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Abstract 

A comprehensive investigation on the static and dynamic responses of a sphere 

located at elastic and viscoelastic medium interfaces is performed in this study. First, the 

mathematical models commonly used for predicting the static displacement of a sphere 

located at an elastic medium interface are presented and their performances are compared. 

After that, based on the finite element analyses, an accurate mathematical model to predict the 

static displacement of a sphere located at an elastic medium interface valid for different 

Poisson’s ratios of the medium and small and large sphere displacements is proposed. Then, 

an improved mathematical model for the dynamic response of a sphere located at a 

viscoelastic medium interface is developed. In addition to the Young’s modulus of the 

medium and the radius of the sphere, the model takes into account the density, Poisson’s ratio 

and viscosity of the medium, the mass of the sphere and the radiation damping. The effects of 

the radiation damping, the Young’s modulus, density and viscosity of the medium and the 

density of the sphere on the dynamic response of the sphere located at a viscoelastic medium 

interface are explored. The developed model can be used to understand the dynamic responses 

of spherical objects located at viscoelastic medium interfaces in practical applications. 

Furthermore, the proposed model is a significant tool for graduate students and researchers in 

the fields of engineering, materials science and physics to gain insight into the dynamic 

responses of spheres located at viscoelastic medium interfaces. 

 

Keywords: interface; sphere; large oscillation; modified Hertz model; radiation damping; 

viscosity; viscoelastic medium. 

 

1. Introduction 

There are many applications that spheres are located at medium interfaces [1–8]. The 

Hertzian contact is referred to the frictionless contact between two bodies; the spherical 

contact is a special case of the Hertz contact between two spheres or between a sphere and the 

surface of a half space [6,9]. Some modified Hertz models have been proposed for more 

accurate estimates for static loading [10–12]. In addition to the Young’s modulus of the 

medium and the radius of the sphere, the effects of the density and viscosity of the medium, 

the mass of the sphere and the radiation damping can be crucial for dynamic loading. There 

have been some studies on the investigation of the small [13] and nonlinear [14] oscillations 

of a sphere on an elastic half space. A mathematical model has been proposed to predict the 

dynamic response of a sphere located at a medium interface by taking into account the 
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damping of the oscillations of the sphere due to the radiation of shear waves [15]. The model 

in [15] has been evaluated using the responses of the bubble and the sphere in a medium [16] 

and the bubble located at a medium interface [17,18], and it has been concluded that the 

model produces reasonable results [19]. Furthermore, a finite element model for the sphere 

located at an elastic interface has been developed and an improved analytical model for the 

sphere located at an elastic interface has been suggested when the Poisson’s ratio of the 

medium is 𝜈 = 0.45 [20]. The equation of motion for this model is given by [20]: 
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where 𝑅 and 𝜌s are the radius and density of the sphere, 𝜌 and 𝐺 are the density and shear 

modulus of the medium material, 𝑓0 and 𝜏 are the amplitude and duration of the applied 

rectangular pulse, 𝛼 = 0.1, 𝛽 = 0.5, 𝑢0 = (
3𝑓0

4𝐸∗√𝑅
)

2/3
is the static displacement of the sphere,  

𝐸∗ is the reduced Young’s modulus computed as 1 𝐸∗⁄ = (1 − 𝜈sphere
2 ) 𝐸sphere⁄ +

(1 − 𝜈2) 𝐸⁄  where 𝐸 and 𝜈 are the Young’s modulus and Poison’s ratio of the medium 

material and 𝐸sphere and 𝑣sphere are the Young’s modulus and Poison’s ratio of the sphere 

material, respectively, and 𝑢, �̇�, and �̈� are the displacement, velocity and acceleration of the 

sphere at any time 𝑡.  

It should be noted that there are different models such as the Kelvin-Voigt, Maxwell 

and standard linear solid models for modelling viscoelastic materials [21–23]. It was shown 

that the Kelvin-Voigt model can properly simulate viscoelastic materials, e.g., it can properly 

simulate the creep behaviour [16,24]. In some mathematical models, the medium under 

investigation is assumed to be infinite and these models can produce reasonable results for 

structures with finite dimensions [16,18,24–26]. For example, the dynamic response of a rigid 

sphere with a radius of 0.75 mm located inside a cylindrical finite medium (gelation and 

rubber phantoms) with a radius of 30 mm and height of 80 mm predicted by the finite element 

model was shown to be very close to the response predicted by the analytical model based on 

the infinite medium assumption [25]. The measured dynamic response of a magnetic sphere 

with a radius of 1 mm located inside a medium (gelation phantom) of cylindrical shape with a 

diameter of 30 mm and a volume of 25 ml was shown to be very close to the response 

predicted by the analytical model based on the infinite medium assumption [26]. Similarly, 

the measured dynamic response of a microbubble with a radius of 1.5-2.0 mm located at the 

interface of a finite medium (hydrogel) with a width of 15 mm, height of 15 mm and depth of 

10 mm was shown to be close to the response predicted by the analytical model based on the 

infinite medium assumption [24]. The medium can be assumed to be infinite when the size of 

the particle interacting with the medium is much less than the size of the medium under 

investigation. It should be noted that the medium under investigation can be assumed to be 

semi-infinite in the mathematical models or the finite medium can be directly modelled by 

applying the appropriate boundary conditions. For the dynamic stability control of 



nanocomposite piezoelectric sandwich beams on a foundation, the Kelvin-Voigt was 

considered for the sandwich structure and the Kerr viscoelastic foundation was enhanced [23]. 

