
Development of New Model-based
Methods in ASIC Requirements

Engineering

Master Thesis

Submitted in Partial Fulfilment of

the Requirements for the Academic Degree

Master of Science (M.Sc.)

Department of Computer Science

Chair of Computer Engineering

Submitted by: Chukwuma Onuoha Onuoha
Matriculation Number: 458304
Date: 30.07.2020

Supervising tutors: Prof. Dr. Dr. h. c. Wolfram Hardt
Dipl.-Inf. Michael Nagler

Resident supervisor: M.Sc. Aljoscha Kirchner

T
hi

s
pa

ge
in

te
nt

io
na

lly
le

ft
bl

an
k

ii

Acknowledgements

My entire academic journey, particularly this thesis, would be extremely difficult, if
not impossible, without the assistance and support of those who directly contributed
towards this journey in very many different, but important ways, including:

Mom and dad, Chukwudi, Ogechi, Ikechukwu, Onyinyechi, Uchechi and Toochukwu,
and families: eternal gratitude to you, dearest parents and siblings!

Jude Nwokey and family: “ekele kelere m unu!”; Nkiruka and Eugene Aniekwe,
and family: “speechless!”, is how I feel; Bibiane and Armel, Gisela and Peter Tews:
“ganz lieben Dank!”; Tina and Martin, Josy and Martin, Elli, Kathrin: “für immer
und ewig!”. Abdelbar, Aliu, Coco, Happiness, Ritwik and Zeeshan: thank you guys!

This work has been developed in the ITEA3 project COMPACT (reference num-
ber: 16018). COMPACT is funded by the Austrian Research Promotion Agency
FFG (project number 863828 and 864769), the Finnish funding agency for innova-
tion Tekes (Diary Number 3098/31/1717) and the German ministry of education
and research (BMBF) (reference number: 01IS17028). The authors are responsible
for the content of this publication.

The entire AE/NE-IC staff of the Robert Bosch GmbH, Reutlingen, most especially
to Dr. Jan-Hendrik Oetjens, Dr. Andreas Mauderer and Anja Hammermann: the
support you provided will be dearly and eternally cherished; Horst Berger, Mores
Assogba, Markus Friedrich, Olaf Kleinwegen and Torsten Mahl: you will always
have a special place in my heart; to Stephan Sachs: I will remember to water the
flowers everywhere I go; to mention just a few. From the bottom of my heart: thanks
to you all!

The guidance and support of Dipl.-Inf. Michael Nagler is a joy to behold! Those
listening ears were a soothing relief. Each time. Every time. When the goings were
tough, you were always there to help keep me strong and going. Thank you.

I could not have asked for a better supervisor than Aljoscha Kirchner, nor does a
better support exist anywhere else. Thank you for giving me this opportunity, trust-
ing me to make decisions, supporting every decision, then believing in me through
thick and thin. By associating with you, I have learnt to be a mentor.

Few people in life will have such gracious and positive influence on so many as that
which always brings students to the doorstep of Prof. Dr. Wolfram Hardt. Thank
you for guiding me through my studies, and especially for supervising this thesis.

And, to God Almighty who gives me the sole-inspiration to carry on I say, Father a
glorious thanks to You!

iii

Abstract

Requirements in the development of application-specific integrated circuits (ASICs)
continue to increase. This leads to more complexities in handling and processing the
requirements, which often causes inconsistencies in the requirments. To better man-
age the resulting complexities, ASIC development is evolving into a model-based
process. This thesis is part of a continuing research into the application and evolu-
tion of a model-based process for ASIC development at the Robert Bosch GmbH.
It focuses on providing methologies that enable tracing of ASIC requirements and
specifications as part of a model-based development process to eliminate inconsis-
tencies in the requirements. The question of what requirements are and, what their
traceability means, is defined and analysed in the context of their relationships to
models.

This thesis applies requirements engineering (RE) practices to the processing of
ASIC requirements in a development environment. This environment is defined
by availability of tools which are compliant with some standards and technologies.
Relying on semi-formal interviews to understand the process in this environment and
what stakeholders expect, this thesis applies the standards and technologies with
which these tools are compliant to provide methodologies that ensures requirements
traceability.

Effective traceability methods were proven to be matrices and tables, but for cases
of fewer requirements (ten or below), requirement diagrams are also efficient and
effective. Furthermore, the development process as a collaborative effort was shown
to be enhanced by using the resulting tool-chain, when the defined methodologies
are properly followed. This solution was tested on an ASIC concept development
project as a case study.

Keywords: Artifact, Model, Requirement, Specification, Traceability

iv

Contents

Page

Acknowledgements . iii

Abstract . iv

List of Figures . viii

List of Tables . x

List of Abbreviations . xi

1 Introduction . 1
1.1 Motivation . 2

1.1.1 Aim and scope . 4
1.1.2 Research objectives . 5

1.2 Research approach . 6
1.2.1 Action design research . 6
1.2.2 Questionnaire-based gap analysis 6

1.3 Professorship of Computer Engineering at the Technische Universität
Chemnitz . 8

1.4 Partner organisations . 9
1.5 Structure of this thesis . 9
1.6 Summary . 10

2 Technical background . 11
2.1 Application-specific integrated circuit 11
2.2 Requirements engineering process and management 13

2.2.1 Requirements elicitation . 17
2.2.2 Requirements analysis . 18
2.2.3 Requirements specification and documentation 18
2.2.4 Requirements verification and validation 19

2.3 Systems engineering . 19
2.3.1 Natural languages in systems engineering 20
2.3.2 Document-based approach to systems engineering 21
2.3.3 Model-based approach to systems engineering 21

2.4 Unified Modelling Language . 22

v

Contents

2.5 Systems Modelling Language . 23
2.5.1 Behavioural diagrams . 26
2.5.2 Structural diagrams . 28

2.6 Summary . 30

3 State of the art . 31
3.1 Origin of this thesis . 31
3.2 Reliance on natural languages . 33
3.3 Document-based systems engineering 34
3.4 Model-based systems engineering . 37
3.5 Application lifecycle management . 39
3.6 Change and configuration management (CCM) 40

3.6.1 Change management . 40
3.6.2 Configuration management . 41
3.6.3 Source control management and version control 41

3.7 Quality management (QM) . 42
3.8 Open services for lifecycle collaboration 42
3.9 Traceability methodologies and types 47
3.10 Summary . 51

4 Concepts . 52

5 Implementation system . 55
5.1 IBM® Rational® . 55

5.1.1 DOORS® Next Generation 56
5.1.2 Rhapsody® (RR) . 57
5.1.3 Team Concert® (RTC) . 58
5.1.4 Rhapsody® Model Manager (RMM) 58
5.1.5 JazzTM Team Server . 59

5.2 Traceability in RR . 60
5.2.1 Requirements tables . 63
5.2.2 Matrix views . 64
5.2.3 Annotations, relations and tags in RR 64

5.3 Summary . 65

6 Integration and deployment . 66
6.1 Linking the project areas (PAs) . 68
6.2 Adding CCM and QM to the lifecycle PA 72
6.3 The case for a naming convention . 73
6.4 Application of attributes . 74
6.5 Handling RMM-based models . 76

6.5.1 Delivery to RMM . 77
6.5.2 Collaboration and harmonious modelling 77
6.5.3 Extending views and tags . 79

vi

Contents

6.6 Summary . 82

7 Case study-based evaluation . 83
7.1 Consistency of requirements . 84
7.2 A working tool-chain . 90
7.3 Evaluation of matrix views and tables 93
7.4 Recommendations . 97
7.5 Summary . 99

8 Conclusion . 100
8.1 Summary . 100
8.2 Future research . 102

References . XIV

vii

List of Figures

1.1 Research methodology . 7

2.1 Example of on-chip Architecture of smart-sensor ASIC 12
2.2 ASIC development workflow . 13
2.3 RE as a process . 14
2.4 Workflow in the RE process . 15
2.5 Research methodology . 23
2.6 Sample of a SysML-based model . 24
2.7 SysML hierarchy . 26
2.8 SysML behavioural diagram . 27
2.9 SysML structural diagram . 28

3.1 Workflow for a model-based ASIC development 32
3.2 Classic requirement miscommunication example in system development 34
3.3 Requirements documentation name mismatch 35
3.4 Verification and validation with DBSE 36
3.5 Exhibition of the use of OSLC in a server-client environment 43
3.6 Integration of systems using OSLC . 46
3.7 Associating models to requirements artifacts 50
3.8 Associating requirements to other related documents 51

5.1 Comparing the context views of DOORS and DNG 56
5.2 Illustration of components and streams 59
5.3 Sample view of a RR Requirement Diagram based 61
5.4 Sample of unreadable requirement diagram 62
5.5 Comparison of context patterns in table layout 63

6.1 Structure of ALM . 66
6.2 Structure of JTS-based platform for integration 67
6.3 Sample structure of multiple PAs . 68
6.4 Project setup for DNG and RMM . 69
6.5 Communication path between local and remote repositories 70
6.6 RTC Client-workspace connection on a workstation 70
6.7 Comparing the context views of DOORS and DNG 71
6.8 Change sets as a function of CCM . 72
6.9 Creating the required artifact types 74
6.10 The central role of change sets . 77

viii

List of Figures

6.11 Behaviour of single RMM PA and RTC Client with multiple-workspaces . 78
6.12 Change set notification pattern . 79
6.13 Setting the scope for table views . 80
6.14 Default table view . 80
6.15 Behaviour of single RMM PA and RTC Client with multiple-workspaces . 82

7.1 Default table view . 83
7.2 Method at the start of the research 84
7.3 DNG-based requirements available in RR model 85
7.4 Sample DNG view of FTR Concept Project’s requirements 86
7.5 DNG-based requirements used in a block diagram 86
7.6 Remote requirements as internet links 88
7.7 Requirement diagrams with remote artifacts 89
7.8 Display of remote artifacts linked to RR models in RR 91
7.9 Access management using multiple components 92
7.10 Confirmation of remote DNG artifacts in a matrix view 94
7.11 Display of available requirement artifacts 95
7.12 Notification for obselete requirement artifacts 96
7.13 Decision process for using the platform 98

ix

List of Tables

6.1 Sample of data types in DNG . 75
6.2 Sample of attributes in DNG . 75
6.3 Sample of DNG artifact types . 76

x

List of Abbreviations

ADD Architecture Description Document

ADR Action Design Research

AE Automotive Electronics

ALM Application Lifecycle Management

AM Architecture ManagementAM

API Application Program(ming) Interface

ASE Automotive Software Engineering

ASIC Application-Specific Integrated Circuit

AUTOSAR AUTomotive Open System Architecture

CCM Change and Configuration Management

CD Continuous Delivery, Continuous Deployment

CENELEC European Committee for Electrotechnical Standardizatio

CI Continuous Integration

CLM Rational® Collaboration for Lifecycle Management

CR Customer Requirements

CRUD Create, Read, Update, Delete

CT Continuous Testing

DBSE Document-Based Systems Engineering

DevOps Development and Operations

DNG IBM® Rational® DOORS® Next Generation

DO Document in aeronautic systems

DOORS IBM® Rational® Dynamic Object-Oriented Requirements®

EAST-ADL Electronic Architecture STudy - Architecture Description Language

xi

List of Abbreviations

ECU Electronic Control Unit

EN European Standards

FPGA Fiel-Programmable Gate Array

FS Functional Specification

FSV Formal Specification and Verfication

Hw Hardware

IBM International Business Machines®

ID Identification number

IEC International Electrotechnical Commission

INCOSE International Council on Systems Engineering

ISO International Organization for Standardisation

IT Information Technology

JSON JavaScript Object Notation

JTS JazzTM Team Server

LHS Left Hand Side

MARTE Modelling and Analysis of Real Time Embedded systems

MBSE Model-Based Systems Engineering

NL Natural Language

NLP Natural Language Processing

OEM Original Equipment Manufacturer

OMG Object Management Group®

OSLC Open Services for Lifecycle Collaboration

PA Project Area

Pkg Package (in SysML)

PLM Product Lifecycle Management

QBGA Questionnaire-Based Gap Analysis

QM Quality Management

xii

List of Abbreviations

RDF Resource Description Framework

RE Requirements Engineering

REST REpresentational State transfer

RHS Right Hand Side

RM requirements Management

RMM IBM® Rational® Rhapsody® Model Manager

RO Read Only

RR IBM® Rational® Rhapsody®

RTC IBM® Rational® Team Concert®

RTVM Requirements Traceability Verification Matrices

SCM Source Configuration Management

SDLC System Development Life Cycle

SE Systems Engineering

SiP Systems-in-Package

SoC Systems-on-a-Chip

SPI Serial Peripheral Interface

Sw Software

SysML Systems Modelling Language

TTM Time-to-Market

TUC Technische Universität Chemnitz

UC SysML-based Use Case

UML Unified Modelling Language

VC Version Control

VHDL Very (high speed integrated circuit) Hardware Description Language

VP Virtual Prototype

XML eXtensible Markup Language

xiii

1 Introduction

Development of an Application Specific Integrated Circuit (ASIC), as with devel-
oping many other electronic systems, involves a complex process of gathering re-
quirements (“Requirement Elicitation”) for the system under consideration. The
Deutsches Institut für Normung (DIN)) defines “Customer Requirements” (CR)
and “Functional Specification” (FS) with respect to products requirements. Specif-
ically, CR and FS refer to “das Lastenheft” and “das Pflichtenheft”, respectively
[1]. The customer provides the CR - sometimes in conjunction with the product
developer. The CR describes what the system should do. The FS is provided for
the product developer, by the developer, based on the CR, stating how the product
is to be realised. FSs are realised after qualification of the CR, clearly outlining the
state of technology - current capabilities and limitations.

Stakeholders in a developmental project have to agree tothe contents of the require-
ments. Stakeholders are individuals or groups who can directly impact the project
and its outcomes. They have direct interests in a project’s requirements and have
decisions to make towards the realisation of a project. They also include people or
entities who have to work with the requirements, whether to design or implement
parts of the system, the whole of it. Those who fund the project developement are
also members of the stakeholders.

When an agreement is reached between the customer and the system developer,
as to what system is to be built, the developer continues to the next step in the
development cycle, depending on the process model (V-Model, Waterfall, etc.) being
employed. As already stated above, this phase produces the FS.

The ASIC architect1 is often tasked with the responsibility of fulfilling the CR
elicitation phase of the development. Through architectural design, functional and
system requirements analyses phases, the FS is produced. This is then translated
into “Module Specification”, for module developers to design and build models to
satisfy the given specifications.

In the course of the module development, certain new requirements are generated
and communicated back to the architect. Some deviations from the original spec-
ifications might also occur, and must be documented, and communicated to the
customer, for a potential review of the system specification. There is, consequently,

1This role is fulfilled by different persons or groups, depending on the respective organisational
structure of the entities involved.

1

1. Introduction

a constant back-and-fort process with the communcation of requirements between
these three hierarchies of system stakeholders. This is the ideal case.

In reality, though, the communication between the architect and the developer leaves
a lot of gaps unfilled. Some contexts of the underlying reasons for a design spec-
ification are not available. The automotive industry is multi-tiered. The Original
Equipment Manufacturer (OEM) might pass a set of requirements down to the
first level supplier (Tier-1), who extracts some specifications and contracts their
fulfilment out to the second level auto-domain player (Tier-2), etc. These different
players are often protective and cautious of their intellectual properties. They give
only as much information as they believe is sufficient for the other party to deliver
the contracted products. The contexts of the requirements are, therefore, lost in
transition and translation.

The result of this communication gap is inconsistencies of requirements. The con-
texts missing or not provided; those supplied by the module developer, but were
not communicated back. In the case of different organisations: the caution applied
to requirements communication, and the resultant mischaracterisation and misrep-
resentation of the requirements. These are all the challenges faced at different or-
ganisations and tiers. When these inconsistencies have passed through the system
developemnt process for long and after several reviews, without fully pointing them
out and addressing them, they are found in certain areas of the documentation, and
are not traceable to their origins or reasons.

The voids filled by the developer, Tier 1 or 2 is usually informed by the need to
continue with the project development. This often creates the inconsistencies men-
tioned above. Oftentimes, due to the missing contexts or miscommunications, the
architect and the module developer have different understanding of the system. This
misunderstanding are often not known, until much later in the development. When
such misunderstandings exist, and the contexts and gaps were filled by the devel-
oper, delays may occur. These delays are often due to requirements added later in
the development that were not captured earlier on. This could lead to delays in the
time-to-market (TTM).

1.1 Motivation

Due to the high demand for safety-critical, highly intelligent systems, more so in
emergent applications like automated driving and adaptable systems, ASICs play an
even bigger role in the world today. Consumers demand more autonomous, efficient
and intelligent functionalities, which in turn means OEMs require more from their
parts suppliers to meet and satisfy the demands placed on the market.

The architect and the developers working on the ASIC modules are often in con-
stant communication. This helps to ensure that contexts that are necessary for

2

1. Introduction

development of high quality ASIC products are guaranteed. However, meeting the
demands of the changing landscape vis-à-vis interconnectivity of devices, especially
in the automotive domain, requires a different approach for this communication.

In all systems development domains, the communication approach has to be more
effective and efficient, in order to improve the development process. This can be in
many different formats. For example, better mode of communication between the
architect and the developer can help reduce latency in communication. The mode
of communication might be changed from direct meetings to documents or message
transfer between them, for example. The need for robust and adaptive ways of han-
dling the complexities of the requirements and specifications, and adapting them
to the ASIC development processes and workflow is, therefore, an interesting topic
of research across multiple domains. Furthermore, providing the system developers
with the right processes and tools can help to improve the development and manu-
facturing outcomes. It can also contribute towards maximising the other resources,
least of all, the effort put in to realise the products.

Mich et al [2] observes that, the volume of requirements written in Natural Lan-
guages (NLs) is usually 79%. An on-going research that aims at an early formali-
sation of ASIC specification is at an advanced stage. This thesis is a part of that
research, and its contribution will be towards the handling of the requirements, in
order to engender consistency of the requirements throughout the lifecycle of the
ASIC system. The specification to be formalised is currently NL-based desription
of the composite hardware-software (Hw-Sw) ASIC device. The requirements for a
single ASIC are in the range of a thousand or more (1000+), and always vary from
ASIC to ASIC. Some ASICs have similar requirements to others, with minor but
significant differences. It is therefore, more time efficient and productive to write
the requirements once and reuse or inherent them for subsequent ASIC development
where applicable.

The challenges of handling requirements is not peculiar to ASIC development. In-
deed, it is common to many other products development. Especially, with increase
in requirements, comes increasing complexity of the handling and processing the re-
quirements. Aberdeen [3:2] 2006 survey highlights that business pressures increased
by 47%, when the CR increased by 43%. While it is good for businesses to have an
increase in their customer needs, which directly means more production and more
business, the rate of the increase in pressure does not necessarily equal in measure
of productivity. This could force businesses out, when competitors take over their
customers. In that survey, developers responding by a 42% increase in development
activities and a 49% increase in the quality and/or performance of their products
shows they responded well to the pressure [3:2]. It follows, therefore, that to remain
competitive, product manufacturers have to adapt their methods and processes to
a more evolved measure of staying ahead of the increasing customer demands by
doing better and maximising inputs.

3

1. Introduction

Considering the challenges mentioned above, better development processes that can
handle large-scale production with ever-increasing complexities are always sought-
after. This thesis seeks to provide a set of principles that could be implemented to
reduce and eliminate the inconsistencies in requirements caused miscommunication
between the stakeholders. Of particular interest in this work is the communication
gaps and miscommunication between the architect and the module developer, and
the resulting inconsistencies in the requirements. The result of this thesis should be
procedures that can be integrated into ASIC development process. These procedures
should be reduceable into steps of achieveable targets that can be implemented as
methods.

While the reduction and elimination of inconsistencies in requirements is the specific
focus of this thesis, the work was sectioned into research areas. Research questions
were developed from these areas to aid a comprehensive overview of the research.
The discoveries observed in the course of answering these questions provide solu-
tions to the research questions. These solutions are characterised by the specific
processes already in place2. Therefore, they serve as a series of methods that will
be practised, to improve on the development process already being practiced. The
research questions are described below as goals and objectives.

1.1.1 Aim and scope

This thesis considers the requirements that are gathered as part of the development
process. The processes involved in handling the requirements are evaluated from
a module and communication point of view. Communication in this context is,
particularly, between the architect and the module developer, as mentioned above.
An already existing ASIC development workflow is also considered.

The methods will be related to the implementation, monitoring, appraisal, doc-
umentation, cataloguing and archiving of requirements at a named environment
with certain norms and guiding principles of development and production. The or-
ganisations providing this environment is made up of different business areas and
engineering units, as well as product teams, that are integrated in the development
and management of ASIC production. One ASIC unit would normally involve per-
sonnel of different departments and units at various levels. This means that, they
all get involved with the interpretation and management of the requirements for the
respective ASIC. Requirement traceability to assist these teams is expected at the
end of this thesis. The solution also helps in the workflow process that will realise
a promotion of early standardisation for formally verifiable models.

The goal of this thesis is to answer the following questions:

• Is requirements traceability in ASIC module development possible?

2The aim is not to completely overhaul the development process in place. Rather, to contribute
to an emerging process, within the limits of availability.

4

1. Introduction

• Does it improve communication among the stakeholders?

• Can it help provide the missing contexts of requirements?

• Does it improve efficiency?

• Will it spawn a more pragmatic development process?

• Will the process be better managed?

1.1.2 Research objectives

ASICs are complex hardware and software devices, which are increasingly relying
on software for their functionality [4:323] [5:166] [6] [7] [8]. More software is being
deployed to embedded systems, especially a network of distributed embedded sys-
tems. In the automotive domain, Electronic Control Units (ECUs) are increasingly
replacing the mechanical functions of car parts. ASICs are integral parts of ECUs,
which is at the heart of the innovation and progress made in the automotive industry
today. The continued progress of ASIC development has to match, or even, surpass
the rate at which they are deployed and implemented in cars. Wastage in system
resources have to be reduced; manual processes have to be as reduced as possible;
automation employed where feasible; and repetition must be eliminated. These are
changes necessary for growth of ASIC development. Consequently, methods have to
be adapted to ensure these changes. Realistic targets have to be set and measures to
meet required goals and targets defined. Tools have to be upgraded and adapted to
support the required and desired changes and upgrades to development workflows.

While the goal of this thesis creates a couple of questions to be answered, the
objective creates some of its own to help answer those coming from the goal. These
questions can be summarised as follows:

• What are requirements?

• What is requirements traceability?

• Is traceability specific to a particular systems’ domain?

• Are there standard practices?

• If yes, how can other solutions be improved or adapted?

• How can it be used in ASIC development?

The focal point of this research work is on the development of actionable steps
to observe in order to promote MBSE in ASIC development. At the end of this
thesis, the answers to these objective questions would have been used to provide
relevant answers to the more subjective ones posed by the goals. The theories of
requirements, and how they are fulfilled will be reviewed, and the answers will be
logically structured and comprehensible.

5

1. Introduction

1.2 Research approach

To ensure a holistic approach to the work, which implies understanding the re-
quirement gathering and processing activities, as well as documentation, cataloging
and actually working with the requirements to realise an ASIC product, certain
methodologies were employed. A couple of academic methodologies that serve as a
framework for the systematic development of theories and applied knowledge quickly
come to mind. After review of some of these methodologies, two of them - Action
Design Research (ADR) and Questionnaire-Based Gap Analysis (QBGA) - were
appliedd, and are briefly described here.

1.2.1 Action design research

According to Wieringa & Morah [9:220], action research stems from social sciences,
whereby intervention is sought in order to “experimentally” improve on social con-
ditions, while also learning learn from the existing condition. It involves scientists
analysing and “diagnosing” the outcome or state of a social event, occurence, or
situation, and proffering alternatives or solutions, while learning from the (existing)
occurrence. Action research regards the theory of research as “based on tentative
ideas”, which are then improved upon after cycles of application of arising new ideas
[10:54] [11:40].

This approach to evaluation of events and occurences, their theories of evolution
and applied solutions to problems has been evaluated in the area of systems and
software design analysis and development [12].

ADR is an extension of action research. It is aimed at prescribing a constant evo-
lution of “design knowledge” by acquiring and evaluating the knowledge inherent
in a system of “assemblage of information technology (IT) artifacts” in the course
of using a particular design knowledge base and approach for systems development
[10:54]. This is the case where there are already existing theories and technologies
to build upon, as is the case in the project area this thesis is based. In essence, it
is not typically iterative in a cycle, but over time, the same systems development
process is improved, refined and reused, and the knowledge gained from the pre-
ceeding installments of the same development processes are reinvented and applied
to succeeding developmental process.

1.2.2 Questionnaire-based gap analysis

On its part, QBGA requires the use of questionnaires to collate data and information
in order to evaluate the state of the system, as perceived by those who are currently
working with it [13]. Questionnaires are very valuable in obtaining information from
those who have first-hand knowledge of the system. Closely related to questionnaires
are interviews. They differ in their inherent nature: interviews are more interactive;

6

1. Introduction

they require directly asking the questions, and explaining the question where neces-
sary, whereas questionnaires require submitting the written questions. Due to the
organisational setting and the proximity and accessibility to the just about enough
of the necessary resource persons to engage using this method, the gap analysis
method used each time it was necessary was interview-based.

Interviews were conducted during the course of this work, rather than questionnaires.
This also helped in contextualising, not only the questions that were posed to, but
also the responses that were obtained from the persons involved. Figure 1.1 is
a graphical representation of the research methodology, and is a nesting of both
methodologies reviewed above. It can be observed from the figure that, some of the
steps are iterative, while maintaining structure and focus on the target end.

Figure 1.1: Research methodology

7

1. Introduction

1.3 Professorship of Computer Engineering at the
Technische Universität Chemnitz

This work is registered and supervised internally, at the Professorship of Computer
Engineering within the Faculty of Computer Science of the Technische Universität
Chemnitz (TUC), chaired by the Prof. Dr. Dr. h. c. Wolfram Hardt.

The professorship is renowned for the on-going and continuing research activities in
the area of embedded systems [14] [15]. The research areas include the integration
and applications of hardware and software in complex use cases, some of which in-
clude: the role of embedded systems in car-to-car (Car2Car) and car-to-x (Car2X)
communication, reconfigurable systems in/and self-organised network systems [16].
Further research areas include adaptive flight control algorithms and image process-
ing in such specific areas as their “Adaptive Multicopter Mission” for use in special
missions, like its application to the monitoring of power lines and buildings [17].

One of the most visible sights in the Automotive Software Engineering (ASE) lab-
oratory at the TUC is the “YellowCar” project developed by the professorship [18]
[19]. This project uses multiple ECUs connected via controller area network (CAN)3

as a platform to perform functional tests of functional automotive application units.
It also uses multiple sesnsors for these units. Such This can be applied for advanced
driving assistance systems (ADAS) functions, for example.

The professorship has been teaching and impacting knowledge in these specific ar-
eas through courseworks like Hardware/Software Codesign 1 & 2 and Hardware
Development with VHDL4. Furthermore, with its expertise in automotive-specific
domain topics like AUTOSAR5, the professorship also offers students the oppor-
tunity to learn theories, and gain hands-on practical knowledge and experience, of
AUTOSAR-related topics, such as laboratory work with ECUs. This is done through
courses like ASE6, Seminar Topics on AUTOSAR Based Software Design, etc [20].

Formal Specification and Verification (FSV), one of the Winter Semester courses
available at the professorship, is of particular import. It focuses on the formal
specification, validation and verification of (distributed) embedded systems using
methods like Temporal Logic (TL), including model-checking with such tools as
Simple Promela INterpreter (SPIN), a PROcess MEta LAnguage (Promela) based
tool. FSV coursework also provides opportunities for hands-on knowledge develop-
ment, with examples of formal verification methods from aerospace and automotive
industries.

3CAN is one of the prominent network communication protocols used in automotive.
4VHDL is an acronym for Very (high speed integrated circuit) Hardware Description Language
5AUTOSAR means AUTomotive Open System ARchitecture
6In the ASE Study Programme of the TUC, a particular laboratory-based coursework is also

titled ASE

8

1. Introduction

However, the choice of the professorship is informed by its vast experience and
expertise in the area of hardware software codependent systems, particularly with
Field-Programmable Gate Arrays (FPGAs) and ASICs [21].

