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Abstract

Space vehicles entering dense planetary atmospheres must withstand extreme heating con-
ditions to protect the astronauts and cargo from damage. Aerospace engineers rely either
on catalytic or ablative materials to protect the spacecraft from the intense heat. Qualita-
tively, both types of materials are different in the way they cope with high temperatures
and how they can dissipate large amounts of energy. Catalytic materials re-radiate most
of the heat back to the surrounding gas without undergoing fundamental changes in their
structure. On the other hand, ablative materials transform the thermal energy into de-
composition and removal of the protection material itself. Quantitatively, their differences
are related to the physico-chemical models and the amount of model data needed for the
simulation of their thermal response, as well as the observations that we can obtain in
testing facilities.

The investigation of gas-surface interaction phenomena relies on the development of
predictive theoretical models and the capabilities of current experimental facilities. Both
resources are strong assets of scientific research. However, due to the complexity of the
physics and the various phenomena that need to be investigated in ground-testing facili-
ties, both numerical and experimental processes generate data subjected to uncertainties.
Nevertheless, it remains a common practice in the field of aerothermodynamics to resort
to calibration and validation methods that are not apt for rigorous uncertainty treatment.
Further, as the complexity and level of definition of gas-surface interaction models in-
crease, so does the number of parameters that need estimation. To alleviate this problem,
the current state-of-the-art inverse methodology is to project as many assumptions about
the physics as considered plausible in order to reduce the number of parameters sought
out, potentially biasing the results and substantially slowing down the progress for these
aerospace systems.

This thesis investigates the process of scientific inference and its ramifications for se-
lected gas-surface interaction experiments. Its main contributions are the improvement
and re-formulation of model calibrations as statistical inverse problems with the conse-
quent extension of current databases for catalysis and ablation. The model calibrations
are posed using the Bayesian formalism where a complete characterization of the posterior
probability distributions of selected parameters are computed.

The first part of the thesis presents a review of the theoretical models, experiments and
numerical codes used to study catalysis and ablation in the context of the von Karman
Institute’s Plasmatron wind tunnel. This part ends with a summary on the potential uncer-
tainty sources present in both theoretical-numerical and experimental data. Subsequently,
the methods used to deal with these uncertainty sources are introduced in detail.

The second part of the thesis presents the various original contributions of this thesis. For
catalytic materials, an optimal likelihood framework for Bayesian calibration is proposed.
This methodology offers a complete uncertainty characterization of catalytic parameters
with a decrease of 20% in the standard deviation with respect to previous works. Build-
ing on this framework, a testing strategy which produces the most informative catalysis
experiments to date is studied. Experiments and consequent stochastic analyses are per-
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formed, enriching existing catalysis experimental databases for ceramic matrix composites
with accurate uncertainty estimations.

The last contribution deals with the re-formulation of the inference problem for nitri-
dation reaction efficiencies of a graphite ablative material from plasma wind tunnel data.
This is the first contribution in the literature where different measurements of the same
flowfield are used jointly to assess their consistency and the resulting ablation parameters.
An Arrhenius law is calibrated using all available data, extending the range of conditions to
lower surface temperatures where no account of reliable experimental data is found. Epis-
temic uncertainties affecting the model definition and ablative wall conditions are gauged
through various hypothesis testing studies. The final account on the nitridation reaction
efficiency uncertainties is given by averaging the results obtained under the different mod-
els.

This thesis highlights the fact that the process of scientific inference can also carry deep
assumptions about the nature of the problem and it can impact how researchers reach
conclusions about their work. Ultimately, this thesis contributes to the early efforts of
introducing accurate and rigorous uncertainty quantification techniques in atmospheric
entry research. The methodologies here presented go in line with developing predictive
models with estimated confidence levels.



Résumé

L’étude des phénomènes d’interaction gaz-surface pour les véhicules d’entrée atmosphérique
est basée sur le développement de modèles théoriques prédictifs et sur les capacités des
installations expérimentales actuelles. Toutefois, en raison de la complexité de la physique
et des divers phénomènes qui doivent être étudiés dans ces installations, les simulations
tant numériques qu’expérimentales génèrent des données qui présentent des incertitudes.
Cependant, il est courant dans le domaine de l’aérothermodynamique de recourir à des
méthodes de calibration et de validation non adaptées à un traitement rigoureux de ces
incertitudes.

Cette thèse étudie le processus d’inférence scientifique et ses ramifications dans certaines
expériences d’interaction gaz-surface. Ses principales contributions sont l’amélioration et
la reformulation de la calibration de modèles en tant que problème statistique inverse et
l’extension résultante des bases de données actuelles pour la catalyse et l’ablation. La
calibration des modèles utilise le formalisme Bayésien où la caractérisation complète des
distributions de probabilités postérieures des paramètres sélectionnés est calculée.

La première partie de la thèse présente une revue des modèles théoriques, des expériences
et des codes de simulation numérique utilisés pour étudier la catalyse et l’ablation dans
le Plasmatron, la soufflerie à plasma de l’Institut von Karman. Cette partie se termine
par un résumé des sources possibles d’incertitude présentes dans les données théoriques-
numériques et expérimentales. Ensuite, les méthodes utilisées pour traiter mathématique-
ment ces sources d’incertitude sont présentées en détail.

La deuxième partie présente les différentes contributions originales de cette thèse. Pour
les matériaux catalytiques, une méthodologie de vraisemblance optimale pour l’inférence
Bayésienne est développée. Cette méthodologie offre une caractérisation complète de
l’incertitude des paramètres catalytiques avec une diminution de 20% de l’écart type par
rapport aux travaux antérieurs. En utilisant cette méthodologie, une stratégie de test pro-
duisant les données expérimentales de catalyse les plus informatives à ce jour est proposée.
Ensuite, des expériences et des analyses stochastiques sont effectuées, enrichissant les bases
de données expérimentales de catalyse existantes pour les composés à matrice céramique
à l’aide d’estimations précises de l’incertitude.

La dernière contribution est la reformulation du problème d’inférence des efficacités de
réaction de l’azote à la surface d’un matériau ablatif en graphite à partir des données
de soufflerie à plasma. Il s’agit de la première étude dans la litérature où différentes ob-
servations de la même expérience sont utilisées ensemble pour évaluer leur cohérence et
les paramètres d’ablation qui en résultent. Une loi d’Arrhenius stochastique est déduite
en utilisant toutes les données disponibles, étendant la gamme de conditions à des tem-
pératures de surface plus basses, là où il n’y a pas de données expérimentales fiables.
L’incertitude épistémique qui affecte la définition du modèle et les conditions aux limites
d’ablation sont étudiées par des méthodes de test d’hypothèses. L’incertitude finale sur
l’efficacité de la réaction azotée est obtenue en moyennant les résultats obtenus avec les
différents modèles.

Cette thèse met en évidence que le processus d’inférence scientifique peut également
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imposer des hypothèses sur la nature du problème et avoir un impact sur la manière dont
les chercheurs parviennent à des conclusions sur leur travail. En fin de compte, cette
thèse contribue aux premiers efforts d’introduction de techniques précises et rigoureuses de
quantification de l’incertitude dans le domaine de recherche de l’entrée atmosphérique. Les
méthodologies présentées ici permettront in fine le développement de modèles prédictifs
avec estimation de niveaux de confiance.
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Chapter 1

Introduction

What’s past is prologue

- William Shakespeare, The Tempest

1.1 Atmospheric entry: a complex problem

Space travel, since its beginnings in Low Earth Orbit (LEO) to the exploration of our
Solar System, has led to countless scientific advancements in what it is one of the most
challenging undertakings of humankind. Venturing into Space requires large amounts of
energy to reach orbital and interplanetary velocities. All this amount of energy is dissipated
when a space vehicle enters dense planetary atmospheres [6]. The bulk of this energy is
exchanged during the entry phase by converting the kinetic energy of the vehicle into
thermal energy in the surrounding atmosphere through the formation of a strong bow
shock ahead of the vehicle [7]. The interaction between the chemically reacting gas and
the Thermal Protection System (TPS) is governed by the material behavior which injects
new species into the boundary layer through different mechanisms [8].

Fig. 1.1 shows a schematic representation of the different physical phenomena that occur
in atmospheric entry flows. The figure focuses on the vicinity of the stagnation line close
to the vehicle’s surface. In the zone immediately behind the bow shock, collisions between
the gas particles lead to the excitation of the internal degrees of freedom of atoms and
molecules. When collisions are energetic enough, dissociation and ionization reactions can
occur. The atoms produced as a result of the dissociation can then recombine in the
boundary layer with a consequent release of their energy of formation. This causes a
substantial increase of the wall heat flux, which becomes the main design parameter for
the heat shield. At the surface, different mechanisms are responsible for either enhancing
the heat flux to the surface through catalytic recombination or mitigating the convective
and diffusive heat fluxes from the gas phase through removal of the material itself.

In general, two different families of materials are used to protect the spacecraft from
damage. Reusable heat shields rely on low catalytic materials, such as Ceramic Matrix
Composites (CMC), which are passively cooled by re-radiating a significant amount of
energy back to the surrounding atmosphere. They can withstand mild Earth reentries
from orbital velocities (7 km/s) and their structures do not undergo fundamental changes
under normal conditions. Ablative heat shields also dissipate a significant amount
of heat through radiation. However, unlike reusable systems, ablators are designed for
single use, dissipating the remaining heat by converting thermal energy into decomposition
and degradation of the material itself, causing the surface of the ablator to recess over
time. Ablative TPS are generally constructed from rigid carbon fiber or silicon composites,
impregnated with an organic resin matrix which serves as a pyrolyzing binder and provides
strength to the overall TPS structure.
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Figure 1.1: Atmospheric entry capsule (credits: https: // www. nasa. gov/ specials/
orionfirstflight/ ) and schematic representation of the different phenomena taking place
in atmospheric entry flows: shock layer radiation and excitation, and gas phase and surface
kinetics. The figure represents the vicinity of the stagnation line with the vehicle’s surface
placed on the left side. Adapted from Scoggins [1].

From the free stream to the wall state, passing through the shock layer, the flowfield is an
interdependent medium where different time scales can be defined. They are representative
of the phenomena depicted in Fig. 1.1. For example, we typically define the time scale of the
flow as how fast the bulk of the fluid is moving. Other important process-dependent time
scales are the time it takes the flow chemistry to equilibrate as well as the characteristic
time for the relaxation of the different thermodynamic energy sources within the flow.

In such complex environment, it is not possible to isolate one given effect to study it
further, aside from the rest of the flowfield. If we want to study the surface kinetics, we need
to understand the mechanisms by which species are fed to the wall and how these affect
the resulting surface kinetics. Further, chemical and diffusion mechanisms in the flowfield
are affected by the flight conditions, the shape of the space capsule and the composition of
the atmosphere we are plunging in. Developing a combined physical understanding on all
the aspects of atmospheric entry flight is a task worth of a dedicated community. As such,
experimental facilities and techniques have been developed alongside theoretical models to
capture and understand all underlying phenomena [9].

https://www.nasa.gov/specials/orionfirstflight/
https://www.nasa.gov/specials/orionfirstflight/
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Ground testing for gas-surface interaction

Ground testing is essential for the development and design of aerospace vehicles [10]. It
represents a convenient step at reduced cost compared to real flight experiments. Further,
ground tests allow better control of the environment as well as direct measurements to
investigate the complex flowfield and material response in high-speed, reacting flows. In
particular, the different time scales related to each physical phenomenon force us to use a set
of complementary facilities to fully characterize the flow and material response (Fig. 1.2).
The thermal environment can be duplicated in plasma wind tunnels. They are able to
run for long testing times overcoming the thermal inertia of the material to properly
test its response to the dissociated, reacting flow. Since the flow regime can be either
subsonic or supersonic, similarity techniques have to be defined for the duplication of
flight conditions [11–13]. Radiation and non-equilibrium effects can be reproduced in
high-enthalpy wind tunnels which are able to run for a very short period of time, of the
order of miliseconds or lower, depending on the mechanism used to generate the high speed
flow [10]. Due to the limited size of the scaled spacecraft models, similarity parameters are
also used to link the different phenomena to flight conditions [11].

Figure 1.2: Enthalpy vs testing time of families of experimental facilities available to study
atmospheric entry flows. Figure adapted from Wright [2].

In particular, testing in plasma wind tunnels for gas-surface interactions such as cataly-
sis and ablation, requires the use of several measurement techniques combined with model
predictions. The current state-of-the-art plasma wind tunnel testing for material char-
acterization does not have means to directly probe the different surface kinetic mecha-
nisms [3, 14–22]. We can only get indirect information which needs to be processed through
theoretical models to isolate and trace back the observed effects to the surface kinetics.

Catalysis testing in plasma wind tunnels relies on heat flux, pressure and surface tem-
perature measurements [14–20]. Generally, more than one material are tested at a given
time and their measured wall heat fluxes are compared. In making assumptions for the
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response of one of the materials, used as reference, we can infer what portion of the heat
flux experienced by the TPS material is due to the presence of catalytic recombination.
Ablation testing, on the other hand, has access to another set of observations. As ablative
materials recess and decompose, we can have a direct probing of such effect in plasma
wind tunnels [3, 21, 22]. Recession rates, in contrast with heat fluxes, are a direct effect of
ablative processes and their strength for given conditions. Heat fluxes, on the other hand,
are the sum observations of gas phase and material effects which poses further challenges
for their disentanglement and accurate inference. Further, ablative systems inject carbona-
ceous species into the boundary layer which can produce strong radiative signatures. These
species can also be probed and traced back to ablation mechanisms giving further insight.

Overall, the process of inferring catalysis and ablation parameters based on heat fluxes
or recession rates poses many questions that span beyond our experimental capabilities to
the assumptions in our models. We still grapple with understanding our own experimental
facilities to the point that we must admit ignorance about the relevant physical processes for
different experimental conditions in some cases. While experiments are giving us answers
to questions, sometimes we must admit that it is not clear what are the questions to which
the answers pertain and this is significantly slowing down our progress.

Furthermore, while experimental facilities are capable of providing data regarding the
different phenomena acting during atmospheric entry, no information about their coupling
mechanisms can be truly recovered. When the surface heating is correctly reproduced
for a trajectory point, shock layer radiation and non-equilibrium effects are not correctly
duplicated at the same time. Conversely, reproducing shock layer radiation and non-
equilibrium effects in high enthalpy facilities provides no information on the TPS surface
heating. Only flight experiments and theoretical models can bridge that gap. Flight
experiments are quite costly and they are generally used to validate the design approach
rather than to study and validate physical models. Therefore, approaches that can combine
several sources of information to produce a consistent and realistic picture of the involved
physics would be desirable.

Theoretical modeling for gas-surface interaction

On the side of the theoretical modeling, we have to deal with the multiscale and multi-
physics nature of the problem. It requires the integration of different subjects such as
chemical kinetics, quantum and statistical mechanics, electromagnetism, material science
and computational methods. An accurate modeling of hypersonic flows must account for all
the relevant physico-chemical phenomena occurring both in the gas and solid phases. The
accurate modeling of these high temperature flows is important not only for obtaining an
efficient design of the spacecraft TPS but also for a correct interpretation of experimental
measurements in high-enthalpy and plasma wind tunnels.

In the particular case of gas-surface interaction from the flow perspective, the surface acts
as a boundary which modifies the species concentrations, momentum and energy of the flow.
Surface balances are proposed for the approximate modeling of the action of the wall on
the surrounding gas phase [23–25]. Many assumptions feed these surface models, from the
phenomena we take into account in the surface balances to their particular closure models
for heterogeneous chemistry, conductive heat flux to the material, etc. In particular, the
complexity of heterogeneous chemistry models range from simple empirical correlations and
simplified relationships to detailed multi-step processes such as adsorption, site hopping,
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bond breaking and formation, desorption, etc. To date, validated models for flight-relevant
surface chemistry do not exist. This is an active area of research in the aerothermodynamics
community. Moreover, the predictions of the different models established in the literature
differ significantly from each other.

In general, empirical or phenomenological models for heterogeneous chemistry have a
smaller number of parameters that need definition. They tend to describe the gas-surface
interaction from the macroscopic point of view. Conversely, detailed chemistry models
need a larger number of parameters and they are built to describe the surface kinetics in
a more comprehensive manner. While phenomenological models tend to lump together
different phenomena under a handful of parameters, detailed chemistry models tend to
assign different parameters and mathematical structure to each microscopic phenomenon.
A relevant consequence is that detailed chemistry models have the ability to describe a more
refined physical structure and their interpretation is very straightforward. Resolving finer
physics in our models means being able to generalize them to broader conditions in a more
consistent way. Nevertheless, as long as the experimental data lack such physical depth in
what can be resolved from the observations, we are largely left in the dark about most of
the parameters involved in detailed chemistry models. In other words, in most cases the
experimental data available are not able to leverage the more refined physical description
offered by the detailed chemistry models. Making informed physical assumptions about
their parameters becomes then common for the use of such models, which is problematic
for the assessment of their predictive performance.

Novel experimental and theoretical approaches seek to bridge this gap. On the experi-
mental side, the microscopic study of porous ablators before and after well-controlled flow
reactor tests can offer insights on the link between their microscopic descriptions and their
macroscopic properties. Concerning gas-surface interaction, oxidation has been assessed
thoroughly this way [26–28]. Although its determination and modeling from such experi-
mental approach did not deal with the features needed in detailed surface chemistry models,
future work could use more detailed simulations to resolve complex gas-surface chemistry
features. Along these lines, molecular beam experiments are also well equipped to resolve
the fundamental processes involved in flight-relevant ablation phenomena [29, 30]. On the
theoretical side, we can also resort to more sophisticated models to extract the detailed
chemistry parameters while being consistent with the physics at different scales [31, 32].

Despite their simplicity, empirical and coarser models can still attain good preditive
performance upon calibration. As long as these models can predict the experimental data
in the regimes for which we intend to use them, there is no consistent reason to abandon
them unless proven otherwise.

1.2 The role of uncertainties in scientific inference

The design of atmospheric entry systems relies heavily on experimental facilities and their
capability to reproduce relevant flight conditions. Mathematical and numerical models are
validated against the experimental evidence gathered, and improved accordingly. Both
resources are strong assets of scientific research. However, due to the complexity of the
physics and the different aspects that need to be modeled and experimentally tested,
both numerical and experimental data-generating processes are subjected to uncertainties.
Nevertheless, it is still common practice in the field to resort to deterministic approaches
when it comes to calibrating and validating the proposed models.
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Deterministic methods can undermine all theoretical progress in the field by providing
no account of confidence in our model predictions and experiments, thereby making com-
parisons and model fittings very sensitive to parameter choices and particular realizations
of noisy experimental data. More importantly, there exists a constant update of legacy
models on the basis of better experimental data and computations which still hinders on
the same deterministic methods [19–22, 33, 34]. In turn, this makes those newly proposed
models stand on the same basis as the legacy ones with still many questions left to be
answered and many gaps remaining in the understanding of these phenomena.

The process of scientific inference can also carry deep assumptions about the nature of
the problem and it can impact how researchers reach conclusions about their work. Model
calibration and validation with experimental data need to account for uncertainties to have
fair assessments on the models. Nowadays, it is indisputable that statistical reasoning has
become an essential component of modern scientific thinking [35]. Ultimately, scientists are
interested in developing predictive models to be able to predict and control natural phe-
nomena. Model validation should reflect the attained capability to predict future outcomes
of a statistical experiment in within the explicit domain of the model given the uncertain
nature of our knowledge and observations. Quantifying uncertainties in our predictions is
essential to the final objective of model validation. As such, accurate model calibration is
a necessary step towards validation.

Fig. 1.3 depicts the different domains that play a role in the final objective of developing
predictive models. The figure has been explicitly adapted from Oberkampf [36] where, in
the original, “reality” takes the place of “measurement”. In our physical sciences domain,
where fluid mechanics, and in particular aerothermodynamics, belongs, it is difficult to
claim that any given observation relates directly to the reality we are trying to understand.
That is why, in practical terms, the best we can do is to rely on proxies to reality which
are the measurements we can perform.

Going into the details of Fig. 1.3, we can start by saying that, in general, the broad
objective is to accurately predict some physical phenomenon. We can formulate some
hypotheses and obtain some sort of experimental data in the available facilities. On the
side of the model, we can propose a mathematical structure and parameters within it that,
to our knowledge, best represent the phenomenon we observe at the level of definition of
the experimental data. The formal definition of model qualification is the determination of
adequacy of the conceptual model to provide an acceptable level of agreement for the domain
of intended application ([36]). Using computational techniques, we can then discretize and
solve such models to provide solutions and the corresponding theoretical predictions. The
task that bridges this gap is model verification, described as the process of determining
that a computational model accurately represents the undelying mathematical model and its
solution ([36]). Before attempting a final step in the form of model validation, the computer
model needs to be calibrated to fix some of its parameters with aditional calibration data.
Ideally, the calibration data belongs to the same domain of intended application for our
conceptual model.

In this discussion, it is important to stress that it is still a common issue in the aerother-
modynamics literature to consider the experimental data as the underlying physical re-
ality. This lopsided view can no longer be held in the study of complex systems, such
as aerothermodynamics. Experimental data are not direct proxies to the physical reality.
Measurement techniques are employed to record some sort of observations, such as photon
counts, images or voltage differences. These inputs are direct consequences of the physical
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reality we are studying in experimental facilities. The raw data must be converted into
meaningful physical quantities that our model can predict. To do so, the measurement de-
vice’s response can be also theoretically modeled with a set of model parameters that need
definition. If the theoretical model entails complex dynamical equations, we might need to
discretize them and use a computer model to go from the raw data (input to the model)
to the physical quantity we are measuring and want to report (output of the measurement
device model). Along the way, a calibration of the measurement device’s model must be
carried out to determine its model parameters and associated uncertainties. All in all,
using measurements entails going through another set of model qualification, verification
and validation for the model of the experimental apparatus.

Examples in gas-surface interaction testing abound. Measurements of heat fluxes in
reusable TPS make use of a pyrometer to measure the surface temperature. Through the
assumption of radiative equilibrium, the surface temperature is related to the reported
measured heat flux. Measurements of species concentrations in flowfields affected by ab-
lative TPS are usually based on Boltzmann population assumptions for the energy levels.
Our assumed experimental measurement might not be the actual true quantity due to
deviations stemming from the modeling involved in post-processing the measurement raw
data into meaningful physical quantities. In turn, this could generate model discrepancies
and inadequacies that are frequently traced back to the physical model we want to validate,
when it is actually the experimental data that are wrongly post-processed. As with data
generated through theoretical models, experimental data should also be studied through
the same lenses.

Figure 1.3: Schematic representation of the different domains involved in the development
of predictive models.

Different types of uncertainty stem from each of these domains. Conceptual models rely
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on assumptions of different nature. In this case, we need to account for different types
of uncertainty in our analyses depending on how much knowledge we have regarding the
validity of the assumptions. These assumptions take the form of model parameters and
model structure itself. Both characteristics of the conceptual models can carry aleatory
uncertainty. The fundamental nature of aleatory uncertainty is randomness. Parameters
and operators that carry aleatory uncertainty can be expressed as randomly distributed
quantities that may take on values in a known range, but for which the exact value will
vary by chance from unit to unit, point to point in space, or time to time.

Conversely, uncertainties associated to model parameters and model structure that are
not known to a good degree must reflect the fact that there exists a lack of knowledge.
This type of uncertainty is called epistemic and it is also referred to as reducible un-
certainty, knowledge uncertainty, and subjective uncertainty. The lack of knowledge can
also be related to computational issues of the model, or experimental data needed for
validation. Computational issues include programming mistakes, estimation of numerical
solution errors, and numerical approximations in algorithms. Experimental data issues
include incomplete knowledge of experimental information that is needed for simulation of
the experiment and approximations or corrections that are made in the processing of the
experimental data.

Further, epistemic uncertainties can come in two flavors: conscious and blind. Conscious
ignorance or known unknowns would include, for example, any assumptions or approxima-
tions made in modeling, the use of expert opinion, and numerical solution errors. Known
unknowns can stem when making decisions concerning the modeling of a system where one
chooses the physics that will be included in the model and what will be ignored. When
certain type of physical phenomenon is included or ignored, or a specific type of conceptual
model is chosen we should acount for conscious uncertainties. Regardless of what level of
physics modeling fidelity is chosen there are always spatial and temporal scales of physics,
as well as coupled physics, that are ignored.

