
HAL Id: hal-03354723
https://hal.inria.fr/hal-03354723

Submitted on 26 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Anonymizing motion sensor data through
time-frequency domain

Pierre Rougé, Ali Moukadem, Alain Dieterlen, Antoine Boutet, Carole Frindel

To cite this version:
Pierre Rougé, Ali Moukadem, Alain Dieterlen, Antoine Boutet, Carole Frindel. Anonymizing motion
sensor data through time-frequency domain. MLSP 2021 - Machine Learning for Signal Processing,
Oct 2021, Queensland, Australia. pp.1-6, �10.1109/MLSP52302.2021.9596442�. �hal-03354723�

https://hal.inria.fr/hal-03354723
https://hal.archives-ouvertes.fr


Anonymizing motion sensor data through time-frequency
domain

Pierre Rougé
Univ Lyon, INSA Lyon, CREATIS,

Inserm, Lyon, France
rouge@creatis.insa-lyon.fr

Ali Moukadem
UniversitÃľ Haute-Alsace, IRIMAS,

Mulhouse, France
ali.moukadem@uha.fr

Alain Dieterlen
UniversitÃľ Haute-Alsace, IRIMAS,

Mulhouse, France
alain.dieterlen@uha.fr

Antoine Boutet
Univ Lyon, INSA Lyon, Inria, CITI,

Lyon, France
antoine.boutet@insa-lyon.fr

Carole Frindel
Univ Lyon, INSA Lyon, CREATIS,

Inserm, Lyon, France
carole.frindel@creatis.insa-lyon.fr

ABSTRACT
The recent development of Internet of Things (IoT) has democra-
tized activity monitoring. Even if the data collected can be useful
for healthcare, sharing this sensitive information exposes users
to privacy threats and re-identification. This paper presents two
approaches to anonymize the motion sensor data. The first is an ex-
tension of an earlier work based on filtering in the time-frequency
plane and convolutional neural network; and the second is based
on handcrafted features extracted from the zeros distribution of the
time-frequency representation. The two approaches are evaluated
on a public dataset to assess the accuracy of activity recognition and
user re-identification. With the first approach we obtained an accu-
racy rate in activity recognition of 73% while limiting the identity
recognition to an accuracy rate of 30% which corresponds to an ac-
tivity identity ratio of 2.4. With the second approach we succeeded
in improving the activity and identity ratio to 2.67 by attaining an
accuracy rate in activity recognition of 80% while maintaining the
re-identification rate at 30%.
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1 INTRODUCTION
The wide adoption of Internet of Things (IoT) devices have de-
mocratized quantified self applications and revolutionized patient
monitoring in healthcare domain [1]. This monitoring relies on
sensors that measure motion signals (e.g., accelerometer, gyroscope
and magnetometer). These signals are further sent to a cloud server
to be analysed and processed through advanced signal processing
and machine learning pipeline [7] to compute and present multiple
estimators to users or practitioners (such as the number of steps or
the activity performed during the day, the quality of the sleep, or the
burned calories). Although this information is very useful for self-
assessment or remote monitoring, it is closely related to the health
status of the associated user and consequently sensitive. Sharing
this sensitive information to third party applications exposes users
to privacy threats (e.g., attribute inference or re-identification) and
discrimination [9]. Moreover, health related data attract much at-
tention nowadays. For instance, an increasing number of health

insurers are seeking access to this data to better predict rates and
encourage their members to wear fitness trackers [12].

To mitigate the risks of privacy leakage, several approaches have
been proposed providing different privacy and utility trade-off.
While some of them rely on collaborative learning (federated learn-
ing) to avoid sharing data with the server [11], others sanitize raw
data to avoid unwanted inferences or re-identification [3]. Other
approaches try to minimize the data sent to the server. For instance,
[8] extracts locally on the device temporal and frequency features,
and sends only the features the most important for the activity de-
tection task while normalizing features leading to re-identification.
Instead of processing features from the temporal and frequency
domain separately, another approach [4] transforms the signal to
a time-frequency representation before filtering high coefficients
to limit re-identification. The resulting time-frequency representa-
tion is then directly processed by a convolutional neural network
(CNN) to predict activity recognition. While this data minimization
process (i.e., directly based on classifying time-frequency represen-
tation) is simple and attractive, the identification by the CNN of
useful information in this representation is complex. In addition,
the filtering scheme can be improved to provide a better utility and
privacy trade-off (i.e., maintaining an accurate activity detection
while preventing re-identification).