1.4 Partner organisations

Automotive Electronics (AE), a division of the Robert Bosch GmbH (Bosch), is
in the business of semiconductors, which includes the responsibility of designing,
developing and manufacturing ASICs for both internal (Bosch) and external cus-
tomers [22]. The business areas covered by Bosch are categorised into four sectors:
1) Mobility Solutions, 2) Industrial Technology, 3) Consumer Goods, and 4) Energy
and Building Technology [23]. These include areas like smart and connected homes,
electronic-bicycles (E-Bike), artificial intelligence (AI), etc.

As they write on some of their internal posters, “We are not always visible, but we
are always there”. This is very informative, because very few people outside of the
automotive sector know that Bosch is one of the foremost developers and suppliers
of products used in automotive systems. Many people associate Bosch with the
products that are always visible: washing machines, refrigerators, microwave ovens,
electric irons, etc. These are household consumer products.

AE is a part of the “Bosch Mobility Solutions” sector. Indeed, as of the year 2019,
Bosch is the world’s leading supplier of general automotive products [24]. It is also
ranked as the world’s sixth (6th) largest manufacturer of automotive semiconductor
for the same year [25]. Worldwide demand for semiconductors as of the year 2018
was 11.5% [26]. This means that Bosch, and by association, the AE, plays a vital
role in the value-chain of global semiconductor supply. As already mentioned in
Section 1.1.2, ECUs are dependent on ASICs and ASICs are dependent on semi-
conductors. This research is in line with the vision and action that has driven the
development of ASIC at Bosch.

This work has been developed in the ITEA3 project COMPACT (reference num-
ber: 16018). COMPACT is funded by the Austrian Research Promotion Agency
FFG (project number 863828 and 864769), the Finnish funding agency for innova-
tion Tekes (Diary Number 3098/31/1717) and the German ministry of education
and research (BMBF) (reference number: 01IS17028). The authors are responsible
for the content of this publication.

1.5 Structure of this thesis

This thesis is divided into seven chapters. Chapter 1 discusses the challenges in-
volved in the communication and consistency of requirements. It also discusses the
aims and objectives of this research.

9

1. Introduction

Chapter 2 takes a brief look at some background technical concepts of ASIC de-
velopment as a function of requirements. It also details some standardised systems
used in this work.

As this thesis is specific in its subject matter, Chapter 3 will look at the state of
the art from the view point of standards that deals with this subject, in terms of
modelling and their transfer. The chapters concludes with a general overview of
some of the challenges and solutions in practice.

Chapter 4 introduces conceptualised solutions as ideas for providing solutions to the
research questions. It is more like a brain-storming session of one that narrows the
focus for the rest of the work down to the specific research objectives.

In Chapter 5, the specific capabilities and properties of the systems and tools that
are building blocks to the solution are introduced and used. The methodologies that
are expected .

Chapter 6 applies these capabilities and properties to a real-life development process
in the form a case study. The real-life ASIC project is used to evaluate the case
study as a proposal of methodologies.

Chpater 7 chronicles this work as summary of a set of questions and matching
answers with respect to the emerged methodologies. It also makes recommendations
for future related work, in furtherance of the new methodologies introduced.

1.6 Summary

In this chapter, the automotive sector was introduced as a multi-tiered industry. The
complexity of requirements as an inherent challenge due to this multi-tiered nature
of the sector was also introduced. This chapter also introduced the requirement
inconsistencies that occur as a natural consequence of the complexity of requirements
and of the nature of multi-tiered industries. The organisations with specific interests
in this work were also introduced. The chapter ends with a brief description of the
structure of this work.

10

2 Technical background

This chapter briefly discusses ASIC and some of the technical concepts that char-
acterise the complexities of its development and production. Requirements and
systems engineering are also discussed. The chapter ends with the introduction of
languages as a tool of requirements and systems engineering.

Semiconductor technologies have changed the world of computer science in partic-
ular, and the world at large in such a rapid fashion [27]. Indeed, it is still changing
and shaping the technological landscape. By the end of 2018, the automotive sec-
tor accounted for 11.5% of the demand for semiconductors worldwide [26]. These
semiconductors are mostly used in the manufacture of ASIC. And ASIC is used for
the production of ECUs. For example, the use of smart-sensor ASICS as signal
processors and for the preprocessing of sensor signals, as well as the provisioning of
data for ECU microcontrollers.

2.1 Application-specific integrated circuit

Application-Specific Integrated Circuits (ASICs) are composite Hw and Sw em-
bedded system components. They have “signal processing capacities” due to the
presence of “micro-processors/-controller cores and memories”, as well as “analog
interface and pre- and post-processing circuits” [4:321]. They (can) also contain
wireless interfaces, the number of which keeps increasing [4:321]. The computing
functions of ASICs are implemented using their signal processing abilities. The
mirco-processor/-controller in the ASIC is mainly the control unit, while the pro-
gram code and data samples are contained in the memory [4:321] [28:283]. They are
designed for customer-specific purposes, e.g. processing of sensor-received signals of
airbags in a vehicle, triggering the deployment of the airbags [29] [30] [31].

As the use of artificial intelligence and advanced networking in cars increasingly
drives the growth of the automotive domain, more software is being deployed in the
design and implementations of the functions performed by the ECUs, as mentioned
in Section 1.1. For example, ADAS depends on advanced functions implemented
on ECUs. So does Internet of Things (IoT) implementations, like in parking and
infotainment systems7, etc. Functions like these are some of the driving forces
behind the growth of ASIC development in the automotive domain. Furthermore,

7“Infortainment” system is coinage to represent informational and entertainment system, like
audio-visual and navigational systems.

11

2. Technical background

the complexity of ASICs keeps increasing with the continuous increase in the size
and volume of software that is used to drive ECU functions [4:323] [32:2] [33:1]. And,
as transistors continue to shrink, and processors get even more complex according
to Moore’s Law, ASICs have evolved into Systems-on-a-Chip8 (SoC) and, more
recently, Systems-in-Package (SiP) [4:104, 519] [34:1] [35:30] [27].

SoCs are single chips, onto which multiple functionalities needed for a system are
loaded. They contain one or more: micro-processor/controller cores, memory sys-
tems, input and output (I/O) systems, analog-to-digital and digital-to-analog con-
verters (ADC & DAC) on the single microchip.

SiPs, on the other hand, contain multiple microchips stacked atop one another,
thereby avoiding the use of multiple spaces on a printed circuit board (PCB), as in
the case of a SoC. SiPs is a packaging technology used in semicondutor world to
circumvent Moore’s Law.

Figure 2.1: Example of on-chip Architecture of smart-sensor ASIC [36]

Figure 2.1 shows an example simple architecture of a signal processing ASIC. It con-
sists of a general purpose processor (GPP), a read-only memory (ROM), random-
access memory (RAM) for tasks like boot loading; a saftey controller and a signal
path component for signal processing related tasks; and connections to external com-
ponents through the serial peripheral interface (SPI), CAN interface and program
structure interface (PSI). These different components are connected with a system
of bridges and busses.

8Some sources also refer to it as Systems-on-Chip

12

2. Technical background

The relationship between the phases of hardware and software components in ASIC
development can be visualised in Figure 2.2. It can be seen in Figure 2.2(a) that,
the traditional workflow of the development process involves the availability of the
ASIC device, before the commencement of the development of the software to be
implemented on the ASIC. This Hw can be developed as a virtual prototype (VP) of
the finished ASIC Hw device using FPGAs [36]. Figure 2.2(b) shows the workflow,
where the use of a VP ensures the development of the Sw components for the finished
ASIC device at a much earlier time, as compared to the traditional workflow [36:4]
[37]. The serial development process in Figure 2.2(a) is bettered by the pseudo-
parallel process in Figure 2.2(b). Consequently, the TTM of the particular ASIC is
shortened as in Figure 2.2(b), which is the current workflow.

(a) Without VP

(b) With VP

Figure 2.2: ASIC development workflow [36]

The ASIC components described above are, oftentimes, built by different organisa-
tions and assembled as a unit by some other. They are often built from already
available components, too. The workflow described might also involve different or-
ganisations, due to the complexity of the supply-chain in the automotive sector, as
described in Chapter 1. There is therefore a need to reuse already designed module
components as much as possible. Reusing modules means that, a module used for
a specific ASIC are re-adapted for some other similar ASIC, or for similar specific
functions in a different ASIC. This reusability is often in the form of intellectual
properties.

2.2 Requirements engineering process and
management

There are many definitions for Requirements Engineering (RE), but one that frames
it in alignment with the characterisation of this work is:

“RE aims to discover the purpose behind the system to be built, by iden-
tifying stakeholders and their needs, and their documentation” [38:6].

13

2. Technical background

It names RE as being a process. A process, as is related to here, is an ordered set of
actions performed systematically to achieve a named outcome. It is a coordinated
set of ordered and systematic activities that leads to definite result. So, with the
process nature in focus, there are inputs into the process. These inputs include the
use cases, contexts, expectations of the customers, and the decisions that are made
to achieve the set targets.

Figure 2.3: RE as a process

The outputs of the process are the results produced from the activities that are
carried out in the process. These outputs include the requirements that are agreed
upon from the gathered use cases. They also include the system specification, the
models that fulfil the agreed requirements, the reports, and the documentations that
are produced as part of the RE process. Figure 2.3 shows the process nature of RE,
which also depicts examples of its inputs and outputs. The process is also shown to
be owned by stakeholders (Figure 2.3). Stakeholders have already been described in
Chapter 1, as those entities who have specific interests in the project.

On its part, the set of ordered activities put together to form a RE process is depicted
in Figure 2.4. The activities start with stakeholder identification, where the require-
ments engineer identifies the entities, especially from the customer-organisation, who
have specific interests in the ASIC to be developed. The requirements engineer here
refers to the ASIC architect. The needs of the customer, i.e. the CR, are captured as
use cases. After identifying the use cases, the requirements are captured, then anal-
ysed. This analysis of the requirements produces the agreed requirements. But, as
can be seen from the illustrations of Figure 2.4, the clarification and restatement of
the requirements follows the requirement identification phase, when there is a need
to re-work the requirements. This could be in a situation where there is a conflict
in the requirements. Analysis of the requirements also leads to classification and
definition of terms for handling the requirements. Classifying and defining different
terms associated with the requirements ensures each word applied to a requirement
conveys the same meaning to each stakeholder. This classification and definition of
terms could be interpreted as a naming convention.

Requirements are further prioritised, derived, partitioned and assigned to the devel-
opers for the development of the models. These steps come after the specification of

14

2. Technical background

Figure 2.4: Workflow in the RE process

the requirements. Figure 2.4 also depicts the tracking of requirements. Requirement
tracking is supposed to be started immediately after it has been captured to ensure
its consistency across a project lifetime9. Tracking is also part of the process during
the development of models that fulfil the requirements.

The requirements that are being put into effect in a product development also has to

9This thesis is based on the tracking and traceability of models to requirements

15

2. Technical background

be managed. This is captured in Figure 2.4 as “Manage the requirements”. Require-
ments management (RM) is a subset, but also, an integral part of the RE process.
The requirements are managed according to prescribed norms and standards that
must be observed in a project development. To guarantee the development is based
on requirements that meet the prescribed norms and standard, the requirements
are verified and validated against those norms and standards. This step of the RE
process is also captured in Figure 2.4. Figure 2.4 is an adaptation of “Requirements
Activities in the System Life Cycle” section of Young [39:4-5].

To design and develop real-time embedded systems, a process has to be engineered
that enables the stakeholders to manage and trace the requirements precisely [8:5].
There are standards and norms that must be adhered to during these development
processes. Some of such standards that inform processes the must be critically
adherent to them are the IEC10 880 in nuclear systems development, CENELEC11

EN12 50126, EN 50128 and EN 50129 in railway systems in Europe, and DO-17813

[8:6].

The automotive sector has introduced a standard for safety of road vehicles known
as the International Organization for Standardization 26262 (ISO 26262) [42] [43].
ISO 26262 is a norm which requires a safety approach to development of electrical
and electronic systems intended for use in road vehicles. This approach stipulates
that the development of such electrical and electronic systems be consistent and
concerned with the safety of use of the parts in all levels of development [36:6].
This norm ensures that, at every stage of the development of vehicle components,
especially the safety features of a vehicle, the process in place implements safety
of these parts during the development. In essence, the requirements being collated
must be informed by safety concerns.

The question of what requirements are have been grappled with by scholars. Defini-
tions keeps evolving, but considering the definition by Young in [39:1], a requirement
is an attribute required of a system - a feature that the system should posses after it is
produced and delivered - written as a statement that identifies what capabilities the
system must possess, be it a quality and/or capacity the system must have in order
to add the intended value that is conceived of the system before production. Albi-
net et al [8:5] considers requirements as having “a structure with several attributes”
and “characterised by an identification, a textual description”, but also could be of
either a functional or non-functional type. While the functional requirements of a
system might be more interesting to developers, non-functional requirements (e.g.
cost, safety, performance) must be captured and documented, because they are to
be managed and maintained properly, in order to realise a project. The overall

10IEC is an acronym for International Electrotechnical Commission
11CENELEC stands for European Committee for Electrotechnical Standardization
12EN stands for European Standards
13DO- refers to Document [40][41] and DO-254 in aeronautic system”

16

2. Technical background

well-being of a project is determined by the concord between the functional and
non-functional requirements, as it is between both the developer and other stake-
holders (customer, project manager, financier, etc.). Attributes like performance
can also directly be related to, and linked from functional requirements like voltage
(voltage is a functional requirement, and can be modelled).

It has been said quite often, in one way or another, that requirements are volatile
[38:3] [44:64] [5:151] [45:594]. RE is a practice the deals with the elicitation and
analysis of users’ requirements, then specifying and verifying them, before transmit-
ting them into products requirements in a repeatably systematic way, to ensure they
are complete and consistent with the requirements that were elicited at the start as
well as the specification that was born out of them [46:161]. RE helps developers,
engineers and architects of systems to cope with the volatility of systems design,
by providing functional and non-functional behaviours a system should exhibit, to
ensure validity and consistencies with standards and specifications [47:271].

Words have different connotative and denotative associations. They are liable to
changes and differences in their contexts and meanings. These differences also affect
how they are understood. It is within the realm of RE to capture those changes
and differences. The connotative and denotative associations of words used in RE
present the “context” of the requirements. Many procedures have been reviewed
by scholars over the years. The approach by Prakash and Prakash [38:7-8] best
describes the workflow within the scope of this work, and is described below.

2.2.1 Requirements elicitation

The requirements elicitation phase of systems development involves the entire pro-
cess of gathering the information necessary to conceptualise the system. It ranges
from what the users of the proposed system want to have in the system, to what the
management wants or do not want as part of the system’s capabilities. The require-
ments engineer, at this point, wants to understand the vision the stakeholders have
for the system. Outlining what the likely constraints of the system are, depending
on the varying perspectives of the stakeholders is included in this phase of the RE
process. The contexts the conceived system will be deployed into is an important
part of this phase. This is, in part, to determine whose opinion of the built system
is required in order for the system to be accepted [48:27]. This step includes, iden-
tifying what the system should be capable of doing from the customers, working
together with those who have direct knowledge of what the system should do.

The requirements are prioritised, and the technical know-how of systems’ module
developers is used to prepare a draft of the system architecture. It is also necessary
to identify the domain experts with respect to the context of the system, as well
as related and useful literature, and any existing or required software or system
related to the conceived one [48:27] [39:17]. The result of this step is a realisa-
tion of an overview of the system from the user’s perspective, as well as potential

17

2. Technical background

external influences on the intended system, and a picture of “stakeholders’ respec-
tive backgrounds, interests, and expectations” [48:27], in what is described as the
“stated requirements” by Young [39:1, 50, 62]. This step is also, partly iterative,
because requirements keep being modified, and the back-and-forth already described
in Section 2.2 above comes into play, hence the tag, “Volatile”.

2.2.2 Requirements analysis

After gathering the requirements, which falls into the category characterised as
“knowledge problems” [49], the “real requirements” is to be deduced [39:50]. The
classification as real requirements represents the realistic portions of the use cases
captured from the CR. An impression is made, about what the system means to
the different stakeholders. This impression is to put the system context in the
stakeholders’ perspective, and to know what they want the system to do. This also
factors in all possible known effects of the system operation to its environment.
The real requirements is the result of analysing the stated requirements that has
been gathered during the elicitation phase [39:1, 50, 62]. The architects (in ths
case) communicates and collaborates with all the other stakeholders - the customers,
designers, management, etc. - to present the outlook of the proposed system as it
fits into the conception of each stakeholder. This leads to even more understanding
of the intended system and what the system would be able to do, or not do, when
it is completed. Here, the state of technology is reviewed by the designers and
developers, and communicated to the customers.

2.2.3 Requirements specification and documentation

After collecting the “real requirements”, as a collaborative effort between the system
designers and customers, these requirements are formally specified, resulting in the
FS of the system. This phase of the process involves application of terms defined
during the first two phases. It also includes resolving conflicts of requirements where
they occur, and often leads to the discovery of more requirements. Depending on
the discovered requirements, the analysis or the negotiation phase may have to be
revisited. If any changes are to be made, the stakeholder, whose view of the project is
affected by the change has to be informed. The project continues after this change is
noted and the awareness about the change communicated to the require stakeholder.
However, not all changes are communicated to the customers. Some communication
are between the architect and the developers who derive new requirements from the
already available technical details.

Concurrent to the specification activity, is a very vital step: documentation. It is
important to have written every detail in the previous two phases down. The critical
nature of the FS documentation is such that, the specification is standardised, and
is to be referred to during the development and maintenance of the system. The FS
is the precursor to the system design phase, therefore its documentation is critical.

18

2. Technical background

Subsequently, consultation of the CR is only to inform the contexts of requirements
during implementation. The documentation contains the technical details of the
system to be built. The technical details are archived at the end of the development
of the system.

2.2.4 Requirements verification and validation

As already mentioned in Section 2.2, requirements are verified and validated against
norms and standards. This is a verification and validation of the requirements (not
of the system). The documented requirements have to be checked against stan-
dards and norms observed by the guidelines that govern such systems. They also
have to fulfil the customers needs. The specification is verified and validated for
“consistency and completeness” [38:8]. This step involves the project managers and
the architect. The requirements engineer - in this case, the architect - and the
requirements managers discuss the requirements against the governing norms and
standards. The architect has to justify the reason for the requirement as specified,
and the manager has to decide whether it meets the norms and standards. They
also have to ensure the customer’s needs are met by the specification. This process
is implemented through the following activities described by Young [39:4-5], as de-
scribed in Section 2.2 (see Figure 2.4). The activities are implemented by the use of
methods, systems and tools. There are many tools and methods that are deployed
in the RE process. The aim of RE is to evolve a method of using the systems and
tools available to the best of their capabilities, according to norms and standards
that govern the processes.

2.3 Systems engineering

The previous discussions in the sections above are building blocks to the discussions
that follow. A pertinent question to ask is, “what is systems engineering (SE)?”.
But firstly, when one is referred to as a “systems engineer”, what does it mean?
Some of the concepts presented by the International Council on Systems Engineer-
ing (INCOSE)14 help answer these questions. According to the INCOSE, systems
engineers and their activities are at the fore-front of the creation of “successful new
systems”. Whenever the responsibility of the team members in a systems develop-
ment project involve “systems concepts, architectures, and design”, the actors are
referred to as systems engineers and the team is a SE team [50]. The concept of a
systems engineer further encompasses those who have to analyse the system being
built before, during, and after the system has been built. Additionally, the SE do-
main also verify the system’s satisfaction of the requirements. Systems are typically
complex, as they are made up of other systems. Their design and implementation

14“The INCOSE is a not-for-profit membership organization founded to develop and disseminate
the interdisciplinary principles and practices that enable the realization of successful systems”
[50]

19

2. Technical background

do follow a RE process. Systems also depend on other systems that are not part
of their design. For example, ASIC developement depends on the availability of
semiconductors, which are processed and supplied by another set of RE process.
Systems engineers are also involved in managing this complexity. They manage the
risks of modules and systems design and implementation [50].

To proceed, the question: “what is SE?” has to be addressed. It is defined as an
engineering approach that fulfils the “realisation, use and retirement of engineered
systems” and system of systems which cuts across all disciplines, using management
concepts, principles and processes that are integrative, methodical, scientific and
technological [50]. The terms “engineering” and “engineered” are used here to show
that the process and procedures are “artful” and comprising “of any or all of people,
products, services, information, processes, and natural elements” [50] invloved in the
realisation of a system over the entire product’s lifecycle respectively. This follows
that, all the steps taken towards the development of an ASIC are within the discipline
of SE.

2.3.1 Natural languages in systems engineering

As mentioned in Section 1.1, requirements are mostly written in NLs (79%). These
are very often open to interpretation and are often ambiguous [51:1]. This is inherent
in the nature of human languages [52:198].

As at the time of this writing, engineering of systems are based on two approaches
that depend heavily on spoken and written words as the means of communication.
These words are in form of NLs. NLs are those written and/or spoken languages
which are known to man and have evolved over the years as a means of communi-
cation. Igbo15, German and English are typical examples of NLs. The use of NLs
in the processing of requirements is essential for communicating the needs and con-
texts of the requirements amongst stakeholders. Requirements are typically written
in NL forms. And the discussions to derive and manage the requirements are had
through means of NLs. The inputs into RE as a process are mostly communicated
through NLs. The outputs of the RE process are documented and reported in NLs.
This includes all documents that are generated. Discussions in the RE process all
take place by means of NLs. Decisions made are communicated through NLs, either
verbally or in written form. The entire process discussed in Section 2.2 is achieved
through NL. Essentially, NL is a tool of RE.

The two approaches of SE are: 1) documents-based systems engineering (DBSE),
which also known as the traditional approach to SE, and 2) model-based systems
engineering (MBSE).

15Igbo is the language of the Igbo ethnic group of south-eastern Nigeria. The written form of the
language is latin-script

20

2. Technical background

2.3.2 Document-based approach to systems engineering

DBSE is a system of communicating in NLs through means like papers, cardboard
sheets, etc. in the development of system. The method of communication also
includes signs and symbols defined as a convention, according to the steps already
described in Section 2.2. This approach is referred to as the “traditional approach
to SE”. The tools dependent on are simple easy-to-acquire materials that can be
easily deployed. The methods can also be simple methods, like the use of “free-hand”
sketches, colours and shapes. The communication of the materials and methods can
also be simple. For instance, the transfer of a developed document from one person
to another might require the material be taken by the sender to the receiver. They
might have to define a schedule of location and time where they would meet each
other for this transfer to take place. Mind maps are also very useful in the discussion
and brainstorming sessions during the RE process.

The traditional approach to SE also need to generate text artifacts for use. The
use of word processors to generate text-based documents is also categorised as the
traditional approach to SE. The text-based documents are then transferred either
physically, or virtually, using electronic means. The notion of DBSE can, there-
fore, be summarised as the use of text-based means and methods in the systems
engineering domain. DBSE also includes development of prototypes of the system,
especially, the architecture of a system as a sample model. This model is physically
developed and referenced to in the course of the project. This means the use of NLs
as a means of communicating the systems development methods and processes.

2.3.3 Model-based approach to systems engineering

MBSE, on the other hand, is a development approach where the documents, shapes
and models used are entirely based on formalised systems and tools. These docu-
ments are developed, generated and managed entirely as formalised computer-based
artifacts. The transfer of these artifacts are also central to the concept of MBSE.
While the need to communicate development information is the same as in all forms
of development, MBSE focuses on the transfer of model artifacts, rather than texts.
It also prescribes the central location and management of the development model
data, thereby eliminating the need for “transfer” of the information from source to
destination. The systems and tools used are typically specific to the type of artifact
that is being developed and managed. A purely MBSE approach uses model-based
artifacts, without the need for NLs [53:4]. An ideal MBSE environment would be
the use of models in all the communcation conventions and mechanisms.

The use of models hinges on three things, or as Delligatti [53:4] refers to it, “three
pillars”, namely: 1) a language for modelling; 2) a conceptual process method or
methodology to implement the models; and 3) a befitting modelling tool for the
SE domain. A modelling language for the practice of MBSE is standardised for
the domain. The tools that enable systems engineers practise MBSE are available.

21

2. Technical background

And, although SE concepts seek the evolution, and are evolving, into MBSE, no SE
practice is completely MBSE. The most predominant form is the hybrid of DBSE
and MBSE [53:4]. This is because, MBSE currently also depends on the use of NLs.
The subsequent sections and chapters of this work describe the progressive evolution
of MBSE, especially in relation to the development cycle of ASIC.

2.4 Unified Modelling Language

As stated above, a modelling language is required for a model. Diagrams are
uniquely suited to describing information in a manner that systems engineers across
multiple or specific domains understand in the same way. The Unified Modelling
Language (UML), as a standardised language16, fits the purpose of diagrammatically
representing information for software-systems engineering. UML is standardised by
the “Object Management Group®” (OMG®). It is used to represent parts or whole
of a system and its operating environment and surroundings. It also provides a
mechanism for representing the system users. In other words, a system can be
diagrammatically represented, in its surroundings using UML. However, it is note-
worthy that, modelling is not to capture the diagrams. Rather, it is about the idea
conveyed with the diagram [53:19]. The things that affect the system and those af-
fected by it can also be represented as a a set of UML based artifacts. This includes
entities used by the system and those that use the system.

UML was created to manage the complexities and risks associated with the doc-
umentation and transfer of requirements in the development and management of
software projects. At the start, developers recognised the need to define standard
objects for a specific project to convey the same meaning to the stakeholders during
the lifecycle of the project. Due to the diagrammatic nature of UML, it is employed
in the designing of object-oriented complex systems, using diagrams to represent
software systems and processes in a developmental workflow.

There are three major categories of UML model elements. These elements can
be used to represent the component-parts of a system as single, and as blocks of
functions of the system. They can also be used to represent the environments in
which the system operates. UML names these elements as “individuals” [54:12].
The three categories described by OMG® are:

Classifiers: these are descriptive of sets of objects with values which are identifiable
by the state of the object’s properties.

Events: sets of possible occurrences, whereby an occurrence is representative of
anything with a consequence on the system when it happens are described as
events.

16UML 2.5.1 (current version) is available at https://www.omg.org/spec/UML/2.5/PDF

22

https://www.omg.org/spec/UML/2.5/PDF

2. Technical background

Behaviours: sets of possible executions are described as behaviours. Executions are
set of actions occurring over a period of time. Changes in the states of the
objects are also captured as behaviours.

UML also defines profiles, which is one of the very important concepts of the lan-
guage as a standard for SE in general. UML is typically used for software engineering
systems modelling. However, the UML profile is adaptable and extensible for use
in many systems development domains and platforms (e.g., embedded system). In
essence, profiles in UML is used to customise UML and allow for creation of domain-
or project-specific objects or symbols, as well as properties or semantics that are not
part of the UML standards. One of such customisations has given rise to another
language that is also standardised by the OMG®.

2.5 Systems Modelling Language

As described in Section 2.4, UML is generally used for modelling in software de-
velopment. In contrast, Systems Modelling Language® (SysML® was created and
standardised by the OMG® for systems in general. These systems are composed
of parts such as hardware, software, procedure, etc. It is a defined profile of UML,
with its own extensions. It is evolved from UML 2.0 and builds on the UML 2
specifications, but with its own definitions and extensions of the UML standards.
It has support for modelling of processes, behaviour, requirements, etc used to inte-
grate a complete SE process of other engineering analysis models using eXtensible
Markup Language17 Metadata Interchange (XMI®). It is described as “a dialect of
UML 2.0” that enhances the practice of MBSE18. Figure 2.5 shows the relationship
between UML and SysML as standardised languages.

Figure 2.5: Research methodology

17eXtensible Markup Language has the acronym “XML”
18SysML® 1.6 (current version) is available at https://www.omg.org/spec/SysML/1.6/PDF

23

https://www.omg.org/spec/SysML/1.6/PDF

2. Technical background

Most of the SysML concepts are taken from UML, and are represented as the inter-
sected region of Figure 2.5 (marked by blue-coloured text). The figure also shows
that some things are not used by SysML (identified with red text), while some are
new to the standard (green). For example, while behavioural and structural di-
agrams are common to both standards, the concept of requirement diagram was
defined by SysML. Therefore,requirement diagrams belong to the green-marked re-
gion. The activity diagram, however, is modified for SysML specification. That is,
although it is available in both UML and SysML, the implementation in SysML is
different from that of UML. This means activity diagrams belong to the blue-marked
region.