Blind ignorance is defined as ignorance of self-ignorance or unknown unknowns. In
experimental activities, some examples of unknown unknowns are unrecognized bias errors
in diagnostic techniques or experimental facilities and improper procedures in using a
reference standard in the calibration of experimental equipment. There are no reliable
methods for estimating or bounding the magnitude of blind uncertainties, their impact
on a model, its simulation, or on the system’s response. One possibility is to try to
identify them by combining independent experimental measurements to get information
about the same phenomenon. This can help uncover some issues which, in turn, can inform
new hypotheses and identify inconsistent measurements due to poor understanding of the
experimental conditions or modeling and calibration of the measurement chain.

1.3 Model calibration in aerothermodynamics

In the literature of most scientific disciplines, statistical tools for model calibration and
validation are deeply ingrained as part of their analysis methods [37–39]. In contrast,
aerothermodynamics is still in its infancy with regard to the wide use of such methods.

From 2010 to 2012, a variety of works from the Center for Predictive Engineering and
Computational Sciences (PECOS) group laid the foundations for these statistical methods
to grow in the community. Their pioneering works concerned the Bayesian calibration
of models from shock tube data. The first work was an attempt to (in)validate Park’s
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two-temperature thermochemical model. In it, Miki et al. [40] laid the foundations of their
calibration and validation methodologies. They applied them to the NASA Ames Electric
Arc Shock Tube (EAST) data where they considered a certain number of model parameters
for calibration. The parameters ranged from the flow definition and kinetics to radiation
and statistical modeling. Overall, they showed they were able to learn sufficiently well all
parameters but the quality of the experimental data was brought into question, and only
one model scenario was explored. The predictions of radiative intensities performed with
the resulting calibrated model showed excellent agreement between the predicted mean
intensity and the experimental observations, but also indicated that uncertainties were
very large.

The subsequent work of Panesi et al. [41] tackled precisely the fact that spectrometer
experimental data is the result of an elaborated process involving the modeling of radiative
intensities emanating from the dissociated flow. As such, estimating accurate uncertainty
levels on these data is proven challenging. In that work, they proposed and calibrated
reduced models of the internal functioning of a spectrometer for the conversion from the
photon count produced by the Intensified Charge-Coupled Device (ICCD) camera to ra-
diative intensities. Several models for the dynamics of the apparatus were proposed and
studied. Issues concerning the calibration and validation of such models were also dis-
cussed and brought forth. Miki et al. [42] used data from the same facility to calibrate
atomic nitrogen ionization rates with different model scenarios. They used a 1D flow solver
coupled to a radiation solver to obtain radiative signatures. The full methodology includes
a sensitivity analysis to study the important sources of uncertainty for radiative heating,
calibration with manufactured and experimental data, and the final validation with legacy
experimental data. Overall, the predictions obtained with the final calibrated models com-
pare well with the legacy experimental data while the calibrated atomic nitrogen ionization
rates are fully consistent with Park’s model.

Upadhyay et al. [43] were the first ones to focus on gas-surface interaction. They in-
ferred nitridation reaction efficiencies from Zhang et al.’s data [44]. The data consisted
in measuring the mass loss of a graphite sample placed in a furnace-heated quartz tube
fed by a microwave discharge which produced the stream of dissociated nitrogen. The
atomic nitrogen concentrations at the inlet/outlet of the furnace along with temperatures
and pressures were also measured. They managed to calibrate power laws with different
models for the dependency of nitridation reaction efficiencies with surface temperatures.
Terejanu et al. [45] posed the problem of optimal data collection to efficiently learn the
model parameters of the graphite nitridation experiment in the context of Bayesian analysis
using both synthetic and real experimental data.

On the other side of the pond, Tryoen et al. [46] in 2014 studied the sensitivities of com-
mon flight data, such as stagnation pressures and heat fluxes, to the free stream conditions
and chemical parameters for the gas phase and material catalytic response. They proposed
a surrogate-based methodology aimed at reconstructing free stream pressures and Mach
numbers from stagnation pressures with fixed values for the flow chemistry and material
catalytic response. Given the complex dependencies of the heat flux to the free stream
and chemical parameters, it was discussed that novel methods were needed to introduce
heat fluxes and chemical model parameters in the inference. The methodology was tested
on manufactured data for a point in the entry trajectory of the European Experimental
Reentry Test-Bed (EXPERT). In recent years, Cortesi et al. [47] introduced novel methods
to be able to include heat fluxes in the reconstruction of the free stream density and the



10 Chapter 1. Introduction

material catalytic response. The flow angles were also included as quantities of interest
in the inference framework. Two data points along the EXPERT entry trajectory were
chosen to test the methods with manufactured data.

More recent works by Sanson et al. [5] in 2018 focused on learning catalytic parameters for
reusable TPS from plasma wind tunnel data. For the first time, the assumption regarding
the catalytic parameter of a reference material was not needed anymore [14–20]. The
catalytic parameter of the reference material could be learned along with the flow conditions
and the TPS catalytic parameter, objective of the study. They put forth a Bayesian
inference methodology which was not able to accurately learn the TPS catalytic parameter.
Their work highlighted the challenges we face when learning from heat fluxes which, as
recounted in Sec. 1.1, contain overall information about different phenomena.

Ray et al. [48] in 2020 proposed a probabilistic framework for assessing the consistency of
an experimental dataset. They wanted to know whether the stated experimental conditions
were consistent with the measurements provided. Their framework used heat flux and
stagnation pressure measurements along the surface of a double cone to infer the inflow
conditions in a shock tunnel. As the heat fluxes and wall pressures were deemed more
trustworthy than the inflow measurements, they were used to infer the inflow conditions
through the lens of the model and compare to the reported measured quantities.

Fig. 1.4 contains a schematic representation of the state-of-the-art model calibration
for aerothermodynamics. The experiments refer to the main measurements from which
model parameters are inferred. Other measurements such as static and dynamic pressures,
as well as surface temperatures are generally included in the experimental data although
they are not explicitly depicted here. The arrows represent the flow of information. While
some of these works also include flow state and gas-surface interaction parameters in their
calibrations, only the targeted parameters of such inferences are explicitly depicted.

Despite the above-mentioned efforts, there is still a lack of response from the community
in the widespread adoption of these methods for model calibration and validation. It is
still difficult to find a sense of continuity in such works where the findings and suggested
improvements would actually be taken into account and studied further. Moreover, the
state of the art is still deeply rooted in deterministic approaches even though computational
power has been increasing since then. One of the issues that face current researchers
in the field is the need of a different mathematical background to properly tackle these
problems. Even though there has been a continuous flourishing of computational libraries
for inverse methods and algorithms [49–51], the scarce nature of the experimental data and
the complexities of the physical models prevent their straightforward use.

1.4 Objectives and outline of the thesis

The state-of-the-art aerothermodynamics is still in its early stages regarding the widespread
use of stochastic methods for model calibration and validation. Only a handful of works
exist and they cover a wide range of topics regarding the data they use, the models they
seek to (in)validate, and how they use the information (from the experiments to the model
and/or viceversa). Even though there are works where several models are proposed for the
inference problem, there is no account of proper hypothesis testing studies where competing
models are assessed in light of each other. More complex models are proposed as alternative
to simple ones yet they need of additional assumptions to lower the number of parameters
to be inferred or the inference is carried out with more parameters altogether [41–43]. This
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Figure 1.4: Visual representation of the state-of-the-art model calibration for aerother-
modynamics. The works which do not address the link between flow physical models and
experiments have been omitted. The arrows represent the flow of information. In blue, the
works that used real experimental data, and in black, the works that used only manufactured
data to develop the methods.

characteristic is not properly discussed or gauged in the obtained results nor is how it
impacts the predictive performance of the models. Further, even though some works also
used this family of methods to inform or improve some aspects of the experiments, none
of them have been implemented in practice to actually consolidate those contributions. So
far, it has not gone beyond theoretical analyses and methods [41, 45]. Another aspect that
lacks in the aerothermodynamics literature is the fact that none of these works combine
more than one measurement technique to infer the model parameters of interest. To state
this more clearly, the cited works used more than one distinct measurement technique to
infer model parameters but they are all complementary to each other. Only one type of
measurement is carrying the actual information on the parameters of interest, the others
are there to inform the boundary and testing conditions. Combining more than one type of
measurement with information about the main inference parameters was never attempted,
holding back a whole set of novel insights.

Apart from missing studies in the literature, some of the published methods did not give
satisfactory answers in their abilities to learn model parameters. The improvement of such
methods is another active niche of research.

The broad goal of this thesis is to develop stochastic methodologies for the accurate in-
ference of selected gas-surface interaction model parameters and assessment of flow models
and experimental data for atmospheric entry plasmas. In particular, this thesis is focused
on calibrating reacting flow models from plasma wind tunnel data and studying the var-
ious ramifications of such stochastic analyses. The work is focused on experimental data
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coming from the VKI plasma wind tunnel, the Plasmatron. The research ranges from
improving and re-formulating existing inference methods to designing more informative
experiments through the use of the developed stochastic analyses. Further, this thesis
provides continuation to the introduction of stochastic methods for model calibration in
the aerothermodynamics community.

The two main objectives of this thesis are:

1. Accurate inference of catalytic parameters for reusable TPS:

• Improvement of existing stochastic inference frameworks by propos-
ing novel approaches tailored to the experimental methodologies available and
typical plasma wind tunnel data.

• Design of an experimental methodology using the improved stochastic in-
ference framework to propose experiments that can yield more accurate catalytic
parameters and inlet flow conditions, enriching current CMC databases.

2. Calibration and assessment of graphite ablation models for nitrogen flows:

• Development of a Bayesian calibration approach for nitridation reaction
efficiencies and Arrhenius law parameters for the baseline stagnation line model
combining all available measurements.

• Use of hypothesis testing and Bayesian model averaging to include
epistemic uncertainties beyond the baseline model, obtaining a robust Arrhenius
law for a wide span of surface temperatures.

While the literature tends to equate inference and calibration, we make the distinction
here to formulate the objectives. Inference pertains to the reconstruction of parameters,
such as boundary conditions or model parameters, in the context of a specific experimental
case. Conversely, we refer to calibration when we obtain model parameters that can be used
for a broad range of conditions. However, both terms are used interchangeably throughout
the thesis.

Through these objectives, we make possible the introduction of rigorous and systematic
uncertainty treatments for plasma wind tunnel experimental data. The methodologies have
the impact of tackling a set of issues that affect these data as well as being able to update
current gas-surface interaction databases with accurate uncertainty estimates.

Fig. 1.5 depicts a schematic representation of the objectives of this thesis in the same
context as the state of the art included in Sec. 1.3. Objective 1 tackles the link between
heat flux measurements in plasma wind tunnels and the inference of the flow state at
the free stream together with the material catalytic response. The link goes both ways:
first, the experimental data are used to inform the model parameters in order to establish
a suitable methodology; second, the model charateristics are exploited to design a more
informative experimental methodology. Objective 2 seeks to infer model parameters for
nitrogen ablation by combining all available measurements. In this case, CN concentrations
and material recession rates are used jointly to inform the model. Conversely, through the
lens of the model we can assess the consistency and validity of both sets of measurements,
providing feedback to the experiments. Both objectives involve the use of real experimental
data.

The thesis is divided into 8 chapters including this introduction. Most outcomes have al-
ready been presented at international conferences and meetings, as well as being published
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Figure 1.5: Main objectives of this thesis and their position in the same context as the
state-of-the-art model calibration in aerothermodynamics.

or in the process of being published in peer-reviewed journals (See Publications). When
relevant, the publications where the contents of each chapter can be found are referenced
in footnotes.

Chapter 2 reviews the state-of-the-art modeling of high temperature, chemically reacting
flows. The objective of this chapter is twofold. First, we aim at presenting in detail the dif-
ferent models used to explain the underlying physical phenomena present in plasma wind
tunnel subsonic ground testing. The secondary objective of the chapter is to highlight the
diverse landscape in terms of data fidelities, models and complexity.

Chapter 3 explains in detail the experimental and numerical tools that are used in this
work. From the numerical codes which solve reduced sets of the governing equations ex-
posed in Chapter 2, to the experimental set-ups. The chapter ends by identifying the
different uncertainty sources present in both data-generating processes.

Chapter 4 introduces the fundamentals of statistical inverse analysis by means of Bayesian
methods. The different constitutive steps of Bayesian inference analyses are reviewed in
light of the needs addressed in this thesis to deal with the uncertainty sources identified in
Chapter 3.

Chapter 5 proposes a novel Bayesian inference formulation for the calibration of the cat-
alytic parameters of reusable thermal protection materials. The calibration gives estimates
of the material catalytic parameter through its marginal posterior probability distribution.
The approach is tested and compared to previous works in a case study with real experi-
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mental data.

Chapter 6 builds on the contribution of Chapter 5 by proposing a more informative ex-
perimental methodology and performing stochastic analyses on the resulting plasma wind
tunnel data, enriching current catalysis databases.

Chapter 7 presents a methodology to infer nitridation reaction efficiencies from plasma
wind tunnel experiments. The inference is splitted in terms of the experimental data used.
We want to gauge the different levels of information that recession rates and CN radiation
bring to the inference of nitridation efficiencies. The final part of this contribution is de-
voted to model selection and averaging. Model averaging is performed for the nitridation
efficiencies and Arrhenius law parameters inferred under each proposed model. Complete
and accurate characterization of their posterior uncertainties is provided to update the
current state of the art.

Chapter 8 summarizes the different results and presents a synthesis of the derived con-
clusions for each phenomenon studied. Suggestions for future investigations are given.



Chapter 2

Modeling of high temperature, chemically reacting
flows

This chapter is devoted to a review of the state-of-the-art modeling of high temperature,
chemically reacting laminar flows in the continuum regime used to describe atmospheric
entry phenomena. A closed description of the hydrodynamics equations is given by combin-
ing the governing equations in open form with the physico-chemical closure models. This
thesis is centered around the understanding of gas-surface interaction phenomena from ex-
perimental and theoretical points of view and the interplay between them. The relevant parts
of the modeling of gas-surface interactions for chemically reacting flows are also presented.
These models govern the flow behavior in the presence of catalytic or ablative materials
when imposed as boundary conditions. It is important to understand the intricacies and
complexities of the models that are commonly adopted in the literature to appreciate the rel-
evance of methods dealing with lack of knowledge and uncertainty as presented in this thesis.

2.1 Governing equations

An exploration of the mathematical description of the physical problem is introduced. The
governing equations, being introduced first, represent the stencil which additional physico-
chemical models come to feed. In the mechanics of continuum media such as gas flows
in the continuum regime, general balancing equations govern the dynamics of a system
[52]. They balance the variations of mass, momentum and energy of the given macroscopic
state of the system. The density of a quantity in a given volume changes in time due to
exchanges with the external environment (fluxes) and internal production (source terms).
Overall, balancing equations relate variations in time with reasons of change.

The particular open form of the balancing equations for high temperature, chemically
reacting flows is introduced here. These equations describe a multi-component dilute gas
whose mass, momentum, and energy are conserved in an arbitrarily small volume, and
they hold whenever the hypotheses for continuum flow are satisfied [9]. In this thesis, the
work revolves around the modeling of flows in testing facilities capable of reproducing the
thermal environment relevant for atmospheric entry applications. The VKI Plasmatron
facility, central in this thesis, only pertains flow descriptions in the continuum regime.

In general, atmospheric entry flows are characterized by complex processes taking place
within the gas. When the time required for a certain process to accommodate itself to the
local flow conditions within some region is almost negligible, the process is said to be in
local thermodynamic equilibrium. However, in many applications, the chemical kinetics
and internal energy relaxation time scales are similar to the characteristic flow time scales,
defining a state of thermochemical non-equilibrium [53]. In this case, balancing equations
for the internal energies related to different molecular degrees of freedom and partial den-
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sities for the mixture components must be additionally solved, adding complexity to the
system. Further, when the internal energy levels population depart from Boltzmann dis-
tributions, a more detailed approach, such as state-to-state, should be followed [54–56].
This last modeling option is beyond the scope of this thesis.

A first layer of model hypotheses must be introduced when defining the governing equa-
tions of a given system. In this thesis, we are interested in subsonic plasma flows at
subatmospheric pressures (10 hPa - 100 hPa) representative of the stagnation point condi-
tions at peak heating of spacecraft atmospheric entry. Pressure plays an important role in
speeding up or slowing down chemical reactions and energy exchange mechanisms. Further,
we are mainly interested in reproducing boundary layers, where gradients of flow quantities
are predominant. These gradients drive the time scale of the flow which is important to
assess whether equilibrium assumptions hold. The edge of the boundary layers are assumed
in thermochemical equilibrium following the studies of Cipullo et al. [57]. They showed
experimentally the validity of thermochemical equilibrium assumptions to account for the
inlet conditions in reacting flow simulations for the VKI Plasmatron testing. The rest of
the fluid domains encompassing the boundary layers are assumed in thermal equilibrium
at a single temperature. Thermochemical non-equilibrium (TCNEQ) is only considered in
the case of nitrogen ablation as experimental measurements of vibrational and rotational
energy modes of molecules indicate thermal non-equilibrium.

In the next section, the more general case of a chemically reacting flow in thermochemical
non-equilibrium is presented first, where the condition of thermal equilibrium is a particular
case. The governing equations under Local Thermodynamic Equilibrium (LTE) assump-
tions are introduced next. LTE conditions require additional thermodynamics background
for the computation of equilibrium compositions.

2.1.1 Thermochemical non-equilibrium

The general equations describing a multi-component chemically reacting gas in thermo-
chemical non-equilibrium are introduced. The equations are presented in their open form,
as they lack constitutive relations that link transport fluxes, mass production terms and
thermodynamics to flow properties and their gradients.

In this open formulation, radiative processes within the gas are not included given that
facilities such as the VKI Plasmatron do not allow to reproduce relevant shock layer radia-
tion. Moreover, due to the complexity involved in their modeling and computation [58, 59]
we do not take into account radiative processes within the flow. Nevertheless, radiation
absorption in the boundary layer can be significant in flight as well as on ground, in
particular enhanced by the presence of ablation products. In addition, the thermal non-
equilibrium modeling that concerns this thesis does not involve the resolution of pseudo-
species of different energy levels and photochemical processes as in a detailed state-to-state
formulation [54–56]. The thermal non-equilibrium nature of the flow is resolved by a multi-
temperature model which assumes that the translational mode of atoms and molecules, and
rotational mode of molecules thermalize to the same temperature T while the vibrational
mode of molecules, electronic mode of atoms and molecules, and electron translational
degree of freedom thermalize to another temperature T

V . This approach is widely used
in simulations of atmospheric entry flows [60] even though the underlying assumptions
are being revisited [61, 62]. In such case, the mathematical description of the problem is
limited to representing two distinct molecular contributions to the total energy, assuming
that all degrees of freedom can be associated to one or another.
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The governing equations for such non-equilibrium model extend by the number of inde-
pendent internal energy modes considered in the mixture while gas phase chemistry and
energy transfer mechanisms need to be modeled to account for mass and internal energy
source terms.

Species mass conservation equations. The evolution of the chemical composition of
the different species in the gas is governed by the conservation of mass per individual
species in terms of partial densities ⇢i. These equations read

@

@t
(⇢i) +r · (⇢iu+ ⇢iVi) = !̇i, 8i 2 S, (2.1)

where S is the set of all species in the mixture which contains electrons and heavy species
S = {e} [ {H}, respectively. Quantity u is the mass-averaged gas velocity for which

⇢u =

X

i2S

⇢iui, (2.2)

and ui is the average velocity of species i.
The term ⇢iVi is the mass flux of species i due to diffusion. Diffusion velocities are

defined as Vi ⌘ ui � u and are linearly dependent such that the mixture diffusion flux
vanishes

X

i2S

⇢iVi = 0. (2.3)

The term !̇i is the volumetric chemical production or destruction of species i within
the gas. All chemical processes additionally satisfy element and charge conservation. This
leads to

X

i2S

!̇i = 0. (2.4)

The evaluation of the chemical terms !̇i, together with the computation of the diffusion
velocities from the Stefan-Maxwell equations are presented in Sec. 2.2.

Total mass conservation equation. The summation of Eq. (2.1) over all chemical
species and the substitution of Eqs. (2.2)-(2.4) yields the following equation for the con-
servation of the mixture mass

@

@t
(⇢) +r · (⇢u) = 0. (2.5)

Note that in practice, we solve all species mass conservation equations given that the sys-
tem is closed for nS equations, being nS the number of species considered in the mixture.

Momentum conservation equation. The momentum conservation equation reads

@

@t
(⇢u) +r · (⇢u⌦ u+ p

¯̄I + ¯̄⌧ ) = 0, (2.6)

where p is the thermodynamic pressure of the mixture, related to the other fluid variables
by a combination of Dalton’s law and equation of state for a perfect gas mixture, resulting
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in p =
P

i2H ⇢iRiT +⇢eReTe, with the species gas constant Ri = kB/mi for species i, being
kB the Boltzmann constant. The subscript e refers to electron quantities. The term ¯̄I is
the identity tensor and ¯̄⌧ is the viscous stress tensor (Sec. 2.2). In the general case, the
right-hand side contains all the external forces acting on the gas in the considered volume.
In Eq. (2.6), the gravitational contribution is omitted due to the typical circumstances
in high temperature, reacting flows that assume gravitational effects to be negligible with
respect to effects due to the tensional state of the gas. Additionally, most of the condi-
tions covered in this thesis deal with quasi-neutral unmagnetized mixtures, rendering the
Lorentz force in the right-hand side of Eq. (2.6) negligible.

Total energy conservation equation. The total energy of the system is balanced
according to

@

@t
(⇢E) +r · (⇢uH + ¯̄⌧u+ q) = 0, (2.7)

where the total energy E = e+ 1/2(u · u) is the sum of the thermal and kinetic energy of
the gas. Quantity H = E + p/⇢ is the total enthalpy, ¯̄⌧u is the work of the viscous forces
and q is the heat flux accross element boundaries due to convection and diffusion. We
recall that radiation is neglected. The thermal energy of the gas e can also be expressed
in terms of species thermal energies as a weighted sum e = (1/⇢)

P
i2S ⇢iei.

Internal energy conservation equation. In this formulation, the resolution of the
thermodynamic state of the gas is done through a multi-temperature model attributed to
the works of Lee [63, 64] and Park [65, 66]. The model considers two different thermal
baths, one for the translational-rotational modes (referred to as translational bath in this
thesis) and another for the vibrational-electronic-electron translational modes (referred
to as vibrational bath in this thesis). One conservation equation per bath ought to be
specified. It is convenient to solve one internal energy equation along with the total energy
equation Eq. (2.7). In a general compacted formulation this equation reads

@

@t
(⇢e

V
) +r · (⇢eVu+ qV) = �per · u+ ⌦

VT
+ ⌦

eT
+ ⌦

CV � ⌦
I
, (2.8)

where the first term on the right-hand side is the work done on electrons induced from
an electron pressure gradient. The treatment of this term as a source term is a strong
approximation that simplifies the resulting Eigen system for the convective flux, necessary
in various upwind schemes [9, 67]. The term ⌦

VT denotes the energy transfer between
the vibrational and translational baths through collisional processes, ⌦

eT refers to the
energy transferred from heavy particle to electron translational modes through elastic
collisions, ⌦CV represents the transfer of energy to the vibrational bath through chemical
reactions, and ⌦

I is the electron-impact ionization transfer mechanism. The latter term
is due to free electrons acting as means of delivering energy to heavy particles causing
ionization controlling the avalanche phenomenon [68]. This also results in free electrons
losing translational energy, contributing to energy changes of the vibrational V thermal
bath. The internal energy heat fluxes qV and source terms are discussed in Sec. 2.2.
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2.1.2 Local Thermodynamic Equilibrium

The more general non-equilibrium formulation being introduced in the previous section
eases the presentation of LTE flows. The major aspect of this assumption is the fact
that chemical reactions and relaxation of internal energy modes are fast enough when
compared to the flow characteristic time scales. The composition of the mixture and
energy distribution of internal modes are therefore considered to instantaneously adapt
themselves to changes in the flow. The plasma can be thought of as a single gas of defined
composition provided that the diffusive fluxes of chemical elements are neglected, which
remains a strong approximation for chemically reacting flows [69, 70]. The pressure and
temperature of the gas are sufficient to uniquely define the distribution of the species,
which is not dependent on the history of the flow, and a single temperature can be used to
describe the energy distributions. By knowing the elemental molar fractions, the system-
wide Gibbs free energy is minimized for the given thermodynamic state. This procedure
computes the species partial densities ⇢i. The computation of the Gibbs free energy is
reviewed in Sec. 2.2.1.

