

Prediction of Tool Recipe Runtimes in

Semiconductor Manufacturing

Master Thesis

Submitted in Fulfilment of the

Requirements for the Academic Degree

M.Sc. Automotive Software Engineering

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Karim Sadek

Student ID: 580632

Date: 04.10.2021

Supervising tutors: Prof. Dr. Dr. h. c. Wolfram Hardt

 Dr. Holger Brandl

 Reda Harradi

ii

Abstract

To improve throughput, due date adherence, or tool usage in semiconductor

manufacturing, it is crucial to model the duration of individual processes such as

coating, diffusion, or etching. Equipped with such data, production planning can

develop dispatch schemes and schedules for optimized material routing. However, just

a few tools indicate how long a process will take. Many variables affect the runtime of

tool recipes that are used to realize processes. These variables include wafer

processing mode, historical context, batch size, and job handling. In this thesis, a

model that allows inferring tool recipe runtimes with adequate accuracy shall be

developed.

Firstly, predictive models shall be built for selected tools with known runtime behavior

to establish a baseline for the methodology. Tools will be selected to cover a broad

spectrum of processing modalities. The main predictors will be revealed using variable

importance analysis. Furthermore, the analysis shall reveal under which conditions

recipe runtime modeling is most accurate.

Secondly, a generic approach shall be created to model recipe runtime. By accounting

for tool, process, and material context, methods would be investigated from feature

selection and automatic model selection. Finally, a pipeline for data cleansing, feature

engineering, model building, and metrics will be developed using historical data from

a wide range of factory data sources.

Finally, a scheme to operationalize the findings shall be outlined. In particular, this

requires establishing model serving to enable consumption in applications such as

dispatching or operator interfaces.

Keywords: Machine Learning, Data-driven models, Regression

iii

Content

Abstract ... ii

Content ... iii

List of Figures .. v

List of Tables .. viii

List of Abbreviations ... ix

1 Introduction .. 1

1.1 Semiconductor Manufacturing .. 2

1.2 Wafer Processing and Lot Size .. 3

1.2.1 Complete Batch Processing .. 4

1.2.2 Single Wafer Processing ... 4

1.2.3 Interleaving Wafer Processing ... 4

1.3 Process Job Handling .. 7

1.3.1 Serial Jobs ... 8

1.3.2 Interleaving Jobs .. 8

1.4 Recipe Runtime .. 12

1.5 Use cases for Recipe Runtime ... 12

1.6 Thesis Objective ... 13

2 State of the Art ... 14

2.1 Literature Review ... 14

2.2 Machine Learning ... 16

2.2.1 Random Forests .. 18

2.2.2 Gradient Boosting .. 19

2.2.3 Automated Machine Learning .. 20

2.3 Chapter Summary .. 24

3 Data Preparation .. 25

3.1 Data Gathering ... 25

3.2 Parameter Selection ... 26

iv

3.3 Exploratory Data Analysis .. 28

3.4 Data Engineering ... 36

3.4.1 Removing Missing Values ... 36

3.4.2 Encoding Categorical Data .. 37

3.5 Chapter Summary .. 37

4 Results ... 39

4.1 Error Analysis ... 41

4.1.1 Sklearn GradientBoosting .. 41

4.1.2 Sklearn Random forests .. 48

4.1.3 H2O Gradient Boosting .. 54

4.1.4 H2O Random Forests Model ... 60

4.1.5 EquipmentGroup Specific Models .. 66

4.1.6 Process Recipe Specific Models .. 71

4.1.7 H2O AutoML .. 74

4.2 Model Comparison and Selection .. 77

4.3 Chapter Summary .. 78

5 Operationalization .. 79

5.1 Model Management.. 80

5.2 Real-time Inference .. 81

5.3 Chapter Summary .. 81

6 Conclusion .. 82

Bibliography ... 83

v

List of Figures

Figure 1.1: Silicon Wafer ... 2

Figure 1.2: Basics of Front End of Line Processing ... 3

Figure 1.3: Individual chamber functions ... 5

Figure 1.4: Individual chamber functions, timeline ... 6

Figure 1.5: Chambers with same functions ... 6

Figure 1.6: Chambers with identical functions, timeline ... 7

Figure 1.7: Serial Jobs .. 8

Figure 1.8: Interleaving Jobs ... 9

Figure 1.9: Multi-chamber equipment, 1st job .. 10

Figure 1.10: Multi-chamber equipment, interleaving jobs, 2nd job started 10

Figure 1.11: Multi-chamber equipment, parallel jobs ... 11

Figure 2.1: Predictive Model .. 17

Figure 2.2: Random Forests prediction ... 18

Figure 2.3: AutoML Workflow .. 22

Figure 2.4: Autosklearn Structure .. 23

Figure 3.1: Manufacturing Execution Systems .. 26

Figure 3.2: Numeric variables described ... 29

Figure 3.3: Distribution of average process duration ... 29

Figure 3.4: Equipment Type Mapped Distribution ... 30

Figure 3.5: Equipment Group Distribution ... 31

Figure 3.6: Technology Distribution ... 32

Figure 3.7: Process duration by Recipe .. 33

Figure 3.8: Trends in process time by Recipe ... 34

Figure 3.9: LotItemCount ... 35

Figure 3.10: Heatmap Correlation Map ... 35

Figure 3.11: Tool Recipe Runtimes Prediction Dataset ... 36

Figure 4.1: The flow of events ... 40

Figure 4.2: Sklean GradientBoosting Baseline Model, Validation Data, Actuals Vs.

Predictions... 41

Figure 4.3: Sklean GradientBoosting Baseline Model, Validation data, Prediction Errors

 .. 42

Figure 4.4: Sklean GradientBoosting Baseline Model, Test Data, Actuals Vs.

Predictions... 42

Figure 4.5: Sklean GradientBoosting Baseline Model, Test data, Prediction Errors .. 42

Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Validation data 43

Figure 4.7: Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Test data 44

https://d.docs.live.net/8f6dccfc3e95d2e9/krmsdk/Prediction%20of%20Tool%20Recipe%20Runtimes%20in%20Semiconductor%20Manufacturing.docx#_Toc84247934

vi

Figure 4.8: Sklearn GBM RMSE per Equipment Type Mapped – Validation data 44

Figure 4.9: Sklearn GBM RMSE per Equipment Type Mapped – Test data 45

Figure 4.10: Sklearn Gradient Boosting RMSE against Technology – Validation data

 .. 46

Figure 4.11: Sklearn Gradient Boosting RMSE against Technology – Test data 46

Figure 4.12: Sklearn GBM RMSE vs ProcessStep - Validation data 47

Figure 4.13: Sklearn GBM RMSE vs ProcessStep - Test data 47

Figure 4.14: Sklearn RandomForest RMSE per EquipmentGroup – Validation data 48

Figure 4.15: Sklearn RandomForest RMSE per EquipmentGroup – Test data 49

Figure 4.16: Sklearn RandomForest RMSE per EquipmentTypeMapped - Validation

data ... 50

Figure 4.17:Sklearn RandomForest RMSE per EquipmentTypeMapped - Test data 50

Figure 4.18: Sklearn RandomForest RMSE per OperationGroup – Validation data .. 51

Figure 4.19: Sklearn RandomForest RMSE per OperationGroup – Test data 52

Figure 4.20: Sklearn RandomForest RMSE per Technology – Validation data 52

Figure 4.21: Sklearn RandomForest RMSE per Technology – Test data 53

Figure 4.22: Sklearn RandomForest RMSE per ProcessStep – Validation data 53

Figure 4.23: Sklearn RandomForest RMSE per ProcessStep – Test data 54

Figure 4.24: H2O GradientBoosting RMSE per EquipmentGroup – Validation data . 55

Figure 4.25: H2O GradientBoosting RMSE per EquipmentGroup – Test data 55

Figure 4.26: H2O GradientBoosting RMSE per EquipmentTypeMapped – Validation

data ... 56

Figure 4.27: H2O GradientBoosting RMSE per EquipmentTypeMapped – Test data

 .. 57

Figure 4.28: H2O GradientBoosting RMSE per OperationGroup – Validation data ... 57

Figure 4.29: H2O GradientBoosting RMSE per OperationGroup – Test data 58

Figure 4.30: H2O GradientBoosting RMSE per Technology – Validation data 58

Figure 4.31: H2O GradientBoosting RMSE per Technology – Test data 59

Figure 4.32: H2O GradientBoosting RMSE per ProcessStep – Validation data 60

Figure 4.33: H2O GradientBoosting RMSE per ProcessStep – Test data 60

Figure 4.34: H2O RandomForest RMSE per Equipment Group – Validation data 61

Figure 4.35: H2O RandomForest RMSE per Equipment Group – Test data 62

Figure 4.36: RMSE values for H2O Random Forests per EquipmentTypeMapped -

Validation data ... 62

Figure 4.37: RMSE values for H2O Random Forests per EquipmentTypeMapped -

Test data ... 63

Figure 4.38: RMSE values for H2O Random Forests per OperationGroup - Validation

data ... 63

vii

Figure 4.39: RMSE values for H2O Random Forests per OperationGroup - Test data

 .. 64

Figure 4.40: H2O Random Forests RMSE per Technology – Validation data 64

Figure 4.41: H2O Random Forests RMSE per Technology – Test data 65

Figure 4.42: H2O Random Forests RMSE per ProcessStep – Validation data 65

Figure 4.43: H2O Random Forests RMSE per ProcessStep – Test data 66

Figure 4.44: Actuals vs. Predictions, Sklearn RandomForest on ETCH specific model

 .. 67

Figure 4.45: Prediction Errors, Sklearn RandomForest on ETCH specific model 67

Figure 4.46: Actuals vs. Predictions, Sklearn GBM on ETCH specific model 67

Figure 4.47: Actuals vs. Predictions, H2O RandomForest on ETCH specific model . 67

Figure 4.48: Actuals vs. Predictions, H2O GBM on ETCH specific model 68

Figure 4.49, Actuals vs. Predictions, Sklearn RandomForest on HCVD specific model

 .. 68

Figure 4.50: Prediction Errors, Sklearn RandomForest on HCVD specific model 68

Figure 4.51: Actuals vs. Predictions, Sklearn GBM on HCVD specific model 69

Figure 4.52: Actuals vs. Predictions, H2O RandomForest on HCVD specific model . 69

Figure 4.53: Actuals vs. Predictions, H2O GBM on HCVD specific model 69

Figure 4.54: Actuals vs. Predictions, Sklearn RandomForest on ICON specific model

 .. 70

Figure 4.55: Prediction Errors, Sklearn RandomForest on ICON specific model 70

Figure 4.56: Actuals vs. Predictions, Sklearn GBM on ICON specific model 70

Figure 4.57: Actuals vs. Predictions, H2O RandomForest on ICON specific model .. 71

Figure 4.58: Actuals vs. Predictions, H2O GBM on ICON specific model 71

Figure 4.59: RMSE value per every ProcessRecipe model - Validation data 72

Figure 4.60: RMSE value per every ProcessRecipe model - Test data 72

Figure 4.61: ProcessRecipe1 - DurationSeconds Analyzed 73

Figure 4.62: ProcessRecipe8 - DurationSeconds Analyzed 73

Figure 4.63: ProcessRecipe4 - DurationSeconds Analyzed across the Validation and

Test datasets ... 74

Figure 4.64: H2O AutoML Residual Analysis .. 76

Figure 4.65: H2O AutoML Variable Importance... 77

Figure 5.1: Proposed deployment architecture .. 81

viii

List of Tables

Table 1: List of predictors .. 27

Table 2: H2O AutoML Leaderboard .. 74

ix

List of Abbreviations

AUTOML Automated Machine Learning AMHS
Automated Material Handling

System

ANN Artificial Neural Network API
Application Programming

Interface

DRF Distributed Random Forests EDA Exploratory Data Analysis

ERP
Enterprise Resource

Planning
GBM Gradient Boosting Machine

KNN K-nearest neighbor ML Machine Learning

MES
Manufacturing Execution

System
REST

Representational state

transfer

RMSE Root-mean-square error

1 Introduction

Semiconductor manufacturing is composed of a set of Process Steps. A Process

Recipe performs a set of Process Steps to manifest an end product. Prediction of

Recipe Runtimes in Semiconductor Manufacturing is a complex task due to the various

factors that could be affecting the manufacturing process of semiconductors, which is

a high technology complex process. In addition, it is a competitive industry, utilizing

costs, quality, and manufacturing time are crucial. Traditionally, factory in-house

specialists rely on custom-built methods such as custom calculations, rule of thumb,

statistical methods, or simulation to predict recipe runtimes. However, such

approaches are static and do not take into consideration the changing behavior and

patterns. In this thesis, a different approach to predict tool recipe runtimes is studied,

the possibility of predicting future recipe runtimes based on historical data by applying

machine learning algorithms.