SysML uses some of the concepts available in object-oriented programming lan-
guages in its description of items to be used for the representation in models. The
concepts that are relevant in the context of this work are described below, and are
illustrated using Figure 2.6.

Figure 2.6: Sample of a SysML-based model

Block: A block decribes a set of objects. It is a classifier, with the objects having the
same features, constraints and semantics. The attributes can be behavioural
or structural, and are associated with operations. A constraint can be a pre-
condition or restriction imposed on an element or a set of elements.

Object: An object is an instance of a class. It has a well-defined boundary of states
and behaviours.

24

2. Technical background

Inheritance: As with other object-oriented programming languages, the mechanism
of inheritance is used by child objects to inherit the properties of their parent
objects.

Dependency: A relationship by which an element or a set of elements (B) need
other elements or sets of elements (A). If B acquires the specific characters
or properties A possesses by association, the relationship is referred to as a
Dependency. B, called the client elements, are “semantically or structurally”
conditioned on how A, the supplier elements, are semantically or structurally
defined [54:42]. Figure 2.6 shows an example of a dependency relationship.

The “Store Electrical Energy” and “Convert Sunlight to Electrical” use cases
(UCs)19 depend on the “Provide Electrical Energy” in Figure 2.6 above. The
dependency relationship here is “include”. This means that the Provide Elec-
trical Energy will include these other two sources of energy in its mode of
energy transfer.

Stereotype: A Stereotype is a special type of metaclass, and is limited to its depen-
dency on the metaclass. It has a dependency relationship with the metaclass
that it extends in that, it is an extension of that metaclass. It is usable only
in conjunction with the metaclass which it extends. A particular Stereotype
can act as an extension to one or more metaclasses via association [54:258].

Abstraction: This could be considered as a dependency relationship that exists
between two “NamedElements” or between a diverse sets of “NamedElements”
that are representative of the same concepts of the whole, or of a part of
the system(s), or of the system from a different perspective [54:38]. It is a
dependency relationship that relates two or more sets of named elements which
represent the same concept, but from different points of view. The relationship
could be formal or informal, unidirectional or bidirectional, which is dependent
on the stereotype, as well as those of standard specified stereotypes like derive,
refine, trace, etc [54:38].

Encapsulation: They refer to the concept of the concealing of the details of im-
plementation of a subset of a system by the use of data binding, thereby
separating the system into well-defined boundaries and data structures.

Polymorphism: This refers to the concept of the ability of items to exist in different
forms. For example, Figure 2.6 shows four actors associated to the “Solar
Power System”. The “Load” and “Sun” actors are defined as blocks, which
was described above. These two actors, although they are blocks structurally,
have been used as actors. The other two actors, “Supplier” and “User” are
the traditional SysML actors who use the system and provide materials for
the system development, respectively.

19Where UC is used in this work, it denotes a use case captured as a SysML artifact.

25

2. Technical background

There are three diagram types in SysML. These diagrams abstract their relationships
according to the object-oriented concepts described above.

Figure 2.7: SysML hierarchy

The diagram types are 1) behavioural diagrams, 2) structural diagrams and 3) re-
quirement diagrams, as shown in Figure 2.7. SysML also shows the system from
different abstractions and views. Below is a description of the available diagrams in
SysML and what they represent in terms of systems’ abstractions and views.

Requirement diagram

This diagram type is also defined by the SysML specification. They are used to
visually relate the requirement artifacts to the model artifacts. The requirements
are text-based and can be defined in the same area as the model, or in a remote
area. Expressing the relationship between model artifact and the text artifacts (the
requirements) that the model artifact fulfils are the common feature of this diagram
type [55:186].

2.5.1 Behavioural diagrams

As already described, SysML shows system views from different perspectives, and
one of the three broadest perspectives is the behavioural view of a system. As the
name suggests, the SysML behavioural view is used to represent the bahaviour of
the system as a model. They represent the response of a system to events and inputs
into the system that changes with time, i.e. the dynamic behaviours of the system.
These diagrams are shown in Figure 2.8 and are described below:

26

2. Technical background

Figure 2.8: SysML behavioural diagram

UC diagram: A SysML UC is a representation of the relationship between the sys-
tem and its surroundings - the environment that affects the system, including
the persons that operate the system. These are referred to actors. They
capture what a system should do with respect to its environment (functional
requirements). UCs can also be a nest of other UCs. Since it is a representa-
tion of the system and its relationship with its surroundings, the surroundings
could be another system or subsystem. A use case diagram is a diagrammatic
representation of these relationships and the actors. Three concepts are spec-
ified in a UC: the functional requirement of the system (action words, which
denote the UC); the actor (the individual interacting with the system); and
the relationship between them (represented as a line connecting the actor to
the system).

Activity diagram: An activity in SysML is an extension of the UML 2 activity and
represents the basic unit of behaviour. Using the activity diagrams, the flow
and control of the input and output actions, as well as other actions that affect
the system behaviour can be depicted [55:127]. One of the major differences
between activities, as defined in UML and SysML respectively is, while control
in UML activities allow actions to start, in SysML, activities can stop actions
already executing.

State machine diagram: State machines define the “discrete event-driven be-
haviours” of a system model as a formalism of the system [54:303]. They
describe the behaviour of a part or whole of system at specific time stamps.
They also describe or express the behaviour of a system’s interaction sequences
(protocols) of the system parts [54:303]. It is noteworthy that, the behaviour of
a system is determined by a combination of inputs directly to the system and
the previous state of the system. This can be expressed using state machine
diagrams.

27

2. Technical background

Sequence diagram: A sequence diagram expresses communication of events and
occurrences in the sequence that they occur. It characterises the behaviour of
a system as a sequential order of events that lead to other events.

2.5.2 Structural diagrams

The behavioural view of the modelled system depicts the dynamic behaviour of the
system with respect to its surroundings. In direct contrast to the behavioural view is
the structural view. The structural view captures the static structure of the system,
in part or whole, and the static relationships of different parts of the system. They
are described as those group of objects depicting a system’s static structure that are
independent of time. They therefore, describe the architecture of systems. Elements
of a system that remain the same at all times have attributes described as structural.
They do not show any of the dynamic details of the system. However, the static
structure may own dynamic structures or be related to them [54:683].

Figure 2.9 shows the SysML structural diagrams. There are four diagram types
classified under the SysML structural diagrams. The “Structure Diagram” consists
of “Block definition” and “Internal block” diagrams as modified concepts of the UML
specification, as shown in Figure 2.9. The “Parametric diagram” type is a subset of
the “Internal block diagram” type, as depicted in Figure 2.9. The following are brief
descriptions of the diagram types available in SysML. Only the “Package diagram”
is taken as-is from UML.

Figure 2.9: SysML structural diagram

Block defintion diagram: Block definition diagrams display the relationships be-
tween elements in a hierarchically structured manner, as well as the value
types of those structures.

28

2. Technical background

Internal block diagram: This type of diagrams display the internal structure of a
single block. The internal block diagram is used to display the relationship
and constraints between internal components of a block [55:43].

Parametric diagram: The parametric diagram is a new concept defined by the
SysML. This type of diagram is similar to the ibd, but with constraints upon
each component. It is used to express the components in relation to their
constrained properties and parameters. In parametric diagrams, only the con-
traints themselves and the parameters that are bound or associated to them
are displayed [55:121].

Package diagram: A SysML package could be defined as a namespace for items
that belong to the package, which includes the elements it is associated with.
The elements are either owned or contained, as well as the elements that are
imported into the package [54:239]. Packages can belong to another package
(through nesting, or by association: merging or importing). The capability
of SysML, as a formalised language, to organise and abstract systems as a
composite of behaviours and structures, is a direct consequence of the capacity
and structure that is provided in packages [54:12]. A package diagram is
used to express packages and the items they contain or are associated with
in an organised manner. It helps to group items together as belonging to one
category.

Figure 2.6 is an example of a UC diagram. It is taken from a sample model for the
design of a “Solar Power System”. The diagram shows six UCs: “Provide Electri-
cal Energy”, “Store Electrical Energy”, “Convert Sunlight to Electrical”, “Report
System Status”, “Install System” and “Configure System”. These UCs are defined
within the boundary of the Solar Power System. That means, each of these six
UCs are either used by, or use the Solar Power System. It also shows four items
outside the boundary of the UC, but that directly influence the entire system. Two
of them: “Load” and “Sun” are “Actors” in the form of “Blocks”, which are them-
selves, smaller systems, while the other two: “User” and “Supplier” are actors that
have a manual part to play in the building and use of the system respectively.

There are two further points to note, with respect to SysML:

Point 1:
An operation is a behavioural feature, but it may be owned by static, structural
objects, like an interface, a data type, or a block [54:114]. The “Load” UC in
Figure 2.6 can be used to illustrate this concept. While UC itself is a block, which
has structural attributes, the value of the electrical energy it “stores” is variable.

Point 2:
Similar to UML, SysML profile provide a mechanism for extending the capability of
an implementation of the language. As SE domains differ, one domain might need

29

2. Technical background

artifacts that are peculiar to its development of models. Profiles can be customised
to provide those artifacts as a standard component of the specific domain, which
can then be used by all who have access to the profile.

2.6 Summary

In this chapter, ASIC was introduced as a composite system involving Hw and Sw
parts. RE was also described as a process, outlining the process as comprising of
inputs, activities and outputs. A dissection of the concept of requirements also took
place in this chapter, thereby providing some contexts for the research objectives.
The relationship between languages and RE process was highlighted, as well as their
integration into SE. The chapter closed with a transition from naturally evolved
human spoken and written languages to model-standardised languages.

30

3 State of the art

In this chapter, an overview of systems development from the viewpoint of MBSE
that was discussed in the previous chapter is presented. The chapter starts with a
presentation of the foundation of this thesis as an off-shoot of an on-going research. It
continues with a presentation of some standards and technologies that emerged from
the needs of related domains and complexities as that faced in ASIC development.
The chapter concludes with a mention of evolution of possible solutions.

Management of requirements has been, and continues to be, a topic of discussion
across all domains of systems development. The central focus can be expressed as
a translation into “verification and validation”. Verification asks: “are we building
the system right?”, while validation reasons: “are we building the right system?”
[56:37]. Scholars continue to propose, and organisations continuously adapt their
development processes to ensure as minimal a deviation from the intended product as
much as possible. However, even the conceived products sometimes have deviations
that are not covered by tests.

SE disciplines have grappled with the challenges posed by requirements handling.
Processes, systems and technologies have emerged with a view to tackling these
challenges. Some of the technologies relevant to the solution that is conceived for
this are reviewed. On this premise, the abstraction of ASIC SE as a development
workflow to evolve into a MBSE is discussed below.

3.1 Origin of this thesis

As mentioned in Section 1.1, NLs make up the bulk of requirements documentation.
The customer requirements for ASICs are documented in NLs, and so are most of the
FSs. Few of the FS parts rely on graphics. One part of enhancing the development
workflow of ASIC is by MBSE, using the application of models to the workflow (see
Section 2.3).

The foundation for this thesis rests on a currently on-going doctoral research that
seeks an early formalisation of FS of ASIC SoCs. The research focuses on two main
points, viz: 1) using models for the specification of SoC; 2) a model-driven approach
to the generation of SoC. It focuses on representing requirements as models, rather
than texts, because text-based requirements require the use of NLs. Figure 3.120

20This diagram is adapted from the contents of a personal email

31

3. State of the art

depicts the scope of the doctoral research work.

Figure 3.1: Workflow for a model-based ASIC development [57]

As shown in Figure 3.1, the “Architecture-” and “Behaviour Descriptions” are cap-
tured in the “Functional Specification” as model artifacts. These descriptions are
modelable parts derived from the “User Specifications”. Figure 3.1 also shows that
the properties defined for the “Registers” and the “Signal Processing” are also parts
of the FS, equally derived from the CR. They are also models, but based on sys-
tems and tools other than SysML. As already mentioned, not all systems can be
effectively described using SysML (see Section 2.3.3).

“Software”, “VP Hw Architecture” and “Behaviour” are then generated from the
architecture, behaviour and register descriptions, as well as the signal processing
models. The “Connectivity Check” of Figure 3.1 is used to test whether the internal
connections defined amongst the different parts are fulfilled by the models and in the
generated parts. These are typically generated as verification artifacts to assert that
each of the generated components fulfil the connections they are intended to make
to others. They are used to ensure that the designed relationships are maintained.

This thesis is conceived against the backdrop of the research work described above.
Its scope is to prescribe a set of methods that will ensure verifiable traceability of
SysML model-based artifacts to their text-based requirements. It is designed as an
interface between model- and text-based documentation of the FS of ASIC SoCs as a
precursor to combining both domains of documentation. That is, while in principle,
specifications documented as models should not be repeated as texts, the focus at

32

3. State of the art

this point is to establish a relationship between models and texts into “Requirements
Documentation” as shown in Figure 3.1.

3.2 Reliance on natural languages

The ambiguity associated with NLs as an instrument and medium for requirements
communication is one of the major challenges encountered in RE. Many different
approaches to managing these challenges have been proposed in different domains.
NLs are contextual, and without its context, a requirement is difficult to get right
in its implementation. This has been considered and evaluated in research works
like that of Karlsson et al [45:594] and Liebel et al [5], where direct interviews with
the diverse group involved in a developmental project reveal gaps in communica-
tion. The difficulty of developing the user requirements into realisable functional
requirements that can be translated to products was also reviewed. This results in
challenges in developmental processes, due to the different contexts and roles each
person in a diverse team has with the handling of the requirements. This means,
different persons in a developmental process considers the requirements differently,
and at a different abstraction level. The misunderstanding that characterises the
transfer of requirements is illustrated in Figure 3.2 below.

Figure 3.2 is a ten-image storyboard that depicts the miscommunication in the
development of a “swing” as a software project. The first image captures the swing
as described by the customer, while the second image captures the project leader’s
understanding of it. While both the customer and project leader understand the
concept of a swing, their perspectives of this particular one quite differ. Those are
also different from the perspective of the analyst, who analysed the requirements and
allocated them to the programmers for development. The programmers developed
a “flawed” system, and the business consultant describe it to other potential clients
as the fifth image captured in the series.

The picture of the swing painted by the consultant is unlike what is in development.
Altough based on the same principles, they all have disimilar perspectives. Then,
due to inadequate tooling, the project lacks the proper documentation. The billing
and the support received for the project were disproportionate to what the project
needed, however. The tenth image of Figure 3.2 shows the swing the customer ac-
tually had in mind. A series of misrepresentations of the customer’s needs produced
the fourth image. The customer though, could have presented a picture, the tenth
image, which might have helped align the perspectives of the other stakeholders to
his view of the swing. Following the requirements from the first image of Figure 3.2
to the last reveals a dispersion of sort, depending on the stakeholder’s views of the
system.

From Section 2.3, it is observed that NLs play major roles in a RE process. Managing
these roles to enable efficient SE is consequently important in development projects.

33

3. State of the art

Figure 3.2: Classic requirement miscommunication example in system development [58]

On their part, Mich et al [2] evaluated the use of NL-processing (NLP) tools in RE.
The focus was on using a computer-aided software engineering (CASE) system as a
NLP tool to aid software developers and engineers in processing requirements from
the early phases of development, namely requirement elicitation. Their approach
considers that the use of NLP tools produces three types of data: 1) syntactically,
semantically and/or pragmatically analysed data, 2) data in text formats, in either
a natural or artificial language, and 3) summaries or templates of the input data in
a structure different from what was given to the system.

3.3 Document-based systems engineering

Closely related to, and an integral part of, the problems inherent in NLs are the
difficulties of managing systems development activities that are dependent on the
physical transfer of documents throughout the lifetime of the project. This is known
as the traditional approach to SE and is referred to as the practice of DBSE.

The requirements and model items that are produced in a SE developmental project
are called artifacts. These artifacts are used to convey and document information

34

3. State of the art

related to the project as described under RE process in Section 2.2. Generally, arti-
facts like “requirements traceability and verfication matrices (RTVMs), architecture
description documents (ADD)”, etc. [53:3] are generated during the life time of a
project. When the project is based on DBSE, these artifacts are developed manually.
Projects that are based on this approach generally rely heavily on spreadsheets, word
processors, presentation tools, cardboard sheets, etc. These documents are written
by different people and teams.

In theory, any changes to any item in any of the documents must be followed by a
notification to each member or team affected. The notified stakeholder has to effect
the communicated changes where applicable. In practice, however, it is often not
realisable. Consider a “name change” to an item in the trail of documents shown in
Figure 3.3 as an example. After elicitation as described in Section 2.2.1, a name of
an artifact is changed in the user requirement specification. This changed name has
to be traced to every part of each of the documents it appears in, and the changes
effected, each time there is a name change.

Figure 3.3: Requirements documentation name mismatch

Figure 3.4 is a V-Model. The left-hand-side (LHS) represents the design phase,
while the right-hand-side (RHS) represents the integration and testing phase of a
project development. The closer a change of requirement is to the upper part of the
design phase of Figure 3.4, the lesser the cost incurred on the project development
[59:8] [50:page 2.6 of 10]. Consequently, the closer to the topmost part of the inte-
gration and testing phase a recall of requirements is, the more expensive the project
development. Test and report documents are manually produced and transferred for
each stage of the project. The purple arrows in Figure 3.4(a) indicate the manual
procedures to produce the RTVMs and ADD.

Artifacts needed in the integration and testing phases (RHS of Figure 3.4) are pro-
duced at their corresponding design phases (LHS of Figure 3.4). In ideal cases, this
manual transfer and usage of the produced artifact is expectedly sufficient. If the
test results are unsatisfactory, requirements are traced to the corresponding phase

35

3. State of the art

on the LHS and are reviewed, as represented by the green arrows in Figure 3.4(a).
However, due to cycles of modifications that often occur in development as already
illustrated with Figure 3.3, there are often inconsistencies. Due to these inconsis-
tencies associated with manually editing and modifying the requirements, tracing
of the requirements to their sources of deviation causes the trace to be scattered
all over the entire LHS of Figure 3.4(b) as represented by the red, blue and black
arrows.

(a) Ideal case

(b) Obtainable case

Figure 3.4: Verification and validation with DBSE

Keeping the names (and other relevant attributes and properties) of artifacts con-
sistent is, therefore, impracticable in the practice of DBSE. The desired consistency

36

3. State of the art

of requirements cannot be met in a production environment using this approach to
SE. This is especially the case for projects with a lifetime of ten to fifteen years,
as is the case of ASIC development. The DBSE approach to SE is cumbersome,
expensive, error-prone and inefficient [53:3].

3.4 Model-based systems engineering

As already discussed, the use of NLs is problematic, since it is too often open to
interpretation. Furthermore, DBSE is expensive and inefficient, as deduced from
Section 3.3 above. To reduce the problems that characterise NLs and DBSE or
eliminate them where possible, MBSE was conceived. MBSE seeks the evolution
of a system of best practices that systems engineers can adopt for a more efficient
analysis and management of risks involved in development.

To understand the concept of MBSE as a SE approach, a proper definition is re-
viewed. MBSE is defined in [60] as an established framework for the conceptualisa-
tion, design, development and manufacturing processes. It is focused on applications
and expression of precise architecture frameworks, design guidelines and models for
the activities towards the realisation of an engineered product. It also continues
after the product is realised, because it is also concerned with the maintenance of
the product, and throughout the product’s entire System Development Life Cycle
(SDLC). The INCOSE defines MBSE as

“the formalized application of modeling to support system requirements,
design, analysis, verification and validation activities beginning in the
conceptual design phase and continuing throughout development and later
life cycle phases. MBSE is part of a long-term trend toward model-centric
approaches adopted by other engineering disciplines, including mechan-
ical, electrical and software. In particular, MBSE is expected to replace
the document-centric approach that has been practiced by systems en-
gineers in the past and to influence the future practice of systems engi-
neering by being fully integrated into the definition of systems engineering
processes”. [61]

A model could be described as a representation of the concept, environment, phe-
nomenon and structure of a system as an abstraction of its reality. The represen-
tation could be graphical, mathematical or physical, with respect to the system’s
environment. It is called a model when just enough of the system components nec-
essary to represent it in parts or whole, in a functional state, is used to describe
the system [59:3] [62]. Modelling of systems as a composite representation at dif-
ferent levels of abstraction help to separate the systems being built into their areas
and domains of concern21. Both the requirements the models (or the specific part
of a model) that fulfils them can be represented. The abstractions in models help

21“Areas and domains of concern” refers to “separation of concern” described in Section 3.5

37

3. State of the art

to view a system as a combination of components, processes, tools, environments,
and other variables required to realise the system. It also shows the interactions
and communication between the different abstractions of the system. This helps to
promote the integration of systems and processes, including the enabling systems
and communication mechanisms that fulfil the systems’ requirements.

MBSE, therefore, implies the use of models in the design and development of sys-
tems where had hitherto been based on the document approach highlighted above
in Section 3.3. “A picture”, as the saying goes, “is worth (more than) a thousand
words”. One of the ways MBSE tries to eliminate the ambiguity in development is
to define diagrammatic artifacts that convey meanings to systems engineers univer-
sally. It could be for a specific system domain or across multiple domains. These
diagrammatic artifacts are understood in the same contexts by the systems engi-
neers.

In an attempt to derive a fitting definition for MBSE, Barnhart [63] observed by
deduction, that there are two parts to defining what MBSE is: the first being
that, it is a process whereby visual representations for a system being built are
generally formalised; and the second being that these visual representations also
provide a means to capture specific important “information about the systems” to
enable a successful realisation of such systems. This means that, with the help
of visual and contextual diagrammatic representations and the captured system-
specific information in its environments, the system can be uniformly and universally
described.

There are different levels or views of a system. These levels are contextually re-
garded as system abstractions. A system may be composed of sub-components,
other systems or subsystems. Looking at the whole system is viewing the system
at one abstraction level. Viewing the system as a combination of two or more sys-
tems is another abstraction level. When the system is considered as composed of
components or units, those are further abstraction levels.

The formalisation of models simplifies the concepts of the system structurally, and
its relationship - mathematical or physical - with its surroundings. It abstracts the
system in such a way that the behaviour, meaning and realisation of the system is
clear to the analyst and the developer, even before a first prototype of the system
is produced. Using MBSE, the interactions of the stakeholders and at what stage
of the developmental process are also captured. In a nutshell, the complexity of a
system - from its conception to realisation and down to its retirement, including the
activities, roles and individuals or teams needed can be represented as formalised
models. The form of communication between the collaborators stakeholders and the
actors can also be represented in formal models. This concept of abstraction has
precipitated a system of separation of concerns which are discussed below.

38

3. State of the art

3.5 Application lifecycle management

Managing a development project that involves several departments, people with
different roles, and with upwards of a thousand requirements - as is the case with
ASIC development - is challenging. It potentially invloves managing different RE
processes. To better manage such developmental processes throughout a products
entire life time, a process known as Application Lifecycle22 Management (ALM)
evolved. This management starts from the products conception phase until retire-
ment. ALM is software engineering domain’s adaptation of project management in
contemporary developmental process known as Production Lifecycle Management
(PLM). It is defined as

“[...] the overall business process that governs a product or service from
its inception to the end of its life in order to achieve the best possible
value for the business of the enterprise and its customers and partners”.
[64]

This incorporates all the measures and activities defined in Section 2.2. On their
part, Tüzün et al [12] considers it to be a “recent paradigm”, with the same pur-
pose as what was defined for SE by the INCOSE (see Sections 2.3 & 3.4), but in
the area of software development. It was considered as the integration of governing
procedures for software systems’ development. Now, ALM considers development of
a system as comprising of both software, hardware and other non-functional parts,
like cost of development and planning. There is also the Software Development Life-
cycle (SDLC), which is another nomenclature that is used specifically for software
development activities. SDLC, like the other developmental processes, considers
phases and steps of development, including planning, designing and building of the
product. The central purpose of ALM, PLM and SDLC alike is to reduce cost of
production, while improving the quality of products through the use of standard
and repeatable mesaures.

Scholars have debated whether ALM is a methodology and technological framework
[65], a paradigm [12], a system [13:3] or a process [64]23. Clearly, ALM helps break
a system development process into tangible separation of concerns. A “separation
of concern” could be described as, making a system visibly appear as distinct units
that work together to achieve a common goal. It also highlights whose responsibility
it is to provide the individual units of the system. The role of providing the units
might be the responsibility of a distinct person or actor. It also helps to integrate
these separate “concerns” into a functional and practicable development chain. This
also means, a new or substitute entity can easily take over a role that was previously
assigned to another entity.

22It is written as Life-cycle by some
23This work considers ALM to be a methodology, as well as a technology. The clarity is inferred

in its contextual use

39

3. State of the art

3.6 Change and configuration management (CCM)

As already mentioned in Section 2.2.1, requirements are susceptible to change.
Changes without preparedness hinders a development process. These changes could
jeopardise an entire developmental process, if not properly managed or planned for
in advance before they occur [53:85]. As changes can occur at a moment’s notice,
it is important to have planned for alternatives. Planning for eventualities requires
the use of adequate tools for documentation of activities and schedules during the
course of development. Change and Configuration Management (CCM) systems are
ALM-based tools used to plan and manage changes in a project. CCM in software
development comprises of two parts of a developmental process that are often consid-
ered together. In the context of this work, however, the two are, first and foremost,
considered distinct from each other, as “Change Management” and “Configuration
Management”.

3.6.1 Change management

Changing requirements for a system could, sometimes, mean a re-work of an en-
tire process. Due to the iterative nature of requirements processing discussed in
Section 2.2, a system development that seemed feasible might eventually be discon-
tinued, if certain stakeholders reject a change in requirement. Other requirements
could also change; personnel changes do occur in a development process. In the
event of personnel changes, prior discussions had in the development project are
not automatically transferred to the replacement personnel. Trainings help develop
people’s knowledge of a project domain. Training sessions that were had and the
resultant know-how do not get transferred automatically to the new persons, when
changes to personnel happen. These personnel changes also occur in manners that
replacements are not readily available. When such changes occur, contexts of re-
quirements might go missing, because they stayed with the former persons.

Requirements are also not just products’ requirements. To ensure a product meets
the requirements set out at the start of the system design phase, the system is tested
and validated against the agreed requirements. There are testing criteria to observe.
These could refer to other tools and equipments that must be available for the tests
to be carried out. They may also be related to licences and licencing. They could also
refer to other entities that are necessary for development, verification and validation
activities to be performed. According to [66], the Project Management Body of
Knowledge (PMBOK) designates change management as those changes related to
baselines, plans, as well as processes of a project. This category deals with changes
that affect the product indirectly. As an illustration, to fully understand the concept,
if personnel changes are made or to be made, requests are placed for such changes to
be implemented. It is, therefore, important to note all these changes; who requested
for them; why they are requested for; and by whom they are implemented. In other
words, to modify the process, plans, or baselines, a record has to be kept in the form

40

3. State of the art

of activity logs.

3.6.2 Configuration management

Traditionally, in Sw development environments, change management was considered
as the defined procedures of making changes to codes. This has been replace by
Configuration Management, which is now used to refer to the actual changes in
plans and codes that have direct impact on the products.

Sometimes, the changes required in the project area are operational changes. Newer
methodologies have described a process called “Development and Operations” (De-
vOps) that capture a lot of these changes. In DevOps, continuous integration (CI),
continuous testing (CT) and continuous deployment (CD)24 necessitates the delivery
of minor developments in parts of a production system incrementally. Oftentimes,
because multiple people work on different parts of the system concurrently, or at
different times, it is necessary to integrate new developments into the system in
bits. The system is tested under controlled environment to ensure its stability with
the updates added, before the system is released as a newer version (stable release).
This often requires the use of a central server as a code repository. Typical examples
of such systems are the use of Git and GitHub as code repositories.

In the case of changes to requirements in ASIC development, the modifications
directly impact the ASIC. This modification of the requirement is actually to the
requirement management system, and not directly on the ASIC. This means an
overlapping of management domains. As mentioned earlier, tools with the capability
to moinitor, create and log change requests and activities, and report on these
activities to all concerned shareholder is increasingly desired.

3.6.3 Source control management and version control

CCM is really a feature of Source Control Management (SCM)25. SCM is a system of
control and management of changes to a system that is in development. It is mostly
applied in DevOps. The source of updates to a system, especially in a distributed
team, is monitored. As mentioned in Section 3.6.2, the updates to the system is
first integrated into the system in a test environment, and checked for errors, before
releasing the integrated system as a newer version.