Further, the set of governing equations for such system collapses the energy balance
equations into just the conservation of total energy. All the different thermal baths are
assumed equilibrated with each other at temperature T .

It is straightforward to see why this assumption is quite suitable for the simulation of
experiments. Only a reduced amount of information about the state of the flow at the
inlet of the chosen domain (free stream, boundary layer edge, etc) is needed to define
proper boundary conditions for the governing equations. This goes inline with the fact
that little experimental data are available from plasma wind tunnel experiments. The
LTE assumption in the free stream at high enough pressure considered in this thesis is also
supported by extensive experimental and numerical databases related to experiments in
the VKI Plasmatron over the years. The experimental data are attributed, among others,
to Cipullo [57], Panerai [4] and Helber [3].

To conclude what has been exposed in this section, Table 2.1 shows the different terms
that need additional layers of modeling to close the thermochemical non-equilibrium and
LTE governing equations, respectively. These terms are based on the assumption that the
set of equations introduced are solved on the conservative variables ⇢i, ⇢u, ⇢E, and ⇢e

V

from which the mixture density is directly computed as ⇢ =
PnS

i ⇢i. They are classified
according to the phenomenon they represent.

Apart from closure models, the governing equations need boundary conditions at the
domain inlet and the material surface. This information depends on the particular struc-
ture of the system we solve, which is different for the cases of catalysis and ablation due to
the various simplifications adopted in the different numerical codes. In general, we can say
that the boundary conditions for both problems are obtained based on either assumptions,
such as equilibrium for the mass and energy balance equations, or no slip for the momen-
tum equations, additional models, such as surface balance equations, or direct/indirect
experimental observations. More detailed accounts of the particular boundary conditions
needed for each problem are given in Chapters 5 and 7.

The following two sections are dedicated to the models that close the governing equations.
In Sec. 2.2, the physico-chemical models that affect the definition of the gas phase are
introduced in detail. Given the particularities and overall focus of this thesis on gas-
surface interaction model parameters, Sec. 2.3 is exclusively devoted to the discussion and
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Table 2.1: Overview of the terms that need closure in the TCNEQ and LTE governing
equations.

Conservation equation Transport Thermodynamics Gas phase kinetics

TCNEQ

Species mass (2.1) Vi - !i

Momentum (2.6) ¯̄⌧ p

Total energy (2.7) q H -

Internal energy (2.8) qV
- ⌦

VT
,⌦

eT
,⌦

CV
, and ⌦

I

LTE

Momentum (2.6) ¯̄⌧ p -

Total energy (2.7) q H -

presentation of the closure models used as suitable surface boundary conditions in this
work.

2.2 Physico-chemical models

The open form of the governing equations provides little information in their mathemat-
ical description, only conservation properties. So far, the balancing equations are just
the mathematical scaffolding upon which we can define additional closure in the form of
physico-chemical models, such as thermodynamics, transport and gas phase kinetics.

These models define the physical characteristics of the chemically reacting flows under
study. They close the governing equations and link the fluid quantities, or macroscopic
state variables, to the microscopic characteristics of the flow. This is important as the flow
variables are the common language among the conservative quantities, flux tensors and
source terms in the governing equations. In most cases, the relationship is explicit, such
as for the thermodynamic pressure via Dalton’s law in Eq. 2.6, but, generally, additional
structure and algorithms are introduced.

In this section, thermodynamic and transport properties are introduced first, followed
by the gas phase kinetics (chemistry and energy exchange mechanisms). This layer of
complexity adds many caveats to the numerical and experimental studies of these flows.
It is not clear when different models hold for a given testing condition, making the process
of understanding the physics more complicated.

2.2.1 Thermodynamics

Irreversible thermodynamics provides relationships between the state of a thermodynamic
system and its reasons for change. Particularly, it states how the thermal energy and
entropy of a system change, but it does not provide expressions or models for these ther-
modynamic properties. The thermodynamic relationships for energy, enthalpy, entropy
and specific heats are derived from first principles using statistical mechanics [71] as a
mesoscale method between the macroscopic and microscopic scales of the flow. Different
hierarchies are found in these models. The mixture hierarchy, where the mixture proper-
ties are derived from the individual species properties, and the energy partition hierarchy,
where the total energies and enthalpies for each species are derived from the different
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thermal bath contributions.

The object of study can have different physical properties, namely, it can be an electron,
atom or molecule. In thermodynamic terms, they are distinct in the way they can store
energy internally. Free electrons only have the capability to move which is translated
into translational energy and spin. Atoms can move but also can have bound electrons in
different orbitals, defined by the quantum mechanic nature of the atomic system. Molecules
can do all that plus vibrate and rotate, or a quantum mechanical version of a classical
vibrator and rotator [72]. Further, the chemical bonds that make up the different particles
also contribute to the overall energy of the flow. Under thermal equilibrium assumptions,
the characteristic times of translational and internal energy relaxation are way smaller
than the characteristic times of the flow. This guarantees that enough collisions take
place rapidly, equilibrating all possible modes of energy storage. This condition collapses
the mathematical description of the thermodynamic models to the point where only one
temperature parameter is needed to describe the system.

Any physical object considered as single species (electron, atom, molecule) has quantized
energy levels [71]. While translational energy levels are discrete, they are tightly packed
together. For all practical purposes, this permits a semi-classical approach in which it is as-
sumed that the populations of internal energy levels satisfy Maxwell-Boltzmann statistics,
such that the quantum effects differentiating bosons and fermions are negligible [71].

In this section, a bottom-up approach is adopted where the properties for inert pure gases
made of molecules (pure polyatomic gases) in thermal equilibrium are presented first. A
generalization to two thermal baths is introduced next. The mixture rules for the summa-
tion of each species contribution are presented last, adding the contributions of atoms and
electrons in the mixture to the thermodynamic properties as well as the thermodynamic
effects of chemical reactions in the mixture properties. Further, in the formulation here
presented, we differentiate between the contributions of the heavy translational-rotational
and vibrational-electronic-electron translational energy baths. The translational energy of
the heavy species is referred to as simply translational energy in this thesis, in contrast
with electron translational energy.

Pure polyatomic gases in thermal equilibrium. The population of a single level for
species i can be expressed in terms of the overall species population ni =

P
l2Li

n
l
i with Li

being the set of energy levels for species i. The total contribution to the thermodynamic
properties of a single species is a direct consequence of the different energy levels that are
populated. To obtain an expression for the population of the different levels, we need to link
the most probable macroscopic state of the system with the number of possible microstates.
This is what constitutes the central problem of statistical thermodynamics, where we have
a certain number of particles ni belonging to species i with a total thermal energy Ei

confined in a volume v. For such constraints we must find the macrostate that results
from the largest number of different microstates. If every microstate is fundamentally
indistinguisable in terms of energy and total number of particles for the given volume, the
macrostate that has the maximum number of microstates is the most probable one, or
the one we will see in the system most of the time. For a high temperature system, the
Boltzmann limit is reached [71] and the Boltzmann distribution defines the population of
the different levels as
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n
l
i

ni
=

g
l
i exp

✓
� E

l
i

kBT

◆

Qi(T )
, 8i 2 S⇤

, 8l 2 Li, (2.9)

for each molecule i in the set S⇤ and level l in Li. The term g
l
i is the degeneracy of level l,

which reflects how many microscopic combinations can populate the energy level equally.
The term E

l
i is the internal energy associated to such level relative to the zero point energy

of species i, while Qi is the partition function for species i which represents the sum of the
contributions of all energy levels. In the case of thermal equilibrium, only one temperature
has to be used to define Qi, which reads

Qi =
X

l2Li

g
l
i exp

✓
� E

l
i

kBT

◆
, 8i 2 S⇤

. (2.10)

Note that Qi is defined such that the number of particles in the system amounts to the
prescribed ni. Eq. (2.9) only requires the specification of species number density ni and
temperature T , for given degeneracies and energy levels.

Having resolved the population of the energy levels and the partition function, thermo-
dynamic quantities can be derived with simple relationships from irreversible thermody-
namics. The total thermal energy associated to species i is Ei =

P
l2Li

n
l
iE

l
i, which by

substituting n
l
i from Eq. (2.9) and re-arranging terms, the expression for Ei as function of

the partition function reads

Ei = nikBT
2

✓
@(lnQi(T ))

@T

◆

v,ni

, 8i 2 S⇤
, (2.11)

which allows to derive the specific thermal energy per unit mass as ei = Ei/⇢i. The partial
derivative of the natural logarithm of the partition function with respect to the temperature
T is performed at constant volume v and number of particles ni. Translational and internal
energy modes are split in their contributions to the total thermodynamic properties. In
the case of the specific thermal energy ei this can be expressed as

ei = e
T
i (T ) +

X

l2Li

e
int,l
i (T ) + e

F
i , 8i 2 S⇤

, (2.12)

where e
T
i is the specific translational energy of species i, the term e

int,l
i refers to the specific

energy related to the internal modes of energy storage for energy level l, that is, excluding
the translational energy, and e

F
i is the formation energy [1]. It is defined as the energy

needed in order to form one mole of that substance from its elements in their standard state
at pressure 1 atm. No temperature is imposed in this case. Its choice does not affect the
results since only the change in energy is important for modeling thermochemical processes
and not its absolute value. Therefore, without loss of generality, the reference temperature
for the chemical processes is chosen to be the one of the standard conditions (298.15 K).

The internal energy is expressed as function of each individual mode as einti = e
R
i +e

V
i +e

E
i ,

with the superscripts R,V,E being the rotational, vibrational and electronic contributions
to the internal energy e

int
i . By adopting this separation of energy mode contributions in

the thermodynamics modeling one neglects the coupling effects between the rotational and
vibrational modes, which are essential at high temperatures. This is important for studying



2.2. Physico-chemical models 23

the phenomenon of radiation but not for the balance of energy in the flow [73]. Additional
effects that are ignored include centrifugal distortion induced by the rotation of the nuclei
widening the intermolecular distance between the atoms [71].

Consequently, the partition function can also be broken down to its constituents in the
form of different energy modes. In this case

Qi = Q
T
i Q

int
i , 8i 2 S⇤

, (2.13)

where Q
T
i is the partition function of the translational mode, and Q

int
i = Q

R
i Q

V
i Q

E
i is the

partition function of the internal modes.

From Eq. (2.11), einti is derived as

e
int
i =

X

l2Li

e
int,l
i = RiT

2

✓
@(lnQ

int
i (T ))
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◆

v

, 8i 2 S⇤
. (2.14)

The expression for e
T
i (T ) is the same as Eq. (2.14) with a different partition function

Q
T
i for the translational energy. Solving the quantum mechanical version of a particle in

a box and summing up all the energy levels, the partition function for the translational
energy is expressed as

Q
T
i = v

✓
2⇡mikBT

h2

◆3/2

, 8i 2 S⇤
, (2.15)

where h is the Planck constant. Substituting Eq. (2.15) in Eq. (2.14) returns the internal
energy associated to the translational mode

e
T
i =

3

2
RiT, 8i 2 S⇤

. (2.16)

The energy of the system is defined with a single temperature for the given energy levels
of the species and their degeneracies, always assuming that the population of energy levels
follows a Boltzmann distribution.

Species enthalpies and entropies are likewise splitted between translational and internal
modes

hi = h
T
i (T ) +

X

l2Li

h
int,l
i (T ) + e

F
i , 8i 2 S⇤ (2.17)

si = s
T
i (T, pi) +

X

l2Li

s
int,l
i (T ), 8i 2 S⇤

, (2.18)

for which
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pi = nikBT, 8i 2 S⇤
, (2.23)

where the dependencies on T and pi have been made explicit for clarity.
Species Gibbs free energies gi are necessary for the computation of equilibrium con-

stants, as will be shown in Section 2.2.3, as well as equilibrium compositions under LTE
assumptions. The Gibbs energy for a given species is defined as

gi ⌘ hi � T si, 8i 2 S⇤
. (2.24)

Using Eq. 2.24 and the relationships of the species energies, enthalpies and entropies
Eqs. 2.11-2.22 with the species partition function Qi(T ), the Gibbs free energy gi can
be worked out to be expressed as

gi = �Ri ln
Qi(T )

ni
+ e

F
i , 8i 2 S⇤

. (2.25)

Apart from energies, enthalpies and entropies, other thermodynamic properties also play
a role in the modeling of these flows. Specific heats are important for transport properties
as will be seen in Sec. 2.2.2 as well as when we need to compute the temperature for given
energies when solving the flowfield equations. The specific heats read

cpi ⌘
✓
@hi

@T

◆

p

, 8i 2 S⇤
, (2.26)

cvi ⌘
✓
@ei

@T

◆

v

, 8i 2 S⇤
, (2.27)

for which hi and ei are evaluated at temperature T .

Pure polyatomic gases in thermal non-equilibrium. In the case where the time it
takes the energy of different modes to relax and equilibrate is greater than the charac-
teristic time of the flow, the modeling of the thermodynamic properties has to be recast.
Let us recall that in this thesis, we adopt a non-equilibrium model consisting of maximum
two different thermal baths. One thermal bath is equilibrated between translational and
rotational energies, while the other is equilibrated among vibrational, electronic and elec-
tron translational modes. In this case, the internal energy modes are expicitly splitted
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between rotational R and vibrational-electronic V,E. The internal partition function is
now expressed as Q

int
i = Q

R
i Q

VE
i with Q

VE
i = Q

V
i Q

E
i .

The expressions for translational internal energy, enthalpy and entropy are the same
as presented before, the only change being that they are now defined for the specific
temperatures of the translational-rotational mode T

T
= T

R and the vibrational-electronic-
electron mode T

V
= T

E
= Te referred to as T and T

V for the remainder of the manuscript.
The internal thermodynamic properties for the two thermal baths now read
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Even though the model is more expressive and can capture a larger family of underlying
phenomena, the issues have been moved downstream to the microscopic scale. Assuming
that the thermodynamic state of the gas follows indeed a two temperature model, with two
groups of thermal baths completely equilibrated among themselves, other parameters need
definition. The introduction of an additional governing equation for the internal modes
demands the definition of the excitation and de-excitation of the resolved energy modes.
By resolving more adequately the flow scales, the problem becomes more data intensive
and relaxing assumptions demands additional data that we might not posses or be totally
certain about.

In terms of the specific heats, the same additive formula follows
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Reacting mixture in thermal non-equilibrium. The most general case includes dif-
ferent thermal baths and species in the mixture. All the properties depicted here are now
added for each single species to compute the mixture properties through mixing rules. To
the properties previously reviewed we should add the contributions of atoms and electrons
to account for a full mixture. Atom contributions have the same expressions as molecules
but account only for translational and electronic modes. In this case, the full mixture
properties, accounting for atomic and electron contributions, read
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with se = Re
�
5/2 + lnQ

T
e (T

V
)� lnne

�
+ Re ln 2 being the contribution to the mixture

entropy of electrons due to their spin. In Eqs. 2.39-2.41, xi is the molar mass of species
i and the term Ri lnxi refers to the entropy of mixing. Note that the quantity lnxi is
negative as it will always be xi < 1, therefore, the entropy of mixing is adding to the total
entropy due to different initially separated systems of different compositions (species).

Fig. 2.1 shows the evolution of the different mixture enthalpy contributions with temper-
ature for an air11 {e�,N+

,O
+
,NO

+
,N

+
2 ,O

+
2 ,N,O,NO,N2,O2} equilibrium mixture at 1

atm. The embedded small upper left graph is a close-up snapshot of lower enthalpies where
the contributions of both the rotational and vibrational energy modes can be appreciated.
As seen, the formation enthalpy is the largest contribution past 6,000 K, approximately,
together with the heavy translational contribution. The rotational and vibrational contri-
butions are only due to the molecules present in the mixture. As the temperature goes up,
the rovibrational contribution increases up to a certain point, after which it decreases until
it reaches zero. This behavior is underlined by the chemical reactions that are being en-
tertained in the flow as the temperature increases, leading to the dissociation of molecules.
The energy stored in the form of rotations and vibrations in molecules is now stored as
translational and electronic energies for which we can see the change in slope once the
rovibrational contribution starts to decrease.
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Figure 2.1: Mixture enthalpy contributions of the different energy modes and formation
energies for equilibrium air (air11) at 1 atm.

The chemical changes in the flow are better appreciated in Fig. 2.2 which shows the
changes in mass fractions as the temperature increases. Molecular oxygen starts to disso-
ciate first, where we can see a dip in yO2 and a simultaneous rise in yO. This would be
already enough to start decreasing the rovibrational enthalpy contribution but it is not the
case in Fig. 2.1. This is due to the simultaneous creation of NO which, in turn, adds to
the rovibrational contribution. Once the molecular nitrogen starts dissociating at higher
temperatures together with NO, the rovibrational contribution to the mixture enthalpy
starts dropping while the translational and electronic contributions ramp up.

Similar to enthalpies, energies and entropies, specific heats for the mixture are added
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Note that for a mixture in LTE, applying the definition of specific heats as seen in
Eqs. (2.26)-(2.27), we obtain two contributions. One regarding the change with tempera-
ture in enthalpy or internal energy for each species and another one concerning the change
of composition with temperature in the flow. The equilibrium mixture specific heats are
then expressed as
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Figure 2.2: Mass fractions of selected species in equilibrium air (air11) as function of the
temperature at 1 atm.
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where the first contributions on the right-hand side are referred to as the frozen specific
heats and correspond to the expressions in Eqs. (2.42)-(2.43). The other contributions
pertain to the change in mass fractions yi = ⇢i/⇢ of molecules, atoms and electrons in the
mixture as consequence of chemical reactions in equilibrium. The resulting sum of these
contributions are referred to as reactive specific heats. The impact of the chemistry in the
specific heats is better appreciated in Fig. 2.3. We can see two well-defined peaks for both
the equilibrium specific heats which correspond with the dissociation of molecular oxygen
and nitrogen as seen in Fig. 2.2. The ramping up of the last peak for both specific heats
coincides with the onset of ionization reactions.

2.2.2 Transport

Transport phenomena in a gas is defined in the molecular scale as it represents the diffu-
sion of mass, momentum and energy due to the random motion of particles in the flow.
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Figure 2.3: Equilibrium and frozen specific heats for equilibrium air (air11) as function
of the temperature at 1 atm.

This random motion, superimposed to the bulk motion of the gas, entails macroscopic
irreversible effects such as mass diffusion fluxes, shear stresses and heat fluxes. Transport
coefficients link the gradients of macroscopic flow quantities, such as temperature, chemical
composition and pressure, to the corresponding fluxes.

For transport phenomena to be manifest, we need to have a gas out of equilibrium at the
kinetic scale. This is achieved through the imposition of the Chapman-Enskog perturbative
solution method for the velocity distribution [74, 75]. Solving the Boltzmann equation for
the different orders of magnitude of the perturbation parameter gives us an expression
for the first order perturbative solution from which to derive the transport fluxes. The
obtained kinetic formulations lead to macroscopic expressions for the shear stresses, heat
fluxes and mass diffusion fluxes from which to derive the transport coefficients through the
solution of linear systems.

The solutions of such systems are obtained using spectral Galerkin projection methods
with Laguerre–Sonine polynomials of varying order [76]. This formulation relies on binary
collision integrals data which link the macroscopic coefficients with the microscopic prop-
erties of different colliding pairs of particles. It is out of the scope of this thesis to unpack
the derivation process of the transport coefficients. The final accounts on the obtained
expressions are given by Magin and Degrez [77] for weakly ionized and unmagnetized plas-
mas. A rigorous generalization of the Chapman-Enskog method for the internal energy
modes of a gas in thermal non-equilibrium is still an open problem [78].

Mass diffusion flux. The diffusion fluxes can be obtained by solving the generalized
Stefan-Maxwell equations. The expression for the diffusion velocities Vi of species i is then
given by the solution of the following system
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where ⇥j = Th/Tj , 8j 2 S with Tj being the translational temperature of the different
species in the mixture and Th the translational temperature of the heavy species. In a
two-temperature model, only electrons have different translational temperature, belonging
in the same group as the vibrational and eletronic. The term E is the electric field while
the grouping parameter kj is

kj =
xjqj

kBTh
� yiq

kBTh
, 8j 2 S, (2.47)

with q =

X

i2S

xiqi, (2.48)

where the last equation refers to the mixture charge q. Neglecting thermo-and barodiffu-
sion, the modified driving force reads

d0

j =
p

nkBTh
rxj , 8j 2 S. (2.49)

The multicomponent Stefan-Maxwell matrix GV is singular. Magin and Degrez [76]
have shown that GV can be replaced with the non-singular form GV

+ ↵yyT, where ↵ is
a constant with the same order as the GV , such as 1/max (Dij), where Dij is the binary
diffusion coefficient whose expression can be found in Appendix A. The solution of the
linear system in Eq. (2.46) is obtained by adding a mass constraint

X

i2S

yiVi = 0. (2.50)

In this thesis, we assume ambipolar diffusion, meaning that an electric field develops
naturally to keep quasi-neutrality between the charged species such that

X

j2S

xjqjVi = 0. (2.51)

This assumption leads to a diffusion velocity of electrons and ions of the same order. The
ambipolar assumption combined with the mass constraint yields

X

i2S

kiVi = 0, (2.52)

where this expression is preferred to Eq. (2.51) to keep a symmetric formulation of the
Stefan-Maxwell system in thermal equilibrium.

The diffusion transport system matrix GV is function of the species binary collision inte-
grals and compositions. In particular, the reduced collision integrals of different Laguerre-
Sonine polynomial orders of species i, j [76] must be fed to the diffusion transport system
matrix. These parameters are defined as weighted averages with respect to the Maxwellian
distribution of collisional cross-sections. These cross-sections are defined for each species
pair based on their deflection angles and impact parameters. For a multi-component plasma
this means that lots of data on pair collisions are needed to feed these models and the data
requirements scale as the species included in the mixture squared. As a comparison, the
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data requirements for thermodynamics properties grow at a significantly lower rate with
the species included in the mixture (linearly). The exact expressions for these matrices are
given in Appendix A.

The preferred way to obtain collisional data for the collison integrals is by solving the
quantum system for each collision and numerically integrate from accurate ab initio po-
tential energy surfaces. When this is not possible, we need models for the interaction
potentials which split the characeteristics of the collision pairs among neutral, charged,
electron and ion particles. A thorough review of interaction potentials models is given by
Scoggins [1].

Viscous stress tensor. The shear stresses equilibrate the forces in the volume by acting
on the volumetric surface. The viscous stress tensor reads

¯̄⌧ = �µ

ru+ (ru)T � 3

2
r · u ¯̄

I

�
, (2.53)

where µ is the viscosity coefficient and for which the bulk (volumetric) viscosity and the
chemical pressure term have been neglected. Giovangigli et al. [79] and Bruno [80] give an
account on these neglected terms and the conditions for which they are important.

Kinetic theory is used to obtain an expression for the viscosity coefficient through the
first Laguerre-Sonine polynomial approximation. The expression comes out of the solution
of the linear transport systems

Gµ↵ = x, (2.54)

resulting in the inner product of the solution of the system ↵ and the species mole fractions
xi

µ =

X

i2H

↵ixi. (2.55)

Gµ is a symmetric positive definite matrix dependent on the binary collision integrals
and species mole fractions. Details and expression can be found in Appendix A.