Prediction of manufacturing times has been recently an attractive area of research due

to the value it could bring if the accuracy is adequate, which will ultimately utilize costs

and manufacturing times such as Recipe Runtime, Lead Time, or Cycle time. First,

prediction of such times is currently possible due to the data gathered by MESs at

customer's plants. Secondly, due to the high computation power available now.

Prediction of recipe runtimes requires first understanding the processes involved when

producing Semiconductors. Following that, studying the properties of recipe runtimes

was essential to understand the production workflow and the processes timeline. In

this chapter, the steps involved in this initial understanding are discussed and the use

cases for such prediction and the objectives for this thesis.

2

1.1 Semiconductor Manufacturing

Manufacturing is "The process through which raw materials are converted into a

finished product" [1]. In such a process, the raw materials are inputs, and the finished

products are the output. The input could be semiconductor materials, insulators,

dopants, or metals in the semiconductor manufacturing domain. The output ranges

from integrated circuits to commercial electronic products such as personal computers,

mobile phones, and servers.

Semiconductors are the foundation of every integrated circuit. The manufacturing

process is composed of two stages. Firstly, wafer processing, which is the stage of the

formation of the silicon wafer, illustrated in Figure 1.1, where the electronic circuits are

produced on the surface of a silicon wafer. Followed, the front end of line processing,

which is the operation of wafer processing, and the back end of line processing, which

is the assembly process, as shown in Figure 1.2, a set of steps to complete the

semiconductor assembly.

Figure 1.1: Silicon Wafer

3

Figure 1.2: Basics of Front End of Line Processing

Understanding Semiconductor manufacturing processes such as coating, diffusion,

and etching is the first step towards predicting Recipe Runtimes. Semiconductor

manufacturing is a complex process that is composed of several phases. Each phase

could consist of more than one hundred steps. [2] Each step is one of four phases such

as the following:

• Layering: where the wafer surface is covered by a thin layer of conducting,

semiconducting, or insulating material

• Pattering: where some parts are of the layers inserted in the layering phase are

removed

• Doping: where specific amounts of dopants are added to the water surface

• Heat treatments: where the wafers are heated or cooled according to goals.

The mentioned phases could be repeated multiple times to reach the end product.

1.2 Wafer Processing and Lot Size

One of the most significant and predictable influences on the recipe runtime is how

many wafers are processed.

In principle, there are three different cases:

• Complete Batch Processing

4

• Single Wafer Processing

• Interleaving Wafer Processing

1.2.1 Complete Batch Processing

An example of that is a furnace where all the wafers are put together into a tube. In

such a case, the batch is usually filled up to a certain extent, even with dummy wafers.

Therefore, the size of the Lot should not be of any significance for the processing but

could be for the loading and unloading.

Complete batch processing is the mode of processing where all wafers are put together

in a tube. The batch is usually filled up to a certain extent, including dummy wafers if

needed. Therefore, the size of the Lot should not be of significance for the processing

but could be for the loading and unloading processes.

1.2.2 Single Wafer Processing

Metrology equipment where wafers are measured one after the other is an example of

single wafer processing. In this case, the runtime comprises of the following

components:

• Loading including the scanning of the slot map

• Loading into, processing, and unloading from the metrology chamber

• Unloading

In some cases, it can take longer for the 1st wafer if it has to go to an aligner or laser

mark reader before it is loaded into the metrology chamber. Subsequent wafers might

already be aligned or read while the preceding wafer is measured.

1.2.3 Interleaving Wafer Processing

The standard example for this case is multi-chamber equipment. In this case, wafers

from one cassette are processed simultaneously in different chambers.

5

Interleaving Wafer Processing is performed at multi-chamber equipment. In this case,

wafers from one cassette are processed simultaneously in different chambers. Each

chamber performs a custom function and has its customized configuration, and wafers

are transferred from one chamber to another. Figure 1.3 shows multi-chamber

equipment with individual chamber configurations. The flow of a wafer visiting the

chambers in sequences A, B, C, and D is also shown.

Figure 1.3: Individual chamber functions

Depending on the processing time for each chamber, the entire processing time for

each wafer will vary. Figure 1.4 shows an example.

P2P1P1 P2

6

Figure 1.4: Individual chamber functions, timeline

The following Figure 1.5 shows a configuration where more than one chamber can be

used for the same process. In this case, the sequence is A → (B or C) → D. The two

possible flows of a wafer 1.x and 2.x are shown too.

Figure 1.5: Chambers with same functions

Wafer1 A C DB

Wafer2 A C DB

Wafer3 A C DB

Wafer4 A C DB

Wafer5 A C DB

68,00

78,20

88,30

98,40

108,60

Wafer start

Wafer end

P2P1P1 P2

7

Figure 1.6 shows a timeline example assuming that the two chambers B and C having

the same functions have the longest processing time. In the example, it is more than

two times longer than all other processes.

Figure 1.6: Chambers with identical functions, timeline

The configuration shown in Figure 1.5 adds another complexity to the forecasting of

runtimes. For example, if chamber B or C is down, the equipment could still run the

process, but it will be slower given the assumption that chambers B and C are the

longest.

1.3 Process Job Handling

Process jobs can essentially be executed in two different ways:

• Serialized: a subsequent process job only starts after the preceding one was

finished

Wafer1 A DB

Wafer2

Wafer3

Wafer4

Wafer5

A DC

A DB

A DC

A DB

Wafer6 A DC

57,90

57,90

62,10

62,10

66,30

66,30

8

• Interleaving: a subsequent process job starts while preceding one(s) are still

running

Process Job Handling depends on the equipment type built, and on the other hand,

the equipment internal job scheduler.

1.3.1 Serial Jobs

Examples for serial jobs are

• Furnaces, where multiple lots are loaded all together into a tube

• Metrology equipment with one metrology chamber

Figure 1.7 below shows two jobs executed serially. It also shows some events and

information from the systems, the equipment, and the AMHS (Automated Material

Handling System) associated with the different points in time.

Figure 1.7: Serial Jobs

1.3.2 Interleaving Jobs

Examples for interleaving jobs are

• Wet benches, where the batches are processed through a series of different

tanks

Job 1

Job 2

processing1

unloading1

loading, setup2
processing2

loading, setup1

Job creation, setup
Eqp configuration and state

Material received (port
AMHS events

Material movement

Process job start
Wafer start

Wafer start
Wafer end
Material movement
(modules, chambers

Process job end

Material movement

Material removed
AMHS events

9

• Multi-chamber equipment, as shown in Figure 1.8, is capable of running wafers

from a 2nd (or nth) job in chambers not used by the preceding job

Figure 1.8: Interleaving Jobs

Predicting interleaving job runtimes is usually more complicated than for serialized

jobs.

Figure 1.9 shows multi-chamber equipment with four chambers and two load ports. On

load port 1, job one was started. Wafers 1 to 4 already have been processed; 5 to 8

are currently being processed. In this example, the Recipe for that job sends all wafers

through all chambers (A → B → C → D). On load port 2, job 2 with the same chamber

flow is prepared and waiting.

Job 1

processing1
unloading1

loading, setup2

processing2

loading, setup1

Job 2

waiting2

10

Figure 1.9: Multi-chamber equipment, 1st job

While Figure 1.10 shows the situation where the last (25th) wafer of job 1 is still in

chamber C while job 2 was already started.

Figure 1.10: Multi-chamber equipment, interleaving jobs, 2nd job started

P1 P2

1.7 1.6

1.51.8

P1 P2

2.1 1.25

1.242.2

11

The situation is getting different when job 1 and job 2 are using different chamber

sequences. The equipment-internal scheduler that controls the parallel usage of

chambers will be considered the overlaps of used chambers if it is a capable scheduler.

The effect could be that the overlap of two process jobs could be minimal, or even

zero, if the same chambers are used, or very high if there is no or minimal overlap.

Figure 1.11 shows the situation that job 1 only uses chambers A and B, job 2 only

chambers C and D. In this case, there is no overlap.

Figure 1.11: Multi-chamber equipment, parallel jobs

The situation gets even more complicated when for example, the sequence for job 1 is

A → B → C, while the sequence for job 2 is still C → D. In this case, the scheduler has

to decide whether it can start both jobs and let the jobs share chamber C.

Even in the more straightforward example of a wet bench where the whole Lot is moved

from one tank to the next, the preceding job can influence by blocking a tank.

Nevertheless, also here, it depends on the process and the equipment scheduler. For

example, the process will not be started if job 1 blocks tank B since job 2 has to be

moved immediately from tank A to B and is not allowed to wait while still in contact with

the chemicals of tank A.

P1 P2

1.12 2.8

2.91.13

12

1.4 Recipe Runtime

Recipe Runtime is the time taken for a particular recipe to be completed. It represents

the difference between the job completion time and job start time. There exist different

recipes for different purposes. According to the Recipe, each phase consists of multiple

sub-steps operated by different machinery in a specific order according to the desired

output device. The mentioned operations are applied to lots consisting of up to 25

wafers in one batch to optimize costs and reduce the manufacturing time [2].

Recipe Runtimes are influenced directly by the type of wafer processing and the

number of wafers in a lot being processed. The time taken for each recipe is recorded,

and historical data are available at manufacturers.

It is evident that semiconductor manufacturing is composed of a complex set of

processes and predicting the recipe runtimes requires an understanding of the

processes involved. In addition, it is vital to examine job parameters to decide on the

predictors. Therefore, there could be various job parameters.

1.5 Use cases for Recipe Runtime

A recipe runtime prediction system could have different use cases once developed,

such as the following:

i. Operator Guidance:

Once the duration per second for a specific recipe is predicted with adequate accuracy,

the operator shall leverage such information. Such information could help the operator

plan his or her time and be alerted when needed.

ii. Planning:

A use case that serves the manufacturing process further is Planning. Predicting the

time needed for each Recipe to be completed could help factories plan their production

13

overhead and thus utilize their resources fully and ultimately achieve the maximum

throughput. With the correct planning, optimized processes could be achieved,

reducing the work in progress and ultimately reducing costs.

iii. Engineering Perspective:

A third use case that serves the engineering perspective in a factory is to understand

the reasons for having variability in tool recipe runtimes in the first place.

1.6 Thesis Objective

In this thesis, ML models shall be built to predict Tool Recipe Runtimes in

Semiconductor manufacturing. Having such models could contribute to building a

system that would ultimately predict future tool recipe runtimes for a given recipe in

semiconductor manufacturing with minimum input and adequate prediction accuracy.

Thus, a user would ultimately choose a recipe name as an input and obtain the

predicted runtime as an output to serve the mentioned potential use cases for such

technology.

The thesis studies the possibility and adequacy of different ML models such as

baseline models, specific models, and Automated Machine Learning. The errors

obtained from each model are analyzed in-depth, and the possibility of operationalizing

such models is studied.

14

2 State of the Art

This thesis studies the applicability, effectiveness, and possibility of predicting recipe

runtimes by leveraging historical data by building machine learning, predictive models.

Prediction of tool recipe runtimes in semiconductor manufacturing is mainly predicted

by in-house tools, simulation, or rule of thumb. [3] These tools are developed internally

to calculate an estimate of recipe runtimes. However, this approach could be limiting

as it does not consider the historical behavior in production according to the data

generated by manufacturing execution systems.

2.1 Literature Review

There has been ongoing research and development in predicting the cycle time of

semiconductor manufacturing. [3] However, the literature review did not come across

research in predicting specific recipes based on historical data and its features. Since

machine learning could theoretically provide predictions in any domain or application

shall this data be available, we decided to apply it to semiconductors recipe runtime

data available to us, study the results obtained, and analyze the approach's

effectiveness.

A big part of the prediction is identifying patterns. A similar anology is when humans

learn a new hobby or a new language. We being to look for patterns. Applying statistics

on data is a traditional approach to derive conclusions for specific data. Statistical

models could help us in identifying patterns in data. However, statics methods could

only provide us with insights such as mean, median and to determine the type of

distribution, if there is any. However, it is crucial to derive a model to predict recipe

runtimes.