Repositories (e.g. Git) are used to maintain system codes to which several people
could have access, and deliver their codes to, in order to add new features to the
system, after a set of functional parts of system is completed. These codes are then

24Continuous Delivery is another variation of the use of CD in DevOps parlance.
25SCM has evolved from “Software Configuration Management”, where a purely software system is

being built, to include entire system of systems. Some also refer SCM as Source Configuration
Management.

41

3. State of the art

integrated into the system, and tested to ensure a successful integration. If the
integration fails during the testing phase, the system is reversed to a last known
working configuration (version). For this to be implemented, the process has to be
versionable. Being versionable means the SCM system must have a mechanism for
setting baselines of the system. Versioning a system could be referred to as reaching
a milestone in the system or project development, and marking it as a benchmark
on which further development is based. This is known as “Version Control” (VC).
The method of release of major and minor versions of a product is an example of VC
implementation. For instance, a product might have major release versions of 1.0
and 2.0, and versions 1.x and 2.x as minor releases. In the same way, a model can be
baselined and versioned as benchmarks in a model-based development environment.

3.7 Quality management (QM)

While CCM is used to request and make changes to tasks and requirements, a
separate ALM-based tool is used to plan and execute tests on the implemented codes.
These plans are to be carried out at different stages of the development according
to the process model in practice, e.g. V-Model (as discussed in Section 3.3). Tools
that are used for such activities are called Quality Management (QM) systems. QM
systems provide the platform on which test plans are designed, created and managed.
Tools in this category are often also versionable. Running of tests from QM tool is
done with the help of tests environments provided by the respective QM tools. These
environments are planned, generated and managed depending on the use case. With
capabilities delivered through a combination of CCM and the QM systems, software
product are often delivered faster. The visibility of the status of the product with
respect to its delivery of service can be seen and evaluated in real-time. It also aids
teams and cross-teams in collaboration, because collaborators are informed of the
progress of the development work of the team. In essence, using CCM, deliverables
of sytems are modified and in real-time, those changes are implemented and tested
using the QM. This helps to determine the suitability and compatibility of the newly
developed part of the system with the whole of the system in real time.

3.8 Open services for lifecycle collaboration

Formerly, it was difficult to integrate sets of tools as a tool-chain in a software pro-
duction environment, especially when the tools are from different vendors. To use a
platform with tools from different vendors would require a vendor-based tool-chain
[67] [68]. In other words, using tools provided by different vendors for collaboration
was impossible. This incompatibility of vendor-specific systems in a PLM sample
space is being replaced by a much more robust development space with the intro-
duction of the Open Services for Lifecycle Collaboration (OSLC) standards.

42

3. State of the art

The OSLC defines Resource Description Framework (RDF)-based specifications for
the use of Representational State Transfer (REST) Application Program(ming) In-
terface (API) in designing and developing of software systems and tools [69:155] [68].
This specification uses the “Create, Read, Update and Delete” (CRUD) operation
format to ensure that a client of a service with the right authorisation can CRUD
resources as needed. This will depend on the nature of the resource and the client
or server.

The OSLC standard also defines the use of HyperText Markup Language (HTML)-
based standards, to enable the integration of tools from different vendors in a pro-
duction environment, using “linked data” methods. The relationship between the
sender and receiver is on client-server basis. The server specifies what “shapes” of
requests it accepts, and the shapes of data it sends back. Any request to it must
contain those shapes to receive definite responses for each request data. A client
that wants information from the server will have to present its web-based requests
in the shapes specified by the server [69:155].

Both standards enable OSLC-compliant tool-integration. The use of standardised
REST API is beneficial to tools vendors, tool buyers, and tool users alike. Figure 3.5
depicts OSLC as helping the integration of heterogeneous systems. In Figure 3.5(a),
four different servers have to be provided to service systems that are based on four
different data types or protocols. That was before OSLC. With the introduction
of OSLC, services are much more independent of the server and client type. Fig-
ure 3.5(b) shows a client- and server-neutral system, with a common standard that
enables communication and information sharing amongst them.

(a) Without OSLC (b) With OSLC

Figure 3.5: Exhibition of the use of OSLC in a server-client environment

APIs are the interfaces between different parts of a computer program. APIs pro-
vide just the sufficient layout or structure information of a program that a developer
needs to implement a particular sequence of operations, depending on the domain.

43

3. State of the art

The standard ways of expressing APIs are “as a set of operations”, definitions of
associated data, and as “semantics of the operations on some underlying system”
[70]. They are used to request and deliver information from source to destination
according to specific formats or standards (specifications). APIs can be for a web ap-
plication or web client (web API) - which usually means hypertext transfer protocol
(HTTP), or for many other applications.

According to Emery [70], to be useful, APIs have to be expressed in, and bound
to, the context of an executable computer program. To get an executable program
requires the use of a programming language. It further states that, access to APIs
are provided with the following two defined terms that characterise APIs solutions
across domains:

Interface: This refers to the abstraction that characterises the requirements for the
behaviour of the interface within which the API is contextualised.

Binding: This refers to the context of the programming language for which the API
is to be realised, leading to two related problems: one of which relates to the
mapping of features and capabilities of the specific language interfaces, while
the other deals with the specification of the bindings of the specific language
as a standard [70].

REST API is a style of architecture defined for “distributed hypermedia systems”
[71] with the following six guiding contraints as described by Fielding [72] in his
doctoral dissertation:

Client-server reference: a server and a client are separate entities that can evolve
independently of each other. That is to say that, a server and the database
contained there-in can be changed or modified, but would not impact the
nature of the information that it sends to a client. Likewise can a client be
changed or modified, and not change the nature of the information it requests
from the server or that it communicates to other clients that share the resource.
Separating the system in this manner ensures a client-server system to be
scaled up without the need to adjust other systems or products within the
system.

Stateless behaviour: following the server-client relationship already established, a
call to and from a server (state) should be independent of a previous or future
call (past or future state) of the client or server. Rather, each call to and
from the server be treated as specific to the particular instance of the call that
it satisfies. Being that calls are inherently made from clients to servers (i.e.,
servers do not initiate calls to clients, rather a system making a call to another
is of that instance, a client), the state is stored at the client, and not at the
server. In other words, the response a client receives from a server at any
instant is independent of any previous or future calls from the client (or any
other client) in a system, but of the particular instant it satisfies. The server
(and hence, the communication system) is therefore, stateless.

44

3. State of the art

Cacheable resources and information: despite the statelessness of REST API
calls as described above, servers can inform clients in their responses, whether
a particular response data is cacheable, or not. As established, servers do not
cache the calls made by clients, but clients can cache the information they
receive from servers. A server in its response to a client request, though, has
to inform the client whether the information conatained in a response would
still be valid in the future; and if so, for how long. This information is then
considered by the client, whether to save it, or not, for future reference, instead
of making calls back to the server for the same information within the window
the same information received previously still holds valid.

Uniform interface across platforms: to ensure that systems can be modified or
changed without the need to change other systems that communicate with
them in a platform, a common set of interface is required. This interface is
independent of the underlying structure of the communicating systems. A
common format for the communication of systems is standardised, so that
each system is able to CRUD resources according to its alloted access or au-
thorisation, to enable the communication across entire the ecosystem of the
whole communicaton platform. There are three visual formats of a typical
REST API resource: Javascript Object Notation (JSON), XML, and regular
text file formats.

Layered hierarchical system structure: defined as a hierarchically structured sys-
tem in a layered communication, whereby each layer has its unique and spe-
cific function in enabling communication and data sharing, ensuring that each
layer communicates and shares data with the layer below and above it, without
knowledge and irrespective of what structure or format of data communication
is applicable in those layers above or below.

Code on demand (optional) feature: REST’s clients’ functionality is extendable
when the codes are downloaded and executed as applets or scripts. By reducing
the number of features that have to be pre-implemented before integrating
into the system, the management of the clients is simplified [72:84]. Using
“Code on Demand” capabilities, the applets or codes that is to be used for
an application can be transmitted through the APIs . It enables the creation
of what is referred to as “a smart application” which does not rely only on
its own code structure to perform the required operations of the system [73].
It is an optional feature though, because of its drawback namely: visibility
reduction.

The use of REST API in the OSLC specification guidelines guarantees the inte-
gration of several tools, building a tool-chain comprising of different vendor-specific
systems and tools, as well as the ability to share data consumable by different sys-
tems. As described by “OASIS Open Projects”26, the benefits of OSLC include:

26Since May 2019, OSLC is an OASIS Open Project [68]

45

3. State of the art

Vendor neutrality: OSLC standards prescribes vendor neutral implementation.
One application can be used for the generation of some stated data, and can be
replaced with a different application that performs he same function, without
the need to change any other systems dependent on the data being generated.

Re-usability of data: The data generated by a standard OSLC-conformant appli-
cation are re-usable by other applications that are also compliant to the OSLC
standards. Data generated by the one is consumable by the other application.
In Figure 3.6, there are four applications used to demonstrate this re-usability.
The shapes in each tool represents as they are specified by OSLC. The specific
data needed by “Vendor A” might be available in the tool from “Vendor B”.
Vendor A requests for the data, but uses it in a different format.

Easy integration of applications: With OSLC, it is easier to integrate one’s own
existing or new applications, or to modify the data in the context of the new
application. It is also possible to integrate data from different vendors or
applications into an existing or new application, irrespective of the originating
system or database. Due to the re-usability of data described above, it is easier
to use two different applications for different purposes. The CCM tool may be
developed by the one vendor, while the QM system is developed by another.
If both tools are OSLC-compliant, data (represeneted in Figure 3.6) as shapes
can be easily reused. This helps to create an integrated vendor-neutral tool-
chain.

Figure 3.6: Integration of systems using OSLC

46

3. State of the art

Linking data together: Due to its vendor-neutrality, OSLC standardised data is
obtainable in a network of systems with diverse OSLC conformant applica-
tions, and the data generated by this network of systems is consumable by the
respective applications.

Visualisation and analyses of data: OSLC standards make it easy to develop ap-
plications and methods to help visualise and analyse data in forms like graphs,
tables, and trees. When tools from different vendors are to be integrated, the
information contained in the data generated and transferred by each tool has
to be visible to the integrator. Assuming tool C is to be integrated with the
other tools, as shown in Figure 3.6. The data structure and types delivered
from tool C has to be transparent, so that tools A, B and D can be configured
or programmed to use the data produced by the tool C, if they depend on any
such data.

Ease and convenience of making decisions: With these benefits stated above
(and much more) delivered through the use of OSLC specifications and
standards-conformant applications, it is easier for individuals and organisa-
tions to make business decisions based on the needs of their projects and
businesses. Organisations can make decisions concerning what tools to use for
change, configuration, requirements and quality managements. Other automa-
tion and monitoring tools can also be added to the tool-chain (as shown in
Figure 3.6), according to business and project needs, if all are OSLC-compliant.

To make a successful REST call, a REST client provides information that the server
has described as necessary for a service to be delivered to clients by the server. This
means that, for any call made to the REST server, the call must be in a format
defined, provided and serviced by the REST server, if communication between the
two must be completed.

3.9 Traceability methodologies and types

UML and SysML are state of the art modelling language specifications and standards
that promote MBSE. However, they do not proffer any methodologies on how to use
them. They are neither systems nor tools of implementation. Systems and tools
that are compliant to these standards can be developed. There are also other such
languages and tools that are being used for the practice of MBSE. The Embedded
electronic Architecture STudy - Archictecture Description Language (EAST-ADL),
for instance, is one of such languages used in the development of embedded elec-
tronics for automobiles. The use of these standards-based tools have to be deployed
with a set of principles of use that is observed by collaborators for a development
project, in order to achieve specific targets.

One of such principles is to link the requirements to the models that fulfils them.
The tools of implementation usually provides such mechanism. The stakeholders

47

3. State of the art

have to define how they are used, though. The work by Albinet et al [8] describes
a methodology for tracing of requirements to models in embedded systems, using a
combination of EAST-ADL, MARTE27 and SysML. The tracebility described relies
on SysML for its capability for modelling of requirements. Traceability of require-
ments to their logical, functional and contextual roots, stems and branches is one
of the focal points of MBSE. It, however, does not consider the abstraction level at
which requirements traceability is to be integrated into models in the area of ASIC
development.

While traceability of requirements is one the focal points of MBSE in general, and RE
in particular, requirements reuse is another very important tenet of the model based
approach. Re-working or re-specifying a set of requirements for similar systems
belonging to two or more different series of ASIC is time wasting and unnecessary.
Furthermore, using existing model artifacts for the development of a new set of
system components is encouraged in the practice of MBSE, only making adjustments
where necessary. A SE environment that has evolved into a “data-centric” practice,
opposite to a “document-centric” one, is an ideal MBSE [59:7].

The INCOSE Object-Oriented Systems Engineering Method (OOSEM) is a tool and
vendor-neutral methodology defined to support the practice of MBSE. Although it
is independent of tools and vendors in its approach, what is publicly available about
this methodology is its approach to “Requirements traceability”. Six steps are pro-
posed in this approach. They are: 1) analysis of the stakeholder needs using use
cases and enterprise models, 2) definition of the system’s requirements by using use
cases, as well as elaboration of the context of the requirements and use cases, 3)
defining a logical architecture for the system, 4) synthesising the physical archi-
tectures of the systems from the logical context, which include the data, hardware
and software architectures, 5) evaluating and optimising alternative models and re-
quirements as replacement use cases, 6) verification and validation of the systems
according to the defined and analysed stakeholder requirements.

An IT managers’ opinion poll shows that thirteen percent (13%) of project failures is
caused by incomplete requirements [74:1]. This was adjudged as the main reason for
project failures. Incomplete requirements could be at any stage of the development
phase. When a context is missing, and it is supplied and not communicated back,
it goes into the next phase as an incomplete “point” in the development, whether
it is discovered or not. The same poll opines that, 13% of projects succeed, because
of clearly stated requirements. So, on the one hand, we have failure of significant
magnitude, if it were to happen in semiconductor markets of the automotive in-
dustry, as the volume of production was projected at forty-six billion dollars as of
2019 [75:3]. And on the other hand, we have success rate that is about a 180-degree

27Modelling and Analysis of Real Time Embedded systems (MARTE) is also standardised by the
OMG®.

48

3. State of the art

turnaround of what a failure could be. These are typically software services, sys-
tems and/or “value-added” projects. However, considering that the use of software
in embedded systems domain, particularly in the functionalities of ECUs in cars
are expected to be dominated by software implementation (about 80%) [32:23], the
appropriate handling of requirements with respect the level of abstraction required
at each level, to keep its implementation in accordance with the context for which
the requirement is desired and fulfilled in tact, increasingly become an area of focus
to software teams.

Recently, methodologies and processes like Agile and Scrum that prescribe ap-
proaches to requirements handling have been proposed and adopted by organisa-
tions. These proposals continue to evolve to better solve challenges that arise with
requirements and process complexities. In Section 1.1, NLs are said to be the most
predominant form of requirements specification. Other forms of documentation are
formal and structured anguage make up the other 21% of requirement documents
[2]. That is, 79% of the communicated requirements is at risk of misinterpretation.
This means that miscommunication during transfer of requirements is more likely.

Requirements traceability

Among other things, this work is intended to implement measures that promote
and ensure the traceability of requirements to their sources and destinations at all
times. But first, requirements traceability as a concept has to be understood. The
following source conceives that:

“Requirements traceability refers to the ability to describe and follow the
life of a requirement, in both a forwards and backwards direction” [76:1].

For a system to be useful as planned, the requirements for the use cases has to be
satisfied by the system after it is delivered. And as already discussed in Sections 3.3
and 3.6, requirements without proper management could lead to excessive cost of a
project.

Based on the definition above, gathered requirements should be linked to every part
of the system that it impacts. Every behaviour, function and structure of a system
is based on pre-defined requirements. Each pre-determined use case and function
should be verifiable by being traced to the requirement on which it is based. It is
pertinent to say that, however well structured and detailed a requirement is, it is
only as good as its traceability. A requirement, without the extensive relationship
it requires, will not be properly verified. Its relationship to other artifacts is vital
to its fulfilment and verification. The relationship of a requirement to a model is
either direct, when they are linked directly by a dependency, or inferred, i.e. linked
by an indirect dependency. This is illustrated with Figure 3.7.

49

3. State of the art

(a) Directly linked (b) Indirectly linked

Figure 3.7: Associating models to requirements artifacts

In Figure 3.7(a), the model element directly satisfies the requirement. That is, they
have a direct relationship. Requirements 2 and 3 are directly linked to “Requirement
1”, as seen in Figure 3.7(b). They both have a “derive” relationship to Requirement
1. This means, Requirement 1 is parent to both 2 and 3. However, only Requirement
2 has a model linked to it. It can be concluded, that Requirement 3 is yet to be
fulfilled in the setup of Figure 3.7. Every model artifact must be linked to at
least, one requirement, meaning it has to be in fulfilment of some requirement28.
On the other hand, every requirement must be directly or indirectly linked to a
model artifact. Meaning a requirement has to supply some information that is
to be fulfilled. Figure 3.7(b) above illustrates that, the model directly satisfies
Requirement 2, but also indirectly satisfies part of Requirement 1. The model has
no relationship to Requirement 3. The figure shows, therefore, that there is still a
missing link to Requirement 3, as it has no relationship to a model.

Generally, traceability of requirements is done with methodologies and tools that
provide visual relationships between requirement items, either to other requirements,
or to any other items that relate to the requirements. Methodologies are usually
vague in nature, unless applied to specific domains and use cases. The standard
methodology and theory is, the module requirements should satisfy the functional
requirements, and the system requirements be satisfied by the functional require-
ments, etc. The “Module tests” performed at the integration phase is used for the
verification of the module requirements, while the “Functional tests” is used to verify
the “Functional requirements”, etc. as shown in Figure 3.8.

The requirement “satisfaction” methodology is a constant feature that has to be
put in practice in the specific domain and at a specific abstraction level. In the

28This should not be confused with the premise of the research work described in Section 3.1.
With the exception of the description in Section 3.1, the purpose is described throughout this
work is to establish traceability of model artifacts to the requirement artifacts that are being
fulfilled

50

3. State of the art

Figure 3.8: Associating requirements to other related documents

context of this work, the module design and development needs to be adapted to this
methodology, within the definition of effective communication between the architect
and the module developer in ASIC production. Therefore, the actual linking of the
module parts to the requirements that they fulfil is desired to be traceable.

To fulfil this need, visual means of identifying the model artifacts in their relations
to the requirements, like relationship graphs, hyperlinks, matrices, tables and trees
are considered.

Some functional and non-functional parts of the specification can be modelled. Us-
ing the concepts and standards, and adapting some of the methodologies already
developed as described above, this research seeks to combine two best of two worlds:
providing a methodology for the development of ASIC by 1) using models for parts
of the specification, 2) using NLs for other requirements that cannot be specified as
models, and 3) combining both sets of specifications into a whole as documentation
for the ASIC SoC.

3.10 Summary

At the beginning of this chapter, the focus was on models and standardised languages
of modelling of systems. Soon after, NLs as a vital instrument of communication
in systems development was discussed. Same NL was subsequently x-rayed for
its special role in the inconsistencies propagated during development lifecycle of
systems. It was established that it is especially the case in development environments
that are heavily dependent on traditional document approach. Enabling technologies
and methodologies were also discussed as part of an emerging trend to better systems
development processes. Also depicted are some of the standards that are in practice.
This chapter also explicitly answers the question of what requirements traceability
actually is. Which further contextualises this work on its set aims.

51

4 Concepts

This chapter conceptualises the proposal for a methodology for ASIC development.
During the course of the literature review done for this research, some methods
that could provide useful contributions to traceability in ASIC development were
discovered. These methods were collated and are explored in order to adapt them
to the domain of ASIC systems development, and they are reviewed hereunder.

The challenge of tracing model artifacts to the requirements they fulfil is not new, as
deduced from the preceeding chapters. Various challenges experienced in different
domains, and the attempts at overcoming the challenges, have resulted in the evo-
lution of methodologies, standards and general advancements in the area systems
development. Although these challenges are not peculiar, some of the methodologies,
systems and tools are domain specific. A typical example is the software-oriented
nature of UML. Furthermore, it has birthed the development of SysML, which is
more for system-of-systems, including Hw-Sw systems.

SysML is still evolving, though, and some of the parts necessary for some systems’
abstraction levels are already available. Notwithstanding, not all systems are being
modelled with SysML. Nevertheless, the SysML profile is customisable. It allows
the development of a set of customised artifacts that can be used as representation
of some domain-specific components that serve as parts of a system.

Some systems and tools will be used for this work. They will be integrated into
a tool-chain. The methodologies that are expected would be dependent on the
individual systems used to realise the tool-chain. Therefore, this work explores the
standards and technologies that these systems and tools are built on. It is assumed
that the individual systems and tools to be used are compliant with the standards
and technologies, which have already been discussed in Chapters 2 and 3.

To develop methodologies for ASIC development, the knowledge gained from review-
ing those standards and technologies, and their applications to the area of systems
design and development is to be relied upon. Of particular interest are the methods
already profiled for embedded sytems and model-based developments in Chapter 3.
The know-how that will be transferred and applied to this work will combine some
of the reviewed methodologies and extend them to adapt a working solution to the
research objectives, based on the standards and technologies.

One of those standards is that of OSLC discussed in Section 3.8. It has been de-
scribed as ensuring that devices, services and systems are not bound to the vendors.

52

4. Concepts

Since OSLC declares that different products can be integrated into a single tool-
chain, depending on what types of services they consume, this work will test the
faithfulness of this declaration. Particularly, the assurance that tools belonging to
the same vendors can read and consume deliverables amongst themselves. In this
work, the provider, resource, resource shape and data integration defined for use in
the integration of systems will be tested.

The solution also considers the SysML standards of artifacts representation, on
which the models are based. It seeks out ways of identifying what the relationships
between the behaviour and structure of SysML components are. This will enable
definition of a mapping strategy that will be true for all mapping cases - whether
behavioural, structural or operatonal.

Section 1 introduced the automotive sector as comprising of multiple tiers. The
interaction and inter-dependence of the products of these different tiers was also
briefly discussed. Also mentioned is the need for the protection of intellectual prop-
erties. Furthermore, the concept of SCM and VC was discussed in Section 3.6.3.
Protecting of intellectual properties and the need for VC will be explored in this
work, as a method for security feature implementation. This will be based on access
control mechanisms that can be deployed as a means of controlling access to features
of the collaboration platform.

Tree structures have always been used to show associations between different entities,
whether in computer or contemporary sciences, or in engineering. The use of such
structures is usually accompanied by arrows to show the direction of the relationship.
They also show dependencies and hierarchies between connected elements of the
trees. This is often helpful to show roots, stems and branches of the entities. In
its approach at using basic understanding principles of life use as inputs into RE
process, the proposed methodology will apply this tree and association method.
While considering tree structures, attention is paid to the phenomenon of “many-
to-many” [77:183], which describes the potential of growth of requirements. Many-
to-many tracing could become cumbersome and unreadable.

Similarly, the use of lists, (vector) matrices and tables as traceability methods have
been known to provide a helpful guide towards the understanding of associations
between components and systems. These methods are solutions also applied in the
everyday life of an individual, as well as in sciences and engineering. The focus of
this work, in this regard, is on providing a helpful structure of these methods. This
is geared towards providing a best-case scenerio for their use in ASIC development.

This research asks questions about the relationships between requirements and mod-
els. However, the search for a solution leads to the discovery of more beneficial
systems and methods. The discovery provides a better relationships between de-
sign and implementation, emebedded in the collaborative ALM technology. The
full benefit of ALM and the efficiency it brings to developement across all platforms

53

4. Concepts

is explored and the advantage is highlighted. The use of ALM in this work leads
to the discovery that, names assigned to domains and the contents of the domains
are important in bringing the necessary efficieny and organisation to the documen-
tation and traceability in a production system. Traceability aside, the verification
and validation activities described for DBSE (Section 3.3) is reviewed in the context
of ALM. The efficiency that charatcerises the benefit of the use of ALM will be
evaluated. This comparison will be highlighted in the subsequent chapters of this
work.

The use of hyperlinks is also another valuable means of traceability. Furthermore,
on the one hand is, what the tools can already do. This speaks to how compliant
the systems and tools are with the relevant norms and standards they depend on.
And, on the other hand, what the systems and tools should do. Here, the question
is about, what is expected of the systems and tools of implementation. The test is
for how well they can do what they are expected to do. This expectation should be
in compliance with the relevant norms and standards they are built on. The focus
is on the ALM concepts implementations (Sections 3.5, 3.6 & 3.7) and the OSLC
standards (Section 3.8).

Lastly, this conceptual stage is a preview of the concepts stated here, as traceability
mechanisms in RE process for a model-based ASIC development. The subsequent
chapters will bring these concepts into a collective-whole as a proposal for an appli-
cable and verifiable means of stakeholder collaboration. This collaboration will use
the processes, systems and workflows that are already in place. The implemented
solution will then extend the traceability options based on the applicable standards
and technologies.

54

5 Implementation system

In this chapter, the discussion is narrowed down to tool-specific implementations of
the standards and technologies that were discussed in Chapter 3. The properties
of these tools that are relevant and applied to this research are also profiled. The
specific methods which were already introduced in Chapter 4 are x-rayed as specific
implementations of these systems and tools.

The idea behind ALM (PLM and SDLC also) was introduced in Chapter 3. It was
also mentioned that different scholars have referred to it as things like a process,
system, etc. The International Business Machines® (IBM®), on their part, has built
their own adaptation. This is called the IBM Rational solution for Collaborative
Lifecycle Management (CLM)29 [78]. CLM is a system that provides variations of
the systems discussed in Chapter 3 for use in managing the processes described in
Chapter 2.

The concepts of Chapter 4 were implemented using IBM® Rational® set of systems
and tools. The following is a discussion of these tools and their implementation as
a tool-chain.

5.1 IBM® Rational®

International Business Machines (IBM®) Rational® (IBM Rational) is described as
providing

“a rich set of capabilities delivered as part of a collaborative and inte-
grated range of products. Rational software is powered by Jazz30 tech-
nology and supported by proven best practice processes and an entire
ecosystem of IBM and partner capabilities” [79].

The Rational platform provides a framework for integrating applications for systems
and software development. It supports DevOps activities across multiple platforms
and Operating Systems (OS). The applications are accessible via desktop apps or
through web interfaces, depending on the type of application. Where collaboration
between diverse teams is required, it is important to provide a set of tools base that
can help the teams capture the different roles and tasks necessary for a successful

29The CLM version 6.0.6.1 is used in this work.
30Jazz refers to JazzTM Team Server (JTS; see Section 5.1.5)

55

5. Implementation system

collaboration. The IBM Rational platform provides applications and tools that
enables a wide range of collaboration for diverse teams. Some of the applications
within the Rational® platform, which are of interest in this work, are described
below.

5.1.1 DOORS® Next Generation

Dynamic Object Oriented Requirements System (DOORS®) - simply referred to as
DOORS31 - is a proprietary tool of IBM. It is a database repository for documenting
and managing requirements during a product’s entire lifecycle. DOORS is primarily
a desktop application management tool.

DOORS® Next Generation (DNG) is an improvement on DOORS. DNG is a web
browser-based system. Similar to DOORS, DNG is used for RM and documentation.
It also provides interaction mechanisms with artifacts located in other Rational tools.
As described by IBM, traceability links are provided to plans, designs and models
that help organise requirements into collections, modules and views for re-usability
[80]. DOORS and DNG provide what is known as “context views”, as shown in
Figure 5.1.

(a) DOORS

(b) DNG

Figure 5.1: Comparing the context views of DOORS and DNG

Figure 5.1 are snapshots of DOORS and DNG context views. Figures 5.1(a) and
5.1(b) show item labels “1.8.1 and 1.8.2” for DOORS and labels “2.1 and 2.2” for
DNG. These are subsets of items “1.8” and “2”32, respectively. Figure 5.1(a) also
show identification numbers (IDs) for DOORS as “Mod 24” and “Mod 26”, while
Figure 5.1(b) shows “445672” and “445673” as IDs for DNG.

31Unless otherwise stated, the version of DOORS referred to in this work is 9.6.1
32“1.8” and “2” are not visible in the Figure. Also, Figures 5.1(a) & 5.1(b) are the context views

of DOORS & DNG, respectively

56

5. Implementation system

DNG provide the following six broad groups of links to consider:

Group 1: Synonym: in this category, the requirements are traceable to other re-
quirement(s), but as the name suggests, it is a synonym of the requirement it
is linked to. It is possible to link in any direction.