Heat flux. The contributions to the total heat flux are splitted according to the physical
phenomenon responsible for each. In this fashion, we have conductive and diffusive heat
fluxes for a mixture in thermal non-equilibrium

q = ��rT � �VrTV
+

X

i2S

hi⇢iVi, (2.56)

where � is the translational-rotational contribution to the thermal conductivity and �V is
the resulting contribution of the vibrational-electronic-electron translational modes. Both
thermal conductivities can be expressed explicitly as functions of the their individual con-
tributions as
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, (2.57)

�
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where �T and �
R are the translational and rotational contributions, respectively. �V,�E

and �e are the vibrational, electronic and electron translational contributions to the thermal
conductivity.

The translational thermal conductivity �
T is computed through the transport linear

systems that result from the solution of the Chapman-Enskog expansion, as the second
Laguerre-Sonine approximation

G�↵ = x, (2.59)

with the conductivity being expressed in terms of the solution of the linear system ↵

�
T
=

X

i2H

↵ijxi. (2.60)

Again, G� is a symmetric positive definite matrix of size nS ⇥ nS dependent on collision
integral data and species concentrations (see Appendix A).

The internal energy is not considered in the systems. However, the contributions of the
different modes are taken into account through the Eucken corrections [75] which read
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with c
R
pi , c

V
pi and c

E
pi being the specific heats for species i for the corresponding internal

energy modes. The contributions due to both Dufour’s and Soret’s effects haven been
neglected in this formulation. Expressions for the thermal conductivity of the electron
translational mode �e are obtained from the second or third order Laguerre-Sonine ap-
proximations as
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where the ⇤
lk
ee matrices are complex functions of the binary collision integrals for heavy-

electron and electron-electron interactions. These matrices can also be found in Ap-
pendix A.

Similarly, when in thermal equilibrium T = T
V and Eq. (2.56) can be re-written

q = ��totrT +

X

i2S

hi⇢iVi, (2.66)

with �tot = �+ �
V .
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The resolution of thermal non-equilibrium requires solving an additional governing equa-
tion for which closure of the internal heat flux needs to be provided

qV = ��VrTV
+

X

i2S

h
V

i ⇢iVi. (2.67)

Fig. 2.4 shows an example of viscosity and thermal conductivity coefficients for an equilib-
rium air mixture at 1 atm. The thermal conductivity is splitted in its different contribu-
tions. It is interesting to outline features that both the viscosity and heavy translational
thermal conductivity share. The first is that both tend to increase with temperature. The
second is that they both decrease with increasing levels of ionization, which according to
Fig. 2.2 starts around 10,000 K. Both trends can be explained by considering the viscosity
of a pure gas i (see Appendix A)

µi =
5

16

p
⇡kBThmi

Q̄
(2,2)
ii

. (2.68)

with mi and Q̄
(2,2)
ii being the particle mass and reduced collision integral of the gas. The

monoatomic thermal conductivity is directly proportional to µi and it is expressed as

�i =
15

4

kB

mi
µi. (2.69)

The collision integrals for resonant charge transfer and charged interactions are signifi-
cantly larger than other collisions due to Coulomb forces [81]. As the level of ionization
increases, these interactions dominate and both the viscosity and heavy translational ther-
mal conductivity decrease due to the inverse proportionality with Q̄

(2,2)
ii of µi.

Figure 2.4: Dynamic viscosity and various contributions to the total thermal conductivity
as functions of temperature for equilibrium air (air11) at 1 atm.
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2.2.3 Gas phase chemistry

In the study of gas-surface interactions conducted in the context of this thesis, gas phase
chemistry plays an important role. The chemical composition of the gas upon impacting
on the material surface determines the feeding mechanism for such surface interactions to
take place. In turn, this is highly coupled to how we perceive the material surface to be in
terms of its response to the reacting flow. While thermodynamics and transport properties
rely on theoretical models that are well established and understood, together with high
fidelity numerical data from quantum or kinetic theory, chemistry models are based heavily
on experimental data and rely on a more macroscopic description of the system. The
mathematical structure that defines the chemical interaction between components is the
law of mass action [82]. The general expression for any given reaction can be summed up
as

X

i2S

⌫
0

i,rSi ⌦
X

i2S

⌫
00

i,rSi, (2.70)

where ⌫ 0i,r and ⌫
00

i,r are the forward and backward stoichiometric coefficients for species Si

in reaction r. Mathematically, we can capture the advance of such reaction through the
coefficient of molar rate-of-progress

Rr = kf,r

Y

i2S

✓
⇢i

Mi

◆⌫0i,r
� kb,r

Y

i2S

✓
⇢i

Mi

◆⌫00i,r
, (2.71)

with kf,r and kb,r as the reaction rate coefficients for the forward and backward reaction r

and Mi the molar mass of species i. Eq. (2.71) intervenes in the mass production rates !̇i

of the species mass conservation equations. The expression reads

!̇i = Mi

X

r2R

(⌫
00

i,r � ⌫ 0i,r)Rr, 8i 2 S, (2.72)

for which R is the set of all chemical reactions considered. The model for the produc-
tion term !̇i needs the information about the reaction rates kf,r and kb,r. In the case
of chemical equilibrium, which is considered along thermal equilibrium when in LTE, the
rate-of-progress Rr of all reactions r is zero. We can then define an equilibrium constant
for reaction r as

Keq,r =
kf,r

kb,r
=

Y

i2S

✓
⇢
⇤

i

Mi

◆(⌫00i,r�⌫0i,r)

, (2.73)

where the superscript ⇤ refers to the density of species i in equilibrium conditions. This
equilibrium constant is related to the change in Gibbs free energy �G

�
r across reaction r

Keq,r =

✓
p
�

RT

◆P
i2S

(⌫00i,r�⌫0i,r)

exp

✓
��G

�
r

RT

◆
, (2.74)

where the superscript � refers to the quantities at standard conditions of 1 atm and 273.15
K. The term �G

�
r denotes the difference of molar Gibbs energies between products and

reactants at standard conditions for reaction r,
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�G
�

r =
X

i2S

�
⌫
00

i,r � ⌫ 0i,r
�
G

�

i , (2.75)

where G
�

i is the standard state molar Gibbs energy of species i,

G
�

i = H
�

i � TS
�

i , 8i 2 S, (2.76)

with H
� and S

� being the molar enthalpy and entropy at standard conditions, respectively.
The advantage of this quantity is that the left-hand side is only dependent on the reaction

temperature while the right-hand side is only dependent on composition. The computation
of the backward reaction rates can be done through the equilibrium constant even outside
equilibrium conditions as Keq,r maintains its value.

In terms of the reaction rate coefficients, which are the only missing piece of data, we
only need to specify the forward rates

kf = AT
�
f exp

✓
� Ea

RTf

◆
, (2.77)

being A the pre-exponential factor, Ea the activation energy of the reaction and Tf the
temperature of the thermal bath which provides the energy for the reaction to proceed in
the forward way. Eq. (2.77) is known as the modified Arrhenius law where the parameters
A,� and Ea are fitted to some experimental data. Not all reactions considered follow this
law. First order reactions such as pre-dissociation do not depend on the rates of collision
as they occur spontaneously. A molecule with a quasi-bound vibrational energy state can
spontaneously dissociate if the energy is above the dissociation threshold. Second and
third order reactions do follow Eq. (2.77). There exists a hierarchy on the dependencies of
the reaction rates. They can increase with the frequency of collisions between reactants.
Of those collisions, some of them will have enough energy to surpass some threshold so
that the chemical reaction is possible. From all those possibilities, a subset will actually
react. This last fraction is difficult to determine and it is the reason why we commonly
rely on experimental data to identify these rate coefficients. More accurate reaction rates
can be obtained theoretically from quantum mechanics. In the literature, Jaffe et al. [83]
have computed them for selected systems.

Often, there are species in some reactions that do not participate. These are called third-
body reactions and their molar rates-of-progress differ only by a constant factor [1]. The
role of the third body is only to provide the energy needed for the reaction to take place,
and different third bodies provide different unique pathways for the reaction to occur, di-
ferring only in the energy delivered. Therefore, no stoichiometric coefficients assigned to
any third body play a role in the computation of the rate-of-progress.

Thermal non-equilibrium effects in chemical kinetics. In this thesis, non-equilibrium
phenomena is modeled following a two temperature model. It is important to state pos-
sible couplings between the thermal state of the flow and chemical kinetics. In this case,
forward reactions rates read

kf,r = k
eq
f,r(Tf)�(Tf , T

V
), (2.78)

with the term �(Tf , T
V
) being a non-equilibrium factor dependent on the internal heat

bath temperature. Some common models for the non-equilibrium factor can be found in
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the work of Scoggins [1]. The most widely used model for CFD being the one developed by
Park [65, 66]. It is a simple phenomenological model used to describe the non-equilibrium
dissociation of nitrogen. The non-equilibrium factor for this particular model reads

�(Tf , T
V
) = T

�
mT

��
exp

✓
Ea

RT
� Ea

RTm

◆
, (2.79)

with Tm = T
q
�
T
V
�q�1 and q 2 [0, 1], where Tm is an average temperature and q is fitted

to experimental data. In practice, this model is implemented here by considering � = 1

and taking the reaction temperature Tf = Tm.
Overall, all reaction mechanisms and associated data used in this thesis can be found in

detail in Appendix B.

2.2.4 Energy transfer mechanisms

Resolving the thermodynamic state of the gas to accommodate non-equilibrium effects
has a cost. Not only we are solving an extra governing equation for the internal energy
mode (in our chosen 2T model), but also we need data regarding the excitation and de-
excitation of the extra mode. In the case of the two temperature model considered, we
take into account elastic collisions which entail energy transfer between translational and
vibrational modes for the different molecules in the mixture ⌦

VT
i , and between electron

and heavy translational energies ⌦eT. Inelastic collisions which affect the energy that gets
added or substracted to the vibrational bath due to chemical reactions ⌦CV

i are also taken
into account. The last energy exchange mechanism reviewed is electron-impact ionization
⌦
I.

Energy exchange between modes. The mathematical relation for the term ⌦
VT
i follows

a Landau-Teller formulation [84]

⌦
VT
i = ⇢i

e
V
i (T )� e

V
i (T

V
)

⌧
VT
i

, 8i 2 S⇤
, (2.80)

where ⌧VT
i is the characteristic relaxation time for the vibrational heat bath of molecule

i due to collisions. This result is derived from the dynamics of a harmonic-oscillator
interacting with a single bath of translational energy. The rate of change of the average
vibrational energy of such oscillator is posed and assumptions are made regarding the
weakly interactions between the oscillator and the heat bath around it, limiting the possible
transitions of energy to just neighbouring vibrational states. Under these assumptions, a
rate equation for the number density of the different vibrational levels is derived and
substituted in to obtain the final expression of Eq. (2.80). Nikitin and Troe [85] also
provide a historical overview of the landmark paper of Landau and Teller in 1936 [84].

In a later work, Panesi et al. [86] showed that such formulation can also be derived from
more general principles, being able to correctly capture the energy transfer process in a
state-to-state method.

The characteristic time is derived by Millikan and White [87] using an empirical formula
for diatomic molecules below 8,000 K which reads

⌧
MW
i =

P
j2S xj exp

⇥
aij
�
T
�1/3 � bij

�
� 18.42

⇤

1.01325 · 105p , 8i 2 S⇤
, (2.81)
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where aij = 0.00116
p
µij
�
T
V
�4/3 and bij = 0.015µ

5/4
ij with µij being the reduced mass of

species i with collision partner j.
Park [88, 89] proposed a correction for the characteristic time term to account for the

finiteness of the cross-sections involved in the collision pairs at high temperature. He
argued that this collision-limited correction avoids predicting an excessively fast relaxation
as shown by Millikan and White. The corrected term reads

⌧
VT
i = ⌧

MW
i + ⌧

P
i = ⌧

MW
i +

1

ni

r
8kBT

⇡mi
�
V
i

, 8i 2 S⇤
, (2.82)

with �Vi being the effective collision cross-section for internal energy relaxation. To account
for the total energy transfer between modes, we ought to sum all the contributions from
each molecule in the mixture

⌦
VT

=

X

i2S⇤

⌦
VT
i . (2.83)

Free electron and heavy translational energy exchange. The term ⌦
eT corresponds

to the energy transfer due to elastic collisions between free electrons and heavy particles.
Similar to the ⌦

VT term, this energy exchange follows a Landau-Teller formulation

⌦
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T
e (T )� e
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, (2.84)

where the relaxation time

1

⌧ eT
=

X
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V

⇡me
Q̄

(1,1)
ei (2.85)

is derived from kinetic theory with Q̄
(1,1)
ei being the reduced collision integral for electron-

heavy interactions (Appendix A).

Energy exchange due to chemical reactions. Energy can also be added or removed
through chemical reactions. Particularly, recombination and dissociation can cause the
vibrational energy of the flow to increase or decrease by means of the source term

⌦
CV
i = h

V
i !̇i, 8i 2 S⇤

, (2.86)

which represents each molecule’s contribution to the energy exchange. The total contribu-
tion is the summation over all participating molecules

⌦
CV

=

X

i2S⇤

⌦
CV
i . (2.87)

Different probabilities can be associated to molecules with different vibrational states.
Highly vibrationally excited molecules will generally tend to dissociate first than those
with lower vibrational energies [73]. In this thesis, we adopt a non-preferential model in
which all molecules have the same chance to contribute to the chemical-internal energy
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exchange and the average enthalpy h
V
i of molecule i is used for the computation. It is

important to note that the chemical production terms !̇i and transfer mechanism for ther-
mal non-equilibrium are tightly coupled through this term. This creates a dependency of
the vibrational energy distribution and the rate of creation or destruction of molecule i.
Therefore, this choice of modeling affects chemical kinetics and internal energy distribu-
tions.

Energy exchange due to electron-impact ionization. Another form of energy transfer
is due to electron impacts causing ionization as result. In this case, free stream electrons
act as a mean of delivering energy to a heavy particle causing it to ionize. This also
results in the free electron losing translational energy. The term describing this transfer
mechanism reads

⌦
I
=

X

r2RI

�hrRr, (2.88)

where RI is the set of reactions involving electron-impact ionization and �hr and Rr

are the molar reaction enthalpy and molar rate-of-progress of reaction r. The term �hr

represents the change in average enthalpy needed to ionize the heavy particle in a particular
reaction r from the ground state. Hartung et al. [90] and Greendyke [91] suggested to set
�hr equal to the change in average enthalpy required to ionize a species from an already
excited state as was suggested originally by Lee [63]. In this thesis, this modification is
also adopted.

2.3 Gas-surface interaction

In this thesis, the big question mark is posed on the modeling and testing of gas-surface
interactions in atmospheric entry flows. Specifically, we focus our attention to two different
types of materials: catalytic and ablative. Qualitatively, they are different in the way they
cope with high temperatures and how they can dissipate large amounts of energy. Catalytic
materials re-radiate most of the heat back to the surrounding gas without undergoing
fundamental changes in their structure. Due to this main feature, they are often referred
to as materials for re-usable TPS. On the other hand, ablative materials are chemically
consumed when exposed to plasma flows and they can only be used once. The consumption
of the material is what dissipates the energy of the incoming flow and protects the inside
of the spacecraft.

Quantitatively, their differences are related to the modeling, the amount of data needed
for each and the observables that we can obtain in a testing facility. In terms of the
modeling, the number of different phenomena that need mathematical definition is what
distinguishes catalysis from ablation processes. The data needed to simulate both also vary.
Ablation products, which commonly entail carbonaceous species, need to be characterized
to the kinetic and quantum levels for certain closure models such as thermodynamics,
transport and chemistry, in addition to the gas species. This difficulty is not faced in
catalytic systems where no additional species are injected in the flow.

The observables that can be obtained in a plasma wind tunnel are also different. Heat
fluxes are easier to obtain for catalytic materials as we can make the assumption that
all radiation is due to the incoming heat flux that the material experiences. This is not
known for ablative materials, where a small part of the heat is re-radiated back and the
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rest goes into increasing the surface temperature and degrading the surface. On the other
hand, ablative materials recess, which means that a great deal of information is available
to us from measurements of the recession rate, due only to ablation chemical reactions.
Furthermore, one of the strongest radiative signatures in these flows is due to the cyanogen
molecule (CN) which is a product of ablation processes, allowing us to obtain information
about particular chemical reactions taking place at the material surface.

All in all, these two different systems present characteristics that set them apart and we
are compel to offer a summary of the modeling used in this thesis.

2.3.1 Surface mass and energy balances

In this work, the modeling of gas-surface interactions is done from the flow perspective.
Ideally, one would solve the governing equations for the fluid and material domains in a
fully coupled fashion. As this is a quite challenging undertaking, it is common to resort to
approximations of the modeling of the surface interface when looking at it from the flow
or material perspective. This methodology was first introduced by Milos and Rasky [23]
for surfaces involving thermochemical processes such as ablation and catalysis. In general,
the surface is treated as a boundary that injects or absorbs mass, momentum and energy.
Detailed balances of mass, momentum and energy are considered within the thin lamina
of gas in contact with the surface by consideration of certain physical phenomena at the
interface. The balances are solved in a coupled fashion in terms of the macroscopic prop-
erties of the gas such as partial densities, velocities and temperatures, imposing suitable
boundary conditions.

Surface balances can be more generally derived from the Reynolds transport theorem, as
explained by Martin et al. [92], for any conserved quantity. By assuming steady-state on
the surface and taking limits on the volumetric quantities as one dimension goes to zero,
the fluxes reduce to

[Fg � Fs] · n = ⌦̇s, (2.89)

in which Fg and Fs refer to the flux leaving the gas interface and surface fluxes injected
in the interface, respectively. The term n is the normal to the surface, pointing to the gas
and ⌦̇s is the source term for different surface processes. In this thesis, we are interested
in mass and energy balances but when mechanical removal such as spallation becomes im-
portant, momentum balances must be solved additionally. A no-slip boundary condition
is assumed to close the momentum conservation equations at the surface.

Surface mass balance. The fluxes leaving the gas-surface interface for both materials Fg

are substituted in Eq. (2.89). The different contributions take the form of convective fluxes
⇢iu and diffusive fluxes ⇢iVi per species. The source terms account for the surface chemical
reactions taking place !̇w,i. Fig. 2.5 shows a schematic view of the different components
of the surface mass balance and their direction relative to the thin lamina that is the
gas-surface interface.
Overall, the balance reads

[⇢w,i(ug � ur) + ⇢w,iVw,i] · n = !̇w,i, 8i 2 S, (2.90)

where the subscript w refers to wall quantities. ug is the velocity of the gas leaving the
interface and ur the velocity at which the interface is moving. As we are not solving mo-
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Figure 2.5: Schematic representation of the different fluxes involved in the surface mass
balances considered in this work.

mentum surface balances, we impose the no-slip condition as follows ug ·n = 0. Summing
up the mass balance equations for all species, the magnitude for ug reads

ug =
ṁblowP
i2S ⇢w,i

, (2.91)

with ṁblow being the blowing mass due to ablation products being injected in the gas. In
terms of the interface receeding velocity ur, the equation for its magnitude reads

ur =

P
i2S !̇abla,i

⇢s
, (2.92)

being ⇢s the density of the solid surface which is generally known. The term !̇abla,i is the
production of species due to ablation processes, the only ones producing surface recession.

Surface energy balances. In general, surface temperatures can be measured for both
catalytic and ablative systems. Modeling the physics involved in surface energy balances
can be avoided if the surface temperature information is directly fed to the model. The
Bayesian approaches developed in the context of this thesis make use of such possibility.
Nevertheless, surface energy balances are put into question when dealing with nitrogen
ablation. The introduction of additional surface chemical mechanisms, such as nitrogen
recombination, can impact such balance considerably.

In terms of energies conservation, Eq. (2.89) is recast for the total energy as


⇢w(ug � ur)hw +

X

i2S

⇢w,ihw,iVw,i + �wrTw+

+ �
V

wrTV

w � qcond � ⇢surhs � ⇢puphp

�
· n = ⌦̇w,

(2.93)

where the terms
P

i2S ⇢w,ihw,iVw,i, �wrTw and �
V
wrTV

w are the diffusive and conductive
heat fluxes for translational and vibrational thermal baths, respectively. The components
qcond, ⇢surhs, and ⇢puphp are the conduction flux exiting the interface towards the ma-
terial, the convected enthalpy due to the recession of the surface or gases blowing in the
interface, and the convected enthalpy due to the pyrolysis gases, respectively. The only
source term taken into account in Eq. (2.93) as the effect of the surface in the surround-
ing gas is the radiative flux. This term follows the Stefan-Boltzmann law for a body in
thermodynamic equilibrium at temperature Tw
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⌦̇w = �✏ (Tw)
4
, (2.94)

where � is the Stefan-Boltzmann constant and ✏ the emissivity coefficient of the surface.
In this thesis, the ablation modeling is restricted to carbon preforms as it constitutes

the material of choice for wind tunnel testing for nitridation. For carbon preforms the
binding resine is non-existent, allowing us to drop the modeling of the physics associated
to pyrolysis in the energy balances [93, 94]. Consequently, Eq. 2.93 can be further simplified
by neglecting the presence of pyrolysis gases and approximating the conductive heat flux.

In Eq. (2.95), the conductive heat flux on the solid has been approximated by assuming
steady-state conditions for the energy equation in the solid phase and integrating over the
semi-infinite material [24, 25]

"
⇢w(ug � ur)hw +

X

i2S

⇢w,ihw,iVw,i + �wrTw + �
V

wrTV

w

#
· n = ⌦̇w,i, 8i 2 S. (2.95)

In cases where the material has low thermal conductivity, approximate methods like
steady-state ablation can be used without compromising the accuracy of the computations.
Ideally, a material code should be coupled to the flow solutions or the energy equation in
the solid should be solved for a proper balance of fluxes at the interface [92]. Fig. 2.6
presents a schematic view of the different fluxes contained in Eq. (2.95) together with their
relative orientation regarding the thin lamina of the gas-surface interface.

Figure 2.6: Schematic representation of the different fluxes involved in the surface energy
balances considered in this work.

To close all the conservation equations seen in Sec. 2.1.1, we also need to impose a wall
condition for the internal energy. Traditionally, thermal equilibrium is considered and the
condition Tw = T

V
w is imposed. In this thesis, we choose to be agnostic about the thermal

state of the flow at the wall. In a recent work, Capriati et al. [95] proposed a surface energy
balance for the vibrational bath in a two-temperature model. The internal energy surface
balance reads

"
⇢w(ug � ur)h

V

w +

X

i2S

⇢w,ih
V

w,iVw,i + �
V

wrTV

w

#
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VT
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CV

w , (2.96)

where the convective and conductive terms in Eq. (2.95) are now only associated to the
internal energies V . The first source term ⌦̇

VT
w is the relaxation of internally excited

particles by collision with the surface (heterogeneous quenching). This term was derived
by adapting the volumetric Landau-Teller gas-gas collisions formulation (Sec. 2.2.4) to
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surface gas-surface collisions. The expression reads
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where ↵i is a parameter that considers that only the ↵i fraction of the collisional events of
species i leads to a relaxation. The term F#

i represents the impinging flux of species i and
mi is the particle mass of species i. The second source term in Eq. (2.96) is a chemical
source term which takes into account that not all the energy from chemical reactions is
accommodated on the surface. It reads

⌦̇
CV
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X

i2S

(1� �i)
�
h
V

w,i � hw,i
�
, (2.98)

where the �i coefficient is an adaptation for a two-temperature model of the energy ac-
commodation term defined by Halpern and Rosner [96], and that a 1 � � quota of the
heat flux is transferred into the internal energy modes of the products. More details on
the two-temperature surface energy balance here presented can be found in the work of
Capriati et al. [95].

In the next sections, we hone in the source terms of the surface mass balances for both
catalysis and ablation. These balances contain the defining features we are after when
performing the different inferences.

2.3.2 Catalysis

Heterogeneous catalytic reactions only involve chemistry among gas species as the material
itself does not get consumed (Sec. 2.3). An important character of catalytic or recombi-
nation reactions at the surface is the fact that they are in general exothermic, releasing a
considerable amount of energy to be absorbed by the surface or distributed among species
to excite their internal states. Coupling mechanisms with the flow add to the difficulty of
modeling the heat flux to the material due to these recombination reactions. Gas phase
chemistry and diffusion models are tightly coupled to the surface reactions by acting as
main feeding mechanisms of atomic species. This coupling has been a matter of ongoing
research efforts by different researchers [97–99], among others.

