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Abstract 

 

To improve throughput, due date adherence, or tool usage in semiconductor 

manufacturing, it is crucial to model the duration of individual processes such as 

coating, diffusion, or etching. Equipped with such data, production planning can 

develop dispatch schemes and schedules for optimized material routing. However, just 

a few tools indicate how long a process will take. Many variables affect the runtime of 

tool recipes that are used to realize processes. These variables include wafer 

processing mode, historical context, batch size, and job handling. In this thesis, a 

model that allows inferring tool recipe runtimes with adequate accuracy shall be 

developed.  

 

Firstly, predictive models shall be built for selected tools with known runtime behavior 

to establish a baseline for the methodology. Tools will be selected to cover a broad 

spectrum of processing modalities. The main predictors will be revealed using variable 

importance analysis. Furthermore, the analysis shall reveal under which conditions 

recipe runtime modeling is most accurate. 

 

Secondly,  a generic approach shall be created to model recipe runtime. By accounting 

for tool, process, and material context, methods would be investigated from feature 

selection and automatic model selection. Finally, a pipeline for data cleansing, feature 

engineering, model building, and metrics will be developed using historical data from 

a wide range of factory data sources. 

 

Finally, a scheme to operationalize the findings shall be outlined. In particular, this 

requires establishing model serving to enable consumption in applications such as 

dispatching or operator interfaces.  

 

Keywords: Machine Learning, Data-driven models, Regression 

  



 
 

iii 
 

Content 

 

Abstract ....................................................................................................................... ii 

Content ....................................................................................................................... iii 

List of Figures .............................................................................................................. v 

List of Tables ............................................................................................................ viii 

List of Abbreviations ................................................................................................... ix 

1 Introduction .......................................................................................................... 1 

1.1 Semiconductor Manufacturing ........................................................................ 2 

1.2 Wafer Processing and Lot Size ...................................................................... 3 

1.2.1 Complete Batch Processing .................................................................... 4 

1.2.2 Single Wafer Processing ......................................................................... 4 

1.2.3 Interleaving Wafer Processing ................................................................. 4 

1.3 Process Job Handling .................................................................................... 7 

1.3.1 Serial Jobs ............................................................................................... 8 

1.3.2 Interleaving Jobs ...................................................................................... 8 

1.4 Recipe Runtime ............................................................................................ 12 

1.5 Use cases for Recipe Runtime ..................................................................... 12 

1.6 Thesis Objective ........................................................................................... 13 

2 State of the Art ................................................................................................... 14 

2.1 Literature Review ......................................................................................... 14 

2.2 Machine Learning ......................................................................................... 16 

2.2.1 Random Forests .................................................................................... 18 

2.2.2 Gradient Boosting .................................................................................. 19 

2.2.3 Automated Machine Learning ................................................................ 20 

2.3 Chapter Summary ........................................................................................ 24 

3 Data Preparation ................................................................................................ 25 

3.1 Data Gathering ............................................................................................. 25 

3.2 Parameter Selection ..................................................................................... 26 



 
 

iv 
 

3.3 Exploratory Data Analysis ............................................................................ 28 

3.4 Data Engineering ......................................................................................... 36 

3.4.1 Removing Missing Values ..................................................................... 36 

3.4.2 Encoding Categorical Data .................................................................... 37 

3.5 Chapter Summary ........................................................................................ 37 

4 Results ............................................................................................................... 39 

4.1 Error Analysis ............................................................................................... 41 

4.1.1 Sklearn GradientBoosting ...................................................................... 41 

4.1.2 Sklearn Random forests ........................................................................ 48 

4.1.3 H2O Gradient Boosting .......................................................................... 54 

4.1.4 H2O Random Forests Model ................................................................. 60 

4.1.5 EquipmentGroup Specific Models .......................................................... 66 

4.1.6 Process Recipe Specific Models ............................................................ 71 

4.1.7 H2O AutoML .......................................................................................... 74 

4.2 Model Comparison and Selection ................................................................ 77 

4.3 Chapter Summary ........................................................................................ 78 

5 Operationalization .............................................................................................. 79 

5.1 Model Management...................................................................................... 80 

5.2 Real-time Inference ...................................................................................... 81 

5.3 Chapter Summary ........................................................................................ 81 

6 Conclusion .............................................................................................................. 82 

Bibliography ............................................................................................................... 83 

 

 

 

  



 
 

v 
 

List of Figures 

Figure 1.1: Silicon Wafer ............................................................................................. 2 

Figure 1.2: Basics of Front End of Line Processing ..................................................... 3 

Figure 1.3: Individual chamber functions ..................................................................... 5 

Figure 1.4: Individual chamber functions, timeline ....................................................... 6 

Figure 1.5: Chambers with same functions ................................................................. 6 

Figure 1.6: Chambers with identical functions, timeline ............................................... 7 

Figure 1.7: Serial Jobs ................................................................................................ 8 

Figure 1.8: Interleaving Jobs ....................................................................................... 9 

Figure 1.9: Multi-chamber equipment, 1st job ............................................................ 10 

Figure 1.10: Multi-chamber equipment, interleaving jobs, 2nd job started .................. 10 

Figure 1.11: Multi-chamber equipment, parallel jobs ................................................. 11 

Figure 2.1: Predictive Model ...................................................................................... 17 

Figure 2.2: Random Forests prediction ..................................................................... 18 

Figure 2.3: AutoML Workflow .................................................................................... 22 

Figure 2.4: Autosklearn Structure .............................................................................. 23 

Figure 3.1: Manufacturing Execution Systems .......................................................... 26 

Figure 3.2: Numeric variables described ................................................................... 29 

Figure 3.3: Distribution of average process duration ................................................. 29 

Figure 3.4: Equipment Type Mapped Distribution ..................................................... 30 

Figure 3.5: Equipment Group Distribution ................................................................. 31 

Figure 3.6: Technology Distribution ........................................................................... 32 

Figure 3.7: Process duration by Recipe .................................................................... 33 

Figure 3.8: Trends in process time by Recipe ........................................................... 34 

Figure 3.9: LotItemCount ........................................................................................... 35 

Figure 3.10: Heatmap Correlation Map ..................................................................... 35 

Figure 3.11: Tool Recipe Runtimes Prediction Dataset ............................................. 36 

Figure 4.1: The flow of events ................................................................................... 40 

Figure 4.2: Sklean GradientBoosting Baseline Model,  Validation Data, Actuals Vs. 

Predictions................................................................................................................. 41 

Figure 4.3: Sklean GradientBoosting Baseline Model, Validation data, Prediction Errors

 .................................................................................................................................. 42 

Figure 4.4: Sklean GradientBoosting Baseline Model,  Test Data, Actuals Vs. 

Predictions................................................................................................................. 42 

Figure 4.5: Sklean GradientBoosting Baseline Model, Test data, Prediction Errors .. 42 

Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Validation data .................. 43 

Figure 4.7: Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Test data ........ 44 

https://d.docs.live.net/8f6dccfc3e95d2e9/krmsdk/Prediction%20of%20Tool%20Recipe%20Runtimes%20in%20Semiconductor%20Manufacturing.docx#_Toc84247934


 
 

vi 
 

Figure 4.8: Sklearn GBM RMSE per Equipment Type Mapped – Validation data ..... 44 

Figure 4.9: Sklearn GBM RMSE per Equipment Type Mapped – Test data .............. 45 

Figure 4.10: Sklearn Gradient Boosting RMSE against Technology – Validation data

 .................................................................................................................................. 46 

Figure 4.11: Sklearn Gradient Boosting RMSE against Technology – Test data ...... 46 

Figure 4.12: Sklearn GBM RMSE vs ProcessStep - Validation data ......................... 47 

Figure 4.13: Sklearn GBM RMSE vs ProcessStep - Test data .................................. 47 

Figure 4.14:  Sklearn RandomForest RMSE per EquipmentGroup – Validation data 48 

Figure 4.15: Sklearn RandomForest RMSE per EquipmentGroup – Test data ......... 49 

Figure 4.16: Sklearn RandomForest RMSE per EquipmentTypeMapped  - Validation 

data ........................................................................................................................... 50 

Figure 4.17:Sklearn RandomForest RMSE per EquipmentTypeMapped - Test data 50 

Figure 4.18: Sklearn RandomForest RMSE per OperationGroup – Validation data .. 51 

Figure 4.19: Sklearn RandomForest RMSE per OperationGroup – Test data .......... 52 

Figure 4.20: Sklearn RandomForest RMSE per Technology – Validation data ......... 52 

Figure 4.21: Sklearn RandomForest RMSE per Technology – Test data .................. 53 

Figure 4.22:  Sklearn RandomForest RMSE per ProcessStep – Validation data ...... 53 

Figure 4.23: Sklearn RandomForest RMSE per ProcessStep – Test data ................ 54 

Figure 4.24: H2O GradientBoosting RMSE per EquipmentGroup – Validation data . 55 

Figure 4.25: H2O GradientBoosting RMSE per EquipmentGroup – Test data .......... 55 

Figure 4.26:  H2O GradientBoosting RMSE per EquipmentTypeMapped – Validation 

data ........................................................................................................................... 56 

Figure 4.27: H2O GradientBoosting RMSE per EquipmentTypeMapped – Test data

 .................................................................................................................................. 57 

Figure 4.28: H2O GradientBoosting RMSE per OperationGroup – Validation data ... 57 

Figure 4.29: H2O GradientBoosting RMSE per OperationGroup – Test data ........... 58 

Figure 4.30: H2O GradientBoosting RMSE per Technology – Validation data .......... 58 

Figure 4.31:  H2O GradientBoosting RMSE per Technology – Test data ................. 59 

Figure 4.32: H2O GradientBoosting RMSE per ProcessStep – Validation data ........ 60 

Figure 4.33: H2O GradientBoosting RMSE per ProcessStep – Test data ................. 60 

Figure 4.34: H2O RandomForest RMSE per Equipment Group – Validation data .... 61 

Figure 4.35: H2O RandomForest RMSE per Equipment Group – Test data ............. 62 

Figure 4.36: RMSE values for H2O Random Forests per EquipmentTypeMapped -  

Validation data ........................................................................................................... 62 

Figure 4.37: RMSE values for H2O Random Forests per EquipmentTypeMapped -  

Test data ................................................................................................................... 63 

Figure 4.38: RMSE values for H2O Random Forests per OperationGroup -  Validation 

data ........................................................................................................................... 63 



 
 

vii 
 

Figure 4.39: RMSE values for H2O Random Forests per OperationGroup -  Test data

 .................................................................................................................................. 64 

Figure 4.40: H2O Random Forests RMSE per Technology – Validation data ........... 64 

Figure 4.41: H2O Random Forests RMSE per Technology – Test data .................... 65 

Figure 4.42: H2O Random Forests RMSE per ProcessStep – Validation data ......... 65 

Figure 4.43: H2O Random Forests RMSE per ProcessStep – Test data .................. 66 

Figure 4.44: Actuals vs. Predictions, Sklearn RandomForest on ETCH specific model

 .................................................................................................................................. 67 

Figure 4.45:  Prediction Errors, Sklearn RandomForest on ETCH specific model ..... 67 

Figure 4.46: Actuals vs. Predictions, Sklearn GBM on ETCH specific model ............ 67 

Figure 4.47: Actuals vs. Predictions, H2O RandomForest on ETCH specific model . 67 

Figure 4.48: Actuals vs. Predictions, H2O GBM on ETCH specific model ................ 68 

Figure 4.49, Actuals vs. Predictions, Sklearn RandomForest on HCVD specific model

 .................................................................................................................................. 68 

Figure 4.50: Prediction Errors, Sklearn RandomForest on HCVD specific model ..... 68 

Figure 4.51: Actuals vs. Predictions, Sklearn GBM on HCVD specific model ........... 69 

Figure 4.52: Actuals vs. Predictions, H2O RandomForest on HCVD specific model . 69 

Figure 4.53: Actuals vs. Predictions, H2O GBM on HCVD specific model ................ 69 

Figure 4.54: Actuals vs. Predictions, Sklearn RandomForest on ICON specific model

 .................................................................................................................................. 70 

Figure 4.55: Prediction Errors, Sklearn RandomForest on ICON specific model ...... 70 

Figure 4.56: Actuals vs. Predictions, Sklearn GBM on ICON specific model ............ 70 