Group 2: Embedded: here, the requirements are found within the context of other
requirements, hence the term “embedded”. They are not explicitly stated, but
are a part form of the requirements to which they are linked.

Group 3: Extracted: the requirements that are traceable in this manner are those
derived from the requirements they are linked to (in any direction).

Group 4: Linked: for this category, the requirements are traceable to other require-
ments that may or may not have been defined for them. They are, generally,
representative of the previous three groups mentioned above them.

Group 5: Parent/child: the requirements that fall within this category are those
that have been broken down into parts (children) to make the whole require-
ments, or have been grouped into a whole (parent).

Group 6: Architecture element: these are the requirements that can be traced to
model artifacts that fulfil them. Within the context of this work, these are
the requirements that are of primary interest. They are linked or traced to an
architecture element in the model that directly implements them.

5.1.2 Rhapsody® (RR)

IBM® Rational® Rhapsody®33 (RR) is a desktop-based tool for modelling of hard-
ware and software systems’ behaviours and parts. It is a collaborative design and
development tool that is used in the creation of model artifacts that are based
on specific modelling language standards. It supports UML and SysML (also a
combination of both), AUTOSAR, Motor Industry Software Reliability Association
guidelines for C and C++ languages (MISRA-C & MISRA-C++), etc. It allows the
creation of profiles for domain-specific languages. It is also used for the creation,
simulation and testing of “real-time or embedded systems and software” [81].

Relating to the context of this work, RR is used for modelling of ASIC requirements,
and the model artifacts that fulfil those requirements. A model artifact is traceable
to the specific requirement that it fulfils. Using RR as a desktop-based solution for
requirements modelling precludes any collaboration, as only the instance managing
the requirement (i.e. only the computer on which it is installed, and the model in
which it is included) can access it. This is antithetical to the whole idea of MBSE.

33Unless otherwise stated, the version of Rhapsody referred to in this work is 8.4

57

5. Implementation system

5.1.3 Team Concert® (RTC)

IBM® Rational® Team Concert® (RTC) is an implementation of SCM practice. It
uses the IBM’s CCM system for tracking changes and for the delivery of work items
to different tools in the IBM Rational platform. Works items are artifacts used
to describe and manage a set of activities in a development project. Work items
available in IBM’s CCM include, “Defect”, “Epic”, “Story”, “Task”, etc. It is used
for the exchange of information directly within the context of a work in progress.
It provides a mechanism for automatic notification of enhancements and requested
changes by teams and groups to members of the teams and groups. The notification
are designed as a chat-like sessions, and include links to the affected artifacts [82].
This helps in the tracking of information changes related to requirements, especially
when many people have to contribute towards a development project. During col-
laboration, it is important that the team members are informed of the most recent
project-related information available, even if it is not the most correct. It is also nec-
essary to be able to track the progress of items like tasks and defects. RTC provides
such mechanisms, in conjunction with other tools available within the Rational®

platform.

The RTC also has an extension called the “RTC Client”. It is a desktop-based in-
tegration platform provided for enabling the use of RTC-based resources and func-
tions for the local workstation on which it is installed. Although it is referred to as
a “client of RTC”, it is capable of standing alone as an extraction of the RTC, and
can provide RTC-based services.

5.1.4 Rhapsody® Model Manager (RMM)

The IBM Rational Rhapsody Model Manager (RMM) offers the linking of require-
ments artifacts to model artifacts. It provides a mechanism to link model artifacts
further with work items in CCM and QM, using the JazzTM Team Server and RTC
platforms. It is also a web-based application that offers collaboration, because of
its association with RTC. Thus, the models and other lifecycle product artifacts are
available to stakeholders through web-interface and SCM applications [83]. RMM
provides SCM feature, much like the CCM tool. The SCM feature in RMM is
actually built on the SCM feature of RTC [84].

RMM is an application administration system that enables models and model arti-
facts in RR to be visible over a web-based client. It provides “OSLC linking between
architecture elements” [85] and other elements in other Rational tools. Architec-
ture elements are items designed in RR. RMM is representative of the Architecture
Management (AM) in the Rational platform.

Two of the most important objects available in RMM are:

Component: A component in RMM represents the repository that collects model
artifacts into groups. The model in a RR project that is saved to RMM

58

5. Implementation system

will appear under a component. The same model can be saved to multiple
components, and will represent different versions of the model.

Stream: In RMM, a stream represents a repository in which a collection of com-
ponents are grouped. Streams can contain one or multiple components, but a
stream cannot contain two components of the same name.

Figure 5.2 is used to illustrate the relationship between streams and objects in RMM,
and to depict how their relationship contributes to collaboration.

(a) Sandbox 1

(b) Sandbox 1

(c) Sandbox 2

Figure 5.2: Illustration of components and streams

Figure 5.2 is a graphical illustration of the concept of components and streams.
Figure 5.2(a) shows “Component 2” as belonging to both of Streams 1 and 2. In
Figure 5.2(b), “Component 1” was added to Stream 2, and it was successful, but
in Figure 5.2(c), the addition of Component 1 to Stream 2 failed, because Stream 2
already has a component named “Component 1”.

5.1.5 JazzTM Team Server

“JazzTM Team Server (JTS) is a JavaTM-based web application that runs on an ap-
plication server [...]”34 [86]. It provides the framework on which the RM (DNG),

34Recall that ALM was discussed as a state of the art “technology” in Chapter 3. However, any
mention of ALM in this, and in subsequent chapters, unless otherwise stated, is a reference
to the Bosch implementation of the ALM technology. That means, from here onwards, any
mention of ALM server, if not footnoted and stated to the contrary, is a nomenclature of the
Bosch implementation of the ALM technology on which JTS runs.

59

5. Implementation system

CCM and QM tools of the Rational platform are implemented. All of the applica-
tions registered and configured under the same JTS instance can communicate and
interact with one another. It serves as a repository within which multiple project
areas can be maintained, so long as they are defined in the same Jazz area. The
vendor describes an “area” as a “[...] repository where information about one or
more software projects is stored” [87]. A project area is defined by the deliver-
ables expected from the area within the context of the “team structure, process and
schedule”.

“Jazz Team Server includes an extensible repository that provides a central location
for application-specific information. A single repository can contain multiple project
areas and their artifacts” [86]. To enable JTS, a relational database from amongst
the following has to be used:

1. Apache Derby (open source),
2. IBM Db2®,
3. Oracle®,
4. Microsoft® SQL Server.

5.2 Traceability in RR

Requirement diagram was developed to give systems’ engineers a view of the rela-
tionships between a requirement and other artifacts, including the relationship that
exists between requirements. For example, Figure 5.3 is the requirement diagram
for the “Report System Status” from Figure 2.6.

60

5. Implementation system

Figure 5.3: Sample view of a RR Requirement Diagram based

It shows the “satisfy” relationship between the UC “Report System Status” and the
four requirements. These requirements, with IDs “REQ15”, “REQ16”, “REQ17”
and “REQ19” respectively are to be fulfilled by the UC seen in the figure. As already
mentioned in Section 3.9, it means the UC must satisfy each of the four requirements.
This helps the teams that have to trace, verify and validate the systems to focus
the tracing, verification and validation activities on specific system targets. On a
small scale, this is very handy to use for traceability. But, when the requirements
are many, it is inefficient to use the requirement diagram for traceability.

Section 4 mentioned the concept of many-to-many. It alludes that, many-to-many
could potentially be unreadable. When the diagram is unreadable, it is in effect,
visually untraceable. This is captured by the requirement diagram in Figure 5.4.

61

5. Implementation system

Figure 5.4: Sample of unreadable requirement diagram

Figure 5.4 shows a requirement diagram with twenty-three requirements present.
The relationships is neither clearly visible nor readable. The diagram had to be
minimised to 25% of the normal screen size to enable the display window contain

62

5. Implementation system

the depicted image in Figure 5.4. Hence, where requirements of single system’s
components are as many as twenty, or more, as is the case in ASIC development,
the use of requirement diagram is not a sufficient traceability mechanism.

Requirement diagrams are supposed to help make the traceability of requirements
easier, more efficient and pragmatic. But the preceeding section shows how that aim
is not met where multiple requirements are used. A handbook for methodologies
based on Rational tools is the best guide. While a previous version of the book
- the Release 3.1.2 - considers the use of requirement diagrams as the traceability
mechanism, the current version - Release 4.1 - uses “Tables” instead [88].

5.2.1 Requirements tables

Tables are a more pragmatic mechanism available in RR for the tracing of require-
ments. With tables, a configuration can be chosen to set the table view as desired.
Several options are available for this setting.

Tables in RR provide “Context Patterns”. These are “a comma-separated list of
token” expressions, used in describing the paths of elements in a model [89]. Context
patterns become available when the “Properties” of the table layout is modified as
shown in Figure 5.5.

Figure 5.5: Comparison of context patterns in table layout

The right side of the figure (labelled B) contains an image of a table layout whose
properties tab has been filtered for context and modified by adding the context
pattern:

{Pkg}Package,{UC}UseCase

The above context pattern identifies packages (as “Pkg”) and use cases (as “UC”).
This sets Pkg and UC as tokens 1 and 2 respectively, to use as options in configuring
the structure of a table for Pkgs and UCs, respectively. In comparison, the left side
(labelled A) has not been modified. Context patterns are used in the definition of
table layout properties as:

Model:TableLayout:ContextPattern

63

5. Implementation system

To set a defined table view, a table layout is required. The “Table” determines the
actual table content and the scope of the available data in the RR browser, but the
“Table Layout” is used to define the view-structure the table would have, including
what type of elements and columns the table would have. Tables show the rows as
model elements, and the columns as information about them. They can also be used
such that, the first columns display available model artifacts, grouped or ungrouped,
and the succeeding columns provide other information about the artifacts in the first
column. Filters can also be set to display selected table contents in the cells.

5.2.2 Matrix views

Another valuable mechanism currently available for the processing and analysis of
requirements’ relationships with other artifacts is the “Matrix Views”. Like Tables,
matrices require the use of a “Matrix Layout” to define the structure and element
types the matrix view would be populated by. Furthermore, the views can be scoped
and set to consider the hierarchies of the displayed items. Matrix views can be
switched to alternate the columns and rows. That is, rows become columns, and
vice versa, which is a property not available to tables in RR.

Matrix views, however, can be very cumbersome and information contained in the
cells, although comprehensive, are not easily trackable. The reason they are difficult
to track is, like requirement diagrams, they can grow potentially out of scope of the
computer screen. Furthermore, unlike requirement diagrams, they cannot be filtered
from the views of the matrices. Worse still, the first column cannot be adjusted in
real-time to reduce their sizes, so it covers much of the display window available for
viewing the RR model artifacts contained in the matrix.

5.2.3 Annotations, relations and tags in RR

There are several model artifacts available in RR that help contextualise the require-
ments and model artifacts. Some of which have been reviewed thus far. Those are
the relationships between RR items and other rational tools. This group of model
artifacts includes, dependencies, derivations and satisfaction, all of which are related
to “architecture element” (described in Section 5.1.1).

A hyperlink to other model artifacts can be set from a model artifact in RR. For
example, a requirement diagram could be hyper-linked to a use case diagram, to pro-
vide the relationship context within the model. Although hyperlinks are very useful,
they do not provide a compact, concise and comprehensive view of the contexts and
uses for the designated model artifacts.

Annotations include “constraints, comments and controlled file”. Comments are
traditional means of adding contexts to the requirements. They are not actionable,
that is, they cannot be executed. However, they help clarify the context or usage

64

5. Implementation system

of a model artifact, or the purpose an addition or modification of an item serves.
Using comments is handy for one, or a few cases. It becomes impracticable to be
deployed in models for a thousand-plus ASIC requirements.

Constraints and controlled file were not reviewed for this work.

Tags are used to provide additional, and importantly, actionable information on
model artifacts. With tags, performance metrics, like minimum and maximum val-
ues can be supplied to system parts. These are then applied to the appropriate areas
of systems behaviour metrics, like in code generation or simulation.

5.3 Summary

The systems and tools deployed as ALM-based implementation was introduced as
IBM’s CLM. They were also introduced as compliant with the OSLC standards.
SysML had been described in Section 2.5 as a modelling language standard. In this
chapter, RR was introduced as the Sysml-based tool on which this work was depen-
dent. The traceability methods described in Section 3.9 and in Chapter4 were also
pictured as they are implemented in RR. These methods were characterised as insuf-
ficient solutions in the context of this work. The insufficiency of these methods was
pictured as partly a direct consequence of the size and complexity of requirements
in ASIC the domain.

65

6 Integration and deployment

In Chapter 5 above, the tools that are used in this work were introduced. This
chapter will apply these tools to as much as they support the standards with which
they are compliant. ALM has been introduced as process, standard and technology-
based. Although these tools are vendor-specific, if they are compliant with their
standards, the application will produce similar or comparable results as any other
tools based on these standards. Thus, a tool-chain comprising of these standards
will be realised at the end of this chapter.

ALM is essentially, a concept of data integration. Different implementation of this
concept will vary, according to the constructs perceived by the designer. For this
reason, although systems and tools may follow standards, the implementation of the
standards may differ amongst vendors.

The first step towards integrating the tools described in Chapter 5 was to understand
the nature and structure of their design. Thus, they were firstly separated into
different Project Areas (PAs) and zones, in line with their design [87]. This is
illustrated using Figure 6.135 below.

Figure 6.1: Structure of ALM

35ALM referenced here is the setup at Bosch. The name may differ for other organisations, but
the structure is consistent.

66

6. Integration and deployment

As depicted in Figure 6.1, each instance of the AM, CCM, DNG and QM represents
a PA36. Each is also part of the same JTS instance. The yellow-coloured area
depicts the workstation where RR and the RTC Clients are installed. They also
belong to the green- and blue-coloured areas, which represent the RMM and the
RTC respectively.

However, this did not provide a complete picture for integration, as it does not
provide a clear understanding of the component-parts of each system’s role in the
integration. Therefore, the system was further categorised into “physical and log-
ical” structures of a data communcation and integration platform. The following
images in Figure 6.2 were the communication structures pictured of the system.

(a) Physical (b) Logical

Figure 6.2: Structure of JTS-based platform for integration

In Figure 6.2, the entire communication framework is pictured as divided into phys-
ical local and online server-based infrastructures. RTC, RMM, QM and DNG all
belong to the same JTS server instance. The RR and RTC Client are local instal-
lations on a workstation. However, Figure 6.2(b) shows the same tools as entirely
based on logical role each plays. It also shows “RTC block” which includes all the
services (e.g. CCM) provided by the RTC. The physical structure details the inter-
connectivity between the infrastructures, although the communication that exists
amongst them are functions of the logical framework. From Figure 6.2(b), it can
be seen that JTS can communicate with each component-parts of the RTC block,
independent of the other. This is interpreted as, “1) authentication and access to
RMM, RTC block, QM and DNG is provided by JTS; and 2) the communication of
DNG-based information between RMM and RR is possible, so long as RR is enabled
and active RTC Client”.
36AM and CCM are synonymous with RMM and RTC, respectively. Thus, they are used inter-

changeably, dependending on the contexts. However, each refers to its same respective concept.

67

6. Integration and deployment

With this picture ensuring the clarity of the structure and roles of the systems,
instances of PAs were created for project developments as PAs. Several options are
available for the creation of these PAs. However, a suitable option to use a lifecycle
PA was chosen. Although each can be created independently, each instance of DNG,
RMM, RTC and QM were created together as a lifecycle PA.

As already mentioned, all the PAs within a common JTS instance can be integrated.
This is shown in Figure 6.337.

Figure 6.3: Sample structure of multiple PAs

The PAs in the schematics are parts of the same JTS instance. CCM 1 uses com-
ponents available in CCM 2 and is added as a PA to AM 2, as shown in Figure 6.3.
CCM 2 also uses components from CCM 1 and is reciprocally added as an AM 1 PA.
DNG 2 (i.e. the requirement artifacts in it) is also re-used by AM 1 PA. The lifecycle
PA is configured for deployment as a RMM-enabled system. Common accessibility
to the PAs is a JTS feature, so authentication is ensured across the entire platform.

This property of the assembled system was used as a basis for the integration of
the tools as a tool-chain. The integration was stepwise, starting out with the use
of DNG and RR integrated into the RMM development platform through the RTC
Client. Further integration included the RTC and the QM PAs.

6.1 Linking the project areas (PAs)

As previously described, the primary aim of this work is in relation to the handling of
ASIC product requirements available in DNG. This includes establishing traceability

37Although ALM here is referenced to the setup at Bosch, it is typical of Application Lifecycle
Management in general, including the CLM of the Rational platform.

68

6. Integration and deployment

between the requirement and the model artifacts. The repository of the model
artifacts is the AM (RMM), although the models are to be designed and modified
using RR. Considering the complexity of the system as described above, the tool-
chain used in this section is as shown in Figure 6.4.

Figure 6.4: Project setup for DNG and RMM

Each instance of a lifecycle PA that was created with the inclusion of only RMM and
DNG results in the structure depicted in Figure 6.4. With this structure in focus,
a PA was created in the ALM server. The DNG instance that was created in the
same lifecycle PA as RMM are already linked. However, other DNG instances were
created and added as part of the requirements repository that provide requirement
artifacts for projects in the AM. This was used to ascertain the reuse of requirements,
when they are available in different PAs.

To connect RR to the RMM resource available in the JTS through the RTC Client,
the resource address is provided in the RTC Client as:

https://<serverDomain>:<port>/am38

This established a communication path between the RR and RMM. The communica-
tion path of the connected PA and the local workspace is illustrated using Figure 6.5.

38“am” represents “Architecture Management” (AM) already described in Section 5.1.4

69

6. Integration and deployment

Figure 6.5: Communication path between local and remote repositories

Figure 6.5 is a schematic of the established communication path between RMM
and the RTC Client. The “Workspace” and the “Sandbox” are components of the
RTC. They serve as repositories for models and other work items they are associated
with. Transfer of artifacts is stepwise from the sandbox to the associated workspace,
then to the defined RMM. Correspondingly, download of artifacts from RMM to the
workstation follows the reverse stepwise manner, as illustrated by Figures 6.5.

The default behaviour is for each sandbox to be associated with a specific work-
station. Multiple workstations can also be associated with a single RTC Client by
default. This is illustrated in Figure 6.6.

Figure 6.6: RTC Client-workspace connection on a workstation

Figure 6.6 shows a RMM linked with a RTC Client present in a workstation. The
client is connected to n-number of sandboxes available to the workstation. It shows
each sandbox as accessing the RMM through their common RTC Client. The RTC
Client manages and maintains each connection to the RMM separately, but from the
same interface. This is ensured through the use of separate locally available folders
containing unique hashed data that helps associate the sandboxes to the RTC Client
and their workspaces. The grey-coloured items in Figure 6.6 represent online, server-
based resources, while each blue-coloured item is locally available. The system was
further pictured as the physical and logical structures shown in Figure 6.7.

70

6. Integration and deployment

(a) Physical (b) Logical

Figure 6.7: Comparing the context views of DOORS and DNG

Figure 6.7 is a system of two workspaces connected to a local installation of RTC
Client. The logical connection of Figure 6.7(b) shows that the RMM has a direct
access to Sandboxes 1 and 2. However, this is only possible if the physical connection
in Figure 6.7(a) is available. Nonetheless, the direct access between RMM and RR
is also limited to the communication of DNG-based artifacts, as already described
in the preceeding section.

The AM can be created as a PA belonging to a person or team, and is accessible
by other selected members of the ALM server (maintained in the same JTS area).
Contrarily, the workspace is a “personal data bank” of each RTC Client-connection
to the AM. It is an online remote storage for model artifacts awaiting upload to
the server or download to the sandbox. However, workspaces can also be made
available for team use. The sandbox is also an accessory of the RTC, but is located
on the workstation where the RTC Client is installed. And, like the workspace, each
sandbox belongs to a specific RTC Client-connection to the AM. Unlike workspace,
it cannot be made available for team or collaborative use.

Access to the models in RMM

Models cannot be created with the RMM. The AM is only used for management and
storage of model artifacts, and to enable collaboration between members of diverse
SE teams who have to contribute parts that fulfil a set of system requirements.
Therefore, a model was made available in the RMM for the collaborative activities.
To make a RR-based model available for deployment to RMM, two methods were
used:

• an existing model was copied into the sandbox, then RR was launched from
inside the sandbox;

• a new model was created in RR, then saved in the sandbox.

71

6. Integration and deployment

To perform the above actions, a workspaces were created, and the sandbox associated
with the workspaces loaded onto the RTC Client.

6.2 Adding CCM and QM to the lifecycle PA

The desire for MBSE is in part, its ability to bring designers and developers as
close to the RE phase as possible, during the course of their day-to-day business of
modelling [3:9]. That means, they need to be able to add and modify requirements
as they deem fit. This is because they are closer to the system at an implementation
abstraction level than other stakeholders involved in the RE process. And, additions
and modifications made should be trackable. Also, when changes are required and
to be delivered, it is desired that requests for such changes should be made as part
of the development process. Such requests should be addressable to the stakeholder
to enable or fulfil those requests. Furthermore, progress on such changes and any
development activities spawned from such requests and changes should be available
as part of the development process. This means, the requests and changes should
also be trackable.

Changes and requests are embedded as artifacts in the CCM of RTC. Although,
RMM has a SCM property that is built on the CCM feature of RTC as mentioned
in Section 5.1.4, instances of RTC as PAs were used to ensure uniformity across
the development platform. The artifacts of the RTC are known as Work Items and
Work Plans. These enable tasks, reporting and tracking the status of models and
general development activities.

The structure of the system at this abstraction is illustrated as the communication
path visible in the schematics of Figure 6.8.

Figure 6.8: Change sets as a function of CCM

72

6. Integration and deployment

The focus here is on the role of the CCM. “N-number” of workspaces collaborate on
a RMM-based project in Figure 6.8. Members of a collaboration team can create
or modify existing artifacts, subject to their assigned roles. Each member is added
to the specific PA from the individual management console of the named PA. Each
team-member has corresponding workspaces generated for every instance of each
workspace that is created and loaded a each RTC Client. Multiple workspaces and
sandboxes can be created for every RMM project. However, the “change sets”
created for the project are visible to all members alike, whether it be the default
change-sets created by RMM, or those delivered via the CCM system.

The model in RMM is directly downloadable to the sandbox as shown in Figure 6.8,
as indicated by the purple arrow linking RMM to “Workspace N” uni-directionally.
This occurs when a new workspace is created and the sandbox is loaded on to the
RTC Client. It can also be downloaded via the CCM. This is the case when an
update is available in the RMM. The combination of green and red bi-directional
arrows of Figure 6.8 are used to illustrate this case. Uploading to the RMM server
however, is only possible through the CCM feature. Data exchange initiated from
the local sandbox has to go through the CCM to RMM. The green arrow is only
to indicate that the CCM (delivered from the RTC) can also exchange information
directly with the RMM, independent of the links to workspaces.

6.3 The case for a naming convention

A complex set of requirements was also provided for test-running the concepts devel-
oped in the course of this work. A selection of these requirements were transferred
to DNG. The requirements were titled structured and contextually. Having trans-
ferred the requirements to DNG, work items were created in CCM and were used to
label, monitor and track the usage of the requirements. They were also used to track
activities related to validation and verification of system’s processes. These verifi-
cation and validation-related activities are provided by the QM. The QM artifacts
are Test Plans and Test Cases.

The requirements entered into DNG have unique identification numbers (IDs) that
are generated automatically. While some of the attributes of DNG-based require-
ment artifacts are modifiable, these IDs are not. The requirements themselves are
portable - they can be dragged to different positions in the requirement document.
The IDs and other properties also move with their associated requirements, though.
The requirements are to be tracked, nevertheless. Therefore, the work items were
renamed after the requirements they refer to. Where the requirement is just a “head-
ing” to contextualise39 the requirements under it, meaning that it does not contain
any properties that is to be fulfilled by tasks, the CCM based work item type called
“Epic” was used. This helps to put the task-sets in the same context as there are
for the requirements in DNG.

39Contexts of requirements is as illustrated in Section 5.1.1 using Figure 5.1. It groups requirements
under the same heading.

73

6. Integration and deployment

“Mock tests” were created in the QM to associate the requirements and the task
sets associated with them. As already described, the task sets refer to the imple-
mentation instructions that are used to direct what activities are to be performed
in order to fulfil requirements. Consequently, the mock test-plans generated in the
QM system were intended to characterise the implementation of verification and val-
idation activities, models and requirements. These tests also used naming schemes
consistent with their corresponding system requirements reposited in DNG, and the
work items in the RTC’s CCM.

6.4 Application of attributes

From Section 5.1.1 above, it is deduced that, a link in DNG is either inbound or out-
bound. It depicts a requirement’s relationship to any one or a combination of other
artifacts. Requirements could be related to other requirements (e.g. decomposition),
or to task-sets (e.g. implementation), or to architecture elements that fulfils it (e.g.
satisfaction). It can also be internal, i.e. it links requirements to other artifacts
within the same lifecycle PA - the same JTS, or it could be external. Relationships
to other tools outside the Rational range of systems and tools is also captured us-
ing links, as described. Linking each requirement to the artifacts and systems that
contribute to its realisation is, therefore, a necessary step towards ascertaining the
compliance of a system with its design goals. The linking of requirements to other
artifacts ensures they are been tracked. Links were also established to the tests so
that the systems behaviours and functions will be tested against specification. For
this reason, appropriate labelling of the requirements is required.

To label the requirements appropriately, a suitable artifact type for each requirement
was defined. This is illustrated in Figure 6.9.

Figure 6.9: Creating the required artifact types

Figure 6.9 above shows the order of creating project-specific custom artifact types
that required capturing. The grey-coloured boxes in the image indicate items that
were not considered in the course of this work, and the ellipsis indicates there are
other requirements artifact items preceeding those displayed in the image. The data

74

6. Integration and deployment

types were used to create appropriate “Artifact Attributes”. The artifact attributes
were subsequently used to create the desired “Artifact Type”.

By default, the “Data Types” listed in Table 6.1 were some of those available or
created in DNG.

Attribute
Data Type Data Type; S = System-defined, Comments
ArtifactFormats Enumerated (S), Collection, Text, Module, etc
Date date (S), system-defined
DateTime date time (S), system-defined
Float float (S), system-defined
Integer (S), system-defined
Severity Type E, Range 0 to 5, system-defined
String string (S), system-defined
Time time (S), system-defined

Table 6.1: Sample of data types in DNG

Some of the attributes are “system-defined” (labelled “S”) and are, therefore, not
modifiable from the management console interface of DNG. Others, such as “Test
Val” were created. These data types served as inputs in the creation of the “Artifact
Attributes” shown in Table 6.2 below.

Artifact Attribute Data Type; S = System-defined Comments
Created On Datetime (S),
Description String (S),
Maximum Value Float,
Minimum Value Float,
Modified On DateTime (S),
Requirement Type String,
Severity Severity Type,
Status String,
Title String (S),

Table 6.2: Sample of attributes in DNG

Table 6.2 is a list of some of the important artifact attributes required for processing
the requirements considered. They also carry important information about the
requirement artifact they are attributed to. They further serve as inputs for the
creation of “Artifact Types”.

The DNG artifacts present in the two tables above provide the necessary inputs in
creating the items avaialable in Table 6.3 below.

75

6. Integration and deployment

Artifact
Type

Default
Artifact
Format Comments

Heading Text
Information Text Priority, package info, etc were applied
Requirement Text Maximum and minimum applied to it
Test (Plan)
Collection Collection Attributes like priority were applied to it

Table 6.3: Sample of DNG artifact types

Artifact types are project-specific, and are created/generated according to the needs
of a project. Consequently, none one of artifact types is system-defined. The arti-
facts can have attributes like “Requirement Type”, which is included in Table 6.2,
and formats like “Float” or “String”, which are part of the attributes shown in Ta-
ble 6.1. The former is an attribute, and the latter are required data types. These
data types carry the information about the requirement, and determine what kind
of project-dependent values they can be assigned. The data types, and attributes
are then assigned to the artifacts shown in Table 6.3.

Choosing suitable icons for the artifact type also aids in conveying important in-
formation at first glance. The attribute and data types were used to plain specific
constraints on the requirements developed for the project, then appropriate tasks
and (mock) test plans were associated with each requirement.