The effects of various kinds of viscoelastic foundations including visco-Winkler, visco-

Pasternak and visco-Kerr on the instability region of the system were illustrated [23]. For the 

dynamic buckling analysis of carbon nanocones, the structural damping influences were 

studied according to the Kelvin-Voigt model, while the medium around the carbon nanocones 

was assumed by the model of visco-Pasternak [27]. For the vibration analysis of nanoplates 

resting on a medium, the material properties of the nanoplate were assumed to be orthotropic 

and viscoelastic and the viscoelastic medium was modelled as the Kelvin-Voigt foundation 

[28]. The reader may refer to the recent studies [29–32] for the use of viscoelastic models to 

model the medium under investigation and different methods for simulating the surrounding 

medium. It should be noted that the elastic solutions to the steady state boundary-value 

problems can be transformed into the viscoelastic solutions for the identical boundary 

conditions by using the so-called elastic-viscoelastic correspondence principle [33–38]. There 

are viscoelastic mixed boundary value problems where the regions, over which different types 

of boundary conditions are given, vary with time; a particular example is the indentation 

problem [34,38]. It is stated that the validity of the classical correspondence principle is 

restricted to problems where the prescribed boundary conditions are time-invariant 

[35,37,38]. 

A comprehensive investigation on the static and dynamic responses of a sphere 

located at elastic and viscoelastic medium interfaces is performed in this study. The 

contributions of this study are listed as follows: (i) The mathematical models commonly used 

for predicting the static displacement of the sphere located at an elastic medium interface are 

presented and their performances are compared. (ii) Based on the finite element analyses, an 

accurate mathematical model to predict the static displacement of the sphere located at an 

elastic medium interface valid for different Poisson’s ratios of the medium and small and 

large sphere displacements is proposed. (iii) The model for the sphere located at an elastic 

medium interface [20] is extended to develop an improved mathematical model for the 

dynamic response of the sphere located at a viscoelastic medium interface (see figure 1). In 

addition to the elastic properties of the medium and the radius of the sphere, the model takes 

into account the density, Poisson’s ratio and viscosity of the medium, the mass of the sphere 

and the radiation damping and it is valid for small and large sphere displacements. The effects 

of the radiation damping, the Young’s modulus, density, and viscosity of the medium and the 

density of the sphere on the dynamic response of the sphere located at a viscoelastic medium 

interface are explored.  

The developed model can be used to understand the dynamic responses of spherical 

objects located at viscoelastic medium interfaces in practical applications. Furthermore, the 

proposed model is a significant tool for graduate students and researchers in the fields of 

engineering, materials science and physics to gain insight into the dynamic responses of 

spheres located at viscoelastic medium interfaces. The students and researchers clearly see the 

performances of different mathematical models commonly used for predicting the static 

displacement of the sphere located at an elastic medium interface. Using the procedure in this 



study, the students and researchers can understand, based on the need, how to convert the 

equation of motion in the time domain to the frequency domain, how to include the viscosity 

of the medium in the model, and how to solve the complicated equation of motion using the 

inverse Fourier transform. The procedure followed in this study is illustrated in figure 2. 

 

 

 

Figure 1. The schematic picture for the sphere located at a viscoelastic medium interface. 

 

 

Figure 2. The procedure followed in this study. 

 

2. Mathematical models for the sphere located at an elastic medium interface exposed to 

a static force 

 

2.1 Hertz model (Model 1) 

It was shown that the Hertz theory significantly underestimates the contact radius and 

overestimates the maximum contact pressure as the ratio of the indentation depth to indenter 

radius exceeds 0.1, hence the Hertz model is valid when the ratio of the indentation depth to 

indenter radius is less than 0.1 [39]. For the Hertz model, the relationships between the applied 

force (𝑓0), the contact depth (𝑢𝑎), the contact radius (𝑎) and the deformation depth (𝑢0) are as 

follows [7,15]: 
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𝑎 = √𝑅𝑢0              (2c) 



 

2.2 Sneddon model (Model 2) 

For some soft materials that exhibit large elastic deformations, including the rubber-like 

materials, gels and biological materials, the large indentation is needed to minimize the 

measurement noise [11]. The accurate solution regarding the interaction of a rigid sphere and a 

soft elastic half space is given by the Sneddon model [10,40]: 
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For large indentation depths, a series solution for the load-displacement relation can be 

obtained using the Sneddon model. An approximate Sneddon model is presented in the next 

section. 