Similar research has been developed in predicting the Lead Time (LT) in

semiconductor manufacturing through predictive data analytics, which uses historical

data to build models able to predict according to historical data [4]. Cross Industry-

15

standard Proces for Data Mining sets 6 phases for the lifecycle of predictive data

analysis projects. The phases are as the following:

i. Business understanding

ii. Data Understanding

iii. Data preparation

iv. Modeling

v. Evaluation

vi. Deployment

The modeling phase is where such predictive models are built by applying machine

learning algorithms. Researchers applied different ML algorithms on semiconductor

manufacturing data to predict lead time. The top-performing model was selected for

evaluation and later for deployment.

Machine learning automates the process of extracting a pattern from historical data.

There are two main types of ML, Supervised learning, where the training dataset is

labeled, and Unsupervised learning, where the dataset is not labeled. There exist other

types of ML, such as semi-supervised learning and reinforcement learning. In

predicting the lead time, the data was labeled, and so it was supervised learning.

As the prediction process of lead time in manufacturing is ongoing, it is a regression

problem.

The first mention of statistical learning, knowledge discovery, or data mining as a

possible practical approach to extract insights and derive conclusions from various

datasets, was in 1989 [5]. The research was focused on the industries of medicine,

biotechnology, finance, and marketing. However, there was less interest in the

manufacturing domain [6]. Recently, there has been a growing research interest and

more publications concerning leveraging production management data through

analytical methods and techniques and recorded investment returns.

16

There are possible outcomes for data mining, descriptive statistical analytics, and

predictive data mining. The first is used in finding patterns in data to provide a better

understanding. Like classification or regression, the latter analyzes actual data to

predict future data points for specific variables. Several applications rely on this

principle, such as scheduling, defect analysis, and fault diagnosis. One more potential

application could be predicting cycle time, waiting time, recipe runtimes in

semiconductor manufacturing.

The literature survey reveals research in predicting lead time, cycle time, waiting time

by applying different ML algorithms. However, no prediction of Recipe specific runtime

research has been found in the review. Results show that applying ML methods to

predict different manufacturing times showed the effectiveness and higher accuracy

than traditional prediction methods. The traditional methods are tailored for table

production environments to make a data-driven tool recipe runtime model more

dynamic [4], [7].

2.2 Machine Learning

Machine learning is the science of teaching machines through historical data to

eventually predict further data points in the future. Machine learning can be defined as

“Computational methods using experience to improve performance or to make

accurate predictions.” [8].

Machine learning utilizes the sciences of statistics, mathematics, and computing to

solve a problem, gather insights, or bring business value. The significant rise in

popularity of machine learning is owed to the increase in computation power, which is

currently sufficient to perform high computation tasks to achieve the required results in

an adequate time.

The issue of how to create computer programs that automatically develop through

experience is answered by machine learning. It is one of today's fastest-growing

17

technological areas at the intersection of computer science and mathematics and the

heart of artificial intelligence and data science. The emergence of new learning

algorithms and hypotheses and the continuing boom in data availability and high

computing have driven recent progress in machine learning.

Machine learning works through learning correlations and dependencies from historical

data. There are two main modes for learning, either supervised learning or

unsupervised learning. Supervised learning refers to classification, While

unsupervised learning refers to clustering. Through the machine, learning programs

could improve their outcome through an ongoing learning experience. There are

different use cases for machine learning, such as identifying trends, abnormalities,

prediction, planning, and diagnosing. With the current state-of-the-art in machine

learning, prediction of any future data point is possible. Thus, it is possible to build

predictive models that could learn from historical data. In recipe runtime prediction,

such a model will be supervised, as shown below in Figure 2.1 [9]–[14].

Figure 2.1: Predictive Model

Several machine learning algorithms could be applied to build a desired predictive

models. In this subchapter, the models used in this thesis are reviewed.

18

2.2.1 Random Forests

Random forests regression is a supervised machine learning algorithm that utilizes the

ensemble learning function for regression. Ensemble learning function combines

predictions provided by several machine learning algorithms to produce higher

accuracy prediction than a sole model. Random forests algorithm is based on decision

trees where each decision tree predicts its best score, as shown below in Figure 2.2.

Afterward, the predictions are averaged, and the random forests algorithm provides its

predicted value.

Figure 2.2: Random Forests prediction

Random forests are a collection of tree predictors in which the values of a random

vector are collected independently and with the same distribution for all trees in the

forest are used to predict the activity of each tree. Following the generation of a large

number of trees, the top-performing score is voted. This procedure is defined as the

generation of Random Forests [15].

Random forests regression provides conformal prediction. It utilizes all given data as

a training set. Compared to other renowned algorithms such as the KNN and ANN on

both standardized and normalized setup, the generated prediction results provided by

Random Forests are of higher accuracy on the majority of confidence levels compared

19

to the mentioned alternative algorithms. As the number of trees in a forest grows, the

generalization error converges to a limit. The strength of individual trees in the forest

and their correlation determine the generalization error of a forest of tree classifiers.

When a random selection of features is used to split each node, the error rates are

comparable to Adaboost, but they are more noise-resistant in comparison. Random

Forests can be used for either a categorical response variable, classification, or a

continuous response, regression [15], [16].

The random forests regressor firstly picks a random number of data points from a

training set. Following that, it builds decision trees associated with the specified data

points. Afterward, as specified, several trees are built, and thus the preceding steps

are repeated accordingly. Finally, the new data points are predicted through each tree,

and then the average of all values is calculated.

Distributed Random Forest is a sophisticated classification and regression algorithm.

When given a data set, DRF constructs a forest of classification or regression trees

rather than a single classification or regression tree. Each of these trees is based on a

subset of rows and columns and is a weak learner. The variance will be reduced when

more trees are planted. Whether predicting for a class or a numeric value, both

classification and regression use the average forecast across all of their trees to

generate a final prediction [17].

2.2.2 Gradient Boosting

Building a non-parametric regression or classification model from data is a common

task in several machine learning applications. One technique for creating a model in

domain-specific domains is to start with theory and then alter the parameters based on

the evidence. Unfortunately, such models are not available in most real-life

circumstances. In most cases, researchers do not reference even initial expert-driven

assumptions about the possible correlations between input variables. The lack of a

model can be overcome by using non-parametric machine learning techniques such

as neural networks, support vector machines, or any other algorithm to create a model

straight from the data [18].

Building a single solid predictive model is the most common method of data-driven

modeling. However, building a bucket, or an ensemble of models, for a learning

objective is a different technique. Instead, consider creating a collection of robust

models, like neural networks, that may be integrated to produce a superior prediction.

20

In practice, however, the ensemble method involves merging a large number of

relatively simple models to produce a more robust ensemble forecast. Random forests

and neural network ensembles are two of the most well-known machine-learning

ensemble approaches [19], [20].

Random forests and other joint ensemble approaches rely on simple averaging of

models in the ensemble. The boosting approaches are based on a distinct,

constructive ensemble-building strategy. The primary idea behind boosting is to add

additional models to the ensemble incrementally. An additional base-learner model is

trained concerning the error of the entire ensemble learned so far at each iteration.

2.2.3 Automated Machine Learning

An outbreak of machine learning research and applications has occurred in the last

decade; in particular, deep learning techniques have enabled significant advances in

many fields of application, such as computer vision, speech recognition, and

gameplay. However, the performance of many machine learning approaches is very

susceptible to many design decisions, which is a significant barrier for new users. It is

especially true in the booming field of deep learning, where human engineers need to

choose the correct neural architectures, training procedures, methods of

regularization, and hyperparameters of all of these components to make their networks

perform with satisfactory performance. For every application, this step has to be

replicated. Also, scientists are often left with tedious trial and error runs before finding

an adequate solution for a specific dataset [21].

Machine Learning often is an experimental incremental process without fixed limits for

improvement. Different algorithms are encouraged to be applied to test hypotheses

and results. However, not everyone is an ML expert and knows how to control every

model, and as well there is no way to apply different algorithms in one training process.

This is where Automated Machine Learning comes to fulfill the gap as it applies, tune,

and test a library of different ML algorithms until the best possible score is achieved

using efficient Bayesian optimization methods [21], [22].

Automated Machine Learning aims to make these decisions in a data-driven, objective,

and automated manner: the user simply provides data, and the AutoML framework

21

automatically decides the best performing approach for this specific application.

AutoML thus makes state-of-the-art approaches to machine learning available to

domain scientists interested in implementing machine learning but cannot learn in-

depth about the technologies behind it. This leads to the democratization of Machine

Learning, making the technology appliable to a larger pool of users [21].

The recent significant progress in ML has led to rising demand for hands-free ML

systems that can help developers and ML novices build new ML applications

effectively. Since different datasets require different ML pipelines, this demand has

given rise to standard AutoML systems such as Auto- WEKA, hyperopt-sklearn, Auto-

sklearn, TPOT, and Auto-Keras perform a combined optimization across different

preprocessors, classifiers, hyperparameter settings, and others, thereby reducing the

effort for users substantially [22].

AutoML systems have been effective in numerous applications, implementing their

new hyper-hyperparameters, including the option of the evaluation strategy used in the

loss function, the time estimate used, and the hyper-hyperparameter optimization

strategy [23].

AutoML methods are classified as “lifelong machine learning” systems. ML systems

learn several tasks from multiple domains, possibly in their lifetime. An ideal AutoML

system would be a method to learn from all tasks and adapt itself during its lifetime. As

a result, it would ideally be the most competitive and robust machine learning solution

for all problem statements [24].

The protocol of how AutoML is performed is as shown in Figure 2.3. Firstly, the

machine learning problem is identified. Then, the dataset to be used is made available,

and the labeled data is identified. Then the target metrics are set, the constraints, if

any, and the hyperparameters. Afterward, the training is of the different algorithms is

executed. Finally, the results are observed [25].

22

Figure 2.3: AutoML Workflow

Due to the numerous benefits, AutoML brings such as high accuracy results and time-

saving, it was selected for development in several projects.

Auto-sklearn is a robust AutoML engine based on the renowned most commonly used

Scikit-learn Python ML package. Scikit-learn is a widely used ML library used by both

experts and beginners to implement ML algorithms on datasets in Python. Auto-sklearn

is an AutoML methodology that uses meta-learning, Bayesian optimization, and

ensemble selection to determine promising ML pipelines comprising preprocessing

techniques and ML classifiers. Auto-sklearn is the “State of the Art of AutoML.” [24]

Bayesian optimizations are used to establish a high-performance optimized ML

pipeline on any data dump. Auto-sklearn uses 15 built-in classifiers, 14 preprocessing

methods, and 4 data preprocessing methods, as illustrated in Figure 2.4 comparing

the different outcomes and thus selecting the best result [21], [26].

23

Two main elements make Auto-Sklearn effective. The first is built on meta-learning,

complementary to Optimization techniques, which is used to accelerate the

optimization by rapidly recommending instantiations of a framework that is forecasted

to perform well. The meta-learning was accomplished from an off process where 38

meta-features were learned from 140 OpenML datasets. The second function is the

automatic ensemble construction of models evaluated during optimization. Instead of

discarding the remainder of the models found in the Bayesian optimization process, it

stores them and then constructs and assembles them using a greedy ensemble

selection algorithm to select the best model [24].

In the final step of Autosklearn’s workflow, the best pipelines identified during the

Bayesian search process are used to construct an ensemble. This automated

ensemble construction avoids committing itself to a single hyper-parameter setting,

and it is more robust than only using the best pipeline found with the optimization

component.

Another provider of user-friendly AutoML software that non-experts could use is H2O

AutoML. H2O simplifies automated machine learning by providing a unified interface

to several machine learning algorithms. Although H2O AutoML simplifies AutoML

training, it requires machine learning knowledge to produce and understand high-

Figure 2.4: Autosklearn Structure

24

performing ML models. AutoML automates the process of training a variety of potential

models. In addition, it automates data preprocessing, feature engineer and provides

helpful insights that explain the performance of the selected models [27].

H2O AutoML can automate the ML workflow by automating training and tuning several

models within a specified time limit. Stacked ensembles are automatically trained

through the combination of several models to build the highest predictive ensemble

models. Commonly, such models are the top-performing models based on the AutoML

score leaderboard [27].

2.3 Chapter Summary

A significant part of the prediction is identifying patterns. Machine learning automates

the process of identifying patterns in historical data to predict future data points. This

process could be applied to different applications and domains, such as the

semiconductor manufacturing domain. Literature survey reveals past research in

applying ML algorithms to predict cycle time, waiting time, and lead time. Since

predicting recipe runtimes is a regression problem, different algorithms such as

Random Forests, Gradient Boosting, and AutoML have been studied to be selected

and used to serve such applications.