6.5 Handling RMM-based models

Having created the models, requirements’ artifacts, work items that stipulate roles
collaborators play in the realisation of a project, were deployed for integration. Some
performance metrics were also defined for accessing the project, especially with re-
spect to task schedules. Deployment of the system as a functional unit of a project,
provides the framework on which the three Rational tools mostly of interest are
evaluated. The three tools are: 1) RR, for making models, 2) DNG, the RM system
as a repository for managing the requirements for the models and 3) RMM, the AM
tool for handling the model as an online internet-based resource. Also evaluated are
the other Rational tools deployed alongside the previous three mentioned. They are:
4) RTC, the CCM tool that provides configuration management of the model as a
CLM project, and 5) the QM system, for testing and verifying the model’s imple-
mentation of the agreed requirements. They are evaluated starting from preparing
the individual tools, as described in the sections above, to the resultant tool-chain,
as is described below.

76

6. Integration and deployment

6.5.1 Delivery to RMM

In Section 6.1, establishing a connection between the local storage and the remote
repositories for the model was discussed. And, particuarly, in Sections 6.1 and 6.2,
the system was described as an assemblage involving downloads and uploads. Now,
in this section, the focus is on the delivery of artifacts from local to RMM.

Before any collaboration on a project is effected, a model has to be uploaded to
RMM. This upload is termed as a “Check-in”. Checking in to RMM is illustrated
in Figure 6.10.

Figure 6.10: The central role of change sets

“Change set” was defined. It is needed for every checking in of model artifacts. It is
also used for model downloads into the sandbox, except for the first download. This
is captured in Figure 6.10 as “Initial download”. For uploads, the contents of the
sandbox are copied into the “Component” available in the “Stream” of the RMM
PA, as depicted in Figure 6.10.

6.5.2 Collaboration and harmonious modelling

With models and requirements available in RMM and DNG respectively, multiple
client-connections were made to the project based on the principles and processes
discussed in the preceeding sections. Although multiple workspaces can exist for a
single RTC Client of a given project, the default change sets, however, are attached
to the named person. That is, when two workspaces are created on a client com-
puter belonging to “John Doe”, for a project titled “Project 1”, each workspace is
a separate entity named “Workspace 1 Project 1” and “Workspace 2 Project 1”,
respectively. However, both workspaces use the same change set as “Rhapsody Files
Check-In: Project 1”, as illustrated in Figure 6.11

77

6. Integration and deployment

(a) Workspace 1

(b) Workspace 2

Figure 6.11: Behaviour of single RMM PA and RTC Client with multiple-workspaces

Figures 6.11(a) and Figure 6.11(b) show the contents and structure of two
workspaces, “Stream2 RWS xxx Stream2” and “Stream2 RWS xxx2 Stream2” re-
spectively. They both contain the same project in “Stream2” that has
“test1.demo.feature” and “test2.demo.feature” components inside it. The name of
the RR project that is available in the RMM PA is “SolarPowerSystem”. This
signals that, a first copy of project SolarPowerSystem is available in workspace
Stream2 RWS xxx. Subsequently, a second copy of the project was created for a
different workspace as “Stream2 RWS xxx2”. Both are replicated copies of the same
SolarPowerSystem project available in two separate sandboxes via the same RTC
Client on the same workstation. Additional change sets were subsequently created,
in the form of comments.

For collaboration, the model contained in each workspace was modified, and the
changes sent as updates to the server. Each transfer to the server was accompanied
by a message notification to other workspaces connected to the now RMM project,
as shown in Figure 6.12.

78

6. Integration and deployment

Figure 6.12: Change set notification pattern

Figure 6.12 is a visual representation of the communication format amongst the
connected workspaces. “Change set N” represents any workspace from where mod-
ifications to the model is uploaded to RMM. The CCM feature is engaged by this
transfer process, and the message notification is received by change sets 1 to 3. The
available updates are accepted into each workspace, via their respective change sets.

Up to this point in the implementation, after the set up, only model delivery and
retrieval to realise a consistent up-to-date model has been implemented as part of the
colloaboration. Collaborative modelling was further explored by adding links from
the models to the requirements. Linking a model artifact to requirement artifacts
was completed bi-directionally, i.e. the links were added inside RR, and delivered to
RMM via the change sets, and links were also added from within DNG, and saved.
Additionally, new requirements were added to DNG from RR, and also from inside
DNG, and accessed via RR.

The other Rational tools hosting the remaining PAs were then integrated into the
collaboration. The change sets were associated with the work items in CCM and the
test plans in QM. Furthermore, new requirements were added to DNG from QM.
From within the management console of RMM, “OSLC Linking” was permitted, in
order to enable further integration of the entire system. Model artifacts were linked
successfully to the the CCM, DNG and QM from RR. Each update to the RMM
was correspondingly announced as update notification to other workspaces. When
new workspaces were created and loaded, they were up-to-date as at the last known
model configuration available in RMM.

6.5.3 Extending views and tags

After the steps described above had been completed, and the traceability links be-
tween the model, requirement, test and work item artifacts had been established, it
was necessary to visualise the implemented solution in a comprehensive and concise
manner. Matrix views and table were used to perform the set of operations required

79

6. Integration and deployment

to present a logical assessment of the model artifacts and their relationships to other
work items.

For the matrix layout, the “Cell Elements Types” chosen was “OSLC Link”. The
context of OSLC links was preferred, because the artifacts that were to be related
to the model items on the view are all remote artifacts, linked together via their
OSLC properties. The “From Element Types” and “To Element Types” option were
varied. The matrix view was scoped to capture the model artifacts outwards from
the innermost file of interest, which is depicted in Figure 6.13 below.

Figure 6.13: Setting the scope for table views

The example of Figure 6.13 is a sample of the features of a matrix view that shows
the scoping of the matrix information for packages from “TestStruct1Pkg”, which is
the innermost item in the “TestFlowPkg” package. TestStruct1Pkg was chosen to
capture the requirement information for the items in the nested packages contained
in the “SolarPowerSystem” project.

Tables were also developed for viewing the requirements and their linked model ar-
tifacts. A default read-only requirement table view was available in the “Remote
Artifacts” section of the model. This table is populated with the contents of the
associated DNG PA. The Requirements were available as a “Collection”. Five at-
tributes of the requirement artifacts were visible on the default table. These available
attributes are as shown in Figure 6.14.

Figure 6.14: Default table view

OSLC, discussed in Section 3.8, was relied upon for extending and adapting the
returned information needed for creating customised tables, as conceptualised in
Section 4. Firstly, the information content and context of DNG was modified by

80

6. Integration and deployment

adding two columns. These columns were named “Minimum” and “Maximum”,
respectively. These were used to provide details about the requirements in DNG.
Since the default requirement table populated in RR only includes the five infor-
mation fields of Figure 6.14, the performance information added to the two extra
columns were not available in the model. This is because it was not transferred from
DNG to RRM. The local workstation and the RR were customised to request and
accept the information from DNG. Firstly, the OSLC configuration was modified,
and the additional information required were added to the configuration file. The
file is a JSON format file containing information about the appearance and prop-
erties for other Rational tools for RR. Afterwards, RR properties were customised
and instructed to accept custom OSLC information.

The informational dialogue that extends the use of tables for the traceability of
model to ASIC requirement artifacts is shown below. Note that this communication
dialogue are applicable at different layers. They were applied to specific projects.
However, they were restricted to the specific projects on the local workstation as a
block. They can also be applied to the JTS domain. Figure 6.15 is used to illustrate
this communication dialogue process between RR and DNG.

(a) OSLC-based communication

81

6. Integration and deployment

(b) Modified table view based on OSLC

Figure 6.15: Behaviour of single RMM PA and RTC Client with multiple-workspaces

Minimum and maximum were requested to be, and were, transferred as “tags” to the
model. The artifact of interest to the “User” is represented as the “green pentagon”.
This is used to mirror OSLC’s description of resource shapes (see Section 3.8). The
default information transferred is the represented as the “blue rhombus”, but a
request was coded as shown in Figure 6.15(a) to request additional information, as
desired.

The request put in by the “User” to JTS mentioned that, “Minimum” and “Max-
imum” shall be named “Min” and “Max”, respectively. The tag values were then
used to populate the customised table view, as shown in Figure 6.15(b).

6.6 Summary

In this chapter, the systems and tools used in this work were abstracted as physi-
cal and logical structures. They were also described as separate PAs. This formed
the basis on which relationships were established from each PA to others based on
the underlying ALM technology. The tests for the solutions were consequently de-
scribed as vendor-based, but as abstracted from the vendor-neutral standards and
technologies they are based on. They were, however, adopted and tailored for use
as is suitable for deployment in ASIC development processes. Although the imple-
mentation is vendor-specific, the solutions were first depicted in their existence as
based on standards and technologies. Therefore, independent of any specific vendor.
The particular tools used were then integrated as a tool-chain. Some properties of
the tools were used as based on the underlying standards and technologies. The
used properties were thus validated as being compliant with the enabling standards
and technologies. Some of the ideas from Chapter 4 were applied and extended, to
provide a suitable method for the traceability of ASIC requirements.

82

7 Case study-based evaluation

In Section 1.2, the research approach that was adopted at the start of this work
was introduced. This research approach considers perspectival comparison of the
resultant methodology to existing ones, as already discussed. This gives rise to the
analysis and evaluation of the results of this work in comparison to existing theories
and methodologies, as well as against available processes and standards. Based on
this research approach, the developing methodology was applied to a development
project. This was used to test the usefulness of the resulting methodologies in its
application industrial to ASIC development.

The proposed methods were first applied to the architecture artifact development
domain and the requirement database as a composite system. This was used to
evaluate the resultant methodology for requirement consistency. Afterwards, other
enabling systems of the ALM technology described in Sections 3 and 6 were applied
for evaluation as an ALM-based methodology for ASIC development.

The methodologies were also evaluated for their usefulness in a collaborative devel-
opment process. This involved nine (9) people, with each of them using any random
number of multiple workspaces to test their adaptation in a collaborative team.

The procedure was applied to an ASIC pressure sensor currently under development.
Figure 7.1 shows some of the components of the pressure sensor.

Figure 7.1: Default table view

83

7. Case study-based evaluation

The image in Figure 7.1 is a block diagram of five blocks, which represent five func-
tions of the ASIC pressure sensor. The “MEM versorgen”, “MEMSSig Messen”,
“DruckSig konditionieren” and “DruckSig ausgeben” blocks are parts of the
“Druck zur Verfuegung stellen” block. Together, they are all part of the“Provide
Pressure” function of the pressure sensor.

7.1 Consistency of requirements

Requirements in SysML can either be defined as a modelling system-based or as a
RM database artifacts. At the start of this research, requirements were created in
the modelling domain. They are then associated with the models that fulfil them.
The models and requirements are linked as shown in Figure 7.2.

(a) RR-based requirements

(b) Relationship with model

Figure 7.2: Method at the start of the research

84

7. Case study-based evaluation

“Req1” and “Req2” were defined and added as modelling system-based re-
quirements to the FTR Project40 model, as shown in Figure 7.2(a). The
“Druck zur Verfuegung stellen” block was linked to these requirements, as captured
in Figure 7.2(b). After the “satisfy” relationship was established between the model
and requirement artifacts, the “Satisfactions” dependencies were automatically cre-
ated for each of Req1 and Req2. This is captured in Figure 7.2(a).

In as much as the requirements were added and used as is standardised by SysML,
these requirements only become visible to other collaborators after the new state
of the model is checked in. That is, until this addition of requirements and their
relationships to the model artifacts are checked in as updates, the updated model is
not replicated across the collaboration platform.

In Sections 5.1.5 and 6, it was described that the PAs maintained under the same
JTS have a common authentication credentials. This JTS feature was relied upon
to provide RM PA access to the model in RR. When launched, RR accesses the
model available in the sandbox. This model has the connection-link to the respec-
tive requirements available in DNG. Login was executed to the DNG PA from RR
to establish the connection to the RM PA. Furthermore, using OSLC, creating re-
quirements in DNG from the RR interface is possible. The requirements used in
DNG are exported to RR using OSLC standards (see Section 3.8). These can be
seen in Figure 7.3.

Figure 7.3: DNG-based requirements available in RR model

Figure 7.3 shows the RR view of some requirements for the FTR Project which
are defined and located in DNG. In the figure, the RM PA shows “FTR Concept”
as the “Requirements” used for the project. They are transferred to RR as a set
of “Remote Artifact Packages” with “RO” (read only) attributes. Figure 7.3 also

40The model and the PAs used are named “FTR Concept”. For the model, the “Project” is
appended. For the PAs, any one of “AM”, “CCM”, “RM” of “QM” is attached to the name,
to show it is an Architecture, Change and Configuration, Quality, or Requirement Managemet
PA.

85

7. Case study-based evaluation

shows a “Collection” as “Functional Specs”. Other collections can be added as part
of the project. It is also seen that, each requirement is identified by its unique ID.

The requirements are transported to RR using OSLC standards. The image in
Figure 7.4 below shows the same set of requirements in their DNG location.

Figure 7.4: Sample DNG view of FTR Concept Project’s requirements

The requirements shown in Figure 7.4 are exact replicas of those in RR in Figure 7.3.
They were defined in DNG and transported to RR via the OSLC connection. The
attributes available in RR are dependent on those defined in DNG. As RO artifacts,
any modification, additions, derivations or refinements were transported back to RR.
One of such attributes is the IDs of the requirements. The IDs are unique across an
entire JTS. Therefore, they cannot be duplicated. This means that, once used, it
can only refer to a single requirement artifact. Any modification to that artifact is
transported across the entire platform where it is used.

The requirements were associated with the model artifacts. Below is an illustration
of using the requirements as model artifacts using Figure 7.5.

Figure 7.5: DNG-based requirements used in a block diagram

86

7. Case study-based evaluation

The “MEMSSig Messen” is one of the blocks introduced at the beginning of this
chapter. The requirement “MEMS Signal Measurement” with ID “567355” asso-
ciated with the MEMSSig Messen model artifact, as shown in Figure-7.5. The re-
quirement assumes the attributes as they are. These attributes cannot be modified
from the diagram, because they are RO.

Unlike with the modelling system-defined requirements, any modifications to the
databse-defined requirements is visible to all the workspaces connected to the PA
in real-time. As already mentioned, creation of requirements fron RR is possible.
This requirement addition is effected in the requirements database, but is done
using RR as the modelling tool. Furthermore, all the requirements used from the
RM PA collection are listed RR as remote artifacts. This is not the same with
requirements defined in the tool for the modelling, where the requirements can be
located anywhere on the model. Using the requirements as remote artifacts promotes
a unified view and awareness of the requirements available for a project.

With the requirements located in DNG, login into DNG must be executed in order
to access the requirements. Without logging in, the designed elements and parts
of the system which depend on those requirements are still available and visible.
However, the requirements are only visible as remote artifacts with internet links.
This restricts the access the RMM-based model has to the requirements domain for
the session. Figure 7.6 shows a summary of this scenario.

(a) Before login

Observe that the login has not been executed, as seen in the left hand side of
Figure 7.6(a). Without the login, the relationship between the “MEMSSig Messen”
block and the requirement is still visible from the right hand side of Figure 7.6(a).
The “https://xxx” seen on the right hand side of Figure 7.6(a) indicates that the
requirement is a remote artifact.

87

7. Case study-based evaluation

(b) Immediately after login

Figure 7.6: Remote requirements as internet links

Figure 7.6(b) shows the same set of artifacts as Figure 7.6(a). However, the login
has been executed as observed in the left hand side of Figure 7.6(b). This triggers
the “Loading...” information visible on the right hand side. When fully loaded, the
artifacts located in the DNG PA are available and the view of the block diagram
becomes as shown in Figure 7.5.

Summary of consistency of requirements

From the evaluations above, it was established that the use of RR-based require-
ments limits the collaboration possible amongst teams. Defining the requirements as
RR-based creates conflicts and inconsistencies that are avoidable. This is because,
while other members of the team would recieve the updates and added requirements
after the model is copied to RMM, the exact location of the requirement would not
easily be known. The changes made to each requirement will also not be versionable,
as each individual can make changes to the requirements concurrently. Furthermore,
the requirements are not uniquely identified using RR-based requirement artifact.

In contrast, any addition or changes made to requirements in DNG are transported
to all other PAs where this particular requirement is used. The IDs in DNG are also
unique across the entire JTS area. This means no two different requirements can
share the same ID in the entire JTS where your requirements are defined. Further-
more, only one person can make any modifications to a requirement at any point
in time. This eliminates inconsistencies that might result from two people making
different modifications to the same requirement concurrently. The chances of that
happening in a DNG, is completely eliminated.

88

7. Case study-based evaluation

As stipulated by the OSLC standards from Section 3.8, clients can cache copies of
system resources defined by servers as cacheable. This ensures that requirements
already linked to model artifacts are available even without logging in to the require-
ments database. Thus, they can be used to populate requirement diagrams when
needed, without the need for a log-in. If requirements are used in this manner, the
internet addresses are resolved to the requirements they refer to immediately log-in
is executed. This is illustrated using the requirement diagrams of Figure 7.7.

(a) Unresolved addresses before login

(b) Resolved addresses after login

Figure 7.7: Requirement diagrams with remote artifacts

Figure 7.7(a) shows a requirement diagram for “System Requirements” populated
by remote requirements before a login was executed. These same requirements are
visible again after login was executed. Once logged in, the internet addresses were

89

7. Case study-based evaluation

resolved to the actual names and IDs of the requirements available in DNG as shown
in Figure 7.7(b).

The choice is not really between the use of a RM database and SysML tool for
requirements definition for use in modelling. Rather, it is on how to use the former
to replace the latter. The evaluations and comparisons done still highlights the
advantages a RM database has over the use of model-defined requirement artifacts.
Whereas the use of requirements defined in the model does not hold any advantage
over the use of a RM database, where team collobartion is desired.

7.2 A working tool-chain

Other tools in the Rational platform were deployed, as discussed in Section 5. These
tools have already been described as JTS platform enabled systems in Section 5.1.
They were added to the FTR PA area as explained in Section 6. As the access and
authentication is handled by the JTS, access to one is access to all.

When added, “Change Sets”, “Change Request” and “Requirements” belong to the
“Uses” option under “Associations” in the RMM management console. The former
two are related “Change Management”, while the later appear as “Requirements”.
Another option under which the added PAs appeared is “Provides”, which relates
to “Architecture Elements” under Associations, belonging to the added QM.

Thus, change sets and change requests were created in the CCM of RTC from the
RMM PA and from RR. Sections 3.8 and 6.2 descibe the technology-standard and
implementation. Test cases were also created from within the RR. The created
artifacts resided in the respective locations: requirements in DNG, change requests
in CCM, and test cases in QM; irrespective of where they were created.

The essence of this exercise was to evaluate the capacity of the systems to work
together as a collaborative platform. As OSLC deliverables, the trace and tracking
of the artifact depended on the type and category of the requirements or work items
(see Section 5.1.1). Each link to any of the artifacts used in this exercise was visible
from the system that it was linked to. Model artifacts linked to CCM, DNG and
QM were all bi-directionally visible: from RR, CCM and QM.

Additionally, the use of a naming convention that was described in Section 6.3
ensured an orderly tracking of the artifacts and their relationships. The requirements
in DNG, the tasks required to implement them, and the test cases for verifying their
implementation all carried the same or similar names. Where possible, the same
name was assigned to the related requirements to make their relationship apparent,
as shown in Figure 7.8.

90

7. Case study-based evaluation

(a) Remote artifact section in RR

(b) Associations to model artifact

Figure 7.8: Display of remote artifacts linked to RR models in RR

In the figure above, the “Remote Artifact Packages” comprises of the “RM”, “CCM”
and “QM” PAs of the “FTR Project”, as captured in Figure 7.8(a). The dis-
played requirement ID is “567149”, while “3699” and “440” belong to the “Work
Items” and “Test Cases” section of the remote artifacts. These are located in
DNG, CCM and QM respectively. The association of the remote artifacts to the
“Druck zur Verfuegung stellen” block is visible in Figure 7.8(b). The relationships
of the block the remote artifacts that are associated with it is any one of “Elabora-
tions”, “Satisfactions” or “Validated By”. Elaborations are CCM work items, while
Satisfactions and Validations are DNG and QM artifacts respectively.

Comparing both images in Figure 7.8, it can be observed that the IDs and names of
the remote artifacts match their corresponding IDs and names in the associations
with the model artifact. It can also be observed that the remote artifacts all have
similar names. This makes associating them to their model artifact easier41.

41The German phrase “Druck zur Verfuegung stellen” translates to “Provide pressure” in the

91

7. Case study-based evaluation

Baselines, profiles and snapshots

Where modifications to a system are possible, it is also necessary to have the option
of returning to previous versions of the system. This refers to the concept of SCM
and VC discussed in Section 3.6.3. “Baseline” and “Snapshot” are the mechanisms
for SCM and VC provided for the Rational platform.

The components were baselined, while snapshots were made for streams (see Sec-
tion 5.1.4). These were used to revert to previous configurations and versions of the
model. The baselines were also added to multiple PAs, while the snapshots were
used to create further streams. These were used for collaboration with the nine (9)
people mentioned at the beginning of this chapter.

A set of model artifacts developed by a team, but used by another in a development
project can be added as a component. The component containing the artifacts to
be protected is locked to avoid unauthorised modifications. The component can
be provided for use as versionable artifact. This follows the principles described in
Sections 5.1.4 and 6. Customised RR profiles were checked-in to the FTR Project
in the RMM PA using a new component and the component was locked, as shown
in Figure 7.9.

Figure 7.9: Access management using multiple components

“ED Concept RR Profiles” containing project-specific SysML profiles was
“Locked”. Only the person that locked it can check-in new updates to
the component. The profiles were added to the existing model available in
“FTR Concept RMM” component. Thus, the “FTR Concept (FTR Concept)”
stream contained two components, but updates from every stakeholder are only
allowed into the one containing other model artifacts.

Summary of the resultant tool-chain

RR, DNG, CCM and QM are the four tools used for creating and processing artifacts.
Each tool is used to create its own standard artifact type, but each artifact type
can be used by the other tools. It is therefore noteworthy that, although each tool
can create those artifact type it consumes, it does not create them in its database.
Rather, it requests the input fields from the database that owns the artifact type, and

context it is used

92

7. Case study-based evaluation

supplies the information needed to create the new artifact. Furthermore, multiple
PAs can be used and associated with a PA. This ensures that existing artifacts are
reusabile where applicable.

The use of these four tools is enabled by the underlying systems and technologies.
ALM and OSLC as technologies help deliver these capabilities. Using the four tools
will help get the best out of the platform and tool-chain, delivered by the technolo-
gies. This is also going to depend on the implementation of these technologies. The
evaluation here is strictly based on the capability delivered by CLM.

As a SCM and VC-based tool-chain, the baselines and snapshots created makes it
possible to make copies of the configuration of the models as versions. These were
used to create other PAs. That is, a PAs were created, and the available baselines
and snapshots were used to initialise the newly-created PAs. This evaluates that
back ups of PAs can be made available for future use or reference.

7.3 Evaluation of matrix views and tables

The distribution of the system as a project platform for models to requirements
traceability has been established. The different types of associations have been
tested and the relationships have been visualised. To visualise the information
carried by these associations and relationships, the model was viewed using Matrix
Views and Tables that were described in Section 5.2.

Matrix view

Section 5.2.2 presented matrix views, and the how complex it can be when dealing
with a model artifacts with many requirements. The FTR ASIC Project require-
ments are of such complexity. To extract the better performance with matrix, the
method described in Section 6.5.3 was used and the results observed below.

Using this method, it was observed that matrix views can be generated for each
package in the diagram, as well as different hierarchies of the packages. Ihis method
ensured the matrix view is populated with information without exceeding the screen
capacity, as shown in Figure 7.10.

93

7. Case study-based evaluation

Figure 7.10: Confirmation of remote DNG artifacts in a matrix view

Figure 7.10 shows a cross-section of the matrix created by scoping the matrix layout
from “FunctionalModel” to “Requirement”, while setting the scope for the view to
“FTR Concept” project. It can be observed that the requirements with IDs “567149”
and “567355” which have been used for the “Druck zur Verfuegung stellen” and
“MEMSSig Messen” in the previous sections are visible in the matrix, while other
cells are empty. From the matrix view, any requirement that is supposed to link to
a model artifact can simply be added on the matrix as an “OSLC Link”.

Table view

Tables were described in Section 5.2.1 as being “more pragmatic”. Its implemen-
tation has already been described in Section 6.5.3. The extension applied to tables
was also discussed and the result shown in Figure 6.15(b).

Project-specific artifacts were created and required attributes were applied. These
artifacts were added to the column section of DNG (see Table 6.2). To analyse
this result using the FTR Project, the images shown in Figure 7.11 are used. They
compare the output of the default “Remote Artifacts” and the extention applied to
a table in the FTR Project.

(a) Context view in DNG

94

7. Case study-based evaluation

(b) Default table in RR

(c) Applied JSON code

(d) Remote artifacts section in RR

(e) Customised table

Figure 7.11: Display of available requirement artifacts

95

7. Case study-based evaluation

In Figure 7.11(a), “Maximum”, “Minimum” and “ASIL”42 were defined and added
to the DNG column as custom artifacts. The attributes were defined to use the
data type “Float” and “Enumerated” as appropriate (see Table 6.1). These custom
artifacts were not automatically transferred to the RR table shown in Figure 7.11(b).
Neither were they visible in the remote artifacts section of the RR model view
(see Section 7.1). The requirement attributes sent to RMM by default are the five
information fields shown in Figure 7.11(b).

Figure 7.11(c) is a snippet of the JSON code that added “tags” as a request for the
information sent from DNG. This code was added to configuration file mentioned
in Section 6.5.3. The code requests that, the DNG properties, which are the named
attributes available in DNG, be sent to RR (see Section 6.5.3). In Figure 7.11(d),
“ASIL”, “Min” and “Max” are attached as “Tags” to the requirement with ID
“567149”. The same requirement is visible in the RR remote requirements table in
Figure 7.11(a) in DNG, as well as in the RR table of Figure 7.11(b).

The Tags returned were selected as Table Layout information. The resultant table
is as shown in Figure 7.11(e). Both table views of Figure 7.11 are available in the
RR model. However, this information is not automatically propagated to RMM.
Furthermore, this method only configures the View for each workstation or for each
project.

The entries made in DNG do not go through the change sets. Therefore, “Accept”
action was not required to transport the updates to RR. Rather, the image in
Figure 7.12 captured the appearance of the RMM connection indicator.

Figure 7.12: Notification for obselete requirement artifacts

Figure 7.12 shows the view of RMM-based model when the information in DNG and
that which the model currently has are not synchronised. The red dot indicates that
a refresh is required. The top right hand side of Figure 7.12 is the RMM refresh
button. Refreshing the model or just the RMM connection, followed by a refresh of

42ASIL is an acronym for Automotive Safety Integrity Level, a risk classification metrics defined
by the ISO 26262 standards.

96

7. Case study-based evaluation

the table ensures the updated values from DNG were retrieved. This information
populates the table automatically. This concept has already been described (see the
illustrations of Figures 6.2 and 6.7).

Gap analysis and tracing

The main focus of this work was born out of the need for easy and efficient traceabil-
ity. Providing a concise and compact view of the relationships between the different
artifacts is one efficient way of achieving that aim. A concise and compact view has
already been established using matrix and table views. The use of such methods as
matrices and tables provide what is known as “Gap Analysis”.

Gap analysis is any means of analysing the model artifacts and matching them
against the requirements that link to them. That is, a model artifact can be profiled
and matched with the requirements. Alternatively, a requirement artifact is profiled
and matched against model artifacts. This analysis is more effectively done using
tables and matrices. When matched, any cell that is empty in the matrix or table
shows that a trace is missing. Also, the requirements can be visually compared
to the models to find any missing links. In the event of a missing link during the
analysis, the stakeholder responsible for fulfilling the missing part can be tagged for
notification.

Matrices and tables provide comprehensive views of the model and requirement
artifacts’ relationships. It ensures that visual traceability between the model and
requirement artifacts can be established using the links provided by the different
systems (DNG, RMM, RR and RTC).