 

2.3 Approximate Sneddon model (Model 3) 

The expressions given above (Eq. 3) do not provide a direct relation between the applied 

force and the deformation depth. Kontomaris and Malamou [7], based on the Sneddon’s model, 

proposed a model that directly relates the applied force to the deformation depth when a rigid 

sphere is pushed into an elastic half space (regardless of the value of the maximum deformation 

depth). This approximate Sneddon model is given by: 
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For 𝑛 = 6, 𝑐1 = 1.01, 𝑐2 = −0.07303, 𝑐3 = −0.1357, 𝑐4 = 0.03598, 𝑐5 = −0.0042024, 

and 𝑐6 = 0.0001653. 

 

2.4 Modified Hertz model (Model 4) 

Guo et al. [11] proposed a modified Hertz model inspired by numerical simulations to 

predict the contact response of a linearly elastic half-space under finite (large) spherical 

indentations. In this model, the relation between the applied force and the contact radius is given 

by: 
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Using the equations above, the following relation can be obtained: 
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Hence, the relation between the applied force and indentation depth for the modified Hertz 

model is obtained as follows: 
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It is seen that the model proposed by Guo et al. [11] is quite complicated and explicit solution 

for sphere displacement seems impossible.  

 

2.5 Hertz model corrected for sample thickness (Model 5) 

The following thickness-corrected Hertz model is suggested for a sample with finite 

thickness h [12]: 
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Here, 𝛼0 and 𝛽0 are given as: 

𝛼0 = −0.347
3−2𝑣

1−𝑣
                   (8c) 

𝛽0 = 0.056
5−2𝑣

1−𝑣
                (8d) 

when the sample is not bonded to the substrate. These coefficients are given as: 

𝛼0 = −
1.2876−1.4678𝑣+1.3442𝑣2

1−𝑣
             (8e) 

𝛽0 =
0.6387−1.0277𝑣+1.5164𝑣2

1−𝑣
                       (8f) 

when the sample is bonded to the substrate. 

 

2.6 Hertz model corrected for sphere displacement (Model 6) 

Koruk [20] proposed an improved dynamic Hertz model based on finite element 

analyses for small and large sphere displacements and a Poisson’s ratio of v = 0.45. For a static 

applied force where the contact between the sphere and medium is continuous, the model can 

be written as: 
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1−0.1
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1+0.5(1−0.1
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3/2
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    for  𝑣 = 0.45                         (9) 

 

2.7 Hertz model corrected for sphere displacement and the Poisson’s ratio of the medium 

(Model 7) 

As stated before, the model above (Eq. 9) is proposed for a Poisson’s ratio of the 

medium of v = 0.45 [20]. However, the finite element analysis results performed for different 



values of v show that the difference between the model in [20] and the finite element model can 

be considerable. In this study, a model is proposed to include the correction for the Poisson’s 

ratio of the medium. It was shown in [20] that the correction factor 0.1 (i.e., 0.1u0/R) produces 

very accurate results for v = 0.45. In this current study, the force values predicted by the model 

in [20] for different correction factors (e.g., -0.1, -0.05, 0.1, 0.0, 0.05, 0.1) were compared with 

the results predicted by the finite element model. It was seen that the force values predicted by 

the analytical model and the finite element model for different values of u0/R match well when 

the correction factor is around -0.1, -0.05, 0.0, 0.05, 0.1 and 0.14 when v = 0.25, 0.30, 0.35, 

0.40, 0.45 and 0.49, respectively (the results are shown in Section 2.9). This shows that the 

correction factor is a function of v and can be written as v – 0.35. It means that the correct force 

for a specific sphere displacement should decrease as the Poisson’s ratio of the medium material 

increases. Hence, the model in [20] is updated as follows: 

𝑓0 = {
1−(𝑣−0.35)

𝑢0
𝑅

1+0.5[1−(𝑣−0.35)
𝑢0
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All the seven models including the new model presented in this paper (Model 7) are 

compared and evaluated in Section 2.9. 

 

2.8 Finite element model 

A finite element model for the sphere at an elastic interface is used to assess the 

performance of the mathematical models. The finite element model of the system is 

developed using axisymmetric quadrilateral finite elements in the Abaqus software (Dassault 

Systèmes, France). For the finite element model of the sphere at a medium interface, the 

elastic medium is modelled using linear quadrilateral axisymmetric reduced integration 

elements of type CAX4R and the sphere is modelled using linear line elements of type RAX2. 

Here, a cylindrical medium of h = 100 mm height and r = 100 mm radius is modelled using 

130235 CAX4R elements and the sphere is modelled using 29 RAX2 elements. The medium 

is partitioned to able to use fine mesh around the sphere and coarser mesh far from the sphere. 

The sphere displacement in horizontal direction is restricted and the contact between the 

sphere and medium is frictionless. The horizontal motion for the left edge of the medium and 

the vertical motion for the bottom edge of the medium are restricted (figure 3). It should be 

noted that a second finite element model with a cylindrical medium of h = 50 mm height and 

r = 50 mm radius (55000 CAX4R and 29 RAX2 elements) is used to check the results. 