25

3 Data Preparation

To predict tool recipe runtimes in semiconductor manufacturing by building ML models

and predicting future points, the data must first be available and then prepared. For the

data to be ready, there are a set of procedures that has to be applied. This chapter

reviews the following data preparation phases: data gathering, parameter selection,

exploratory data analysis (EDA), and data engineering.

3.1 Data Gathering

The requirements for advanced manufacturing are many, including optimized resource

planning, quality management, utilizing shop floor tools, production and personnel

timeline utilization, and the ability to stay dynamic and respond to changes.

For over three decades already, corporations worldwide have been allocating an

investment budget in information systems to increase productivity and realize the

added return on investment values. Enterprise Resource Planning Systems serve as

the backbone of the operation of corporations, and even for small and medium

enterprises to manage resources, orchestrate scheduling, and manage the supply

chain. When it comes to manufacturing, a solution has been needed for the shop floor

as ERP systems do not offer the level of detail needed to add the suitable materials at

the correct time with the matching tool in a highly complex and dynamic product line.

The layer was needed to achieve production goals by delivering the desired material

on time, safely, reliability, and predictably.

Companies have been relying on custom made systems to fulfill specific needs. In

highly automated factories, such data is commonly collected by a variety of sensors.

Shop floors traditionally required data gathering systems such as databases and

spreadsheets to collect production data and monitor real-time execution processes.

However, this approach could be complex to manage. Manufacturing execution

systems overcome the challenge of integrating several point systems by integrating

multiple execution components into a standalone solution. MES offers a unified user

26

interface for data management. The demand for utilized manufacturing has led to the

development of MES. Together with ERP, MES provides contributes to the various

functionalities described in the below Figure 3.1 [28].

Figure 3.1: Manufacturing Execution Systems

The data used in the master thesis is an industrial encoded data provided by an

anonymous industrial partner, and the data was derived from their manufacturing

execution system.

3.2 Parameter Selection

This thesis aims to develop a system to predict tool recipe runtimes and study if it is

effective. Such a system would depend heavily on historical data. This stresses the

importance of defining the predictors from the list of input. In this thesis, the data I used

initially had a large set of variables.

After careful consideration, only a subset of those variables has been decided on as

predictors. The list of predictors is grouped into the following categories:

27

• Lot details

• Process attributes

• Operation attributes

• Equipment attributes

• Operating personnel

• Other categorical data

Lot details contain the Lot Item Count, Lot Group Mapped, the Product, Product Type,

and Technology used. In contrast, Process attributes are concerned with the Process

Step and the Recipe being executed. Operation Attributes are the operation name,

type, and group. Equipment attributes specify the equipment name, type, type mapped,

group, group mapped, and area. In comparison, the operating personnel category

includes the operator's name at the beginning of the shift and the end of the shift. The

final list of predictors is listed in below Table 1.

Table 1: List of predictors

Variable
Variable
Class Description

LotIemCount Numeric Count of items in the Lot

LotGroupMappe
d Character Mapped grouping of lots

Product Character Product manufactured

ProductType Character Grouping of products

Technology Character Semiconductor technology

ProcessStep Character
Each operation is part of one or more production
schedules and has a subset of definedProcesStep's

ProcessRecipe Character The recipe used for the ProcessStep

Operation Numeric

The identifier for a specified production target. Each
operation is part of one or more production schedules and
has a subset of a defined ProcessStep

OperationType Character Grouping of Operations

OperationGroup Character Grouping of OperationTypes

Equipment Character Name of the tool

EquipmentType Character Grouping of Equipment

EqupmentType
Mapped Character Mapped grouping of EquipmentTypes

EquipmentGroup Character Grouping of EquipmentTypes

EquipmentGroup
Mapped Character Mapped grouping of Equipment

Area Character Production location inside a factory

28

Sequence1 Character
Route (work plan), lithography layer (mask layer), logical
location

Sequence2 Character
Route (work plan), lithography layer (mask layer), logical
location

Sequence3 Character
Route (work plan), lithography layer (mask layer), logical
location

Sequence4 Character
Route (work plan), lithography layer (mask layer), logical
location

Operator Character Staff member identification

StartShiftName Character Team name of the Shift.

EndShiftName Character Team name of the Shift.

3.3 Exploratory Data Analysis

A good practice for any machine learning project is to begin by performing exploratory

data analysis. EDA is a powerful approach to provide insights and methods to help

identify patterns in data and understand data typically through graphs and Tables for

visualization. Through EDA, data can be looked at from different points of view, thus

contributing to further understanding of the data and deriving conclusions [29], [30].

The data used in this thesis is actual production data from a semiconductor

manufacturer. The data has been anonymized for discretion. The specific attributes

that have been anonymized are LotGroupMapped, Product, ProductType, Technology,

ProcessStep, Equipment, Operator, StartShiftName, and EndShiftName. The initial

description of the numeric columns of the dataset is plotted in below Figure 3.2. It

shows that the minimum recipe duration time is 2629.57 seconds. The minimum recipe

time elapsed 1 second only, which is a failed recipe or inaccurate data. The maximum

recipe time was 368287 seconds. Concerning the LotItemCount, it is observed that the

mean LotItemCount is 24.

29

Figure 3.2: Numeric variables described

The first plot in Figure 3.3 below illustrates the distribution of average process duration

by plotting the durations in seconds taken by each Recipe to be executed on a specific

tool against the Start Timestamp. The Start timestamp ranges between 2020-07-19

00:00:00 and 2020-09-19 00. Thus, the most significant density for the recipe's

duration is between 0 seconds and 2500 seconds. A lower density follows them for

recipes requiring 2500 seconds to 5000 seconds. Finally, they were followed by the

minor population of some scattered recipes that consumed more than 5000 seconds.

Figure 3.3: Distribution of average process duration

30

Moreover, The distribution of EquipmentType is plotted below in Figure 3.4. The Figure

shows different classifications of Equipment Types such as Single Chamber Tool, Not

Mapped, nan_other, MultiChamber Time, Cluster MultiPath Tool, and Batch Tool. The

most significant concentration of data is of Single Chamber Tool Equipment Type

Mapped with a value of over 100000 records and followed by significantly less Batch

Tool with a value a little higher than 40000, Cluster MultiPath Tool with just a little over

20000 records and followed lastly, by the least frequent occurrences of Not Mapped,

Multi-Chamber Tool, and the nan_other group.

Figure 3.4: Equipment Type Mapped Distribution

Concerning the equipment group distribution, the following is observed in Figure 3.5.

The ICON Equipment Group is the major equipment group in the dataset with over

60000 records, followed by the LITH Equipment Group with more than 40000 records,

followed by the WPRO equipment group with a little over 30000 records. The

equipment groups with values under 20000 records are the ETCH, HCVD. While IMET

and nan_other are the least redundant with values lower than 10000 records.

31

Figure 3.5: Equipment Group Distribution

Regarding the distribution of the different technologies used, the below Figure 3.6 plots

the count of each Technology in the dataset. Naturally, there exist some technologies

that are more redundant than others. The most frequent technologies used

descendingly are Technology 6 and Technology 1, with over 20000 records. While

Technology 10, Technology 20, and Technology 0 come after with over 10000 records.

The rest of the technologies are of less than 10000 records.

32

Figure 3.6: Technology Distribution

Moreover, it was helpful to plot process recipes against duration seconds to

understand the variability of process recipes. In the below Figure 3.7, the duration in

seconds for three process recipes was plotted.

Process Recipe 1 has a considerably large variability between its minimum and

maximum values. However, most of the data averaged between 100 and 1000

seconds, with the most frequency around 500 seconds. “Process Recipe 112” has

significantly less variability between its maximum and minimum values. However, the

most significant portion of occurrence was still around the 500 seconds threshold.

Process Recipe 4 had even higher limits' variability. Its distribution mainly occurred

around 1000 seconds.

33

Process Recipe 4 shows the most considerable difference between its maximum and

minimum values. However, most values are slightly above the 1000 seconds threshold.

However, most values remain dense slightly above the 1000 seconds threshold. This

Figure shows that some recipes could have large variability in their data due to large

ranges, affecting the prediction process for specific recipes.

Figure 3.7: Process duration by Recipe

When observing the trends in process time by Recipe as in the below Figure 3.8 for

Process Recipe 1 and Process Recipe 4, it is observed that the duration seconds for

the individual process recipe are distributed mostly below the 10000 seconds

threshold. However, in both process recipes, outliers overs the observed

StartTimeStamp are observed.

34

Figure 3.8: Trends in process time by Recipe

Moreover, in the EDA, the LotItemCount shows that the most used LotItemCount is

25, as shown in Figure 3.9. Therefore, a LotItemCount of 25 is the ideal count for

having as this is the maximum number of lots possible to be processed later.

35

Figure 3.9: LotItemCount

It is also essential to view the correlation between the variables of the data, if any.

The below heatmap in Figure 3.10 shows the correlation between the variables.

However, unfortunately, there is a very low correlation between the variables.

Figure 3.10: Heatmap Correlation Map

36

After selecting the predictors, the final shape of the dataset is 188026 and has 25

columns, as shown in Figure 3.11.

Figure 3.11: Tool Recipe Runtimes Prediction Dataset

3.4 Data Engineering

Before and following the machine learning process usually, some data engineering is

required. Data engineering is the science of data collection and performing analysis on

data. Data scientists aim to retrieve valuable insights from datasets and answer

questions to bring value to an organization, usually a business value.

To work with the provided data and apply the developed methods, certain data

engineering operations must make the data usable. In this subchapter, a few of the

operations that were needed are discussed.

3.4.1 Removing Missing Values

As such extensive data collected from sensors could have some missing values,

commonly referred to as Non-Available Values or NaNs. There are several types of

missing values, such as Missing entirely at random, missing at random, and not

37

missing at random. Thus, a primitive step in the EDA was to check the presence of

NaN values, if any, and their count. Initial analysis showed the presence of such

values, and they had to be removed to provide predictions based on the presence of

all predictors. Thus, any row that contains any missing column value had to be

removed.

There are several ways of dealing with non-available data, including not performing

any action, dropping the missing values, or imputing the missing data with a value that

could be the mean, median, k-nearest neighbors, or other means.

3.4.2 Encoding Categorical Data

Categorical data are the type of data that contain a certain number of possibilities,

groups, or categories, unlike continuous data. Every value of categorical data is a

substitute for one of the categories. Categorical data are either nominal or ordinal. To

apply statistical methods or machine learning, it is essential to encode categorical data

by converting it to numerical data as the algorithms require numbers as input rather

than strings [31].

The predictors mostly were categorical data, and it was crucial to encode them. There

are several methods to encode categorical data. One-hot-encoding and dummy

variables creation were the two methods analyzed, and dummy variables creation was

selected for encoding the categorical variables.

Finally, the dataset was split into a training set (60%), a test (20%), and a validation

test (20%) for the next steps.

3.5 Chapter Summary

Prior to method development, data must be gathered and prepared for use to be ready

for prediction. Firstly, data was gathered from industrial sources and annonmized, a

list of predictors was defined. Later, EDA revealed an initial understanding of the data.

Finally, data engineering was performed to make the data ready for implementation.

38

39

4 Results

Once the data had been prepared, it was possible to proceed with method

development. In the method development, several models were built and trained to

predict recipe runtimes. These models include different implementation and

techniques.

This chapter examines the methods used to study the hypothesis, and the output

results are recorded. First, the following flow of events chart was collected to view an

abstract, as shown below in Figure 4.1. Then, as discussed in earlier chapters, the

process begins by collecting the data, defining the parameters, performing the EDA to

understand the data, and performing data engineering to make the dataset ready for

implementation.

The implementation phases begin by applying the selected machine learning

algorithms on the dataset, training the models, analyzing them, and finally choosing

the appropriate model for deployment. In the next subchapters, the results from each

model are recorded and analyzed.

40

Figure 4.1: The flow of events

Data Gathering

Parameter

Selection

Exploratory Data

Analysis

Data Engineering

Applying Machine

Learning

Model Comparison

and selection

Serving the model

41

4.1 Error Analysis

In this subchapter, the errors from the implementation of each applied ML algorithm

are analyzed.

4.1.1 Sklearn GradientBoosting

Boosting is the procedure of improving the accuracy of a model. It is based on the idea

that finding and averaging many rules of thumb is more accessible than finding a

single, high-precision prediction rule. Gradient Boosting Machine is a straightforward

learning ensemble technique. Satisfactory predictive results could be generated by

increasing refined approximations.