Gap analysis was performed using matrix and table view methods. Missing items
were added directly on the matrix views and tables. Some modifications were also
made and the newly added information were propagated through the collaborative
platform. Every workspace connected to the FTR Project received the updated
information when they were checked-in.

7.4 Recommendations

To promote uniformity in the usage of the prescribed methods, a uniform approach
by all collaborators on a project using the tool-chain is required. Recommendations
were applied for each workspace associated with the FTR Concept Project. It is
premised as an action and decision mechanism for promoting uniformity in the
practice of MBSE. It was based on the evaluations made on its application to the
FTR Concept Project. These recommendations consider the basic setup according
to the preceeding sections as already in place. This approach is specified by the use
of the flow charts, as shown in Figure 7.13.

97

7. Case study-based evaluation

(a) Associating artifacts (b) Using AM

Figure 7.13: Decision process for using the platform

This is particularly with respect to the module developers and the requirements
they fulfil with the models. Figure 7.13(a) proposes a decision-based process for
the linking of artifacts. It starts with a model artifact in RR. If the addition or
modification of the artifact in RR is complete, it is linked to other artifacts of
interest. The artifact could be a requirement or a test case. It can also be linked
to a work item addressed to a collaborator. If the required artifact to be linked to
the model is not available, it is first created. If it is existing, but incomplete, it is
modified. The model is saved afterwards. After saving the model, it is checked in
to the associated workspace. This makes it available a as server-based artifact.

The next part refers to the download and upload of the model to the AM PA.
To avoid conflicts between different versions of collaborative artifacts in the par-
ticipating workspaces and loss of data, the process captured in Figure 7.13(b) is
recommended. Before checking in to the RMM of the specific project, it is recom-
mended to first check for available updates in the workspace. This helps to keep the
flow of the data in and out of the workspace sequential. Although updates avail-
able in a workspace can be ignored before existing the collaborative platform, it is
recommended to retrieve the available changes before exiting. This helps to keep
the sandbox associated with the workspace current and consistent with the latest
available collaboration information.

98

7. Case study-based evaluation

7.5 Summary

This chapter focused on applying the methodologies and procedures that resulted
from the previous chapter. It highlighted, referenced and exemplified the incon-
sistencies that are introduced by the use of model-defined requirement artifacts.
This was immediately contrasted against the use of a RM database. The model
and requirement artifacts were thus linked. Following the evaluation of remotely-
defined requirement artifacts was the association of the other PAs and their peculiar
artifacts to the already established relationship between model and requirement ar-
tifacts. The analyses of using names to effect an easy traceability approach amongst
the different sets of artifacts were evaluated. Configuration, security and protection
measures for access restriction to specific artifacts were also evaluated. This in-
cluded application of baselines and versioning of the artifacts. This was followed by
the analyses of using extended and customised tables and matrices for gap analyses
and tracing amongst the artifacts. The answers to some of the questions from Sec-
tion 1.1 were explicitly and implicitly provided. Recoomendations were made for the
use of the resulting tool-chain to promote uniformity of use across the development
platform as a sequence of actions and decisions. These recommendations

99

8 Conclusion

8.1 Summary

As stated in the research objectives of this work (Section 1.1.2),the focal point of
this research work is on the development of actionable steps to observe in order
to promote MBSE in ASIC development. Part of these steps include the effective
traceability of model artifacts to the requirements they fulfil. The steps also evolve
into a set of methodologies.

To understand what methodologies entail and to provide them, the work started with
a research on methodologies. The applied approach in this work is documented in
Section 1.2. Based on this applied approach, some questions were developed as a
guide towards the realisation of a required solution. These questions were introduced
in Sections 1.1.1 and 1.1.2 as the research questions. They did not seek to find
desired answers, but were focused on realising outcomes that will guide the decision
makers on what course of actions to take going forward. For reference purpose, these
questions are repeated here.

Under “Aim and scope of this thesis” (Section 1.1.1), the questions were:

1. Is requirements traceability in ASIC module development possible?

2. Does it improve communication among the stakeholders?

3. Can it help provide the missing contexts of requirements?

4. Does it improve efficiency?

5. Will it spawn a more pragmatic development process?

6. Will the process be better managed?

The questions above were developed from the informal “kick-off” meetings and in-
terview sessions that were conducted in the discovery and knowledge acquisition
phases of this research43. These sessions were with some people who are directly
involved in the development of ASIC in some way. People who have direct impact in
the ASIC development have been introduced as “stakeholders” in Chapter 1. Each
stakeholder faces different challenges in the development process.

43The knowledge of the stakeholders of the ASIC development process were collated

100

8. Conclusion

To provide answers to the above research questions, the following summary of ques-
tions were developed as “Research objectives” in Section 1.1.2:

1. What are requirements?

2. What is requirements traceability?

3. Is traceability specific to a particular systems’ domain?

4. Are there standard practices?

5. If yes, how can other solutions be improved or adapted?

6. How can it be used in ASIC development?

This approach was formed in line with the hybrid, solution-oriented research anal-
ysis methodology deduced from Section 1.2. The idea is to answer the first set of
questions by providing answers to the second. An answer might be objective or sub-
jective. The answers are not necessarily chronologically aligned with the questions.
In this chapter, the answers are chronicled and cited as applicable. For context, the
first sets of questions are referred to as “A”, while the second set are tagged “B”44.

Starting with B.1 and B.2, the answers to “What are requirements?” and “What
is requirements traceability?” can be found explicitly in Section 2.2 and 3.9. The
discussions around those sections also provide the proper contexts for the answers.
Those two answers lead directly to the answer of A.1 (“Is requirements traceability
in ASIC module development possible?”). The answer to which is, “yes”, but de-
pending on whether the module part can be developed using SysML. The answer
is yes, because it has been used during the course of this work to test with sample
parts being developed. However, if the part cannot be developed with SysMl, but
by a different tool, then an integration of the tool with SysML has to be studied.
SysML is suitable for handling requirements as a part of a model and should be
explored as an integrated solution with other modelling standards and systems. It
should be noted that, Albinet et al [8] has worked on such approach with success.

Continuing with B.3 and B.4 as a single block of questions: yes, there are standard
practices, relative to specific domains. These can be found in this work in Sec-
tions 3.9, 5 and 7, as well as in Delligatti [53:7]. There are also methodologies that
are common to almost all. The use of tables, lists and matrices is common amongst
all systems domains. Therefore, traceability of requirements is not peculiar to ASIC,
in reference to B.4. If the ideas communicated in this work are judiciously adhered
to, the framework provided by the implemented solutions are optimal for questions
A.3, A.4 and B.5. The ideas include linking the additions made to their sources and
destinations, as well as checking-in and accepting modified artifacts regularly. This
is on the assumption that the requisite internet connectivity is available.

44“Aim and scope of this thesis” questions are tagged “A.1” to “A.6”, while those of “Research
objectives” are “B.1 to B.6”.

101

8. Conclusion

Further analysis of Sections 5 and 7 partly reveals some suitable answers to question
A.5. The complete answer is quite very subjective. However, the focus of this work
is to provide answers and independent on whether the provided answer is favourable
or not. The execution and manner of use of the provided methodologies will very
much determine how well a pragmatic process ensues.

The pragmatism of the methodologies outlined in this work stems from the fact that,
ALM technology and the implementation in CLM platform enhances collaboration.
SE practice using ALM is advised, so as to promote efficiency. Which leads directly
to the answer of A.6: yes, the use of the outlined methods and systems will provide
a more involving ASIC development process, ensured by using a collaborative tool-
chain. Improved collaboration ensures better productivity.

And lastly, the entirety of this work is the “how it can be used in ASIC production”
(B.6), to the best of the availability of the parts of the modules to be designed,
which is also related to the answer provided for B.4. Recommendations for the
actual development of modules and their traceability to the requirements they fulfil
is outlined in Section 7.4.

8.2 Future research

In Section 3.1 the idea of using models as FS was introduced. It also skimly men-
tioned that, specifications should be represented either as model or text artifacts,
but not both. This would improve the efficiency of the development process. It
would also promote artifact reuse and adaptation. While the use of model artifacts
will promote more MBSE, some things might still be represented as texts. An exam-
ple could be the contexts of a requirement or use case, as provided by the customer
or as captured by the architect.

As is, this work focused on tracing the relationships between model and requirements
artifacts. Traceability and relationship methodologies has been fulfilled by this work,
having provided a method for linking and synchronising the model and requirements
atifacts. It has also prescribed methods for visualising the relationships by the use
of “views” and “gap analysis”. The next phase could be to separate the modelling
and requirements domains as two different sets of specification documentation, but
without repetitions. That is, the model-based and the text-based artifact specifica-
tions will be handled and processed in the AM and RM systems, respectively. This
would require some automation and standard mapping methodologies.

Closely related to the future scope highlighted above is the merging of both domains
of specification into a single documentation, especially one provided to the customer
as user specification (see Figure 3.1). As at the time of this work, the documents
related to the models and specifications can only be generated for each system
separately. That is, documents are generated for the models from the SysML-based

102

8. Conclusion

tool. A different set of documents are also generated for the RM system. Generating
a single document that will properly map and match the models to the requirments
contextually and hierarchically will further enhance productivity.

The methodologies that have been prescribed here largely relates to implementing
the ASIC modules. To evolve into MBSE, the module development will be based
on SysML. The testing and verification of these modules is recommended to also
adopt a MBSE approach. Only mention to testing activities in this work were
related to the use of “mock tests” in order to naming conventions. However, certain
tests, verification and validation activities are specific to the particular design and
development process. This means that, adopting the methods prescribed in this
work will likely render some of the other processes that depend on the already
available processes unsuitable or inefficient to the newer methods. For this reason,
studies that will focus on other processes that depend on the development process
directly modified by this process are recommended. This would help review and
streamline the interwoven methods into a development process that integrates all
the design and development stages of the ASIC development.

103

References

[1] Quality Management, Statistics and Certification Standards Committee,
Project management - Project management systems - Part 5: Concepts, Jan.
2009.

[2] M. Luisa, F. Mariangela, and N. I. Pierluigi, “Market research for requirements
analysis using linguistic tools,” Requirements Engineering, vol. 9, no. 1, pp. 40–
56, Feb. 1, 2004, issn: 0947-3602, 1432-010X. doi: 10.1007/s00766-003-
0179-8. [Online]. Available: http://link.springer.com/10.1007/s00766-
003-0179-8 (visited on 02/11/2020).

[3] Aberdeen Group, “The transition from 2D drafting to 3D modelling bench-
mark report: Improving engineering efficiency,” Aberdeen Group, Inc., p. 25,
September Sep. 2006. [Online]. Available: http://images.autodesk.com/
apac_korea_main/files/digital_prototyping_benchmark_report0.pdf

(visited on 02/14/2020).

[4] H. J.M. Veendrick, Nanometer CMOS ICs From Basics to ASICs, Second
Edition. 2017. doi: 10.1007/978-3-319-47597-4.

[5] G. Liebel, M. Tichy, E. Knauss, O. Ljungkrantz, and G. Stieglbauer, “Organ-
isation and communication problems in automotive requirements engineer-
ing,” Requirements Eng, vol. 23, no. 1, pp. 145–167, Mar. 2018, issn: 0947-
3602, 1432-010X. doi: 10.1007/s00766-016-0261-7. [Online]. Available:
http://link.springer.com/10.1007/s00766-016-0261-7 (visited on
02/26/2020).

[6] C. Ebert and C. Jones, “Embedded Software: Facts, Figures, and Future,”
Computer, vol. 42, no. 4, pp. 42–52, Apr. 2009, Conference Name: Computer,
issn: 1558-0814. doi: 10.1109/MC.2009.118.

[7] J. Zimmermann, S. Stattelmann, A. Viehl, O. Bringmann, and W. Rosenstiel,
“Model-driven virtual prototyping for real-time simulation of distributed em-
bedded systems,” in 7th IEEE International Symposium on Industrial Embed-
ded Systems (SIES’12), Karlsruhe, Germany: IEEE, Jun. 2012, pp. 201–210,
isbn: 978-1-4673-2684-1 978-1-4673-2685-8 978-1-4673-2683-4. doi: 10.1109/
SIES.2012.6356586. [Online]. Available: http://ieeexplore.ieee.org/
document/6356586/ (visited on 02/27/2020).

[8] A. Albinet, J.-L. Boulanger, H. Dubois, M.-A. Peraldi-Frati, Y. Sorel, and
Q.-D. Van, “Model-based methodology for requirements traceability in em-
bedded systems,” p. 11,

XIV

https://doi.org/10.1007/s00766-003-0179-8
https://doi.org/10.1007/s00766-003-0179-8
http://link.springer.com/10.1007/s00766-003-0179-8
http://link.springer.com/10.1007/s00766-003-0179-8
http://images.autodesk.com/apac_korea_main/files/digital_prototyping_benchmark_report0.pdf
http://images.autodesk.com/apac_korea_main/files/digital_prototyping_benchmark_report0.pdf
https://doi.org/10.1007/978-3-319-47597-4
https://doi.org/10.1007/s00766-016-0261-7
http://link.springer.com/10.1007/s00766-016-0261-7
https://doi.org/10.1109/MC.2009.118
https://doi.org/10.1109/SIES.2012.6356586
https://doi.org/10.1109/SIES.2012.6356586
http://ieeexplore.ieee.org/document/6356586/
http://ieeexplore.ieee.org/document/6356586/

References

[9] R. Wieringa and A. Morah, “Technical action research as a validation method
in information systems design science,” in Design science research in informa-
tion systems: advances in theory and practice: 7th international conference,
DESRIST 2012, Las Vegas, NV, USA, May 14-15, 2012: proceedings, K. Pef-
fers, M. Rothenberger, and W. Kuechler, Eds., ser. Lecture notes in computer
science, OCLC: ocn785082591, vol. 7286, Berlin, Heidelberg: Springer, 2012,
pp. 220–238, isbn: 978-3-642-29862-2. doi: 10.1007/978-3-642-29863-9.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-
29863-9.

[10] H. Lempinen, M. Rossi, and V. K. Tuunainen, “Integrating organisational de-
sign with it design: The queensland health payroll case,” in Design science
research in information systems: advances in theory and practice: 7th inter-
national conference, DESRIST 2012, Las Vegas, NV, USA, May 14-15, 2012:
proceedings, K. Peffers, M. Rothenberger, and W. Kuechler, Eds., ser. Lecture
notes in computer science, OCLC: ocn785082591, vol. 7286, Berlin, Heidel-
berg: Springer, 2012, pp. 52–65, isbn: 978-3-642-29862-2. doi: 10.1007/978-
3-642-29863-9. [Online]. Available: http://link.springer.com/10.1007/
978-3-642-29863-9.

[11] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, and R. Lindgren, “Action
design research,” MIS Quarterly, vol. 35, no. 1, pp. 37–56, Mar. 2011, issn:
02767783. doi: 10.2307/23043488. [Online]. Available: https://www.jstor.
org/stable/10.2307/23043488 (visited on 02/22/2020).

[12] E. Tüzün, B. Tekinerdogan, Y. Macit, and K. İnce, “Adopting integrated
application lifecycle management within a large-scale software company: An
action research approach,” Journal of Systems and Software, vol. 149, pp. 63–
82, Mar. 2019, tex.publisher: Elsevier Inc., issn: 01641212. doi: 10.1016/j.
jss.2018.11.021.

[13] D. Amalfitano, V. De Simone, S. Scala, and A. R. Fasolino, “A model-driven
engineering approach for supporting questionnaire-based gap analysis pro-
cesses through application lifecycle management systems,” Software Quality
Journal, Jan. 17, 2020, issn: 0963-9314, 1573-1367. doi: 10.1007/s11219-
019-09479-w. [Online]. Available: http://link.springer.com/10.1007/
s11219-019-09479-w (visited on 02/19/2020).

[14] W. Hardt and W. Rosenstiel, “Prototyping of tightly coupled
hardware/software-systems,” p. 35, 1997.

[15] H.-J. Eikerling, W. Hardt, J. Gerlach, and W. Rosenstiel, “A methodology for
rapid analysis and optimization of embedded systems,” in Proceedings IEEE
Symposium and Workshop on Engineering of Computer-Based Systems, ISSN:
null, Mar. 1996, pp. 252–259. doi: 10.1109/ECBS.1996.494536.

XV

https://doi.org/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
https://doi.org/10.1007/978-3-642-29863-9
https://doi.org/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
https://doi.org/10.2307/23043488
https://www.jstor.org/stable/10.2307/23043488
https://www.jstor.org/stable/10.2307/23043488
https://doi.org/10.1016/j.jss.2018.11.021
https://doi.org/10.1016/j.jss.2018.11.021
https://doi.org/10.1007/s11219-019-09479-w
https://doi.org/10.1007/s11219-019-09479-w
http://link.springer.com/10.1007/s11219-019-09479-w
http://link.springer.com/10.1007/s11219-019-09479-w
https://doi.org/10.1109/ECBS.1996.494536

References

[16] T. U. Chemnitz. (Sep. 27, 2019). Research | computer engineering | depart-
ment of computer science | TU chemnitz. Archive Location: Worldwide Last
Modified: 2019-09-27 Library Catalog: www.tu-chemnitz.de, [Online]. Avail-
able: https://www.tu-chemnitz.de/informatik/ce/research/research.
php.en (visited on 04/29/2020).

[17] T. U. Chemnitz. (Sep. 26, 2019). Technische Informatik | Fakultät für Infor-
matik | TU Chemnitz. Archive Location: Worldwide Last Modified: 2019-09-26
Library Catalog: www.tu-chemnitz.de, [Online]. Available: https://www.tu-
chemnitz.de/informatik/ce/research/areiom-adm.php.en (visited on
04/29/2020).

[18] N. Englisch, O. Khan, R. Mittag, F. Hänchen, A. Heller, and W. Hardt,
“YellowCar: Automotive multi-ECU demonstrator platform,” 2017, ISBN:
9783885796695 Publisher: Gesellschaft für Informatik, Bonn, issn: 1617-5468.
doi: 10.18420/IN2017_151. [Online]. Available: https://dl.gi.de/handle/
20.500.12116/3916 (visited on 03/04/2020).

[19] T. U. Chemnitz. (Jan. 22, 2018). Technische Informatik | Fakultät für Infor-
matik | TU Chemnitz. Archive Location: Worldwide Last Modified: 2018-01-
22 Library Catalog: www.tu-chemnitz.de, [Online]. Available: https://www.
tu- chemnitz.de/informatik/ce/research/yellowcar.php (visited on
04/29/2020).

[20] T. U. Chemnitz. (Oct. 30, 2019). Teaching | computer engineering | depart-
ment of computer science | TU chemnitz. Archive Location: Worldwide Last
Modified: 2019-10-30 Library Catalog: www.tu-chemnitz.de, [Online]. Avail-
able: https://www.tu-chemnitz.de/informatik/ce/lectures/lectures.
php.en (visited on 04/29/2020).

[21] T. U. Chemnitz. (Jan. 5, 2016). Publikationen | Technische Informatik |
Fakultät für Informatik | TU Chemnitz. Archive Location: Worldwide Last
Modified: 2016-01-05 Library Catalog: www.tu-chemnitz.de, [Online]. Avail-
able: https : / / www . tu - chemnitz . de / informatik / ce / publications /

?controller=index&PersonID1=30 (visited on 04/29/2020).

[22] BOSCH Automotive Electronics. (2019). About us, Bosch Semiconductors,
[Online]. Available: https://www.bosch-semiconductors.com/about-us/
(visited on 02/15/2020).

[23] Bosch. (2020). The bosch group at a glance, Bosch Global. Library Catalog:
www.bosch.com, [Online]. Available: https://www.bosch.com/company/

our-figures/ (visited on 04/29/2020).

[24] I Wagner. (Apr. 27, 2020). Top automotive suppliers 2018, Statista. Library
Catalog: www.statista.com, [Online]. Available: https://www.statista.

com/statistics/199703/10- leading- global- automotive- original-

equipment-suppliers/ (visited on 04/29/2020).

XVI

https://www.tu-chemnitz.de/informatik/ce/research/research.php.en
https://www.tu-chemnitz.de/informatik/ce/research/research.php.en
https://www.tu-chemnitz.de/informatik/ce/research/areiom-adm.php.en
https://www.tu-chemnitz.de/informatik/ce/research/areiom-adm.php.en
https://doi.org/10.18420/IN2017_151
https://dl.gi.de/handle/20.500.12116/3916
https://dl.gi.de/handle/20.500.12116/3916
https://www.tu-chemnitz.de/informatik/ce/research/yellowcar.php
https://www.tu-chemnitz.de/informatik/ce/research/yellowcar.php
https://www.tu-chemnitz.de/informatik/ce/lectures/lectures.php.en
https://www.tu-chemnitz.de/informatik/ce/lectures/lectures.php.en
https://www.tu-chemnitz.de/informatik/ce/publications/?controller=index&PersonID1=30
https://www.tu-chemnitz.de/informatik/ce/publications/?controller=index&PersonID1=30
https://www.bosch-semiconductors.com/about-us/
https://www.bosch.com/company/our-figures/
https://www.bosch.com/company/our-figures/
https://www.statista.com/statistics/199703/10-leading-global-automotive-original-equipment-suppliers/
https://www.statista.com/statistics/199703/10-leading-global-automotive-original-equipment-suppliers/
https://www.statista.com/statistics/199703/10-leading-global-automotive-original-equipment-suppliers/

References

[25] L. Trego. (Jun. 13, 2019). Infineon acquires cypress, AUTONOMOUS VE-
HICLE TECHNOLOGY. Library Catalog: www.autonomousvehicletech.com,
[Online]. Available: https://www.autonomousvehicletech.com/articles/
1812-infineon-acquires-cypress (visited on 04/29/2020).

[26] A. Holst. (Jan. 9, 2019). Semiconductor demand worldwide by end use 2018,
Statista, [Online]. Available: https://www.statista.com/statistics/

894267/semiconductor-market-share-worldwide-by-end-use/ (visited
on 02/13/2020).

[27] H. S. Bennett, “Will future measurement needs of the semiconductor industry
be met?” J Res Natl Inst Stand Technol, vol. 112, no. 1, pp. 25–38, 2007, issn:
1044-677X. doi: 10.6028/jres.112.002. [Online]. Available: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC4654602/ (visited on 02/15/2020).

[28] P. Kassanos, H. Ip, and G. Z. Yang, “Ultra-low power application-specific
integrated circuits for sensing,” in Implantable sensors and systems - from
theory to practice, New York, NY: Springer Berlin Heidelberg, 2018, pp. 281–
437, isbn: 978-3-319-69747-5.

[29] BOSCH. (Nov. 5, 2018). Semiconductors – market of the future: Bosch is
growing faster than the market, Bosch Media Service, [Online]. Available:
https://www.bosch-presse.de/pressportal/de/en/semiconductors-

%E2%80%93-market-of-the-future-bosch-is-growing-faster-than-

the-market-174464.html (visited on 02/15/2020).

[30] P. Valdes-Dapena. (May 20, 2015). How airbags (should) work, CNNMoney,
[Online]. Available: https://money.cnn.com/2015/05/20/autos/how-
airbags-work/index.html (visited on 02/15/2020).

[31] D. Glassbrenner and M. Starnes, “Lives saved calculations for seat belts and
frontal air bags,” National Highway Traffic Safety Administration, Tech. Rep.,
2009. doi: 10.13140/RG.2.2.15177.44647. [Online]. Available: http:

//rgdoi.net/10.13140/RG.2.2.15177.44647 (visited on 02/15/2020).

[32] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Müller, B. Penzenstadler, K.
Pohl, and T. Weyer, “Guiding requirements engineering for software-intensive
embedded systems in the automotive industry,” Comput Sci Res Dev, vol. 29,
no. 1, pp. 21–43, Feb. 1, 2014, issn: 1865-2042. doi: 10.1007/s00450-010-
0136-y. [Online]. Available: https://doi.org/10.1007/s00450-010-0136-
y (visited on 02/06/2020).

[33] P. E. Lanigan, S. Kavulya, P. Narasimhan, T. E. Fuhrman, and M. A. Salman,
“Diagnosis in automotive systems: A survey,” Carnegie Mellon University,
p. 22, General Motors Research & Development Jun. 2011. [Online]. Available:
https://www.pdl.cmu.edu/ftp/ProblemDiagnosis/CMU-PDL-11-110.pdf

(visited on 03/04/2020).

XVII

https://www.autonomousvehicletech.com/articles/1812-infineon-acquires-cypress
https://www.autonomousvehicletech.com/articles/1812-infineon-acquires-cypress
https://www.statista.com/statistics/894267/semiconductor-market-share-worldwide-by-end-use/
https://www.statista.com/statistics/894267/semiconductor-market-share-worldwide-by-end-use/
https://doi.org/10.6028/jres.112.002
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654602/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654602/
https://www.bosch-presse.de/pressportal/de/en/semiconductors-%E2%80%93-market-of-the-future-bosch-is-growing-faster-than-the-market-174464.html
https://www.bosch-presse.de/pressportal/de/en/semiconductors-%E2%80%93-market-of-the-future-bosch-is-growing-faster-than-the-market-174464.html
https://www.bosch-presse.de/pressportal/de/en/semiconductors-%E2%80%93-market-of-the-future-bosch-is-growing-faster-than-the-market-174464.html
https://money.cnn.com/2015/05/20/autos/how-airbags-work/index.html
https://money.cnn.com/2015/05/20/autos/how-airbags-work/index.html
https://doi.org/10.13140/RG.2.2.15177.44647
http://rgdoi.net/10.13140/RG.2.2.15177.44647
http://rgdoi.net/10.13140/RG.2.2.15177.44647
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1007/s00450-010-0136-y
https://doi.org/10.1007/s00450-010-0136-y
https://www.pdl.cmu.edu/ftp/ProblemDiagnosis/CMU-PDL-11-110.pdf

References

[34] D. H. Kim and S. K. Lim, “Impact of TSV and Device Scaling on the Quality
of 3D ICs,” in More than Moore Technologies for Next Generation Computer
Design, R. O. Topaloglu, Ed. New York, NY: Springer New York, 2015, pp. 1–
22, isbn: 978-1-4939-2162-1 978-1-4939-2163-8. doi: 10.1007/978-1-4939-
2163-8_1. [Online]. Available: http://link.springer.com/10.1007/978-
1-4939-2163-8 (visited on 02/16/2020).

[35] W. J. Spencer and C. L. Seitz, “Engines of Progress: Semiconductor Technol-
ogy Trends and Issues,” in Defining a Decade: Envisioning CSTB’s Second
10 Years. Washington, D.C.: National Academies Press, Sep. 9, 1997, pp. 22–
35, isbn: 978-0-309-05933-6. doi: 10.17226/5903. [Online]. Available: http:
//www.nap.edu/catalog/5903 (visited on 02/13/2020).

[36] A. Kirchner, J.-H. Oetjens, T. Kogel, and O. Bringmann, “Using SysML for
modeling and generation of virtual platforms,” presented at the SNUG Europe
2019 Proceedings, 2019, p. 26.

[37] A. Kirchner, J.-H. Oetjens, and O. Bringmann, “Using SysML for modelling
and code generation for smart sensor ASICs,” in 2018 Forum on Specification
& Design Languages (FDL), Garching: IEEE, Sep. 2018, pp. 5–16, isbn: 978-
1-5386-6418-6. doi: 10.1109/FDL.2018.8524051. [Online]. Available: https:
//ieeexplore.ieee.org/document/8524051/ (visited on 08/23/2019).

[38] N. Prakash and D. Prakash, Data Warehouse Requirements Engineering a
decision based approach. Singapore: Springer Singapore, 2018, isbn: 978-981-
10-7018-1 978-981-10-7019-8. doi: 10.1007/978-981-10-7019-8. [Online].
Available: http://link.springer.com/10.1007/978- 981- 10- 7019-8
(visited on 02/19/2020).

[39] R. R. Young, The Requirements Engineering Handbook. Artech House, 2004,
288 pp., Google-Books-ID: Rkulpi4N3JsC, isbn: 978-1-58053-618-9.

[40] E. O. for Civil Aviation Equipment. (). EUROCAE-european organization for
civil aviation equipment, [Online]. Available: https://global.ihs.com/

standards.cfm?publisher=EUROCAE (visited on 02/19/2020).

[41] Radio Technical Commission for Aeronautics. (). Home | RTCA, [Online].
Available: https://www.rtca.org/ (visited on 02/19/2020).