Figure 4.57: Actuals vs. Predictions, H2O RandomForest on ICON specific model .. 71 

Figure 4.58: Actuals vs. Predictions, H2O GBM on ICON specific model ................. 71 

Figure 4.59: RMSE value per every ProcessRecipe model - Validation data ............ 72 

Figure 4.60: RMSE value per every ProcessRecipe model - Test data ..................... 72 

Figure 4.61: ProcessRecipe1 - DurationSeconds Analyzed ...................................... 73 

Figure 4.62: ProcessRecipe8 - DurationSeconds Analyzed ...................................... 73 

Figure 4.63: ProcessRecipe4 - DurationSeconds Analyzed across the Validation and 

Test datasets ............................................................................................................. 74 

Figure 4.64: H2O AutoML Residual Analysis ............................................................ 76 

Figure 4.65: H2O AutoML Variable Importance......................................................... 77 

Figure 5.1: Proposed deployment architecture .......................................................... 81 

 

 

  



 
 

viii 
 

List of Tables 

Table 1: List of predictors .......................................................................................... 27 

Table 2: H2O AutoML Leaderboard .......................................................................... 74 

 



 
 

ix 
 

List of Abbreviations 

AUTOML Automated Machine Learning AMHS 
Automated Material Handling 

System 

ANN Artificial Neural Network API 
Application Programming 

Interface 

DRF Distributed Random Forests EDA Exploratory Data Analysis 

ERP 
Enterprise Resource 

Planning 
GBM Gradient Boosting Machine 

KNN K-nearest neighbor  ML Machine Learning 

MES 
Manufacturing Execution 

System 
REST 

Representational state 

transfer 

RMSE Root-mean-square error   

    

    



1 Introduction 

 

Semiconductor manufacturing is composed of a set of Process Steps. A Process 

Recipe performs a set of Process Steps to manifest an end product. Prediction of 

Recipe Runtimes in Semiconductor Manufacturing is a complex task due to the various 

factors that could be affecting the manufacturing process of semiconductors, which is 

a high technology complex process. In addition, it is a competitive industry, utilizing 

costs, quality, and manufacturing time are crucial. Traditionally, factory in-house 

specialists rely on custom-built methods such as custom calculations, rule of thumb, 

statistical methods, or simulation to predict recipe runtimes. However, such 

approaches are static and do not take into consideration the changing behavior and 

patterns. In this thesis, a  different approach to predict tool recipe runtimes is studied, 

the possibility of predicting future recipe runtimes based on historical data by applying 

machine learning algorithms.  

 

Prediction of manufacturing times has been recently an attractive area of research due 

to the value it could bring if the accuracy is adequate, which will ultimately utilize costs 

and manufacturing times such as Recipe Runtime, Lead Time, or Cycle time. First, 

prediction of such times is currently possible due to the data gathered by MESs at 

customer's plants. Secondly, due to the high computation power available now.  

 

Prediction of recipe runtimes requires first understanding the processes involved when 

producing Semiconductors. Following that, studying the properties of recipe runtimes 

was essential to understand the production workflow and the processes timeline. In 

this chapter, the steps involved in this initial understanding are discussed and the use 

cases for such prediction and the objectives for this thesis.  
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1.1 Semiconductor Manufacturing 

 

Manufacturing is "The process through which raw materials are converted into a 

finished product"  [1]. In such a process, the raw materials are inputs, and the finished 

products are the output. The input could be semiconductor materials, insulators, 

dopants, or metals in the semiconductor manufacturing domain. The output ranges 

from integrated circuits to commercial electronic products such as personal computers, 

mobile phones, and servers.  

 

Semiconductors are the foundation of every integrated circuit. The manufacturing 

process is composed of two stages. Firstly, wafer processing, which is the stage of the 

formation of the silicon wafer, illustrated in Figure 1.1, where the electronic circuits are 

produced on the surface of a silicon wafer. Followed, the front end of line processing, 

which is the operation of wafer processing, and the back end of line processing, which 

is the assembly process, as shown in Figure 1.2, a set of steps to complete the 

semiconductor assembly.  

 

 

Figure 1.1: Silicon Wafer 
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Figure 1.2: Basics of Front End of Line Processing 

 

Understanding Semiconductor manufacturing processes such as coating, diffusion, 

and etching is the first step towards predicting Recipe Runtimes. Semiconductor 

manufacturing is a complex process that is composed of several phases. Each phase 

could consist of more than one hundred steps. [2] Each step is one of four phases such 

as the following: 

 

• Layering: where the wafer surface is covered by a thin layer of conducting, 

semiconducting, or insulating material 

• Pattering: where some parts are of the layers inserted in the layering phase are 

removed 

• Doping: where specific amounts of dopants are added to the water surface  

• Heat treatments: where the wafers are heated or cooled according to goals.  

 

The mentioned phases could be repeated multiple times to reach the end product.  

 

1.2 Wafer Processing and Lot Size 

One of the most significant and predictable influences on the recipe runtime is how 

many wafers are processed. 

 

In principle, there are three different cases: 

 

• Complete Batch Processing 
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• Single Wafer Processing 

• Interleaving Wafer Processing 

 

1.2.1 Complete Batch Processing 

 

An example of that is a furnace where all the wafers are put together into a tube. In 

such a case, the batch is usually filled up to a certain extent, even with dummy wafers. 

Therefore, the size of the Lot should not be of any significance for the processing but 

could be for the loading and unloading. 

 

Complete batch processing is the mode of processing where all wafers are put together 

in a tube. The batch is usually filled up to a certain extent, including dummy wafers if 

needed. Therefore, the size of the Lot should not be of significance for the processing 

but could be for the loading and unloading processes.  

 

1.2.2 Single Wafer Processing 

 

Metrology equipment where wafers are measured one after the other is an example of 

single wafer processing. In this case, the runtime comprises of the following 

components: 

 

• Loading including the scanning of the slot map 

• Loading into, processing, and unloading from the metrology chamber 

• Unloading 

 

In some cases, it can take longer for the 1st wafer if it has to go to an aligner or laser 

mark reader before it is loaded into the metrology chamber. Subsequent wafers might 

already be aligned or read while the preceding wafer is measured. 

 

1.2.3 Interleaving Wafer Processing 

 

The standard example for this case is multi-chamber equipment. In this case, wafers 

from one cassette are processed simultaneously in different chambers. 
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Interleaving Wafer Processing is performed at multi-chamber equipment. In this case, 

wafers from one cassette are processed simultaneously in different chambers. Each 

chamber performs a custom function and has its customized configuration, and wafers 

are transferred from one chamber to another. Figure 1.3 shows multi-chamber 

equipment with individual chamber configurations. The flow of a wafer visiting the 

chambers in sequences A, B, C, and D is also shown. 

 

Figure 1.3: Individual chamber functions 

 

Depending on the processing time for each chamber, the entire processing time for 

each wafer will vary. Figure 1.4 shows an example. 

 

P2P1P1 P2
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Figure 1.4: Individual chamber functions, timeline 

 

The following Figure 1.5 shows a configuration where more than one chamber can be 

used for the same process. In this case, the sequence is A → (B or C) → D. The two 

possible flows of a wafer 1.x and 2.x are shown too. 

 

 

Figure 1.5: Chambers with same functions 

 

Wafer1 A C DB
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Wafer5 A C DB
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Wafer start

Wafer end
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Figure 1.6 shows a timeline example assuming that the two chambers B and C having 

the same functions have the longest processing time. In the example, it is more than 

two times longer than all other processes. 

 

 

Figure 1.6: Chambers with identical functions, timeline 

 

The configuration shown in Figure 1.5 adds another complexity to the forecasting of 

runtimes. For example, if chamber B or C is down, the equipment could still run the 

process, but it will be slower given the assumption that chambers B and C are the 

longest. 

 

1.3 Process Job Handling 

Process jobs can essentially be executed in two different ways: 

 

• Serialized: a subsequent process job only starts after the preceding one was 

finished 

Wafer1 A DB

Wafer2

Wafer3

Wafer4

Wafer5

A DC

A DB

A DC

A DB

Wafer6 A DC

57,90

57,90

62,10

62,10

66,30

66,30
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• Interleaving: a subsequent process job starts while preceding one(s) are still 

running 

 

Process Job Handling depends on the equipment type built, and on the other hand, 

the equipment internal job scheduler. 

 

1.3.1 Serial Jobs 

Examples for serial jobs are 

• Furnaces, where multiple lots are loaded all together into a tube 

• Metrology equipment with one metrology chamber 

 

Figure 1.7 below shows two jobs executed serially. It also shows some events and 

information from the systems, the equipment, and the AMHS (Automated Material 

Handling System) associated with the different points in time. 

 

 

Figure 1.7: Serial Jobs 

 

1.3.2 Interleaving Jobs 

 

Examples for interleaving jobs are 

• Wet benches, where the batches are processed through a series of different 

tanks 

Job 1

Job 2

processing1

unloading1

loading, setup2
processing2

loading, setup1

Job creation, setup
Eqp configuration and state

Material received (port  
AMHS events

Material movement

Process job start
Wafer start

Wafer start
Wafer end
Material movement 
(modules, chambers  

Process job end

Material movement

Material removed
AMHS events
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• Multi-chamber equipment, as shown in Figure 1.8, is capable of running wafers 

from a 2nd (or nth) job in chambers not used by the preceding job 

 

 

Figure 1.8: Interleaving Jobs 

 

Predicting interleaving job runtimes is usually more complicated than for serialized 

jobs. 

 

Figure 1.9 shows multi-chamber equipment with four chambers and two load ports. On 

load port 1, job one was started. Wafers 1 to 4 already have been processed; 5 to 8 

are currently being processed. In this example, the Recipe for that job sends all wafers 

through all chambers (A → B → C → D). On load port 2, job 2 with the same chamber 

flow is prepared and waiting. 

 

Job 1

processing1
unloading1

loading, setup2

processing2

loading, setup1

Job 2

waiting2
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Figure 1.9: Multi-chamber equipment, 1st job 

 

While Figure 1.10 shows the situation where the last (25th) wafer of job 1 is still in 

chamber C while job 2 was already started. 

 

 

Figure 1.10: Multi-chamber equipment, interleaving jobs, 2nd job started 

 

P1 P2

1.7 1.6

1.51.8

P1 P2

2.1 1.25

1.242.2
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The situation is getting different when job 1 and job 2 are using different chamber 

sequences. The equipment-internal scheduler that controls the parallel usage of 

chambers will be considered the overlaps of used chambers if it is a capable scheduler. 

The effect could be that the overlap of two process jobs could be minimal, or even 

zero, if the same chambers are used, or very high if there is no or minimal overlap. 

Figure 1.11 shows the situation that job 1 only uses chambers A and B, job 2 only 

chambers C and D. In this case, there is no overlap. 

 

 

Figure 1.11: Multi-chamber equipment, parallel jobs 

 

The situation gets even more complicated when for example, the sequence for job 1 is 

A → B → C, while the sequence for job 2 is still C → D. In this case, the scheduler has 

to decide whether it can start both jobs and let the jobs share chamber C. 

Even in the more straightforward example of a wet bench where the whole Lot is moved 

from one tank to the next, the preceding job can influence by blocking a tank. 

Nevertheless, also here, it depends on the process and the equipment scheduler. For 

example, the process will not be started if job 1 blocks tank B since job 2 has to be 

moved immediately from tank A to B and is not allowed to wait while still in contact with 

the chemicals of tank A. 

 

P1 P2

1.12 2.8

2.91.13
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1.4 Recipe Runtime  

 

Recipe Runtime is the time taken for a particular recipe to be completed. It represents 

the difference between the job completion time and job start time. There exist different 

recipes for different purposes. According to the Recipe, each phase consists of multiple 

sub-steps operated by different machinery in a specific order according to the desired 

output device. The mentioned operations are applied to lots consisting of up to 25 

wafers in one batch to optimize costs and reduce the manufacturing time [2].  

 

Recipe Runtimes are influenced directly by the type of wafer processing and the 

number of wafers in a lot being processed. The time taken for each recipe is recorded, 

and historical data are available at manufacturers.  

  

It is evident that semiconductor manufacturing is composed of a complex set of 

processes and predicting the recipe runtimes requires an understanding of the 

processes involved. In addition, it is vital to examine job parameters to decide on the 

predictors. Therefore, there could be various job parameters.  

