequence, phase changes occurring within a frequency cell as a function of radial range
can cause interferences and may lead to severely fluctuating power amplitudes [29], [70],
[112]. This sensitivity can be illustrated with an example. Assuming a target somewhere in
the radar’s field-of-view is displaced by 1 mm in the radial direction to its initial distance,
the resulting phase change at the receiver of the radar is

𝛥𝜙 = 2𝜋
𝜆
· 1 mm · 2 ≈ 𝜋, (2.3)

where 2𝜋/𝜆 defines the wavenumber considering a wavelength of 𝜆 = 3.9 mm (77 GHz).
The factor 2 takes into account the two-way propagation of the traveling wave. In other
words, a small motion in the order of the half-wavelength provokes a phase shift of 2𝜋.

Table 2.1: Order of RCS magnitudes for typical automotive objects [29].

object class 𝜎
m2

𝜎
dBsm

truck 1000 30
car 100 20
motorcycle 10 10
pedestrian 1 0

2.1.2 Radar equation

Automotive radars typically operate in a frequency range of 76− 81 GHz (≡ 0.39− 0.37 cm
wavelength), yielding to wavelengths that are much smaller than the actual distances to
reflecting objects. As a result, the transmitting antenna can be regarded as a point source.
The power density at a distance 𝑟TO from an isotropic radiating point source emitting with
power 𝑃T is [38], [70]

𝑆T = 𝑃T
4𝜋𝑟2

TO
. (2.4)

Automotive radar antennas are designed to transmit stronger in one direction than another
(anisotropic radiator). The directional effect of the transmitting path is achieved by the
antenna gain 𝐺T. Consequently, the power density in the direction of the main lobe
becomes

𝑆T = 𝑃T𝐺T
4𝜋𝑟2

TO
. (2.5)



2.1 Physical fundamentals 11

An object with RCS 𝜎 reflects the power 𝑆T𝜎 isotropically leading to the received power
density 𝑆R at the receiving antenna at distance 𝑟OR

𝑆R = 𝑃T𝐺T𝜎

(4𝜋)2𝑟2
TO𝑟

2
OR

. (2.6)

The consideration of the receiving antenna gain 𝐺R with

𝐺R = 𝑎R,eff
4𝜋
𝜆2 , (2.7)

where 𝑎R,eff is the effective area of the receiving antenna completes the radar equation
expressed as

𝑃R = 𝑃T
𝐺T𝐺R𝜆

2𝜎

(4𝜋)3𝑟2
TO𝑟

2
OR

. (2.8)

Since the distance between the transmitting and receiving antenna is much smaller than
the distance to a point target, 𝑟TO and 𝑟OR appear to be almost equal. The resulting
power of four shows the rapid decrease of the received power with increasing distance.
However, with extended targets, the effective area increases with increasing distance 𝑟 due
to the widening of the radar’s main lobe. In this case, the dependence according to the
law of the fourth power is no longer valid [29].

2.1.3 Micro-Doppler effect

Radar sensors use the Doppler effect to determine the radial relative velocity of objects, as
well as to differentiate between moving and stationary objects. The Doppler effect describes
a change in frequency of an incident wave for a receiver moving relatively to its radiating
source. The algebraic sign of this frequency shift can be positive or negative, depending
on the target’s motion direction. An approaching target compresses the impinging wave
resulting in a smaller wavelength, whereas an object that moves away from the radar
expands the wave and hence increases the wavelength of the reflected signal. To define
objects’ overall motion behavior, we first describe the macroscopic motion, i.e., the global
translational movement behavior. Then, we cover the microscopic motion comprising the
additional micro-motions an object can exhibit while moving.
In case of no relative movement, the reflection reaches the radar with a time delay 𝜏 due
to the speed of light 𝑐 and the distance of the radar target 𝑟 according to

𝜏 = 2𝑟
𝑐
. (2.9)

In case of existing relative movement between radar and target, the occurring time
dependence of 𝜏 caused by the change in distance of the moving target must be considered.
Assuming a target movement with constant velocity, the time of flight delay 𝜏(𝑡) can be
expressed as [27], [109]

𝜏(𝑡) = 2 (𝑟(0) + 𝑣r,rel𝑡)
𝑐+ 𝑣r,rel

= 2𝑟(𝑡)/𝑐
1 + 𝑣r,rel

𝑐

≈ 2𝑟(𝑡)
𝑐

for 𝑣r,rel ≪ 𝑐, (2.10)
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where 𝑟(0) refers to the initial distance of the target at 𝑡 = 0, and 𝑣r,rel is the radial relative
velocity component that can be measured by the radar using the Doppler effect. This
Doppler frequency shift can be derived using (2.10). Let 𝑢T(𝑡) be a transmitted signal
with constant frequency 𝑓0 and initial phase 𝜙0 of the form [109]

𝑢T(𝑡) = 𝐴T cos(2𝜋𝑓0𝑡+ 𝜙0), (2.11)

the received signal including the Doppler frequency shift can be given by

𝑢R(𝑡) = 𝐴R cos(2𝜋𝑓0 (𝑡− 𝜏(𝑡)) + 𝜙0 + 𝜋) (2.12)

= 𝐴R cos
(︂

2𝜋𝑓0

(︂
𝑡−

2 (𝑟(0) + 𝑣r,rel𝑡)
𝑐

)︂
+ 𝜙0 + 𝜋

)︂
(2.13)

= 𝐴R cos

⎛⎜⎜⎝2𝜋𝑓0𝑡

(︂
1− 2𝑣r,rel

𝑐

)︂
−2𝜋𝑓0

2𝑟(0)
𝑐

+ 𝜙0 + 𝜋⏟  ⏞  
𝜙

⎞⎟⎟⎠ (2.14)

= 𝐴R cos
(︂

2𝜋
(︂
𝑓0 − 𝑓0

2𝑣r,rel
𝑐

)︂
𝑡+ 𝜙

)︂
. (2.15)

Here, 𝜙 comprises the overall phase of the received signal, including a phase shift 𝜋 resulting
from an assumed total reflection on a metallic surface. Finally, the Doppler frequency 𝑓D
is the difference between the received and sent frequency

𝑓D =
(︂
𝑓0 − 𝑓0

2𝑣r,rel
𝑐

)︂
− 𝑓0 = −𝑓0

2𝑣r,rel
𝑐

= −2𝑣r,rel
𝜆0

. (2.16)

Since most moving objects in the vicinity of a radar do not represent rigid bodies, their
overall motion can consist of many individual movements. Besides linear movements, many
objects show other dynamics, such as mechanical vibrations or rotations at different target
parts. Every part of an object or any structure that is not rigidly connected to the object
can have a deviating motion state and hence different relative velocities. Those so-called
micro-motions induce side-band frequency modulations on the returned signal resulting
in additional Doppler shifts known as the micro-Doppler (𝜇D) effect. Initially applied in
coherent laser technology, the 𝜇D effect occurs in various moving objects such as an aircraft
propeller or rotors of helicopters and vibrating engines [24], [25], [113]. Especially in the
areas of automotive environment perception, the 𝜇D effect is used in near field applications
such as wheel and pedestrian detection, where the features of the 𝜇D effect allow entirely
new methods for the algorithmic use of radar detections [23], [39], [62], [65].
In the following, the 𝜇D effect is explained using a point scattering model that is assumed
to reflect the incident power perfectly [24], [25]. Figure 2.1 shows a stationary radar
with coordinate system (𝑈, 𝑉,𝑊 ) and origin 𝑄. The point scatterer 𝑃 is located on a
cylindrical rigid body with local coordinate system (𝑥, 𝑦, 𝑧) showing translational and
rotational motions with respect to the radar coordinates. The reference coordinate system
with origin 𝑂 has a distance 𝑟(0) to the radar. Additionally, a reference coordinate
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system (𝑋,𝑌, 𝑍) is added to capture the target’s rotations, and hence is limited to
move only in the target’s translational direction. The target moves with translational
velocity 𝑣r,rel that corresponds to the radial relative velocity, and rotation angular velocity
𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)𝑇 = (𝜔𝑋 , 𝜔𝑌 , 𝜔𝑍)𝑇 relatively to the radar sensor. Due to the motion of
the rigid body, the particle 𝑃 at time 𝑡 = 0 is moving to 𝑃 ′ at time 𝑡 = 1. The movement
comprises two parts: [24], [25]

1. A translation from 𝑃 to 𝑃 ′′ due to velocity 𝑣r,rel, i.e.,
−−→
𝑂𝑂′ = 𝑣r,rel𝑡.

2. A rotation from 𝑃 ′′ to 𝑃 ′ due to 𝜔.

The range vector at time 𝑡 = 1 from the radar to the particle at 𝑃 ′ can be expressed as
−−→
𝑄𝑃 ′ = −−→𝑄𝑂 +

−−→
𝑂𝑂′ +

−−→
𝑂′𝑃 ′ = 𝑟(0) + 𝑣r,rel𝑡+ R𝑡𝑟𝑂𝑃 , (2.17)

with
𝑟(𝑡) = ‖𝑟(0) + 𝑣r,rel𝑡+ R𝑡𝑟𝑂𝑃 ‖, (2.18)

and
𝑟𝑂′𝑃 ′ =

−−→
𝑂′𝑃 ′ = R𝑡

−−−→
𝑂′𝑃 ′′ = R𝑡𝑟𝑂𝑃 , (2.19)

where ‖·‖ denotes Euclidean norm, and 𝑟0 = (𝑋0, 𝑌0, 𝑍0)𝑇 is the location of particle 𝑃
at 𝑡 = 0 with respect to the reference coordinate system, and R𝑡 is a rotation matrix
performing the rotation from 𝑃 ′′ to 𝑃 ′. Suppose the radar sensor transmits a wave with
constant frequency 𝑓0, the returned base-band signal from the point scatterer 𝑃 is

𝑢R(𝑡) = 𝐴R𝑒
2𝜋𝑖𝑓0

2𝑟(𝑡)
𝑐 , (2.20)
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Figure 2.1: Stationary radar sensor and target showing translational and rotational motion
[24].
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with a backscattering amplitude 𝐴R, and phase

𝜙(𝑡) = 2𝜋𝑓0
2𝑟(𝑡)
𝑐

. (2.21)

The time derivative of the phase yields the Doppler frequency shift of the target [24]

𝑓D = 1
2𝜋

d𝜙(𝑡)
d𝑡 = 2𝑓0

𝑐

d
d𝑡𝑟(𝑡), (2.22)

= 2𝑓0
𝑐

1
2𝑟(𝑡)

d
d𝑡

(︁
(𝑟(0) + 𝑣r,rel𝑡+ R𝑡𝑟𝑂𝑃 )𝑇 (𝑟(0) + 𝑣r,rel𝑡+ R𝑡𝑟𝑂𝑃 )

)︁
, (2.23)

≈ 2𝑓0
𝑐

(︂
𝑣r,rel + d

d𝑡 (R𝑡𝑟𝑂𝑃 )
)︂𝑇

𝑛, (2.24)

where
𝑛 = (𝑟(0) + 𝑣r,rel𝑡+ R𝑡𝑟𝑂𝑃 )

(‖𝑟(0) + 𝑣r,rel𝑡+ R𝑡𝑟𝑂𝑃 ‖)
, (2.25)

is the unit vector of
−−→
𝑄𝑃 ′. The target rotates along the unit vector 𝜔′ = 𝜔/‖𝜔‖ with

angular rotation velocity ‖𝜔‖. Assuming an infinitesimal rotational motion of the target
during each observation interval, the rotation matrix R𝑡 can be expressed by (see appendix
A)

R𝑡 = 𝑒�̂�𝑡, (2.26)

with

�̂� =

⎡⎣ 0 −𝜔𝑍 𝜔𝑌
𝜔𝑍 0 −𝜔𝑋
−𝜔𝑌 𝜔𝑋 0

⎤⎦ , (2.27)

being a skew-symmetric matrix that is associated with 𝜔. Plugging (2.26) into (2.24) yields

𝑓D = 2𝑓0
𝑐

(︂
𝑣r,rel + d

d𝑡

(︁
𝑒�̂�𝑡𝑟𝑂𝑃

)︁)︂𝑇
𝑛 (2.28)

= 2𝑓0
𝑐

(︁
𝑣r,rel + �̂�𝑒�̂�𝑡𝑟𝑂𝑃

)︁𝑇
𝑛 (2.29)

= 2𝑓0
𝑐

(𝑣r,rel + �̂�𝑟𝑂′𝑃 ′)𝑇 𝑛 (2.30)

= 2𝑓0
𝑐

(𝑣r,rel + 𝜔 × 𝑟𝑂′𝑃 ′)𝑇 𝑛. (2.31)

Assuming 𝑟(0) >> ‖𝑣r,rel𝑡 + R𝑡𝑟𝑂𝑃 ‖, the unit vector 𝑛 can be approximated by 𝑛 ≈
𝑟(0)/‖𝑟(0)‖. Consequently, the total Doppler shift of the target is

𝑓D = 2𝑓0
𝑐

(𝑣r,rel + 𝜔 × 𝑟𝑂′𝑃 ′) . (2.32)

Note that the first term in (2.32) is the Doppler shift induced by the translational movement,
whereas the second term in (2.32) is the micro-Doppler shift induced by the rotation of the
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target:
𝑓𝜇D = 2𝑓0

𝑐
(𝜔 × 𝑟𝑂′𝑃 ′) . (2.33)

With the continuous improvement of microelectronics and the resulting increase in resolution,
the 𝜇D effect is becoming more important for radar-based applications. Since most
secondary movements in the automotive context inducing a 𝜇D effect are relatively weak
targets in terms of their reflectivity compared to their bulk area (car wheels to the vehicle
body, bicycle wheels to frame and cyclist, limbs to torso, etc.), 𝜇D detections typically show
a low signal-to-noise ratio (SNR). Therefore, they are most pronounced in the immediate
vehicle environment.
The Doppler frequency in automotive radar follows 𝑓D = 510 Hz·𝑣r,rel assuming a carrier
frequency of 𝑓𝑐 = 76.5 GHz and are consequently in the range of several kHz. The 𝜇D
frequencies depend on the object and its degrees of motion. For rotating objects such as
tires, the frequencies range from 0 to twice the Doppler frequency 𝑓D. For pedestrians, the
𝜇D frequencies correspond to the limb velocity components and occupy frequencies from 0
to three times the Doppler frequency 𝑓D.

2.2 Radar measurement model

State-of-the-art automotive radars use the FMCW waveform design [77]. Contrary to
pulse-Doppler radars, FMCW radars provide cost-effective analog radio frequency (RF)
hardware, possess modest digital processing requirements, and achieve the best exploitation
of the signal power, measuring time, and modulation bandwidth [108], [109]. The following
subsections introduce the radar’s physical measurement model used in this work in order
to estimate attributes of surrounding targets, i.e., radial distance, radial relative velocity,
and angular information.

2.2.1 FMCW radar

In linear frequency-modulated radars, the idea is to continuously increase or decrease the
transmit frequency with a defined slope. In doing so, an offset to the frequency of the
reflected signal is created. This offset allows both radial distance and Doppler velocity to
be determined. The transmit frequency for one chirp is of the form [108]

𝑓T(𝑡) = 𝑓𝑐 + 𝑓𝑡 for 𝑡 ∈ [−𝑇/2; 𝑇/2], (2.34)

where 𝑇 is the modulation time, 𝛥𝑓 is the frequency bandwidth, 𝑓 = 𝛥𝑓/𝑇 is the slope,
and 𝑓𝑐 is the carrier frequency of the chirp. The transmitted signal is then

𝑆T(𝑡) = cos (𝜙T(𝑡)) , (2.35)



16 Chapter 2 Automotive radar

where

𝜙T(𝑡) = 2𝜋
� 𝑡

−𝑇/2
𝑓T(𝑡)d𝑡 (2.36)

= 2𝜋
(︂
𝑓𝑐𝑡+ 1

2𝑓𝑡
2
)︂ ⃒⃒⃒⃒𝑡

−𝑇/2
(2.37)

= 2𝜋
(︂
𝑓𝑐𝑡+ 1

2𝑓𝑡
2
)︂
− 𝜙𝑇0, (2.38)

is the overall phase of the integrated transmit frequency where 𝜙𝑇0 denotes an initial
arbitrary phase. The received signal, which can be regarded as a damped and delayed
version of the transmitted signal, reaches the sensor with delay 𝜏 :

𝑆R(𝑡) ∝ 𝛿 · 𝑆T(𝑡− 𝜏), (2.39)

where 𝛿 denotes the attenuation. Signal attenuation is mainly due to path loss 1/(𝑟2
TO𝑟

2
OR)

in (2.8), target parameter like RCS, and weather conditions such as heavy rain. In case of
no relative movements between radar and target, the frequency modulation and the time
delay, 𝜏 , describe a frequency difference, or intermediate frequency (IF), 𝛿𝑓 , between the
transmitted and received signal whose relation reads [27]

𝜏

𝑇
= 𝛿𝑓

𝛥𝑓
. (2.40)

A typical way of determining 𝛿𝑓 is to mix the received signal, 𝑆R(𝑡), with a replica of the
transmitted signal, 𝑆T(𝑡), to the base-band. Since this corresponds mathematically to a
multiplication of two oscillations, the following trigonometric relationship applies to the
phases 𝜙R(𝑡) = 𝜙T(𝑡− 𝜏) and 𝜙T(𝑡) of the received and transmitted signal, respectively
[14]

cos (𝜙R(𝑡)) · cos (𝜙T(𝑡)) = 1
2 (cos(𝜙R(𝑡)− 𝜙T(𝑡)) + cos(𝜙R(𝑡) + 𝜙T(𝑡))) . (2.41)

A subsequent low-pass filter removes the upper sideband of the real-valued1 correlation
mixer output in (2.41), which is almost twice the carrier frequency 2𝑓𝑐. Considering a
static 𝜏 , as defined in (2.9), the down-converted phase can be given by

𝛥𝜙(𝑡) = 2𝜋
(︂
𝛾 + 𝑓

2𝑟
𝑐
𝑡

)︂
, (2.42)

1 For hardware cost and power consumption reasons, current off-the-shelf monolithic microwave integrated
circuits use real receivers only instead of in-phase and quadrature receivers [32].
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where 𝛾 denotes a constant range-dependent phase term. The generated IF of the received
signal is directly proportional to 𝑟 and reads

𝛿𝑓 = 𝑓
2𝑟
𝑐
. (2.43)

Assuming several targets, 𝛿𝑓 consists of several range-dependent frequencies. Range
resolution refers to the ability to resolve two targets in the distance dimension. Two
frequencies can be distinguished if they have a difference of at least 1/𝑇 in the frequency
domain

|𝛿𝑓1 − 𝛿𝑓2| ≥ 1/𝑇. (2.44)

Using (2.40) and the condition of (2.44), range resolution 𝛥𝑟 can be defined as

𝛥𝑟 = 𝑐

2 (𝜏1 − 𝜏2) = 𝑐

2
(𝛿𝑓1 − 𝛿𝑓2)

𝑓
≥ 𝑐

2
1
𝛥𝑓

, (2.45)

and is consequently determined by the bandwidth 𝛥𝑓 of the chirp.
Suppose radar and target are moving relative to each other, a Doppler shift is induced to
the received signal. Hence, both the range-dependent difference frequency, 𝛿𝑓 , and the
Doppler frequency, 𝑓D, contribute additively to the resulting total intermediate frequency
𝑓IF. Using the time dependence of 𝜏 induced by the relative movement given in (2.10), and
dropping all terms containing 1/𝑐2 and neglecting the range-Doppler-coupling, the mixed
phase in (2.42) extends to [108]

𝛥𝜙(𝑡) = 2𝜋
(︂
𝛾 +

(︂
𝑓𝑐

2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

)︂
𝑡

)︂
, (2.46)

with total intermediate frequency

𝑓IF = 𝑓𝑐
2𝑣r,rel
𝑐⏟  ⏞  

𝑓D

+ 𝑓
2𝑟(0)
𝑐⏟  ⏞  
𝛿𝑓

. (2.47)

This leads to an ambiguity of the quantities 𝑟 and 𝑣r,rel to be determined and additional
measures have to be taken to compute the respective values. One way to resolve the
ambiguity is to adjust the modulation pattern to chirps of different slopes. Figure 2.2
illustrates the principle of transmitting a signal with different chirp slopes. The intermediate
frequencies are equal in magnitude with a stationary target as the chirp rises or falls, but
reversed in sign. With relative movement, the intermediate frequencies change both by the
magnitude of the Doppler shift 𝑓D. Thus, the difference of the intermediate frequencies,
𝑓IF,1 and 𝑓IF,2, yields the distance 𝑟, whereas the sum yields the radial relative velocity
𝑣r,rel [29].

2.2.2 Chirp sequence modulation
Despite the possibility to measure 𝑟 and 𝑣r,rel simultaneously, the classical FMCW approach
has weaknesses in multiple target scenarios. Each target creates another pair of intersection
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𝑓

𝑓0

𝑓0 + 𝛥𝑓

𝛿𝑓

𝑓D

𝑡

𝑓IF,1

𝑇

𝑟′

𝑣′r,rel

𝑣r,rel

𝑟

𝑓IF,2

𝑓1 > 0 𝑓2 < 0

𝑓

𝑓0

𝑓0 + 𝛥𝑓

𝑡𝑇

𝑟′

𝑣′r,rel
𝑓IF, 𝑓⏟  ⏞  𝑓 > 0

𝛿𝑓

𝑓D

𝑓IF

𝑓IF,1, 𝑓1⏟  ⏞  

⏞  ⏟  
𝑓IF,2, 𝑓2

⇒ ambiguity
𝑓𝑐

𝑓𝑐

Figure 2.2: Measuring principle of an FMCW radar with transmitting signal ( ), and
receiving signal ( ). The travel time and the frequency modulation of the transmitted signal
lead to a difference frequency, 𝑓IF, whose magnitude is proportional to the distance of the
target in case of a static scenario. If 𝑣r,rel ̸= 0, the Doppler frequency, 𝑓D, contributes to 𝑓IF
resulting in an ambiguous difference frequency. Using a transmitting signal with different
chirp slopes, 𝑓 , yields several difference frequencies and hence resolve the ambiguity in the
𝑟-𝑣r,rel-space [29].

lines in the 𝑟-𝑣r,rel-space, which results in twice the number of intersection points than
actual existent targets. Consequently, each target requires a further transmitted chirp slope
to resolve the ambiguity. Considering a typical automotive scenery containing a variety of
surrounding targets, this may result in a computational demanding linear equation system,
which has to be solved.
Alternatively, a modified form of the FMCW method - the chirp sequence modulation -
can be applied [27]. From (2.47), it gets apparent that the range-dependent frequency
contribution is influenced by the chirp slope, while the Doppler-dependent contribution is
not. The chirp sequence modulation is characterized by the successive use of very short
chirps of high frequency change per measurement cycle. By doing so, the range-dependent
term of one chirp dominates the Doppler contribution making it negligible. Instead, 𝑣r,rel
is obtained by determining the phase shift from chirp to chirp occurring only due to the
velocity. This allows several targets with different Doppler velocities within a range cell to
be resolved without ambiguity.
To emphasize the essential characteristic of the chirp sequence modulation, (2.35) is
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repeated under a redefinition of the independent time variable 𝑡 given by [14], [27]

𝑆T(𝑡𝑚,𝑚𝑠) = cos (𝜙T(𝑡𝑚,𝑚𝑠)) , (2.48)

with
𝜙T(𝑡𝑚,𝑚𝑠) = 2𝜋

(︂
𝑓𝑐𝑡𝑚 + 1

2𝑓𝑡
2
𝑚

)︂
− 𝜙𝑇0,

and

𝑡 = 𝑡𝑚 +𝑚𝑠𝐺, ∀ {𝑡𝑚 ∈ R| −𝑇/2 ≤ 𝑡𝑚 < 𝑇/2} {𝑚𝑠 ∈ Z| −𝑀𝑠/2 ≤ 𝑚𝑠 < 𝑀𝑠/2}, (2.49)

where the integer 𝑚𝑠 numbers the consecutive chirps, and 𝑡𝑚 is the time elapsed since the
𝑚𝑠th of 𝑀𝑠 chirps has started, as illustrated in Figure 2.3. 𝑆T(𝑡𝑚,𝑚𝑠) is repeated every
𝐺 seconds. The received signal includes the time of flight delay 𝜏(𝑡) and can be given by

𝑆R(𝑡𝑚,𝑚𝑠) = 𝛿 · cos (𝜙R(𝑡𝑚,𝑚𝑠)) , (2.50)

with
𝜙R(𝑡𝑚,𝑚𝑠) = 2𝜋

(︂
𝑓𝑐 (𝑡𝑚 − 𝜏(𝑡)) + 1

2𝑓 (𝑡𝑚 − 𝜏(𝑡))2
)︂
− 𝜙𝑇0.

Analogous to (2.10), 𝜏(𝑡) is a function of the initial range 𝑟(0) and the radial velocity 𝑣r,rel
of the target and can be expressed using (2.49) as

𝜏(𝑡) = 2𝑟(0)
𝑐

+ 2𝑣r,rel
𝑐

𝑚𝑠𝐺+ 2𝑣r,rel
𝑐

𝑡𝑚. (2.51)

Note, that 𝜏(𝑡) changes steadily during a chirp because of (2𝑣r,rel/𝑐)𝑡𝑚, and changes
progressively from chirp to chirp because of (2𝑣r,rel/𝑐)𝑚𝑠𝐺. This approach makes it clear
that a Doppler shift occurs both within a chirp and from chirp to chirp. However, the

𝑓0

𝑡

𝜏(𝑡)
𝑓0 + 𝛥𝑓

𝛥𝑓

𝑚𝑠 = 1𝑚𝑠 = 0

𝑇 𝐺 2𝐺

∼
�̇�

0

𝑡𝑚 𝑡𝑚

𝑓

𝑓𝑐

Figure 2.3: Representation of the chirp sequence modulation frequency characteristics of
transmitted ( ) and received ( ) chirps over time [45].
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influence of the Doppler within a chirp is negligible1 due to the high frequency modulation
gradient 𝑓 of the range-dependent frequency component 𝛿𝑓 . Instead, it is exactly the rate
of change of 𝜏(𝑡) from chirp to chirp that is used to determine the radial velocity of a target
[27]. Due to the negligible Doppler shift within a chirp, it can be assumed that (2.40) is
still valid and 𝜏(𝑡) is therefore directly proportional to the difference in frequency 𝛿𝑓 and
hence to the distance 𝑟 at any instant. Following the down-conversion to the base-band in
(2.41), the two-dimensional IF-signal is (see appendix B)

𝑆IF(𝑡𝑚,𝑚𝑠) = 𝛿 · cos (𝛥𝜙(𝑡𝑚,𝑚𝑠)) . (2.52)

with

𝛥𝜙(𝑡𝑚,𝑚𝑠) = 2𝜋
(︂(︂

𝑓𝑐
2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

)︂
𝑡𝑚 + 𝑓𝑐

2𝑣r,rel
𝑐

𝑚𝑠𝐺+ 𝑓𝑐
2𝑟(0)
𝑐

)︂
. (2.53)

Note, that the current frequency of a chirp is

𝑓𝑐
2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

, (2.54)

whereas
𝑓𝑐

2𝑣r,rel
𝑐

𝑚𝑠𝐺, (2.55)

changes the phase from chirp to chirp incrementally only due to the radial relative velocity.
Finally,

𝑓𝑐
2𝑟(0)
𝑐

, (2.56)

is a constant phase term due to the initial distance 𝑟(0). The occurring phase difference
between consecutive chirps can be illustrated for a moving target with constant radial
velocity. Suppose we hold 𝑡𝑚 constant, and hence view 𝑆IF(𝑡𝑚,𝑚𝑠) at the same value of
𝑡𝑚 for all chirps. We get

𝑆IF(𝑡𝑚 = 𝑘,𝑚𝑠) = 𝛿 · cos
(︂
𝑓𝑐

2𝑣r,rel
𝑐

𝑚𝑠𝐺+𝛩

)︂
, (2.57)

where
𝛩 = 𝑓𝑐

2𝑟(0)
𝑐

+
(︂
𝑓𝑐

2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

)︂
𝑘, (2.58)

1 The frequency present during a chirp is
𝑓𝑐

2𝑣r,rel

𝑐⏟  ⏞  
𝑓D

+ 𝑓
2𝑟(0)

𝑐⏟  ⏞  
𝛿𝑓

⇒ 𝑓D/𝛿𝑓 ≈ 10−3 with 𝑣r,rel = 20 m/s, 𝑓𝑐 = 76.5 GHz, 𝑇 = 60 𝜇s, 𝛥𝑓 = 1 GHz, 𝑟 = 50 m.
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does not change from chirp to chirp. Figure 2.4 emphasizes the proportionality between
the change of phase over 𝑀𝑠 consecutive chirps and the radial relative velocity 𝑣r,rel.
Assuming that the distance 𝑟 of the target has not changed during one entire coherent
integration period over all 𝑀𝑠 chirps in such a way that the target migrates1 into another
range-dependent frequency cell, the complex amplitudes of (2.57) (depicted as blue arrows
in Figure 2.4) of 𝑆IF(𝑡𝑚 = 𝑘,𝑚𝑠) remain constant but rotate with frequency 𝑓𝑐(2𝑣r,rel/𝑐) in
the complex plane. Consequently, the measured phase difference between two consecutive
chirps reads

𝛿𝜙 = 2𝜋𝑓D𝐺 = 2𝜋
(︂
𝑓𝑐

2𝑣r,rel
𝑐

)︂
𝐺. (2.59)

In order to separate two velocity contributions, 𝛿𝜙 has to satisfy

𝛿𝜙 >
2𝜋
𝑀𝑠

. (2.60)

Thus, using (2.59) and (2.60), velocity resolution can be expressed as

𝛥𝑣r,rel = 𝑐

2𝑓𝑐𝑀𝑠𝐺
. (2.61)

As can be seen from (2.61), the velocity resolution is inversely proportional to the total
coherent integration time 𝑀𝑠 ·𝐺. Following, the time signal 𝑆IF(𝑡𝑚,𝑚𝑠) is digitized along
𝑡𝑚 yielding discrete values of 𝑡𝑚. The sampled signal can be expressed by

𝑆IF(𝑙𝑠,𝑚𝑠) = 𝛿 · cos (𝛥𝜙(𝑙𝑠,𝑚𝑠)) , (2.62)

with

𝛥𝜙(𝑙𝑠,𝑚𝑠) = 2𝜋
(︂(︂

𝑓𝑐
2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

)︂
𝑙𝑠
𝑓s

+ 𝑓𝑐
2𝑣r,rel
𝑐

𝑚𝑠𝐺+ 𝑓𝑐
2𝑟(0)
𝑐

)︂
, (2.63)

where 𝑓s is the sampling frequency 𝑆IF(𝑡𝑚,𝑚𝑠) is sampled with, 𝑙𝑠 is the sample index of 𝑡𝑚
with 𝑙𝑠 = 0, . . . , 𝐿𝑠−1, and 𝑚𝑠 is the sample index of the 𝑀𝑠 chirps with 𝑚𝑠 = 0, . . . ,𝑀𝑠−1.
According to the Nyquist-Shannon sampling theorem, 1/𝑓s and 𝐺 determine the maximum
resolvable distance and radial velocity of a target. The constraints are [27]

𝑓s > 2
(︂
𝑓𝑐

2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

)︂
, (2.64)

1 This effect is called range migration and describes the target’s change (migration) of range-dependent
frequency cells (range gates) due to its velocity while the measurement takes place. Using the provided
signal processing technique, where the phase behavior within a range gate over the entire measurement
interval is used to determine the target’s velocities, range migration can lead to wider peaks in the
spectrum and hence to an erroneous velocity determinations of targets. The occurrence of range
migration is proportional to the range and velocity resolution (decreasing the length of range gates and
longer observation time), resulting in a continuous parameterization conflict [89].
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Figure 2.4: Scheme representation of the phase progression of a chirp sequence modulation at
a constant 𝑟 in the complex plane. The blue arrows symbolize the amplitudes of the complex
numbers within one frequency cell rotating proportionally to a constant radial velocity of a
target [4].

for the distance, and
1
𝐺
> 2𝑓𝑐

2𝑣r,rel
𝑐

⇒ 𝑣r,rel <
1
𝐺

𝑐

4𝑓𝑐
, (2.65)

for the velocity, respectively.
With regard to automotive scenarios, and the trend towards growing resolution capabilities
for the detailed environment perception, the chirp sequence modulation outperforms the
classical FMCW approach and manifests the most efficient waveform design in current
radar sensors [109].