Although the results of the cylindrical medium of h = 100 mm and r = 100 mm are presented 

in the sections below, the comparisons showed that the displacements of the sphere in the 

time range of interest for both finite element models are almost the same (the numerical 

difference between the displacements predicted by two models is less than 0.2%). For the 

comparisons of the analytical and finite element models below, the same discrete 

displacement vector (when predicting the force as a function of sphere displacement) and the 

same discrete time vector (when predicting the sphere displacement as a function of time) are 

used for the analytical and finite element models to eliminate the errors due to discretization 

in the following sections. 

 



 

Figure 3. The partitioned medium for the use fine mesh around the sphere and coarser mesh 

far from the sphere and the boundary conditions. 

 

2.9 Comparisons and evaluation 

 The force predicted by all seven models and the finite element model presented above 

are plotted as a function of dimensionless sphere displacement (𝑢0 𝑅⁄ )  in figure 4 (𝐸 = 10000 

Pa, 𝑣 = 0.40 and 𝑅 = 0.5 mm). In order to clearly see the performances of the models, the 

differences between the force predicted by the seven models and the finite element model for 

different values of the Poisson’s ratio of the medium are plotted in figure 5 (𝐸 = 10000 Pa and 

𝑅 = 0.5 mm). It is seen that the performances of the models are dependent on the Poisson’s 

ratio of the medium. The differences between the predicted force by the Hertz model corrected 

for sphere displacement and the Poisson’s ratio of the medium (Model 7) and the finite element 

model are minimum for all dimensionless sphere displacements and Poisson’s ratios of the 

medium. The error generally increases as dimensionless sphere displacement increases for all 

models except the model proposed in this study (Model 7). The results predicted by the Hertz 

model corrected for sphere displacement (Model 6) and by the Hertz model corrected for sphere 

displacement and the Poisson’s ratio of the medium (Model 7) are the same for 𝑣 = 0.45 as 

expected, because Model 6 is proposed for 𝑣 = 0.45. The results of the Sneddon Model (Model 

2) and the Hertz model corrected for sphere displacement (Model 6) are very close to each 

other. The results predicted by the Sneddon model (Model 2) and the approximate Sneddon 

model (Model 3) are close to each other, though the Sneddon model produces slightly lower 

errors. The results predicted by the Hertz model (Model 1) and the Hertz model corrected for 

medium thickness (Model 5) are almost the same, because the thickness of the medium 

compared to sphere radius is quite high (i.e., h/R = 100/0.5 = 200). It is seen that Model 4 

always overestimates the force, while Models 2, 3 and 6 always underestimate the force. 

 



 

Figure 4. The force predicted by all seven models and the finite element model as a function 

of dimensionless sphere displacement (𝐸 = 10000 Pa, 𝑣 = 0.40 and 𝑅 = 0.5 mm). 

 

 

Figure 5. The differences between the force predicted by the seven models and the finite 

element model for different values of the Poisson’s ratio of the medium as a function of 

dimensionless sphere displacement (𝐸 = 10000 Pa and 𝑅 = 0.5 mm). 

 

The average absolute errors in the predicted force for dimensionless sphere 

displacement from 0.065 to 0.55 as a function of the Poisson’s ratio of the medium are plotted 

in figure 6 (𝐸 = 10000 Pa and 𝑅 = 0.5 mm). It is seen that the Hertz model (Model 1) and 

the Hertz model corrected for medium thickness (Model 5) work best when 𝑣 = 0.35 − 0.40. 



The error in the force predicted by the Sneddon model (Model 2), approximate Sneddon 

model (Model 3), modified Hertz model (Model 4) and the Hertz model corrected for sphere 

displacement (Model 6) decreases as the Poisson’s ratio of the medium increases; these model 

work best at 𝑣 = 0.49. On the other hand, the error is small for all Poison’s ratios of the 

medium for the Hertz model corrected for sphere displacement and the Poisson’s ratio of the 

medium (Model 7, the model proposed in this study). Overall, the results show that, among 

the given seven models, the model proposed in this study (Model 7) produces minimum errors 

for all dimensionless sphere displacements and Poisson’s ratios of the medium. The error in 

the force predicted by Model 7 is around 1%. It should be noted that, for an applied force, the 

error in the induced displacement is approximately 70% less than the error in the predicted 

force. That is, the error produced by Model 7 in the induced sphere displacement is less than 

0.7% for practical Poisson’s ratios of the medium (i.e., 𝑣 = 0.30 − 0.45) and small and large 

(i.e., 𝑢0 𝑅⁄ = 0.6) sphere displacements. 