The surface mass balance for catalytic materials reads

⇢w,iVw,i · n = !̇w,i, 8i 2 S, (2.99)

where the only term that needs closure is the production term !̇w,i. Different models are
available in the literature that can capture the underlying physics of heterogeneous chem-
istry at the surface. These models range from defining catalytic reactions as macroscopic,
non-elementary processes (the so-called gamma model) to detailed finite-rate chemistry as
proposed by different authors [100–102], among many. The former is widely used in the
aerothermodynamics community because of its simplicity and lack of microscopic model
data. It is quite suitable for learning its parameters from wind tunnel experimental data.

First proposed by Goulard [103], gamma models aim at explaining catalytic reactions
by introducing a model parameter �i which defines the probability that a certain species
has of recombining at the surface. The expression for �i reads
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�i =
F react
i

F#

i

, 8i 2 S, (2.100)

where F#

i represents the impinging flux of species i and F react
i the part of that flux that

actually reacts upon impingement. The recombination parameter �i appears in the source
term as

!̇w,i = �imiF#

i , 8i 2 S. (2.101)

Assuming a surface interface in thermal equilibrium, the impinging flux F#

i can be ap-
proximated by a Maxwellian distribution at temperature Tw

F#

i = ni

r
kBTw

2⇡mi
, 8i 2 S. (2.102)

This formulation is used in this thesis for the simulation of boundary layer flows in the
VKI Plasmatron facility when exposed to catalytic materials. This model represents a good
trade-off between the limited flow information coming from the experimental data, namely
pressures and heat fluxes, and a model for a detailed mechanism as the chemistry at the
material surface. By assuming one single parameter per material, we can begin to learn the
relative importance of recombination reactions in the measured heat flux. Furthermore,
this parameter allows us to learn about the free stream by acting as a fitting parameter to
close the surface mass balance equation.

The more detailed models found in the literature, as for example the one proposed
by Barbato [98], generally rely on finely-tuned data parameters. The argument for the
development and use of these detailed models is that they can be easily extrapolated to
model unexplored conditions based on physical arguments. However, the capability to
efficiently learn the model parameters from actual data in such cases is lost and additional
experimental data and/or methodologies should be explored to avoid the issue of fine-
tuning. The experimental data explored in this thesis are not suitable for this undertaking.
The aim of this work is to provide consistent calibrations of the recombination efficiencies in
gamma models, providing objective uncertainty estimates against which one could compare
a posteriori the performances of finite-rate models.

2.3.3 Ablation

In the case of ablative materials, the surface mass balances are reviewed. The model here
introduced does not account for mechanical ablation or spallation either [104], only gaseous
species are included in the ablation mechanism. For the mass balance, blowing fluxes are
added to Eq. (2.99)

[⇢w,i(ug � ur) + ⇢w,iVw,i] · n = !̇w,i, 8i 2 S, (2.103)

where the source term !̇w,i represents the sum for species i of the production rates of
individual heterogeneous reactions with the surface !̇w,i =

PnRw
r=1 !̇

r
w,i, with nRw being the

number of considered reactions.
As with the catalysis surface mass balance, we need to introduce closure terms for the

production of species !̇r
w,i. The approach for the production term considered in this work

is a phenomenological one for the same reason as for the catalysis model: there is only
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so much that we can learn from the present data. We are only concerned with ablation
models for surface reactions involving nitrogen on the side of the flow and carbon on the
material side. The model for the production rate is defined in the same fashion as for
catalysis

!̇
r
w,i = �

r
imiF#

i , 8i 2 S, 8r 2 nRw . (2.104)

In this case, the following reaction mechanisms are taken into account.

Carbon nitridation. A reaction of the type C(s) + N! CN is considered, where the
label s refers to carbon adsorbed by the material surface. The definition of the model
rests on a recombination probability parameter �CN

N which is generally expressed as an
Arrhenius rate

�
CN
N = A exp

✓
�Ta

Tw

◆
, (2.105)

with Ta being the equivalent activation energy, taken as Ea/kB with Ea being the acti-
vation energy of the nitridation reaction. A first Arrhenius model for the parameter �CN

N
was derived by Suzuki et al. [21] considering only low surface temperatures. An updated
version was proposed by Helber et al. [22] including higher surface temperatures.

Nitrogen recombination. Ablation mechanisms are richer in the way that they can
also include recombination reactions as seen for catalysis. In the case of nitrogen plasma
flows, nitrogen recombination N(s) + N! N2 can have a large impact in the surface en-
ergy balance due to its exothermic nature. Included in the original model of Zhluktov and
Abe [105], nitrogen recombination is a competing mechanism to nitridation, consuming
available atomic nitrogen which, in turn, has the potential to impact the former reaction
in a coupled fashion. In this work, we choose to add this reaction to the ablation mecha-
nism to be calibrated from experiments. In this case, nitrogen recombination is taken as a
parameter �N2

N without further resolution into Arrhenius law parameters.

2.4 On the complexity of the modeling

In this mix of governing equations, constitutive relations and data coming from different
sources with various fidelities, uncertainty treatments become important. In order to
consistently gauge our actual knowledge about the system we want to simulate, and how it
compares to experiments, objective uncertainty estimates are needed to avoid fine-tuning of
parameters and reaching biased conclusions. This is particularly important in simulation
scenarios where learning about some parameter effects is masqueraded by the effects of
different phenomena that need assumptions for which we lack proper understanding. Such
is the case in the conundrum among gas phase chemistry, diffusion processes and gas-
surface interactions. The overall result in terms of surface heating, for example, depends
strongly on the modeling of those processes as well as their coupling. Assumptions affecting
these processes can strongly impact deterministic validations and the conclusions that
ensue. This issue is accentuated along this thesis and the work developed goes inline with
providing methodologies for achieving full uncertainty characterization on the different



2.4. On the complexity of the modeling 45

layers of complexity presented in this chapter.

From an uncertainty perspective, the different assumptions included in Sec. 2.1 about
characteristic time scales and simplifications can be considerable sources of uncertainty as
they directly affect the number of governing equations to be solved and their interactions.
Additionally, more uncertainty stems from the terms chosen to be included in the govern-
ing equations as representative of the different physico-chemical processes considered in
the definition of the problem. Table 2.1 is prone to change depending on the degree of
understanding we have at a given moment and the different quantities that we consider
important to include in our governing equations. Further, each of the terms that need clo-
sure in Table 2.1 is the result of additional assumptions, models and computations which
also need proper uncertainty analyses.

On the other hand, getting accurate boundary conditions to close the governing equations
can also entail the resolution of complex problems in some cases. As we recall, prescribing
proper boundary conditions can be based on assumptions, additional models and/or ex-
perimental data. Assumptions and additional models can introduce false certainty about
the boundary conditions, considerably altering and biasing the results of validation and
calibration studies. This is particularly problematic for reaching consistent conclusions
from our simulations. Moreover, the different nature of the boundary conditions need of
different techniques to estimate their uncertainties.

Tables 2.2-2.3 show a summary of all the equations needed to solve for the conservation
of mass, momentum and energy, the different possible choices for boundary conditions, the
number of flow variables involved, the closure models and the data needed. In particular,
Table 2.3 shows an overview of the closure models, model parameters and number of model
parameters involved in solving for all the various terms that need closure in the governing
equations and boundary conditions. The table avoids repetition of equations and data in
such a way that solving for a particular term requires the models explicitly depicted and
any other equation introduced before. The data needed are introduced only once with the
closure model that first needs them. Other models might need the same data but they do
not get added to the overall sum to avoid repetition. The same applies to the number of
model parameters column. The system summarized in Table 2.2 governs the macroscopic
quantities of the flow which are then used in the various closure models depicted in Table 2.3
to compute the terms needed in the governing equations and boundary conditions.

To have a more precise idea of the amount of model parameters needed to resolve these
flows, we imagine a three-dimensional non-equilibrium flow composed of 5-species air with
no surface reactions at steady-state. Using common chemical mechanisms and thermody-
namic data for this system, the ratios of data to variables amount to: 162 to 5 species
densities and 3 velocity components for the conservation of mass and momentum, and 219
to 2 temperatures for the energies conservation. Overall, we need to prescribe 381 param-
eters to solve a flowfield composed of 10 variables changing in space. As the number of
species and phenomena considered increases, this ratio grows considerably. Unless we have
complete confidence on all the data sources for our simulations, our predictions will be
necessarily affected by uncertainty stemming from any of the 381 data parameters, in this
particular case. Moreover, understanding the differences among solutions when studying
a particular phenomenon is a complex task subjected to many assumptions made to fulfill
the models need for closure.



46 Chapter 2. Modeling of high temperature, chemically reacting flows

2.5 Summary

The objective of this chapter is twofold. First, we aim at presenting in detail the different
models used to explain the underlying physical phenomena present in plasma wind tunnel
subsonic ground testing. We focus on this particular type of flows given that the main
objective is to devise calibration strategies based on plasma wind tunnel data. The models
are exposed respecting a certain hierarchy in their mathematical structure.

First, the governing equations are introduced, the bare bones of modeling a continuum
media. These equations impose balances of mass, momentum and energy. The data asso-
ciated come down to the choosing of phenomena to be included in the detailed balances
as well as the energy partition model chosen. Radiative processes are neglected in this
case, as well as external forces such as gravity and electromagnetism. The former is as-
sumed negligible in high temperature flows with respect to the tensional state of the gas.
Electromagnetic forces are also negligible given the quasi-neutrality of the gas. A two-
temperature model is assumed for modeling thermal non-equilibrium which resolves two
distinct thermal baths, each of them in equilibrium with a subset of modes. This choice
results in the prescription of a whole set of energy transfer terms.

Most of the mathematical structure introduced is in the form of physico-chemical mod-
els. These models are quite data-intensive and require a large number of parameters to be
specified in order to resolve the flow variables. Transport properties are presented based
on a perturbative Chapmann-Enskog solution of the scaled Boltzmann equation, which
results in linear transport systems defined in terms of temperature dependent collision
integrals and species concentrations. General relations for thermodynamic properties are
also provided, based on the statistical mechanics description of individual species energy
partitioning models and associated partition functions. Chemical production rates are
formulated in terms of the Law of Mass Action. The effect of thermal nonequilibrium is
also considered and its effect on non-equilibrium rate coefficients is presented. In addition,
several important energy transfer models are discussed in the context of non-equilibrium
two-temperature models. Part of the data, such as for computing thermodynamics and
transport properties, come from quantum mechanical and statistical mechanics compu-
tations, both being well-established theories. Gas chemical kinetics and energy transfer
terms rely on legacy experimental data for reaction rates and relaxation times.

Once the structure of the mathematical models and assumptions behind them have been
introduced, the secondary objective of the chapter is to highlight the diverse landscape in
terms of data fidelities, models and complexity. Most of the phenomena here depicted
are coupled, especially due to the nature of the balancing equations with respect to the
flow variables we want to resolve. Particularly problematic for gas-surface interactions are
the assumptions and data behind transport processes of mass diffusion and gas chemical
kinetics. Diffusion and chemistry act as feeding mechanisms of atomic species to the
material surface, enhancing or limiting its reactivity and, therefore, the sensitivity of our
models to the experimental data.
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Table 2.2: Overview of the governing equations and boundary conditions proposed in this work for the modeling of high temperature,
chemically reacting flows in the VKI Plasmatron.
Unknowns Governing equations / constraints Boundary conditions
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Table 2.3: Overview of the closure models and their model parameters used in this work to model the physico-chemical phenomena
included in the governing equations and boundary conditions for high temperature, chemically reacting flows in the VKI Plasmatron. The
parameter a

e is 1 if there are electrons in the considered mixture.
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Chapter 3

Data-generating tools

In this chapter, the different tools for data generation are reviewed. The chapter opens
with a follow-up on the theoretical modeling aspects of the thesis, focusing on the particular
models and numerical methods used to obtain relevant solutions in the context of this work.
We introduce the boundary layer equations that are adopted as a valid and efficient alter-
native to the full set of the governing equations for the problems that deal with catalysis.
The full set of dimensionally reduced Navier-Stokes equations are also introduced which are
relevant for the one-dimensional simulation of reacting flows including ablative processes
at the wall. The numerical methods and physico-chemical data used for each case are also
addressed. Following the numerical tools, we review the experiments related to this thesis.
From the facility in which the different phenomena are studied to the specific set-ups and
measurement devices that make up the dedicated testing campaigns. The link between the
facility operating conditions and the resulting boundary layer edge quantities over the dif-
ferent probes in the testing chamber is subsequently addressed. The chapter ends with a
review of the sources of uncertainties that are present in both data-generating processes as
well as the nature of these uncertainties.

3.1 Numerical tools

The governing equations exposed in Chapter 2 are studied for the conditions and relevant
characteristics of the flows and objects under consideration in this thesis. In order to
accurately capture the phenomena we want to study and, at the same time, ease the
computational effort, different approximations to the full set of the Navier-Stokes equations
are used under relevant assumptions. The overall set of governing equations applies to both
catalysis and ablation simulations. They are different in their surface boundary conditions
and the species that must be taken into account. The simplified sets of equations need
to be discretized in order to obtain plausible solutions. The discretization schemes and
numerical implementations are also introduced. The remaining closure terms and wall
boundary conditions are obtained through the different physico-chemical models reviewed
in Chapter 2 whose data sources are specifically addressed in this section.

The boundary layer solver is used to address the problems that concern catalysis given
its extensive verification and comparison to experimental data concerning the Plasmatron
facility [5, 19, 106–108]. Further, the boundary layer solver is more efficient than a general
Navier-Stokes solver as it benefits from suitable boundary layer assumptions to simplify
and speed up the computing of solutions with more accurate results. For ablation, on
the other hand, additional data, species and boundary conditions need to be handled. In
this case, the more general stagnation line solver is used given its extensive verification for
ablation problems [3, 61, 109, 110] as well as the possibility of prescribing thermal non-
equilibrium models, which are used in this thesis. Overall, the choice of using two different
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solvers for the simulation of catalysis and ablation phenomena rests on the availability
of tools and their efficiencies, the confidence we have in them for the flows we want to
simulate, and the different physico-chemical models and data that need to be handled in
both cases. Further, we want to be able to compare our methodologies for inverse problems
to previous works in the literature, and this is done more consistently on the basis of using
the same numerical solvers, data and overall assumptions when possible.

3.1.1 1D boundary layer solver

In this work, we are primarily interested in the simulation of gas-surface interactions be-
tween the hot plasma flow and the exposed material surface. As these interactions happen
in a thin layer around the face of the material, we can reduce the computational domain
to just the boundary layer which contains the physics of the phenomena we want to study.
Focusing on the boundary layer instead of the full flow domain offers a great deal of sim-
plification over the full set of the Navier-Stokes equations depicted in Sec. 2.1, both in
terms of mathematical and numerical complexity. Moreover, we only need to focus our at-
tention on simulating the stagnation line given that the relevant experimental information
available generally refers to the probes’ stagnation point quantities. In this thesis, the 1D
boundary layer solver developed by Barbante [106] is used to simulate the boundary layers
of catalytic probes in the experimental facility, given its efficiency in simulating the rele-
vant features of the experiments as well as having readily available the phenomenological
catalysis model commonly used (Sec. 2.3.2). The following Fig. 3.1 zooms in the region
we are interested in and schematizes the phenomenon of catalytic recombination present
in the boundary layer region.

Figure 3.1: Schematic representation of a testing probe (left, courtesy of Helber [3]) zoom-
ing in the stagnation region with catalytic recombination occurring in the boundary layer.

The boundary layer equations. Obtaining exact solutions of the Navier-Stokes equa-
tions have always been a matter of intense research efforts. Even today, with the field of
computational fluid dynamics fully developed, we struggle to get good numerical solutions
as they require lots of computational power and human resources. These issues gave rise
in the past to suitable order-of-magnitude reductions of the full set of the Navier-Stokes
equations, such as the boundary layer equations [111].
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The basic assumptions behind the boundary layer order-of-magnitude reduction is that
the boundary layer is very thin in comparison with the scale of the body and the Reynolds
number is large. However, this is generally not true for subsonic, high temperature, reacting
flows where the low Mach number, high viscosity, high temperature and small dimensions
of the testing body result in very low Reynolds numbers and the boundary layer has to be
considered of finite thickness. These characteristics would invalidate the applicability of the
classical boundary layer equations to our problems of interest. Nevertheless, Barbante [106]
showed that other approximate approaches which take into account the effects of boundary
layer finite thickness and low Reynolds number [112, 113], reduce to the same set of classical
boundary layer equations when applied to the vicinity of the stagnation line. These results
allow us to use this reduced set of equations for the cases we study in this thesis.

The boundary layer equations are derived from the governing equations depicted in
Sec. 2.1 by performing an order-of-magnitude reduction which can be found in detail in
[111]. Specifically, the equations here presented are derived for an axisymmetric, laminar
flow in steady-state under thermal equilibrium and chemical non-equilibrium. A Cartesian
system of reference where the x axis goes along the body surface and the y axis is normal
to the surface at every point is considered. Under these considerations, the equations read
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where u and v are the tangential and normal velocity components, respectively. The symbol
p� refers to the pressure at the boundary layer outer edge, given that the boundary layer
thickness is �. The superscript y for the heat flux q

y and the diffusion fluxes J
y
i refers to

the components along the y axis.
The Lees-Dorodnitsyn transformation [114, 115] is applied to these equations through a

series of steps as explained by Anderson [7]. The application of this transformation has as
a result a set of partial differential equations which are easier to analyze and solve. The
transformed independent variables are defined as
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The dependent variables are also transformed as
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The transformed equations then read
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where Ĵ
⌘̂
i is the dimensionless diffusion flux

Ĵ
⌘̂
i =

J
y
ip

2⇢�µ�(@u�/@x)
, (3.15)

and Ẇi is the dimensionless chemical production term

Ẇi =
!̇i/⇢

2@u�/@x
. (3.16)

Pr is the Prandtl number and l0 is the Chapman-Rubesin parameter, defined, respectively,
as

Pr =
µcp

k
, (3.17)

l0 =
⇢µ

⇢�µ�
. (3.18)

Under this transformation, the boundary condition at the outer edge is expressed as F =

1 and g = 1, while at the wall F = 0 and g = hw/h�. For the species continuity equation,
the outer edge condition is set to the equilibrium composition yi = yi,equilibrium(T�, P�) as
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function of the edge temperature T� and pressure P�. In this case, the boundary layer
edge � is defined as the inflection point of the velocity gradient @u/@x. Fig. 3.2 depicts
the velocity gradient and axial velocity profiles along the stagnation line. The thickness of
the boundary layer is denoted by the non-dimensional number �/Rm, where Rm refers to
the model radius.

Figure 3.2: Velocity gradient and axial velocity profiles in the stagnation region.

At the wall, the diffusion flux must be balanced with the corresponding contributions.
In the case of a catalytic surface, the diffusion fluxes are balanced with the production
term J

y
i = !̇i, for which the quantity !̇i is computed using the catalysis model depicted in

Sec. 2.3.2.

Numerical implementation. Discretizations are performed in the ⇠ and ⌘̂ directions.
In the ⇠ direction, 2

nd order Lagrangian polynomials are used as follows for a generic
streamwise location and unknown quantity w

w(⇠, ⌘̂) = Lm(⇠)wm(⌘̂) + Lm�1(⇠)wm�1(⌘̂) + Lm�2(⇠)wm�2(⌘̂), (3.19)

with wm�1 and wm�2 known from previous iterations. The coefficients Lm�i are the 2
nd

order Lagrangian polynomials with the property that Lm�j(⇠i) = �ij such that w(⇠, ⌘̂) =

wm�i(⌘̂) at all points ⇠m�i. The definition of the Lagrangian polynomials is

Lm�i(⇠) =

Q2
j=0,j 6=i(⇠ � ⇠m�j)

Q2
j=0,j 6=i(⇠m�i � ⇠m�j)

. (3.20)

From Eq. (3.19) we can then differentiate w with respect to the variable ⇠ to replace the
derivative terms included in the transformed equations.

In the ⌘̂ direction, the discretization is performed upon the ⇠ direction discretization
wm(⌘̂) by using 4

th order Hermite polynomials such that
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wm(⌘̂) =
1

2
wm,n+1(t

2
+t)+wm,n(1�t2)+

1

2
wm,n�1(t

2�t)+↵t(1�t2)+�t2(1�t2). (3.21)

The terms wm,n+1, wm,n and wm,n�1 are the values taken by wm(⌘̂) at the locations
⌘̂n+1, ⌘̂n and ⌘̂n�1, respectively. The variable t is defined as t = ⌘̂ � ⌘̂n/�⌘̂, while the
parameters ↵ and � can be freely chosen. Ideally, ↵ and � are chosen so that the polynomial
equals the exact solution in 3 collocation points. It is useful to choose the collocation points
at the levels n+ 1, n and n� 1 in the ⌘̂ direction.

At the end of this discretization process, we end up with discrete implicit representa-
tions of the original transformed equations. Collecting all the equations we obtain a linear
system which by certain manipulations can be expressed in matrix form and solved using
Thomas algorithm [106, 116]. The procedure is fourth order accurate in step size across
the boundary layer. In principle, all equations could be solved coupled together but in
practice, the system is split and only the species continuity equations are solved in a cou-
pled fashion with the Stefan-Maxwell equations as explained by Barbante [106].

Physico-chemical data. Closure models for the equations and boundary conditions
need data concerning a series of model parameters. The solver considers flows in ther-
mal equilibrium and chemical non-equilibrium. Thermodynamic properties for one sin-
gle thermal bath are obtained through the Rigid Rotor Harmonic Oscillator (RRHO)
model [71]. The transport properties are computed through the second order pertur-
bation of the Chapman-Enskog expansion of the Boltzmann equation as explained in
Sec. 2.2.2. The thermodynamic and transport data are inquired through the library PE-
GASE, developed by Bottin [117]. The mixture used is air-7 to model the flow with
species {O2,N2,NO,O,N,NO

+
, e

�}. The rates used for the gas chemistry are taken from
the Dunn and Kang data [118]. For the catalytic boundary condition, the model depicted
in Sec. 2.3.2 is used with uncertain catalytic parameters � taken equal for both catalytic
reactions considered N+N! N2 and O+O! O2. This assumption is consistent with
previous catalysis studies concerning the VKI Plasmatron data [4, 119]. The complexity
of the wall models cannot be resolved using only heat fluxes. For the purpose of develop-
ing accurate inverse methodologies, assuming equal probabilities for nitrogen and oxygen
atoms is a practical convenience that does not change the nature of the inverse problem.

3.1.2 Stagnation line code

Generally, stagnation streamline quantities are relevant for hypersonic flows when predict-
ing the heat flux experienced by re-entering vehicles. The stagnation point heat flux is
commonly used as the upper limit of the heating experienced by the protection material
[7]. Computing the flow quantities along the stagnation line is important to understand
the physics involved in these reacting flows. As such, stagnation line computations offer a
great test bench for physico-chemical models at a reduced cost while accurately capturing
the relevant features of re-entry flows. Further, most measurements used in this thesis
refer to stagnation point quantities which focus the computational aspects of the prob-
lem on stagnation line quantities. All in all, the stagnation line code provides a suitable
data-generating tool for our Bayesian approaches concerning ablation.



3.1. Numerical tools 59

In this section, the reduced set of equations together with their numerical implementa-
tion are introduced. Further, the particular models taken into account to feed the closure
terms are also reviewed.

Dimensionally-reduced Navier-Stokes equations. We start with the governing equa-
tions already depicted in Sec. 2.1 for the general case of a flow in chemical and thermal
non-equilibrium, and follow the methodology first introduced by Klomfass and Müller [120].
The governing equations are cast in spherical coordinates (r, ✓,�) following the convention
depicted in Fig. 3.3. The advantage of the spherical formulation is that for stagnation
streamline quantities, non-spherical bodies can be approximately modeled with an equiv-
alent sphere radius R0 which manages to capture relevant flow features around the stag-
nation point, such as the heat flux as shown by Turchi et al. [121]

Figure 3.3: Spherical body of radius R0 subjected to a hypersonic flow with uniform velocity
u1. Azimuth and zenith angles are � and ✓, respectively. Courtesy of Scoggins [1].