2.2.3 Direction-of-arrival estimation
Besides radial distance and radial relative velocity, angular information of an incident
wave reflected from a target is highly relevant for the entire perception of the vehicle’s
surroundings. In the previous subsection, we covered the radar measurement model
for range and velocity for only one sensor element. Now, we extend the observation
perspective to several sensor elements. Automotive radar antenna structures consist of
at least one transmitting antenna and several receiving antennas. The objective is to
determine the arriving angle of a spatially propagating signal concerning the radar antenna
array. Direction-of-arrival (DOA) estimation formulates a significant aspect in array signal
processing where the antennas measure a spatial field at various array locations to reveal
quantitative and angular information about the sources. Here, we will focus on the concept
of digital beamforming for DOA estimation. At first, a general model for the output signal
of a receiving sensor array will be introduced. Then, a particular case of the model, the
one-dimensional uniform linear array (ULA) is derived and its performance to beamforming
is explained.
Consider an array of 𝑁𝑠 receiving antennas at positions 𝑝𝑛𝑠 , 𝑛𝑠 = 1, . . . , 𝑁𝑠, and a radiating
point source, located in the far-field of the sensor, at azimuth and elevation angle 𝜑 and 𝜖,
respectively. Suppose that the antenna array receives the signal 𝑠(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡 emitted by the
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source, where 𝑠(𝑡) denotes the complex modulating function. The corresponding geometry
is visualized in Figure 2.5(a). The impinging wavefront is considered to be planar and can
be described with the wavenumber vector [49], [91], [104]

𝑘 = − 2𝜋
𝜆⏟ ⏞ 
𝜅

⎡⎣sin(𝜖) cos(𝜑)
sin(𝜖) sin(𝜑)

cos(𝜖)

⎤⎦ . (2.66)

The received signals at the individual antenna elements with inter-element distance 𝑑
appear as delayed versions of the incoming signal with respect to the first reference element.
The snapshot vector 𝑥𝑐(𝑡) ∈ C𝑁𝑠×1 collects the receiving signals at the array elements
according to

[𝑥𝑐]𝑛𝑠 = 𝑠(𝑡− 𝜏𝑛𝑠)𝑒𝑗2𝜋𝑓𝑐(𝑡−𝜏𝑛𝑠 ), 𝑛𝑠 = 1, . . . , 𝑁𝑠, (2.67)

where
𝜏𝑛𝑠 = 1

2𝜋𝑓𝑐
𝑘𝑇𝑝𝑛𝑠 , (2.68)

denotes the delay at sensor element 𝑛𝑠. Since we follow the narrow-band assumption, i.e.,
the bandwidth of 𝑠(𝑡) is narrow enough that the modulations stay almost constant during
the propagation between the antenna elements, we can approximate 𝑠(𝑡− 𝜏𝑛𝑠) ≈ 𝑠(𝑡) [97].
The received signals are demodulated with a known carrier frequency resulting in the
base-band array output vector

𝑥(𝑡) = 𝑒−2𝜋𝑓𝑐𝑡𝑥𝑐(𝑡) = 𝑠(𝑡)𝑎(𝜑, 𝜖), (2.69)

where 𝑎(𝜑, 𝜖) denotes the complex steering vector possessing the set of phase delays with
elements

[𝑎(𝜑, 𝜖)]𝑛𝑠 = 𝑒−𝑗𝑘𝑇 𝑝𝑛𝑠 , 𝑛𝑠 = 1, . . . , 𝑁𝑠. (2.70)

Suppose that the antenna array receives 𝐾 (𝐾 < 𝑁𝑠) impinging wavefronts from 𝐾 different
point sources with explicit DOA angles 𝜑 = [𝜑1, . . . , 𝜑𝐾 ]𝑇 , and 𝜖 = [𝜖1, . . . , 𝜖𝐾 ]𝑇 with
respect to the radar coordinate system, the general signal model for the sampled base-band
snapshot vector at the 𝑙𝑠th of 𝐿𝑠 available sample instants in noise reads [49]

𝑥(𝑙𝑠) =
𝐾∑︁
𝑘=1

𝑠𝑘(𝑙𝑠)𝑎(𝜑𝑘, 𝜖𝑘) + 𝑒(𝑙𝑠) = 𝐴(𝜑, 𝜖)𝑠(𝑙𝑠) + 𝑒(𝑙𝑠), 𝑙𝑠 = 1, . . . , 𝐿𝑠, (2.71)

where
𝐴(𝜑, 𝜖) = [𝑎(𝜑1, 𝜖1), . . . ,𝑎(𝜑𝐾 , 𝜖𝐾)] ∈ C𝑁𝑠×𝐾 , (2.72)

is the array steering matrix whose columns contain the 𝐾 steering vectors of unknown
DOAs, the vector 𝑠(𝑙𝑠) ∈ C𝐾×1 contains the source waveforms, and 𝑒(𝑙𝑠) ∈ C𝑁𝑠×1 is an
additive vector of white randomly modeled process noise covering external diffuse noise
sources in the hardware.
Note, that (2.70) is valid for arbitrary array geometries. However, most automotive radar
sensors possess a ULA for one-dimensional DOA estimation. A ULA in 𝑦-direction is
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depicted in Figure 2.5(b) with 𝜑 ∈ [−𝜋/2, 𝜋/2) and 𝜖 = 𝜋/2. Using spatial frequency
𝜓𝑦 = 𝜅𝑑 sin(𝜑), the steering vector then becomes [49]

𝑎(𝜑) = 𝑎(𝜓𝑦) = 𝑎𝑦(𝜓𝑦), (2.73)

with
𝑎𝑦(𝜓𝑦) =

[
1, 𝑒𝑗𝜓𝑦 , . . . , 𝑒𝑗(𝑁𝑠−1)𝜓𝑦

]𝑇
∈ C𝑁𝑠×1. (2.74)

The phase shift’s spatial sampling across all antenna elements results in a sinusoidal signal
whose frequency is proportional to 𝜑. Beamforming describes the concept of conventional
non-parametric DOA estimation, where the array output vector is used to calculate the
signal components of the particular directions. A spatial matched filter 𝑎(𝜑)𝐻𝑥(𝑙𝑠), the
beamformer, coherently combines the antenna outputs to the hypothetical angle 𝜑 to create
a spatial power spectrum [49]

𝑃BF(𝜑) = 1
𝐿𝑠𝑁𝑠

𝐿𝑠∑
𝑙𝑠=1
|𝑎(𝜑)𝐻𝑥(𝑙𝑠)|2, (2.75)

whose power distribution reveals the DOA estimates. In the case of ULA, the inner
product in (2.75) is equivalent to a spatial Fourier transform. Thus, a discrete Fourier
transform (DFT) can be used to calculate the frequency of the spatially sampled phase
propagation 𝜓. Among the established DOA estimation techniques, beamforming represents
a computationally simple approach but is limited in its resolution. Considering automotive
frequencies, the antenna aperture 𝑁A, i.e., the overall space occupied by the antenna array
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Figure 2.5: Uniform linear array geometry for azimuthal DOA estimation. Planar wavefront
is impinging on antenna elements at positions 𝑝𝑛𝑠

(𝑛𝑠 = 1, . . . , 𝑁𝑠) with azimuth angle 𝜑 and
elevation angle 𝜖, respectively.
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in the considered direction, determines the angular resolution 𝛥𝜑BF according to

𝛥𝜑BF ≈
𝜆

𝑁A
. (2.76)

As can be seen from (2.76), a larger aperture is desirable. This can be achieved by either
increasing the number of antennas or the element spacing. However, we derive from (2.74)
that 𝑎(𝜑) is uniquely defined, i.e., without spatial aliasing, only if 𝜓 holds:

|𝜓| ≤ 𝜋. (2.77)

As a consequence, (2.77) is tantamount to

𝑑| sin(𝜑)| ≤ 𝜆

2 ⇒ 𝑑 ≤ 𝜆

2 for 𝜑 ∈ [−𝜋/2, 𝜋/2), (2.78)

From (2.78), it gets apparent that the spatial sampling period 𝑑 ought to be smaller than
half the wavelength in order to avoid spatial aliasing. These aliasing effects are expressed
by grating lobes, which appear periodically to the inverse of the element spacing with
equal gain to the main lobe, causing directional ambiguity. On the other side, an increase
in the number of elements comes with higher cost and computational demand, resulting in
a tradeoff regarding element spacing [97].

2.3 Signal processing

In the previous subsections, the radar measurement model based on chirp sequence
modulation and DOA is derived and introduced. The combined overall signal model
for a coherent processing interval (CPI), i.e., the total measurement cycle time to be
sampled, can be expressed as a superposition of 𝐾 discretized 3-D complex sinusoids in
noise [31]

𝑥(𝑙𝑠,𝑚𝑠, 𝑛𝑠) =
𝐾∑︁
𝑘=1

𝑎𝑘𝑒
𝑗(𝜆𝑘𝑙𝑠+𝜇𝑘𝑚𝑠+𝜈𝑘𝑛𝑠) + 𝜉(𝑙𝑠,𝑚𝑠 𝑛𝑠), (2.79)

for 𝑙𝑠 = 0, . . . , 𝐿𝑠 − 1, 𝑚𝑠 = 0, . . . ,𝑀𝑠 − 1, and 𝑛𝑠 = 0, . . . , 𝑁𝑠 − 1, where 𝐿𝑠, 𝑀𝑠, and
𝑁𝑠 indicate the number of samples per chirp, the number of chirps, and the number of
receiving antennas, respectively. 𝑎𝑘 is the complex amplitude of the 𝑘th target and 𝜉
denotes Gaussian distributed circular complex noise. 𝜆𝑘, 𝜇𝑘, and 𝜈𝑘 denote the radian
frequency parameters with

𝜆𝑘 ≃ 2𝜋
(︂
𝑓𝑐

2𝑣r,rel, 𝑘
𝑐

+ 𝑓
2𝑟(0)𝑘
𝑐

)︂
(2.80)

𝜇𝑘 ≃ 2𝜋
(︂
𝑓𝑐

2𝑣r,rel, 𝑘
𝑐

)︂
𝐺 (2.81)

𝜈𝑘 ≃ 𝜅𝑑 sin (𝜑𝑘) , (2.82)
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that correspond to range, radial relative velocity, and azimuth angle, respectively. The
constant phase term in (2.56) is neglected. A practical approach for estimating the spectral
components of the digitized time signals in (2.79) is the successive use of three DFTs1

resulting in the 3-D spectrum [31]

𝑋 (𝜆, 𝜇, 𝜈) =
𝐿𝑠−1∑︁
𝑙𝑠=0

𝑀𝑠−1∑︁
𝑚𝑠=0

𝑁𝑠−1∑︁
𝑛𝑠=0

w𝜆(𝑙𝑠)w𝜇(𝑚𝑠)w𝜈(𝑛𝑠) (2.83)

× 𝑥 (𝑙𝑠,𝑚𝑠, 𝑛𝑠) 𝑒−𝑗(𝜆𝑙𝑠+𝜇𝑚𝑠+𝜈𝑛𝑠) (2.84)

for 𝜆 = (2𝜋/𝐿)𝑙, 𝑙 = 0, . . . , 𝐿 − 1, 𝜇 = (2𝜋/𝑀)𝑚, 𝑚 = 0, . . . ,𝑀 − 1, and 𝜈 = (2𝜋/𝑁)𝑛,
𝑛 = 0, . . . , 𝑁 − 1, where 𝐿, 𝑀 , and 𝑁 denote the number of frequency samples in range
dimension, Doppler dimension, and angular dimension, respectively. w𝜆(𝑙𝑠), w𝜆(𝑙𝑠), and
w𝜆(𝑙𝑠) are normalized window functions2 in range dimension, Doppler dimension, and
azimuth dimension, respectively.
Note that the summations in (2.83) imply that the order of the DFT’s is irrelevant and hence
exchangeable. Typically, the range-DFT along 𝑙𝑠 is performed first to determine the objects’
distance-dependent frequencies in the radar’s field of view. Due to the hermitian symmetry
of the real-valued intermediate frequency signal 𝑆IF(𝑙,𝑚), the DFT is completely specified
by 𝐿/2 − 1 complex coefficients, and hence the redundant half of the range-dependent
spectrum can be removed for further processing. The frequency vector obtained can be
assigned to distances using (2.45) and thus provide range gates. A second DFT applied
orthogonally to the first across all chirps, yields the Doppler frequencies, and completes
the 2-D range-Doppler spectrum. This procedure is done for each of the 𝑁𝑠 receiving
antennas individually. Consequently, the third DFT combines the individual receiving
antennas’ independent measurement spaces by mapping the range-Doppler spectra to
several directions through digital beamforming, as introduced in Subsection 2.2.3. Since
(2.83) is a 3-D frequency spectrum, multiple targets within a range gate can be separated
at different radial velocities and azimuth angles.

2.3.1 Target properties
The continuous development of microelectronics and antenna structures used in automotive
radar sensors influences their resolution capacity. The level of resolution determines to
what extent an object is detected concerning its level of detail. Depending on the mea-
sured geometric and kinematic properties, objects can be assigned to different expansion

1 The DFT is typically calculated using a fast Fourier transform (FFT). The FFT represents a compu-
tationally efficient algorithm that reduces the 𝑁2 complex multiplications and additions of a DFT to
1
2 𝑁 log2 𝑁 by using a radix-2-FFT implementation, given a sequence of length 𝑁 [97].

2 The use of window functions is necessary to reduce the occurrence of side lobes emerging from the
spectral leakage effect due to possible discontinuities at the signals’ ends [46]. However, the minimization
of side lobes is always accompanied by a broadening of the main lobe in the spectrum. This can lead to
a spreading of the power to neighboring range gates and hence can affect the effective range resolution
and the detectability of weaker spectral components [27], [46]. The intensity of the main lobe widening
depends on the selected window function.
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types. In the following, four different extension types are distinguished and defined [36], [63].

• From point target to extended target:
A point target is an object, where the physical dimensions in all considered dimensions
(radial distance, Doppler velocity, azimuth angle, elevation angle) are smaller than the
corresponding resolution cells. Consequently, the object is perceived as a point target,
and the radar cannot determine the actual physical dimension. High-resolution radar
sensors are characterized by the fact that objects are no longer detected as point
targets but appear as extended targets. This is particularly true for near-field radars
where the reduced maximum range and Doppler velocity is compensated with higher
resolution. As described in Subsection 2.2.1, the bandwidth of the transmitted chirp
defines the range resolution in FMCW radars. However, the IF signal and hence the
range estimation accuracy are further influenced by various aspects, such as phase
noise, SNR, and especially non-linearities in the frequency modulation as they lead
to a broadend peak in the base-band signal [6]. Typically, extended targets have
several scattering points, meaning that an object’s physical extent is larger than the
cell resolutions in at least one dimension. Thereby, an object can occupy several
resolution cells in several dimensions, as illustrated in Figure 2.6 using the example
of a pedestrian. However, due to the measurement principle of range, Doppler, and
angle, and due to the range-dependent SNR, the initially detected extension of an
object may change during a movement and may also change from an extended target
to a point target and vice versa [36], [63]. Consequently, whether an object appears
to be extended depends not only on the physical size of the object, but also on the
ratio of the physical size to the sensor resolutions.

• Geometric extent:
If the radar’s resolution in angle or range dimension is larger than the physical extent
of the object at the object position, a geometric extent exists. The geometric extent
is depicted in Figure 2.6(b).

• Kinematic extent:
If an object exhibits several measurable velocities in one range or angle cell, this
object is considered kinematically extended. The kinematic extent can be caused
by the 𝜇D effect, which is defined in Subsection 2.1.3, or by differently measured
radial velocities within an angle cell. The kinematic extent is depicted in Figure 2.6(c).

• Double extent:
If an object shows both a kinematic and a geometric extent, a double extent exists
leading to a detection area in the 𝑟-𝑣r,rel-plane or the 𝜑-𝑣r,rel-plane or 𝜖-𝑣r,rel-plane,
respectively. This means that the object’s reflection is detected in at least two
different velocity cells and angle or distance cells, respectively. The double extent is
depicted in Figure 2.6(d).
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2.3.2 Target extraction
With the signal processing provided in the last section, the discretized time signals have been
transformed into 3-D frequency space. The data structure arrangement can be regarded as
a 3-D data cube of size 𝐿/2− 1×𝑀 ×𝑁 . The data cube comprises the raw data signals in
three dimensions, including random noise and clutter effects. Clutter refers to any object
that may induce undesired reflections, such as environmental influences, vegetation, and
ground terrain and hence interfere with regular radar returns in the IF signal [70]. However,
concerning practical aspects, it is not necessary to generate and store the entire data cube
for a CPI to extract potential targets. High-resolution radar parametrizations quickly
exceed hardware storage capacities so that alternative methods are needed. Instead, a
more efficient calculation sequence is used, where power detection, i.e., the separation of
power amplitudes from the noise level, is carried out in the range-Doppler spectrum. For
further processing, only the power-detected range-Doppler cells are considered for angular
frequency estimation. The objective is to create a detection list per measurement cycle,
in which the properties of detected cells, e.g., range 𝑟, Doppler velocity1 𝑣𝐷, azimuth
angle 𝜑, and target parameters like RCS and SNR, are stored. The detection list lays the
foundation for various further processing steps such as object tracking or fusion methods
with comparable variables of other environment detection sensors.

Power detection
For power detection, the magnitudes of the individually calculated complex range-Doppler
spectra are averaged over all 𝑁𝑠 antennas by means of non-coherent integration according
to [85]

|�̄�(𝜆, 𝜇)|𝑁𝑠 = 1
𝑁𝑠

𝑁𝑠∑︁
𝑛𝑠=1
|𝑋(𝜆, 𝜇)|𝑛𝑠 . (2.85)

By doing so, the SNR is significantly increased, which helps to distinguish between
noise and actual target detections and hence improves the detection performance. The
accumulated matrix provides the foundation for the power detection procedure. Due to
non-homogeneous noise and interference statistics, a global threshold may cause various
wrong target detections and is not suitable for power detection. Accordingly, an adaptive
threshold value must be determined depending on the local environment of a cell of interest.
Constant false alarm rate (CFAR) filters are supposed to keep the false positive rate in
the measurement space constant and still detect all targets. This is especially true for
situations where severe clutter occurs, e.g., clutter due to rain or multipath reflections. The
ordered-statistics constant false alarm rate (OS-CFAR) represents an efficient procedure to
remove noise from detections in dense multi-target and extended target scenarios where
classical cell averaging CFAR filters exhibit negative performance [88].

1 Due to the classification of every range gate’s velocity spectrum into cells of different power amplitudes,
the variable 𝑣r,rel will be substituted with 𝑣𝐷 for detected Doppler cells from now on to underline the
identification.
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(a) Point target (b) Geometric extent

𝑣r,rel

(c) Kinematic extent

𝑣r,rel

(d) Double extent

Figure 2.6: Overview of the different types of extents depending on the resolution [63].

The principle of the one-dimensional OS-CFAR filter in Doppler direction is introduced
in the following. Suppose 𝑋(𝑙,𝑚) ∈ |�̄�(𝜆, 𝜇)|𝑁𝑠 for 𝑚 = 1, . . . ,𝑀 spans the 𝑀 reference
cells of the 𝑙th range gate. Note that 𝑋(𝑙,𝑚) can comprise random noise as well as target
emerging Doppler amplitudes. Then, in OS-CFAR, the cells of 𝑋(𝑙,𝑚) are sorted in
ascending order according to their amplitude yielding a new sequence

𝑋(1) ≤ 𝑋(2) ≤ · · · ≤ 𝑋(𝑘CFAR) ≤ · · · ≤ 𝑋(𝑀). (2.86)

From this ordered statistic, the amplitude of a single cell 𝑋(𝑘CFAR) with rank 𝑘CFAR is
selected and serves as an average estimate of the noise level in the reference window. The
detection threshold is then given by

𝜚 = 𝑋(𝑘CFAR) · 𝛼. (2.87)
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The scaling factor 𝛼 can be derived according to

𝛼 = (𝑃𝑓𝑎)−1/𝑘CFAR − 1, (2.88)

where 𝑃𝑓𝑎 is an assumed false alarm rate distribution [88]. For the optimal determination
of 𝑘CFAR, it must be taken into account that sudden clutter does not lead to a temporarily
increased 𝑃𝑓𝑎. Moreover, low target emerging amplitudes should be detected despite the
presence of strong targets in the reference cells. A typical value for 𝑘CFAR is given in
literature with 0.6𝑀 ≤ 𝑘CFAR ≤ 0.85𝑀 [69]. Finally, each cell whose amplitude is below 𝜚
is dropped, whereas cells with amplitudes above 𝜚 are considered to be detections and are
kept for further processing. This procedure is now repeated for every range gate which
completes the OS-CFAR filtering in the Doppler dimension.
Note that the provided OS-CFAR approach, which is used in this work for power detection,
considers all Doppler cells of a range gate as reference cells to determine the threshold. By
doing so, only one threshold is specified for the data sequence of one range gate, which
reduces the computational effort compared to the sliding window technique in classical
CFAR filtering [88].

Clustering
After OS-CFAR filtering, the detected power amplitudes are available without any specific
target assignment. Hence, procedures are required that associate single detections to an
unknown number of different targets and identify leftover noise amplitudes simultaneously.
Clustering describes the management of spatially extended data by assigning single detec-
tions to different groups based on their similarity. By grouping single detections to a cluster,
an object is created. Especially with a view to the optimization of subsequent tracking
algorithms and object parameter estimation, closed formed objects per measurement cycle
are indispensable.
Conventionally, clustering algorithms can be divided into partitional and hierarchical
approaches. The partitional clustering approach iteratively partitions a database into a
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Figure 2.7: Principle of the DBSCAN clustering algorithm with different radii 𝜀 and constant
density threshold.
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set of clusters. Here, an input variable indicating the number of clusters to be expected
has to be determined a priori. Contrary, hierarchical approaches do not require upfront
domain knowledge. However, a termination condition for the decomposition process must
be derived in advance [33]. For automotive clustering applications, where both the number
of objects and their shape are usually unknown, classical clustering algorithms do not
provide adequate performance. A more intuitive way of grouping data is the density-based
method. A well-known representative is the density-based spatial clustering of applications
with noise (DBSCAN) used in this work. The idea in DBSCAN is to define a cluster
based on the density of a point’s neighborhood. The density criterion can be formulated as
follows: “for each point of a cluster the neighborhood of a given radius has to contain at
least a minimum number of points, i.e., the density in the neighborhood has to exceed some
threshold” [33]. Every point that fulfills this criterion or is at least inside the search area is
considered a core point. All other points denote outliers and are considered to be noise. The
choice of the radius 𝜀 and the density threshold significantly influence the clustering process.
Figure 2.7 exemplary illustrates the DBSCAN clustering procedure for different radii while
keeping the minimum number of data points constant. If 𝜀 is chosen too large, different
targets might be combined into a single cluster, including potential noise leftovers, whereas
a small 𝜀 tends to label target emerging detections as noise erroneously. Concerning targets
that exhibit 𝜇D components, the correct identification can be particularly challenging.

2.3.3 Real radar data example
Figure 2.8 visualizes the entire signal processing, including OS-CFAR filtering and DBSCAN
clustering of real high-resolution radar data, and presents the object’s detection list,
𝐷 = {𝑟, 𝑣𝐷, 𝜑, 𝜎}, carrying information about range, Doppler, azimuth angle and RCS.
Here, a snapshot of a moving bicycle is used exemplary. The bicycle’s front wheel is located
at a radial distance of about 12.5 m, and the bicycle exhibits a geometric extent of about
1.5 m in this particular snapshot. The bicycle’s metallic frame can be identified due to the
highest power reflections in the antenna averaged range-Doppler periodogram (see Figure
2.8(a)), and shows a radial translational velocity, which is slightly below 3 m/s. Moreover,
the 𝜇D amplitudes emerging from the rotating wheels are clearly visible and range from
0 m/s to about 6 m/s for the front and back wheel, respectively. OS-CFAR filtering removes
noise from locally high power amplitudes, i.e., detections (see Figure 2.8(b)). Subsequent
DBSCAN clustering groups the detections to objects and noise, respectively. Figure 2.8(c)
shows the largest remaining object corresponding to the bicycle. Based on the power-
detected processing cells of this object, angle estimation is calculated using a third DFT
over all antennas according to (2.83). Finally, Figure 2.8(d)) illustrates the angular resolved
peak frequencies in three dimensions of the moving bicycle.
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(a) Antenna averaged range-Doppler spectrum.
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(b) Power detection using OS-CFAR filtering.
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(c) Largest object of DBSCAN clustering.
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Figure 2.8: Visualization of the provided signal processing steps including OS-CFAR filtering
and DBSCAN clustering using a real radar data snapshot of a moving bicycle yielding a
range-Doppler-azimuth detection list. The logarithmized backscatter intensities are in dBV.
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2.4 Conclusion
This chapter presents automotive radar’s essential operation, including the underlying
physical effects such as Doppler and 𝜇D effect. Starting with the propagation behavior
of directed electromagnetic waves and the RCS introduction, the frequency modulation
principle for radial distance and radial relative velocity determination is explained. An
optimized procedure, the chirp sequence modulation, which compensates the classic FMCW
procedure’s weaknesses in multi-target scenarios, is derived and considered in detail. DOA
estimation is introduced to determine a reflection’s orientation by evaluating the occurring
phase shift across all antenna elements, which completes the radar measurement model.
Potential targets are extracted from the 3-D measurement space utilizing OS-CFAR
thresholding and DBSCAN clustering procedure showing measured detections for the
distance 𝑟, the Doppler velocity 𝑣𝐷, and the azimuth angle 𝜑, respectively. The concept of
extended targets is introduced, and its spatial and kinematic extensions are defined. In
the end, the entire signal processing chain is applied to real high-resolution radar data for
an approaching bicycle that reveals the 𝜇D phenomenon of the rotating wheels.





CHAPTER 3
Micro-Doppler applications of a cyclist

3.1 Physical fundamentals
This section addresses the physical principles of the 𝜇D appearance of a cyclist and the
associated challenges regarding safety-relevant signal processing techniques. After analyzing
and illustrating the primary sources of 𝜇D phenomena using real radar raw data, the
influence of the relative orientation dependence on the radar signals is considered in detail.