The following parameters were set for the training of the model. Random state: 42,

number of estimators: 90, minimum sample split: 50, maximum features: 60, and

maximum depth: 40. The rmse value achieved for Sklearn’s Gradient boosting

regression on the test data is 2725 seconds and 2133 seconds on the validation data.

Figures 4.2 and 4.3 below plot the difference between the predicted values and the

actuals after training the model on the validation data. The values up to 3000 seconds

were predicted with adequate accuracy. The values from 30000 to 50000 seconds had

less accuracy in prediction. The values larger than 50000 seconds were predicted with

even greater error.

Figure 4.2: Sklean GradientBoosting Baseline Model, Validation Data, Actuals Vs. Predictions

42

Figure 4.3: Sklean GradientBoosting Baseline Model, Validation data, Prediction Errors

While Figures 4.4 and 4.5 demonstrated the prediction error when training the model

on the test data. The predicted values were close to the actuals for values up to 30000

seconds. However, much lower accuracy was observed for larger values.

Figure 4.4: Sklean GradientBoosting Baseline Model, Test Data, Actuals Vs. Predictions

Figure 4.5: Sklean GradientBoosting Baseline Model, Test data, Prediction Errors

When applying sklearn’s gradient boosting, a model was created, and the error was

measured again in different categories, as shown below in Figure 4.6—first analyzing

the rmse against EquipmentGroup on the test data as shown below Figure. The error

was the highest for the nan_other group. For the rest of the groups, WPCM Equipment

group predictions were the most accurate with a rmse of 641 seconds, followed by

43

LITH with a rmse value of 919 seconds, followed by ETCH with a value of 1140

seconds. IMET and HCVD showed slightly higher values of 1723 and 1735 seconds,

respectively. Finally, the highest error was from the ICON group, with a value of 2571

seconds.

Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Validation data

However, on the test data, Figure 4.7 demonstrates somewhat different results. The

group with the lowest error prediction is the nan_other group with a rmse value of only

305.59 seconds. For the rest of the groups, LITH Equipment Group has the lowest

error of 903.1 seconds, followed by IMET with a higher error of 1028.71 seconds.

HCVD and WPRO show a higher error of 1844.49 and 2881.98 seconds, respectively.

Finally, the highest error was of the ICON equipment group, with a value of 3923.82.

44

Figure 4.7: Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Test data

The error was also compared against EquipmentTypeMapped, as shown in Figure 4.8

when training the validation data. EquipmentTypeMapped is the information about the

equipment type used. The group with the lowest prediction error was the not_mapped

group. The nan_other equipment type had the lowest prediction error of 33.92 seconds

for the rest of the groups. MultiChamberTool error was slightly higher with 810.68

seconds, followed by ClusterMultiPathTool with a value of 1365.15 seconds and

BatchTool with 1497.9 seconds. The most significant error was of the NotMapped

equipment type.

Figure 4.8: Sklearn GBM RMSE per Equipment Type Mapped – Validation data

Different results were observed when training the model on the test data, as shown in

Figure 4.9. The lowest prediction error was similar for the nan_other Equipment type.

For the rest of the tools, MultiChamberTool shows the lowest error with a value of

45

1073.41 seconds, followed by ClusterMultiPathTool with a value of 1427.6 seconds,

followed by the NotMapped group with a value of 1541seconds. The highest errors

were of BtachTool and SingleChamberTool with values of 2357.68 and 3106.24

seconds, respectively.

Figure 4.9: Sklearn GBM RMSE per Equipment Type Mapped – Test data

There are various semiconductor manufacturing technologies recorded in the data.

Therefore, it was also essential to know if predictions were accurate for specific

technology and not for others. As plotted below in Figure 4.10, the results show that

Technology 19 had the lowest prediction RMSE of 572 seconds, followed by

Technology 5 with an error of 672 seconds. The highest errors were of Technology 17

and Other_level of 3390 and 3786 seconds, respectively. The rest of the technologies

demonstrated varying errors. It is unclear the reasons that lead to such differences in

errors for different technologies.

46

Figure 4.10: Sklearn Gradient Boosting RMSE against Technology – Validation data

As for the test data, the below results are observed in Figure 4.11. Technology 26 had

the lowest prediction RMSE of 656 seconds, followed by Technology 9 with an error of

695 seconds. The highest errors were of Technology 8 and Technology 12 of 5244

and 6105 seconds, respectively. The rest of the technologies demonstrated varying

errors.

Figure 4.11: Sklearn Gradient Boosting RMSE against Technology – Test data

As explained earlier, recipe runtimes in semiconductor manufacturing are composed

of many steps and substeps. Analyzing the root mean squared error for process

recipes showed the following as illustrated below Figure 4.12, ProccessStep8 had the

lowest rmse value of only 76.33 seconds, followed by ProcessStep9 with a rmse of

163.42 seconds. For unclear reasons, Other_Level process recipes show the highest

47

error of 2522.12. seconds, followed by ProcessStep3 with an error of 1708.15 seconds.

The remaining of the rmse values ProcessSteps varied.

Figure 4.12: Sklearn GBM RMSE vs ProcessStep - Validation data

Figure 4.13 shows the results achieved on the test data. Similar to the validation

dataset ProccessStep8 had the lowest rmse value of only 64.59 seconds. However, it

was followed by ProcessStep82 with a rmse of 187.7 seconds, ProcessStep3 with

222.24 seconds, ProcessStep12 with 226.5 seconds. ProcesStep9 obtained a rmse of

512.46 seconds. For unclear reasons, ProcessStep13 shows the highest error of 7618

seconds, followed by ProcessStep1 with 6611.97 seconds. The remaining rmse values

of ProcessSteps varied.

Figure 4.13: Sklearn GBM RMSE vs ProcessStep - Test data

48

4.1.2 Sklearn Random forests

In this section, the results from applying sklearn’s Random forests implementation are

reviewed. In the implementation, sklearn’s Random Forests regressor was first chosen

to build a random forests regression model. Several parameters could be changed;

otherwise, they are set to the default values of sklearn. In this model, two parameters

were adjusted. The number of estimators is the number of trees in the forest, and it

was set to 90 estimators [32]. The random state controls the randomness of the

bootstrapping of the samples used when building trees, and the sampling of the

features to consider when looking for the best split at each node was set to 4.6.

The rmse value achieved for Sklearn’s Random Forests on the test data is 2759.72

seconds and 2165.13 seconds on the validation data.

Analyzing the error for specific equipment groups as illustrated in Figure 4.14, When

applying sklearn’s random forests to the validation data, the following errors appear

per Equipment Group. The lowest error is for the WPCM Equipment Group, with an

error of 272.96 seconds. Regarding the rest of the equipment groups, the LITH

equipment group had the second. The lowest rmse value of 980.29 seconds, followed

slightly by the ETCH equipment group with a value of 1339.02 seconds, followed by a

higher value for the WPRO equipment group with a value of 1487.09, followed by the

HCVD equipment group with a higher value of 1693.01 seconds, followed by IMET

equipment group with a rmse value of 1912.91 seconds. The highest error in prediction

was off the ICON equipment group and the nan_other group having an error of 2560.56

seconds and 12034.83 seconds, respectively.

Figure 4.14: Sklearn RandomForest RMSE per EquipmentGroup – Validation data

49

The results from the test data are plotted in below Figure 4.15. In contrast with the

results from the validation data, the nan_other group has the lowest rmse from the test

data with an error of 356.69 seconds. For the rest of the groups, LITH Equipment

Group has the lowest rmse with an error of 922.3 seconds, and similarly to the

validation data followed in rank by the ETCH Equipment Group with an error of 1151.44

seconds, followed by HCVD with an error of 1825 seconds, followed by IMET with an

error of 2132.32 seconds, followed by WPRO with an error of 2931.74 seconds. Like

the validation data, besides the nan_other group, ICON comes last in rank with the

highest prediction error with a rmse of 3885.83 seconds.

Figure 4.15: Sklearn RandomForest RMSE per EquipmentGroup – Test data

Analyzing the error when applying Sklearn’s Random Forest per

EquipmentTypeMapped shows the below results plotted in Figure 4.16. The lowest

error is of the nan_other category, with an error of 262.07 seconds. For the rest of the

categories, MultiChamberTool shows the lowest error of 675.84 seconds, followed by

ClusterMultiPathTool with an error of 1458.72, followed by a higher error of 1577.72

for the BatchTool category, followed by an error of 2082.75 seconds for the

SingleChamberTool Equipment Type. The highest error in prediction was off the

NotMapped category with an error of 6247.04 seconds.

50

Figure 4.16: Sklearn RandomForest RMSE per EquipmentTypeMapped - Validation data

Applying sklearn’s Random forests algorithm on the test data also showed the

following rmse errors against EquipmentTypeMapped as plotted in Figure 4.17. The

lowest error is of the nan_other category with an error of 333.25 seconds, similarly to

the validation error. For the rest of the categories, MultiChamberTool shows the lowest

error of 962.6 seconds, followed slightly by ClusterMultiPathTool with an error of

1475.29, followed by a higher error for the NotMapped category of 2035.6 seconds,

followed by an error of 2393.9 for the BatchTool Equipment Type. The highest error in

prediction was off the SingleChamberTool with an error of 3127.27 seconds.

NotSpecified operation group with values of 1456 seconds and 3529.1 seconds,

respectively. Nan_other, MultiChamberTool, and ClusterMultiPathTool show the same

rank in errors across both the test and validation data.

Figure 4.17:Sklearn RandomForest RMSE per EquipmentTypeMapped - Test data

51

Comparing the rmse values aginst OperationGroup shows the following errors of the

validation data as plotted below in Figure 4.18. The lowest error is of the

MaskLayerOperation operation group with an error value of 411.58 seconds, followed

by the PE_SiN-SiO operation group with an error of 736.41, followed by the Developer

operation group with a value of 633.69 seconds, followed by the PE-SiN-SiO operation

group with a value of 772.12 seconds, followed by the Coater operation group with a

value of 1036.45 seconds. The highest errors are for the Other_Level operation group

and NotSpecified groups, with errors of 2811.19 and 2243.9 seconds.

Figure 4.18: Sklearn RandomForest RMSE per OperationGroup – Validation data

Comparing the rmse values aginst OperationGroup shows the following errors of the

test data as plotted below in Figure 4.19. The lowest error is of the

MaskLayerOperation operation group with an error value of 175.64 seconds, followed

by the PE-SiN-SiO operation group with a value of 816.64 seconds, followed by the

Developer operation group with a value of 1106.65, followed by the Coater operation

group with a value of 1291.78 seconds, followed by the Other_level operation group

with a value of 1497.98 seconds. The highest error is of the NotSpecified Operation

Group, with a value of 2982.23 seconds.

52

Figure 4.19: Sklearn RandomForest RMSE per OperationGroup – Test data

For comparing RMSE values of the validation data per technology, the following errors

in below Figure 4.20 are shown. The lowest prediction error is for Technology 19 with

a value of 578.54 seconds, followed slightly by Technology 5 with a value of 737.77

seconds. The highest error is for Other_level with a value of 3756.11 seconds. The

remaining values varied from 775.37 seconds (Technology 61) to 3395.6 seconds

(Technology 17).

Figure 4.20: Sklearn RandomForest RMSE per Technology – Validation data

For comparing RMSE values per technology on the test data, the following errors in

below Figure 4.21 are shown. The lowest prediction error is for Technology 26 with

655.79 seconds, followed slightly by Technology9 with 694.57 seconds. The highest

error is for Technology 12, with a value of 6105.47 seconds. The remaining values

varied from 750.39 seconds (Technology 61) to 5244.07 seconds (Technology 8).

53

Figure 4.21: Sklearn RandomForest RMSE per Technology – Test data

Lastly, Sklearn’s random forests show the following errors per Process steps as plotted

in Figure 4.22. The lowest error is 76.33 for ProcessStep8, followed by a higher error

of 163.42 seconds for ProcessStep9. The highest error in prediction is of 2522.12

seconds for Other_level. The rest of the errors varied between 176.04 seconds for

ProcessStep10 and 1708.15 seconds for ProcessStep3.

Figure 4.22: Sklearn RandomForest RMSE per ProcessStep – Validation data

LSklearn’s random forests show the following errors for the test data per Process steps

as plotted in Figure 4.23. The lowest error is also for ProcessStep8 with 79.51 seconds,

followed by 84.4 seconds rsme for ProcessStep3. The highest error in prediction is of

54

7639.69 seconds for ProcessStep13. The rest of the errors varied between 174.07

seconds for ProcessStep82 and 6658.24 seconds for ProcessStep1.