 

1.5 Use cases for Recipe Runtime  

A recipe runtime prediction system could have different use cases once developed, 

such as the following: 

 

i. Operator Guidance: 

 

Once the duration per second for a specific recipe is predicted with adequate accuracy, 

the operator shall leverage such information. Such information could help the operator 

plan his or her time and be alerted when needed.  

 

ii. Planning: 

 

A use case that serves the manufacturing process further is Planning. Predicting the 

time needed for each Recipe to be completed could help factories plan their production 
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overhead and thus utilize their resources fully and ultimately achieve the maximum 

throughput. With the correct planning, optimized processes could be achieved, 

reducing the work in progress and ultimately reducing costs.  

 

iii. Engineering Perspective:  

 

A third use case that serves the engineering perspective in a factory is to understand 

the reasons for having variability in tool recipe runtimes in the first place.  

 

1.6 Thesis Objective 

 

In this thesis, ML models shall be built to predict Tool Recipe Runtimes in 

Semiconductor manufacturing. Having such models could contribute to building a 

system that would ultimately predict future tool recipe runtimes for a given recipe in 

semiconductor manufacturing with minimum input and adequate prediction accuracy. 

Thus, a user would ultimately choose a recipe name as an input and obtain the 

predicted runtime as an output to serve the mentioned potential use cases for such 

technology.  

 

The thesis studies the possibility and adequacy of different ML models such as 

baseline models, specific models, and Automated Machine Learning. The errors 

obtained from each model are analyzed in-depth, and the possibility of operationalizing 

such models is studied.  
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2 State of the Art 

 

This thesis studies the applicability, effectiveness, and possibility of predicting recipe 

runtimes by leveraging historical data by building machine learning, predictive models. 

Prediction of tool recipe runtimes in semiconductor manufacturing is mainly predicted 

by in-house tools, simulation, or rule of thumb. [3] These tools are developed internally 

to calculate an estimate of recipe runtimes. However, this approach could be limiting 

as it does not consider the historical behavior in production according to the data 

generated by manufacturing execution systems.  

 

2.1 Literature Review 

 

There has been ongoing research and development in predicting the cycle time of 

semiconductor manufacturing. [3]  However, the literature review did not come across 

research in predicting specific recipes based on historical data and its features. Since 

machine learning could theoretically provide predictions in any domain or application 

shall this data be available, we decided to apply it to semiconductors recipe runtime 

data available to us,  study the results obtained, and analyze the approach's 

effectiveness.  

 

A big part of the prediction is identifying patterns. A similar anology is when humans 

learn a new hobby or a new language. We being to look for patterns. Applying statistics 

on data is a traditional approach to derive conclusions for specific data. Statistical 

models could help us in identifying patterns in data. However, statics methods could 

only provide us with insights such as mean, median and to determine the type of 

distribution, if there is any. However, it is crucial to derive a model to predict recipe 

runtimes.  

 

Similar research has been developed in predicting the Lead Time (LT) in 

semiconductor manufacturing through predictive data analytics, which uses historical 

data to build models able to predict according to historical data [4]. Cross Industry-
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standard Proces for Data Mining sets 6 phases for the lifecycle of predictive data 

analysis projects. The phases are as the following: 

 

i. Business understanding 

ii. Data Understanding 

iii. Data preparation  

iv. Modeling  

v. Evaluation  

vi. Deployment 

 

The modeling phase is where such predictive models are built by applying machine 

learning algorithms. Researchers applied different ML algorithms on semiconductor 

manufacturing data to predict lead time. The top-performing model was selected for 

evaluation and later for deployment.  

 

Machine learning automates the process of extracting a pattern from historical data. 

There are two main types of ML, Supervised learning, where the training dataset is 

labeled, and Unsupervised learning, where the dataset is not labeled. There exist other 

types of ML, such as semi-supervised learning and reinforcement learning. In 

predicting the lead time, the data was labeled, and so it was supervised learning.  

 

As the prediction process of lead time in manufacturing is ongoing, it is a regression 

problem. 

 

The first mention of statistical learning, knowledge discovery, or data mining as a 

possible practical approach to extract insights and derive conclusions from various 

datasets, was in 1989 [5]. The research was focused on the industries of medicine, 

biotechnology, finance, and marketing. However, there was less interest in the 

manufacturing domain [6]. Recently, there has been a growing research interest and 

more publications concerning leveraging production management data through 

analytical methods and techniques and recorded investment returns.  
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There are possible outcomes for data mining, descriptive statistical analytics, and 

predictive data mining. The first is used in finding patterns in data to provide a better 

understanding. Like classification or regression, the latter analyzes actual data to 

predict future data points for specific variables. Several applications rely on this 

principle, such as scheduling, defect analysis, and fault diagnosis. One more potential 

application could be predicting cycle time, waiting time, recipe runtimes in 

semiconductor manufacturing.  

 

The literature survey reveals research in predicting lead time, cycle time, waiting time 

by applying different ML algorithms. However, no prediction of Recipe specific runtime 

research has been found in the review. Results show that applying ML methods to 

predict different manufacturing times showed the effectiveness and higher accuracy 

than traditional prediction methods. The traditional methods are tailored for table 

production environments to make a data-driven tool recipe runtime model more 

dynamic [4], [7].  

 

2.2 Machine Learning 

 

Machine learning is the science of teaching machines through historical data to 

eventually predict further data points in the future. Machine learning can be defined as 

“Computational methods using experience to improve performance or to make 

accurate predictions.” [8].  

 

Machine learning utilizes the sciences of statistics, mathematics, and computing to 

solve a problem, gather insights, or bring business value. The significant rise in 

popularity of machine learning is owed to the increase in computation power, which is 

currently sufficient to perform high computation tasks to achieve the required results in 

an adequate time. 

 

The issue of how to create computer programs that automatically develop through 

experience is answered by machine learning. It is one of today's fastest-growing 
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technological areas at the intersection of computer science and mathematics and the 

heart of artificial intelligence and data science. The emergence of new learning 

algorithms and hypotheses and the continuing boom in data availability and high 

computing have driven recent progress in machine learning.  

Machine learning works through learning correlations and dependencies from historical 

data. There are two main modes for learning, either supervised learning or 

unsupervised learning. Supervised learning refers to classification, While 

unsupervised learning refers to clustering. Through the machine, learning programs 

could improve their outcome through an ongoing learning experience. There are 

different use cases for machine learning, such as identifying trends, abnormalities, 

prediction, planning, and diagnosing. With the current state-of-the-art in machine 

learning, prediction of any future data point is possible. Thus, it is possible to build 

predictive models that could learn from historical data. In recipe runtime prediction, 

such a model will be supervised, as shown below in Figure 2.1  [9]–[14]. 

 

 

Figure 2.1: Predictive Model 

 

Several machine learning algorithms could be applied to build a desired predictive 

models. In this subchapter, the models used in this thesis are reviewed.  
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2.2.1 Random Forests 

 

Random forests regression is a supervised machine learning algorithm that utilizes the 

ensemble learning function for regression. Ensemble learning function combines 

predictions provided by several machine learning algorithms to produce higher 

accuracy prediction than a sole model.  Random forests algorithm is based on decision 

trees where each decision tree predicts its best score, as shown below in Figure 2.2. 

Afterward, the predictions are averaged, and the random forests algorithm provides its 

predicted value. 

 

 
Figure 2.2: Random Forests prediction 

 

Random forests are a collection of tree predictors in which the values of a random 

vector  are collected independently and with the same distribution for all trees in the 

forest are used to predict the activity of each tree. Following the generation of a large 

number of trees, the top-performing score is voted. This procedure is defined as the 

generation of Random Forests [15].  

 

Random forests regression provides conformal prediction. It utilizes all given data as 

a training set. Compared to other renowned algorithms such as the KNN and ANN on 

both standardized and normalized setup, the generated prediction results provided by 

Random Forests are of higher accuracy on the majority of confidence levels compared 
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to the mentioned alternative algorithms. As the number of trees in a forest grows, the 

generalization error converges to a limit. The strength of individual trees in the forest 

and their correlation determine the generalization error of a forest of tree classifiers. 

When a random selection of features is used to split each node, the error rates are 

comparable to Adaboost, but they are more noise-resistant in comparison. Random 

Forests can be used for either a categorical response variable, classification, or a 

continuous response, regression [15], [16]. 

 

The random forests regressor firstly picks a random number of data points from a 

training set. Following that, it builds decision trees associated with the specified data 

points. Afterward, as specified, several trees are built, and thus the preceding steps 

are repeated accordingly. Finally, the new data points are predicted through each tree, 

and then the average of all values is calculated.  

 

Distributed Random Forest is a sophisticated classification and regression algorithm. 

When given a data set, DRF constructs a forest of classification or regression trees 

rather than a single classification or regression tree. Each of these trees is based on a 

subset of rows and columns and is a weak learner. The variance will be reduced when 

more trees are planted. Whether predicting for a class or a numeric value, both 

classification and regression use the average forecast across all of their trees to 

generate a final prediction [17]. 

 

2.2.2 Gradient Boosting  

 

Building a non-parametric regression or classification model from data is a common 

task in several machine learning applications. One technique for creating a model in 

domain-specific domains is to start with theory and then alter the parameters based on 

the evidence. Unfortunately, such models are not available in most real-life 

circumstances. In most cases, researchers do not reference even initial expert-driven 

assumptions about the possible correlations between input variables. The lack of a 

model can be overcome by using non-parametric machine learning techniques such 

as neural networks, support vector machines, or any other algorithm to create a model 

straight from the data [18]. 

 

Building a single solid predictive model is the most common method of data-driven 

modeling. However, building a bucket, or an ensemble of models, for a learning 

objective is a different technique. Instead, consider creating a collection of robust 

models, like neural networks, that may be integrated to produce a superior prediction.  
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In practice, however, the ensemble method involves merging a large number of 

relatively simple models to produce a more robust ensemble forecast. Random forests 

and neural network ensembles are two of the most well-known machine-learning 

ensemble approaches [19], [20]. 

 

Random forests and other joint ensemble approaches rely on simple averaging of 

models in the ensemble. The boosting approaches are based on a distinct, 

constructive ensemble-building strategy.  The primary idea behind boosting is to add 

additional models to the ensemble incrementally. An additional base-learner model is 

trained concerning the error of the entire ensemble learned so far at each iteration.  

 

2.2.3 Automated Machine Learning  

 

An outbreak of machine learning research and applications has occurred in the last 

decade; in particular, deep learning techniques have enabled significant advances in 

many fields of application, such as computer vision, speech recognition, and 

gameplay. However, the performance of many machine learning approaches is very 

susceptible to many design decisions, which is a significant barrier for new users. It is 

especially true in the booming field of deep learning, where human engineers need to 

choose the correct neural architectures, training procedures, methods of 

regularization, and hyperparameters of all of these components to make their networks 

perform with satisfactory performance. For every application, this step has to be 

replicated. Also, scientists are often left with tedious trial and error runs before finding 

an adequate solution for a specific dataset [21]. 

 

Machine Learning often is an experimental incremental process without fixed limits for 

improvement. Different algorithms are encouraged to be applied to test hypotheses 

and results. However, not everyone is an ML expert and knows how to control every 

model, and as well there is no way to apply different algorithms in one training process. 

This is where Automated Machine Learning comes to fulfill the gap as it applies, tune, 

and test a library of different ML algorithms until the best possible score is achieved 

using efficient Bayesian optimization methods [21], [22]. 

 

Automated Machine Learning aims to make these decisions in a data-driven, objective, 

and automated manner: the user simply provides data, and the AutoML framework 
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automatically decides the best performing approach for this specific application. 

AutoML thus makes state-of-the-art approaches to machine learning available to 

domain scientists interested in implementing machine learning but cannot learn in-

depth about the technologies behind it. This leads to the democratization of Machine 

Learning, making the technology appliable to a larger pool of users [21]. 

 

The recent significant progress in ML has led to rising demand for hands-free ML 

systems that can help developers and ML novices build new ML applications 

effectively. Since different datasets require different ML pipelines, this demand has 

given rise to standard AutoML systems such as Auto- WEKA, hyperopt-sklearn, Auto-

sklearn, TPOT, and Auto-Keras perform a combined optimization across different 

preprocessors, classifiers, hyperparameter settings, and others, thereby reducing the 

effort for users substantially [22]. 