 

 

Figure 6. The average absolute errors in the predicted force for dimensionless sphere 

displacement from 0.065 to 0.55 as a function of the Poisson’s ratio of the medium (𝐸 =

10000 Pa and 𝑅 = 0.5 mm). 

 

3. Updating the mathematical model for the sphere located at an elastic medium 

interface exposed to a dynamic force 

 Based on a finite element model for the sphere located at an elastic interface, an 

improved analytical model for the sphere located at an elastic interface exposed to a dynamic 

force has been suggested [20]. However, this model has been corrected for the Poisson’s ratio 

of the medium of 𝜈 = 0.45 and the correction factor has been determined to be (1 − 𝛼
𝑢0

𝑅
) 

where 𝛼 = 0.1 [20]. In this current study, based on a huge number of finite element analyses, 

a mathematical model for all practical Poisson’s ratios of the medium is suggested. In this 

model, the correction factor is given by (1 − 𝛼
𝑢0

𝑅
) where 𝛼 = 𝑣 − 0.35 (Model 7). Hence, by 



replacing (1 − 0.1
𝑢0

𝑅
) in Eqs. 7, 9, 11, 12, 14, 15 and 17 in Ref. [20] with [1 −

(𝑣 − 0.35)
𝑢0

𝑅
], an analytical model for the sphere located at an elastic interface (no medium 

viscosity) exposed to a dynamic force that is valid for all practical Poisson’s ratios of the 

medium can be obtained. The modified equations are not regenerated here for brevity.  

The displacements of the sphere located at an elastic medium interface for different 

forces and Poisson’s ratios of the medium precited by the analytical model in [20], the 

updated model proposed in this study and the finite element model are shown in figures 7-8 

(𝐸 = 10000 Pa, 𝜌 = 1000 kg/m3, 𝑅 = 0.5 mm and 𝜌s = 9000 kg/m3). It is seen that the 

results predicted by the updated analytical model and the finite element model are very close 

to each other. For any applied force and Poisson’s ratio of the medium, the amplitudes and 

period of oscillations and the steady-state displacements predicted by the updated model are 

very close to the ones predicted by the finite element model. As the analytical model in [20] 

has been corrected for 𝑣 = 0.45, this model produces accurate results when the Poisson’s 

ratio of the medium is close to 𝑣 = 0.45. Although the results not presented here for brevity, 

it is seen that the results predicted by the analytical model in [20] and the updated model 

proposed in this study are exactly the same for 𝑣 = 0.45 and the differences between the 

analytical model in [20] and the finite element model (or the updated analytical model) 

increase when the Poisson’s ratio of the medium gets far from 𝑣 = 0.45. 

 



 

Figure 7. The displacements of the sphere located at an elastic medium interface for different 

forces precited by the analytical model in [20], the updated model proposed in this study and 

the finite element model (𝐸 = 10000 Pa, 𝜌 = 1000 kg/m3, 𝑅 = 0.5 mm, 𝜌s = 9000 kg/m3 

and 𝑣 = 0.30). 

 

 

 



 

Figure 8. The displacements of the sphere located at an elastic medium interface for different 

forces precited by the analytical model in [20], the updated model proposed in this study and 

the finite element model (𝐸 = 10000 Pa, 𝜌 = 1000 kg/m3, 𝑅 = 0.5 mm, 𝜌s = 9000 kg/m3 

and 𝑣 = 0.40). 

 

4. Development of an improved mathematical model for the sphere located at a 

viscoelastic medium interface exposed to a dynamic force 

The hysteretic or structural damping model or rheological models such as the 

Maxwell, Kelvin-Voigt and standard linear solid models where springs and dampers are 

arranged in series and/or parallel can be used to include damping for viscoelastic materials in 

order to determine their stress or strain interactions [16,41,42]. For example, in the Kelvin-

Voigt model, the stress is given by 𝐺𝜀 + 𝜂𝜀̇ in the time domain, being (𝐺 − 𝑗𝜂𝜔)𝜖 in the 

frequency domain. It was shown that the Kelvin-Voigt model can properly simulate 

viscoelastic materials, e.g., it can properly simulate the creep behaviour [16,24]. Therefore, 

we used the Kelvin-Voigt model in this study. It should be noted that the results presented 

later in this section show that the sphere displacement (or tissue deformation) increases when 

the force is applied and it decreases in time when the force is removed as expected. The use of 

different models for the medium including the Maxwell and standard linear solid models [21–



23] as well as the experimental investigation will be considered in our future studies. Here, it 

is assumed that there is no sphere displacement in horizontal direction and the contact 

between the sphere and medium is frictionless and continuous. The medium under 

investigation is assumed to be infinite in this study. However, the model can be modified for a 

sample resting on a foundation in future. For example, the structural damping of the sample 

can be simulated by the Kelvin-Voigt model, while the foundation can be simulated by the 

visco-Kerr, visco-Winkler or visco-Pasternak model [23]. It should be remembered that a 

linear viscoelastic model (i.e., Kelvin-Voigt) for medium is used and the plastic deformation 

is not considered in this study. As the analytical solution with viscosity component is not 

possible, the equation of motion for the sphere located at an elastic medium interface in the 

time domain (i.e., Eq. 1) can be first written in the frequency domain. Then, the effect of the 

viscosity of the medium (𝜂) is taken into account by replacing 𝐺 with (𝐺 − 𝑗𝜔𝜂). It should be 

noted the Fourier transform of a rectangular pulse with the amplitude of 𝑓0 and the duration of 