Figure 4.23: Sklearn RandomForest RMSE per ProcessStep – Test data

4.1.3 H2O Gradient Boosting

Gradient Boosting Machine (for Regression and Classification) is an ensemble method

for learning. The guiding principle is that with increasingly more satisfactory

approximations, good forecasting outcomes can be produced. H2O's GBM creates

regression trees progressively on all of the dataset's characteristics in a fully distributed

manner. Each tree is generated in parallel.

A further step in building predictive models is applying H2O’s Gradient boosting

machines on the data. The rmse value achieved for H2O Gradient boosting regression

on the test data is 2894.1 seconds and 2330.55 seconds on the validation data.

The error per EquipmentGroup is as shown below in Figure 4.24 for the validation data.

The highest error in prediction is for the nan_other equipment group with a rmse value

of 12190.49. For the rest of the equipment groups, the lowest value is of 828.55

seconds for the WPCM equipment group, followed by LITH with a value of 913.16

seconds, followed by ECTH with a value of 1157.71 seconds, followed by WPRO with

a value of 1458.68 seconds, followed by IMET with an error of 1750.25. The highest

errors are of HCVD and ICON equipment groups with 1840.51 and 29474.07 seconds,

respectively.

55

Figure 4.24: H2O GradientBoosting RMSE per EquipmentGroup – Validation data

The error per EquipmentGroup for the test data is shown below in Figure 4.25. The

highest error in prediction is for the ICON equipment group with a rmse value of

4263.98 seconds. For the rest of the equipment groups, the lowest value is of 347.42

seconds for the nan_other equipment group, followed by LITH with a value of 887.46

seconds, followed by ECTH with a value of 1070.96 seconds, followed by IMET with a

value of 1014.58 seconds, followed by HCVD with 1792.74 seconds, lastly followed

by WPRO with a value of 2903.86 seconds.

Figure 4.25: H2O GradientBoosting RMSE per EquipmentGroup – Test data

The subsequent analysis is comparing the rmse value for each

EquipmentTypeMapped as shown in Figure 4.26. The lowest error is for the nan_other

equipment type mapped with an error of 447.89 seconds. For the rest of the categories,

MultiChamberTool has the lowest error of 986.7 seconds, followed by

56

ClusterMultiPathTool with a value of 1472.83 seconds, followed by BatchTool with a

value of 1555.52 seconds, followed by SingleChamberTool with a value of 2368.95

seconds. The highest error is for the NotMapped equipment type mapped with an error

of 6232.12 seconds.

Figure 4.26: H2O GradientBoosting RMSE per EquipmentTypeMapped – Validation data

The following analysis compares the rmse value for each EquipmentTypeMapped as

shown in Figure 4.27. The lowest error is for the nan_other equipment type mapped

with a rmse of 421.13 seconds. For the rest of the categories, MultiChamberTool has

the lowest error of 1101 seconds, followed by NotMapped with 1461.33 seconds,

followed by ClusterMultiPathTool with a value of 1470 seconds, followed by BatchTool

with a value of 2327.69 seconds. The highest error is for the SingleChamberTool

equipment type mapped with an error of 3358.39. seconds.

57

Figure 4.27: H2O GradientBoosting RMSE per EquipmentTypeMapped – Test data

Regarding the comparison of errors per OperationGroup, the following errors are

shown as plotted in Figure 4.28. The lowest error is of MaskLayerOperation operation

group with a value of 441.55 seconds, followed by the Developer operation group with

a value of 788.14 seconds, followed by the Coater operation group with a value of

1035.85 seconds, followed by the PE-SiN-SiO operation group with a value of 1738.2

seconds, followed by the NotSpecified group with rmse of 2426 seconds. The highest

error is of the Other_level operation group with a rmse of 2764.48. seconds.

Figure 4.28: H2O GradientBoosting RMSE per OperationGroup – Validation data

Regarding the comparison of errors for the test data per OperationGroup, the following

errors are shown as plotted in Figure 4.29. The lower error is of the

MaskLayerOperation group similar to the validation data with a value of 271 seconds,

followed by the Developer operation group with a value of 1100 seconds, followed by

58

the Coater operation group with a value of 1326.54 seconds, followed by the

Other_level operation group with a value of 1418.9 seconds. The highest errors are

1571.4 and 3126.88 for PE-SIN-SiO and NotSpecified, respectively.

Figure 4.29: H2O GradientBoosting RMSE per OperationGroup – Test data

Comparing rmse values per technology for the validation data shows the below results

in Figure 4.30. The lowest prediction error is Technology19’s with 591.25 seconds,

followed by a slightly higher error of Technology5’s 627.2 seconds. The highest error

is for Technology26 and Other_level, with errors of 3741.8 and 3871.13 seconds,

respectively. The rest of the errors varied for the different technologies.

Figure 4.30: H2O GradientBoosting RMSE per Technology – Validation data

59

While companies rmse values per technology for the test data shows, the below results

in Figure 4.31. The lowest prediction error is Technology9’s with 546.83 seconds,

followed by a slightly higher error of Technology26’s 674.8 seconds. The highest error

is for Technology12 and Technology8, with errors of 6062.87 and 7979 seconds,

respectively. The rest of the errors varied for the different technologies.

Figure 4.31: H2O GradientBoosting RMSE per Technology – Test data

Finally, for ProcessStep errors for the validation data, the following in observed as

plotted in Figure 4.32. The lowest prediction error is 121.84 seconds for ProcessStep8,

followed by a slightly higher error for ProcessStep82 with 159.22 seconds. The highest

errors are of PorcessStep3 and Other_level with values of 1118.9 seconds and

2724.68 seconds, respectively. The remaining errors varied for the different process

steps, with values ranging from 172.56 for ProcessStep9 to 804.85 seconds for

ProcessStep145.

60

Figure 4.32: H2O GradientBoosting RMSE per ProcessStep – Validation data

The following ProcessStep errors for the test data are observed in Figure 4.33. The

lowest prediction error is 87.16 seconds for ProcessStep8, similar to the validation

data, followed by a slightly higher error for ProcessStep3 with 120.1 seconds.

However, the highest errors are of PorcessStep1 and ProcessStep13 with 6645.94

seconds and 7635.74 seconds, respectively. The remaining errors varied for the

different process steps, with values ranging from 144.16 for ProcessStep82 to 2699.64

seconds for Other_level process steps.

Figure 4.33: H2O GradientBoosting RMSE per ProcessStep – Test data

4.1.4 H2O Random Forests Model

Applying H2O GBM was one further step to view the equity of predicting tool recipe

runtimes in semiconductor manufacturing. The rmse value achieved for H2O

61

distributed random forests on the test data is 26439 seconds and 2178 seconds on the

validation data.

When comparing the rmse values for each OperationGroup, the following results are

shown for the validation in Figure 4.34. The lowest error is for the WPCM operation

group, with an error of 748 seconds. For the rest of the groups, LITH equipment groups

observed 909.78 seconds, followed by a higher error of 1159.3 seconds for the ETCH

group, followed by the WPRO group with a slightly higher error of 1431.87 seconds,

followed by the HCVD group with an error of 1656.73 seconds, followed. By IMET

operation group with a value of 1677.78 seconds. The highest errors are for the groups'

ICON and nan_other, with 2511.52 and 12145.26 seconds, respectively.

Figure 4.34: H2O RandomForest RMSE per Equipment Group – Validation data

While comparing the rmse values for each EquipmentGroup for the test data, the

following results are shown in Figure 4.35. The lowest error is for the nan_other

equipment group, with an error of 274.68 seconds. For the rest of the groups, LITH

equipment groups demonstrate 875.32 seconds rmse, followed by a higher error of

972.77 seconds for the IMET group, followed by the WPRO group with a slightly higher

error of 1431.87 seconds, followed by the ETCH group with an error of 1047.86

seconds, followed by HCVD equipment group with a value of 1655.39 seconds. Finally,

the highest errors are for the groups WPRO and ICON with 2892.29 and 3690.55

seconds, respectively.

62

Figure 4.35: H2O RandomForest RMSE per Equipment Group – Test data

When analyzing the rmse values per EquipmentTypeMapped on the validation data,

the following results in Figure 4.36 are shown. The lowest error observer is 280.59 for

the nan_other equipment type. For the rest of the equipment types, the lowest error is

1034.37 seconds for the MultiChamberTool equipment type, followed by

ClusterMultiPathTool’s error of 1322.05 seconds, followed by BatchTool error of

1539.59 seconds, followed by SingleChamberTool with an error of 2027.73 seconds,

and lastly by NotMapped group with an error of 6183.34 seconds.

Figure 4.36: RMSE values for H2O Random Forests per EquipmentTypeMapped - Validation data

While when analyzing the rmse values per EquipmentTypeMapped on the test data,

the following results are observed. The lowest error observer is 305.32 for the

nan_other equipment type. For the rest of the equipment types, the lowest error is

1106.81 seconds for the MultiChamberTool equipment type, followed by

63

ClusterMultiPathTool’s error of 1386.86 seconds, followed by NotMapped error of

1737.38 seconds, followed by BatchTool group with an error of 2317.46 seconds, and

lastly by SingleChamberTool group with an error of 2926.91 seconds.

Figure 4.37: RMSE values for H2O Random Forests per EquipmentTypeMapped - Test data

Comparing the rmse values per OperationGroup shows the following errors for the

validation data as observed in Figure 4.38. The lowest error is 485.32 seconds of the

MaskLayerOperation group, 741.57 of the Developer group, and 866.5 seconds of the

PE-SiN-SiO 1035.64 seconds of the Coater group, followed by 1737.54 of the

NotSpecified group, lastly followed by 2723.56 of the Other_Level group.

Figure 4.38: RMSE values for H2O Random Forests per OperationGroup - Validation data

While comparing the rmse values per OperationGroup shows the following errors for

the test data as observed in Figure 4.39. The lowest error is 228.57 seconds of the

MaskLayerOperation group, 872.66 of the PE-SiN-SiO group, and 1114.49 seconds of

64

the Developer followed by 1326.71 seconds of the Coater group, followed by 1361.85

of the Other_level group, lastly followed by 2804.61 of the NotSpecified group.

Figure 4.39: RMSE values for H2O Random Forests per OperationGroup - Test data

As for the technologies, the following errors for the validation data in Figure 4.40 are

observed per Technology. The lowest error recorded is 507.98 seconds for

Technology19, followed by a slightly higher 556.96 seconds for Technology61. The

highest error is of 3789 seconds for Other_Level. The remaining errors varied from

687.73 for Technology13 to 3380.95 seconds for Technology8.

Figure 4.40: H2O Random Forests RMSE per Technology – Validation data

For the test data, the below errors in Figure 4.41 are observed per Technology. The

lowest error recorded is 538.48 seconds for Technology9, followed by a slightly higher

error of 627.85 seconds for Technology26. The highest error is of 6804.96 seconds for

Technology8. The remaining errors varied from 733.96 for Technology27 to 6067.82

seconds for Technology12.

65

Figure 4.41: H2O Random Forests RMSE per Technology – Test data

Finally, the rmse values for ProcessStep on the validation data are observed in Figure

4.42. The lowest error is 69.07 seconds for ProcessStep8, followed by a slightly higher

error of 125.2 seconds for ProcessStep82. The highest errors are of 1373.89 and

2461.76 seconds for ProcessStep3 and Other_Level, respectively. The remaining

values varied from 157.72 seconds for ProcessStep9 to 788.51 seconds for

ProcesStep145.

Figure 4.42: H2O Random Forests RMSE per ProcessStep – Validation data

For the errors observed on the test data, the below result in Figure 4.43 are recorded.

The lowest error is 69.3 seconds for ProcessStep8, similarly to the validation data,

followed by a slightly higher error of 84.41 seconds for ProcessStep82 with a similar

rank as observed on the validation data. The highest errors are of 6648.8 and 7626.66

66

seconds for ProcessStep1 and ProcessStep13, respectively. The remaining values

varied from 162.66 seconds for ProcessStep3 to 2225.86 seconds for Other_Level.