3.1.1 Micro-Doppler signatures of a cyclist
The ability of radar sensors to utilize the 𝜇D effect is crucial for a detailed interpretation
of the vehicle’s surroundings. Besides linear motions, it is predominantly the additive
frequency modulations that give rise to a thoroughly new perspective of radar-based
VRU detection. In cyclists, 𝜇D velocity distributions are particularly pronounced due to
wheel spinning and pedal rotations becoming a permanent feature in sophisticated safety
functions. However, the research field of bicycle detection and 𝜇D utilizing automotive
radar approaches is still relatively new and hence insufficiently investigated.
From a backscattering point of view, it can be shown that the typically metallic frame of a
bicycle generates the most extensive reflections. While this is especially true for longitudinal
directions, the wheels’ reflectivity, particularly emerging from the rims and spokes, increases
significantly for other orientations and contributes to the overall perceptible RCS [18].
77 GHz analyses of a jacked-up bicycle’s 𝜇D signatures highlight the contributing velocity
components, i.e., spokes rotation and leg pedaling captured in different orientations [16]. In
[94], the first range-Doppler spectra of radially and laterally moving cyclists are presented,
displaying the wheels’ characteristic velocity distributions with the rotating pedals in
between. Considering a spectral view, the rotating wheels and pedals possess the most
relevant and distinct 𝜇D components of a cyclist and can be split into three spectral
groups: the front wheel denoted 𝑋(𝜆fw, 𝜇fw), the rear wheel denoted 𝑋(𝜆rw, 𝜇rw), and the
pedaling motion denoted 𝑋(𝜆p, 𝜇p). The converted pedal movement causes the rolling of
a wheel that can be viewed as pure rotation. In doing so, a wheel’s motion exhibits both
a rotational velocity component 𝑣𝜔 = 𝜔w × 𝑟w, which is defined as the cross-product of
the angular velocity, 𝜔w, and the wheel’s radius, 𝑟w, and a constant translational velocity
component, 𝑣ego, as depicted in Figure 3.1(a). If we assume a non-slipping wheel having
contact with the substrate, the total measurable velocity 𝑣total is the vectorial sum of the
linear velocities [44]

𝑣total = 𝑣𝜔 + 𝑣ego. (3.1)

35
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As can be seen from Figure 3.1(a), 𝑣total comprises instantaneous velocities from zero
at the ground up to 2 · 𝑣ego at the wheel’s highest point. Under the assumption of a
static radar and a radially approaching bicycle, the corresponding range-Doppler spectrum
would possess a line-shaped broadening in the Doppler dimension. In different orientations,
the scatterers are distributed along with the wheel and arise from varying distances to
the radar. Thereby, the wheels’ 𝜇D components, 𝑋(𝜆fw, 𝜇fw), and 𝑋(𝜆rw, 𝜇rw), assume
elliptical shapes in the spectrum, as shown in Figure 3.1(b). The pedaling denotes a
cyclist’s third significant 𝜇D component besides the wheels’ velocity distributions, which
occurrs as a periodically oscillating signal between the wheels [16], [94]. The pedaling
motion is considerably affected by the rotating pedals and the knees of the cyclist. While
the pedals produce the largest amplitudes in Doppler and RCS dimensions, the knees occur
as superimposed motions with attenuated amplitudes. The knees’ signals also exhibit a
temporal phase shift depending on the cyclists’ biomechanical properties [44].

3.1.2 Orientation dependence
The chance of employing 𝜇D components of a cyclist for the specific extraction of safety-
relevant parameters, such as the wheels’ velocity distributions or the pedaling characteristic,
highly depends on the relative orientation between radar sensor and object due to the
radar’s radial measuring principle. As a result, signal ambiguity arise that may greatly
problematize both the classification and behavioral indications’ perception [52].
Certainly, lateral motions, which are of significant relevance concerning accident prevention
with VRU, complicate the 𝜇D information’s qualitative usability. Figure 3.2(a) illustrates
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(b) Range-Doppler snapshot of a cyclist.

Figure 3.1: Composition of a bicycle’s 𝜇D components caused by the velocity distribution of
the wheels and pedalling. (a) Instantaneous linear velocities of single locations on a clockwise
turning wheel having contact to the ground with 𝑣𝜔 (black arrows), 𝑣ego (red arrows), and
𝑣total (blue arrows). (b) High-resolution range-Doppler snapshot of a radially towards the
sensor moving bicycle. The color-coding depicts the backscattering intensities. © 2019 IEEE
[51].
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the problem of ambiguous reflections. As can be seen, parts of the front wheel and the left
pedal and parts of the rear wheel and the right pedal possess equal radial distance and
are subject to an orientation-related overlap. Thus, various reflections are allocated to the
same range gate yielding overlapping Doppler components. Besides, the radar perceives
generally lower Doppler amplitudes due to the orientation angle compared to a fully radial
motion. Consequently, both the geometric and the kinematic extent of an object may
decrease during the approaching process. Figure 3.2(b) presents the simulated results of a
laterally approaching cyclist highlighting the orientation dependence. Here, a bicycle with
a length of 2 m moves in a lateral direction to the sensor. The starting position of the front
wheel possesses the coordinates 𝑦 = 20 m and 𝑥 = 10 m according to the radar’s coordinate
system given in Figure 3.2(a). The blue curves in the diagram describe the radial distances
of the foremost (solid curve) and the rearmost (dashed curve) location of the bicycle to the
sensor while moving a route of 20 m. The red curve depicts the discrepancy in magnitude
between the blue curves. After starting with an initial discrepancy of approximately 1.8 m,
it decreases steadily under a nonlinear behavior until reaching a value of around 0.2 m at
the end of the traveled route. Furthermore, the same reference points’ radial velocities
are displayed based on a constant translational velocity of 4 m/s. The severe reduction of
their magnitudes can be distinctly caught. It is apparent that the orientation dependence
influences the shape of the object in both dimensions and, particularly in lateral movements,
leads to a sharp deterioration that may affect subsequent signal processing steps.
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(b) Geometric and kinematic behavior.

Figure 3.2: Illustration of the realtive orientation’s influence on radar signals using a laterally
moving bicycle. (a) Occurring range ambiguities at different locations on the bicycle. (b)
Simulated results of the laterally moving cylist’s orientation dependency. ( ) and ( )
display the radial distances of the foremost and rearmost locations of a bicycle. ( ) is the
difference of the blue lines. ( ) and ( ) represent the radial velocities of the foremost and
rearmost locations of the bicycle, respectively. © 2019 IEEE [52].
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3.2 Cyclist feature extraction
The preceding subsections introduce the prominent 𝜇D distributions of a moving cyclist
caused by the wheel and pedal rotations and analyze their relation to orientation. It is
notably the pedaling movement that may be of exceptional significance for establishing
cyclists’ radar-based behavior prediction. It is legitimate to assume that changes of the
pedaling frequency reveal imminent changes of the cyclist’s state and can be detected
faster than ordinary acceleration or deceleration processes, which are only perceivable over
a sequence of sensor cycles.
Since the shaft that carries the pedals is near the rear wheel, the 𝜇D components, 𝑋(𝜆p, 𝜇p),
and 𝑋(𝜆rw, 𝜇rw), may interfere. Additionally, the span between the wheels’ ellipsoidal
velocity distributions, 𝑋(𝜆rw, 𝜇rw), and 𝑋(𝜆fw, 𝜇fw), relies on the bicycle and the radar
orientation and can change while driving. Accordingly, an extraction procedure based on
a designated part of 𝑋(𝜆, 𝜇), where the pedaling is presumed to arise, is not expedient.
What would likely happen is that either not all detections belonging to the pedal motion
are extracted, or accessory detections that do not belong to the pedal motion, such as
𝑋(𝜆fw, 𝜇fw), and 𝑋(𝜆rw, 𝜇rw), would be extracted.
For those reasons, we are striving for an adaptive pedaling extraction procedure capable of
separating the wheels’ 𝜇D components in each cycle to reveal the pedaling contribution.
The use of a robust ellipse approximation appears to be a practical method for localizing
the wheels and hence for the pedaling extraction objective and is demonstrated in the
following.

3.2.1 Adaptive pedaling extraction
The following application’s purpose is to identify and localize the wheels’ 𝜇D distributions
using an adaptive ellipse fitting approach in order to reveal and extract the 𝜇D components
that comprise the motion of the pedals. The wheels’ extended velocity distributions that
may partially interfere with the pedaling components require a stringent and adaptive
constraint. The following approach, which is published in [51], aims to utilize a nonlinear
least-squares technique that fits ellipses to the wheels’ 𝜇D extensions in range and Doppler
to achieve a segmentation from the pedaling area. A robust approximation is achieved by
performing the least-squares minimization iteratively within a random sample consensus
(RANSAC) structure.

Ellipticity constraints
A conic section in a plane can be represented as the locus of coordinates z = (𝑧1, 𝑧2)𝑇
satisfying [79], [100], [101]

𝑎1𝑧
2
1 + 𝑎2𝑧1𝑧2 + 𝑎3𝑧

2
2 + 𝑎4𝑧1 + 𝑎5𝑧2 + 𝑎6 = 0, (3.2)

with real coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 such that 𝑎2
1 + 𝑎2

2 + 𝑎2
3 > 0. Using a vector of pa-

rameters a = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6)𝑇 and a vector of variables 𝑢(z) = (𝑧2
1 , 𝑧1𝑧2, 𝑧

2
2 , 𝑧1, 𝑧2, 1)𝑇 ,

the conic can be alternatively expressed as

a𝑇𝑢(z) = 0. (3.3)
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The discriminant 𝛥 = 𝑎2
2 − 4𝑎1𝑎3 categorizes any non-degenerate conic section into classes

of parabolas, hyperbolas or ellipses. The constraint 𝛥 < 0 implies that the conic possesses
ellipse-specifity leading to [100]

a𝑇𝐹 a > 0, (3.4)

where

𝐹 =
(︂

1 0
0 0

)︂
⊗

⎛⎝0 0 2
0 −1 0
2 0 0

⎞⎠ , (3.5)

where ⊗ denotes the Konecker product.

Ellipse fitting algorithm
Least-squares problems represent the process of fitting an over-determined parameterized
model, with parameters a, to a set of data pairs, z𝑗 for 𝑗 = 1, . . . ,𝑚, where 𝑚 denotes the
number of available observations, by minimizing the squared residual error between the
function, 𝑓(t𝑗 |a), and the observations according to [98]

𝜒(a) =
∑︁
𝑗

𝑤𝑗 · [z𝑗 − 𝑓(t𝑗 |a)]2 ⇒ min, (3.6)

where the vector t𝑗 comprises the condition for observation 𝑗 and can be considered as the
set of independent variables, and 𝑤𝑗 denotes a weighting variable expressing the reliability
of the assigned observation.
The process of fitting an ellipse to a set of observations demands an expressive cost function
that describes the degree to which any distinct a fails to fulfill the observed system according
to (3.3). The proposed cost function uses the approximated maximum likelihood (AML)
distance originally introduced by Sampson in [92] and further developed by Szpak et al. in
[100], [101], which combines the Gaussian model of errors with the principle of maximum
likelihood, and takes the form

𝜒AML(a) =
𝑚∑︁
𝑗=1

a𝑇𝑢(z𝑗)𝑢(z𝑗)𝑇a
a𝑇∇𝑢(z𝑗)𝛬z𝑗∇𝑢(z𝑗)𝑇a , (3.7)

where ∇𝑢(z𝑗) denotes the partial derivatives of 𝑢(z𝑗), and 𝛬z𝑗 is a symmetric covariance
matrix expressing the data uncertainty [26]. If the data points are assumed to be corrupted
by Gaussian distributed noise, the function 𝜒AML rests upon the sum of orthogonal distances
between the ellipse and the data points.
Nonlinear least-squares problems, such as the straightforward task of fitting an ellipse to
noisy data, require iterative solutions to minimize 𝜒AML. In order to be able to guarantee
that the minimization takes place in compliance with the ellipse constraint, the search
space is limited to the subset 𝐸 = {a|𝛥 < 0} comprising all feasible non-degenerate conic
sections. However, the presence of a minimizer of the function 𝜒AML in 𝐸 can not be
guaranteed due to possible ill-conditioning. As a solution, the optimization algorithm
is regularized. By adaptively restricting the search domain in 𝐸, a stopping criterion is
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employed, preventing the algorithm from generating estimates too close to the parabolic
class [100].
The nonlinear least-squares minimization of 𝜒AML(a) is carried out using the Levenberg-
Marquardt (LM) algorithm. The LM algorithm combines the well known Gauss-Newton
method with the gradient-descent approach in order to enhance the convergence performance
and overall robustness to initial ill-parametrization [98]. Based on a direct linear ellipse
estimate as a seed, the LM method iteratively walks towards the global minimum of
𝜒AML(a) according to [98]

𝜒AML,𝑘+1(a +𝛥a) = 𝜒AML,𝑘(a) +𝛥a𝑘, (3.8)

with
𝛥a𝑘 =

(︁
J𝑇𝑘 W𝑘J𝑘 + 𝜆LM

𝑘 I
)︁−1

J𝑇𝑘 W𝑘r𝑘, (3.9)

where J𝑘 denotes the Jacobian matrix at the 𝑘th iteration containing the partial derivatives
of the ellipse function with respect to the observation condition t. W𝑘 is a diagonal
matrix containing the weights of each observation, r𝑘 contains the residuals between the
function and the observations, and I is the identity matrix. The damping factor 𝜆LM

𝑘

influences the minimization behavior towards the gradient-descent method or towards
the Gauss-Newton method, respectively. For large 𝜆LM

𝑘 , 𝜆LM
𝑘 · I becomes dominant which

results in gradient-decent steps, whereas small values of 𝜆LM
𝑘 attaches weight towards the

Gauss-Newton method [98].
The proposed ellipse fitting approach incorporates the RANSAC algorithm to realize robust
parameter estimation. The RANSAC algorithm was initially introduced by Fischler and
Bolles in 1981 for solving the location determination problem by estimating a model’s
parameters based on a set of data comprising a substantial amount of outliers [1]. In the
RANSAC’s context, an outlier denotes a contaminant observation, i.e., a data point that
significantly differs from the majority of the available data set and hence appears to be
generated by a different mechanism [98]. The RANSAC algorithm aims to implicitly detect
those outliers by essentially following two iteratively repeated steps [98]:

• Hypothesize. At first, minimal sample sets (MSSs) are randomly chosen from all
available data points to compute the model’s parameters using only the elements of
the MSS. This is done with the expectation that this MSS is free of outliers. The
number of elements is chosen to be the smallest sufficient to calculate the model
parameters which maximizes the probability that a certain MSS does not contain
outliers (as opposed to the least-squares approach, where all available data are
employed to estimate the parameters).

• Test. Next, RANSAC determines the subset of elements of the entire data set whose
distance to the model is smaller than a certain threshold and hence supports the
model. This subset of elements is called consensus set (CS).

The CS that possesses the maximum cardinality is subsequently used to estimate the final
ellipse. Figure 3.3(a) pictorially illustrates the RANSAC parameter estimation based on
two different CS iterations. For the process of fitting ellipses to the 𝜇D distributions of the
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𝑟

𝑣𝐷

Data point
CS 1 model
CS 2 model
CS 1, CS 2
MSS 1, MSS 2,

,

(a) RANSAC parameter estimation based on
two different CS iterations.

−6 −4 −2 0

5

5.5

6

6.5

�̂�(𝜆𝑝, 𝜇𝑝)

𝑣𝐷 [m/s]
𝑟

[m
]

(b) Results of the ellipse fitting algorithm using
real radar data. Black marks denote the CS. ©
2019 IEEE [51]

Figure 3.3: Exemplary illustration of the RANSAC ellipse fitting principle (a), and the
results of the ellipse fitting algorithm applied to the front and rear wheels’ 𝜇D distributions
using a real radar data snapshot of a moving cyclist (b). The color-coding corresponds to the
backscattering intensities. The generated ellipses reveal the spectral components, X̂(𝜆𝑝, 𝜇𝑝),
emerging from the pedaling.

front and rear wheel, the range-Doppler spectrum is vertically segmented in two parts based
on the largest backscattering intensities along the translational Doppler components. An
appropriate search range for the ellipse fitting procedure for both segments is determined
considering the wheels’ physical principles described in Subsection 3.1.1. The semi-major
axis of the initial ellipse is |𝑣ego|, whereas 𝑟w/𝛥𝑟 denotes the length of the semi-minor
axis with 𝑟w referring to the radius of a standard 28 inch wheel. The center point of
the ellipsoidal search area is then the mean value in range direction, and the Doppler
value of the averaged largest backscattering intensities on which the spectrum was initially
segmented.
Let Z = {z1, . . . , z𝑚} be the set of 𝑚 remaining radar detections, and a0({z1, . . . , zℎ})
denotes the MSS with cardinality ℎ on which the initial ellipse estimation is based, the
LM algorithm minimizes the function 𝜒AML(a0) according to (3.8) yielding the optimal
geometric fit �̂�AML(â). The residual error between the detection z𝑗 ∈ Z and �̂�AML(â) is
given by [96]

𝑒�̂�AML(z𝑗 , â) = min
z′

𝑗∈�̂�AML(â)
dist(z𝑗 , z′

𝑗), (3.10)
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where dist(z𝑗 , z′
𝑗) is the Euclidean distance between z𝑗 and its orthogonal projection of z′

𝑗

onto the function �̂�AML(â). The CS is consequently determined using the constraint

𝑆(â) = {z𝑗 ∈ Z : 𝑒�̂�AML(z𝑗 , â) ≤ 𝛿}, (3.11)

where 𝛿 is a constant threshold. The RANSAC process is repeated for a suitable number
of different MSS whereby in each iteration the CS is updated if

|𝑆(â𝑘)| > max
𝑙∈1,..., 𝑘−1

|𝑆(â𝑙)|. (3.12)

Finally, the model is fitted to the largest CS which completes the RANSAC approach for
the current radar frame. Figure 3.3(b) depicts the ellipse fitting results for both wheels
in the range-Doppler spectrum revealing the spectral area that most likely comprises the
estimated pedaling motion �̂�(𝜆𝑝, 𝜇𝑝). Consequently, every detection laying in between the
ellipses is considered to be part of �̂�(𝜆𝑝, 𝜇𝑝).

3.2.2 Experimental results

Figure 3.4(a) illustrates the extracted spectral regions, �̂�(max(𝜆𝑝), 𝜇𝑝), assigned to a
cyclist’s pedaling motion moving parallelly to the static radar sensor with a lateral dis-
placement of 2 m. The entire signal processing provided in Subsection 3.2.1 is applied for
successive radar frames. The extracted signal is primarily constituted of the parts facing
the sensor, i.e., the cyclist’s right leg, due to the given orientation. Thereby, the signal
covers both the translational velocity at around -3.5 m/s, and the superimposed pedaling
motion. Consequently, the signal reveals two essential sinusoidal contributions with diverse
amplitudes and phases. The associated pedaling rotation possesses high amplitudes in
velocity and backscattering due to the more reflective material. At the same time, the
second contribution originates most likely from the cyclist’s knee showing generally weaker
backscattering and a phase shift due to biomechanical circumstances [44].
As can be seen, the extracted signal includes single outliers that do not belong to the
pedaling motion. In some situations the occurrence of the wheels’ 𝜇D is not sufficiently
pronounced due to occlusion. As a result, the ellipse fit does not reproduce an optimal
approximation of the respective velocity distribution, but rather erroneously assigns other
scatterers as pedaling contributions.
Figure 3.4(b) shows the analogously obtained spectral excerpt of a non-pedaling cyclist for
the identical motion trajectory. The spectrum reveals no perceptible pedaling components.
Instead, it is indicated solely by the bicycle’s translational velocity and occasional scatterers.
To emphasize the spectral discrepancy between existing pedaling and non-pedaling motions,
the standard deviations specified by the respective normalized weighted velocity variance

𝜎2 =
(︀ 𝑛∑︁
𝑖=1

𝛾𝑖
)︀−1

𝑛∑︁
𝑖=1

𝛾𝑖 · (𝜇𝑝𝑖 − 𝜇trans)2, (3.13)

are evaluated and depicted in Figure 3.4(c) and Figure 3.4(d) for the corresponding mea-
surement, respectively. The variance is computed in each frame based on a weighted
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squared difference between the 𝜇D value 𝜇𝑝𝑖 and the 𝜇D value of the detection possessing
the largest backscattering amplitude 𝜇trans for each 𝑖 = 1, . . . ,𝑚, where 𝑚 is the number of
detections in �̂�(𝜆𝑝, 𝜇𝑝). The variances are weighted according to the detections’ backscat-
tering intensities. Here, 𝛾 refers to the power amplitudes of �̂�(𝜆𝑝, 𝜇𝑝) and incorporates
them through multiplication. The methodology was also carried out for measurements
with various distances between the sensor and the cyclist. Apparent variance distinctions
between pedaling and non-pedaling can be conducted up to a range of 4 meters. The
computation of the variances is of little computational effort and is updated for each
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Figure 3.4: Extracted 𝜇D pedaling spectra over time and range with corresponding velocity
variances for a moving cyclist. The color-coding in (a) and (b) corresponds to the backscattering
intensities. © 2019 IEEE [51]
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cycle. Therefore, its temporal transition can be used explicitly as a decision parameter
for safety functions affecting cyclists’ behavioral indication. The results demonstrate the
ellipse fitting procedure’s functionality and the clear distinctness between a pedaling and
non-pedaling cyclist.

3.3 Normalization of the orientation dependence
Radar-based classification algorithms for VRU, such as deep learning approaches, make
effective use of the distinctive 𝜇D distributions during the training step. Therefore, signal
corruption due to orientation dependence may affect accurate classifications and data
associations. Especially in the case of intersecting VRU in urban areas, the orientation
dependence drastically problematizes reliable detection and feature extraction procedures
due to ambiguities in range and Doppler, as exemplarily shown for a bicycle in Figure
3.2(a). As a result, the object’s overall extent reduces during the process of approaching,
as illustrated in Figure 3.2(b).
In the following, we present a procedure that normalizes a cyclist’s geometric and kinematic
extension using a back-projection technique that allows a static representation of the
range-Doppler parameters, which increases correct classifications and the extractability of
object features. The proposed method was published in [52].

3.3.1 Geometric correction
The geometric correction strives to normalize the orientation-dependent range ambiguities.
The idea is to create an axis that runs along with the bicycle’s longitudinal orientation
onto which the measured detections are projected. The projection is performed on the
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angular resolved Cartesian detections that reveal the overall orientation of the object. By
projecting every Cartesian detection onto the bicycle’s orientation axis, a superficial range
vector is created that depicts the normalized radial distances of each detection.
Let 𝐷 = {z1, . . . , z𝑚} be the detection list of the current frame that forms the input dataset
of the following procedure. In order to achieve satisfying results, the projection axis needs
to comply precisely with the bicycle’s actual orientation. Hence, solely detections possessing
large backscattering intensities are considered for the axis’ creation. It is legitimate to
presume that these detections emanate from the actual bicycle and are no false positives.
Let �̃� ∈ 𝐷 be the �̃� remaining detections after applying a hard threshold. The projection
axis is created using least-squares minimization as already defined in (3.6) and given again
for convenience

𝜒(𝛼, 𝛽) =
�̃�∑︁
𝑗=1

𝑤𝑗 ·
[︀
z𝑥𝑗 − 𝑓(z𝑦𝑗 |𝛼, 𝛽)

]︀2 ⇒ min
𝛼, 𝛽

, (3.14)

with 𝑥-intercept 𝛼 and axis slope 𝛽. Figure 3.5(a) shows the bicycle’s angular resolved
Cartesian detections, �̃�, of a single radar snapshot and the fitted line, 𝜒(𝛼, 𝛽), that approxi-
mates the bicycle’s longitudinal axis. The depicted color-coding of the detections represents
their measured Doppler amplitudes 𝑣𝐷 in m/s highlighting the occurring kinematic spread
due to the orientation.
Before performing the projection, the axis 𝜒(𝛼, 𝛽) is divided into equidistant length units
and thus can be interpreted as an artificially generated range vector. Those range gates’
length can be arbitrarily chosen, allowing a substantially enhanced representation of the
projected spectrum. Note that all detections in 𝐷 are projected on the generated axis.
Consequently, 𝑍 = {z′

1, . . . , z′
𝑚} comprises all projected detections, where z′ denotes the

orthogonal projections of z onto the axis 𝜒(𝛼, 𝛽). Next, each distance of the projected
detections to the zero-point of 𝜒(𝛼, 𝛽) is computed and allocated to the connected range
gate, as pictorially shown in Figure 3.5(b).

3.3.2 Kinematic correction
The kinematic correction assumes a linearly moving bicycle that is free of any yawing
dynamics. Given that, each of the bicycle’s reflection points possesses the same transla-
tional velocity vector. The moving bicycle’s actual orientation, which corresponds to the
translational velocity vector’s orientation, can be approximated by the projection axis’s
orientation 𝛷. Consequently, each point’s actual velocity can be estimated by [64]

𝑣𝑗 =
𝑣𝐷𝑗

cos(𝛷− 𝜑𝑗)
, (3.15)

where 𝑣𝐷𝑗 for 𝑗 = 1, . . . ,𝑚 is the measured Doppler velocity and 𝜑𝑗 denotes the measured
azimuth angle of the 𝑗th detection, respectively.

3.3.3 Experimental results
Figure 3.6 illustrates the normalization procedure results by comparing the measured
range-Doppler spectrum of a moving bicycle with the normalized correspondent. Here, the



46 Chapter 3 Micro-Doppler applications of a cyclist

normalized Doppler velocity is plotted against the projection axis 𝜒(𝛼, 𝛽) in m. Note that
the zero-point of 𝜒(𝛼, 𝛽) is relative and thus does not possess any significance. Though,
regarding the purpose of comparability, both excerpts cover a distance of 4 m. The enhanced
geometric extent in Figure 3.6(b) reveals the normalization of the original spectrum’s radial
range components due to the projection procedure. While the original object exhibits a
geometric extent of around 1.35 m, the projected extent spans a length of around 2.05 m
which corresponds to an increase of approximately 34 %. Consequently, the current extent
approximately equals the actual bicycle’s length.
The kinematic correction yields the normalized Doppler amplitudes and hence the actual
velocity distributions of the bicycle. It becomes apparent that both the wheels’ 𝜇D am-
plitudes, as well as the translational velocity amplitudes, are now significantly increased.
Furthermore, the bicycle’s translational velocity is now consistent along the entire spatial
extent having an amplitude of approximately 3.7 m/s.
Besides, the presented approach enables enhanced detection abilities of 𝜇D features such as
pedaling. By allocating the Cartesian detections to the bicycle’s longitudinal axis, motion
components, such as the pedaling, can be depicted with improved accuracy. Contrary to
the conventionally generated spectrum, the pedaling emanating reflections are distinctly
perceptible in the normalized image. This may be crucial for behavior intention recognition
of cyclists that may be manifesting on pedaling changes. Moreover, the proposed method
promotes standardization of range-Doppler spectra, which are of great significance in
the field of supervised and unsupervised machine learning approaches. By normalizing
orientation-dependent radar data, it can be assumed that classification algorithms’ identifi-
cation rates may rise considerably. Especially in scenarios with broad lateral orientations,
the normalization approach provides an essential advancement for correct detection and
classification. Besides the benefits of the proposed technique, it is striking to note that the
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Figure 3.6: Original and normalized range-Doppler spectra of a cyclist. The logarithmized
backscatter intensities are in dBV. © 2019 IEEE [52]
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performance relies practically on the projection axis’s orientation. Since the projection axis
serves as an approximation of the bicycle’s longitudinal axis, deviations from the actual
bicycle’s longitudinal axis result in distortions due to the orthogonal data projection.

3.4 Conclusion
The presented work introduced high-resolution radar signatures of cyclists and pointed
out challenges of extended targets, such as the orientation dependence between the cyclist
and the radar sensor. After describing the fundamental physical principles that lead to
extended 𝜇D distributions, signal processing approaches are presented in order to enable
essential feature extraction procedures, such as the extraction of pedaling motions, which
are crucial for designated automotive safety functions. In particular, an adaptive ellipse
fitting algorithm was applied to the range-Doppler spectrum to separate the wheels’ 𝜇D
components from those of the pedaling motion. The approach allows the extraction of
the pedaling movements for a series of consecutive radar frames. The extracted spectral
segment consists of sinusoidal signals picturing the rotating pedals and the lower leg
motions and was compared with non-pedaling measurement. The related velocity variances
have been computed and display apparent differences in pedaling or non-pedaling scenarios,
respectively. The presented method’s results demonstrate the potential importance of
cyclists’ behavioral indications for short-range automotive safety applications of the future.
Furthermore, a procedure has been proposed for normalizing the orientation-dependent
ambiguities in range and Doppler of a cyclist. A projection technique using angular
resolved data combined with a correction of the radial velocity components was applied to
radar measurements in the 77-GHz band using chirp sequence modulation. The measured
and normalized range-Doppler spectra have been compared and analyzed. The results
emphasize the significance of the presented approach regarding reliable identification of
cyclists in the short-range and enhanced feature extraction of radar-based behavioral
indications such as pedaling for automotive use.

3.5 Discussion and outlook
The proposed signal processing techniques aim to tackle the orientation’s influence on
the received radar signals in order to extract crucial features, such as the pedaling,
for sophisticated safety functions. The idea to approximate the wheels’ characteristic
𝜇D distributions by an ellipsoidal nonlinear least-squares procedure allows the adaptive
segmentation of the bicycle’s structure in range and Doppler and hence uncovers the
pedaling contribution. The results prove the presented implementation’s functionality up
to distances of 20 m and demonstrate its general suitability as a near-field application for
automotive systems.
Elliptical approximation as a technique for the adaptive disclosure of pedaling motions
can also be utilized to detect steering movements. The change in orientation of the front
wheel as a result of a steering movement directly influences the 𝜇D’s geometric shape and
thus of the approximated ellipse. An abrupt steering movement results in a shortening of
the ellipse’s semi-axes due to the reduction of the reflecting wheel surface and the radial
velocity components, respectively. These features could be used as behavioral indications
in addition to the pedaling motion, for example, to identify conspicuous driving patterns
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such as zigzag movements and to declare them according to their safety relevance.
The presented method for the normalization of the orientation dependence is based on the
detections’ projection onto the bicycle’s approximated longitudinal axis. For this purpose,
the largest scatterers are employed on the assumption that they result from the bicycle’s
frame and thus represent the actual longitudinal axis. Consequently, the performance of
the normalization algorithm depends on the detectability of the bicycle frame. Influencing
factors such as large relative angles between the bicycle and the radar, occlusion, or the
bicycle frame’s reflectivity can affect the overall performance.