In this paper we extend the work initiated in [4] by investigating
feature extraction from the time-frequency transform to improve
the privacy and utility trade-off. Specifically, motivated by the
recent link between Gaussian analytic functions (GAFs) and time-
frequency transforms of white Gaussian noise [2], we apply this
theoretical work by leveraging the zeros in the time-frequency
plane from Short Time Fourier Transform (STFT) and the length
of the Delaunay triangles formed by these zeros [5] to identify
the most important features in the both classification tasks (i.e.,
activity detection and re-identification). In addition, we leverage
gyroscopic signals and propose a Random Forest-based classifier to
better discriminate physical activities of users while anonymizing
the motion data.

The pipeline of the solution is illustrated in Figure 1. We evaluate
the utility and privacy trade-off provided by our approach based on
the zeros of the spectrogram against an optimized version of the
state-of-the-art approach [4] using one reference datasets. Results
show that the spectrogram’s zeros approach offers a better utility-
privacy trade-off (80% and 30% in activity and identity recognition
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Figure 1: Outline of the approach: a. Transformation from
time to time-frequency domain, b. Detection of spectrogram
zeros (shown in red), c. Random Forest classifier, d. Activity
Recognition, e. Identity Recognition

rate, respectively) than the state-of-the-art approach (73% and 30%
in activity and identity recognition rate, respectively).

The rest of the paper is organized as follows. Section 2 gives more
details on background and the optimized version of the state-of-
the-art approach [4]. Section 3 details our SpectrogramâĂŹs zeros
approach while Section 4 presents the results of the evaluation.
Finally, Section 5 discusses conclusions and future work.

2 BACKGROUND AND STATE-OF-THE-ART
2.1 STFT and Bargmann connection
Time-frequency domain allows to study the frequency evolution of a
signal during time, it is particularly useful to analyse non-stationary
signal. The most common transform from the time domain to the
time-frequency domain is the Short Time Fourier Transform (STFT).
The STFT for a given signal x(t) and a window function w(t) is
given by:

Sωx (t , f ) =

+∞∫
−∞

x(τ )w∗(τ − t)e−2jπ f τdτ , (1)

In the case of Gaussian window ω(t) = д(t) = 1
σ
√
2π

e
−t2
2σ 2 , the

STFT can be written as Bargmann transform as follows [2]:

S
д
x (t ,−f ) ∝ e−iπ t f e−

π
2 |z |2Bx (z), (2)

where z = t + i f ∈ C and Bx (z) is the Bargmann transform defined
as follows :

Bx (z) = 21/4
∫ +∞
−∞

x(t)e2π tz−π t
2− π

2 z
2
dt (3)

This link means that the STFT can be completely characterized by
its zeros. Equation 2 shows that the zeros of the STFT are the zeros
of the Bargmann transform which are also the zeros of Gaussian
analytic functions (GAFs). This will ensure some regularity for the
zeros distribution of the STFT for white Gaussian noise. The math-
ematical details and properties of these connections are detailed in
[2].

2.2 CNN-based filtering approach
In this section, we present the state-of-the-art approach proposed
in [4] and the optimization of the CNN we applied.

Filtering: It was observed in [4] that in the time-frequency
representation the difference between activities is encoded through
texture and that on the other hand, the difference between subjects
is encoded by contrast.

According to these observations, it was proposed in [4] to filter
high coefficients of the spectograms to remove user’s information to
prevent re-identification. In this study we used this filtering method
with different percentage of high coefficient removed going from
0% to 90% with steps of 10%.