Klomfass and Müller applied a separation of variables to a suitable set of flow quantities

ur = ūr(r) cos ✓, (3.22)
u✓ = ū✓(r) sin ✓, (3.23)

p� p1 = p̄(r) cos ✓
2
, (3.24)

yi = ȳi(r), (3.25)
T = T̄ (r), (3.26)

T
V
= T̄

V
(r), (3.27)

where the bar symbols indicate stagnation line quantities. To keep the notation simple, the
bar symbol is omitted in the equations that follow. Introducing this decomposition into
the full set of the Navier-Stokes equations under physical considerations, the assumption
of axisymmetric flow (@/@� = 0), and taking the limit ✓ ! 0, the set of Dimensionally-
Reduced Navier-Stokes Equations (DRNSE) is obtained. This set of equations can be
compactly written in the form

@U

@t
+
@F I

@r
+
@FV

@r
= SI

+ SV
+ Sk

, (3.28)

with U being the vector of conservative variables, while F I and FV are the vectors of
inviscid and viscous fluxes. The term Sk refers to the kinetic source terms while SI and
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SV are the inviscid and viscous source terms, respectively. For the non-equilibrium two-
temperature model here considered, the different terms are defined as

U =
⇥
⇢i, ⇢ur, ⇢u✓, ⇢E, ⇢e

V
⇤T

, (3.29)

F I
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⇢iur, ⇢u

2
r + p, ⇢uru✓, ⇢urH, ⇢ure

V
⇤T

, (3.30)
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=
⇥
Jr,i,�⌧rr,�⌧r✓, qr � ⌧rrur, qVr

⇤T
, (3.31)
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= �(ur + u✓)

r


2⇢i, 2⇢ur, 3⇢u✓ � 2

p� p1

ur + u✓
, 2⇢H, 2⇢e

V

�T
, (3.32)

SV
= �1

r
[ 2Jr,i, 2(⌧✓✓ � ⌧rr + ⌧r✓), (3.33)

⌧✓✓ � 3⌧r,✓, 2(qr � ⌧rrur � ⌧✓✓ur � ⌧r✓u✓), 2qVr ]
T
,

Sk
=
⇥
!̇i, 0, 0, 0,⌦

V
+ ⌦

CV � ⌦
I
⇤T

, (3.34)

with ⇢E =
PnS

i=1 ⇢e+ ⇢u
2
r/2 being the energy per unit volume and H = E + p/⇢ the total

enthalpy. In this system of coordinates, Ji,r = ⇢iVi,r are the radial species diffusion fluxes
with diffusion velocities Vi,r, obtained by solving the Stefan-Maxwell equations (Sec. 2.2.2),
and qr, q

V
r are the total and internal heat fluxes, respectively,

qr =

nSX

i=1

Jr,ihi � �T
@T

@r
� �V @T

V

@r
, (3.35)
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Jr,ih
V

i � �V
@T

V

@r
. (3.36)

The terms �T,�V are the translational-rotational and the vibrational-electron-electronic
thermal conductivities, respectively. Under this formulation the stress tensor components
are expressed as

⌧rr =
4

3
µ

✓
@ur

@r
� ur + u✓

r

◆
, (3.37)

⌧r✓ = µ

✓
@u✓

@r
� ur + u✓

r

◆
, (3.38)

⌧✓✓ = �
1

2
⌧rr, (3.39)

with µ being the shear viscosity (Sec. 2.2.2).

Numerical implementation. The numerical solution of the DRNSE was originally pro-
posed by Munafò [61]. His work focused on state-to-state models for nitrogen flows. In this
thesis, the numerical discretization of the DRNSE for a two-temperature model remains
unchanged from the original work of Munafò. The discretization is done by means of the
method-of-lines (MOL) with separation of the spatial and temporal discretizations.



3.1. Numerical tools 61

• Spatial discretization

The spatial discretization is performed using the Finite Volume (FV) method with
which an ODE describing the time evolution of the conservative variable vector at
the cell i is obtained

@Ui

@t
�ri + F̃ I

i+
1
2
� F̃ I

i�
1
2
+ F̃V

i+
1
2
� F̃V

i�
1
2
=

⇣
SI
i + SV

i + Sk
i

⌘
�ri. (3.40)

The term �ri = r
i+

1
2
� r

i�
1
2

is the length of cell i. The numerical inviscid flux at

the cell interface F̃ I

i+
1
2

is computed using the AUSM+-up2 scheme [122], which splits

the flux into a convective and a pressure terms such that

F̃ I

i+
1
2
= ṁ + pN, (3.41)

where the scalar mass flux ṁ = ⇢ur,  =
⇥
yi, ur, u✓, H, e

V
⇤T , and N = [0, 1, 0, 0, 0]

T .
The upwind inviscid flux is approximated as

F̃ I

i+
1
2
=

m̃+ |m̃|
2

 R �
m̃� |m̃|

2
 L + p̃N, (3.42)

where p̃ is the interface pressure flux and m̃ is the upwind interface mass flux. The
different expressions for these terms can be found in the work of Dias [123].

Second-order accuracy in space is achieved by reconstructing upwind variables at
the cell interface. The reconstruction is performed on the primitive variables P =⇥
⇢i, ur, u✓, T, T

V
⇤T

, i 2 S [124]. For a generic primitive variable p, the reconstructed
“left” (L) and “right” (R) values at the interface i + 1/2 are computed by means of
the Monotone Upstream Centered Schemes for Conservation Laws (MUSCL) scheme
[125]

p
L

i+
1
2
= pi +

1

2
�(r

L
i ) (pi � pi�1) , (3.43)

p
R

i+
1
2
= pi+1 �

1

2
�(r

R
i+1) (pi+2 � pi+1) , (3.44)

where �(r) is a slope limiter function and r represents the ratios of consecutive
differences such that

r
L
i =

pi+1 � pi

pi � pi�1
, (3.45)

r
R
i+1 =

pi+2 � pi+1

pi+1 � pi
. (3.46)

In this thesis, the van Albada limiter [126] is used as implemented by Munafò [61].
Conservative variables U are then built from the reconstructed primitive variables
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and the second-order numerical flux is computed as F̃ I
i+1/2 = F̃ I

i+
1
2

⇣
UL

i+1/2,U
R
i+1/2

⌘
.

Having computed the inviscid fluxes at the cell interface, we are left with the com-
putation of the viscous fluxes and source terms. In this case, both quantities are
evaluated in terms of the primitive variables P . The primitive variables are com-
puted at the face i+ 1/2 for the viscous fluxes using a simple weighted average such
that for a generic variable p

p
i+

1
2
=

pi+1�ri+1 + pi�ri

�ri+1�ri
. (3.47)

Similarly, primitive variable gradients are computed by means of a central difference
scheme at the interface
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◆
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1
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= 2
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◆
. (3.48)

Cell-centered gradients are computed using a two point central finite difference for
the viscous flux source term such as
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◆
. (3.49)

• Temporal discretization

The integration of eq. (3.40) in time from an initial time level n = 0 is performed
using the fully implicit Backward-Euler method, the full discretized equation reads
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⌘
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(3.50)

where @Un
i = Un+1

i � Un
i and �ti is the local time-step given by the Courant-

Friedrichs-Lewy (CFL) number [127]
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CFL�rih
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�r max
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3
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�
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⌘i

i

, (3.51)

with a being the numerical speed of sound presented in [1]. In practice, the CFL
number is set to change from 10

�4 to 10
3 by multiplying by 10 every 10-20 iterations.

A reference solution is used for the initialization of the solver. The numerical inviscid
flux is linearized using the method of Liou and van Leer [128]

F̃ I n+1

i+
1
2

⇡ F̃ I n

i+
1
2
+A+

i @U
n
i +A�

i+1@U
n
i+1, (3.52)

with positive and negative split Jacobians A±
= R⇤±L [1]. The viscous fluxes and

source terms are linearized in two steps. Firstly, the fluxes and source terms are
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expressed as sums of the terms which are linearly dependent on the gradient of the
conservative variables and those which are not, such that

FV n
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= AV n
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2
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◆n
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+BV n
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, (3.53)

SV n
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+BV n
s i . (3.54)

The matrices AV and AV
s are computed assuming a Fickian diffusion model using

the self-consistent effective diffusion coefficients of Ramshaw and Chang [129]. The
expressions for the matrices AV

,AV
s ,B

V, and BV
s can be found in the works of

Munafò [61] and Scoggins [1]. In the second linearitazion step, the viscous fluxes and
source terms are expanded by means of Taylor series expansions, where the gradients
in Eqs. (3.53)-(3.54) are computed according to Eqs. (3.48)-(3.49) and the resulting
expressions are linearized around time level n. The final expressions of the viscous
fluxes and source terms yield
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with the matrices AV and AV
s assumed constant during the linearization. The last

two Jacobians in Eq. (3.55) are approximated as
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, (3.57)
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The expressions for @BV
/@U and @BV

s /@U can be found in the works of Munafò [61]
and Scoggins [1].

Finally, the inviscid and kinetic source terms are linearized following simple Taylor
series expansions giving

SI n+1
i ⇡ SI n

i +
@SI n

i

@Un
i
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i , (3.59)

Sk n+1
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i

@Un
i

@Un
i . (3.60)

Eqs. (3.52)-(3.60) are substituted into Eq. (3.50), leading to a block-tridiagonal linear
system of equations which is solved at each time-step by means of the Thomas algo-
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rithm [116] for the update of the conservative variables. The procedure is repeated
until steady-state is reached.

Physico-chemical data. The computation of the closure terms present in the DRNSE
needs models and data. The stagnation line code is coupled to the MUTATION

++ library
[130] which centralizes data and algorithms for the accurate implementation of state-of-
the-art physico-chemical models for CFD simulating high temperature, reacting flows.
The library has been designed, implemented and extensively tested to ensure high-fidelity
together with low computational costs.

In the particular case of this thesis and the experiments we want to simulate, thermody-
namic data is based on the RRHO model [71]. Transport properties are computed through
the second order perturbation of the Chapman-Enskog expansion of the Boltzmann equa-
tion (Sec. 2.2.2). The chemical production rates for species, based on elementary chemical
reactions including third body, are calculated by taking the forward reaction rate coef-
ficients specified by the user in an Arrhenius law form. In this work, a nitrogen-carbon
mixture set of 9 species {e�,C+

,C2,C3,CN,C,N,N
+
,N2} is used. The chemical mecha-

nism considered is a subset of the full air ablation mechanism proposed by Olynick [131] for
which only the reactions taking into account any of the species considered are included. The
backward rate coefficient is determined by satisfying the equilibrium relation (Sec. 2.2.3).
The energy exchange term between translational and vibrational modes is computed with
a Landau-Teller formulation depicted in Sec. 2.2.4, where the characteristic relaxation time
is computed through the Millikan and White empirical formula [87]. The energy added/-
substracted to the vibrational model due to chemical reactions is evaluated according to
[124]. The energy exchange between free electrons and heavy particles is also evaluated
with a Landau-Teller formulation (Sec. 2.2.4).

Lastly, the wall ablative boundary condition needs additional data. The interaction of
the material with the surrounding gas can be approximately modeled through mass and
energy balances in a thin lamina enveloping the material surface and the surrounding flow
(Sec. 2.3.1). For the nitrogen ablation mechanism considered in Sec. 2.3.3, the different
coefficients are taken as uncertain in order to learn them from the experimental data.
The ablative boundary condition is accessed through the MUTATION

++ library which
also includes a generalization of gas-surface interaction boundary conditions for different
models [110].

3.2 Experiments

In this section, we review the facility, its operating principles, and set-ups involved in
generating the experimental data. The facility is common for both catalysis and ablation
experiments. The particular procedures and set-ups for catalysis and ablation are reviewed
separately with a discussion on the importance of the experimental data on the inference
of each set of model parameters.

3.2.1 The VKI Plasmatron

We consider the experimental set-up of the Plasmatron facility at the von Karman Institute
(VKI), an Inductively-Coupled Plasma (ICP) wind tunnel powered by a high-frequency,
high-power, high-voltage (400 kHz, 1.2 MW, 2 kV) generator [132]. This facility is able
to reproduce relevant re-entry conditions by producing a high-enthalpy, highly dissociated
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subsonic gas flow which simulates the stagnation point effects on the material sample
tested. A schematic view of the Plasmatron facility and all its integrated systems is shown
in Fig. 3.4.

Figure 3.4: Schematic view of the VKI Plasmatron system, including vacuum and water-
cooling loops [4].

The operating principles of the Plasmatron consist of a cold gas annular injection in a
quartz tube surrounded by a coil. The coil is connected to the generator, providing high
voltage, high frequency current. This induces an electromagnetic (EM) field inside the
tube, with induction lines coaxial with the tube itself. Argon is used as driving gas for
the initial discharge, thanks to the long lifetime of free electrons at low pressure compared
to air plasma. The EM field forces residual charged particles to form eddy currents in
the opposite direction of the primary current. The injected gas is then heated by Joule
effect, promoting further ionization. This process is balanced by the creation of new
electrons through collisions and the recombination of electrons with argon ions. The hot
gas accelerates out of the torch in form of a plasma jet and is then switched to the desired
test gas (air, N2, CO2). Once being in equilibrium, this process can run uninterruptedly
given that enough electricity, supply gas and cooling are provided. More details about this
facility can be found in the works of Bottin [133].

From the 160 mm plasma torch, the generated plasma is then discharged to a testing
chamber 2.5 m long and 1.4 m in diameter kept in under-atmospheric pressure with range
1000-22000 Pa. The cooling of all the facility components is provided by a 1050 kW cooling
system using a closed water loop (2090 liters/min) and fan-driven air coolers on the roof,
providing cooling for the torch, test chamber, sample retention system, and holding arms.
The hot gas from the test chamber exits through a 700 kW heat exchanger to a group of
three rotary-vane vacuum pumps and a roots pump, which are capable of extracting 3900
m

3/h, with a terminal vacuum capability of 0.02 hPa. The facility is computer controlled
using a 719 I/O lines Programmable Logic Controller (PLC), and two desktop computers
for controlling and monitoring the input regulation.

Overall, this facility allows a broad range of test article dimensions. The holding probes
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for material samples and the probes for flow characterization measurements are mounted on
water-cooled arms that can be swung into and out of the flow by a displacement mechanism.
Several optical accesses to the chamber allow flow and samples diagnostics: the lateral
windows (on both sides of the facility) allow for perpendicular side views of the plasma jet
and probes, while the torch-side windows allow for a frontal oblique view of the material
surface.

The interest of testing in such facility lays in the fact that it can reproduce relevant
flight conditions. The Local Heat Transfer Simulation (LHTS) framework developed at
the Institute for Problems in Mechanics (IPM, Moscow, Russia) by Kolesnikov [13] shows
how a subsonic ground-test facility, such as the VKI Plasmatron, is able to provide a
complete duplication of re-entry flight conditions. Kolesnikov’s works state that, under
the assumption of LTE at the outer edge of the boundary layer �, the stagnation point
heat flux in flight and on ground are identical if the boundary layer edge total enthalpy
H�, the pressure P�, and the radial velocity gradient in the radial direction �� = (@u/@x)

���
�

are locally matched. These results are based on the boundary layer theory for dissociated
reacting gases following the works of Fay and Riddell [134], and Goulard [103].

Even though our focus is in the calibration and eventual reconstruction of theoretical
models for the different phenomena considered, the fact that the Plasmatron can simu-
late relevant flow environments by duplicating selected effects found in flight is of major
importance. In these lines, the Plasmatron can handle different gas mixtures to simulate
different planetary atmospheres, such as the ones from Earth (air) and Mars (CO2). The
Plasmatron can also provide a uniquely wide testing envelop (see Fig. 3.5). Heat fluxes
from ⇠90 kW/m2 up to ⇠10 MW/m2 guarantee enthalpies between ⇠5 and ⇠60 MJ/kg
or above.

Figure 3.5: Plasmatron operating envelope compared against typical Earth re-entry tra-
jectories [4].
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3.2.2 Catalysis testing

The efficient design and assessment of TPS materials require extensive experimental databases
obtained under relevant flight conditions. In this sense, we have seen the capabilities of
the VKI Plasmatron to reproduce typical atmospheric entries (Fig. 3.5). Building on the
Plasmatron facility, researchers can now study different aspects of gas-surface interactions
by means of different measurement techniques combined together in unique set-ups.

Surface catalytic activity can be characterized by measuring different signatures in the
flowfield and the material surface. Catalytic surfaces modify the amount of heat flux expe-
rienced by the material, the boundary layer chemical composition and the material surface
temperature. In the past, researchers have devised experimental set-ups aimed at recon-
structing material catalysis coefficients (see Sec. 2.3.2) together with validation of their
reconstruction approaches by using independent measurements of different relevant quan-
tities which are influenced by the presence of catalytic activity [4, 119, 135]. While their
original interest was in defining values of the catalytic coefficients for different materials
under different conditions for design and flight certification, our aim is different. In this
thesis, we look at incorporating such experimental data into our models where we also
include measures of uncertainty. Along with this, we devise a way to obtain the most in-
formative experiments which can help us define catalytic coefficients with low uncertainty
levels, paving the way for the construction of calibrated, accurate models in the future.

For these tasks, we first select experiments performed by Panerai [4] in his thesis work.
These experiments provide good benchmarks for the comparison of our methodology to
previous works [5]. Another set of experimental data is produced within the work of this
thesis to address the question of how to obtain the most informative experiments for catal-
ysis determination in TPS materials. These last set-up and methods are addressed in
Chapter 6 as part of the outcomes of this work.

Experimental set-up and procedures. The experimental set-up envisioned by Pan-
erai [4] for the cases used in this thesis is depicted in Fig. 3.6. In it, Panerai made use of
three different probes submerged in the flowfield, together with other non-intrusive mea-
surements for surface properties determination.

In a typical experiment, one sequentially exposes two probes to the plasma flow: a
reference probe made of a well-known material (copper), having a catalytic coefficient �ref ,
and a probe which holds a sample of the TPS material with the catalytic coefficient we
want to infer, �TPS. For the TPS probe, we measure directly the heat flux q

TPS
w and surface

temperature T
TPS
w , while for the reference probe only the heat flux q

ref
w is measured.

The underlying idea of the experimental procedure is to perform first measurements of
the heat flux q

ref
w , dynamic pressure Pd and chamber static pressure Ps with the reference

probe set in the plasma jet. As these measurements depend on the state of the free stream
flow, in particular on the enthalpy H� at the boundary layer edge, the free stream conditions
can be deduced if one knows the catalytic coefficient �ref of the reference probe. Further, in
a second stage, the TPS probe is set in place of the reference probe in the plasma jet. The
corresponding steady-state wall temperature T

TPS
w and emissivity ✏ are measured, leading

to the computation of the experimental heat flux q
TPS
w . Consequently, assuming that the

free stream flow conditions have not changed, the catalytic coefficient �TPS of the TPS
probe can be determined.



68 Chapter 3. Data-generating tools

Figure 3.6: Schematic view of the experimental set-up for the Plasmatron facility.

Measurement techniques. The following instruments equip the Plasmatron in the con-
text of the described experiments. The reference probe is a flat-faced device (25 mm
radius) equipped with a water-cooled copper calorimeter at the center of its front face (see
Fig. 3.7). The calorimeter has a cooling water system that maintains the surface tem-
perature of the reference probe at around 350 K. The heat flux q

ref
w is deduced from the

mass flow (controlled by a calibrated rotameter) circulating in the cooling system and the
inlet/outlet water temperature difference measured by thermocouples as a result of the
exposure to the plasma flow. The relationship between q

ref
w and the water line temperature

difference reads

q
ref
w =

ṁcp (Tout � Tin)

A
, (3.61)

where ṁ is the mass flow in the cooling line, A is the frontal area exposed to the plasma
flow, cp is the water specific heat, and Tout, Tin are the temperature readings of the incoming
cooling water line and the outcoming one.

Figure 3.7: From left to right: TPS heat flux probe, reference probe and Pitot probe,
respectively (left). Sketch of the water-cooled copper calorimeter positioned at the center of
the reference probe’s front face (right), from [4].

As seen in Fig. 3.7, the copper calorimeter has teflon insulation on the side walls to
provide proper adiabatic conditions. For the TPS sample, a sample holder with the same
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geometry as the reference probe is used. The holder stem is composed of two coaxial tubes
with water circulating for cooling. A cap support for the TPS sample is attached to the
rest of the holder body by three metallic pins. Such cap is made out of graphite to endure
very high heat flux testing. In its center, the TPS sample is positioned. An insulation
layer is placed as back support for the samples, to limit the material conduction which is
not taken into account for heat flux computations in these cases.

For pressures, a water-cooled Pitot probe measures the dynamic pressure Pd within the
plasma jet. The Pitot probe has the same geometry than the water-cooled calorimeter
holder as seen in Fig. 3.7. An absolute pressure transducer records the static pressure
Ps in the Plasmatron chamber. It is important to take into account that the proper
calibration and retrieval of the measured physical quantities (Pd in this case) is made more
challenging in the presence of high enthalpy, low Reynolds number, viscous flows, where
one has to consider possible viscous effects as shown by Barker [136]. In particular, for
the correct retrieval of the velocity from Pitot measurements, we have to take into account
viscous corrections aimed at quantifying the discrepancies between the measured Pitot
pressure and the theoretical total pressure. For this purpose, Homann defined a coefficient
KH = PPitot � Pref/Pt � Pref for spheres and cylinders [137].

The determination of the TPS probe heat flux assumes a radiative equilibrium at the
surface, with the relation q

TPS
w = �✏

�
T
TPS
w

�4, where � is the Stefan-Boltzmann constant
and ✏ is the emissivity measured with a broadband infrared radiometer which provides
the integrated thermal radiation over the selected spectrum 0.6 - 39 µm within a span
of temperature 0-3000�C. The emissivity values are used to correct for the assumption
of blackbody radiation. The emissivity coefficient takes care of the fact that real bodies
emit less at the same temperature than their blackbody counterparts. In this context, the
emissivity of a body in a certain wavelength � is defined as

✏�,T =
W�

W
0
�

, (3.62)

where W� is the actual radiance of the body, while W
0
� is the radiance of a blackbody

at the same temperature T . In general, the waveband 0.6 - 39 µm contains most of
the resulting thermal radiation that the sample under study is emitting. Given this, the
Stefan-Boltzmann’s approximation gives a good estimation of the actual radiance, with
the measured emissivity value taken as the total emissivity of the sample. Nevertheless,
Panerai [4] goes over a detailed procedure for blackbody Planck’s law integration which
was initially proposed by Widger and Woodall [138], such that some inaccuracies in the
assumptions previously mentioned can be overcome. The broadband radiometer used in
the cited experiments is located at ⇠ 47

� angle relative to the surface normal in front of
a 1.8 cm thick KRS-5 window. Such material, also known as thallium bromoiodide is one
of the few existing crystals that offers about 70% transparency in the whole radiometer
operating waveband.

Having measured the spectral radiance and emissivity at a given wavelength, we could
easily determine the temperature at which the surface is emitting radiation. Nevertheless,
due to how radiation-based measurements are quite prone to errors in their calibration
and measurement chain, it is worth investing in another measurement technique for the
measurement of surface temperatures. The surface temperature T

TPS
w is measured us-

ing a two-color pyrometer. This device measures the spectral radiance at two different
wavelength which are very close together in the spectrum. This last characteristic makes
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possible the assumption of graybody, where the emissivity in all wavelength remains the
same. In the pyrometer case, we would be comparing the emissivities at two neighbouring
wavelengths which makes this assumption feasible. Having measured two different spectral
radiances, we can compute their ratios assuming their emissivities are the same. As a re-
sult we obtain an expression which only depends on the temperature the body is emitting
at [4]. The pyrometers used by Panerai [4] in his experiments work at around 1 micron
wavelength and are set at 1 Hz acquisition frequency, which is judged sufficient for steady
state measurements. The pyrometers are pointed and focused in the stagnation area of
the sample through a 1 cm thick quartz window, at an angle of ⇠ 35

� with respect to the
surface normal.