𝜏 is −
𝑗𝑓0

𝜔
(𝑒𝑗𝜔𝜏 − 1). Overall, (i) the model correctly estimating the force required for a 

specific sphere displacement that is valid different v and u0/R values (Model 7) is used for the 

model to predict the dynamic response of a sphere at a viscoelastic medium interface. (ii) The 

effect of the viscosity of the medium is taken into account by using the Kelvin-Voigt model, 

i.e., by replacing 𝐺 with (𝐺 − 𝑗𝜔𝜂). Hence, by replacing 0.1
𝑢0

𝑅
 with (𝑣 − 0.35)

𝑢0

𝑅
 and 𝐺 with 

(𝐺 − 𝑗𝜔𝜂) in equation (1), we obtain the equation of motion of the sphere located at a 

viscoelastic medium interface as: 
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where �̃�∗ = 2(𝐺 − 𝑗𝜔𝜂)(1 + 𝜈) (1 − 𝜈2)⁄  for a homogeneous isotropic material and a non-

deformable sphere. It should be noted that, by setting 𝜂 = 0 in the model of the sphere located 

at the viscoelastic medium interface in Eq. (11), we obtain the Fourier transform of the model 

for the sphere located at the elastic medium interface in Eq. (1). Hence, the dynamic response 

of the sphere located at a viscoelastic medium interface in the frequency domain is obtained 

as follows: 
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The time-domain response of the sphere located at a viscoelastic interface can be found by the 

inverse Fourier transform as: 

 



𝑢(𝑡) =
1

2𝜋
∫

{1+0.5[1−(𝑣−0.35)
𝑢0
𝑅

]}[−
𝑗𝑓0
𝜔

(𝑒𝑗𝜔𝜏−1)]𝑒−𝑗𝜔𝑡

1

3
𝜋𝑅3(4𝜌s+

𝑢0
𝑅

𝜌)(−𝜔2)+[
1

2
(𝛽+

𝑢0
𝑅

)(√
𝜌

𝐺−𝑗𝜔𝜂
𝑅)(−𝑗𝜔)+1][1−(𝑣−0.35)

𝑢0
𝑅

]1.5𝑓0
1 3⁄

(
4�̃�∗√𝑅

3
)

2 3⁄ d𝜔
∞

−∞
         

(13) 

 

It should be remembered that 𝛽 = 0.5. Here, the excitation duration τ is divided into N (e.g., 

2000) points and the calculations are repeated over the entire time period of interest using the 

Matlab software (Mathworks, Natick, MA).  

The displacements of the sphere located at a viscoelastic elastic medium interface are 

shown in figure 9 (𝑓0 = 1 mN, 𝐸 = 10000 Pa, 𝜌 = 1000 kg/m3, 𝑣 = 0.40, 𝜂 = 0.5 Pa s, 𝑅 =

0.5 mm and 𝜌s = 9000 kg/m3). The results without and with the radiation damping are also 

included in figure 9. It is seen that the damping due to the oscillations of the sphere due to the 

radiation of shear waves is considerable and the amplitudes of oscillations are further 

decreased with the viscosity of the medium. The energy at a time 𝑡 = 𝑡2 can be written in 

terms of the energy components at a former time 𝑡 = 𝑡1 using 𝑇2 + 𝑆2 = 𝑇1 + 𝑆1 − 𝐸d where 

𝑇, 𝑆 and 𝐸d show the kinetic, strain and dissipated energy components, respectively. At the 

time points where the displacement is maximum (i.e., peaks), the kinetic energy is zero. 

Hence, we can write 𝐸d = 𝑆1 − 𝑆2 =
1

2
𝑘(𝑢1

2 − 𝑢2
2) where 𝑢1 and 𝑢2 represent the 

displacements at two different peaks. Using the information for the first two peaks in figure 9 

(i.e., using the peaks at 𝑡 = 2.5 and 7.6 s), the dissipated energy is calculated to be 𝐸d = 0, 

1.08 and 1.22 micro Joule/cycle when the radiation damping is ignored, only the radiation 

damping is considered and both the radiation damping and medium viscosity are considered, 

respectively. As expected, the dissipated energy is zero for the undamped system and the 

dissipated energy further increases as the medium viscosity is taken into account. 

 

 

Figure 9. The displacements of the sphere located at a viscoelastic elastic medium interface 

(𝑓0 = 1 mN, 𝐸 = 10000 Pa, 𝜌 = 1000 kg/m3, 𝑣 = 0.40, 𝜂 = 0.5 Pa s, 𝑅 = 0.5 mm and 𝜌s =

9000 kg/m3). 