CHAPTER 4
Micro-Doppler applications of a pedestrian

4.1 Pedestrian detection
From a radar point of view, a pedestrian can be described by the measured information
containing RCS, geometric extent, and velocity behavior. With high-resolution radars,
which are steadily becoming more standard in short-range applications, a pedestrian is
considered an extended object. Hence, it gives rise to a varying number of spatially
distributed reflection points in several dimensions fulfilling the double extent definition
provided in Subsection 2.3.1. Figure 4.1 illustrates a high-resolution radar snapshot of a
walking pedestrian in Cartesian transformed 𝑥-𝑦-coordinates with respect to the sensor
coordinate system and range-Doppler perspective. As can be seen, the detections of the
object form a reflection surface in both representations. The color-coded amplitudes allow
basic conclusions about the reflection behavior of the body. However, the backscattering
is typically subject to a substantial phase sensitivity, i.e., phase shifts within a range
resolution cell leading to interference and severe fluctuations of the RCS amplitudes [112].
Although the interference effects tend to decrease with increasing range resolution due
to the Fourier transform’s improved frequency separation capability, they still occur. As
already stated in Subsection 2.1.1, range changes of a few millimeters can lead to drastic
interferences. Consequently, the distinction between pedestrians and arbitrary targets with
comparable size and backscattering solely based on RCS information is impossible. Instead,
velocity distributions, i.e., 𝜇D information, generated by limb motions are statistically
uncorrelated to the RCS and are predominantly employed for pedestrian detection and
classification objectives [15], [53], [77], [87]. Nevertheless, Doppler and 𝜇D amplitudes rely
on the objects’ orientation due to the radial measuring principle and typically assume
small values or even converge towards zero for entirely lateral directions. In other words,
entirely lateral moving pedestrians show similar velocity characteristics as static objects.
With occlusion effects via stationary objects and antenna effects like parasitic side-lobing,
pedestrian detection techniques can be vigorously affected [15]. These aspects are also
assessed concerning the development of naturalistic pedestrian dummies and simulation
frameworks and thus establishing test criteria for integral safety systems in the domain of
pedestrian detection [28], [30]. Nevertheless, the measured radial velocities show unique
perceptual characteristics that make robust pedestrian detection feasible and enable further
behavior indication procedures.

4.1.1 Human kinematics
The concept of structure motions not rigidly connected to an object, which was already
presented in Subsection 2.1.3, can be expanded and appointed to a human being’s loco-
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Figure 4.1: High-resolution radar snapshot of a walking pedestrian displayed in Cartesian
coordinates and range-Doppler, respectively. The logarithmized backscatter intensities are in
dBsm.

motion. For this purpose, two perspectives are introduced for the pedestrians’ level of
motion ability. The macroscopic motion defines global positioning while walking, i.e., the
approximately linear translational movement combined with many degrees of freedom,
such as the capacity to change direction and walking speed quickly. Microscopic motion
incorporates the pedestrian’s highly versatile motion apparatus revealing various limb
motion courses and frequency variations, laying the foundation for utilizing the 𝜇D effect.
A human body’s motion expresses articulated locomotion where the extremities expose a
periodically repeating motion routine in the gait cycle. A gait cycle incorporates a stance
and a swing phase. The stance phase takes 60 % of the cycle duration, and is characterized
by the fact that the feet are permanently in contact with the ground showing a heel strike
and a toe-off, respectively. When the body shifts its weight to the supporting leg, the
swing phase, which occupies the remaining 40 % of the cycle, is initiated by lifting one foot.
The forward-moving process is divided into three parts: acceleration of the foot, mid-swing
when the foot passes the supporting leg, and deceleration of the foot preparing the next
cycle [59]. The permanent change of a pedestrian’s center of gravity while walking induces
microscopic motion by the extremities’ inclination. Those patterns are predestined to be
used as indicators for pedestrian detection and, based on this, for intentional recognition.
The human motion recording is carried out with the Xsens MTw Awinda wireless full-body
motion capture (MoCap) system. The system comprises 17 inertial measurement units
attached to designated locations on the test person’s body, as shown in Figure 4.2, to
record the individual body segments’ motion. Data transmission frequency between the
accelerometers and the receiving station is 60 Hz yielding to incoming data packets every
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16.7 ms [50]. Figure 4.3 shows representative MoCap data for a single gait cycle of a
continuous walking test person equipped with inertial measurement units. The motion
data of the feet, hands, and head are shown in relation to an initially defined body-related
longitudinal axis in 𝑥 direction.

4.1.2 Micro-Doppler signatures of a pedestrian
The utilization of the 𝜇D effect enables entirely new approaches in radar-based detection and
classification of VRUs like pedestrians. Especially the limb motion can provide fundamental
attributes that can influence the design of automotive safety systems. Consequently, detailed
investigations of human 𝜇D articulation due to limb movement plays an essential role
in current ADAS developments [4], [54], [76]. By utilizing high resolutions in range and
Doppler, a moving pedestrian appears as an multi-reflective object whose 𝜇D contributions
are superimposed in the frequency domain. The spectral composition of those characteristic
pedestrian identifying 𝜇D patterns is of particular interest concerning safety applications.
Several investigations use radar simulations instead of measured data to create 𝜇D signatures
for automotive use [2], [93]. Generally, simulations of radar returns used to analyze specific
motion features come along with disadvantages and need to be considered deliberately.
Although 𝜇D simulations are reasonably suitable to display specific characteristics of
real radar data, they are still simplified. Typically, they are limited to a few individual
scatter points and thus do not represent the complexity of multi-reflective surfaces, such
as a human leg or the torso. Also, radar simulations usually do not sufficiently cover
environmental influences such as noise or multipath reflections e.g., on the ground or
between limbs. Other researches use real radar data to compare measured 𝜇D signals with
randomly recorded MoCap data [17], [48]. Due to the independence of MoCap data and
radar data, the assignment of individual body parts by 𝜇D signals is based on unreferenced
interpretations and hence only on similarities. However, the direct comparison of measured

Figure 4.2: Test person wearing 17 acceleration sensors (red markings) attached to defined
locations on the body in front and back view, respectively. © 2018 IEEE [50]



52 Chapter 4 Micro-Doppler applications of a pedestrian

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

time [s]
(a)

𝑥
[m

]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

time [s]
(b)

𝑣 𝑥
[m

/s
]

l. foot r. foot l. hand r. hand head

Figure 4.3: MoCap data for one gait cycle of a continuous walking test person equipped with
inertial measurement units at defined limb locations.

radar data and synchronized MoCap reference data is crucial to understanding human
motions’ appearances and identifying individual body parts in the radar image. Various
motion patterns are performed and analyzed. The first motion pattern is continuous
walking. The second covers velocity transitions, e.g., the transition between walking and
running. Finally, the third motion pattern includes crossing maneuvers such as abrupt
turning movements, e.g., 90∘ transitions.

4.1.3 Experimental results
Radially moving pedestrian
Based on [50], in the following, the OS-CFAR-filtered and clustered signatures are visualized
as time-frequency distributions and analyzed under consideration of the reference MoCap
data depicted on top of the spectra. For the sake of clarity, only the most prominent
body components of the reference data are pictured. Those include the feet, lower legs,
hands, and pelvis. The lower legs comply with the knee locations since the corresponding
sensors have been installed directly below the knee joints, as shown in Figure 4.2. Figure
4.4(a) shows the measured radar data of a pedestrian moving towards the static radar
as a time-Doppler function. Contrary to the provided signal processing from Subsection
2.3, where the window length of the Doppler-DFT contains all chirps of a CPI, a short-
time-Fourier-transform (STFT) is used to generate the time-Doppler spectra in Figure
4.4 and Figure 4.5, respectively. The STFT represents the Fourier transform of a signal,
which is first divided into equal-length segments. The Fourier transform is then computed
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individually on each segment. Hence, the STFT only determines the frequencies in a
sub-segment of the whole CPI. The temporal sequence of the spectral Doppler frequencies
obtained in this way represents a satisfactory tradeoff between Doppler and time resolution
and highlights the human walking 𝜇D effect [50]. Note that the radar data are compensated
by the distance-dependent signal attenuation to achieve a consistent power amplitude
throughout the traveled distance. Besides, the synchronized reference curves corresponding
to the measurement are depicted on top of the spectrum, as shown in Figure 4.4(b).
This form of imaging allows a detailed understanding of the composition of the spectrum.
The periodically changing Doppler amplitudes induced by the limb movements can be
clearly recognized. The reference data elucidate that the leg swinging causes the largest
Doppler amplitudes with values up to −6 m/s. The discrepancy between the feet’s reference
amplitude and the Doppler amplitude can be explained by the fact that the motion
capture system’s accelerometers of the feet are placed on top of the feet. Assuming that
the leg’s motion in the swing phase can be approximated to that of a pendulum, the
maximum velocity occurs at the sole. Hence, in addition to occurring signal processing
effects for extended target reflections, the difference in length between the accelerometer’s
position and the actual leg length is the main reason for the deviation. The magnitudes of
the lower legs’ velocity amplitudes and the hands’ amplitudes are almost identical with
maximum and minimum values of about −3 m/s, and −0.5 m/s, respectively. Besides,
their 𝜇D components are gently perceptible in the spectrum due to their relatively high
backscattering. As the largest reflecting body surface, the torso exhibits the highest RCS
up to −5 dBsm. This can be confirmed by the pelvis’ velocity behavior, which coincides
with that of the torso. The torso backscattering decreases with decreasing distance to the
radar due to the radar’s narrow field of view in elevation.
The results show that the knee movement represents the initial movement of a beginning
gait cycle. Figure 4.6 illustrates a range-Doppler sequence of a starting quarter gait cycle
from which the lower leg’s initial acceleration emerges. The corresponding MoCap data are
directly superimposed in range and velocity over consecutive frames. Beginning with the
stance phase where both feet are in contact with the ground, the left (rear) leg’s incipient
acceleration, more precisely the left knee joint, can be captured. Figure 4.4(a) reveals the
lower leg’s beginning acceleration in the form of a gentle protrusion of the Doppler envelope.
By moving the angled left knee forward, the left foot also experiences an acceleration. The
right hand, however, is the last to be accelerated. As the acceleration progresses, the angle
between the upper and lower leg is steadily reduced, thus increasing the foot’s velocity
until it reaches its maximum, as shown in Figure 4.6(f). A gait cycle analysis indicates
the tremendous potential of the range information regarding the proclaimed objective of
radar-based pedestrian feature extraction.
The scenario presented in Figure 4.4(c) visualizes the transition from walking to running.
At first, the test person walks radially towards the sensor. After approximately 4 s the
subject starts to run out of the walking motion abruptly and decelerates vigorously at the
end. From the reference data, it becomes apparent that the running initiating motion is
the increase of momentum of one hand, which is detectable in the 𝜇D signal. Moreover,
the timing of this action needs to be emphasized. It is striking to note that the hand’s
acceleration happens between the gait cycles and thus contrary to the previous rhythm.
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This might indicate a pedestrian’s abrupt transition movement, which can be used for
behavior prediction. For the duration of running, in addition to a pronounced increase in
all velocity amplitudes up to 14 m/s, a significant velocity increase of the hands compared
to walking is noticeable. The hands show a quadrupled velocity value of approximately
10 m/s and reach or even exceed the feet’ velocity values. Moreover, the stance phases’
duration is shortened by about three quarters compared to the walking phase.

Crossing pedestrian
Besides radial movements, lateral movements are of particular relevance regarding radar-
based pedestrian detection in the automotive domain. Due to the radar’s measurement
principle, only radial velocities can be evaluated, making lateral movement patterns
challenging to detect. On this account, the results of a pedestrian who suddenly leaves the
sidewalk to cross the road are presented in the following. At first, the test person walks
parallel to the radar sensor’s longitudinal axis and then transitions into a laterally crossing
movement. Figure 4.5 depicts the 𝜇D spectrum and the affiliated MoCap data of the
mentioned trajectory. Note that the reference data are adapted to reflect the limbs’ radial
velocities and are therefore suitable for comparison. The test person approximately strides
at the same velocity for the longitudinal and sidewards path, respectively. In the beginning,
the pedestrian gradually enters the radar’s azimuthal field of view, which explains the
low backscattering within the first moments. With the pedestrian’s increasing distance
from the radar, the angle between the actual velocity vector and the radial projection
𝑣𝐷 becomes smaller. As a consequence, the 𝑣𝐷 velocities rise to 5 m/s. At around 5.5 s,
the test person initiates the turn, which can be noticed by a decrease in velocity. The
swing of the left hand and, consequently, the upper body’s rotation induces the turning
movement. At this precise moment in time, at around 5.7 s, the algebraic sign of the left
hand’s Doppler velocity switches, which is well discernible in the spectrum. This demeanor
can be employed to design predictive algorithms in terms of pedestrian safety since the
velocity shift can be considered an impending change in the direction of movement (e.g.
road crossing). Directly with changing the direction of motion at around 6.0 s, the velocities
𝑣𝐷 decline drastically and adopt negative values, since now the radial velocity vector points
in the opposite direction. This abrupt fall in the pedestrian’s radial velocity may indicate
a sudden direction modification towards lateral orientation. With the proceeding trend,
𝑣𝐷 becomes smaller until it reaches zero at passing the sensor’s longitudinal axis at around
7.0 s. Afterward, 𝑣𝐷 increases again with a shifted algebraic sign.
However, all results and distinctive attributes acquired are based exclusively on one
subject’s movement behavior and cannot be generalized. For this cause, further advanced
investigations are needed to develop more adequate approaches concerning safety algorithms.
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(a) Spectrogram of measured 𝜇D radar data.

0 1 2 3 4 5 6 7 8 9 10

−6

−4

−2

0

time [s]

𝑣
𝐷

[m
/s

]

−40

−30

−20

−10

0

dB
sm

Feet Lower Legs Hands Pelvis

(b) Spectrogram of measured 𝜇D radar data with MoCap data of the feet, hands, lower legs, and pelvis.
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(c) Spectrogram of measured 𝜇D radar data.
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(d) Spectrogram of measured 𝜇D radar data with MoCap data of the feet, hands, lower legs, and pelvis.

Figure 4.4: Spectra and corresponding MoCap data of a radially towards the sensor walk-
ing/running pedestrian. © 2018 IEEE [50]
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Table 4.1: Radar Configurations

Parameter Value

RF center frequency 77 GHz
RF bandwidth 2 GHz
Range resolution 0.075 m
Sampling frequency 10 MHz
Single chirp duration 𝑇 51.2𝜇s
IF samples per chirp 𝑚𝑠 512
Number of chirps 1024
Chirp repetition interval 𝐺 62.5𝜇s
Doppler resolution 0.03 m/s
Sensor height 0.65 m
Azimuth 3 dB beamwidth (TX) 51∘

Azimuth 3 dB beamwidth (RX) 76.5∘
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(a) Spectrogram of measured 𝜇D radar data.
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(b) Spectrogram of measured 𝜇D radar data with MoCap data of the feet, hands, lower legs, and pelvis.

Figure 4.5: Spectra and corresponding MoCap data of a pedestrian, who first walks longitu-
dinally away from the radar and then crosses laterally the radar’s field of view. © 2018 IEEE
[50]
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Figure 4.6: Range-Doppler frame sequence of radar and MoCap data during a quarter gait
cycle. Adopted from [50] © 2018 IEEE.

4.2 Pedestrian feature extraction
Radar-based feature extraction of pedestrians for automotive applications is still a modern
and relatively unresearched topic. Prior automotive radar sensors could not provide the
required physical sensor attributes, i.e., resolutions, to detect distinctive features that can be
utilized for more advanced procedures beyond mere classification. One of those techniques
is the data-based identification of individual limbs while moving. The ability to separate,
identify, and extract individual reflection components can be of enormous importance
and raises the question of possibilities for a more precise radar-based determination of a
pedestrian’s intended behavior. So far, there are only a few approaches concerning the
frequency-based separation of time-variant limb gestures based on automotive radar. In [81],
Raj et al. present the first method that decomposes motion data of various body regions
using an iterative, non-parametric tracking algorithm in the time-Doppler domain combined
with a model of the human gait. However, the presented method is based exclusively
on simulated radar reflections lacking the complexity of multi-reflective points of real
radar measurements. In [35], Fogle et al. present a nonlinear least-squares approach to
separate the scattering locations with an expectation-maximization algorithm that assigns
the range-Doppler frequencies to scatter centers. By utilizing the range information, the
authors achieve the extraction of individual body components of a pedestrian. Since their
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research objective is encountered in the surveillance technology, the used radar parameters
and the experimental setup strongly differ to the automotive field. In particular, the large
elevational angle of incidence due to the sensor’s height combined with an ultra-fine range
resolution leads to an improved limb separation ability in the range dimension, which is not
given in automotive radars. Moreover, both of the mentioned approaches require a large
time window leading to a high computational burden making it inapplicable for real-time
processing in automotive safety functions.
Another approach is introduced by Abdulatif et al. in [2]. Using a machine learning
technique based on simulated radar returns of walking humans, they assign scatterers
to four classes of body parts. While they achieve satisfying results for the feet and base
movement, the assignment of the arms and legs underly high false-positive rates.
To summarize, the proposed procedures are not persuading for automotive applications due
to simplified data or radar parameters such as large aspect angles and integration times.
Instead, a methodology is desired that takes the automotive parameterization into account.
One approach is the frequency-based localization and extraction of body components based
on algorithmic segmentation of individual backscatterers at each CPI, presented in the
following.

4.2.1 Frequency-based limb separation
The ability of radar-based identification of individual limbs enables the targeted recognition
of a pedestrian’s movement behavior and lays the foundation for behavioral prediction
by detecting gestures. This requires procedures that can separate the spectral velocity
components and assign them to the extremities. The following methodology, which is based
on [95], aims to identify and extract relevant scatterers emanating from different body parts
out of the range-Doppler spectrum to get information about the instantaneous motion
state of a pedestrian that can be used for further applications, such as intention recognition.
The clustered range-Doppler detections are forwarded to a modified CLEAN algorithm
that subdivides the detections into potential body segments. Subsequent DOA estimation
is performed, enabling the assignment to corresponding body components, which completes
the proposed algorithm.
The approach acts on the range-Doppler spectrum after OS-CFAR power detection and
DBSCAN object-clustering according to the provided signal processing in Section 2.3, as
shown in Figure 4.7(a) for a instant of time during the stance phase. The used radar
parametrization is given in Table 4.1. As can be seen, the limbs are encountered at various
distances to the radar during a stride. This extension allows separating body elements
according to their frequency-based location in the range-Doppler spectrum. However,
the used high resolution comes with difficulties that need to be considered regarding the
extraction process. Different body parts exhibit different backscattering intensities due
to various sized reflection surfaces. Moreover, range and Doppler information suffer from
orientation dependence due to the radial principle and depend intensely on the object’s
motion direction. To cover the mentioned challenges, an advanced extraction procedure is
applied to the range-Doppler spectrum.
The proposed procedure is based on a modified CLEAN algorithm. Initially applied by
Högbom in the field of radio astronomy to detect luminescent objects in the sky, the
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CLEAN algorithm is an iterative deconvolution method that distinguishes between real
data structures and data disturbances due to sidelobing in the spectrum of low power
targets [58]. Typically, standard Fourier methods suffer from pronounced gating responses,
such as sidelobe patterns, due to signal artifacts’ gaps in the synthesized beams. The
CLEAN algorithm treats the radar spectrum as a collective of independent point sources.
The idea is then to exchange individual sidelobe suffering reflections in the Fourier spectrum
by a “clean” beam pattern, i.e., an immaculate beam of equal shape but without disturbing
sidelobes. This is done by iteratively detecting the maximum scatterer in the image
and subtract a small gain convolved with the point spread function (PSF). By doing so,
the Fourier spectrum gets decomposed into point targets yielding an increased spectral
resolution. Several variants of the original CLEAN have been developed over the years,
such as the coherent CLEAN algorithm for microwave applications, which additionally
contains target phases, intensities, and directions [103].
Further approaches investigate the integration of clustering procedures within the CLEAN
algorithm to define a stop criterion for the iteration [20], [106]. This is advantageous
in so far as we are striving for a computationally fast calculation. Since CLEAN first
starts the iteration at frequency regions with high amplitude, e.g., torso, these objects
are resolved excessively before small intensity objects, e.g., feet, are regarded. For this
reason, a clustering procedure is included in the CLEAN algorithm to mask regions that
are already sufficiently resolved. The presented cluster-CLEAN execution comprises the
following steps:

1) Find scatterer with maximal magnitude in the range-Doppler spectrum.

2) Generate the PSF with the scatterer’s frequency and amplitude parameters.

3) Update scatter list (𝜆𝑖, 𝜇𝑖, 𝑎𝑖).

4) Substract 𝛾 times PSF with 0 < 𝛾 < 1 from the Fourier spectrum.

5) Starting from 1) and iterate until the cluster criterion |𝑎𝑖| < threshold for a finalized
cluster is reached.

6) Mask finalized clusters in the Fourier spectrum

First, the highest amplitude is identified in the complex 2-D range-Doppler spectrum
𝑋0(𝜆, 𝜇) and its frequency position (𝜆1, 𝜇1) and complex amplitude 𝑎1 are determined.
The selected point scatterer is stored in a scatter list. Next, a weighted PSF is subtracted
from the range-Doppler spectrum

𝑋1(𝜆, 𝜇) = 𝑋0(𝜆, 𝜇)− 𝛾𝛹1, (4.1)

where 𝛹1 is the PSF, and 𝛾 is the loop gain 0 < 𝛾 < 1. Choosing 𝛾 = 0.5, a rapid
calculation is achieved. In order to acquire satisfying results when applying CLEAN, the
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PSF needs to be modeled precisely. However, in radar measurements, the PSF is usually
not determinable entirely. Classically, point targets are modeled based on their frequency
components, i.e., sinusoids. The PSF is then the result of an FFT transformed sinusoid, i.e.,
a multivariate sinc-function, with identical sampling and windowing to the measured data
[85]. However, disturbing influences, such as dynamics like accelerations and 𝜇D effects,
or hardware imperfections, lead to deviations from this idealized model. Analyses have
shown that the Fourier transformed window functions used to calculate the range-Doppler
spectrum, i.e., Hann windows, represent an adequate PSF for our purpose. Thus, the PSF
as the response of the point scatterer can be given by

𝛹1 = 𝑎1𝑊𝜆(𝜆− 𝜆1)𝑊𝜇(𝜇− 𝜇1), (4.2)

where 𝑊𝜆 and 𝑊𝜇 are the Fourier transforms of the window functions w𝜆(𝑙𝑠) and w𝜇(𝑚𝑠),
respectively.
In the original CLEAN algorithm, (4.1) and (4.2) are iteratively repeated until a threshold,
e.g., noise floor, is reached. As a modification, we implement a clustering procedure for the
scatter list in between the CLEAN deconvolution steps. Various criteria for the definition
of a completed cluster were tested. Best results have been achieved for determining an
amplitude threshold covering the differences between maximum and minimum intensities
inside a cluster. If the amplitude threshold is reached, i.e., a cluster is finalized, the point
scatterers of this cluster are removed from the scatter list and the cluster region 𝑋𝑖(𝜆, 𝜇)
is masked for consecutive iterations. Figure 4.7(b) displays the subdivided range-Doppler
snapshot as a consequence of the provided cluster-CLEAN extraction algorithm in form of
individual clusters comprising various scatterer points. Extracted scatterer points which
are not fulfilling the defined cluster density criterion represent unassigned scatterers and
hence are not included for further processing.

4.2.2 Extraction of body parts
After completing the clustering procedure using the cluster-CLEAN algorithm in the range-
Doppler dimension, the angular frequency spectrum in azimuth direction is computed by
means of DOA for each scatterer point belonging to a cluster. A subsequent magnitude
maximum search is applied to estimate the clusters’ angles yielding the parameters (𝑟, 𝑣𝐷, 𝜑).
Figure 4.8 visualizes the result of the entire signal processing chain for the same snapshot
used for Figure 4.7.
The algorithm is now applied to a sequence of radar snapshots to enhance the body part
segmentation over time. The time-dependent 𝜇D spectrum of a pedestrian heading towards
the radar is depicted in Figure 4.9(a). The section shows the typical 𝜇D signature revealing
the periodic Doppler frequency oscillations generated by the limb motion. Similar to Figure
4.4(a), the feet responses induce the highest velocities of around 5 m/s while swinging,
and 0 m/s while standing still. Moreover, the torso region dominates the backscattering
intensities due to the enlarged reflection surface. In total, the spectrum expresses a
superposition of various body reflections whose velocity trajectories are hard to follow.
For the assignment of scatter points to body components, the pedestrian’s body is segmented
into five regions along its lateral extent. The torso primarily denotes the body’s central
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(a) Range-Doppler snapshot.
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(b) Extracted scatterers.

Figure 4.7: Result of the cluster-CLEAN scatterer extraction. a) Power detected range-
Doppler spectrum of a walking pedestrian. b) After cluster-CLEAN scatterer extraction. Cross
marks with identical color form a cluster. Circles represent unassigned scatterers. © 2019
IEEE [95].
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Figure 4.8: Result of the cluster-CLEAN algorithm for a walking pedestrian after angular
frequency estimation. Each point represents the angular resolved maximum of the corresponding
cluster. The polar coordinates (𝑟, 𝜑) are transformed into Cartesian ones (𝑥, 𝑦). © 2019 IEEE
[95].
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region, as shown in Figure 4.9(b). The regions to the center’s left and right sides are
allocated to the left and right leg, respectively. Their assigned scatterer points are depicted
in Figure 4.9(c). At the extreme left and right side of the body segments, the left and right
arms are located. The MoCap data of the corresponding body component is additionally
depicted in each subfigure to evaluate the extraction and assignment performance.
The torso assigned scatterers exhibit a periodic velocity course with slight amplitude
changes for each stride, confirmed by the corresponding motion reference. The comparison
between the legs’ reference curves and the assigned scatterer points reveals the knees’
presence as the second dominant scatter contribution. The upper and lower leg’s anatomical
connection by the knee joint induces different velocity amplitudes during the swing phase.
Both components are fairly noticeable in the extracted radar data. The motion of the
extracted arms assumes an almost sinusoidal trend, which is validated by the MoCap data.

4.2.3 Experimental results
The extracted data’s periodic behavior with similar cycle times displays the limbs’ overall
interaction. The asynchronous motion behavior of the respective limbs to each other is fairly
recognizable. Thus, the left arm’s and left leg’s velocity amplitudes behave in the opposite
direction to their respective counterparts. Consequently, the extracted radar data describe
essential information of the body’s movement behavior during locomotion. The extracted
data may include noise points and outliers that do not belong to the corresponding body
part, as can be primarily seen in the extracted torso in Figure 4.9(b). Besides, there are
periods in which data points are missing due to imperfection in the extraction procedure
or occlusion by different body parts during the measurement. These outliers could be
removed or significantly reduced by further signal processing methods. Overall, however,
the extracted data match the reference data very closely, validating the provided extraction
technique and demonstrating limb separation potential for automotive safety systems such
as behavior prediction.
Besides radial walking trajectories, crossing movements are particularly relevant for future
safety applications. Investigations were carried out in a measured crossing scenario proving
the provided extraction procedure’s fundamental feasibility. Despite the greatly increased
complexity from a radar perspective, several body parts can be correctly extracted. However,
the significantly increased quantity of data occlusion and considerably smaller Doppler
amplitudes due to the body’s orientation seriously reduces the separability and hence the
number of correctly assigned body components compared to radial movements.
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Figure 4.9: Micro-Doppler spectrum and time-dependent velocity of different body parts. (a)
Micro-Doppler spectrum (Color-coding is equal to Figure 4.4). (b) Torso. (c) Legs. (d) arms.
The marks result from the cluster-CLEAN extraction procedure of the radar measurement in
(a). The individual MoCap data of the corresponding body parts are depicted in dashed lines.
© 2019 IEEE [95].
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4.3 Pedestrian tracking

Detailed environment perception for HAD requires accurate and consistent models that
comprise dynamic and static attributes of surrounding targets. The processing of measured
detections, acquired from various sources, to reveal and manage state estimates of objects
is crucial for self-localization, i.e., mapping the ego-position by stationary landmarks, such
as houses and trees, and targeting moving objects, e.g., pedestrians, in the vicinity of an
autonomous vehicle. Estimation of stationary and moving objects refers to generating
information about their locations, dynamics, orientations, as well as their shape and size.
This information is used for interactive navigating and collision avoidance, i.e., to enable
safe autonomous driving. In order to perceive this estimated surrounding knowledge, a
highly automated vehicle is equipped with exteroceptive sensors, e.g., lidars, cameras, or
radars.
In the automotive safety and driver assistance domain, pedestrian tracking is commonly
located in computer vision applications [5], [78], [80]. Typical digital image processing
techniques, such as feature-based classifiers or deep learning networks, are used for pedes-
trian classification. Once the object is classified for consecutive frames, it is regarded as a
candidate object and forwarded to a tracking system that estimates its motion path using
point-based tracking, kernel-based tracking, or silhouette-based tracking [80].
With time, electronic technology is substantially advancing toward an increase in hardware
properties, i.e., higher resolution, and an enlarged field of view. Current radar sensors
typically resolve multiple detections of an object in their surveillance area resulting in
geometric and kinematic extents. Hence, extended-object tracking routines for robust state
estimation, capable of handling challenges such as false alarms and missed detections, are
required. In extended object tracking, one is more interested in estimating the extended
object as a whole, i.e., its utter geometric and kinematic properties, instead of retrieving at-
tributes of single points that cause the detections. Moreover, from a generalized perspective,
the number of objects inside the surveillance area is time-varying and cannot be determined
in advance due to the limited sensor properties, e.g., field of view, and disturbing influences
such as occlusion or false detections. In this work, we investigate radar-based pedestrian
tracking methods to improve the overall tracking performance and derive parameters and
indicators that give rise to potential behavior prediction. Consequently, we focus on a
single pedestrian in the field of view that is mostly free of the mentioned disturbances.
However, it is not limited to single-object tracking, as we will see in the following.
In radar-based pedestrian tracking, diverse methods exist concerning the data level on
which the tracking is established and the appropriate tracker’s preference. Sequential
Monte Carlo methods, i.e., particle filters, express a dominant practice for macroscopic
pedestrian tracking, where either global signal maxima or even unfiltered measurements are
considered [55], [56]. Due to particle filters’ heuristic principle, intricate motion models can
be usually bypassed, making them very attractive. Nevertheless, they demand remarkable
computational effort and therefore appear as unsuitable for automotive real-time functions.
Contrary, other approaches apply computationally manageable methods like standard
Kalman filters [77], [107]. Kalman filter-based tracking is widely utilized throughout the
radar community due to its straightforwardness. However, the simplicity is accompanied
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by a loss of data information. In [107], the authors abstain from incorporating the Doppler
velocity into the measurement vector due to the consequential non-linearity and resulting
need for computationally intensive higher-order filters.
As already presented throughout this thesis, it is precisely the Doppler and 𝜇D information
induced by the limb movements that provide unique features. Consequently, we will
demonstrate that first-order approximations, e.g., the extended Kalman filter, are well
suited to integrate 𝜇D components into the tracking procedure.
This chapter’s overall objective is to present a novel tracking method based on the results
obtained so far, which executes the targeted tracking of leg emerging radar reflections. It
thus achieves highly accurate results by localizing the feet while walking and enables novel
possibilities concerning the behavioral indication of pedestrians in road traffic.