 

AutoML systems have been effective in numerous applications, implementing their 

new hyper-hyperparameters, including the option of the evaluation strategy used in the 

loss function, the time estimate used, and the hyper-hyperparameter optimization 

strategy [23]. 

 

AutoML methods are classified as “lifelong machine learning” systems. ML systems 

learn several tasks from multiple domains, possibly in their lifetime. An ideal AutoML 

system would be a method to learn from all tasks and adapt itself during its lifetime. As 

a result, it would ideally be the most competitive and robust machine learning solution 

for all problem statements [24]. 

 

The protocol of how AutoML is performed is as shown in Figure 2.3. Firstly, the 

machine learning problem is identified. Then, the dataset to be used is made available, 

and the labeled data is identified. Then the target metrics are set, the constraints, if 

any, and the hyperparameters. Afterward, the training is of the different algorithms is 

executed. Finally, the results are observed [25]. 
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Figure 2.3: AutoML Workflow 

 

Due to the numerous benefits, AutoML brings such as high accuracy results and time-

saving, it was selected for development in several projects.  

 

Auto-sklearn is a robust AutoML engine based on the renowned most commonly used 

Scikit-learn Python ML package. Scikit-learn is a widely used ML library used by both 

experts and beginners to implement ML algorithms on datasets in Python. Auto-sklearn 

is an AutoML methodology that uses meta-learning, Bayesian optimization, and 

ensemble selection to determine promising ML pipelines comprising preprocessing 

techniques and ML classifiers.  Auto-sklearn is the “State of the Art of AutoML.” [24] 

Bayesian optimizations are used to establish a high-performance optimized ML 

pipeline on any data dump. Auto-sklearn uses 15 built-in classifiers, 14 preprocessing 

methods, and 4 data preprocessing methods, as illustrated in Figure 2.4 comparing 

the different outcomes and thus selecting the best result [21], [26]. 
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Two main elements make Auto-Sklearn effective. The first is built on meta-learning, 

complementary to Optimization techniques, which is used to accelerate the 

optimization by rapidly recommending instantiations of a framework that is forecasted 

to perform well. The meta-learning was accomplished from an off process where 38 

meta-features were learned from 140 OpenML datasets. The second function is the 

automatic ensemble construction of models evaluated during optimization. Instead of 

discarding the remainder of the models found in the Bayesian optimization process, it 

stores them and then constructs and assembles them using a greedy ensemble 

selection algorithm to select the best model [24]. 

 

In the final step of Autosklearn’s workflow, the best pipelines identified during the 

Bayesian search process are used to construct an ensemble. This automated 

ensemble construction avoids committing itself to a single hyper-parameter setting, 

and it is more robust than only using the best pipeline found with the optimization 

component.  

 

Another provider of user-friendly AutoML software that non-experts could use is H2O 

AutoML. H2O simplifies automated machine learning by providing a unified interface 

to several machine learning algorithms. Although H2O AutoML simplifies AutoML 

training, it requires machine learning knowledge to produce and understand high-

Figure 2.4: Autosklearn Structure 
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performing ML models. AutoML automates the process of training a variety of potential 

models. In addition, it automates data preprocessing, feature engineer and provides 

helpful insights that explain the performance of the selected models [27]. 

 

H2O AutoML can automate the ML workflow by automating training and tuning several 

models within a specified time limit. Stacked ensembles are automatically trained 

through the combination of several models to build the highest predictive ensemble 

models. Commonly, such models are the top-performing models based on the AutoML 

score leaderboard [27].  

 

2.3 Chapter Summary 

 

A significant part of the prediction is identifying patterns. Machine learning automates 

the process of identifying patterns in historical data to predict future data points. This 

process could be applied to different applications and domains, such as the 

semiconductor manufacturing domain. Literature survey reveals past research in 

applying ML algorithms to predict cycle time, waiting time, and lead time. Since 

predicting recipe runtimes is a regression problem, different algorithms such as 

Random Forests, Gradient Boosting, and AutoML have been studied to be selected 

and used to serve such applications.  
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3 Data Preparation 

 

To predict tool recipe runtimes in semiconductor manufacturing by building ML models 

and predicting future points, the data must first be available and then prepared. For the 

data to be ready, there are a set of procedures that has to be applied. This chapter 

reviews the following data preparation phases: data gathering, parameter selection, 

exploratory data analysis (EDA), and data engineering.  

 

3.1 Data Gathering 

The requirements for advanced manufacturing are many, including optimized resource 

planning, quality management, utilizing shop floor tools, production and personnel 

timeline utilization, and the ability to stay dynamic and respond to changes. 

 

For over three decades already, corporations worldwide have been allocating an 

investment budget in information systems to increase productivity and realize the 

added return on investment values. Enterprise Resource Planning Systems serve as 

the backbone of the operation of corporations, and even for small and medium 

enterprises to manage resources,  orchestrate scheduling, and manage the supply 

chain. When it comes to manufacturing, a solution has been needed for the shop floor 

as ERP systems do not offer the level of detail needed to add the suitable materials at 

the correct time with the matching tool in a highly complex and dynamic product line. 

The layer was needed to achieve production goals by delivering the desired material 

on time, safely, reliability,  and predictably.  

 

Companies have been relying on custom made systems to fulfill specific needs. In 

highly automated factories, such data is commonly collected by a variety of sensors. 

Shop floors traditionally required data gathering systems such as databases and 

spreadsheets to collect production data and monitor real-time execution processes. 

However, this approach could be complex to manage. Manufacturing execution 

systems overcome the challenge of integrating several point systems by integrating 

multiple execution components into a standalone solution. MES offers a unified user 
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interface for data management. The demand for utilized manufacturing has led to the 

development of MES. Together with ERP, MES provides contributes to the various 

functionalities described in the below Figure 3.1 [28]. 

 

Figure 3.1: Manufacturing Execution Systems 

 

The data used in the master thesis is an industrial encoded data provided by an 

anonymous industrial partner, and the data was derived from their manufacturing 

execution system. 

 

3.2 Parameter Selection 

 

This thesis aims to develop a system to predict tool recipe runtimes and study if it is 

effective. Such a system would depend heavily on historical data. This stresses the 

importance of defining the predictors from the list of input. In this thesis, the data I used 

initially had a large set of variables. 

 

After careful consideration, only a subset of those variables has been decided on as 

predictors. The list of predictors is grouped into the following categories: 
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• Lot details 

• Process attributes 

• Operation attributes 

• Equipment attributes 

• Operating personnel  

• Other categorical data 

 

Lot details contain the Lot Item Count, Lot Group Mapped, the Product, Product Type, 

and Technology used. In contrast, Process attributes are concerned with the Process 

Step and the Recipe being executed. Operation Attributes are the operation name, 

type, and group. Equipment attributes specify the equipment name, type, type mapped, 

group, group mapped, and area. In comparison, the operating personnel category 

includes the operator's name at the beginning of the shift and the end of the shift.  The 

final list of predictors is listed in below Table 1.  

 

Table 1: List of predictors 

Variable 
Variable 
Class Description 

LotIemCount Numeric Count of items in the Lot 

LotGroupMappe
d Character Mapped grouping of lots 

Product Character Product manufactured 

ProductType Character Grouping of products 

Technology Character Semiconductor technology 

ProcessStep Character 
Each operation is part of one or more production 
schedules and has a subset of definedProcesStep's 

ProcessRecipe Character The recipe used for the ProcessStep 

Operation Numeric 

The identifier for a specified production target. Each 
operation is part of one or more production schedules and 
has a subset of a defined ProcessStep 

OperationType Character Grouping of Operations 

OperationGroup Character Grouping of OperationTypes 

Equipment Character Name of the tool 

EquipmentType Character Grouping of Equipment 

EqupmentType
Mapped Character Mapped grouping of EquipmentTypes 

EquipmentGroup Character Grouping of EquipmentTypes 

EquipmentGroup
Mapped Character Mapped grouping of Equipment 

Area Character Production location inside a factory 
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Sequence1 Character 
Route (work plan), lithography layer (mask layer), logical 
location 

Sequence2 Character 
Route (work plan), lithography layer (mask layer), logical 
location 

Sequence3 Character 
Route (work plan), lithography layer (mask layer), logical 
location 

Sequence4 Character 
Route (work plan), lithography layer (mask layer), logical 
location 

Operator Character Staff member identification 

StartShiftName Character Team name of the Shift. 

EndShiftName Character Team name of the Shift. 

 

3.3 Exploratory Data Analysis 

 

A good practice for any machine learning project is to begin by performing exploratory 

data analysis. EDA is a powerful approach to provide insights and methods to help 

identify patterns in data and understand data typically through graphs and Tables for 

visualization. Through EDA, data can be looked at from different points of view, thus 

contributing to further understanding of the data and deriving conclusions [29], [30]. 

 

The data used in this thesis is actual production data from a semiconductor 

manufacturer. The data has been anonymized for discretion. The specific attributes 

that have been anonymized are LotGroupMapped, Product, ProductType, Technology, 

ProcessStep, Equipment, Operator, StartShiftName, and EndShiftName.  The initial 

description of the numeric columns of the dataset is plotted in below Figure 3.2. It 

shows that the minimum recipe duration time is 2629.57 seconds. The minimum recipe 

time elapsed 1 second only, which is a failed recipe or inaccurate data. The maximum 

recipe time was 368287 seconds. Concerning the LotItemCount, it is observed that the 

mean LotItemCount is 24.  
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Figure 3.2: Numeric variables described 

 

The first plot in Figure 3.3 below illustrates the distribution of average process duration 

by plotting the durations in seconds taken by each Recipe to be executed on a specific 

tool against the Start Timestamp. The Start timestamp ranges between 2020-07-19 

00:00:00 and 2020-09-19 00. Thus, the most significant density for the recipe's 

duration is between 0 seconds and 2500 seconds. A lower density follows them for 

recipes requiring 2500 seconds to 5000 seconds. Finally, they were followed by the 

minor population of some scattered recipes that consumed more than 5000 seconds.  

 

 

 

Figure 3.3: Distribution of average process duration 
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Moreover, The distribution of EquipmentType is plotted below in Figure 3.4. The Figure 

shows different classifications of Equipment Types such as Single Chamber Tool, Not 

Mapped, nan_other, MultiChamber Time, Cluster MultiPath Tool, and Batch Tool. The 

most significant concentration of data is of Single Chamber Tool Equipment Type 

Mapped with a value of over 100000 records and followed by significantly less Batch 

Tool with a value a little higher than 40000, Cluster MultiPath Tool with just a little over 

20000 records and followed lastly, by the least frequent occurrences of Not Mapped, 

Multi-Chamber Tool, and the nan_other group.  

 

 

 

 

Figure 3.4: Equipment Type Mapped Distribution 

 

 

Concerning the equipment group distribution, the following is observed in Figure 3.5. 

The ICON Equipment Group is the major equipment group in the dataset with over 

60000 records, followed by the LITH Equipment Group with more than 40000 records, 

followed by the WPRO equipment group with a little over 30000 records. The 

equipment groups with values under 20000 records are the ETCH, HCVD. While IMET 

and nan_other are the least redundant with values lower than 10000 records.   
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Figure 3.5: Equipment Group Distribution 

 

 

 

Regarding the distribution of the different technologies used, the below Figure 3.6 plots 

the count of each Technology in the dataset. Naturally, there exist some technologies 

that are more redundant than others. The most frequent technologies used 

descendingly are Technology 6 and Technology 1, with over 20000 records. While 

Technology 10, Technology 20, and Technology 0 come after with over 10000 records. 

The rest of the technologies are of less than 10000 records.  
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Figure 3.6: Technology Distribution 

 

Moreover, it was helpful to plot process recipes against duration seconds to 

understand the variability of process recipes. In the below Figure 3.7, the duration in 

seconds for three process recipes was plotted.  

 

Process Recipe 1 has a considerably large variability between its minimum and 

maximum values. However, most of the data averaged between 100 and 1000 

seconds, with the most frequency around 500 seconds.  “Process Recipe 112” has 

significantly less variability between its maximum and minimum values. However, the 

most significant portion of occurrence was still around the 500 seconds threshold. 