Figure 4.43: H2O Random Forests RMSE per ProcessStep – Test data

4.1.5 EquipmentGroup Specific Models

Applying Sklearn’s RandomForests algorithm to validate the ETCH EquipmentGroup

specific model resulted in an RMSE of 1064.53 seconds. While when applying

Sklearn’s GadientBoosting, a time of 974.82 seconds was recorded. To further analyze

the errors across the different models. Specific models were built to compare their

prediction errors with that of the baseline models. Such models are various

EquipmentGroup specific models. In this subchapter, these models are reviewed.

Figure 4.44 and Figure 4.45 show the difference between the actuals and the ETCH

EquipmentGroup specific model predictions. The predicted values are close to the

predicted values for actuals of values up to 10000 seconds. From 10000 to 15000

seconds, Predicted values show a higher difference when compared to the actuals.

The values higher than 15000 show significantly less accurate predicted values.

Similar results are observed when Sklearn Gradient boosting machines for ETCH

models, as observed in Figure 4.46.

67

Figure 4.44: Actuals vs. Predictions, Sklearn RandomForest on ETCH specific model

Figure 4.45: Prediction Errors, Sklearn RandomForest on ETCH specific model

Figure 4.46: Actuals vs. Predictions, Sklearn GBM on ETCH specific model

The RMSE value for the H2O RandomForests model is 1036.89 and 1007.02 for the

H2O GBM model. The results are similar with some improvement when building the

H2O model, as shown in Figures 50 and 51.

Figure 4.47: Actuals vs. Predictions, H2O RandomForest on ETCH specific model

68

Figure 4.48: Actuals vs. Predictions, H2O GBM on ETCH specific model

As for the HCVD EquipmentGroup Model, applying Sklearn’s RandomForests

algorithm on the test data for the HCVD EquipmentGroup specific model resulted in an

RMSE of 1953.51 seconds. While when using Sklearn’s GadientBoosting, a rmse of

1812.76 seconds was recorded.

Figure 4.49 and Figure 4.50 show the difference between the actuals and the HCVD

EquipmentGroup specific model predictions. The predicted values are close to the

predicted values for actuals of values up to 25000 seconds. From 25000 to 35000

seconds, Predicted values show a higher difference when compared to the actuals.

The values higher than 35000 show significantly less accurate predicted values.

Similar results are observed when Sklearn Gradient boosting machines for HCVD

models, as observed in Figure 4.51.

Figure 4.49, Actuals vs. Predictions, Sklearn RandomForest on HCVD specific model

Figure 4.50: Prediction Errors, Sklearn RandomForest on HCVD specific model

69

Figure 4.51: Actuals vs. Predictions, Sklearn GBM on HCVD specific model

The RMSE value for the H2O RandomForests model is 1694.01 and 1250.0 for the

H2O GBM model. The results are similar with slight improvement when building H2O

models, as Figure 4.52 and Figure 4.53.

Figure 4.52: Actuals vs. Predictions, H2O RandomForest on HCVD specific model

Figure 4.53: Actuals vs. Predictions, H2O GBM on HCVD specific model

For the ICON EquipmentGroup Model, Applying Sklearn’s RandomForests algorithm

on the test data for the ICON EquipmentGroup specific model resulted in an RMSE of

4625.2 seconds. While when using Sklearn’s GadientBoosting, a rsme of 3991.47

seconds was recorded.

Figure 4.54 and Figure 4.55 show the difference between the actuals and the ICON

EquipmentGroup specific model predictions. The predicted values are close to the

70

predicted values for actual values up to 50000 seconds with few outliers. From 50000

to 90000 seconds, Predicted values show a higher difference when compared to the

actuals. The values were higher than were falsy predicted. Similar results are observed

when Sklearn Gradient boosting machines for ICON models, as observed in Figure

4.56.

Figure 4.54: Actuals vs. Predictions, Sklearn RandomForest on ICON specific model

Figure 4.55: Prediction Errors, Sklearn RandomForest on ICON specific model

Figure 4.56: Actuals vs. Predictions, Sklearn GBM on ICON specific model

The RMSE value for the H2O RandomForests model is 3754.93and 3784.69 for the

H2O GBM model. The results are similar, with some improvement when building H2O

models, as shown in Figure 4.57 and Figure 4.58.

71

Figure 4.57: Actuals vs. Predictions, H2O RandomForest on ICON specific model

Figure 4.58: Actuals vs. Predictions, H2O GBM on ICON specific model

4.1.6 Process Recipe Specific Models

In order to further analyze the errors and understand if Recipe Runtime Prediction

using ML-built data-driven models can predict specific recipes with high accuracies

and fail to predict others, Process Recipe Specific Models were built. A Radom Forest

model was built for each Process Recipe, and the prediction errors were analyzed for

both the validation and test data. Figure 4.59 and Figure 4.60 plot these errors. Process

Recipe 1 has a very high error of over 2500 seconds o both datasets. In contrast, the

rest of the recipes, excluding ProcessRecipe4 and Other_level, had a much lower error

of smaller than 500 seconds on both datasets.

72

Figure 4.59: RMSE value per every ProcessRecipe model - Validation data

Figure 4.60: RMSE value per every ProcessRecipe model - Test data

To further investigate the possible reasons why ProcessRecipe1 had the highest error

consistently, a sample of ProcessRecipe1 values were analyzed on both datasets, as

shown in Figure 61. It can be observed that ProcessRecipe1 is not consistent over

time in both the validation test dataset. On several occurrences, it has sudden high

peaks in DurationSeconds. The frequent change in values caused the model to predict

falsely with high RMSE. On the other hand, ProcessRecipe8 shows one of the lowest

errors, and when a sample of the data was analyzed, as shown in Figure 4.62, such

hikes in values in DuationSeconds did not exist.

73

Figure 4.61: ProcessRecipe1 - DurationSeconds Analyzed

Figure 4.62: ProcessRecipe8 - DurationSeconds Analyzed

PorcessRecipe4 demonstrated similar behavior. Figure 4.63 demonstrates consistent

values of Duration seconds around 400 seconds on the validation test. However, in the

test dataset, there was a spike in DurationSeconds. Such steep changes in values

drastically change model behavior.

74

Figure 4.63: ProcessRecipe4 - DurationSeconds Analyzed across the Validation and Test datasets

4.1.7 H2O AutoML

H2O AutoML interface requires minimum parameters such as the label, the training

frame, and, if required, stopping parameters. Values were kept to the default value in

the implementations, not specifying a time limit to run AutoML. The output leaderboard

is shown in below Table 2. The leaderboard shows models with their metrics. When

provided with the H2OAutoML object, the leaderboard shows 5-fold cross-validated

metrics by default. At most, 20 models are shown by default.

The lowest rmse value is 2056 seconds for the model

StackedEnsemble_AllModels_AutoML_20210820_135536, followed by a slighly

higher error of 2059.6 seconds for

StackedEnsemble_BestOfFamily_AutoML_20210820_135536. The highest rmse

values are 2213.7 and 2395.4 seconds for the models

XGBoost_grid__1_AutoML_20210820_135536_model_1, and

XRT_1_AutoML_20210820_135536 respectievely.

Table 2: H2O AutoML Leaderboard

model_id
mean_resid
ual_devianc

e

rm
se

mse
ma

e
rms

le

training
time

ms

predict_time
_per_row_m

s

StackedEnsemble_AllModels_
AutoML_20210820_135536

4.23E+06
20
56

4.23
E+0

6

38
0.6

7
nan 1615 0.102582

StackedEnsemble_BestOfFamil
y_AutoML_20210820_135536

4.24E+06
20

59.
6

4.24
E+0

6

38
1.4

3
nan 1438 0.096246

75

DeepLearning_grid__1_AutoM
L_20210820_135536_model_
1

4.41E+06
21

00.
7

4.41
E+0

6

43
9.4

9
nan 588990 0.100572

DRF_1_AutoML_20210820_13
5536

4.42E+06
21
02

4.42
E+0

6

34
2.0

3

0.5
072

1
197363 0.006981

GBM_3_AutoML_20210820_1
35536

4.51E+06
21

24.
4

4.51
E+0

6

41
3

nan 3947 0.003532

DeepLearning_1_AutoML_202
10820_135536

4.54E+06
21

30.
9

4.54
E+0

6

44
9.6

9
nan 20505 0.007489

GBM_4_AutoML_20210820_1
35536

4.54E+06
21

31.
7

4.54
E+0

6

39
8.3

8
nan 6245 0.003757

GBM_2_AutoML_20210820_1
35536

4.55E+06
21

32.
5

4.55
E+0

6

42
3.9

6
nan 3014 0.003411

XGBoost_2_AutoML_2021082
0_135536

4.56E+06
21

36.
1

4.56
E+0

6

44
0.3

7
nan 55191 0.000813

XGBoost_grid__1_AutoML_20
210820_135536_model_4

4.57E+06
21

37.
5

4.57
E+0

6

49
8.5

6
nan 22250 0.000586

GBM_grid__1_AutoML_20210
820_135536_model_2

4.58E+06
21

39.
9

4.58
E+0

6

43
2.2

3
nan 27941 0.008769

XGBoost_grid__1_AutoML_20
210820_135536_model_2

4.61E+06
21

47.
3

4.61
E+0

6

44
3.3

1
nan 42300 0.000971

GBM_1_AutoML_20210820_1
35536

4.62E+06
21

48.
3

4.62
E+0

6

42
5.5

9
nan 2374 0.003046

GBM_grid__1_AutoML_20210
820_135536_model_1

4.64E+06
21

54.
6

4.64
E+0

6

46
7.9

5
nan 1893 0.004474

XGBoost_3_AutoML_2021082
0_135536

4.67E+06
21

60.
5

4.67
E+0

6

55
3.5

2
nan 16262 0.000459

XGBoost_grid__1_AutoML_20
210820_135536_model_3

4.74E+06
21

77.
8

4.74
E+0

6

57
3.3

6
nan 18059 0.00056

XGBoost_1_AutoML_2021082
0_135536

4.78E+06
21

86.
6

4.78
E+0

6

50
2.1

2
nan 21688 0.000465

GBM_5_AutoML_20210820_1
35536

4.79E+06
21

88.
4

4.79
E+0

6

42
4.4

6
nan 23012 0.01352

76

XGBoost_grid__1_AutoML_20
210820_135536_model_1

4.90E+06
22

13.
7

4.90
E+0

6

58
5.7

nan 19101 0.000589

XRT_1_AutoML_20210820_13
5536

5.74E+06
23

95.
4

5.74
E+0

6

78
5.6

3

1.6
854

39803 0.006308

The residual analysis below in Figure 4.64 plots the fittest values against the residual

on the dataset. Ideally, the residuals should have a normal distribution. Most values

are normally distributed. However, there exist several outliers.

Figure 4.64: H2O AutoML Residual Analysis

As for the variable importance, the below Figure 4.65 show the relative importance of

the most critical variables in the H2O AutoML model. On the top of the list is

ProcessStep446 attributing to significant importance in prediction, followed by

Area.LITH, ProcessRecipe 364, ProcessRecipe 480, Oprator1634, and several other

variables.

77

Figure 4.65: H2O AutoML Variable Importance

4.2 Model Comparison and Selection

The results from the applied baseline algorithms of gradient boosting and random

forests from both libraries of sklearn and H2O provided similar results. However, no

one model performs better than the rest, including the H2O AutoML. It is also unclear

whether the EquipmentGroup specific models are a better choice compared to using

baseline models.

Some Equipment Group-specific models, such as the ETCH Equipment Group model,

provided very competitive results compared to others. At the same time, the ICON

Equipment Group-specific model provided the highest error of prediction across all

models. The top-performing model is the H2O AutoML model providing an adequate

accuracy of prediction in comparison with the rest of the models.

Process Recipe Specific models provide a great indication of which Process Recipes

a data-driven model would provide an adequate accuracy when predicting. Generally,

the best performing models would be of recipes where the DurationSeconds were

inconsistent limits and without many spikes in values.

78

4.3 Chapter Summary

Once the data was made ready and split into train, test, and validation datasets, the

different ML algorithms were trained to build predictive models. Firstly, Gradient

Boosting and Random Forests models were built using two distinctive libraries, and

then the errors achieved were analyzed per specific predictors on both the validation

and test datasets. A further step was building equipment-group-specific models and

process recipe-specific models, and analyze their errors. AutoML was then applied to

the test data, and the errors from the different models created were compared. Finally,

all errors produced by the different models were compared for selection for

deployment.

79

5 Operationalization

The advancement of machine learning involves addressing new issues that are not

part of the traditional lifecycle of software development. While conventional software,

for example, has a well-defined collection of product features to be created.