4.3.1 Probabilistic state estimation
An automated vehicle’s environment is a dynamically changing system with various at-
tributes, whose information is acquired by the vehicle’s sensors. Consequently, the envi-
ronment is characterized by a collection of the environments’ objects related attributes,
i.e., states. Some of them comprise dynamic information, e.g., a moving car, where others
remain static, e.g., a building’s wall. The perceptual interaction results in a gathering of
measurements that give information about the environments’ momentary states. How-
ever, sensor data are typically deteriorated by noise, and they maintain merely partial
information about those quantities. State estimation algorithms attempt to recover state
variables from the data by computing hypotheses distributions since the evolution of states
and measurements can be portrayed by probabilistic laws. In probabilistic robotics, a
hypothesis denotes the robot’s internal knowledge about the environment’s state expressed
as a conditional probability distribution that considers each possible hypothesis with
respect to the true state. A probability density function (PDF) is utilized to represent the
hypothesis by incorporating both the measurements’ information as well as the uncertainty
processes of the environment. In order to perform the process of state estimation, two
models are required that characterize the dynamic system: the system model representing
the state’s evolution and a measurement model that associates the measurements to the
state. The models’ interplay is postulated in probabilistic form, which provides an explicit
general framework for dynamic state estimation [102].
The Bayesian filtering approach represents the most general formulation for estimating
hypotheses based on a sequence of received sensor measurements and control data. The
Bayes filter recursively calculates the posterior PDF of a state in each time step by first
predicting the prior density forward and then updating it using the latest measurement, as
systematically illustrated in Figure 4.10. In the prediction step, the system model generally
translates, deforms, and widens the prior density due to unknown system uncertainty. In
the update step, the prior density is adjusted, i.e., narrowed, in the light of additional
knowledge from recent data. In a nonlinear system or measurement model, the resulting
posterior PDF will be non-Gaussian since it assimilates all available statistical information.
Consequently, the posterior PDF provides a complete solution to an estimation problem
[86].
Let x𝑘 ∈ R𝑛x be a target state vector with dimension 𝑛x and time index 𝑘. Assuming that
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the prior hypothesis x0 at time 𝑘 = 0 has been correctly initialized, the state propagates
according to a generalized discrete-time model function [42], [86]

x𝑘 = 𝑓𝑘−1 (x𝑘−1,v𝑘−1) , (4.3)

where 𝑓𝑘−1(·) denotes a possibly nonlinear function of state x𝑘−1. The calculation of the
hypothesis over the state x𝑘 at time 𝑘 based on the prior hypothesis over state x𝑘−1 at
time 𝑘− 1 indicates the Bayes’ recursion in the prediction step and emphasizes the Markov
assumption that postulates the state as a complete representation of the history. The
measurement equation

z𝑘 = ℎ𝑘 (x𝑘, e𝑘) (4.4)

portrays the relation between measurements z𝑘 ∈ R𝑛z with dimension 𝑛z and the target
state by a possibly nonlinear measurement function ℎ𝑘(·). v𝑘−1 and e𝑘 are considered to
be white, mutually independent process and measurement noise with covariances Q𝑘−1
and R𝑘, respectively.
In a first step, the prior density is obtained by the Chapman-Kolmogorov prediction given
by

𝑝 (x𝑘|Z1:𝑘−1) =
�
𝑝 (x𝑘|x𝑘−1) 𝑝 (x𝑘−1|Z1:𝑘−1) dx𝑘−1. (4.5)

Here, the prior density 𝑝 (x𝑘|Z1:𝑘−1) is expressed as the marginalization of the previous
state at time 𝑘 − 1 given measurements Z1:𝑘−1 up to and including time 𝑘 − 1 and the
transition density 𝑝 (x𝑘|x𝑘−1). Since we exploit the Markov assumption we can formulate
𝑝 (x𝑘|x𝑘−1,Z1:𝑘−1) = 𝑝 (x𝑘|x𝑘−1).
Given the predicted state density at time 𝑘 and an accessible measurement z𝑘, the update
stage is performed via the Bayes’ rule

𝑝 (x𝑘|Z𝑘) = 𝑝 (x𝑘|z𝑘,Z1:𝑘−1) (4.6)

= 𝑝 (z𝑘|x𝑘,Z1:𝑘−1) 𝑝 (x𝑘|Z1:𝑘−1)
𝑝 (z𝑘|Z1:𝑘−1)

= 𝑝 (z𝑘|x𝑘) 𝑝 (x𝑘|Z1:𝑘−1)
𝑝 (z𝑘|Z1:𝑘−1) ,

where the normalizing denominator

𝑝 (z𝑘|Z1:𝑘−1) =
�
𝑝 (z𝑘|x𝑘) 𝑝 (x𝑘|Z𝑘−1) dx𝑘, (4.7)

results from the likelihood function 𝑝 (z𝑘|x𝑘), expressed by the measurement model (4.4).
The Bayes update uses z𝑘 to adjust the prior density resulting in the posterior density and
satisfies the conceptual Bayesian filtering recursion.
Unlike traditional model-based programming methods, probabilistic approaches appear
to be more robust in complicated real-world scenarios that come with high uncertainty.
Moreover, they exhibit weaker requirements regarding the accuracy of the vehicle’s sensors
and the underlying models. However, the benefits of probabilistic algorithms come at
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a price. Since probabilistic algorithms attempt to compute entire probability densities
rather than single guesses, they tend to be computationally unmanageable, and hence
approximations or suboptimal Bayesian algorithms are needed [102]. Generally, we are
striving for compact parametric approximations, e.g., Gaussians, in order to sufficiently
resemble the real density.

4.3.2 Gaussian filters
As a part of recursive state estimators, Gaussian filters all share the basic idea of representing
true hypotheses by multivariate normal distributions. By doing so, Gaussian filters
formulate the earliest possible implementations of the Bayes recursion for continuous
spaces. The idea of approximating the posterior by a Gaussian comes along with essential
benefits. First of all, Gaussians denote compact models that can be entirely parameterized
by a probability distribution’s first and second moments, i.e., it’s mean and covariance. A
general form of the multivariate normal distribution can be given by [102]

𝑝(x) = det (2𝜋Σ)− 1
2 𝑒− 1

2 (x−𝜇)𝑇 Σ−1(x−𝜇), (4.8)

where the density over the multivariate random variable x is expressed by the mean, i.e.,
the expectation of the random variable x given by

𝜇 = E [x] =
�
𝑥𝑝(𝑥)d𝑥, (4.9)

and the quadratic and positive-semidefinite covariance matrix, i.e., the squared expected
deviation from the mean given by

Σ = Cov [x] = E [x− E [x]]2 . (4.10)

Moreover, the unimodal Gaussians, i.e., single maximum distributions, match the typical
posteriors of numerous tracking applications in which the posterior models the true state
with some uncertainty, and hence not many distinct hypotheses contribute to the true
posterior.

4.3.3 The Kalman filter
Originally invented by Swerling and Kalman in 1958 and 1960, respectively, the Kalman
filter represents the most researched and established technique for implementing Bayesian

Time update Measurement update. . . 𝑝(x𝑘−1|z𝑘−1) 𝑝(x𝑘|z𝑘−1) 𝑝(x𝑘|z𝑘)

Transition density Likelihood

Motion model Measurement model
z𝑘 = ℎ(x𝑘,e𝑘)x𝑘 = 𝑓 (x𝑘−1,v𝑘−1)

𝑝(x𝑘|x𝑘−1) 𝑝(z𝑘|x𝑘)

Figure 4.10: A systematic description of the Bayes recursion [42].
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filtering in linear Gaussian systems [12]. In order to do so, the Kalman filter uses moments
parametrization, i.e., mean 𝜇𝑘 and covariance matrix P𝑘 at time 𝑘, to calculate hypotheses.
It can be proved that if the prior state probability density, 𝑝 (x𝑘−1|Z1:𝑘−1), appears to be
Gaussian, the resulting posterior density, 𝑝 (x𝑘|Z𝑘), is Gaussian as well, presumed that the
following three conditions hold: [57], [86], [102]

1) v𝑘−1 and e𝑘 are normally distributed with known parameters.

2) 𝑓𝑘−1 (x𝑘−1,v𝑘−1) must be a known linear function (or a locally linearized function)
in its arguments x𝑘−1 and v𝑘−1.

3) ℎ𝑘 (x𝑘, e𝑘) must be a known linear function (or a locally linearized function) in its
arguments x𝑘 and e𝑘.

Those three properties ensure that the posterior hypothesis appears to be Gaussian at any
point in time 𝑘. Consequently, (4.3) and (4.4) can be rewritten as [86]

x𝑘 = F𝑘−1x𝑘−1 + v𝑘−1 (4.11)
z𝑘 = H𝑘x𝑘 + e𝑘. (4.12)

Now, the former nonlinear state and measurement functions are expressed in linear repre-
sentation with matrix F𝑘−1 (of dimension 𝑛x × 𝑛x) and matrix H𝑘 (of dimension 𝑛z × 𝑛x).
Considering the Bayes prediction and update rules in (4.5) and (4.6), the Kalman filter
algorithm follows a recursive relation

𝑝 (x𝑘−1|Z𝑘−1) = 𝒩
(︀
x𝑘−1; x̂𝑘−1|𝑘−1,P𝑘−1|𝑘−1

)︀
(4.13)

𝑝 (x𝑘|Z𝑘−1) = 𝒩
(︀
x𝑘; x̂𝑘|𝑘−1,P𝑘|𝑘−1

)︀
(4.14)

𝑝 (x𝑘−1|Z𝑘) = 𝒩
(︀
x𝑘; x̂𝑘|𝑘,P𝑘|𝑘

)︀
, (4.15)

where 𝒩 (x; 𝜇,Σ) denotes a normally distributed density with variable x, mean 𝜇, and
covariance matrix Σ according to the defined normal distribution in (4.8). The complete
Kalman filter algorithm for linear normally distributed state transitions and measurements
reads

x̂𝑘|𝑘−1 = F𝑘−1x̂𝑘−1|𝑘−1 (4.16)
P𝑘|𝑘−1 = Q𝑘−1 + F𝑘−1P𝑘−1|𝑘−1F𝑇

𝑘−1 (4.17)
x̂𝑘|𝑘 = x̂𝑘|𝑘−1 + K𝑘

(︀
z𝑘 −H𝑘x̂𝑘|𝑘−1

)︀
(4.18)

P𝑘|𝑘 = P𝑘|𝑘−1 −K𝑘S𝑘K𝑇
𝑘 (4.19)

where
S𝑘 = H𝑘P𝑘|𝑘−1H𝑇

𝑘 + R𝑘, (4.20)
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denotes the covariance of the innovation 𝜀 = z𝑘 −H𝑘x̂𝑘|𝑘−1, and

K𝑘 = P𝑘|𝑘−1H𝑇
𝑘 S−1

𝑘 , (4.21)

is the Kalman gain.
Equations (4.16) and (4.17) represent the calculation of the predicted hypothesis x̂𝑘|𝑘−1
and P𝑘|𝑘−1 by considering the recursion of the state and covariance propagation. Due to
the quadratic appearance of P𝑘|𝑘−1, the linear transition matrix F𝑘−1 is multiplied twice
into the covariance P𝑘−1|𝑘−1.
The predicted hypothesis is now converted into the absolute hypothesis by including
the measurement z𝑘 in (4.18). The Kalman gain K𝑘 determines to what degree the
measurement influences the updated state estimate by weighting the innovation in (4.18).
Finally, the updated posterior hypothesis is calculated in (4.19) by incorporating the
adjusted measurement information.
The Kalman filter represents the optimal solution to any tracking problem if the mentioned
conditions hold. Moreover, its computation is reasonably efficient due to simple matrix
additions and multiplications. The inversion complexity of the innovation’s covariance
matrix in (4.21) can be approximately given with 𝒪

(︀
𝑑2.4)︀ for a matrix of size 𝑑× 𝑑 and

hence determines the lower bound of each iteration [102].

4.3.4 The extended Kalman filter
In reality, typical tracking applications may be very complex and are rarely linear. Con-
sequently, they appear nonlinear and non-Gaussian, whose dynamic behavior cannot be
described by linear state transitions. As a result, the linear Kalman filter’s unimodal
hypothesis assumption is only approximately applicable to most tracking problems.
A variety of suboptimal solutions have been proposed over the years tackling the need for
nonlinear approximations. Some of them strive for an analytic approximation, such as the
extended Kalman filter (EKF)) [3], [86], [102]. Others try to solve the non-linearity via
grid-based numerical integration, such as the Viterbi algorithm [105]. Gaussian sum filters,
e.g., static and dynamic multiple-model estimators, follow the idea to approximate the
posterior hypothesis by a weighted sum of normally distributed densities [12], [86]. The
last group refers to a sampling approach where the posterior approximation represents a
deterministically sampled Gaussian density, such as the unscented Kalman filter (UKF)
[86], [102].
A computational efficient but yet elegant procedure comes with the generalized, i.e., ex-
tended and non-closed-form solution given by the EKF. The EKF relaxes the linearity
assumption in Kalman filtering by utilizing a nonlinear generalized Gaussian approximation.
Instead of calculating the exact hypothesis, the EKF estimates its mean and covariance.
This is achieved by the use of linearization, which manifests the key concept in EKF.
The generalized nonlinear systems in (4.3) and (4.4) are specified for the EKF approach
with additive noise given by

x𝑘 = 𝑓𝑘−1 (x𝑘−1) + v𝑘−1 (4.22)
z𝑘 = ℎ𝑘 (x𝑘) + e𝑘. (4.23)
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The EKF algorithm mechanics appear to be almost equivalent to its linear counterpart
introduced in Subsection 4.3.3 except for the linearization procedure. The hypothesis
propagation is repeated for convenience [86]

x̂𝑘|𝑘−1 = 𝑓𝑘−1
(︀
x̂𝑘−1|𝑘−1

)︀
(4.24)

P𝑘|𝑘−1 = Q𝑘−1 + F̂𝑘−1P𝑘−1|𝑘−1F̂𝑇
𝑘−1 (4.25)

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 + K𝑘

(︀
z𝑘 − ℎ𝑘

(︀
x̂𝑘|𝑘−1

)︀)︀
(4.26)

P𝑘|𝑘 = P𝑘|𝑘−1 −K𝑘S𝑘K𝑇
𝑘 , (4.27)

with

S𝑘 = Ĥ𝑘P𝑘|𝑘−1Ĥ𝑇
𝑘 + R𝑘 (4.28)

K𝑘 = P𝑘|𝑘−1Ĥ𝑇
𝑘 S−1

𝑘 . (4.29)

The local linearization of 𝑓𝑘−1 and ℎ𝑘 by their first order Taylor expansion remains the
Gaussian assumptions to be valid. The resulting Jacobians, F̂𝑘−1 and Ĥ𝑘, evaluated at
x𝑘−1|𝑘−1 and x𝑘|𝑘−1, respectively, are defined by

F̂𝑘−1 =
[︀
∇x𝑘−1 𝑓𝑇𝑘−1 (x𝑘−1)

]︀𝑇 |x𝑘−1=x̂𝑘−1|𝑘−1 (4.30)

Ĥ𝑘 =
[︀
∇x𝑘

ℎ𝑇𝑘 (x𝑘)
]︀𝑇 |x𝑘=x̂𝑘|𝑘−1 , (4.31)

where
∇x𝑘

=
[︂

𝜕

𝜕 x𝑘[1] . . .
𝜕

𝜕 x𝑘[𝑛x]

]︂𝑇
, (4.32)

with x𝑘[𝑖], 𝑖 = 1, . . . ,𝑛x being the 𝑖th component of vector x𝑘. The elements of Ĥ𝑘 can be
given by

Ĥ𝑘[𝑖,𝑗] = 𝜕 ℎ𝑘[𝑖]
𝜕 x𝑘[𝑗]

|x𝑘=x̂𝑘|𝑘−1 , (4.33)

where ℎ𝑘[𝑖] being the 𝑖th component of vector ℎ𝑘(x𝑘).

Figure 4.11 demonstrates the principle of a nonlinear transformation on a normally
distributed random variable x ∼ 𝒩 (x;𝜇,𝛴) with mean 𝜇 and variance 𝛴. We assume that
x is passed through the highly nonlinear function 𝑓 resulting in a non-Gaussian, heavily
skewed distributed density due to the nonlinearities in 𝑓 [102]. The probability densities of
the initial random variable x and the transformed random variable, y = 𝑓(x), are marked
by the gray area in the lower right and upper left plot, respectively. As already stated,
the linearization procedure in EKF approximates the function 𝑓 by its first derivative at a
single point, i.e., the tangent function to 𝑓 at the Gaussian’s mean (dashed line in the upper
right plot). By doing so, a projection of the Gaussian density is achieved (dashed line in
the upper left plot). Note that the linearization is also applied to an involved measurement
function ℎ in order to retain the Gaussian nature in the posterior density. As a reference,
the mean and variance from an exact Monte-Carlo estimate is depicted additionally (solid
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line in the upper left plot) [102]. The deviation between the Gaussian projection and the
Gaussian reference reveals the error caused by linearizing 𝑓 . In general, the more local
nonlinearities arise in 𝑓 , the poorer the quality of approximations. There are EKF-based
approaches in the literature trying to overcome linearization errors. Some of them refer to
the approximation’s extension by incorporating further terms in the Taylor expansion [74].
Others perform the linearization on the updated measurement model instead of on the
predicted state, such as the iterated EKF [12]. However, their increased computational
demand restricted their overall usage.
Another aspect that impacts the approximation result is the degree of uncertainty in state
estimation. A higher prior covariance yields less accurate estimations of the projected mean
and covariance due to the sole regard of the mean by the Taylor expansion. An approach
that might handle both the degree of local nonlinearity and the degree of uncertainty
better than the EKF while still highly efficient is the UKF. The UKF appears to be a
derivative-free filter that uses weighted deterministically determined samples to resemble
the projected Gaussian density [102].
Despite all, we will see later in this work that both mentioned challenges can be tackled
by keeping the functions approximated at moderate nonlinearity and choosing specific
initialization parameters. Overall, the crucial benefit of the EKF lies in its simplicity
and its computational efficiency. The calculation of the posterior hypothesis depends on
the state and measurement vectors’ dimensions and generally comes with low computing
times of 𝒪

(︀
𝑛2.4

z + 𝑛2
x
)︀

[102]. Since we are striving for a tracking methodology that is
eventually applicaple in automotive safety functions, the EKF provides a thoroughly
attractive approach.

4.3.5 Multiple-object tracking
Multiple-object tracking (MOT), as the generalization of object tracking, denotes the joint
estimation problem of effectively determining the number of objects and their states based
on noisy sensor measurements. Traditionally, MOT has been used for far-field applications,
e.g., radar-based air surveillance, where an object generates at most one detection due to
the sensor’s resolution. Hence, classical MOT approaches assume independently evolving
objects following the point object assumption (multiple-point object tracking (MPOT)) and
thus do not incorporate any object’s spatial or kinematic extent. Near-field applications,
such as HAD, demand detailed environment perception and provide high-resolution sensors,
leading to extended objects. In real-world tracking applications, extended objects, e.g., cars,
bicycles, or humans, generate various spatially and kinematically distributed reflections
and expand classical MOT to a multiple-extended object tracking (MEOT) phenomenon
[42].
Usually, in extended object tracking, a sparse point cloud is available at each time step,
which can significantly deviate from the previous state due to sensor characteristics and
object motion. Therefore, the objects’ attributes, e.g., their shape, cannot be extracted
based on a single sensor scan. Instead, several measurements comprising the (unknown)
objects’ motion are needed to derive specific target-related information.
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Figure 4.11: Representation of the EKF’s linearization principle based on a Gaussian
projection through a highly nonlinear function. The EKF passes a Gaussian through a first-
order Taylor approximated function, i.e., the tangent to 𝑓 at the mean of the initial Gaussian,
rather than employing the nonlinear function 𝑓 . The upper left graph depicts the resulting
Gaussian (dashed line), as well as a reference Gaussian calculated from the exact Monte-Carlo
estimation (solid). The mismatch between the Gaussians highlights the approximation error
that results from linearization [102].
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Regardless of the object type to be tracked, MOT comes with several challenges: [43]

• Unknown and time-varying number of objects.

• Missed detections, i.e., reduced or no received measurements of an object at a time.

• Unknown and varying number of object detections.

• Clutter measurements, i.e., non-target-originating measurements.

• Unknown measurement origins, i.e., unknown soure of each measurement.

A changing number of objects in the sensor’s surveillance region is referred to as data
handling during the tracking process. Usually, a time-varying object number can be either
caused by track birth and track death, i.e., the emergence of new objects and the deletion
of old objects, or by missed detection effects.
Missing detections occur by temporal blindness, often caused by occlusion by other objects,
e.g., cars, or intra-object occlusion, e.g., hidden car wheels or human limbs. Hence, the
detection probability of an object is always less than one since we do not know whether or
not an object generated any detection.
As already stated, extended objects give rise to a varying number of detections depending
on the sensors’ resolution. In addition to the explicit resolution capabilities, an object’s
actual reflective surface can vary and influence the emerging detections.
Extended object tracking typically comes with false alarm detections known as clutter
detections caused by the sensor itself or by environmental influences. This implies that the
detection origin is generally unknown, meaning that there is no information on whether a
detection is caused by clutter or by an actual object. Besides, it is not apparent which
object caused which detection.
Let 𝑛𝑘 be the number of objects present at time 𝑘, and let x𝑖𝑘 be the state of object 𝑖 at
time 𝑘. Consequently, X𝑘 defines all present object states at time 𝑘 given by [11], [42]

X𝑘 =
{︀

x𝑖𝑘
}︀𝑛𝑘

𝑖=1 . (4.34)

Let 𝑚𝑘 be the number of detections z𝑗𝑘, then the set of detections at time 𝑘 is

Z𝑘 =
{︁

z𝑗𝑘
}︁𝑚𝑘

𝑗=1
. (4.35)

Typically, the object states are assumed to be initially independent. Hence, the transition
density for the 𝑛 states describing the evolution from x𝑖𝑘−1 to x𝑖𝑘

𝑝𝑘 (X𝑘|X𝑘−1) = 𝑝𝑘
(︀
x1
𝑘,x2

𝑘, . . . ,x𝑖𝑘, . . . ,x𝑛𝑘 | x1
𝑘−1,x2

𝑘−1, . . . ,x𝑖𝑘−1, . . . ,x𝑛𝑘−1
)︀
,
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can be formulated as the product of the joint densities

𝑝𝑘 (X𝑘|X𝑘−1) =
𝑛𝑘∏︁
𝑖=1

𝑝𝑘
(︀
x𝑖𝑘|x𝑖𝑘−1

)︀
. (4.36)

In case of assumed density filtering, e.g., Gaussian approximations for the object state
densities [43] to perform the Bayes recursion with a predictable complexity, the initial prior
at 𝑘 = 0 can be described as a product of Gaussian densities with mean vectors 𝜇𝑖

0 and
covariance matrices Σ𝑖

0 given by

𝑝 (X0) =
𝑛0∏︁
𝑖=1
𝒩

(︀
x𝑖0; 𝜇𝑖

0,Σ𝑖
0
)︀
. (4.37)

The goal in MOT is the estimation of the object states X𝑘 as a recursive computation of the
posterior density 𝑝 (X𝑘|Z𝑘) given the measurements Z𝑘. Note that the set of measurements
Z𝑘 may comprise not only object originated detections but also clutter detections C𝑘.
For the sake of completeness, we expand the set of measurements at time 𝑘 as a random
permutation according to

Z𝑘 = ⊓ (O𝑘,C𝑘) , (4.38)

where O𝑘 =
[︀
o1
𝑘, . . . ,o𝑖𝑘, . . . ,o

𝑛𝑘
𝑘

]︀
denotes the set of object detections and C𝑘 =

[︁
c1
𝑘, . . . , c

𝑚𝑐
𝑘

𝑘

]︁
denotes the set of clutter detections where 𝑚𝑐

𝑘 is the number of clutter detections at time
𝑘. Note that the vectors of C𝑘 are independent and identical distributed. Typically, the
occurrence of clutter is modeled as a Poisson point process (PPP) and hence assumed to
be Poisson distributed throughout the sensor’s field of view according to 𝑚𝑐

𝑘 ∼ Po
(︀
�̄�𝑐

)︀
where �̄�𝑐 denotes the mean and variance of the Poisson distribution Po(·) [11].
Overall, the width of Z𝑘 is random in every time step, and we do not know which, if
any, detection in Z𝑘 is an object originated detection. Hence, the problem of unknown
measurement origins, i.e., all possible associations between measurements and objects,
arises, which is arguably the most challenging aspect of MOT.

4.3.6 Data association
The objective of this chapter is to develop a kinematic-based framework for tracking the
leg movements of a walking pedestrian based on high-resolution automotive radar data. To
ensure an effective assignment of the detections to their sources, and thus an identification
of the left and right leg, the implementation of a data association procedure is mandatory
whose algorithmic context is introduced in this subsection. Figure 4.12 illustrates the lower
body of a walking human and exemplarily visualizes the leg emanating detections as well
as potential clutter detections that have to be associated to the respective source in each
sensor cycle in order to enable the leg tracking approach.
MOT constitutes increased complexity as the problem of data association or correspondence
problem arises. In data association, each detection has to be associated with one of the
detection emanating sources., i.e., either to an actual object or clutter, to define the
measurements’ origins. In the case of MPOT, at most one detection can be caused by



4.3 Pedestrian tracking 75

Measurement
Objects

Figure 4.12: Exemplary depiction of the leg emanating detections and potential clutter
detections of a walking human.

each object due to the nature of a point object. Figure 4.13(a) illustrates a simple MPOT
scenario where we assume to have known data associations. The diagram visualizes the
objects’ positions over three consecutive time steps. In the case of data handling, decisions
about the measurements’ belonging regarding newly appeared and already existing objects
have to be made additionally, which can rapidly lead to a tremendous and hence intractable
computational effort. In the given case, where we assume to have known data associations,
the corresponding problem becomes trivial. Normally, we do not have any prior information
about the origin of the detections. Hence, we cannot tell which detections are from already
detected objects, which detections are from newly appeared objects, and which detections
are false detections. Figure 4.13(b) images the real scenario with unknown data association
certainties. In this case, any measurement at any time step could be from an object that was
already detected in a previous time step, or a newly appeared object, or a false detection.
Hence, each detection is labeled either object-originating or clutter in every step, resulting
in a vast number of possible association events. Accurate data association is significant
because an erroneous association solution can result in fatal filtering performance. There
are several solutions to MPOT regarding the consideration of their measurement-to-track
hypotheses, such as the global nearest neighbor (GNN) algorithm [13], multiple hypothesis
tracking (MHT) [19], [83], and the joint probabilistic data association (JPDA) filter [11],
[13], [37].
Contrary to point objects, an extended object causes more than a single detection in each

sensor cycle and thus a data association, i.e., an association from measurement to source,
is generally achieved in two parts: [43]

1) Partition: The partition of a set of measurements can be regarded as a division of
the set’s elements into non-empty subsets, called cells. The division is carried out
such that every element of a subset is assigned to one and only one cell, i.e., the cell’s
measurements all belong to the same source, which can be an object or clutter.
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(a) Trivial case with known data associations: The colored crosses indicate the objects’
positions over time and the measurements are color-coded according to the known asso-
ciations in each time step. The gray measurements represent clutter or false detections,
respectively.
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(b) Real case with unknown data associations: No prior information about the mea-
surements’ origins. Hence each measurement can be labeled either object-originating or
clutter in each time step.

Figure 4.13: Exemplary illustration of the data association uncertainty using a 1-D scenario
comprising a time varying number of evolving objects (time step 1: 4 objects, time step 2: 5
objects, time step 3: 4 objects) in position over time.

2) Cell association: The partitioned cells are associated to a measurement source,
which can be either one of the objects or clutter.