 

The displacements of the sphere located at a viscoelastic elastic medium interface for 

different excitation duration and medium viscosity values are shown in figure 10 (𝑓0 = 1 mN, 

𝐸 = 10000 Pa, 𝜌 = 1000 kg/m3, 𝑣 = 0.35, 𝑅 = 0.5 mm and 𝜌s = 5000 kg/m3). It is seen 

that the amplitudes of oscillations decrease as medium viscosity increases. There are almost 



no oscillations when the medium viscosity is high enough (i.e., 𝜂 = 4 Pa s). The system 

reaches the steady-state after a certain time. For example, for 𝜏 = 2 ms, there are no 

vibrations around the steady-state position, because there is no enough time to set vibrations 

around this position. On the other hand, the sphere can oscillate around the steady-state 

position for 𝜏 = 10 and 20 ms. It is seen that the time to reach the steady-state decreases as 

the viscosity of the medium increases. However, the amount of the viscosity of the medium 

does not change the steady-state displacement. 

 

 

Figure 10. The displacements of the sphere located at a viscoelastic elastic medium interface 

for different excitation duration and medium viscosity values (𝑓0 = 1 mN, 𝐸 = 10000 Pa, 

𝜌 = 1000 kg/m3, 𝑣 = 0.35, 𝑅 = 0.5 mm and 𝜌s = 5000 kg/m3). The excitation starts at t = 0 

and the arrow shows the end of the excitation. 

 

The displacements of the sphere located at a viscoelastic elastic medium interface for 

different Young’s moduli and viscosities of the medium are shown in figure 11 (𝑓0 = 0.5 mN, 

𝜌 = 1000 kg/m3, 𝑣 = 0.40, 𝑅 = 0.5 mm and 𝜌s = 9000 kg/m3). The spectrums of the time 



domain data are also included in figure 11. The spectrums clearly show the changes in the 

amplitudes and frequency of oscillations. The amplitudes of oscillations decrease and the 

frequency of oscillations increases as the Young’s modulus of the medium increases as 

expected. It is clearly seen that the viscosity of the medium has huge effects on the amplitudes 

of oscillations and the viscosity of the medium should be considered for dynamic loading. 

. 

 

Figure 11. The displacements of the sphere located at a viscoelastic elastic medium interface 

for different Young’s moduli and viscosities of the medium (𝑓0 = 0.5 mN, 𝜌 = 1000 kg/m3, 

𝑣 = 0.40, 𝑅 = 0.5 mm and 𝜌s = 9000 kg/m3). 

 

The displacements of the sphere located at a viscoelastic elastic medium interface for 

different densities and viscosities of the medium are shown in figure 12 (𝑓0 = 0.5 mN, 𝐸 =

10000 Pa, 𝑣 = 0.40, 𝑅 = 0.5 mm and 𝜌s = 9000 kg/m3). The spectrums of the time domain 

data are also included in figure 12. It is seen that, although there is no effect of the density of 

the medium on the steady-state displacement (being 126.7 𝜇m for three cases here), it has a 

considerable effect on the amplitudes of oscillations. The effect of the density of the medium 

on the amplitudes of oscillations decreases as medium viscosity increases. The frequency of 

oscillations decreases with medium density. For example, the frequency of oscillations is 180, 

177 and 172 Hz for 𝜌 = 1000, 2000 and 4000 kg/m3, respectively, when 𝜂 = 2 Pa s. These 

results show that the density of medium needs to be taking into account for dynamic loading. 

 



 

Figure 12. The displacements of the sphere located at a viscoelastic elastic medium interface 

for different densities and viscosities of the medium (𝑓0 = 0.5 mN, 𝐸 = 10000 Pa, 𝑣 = 0.40, 

𝑅 = 0.5 mm and 𝜌s = 9000 kg/m3). 

 

The displacements of the sphere located at a viscoelastic medium interface for 

different sphere densities and medium viscosities are shown in figure 13 (𝑓0 = 0.5 mN, 𝐸 =

10000 Pa, 𝑣 = 0.40, 𝑅 = 0.5 mm and 𝜌 = 1000 kg/m3). The spectrums of the time domain 

data are also shown in figure 13. It is seen that, although there is no effect of the density of the 

sphere on the steady-state displacement, its effect on the amplitudes and frequency of 

oscillations is significant. These results show that the density of the sphere should be taken 

into account for dynamic loading. It should be noted that the experimental investigation using 

spheres at viscoelastic medium interfaces exposed to dynamic forces will be considered in 

future studies. 

 

 



 

Figure 13. The displacements of the sphere located at a viscoelastic medium interface for 

different sphere densities and medium viscosities (𝑓0 = 0.5 mN, 𝐸 = 10000 Pa, 𝑣 = 0.40, 

𝑅 = 0.5 mm and 𝜌 = 1000 kg/m3). 