The growth of ML appears to revolve around experimentation: Machine Learning

Developers will continuously experiment to optimize a business metric such as the

model, new datasets, models, software libraries, tuning parameters, and more since

the model output is heavily dependent on the data, and training processes.

Reproducibility and experiment tracking are crucial in ML development [33].

Finally, ML systems need to be deployed to production to have a business effect, which

means both are deploying a model in a way that can be used for inference, such as

REST API Serving and deploying scheduled jobs to update the model periodically. This

is particularly difficult when deployment involves cooperation with another team, such

as application developers or factory users who are not ML experts. Several cloud

vendors offer machine learning operations tools. However, with significant limitations

to the usage of libraries from other sources, this limits organizations' capabilities to

reach their applied machine learning goals, which is often composed of several

libraries and is not necessarily cloud-deployed [33].

80

5.1 Model Management

MLflow offers APIs, functional in Python, Java, and R, for experiment monitoring,

reproducible runs, and model packaging and deployment to facilitate life cycle

management. Enhanced machine learning requires various tools, experiment tracking,

reproducibility, production deployment, and collaborative model management. MLflow

fulfills these requirements through its modules of MLflow Tracking, MLflow Projects,

MLflow Models, and MLflow Models Registry [33], [34].

A model stored in MLflow, for instance, can simply be a Python function that MLflow

then knows how to deploy in different environments such as batch or real-time

processing. Other MLflow abstractions, such as REST APIs and Docker containers,

are likewise based on generic interfaces. This open interface design allows users

versatility and control while maintaining the advantages of lifecycle management

compared to existing ML systems such as FBLearner, Michelangelo, and TFX [33].

81

5.2 Real-time Inference

The top-performing model shall be selected later for deployment through an ML

lifecycle solution such as MLflow. The below Figure 5.1 shows the proposed

architecture. The architecture involves converting the desired model’s code into

deployment at MLflow’s interface, passing through different phases such as

hyperparameter tuning, training, and storing the results. The proposed architecture

would capture the production data, build models, evaluate models daily, keep track of

training metrics, and deploy the selected model to predict the future points and serve

use cases such as operator guidance.

Figure 5.1: Proposed deployment architecture

5.3 Chapter Summary

Machine learning operations lifecycle platforms such as MLflow enable ML systems to

be deployed to production. Through its modules, it also enables metrics tracking and

management of models. Moreover, MLflow could be used to operationalize recipe

runtime prediction to serve the proposed use cases.

82

6 Conclusion

Semiconductor manufacturing is a complex process that consists of a large number of

substeps. There are different modes of wafer processing and job handling. Wafers are

produced according to recipes. Recipe runtime is the time taken for each recipe to be

completed. Predicting recipe runtime could serve different use cases, such as operator

guidance. The proposed approach for predicting is by building ML models.

Predicting tool recipe runtimes in semiconductor manufacturing is possible by building

machine learning models that leverage historical data to predict future data points. This

approach initially requires understanding the semiconductor manufacturing processes

and data and applying suitable machine learning algorithms, including AutoML, to build

the data-driven predictive models.

The results achieved in this prediction approach can be considered high compared to

the mean duration of recipes. However, due to the presence of outliers in data, the

prediction process is affected. Perhaps, if the data contains as minimum outliers as

possible, the prediction accuracy could be achieved. The error analysis shows that a

particular tool can provide adequate accuracy with the current data predicting recipe

runtimes in semiconductor manufacturing by training machine learning algorithms and

building data-driven models. For other tools, machine learning prediction did not seem

feasible due to the high error generated.

Achieving better prediction scores would lead to better prediction of tool recipe

runtimes in semiconductor manufacturing, serving the potential use cases for such a

system such as guiding the operators by the estimated duration remaining, planning

within the industrial plant, or as insights for engineering, perspective to optimize the

tool recipe runtimes.

Further Work

Further work to this thesis could build and analyze models that provide higher

predictive accuracy than the analyzed models. First, recipe Specific models could be

built for selected recipes that seem a good candidate for high accuracy prediction

through the discussed methodology. Secondly, once an accepted prediction score is

achieved, the potential model could be served and operationalized for deployment to

serve the proposed use cases in the industry of semiconductor manufacturing.

83

Bibliography

[1] G. S. May and C. J. Spanos, Fundamentals of Semiconductor Manufacturing
and Process Control. 2006.

[2] E. Bertino, B. Catania, and E. Caglio, “LNAI 1704 - Applying Data Mining
Techniques to Wafer Manufacturing.”

[3] Y. Meidan, B. Lerner, M. Hassoun, and G. Rabinowitz, Data mining for cycle time
key factor identification and prediction in semiconductor manufacturing, vol. 42,
no. 4 PART 1. IFAC, 2009.

[4] L. Lingitz, V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer, and W. Sihn, “Lead time
prediction using machine learning algorithms: A case study by a semiconductor
manufacturer,” Procedia CIRP, vol. 72, pp. 1051–1056, 2018, doi:
10.1016/j.procir.2018.03.148.

[5] Y. Cheng, K. Chen, H. Sun, Y. Zhang, and F. Tao, “Data and knowledge mining
with big data towards smart production,” J. Ind. Inf. Integr., vol. 9, pp. 1–13, Mar.
2018, doi: 10.1016/J.JII.2017.08.001.

[6] C. Rainer, “Data Mining as Technique to Generate Planning Rules for
Manufacturing Control in a Complex Production System BT - Robust
Manufacturing Control,” 2013, pp. 203–214.

[7] T. Chen, Y. C. Wang, and H. R. Tsai, “Lot cycle time prediction in a ramping-up
semiconductor manufacturing factory with a SOM-FBPN-ensemble approach
with multiple buckets and partial normalization,” Int. J. Adv. Manuf. Technol., vol.
42, no. 11–12, pp. 1206–1216, 2009, doi: 10.1007/s00170-008-1665-4.

[8] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning
second edition, vol. №3, no. 1. 2018.

[9] D. Zhang and J. J. P. Tsai, “Machine learning and software engineering,” Softw.
Qual. J., vol. 11, no. 2, pp. 87–119, 2003, doi: 10.1023/A:1023760326768.

[10] B. Hayes-roth, “Many complex steps, with few chances t o measure the process
or the products. o u r architecture augments classical control methods with,” no.
December, 1991.

[11] H. A. Al-Jamimi and M. Ahmed, “Machine learning-based software quality
prediction models: State of the art,” 2013 Int. Conf. Inf. Sci. Appl. ICISA 2013,
pp. 13–16, 2013, doi: 10.1109/ICISA.2013.6579473.

[12] S. Sejdovic, Y. Hegenbarth, G. H. Ristow, and R. Schmidt, “Industry paper:
Proactive disruption management system: How not to be surprised by upcoming
situations,” DEBS 2016 - Proc. 10th ACM Int. Conf. Distrib. Event-Based Syst.,
pp. 281–288, 2016, doi: 10.1145/2933267.2933271.

[13] M. Belhaj Mohamed, A. Meddeb-Makhlouf, A. Fakhfakh, and O. Kanoun,
“Wireless Body Sensor Networks with Enhanced Reliability by Data Aggregation
Based on Machine Learning Algorithms,” Smart Sensors, Meas. Instrum., vol.
38, pp. 67–81, 2021, doi: 10.1007/978-3-030-71225-9_4.

[14] D. Koska and C. Maiwald, “A time-series based framework for exploring the
unknown effects of shoe comfort-induced biomechanical adaptations,”
https://doi.org/10.1080/19424280.2020.1734866, vol. 12, no. 2, pp. 113–122,
May 2020, doi: 10.1080/19424280.2020.1734866.

[15] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001,
doi: 10.1023/A:1010933404324.

84

[16] U. Johansson, H. Boström, T. Löfström, and H. Linusson, “Regression conformal
prediction with random forests,” Mach. Learn., vol. 97, no. 1–2, pp. 155–176,
2014, doi: 10.1007/s10994-014-5453-0.

[17] H2O.ai, “Distributed Random Forest (DRF) — H2O 3.30.0.5 documentation,”
2020. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html.

[18] S. Shadi, S. Hadi, M. A. Nazari, and W. Hardt, “Outdoor navigation for visually
impaired based on deep learning,” CEUR Workshop Proc., vol. 2514, pp. 397–
406, 2019.

[19] N. Asadi, J. Lin, and A. P. De Vries, “Runtime Optimizations for Tree-Based
Machine Learning Models,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 9, pp.
2281–2292, 2014, doi: 10.1109/TKDE.2013.73.

[20] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Front.
Neurorobot., vol. 0, no. DEC, p. 21, 2013, doi: 10.3389/FNBOT.2013.00021.

[21] J. Hutter, Frank; Kotthoff, Lars; Vaschoren, Automated Machine Learning
Mathods, Systems, Challenges, vol. 498. 2014.

[22] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter, “Auto-
Sklearn 2.0: The Next Generation,” arXiv, Jul. 2020, Accessed: Dec. 02, 2020.
[Online]. Available: http://arxiv.org/abs/2007.04074.

[23] M. Feurer and F. Hutter, “Towards Further Automation in AutoML,” 2018.
[24] J. G. Madrid et al., “Towards AutoML in the presence of Drift: first results,” 2018.
[25] Microsoft, “What is automated ML? AutoML - Azure Machine Learning | Microsoft

Docs,” 2020. https://docs.microsoft.com/en-us/azure/machine-learning/concept-
automated-ml.

[26] J. S. Angarita-Zapata, A. D. Masegosa, and I. Triguero, “General-purpose
automated machine learning for transportation: a case study of auto-sklearn for
traffic forecasting,” in Communications in Computer and Information Science,
Jun. 2020, vol. 1238 CCIS, pp. 728–744, doi: 10.1007/978-3-030-50143-3_57.

[27] H2O.ai, “AutoML: Automatic Machine Learning,” H2O.ai docs 3.26.0.11, 2019.
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/AutoML.html (accessed Aug. 24,
2021).

[28] B. Saenz De Ugarte, A. Artiba, and R. Pellerin, “Production Planning and Control
Manufacturing execution system-a literature review Manufacturing execution
system-a literature review,” Prod. Plan. Control, vol. 20, no. 6, pp. 525–539,
2009, doi: 10.1080/09537280902938613.

[29] J. T. Behrens, “Principles and Procedures of Exploratory Data Analysis,”
Psychol. Methods, vol. 2, no. 2, pp. 131–160, 1997, doi: 10.1037/1082-
989X.2.2.131.

[30] S. Morgenthaler, “Exploratory data analysis,” Wiley Interdiscip. Rev. Comput.
Stat., vol. 1, no. 1, pp. 33–44, 2009, doi: 10.1002/wics.2.

[31] W. D. McGinnis, C. Siu, and H. Huang, “Category Encoders: a scikit-learn-
contrib package of transformers for encoding categorical data Software • Review
• Repository • Archive,” doi: 10.21105/joss.00501.

[32] “sklearn.ensemble.RandomForestRegressor — scikit-learn 0.24.2
documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegresso
r.html (accessed Aug. 23, 2021).

[33] M. Zaharia et al., “Accelerating the Machine Learning Lifecycle with MLflow,”
Bull. IEEE Comput. Soc. Tech. Comm. Data Eng., pp. 39–45, 2018.

[34] A. Chen et al., “Developments in MLflow: A System to Accelerate the Machine
Learning Lifecycle a Model Registry for collaborative model management and

85

review, tools for simplifying ML code instrumentation, and experiment analytics
functions for extracting insights from mi,” 2020, doi: 10.1145/3399579.3399867.

86

TU Chemnitz References

[13] M. Belhaj Mohamed, A. Meddeb-Makhlouf, A. Fakhfakh, and O. Kanoun,

“Wireless Body Sensor Networks with Enhanced Reliability by Data Aggregation

Based on Machine Learning Algorithms,” Smart Sensors, Meas. Instrum., vol.

38, pp. 67–81, 2021, doi: 10.1007/978-3-030-71225-9_4.

[14] D. Koska and C. Maiwald, “A time-series based framework for exploring the

unknown effects of shoe comfort-induced biomechanical adaptations,”

https://doi.org/10.1080/19424280.2020.1734866, vol. 12, no. 2, pp. 113–122,

May 2020, doi: 10.1080/19424280.2020.1734866.

[18] S. Shadi, S. Hadi, M. A. Nazari, and W. Hardt, “Outdoor navigation for visually

impaired based on deep learning,” CEUR Workshop Proc., vol. 2514, pp. 397–

406, 2019.

87