Process Recipe 4 had even higher limits' variability. Its distribution mainly occurred 

around 1000 seconds.  
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Process Recipe 4 shows the most considerable difference between its maximum and 

minimum values. However, most values are slightly above the 1000 seconds threshold. 

However, most values remain dense slightly above the 1000 seconds threshold. This 

Figure shows that some recipes could have large variability in their data due to large 

ranges, affecting the prediction process for specific recipes.  

 

 

Figure 3.7: Process duration by Recipe 

 

When observing the trends in process time by Recipe as in the below Figure 3.8 for 

Process Recipe 1 and Process Recipe 4, it is observed that the duration seconds for 

the individual process recipe are distributed mostly below the 10000 seconds 

threshold. However, in both process recipes, outliers overs the observed 

StartTimeStamp are observed.  
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Figure 3.8: Trends in process time by Recipe 

 

Moreover, in the EDA, the LotItemCount shows that the most used LotItemCount is 

25, as shown in Figure 3.9. Therefore, a LotItemCount of 25 is the ideal count for 

having as this is the maximum number of lots possible to be processed later.  
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Figure 3.9: LotItemCount 

 

It is also essential to view the correlation between the variables of the data, if any. 

The below heatmap in Figure 3.10 shows the correlation between the variables. 

However, unfortunately, there is a very low correlation between the variables.  

 

 

Figure 3.10: Heatmap Correlation Map 
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After selecting the predictors, the final shape of the dataset is 188026 and has 25 

columns, as shown in Figure 3.11.  

 

Figure 3.11: Tool Recipe Runtimes Prediction Dataset 

 

3.4 Data Engineering 

 

Before and following the machine learning process usually, some data engineering is 

required. Data engineering is the science of data collection and performing analysis on 

data. Data scientists aim to retrieve valuable insights from datasets and answer 

questions to bring value to an organization, usually a business value.  

  

To work with the provided data and apply the developed methods, certain data 

engineering operations must make the data usable. In this subchapter, a few of the 

operations that were needed are discussed.  

 

3.4.1 Removing Missing Values 

 

As such extensive data collected from sensors could have some missing values, 

commonly referred to as Non-Available Values or NaNs. There are several types of 

missing values, such as Missing entirely at random, missing at random, and not 
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missing at random. Thus, a primitive step in the EDA was to check the presence of 

NaN values, if any, and their count. Initial analysis showed the presence of such 

values, and they had to be removed to provide predictions based on the presence of 

all predictors. Thus, any row that contains any missing column value had to be 

removed. 

 

There are several ways of dealing with non-available data, including not performing 

any action, dropping the missing values, or imputing the missing data with a value that 

could be the mean, median, k-nearest neighbors, or other means.  

 

3.4.2 Encoding Categorical Data 

 

Categorical data are the type of data that contain a certain number of possibilities, 

groups, or categories, unlike continuous data. Every value of categorical data is a 

substitute for one of the categories. Categorical data are either nominal or ordinal. To 

apply statistical methods or machine learning, it is essential to encode categorical data 

by converting it to numerical data as the algorithms require numbers as input rather 

than strings [31]. 

 

The predictors mostly were categorical data, and it was crucial to encode them. There 

are several methods to encode categorical data. One-hot-encoding and dummy 

variables creation were the two methods analyzed, and dummy variables creation was 

selected for encoding the categorical variables.  

 

Finally, the dataset was split into a training set (60%), a test (20%), and a validation 

test (20%) for the next steps.  

 

3.5 Chapter Summary 

 

Prior to method development, data must be gathered and prepared for use to be ready 

for prediction. Firstly, data was gathered from industrial sources and annonmized, a 

list of predictors was defined. Later, EDA revealed an initial understanding of the data. 

Finally, data engineering was performed to make the data ready for implementation.   
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4 Results 

 

Once the data had been prepared, it was possible to proceed with method 

development. In the method development, several models were built and trained to 

predict recipe runtimes. These models include different implementation and 

techniques.  

 

This chapter examines the methods used to study the hypothesis, and the output 

results are recorded. First, the following flow of events chart was collected to view an 

abstract, as shown below in Figure 4.1. Then, as discussed in earlier chapters, the 

process begins by collecting the data, defining the parameters, performing the EDA to 

understand the data, and performing data engineering to make the dataset ready for 

implementation.  

 

The implementation phases begin by applying the selected machine learning 

algorithms on the dataset, training the models, analyzing them, and finally choosing 

the appropriate model for deployment. In the next subchapters, the results from each 

model are recorded and analyzed.  

 



 
 

40 
 

 

 

 

Figure 4.1: The flow of events 
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4.1  Error Analysis 

In this subchapter, the errors from the implementation of each applied ML algorithm 

are analyzed.  

 

4.1.1 Sklearn GradientBoosting 

 

Boosting is the procedure of improving the accuracy of a model. It is based on the idea 

that finding and averaging many rules of thumb is more accessible than finding a 

single, high-precision prediction rule. Gradient Boosting Machine is a straightforward 

learning ensemble technique. Satisfactory predictive results could be generated by 

increasing refined approximations.  

 

The following parameters were set for the training of the model. Random state: 42, 

number of estimators: 90, minimum sample split: 50, maximum features: 60, and 

maximum depth: 40. The rmse value achieved for Sklearn’s Gradient boosting 

regression on the test data is 2725 seconds and 2133 seconds on the validation data. 

Figures 4.2 and 4.3 below plot the difference between the predicted values and the 

actuals after training the model on the validation data. The values up to 3000 seconds 

were predicted with adequate accuracy. The values from 30000 to 50000 seconds had 

less accuracy in prediction. The values larger than 50000 seconds were predicted with 

even greater error. 

 

 

Figure 4.2: Sklean GradientBoosting Baseline Model,  Validation Data, Actuals Vs. Predictions 
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Figure 4.3: Sklean GradientBoosting Baseline Model, Validation data, Prediction Errors 

 

While Figures 4.4 and 4.5 demonstrated the prediction error when training the model 

on the test data. The predicted values were close to the actuals for values up to 30000 

seconds. However, much lower accuracy was observed for larger values. 

 

 

 
Figure 4.4: Sklean GradientBoosting Baseline Model,  Test Data, Actuals Vs. Predictions 

 

 
Figure 4.5: Sklean GradientBoosting Baseline Model, Test data, Prediction Errors 

 

When applying sklearn’s gradient boosting, a model was created, and the error was 

measured again in different categories, as shown below in Figure 4.6—first analyzing 

the rmse against EquipmentGroup on the test data as shown below Figure. The error 

was the highest for the nan_other group. For the rest of the groups, WPCM Equipment 

group predictions were the most accurate with a rmse of 641 seconds, followed by 
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LITH with a rmse value of 919 seconds, followed by ETCH with a value of 1140 

seconds. IMET and HCVD showed slightly higher values of 1723 and 1735 seconds, 

respectively. Finally, the highest error was from the ICON group, with a value of 2571 

seconds.   

 

 

Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Validation data 

 

However, on the test data, Figure 4.7 demonstrates somewhat different results. The 

group with the lowest error prediction is the nan_other group with a rmse value of only 

305.59 seconds. For the rest of the groups, LITH Equipment Group has the lowest 

error of 903.1 seconds, followed by IMET with a higher error of 1028.71 seconds. 

HCVD and WPRO show a higher error of 1844.49 and 2881.98 seconds, respectively. 

Finally, the highest error was of the ICON equipment group, with a value of 3923.82. 
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Figure 4.7: Figure 4.6: Sklearn GBM RMSE per EquipmentGroup – Test data 

 

The error was also compared against EquipmentTypeMapped, as shown in Figure 4.8 

when training the validation data. EquipmentTypeMapped is the information about the 

equipment type used. The group with the lowest prediction error was the not_mapped 

group. The nan_other equipment type had the lowest prediction error of 33.92 seconds 

for the rest of the groups. MultiChamberTool error was slightly higher with 810.68 

seconds, followed by ClusterMultiPathTool with a value of 1365.15 seconds and 

BatchTool with 1497.9 seconds. The most significant error was of the NotMapped 

equipment type. 

 

 

Figure 4.8: Sklearn GBM RMSE per Equipment Type Mapped – Validation data 

 

Different results were observed when training the model on the test data, as shown in 

Figure 4.9. The lowest prediction error was similar for the nan_other Equipment type. 

For the rest of the tools, MultiChamberTool shows the lowest error with a value of 
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1073.41 seconds, followed by ClusterMultiPathTool with a value of 1427.6 seconds, 

followed by the NotMapped group with a value of 1541seconds. The highest errors 

were of BtachTool and SingleChamberTool with values of 2357.68 and 3106.24 

seconds, respectively.  

 

 
Figure 4.9: Sklearn GBM RMSE per Equipment Type Mapped – Test data 

 

There are various semiconductor manufacturing technologies recorded in the data. 

Therefore, it was also essential to know if predictions were accurate for specific 

technology and not for others. As plotted below in Figure 4.10, the results show that 

Technology 19 had the lowest prediction RMSE of 572 seconds, followed by 

Technology 5 with an error of 672 seconds. The highest errors were of Technology 17  

and Other_level of  3390 and 3786 seconds, respectively. The rest of the technologies 

demonstrated varying errors. It is unclear the reasons that lead to such differences in 

errors for different technologies. 



 
 

46 
 

 

 

 

Figure 4.10: Sklearn Gradient Boosting RMSE against Technology – Validation data 

 

As for the test data, the below results are observed in Figure 4.11. Technology 26 had 

the lowest prediction RMSE of 656 seconds, followed by Technology 9 with an error of 

695 seconds. The highest errors were of Technology 8  and Technology 12 of  5244 

and 6105 seconds, respectively. The rest of the technologies demonstrated varying 

errors. 

 

 

Figure 4.11: Sklearn Gradient Boosting RMSE against Technology – Test data 

 

As explained earlier, recipe runtimes in semiconductor manufacturing are composed 

of many steps and substeps. Analyzing the root mean squared error for process 

recipes showed the following as illustrated below Figure 4.12, ProccessStep8 had the 

lowest rmse value of only 76.33 seconds, followed by ProcessStep9 with a rmse of 

163.42 seconds. For unclear reasons, Other_Level process recipes show the highest 



 
 

47 
 

error of 2522.12. seconds, followed by ProcessStep3 with an error of 1708.15 seconds. 

The remaining of the rmse values  ProcessSteps varied.  

 

 

 

Figure 4.12: Sklearn GBM RMSE vs ProcessStep - Validation data 

 

Figure 4.13 shows the results achieved on the test data. Similar to the validation 

dataset ProccessStep8 had the lowest rmse value of only 64.59 seconds. However, it 

was followed by ProcessStep82 with a rmse of 187.7 seconds, ProcessStep3 with 

222.24 seconds, ProcessStep12 with 226.5 seconds. ProcesStep9 obtained a rmse of 

512.46 seconds. For unclear reasons, ProcessStep13 shows the highest error of 7618 

seconds, followed by ProcessStep1 with 6611.97 seconds. The remaining rmse values 

of ProcessSteps varied.  

 

 

Figure 4.13: Sklearn GBM RMSE vs ProcessStep - Test data 
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4.1.2  Sklearn Random forests 

 

In this section, the results from applying sklearn’s Random forests implementation are 

reviewed. In the implementation, sklearn’s Random Forests regressor was first chosen 

to build a random forests regression model. Several parameters could be changed; 

otherwise, they are set to the default values of sklearn. In this model, two parameters 

were adjusted. The number of estimators is the number of trees in the forest, and it 

was set to 90 estimators [32]. The random state controls the randomness of the 

bootstrapping of the samples used when building trees, and the sampling of the 

features to consider when looking for the best split at each node was set to 4.6. 

 

The rmse value achieved for Sklearn’s Random Forests on the test data is 2759.72  

seconds and 2165.13 seconds on the validation data.  

 

Analyzing the error for specific equipment groups as illustrated in Figure 4.14, When 

applying sklearn’s random forests to the validation data, the following errors appear 

per Equipment Group. The lowest error is for the WPCM Equipment Group, with an 

error of 272.96 seconds. Regarding the rest of the equipment groups, the LITH 

equipment group had the second. The lowest rmse value of 980.29 seconds, followed 

slightly by the ETCH equipment group with a value of 1339.02 seconds, followed by a 

higher value for the WPRO equipment group with a value of 1487.09, followed by the 

HCVD equipment group with a higher value of 1693.01 seconds, followed by IMET 

equipment group with a rmse value of 1912.91 seconds. The highest error in prediction 

was off the ICON equipment group and the nan_other group having an error of 2560.56 

seconds and 12034.83 seconds, respectively.  