 

 Here, we briefly evaluate the characteristic time scales for the viscoelastic medium 

interacting with the sphere and wave propagation. For the Kelvin-Voigt model, the 

characteristic relaxation time can be simply estimated by 𝜏 = 𝜂 𝐺⁄  [43,44]. For example, for 

the medium with 𝐸 = 10000 Pa or 𝐺 = 3571 Pa, 𝜌 = 2000 kg/m3 and 𝜂 = 2 Pa s in figure 

12, the characteristic relaxation time can be calculated to be 𝜏 = 0.56 ms. As seen in figure 

12, the characteristic time for wave propagation or the period of oscillations for the sphere 

(𝑅 = 0.5 mm and 𝜌s = 9000 kg/m3) located at the same medium interface is 𝑇 = 5.65 ms. It 

should be noted that the characteristic relaxation time is much less than the period of 

oscillations in all test cases used in this study. Furthermore, the experimental and theoretical 

studies performed on the dynamic responses of the spheres located inside phantoms showed 

that the responses predicted by the theoretical models match well with the measured 

responses [25,26]. The mechanical properties of the viscoelastic phantoms and the sizes of the 

spheres used in these studies [25,26] are similar to the ones used in this current study. For 

example, for the medium (gelation) properties 𝐺 = 1863 Pa, 𝜌 = 1010 kg/m3 and 𝜂 = 0.61 

Pa s used in [26], the characteristic relaxation time based on the Kelvin-Voigt model can be 

calculated to be 𝜏 = 0.33 ms and the measured and predicted period of oscillations for the 



sphere (𝑅 = 1 mm and 𝜌s = 7800 kg/m3) located inside the same medium is around 𝑇 = 3.5 

ms [26]. These time scales are similar to the ones obtained in our study. 

The model proposed in this study can be used to understand the dynamic responses of 

spherical objects located at viscoelastic medium interfaces in practical applications. The 

developed model can be used to identify both the elastic and damping properties of materials 

and identify the physical properties (e.g., radius and mass) of the objects at interfaces using 

experimental data. It is believed that the proposed model can be a significant tool for graduate 

students and researchers in the fields of engineering, materials science and physics to gain 

insight into the dynamic responses of spheres located at viscoelastic medium interfaces. 

Specifically, the students and researchers can clearly observe the performances of different 

mathematical models commonly used for predicting the static displacement of the sphere 

located at an elastic medium interface (Section 2). The complicated systems can be modelled 

using finite elements and more accurate analytical models can be obtained by exploiting the 

finite element analysis results (Sections 2 and 3). Using the procedure followed in this study, 

the students and researchers can understand, based on the need, how to convert the equation 

of motion in the time domain to the frequency domain, how to include the viscosity of the 

medium in the model and how to solve the complicated equation of motion in the frequency 

domain using the inverse Fourier transformation (Section 4). The procedure followed in this 

study can be exploited by instructors for teaching purposes. 

 

5. Conclusion 

In this study, first the mathematical models commonly used for predicting the static 

displacement of a sphere located at an elastic medium interface are presented and their 

performances are compared. After that, based on the finite element analyses, an accurate 

mathematical model to predict the static displacement of a sphere located at an elastic 

medium interface valid for different Poisson’s ratios of the medium and small and large 

sphere displacements is proposed. Then, an improved mathematical model for the dynamic 

response of a sphere located at a viscoelastic medium interface is developed. In addition to the 

Young’s modulus of the medium and the radius of the sphere, the model takes into account 

the density, Poisson’s ratio and viscosity of the medium, the mass of the sphere and the 

radiation damping. The effects of the radiation damping, the Young’s modulus, density and 

viscosity of the medium and the density of the sphere on the dynamic response of the sphere 

located at a viscoelastic medium interface are explored.  

The results show that, for any force and Poisson’s ratio, the amplitudes and period of 

oscillations and the steady-state displacement predicted by the model proposed in this study 

are very close to the ones predicted by the finite element model. The damping due to the 

oscillations of the sphere due to the radiation of shear waves is considerable and it should be 

considered for dynamic loading. The amplitudes of oscillations significantly decrease with 

damping as expected. The system reaches the steady-state after a while and the time to reach 

the steady-state decreases as the viscosity of the medium increases. The spectrums clearly 

show the changes in the amplitudes and frequency of oscillations. The results show that, 

although there is no effect of the radiation damping, the density and viscosity of the medium 



and the density of sphere on the steady-state displacement, their effects on the amplitudes and 

frequency of oscillations are significant, hence they should be taken into account for dynamic 

loading. 

The developed model can be used to understand the dynamic responses of spherical 

objects located at viscoelastic medium interfaces in practical applications. Furthermore, the 

proposed model is a significant tool for graduate students and researchers in the fields of 

engineering, materials science and physics to gain insight into the dynamic responses of 

spheres at viscoelastic medium interfaces. The students and researchers clearly see the 

performances of different mathematical models commonly used for predicting the static 

displacement of the sphere located at an elastic medium interface. Using the procedure 

presented in this study, the students and researchers can understand, based on the need, how 

to convert the equation of motion in the time domain to the frequency domain, how to include 

the viscosity of the medium in the model, and how to solve the complicated equation of 

motion using the inverse Fourier transform. 
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