Concerning Bayes’s optimality, evaluating all feasible data associations in the MEOT
update step is essential. Hence, the consideration of all partitions of a measurements’
set is necessary, as well as each partition’s feasible cell associations. In non-vanishingly
small numbers of measurements and objects, the partitioning quickly takes on dimensions
that cannot be realized due to numerous possible partitions and cell associations whose
likelihood functions all have to be incorporated in the measurement update. Assuming
a set of 𝑛 measurements, the number of feasible partitioning ways is defined by the 𝑛th
logarithmically convex Bell number 𝐵(𝑛) [43], [90]. For a measurement number 𝑛 = 3 there
are 𝐵(3) = 5 feasible partitions, as exemplarily illustrated in Figure 4.14. Duplicating the
number of measurements (𝑛 = 6) yields 𝐵(6) = 203 feasible partitions, and for 𝑛 = 90
we get 𝐵(90) > 10100 feasible partitions. From those numbers, it gets apparent that the
consideration of all feasible partitions is computationally unmanageable, and simplifications
are needed.
Different approaches exist regarding the measurement modeling in MEOT procedures.
Typically, physical modeling is applied where specific geometric shapes, e.g., an ellipse or
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Figure 4.14: Partition principle using three arbitrarily ordered measurements z(1)
𝑘 , z(2)

𝑘 , and
z(3)

𝑘 at time 𝑘 that are partitioned in five possible ways, where 𝑝𝑗 refers to the 𝑗th partition
and 𝑊 𝑗

𝑖 refers to the 𝑖th cell at partition 𝑗. The procedure comprises partitions with various
numbers of cells, e.g., 𝑝1 = {|𝑊 1

𝑖 | = 1}, 𝑝2 = {|𝑊 2
𝑖 | = 2}, 𝑝5 = {|𝑊 5

𝑖 | = 3} [43].

a rectangle are used to model the objects’ extensions. Additionally, the objects’ surfaces
can be equipped with a set of reflection points generating the detections with certain
probabilities. However, this requires data association between the target detections and
the reflection points [43]. Another approach is to use an inhomogeneous Poisson Point
Process (PPP) that models the number of detections and clutter detections as Poisson
distributed around the target. By that, the computational demanding associations are
avoided. However, the tracking performance may suffer from the high sensitivity to the
state dependent Poisson rate [41].
The use of Random finite set (RFS) methods relaxes the necessity for solving the described
data association task [73]. RFS based tracking approaches model both the cardinality
of objects that are present in the surveillance area and the set of measurements as ran-
dom variables. The update step in RFS is based on the multi-object likelihood function,
which avoids explicit data association by averaging over all possible association hypotheses.
Computationally tractable RFS-based implementations include the probability hypothesis
density (PHD) [72] filter and the cardinalized probability hypothesis density (CPHD) filter
[71].
Typically, RFS-based approaches assume time-varying numbers of present object detections,
i.e., the appearance and disappearance of objects in the surveillance area. However, for the
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present case where we are striving for the tracking of two objects, i.e., the human legs, we
refrain from using complex procedures that take into account the mentioned data handling
task. Moreover, we simplify the overall measurement modeling by transferring the present
MEOT problem to the assumption of an MPOT problem. It should be explicitly stated
that the assumption of point targets for the present tracking application corresponds to a
considerable simplification of the measurement modeling. By doing so, computationally
attractive MPOT methods, such as the JPDA filter, become applicable. However, it should
be noted that generally we would expect an improvement of the tracking performance by
using one of the mentioned physical modeling techniques or an sophisticated RFS approach.
Pursuing the simplifying point object assumption, partitioning and cell association pro-
cedures become needless. Instead, we calculate joint association probabilities, i.e., the
probability that the object is the origin of the measurement considering each measurement-
object-pair. By doing so, a data association variable, 𝜃, is defined as the association event
that measurement 𝑗 originated from object 𝑖 with state x𝑖𝑘 at time 𝑘 according to [11]

𝜃𝑖𝑘 =
{︃
𝑗 if object 𝑖 is associated to measurement 𝑗
0 if object 𝑖 is undetected.

(4.39)

The association for 𝑛 objects is defined by the association vector 𝜃𝑘 =
[︀
𝜃1
𝑘, 𝜃

2
𝑘, . . . , 𝜃

𝑖
𝑘, . . . , 𝜃

𝑛
𝑘

]︀
that consists of the associations for each individual object. Specifying the assumed multiple-
point object assumption for 𝜃𝑘 ∈ 𝛩𝑘, where 𝛩𝑘 is the set of all valid associations at time
𝑘, the following must hold:

1) Each object must be either detected or miss-detected

𝜃𝑖𝑘 ∈ {0, . . . ,𝑚𝑘}, ∀ 𝑖 ∈ {1, . . . , 𝑛𝑘}.

2) Any pair of detected objects cannot be associated to the same measurement

∀ 𝑖, 𝑖′ ∈ {1, . . . ,𝑛}, 𝑖 ̸= 𝑖′, if 𝜃𝑖𝑘 ̸= 0, 𝜃𝑖′𝑘 ̸= 0 ⇒ 𝜃𝑖𝑘 ̸= 𝜃𝑖
′
𝑘 .

The conditions ensure that the number of associated measurements is at most 𝑛 in each
association event 𝜃𝑘 ∈ 𝛩𝑘. Given measurements Z𝑘 and association events 𝜃𝑘 we can
derive

• The association to object 𝑖

o𝑖𝑘 =
{︃

z𝜃
𝑖
𝑘
𝑘 if 𝜃𝑖𝑘 ̸= 0
∅ if 𝜃𝑖𝑘 = 0.

• Which z𝑗𝑘 are assigned to the clutter detections C𝑘

𝑗 ∈ {1, . . . ,𝑚𝑘} : @𝑖 ∈ {1, . . . , 𝑛𝑘}, 𝜃𝑖𝑘 = 𝑗.

• The number of actual object detections 𝑚𝑜
𝑘, and the number of clutter detections 𝑚𝑐

𝑘
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in event 𝜃𝑘
𝑚𝑜
𝑘 =

∑︁
𝑖∈{1,..., 𝑛𝑘}:𝜃𝑖

𝑘 ̸=0

1 and 𝑚𝑐
𝑘 = 𝑚𝑘 −𝑚𝑜

𝑘.

The number of ways to associate 𝑚𝑘 measurements to 𝑛𝑘 objects can be given by

𝑁𝜃𝑘
(𝑚𝑘, 𝑛𝑘) =

min(𝑚𝑘, 𝑛𝑘)∑︁
𝑚𝑜

𝑘=0

(︂
𝑛𝑘
𝑚𝑜
𝑘

)︂(︂
𝑚𝑘

𝑚𝑜
𝑘

)︂
𝑚𝑜
𝑘!. (4.40)

A prevalent method to further reduce the data association events is the use of gating
[9], [10], [11]. Gating reduces feasible measurement-to-object associations by comparing
the individual measurements to the objects’ tracking predictions and identifies unlikely
associations. The validation gate acts as an association threshold, where each measurement-
to-object association needs to comply with a metric of “acceptance” or is rejected otherwise.
For extended objects, the validation gates must consider several object attributes, such as
its position, kinematic, and state uncertainties. For linear Gaussian systems, the hyper-
ellipsoid of probability concentration is an optimal choice for the validation gate and can
be found in numerous applications in literature [9], [10], [66], [111].
Suppose we have a linear observation model with additive noise for an MOT application [7]

z𝑘 = H𝑘x𝑘 + e𝑘, (4.41)

with Gaussian state density 𝑝(x𝑖𝑘|Z𝑘−1) = 𝒩 (x𝑖𝑘; x̂𝑖𝑘|𝑘−1,P
𝑖
𝑘|𝑘−1) and Gaussian zero-mean

sensor noise 𝑝(e𝑘|x𝑘) = 𝒩 (e𝑘; 0,R𝑘) and time index 𝑘. The ellipsoidal gating distance,
i.e., the squared Mahalanobis distance1, from measurement z𝑗𝑘 ∈ Z𝑘 to the predicted object
detection 𝑖 then reads

𝑑2
𝑖,𝑗 =

(︀
z𝑗𝑘 − ẑ𝑖𝑘|𝑘−1⏟  ⏞  

𝜀𝑖,𝑗
𝑘

)︀⊤(︀
S𝑖𝑘

)︀−1(︀z𝑗𝑘 − ẑ𝑖𝑘|𝑘−1⏟  ⏞  
𝜀𝑖,𝑗

𝑘

)︀
, (4.42)

where 𝜀𝑖,𝑗𝑘 is the innovation of detection z𝑗𝑘 and predicted object detection ẑ𝑖𝑘|𝑘−1 = H𝑘x𝑖𝑘|𝑘−1,
and S𝑖𝑘 is the innovation covariance given in (4.20). The Gaussian gating approach assumes
that the measurements are Gaussian distributed around their emanating target predictions
according to 𝑝(z𝑘|x𝑖𝑘) = 𝒩 (z𝑘; H𝑘x̂𝑖𝑘|𝑘−1,S

𝑖
𝑘). Measurments are considered to be valid if

𝑑2
𝑖,𝑗 ≤ 𝛾, (4.43)

where 𝛾 is the gating threshold. If 𝛾 becomes small, then the probability that the object
measurement is located outside the gate increases. Generally, we strive for a sufficiently

1 Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 )𝑇 be an observation vector and let 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑁 )𝑇 be a set of observations
with mean values, and let 𝑆 be a covariance matrix, then the Mahalanobis distance can be expressed as:
𝑑𝑀 (𝑥) =

√︀
(𝑥 − 𝜇)𝑇 𝑆−1(𝑥 − 𝜇). [9]
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small probability that the object measurement is outside the gate while trying to keep the
data association computation at a moderate level. In order to do so, we introduce a gate
probability parameter that specifies the probability that the validation gate contains the
true measurement, which is given by

𝑃G = Pr
[︀
𝑑2
𝑖,𝑗 < 𝛾

]︀
. (4.44)

One can show that the ellipsoidal gating distance follows

𝑑2
𝑖,𝑗 ∼ 𝜒2(𝑛z), (4.45)

where 𝜒2(𝑛z) is the chi-squared distribution with 𝑛z degrees of freedom [11]. A common
strategy to obtain 𝛾 is to set a desired value for 𝑃G, e.g., 99.5%, and subsequently use
the cumulative distribution of 𝜒2(𝑛z). The square roots of the eigenvalues of 𝛾S𝑖𝑘 denote
the semiaxes of the ellipsoid. If the measurement z𝑗𝑘 falls outside the gate of ẑ𝑖𝑘|𝑘−1, it is
disregarded as a valid data association in the further processing. By doing so, the number
of local hypotheses in the posterior 𝑛𝑘 object density is significantly reduced.
In nonlinear systems, the ellipsoidal validation gate may reject a higher number of correct
associations and be statistically unprecise. There are approaches in the literature that
provide nonlinear extensions for the linear gating concept, such as incorporating generic
Monte Carlo solutions [7]. However, as can be seen in this work’s further course, the use
of ellipsoidal gates on the nonlinear tracking methods achieves acceptable results and is
applied in the following MOT procedure.

4.3.7 Joint probabilistic data association
In the previous subsection, we have seen that data association can quickly be overwhelming,
and methods for alleviating complexity, such as gating, are needed. Instead of computing
cell associations, association probabilities are calculated that reveal the probability that
the measurement is originated from an object. In probabilistic data association (PDA),
posterior association probabilities are determined for each valid measurement candidate
lying within a validation region revealing the probability that the measurement is originated
from the object or from clutter. This Bayesian information is further incorporated as a
weighted sum of innovations in the update step in a tracking filter, such as the PDA filter
for a single target in clutter [10], [11].
The basic PDA assumption is that each object is strictly isolated from others without
any occurring interference between them. In the automotive context, the majority of
real-world scenarios include multiple interfering sources in very high-clutter environments.
Hence, measurements from several nearby targets give rise to persistent derogation, which
complicates the association task.
The general expression for the normalized 𝑛 object posterior density at time 𝑘 can be given
by [9], [13]

𝑝𝑘|𝑘 (X𝑘) =
∑︁

𝜃1:𝑘∈𝛩1:𝑘

w𝜃1:𝑘
𝑘|𝑘 𝑝

𝜃1:𝑘
𝑘|𝑘 (X𝑘) =

∑︁
𝜃1∈𝛩1

· · ·
∑︁

𝜃𝑘∈𝛩𝑘

Pr [𝜃1:𝑘|Z1:𝑘] 𝑝 (X|𝜃1:𝑘,Z1:𝑘) .

(4.46)
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As can be seen from (4.46), the posterior at time 𝑘 represents a sum over data association
sequences from time 1 : 𝑘 where each prior mixture component is conditioned on the
corresponding data association sequence where the normalized weights

w𝜃1:𝑘
𝑘|𝑘 =

w̃𝜃1:𝑘
𝑘|𝑘∑︀

𝜃′
1:𝑘

w̃𝜃′
1:𝑘
𝑘|𝑘

=
∏︀𝑛
𝑖=1

∏︀𝑘
𝑡=1 w̃𝜃𝑖

𝑡|𝜃𝑖
1:𝑡−1∑︀

𝜃′
1
· · ·

∑︀
𝜃′

𝑘

∏︀𝑛
𝑖=1

∏︀𝑘
𝑡=1 w̃𝜃𝑖′

𝑡 |𝜃𝑖′
1:𝑡−1

, (4.47)

with

w̃𝜃𝑖

⎧⎪⎪⎨⎪⎪⎩
� (︁

1− 𝑃D(x𝑖)
)︁
𝑝𝑖(x𝑖)dx𝑖 if 𝜃𝑖 = 0

�
𝑃D(x𝑖)𝑝(z𝜃𝑖 |x𝑖)

𝜆𝑐(z𝜃𝑖)
𝑝𝑖(x𝑖)dx𝑖 if 𝜃𝑖 ̸= 0,

(4.48)

denote the probabilities of the data associations Pr [𝜃1:𝑘|Z1:𝑘] assuming a constant detection
probability 𝑃D for the correct measurement, and a clutter Poisson intensity function 𝜆𝑐(z𝜃

𝑖)
for the detections associated to clutter.
Due to the rapidly increasing number of mixture components, the exact posterior is
intractable, and approximations are necessary. While MHT and RFS usually assume
that the number of targets is a time-varying discrete random variable by means of data
handling, the JPDA filter deals with an a priori known and constant number of objects in
clutter. By doing so, the handling of the data association hypotheses becomes somewhat
easier. Initially developed by Bar-Shalom and Fortmann, the JPDA filter manifests a
suboptimal approach for MOT in high-clutter environments. The conceptual idea in JPDA
is to approximate the posterior in (4.46) as a Gaussian density by combining the different
hypotheses in the JPDA posterior density into a single one in order to get the simplicity of
a single-hypothesis algorithm while maintaining information from all hypotheses. This is
achieved by determining an association between the tracks and a set of weighted innovations
utilized as an approximation of the optimal association in the update step [40]. As in PDA,
the JPDA filter computes the probabilities of association in a non-back scan approach,
i.e., only the measurements at the current time are considered. However, contrary to the
PDA algorithm in the single object case, where the association probabilities are computed
separately, the JPDA algorithm computes them jointly across all present objects and
clutter.
In JPDA, the exact posterior in (4.46) is approximated by the JPDA density [11], [13]

𝑝JPDA
𝑘|𝑘 (X𝑘) = 𝑝𝛽1:𝑘

𝑘|𝑘 (X𝑘) , (4.49)

paramterized by the individual object densities

𝑝𝑖,𝛽1:𝑘
𝑘|𝑘

(︀
x𝑖𝑘

)︀
, for 𝑖 = 1, 2, . . . , 𝑛𝑘 (4.50)

where 𝛽1:𝑘 denotes the sequence of marginal association probabilities computed in each
time step according to

𝛽1, 𝛽2|𝛽1, . . . 𝛽𝑘|𝛽1:𝑘−1.
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The marginal probabilities are computed jointly for all objects as the sum of the weights
w𝜃𝑘 for which 𝜃𝑖,𝑗𝑘 = 𝑗 based on the set of valid association events, 𝛩𝑘, given by (see
Appendix C)

𝛽𝑖,𝑗𝑘 = Pr
(︀
𝜃𝑖𝑘 = 𝑗|Z1:𝑘

)︀
=

∑︁
𝜃𝑘∈𝛩𝑘:𝜃𝑖

𝑘=𝑗

w𝜃𝑘 ∝
∑︁

𝜃𝑘∈𝛩𝑘:𝜃𝑖
𝑘=𝑗

w̃𝜃𝑘 . (4.51)

Consequently, the marginal probability that object 𝑖 is not detected at time 𝑘 reads

𝛽𝑖,0𝑘 = Pr
(︀
𝜃𝑖𝑘 = 0|Z1:𝑘

)︀
= 1−

∑︁
𝑗

𝛽𝑖,𝑗𝑘

∑︁
𝜃𝑘∈𝛩𝑘:𝜃𝑖

𝑘=0

w𝜃𝑘 ∝
∑︁

𝜃𝑘∈𝛩𝑘:𝜃𝑖
𝑘=0

w̃𝜃𝑘 . (4.52)

The marginal posterior for object 𝑖 is determined using the computed marginal association
probabilities according to

𝑝𝑖,𝛽1:𝑘
𝑘|𝑘

(︀
x𝑖𝑘

)︀
= 𝛽𝑖,0𝑘 𝑝

𝑖,𝛽1:𝑘−1
𝑘|𝑘−1

(︀
x𝑖𝑘

)︀
+

𝑚𝑘∑︁
𝑗=1

𝛽𝑖,𝑗𝑘 𝑝
𝑖,𝛽1:𝑘−1,𝑗
𝑘|𝑘−1

(︀
x𝑖𝑘

)︀
, (4.53)

where 𝑝𝑖,𝛽1:𝑘−1,𝑗
𝑘|𝑘−1

(︀
x𝑖𝑘

)︀
is the posterior density that results from updating the prior of object

𝑖

𝑝
𝑖,𝛽1:𝑘−1
𝑘|𝑘−1

(︀
x𝑖𝑘

)︀
=
�
𝑝
(︀
x𝑖𝑘|x𝑖𝑘−1

)︀
𝑝
𝑖,𝛽1:𝑘−1
𝑘−1|𝑘−1

(︀
x𝑖𝑘−1

)︀
dx𝑖𝑘−1, (4.54)

with measurement 𝑗.
Next, the marginal posterior for each object is merged into a single density. This is achieved
by using moment matching, i.e., matching the mean and covariance with respect to the
minimization of the Kullback-Leibler divergence [11]. The resulting merged Gaussian
density of object 𝑖 then reads

𝑝𝑖, JPDA
𝑘|𝑘

(︀
x𝑖𝑘

)︀
=ℳ

(︁
𝑝𝑖,𝛽1:𝑘
𝑘|𝑘

(︀
x𝑖𝑘

)︀)︁
= 𝒩

(︁
x𝑖𝑘; x̄𝑖, JPDA

𝑘|𝑘 ,P𝑖, JPDA
𝑘|𝑘

)︁
(4.55)

where ℳ denotes the merging function, and x̄𝑖, JPDA
𝑘|𝑘 and P𝑖 JPDA

𝑘|𝑘 are the mean and
covariance of the merged density, respectively. Figure 4.15 exemplary visualizes the
explained concept of hypotheses merging in the JPDA algorithm using a scenario with two
propagating objects and applied gating.
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z𝑗𝑘

x̂𝑖𝑘|𝑘−1

x̂𝑖𝑘|𝑘−1𝑘|

(a) Two propagating objects at time 𝑘 with 𝑚𝑘 surrounding measurements z𝑗
𝑘 for

𝑗 = 1, . . . , 𝑚𝑘. The black ellipses describe the validation regions (gates) centered at
the predicted object detections x̂1

𝑘|𝑘−1 and x̂2
𝑘|𝑘−1, respectively. Measurements outside

the validation regions are disregarded. Measurements inside a validation region could
originate from the corresponding object or clutter. Measurements that lie at the in-
tersection of the ellipses could originate from one of the objects or clutter. The color
intensities of the measurement-to-track hypotheses refer to the marginal association
probabilities 𝛽𝑖,𝑗

𝑘 , i.e., the probability that object x̂𝑖
𝑘|𝑘−1 is associated to measurement

z𝑗
𝑘 after applying gating. The blue and orange ellipses, respectively, exemplary represent

the merged mean (triangles) and covariance of the updated marginal posterior in the
sense of JPDA.

𝑖 = 1, exact
𝑖 = 2, exact
𝑖 = 1, JPDA
𝑖 = 2, JPDA

1

0.8

0.6

0.4
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𝑖
( x̂𝑖 𝑘

|𝑘
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(b) Marginal posterior density functions of the two objects using JPDA. The marginal
posterios are multi-modal distributions due to the incorporation of weighted marginal
association hypotheses. The idea in JPDA is to approximate the marginal posteriors
with Gaussians by merging all hypotheses into a single one.

Figure 4.15: Exemplary illustration of the hypotheses merging and density approximation in
the JPDA algorithm.
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4.4 Kinematic-based pedestrian tracking
The results of radar-based pedestrian detection presented so far in this thesis illustrate the
tremendous potential of 𝜇D information concerning a targeted function for pedestrians’
enhanced state estimation in road traffic. In contrast to previous approaches, which consider
the pedestrian as a holistic object, this work pursues the goal of a segmented limb specific
tracking based on high-resolution radar point clouds. The preceding subchapters lay the
mathematical foundations for developing a tracking algorithm in multiple-object scenarios.
The following approach’s core idea consists of designing a motion model that purposefully
maps the complex kinematic behavior of a body segment in several dimensions and enables
its tracking through statistical filtering. More precisely, we approximate the feets’ spatial
locomotion using a kinematic model that variably adapts to the average walking velocity.
The reason for tracking the foot motion instead of other limbs lies in its overall significance.
The interaction of the stride length and the stride frequency regulates the average walking
velocity of a pedestrian [59]. Consequently, in disparity to other limbs, the foot behavior
determines the pedestrians’ overall macroscopic motion and indicates initiating movement
changes through the stride parameters and foot positioning. Moreover, as seen in this work,
the foot motion reveals the largest Doppler amplitudes and the highest spatial extension
during the walking phase, making the foot movement best distinguishable from other
scatter clusters. Particularly in critical situations when the distance between the sensor
carrying vehicle and an approaching pedestrian becomes small, the major part of measurable
reflections emanate from the lower body. Besides the low installation heights of SRRs,
this is mainly due to their antenna characteristics. While their azimuthal beamwidths
are typically enlarged, they show relatively narrow elevational beamwidths leading to a
concentrated perception of targets with similar height.
The usage of an elevation-resolving radar antenna aperture allows the perpendicular
segmentation of the human body and, thus, the extraction of the leg movement’s scattered
points. The reflections are subsequently assigned to the respective leg using a suitable
data association procedure yielding the position, velocity, and kinematic knowledge of
the left and right foot, respectively. Contrary to what is known from the literature, we
will demonstrate that suboptimal first-order approximations, such as the EKF, and the
integration of the 𝜇D detections into the measurement tracking vector are well suited to
describe nonlinear kinematics. To the author’s best knowledge, this is the first approach to
use human kinematics to track microscopic motion based on 𝜇D data of a high-resolution
automotive short-range radar to reveal behavior indications during single measurement
cycles. The approach provides a computationally efficient system that is suitable for the
embedded use in automotive series sensors.

4.4.1 Kinematic modeling

This subsection draws on the human kinematics given in Subsection 4.1.1. As mentioned,
the body’s motion possesses a periodically repeating locomotion in the gait cycle, which
consists of a stance and swing phase where the legs show acceleration and deceleration
motion patterns. This work’s motion model development for the approximation of the
foot movement is established on the global human walking model of Boulic, Thalmann,
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and Thalmann [21] which was adapted and implemented by Chen [25]. They presented
a mathematical parameterization emanated from empirical biomechanical data. The
proposed model produces spatial, kinematic, and joint parameters of a person’s average
walking behavior for any point in time. By doing so, the model represents a universally
applicable motion model that appears free of any personalized movement characteristics.
The global human walking model is designed in analogy to the Denavit-Hartenberg (DH)
convention. The DH convention is a standard kinematic expression that defines the transfer
of spatial coordinate systems within kinematic chains [47]. The DH convention is widely
employed in robotics and simplifies the forward kinematics of spatial joint parameters.
Each leg of the human walking model consists of three joints connected by rigid links.
These possess the hip, knee, and ankle joints whose DH connections are systematically
pictured in Figure 4.16. Each joint coordinate system is designed based on the following
beliefs:

1) The 𝑧𝑖 axis points along the axis of rotation of the 𝑖th joint.
2) The �̆�𝑖 axis goes along the common normal of the two joint axes 𝑧𝑖−1 and 𝑧𝑖.
3) The 𝑦𝑖 axis completes the right handed coordinate system.

The DH parameters are emanated from the common normal �̆�𝑖 between successive 𝑧 axes.
The resulting �̆�𝑖 axis is collinear with the common normal. With these joint axes, four
parameters specify the joint-to-joint transformation: 𝑟, 𝜓, �̆�, �̆�. Here, 𝜓 is the angle about
the previous 𝑧 to align its �̆� with the new source. �̆�𝑖 is the length along the rotated �̆�𝑖−1
axis. Finally, �̆� spins around the new �̆� axis to set 𝑧 in its expected direction. Parallel 𝑧

𝑦𝑖

𝑧𝑖
�̆�𝑖

𝜓𝑖+1

𝑧𝑖+1

�̆�𝑖+1

𝑧𝑖

�̆�𝑖+1

𝑧𝑖+2

�̆�𝑖+2

𝑦𝑖+2

𝑟𝑖+1

�̆�𝑖+1

�̆�𝑖+2

𝑦𝑖+1

𝑦
𝑧

�̆�

Figure 4.16: A systematic description of the motion relationships of a human leg (translations
and rotations in the forward movement direction) between adjacent joints connected by rigid
links in accordance with the DH convention.
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axes formulate a special case. Since parallel 𝑧 axes have an infinite number of common
normals, one can select any suitable 𝑟 value. The other parameters are determined as
before. �̆� is zero in this case.
Accordingly, a human body is modeled as joints and corresponding rigid links providing
six degrees of freedom per element, i.e., three Cartesian position coordinates in 3-D space
and three Euler angles of rotation. Accurately, 12 trajectories, each relying on the average
walking velocity, represent the motion of one gait cycle for the complete body [21]. Six
trajectories are expressed by sinusoidal functions (one of them as piecewise function)
comprising the translational and rotational movement of the hip, and six trajectories are
defined by cubic spline functions based on extremities’ control points describing the fexing
of joints.
Given an average walking velocity 𝑣, the relative length of a gait cycle can be empirically
formulated by [21], [59]

𝑟c = 1.346 ·
√

𝑣. (4.56)

From that, the gait can be divided in the time duration of single-leg support 𝑡s, i.e. the
swing phase, and in the time duration of double support 𝑡ds, i.e., the stance phase according
to

𝑡s = 0.752𝑡c − 0.143 (4.57)
𝑡ds = 0.252𝑡c − 0.143, (4.58)

where 𝑡c = 𝑟c/𝑣 denotes the cycle duration. Assuming a body-fixed coordinate system
centered at the spine’s origin, the translational motion trajectories are:

1) Vertical translation: the vertical offset from the spine’s origin

𝑡𝑟vertical = −𝑎𝑣 + 𝑎𝑣 sin (2𝜋(2𝑡r − 0.35)) , (4.59)

where 𝑎𝑣 = 0.015𝑣, and 𝑡r is the normalized relative time.

2) Lateral translation: the lateral oscillation from the spine’s origin

𝑡𝑟lateral = −𝑎𝑙 sin (2𝜋(𝑡r − 0.1)) , (4.60)

where

𝑎𝑙 =
{︃
−0.128𝑣2 + 0.128𝑣 if 𝑣 < 0.5
−0.032 if 𝑣 > 0.5.

3) Forward/backward translation: the acceleration and deceleration processes occurring
while beginning and finishing a step

𝑡𝑟F/B = −𝑎F/B sin
(︀
2𝜋(2𝑡r + 2𝜙F/B)

)︀
, (4.61)

where

𝑎F/B =
{︃
−0.084𝑣2 + 0.084𝑣 if 𝑣 < 0.5
−0.021 if 𝑣 > 0.5,
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and 𝜙F/B = 0.625− 𝑡s.

The trajectories describing the hip’s rotational movements are:

1) Forward/backward rotation: the back’s flexing movement relative to the hip beafore
each step

𝑟𝑜F/B = −𝑎𝑟F/B + 𝑎𝑟F/B sin (2𝜋(2𝑡r − 0.1)) , (4.62)

where

𝑎𝑟F/B =
{︃
−8𝑣2 + 8𝑣 if 𝑣 < 0.5
2 if 𝑣 > 0.5.

2) Left/right rotation: the flexing movement that rotates the hip on the side of the
swinging leg. The piecewise function is given by

𝑟𝑜L/R =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−𝑎𝑟L/R + 𝑎𝑟L/R cos (2𝜋(10𝑡r/3)) for 0 ≤ 𝑡r < 0.5
−𝑎𝑟L/R − 𝑎𝑟L/R cos (2𝜋(10(𝑡r − 0.15)/7)) for 0.15 ≤ 𝑡r < 0.5
−𝑎𝑟L/R − 𝑎𝑟L/R cos (2𝜋(10(𝑡r − 0.5)/3)) for 0.5 ≤ 𝑡r < 0.65
−𝑎𝑟L/R + 𝑎𝑟L/R cos (2𝜋(10(𝑡r − 0.65)/7)) for 0.65 ≤ 𝑡r < 1,

where 𝑎𝑟L/R = 1.66𝑣.
3) Torsion rotation: the hip’s rotation relative to the spine

𝑟𝑜Torsion = −𝑎𝑟Torsion cos (2𝜋𝑡r) , (4.63)

where 𝑎𝑟Torsion = 4𝑣.

Three of the six flexing trajectories characterize the lower body’s motion. They are
constructed by cubic spline functions fitted to the joints’ control points [21]. Figure
4.17 depicts the lower body motion trajectories for one gait cycle, including the given
translational, rotational, and flexing functions of the hip, knee, and ankle, respectively.
Those trajectories are subsequently utilized to compute the location of reference points on
the human body in 3-D space. For the lower body, this is achieved by recursively employing
the Euler angles rotation matrix to every joint up to the hip at each frame. By that, each
flexing motion directly influences the previously calculated flexing motion [21], [25]. The
result reveals the human lower body’s integrated spatial movement for a non-moving model
(with respect to the environment) on which the following kinematic-based leg tracking
approach is based.