[42] ISO/TC 22/SC 32 Electrical and electronic components and general system
aspects and Electrical and electronic components and general system aspects,
ISO 26262-1:2018(en), Road vehicles — Functional safety — Part 1: Vocab-
ulary, Dec. 2018. [Online]. Available: https://www.iso.org/obp/ui/#iso:
std:iso:26262:-1:ed-2:v1:en (visited on 03/01/2020).

[43] P. David and M Shawky, “Supporting ISO 26262 with SysML, benefits and
limits,” ESREL 2010, p. 9, Sep. 2010. [Online]. Available: https://hal.

archives-ouvertes.fr/hal-00579540 (visited on 01/19/2020).

XVIII

https://doi.org/10.1007/978-1-4939-2163-8_1
https://doi.org/10.1007/978-1-4939-2163-8_1
http://link.springer.com/10.1007/978-1-4939-2163-8
http://link.springer.com/10.1007/978-1-4939-2163-8
https://doi.org/10.17226/5903
http://www.nap.edu/catalog/5903
http://www.nap.edu/catalog/5903
https://doi.org/10.1109/FDL.2018.8524051
https://ieeexplore.ieee.org/document/8524051/
https://ieeexplore.ieee.org/document/8524051/
https://doi.org/10.1007/978-981-10-7019-8
http://link.springer.com/10.1007/978-981-10-7019-8
https://global.ihs.com/standards.cfm?publisher=EUROCAE
https://global.ihs.com/standards.cfm?publisher=EUROCAE
https://www.rtca.org/
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://hal.archives-ouvertes.fr/hal-00579540
https://hal.archives-ouvertes.fr/hal-00579540

References

[44] A. Guegan and A. Bonnaud, “Assessing the maturity of interface design,” in
Complex systems design & management: Proceedings of the Ninth Interna-
tional Conferenceon Complex Systems Design & Management CSD&M Paris
2018, E. Bonjour, D. Krob, L. Palladino, and F. Stephan, Eds., New York, NY:
Springer Nature Switzerland AG, 2019, pp. 56–66, isbn: 978-3-030-04208-0.
doi: 10.1007/978-3-030-04209-7_5.

[45] L. Karlsson, s. G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson,
“Requirements engineering challenges in market-driven software development
– an interview study with practitioners,” Information and Software Technol-
ogy, vol. 49, no. 6, pp. 588–604, Jun. 2007, issn: 09505849. doi: 10.1016/j.
infsof.2007.02.008. [Online]. Available: https://linkinghub.elsevier.
com/retrieve/pii/S0950584907000183 (visited on 03/04/2020).

[46] F. Stallinger, R. Neumann, R. Schossleitner, and R. Zeilinger, “Linking soft-
ware life cycle activities with product strategy and economics: Extending
iso/iec 12207 with product management best practices,” in Software Process
Improvement and Capability Determination: 11th International Conference,
SPICE 2011, Dublin, Ireland, May 30 - June 1, 2011. Proceedings, R. V.
O'Connor, T. Rout, F. McCaffery, and A. Dorling, Eds., Springer Verlag, 2011,
pp. 157–168, isbn: 978-3-642-21232-1.

[47] A. R. Silva and M. Rosemann, “Design principles for inter-organizational
systems development – case hansel,” in Design science research in informa-
tion systems: advances in theory and practice: 7th international conference,
DESRIST 2012, Las Vegas, NV, USA, May 14-15, 2012: proceedings, K. Pef-
fers, M. Rothenberger, and W. Kuechler, Eds., ser. Lecture notes in computer
science, OCLC: ocn785082591, vol. 7286, Berlin, Heidelberg: Springer, 2012,
pp. 271–286, isbn: 978-3-642-29862-2. doi: 10.1007/978-3-642-29863-9.
[Online]. Available: http://link.springer.com/10.1007/978-3-642-
29863-9.

[48] S. A. Fricker, C. Thümmler, and A. Gavras, Eds., Requirements Engineer-
ing for Digital Health, Cham, Switzerland: Springer International Publishing,
2015, isbn: 978-3-319-09797-8 978-3-319-09798-5. doi: 10.1007/978-3-319-
09798-5. [Online]. Available: http://link.springer.com/10.1007/978-3-
319-09798-5 (visited on 02/06/2020).

[49] R. J. Wieringa and J. M. G. Heerkens, “The methodological soundness of
requirements engineering papers: A conceptual framework and two case stud-
ies,” Requirements Engineering, vol. 11, no. 4, pp. 295–307, Sep. 2006, issn:
0947-3602, 1432-010X. doi: 10.1007/s00766-006-0037-6. [Online]. Avail-
able: http://link.springer.com/10.1007/s00766-006-0037-6 (visited on
02/22/2020).

[50] C. Haskins, Ed., SYSTEMS ENGINEERING HANDBOOK : A GUIDE FOR
SYSTEM LIFE CYCLE PROCESSES AND ACTIVITIES, INCOSE-TP-

XIX

https://doi.org/10.1007/978-3-030-04209-7_5
https://doi.org/10.1016/j.infsof.2007.02.008
https://doi.org/10.1016/j.infsof.2007.02.008
https://linkinghub.elsevier.com/retrieve/pii/S0950584907000183
https://linkinghub.elsevier.com/retrieve/pii/S0950584907000183
https://doi.org/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
https://doi.org/10.1007/978-3-319-09798-5
https://doi.org/10.1007/978-3-319-09798-5
http://link.springer.com/10.1007/978-3-319-09798-5
http://link.springer.com/10.1007/978-3-319-09798-5
https://doi.org/10.1007/s00766-006-0037-6
http://link.springer.com/10.1007/s00766-006-0037-6

References

2003-002-03, Jun. 2006. [Online]. Available: https : / / www . incose . org /

systems-engineering (visited on 02/26/2020).

[51] L. Wen, D. Tuffley, and T. Rout, “Using composition trees to model and
compare software process,” in Software Process Improvement and Capability
Determination: 11th International Conference, SPICE 2011, Dublin, Ireland,
May 30 - June 1, 2011. Proceedings, R. V. O'Connor, T. Rout, F. McCaffery,
and A. Dorling, Eds., Springer Verlag, 2011, pp. 1–15, isbn: 978-3-642-21232-1.

[52] A. Drechsler, “Design science as design of social systems – implications for
information systems research,” in Design science research in information sys-
tems: advances in theory and practice: 7th international conference, DESRIST
2012, Las Vegas, NV, USA, May 14-15, 2012: proceedings, K. Peffers, M.
Rothenberger, and W. Kuechler, Eds., ser. Lecture notes in computer science,
OCLC: ocn785082591, vol. 7286, Berlin, Heidelberg: Springer, 2012, pp. 191–
205, isbn: 978-3-642-29862-2. doi: 10.1007/978-3-642-29863-9. [Online].
Available: http://link.springer.com/10.1007/978-3-642-29863-9.

[53] L. Delligatti, SysML Distilled: A Brief Guide to the Systems Modeling Lan-
guage. Addison-Wesley, Nov. 8, 2013, 304 pp., Google-Books-ID: 3bMJA-
gAAQBAJ, isbn: 978-0-13-343033-2.

[54] OMG®, OMG® Unified Modeling Language version 2.5, Mar. 1, 2015. [On-
line]. Available: https://www.omg.org/spec/UML/2.5/PDF (visited on
02/29/2020).

[55] OMG Systems Modeling Language (OMG® SysML®), Version 1.6, Nov. 2019.
[Online]. Available: https://www.omg.org/spec/SysML/1.6/PDF (visited on
03/06/2020).

[56] B. W. Boehm, Software Engineering Economics. Prentice-Hall, 1981, 800 pp.,
isbn: 978-0-13-822122-5. Google Books: VphQAAAAMAAJ.

[57] A. Kirchner, “Methodenübersicht”, Fixed-term.Chukwuma.Onuoha@de.bosch.com,
Apr. 17, 2020.

[58] D. Reimann, Projektplanung, Aug. 2, 2006. [Online]. Available: https://www.
flickr.com/photos/dbloete/204793785/ (visited on 02/07/2020).

[59] L. E. Hart, “Introduction to model-based system engineering (MBSE) and
SysML,” Presentation, INCOSE Chapter Meeting, Delaware Valley, Jul. 30,
2015, [Online]. Available: https://www.incose.org/docs/default-source/
delaware-valley/mbse-overview-incose-30-july-2015.pdf (visited on
02/01/2020).

[60] PivotPoint Technology Corp. (). MBSE works™: MBSE + SysML Overview -
What is MBSE? MBSEworks.com. Library Catalog: mbseworks.com, [Online].
Available: https://mbseworks.com/mbse-overview/index.html (visited on
03/06/2020).

XX

https://www.incose.org/systems-engineering
https://www.incose.org/systems-engineering
https://doi.org/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
https://www.omg.org/spec/UML/2.5/PDF
https://www.omg.org/spec/SysML/1.6/PDF
http://books.google.com/books?id=VphQAAAAMAAJ
https://www.flickr.com/photos/dbloete/204793785/
https://www.flickr.com/photos/dbloete/204793785/
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-july-2015.pdf
https://www.incose.org/docs/default-source/delaware-valley/mbse-overview-incose-30-july-2015.pdf
https://mbseworks.com/mbse-overview/index.html

References

[61] Object Management Group. (Oct. 21, 2019). MBSE wiki, [Online]. Available:
https://web.archive.org/web/20191021041347/http://www.omgwiki.

org/MBSE/doku.php (visited on 02/26/2020).

[62] S. Friedenthal, A. Moore, and R. Steiner, “OMG systems modeling language
(OMG SysML™) tutorial,” p. 132, Sep. 2009. [Online]. Available: http://www.
omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf (visited on
02/01/2020).

[63] E. Barnhart. (Dec. 4, 2018). What is MBSE? | systems engineering, evolved,
[Online]. Available: https://web.archive.org/web/20181204101354/http:
//vmcse.com/2016/03/13/what- is- mbse- deriving- a- definition/

(visited on 02/26/2020).

[64] C. Ebert, “Improving engineering efficiency with PLM/ALM,” Softw Syst
Model, vol. 12, no. 3, pp. 443–449, Jul. 2013, issn: 1619-1366, 1619-1374. doi:
10.1007/s10270-013-0347-3. [Online]. Available: http://link.springer.
com/10.1007/s10270-013-0347-3 (visited on 02/19/2020).

[65] O. Maksimenkova and A. Neznanov, “Blended learning in software engineering
education: The application lifecycle management experience with computer-
supported collaborative learning,” in 2015 International Conference on Inter-
active Collaborative Learning (ICL), Florence: IEEE, Sep. 2015, pp. 655–662,
isbn: 9781479987078. doi: 10.1109/ICL.2015.7318104. [Online]. Avail-
able: http : / / ieeexplore . ieee . org / document / 7318104/ (visited on
02/27/2020).

[66] F. Usmani, Configuration management vs change management, Dec. 11,
2019. [Online]. Available: https : / / pmstudycircle . com / 2012 / 01 /

configuration - management - vs - change - management/ (visited on
02/22/2020).

[67] A. Bucaioni, L. Addazi, A. Cicchetti, F. Ciccozzi, R. Eramo, S. Mubeen, and
M. Sjödin, “MoVES: A model-driven methodology for vehicular embedded
systems,” IEEE Access, vol. 6, pp. 6424–6445, 2018, Conference Name: IEEE
Access, issn: 2169-3536. doi: 10.1109/ACCESS.2018.2789400.

[68] OASIS Open Project. (Jan. 8, 2020). About | OSLC. Library Catalog:
open-services.net, [Online]. Available: https : / / web . archive . org / web /

20200108164210 / https : / / open - services . net / about/ (visited on
02/26/2020).

[69] M. Elaasar and A. Neal, “Integrating modeling tools in the development life-
cycle with OSLC: A case study,” in 16th International Conference, MOD-
ELS 2013 Model-Driven Engineering Languages and Systems, A. Moreira, B.
Schätz, J. Gray, A. Vallecillo, and P. Clarke, Eds., red. by D. Hutchison, T.
Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor,
O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D.

XXI

https://web.archive.org/web/20191021041347/http://www.omgwiki.org/MBSE/doku.php
https://web.archive.org/web/20191021041347/http://www.omgwiki.org/MBSE/doku.php
http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf
https://web.archive.org/web/20181204101354/http://vmcse.com/2016/03/13/what-is-mbse-deriving-a-definition/
https://web.archive.org/web/20181204101354/http://vmcse.com/2016/03/13/what-is-mbse-deriving-a-definition/
https://doi.org/10.1007/s10270-013-0347-3
http://link.springer.com/10.1007/s10270-013-0347-3
http://link.springer.com/10.1007/s10270-013-0347-3
https://doi.org/10.1109/ICL.2015.7318104
http://ieeexplore.ieee.org/document/7318104/
https://pmstudycircle.com/2012/01/configuration-management-vs-change-management/
https://pmstudycircle.com/2012/01/configuration-management-vs-change-management/
https://doi.org/10.1109/ACCESS.2018.2789400
https://web.archive.org/web/20200108164210/https://open-services.net/about/
https://web.archive.org/web/20200108164210/https://open-services.net/about/

References

Tygar, M. Y. Vardi, and G. Weikum, ser. Lecture Notes in Computer Sci-
ence, vol. 8107, Miami, FL, USA: Springer Berlin Heidelberg, 2013, pp. 154–
169, isbn: 978-3-642-41532-6 978-3-642-41533-3. doi: 10.1007/978-3-642-
41533-3. [Online]. Available: http://link.springer.com/10.1007/978-3-
642-41533-3 (visited on 02/22/2020).

[70] D. Emery. (Apr. 7, 2019). Standards, APIs, interfaces and bindings, [Online].
Available: https://web.archive.org/web/20190407090846/http://

oldwww.acm.org/tsc/apis.html (visited on 02/26/2020).

[71] How to Do in Java (Blogs). (Feb. 21, 2020). What is REST – learn to cre-
ate timeless REST APIs. Library Catalog: restfulapi.net, [Online]. Available:
https://restfulapi.net/ (visited on 02/26/2020).

[72] R. T. Fielding, “In information and computer science,” PhD thesis, 2000.
[Online]. Available: https : / / www . ics . uci . edu / ~fielding / pubs /

dissertation/fielding_dissertation.pdf (visited on 02/26/2020).

[73] Mulesoft. (Aug. 22, 2019). What is REST API design? | MuleSoft, MuleSoft,
[Online]. Available: https : / / web . archive . org / web / 20190822063738 /

https://www.mulesoft.com/resources/api/what-is-rest-api-design

(visited on 02/26/2020).

[74] M. I. Kamata and T. Tamai, “How does requirements quality relate to project
success or failure?” In 15th IEEE International Requirements Engineering
Conference (RE 2007), ISSN: 2332-6441, Oct. 2007, pp. 69–78. doi: 10.1109/
RE.2007.31.

[75] PwC, “Opportunities for the global semiconductor market Growing market
share by embracing AI,” Tech. Rep., 2019.

[76] O. Gotel and C. Finkelstein, “An analysis of the requirements traceability
problem,” in Proceedings of IEEE International Conference on Requirements
Engineering, Colorado Springs, CO, USA: IEEE Comput. Soc. Press, 1994,
pp. 94–101, isbn: 978-0-8186-5480-0. doi: 10.1109/ICRE.1994.292398. [On-
line]. Available: http://ieeexplore.ieee.org/document/292398/ (visited
on 02/22/2020).

[77] J. Dick, E. Hull, and K. Jackson, Requirements Engineering. Cham, Switzer-
land: Springer International Publishing, 2017, isbn: 978-3-319-61072-6 978-
3-319-61073-3. doi: 10 . 1007 / 978 - 3 - 319 - 61073 - 3. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-61073-3 (visited on
02/06/2020).

[78] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Rational solution for
collaborative lifecycle management v6.0.6.1 documentation. Library Cata-
log: www.ibm.com, [Online]. Available: https://www.ibm.com/support/
knowledgecenter / SSYMRC _ 6 . 0 . 6 . 1 / com . ibm . rational . clm . doc /

helpindex_clm.html (visited on 02/05/2020).

XXII

https://doi.org/10.1007/978-3-642-41533-3
https://doi.org/10.1007/978-3-642-41533-3
http://link.springer.com/10.1007/978-3-642-41533-3
http://link.springer.com/10.1007/978-3-642-41533-3
https://web.archive.org/web/20190407090846/http://oldwww.acm.org/tsc/apis.html
https://web.archive.org/web/20190407090846/http://oldwww.acm.org/tsc/apis.html
https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://web.archive.org/web/20190822063738/https://www.mulesoft.com/resources/api/what-is-rest-api-design
https://web.archive.org/web/20190822063738/https://www.mulesoft.com/resources/api/what-is-rest-api-design
https://doi.org/10.1109/RE.2007.31
https://doi.org/10.1109/RE.2007.31
https://doi.org/10.1109/ICRE.1994.292398
http://ieeexplore.ieee.org/document/292398/
https://doi.org/10.1007/978-3-319-61073-3
http://link.springer.com/10.1007/978-3-319-61073-3
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.rational.clm.doc/helpindex_clm.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.rational.clm.doc/helpindex_clm.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.rational.clm.doc/helpindex_clm.html

References

[79] IBM Knowledge Center, Pittsburgh. (May 1, 2007). IBM Developer : New
to Rational, [Online]. Available: https : / / web . archive . org / web /

20191106064741 / https : / / www . ibm . com / developerworks / rational /

newto/index.html (visited on 02/16/2020).

[80] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Overview of rational
DOORS next generation, [Online]. Available: https : / / www . ibm . com /

support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.requirements.

doc/topics/c_overview_dng.html (visited on 02/19/2020).

[81] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Overview of ratio-
nal rhapsody, [Online]. Available: https : / / www . ibm . com / support /

knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.overview.doc/topics/

rhp_c_po_rr_product_overview.html (visited on 02/19/2020).

[82] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Overview of ratio-
nal team concert, [Online]. Available: https://www.ibm.com/support/

knowledgecenter/SSYMRC_6.0.6/com.ibm.team.concert.doc/topics/c_

product-overview.html?pos=2 (visited on 02/19/2020).

[83] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Rhapsody Model Man-
ager. Library Catalog: www.ibm.com, [Online]. Available: https://www.ibm.
com / support / knowledgecenter / SSYMRC _ 6 . 0 . 6 / com . ibm . rational .

rmm.overview.doc/com.ibm.rational.rmm.overview.doc_eclipse-

gentopic1.html (visited on 03/01/2020).

[84] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Managing configurations
of models in AM applications. Library Catalog: www.ibm.com, [Online]. Avail-
able: https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.
1/com.ibm.jazz.vvc.doc/topics/t_mng_cfg_rmm_stub.html (visited on
03/01/2020).

[85] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Overview. Library Cat-
alog: www.ibm.com, [Online]. Available: https://www.ibm.com/support/
knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/

topics/rhp_c_rmm_overview.html?pos=2 (visited on 03/01/2020).

[86] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Overview of jazz
team server, [Online]. Available: https : / / www . ibm . com / support /

knowledgecenter/SSYMRC_6.0.6/com.ibm.help.common.jazz.calm.

doc/topics/c_jts_overview.html (visited on 02/19/2020).

[87] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Project area, [Online].
Available: https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.
6.1/com.ibm.jazz.platform.doc/topics/c_project_area.html (visited
on 02/19/2020).

XXIII

https://web.archive.org/web/20191106064741/https://www.ibm.com/developerworks/rational/newto/index.html
https://web.archive.org/web/20191106064741/https://www.ibm.com/developerworks/rational/newto/index.html
https://web.archive.org/web/20191106064741/https://www.ibm.com/developerworks/rational/newto/index.html
https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.requirements.doc/topics/c_overview_dng.html
https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.requirements.doc/topics/c_overview_dng.html
https://www.ibm.com/support/knowledgecenter/SSYQBZ_9.6.1/com.ibm.doors.requirements.doc/topics/c_overview_dng.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.overview.doc/topics/rhp_c_po_rr_product_overview.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.overview.doc/topics/rhp_c_po_rr_product_overview.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.overview.doc/topics/rhp_c_po_rr_product_overview.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.team.concert.doc/topics/c_product-overview.html?pos=2
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.team.concert.doc/topics/c_product-overview.html?pos=2
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.team.concert.doc/topics/c_product-overview.html?pos=2
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/com.ibm.rational.rmm.overview.doc_eclipse-gentopic1.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/com.ibm.rational.rmm.overview.doc_eclipse-gentopic1.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/com.ibm.rational.rmm.overview.doc_eclipse-gentopic1.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/com.ibm.rational.rmm.overview.doc_eclipse-gentopic1.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.jazz.vvc.doc/topics/t_mng_cfg_rmm_stub.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.jazz.vvc.doc/topics/t_mng_cfg_rmm_stub.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/topics/rhp_c_rmm_overview.html?pos=2
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/topics/rhp_c_rmm_overview.html?pos=2
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.rational.rmm.overview.doc/topics/rhp_c_rmm_overview.html?pos=2
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.help.common.jazz.calm.doc/topics/c_jts_overview.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.help.common.jazz.calm.doc/topics/c_jts_overview.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6/com.ibm.help.common.jazz.calm.doc/topics/c_jts_overview.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.jazz.platform.doc/topics/c_project_area.html
https://www.ibm.com/support/knowledgecenter/SSYMRC_6.0.6.1/com.ibm.jazz.platform.doc/topics/c_project_area.html

References

[88] H.-P. Hoffmann, Systems Engineering Best Practices with the Rational So-
lution for Systems and Software Engineering : Model-Based Systems Engi-
neering with Rational Rhapsody and Rational Harmony for Systems Engi-
neering, Deskbook Release 4.1. IBM Corporation Software Group, Route
100 Somers, NY, U.S.A., 2014, 162 pp. [Online]. Available: https :

/ / www . ibm . com / developerworks / community / groups / service /

html / communityview ? communityUuid = dbc39547 - 3619 - 4c31 - 9535 -

0b583a4e6190{#}fullpageWidgetId=W62078615f88f{_}4809{_}afad{_}

c27cdc9d7e71{&}file=2132d88d-4dde-40b4-8102-254ca4456c82.

[89] IBM Knowledge Center, Pittsburgh. (Oct. 24, 2014). Context patterns. Li-
brary Catalog: www.ibm.com, [Online]. Available: https://www.ibm.com/
support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.matrix.doc/

topics/r_context_patterns.html (visited on 03/22/2020).

[90] R. V. O'Connor, T. Rout, F. McCaffery, and A. Dorling, Eds., Software Process
Improvement and Capability Determination: 11th International Conference,
SPICE 2011, Dublin, Ireland, May 30 - June 1, 2011. Proceedings, Springer
Verlag, 2011, isbn: 978-3-642-21232-1.

[91] K. Peffers, M. Rothenberger, and W. Kuechler, Eds., Design science research
in information systems: advances in theory and practice: 7th international
conference, DESRIST 2012, Las Vegas, NV, USA, May 14-15, 2012: proceed-
ings, vol. 7286, Lecture notes in computer science 7286, OCLC: ocn785082591,
Berlin, Heidelberg: Springer, 2012, 438 pp., isbn: 978-3-642-29862-2. doi: 10.
1007/978-3-642-29863-9. [Online]. Available: http://link.springer.
com/10.1007/978-3-642-29863-9.

XXIV

https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=dbc39547-3619-4c31-9535-0b583a4e6190{#}fullpageWidgetId=W62078615f88f{_}4809{_}afad{_}c27cdc9d7e71{&}file=2132d88d-4dde-40b4-8102-254ca4456c82
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=dbc39547-3619-4c31-9535-0b583a4e6190{#}fullpageWidgetId=W62078615f88f{_}4809{_}afad{_}c27cdc9d7e71{&}file=2132d88d-4dde-40b4-8102-254ca4456c82
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=dbc39547-3619-4c31-9535-0b583a4e6190{#}fullpageWidgetId=W62078615f88f{_}4809{_}afad{_}c27cdc9d7e71{&}file=2132d88d-4dde-40b4-8102-254ca4456c82
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=dbc39547-3619-4c31-9535-0b583a4e6190{#}fullpageWidgetId=W62078615f88f{_}4809{_}afad{_}c27cdc9d7e71{&}file=2132d88d-4dde-40b4-8102-254ca4456c82
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=dbc39547-3619-4c31-9535-0b583a4e6190{#}fullpageWidgetId=W62078615f88f{_}4809{_}afad{_}c27cdc9d7e71{&}file=2132d88d-4dde-40b4-8102-254ca4456c82
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.matrix.doc/topics/r_context_patterns.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.matrix.doc/topics/r_context_patterns.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.4.0/com.ibm.rhp.matrix.doc/topics/r_context_patterns.html
https://doi.org/10.1007/978-3-642-29863-9
https://doi.org/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9
http://link.springer.com/10.1007/978-3-642-29863-9

D
TECHNISCHE UNIVERSITÄT

CHEMNITZ

Name: Onuoha

Vorname Chukwuma Onuoha

geb. am: 15.04.1983

Matr.-Nr. : 458304

Selbstständigkeitserklärung*

Studentenservice - Zentrales Prüfungsamt
Sei bststä nd ig keitserklä ru ng

Bitte beachten·

1. Bitte binden Sie dieses Blatt am Ende Ihrer Arbeit ein.

Ich erkläre gegenüber der Technischen Universität Chemnitz, dass ich die vorliegende Masterarbeit
selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe.

Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen
sind, habe ich als solche kenntlich gemacht.

Diese Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht und ist auch noch nicht
veröffentlicht.

Datum: 30.07.2020 Unterschrift .~ .. '.•.........

* Statement of Authorship

1 hereby certify to the Technische Universität Chemnitz that this thesis is all my own work and uses no external material other
than that acknowledged in the text.

This work contains no plagiarism and all sentences or passages directly quoted from other people's work or including content
derived from such work have been specifically credited to the authors and sources.

This paper has neither been submitted in the same or a similar form to any other examiner nor for the award of any other
degree, nor has it previously been published.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.1.1 Aim and scope
	1.1.2 Research objectives

	1.2 Research approach
	1.2.1 Action design research
	1.2.2 Questionnaire-based gap analysis

	1.3 Professorship of Computer Engineering at the Technische Universität Chemnitz
	1.4 Partner organisations
	1.5 Structure of this thesis
	1.6 Summary

	2 Technical background
	2.1 Application-specific integrated circuit
	2.2 Requirements engineering process and management
	2.2.1 Requirements elicitation
	2.2.2 Requirements analysis
	2.2.3 Requirements specification and documentation
	2.2.4 Requirements verification and validation

	2.3 Systems engineering
	2.3.1 Natural languages in systems engineering
	2.3.2 Document-based approach to systems engineering
	2.3.3 Model-based approach to systems engineering

	2.4 Unified Modelling Language
	2.5 Systems Modelling Language
	2.5.1 Behavioural diagrams
	2.5.2 Structural diagrams

	2.6 Summary

	3 State of the art
	3.1 Origin of this thesis
	3.2 Reliance on natural languages
	3.3 Document-based systems engineering
	3.4 Model-based systems engineering
	3.5 Application lifecycle management
	3.6 Change and configuration management (CCM)
	3.6.1 Change management
	3.6.2 Configuration management
	3.6.3 Source control management and version control

	3.7 Quality management (QM)
	3.8 Open services for lifecycle collaboration
	3.9 Traceability methodologies and types
	3.10 Summary

	4 Concepts
	5 Implementation system
	5.1 IBM® Rational®
	5.1.1 DOORS® Next Generation
	5.1.2 Rhapsody® (RR)
	5.1.3 Team Concert® (RTC)
	5.1.4 Rhapsody® Model Manager (RMM)
	5.1.5 JazzTM Team Server

	5.2 Traceability in RR
	5.2.1 Requirements tables
	5.2.2 Matrix views
	5.2.3 Annotations, relations and tags in RR

	5.3 Summary

	6 Integration and deployment
	6.1 Linking the project areas (PAs)
	6.2 Adding CCM and QM to the lifecycle PA
	6.3 The case for a naming convention
	6.4 Application of attributes
	6.5 Handling RMM-based models
	6.5.1 Delivery to RMM
	6.5.2 Collaboration and harmonious modelling
	6.5.3 Extending views and tags

	6.6 Summary

	7 Case study-based evaluation
	7.1 Consistency of requirements
	7.2 A working tool-chain
	7.3 Evaluation of matrix views and tables
	7.4 Recommendations
	7.5 Summary

	8 Conclusion
	8.1 Summary
	8.2 Future research

	References