 

 
Figure 4.14:  Sklearn RandomForest RMSE per EquipmentGroup – Validation data 



 
 

49 
 

The results from the test data are plotted in below Figure 4.15. In contrast with the 

results from the validation data, the nan_other group has the lowest rmse from the test 

data with an error of 356.69 seconds. For the rest of the groups, LITH Equipment 

Group has the lowest rmse with an error of 922.3 seconds, and similarly to the 

validation data followed in rank by the ETCH Equipment Group with an error of 1151.44 

seconds,  followed by HCVD with an error of 1825 seconds, followed by IMET with an 

error of 2132.32 seconds, followed by WPRO with an error of 2931.74 seconds. Like 

the validation data, besides the nan_other group, ICON comes last in rank with the 

highest prediction error with a rmse of 3885.83 seconds. 

 

 
Figure 4.15: Sklearn RandomForest RMSE per EquipmentGroup – Test data 

 

Analyzing the error when applying Sklearn’s Random Forest per 

EquipmentTypeMapped shows the below results plotted in Figure 4.16. The lowest 

error is of the nan_other category, with an error of 262.07 seconds. For the rest of the 

categories, MultiChamberTool shows the lowest error of 675.84 seconds, followed by 

ClusterMultiPathTool with an error of 1458.72, followed by a higher error of 1577.72 

for the BatchTool category, followed by an error of 2082.75 seconds for the 

SingleChamberTool Equipment Type. The highest error in prediction was off the 

NotMapped category with an error of 6247.04 seconds. 
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Figure 4.16: Sklearn RandomForest RMSE per EquipmentTypeMapped  - Validation data 

 

Applying sklearn’s Random forests algorithm on the test data also showed the 

following rmse errors against EquipmentTypeMapped as plotted in Figure 4.17. The 

lowest error is of the nan_other category with an error of 333.25 seconds, similarly to 

the validation error. For the rest of the categories, MultiChamberTool shows the lowest 

error of 962.6 seconds, followed slightly by ClusterMultiPathTool with an error of 

1475.29, followed by a higher error for the NotMapped category of 2035.6 seconds, 

followed by an error of 2393.9 for the BatchTool Equipment Type. The highest error in 

prediction was off the SingleChamberTool with an error of 3127.27 seconds. 

NotSpecified operation group with values of 1456 seconds and 3529.1 seconds, 

respectively. Nan_other, MultiChamberTool,  and ClusterMultiPathTool show the same 

rank in errors across both the test and validation data. 

 

 
Figure 4.17:Sklearn RandomForest RMSE per EquipmentTypeMapped - Test data 
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Comparing the rmse values aginst OperationGroup shows the following errors of the 

validation data as plotted below in Figure 4.18. The lowest error is of the 

MaskLayerOperation operation group with an error value of 411.58 seconds, followed 

by the PE_SiN-SiO operation group with an error of 736.41, followed by the Developer 

operation group with a value of 633.69 seconds, followed by the PE-SiN-SiO operation 

group with a value of 772.12 seconds, followed by the Coater operation group with a 

value of 1036.45 seconds. The highest errors are for the Other_Level operation group 

and NotSpecified groups, with errors of 2811.19 and 2243.9 seconds. 

  

 

Figure 4.18: Sklearn RandomForest RMSE per OperationGroup – Validation data 

 

Comparing the rmse values aginst OperationGroup shows the following errors of the 

test data as plotted below in Figure 4.19. The lowest error is of the 

MaskLayerOperation operation group with an error value of 175.64 seconds, followed 

by the PE-SiN-SiO operation group with a value of 816.64 seconds, followed by the 

Developer operation group with a value of 1106.65, followed by the Coater operation 

group with a value of 1291.78 seconds, followed by the Other_level operation group 

with a value of 1497.98 seconds. The highest error is of the NotSpecified Operation 

Group, with a value of 2982.23 seconds. 
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Figure 4.19: Sklearn RandomForest RMSE per OperationGroup – Test data 

 

For comparing RMSE values of the validation data per technology, the following errors 

in below Figure 4.20 are shown. The lowest prediction error is for Technology 19 with 

a value of 578.54 seconds, followed slightly by Technology 5 with a value of 737.77 

seconds. The highest error is for Other_level with a value of 3756.11 seconds. The 

remaining values varied from 775.37 seconds (Technology 61) to 3395.6 seconds 

(Technology 17).  

 

 

Figure 4.20: Sklearn RandomForest RMSE per Technology – Validation data 

 

For comparing RMSE values per technology on the test data, the following errors in 

below Figure 4.21 are shown. The lowest prediction error is for Technology 26 with 

655.79 seconds, followed slightly by Technology9 with 694.57 seconds. The highest 

error is for Technology 12, with a value of 6105.47 seconds. The remaining values 

varied from 750.39 seconds (Technology 61) to 5244.07 seconds (Technology 8).  
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Figure 4.21: Sklearn RandomForest RMSE per Technology – Test data 

 

Lastly, Sklearn’s random forests show the following errors per Process steps as plotted 

in Figure 4.22. The lowest error is 76.33 for ProcessStep8, followed by a higher error 

of 163.42 seconds for ProcessStep9. The highest error in prediction is of 2522.12 

seconds for Other_level. The rest of the errors varied between 176.04 seconds for 

ProcessStep10 and 1708.15 seconds for ProcessStep3. 

 

 

 

Figure 4.22:  Sklearn RandomForest RMSE per ProcessStep – Validation data 

 

LSklearn’s random forests show the following errors for the test data per Process steps 

as plotted in Figure 4.23. The lowest error is also for ProcessStep8 with 79.51 seconds, 

followed by 84.4 seconds rsme for ProcessStep3. The highest error in prediction is of 
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7639.69 seconds for ProcessStep13. The rest of the errors varied between 174.07 

seconds for ProcessStep82 and 6658.24 seconds for ProcessStep1. 

 

 

Figure 4.23: Sklearn RandomForest RMSE per ProcessStep – Test data 

 

4.1.3 H2O Gradient Boosting 

 

Gradient Boosting Machine (for Regression and Classification) is an ensemble method 

for learning. The guiding principle is that with increasingly more satisfactory 

approximations, good forecasting outcomes can be produced. H2O's GBM creates 

regression trees progressively on all of the dataset's characteristics in a fully distributed 

manner. Each tree is generated in parallel. 

 

A further step in building predictive models is applying H2O’s Gradient boosting 

machines on the data. The rmse value achieved for H2O Gradient boosting regression 

on the test data is 2894.1 seconds and 2330.55 seconds on the validation data.  

 

The error per EquipmentGroup is as shown below in Figure 4.24 for the validation data. 

The highest error in prediction is for the nan_other equipment group with a rmse value 

of 12190.49. For the rest of the equipment groups, the lowest value is of 828.55 

seconds for the WPCM equipment group, followed by LITH with a value of 913.16 

seconds, followed by ECTH with a value of 1157.71 seconds, followed by WPRO with 

a value of 1458.68 seconds, followed by IMET with an error of 1750.25. The highest 

errors are of HCVD and ICON equipment groups with 1840.51 and 29474.07 seconds, 

respectively.  
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Figure 4.24: H2O GradientBoosting RMSE per EquipmentGroup – Validation data 

 

The error per EquipmentGroup for the test data is shown below in  Figure 4.25. The 

highest error in prediction is for the ICON equipment group with a rmse value of 

4263.98 seconds. For the rest of the equipment groups, the lowest value is of 347.42 

seconds for the nan_other equipment group, followed by LITH with a value of 887.46 

seconds, followed by ECTH with a value of 1070.96 seconds, followed by IMET with a 

value of 1014.58 seconds,  followed by HCVD with 1792.74 seconds, lastly followed 

by WPRO with a value of 2903.86 seconds. 

 

Figure 4.25: H2O GradientBoosting RMSE per EquipmentGroup – Test data 

 

The subsequent analysis is comparing the rmse value for each 

EquipmentTypeMapped as shown in Figure 4.26. The lowest error is for the nan_other 

equipment type mapped with an error of 447.89 seconds. For the rest of the categories, 

MultiChamberTool has the lowest error of 986.7 seconds, followed by 
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ClusterMultiPathTool with a value of 1472.83 seconds, followed by BatchTool with a 

value of 1555.52 seconds, followed by SingleChamberTool with a value of 2368.95 

seconds. The highest error is for the NotMapped equipment type mapped with an error 

of 6232.12 seconds. 

 

 

 

Figure 4.26:  H2O GradientBoosting RMSE per EquipmentTypeMapped – Validation data 

 

The following analysis compares the rmse value for each EquipmentTypeMapped as 

shown in Figure 4.27. The lowest error is for the nan_other equipment type mapped 

with a rmse of 421.13 seconds. For the rest of the categories, MultiChamberTool has 

the lowest error of 1101 seconds, followed by NotMapped with 1461.33 seconds, 

followed by ClusterMultiPathTool with a value of 1470 seconds, followed by BatchTool 

with a value of 2327.69 seconds. The highest error is for the SingleChamberTool 

equipment type mapped with an error of 3358.39. seconds. 
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Figure 4.27: H2O GradientBoosting RMSE per EquipmentTypeMapped – Test data 

 

Regarding the comparison of errors per OperationGroup, the following errors are 

shown as plotted in Figure 4.28. The lowest error is of MaskLayerOperation operation 

group with a value of 441.55 seconds, followed by the Developer operation group with 

a value of 788.14 seconds, followed by the Coater operation group with a value of 

1035.85 seconds, followed by the PE-SiN-SiO operation group with a value of 1738.2 

seconds, followed by the NotSpecified group with rmse of 2426 seconds. The highest 

error is of the Other_level operation group with a rmse of 2764.48. seconds.  

 

 

Figure 4.28: H2O GradientBoosting RMSE per OperationGroup – Validation data 

 

Regarding the comparison of errors for the test data per OperationGroup, the following 

errors are shown as plotted in Figure 4.29. The lower error is of the 

MaskLayerOperation group similar to the validation data with a value of 271 seconds, 

followed by the Developer operation group with a value of 1100 seconds, followed by 
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the Coater operation group with a value of 1326.54 seconds, followed by the 

Other_level operation group with a value of 1418.9 seconds. The highest errors are 

1571.4 and 3126.88  for PE-SIN-SiO and NotSpecified, respectively.  

 

 
Figure 4.29: H2O GradientBoosting RMSE per OperationGroup – Test data 

 

Comparing rmse values per technology for the validation data shows the below results 

in Figure 4.30. The lowest prediction error is Technology19’s with 591.25 seconds, 

followed by a slightly higher error of Technology5’s 627.2 seconds. The highest error 

is for Technology26 and Other_level, with errors of 3741.8 and 3871.13 seconds, 

respectively. The rest of the errors varied for the different technologies.  

  

 

 

 

Figure 4.30: H2O GradientBoosting RMSE per Technology – Validation data 
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While companies rmse values per technology for the test data shows, the below results 

in Figure 4.31. The lowest prediction error is Technology9’s with 546.83 seconds, 

followed by a slightly higher error of Technology26’s 674.8 seconds. The highest error 

is for Technology12 and Technology8, with errors of 6062.87 and 7979 seconds, 

respectively. The rest of the errors varied for the different technologies.  

 

 
Figure 4.31:  H2O GradientBoosting RMSE per Technology – Test data 

 

Finally, for ProcessStep errors for the validation data, the following in observed as 

plotted in Figure 4.32. The lowest prediction error is 121.84 seconds for ProcessStep8, 

followed by a slightly higher error for ProcessStep82 with 159.22 seconds. The highest 

errors are of PorcessStep3 and Other_level with values of 1118.9  seconds and 

2724.68 seconds, respectively. The remaining errors varied for the different process 

steps, with values ranging from 172.56 for ProcessStep9 to 804.85 seconds for 

ProcessStep145. 
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Figure 4.32: H2O GradientBoosting RMSE per ProcessStep – Validation data 

 

The following ProcessStep errors for the test data are observed in Figure 4.33. The 

lowest prediction error is 87.16 seconds for ProcessStep8, similar to the validation 

data, followed by a slightly higher error for ProcessStep3 with 120.1 seconds. 