CNN classifier: In this study, we used six different CNN classi-
fiers that can be broken down into 3 categories: those taking as input
accelerometer data only, those taking as input gyroscope data only
and those using both accelerometer and gyroscope data as input.
In each of these categories, a CNN has been constructed to classify
activities into 4 classes and another to classify the user’s identity
into 24 classes. The results of these models were compared to assess
the utility of adding the gyroscope data into the framework.

For all CNN, we considered a model with four convolutional
layers followed each by one maxpooling layer and at the end a final
softmax dense layer for classification. The number of filters on the
first layer was set to a power of two and for each layer the number
of filter was set to the next power of two.

Optimisation of CNN using accelerometer or gyroscopic
data only: The two tasks (activity recognition and identification)
are different by nature, it is therefore necessary to optimize the
architecture and the hyperparameters of the CNN independently
for these 2 tasks. Fine tuning require to test a lot of hyperparame-
ters combinations. In this work, optimization process focused on
certain amount of hyperparameters and possible ranges of values.
These hyperparameters were the number of filters on the first con-
volutional layer, the batch size and the learning rate. Also, during
the optimisation process, if an hyperparameter value was obviously
not adapted we chose to withdraw this value from the process, so
the test of the combinations is not exhaustive.

Two different fusion schemes for the three axes of the sensors
were also evaluated and compared: late and early fusion. The early
fusion strategy consist in combining images from the 3 axes at
the entry of the network. The late fusion strategy consist in using
three independent convolutional branches to process each input
independently then combining the features map from the three
branches just before the dense layer.

The optimisation was made using the acceloremeter data with-
out any filtering and the selected model was later also used on
gyroscopic data only.

Model using both accelerometer and gyroscope data: Few
tests were done to evaluate the values of the hyperparameters
around those found for the model on the accelerometer data to en-
sure its transferability. Three fusion strategies were also assessed: (i)
early fusion on axes, (ii) early fusion on sensors and (iii) late fusion.
The early fusion axes consists in merging the images of the two
sensors (accelerometer and gyroscope) corresponding to the same
axis at the input of the CNN, then three independent convolutional
branches process the three axes and finally the characteristic maps
of the three branches are merged just before the final dense layer.
Early fusion on sensors is the same idea where images of the three
axes (x, y, z) are merged at the input of the CNN corresponding to
the same sensor. And the late fusion strategy is the same idea as
previously except that in this case we have six different convolu-
tional branches each corresponding to a distinct sensor and axis.
From our comparisons, we chose the late fusion strategy with a
batch size of 512 and a learning rate of 0.0025, which was the set
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of parameters giving the best results in term of accuracy on the
validation set for both activity and identity recognition tasks.

Training implementation: The dataset was split into a train-
ing and test sets according to the trials created during the acquisi-
tion phase: thus trials 1 to 9 were used for the training phase and
trials 11 to 16 for the test phase. More precisely, during the train-
ing phase, 90% of the whole set was used for training and 10% for
validation. We used categorical cross entropy as the loss function
and Adam as the optimizer. The maximum number of epochs was
set to 200 and regulated with an early stopping criteria.

3 STFT ZEROS APPROACH
The link established between the STFT and the GAFs guarantees
a regular and well known distribution of the STFT zeros in case
of white Gaussian noise [2, 5]. In this sense, the distribution of
zeros can provide information on the presence of noise or signal
for the development of filtering schemes. In this article, we exploit
the distribution of zeros to extract handcrafted features to classify
activities while preserving privacy. The intuition behind this idea
is that the presence of a signal will modify the distribution of zeros
in the time-frequency domain and mark this distribution by the
signal signature.The first step in this process is to detect the zeros
from STFT representation. We use a Gaussian window for the STFT
to ensure the link between STFT and GAFs. The value of σ for the
Gaussian window is set empirically to 0.05. Since we are working
on discrete STFT, the zeros are not perfect and the energy spreading
around instantaneous frequencies of the signal’s components will
affects the intensity of the zeros. To detect them we used a 3x3 mask
sliding through STFT: if the value in the center of the mask is the
minimum and the maximum value covered by the mask exceeds a
certain threshold we consider a zero in the center of the mask. Here
the threshold was set to max(|Sдx |)/104, with |S

д
x | the modulus of

the STFT representation (Equation 1).