3.2.3 Ablation testing

As with catalysis testing, we are interested in using the capabilities offered by the VKI
Plasmatron to study now ablative materials. In particular in this work, we are focused on
graphite without the bonded resin, thus avoiding the modeling of pyrolysis processes and
focusing only on thermochemical ablation phenomena.

Thermochemical ablation also changes properties in the flowfield as well as the material
surface. Ablation modifies the amount of heat flux experienced by the surface, the chemical
composition in the flowfield by adding not only catalyzed species but also carbonaceous
ones, it modifies the surface temperature, and, unlike catalysis, changes also the shape of
the material. The presence of carbonaceous species in the flowfield together with the re-
cession of the material surface makes the experimental data obtained from ablation testing
quite different in nature. The access to these experimental data through dedicated mea-
surement techniques brings a wealth of information to the model, especially if the surface
reaction mechanism is straightforward to propose due to well designed experiments.

In this thesis, we question our two sources of information (experiments and models) on
equal footing. The same way we want to compare different models against the same ex-
perimental data, we want to assess the different experimental data to make sure it can be
trusted to begin with. Once this has been accomplished, different models can be compared
against each other in light of consistent experimental data (Chapter 7). For these tasks,
we recast the inference problem performed by Helber et al. [22] where they propose an
experimental set-up for graphite testing in the VKI Plasmatron, followed by a numerical
reconstruction method to extract nitridation reaction efficiencies �CN

N for different wall
temperatures Tw. In the following part of this section, we focus our attention to the ex-
perimental set-up and the measurement techniques as proposed by Helber et al. [22].

Experimental set-up and procedures. The experimental set-up for nitridation studies
was proposed by Helber [3] and it is depicted in Fig. 3.8. The ablative material sample,
graphite, consists of a 25 mm radius hemisphere with a 25 mm long cylindrical after-body,
machined in-house. The raw graphite material is a superfine grain, high-density extruded
graphite rod obtained from Graphtek LLC. The density of the graphite rod is reported to
be ⇢s = 1760kg/m

3, with a thermal conductivity of 130 W/(m K) at room temperature.
From the schematic of the testing set-up (Fig. 3.8), it is seen that several non-intrusive

measurements of the material surface are taken. The total stagnation point recession, from
which the recession rate ṡ is derived, is measured using a digital camera (Nikon D5000)
attached to a 400 mm lens, giving a resolution of about 0.03 mm per pixel. A two-color
pyrometer is used to measure the surface temperature Tw. The emission spectroscopy set-
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up consists of an Acton Series SP-2750 spectrograph of 75 cm focal length combined with
an ICCD PI-MAX camera with a frame of 1024 x 1024 pixels. The spectroscopy set-up is
used to record the strong radiative signature of the CN molecule [139, 140] from which to
derive flow temperatures and CN densities ⇢CN.

Figure 3.8: Schematic view of the ablation experimental set-up for the Plasmatron facility.
Figure adapted from Helber [3].

The test sample is pre-heated (cleaned and dried) by the argon plasma used to start the
Plasmatron facility. After starting the plasma on argon gas, with the test sample in place,
the test gas is switched to pure nitrogen. The stagnation point of the test sample is placed
445 mm from the torch exit.

The free stream condition is reconstructed in a previous step by using a 25 mm radius
copper water-cooled probe, mounting a copper calorimeter in the center of the front face.
The calorimeter is used for heat flux measurements in the same fashion as seen for catalysis
(Sec. 3.2.2). A water-cooled Pitot probe is used to perform dynamic pressure measurements
Pd, together with an absolute pressure transducer that measures the static pressure Ps.
The probes are mounted inside the Plasmatron test chamber at 445 mm distance from the
torch exit. The placement ensures that the axis of the probe and the axis of the torch
itself coincide. The water-cooled copper calorimeter probe, Pitot probe and TPS material
probe are sequentially exposed to the plasma flow.
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Measurement techniques. The copper calorimeter, Pitot probe and static pressure
transducer all work according to the same principles highlighted in Sec. 3.2.2. The objective
in both cases is the same: gather information about the boundary layer edge conditions.
For the ablative sample, the measurements of the two-color pyrometer play the same role
as for the catalysis studies, it reports the measurements of surface temperatures.

In this case, the two-color pyrometer employs a wide (0.75 - 1.1 µm) and narrow (0.95 -
1.1 µm) spectral bands for the surface temperature Tw determination at 1 Hz adquisition
rate (1300 K - 3300 K). It is assumed that emissivity of the char surface is constant over
this narrow wavelength range. The set-up followed for the pyrometer is identical to that
depicted in Sec. 3.2.2. The instrument is calibrated up to 3300K using a high temperature
graphite blackbody.

The two-dimensional ICCD array of the spectrometer set-up, enables spectral measure-
ments across the complete jet diameter of 20 cm, yielding a spatial resolution of 0.195 mm.
The 150 grooves/mm grating of the spectrometer is used for these cases to benefit from
the wide spectral range. The integration time is set between 40 ms and 150 ms for all
tests, allowing to get instantaneous pictures of the flowfield with regard to the test time.
A total of 10 frames are averaged within few seconds to increase the signal to noise ratio.
The raw data obtained from the spectrometer are in the form of counts. To convert the
data into spectral intensities [W/(m

2 · sr · nm)] calibration of the whole system, consisting
of the light collection mechanism and the spectrometer efficiency between 373 nm and
430 nm, is performed [3]. For each acquisition, the camera recorded a data matrix with
wavelength distributed along the horizontal axis and the lateral positions of the observed
plasma radius distributed along the vertical axis (see Fig. 3.9).

Figure 3.9: Graphite sample subjected to the subsonic plasma flow undergoing ablation,
indicating the radial position of the spectrometer (left). Example of a single data frame
taken by the ICCD array illustrating the spectral emission (horizontal line) and radial
emission distribution of CN violet maximum (vertical line)(right). Figure from Helber [3].

As the plasma jet is being observed from the side, the recorded signal is a result of the
local emission integrated along the line-of-sight, projected onto the ICCD sensor. If we
assume axisymmetry of the jet and an optically thin gas, the inverse Abel transformation
provides the local emission coefficient at distance r from the center. Treatment of the



3.3. Computation of the plasma freestream condition 73

experimental spectra is necessary prior to conversion of local emission through the Abel
transformation [3]. The local spectral emission at the stagnation region is compared against
synthetic spectra to reconstruct the flowfield temperatures at the desired location. The
analysis is performed through the minimization of the Root Mean Squared Error (RMSE)
between the calibrated Abel-inverted experimental spectrum and the theoretical spectrum.
Given that we are dealing with a molecule (CN) and they can store energy in the form of
rotation and vibration, the theoretical spectrum is produced as a function of two temper-
atures which account for the translational-rotational and vibrational-electronic energies.
Once the temperatures have been estimated, we can compute the CN density ⇢CN at that
location in the flowfield. To do so, the local CN violet emission is integrated at radial
position r in the spectral range between 375 nm and 390 nm to capture all underlying ra-
diation. This is compared against the simulated integrated emission which takes as inputs
the translational, rotational, vibrational, and electronic temperatures, as well as mole frac-
tion of the species of interest, pressure and slab width. Given the previous computation of
the rotational and vibrational temperatures, we can now obtain species mole fractions by
comparing the experimental and simulated integrated emission intensities. The application
of the Abel transformation and experimental CN density determination can be found in
more detail in the work of Helber [3].

3.3 Computation of the plasma freestream condition

The computation of the freestream condition plays a radically different role in the in-
ferences we perform for catalysis and ablation. In this case, we refer to the freestream
condition as the flow quantities at the edge of the boundary layer at a distance � from the
material surface as depicted in Fig. 3.10. A coupled experimental-numerical methodology
is adopted to recover the freestream conditions given a set of measurements with the cop-
per calorimeter, Pitot probe and static pressure transducer. In catalysis testing as well as
ablation, this step precedes the measurements on the actual TPS materials and, in most
cases, plays an important role on the outcomes of the experimental studies, which then
propagates to the model parameters we are trying to estimate.

Having an accurate treatment and assessment of this methodology is crucial for the
correct interpretation of results and their uncertainty estimation. As reported in Sec. 3.1
the simulation tools we use to solve for the models considered (Chapter 2) take into account
the boundary layer for which the inlet conditions must be specified. If we did not have
any more information about our experiments, we would have to assume that all boundary
layer edge conditions are unknown and we would have to estimate them along with the
model parameters of interest. On closer inspection, the experimental boundary layer is
generated by the VKI Plasmatron and its characteristics closely depend on the operating
conditions selected for the experiments. Given this information, we can recuperate some
boundary layer edge parameters that depend on the facility operating conditions and do
not play such an important role in the inferences we want to undertake. This allows us to
estimate these parameters and used them as given quantities for the inferences.

The subsonic VKI Plasmatron flowfield, composed by the torch and test chamber, is
numerically simulated using an axisymmetric LTE magnetohydrodynamics solver which
computes the solution of the Navier-Stokes equations coupled to the Maxwell’s equations
under certain assumptions (VKI ICP code [141–143]). Initially developed as a standalone
tool, the VKI ICP code is nowadays integrated into the Computational Object-Oriented
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Library for Fluid Dynamics (COOLFluiD) [144]. The ICP simulation takes the inlet mass
flow ṁ, the power transmitted to the plasma from the coils Pplasma, the chamber static
pressure Ps and the probe geometry as inputs. The power transmitted to the plasma flow
is a percentage of the total power injected to the coils Pel. This percentage is usually taken
as 50% [145].

Figure 3.10: Axisymmetric equilibrium computation of the temperature field inside the
Plasmatron torch and test chamber (air, ṁ = 16 g/s, Ps = 20 hPa, Pplasma = 95 kW),
with detailed schematic of the stagnation point region.

The governing equations rely on the MUTATION
++ library [130] for the computation of
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From the VKI Plasmatron simulations we can obtain the local momentum characteristics
at the edge of the boundary layer we are trying to reproduce. For this, we can compute
Non-Dimensional Parameters (NDPs) that define the momentum influx and boundary layer
thickness � [145, 146]. These non-dimensional parameters together with the dynamic pres-
sure expression, corrected for viscous effects Pd/KH = 1/2⇢�u

2
� [136], allow us to define a

relationship for the inlet velocity components u�, v� = f(NDPs, Pd, ⇢�) or, conversely, for
the axial velocity u� and the velocity gradient ��, depending on the solver and the pre-
scribed inputs (1D boundary layer code in Sec. 3.1.1 or stagnation line code in Sec. 3.1.2).
It is important to mention that the variability of the inlet non-dimensional parameters with
the operating conditions is small as shown by Panerai [4], and they can be assumed to play
a negligible role in the inferences we want to carry out. The fact that they are computed
from axisymmetric LTE simulations does not really affect the momentum transfer from
the torch to the boundary layer.

This previous step of determining the velocity components, allows us to focus on the
reconstruction of the boundary layer edge temperature T� as the target of the copper
calorimeter experiments for both catalysis and ablation. The general deterministic frame-
work to accomplish such task is highlighted in Chapter 4.
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3.4 Sources of uncertainties

One of the critical and defining steps in the scientific method is the objective comparison
between theoretical models and experiments. Many steps are required for carrying out
this task in a consistent way as reviewed by Oberkampf and Roy [36]. One of the most
important ingredients is the proper assessment of the uncertainties that are present in
the theoretical model predictions as well as the experimental observations to be compared
against. Many question marks can be posed in the modeling assumptions, experimental
apparatus, and modeling employed to recover the corresponding physical quantities from
the raw measurement data. This work considers the uncertainties related to the mathemat-
ical model used to simulate the phenomena in question, and the experimental conditions
and measurements. These uncertainties play a defining role in the calibration of model pa-
rameters which in itself constitutes an essential part in the objective comparison between
models and experiments [147].

In this thesis, numerical errors are not explicitly discussed. For all the simulations run,
we impose the conditions of reaching convergence before using the obtained solutions for
the inverse problems. Further, surrogate model errors are also kept under a threshold of
1%.

In the following sections, uncertainties are classified into the ones that stem from the
modeling and those which stem from the experimental side.

3.4.1 Model uncertainties

When representing natural phenomena with approximate mathematical models we need
to question the structure of such models and the values of the input and data parameters.
According to our state of knowledge about a particular phenomenon, uncertainties must
be identified and treated accordingly [148]. In this work, uncertainties concerning model
parameters and boundary conditions are considered. Model form uncertainties are also
taken into account [149] for the inverse problem of ablation (Chapter 7).

Generally, boundary conditions are prescribed by experimental data as part of conduct-
ing experiments in a controlled environment. In the case of high temperature, dissociated
flows in plasma wind tunnel experiments, measuring all quantities needed to simulate a
reacting boundary layer is not directly possible, therefore, the conditions of the experi-
ments are not perfectly known. For the few quantities measured, such as pressures and
wall temperatures, the uncertainties are considered as inherent variability that comes with
the process of measuring. This inherent variability is generally referred to as aleatory un-
certainty [150]. It is a kind of randomness that is present due to unknown perturbations
in the measurement devices that are not possible to control or reduce. The mathemati-
cal framework for treating these aleatory uncertainties consists in prescribing probability
distribution functions (PDFs) for the different measured quantities.

The uncertainties associated to model parameters and boundary conditions that are not
measured must reflect the fact that there exists a lack of knowledge about those parameters,
by contrast with the measured quantities. This type of uncertainty is called epistemic and it
can be reduced through experiments, improved numerical approximations, expert opinion,
higher fidelity physics modeling, etc. In our case, these uncertainties are implemented as
PDFs that represent the degree of belief of the true value as it is defined in a Bayesian
setting [151]. Other different ways of treating epistemic uncertainties can be found in the
works proposed by Shafer [152] and Zimmermann [153].
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Focusing now on the particularities of the theoretical modeling used in this thesis, we
should accurately quantify the resulting confidence we have in the computation of all the
flowfield variables depicted in Table 2.2. This is a monumental task, given all the closure
models (Table 2.3) and boundary conditions that must be assessed along. In particular,
epistemic uncertainties range from what phenomena we choose to include in our governing
equations, the degree of thermal non-equilibrium assumed and its modeling, the particular
values of the model data for kinetic processes, thermodynamics and transport, to the
boundary conditions that need definition with no measured counterparts. Further, all of
these choices are also coupled to each other. For example, the derivation of boundary
conditions from indirect observations, such as boundary layer edge temperatures from
heat flux measurements, entails assumptions for the modeling of the whole boundary layer
flowfield, which encapsulates all the sources cited here. Apart from this, the material
is treated in an approximated way. Additional epistemic uncertainties stem from the
phenomena that take place within the material that are not captured in a fully coupled
way.

In this thesis, we focus on the most immediate sources of uncertainties that are linked
to the problems we study, such as catalysis and ablation model parameters, the boundary
conditions of the experiments, and thermodynamics modeling. The particular parameters
taken as uncertain are described in more detail in the relevant chapters (Chapters 5-7). The
results are therefore conditioned on all the other modeling choices we made in Chapter 2.
Even though they represent reasonable and widely accepted assumptions for this kind of
experiments, we must still acknowledge the fact that there exists uncertainty around them.

3.4.2 Experimental uncertainties

The role of experiments in this work is to provide information regarding the models we
want to calibrate. Some experimental data are direct or indirect measurements of boundary
conditions while other observations are quantities of interest that are used along to inform
our model parameters and obtain ranges of possible values within a given model structure.
We use both sources of information to calibrate boundary conditions and model parameters
jointly. In order to have reliable uncertainty estimates on the sought out model parameters,
we need accurate quantification of uncertainties on the experimental data. This task is
generally carried out by the experimentalists themselves who report their measurements
with such estimates which we then use for the calibration of physical models. Nevertheless,
the uncertainty characterization techniques used in the aerothermodynamics community
for experimental measurements are often poorly suited for their purpose.

There are many different caveats affecting the proper quantification of experimental
uncertainties. The raw experimental data, such as voltages measured in time, must be
converted into useful physical quantities for the model predictions to be compared against.
To do so, a calibration methodology involving some kind of modeling of the experimental
apparatus response is required. Aleatory uncertainties stemming from the raw data must
be added to epistemic and aleatory uncertainties stemming from the experimental calibra-
tion modeling [154]. Both aspects define the final uncertainties on the measured quantities
as already discussed in Sec. 1.2. Some measurements techniques are easier to deal with
than others. Deriving heat fluxes from differences in water temperatures (Eq. (3.61))
is more straightforward in terms of modeling and assumptions than reconstructing flow
temperatures and species concentrations from spectrometer data [3]. Forward and back-
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ward uncertainty propagation techniques should be employed to deal with such uncertainty
sources. Furthermore, the experiments should be repeated enough times to have reliable
statistics on the raw measurements. This point is particularly delicate given how expensive
would be to run a plasma wind tunnnel hundreds of times for the same experiment. It is
just not feasible. Additionally, special attention should be devoted if the conditions of the
measurements differ from the conditions of the calibration [36] which is common to happen
in spectrometer measurements [3, 154].

In general, the widely adopted methodology to produce uncertainties (more conveniently
defined in this case as error bars) on the experimental data is by performing local Taylor
expansions on the quantities of interest that we want to report as measurements, e.g. heat
fluxes, flow temperatures, species concentrations, etc. Through these expansions, error
bars computed from the raw data for the measured calibrated quantities (water tempera-
tures, surface temperatures, etc) are propagated through the corresponding experimental
apparatus models, such as Eq. (3.61), to obtain the error bars on the quantities of interest.
The statistical fluctuations of the raw data are based on time series data points where
measurements are performed for a given time with a given frequency and the resulting
deterministic value is the average over selected points that are considered relevant (e.g.
once steady-state is reached in the experiment and there is no evidence of the underlying
physics changing). Empirical error bars are also computed on these points.

The final account of error bars does not include any degree of confidence on the differ-
ent values, and they are solely based on local expansions where the errors are assumed
small enough. Further, each measured quantity propagated to some reported quantity of
interest, such as a heat flux, is considered to contribute to the error bars only through its
direct influence without taking into account higher order interactions among the variables
themselves. As we recall from Sec. 1.2, the same methods used for the characterization
of uncertainties in physical models should be adopted for the proper characterization of
experimental uncertainties. There is not a reason why models and experiments should not
be treated on equal footing when it comes to their objective comparison and evaluation
of uncertainties. They are both data-generating processes subjected to the same type of
uncertainties.

In this thesis, uncertainties related to measured quantities are considered aleatory uncer-
tainties, being mathematically described as probability distribution functions. We use the
information reported with the publication of the experimental data, such as error bars and
nominal values, and assume a confidence interval for the reported error bars from which
we build our distributions. The actual distributions are depicted in the relevant chapters
(Chapters 5-7). This is considered a valid assumption given that the experimental devices
are well-characterized and the different model parameters involved in their calibrations are
considered well-defined (Sec. 3.2.2 & Sec. 3.2.3). This is true when talking about pressure,
temperature and heat flux measurements, which are the bulk of the experimental data used
in this work. For this reason, the PDFs assigned to the observations are direct reflections
of the experimental raw data variabilities alone, as no epistemic uncertainties are consid-
ered in the experimental calibration process [3, 4]. Additional experimental data used in
the calibration of nitridation efficiencies, such as CN local densities ⇢CN, do not have such
straightforward measurement process and experimental calibration as seen previously in
Sec. 3.2.3. Nevertheless, we model them as aleatory uncertainties, placing a question mark
on their prescribed distributions (Chapter 7).
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3.5 Summary

In this chapter, we review the data-generating tools. From the numerical codes that
practically solve reduced sets of the governing equations exposed in Chapter 2, to the
experimental set-ups. The different data-generating processes entail uncertainty sources
that must be identified and treated accordingly.

The numerical tools reviewed are oriented to the simulation of reacting flow boundary
layers, targeting conditions and geometries typical of the experimental set-ups. The 1D
boundary layer code is a very efficient and accurate tool which solves the classical boundary
layer equations with catalytic boundary conditions. The equations are presented along with
their transformation for the simplification of their solution. Lagrangian and Hermitian
polynomials are used for their discretizations to obtain a fourth order accurate solution in
step size across the boundary layer. For the closure of the system, the physico-chemical
data used are also introduced along with the catalytic boundary condition.

For ablation studies, the numerical tool of choice is the stagnation line code which
unlike the 1D boundary layer code, it can handle different physico-chemical models and
boundary conditions through the use of the MUTATION

++ library. In this case, we solve
the full set of the Navier-Stokes equations but dimensionally reduced to the one dimensional
stagnation line. This enhances the efficiency of obtaining flowfield solutions while keeping
a good accuracy, providing a good tool to compare our models to the experiments. The
derivation of the DRNSE along with their numerical implementation are first reviewed,
followed by the physico-chemical modeling that concerns this work.

The experimental facility and the different set-ups for catalysis and ablation studies
are introduced, with particular focus on the measurement techniques. Their calibration
and treatment represent important sources of uncertainties. It is relevant for the work of
this thesis to understand the complexity behind some of the measurement techniques to
be able to have a better assessment on the way experimental uncertainties are commonly
prescribed and treat them accordingly. Experimental testing conditions can also be used
to determine some free stream parameters with the help of an axisymmetric simulation,
linking the operation conditions of the Plasmatron to the inlet of the boundary layer. This
provides information to our inference problems in the form of inlet momentum components.

A discussion on the sources of uncertainties stemming from the different data-generating
processes closes the chapter. The first step in all uncertainty analyses is the identification
of sources and how they can be treated in a stochastic framework. This is discussed in a
general way and it is dealt with in more details in the following chapters.



Chapter 4

Inference methods

This chapter opens by referencing deterministic inverse methods and their shortcomings, as
well as offering a succinct account of their usage in the atmospheric entry flows community.
The chapter follows with a review of the defining features of stochastic inverse problems.
In particular, the Bayesian formalism towards inverse problems is reviewed through each
of its constitutive steps. The general formulation of the stochastic inverse problem opens
the discussion followed by the derivation of the likelihood function in the cases where the
noise is additive and multiplicative. The problem of encoding objective prior information
in probability distributions is also tackled. Models and methods for the effective exploration
of the posterior distribution are presented, as well as the convergence diagnostics tools gen-
erally used. Model selection techniques are also highlighted as they are relevant for the set
of ablation experiments and models tackled in this thesis. A last section is devoted to the
methods used to make the process of solving a statistical inverse problem less burdensome
when dealing with complex models. In particular, surrogate modeling by means of Gaussian
processes and sensitivity analysis methods are addressed as they constitute important steps
in the methodologies developed in this work.

4.1 Classical inverse problems

Inverse problems are defined, as the term itself indicates, as the inverse of direct or forward
problems. Consequently, solving inverse problems involves solving the forward problems.
Inverse problems are encountered typically in situations where we want to learn about some
quantity of interest but we cannot observe it directly. In this case, we perform indirect
observations of some other easily accesible quantities and trace them back somehow to the
quantity of interest itself through the repeated use of the forward problem. The challenges
associated with solving inverse problems amount to the issue of non-locality and non-
causality. It is the legacy of Newton, Leibniz and others that laws of nature are often
expressed as systems of differential equations. These equations are local in the sense that
at a given point they express the dependence of the function and its derivatives on physical
conditions at that location. Another typical feature of such laws is the notion of causality,
in which later conditions may depend on the previous ones. Locality and causality are
features typically associated with direct models. These features are not found in inverse
problems, where we cannot rely on locality and causality to estimate some past or far away
quantities, which may lead to instabilities in the solution procedure.

In many fields of engineering research it is still common practice to resort to determin-
istic approaches when it comes to posing and solving inverse problems for the calibration
of theoretical models. It is important to stress that this issue not only concerns active
parameter fitting procedures but also the resulting objective comparisons between model
predictions and experiments which drive model validation.
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Deterministic inverse problems can come in many flavors. Classical deterministic pa-
rameter estimations such as minimization of an error metric with possible regularization
terms are by far the most widespread [155–157]. In this case, we are looking for a vector
of model parameters c 2 Rm given a set of observations y 2 Rn. The two quantities are
related through a model y = f(c,p), where p 2 Rl is a vector of model parameters that
are usually assumed perfectly known and f : Rm⇥Rl ! Rn. The process for obtaining the
solution to the deterministic inverse problem in the form of the parameters c consists of
minimizing some functional that reflects the discrepancy between observations and model
predictions while incorporating some prior information in the form of a regularization term
R(c,p)

argmin
c

J(p) = ky � f(c,p)k2 +R(c,p). (4.1)

This inference formulation fails at dealing with the uncertainties present in experimental
data as well as epistemic uncertainties that stem from the model parameters p that are
kept fixed. The results of such inferences are point estimates on c for some conditions.