However, the highest errors are of PorcessStep1 and ProcessStep13 with 6645.94  

seconds and 7635.74 seconds, respectively. The remaining errors varied for the 

different process steps, with values ranging from 144.16 for ProcessStep82 to 2699.64 

seconds for Other_level process steps. 

 

 
Figure 4.33: H2O GradientBoosting RMSE per ProcessStep – Test data 

4.1.4 H2O Random Forests Model 

 

Applying H2O GBM was one further step to view the equity of predicting tool recipe 

runtimes in semiconductor manufacturing. The rmse value achieved for H2O 
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distributed random forests on the test data is 26439 seconds and 2178 seconds on the 

validation data.  

 

When comparing the rmse values for each OperationGroup, the following results are 

shown for the validation in Figure 4.34. The lowest error is for the WPCM operation 

group, with an error of 748 seconds. For the rest of the groups, LITH equipment groups 

observed 909.78 seconds, followed by a higher error of 1159.3 seconds for the ETCH 

group, followed by the WPRO group with a slightly higher error of 1431.87 seconds, 

followed by the HCVD group with an error of 1656.73 seconds, followed. By IMET 

operation group with a value of 1677.78 seconds. The highest errors are for the groups' 

ICON and nan_other, with 2511.52 and 12145.26 seconds, respectively.  

 

 

 

Figure 4.34: H2O RandomForest RMSE per Equipment Group – Validation data 

 

While comparing the rmse values for each EquipmentGroup for the test data, the 

following results are shown in Figure 4.35. The lowest error is for the nan_other 

equipment group, with an error of 274.68 seconds. For the rest of the groups, LITH 

equipment groups demonstrate 875.32 seconds rmse, followed by a higher error of 

972.77 seconds for the IMET group, followed by the WPRO group with a slightly higher 

error of 1431.87 seconds, followed by the ETCH group with an error of 1047.86 

seconds, followed by HCVD equipment group with a value of 1655.39 seconds. Finally, 

the highest errors are for the groups WPRO and ICON with 2892.29 and 3690.55 

seconds, respectively.  
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Figure 4.35: H2O RandomForest RMSE per Equipment Group – Test data 

 

When analyzing the rmse values per EquipmentTypeMapped on the validation data, 

the following results in Figure 4.36 are shown. The lowest error observer is 280.59 for 

the nan_other equipment type. For the rest of the equipment types, the lowest error is 

1034.37 seconds for the MultiChamberTool equipment type, followed by 

ClusterMultiPathTool’s error of 1322.05 seconds, followed by BatchTool error of 

1539.59 seconds, followed by SingleChamberTool with an error of 2027.73 seconds, 

and lastly by NotMapped group with an error of 6183.34 seconds.  

 

 

Figure 4.36: RMSE values for H2O Random Forests per EquipmentTypeMapped -  Validation data 

 

While when analyzing the rmse values per EquipmentTypeMapped on the test data, 

the following results are observed. The lowest error observer is 305.32 for the 

nan_other equipment type. For the rest of the equipment types, the lowest error is 

1106.81 seconds for the MultiChamberTool equipment type, followed by 
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ClusterMultiPathTool’s error of 1386.86 seconds, followed by NotMapped error of 

1737.38 seconds, followed by BatchTool group with an error of 2317.46 seconds, and 

lastly by SingleChamberTool group with an error of 2926.91 seconds.  

 

 

Figure 4.37: RMSE values for H2O Random Forests per EquipmentTypeMapped -  Test data 

 

Comparing the rmse values per OperationGroup shows the following errors for the 

validation data as observed in Figure 4.38. The lowest error is 485.32 seconds of the 

MaskLayerOperation group, 741.57 of the Developer group, and 866.5 seconds of the 

PE-SiN-SiO 1035.64 seconds of the Coater group, followed by 1737.54 of the 

NotSpecified group, lastly followed by 2723.56 of the Other_Level group. 

  

 

Figure 4.38: RMSE values for H2O Random Forests per OperationGroup -  Validation data 

 

While comparing the rmse values per OperationGroup shows the following errors for 

the test data as observed in Figure 4.39. The lowest error is 228.57 seconds of the 

MaskLayerOperation group, 872.66 of the PE-SiN-SiO group, and 1114.49 seconds of 
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the Developer followed by 1326.71 seconds of the Coater group, followed by 1361.85 

of the Other_level group, lastly followed by 2804.61 of the NotSpecified group. 

 

 

Figure 4.39: RMSE values for H2O Random Forests per OperationGroup -  Test data 

 

As for the technologies, the following errors for the validation data in Figure 4.40 are 

observed per Technology. The lowest error recorded is 507.98 seconds for 

Technology19, followed by a slightly higher 556.96 seconds for Technology61. The 

highest error is of 3789 seconds for Other_Level. The remaining errors varied from 

687.73 for Technology13 to 3380.95 seconds for Technology8.  

 

 
Figure 4.40: H2O Random Forests RMSE per Technology – Validation data 

 

For the test data, the below errors in Figure 4.41 are observed per Technology. The 

lowest error recorded is 538.48 seconds for Technology9, followed by a slightly higher 

error of 627.85 seconds for Technology26. The highest error is of 6804.96 seconds for 

Technology8. The remaining errors varied from 733.96 for Technology27 to 6067.82 

seconds for Technology12.  
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Figure 4.41: H2O Random Forests RMSE per Technology – Test data 

 

Finally, the rmse values for ProcessStep on the validation data are observed in Figure 

4.42. The lowest error is 69.07 seconds for ProcessStep8, followed by a slightly higher 

error of 125.2 seconds for ProcessStep82. The highest errors are of 1373.89 and 

2461.76 seconds for ProcessStep3 and Other_Level, respectively. The remaining 

values varied from 157.72 seconds for ProcessStep9 to 788.51 seconds for 

ProcesStep145.  

 

 

Figure 4.42: H2O Random Forests RMSE per ProcessStep – Validation data 

 

For the errors observed on the test data, the below result in Figure 4.43 are recorded. 

The lowest error is 69.3 seconds for ProcessStep8, similarly to the validation data, 

followed by a slightly higher error of 84.41 seconds for ProcessStep82 with a similar 

rank as observed on the validation data. The highest errors are of 6648.8 and 7626.66 
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seconds for ProcessStep1 and ProcessStep13, respectively. The remaining values 

varied from 162.66 seconds for ProcessStep3 to 2225.86 seconds for Other_Level.  

 

 

 
Figure 4.43: H2O Random Forests RMSE per ProcessStep – Test data 

 

4.1.5 EquipmentGroup Specific Models  

 

Applying Sklearn’s RandomForests algorithm to validate the ETCH EquipmentGroup 

specific model resulted in an RMSE of 1064.53 seconds. While when applying 

Sklearn’s GadientBoosting, a time of 974.82 seconds was recorded. To further analyze 

the errors across the different models. Specific models were built to compare their 

prediction errors with that of the baseline models. Such models are various 

EquipmentGroup specific models. In this subchapter, these models are reviewed.  

 

Figure 4.44 and Figure 4.45 show the difference between the actuals and the ETCH 

EquipmentGroup specific model predictions. The predicted values are close to the 

predicted values for actuals of values up to 10000 seconds. From 10000 to 15000 

seconds, Predicted values show a higher difference when compared to the actuals. 

The values higher than 15000 show significantly less accurate predicted values. 

Similar results are observed when Sklearn Gradient boosting machines for ETCH 

models, as observed in Figure 4.46.  

 

 



 
 

67 
 

 
Figure 4.44: Actuals vs. Predictions, Sklearn RandomForest on ETCH specific model 

 

 

 

Figure 4.45:  Prediction Errors, Sklearn RandomForest on ETCH specific model 

 

 

 
Figure 4.46: Actuals vs. Predictions, Sklearn GBM on ETCH specific model 

 

The RMSE value for the H2O RandomForests model is 1036.89 and 1007.02 for the 

H2O GBM model. The results are similar with some improvement when building the 

H2O model, as shown in Figures 50 and 51. 

 

 

 
Figure 4.47: Actuals vs. Predictions, H2O RandomForest on ETCH specific model 
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Figure 4.48: Actuals vs. Predictions, H2O GBM on ETCH specific model 

 

As for the HCVD EquipmentGroup Model, applying Sklearn’s RandomForests 

algorithm on the test data for the HCVD EquipmentGroup specific model resulted in an 

RMSE of 1953.51 seconds. While when using Sklearn’s GadientBoosting, a rmse of 

1812.76 seconds was recorded.  

 

Figure 4.49 and Figure 4.50 show the difference between the actuals and the HCVD 

EquipmentGroup specific model predictions. The predicted values are close to the 

predicted values for actuals of values up to 25000 seconds. From 25000 to 35000 

seconds, Predicted values show a higher difference when compared to the actuals. 

The values higher than 35000 show significantly less accurate predicted values. 

Similar results are observed when Sklearn Gradient boosting machines for HCVD 

models, as observed in Figure 4.51.  

 

 
Figure 4.49, Actuals vs. Predictions, Sklearn RandomForest on HCVD specific model 

 

 
Figure 4.50: Prediction Errors, Sklearn RandomForest on HCVD specific model 
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Figure 4.51: Actuals vs. Predictions, Sklearn GBM on HCVD specific model 

 

The RMSE value for the H2O RandomForests model is 1694.01 and 1250.0 for the 

H2O GBM model. The results are similar with slight improvement when building H2O 

models, as Figure 4.52 and Figure 4.53.  

 

 
Figure 4.52: Actuals vs. Predictions, H2O RandomForest on HCVD specific model 

 

 

 

 
Figure 4.53: Actuals vs. Predictions, H2O GBM on HCVD specific model 

 

For the ICON EquipmentGroup Model, Applying Sklearn’s RandomForests algorithm 

on the test data for the ICON EquipmentGroup specific model resulted in an RMSE of 

4625.2 seconds. While when using Sklearn’s GadientBoosting, a rsme of 3991.47 

seconds was recorded.  

 

Figure 4.54 and Figure 4.55 show the difference between the actuals and the ICON 

EquipmentGroup specific model predictions. The predicted values are close to the 
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predicted values for actual values up to 50000 seconds with few outliers. From 50000 

to 90000 seconds, Predicted values show a higher difference when compared to the 

actuals. The values were higher than were falsy predicted. Similar results are observed 

when Sklearn Gradient boosting machines for ICON  models, as observed in Figure 

4.56.  

 

 

 
Figure 4.54: Actuals vs. Predictions, Sklearn RandomForest on ICON specific model 

 

 
Figure 4.55: Prediction Errors, Sklearn RandomForest on ICON specific model 

 

 
Figure 4.56: Actuals vs. Predictions, Sklearn GBM on ICON specific model 

 

The RMSE value for the H2O RandomForests model is 3754.93and 3784.69 for the 

H2O GBM model. The results are similar, with some improvement when building H2O 

models, as shown in Figure 4.57 and Figure 4.58.  
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Figure 4.57: Actuals vs. Predictions, H2O RandomForest on ICON specific model 

 

 
Figure 4.58: Actuals vs. Predictions, H2O GBM on ICON specific model 

 

4.1.6 Process Recipe Specific Models  

 

In order to further analyze the errors and understand if Recipe Runtime Prediction 

using ML-built data-driven models can predict specific recipes with high accuracies 

and fail to predict others, Process Recipe Specific Models were built. A Radom Forest 

model was built for each Process Recipe, and the prediction errors were analyzed for 

both the validation and test data. Figure 4.59 and Figure 4.60 plot these errors. Process 

Recipe 1 has a very high error of over 2500 seconds o both datasets. In contrast, the 

rest of the recipes, excluding ProcessRecipe4 and Other_level, had a much lower error 

of smaller than 500 seconds on both datasets.  
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Figure 4.59: RMSE value per every ProcessRecipe model - Validation data 

 

 
Figure 4.60: RMSE value per every ProcessRecipe model - Test data 

 

To further investigate the possible reasons why ProcessRecipe1 had the highest error 

consistently, a sample of ProcessRecipe1 values were analyzed on both datasets, as 

shown in Figure 61. It can be observed that ProcessRecipe1 is not consistent over 

time in both the validation test dataset. On several occurrences, it has sudden high 

peaks in DurationSeconds. The frequent change in values caused the model to predict 

falsely with high RMSE. On the other hand, ProcessRecipe8 shows one of the lowest 

errors, and when a sample of the data was analyzed, as shown in Figure 4.62, such 

hikes in values in DuationSeconds did not exist.  
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Figure 4.61: ProcessRecipe1 - DurationSeconds Analyzed  

 
Figure 4.62: ProcessRecipe8 - DurationSeconds Analyzed 

 

PorcessRecipe4 demonstrated similar behavior. Figure 4.63 demonstrates consistent 

values of Duration seconds around 400 seconds on the validation test. However, in the 

test dataset, there was a spike in DurationSeconds. Such steep changes in values 

drastically change model behavior.  
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Figure 4.63: ProcessRecipe4 - DurationSeconds Analyzed across the Validation and Test datasets 

 

4.1.7 H2O AutoML 

 

H2O AutoML interface requires minimum parameters such as the label, the training 

frame, and, if required, stopping parameters. Values were kept to the default value in 

the implementations, not specifying a time limit to run AutoML. The output leaderboard 

is shown in below Table 2. The leaderboard shows models with their metrics. When 

provided with the H2OAutoML object, the leaderboard shows 5-fold cross-validated 

metrics by default. At most, 20 models are shown by default.  