4.4.2 Tracking motion model
Motion models express the state transition probability 𝑝 (x𝑘|x𝑘−1) in the prediction step
and hence are, in in combination with measurement models, crucial elements concerning the
implementation of any Bayesian filtering algorithm. Generally, a reasonable probabilistic
model’s goal may appear to accurately model the distinct kinds of uncertainty in the
system’s actuation and perception.
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Figure 4.17: Lower body motion trajectories of the human walking model [25].
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The motion model’s development is carried out in accordance to the leg’s motion behavior,
i.e., the ankle’s position displacement within a gait cycle established on the global human
walking simulation presented in the previous Subsection 4.4.1. Following up the integrated
spatial movement of the lower body, the displacement functions of one ankle in �̆� and 𝑦
direction are from now on denoted as 𝑓 �̆�Ankle(𝑡) and 𝑓𝑦Ankle(𝑡), respectively, and illustrated
in Figure 4.18. Note that the average walking velocity 𝑣 complies to 1.4 m/s. The right-
handed body coordinate system is centered at the spine’s origin with directions shown in
Figure 4.16. As shown in Figure 4.18, the modeled displacement functions of the ankle
describe periodic curves with apparently trigonometric signal components. A convenient
way to sufficiently approximate 𝑓 �̆�Ankle(𝑡) and 𝑓𝑦Ankle(𝑡) can be realized by Fourier synthesis.
The Fourier series describes a synthesized periodic function consisting of weighted harmonic
sinusoids whose general form can be given by

𝐹𝑁𝜅(𝑡) := 𝑎0
2 +

𝑁𝜅∑︁
𝜅=1

(𝑎𝜅 cos (𝜅𝑡) + 𝑏𝜅 sin (𝜅𝑡)) for 𝑎𝜅, 𝑏𝜅 ∈ R. (4.64)

If we apply the Fourier synthesis process to each of the displacement functions we get the
following approximations

𝑓 �̆�Ankle (𝑡) ≈ 𝑎�̆�0
2 +

𝑁𝜅∑︁
𝜅=1

(︁
𝑎�̆�𝜅 cos (𝜅𝑡) + 𝑏�̆�𝜅 sin (𝜅𝑡)

)︁
⏟  ⏞  

f �̆�
Ankle(𝑡)

(4.65)

𝑓𝑦Ankle (𝑡) ≈ 𝑎𝑦0
2 +

𝑁𝜅∑︁
𝜅=1

(︁
𝑎𝑦𝜅 cos (𝜅𝑡) + 𝑏𝑦𝜅 sin (𝜅𝑡)

)︁
⏟  ⏞  

f𝑦
Ankle(𝑡)

. (4.66)

With three superimposed harmonic terms, 𝜅 = 3, each approximation function possesses
seven Fourier coefficients in total. As can be seen in Figure 4.18, the three-term series
expansion displays the actual displacement functions appropriately well. More precisely,
the approximation 𝑓 �̆�Ankle (𝑡) depicts both the leg’s initial sinusoidal-like extension up to
about 0.55 s and the subsequent almost linear stance phase until the end of the cycle. The
same applies for 𝑓𝑦Ankle (𝑡) where the overall course is satisfactorily represented. The overall
root mean square error (RMSE) between the approximations and the simulated functions
created with 𝑣 = 1.4 m/s are 0.011 m in �̆�, and 0.003 m in 𝑦 direction, respectively. The
fact that the three-term Fourier series already match with high compliance is especially
advantageous regarding low computational demand.
Since 𝑓 �̆�Ankle(𝑡) and 𝑓𝑦Ankle(𝑡) depend on the average walking velocity, we strive for a variable
motion model that takes kinematic deviations into account. Since the average walking
velocity denotes a product of the stride length and the stride frequency, a suitable motion
model must consider these parameters in the best possible way. For that, we add additional
global parameters to the approximations that raise the model’s variability greatly. The first
parameter is a global amplitude, �̃�, that adjusts the model to modifications in walking speed
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and specifically manages the step length in �̆� direction. Secondly, a frequency parameter,
�̃�, is introduced to reflect the relationship between walking velocity and stride frequency.
Finally, a third parameter, 𝜙, is applied to control the foot movement’s overall phase
position in �̆� direction. By that, we derive a single motion model that describes the motion
of both feet simultaneously by a relative to each other shifted phase.
Since the time vector 𝑡 is subject to a linear propagation belief depending on the average
walking velocity to which the model was initially approximated, an additional term in the
form of the sampling interval, 𝑇 = 𝑡𝑘 − 𝑡𝑘−1, with time index 𝑘 is incorporated into the
phase, which entitles the model to incrementally shift as a function of time. Then, the
final discretized motion model propagation reads

f �̆�𝑘 = �̃�𝑘−1

[︃
𝑁𝜅∑︁
𝜅=1

(︂
𝑎�̆�𝜅 cos (�̃�𝑘−1𝜅 (𝑡𝑘 − 𝜙𝑘−1))

+𝑏�̆�𝜅 sin (�̃�𝑘−1𝜅 (𝑡𝑘 − 𝜙𝑘−1))
)︂

+ 𝑎�̆�0
2

]︃ (4.67)

f𝑦𝑘 = �̃�𝑘−1

[︃
𝑁𝜅∑︁
𝜅=1

(︂
𝑎𝑦𝜅 cos (�̃�𝑘−1𝜅 (𝑡𝑘 − 𝜙𝑘−1))

+𝑏𝑦𝜅 sin (�̃�𝑘−1𝜅 (𝑡𝑘 − 𝜙𝑘−1))
)︂]︃
± 𝑎𝑦0

2 .
(4.68)

Note that �̃� has no influence on the vertical displacement factor ±𝑎𝑦0/2 in (4.68). Contrary
to (4.67), (4.68) shall display this average displacement in the case of 𝑣 = 0 to assure the
ankle’s initial location relative to the body’s vertical axis. The algebraic sign ± marks
whether f𝑦𝑘 is referring to the left or the right leg due to axial symmetry.
For validation purposes, nonlinear least-squares analyses are performed to analyze the
model’s adaption ability regarding different average walking velocities. The global parame-
ters, �̃� = (�̃�, �̃�, 𝜙)𝑇 , of the motion models are selected in such a way that they approximate
the simulated displacement functions, 𝑓𝜓,𝜂Ankle(𝑡), in the least-squares sense, meaning that
the sum of residual squares is minimized. The minimization procedure corresponds to (3.6)
in Subsection 3.2.1. Here, 𝜓 and 𝜂 indexing the motion dimension and the selected average
walking velocities of the simulated functions, respectively. The parameters that minimize
𝜒(�̃�) are supposed to be the best fit parameters. Table 4.2 displays the RMSE between
the approximations, f𝜓,𝜂(𝑡), and the functions, 𝑓𝜓,𝜂Ankle(𝑡), approximated for diverse walking
velocities in �̆� and 𝑦 dimension. With selected velocities, 𝑣, from 0.6 to 2.6 m/s the average
range of pedestrian walking speeds of 1.20 to 1.50 m/s is abundantly covered [67]. With a
median RMSE for all velocities of 0.014 m in �̆� and 0.009 m in 𝑦 direction, respectively, the
suggested approach emphasizes its suitability as a kinematically variable motion model for
the leg tracking approach.
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Figure 4.18: Integrated spatial movement displacement of the left ankle. (a) Relative cycle
starting position of the left ankle. (b) Movement displacement ( ) in �̆� and ( ) in 𝑦
direction of one gait cycle with 𝑣 = 1.4 m/s within the body coordinate system with the
corresponding three-term Fourier series approximations ( ) in �̆� and ( ) in 𝑦, respectively.

Table 4.2: Results of the motion model evaluation.

𝑣 in [m/s] 0.6 1.0 1.4 1.8 2.2 2.6
RMSEf x̆ in [m] 0.012 0.011 0.011 0.017 0.029 0.042
RMSEf y̆ in [m] 0.021 0.013 0.003 0.014 0.027 0.041

4.4.3 4-D radar point cloud
Given the progressive development of HAD, short-range applications are becoming in-
creasingly crucial for current ADAS research. Especially in confusing urban areas, a
detailed environmental perception of the vehicle is necessary. Previous radar systems in
the automotive field usually did not provide elevation measuring ability, mainly due to cost
and sensor size reasons. Moreover, coming from a classical long-range domain, horizontal
angular information outranks vertical information in most radar-based applications [29].
However, next-generation radar sensors have advanced antenna structures that significantly
improve environmental detection for active safety systems. Particularly in pedestrians, the
elevation dimension allows exploiting the entire 𝜇D signature characteristics and lays the
foundation for sophisticated limb tracking approaches for advanced pedestrian safety.
Up to this point, only the azimuth angle was considered in all experimental results, which
contain angular information. Now, we will extend the dimensionality of the detections by
the elevation angle utilizing an elevation-resolving aperture, including horizontally and
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diagonally aligned receiving antennas that provide information of range 𝑟, Doppler 𝑣𝐷,
azimuth angle 𝜑, and elevation angle 𝜖 for each detection as shown in Figure 4.19(a).
The used radar-frontend comprises 16 receiving (RX) antennas with spacing 𝑑 = 𝜆/2
subdivided into two arrays of 12 and 5 elements, respectively, whereas both arrays utilize
the overlapping antenna. Digital beamforming is performed for both arrays separately
according to the principle of DOA given in Subsection 2.2.3. Subsequently, the position
(range 𝑟 and angle 𝛹) of the most energetic scatterer is determined. Note that the resulting
angular spectrum of the diagonally aligned antenna elements may possess both azimuth
and elevation target information. In order to determine the actual height of a target, 𝑧T,
the geometry of the antenna structure is exploited. As can be seen from the antenna
positions, the two array planes are rotated by 45∘ to each other, which means that the
calculated target positions are located on two planes which are rotated by 45∘. As shown
in Figure 4.19(b), the positions are 𝑦1 = 𝑟 · sin(𝛹1), and 𝑦2 = 𝑟 · sin(𝛹2). Note that 𝑦1
already corresponds to the target’s 𝑦-position, 𝑦T, in the radar’s coordinate system. 𝑧T is
calculated with the help of 𝑦2, where

√
2 results from the rotation by 45∘. Thus, 𝑦2 can be

regarded as one side of a square whose diagonal equals to
√

2𝑦2. From the illustration it
gets apparent that 𝑧T = 𝑦1−

√
2𝑦2. Finally, the target’s 𝑥-coordinate, 𝑥T, can be calculated

using 𝑥T = 𝑟 · cos(𝛹1).

4.4.4 Tracking implementation
In the following, the radar-based pedestrian tracking approach is particularized in detail.
The algorithm consists of a nested tracking structure comprising upper body (ub) and lower
body (lb) tracking procedures. For this intent, in each frame, the pedestrian’s detections
resulting from the described signal processing steps are assigned to the upper and lower
body, respectively. Detections whose height is above the sensor height, are assigned to the
upper body’s detections Zub, and detections whose height is below the sensor height are
assigned to the lower body’s detections Zlb. An architectural description of the pedestrian
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Figure 4.19: Physical representation of the measuring principles of range 𝑟, Doppler 𝑣𝐷,
azimuth angle 𝜑, and elevation angle 𝜖. (a) Uniform linear antenna array including horizontally
and diagonally aligned RX antennas. (b) Principle of the height determination.
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tracking system is given in Figure 4.20. As can be seen, the entire upper body’s radar
detections Zub including arm, torso, and head reflections are forwarded to the upper body
Kalman filter (Upper body KF). In contrast, the lower body detections Zlb are available
for the data association module that computes the marginal association probabilities in
JPDA’s sense resulting in probabilistical weights used in the lower body trackers’ update
steps. The lower body tracking consists of two parallely propagating EKFs using the
developed kinematic-based motion model from Subsection 4.4.2. Upper body tracking
is performed using a linear Kalman filter with a constant-acceleration (CA) model. The
upper body’s prediction is subsequently added to the local feet movement’s prediction
in the EKF of the left (Left foot EKF) and right foot (Right foot EKF), respectively,
to display the actual locomotion relatively to the environment. JPDA assigns the lower
body’s detections to the respective foot, which enables the tracking of both feet separately
and allows the specific recognition of behavioral indications initiated by the leg motion in
addition to the precise estimation of the foot’s position, velocity, and kinematic parameter.
In the following, the mathematical implementation of the pedestrian tracking algorithm
is provided by covering the essential tracking steps of prediction, data association, and
update.

1) Prediction step: Assuming a linear Gaussian system with mean xub
𝑘−1|𝑘−1 and covari-

ance Pub
𝑘−1|𝑘−1 at time 𝑘 − 1, the upper body’s state and measurement functions

propagate in the sense of a linear Kalman filter which reads

x̂ub
𝑘|𝑘−1 = Fub

𝑘−1x̂ub
𝑘−1|𝑘−1 + vub

𝑘−1 (4.69)
zub
𝑘 = Hub

𝑘 x̂ub
𝑘|𝑘−1 + eub

𝑘 , (4.70)

where the state vector

x̂ub
𝑘|𝑘−1 = [𝑥ub, 𝑣ub

𝑥 , 𝑎ub
𝑥 , 𝑦

ub, 𝑣ub
𝑦 , 𝑎ub

𝑦 ]𝑇 , (4.71)

follows a CA model in the 𝑥-𝑦 plane of the sensor coordinate system as shown in
Figure 4.19 and comprises estimated information about the upper body’s position,
velocity, and acceleration. The measurement vector

zub
𝑘 = [𝑟ub

𝑘 cos(𝜑ub
𝑘 ) 𝑟ub

𝑘 sin(𝜑ub
𝑘 )]𝑇 , (4.72)

contains the averaged Cartesian coordinates of the upper body detections Zub
𝑘 as

functions of averaged range 𝑟𝑘 and averaged azimuth angle 𝜑𝑘. The idea is to
overcome the nonlinearity of the measured variables 𝑟𝑘 and 𝜑𝑘 by using so-called
pseudo-coordinates. The measurement noise variance matrix is empirically set to be

Rub
𝑘 =

(︂
𝜎2
𝑥 0

0 𝜎2
𝑦

)︂
with 𝜎𝑥 = 𝜎𝑦 = 0.5𝑚. (4.73)

The EKFs of the left and right foot, respectively, evolve according to the discretized
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state transition model

x̂𝑖,lb𝑘|𝑘−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥𝑖,lb

𝑦𝑖,lb

𝑣𝑖,lb𝑥

𝑣𝑖,lb𝑦

�̃�𝑖

𝜙𝑖

�̃�𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜉𝑥,ub
𝑘|𝑘−1 + f 𝑖,𝑥𝑘−1|𝑘−1
𝜉𝑦,ub
𝑘|𝑘−1 + f 𝑖,𝑦𝑘−1|𝑘−1

d𝑥𝑖,lb/d𝑇
d𝑦𝑖,lb/d𝑇
�̃�𝑖𝑘−1|𝑘−1
𝜙𝑖𝑘−1|𝑘−1(︁

𝑣ub2
𝑥 + 𝑣ub2

𝑦

)︁1/2
/𝑣init

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.74)

with

𝜉𝑥,ub
𝑘|𝑘−1 = 𝑥ub + 𝑣ub

𝑥 𝑇 + 𝑎ub
𝑥

𝑇 2

2 (4.75)

𝜉𝑦,ub
𝑘|𝑘−1 = 𝑦ub + 𝑣ub

𝑦 𝑇 + 𝑎ub
𝑦

𝑇 2

2 , (4.76)

and

f 𝑖,𝑥𝑘−1|𝑘−1 = f 𝑖,�̆�𝑘−1|𝑘−1 cos(𝛼ub
𝑘 )− f 𝑖,𝑦𝑘−1|𝑘−1 sin(𝛼ub

𝑘 ) (4.77)

f 𝑖,𝑦𝑘−1|𝑘−1 = f 𝑖,𝑦𝑘−1|𝑘−1 cos(𝛼ub
𝑘 ) + f 𝑖,�̆�𝑘−1|𝑘−1 sin(𝛼ub

𝑘 ), (4.78)

expressing the Cartesian coordinates of the local foot propagation transformed from
the local body coordinate system, (�̆�, 𝑦), into the sensor coordinate system, (𝑥, 𝑦),
where

𝛼ub
𝑘 = tan−1

(︃
𝑣ub
𝑦

𝑣ub
𝑥

)︃
|𝛼𝑘=𝛼𝑘|𝑘−1 , (4.79)

is the predicted orientation of the upper body. Note that the upper body’s linear
propagation in (4.75) and (4.76) is added to the lower body’s transformed local
position in (4.74) to realize actual locomotion with respect to the environment. The
velocities 𝑣𝑖,lb𝑥 and 𝑣𝑖,lb𝑦 are obtained by differentiating 𝑥𝑖,lb and 𝑦𝑖,lb with respect to
𝑇 . The kinematic parameters �̃�𝑖 and 𝜙𝑖 are not subject to a specified dependence.
Preferably, the most convincing results are accomplished by keeping them variable
throughout the tracking routine. The global amplitude �̃�𝑖 relies on the normalized
velocity, where 𝑣init is a normalization factor referring to the velocity the motion
model was approximated initially. The covariance predictions for both EKFs are
performed as in (4.25) according to the state vector’s local linearization principle in
(4.30) given by

P𝑖,lb
𝑘|𝑘−1 = F̂𝑖,lb

𝑘−1P𝑖,lb
𝑘−1|𝑘−1F̂𝑖,lb, 𝑇

𝑘−1 + Q𝑖,lb
𝑘−1, (4.80)

where

F̂𝑖,lb
𝑘−1 =

𝜕𝑓 𝑖,lb𝑘−1(x𝑖,lb𝑘−1)
𝜕 (𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, �̃�, 𝜙, �̃�) |x𝑖,lb

𝑘−1=x̂𝑖,lb
𝑘−1|𝑘−1

, (4.81)
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denotes the Jacobian matrix containing the first-order partial derivatives of 𝑓 𝑖,lb𝑘−1(x𝑖,lb𝑘−1)
with respect to x𝑖,lb𝑘−1. The measurement vector zlb

𝑘 at time 𝑘 provides the lower body’s
detections and reads

zlb
𝑘 =

[︁
𝑟lb
𝑘 , 𝜑

lb
𝑘 , 𝑣

𝐷,lb
𝑘

]︁𝑇
. (4.82)

The corresponding measurement covariance matrix Rlb
𝑘 takes the form

Rlb
𝑘 =

⎛⎝𝜎2
𝑟 0 0

0 𝜎2
𝜑 0

0 0 𝜎2
𝑣𝐷

⎞⎠ . (4.83)

The measurement function ℎ𝑖,lb𝑘 (x̂𝑘|𝑘−1) maps the predicted state x̂𝑘|𝑘−1 into the
corresponding measurement space according to

⎛⎝ 𝑟lb

𝜑lb

𝑣𝐷,lb

⎞⎠ ℎ𝑖,lb
𝑘 (x𝑘)
←−−−−−

⎛⎜⎜⎝
𝑥𝑖,lb

𝑦𝑖,lb

𝑣𝑖,lb𝑥

𝑣𝑖,lb𝑦

⎞⎟⎟⎠ ℎ𝑖,lb𝑘 (x𝑘) =

⎛⎜⎜⎜⎝
√︀
𝑥2, 𝑖,lb + 𝑦2, 𝑖,lb

tan−1
(︁
𝑦𝑖,lb

𝑥𝑖,lb

)︁
𝑥𝑖,lb𝑣𝑖,lb

𝑥 +𝑦𝑖,lb𝑣𝑖,lb
𝑦√

𝑥2, 𝑖,lb+𝑦2, 𝑖,lb

⎞⎟⎟⎟⎠ |x𝑘=x̂𝑘|𝑘−1 . (4.84)

The local linearization of ℎ𝑖,lb𝑘 (x̂𝑘|𝑘−1) yields the Jacobian Ĥ𝑖,lb
𝑘 evaluated at x̂𝑘|𝑘−1

Ĥ𝑖,lb
𝑘 =

𝜕ℎ𝑖,lb𝑘 (x𝑖,lb𝑘 )
𝜕 (𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, �̃�, 𝜙, �̃�) |x𝑖,lb

𝑘 =x̂𝑖,lb
𝑘|𝑘−1

. (4.85)

2) Data association: To reduce the association computation for the lower bodys’ de-
tections, we first prune hypotheses with small weights, i.e., ellipsoidal gating for
Gaussian densities is used as introduced in Subsection 4.3.6. By doing so, unlikely
data associations are disregarded, which reduces the number of hypotheses in the
EKFs posterior object densities. The ellipsoidal gating distance for detection z𝑗𝑘 ∈ Zlb

𝑘

and object 𝑖 under hypothesis ℎ can be expressed by [11]

𝑑2
𝑖,𝑗,ℎ =

(︀
z𝑗𝑘 − Ĥ𝑖,ℎ,lb

𝑘 x̂𝑖,ℎ,lb𝑘|𝑘−1⏟  ⏞  
𝜀𝑖,𝑗

𝑘

)︀𝑇 (︀S𝑖,ℎ,lb𝑘

)︀−1(︀z𝑗𝑘 − Ĥ𝑖,ℎ,lb
𝑘 x̂𝑖,ℎ,lb𝑘|𝑘−1⏟  ⏞  
𝜀𝑖,𝑗

𝑘

)︀
. (4.86)

Consequently, if 𝑑2
𝑖,𝑗,ℎ ≤ 𝛾, where 𝛾 denotes the gating threshold, z𝑗𝑘 is considered as

possible detection from object 𝑖 under hypothesis ℎ, and pruned otherwise. Based on
the valid detections the marginal association probabilities are computed as presented
in Subsubsection 4.3.7.

3) Update step: The update is performed in accordance to JPDA. For that, an expected
innovation, 𝜀𝑘, is calculated as the sum over all valid detections, 𝑚𝑘, of the individual
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innovations, 𝜀𝑖,𝑗𝑘 , weighted by the marginal association probabilities, 𝛽𝑖,𝑗𝑘 , given by

𝜀𝑘 =
𝑚𝑘∑︁
𝑗=1

𝛽𝑖,𝑗𝑘 𝜀𝑖,𝑗𝑘 . (4.87)

The updated merged mean and covariance for object 𝑖 include the expected innovation
and can be expressed by the Kalman update

x̂𝑖,lb𝑘|𝑘 = x̂𝑖,lb𝑘|𝑘−1 + K𝑖,lb
𝑘 𝜀𝑘 (4.88)

P𝑖,lb
𝑘|𝑘 = 𝛽𝑖,0𝑘 P𝑖,lb

𝑘|𝑘−1 +
(︁

1− 𝛽𝑖,0𝑘
)︁

P̄𝑖,lb
𝑘 + P̃𝑖,lb

𝑘 , (4.89)

with

P̄𝑖,lb
𝑘 = P𝑖,lb

𝑘|𝑘−1 −K𝑖,lb
𝑘

(︁
Ĥ𝑖,lb
𝑘 P𝑖,lb

𝑘|𝑘−1Ĥ𝑖,lb𝑇

𝑘 + R𝑖,lb
𝑘

)︁(︁
K𝑖,lb
𝑘

)︁𝑇
(4.90)

P̃𝑖,lb
𝑘 = K𝑖,lb

𝑘

⎛⎝⎡⎣𝑚𝑘∑︁
𝑗=1

𝛽𝑖,𝑗𝑘 𝜀𝑖,𝑗𝑘

(︁
𝜀𝑖,𝑗𝑘

)︁𝑇⎤⎦− 𝜀𝑘𝜀
𝑇
𝑘

⎞⎠(︁
K𝑖,lb
𝑘

)︁𝑇
. (4.91)

Note that P𝑖,lb
𝑘|𝑘 denotes a sum of three parts: The first part is the prior covariance

weighted with the probability of no association 𝛽𝑖,0𝑘 . The second part is the covariance,
P̄𝑖,lb
𝑘 , resulting from updating with the detections weighted with the probability of

associating to any detections 1− 𝛽𝑖,0𝑘 . The final component is the covariance, P̃𝑖,lb
𝑘 ,

describing the spread of innovations using the gated detections.
The updated mean and covariance for object 𝑖 represent the mean and covariance
of the marginal posterior mixture density in (4.53). Finally, the covariance update
of the upper body tracker is carried out as in the standard Kalman filter given in
Subsection 4.3.3, which completes the proposed model-based pedestrian tracking
algorithm cycle.

4.4.5 Experimental results
Radar measurements are conducted with a microwave radar sensor (INRAS radarlog) with
flexible chirp sequence parametrization in Table 4.3 and raw data access. The parametriza-
tion complies with current series radars for short-range applications. Furthermore, the
Xsens MTw Awinda MoCap sytstem is used to reference the proposed tracking algorithm
applied in two different movement scenarios. The following results are achieved utilizing
the entire model-based pedestrian tracking approach provided in the previous subsections.

Longitudinal trajectory
Figure 4.21 illustrates the time-range-dependent 𝜇D spectrum of a pedestrian walking
radially towards the radar. The depicted radar detections correspond to the lower body’s
reflections that mainly emanate from the legs. The periodic behavior of the feet motion is
clearly observable and hence confirms the origin’s assumption. While (a) displays mostly
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Figure 4.20: An architectural description of the pedestrian tracking system with time index
𝑘 comprising a linear Kalman filter (Upper body KF) for the upper body’s detections, two
extended Kalman filters for the left foot (Left foot EKF) and the right foot (Right foot EKF),
respectively, and a joint probabilistic data association (JPDA). Output are foot hypotheses
containing position, velocity, and kinematic estimates.

the strides’ Doppler amplitudes with magnitudes between 0 m/s, and 5 m/s, in (b), the
stance and swing phases of a gait cycle become recognizable. Besides the backscattering,
the feet references (Ref LF and Ref RF) recorded by the motion capture sensors and the
tracking results for both feet (EKF LF and EKF RF) are shown.
Similarly to the results in Subsection 4.1.3, the perceptible discrepancy between the feet’s
reference amplitudes and the Doppler amplitude can be explained both by the positioning
of the accelerometers and due to occurring signal processing effects for extended objects.
The feet’s tracking output, however, matches the course of the measured radar detections
almost entirely. At the end of each swing phase, small pronounced periodical divergences
are discernible, where the trackers assume positive velocities for a moment. This effect can
be explained with the human motion simulation on which the model function is based. By
adjusting the tracker’s process noise, the overall divergence extent can be reduced. Table
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4.4 displays the prevalent root mean square errors (RMSE) between the tracker outputs
and the feets’ MoCap data in each step of time of the longitudinal walking scenario from
Figure 4.21 with given sensor resolutions in radial range and Doppler for comparability.
Note that the tracker outputs incorporate extent information due to the objects’ extended
appearance. Hence, the RMSE as a standard metric for the performance evaluation of
point targets may not possess a superior measure capability in the present instance [43].

Crossing trajectory with sudden turn
Regarding the motivation of this work, it is of particular interest to offer a procedure
that, in addition to solely tracking feet motions and their consequential much-improved
localization, possesses indications for a pedestrian’s behavioral change. Sudden and
spontaneous behavior changes may rapidly lead to possible collisions and must be detected
as premature as feasible. Consequently, the proposed methodology covers a highly dynamic
maneuver in which a pedestrian first approaches the sensor in a diagonal orientation and
then abruptly changes his direction by 90∘. Generally, lateral walking poses challenges
for the tracking approach. Due to the Doppler effect’s orientation dependence, non-radial
movements are accompanied by smaller Doppler amplitudes that can drastically deviate
from the actual velocities. Also, occlusion effects arise due to partially hidden leg surfaces
while walking. For these reasons, the selected trajectory is greatly suited for evaluating the
proposed approach’s overall tracking performance.
Figure 4.22(a) shows the crossing trajectory tracking with a sudden turn depicted in the
Cartesian 𝑥-𝑦 sensor plane. Here, the foot tracking results and the corresponding MoCap
references of the respective foot sensors are given. As can be seen, the pedestrian steadily
approaches the sensor along a diagonally crossing trajectory. After a momentary transient
response phase, the trackers converge towards the references’ course. The stance and swing
phases identify the legs’ stride behavior. While a continuous forward propagation indicates
the swing phase, the stance phases show an increased concentration on the same spot.

Table 4.3: Radar Configurations

Parameter Value

RF center frequency 76.5 GHz
RF bandwidth 1 GHz
Range resolution 0.15 m
Sampling frequency 10 MHz
Single chirp duration 𝑇 51.2𝜇s
IF samples per chirp 𝑚𝑠 512
Number of chirps 512
Chirp repetition interval 𝐺 60𝜇s
Doppler resolution 0.06 m/s
Sensor height 0.37 m
Azimuth 3 dB beamwidth (TX) 51∘

Azimuth 3 dB beamwidth (RX) 76.5∘
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Figure 4.21: Time-dependent lower body radar spectrum of Doppler 𝑣𝐷 (a), longitudinal
distance 𝑥 (b), and lateral distance 𝑦 (c) with foot motion reference and foot tracking results
for a radially walking pedestrian.
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Table 4.4: RMSE of the longitudinal trajectory.