3.1 Features associated with spectrogram zeros
Once the zeros are detected, features associated with their distri-
bution must be extracted for use in a standard classifier. To this
purpose we connect them with a Delaunay triangulation and create
a graph. Examples of obtained graphs for different subjects and
activities are given in Figure 2.

Since numerical zeros are not perfect zeros and their intensity
is influenced by the energy in their area, we chose to order them
according to their intensity. The advantage of ordering the zeros is
that we can easily construct features attached to a zero (for example
its intensity) and above all compare them between two different
graphs. It suffices then to compare the features associated with the
zeros of the same rank in the ordering. Two types of feautres can
be constructed: those which characterize the global graph of zeros
and those which are attached to a particular zero. In our dataset,
the minimum number of zeros detected was 48, so that for each
STFT we extracted 48 zeros: the 24 zeros of minimum intensity and
the 24 zeros of maximum intensity.

Global Features: To analyse the distribution of the zeros we
studied the distance between them. We constructed three distri-
butions: euclidean distance, distance on time-axis and distance on
frequency-axis between each zero. For each of these distributions,
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Figure 2: Examples of STFT representations superposed
with the associated graph formed from STFT zeros for dif-
ferent subjects in lines and different activities in columns

.

four statistical moments were used as global features: mean, stan-
dard deviation, skewness and kurtosis. From the graph, mean and
max edge length were also extracted as features.

Local Features: To characterize the zero itself, we used as a
feature its intensity and its coordinates in the time-frequency plane.
From the graph, we also considered the zeros belonging to a neigh-
borhood of order 1 and used their mean intensity as a feature. We
also computed the mean energy crossed by each edge to reach the
neighbors and used the average of these energies as a feature.

To investigate patterns in the region surrounding the zeros we
used Haralick features [6]. Fourteen features were calculated from
the gray level co-occurence matrix (GLCM). We considered two
GLCM with respectively an offset of (0,1) and (1,0). The idea is
to consider the co-occurence along the time and the frequency
direction independently. We used a window of size 30x30 to capture
the region surrounding the zero. To characterize the edges, we also
used the average angle of the edge with respect to the x-axis and
the area of the triangles connected to the zero. In the end, a given
STFT image results in total of 1694 features.

3.2 Random Forest Classifier
To identify both activity and subjects from the features extracted
from the STFT’s zeros, we used a Random Forest (RF) classifier. Two
parameters were more particularly studied: the number of trees
used in the forest and the maximum depth of trees. The values
tested were respectively in the following ranges [400, 500, 600] and
[25, 50, 75, 100]. To investigate these values, we made a 5-fold cross-
validation over each of possible combination and selected the one
which gave the best result in accuracy.

As with the CNN-based approach, at a given time there are 6
STFT images from two sensors each with 3 axes. For each of the
STFT images, a feature matrix – as described in section 3.1 – has
been calculated. To build the RF model we choose to concatenate
all the feature matrices associated with the 6 STFTs.

3



3.3 Feature selection
Once the RF models have been constructed, it is possible to observe
the importance of each of the features in the two classification tasks.
Our goal is to remove features useful for identity recognition but
not for activity recognition. For this, the average importance of
the features resulting from each sensor/axis pair was calculated.
The sensor/axis pairs contributing most to the activity recognition
task have been retained. After that, the correlation between each
features was calculated and if this correlation exceeded a certain
threshold, we removed it from the model. These operations make it
possible to improve the utility/privacy trade-off. In our experiments,
the correlation threshold was set at 0.5.