 

The lowest rmse value is 2056 seconds for the model  

StackedEnsemble_AllModels_AutoML_20210820_135536, followed by a slighly 

higher error of 2059.6 seconds for 

StackedEnsemble_BestOfFamily_AutoML_20210820_135536. The highest rmse 

values are 2213.7 and 2395.4 seconds for the models 

XGBoost_grid__1_AutoML_20210820_135536_model_1, and 

XRT_1_AutoML_20210820_135536 respectievely.  

 

Table 2: H2O AutoML Leaderboard 

model_id 
mean_resid
ual_devianc

e 

rm
se 

mse 
ma

e 
rms

le 

training
_time_

ms 

predict_time
_per_row_m

s 

StackedEnsemble_AllModels_
AutoML_20210820_135536 

4.23E+06 
20
56 

4.23
E+0

6 

38
0.6

7 
nan 1615 0.102582 

StackedEnsemble_BestOfFamil
y_AutoML_20210820_135536 

4.24E+06 
20

59.
6 

4.24
E+0

6 

38
1.4

3 
nan 1438 0.096246 
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DeepLearning_grid__1_AutoM
L_20210820_135536_model_
1 

4.41E+06 
21

00.
7 

4.41
E+0

6 

43
9.4

9 
nan 588990 0.100572 

DRF_1_AutoML_20210820_13
5536 

4.42E+06 
21
02 

4.42
E+0

6 

34
2.0

3 

0.5
072

1 
197363 0.006981 

GBM_3_AutoML_20210820_1
35536 

4.51E+06 
21

24.
4 

4.51
E+0

6 

41
3 

nan 3947 0.003532 

DeepLearning_1_AutoML_202
10820_135536 

4.54E+06 
21

30.
9 

4.54
E+0

6 

44
9.6

9 
nan 20505 0.007489 

GBM_4_AutoML_20210820_1
35536 

4.54E+06 
21

31.
7 

4.54
E+0

6 

39
8.3

8 
nan 6245 0.003757 

GBM_2_AutoML_20210820_1
35536 

4.55E+06 
21

32.
5 

4.55
E+0

6 

42
3.9

6 
nan 3014 0.003411 

XGBoost_2_AutoML_2021082
0_135536 

4.56E+06 
21

36.
1 

4.56
E+0

6 

44
0.3

7 
nan 55191 0.000813 

XGBoost_grid__1_AutoML_20
210820_135536_model_4 

4.57E+06 
21

37.
5 

4.57
E+0

6 

49
8.5

6 
nan 22250 0.000586 

GBM_grid__1_AutoML_20210
820_135536_model_2 

4.58E+06 
21

39.
9 

4.58
E+0

6 

43
2.2

3 
nan 27941 0.008769 

XGBoost_grid__1_AutoML_20
210820_135536_model_2 

4.61E+06 
21

47.
3 

4.61
E+0

6 

44
3.3

1 
nan 42300 0.000971 

GBM_1_AutoML_20210820_1
35536 

4.62E+06 
21

48.
3 

4.62
E+0

6 

42
5.5

9 
nan 2374 0.003046 

GBM_grid__1_AutoML_20210
820_135536_model_1 

4.64E+06 
21

54.
6 

4.64
E+0

6 

46
7.9

5 
nan 1893 0.004474 

XGBoost_3_AutoML_2021082
0_135536 

4.67E+06 
21

60.
5 

4.67
E+0

6 

55
3.5

2 
nan 16262 0.000459 

XGBoost_grid__1_AutoML_20
210820_135536_model_3 

4.74E+06 
21

77.
8 

4.74
E+0

6 

57
3.3

6 
nan 18059 0.00056 

XGBoost_1_AutoML_2021082
0_135536 

4.78E+06 
21

86.
6 

4.78
E+0

6 

50
2.1

2 
nan 21688 0.000465 

GBM_5_AutoML_20210820_1
35536 

4.79E+06 
21

88.
4 

4.79
E+0

6 

42
4.4

6 
nan 23012 0.01352 
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XGBoost_grid__1_AutoML_20
210820_135536_model_1 

4.90E+06 
22

13.
7 

4.90
E+0

6 

58
5.7 

nan 19101 0.000589 

XRT_1_AutoML_20210820_13
5536 

5.74E+06 
23

95.
4 

5.74
E+0

6 

78
5.6

3 

1.6
854 

39803 0.006308 

 

 

The residual analysis below in Figure 4.64 plots the fittest values against the residual 

on the dataset. Ideally, the residuals should have a normal distribution. Most values 

are normally distributed. However, there exist several outliers.  

 

 
Figure 4.64: H2O AutoML Residual Analysis 

 

 

As for the variable importance, the below Figure 4.65 show the relative importance of 

the most critical variables in the H2O AutoML model. On the top of the list is 

ProcessStep446 attributing to significant importance in prediction, followed by 

Area.LITH, ProcessRecipe 364, ProcessRecipe 480, Oprator1634, and several other 

variables.  
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Figure 4.65: H2O AutoML Variable Importance 

 

 

4.2 Model Comparison and Selection 

 

The results from the applied baseline algorithms of gradient boosting and random 

forests from both libraries of sklearn and H2O provided similar results. However, no 

one model performs better than the rest, including the H2O AutoML. It is also unclear 

whether the EquipmentGroup specific models are a better choice compared to using 

baseline models.  

 

Some Equipment Group-specific models, such as the ETCH Equipment Group model, 

provided very competitive results compared to others. At the same time, the ICON 

Equipment Group-specific model provided the highest error of prediction across all 

models. The top-performing model is the H2O AutoML model providing an adequate 

accuracy of prediction in comparison with the rest of the models.   

 

Process Recipe Specific models provide a great indication of which Process Recipes 

a data-driven model would provide an adequate accuracy when predicting. Generally, 

the best performing models would be of recipes where the DurationSeconds were 

inconsistent limits and without many spikes in values.  
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4.3 Chapter Summary 

 

Once the data was made ready and split into train, test, and validation datasets, the 

different ML algorithms were trained to build predictive models. Firstly, Gradient 

Boosting and Random Forests models were built using two distinctive libraries, and 

then the errors achieved were analyzed per specific predictors on both the validation 

and test datasets. A further step was building equipment-group-specific models and 

process recipe-specific models, and analyze their errors. AutoML was then applied to 

the test data, and the errors from the different models created were compared. Finally, 

all errors produced by the different models were compared for selection for 

deployment.  
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5 Operationalization  

 

The advancement of machine learning involves addressing new issues that are not 

part of the traditional lifecycle of software development. While conventional software, 

for example, has a well-defined collection of product features to be created.  

 

The growth of ML appears to revolve around experimentation: Machine Learning 

Developers will continuously experiment to optimize a business metric such as the 

model, new datasets, models, software libraries, tuning parameters, and more since 

the model output is heavily dependent on the data, and training processes. 

Reproducibility and experiment tracking are crucial in ML development [33]. 

 

Finally, ML systems need to be deployed to production to have a business effect, which 

means both are deploying a model in a way that can be used for inference, such as 

REST API Serving and deploying scheduled jobs to update the model periodically. This 

is particularly difficult when deployment involves cooperation with another team, such 

as application developers or factory users who are not ML experts. Several cloud 

vendors offer machine learning operations tools. However, with significant limitations 

to the usage of libraries from other sources, this limits organizations' capabilities to 

reach their applied machine learning goals, which is often composed of several 

libraries and is not necessarily cloud-deployed [33]. 

 

 

 

 

 

 

 

 

 

 

 



 
 

80 
 

5.1 Model Management 

MLflow offers APIs, functional in Python, Java, and R, for experiment monitoring, 

reproducible runs, and model packaging and deployment to facilitate life cycle 

management. Enhanced machine learning requires various tools, experiment tracking, 

reproducibility, production deployment, and collaborative model management. MLflow 

fulfills these requirements through its modules of MLflow Tracking, MLflow Projects, 

MLflow Models, and MLflow Models Registry [33], [34]. 

 

A model stored in MLflow, for instance, can simply be a Python function that MLflow 

then knows how to deploy in different environments such as batch or real-time 

processing. Other MLflow abstractions, such as REST APIs and Docker containers, 

are likewise based on generic interfaces. This open interface design allows users 

versatility and control while maintaining the advantages of lifecycle management 

compared to existing ML systems such as FBLearner, Michelangelo, and TFX [33]. 
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5.2 Real-time Inference  

The top-performing model shall be selected later for deployment through an ML 

lifecycle solution such as MLflow. The below Figure 5.1 shows the proposed 

architecture. The architecture involves converting the desired model’s code into 

deployment at MLflow’s interface, passing through different phases such as 

hyperparameter tuning, training, and storing the results. The proposed architecture 

would capture the production data, build models, evaluate models daily, keep track of 

training metrics, and deploy the selected model to predict the future points and serve 

use cases such as operator guidance.  

  

 

 

Figure 5.1: Proposed deployment architecture 

 

5.3 Chapter Summary 

 

Machine learning operations lifecycle platforms such as MLflow enable ML systems to 

be deployed to production. Through its modules, it also enables metrics tracking and 

management of models. Moreover, MLflow could be used to operationalize recipe 

runtime prediction to serve the proposed use cases.  
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6 Conclusion 

Semiconductor manufacturing is a complex process that consists of a large number of 

substeps. There are different modes of wafer processing and job handling. Wafers are 

produced according to recipes. Recipe runtime is the time taken for each recipe to be 

completed. Predicting recipe runtime could serve different use cases, such as operator 

guidance. The proposed approach for predicting is by building ML models.  

 

Predicting tool recipe runtimes in semiconductor manufacturing is possible by building 

machine learning models that leverage historical data to predict future data points. This 

approach initially requires understanding the semiconductor manufacturing processes 

and data and applying suitable machine learning algorithms, including AutoML, to build 

the data-driven predictive models.  

 

The results achieved in this prediction approach can be considered high compared to 

the mean duration of recipes. However, due to the presence of outliers in data, the 

prediction process is affected. Perhaps, if the data contains as minimum outliers as 

possible, the prediction accuracy could be achieved. The error analysis shows that a 

particular tool can provide adequate accuracy with the current data predicting recipe 

runtimes in semiconductor manufacturing by training machine learning algorithms and 

building data-driven models. For other tools, machine learning prediction did not seem 

feasible due to the high error generated. 

 

Achieving better prediction scores would lead to better prediction of tool recipe 

runtimes in semiconductor manufacturing, serving the potential use cases for such a 

system such as guiding the operators by the estimated duration remaining, planning 

within the industrial plant, or as insights for engineering, perspective to optimize the 

tool recipe runtimes.  

 

Further Work 

 

Further work to this thesis could build and analyze models that provide higher 

predictive accuracy than the analyzed models. First, recipe Specific models could be 

built for selected recipes that seem a good candidate for high accuracy prediction 

through the discussed methodology. Secondly, once an accepted prediction score is 

achieved, the potential model could be served and operationalized for deployment to 

serve the proposed use cases in the industry of semiconductor manufacturing.  
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