RMSE 𝑥 [m] 𝑦 [m] 𝑣𝑥 [m/s] 𝑣𝑦 [m/s]
Left foot 0.11 0.20 0.46 0.84

Right foot 0.15 0.20 0.53 0.91

Range resolution 0.15 [m]
Doppler resolution 0.064 [m/s]

Momentarily after traversing the radar’s vertical line-of-sight, the upcoming change of
movement is initiated by reducing the left leg’s stride length. The abrupt turn is executed
with the right leg rotating around the standing left leg. It is striking to note that the
MoCap reference precisely depicts the leg rotation and confirms its accuracy. Next, the
right foot is put on the ground, and the left foot accelerates towards the changed direction
and completes the turn. Finally, the pedestrian keeps moving while departing from the
radar sensor.
The excellent detectability of the right leg’s turn motion raises the question of the extent
to which this initial movement change can be utilized for sophisticated safety functions.
Therefore, we will take a closer look at the right leg’s behavior while turning, shown in
Figure 4.22(b). The color coding corresponds to the velocity vector 𝑣 resulting from the
components 𝑣𝑥 and 𝑣𝑦 of the tracker. One possibility to detect changes in direction is
to exploit the curvature of the resulting motion path. Since we are dealing with discrete
vertices, the standard definition of curvature as the local fitting circle’s reciprocal radius
needs to be approximated.
Let 𝜁(𝑠) = [𝑦(𝑠), 𝑥(𝑠)]𝑇 be a parametric representation of a twice differentiable plane curve
with vertices 𝑠, the curvature can be expressed as

𝛶 (𝑠) = | 𝑥
′ (𝑠) 𝑦′′ (𝑠)− 𝑥′′ (𝑠) 𝑦′ (𝑠) |(︁
𝑥′ (𝑠)2 + 𝑦′ (𝑠)2

)︁3/2 , (4.92)

where the primes refer to the discrete differences with respect to 𝑠.
In the following, we only regard vertices whose velocities are at least 1.5 m/s. The reason to
do so is that a change of movement always accompanies a leg motion. Hence, introducing
a velocity threshold appears to be legitimate in order to distinguish between a random
motion and an actual indication. Finally, Figure 4.22(b) displays the occurring curvatures
as blue arrows in accordance with the definition of (4.92). For reasons of clarity, only every
second vertex is considered. The arrows’ magnitudes equal to the arising curvatures at
the individual vertices. As can be seen in the figure, the curvature correlates with the
rotational leg motion and hence reaches its maximum at about [𝑦 = 1.5 m, 𝑥 = 5.1 m]𝑇 .
As opposed to this, the curvature converges towards zero during walking phases without
directional changes. This discriminability qualifies the curvature behavior to be employed
as a distinctive leg feature to characterize a change in motion. Moreover, the proposed
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Figure 4.22: Tracking results of a crossing motion trajectory with sudden turn. (a) Tracking
trajectory with left and right foot as well as motion capture reference. (b) Analysis of the
turning motion of the right foot using curvature determination as directional change indication.
The blue arrows indicate the radius of curvature for every second vertex possessing a velocity
larger than 1.5 m/s.
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computational effort is extremely manageable and can be performed in the current sensor
cycle under the two previous tracking states’ exclusive consideration, making it fairly
suitable for automotive use.

4.5 Conclusion

The presented examinations analyzed high-resolution radar signatures of the human gait
and provided specific 𝜇D-based algorithms for the potential use in automotive safety
functions. By simultaneously using MoCap sensors during the radar measurement, the
motion behavior matching reference could be provided. A detailed reconstruction of a
pedestrian’s movement behavior considering the individual limbs’ motions during the
beginning of a cycle could be exposed by combining range and Doppler data. Particular
attention was paid to realistic, highly relevant movement scenarios such as traversing a road
or a sudden difference in the pedestrian’s velocity. The resulting rapidly altering Doppler
components and their impacts on pedestrians’ reliable detection could be demonstrated.
Thereby, essential aspects for potential motion prediction, such as characteristic limb
movements, could be obtained.
Proceeding from the 𝜇D spectra analysis insights, an extraction procedure for pedestrians’
human body components has been proposed. A signal processing chain was introduced,
which decomposes a pedestrian’s range-Doppler spectrum into relevant scatterers. The
concept is based on a modified CLEAN algorithm that incorporates a clustering procedure
into the decomposing routine to identify scatterer groups. The approach was applied to a
77 GHz radar measurement of a walking pedestrian in chirp sequence mode. The extracted
scatterers were assigned to their local positions based on a limb segmented body region
and visualized over time. Synchronized MoCap data display the time-dependent velocity
behavior of individual body parts and confirm the provided extraction procedure.
The procedure’s limitations motivated a more advanced approach that uses elevation
measurement capability to extract the reflections emanating from the legs’ movements first
and subsequently tracks their propagations over time based on a specific motion model.
The model is based on human kinematics and displays the foot’s movement with a high
degree of variability and low computational effort during the tracking process. A tracking
framework for multiple extended objects consisting of linear and extended Kalman filters
has been designed to simultaneously estimate the macroscopic and microscopic motions
of the upper and lower body, respectively. The arising data association problem is solved
by incorporating joint probabilities in JPDA’s sense in the Bayesian update step. The
proposed technique enables the estimation of each leg’s spatial and dynamic properties that
can be utilized for integrated safety systems. The tracking implementation was evaluated in
different moving scenarios, including a longitudinal path and a complex non-radially motion
with sudden turn. MoCap sensors confirm tracking results’ accuracy even in highly critical
maneuvers such as abrupt motion transitions. The approach possesses valuable object
information such as real-time turning detection and motion planning that can enormously
enhance the future’s pedestrian detection systems.
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4.6 Discussion and outlook
The proposed method’s key idea is to model the human walking kinematic as the foundation
for a straightforward pedestrian tracking framework for automotive near-field applications.
Incorporating the 𝜇D effect induced by the swinging legs’ velocity distribution is fundamen-
tal for the presented technique. Spectral analyses with a high-resolution short-range radar
have shown that 𝜇D signatures can be detected up to a distance of approximately 12-15 m,
which qualifies the presented method as a specific near-field application that might trigger
low-level reactions, such as a warning beep for the driver or a honk to warn the pedestrian.
Regarding the progressive introduction of electric vehicles, which hardly emit any engine
noise, this form of warning signal could focus increasingly. The maximum distance of
detectability of 𝜇D signals depends significantly on the radiation pattern of the antennas
as well as on the realizable SNR. More extensive ranges can be realized by a more bundled
lobe shape of the radiated power.
The proposed framework groups the 𝜇D detections first and predicts the upper body
motion, which is then added to the local foot prediction to realize locomotion. Accord-
ingly, foot tracking’s performance correlates to the accuracy of the upper body tracking.
Consequently, if few or even no upper body detections emerge due to occluding, the leg
tracking approach may fail. As mentioned, the average walking velocity can alternatively
be estimated using the kinematic relationship between stride length and stride frequency.
Note that the stride frequency is one of the tracker’s direct outputs, whereas the stride
length can be approximated in every time step as the resulting amplitude of the motion
model by propagating the course with the current kinematic parameters. Regardless, more
promising results are obtained with the presented approach. However, the stride kinematic
utilization needs to be further studied to assure satisfying tracking performances in poor
conditions.
Furthermore, the filters’ initialization possesses challenges. For satisfactory tracking perfor-
mance, the phase parameter of the feet must be chosen quite accurately. Besides, the best
results are obtained when the objects are most distinguishable, e.g., at the beginning of a
swing phase. If the objects are too close to each other, erroneous data assignments may
occur, leading to the legs’ confusion or a total blend of the filters. A potential solution is to
use the average walking velocity resulting from the upper body tracking or, as pointed out,
straight from the stride kinematic. The walking velocity behavior, including acceleration
and deceleration, might be used to infer the respective leg’s corresponding phase position.





CHAPTER 5
Summary and outlook

In this work, novel techniques for precise and robust radar-based perception and application
of VRU were developed and analyzed concerning their potential for automotive safety
functions. Previous radar systems are limited in the depth of resolution regarding extended
objects. Within this thesis’s scope, the objects were viewed in high resolution, and resulting
features such as characteristic 𝜇D signatures were revealed. On this basis, approaches for the
perception of behavioral indications and trajectory predictions were derived. Conclusions
of the developed algorithms are drawn in Section 5.1, and an outlook to possible future
work is provided in Section 5.2.

5.1 Developed algorithms
5.1.1 Adaptive pedaling extraction
For robust radar-based intend estimation of cyclists, an adaptive pedaling extraction
procedure has been presented. The provided technique utilizes the physical principles that
lead to extended ellipsoidal 𝜇D distributions in order to separate the wheels’ components
from the pedaling motion. The pedaling motion gives rise to detailed behavior indications
through changes in the pedaling frequency detectable in real-time. By iteratively fitting
ellipses to the front and rear wheels’ range-Doppler detections, respectively, the pedaling
motion is adaptively revealed and appears extractable. The approach enables the extraction
of the pedaling movements for a series of consecutive radar frames. It could be shown that
the extracted time-varying spectral components describe sinusoidal curves picturing the
rotating pedals and parts of the cyclist’s leg motions. The proposed technique has been
validated by comparing with radar measurements of the same scenario comprising non-
pedaling movements. The results demonstrate the significance regarding intend estimations
of cyclists for short-range automotive safety applications.

5.1.2 Normalization of the orientation dependence
Extended radar targets are subject to orientation dependence affecting their geometric and
kinematic extent due to the radar’s radial measurement principle. This might affect the
performance of classification procedures and reduces exploitable object information. A
normalization methodology for the orientation-dependent range and Doppler amplitudes of
a cyclist has been provided. By projecting the radar detections onto an approximation
of the bicycle’s actual longitudinal axis in Cartesian coordinates, the measured radial
range ambiguities can be compensated. Simultaneously, the created axis approximates
the bicycle’s orientation, whereby the Doppler amplitudes can be normalized accordingly.
The measured and normalized range-Doppler spectra have been compared and analyzed.
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The results address standardization of range-Doppler spectra in the field of supervised and
unsupervised machine learning techniques where classification rates may rise considerably
using the provided method. The presented normalization approach depicts 𝜇D features such
as pedaling motions with improved accuracy and forwards cyclists’ intention estimation
that may be manifesting on pedaling changes.

5.1.3 Model-based pedestrian tracking
A procedure for the targeted identification and extraction of pedestrians’ human body com-
ponents based on high-resolution radar data has been proposed by utilizing a decomposing
spectral routine in the sense of a modified CLEAN algorithm. The results illustrate the
procedure’s fundamental feasibility to separate microscopic motions.
However, the approach faces limitations in more complex scenarios due to the body’s
orientation influences, such as data occlusion and considerably smaller Doppler amplitudes,
which prevents its vigorous usability for safety-relevant functions. Further research has
shown that behavioral indications of a pedestrian, such as incipient changes in the direction
of movement, can be most reliably and feasibly detected via the legs’ motion. Consequently,
an advanced approach has been derived that incorporates elevation information to identify
leg emanating detections and completes the 𝜇D signature. The provided method denotes
the first approach based on automotive radar data that separates individual extremities
and tracks their propagation over time. A computational simple but sophisticated motion
model has been developed that approximates the lower body’s nonlinear locomotion and
displays the foot’s movement comprising large degrees of variability. A tracking framework
for multiple objects consisting of linear and extended Kalman filters has been designed to
simultaneously estimate the upper and lower body’s macroscopic and microscopic motions,
respectively. By incorporating the joint probabilities in the sense of JPDA, the arising
data association problem is tackled with simplified assumptions. The proposed technique
estimates each leg’s spatial and dynamic properties, which have been evaluated in complex
maneuvers covering abrupt motion transitions. It could be shown that the tracked motion
states possess valuable target information such as real-time turning detection and motion
planning that contributes significantly to pedestrian detection systems of the future.

5.2 Outlook
A variety of extensions are conceivable for the proposed model-based pedestrian tracking
approach. One possibility is the fusion of several radar sensors of a vehicle. If two radar
sensors of different positioning illuminate an extended target, the object segmentation
can be enlarged by integrating the geometric and kinematic extension. By doing so, its
complete motion state can be determined by combining the detected point clouds. As a
result, this can lead to more robust limb identification, allowing for a shorter initialization
phase. Also, viewing from different angles can reduce occlusion and object loss, thereby
increasing the overall tracking performance. Furthermore, fusion based on detection lists
denotes an efficient interface and appears to be feasible regarding the electronic control
unit’s computational cost in a vehicle setup.
Besides the fusion of homogeneous sensor data, the combination of camera and radar data
might be a valuable extension. In computer vision, learning-based methods exist that
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estimate the pose of a walking human in real time. However, its accuracy is based on
the quality of the sensor data. The complementary fusion of both technologies reveals
advantages in the limb extraction procedure by providing rich semantic context information
and establishes system-relevant redundancy regarding safety aspects.
Furthermore, an application of the tracking model to different motion patterns is conceivable
in order to guarantee stable tracking performance. Due to their high agility, pedestrians
tend to spontaneously change their movement behavior and thus place high demands on
the vehicle systems. An example is a transition from walking to running, common among
children and adolescents in urban areas. By storing different motion models inside an
interacting multiple model (IMM) filter, the appropriate model’s situation-adaptive choice
could be executed based on the detected motion behavior. The IMM filter resolves the
target motion uncertainty in the Bayesian framework by using various motion models at a
time and switches between the deposited models according to their updated weights. The
change between different motion patterns could be triggered by the detectable change of a
pedestrian’s velocity profile, i.e., a distinctive change of the motion state. In this way, the
applicability and accuracy of leg tracking can be further increased.
In conclusion, the trend in the field of ADAS is towards an increasingly granular and reliable
interpretation of the vehicle environment. At the same time, the use of high-resolution
radars is still in the early stages of development. Technological advances in microelectronics
are expected to significantly increase the angular, range, and velocity resolution of future
automotive radar sensors. Sophisticated designing processes such as advanced antenna
geometries and improved frequency modulation hardware directly impact the radar’s
resolving capacity. Similarly, the future allocation of much higher automotive frequency
bands cannot be ruled out. The techniques presented in this work would directly benefit
from resolution-enhancing developments and would experience an increase in performance
and accuracy. Thus, pedestrian classification and behavioral indication algorithms are
expected to gain importance for near-field applications, and the methods developed in this
work will contribute significantly to the reliability of ADAS in series production.
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A Derivation of the rotation matrix 2.26

A cross product between two vectors can alternatively be expressed as the product of a
skew-symmetric matrix and a vector

𝑝 = �⃗�× �⃗� (A.1)

=

⎛⎝𝑢𝑦𝑟𝑧 − 𝑢𝑧𝑟𝑦𝑢𝑧𝑟𝑥 − 𝑢𝑥𝑟𝑧
𝑢𝑥𝑟𝑦 − 𝑢𝑦𝑟𝑥

⎞⎠ (A.2)

=

⎛⎝ 0 −𝑢𝑧 𝑢𝑦
𝑢𝑧 0 −𝑢𝑥
−𝑢𝑦 𝑢𝑥 0

⎞⎠⎛⎝𝑟𝑥𝑟𝑦
𝑟𝑧

⎞⎠ = �̂��⃗�, (A.3)

with

�̂� =

⎛⎝ 0 −𝑢𝑧 𝑢𝑦
𝑢𝑧 0 −𝑢𝑥
−𝑢𝑦 𝑢𝑥 0

⎞⎠ , (A.4)

being a skew-symmetric matrix. This definition is often used for special orthogonal matrix
groups (3-D rotation matrices SO(3)), which are defined by:

SO(3) = {𝑅 ∈ R3×3 |𝑅𝑇𝑅 = 𝐼, det(𝑅) = +1}. (A.5)

The time derivative of 𝑅(𝑡)𝑅𝑇 (𝑡) = 𝐼 yields

�̇�(𝑡)𝑅𝑇 (𝑡) +𝑅(𝑡)�̇�𝑇 (𝑡) = 0 ⇒ �̇�(𝑡)𝑅𝑇 (𝑡) = −
(︀
�̇�(𝑡)𝑅𝑇 (𝑡)

)︀𝑇
. (A.6)

Note, that the matrix �̇�(𝑡)𝑅𝑇 (𝑡) ∈ R3×3 is a skew-symmetric matrix. Consequently a
vector �⃗� ∈ R3 must exist such that:

�̂� = �̇�(𝑡)𝑅𝑇 (𝑡) ⇒ �̇�(𝑡) = �̂�𝑅(𝑡). (A.7)

Assuming �⃗� to be constant, we obtain

𝑅(𝑡) = 𝑒�̂�𝑡𝑅(0), (A.8)

where 𝑒�̂�𝑡 is the matrix exponential

𝑒�̂�𝑡 = 𝐼 + �̂�𝑡+ (�̂�𝑡)2

2! + · · ·+ (�̂�𝑡)𝑛
𝑛! + · · · . (A.9)

Setting 𝑅(0) = 𝐼 initially, we get
𝑅(𝑡) = 𝑒�̂�𝑡. (A.10)
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128 A Derivation of the rotation matrix 2.26

Since (︁
𝑒�̂�𝑡

)︁−1
= 𝑒−�̂�𝑡 = 𝑒�̂�

𝑇 𝑡 =
(︁
𝑒−�̂�𝑡

)︁𝑇
, (A.11)

then (︁
𝑒�̂�𝑡

)︁𝑇 (︁
𝑒�̂�𝑡

)︁
= 𝐼, (A.12)

yielding the determinant det
(︀
𝑒�̂�𝑡

)︀
= ±1. Moreover,

det
(︁
𝑒�̂�𝑡

)︁
= det

(︁
𝑒

�̂�𝑡
2 𝑒

�̂�𝑡
2

)︁
(A.13)

=
(︁

det
(︁
𝑒

�̂�𝑡
2

)︁)︁2
≥ 0, (A.14)

showing that det
(︀
𝑒�̂�𝑡

)︀
= 1. As a consequence, the matrix 𝑅(𝑡) = 𝑒�̂�𝑡 can be considered

to be the 3-D rotation matrix, that rotates around the axis �⃗� ∈ R3 with scalar angular
velocity 𝛺𝑡 rad, where 𝛺 = ‖�⃗�‖. If �⃗� provides the rotation axis and the angular velocity,
𝑅(𝑡) = 𝑒�̂�𝑡 at time 𝑡. The rotation matrix can be computed using Rodrigues’s formula. Let
�⃗�′ ∈ R3 with ‖�⃗�′‖ = 1 and �⃗� = 𝛺�⃗�′, one can show that the power of �̂�′ can be reduced by

�̂�′3 = −�̂�′. (A.15)

Simplifying the exponential series

𝑒�̂�𝑡 = 𝐼 + �̂�𝑡+ (�̂�𝑡)2

2! + · · ·+ (�̂�𝑡)𝑛
𝑛! + · · · , (A.16)

with

𝑒�̂�𝑡 = 𝐼 +
(︂
𝛺𝑡− (𝛺𝑡)3

3! + (𝛺𝑡)5

5! − · · ·
)︂
�̂�′ (A.17)

+
(︂

(𝛺𝑡)2

2! − (𝛺𝑡)4

4! + (𝛺𝑡)6

6! − · · ·
)︂
�̂�′2 (A.18)

= 𝐼 + �̂�′ sin(𝛺𝑡) + �̂�′2(1− cos(𝛺𝑡)). (A.19)

Therefore
𝑅𝑡 = 𝑒�̂�𝑡 = 𝐼 + �̂�′ sin(𝛺𝑡) + �̂�′2(1− cos(𝛺𝑡)). (A.20)



B Derivation of the mixed radar signal 2.52

The transmitted signal is [27]

𝑆T(𝑡𝑚,𝑚𝑠) = 𝐴 cos
(︂

2𝜋
(︂
𝑓𝑐 + 𝑓

1
2 𝑡𝑚

)︂
𝑡𝑚 + 𝜙0

)︂
. (B.1)

The received signal is

𝑆R(𝑡𝑚,𝑚𝑠) = 𝐴 cos
(︂

2𝜋
(︂
𝑓𝑐 + 𝑓

1
2(𝑡𝑚 − 𝜏)

)︂
(𝑡𝑚 − 𝜏) + 𝜙0

)︂
. (B.2)

Demodulation is achieved by mixing the two signals according to

cos(𝛼) · cos(𝛽) = 1
2 cos(𝛼− 𝛽) + 1

2 cos(𝛼+ 𝛽). (B.3)

Applying (B.3) to (B.1) and (B.2) with subsequent low-pass filtering yields the difference
between the original signals

𝑆IF(𝑡𝑚,𝑚𝑠) = 𝐴 cos (2𝜋 (𝛥𝜙(𝑡𝑚,𝑚𝑠))) , (B.4)

where
𝛥𝜙(𝑡𝑚,𝑚𝑠) = 𝑓𝑐𝜏 − 𝑓

1
2
(︀
𝜏2 − 2𝑡𝑚𝜏

)︀
. (B.5)

Substituting
𝜏 = 2𝑟(0)

𝑐
+ 2𝑣r,rel

𝑐
𝑚𝑠𝐺+ 2𝑣r,rel

𝑐
𝑡𝑚, (B.6)

in (B.5) and dropping all terms containing 1/𝑐2 yields

𝛥𝜙(𝑡𝑚,𝑚𝑠) = 𝑓𝑐
2𝑟(0)
𝑐

+𝑚𝑠𝑓𝑐
2𝑣r,rel
𝑐

𝐺 (B.7)

+ 𝑓𝑐
2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

+ 𝑓
2𝑣r,rel
𝑐

𝑚𝑠𝐺𝑡𝑚⏟  ⏞  
𝑎

+ 𝑓
2𝑣r,rel
𝑐

𝑡2𝑚⏟  ⏞  
𝑏

. (B.8)

The terms 𝑎 and 𝑏 in (B.7) appear to be maximal when 𝑡𝑚 = 𝑇/2. Assuming a typical
automotive radar parametrization, 𝑎 and 𝑏 are relatively small and can be dropped.
Consequently, the final intermediate frequency signal is

𝑆IF(𝑡𝑚,𝑚𝑠) = cos (2𝜋 (𝛥𝜙(𝑡𝑚,𝑚𝑠))) (B.9)

𝛥𝜙(𝑡𝑚,𝑚𝑠) = 𝑓𝑐
2𝑟(0)
𝑐

+𝑚𝑠𝑓𝑐
2𝑣r,rel
𝑐

𝐺+
(︂
𝑓𝑐

2𝑣r,rel
𝑐

+ 𝑓
2𝑟(0)
𝑐

)︂
𝑡𝑚. (B.10)
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C Calculation of the marginal association probabilities 4.51

The JPDA algorithm evaluates the conditional probabilities of the following joint events at
time 𝑘: [9], [13], [37]

𝜃 =
𝑚⋂︁
𝑗=1

𝜃𝑖,𝑗 , (C.1)

where

𝜃𝑖,𝑗=̂{measurement 𝑗 originated from target 𝑖}, 𝑗 = 1, . . . ,𝑚 𝑖 = 0, . . . , 𝑛. (C.2)

A binary validation matrix is defined according to

𝛺 =
[︀
𝜔𝑖,𝑗

]︀
, 𝑗 = 1, . . . ,𝑚 𝑖 = 0, . . . , 𝑛, (C.3)

where 𝜔𝑖,𝑗 indicates whether measurement 𝑗 is in the validation gate of object 𝑖. The
index 𝑖 = 0 stands for “no object” resulting in a corresponding column of 𝛺 having only
units. An exemplary validation matrix for one specific event including two objects and
four measurements is of the form

𝛺 =

⎡⎢⎢⎣
1 0 1
1 1 1
1 1 0
1 1 0

⎤⎥⎥⎦ , (C.4)

where the rows refer to the measurements 𝑗 = 1, . . . ,𝑚 and the columns refer to the objects
𝑖 = 0, . . . , 𝑛 including the “no object” association as the first column. Each event 𝜃 can be
represented by an event matrix

�̂�(𝜃) =
[︀
�̂�𝑖,𝑗(𝜃)

]︀
(C.5)

where the binary elements in �̂� correspond to the associations in event 𝜃. Thus

�̂�𝑖,𝑗(𝜃) =
{︃

1, if 𝜃𝑖,𝑗 ∈ 𝜃
0, if otherwise.

(C.6)

The feasible events are those that comply to the point-object assumption in (4.39) with

1) A measurement can originate only from one source, i.e.,
𝑛∑︁
𝑖=0

�̂�𝑖,𝑗(𝜃) = 1, 𝑗 = 1, . . . ,𝑚 (C.7)
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2) At most one measurement can originate from a target, i.e.,

𝛿𝑖(𝜃) =
𝑚∑︁
𝑗=1

�̂�𝑖,𝑗(𝜃) ≤ 1, 𝑖 = 1, . . . , 𝑛 (C.8)

The determination of feasible events is performed by scanning 𝛺 and assign the rows and
columns (except for column 𝑖 = 0) for every event according to the given point-object
constraints.
The binary target detection indicator 𝛿𝑖(𝜃) reveals whether any measurement is associated
to object 𝑖 in event 𝜃. The measurement association indicator

𝜏 𝑗(𝜃) =
𝑛∑︁
𝑖=1

�̂�𝑖,𝑗(𝜃) = 1, 𝑗 = 1, . . . ,𝑚 (C.9)

denotes whether measurement 𝑗 is associated to an object in event 𝜃. Consequently, the
number of clutter (unassociated) measurements in event 𝜃 is

𝜑(𝜃) =
𝑚∑︁
𝑗=1

[1− 𝜏𝑗(𝜃)] . (C.10)

The determination of the joint event probabilities is done using Bayes’ rule. The conditional
probability of a joint event that is conditioned on all meassurements up to and including
time 𝑘 can be expressed as

Pr (𝜃𝑘|Z1:𝑘) = Pr{(𝜃𝑘|Z𝑘,Z1:𝑘−1}

= 1
𝑐
𝑝 (Z𝑘|𝜃𝑘,Z1:𝑘−1) Pr{𝜃𝑘|Z1:𝑘−1}

= 1
𝑐
𝑝 (Z𝑘|𝜃𝑘,Z1:𝑘−1) Pr{𝜃𝑘}, (C.11)

where 𝑐 denote a normalization constant. The measurements’ joint probability density
conditioned on the joint event 𝜃 reads

𝑝 (Z𝑘|𝜃𝑘,Z1:𝑘−1) =
𝑚𝑘∏︁
𝑗=1

𝑝
(︁

z𝑗𝑘|𝜃
𝑖,𝑗
𝑘 ,Z1:𝑘−1

)︁
, (C.12)

where

𝑝
(︁

z𝑗𝑘|𝜃
𝑖,𝑗
𝑘 ,Z1:𝑘−1

)︁
=

⎧⎨⎩ 𝑓 𝑖
[︁
z𝑗𝑘

]︁
if 𝜏 𝑗(𝜃) = 1

𝑉 −1 if 𝜏 𝑗(𝜃) = 0.
(C.13)

with
𝑓 𝑖

[︁
z𝑗𝑘

]︁
=̂𝒩

[︁
z𝑗𝑘; ẑ𝑖𝑘|𝑘−1,S

𝑖
𝑘

]︁
, (C.14)
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and ẑ𝑖𝑘|𝑘−1 denotes the predicted object detection for object 𝑖 and S𝑖𝑘 is the innovation
covariance. 𝑉 is the volume of the surveillance region where clutter associations are
assumed to be uniformly distributed. Plugging (C.13) into (C.12) leads to

𝑝 (Z𝑘|𝜃𝑘,Z1:𝑘−1) = 𝑉 −𝜑(𝜃)
𝑚𝑘∏︁
𝑗=1

[︁
𝑓 𝑖

[︁
z𝑗𝑘

]︁]︁𝜏 𝑗(𝜃)
, (C.15)

where 𝜑(𝜃) indicates the total number of clutter measurements in event 𝜃𝑘, and 𝜏 𝑗(𝜃)
selects the individual measurement densities in accordance to their associations.
The prior probability Pr(𝜃𝑘) in (C.11) can be expressed by

Pr{𝜃𝑘} = Pr{𝜃𝑘|𝛿(𝜃), 𝜑(𝜃)}Pr{𝛿(𝜃), 𝜑(𝜃)}, (C.16)

where the first factor in (C.16) is

Pr{𝜃𝑘|𝛿(𝜃), 𝜑(𝜃)} =
(︁
𝐴𝑚𝑘
𝑚𝑘−𝜑

)︁−1
=

(︂
𝑚𝑘!
𝜑!

)︂−1
= 𝜑!
𝑚𝑘!

, (C.17)

where 𝐴𝑚𝑙 denotes arrangements of 𝑙 out of 𝑚 distinct objects. The second factor in (C.16)
is

Pr{𝛿(𝜃), 𝜑(𝜃)} =
𝑛∏︁
𝑖=1

(︁
𝑃D,𝑖

)︁𝛿𝑖
(︁

1− 𝑃D,𝑖
)︁1−𝛿𝑖

𝜇𝐹 (𝜑), (C.18)

where 𝜇𝐹 (𝜑) is the probability mass function of the clutter model. The indicators 𝛿𝑖(𝜃)
select the probabilities of detection and no detection, respectively, considering the event 𝜃𝑘.
Plugging (C.17) and (C.18) into (C.16) gives the prior probability of a joint association
event 𝜃𝑘 as

Pr{𝜃𝑘} = 𝜑!
𝑚𝑘!

𝜇𝐹 (𝜑)
𝑛∏︁
𝑖=1

(︁
𝑃D,𝑖

)︁𝛿𝑖
(︁

1− 𝑃D,𝑖
)︁1−𝛿𝑖

. (C.19)

The posterior probability of 𝜃𝑘 is achieved by plugging (C.15) and (C.19) into (C.11):

Pr (𝜃𝑘|Z1:𝑘) = 1
𝑐

𝜑!
𝑚𝑘!

𝜇𝐹 (𝜑)𝑉 −𝜑
𝑚𝑘∏︁
𝑗=1

[︁
𝑓 𝑖

[︁
z𝑗𝑘

]︁]︁𝜏 𝑗 𝑛∏︁
𝑖=1

(︁
𝑃D,𝑖

)︁𝛿𝑖
(︁

1− 𝑃D,𝑖
)︁1−𝛿𝑖

. (C.20)

By summing over all joint events where the marginal event occurs, the marginal association
probabilities are obtained:

𝛽𝑖,𝑗 = Pr{𝜃𝑖𝑘|Z1:𝑘} =
∑︁
𝜃

Pr (𝜃|Z1:𝑘) �̂�𝑖,𝑗(𝜃), 𝑗 = 1, . . . ,𝑚, 𝑖 = 0, . . . , 𝑛 (C.21)

𝛽𝑖,0 = 1−
𝑚∑︁
𝑗=1

𝛽𝑖,𝑗 , 𝑖 = 0, . . . , 𝑛. (C.22)
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