3.4 Dense neural network
In order to compare the performance of our RF, we also used a dense
network on the raw data. This network is five unit combining a
dense layer and a dropout layer (set to 20%) plus a final dense layer
for classification. The results of this network are made with a 5-fold
cross-validation.
4 EVALUATION AND DISCUSSION
4.1 Experimental Settings
Dataset: For this study, we used the public dataset Motion-Sense
[10]. This dataset was collected with a Iphone 6S placed in the
participant’s trousers front pocket at a frequency rate of 50 Hz.
The dataset provides time-series data from 3-axis accelerometer
and gyroscope and includes recordings (15 trials) of 24 different
participants for six activities: downstairs, upstairs, walking, jogging,
standing and sitting. The time-series are split in sliding windows
such as each window corresponds to an activity and a participant.
The window length was fixed to 2.5 seconds with an overlap of
50%, the average cadence range of walking is about 1.5 steps by
second so about 3 walking steps were captured by window. In this
study, only the four dynamic activities were considered: downstairs,
upstairs, walking and jogging.

Time-Frequency images: The images formed by the STFT
module are considered to train the CNN or to extract features from
the zeros of the STFT. The size of the generated images is 65 × 128
which corresponds to 25 Hz × 2.56 sec.

Accuracy: To assess the performance of the CNNs and the RF
classifiers, we computed an accuracy score defined as:

Accuracy =
1

nsamples

nsamples∑
i=1

1(yi , ŷi ), (4)

where nsamples is the number of samples and 1(x ,y) the indicator
function which gives 1 if x = y and 0 otherwise. For the CNNs
classifiers the given accuracies were averaged over ten experiments
and for the RF over a 5-fold cross validation.

Privacymeasure: To assess privacy, the ratio between accuracy
in activity and in identity was investigated. If this ratio is greater
than 1 its mean that we detect more efficiently the activity than
the identity of the subject and inversely. In a privacy-preserving
framework the goal is to have the highest ratio possible. This ratio
was computed for each level of filtering in the case of CNNs. Also,
to compare the different CNNs the Area under the utility-privacy
Curve (AUC) is studied.

4.2 Optimisation of the CNN
Tables 1 and 2 present the results of the four more efficient architec-
tures in respectively the identity and activity recognition tasks. In
these tables, column "Filter" refers to the number of filters in CNN
first layer, "Lr" to the learning rate and "Acc Val" to the average
accuracy on the validation set over ten experiments.

Modele Filter Batch Size Lr Acc Val
Late Fusion 16 256 0.005 0.77
Late fusion 8 256 0.005 0.75
Early Fusion 16 256 0.005 0.76
Early fusion 8 256 0.01 0.69

Table 1: Accuracy on validation set for the four most effi-
cient architectures in the identification task. In bold the se-
lected model.

Modele Filter Batch Size Lr Acc Val
Late fusion 16 256 0.005 0.93
Early Fusion 16 256 0.005 0.91
Late fusion 8 256 0.005 0.92
Early Fusion 8 256 0.005 0.91

Table 2: Accuracy on validation set for the four most effi-
cient architectures in the activity recognition task. In bold
the selected model.

For the identification task, we selected the model with late Fusion
and batch size=256, number of filters=16 and learning rate=0.005,
because it was the combination showing the best accuracy on val-
idation set (Table 1). For the activity recognition task the results
gave similar performances for the different models. We first chose
the model with early Fusion, batch size=256, number of filters=16
and learning rate=0.005 because it has fewer parameters than the
late Fusion one (103 588 versus 309 892 weights). But during the
experiences presented in section 4.3, the early fusion model turned
out to be difficult to transfer in the case of filtering, so we decided to
return to the model using late fusion but with the same parameters.

4.3 Role of gyroscopic sensors data
Figures 4 and 5 respectively represent the activity and identity
accuracy results for different filtering levels for three different
CNNs. On the one hand, Figure 5 shows that the CNNs learned from
accelerometer or gyroscope data result in degraded accuracy at the
same pace for the identity recognition tasks. On the other hand,
Figure 4 indicates that, for the activity recognition task, the filtering
affects less the performance of the CNN learned from accelerometer
data than that learned from gyroscope data. Furthermore, it exhibits
that a CNN combining accelerometer and gyroscope data allows to
boost the performance in identity recognition but not in activity
recognition (to be compared with Figure 5). This observation is
also confirmed by the table 3 presenting Activity/Identity ratio
considering the level of filtering for the three CNNs. Filtering does
not really affect this ratio for the CNN learned gyroscope data unlike
that learned from accelerometer data. In terms of normalized AUC,
the CNN learned from accelerometer data also outperforms the
one learned from gyroscope data as shown in Table 4. Even though
the CNN combining accelerometer and gyroscope data presents a
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slightly better AUC than the one based on accelerometer data, the
Activity/Identity ratio (see Table 3) demonstrates that learning only
from accelerometer data offers a better utility and privacy trade-off.
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Figure 3: Activity versus identity accuracy for CNN using re-
spectively accelerometer data, gyroscope data and both.
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Figure 4: Activity accuracy versus % of filtering for CNN
using respectively accelerometer data, gyroscope data and
both
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Figure 5: Identity accuracy versus % of filtering for CNN
using respectively accelerometer data, gyroscope data and
both

% filtering Gyro Acc + Gyro Acc
0 1.3 1.2 1.4
20 1.3 1.2 1.5
40 1.3 1.3 1.7
60 1.3 1.3 1.8
80 1.4 1.4 1.9
90 1.8 1.5 2.4

Table 3: Privacy measure for different levels of filtering and
for the three CNNs. In bold the filtering level giving the best
activity/identity ratio.

Gyro Acc + Gyro Acc
0.719 0.844 0.835

Table 4: Normalized AUC for the CNNs using respectively
only accelerometer, gyroscope and both data.

4.4 The zeros of the STFT
With the RF model detailed in 3.2 we first obtained an accuracy
score of 85% for the activity recognition task and 72% for the identity
recognition task as shown in table 5-model A. The results of the
dense network are of the same order of magnitude (+4% in activity
and +3% in identity recognition), attesting that our RF does not
overfit the dataset. The observations of features importance by
pair of sensor/axis demonstrated that for the identity recognition
task no pair was preponderant in the decision, whereas for the
activity the acceleration on y-axis and the rotation speed around
x-axis were decisive. We have therefore decided to limit ourselves
to these two channels allowing a first improvement in the measure
of privacy as shown in the table 5-model B. Next, we applied our
method to remove the correlated features. We managed to reduce
the number of features to 409 and significantly improve the utility-
privacy trade-off, as shown in the table 5-model C.

Model Activity Acc Identity Acc Ratio Features
A 0.85 0.72 1.18 10164
B 0.81 0.52 1.56 3388
C 0.80 0.30 2.67 409

Table 5: Results for both activity and identity recognition
tasks depending on the features used; Model A : all features,
Model B: features from acceleration on y-axis and rotation
speed on x-axis, Model C : same features as in B with dele-
tion of correlated features. In bold themodel giving the best
activity/identity ratio.

5 CONCLUSION
In this paper, we presented two privacy-preserving approaches in
the time-frequency domain. The first approach has already been
tested in [4] but in this work we have strengthened the evaluation
of this method by ensuring that the CNNs were properly optimized.
Our experiments also highlighted the role of gyroscopic sensor data
in identity recognition. The second approach proposes a newway to
extract features from the zeros of the STFT. We introduced features
based on this representation and then proposed a feature selection
method to boost the utility-privacy trade-off. This approach makes
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it possible in particular to better select the information related
to activities and do better than the CNN for which a more naive
filtering method was set up before the learning. To extend this work,
it may be interesting to study, in addition to the graph of the STFT
zeros, the graph of local maxima and also to include the phase of
the time-frequency representation. Finally, for more genericity, our
approach should now be tested on another dataset.
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