Let us imagine an example. An engineer is insterested in reconstructing the chemical
kinetic parameters of a flow through a porous material at a very high temperature. The
forward problem consists of predicting the flow temperature in a three dimensional domain
inside a porous medium as a function of the flow conditions at the boundaries, the material
properties, and the flowfield kinetic parameters. The inverse problem consists of the even
more challenging objective of retrieving the selected chemical kinetic parameters from a
few thermocouple readings. Furthermore, the engineer decides to adopt the formulation of
Eq. (4.1) which considers other flow kinetic parameters, material properties and boundary
conditions to be perfectly known p, and the thermocouple readings to be a single number
y in each location, as representative of their mean value over a certain adquisition window,
or as particular realizations of the measurements. In turn, this engineer would obtain a
reasonable estimate of the sought out parameters c but it would not be, by any means,
the only possible answer.

Now consider this: in the forward problem, small changes in the known kinetic param-
eters p can drastically change the temperatures predicted at the thermocouple locations,
even when considering the values of the parameters c previously estimated. In turn, a
slightly different choice of those parameters p would yield completely different answers
to the inverse problem. This issue also extends to the choosing of the values of the ex-
perimental data y. In sum, the engineer finds that vastly different flowfield and material
characteristics may have produced the same thermocouple observations, at least within
the accuracy limit of the measurements. This is a serious problem that requires a careful
analysis of the data and the methods for inverse analysis.

Moreover, the engineer draws conclusions about her work by only looking at the obtained
parameters c, trying to derive some physical understanding from such exercise. The con-
clusions and knowledge derived as well as the values of the parameters themselves are just
one possible description of the problem that does not encapsulate the whole picture. One
might argue that based on previous studies and experiments, the material characteristics
and the other flowfield parameters encapsulated in p are well-known, but the same argu-
ment can be posed on how that knowledge was derived in the first place. How is it possible
to even define model validation on the basis of these methods? It is straightforward to see
why these techniques are ill-equipped to produce reliable model calibrations and valida-
tions and why uncertainty is a necessary component that should be modeled in addition
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to the physical problem of interest.
As we can see from the example, uncertainty naturally arises in situations where insuffi-

cient information is provided or some determining factors are not observed. This is the case
when we seek to learn from an experimental dataset. Probabilistic models, which represent
a probability distribution over random variables, provide a principled and solid framework
to resolve problems involving uncertainty. Scientific inference is a learning process where
uncertainty must be evaluated at every step and traced back to all possible causes for the
observed effects. Incorporating uncertainties in inverse problems to study the plausibility
of the experimental data under the hypothesis of a given model requires the overhaul of
deterministic inverse techniques. The information content of the solutions to stochastic
inverse problems is different from the deterministic ones, and so are the mathematical
framework and algorithms needed to solve them.

4.2 General formulation of the stochastic inverse problem

Contrary to deterministic inverse problems, where we need to solve an optimization prob-
lem to get a point-estimate, stochastic inverse problems make use of another mathematical
framework to enrich the estimation. This framework is probability theory and lays the
foundation for statistical inverse problems. The methods to solve inverse problems involv-
ing uncertainty can range from computing a sole value for parameters in a probabilistic
model that represent a good approximation of the solution, to obtaining the full proba-
bility distribution that the sought out parameters follow. The former are commonly refer
to as deterministic approximate inference techniques which reasonably approximate the
distribution we are after. Some examples are the Laplace approximation where a mode of
the distribution is approximated with a Gaussian distribution by the second-order Taylor
expansion about the mode, and variational inference where a simpler family of probability
distributions are used to find the distribution that is closest to the true one [158]. The
literature is rich with other deterministic approximation methods whose aim is to make
intractable problems tractable [159].

We are interested in the problems formulated to compute the full parameter distribution
which are more commonly referred to as stochastic inverse problems. The general inverse
problem we seek to solve would read as follows. Assume we measure the same quantity y in
order to get information about another quantity c. We have a good candidate model that
relates the two quantities with the parameters p now considered unknown to us to some
extent. The model may also be inaccurate in its proposed form. Moreover, the quantity
observed y is always noisy. Typically we have

y = f(x, e), (4.2)

where x 2 Rm+l is the vector containing all the parameters not known to us x = {c,p}
and e 2 Rk is the measurement noise. In a statistical setting, all variables are treated as
random variables and the problem is recast as

Y = f(X,E), (4.3)

where the corresponding random variables are denoted with capital letters, with their par-
ticular realizations in lowercase letters as in Eq. (4.2). The statistical treatment of the
inverse problem enriches the solution by providing not only a point-estimate on some regu-
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larized quantity x̄ that minimizes a given functional but by characterizing the probability
of each point x through a computed distribution. This fact allows us to compute different
estimates stemming from the obtained distribution and have a more complete picture of
the information we have for a particular parameter.

Generally, we possess some a priori information about X. In the Bayesian formalism
which is proposed for solving statistical inverse problems in this thesis, this prior informa-
tion can be encoded in a probability distribution P(x) known as the prior density. This
term is quite self-explanatory: it expresses what we know about the unknown parameters
x before we see the data y. A more detailed account on how to propose prior distributions
can be found in Sec. 4.4. Solving the inverse problem for X given some noisy experimen-
tal data Y = yobs can be stated as finding the conditional distribution P(x|yobs) which
expresses our information about X after observing the data yobs. According to Bayes’
theorem, this conditional distribution is the solution of the following expression

P(x|yobs) =
P(yobs|x) · P(x)

P(yobs)
, (4.4)

where the conditional distribution P(yobs|x) is the likelihood function because it expresses
the likelihood of different measurement outcomes with X = x given. The denominator
term P(yobs) is the probability of observing the measured data under the considered model.
In practical terms, P(yobs) is the normalization constant of the posterior distribution,
expressed as P(yobs) =

R
P(yobs|x)P(x)dx, also referred to as marginalized likelihood or

evidence. This factor is of little importance for obtaining P(x|yobs) as long as P(yobs) 6= 0,
which would imply that the underlying model is not consistent with reality. However, it
becomes an essential tool for hypothesis testing and model selection problems (Secs. 4.6-
4.7). The conditional distribution P(x|yobs) is referred to as the posterior distribution
in contrast to the prior distribution, as it offers updated information on the variable of
interest X after observing the data yobs.

The Bayesian inference formalism for statistical inverse problems can be then broken
down into three distinct tasks:

1. Find an adequate representation of the likelihood distribution P(yobs|x) which best
captures the interrelation between the noisy observations yobs and the unknown
parameters X.

2. Find a prior distribution P(x) that judiciously represents all that is a priori known
about X.

3. Explore the posterior probability distribution.

The following sections focus on each of these tasks highlighting their challenges and most
important features.

4.3 Construction of the likelihood function

The stochastic inverse problem depends on the probabilistic model assigned to the mea-
surement error in the absence of model error. This error model makes its appearance
through the parameter E in Eq. (4.3) which considers the distribution used to describe
the noise of the experimental data. In general, the likelihood function is the probabilistic
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model that results from the relationship imposed between the forward model f(X), or
its variables if they are directly observed, and the noise parameter E. Depending on the
nature of the experimental data, different likelihood functions are commonly found in the
literature [158]. The most common likelihood functions are derived from explicit noise
models where the forward model f(X) and the noise parameter E are explicitly related.
The most common explicit noise relations are additive and multiplicative [160]. Generally,
these relations lead to the implementation of Gaussian or log-normal likelihood functions.

In some cases, the likelihood is not based on a model of the type Y = f(X,E). Instead,
we may know the distribution of the measurement itself, not the error from which the
likelihood must be derived in the case of explicit models. Some examples are measurements
based on counting events, such as the photon count arriving at a pixel of a camera. The
likelihood function would represent a Poisson process for which additional noise could be
added as well. In addition to the Poisson distribution, one can encounter other parametric
observation models such as beta or gamma models [161].

In this thesis, we use additive and multiplicative explicit error models to deal with
data associated to catalysis and ablation and upon which we construct our likelihood
functions. They represent good assumptions for the knowledge we have about the experi-
mental data, which normally consist of a representative value and some deviation from it.
For such constraints, Gaussian distributions of different flavours (log-normal is included
here) reasonably represent our state of knowledge without the need to impose additional
assumptions.

The details about the likelihood derivations from the noise distributions and relations
to the forward model are given in the following sections.

4.3.1 Likelihood with additive noise

The most common stochastic model in the literature considers the noise of the observations
to be additive and independent from the model parameters

Y = f(X) +E. (4.5)

Assuming that the distribution of the noise E is known or given Pnoise(e) we can derive
a distribution for the difference between the observed value of Y = yobs and the forward
model f(X) as

P(yobs � f(X)) = Pnoise(yobs � f(X)). (4.6)

Given the independence of the error model with respect to the model parameters, the
resulting distribution of E does not change when conditioned on X = x. Based on this,
the likelihood distribution reads

P(yobs|x) = Pnoise(yobs � f(X)). (4.7)

In this thesis, when the noise is assumed additive, the error models for the different
measured quantities consist of unbiased Gaussian distributions such that the likelihood
can be expressed as

P(yobs|x) / exp

✓
� 1

2�2
k yobs � f(X) k2

◆
. (4.8)
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The assumptions behind such error model are that we consider it to be independent from
the model parameters X, and when having various error sources from multiple measure-
ments we consider the different errors to be independent from each other. These assump-
tions are justified in case of experimental noise given that each measurement relies on a
different apparatus with its own internal modeling and various noise levels. When using
synthetic data we also make the same likelihood choice even though now the “measure-
ments” are simulated quantities that are correlated. Nevertheless, this model is adopted
as it is representative of the actual experimental scenario.

4.3.2 Likelihood with multiplicative noise

In general, we can have more complicated relations among the forward model, model
parameters and error model. Another common noise model, which still assumes it to be
independent from the model parameters, is expressed as

Y = Ef(X), (4.9)

which reflects the fact that the noise is proportional to the values of the observations. For
this noise model the variable that is now distributed as the noise is

P
✓

yobs

f(X)

◆
= Pnoise

✓
yobs

f(X)

◆
, (4.10)

which leaves the following likelihood [160]

P (yobs|x) =
1

f(X)
Pnoise

✓
yobs

f(X)

◆
. (4.11)

An example of this likelihood is when the error model is assumed to follow a log-normal
distribution, where the log-error is normally distributed

Y = 10
E
f(X), with E ⇠ N (0,�

2
), (4.12)

which by taking logarithms results in a likelihood that reads

P(yobs|x) /
1

f(X)
exp

✓
� 1

2�2
k (log10 yobs � log10 f(X)) k2

◆
. (4.13)

In this thesis, this is the kind of multiplicative noise model used for the treatment of mea-
surement errors in ablation experiments given the nature of the spectrometer measurements
(Chapter 7).

4.4 Assigning prior probabilities

The choice of priors is a defining feature of Bayesian inverse problems. The prior reflects
the knowledge we have about the parameters we want to infer before incorporating the
experimental data into the analysis. This prior information can come from expert elicita-
tion or from previous data or analyses. In assigning prior probabilities, researchers often
struggle to properly find a way to incorporate qualitative knowledge into a quantitative
object that is a defined probability distribution. Given the ample scope of how to prop-
erly construct priors in the literature, we focus on the route followed in this thesis with
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references to other relevant methods.
In general, given the kind of statistical inverse problems treated in this thesis, the goal

for a prior distribution is not to add dubious information that can bias the results in a
considerable way. This is an important feature given the limited nature of the experimental
data. In problems with plenty of data to learn from, the choice of priors loses relevance
as the problem becomes robust in the posterior sense. The cases studied in this thesis
are usually one experiment, taken as one data point, that is studied and incorporated for
the calibration of the physical model. A very informative prior based on expert elicitation
of subjective belief would have a significant impact on the results. We focus instead on
defining objective priors for our model parameters where only objective information is
reflected in the prior distribution.

Objective information can also be of different nature. The most common information we
have about our parameters are location and/or scale. Location is information regarding
the likelihood of the parameters to lay in some particular subset of the parameters space.
In general, this information is encoded in bounded uniform distributions where we imply
we are certain about a span of values for our parameters, yet we do not have enough
information to favour any particular one. When the bounds of the prior information can
span several orders of magnitude we must admit being indifferent to the likelihood of the
different scales of the parameters in question as well. In this case, our ignorance regarding
the parameter scaling is reflected in a bounded log-uniform distribution where any scale
is equally likely. This fact is embodied in the derivation of the Jeffreys prior [161, 162].
These particular choices of priors comply with logical consistency rules [161] based on the
stated states of knowledge. These prior distributions are the ones chosen in this work for
their non-informative properties as well as their reflected degree of knowledge about the
different parameters.

In an increasing order of prior objective information, we can find in the literature other
methods for proposing prior distributions based on testable information. In the case where
previous experiments are available and can be trusted, we may possess additional infor-
mation about our parameters. This information can be encoded in expected values or
variances, among others. In this situation, Jaynes [163] suggested to recast the problem of
assigning prior distributions by finding the PDFs with the maximum entropy for the given
constraints. Overall, the literature is rich in examples for different plausible scenarios and
nature of the inverse problem as thoroughly reviewed by Kaipio and Somersalo [160].

4.5 Computation of the posterior distribution

All the obtained information about the inferred model parameters are contained in the
resulting posterior distribution. The prior distribution reflects the information (or igno-
rance) we have about the parameters before incorporating the information coming from the
experimental data encoded in the likelihood function. As seen in Eq. (4.4), the posterior
distribution P(x|yobs) is the result of the likelihood P(yobs|x) times the prior P(x) divided
by a normalization constant P(yobs) =

R
P(yobs|x)P(x)dx. This constant is very hard

to calculate because the likelihood (or the prior) can have extremely complex structure,
with multiple arbitrarily compact modes, arbitrarily positioned in the (presumably high-
dimensional) parameter space x. In contrast, Eq. (4.4) can also have a straightforward
analytical solution if likelihood and prior are of particular types [151]. This is generally
not the case for complex high-dimensional problems and assuming so can have far-reaching
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consequences in the analysis.
Moreover, we may be interested in different estimators or quantities derived from the

full joint posterior. Integration for computing expectations, marginalized distributions and
confidence intervals, among others, is a vital step to understand all the pieces of information
coming from the full posterior. Forward uncertainty propagation might also be important
to estimate the impact that a certain parameter posterior has on a simulated quantity.
In this case, being able to efficiently draw samples from it is necessary. In sum, we are
interested in performing integration and drawing samples from the posterior distribution
without having to compute the normalization constant.

In this regard, normalization-insensitive techniques that rely on ratios of the unnor-
malized posterior distribution are desired. For this purpose, the properties of particular
stochastic models, such as Markov chains, can be exploited in a Monte Carlo framework
for accomplishing the efficient sampling of arbitrarily complex posterior distributions. The
sampling method, known as Markov Chain Monte Carlo (MCMC), has straightforward
computational implementation and it is ideal for sampling posteriors in the real situations
in which scientists find themselves.

In the literature, other sampling methods are proposed which combine the computation
of the unnormalized posterior and the normalization constant by transforming the likeli-
hood function according to the prior density [164]. Nested sampling makes use of this idea
to constrain the posterior sampling to high probability regions within an area proportional
to the normalization constant. This approach can take many iterations to reach the bulk of
a confined posterior, but relatively few to cross it [161]. Only these relatively few are signif-
icantly informative about the posterior. If the principal interest is in accurate estimation of
the posterior, this imbalance can be wasteful. Furthermore, the numerical implementation
of nested sampling algorithms is more complex and not as useful as MCMC algorithms if
we are not seeking to compute the normalization constant.

The following sections introduce the basics behind MCMC methods and algorithms used
in this work.

4.5.1 The Markov chain stochastic model

Markov chains are ubiquitous stochastic models that can be found across many fields of
application. Particularly, in the domain of statistical inverse problems, they are used to
sample complex probability distributions by making a series of local changes to an arbitrary
initial state.

Consider a sequence of random states x(0)
, ...,x(n) defined on a finite space X . This

sequence is called a Markov chain if it satisfies the Markov property

P(xt+1|x(t)
, ...,x(0)

) = P(x(t+1)|x(t)
), (4.14)

which is stated often by saying that the future depends on the past only through the present.
Further, if the form of P(x(t+1)|x(t)

), the transition function, does not change with t, we
can say that the chain is time-homogeneous.

There are properties associated to time-homogeneous Markov chains that hold for cer-
tain transition functions. These properties are enumerated under the ergodic theorem
which guarantees, given the specified properties, that Markov chain samples can be used
for constructing Monte Carlo estimates with good statistical convergence. These three
properties are irreducibility, aperiodicity and stationarity. Given a probability measure ⇡,
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the transition kernel P is irreducible with respect to ⇡ if for each x,y 2 Rn with ⇡(y) > 0

there exists an integer k such that P(k)
(x,y) > 0, with k being the propagated steps

forward in time. Thus, regardless of the starting point, the Markov chain generated by
the transition kernel P visits with a positive probability any set of positive measure. An
irreducible transition kernel P is also periodic if it generates a Markov chain that remains
in a periodic loop forever. The opposite is said for aperiodic Markov chains. Finally, the
measure ⇡ is an invariant or stationary measure of P if

⇡P = ⇡, (4.15)

that is, if the distribution of the random variable xj before the time step j+1 is the same
as the variable xj+1 after the step j + 1. A way of ensuring invariance is by satisfying the
detailed balance equation

⇡(x)P(x,y) = ⇡(y)P(y,x), 8x,y 2 Rn
, (4.16)

which drives the development of algorithms capable of generating this kind of Markov
chains. For formal proofs of these statements and their derivations the reader is directed
to the work of Liu [165].

Overall, we can find a transition function that defines a Markov chain with the proper-
ties described. This allows us to use such chain for directly sampling the equilibrium or
stationary distribution ⇡(x) we are interested in. The formal proposition of the ergodic
theorem reads

Proposition 1.1. Let ⇡ be a probability measure in Rn and {xj} a time-homogeneous
Markov chain with a transition kernel P. Assume further that ⇡ is an invariant measure
of the transition kernel P, and that P is irreducible and aperiodic. Then for all x 2 Rn,

lim
n!1

P(n)
(x,y) = ⇡(y), (4.17)

and for f 2 L
1
(⇡(dx))

lim
n!1

1

n

nX

j=1

f(xj) =

Z

Rn
f(x)⇡(dx), (4.18)

almost certainly.

This theorem is the foundation of Markov Chain Monte Carlo (MCMC) methods where
one needs to find a transition kernel P such that it is invariant, irreducible and aperiodic
with stationary distribution the posterior distribution we are seeking to sample. Sam-
pling from the posterior is then equivalent to sampling from the transition kernel of the
constructed Markov chain until statistical convergence is reached.

4.5.2 Markov Chain Monte Carlo algorithms

The question now is defined as the construction of a transition kernel P such that the
resulting Markov chain has the posterior distribution ⇡ as stationary measure. Several
algorithms exist in the literature to construct a Markov chain with the desired stationary
distribution ⇡ which differ in the way they construct the Markov chain. The cornerstone of
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all Markov Chain Monte Carlo methods is the so-called Metropolis algorithm, proposed by
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953 [166]. In it, they introduced
the fundamental idea of evolving a Markov process by rejection sampling to achieve the
simulation from the targetted ⇡. This seed algorithm is restricted to transition kernels P
that are symmetric. Nevertheless, it paved the way to a whole class of methods developed
to sample from very complex distributions.

Metropolis-Hastings algorithm. A later development by Hastings in 1970 [167], ex-
tended the Metropolis algorithm to accommodate non-symmetrical transition kernels. The
aim of this algorithm is to construct a transition kernel P that satisfies the detailed balance
equation Eq. (4.16) which guarantees the invariance of the constructed Markov chain. Let
q : Rn ⇥ Rn ! R+ be a given function with the property

R
q(x,y)dy = 1. The kernel q is

called the proposal distribution defining a transition kernel P(x, A) =
R
A q(x,y)dy. If q

happens to satisfy the detailed balance equation Eq. (4.16) then we simply set P(x,y) =
q(x,y), otherwise we correct the kernel by a multiplicative factor ↵ such that

P(x,y) = ↵(x,y)q(x,y). (4.19)

Picture the following scenario. For some x,y 2 Rn we have

⇡(y)q(y,x) < ⇡(x)q(x,y). (4.20)

We can then choose an ↵ parameter that restores the detailed balance

⇡(y)↵(y,x)q(y,x) = ⇡(x)↵(x,y)q(x,y), (4.21)

which is achieved by setting

↵(y,x) = 1, ↵(x,y) =
⇡(y)q(y,x)

⇡(x)q(x,y)
< 1. (4.22)

We can see that the kernel P satisfies Eq. (4.16) if we define

↵(x,y) = min

✓
1,
⇡(y)q(y,x)

⇡(x)q(x,y)

◆
. (4.23)

The practical implementation of such algorithm is quite simple

Algorithm 1: Metropolis-Hastings (MH) MCMC algorithm

1. Set the initial value x1 2 Rn and start k = 1.

2. Draw a candidate y 2 Rn from the proposal distribution q(xk,y) and calculate the
acceptance ratio

↵(xk,y) = min

✓
1,

⇡(y)q(y,xk)

⇡(xk)q(xk,y)

◆
.

3. Draw t 2 [0, 1] from a uniform probability distribution.

4. If ↵(xk,y) � t set xk+1 = y, else xk+1 = xk.

5. When k = K, the desired sample size, stop, else increase k ! k+1 and go to step 2.
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Thus, we explore thoroughly areas of high probability and sometimes we accept moves
towards lower probability regions. Issues arise when defining the stopping criterion for a
well-converged chain, which is a chain that correctly simulates draws from the complex
distribution we are trying to sample. To make sure this is the case, we need to employ
diagnostics techniques to monitor and reliably assess the chain convergence. These topics
are covered in the next section Sec. 4.5.3.

Make it efficient. In general, computational models can be of arbitrary complexity. In
the particular case of reacting flows, even in reduced dimensions, the simulations are still
costly for achieving a well-converged Markov chain with the barebones MH method based
on trial-and-error proposal distributions. Proceeding this way would imply thousands of
model calls, slow convergence and poor chain properties. To make the process more efficient
we can adopt different strategies. In this work, the proposal distributions considered are
of the random walk form

xk+1 = xk + zk+1, with zk+1 ⇠ N (0,⌃p), (4.24)

where the move xk+1 is proposed by drawing from a symmetric density of Gaussian form
centered around the previous state with proposed covariance matrix ⌃p. In this particular
flavour of Metropolis-Hastings algorithm, the question is how to efficiently choose the scal-
ing of the posterior covariance matrix ⌃ for fast convergence. Too small scaling parameter
and the chain will move too slowly, too large and the proposals will usually be rejected.
Instead, we must avoid both extremes and find a value which is optimal according to some
asymptotic quantity. This quantity is the acceptance rate, the fraction of proposed moves
that are accepted. Roberts, Gelman, and Gilks [168], proved the result that as the number
of chain samples goes to infinity, the optimal acceptance rate is precisely 0.234 for the
very restricted case of targetting homogeneous stationary distributions ⇡. Later, Roberts
and Rosenthal [169] showed that the original result of Roberts et al. [168] still holds for
inhomogeneous stationary distributions for which it is optimal to have

⌃p = s · ⌃, (4.25)

where s = (2.38)
2
/d is the scaling parameter obtained by Roberts et al. by theoretical

considerations where d is the dimension of the stationary distribution. Given that the
covariance of the targetted posterior ⌃ is not known a priori, it can be progressively
estimated from the samples drawn during an initial burn-in stage as an empirical covariance
matrix [170]. This is known as the Adaptive Metropolis (AM) algorithm [171].

Both the optimal scaling parameter and the adaptation of the proposal covariance matrix
are techniques directed at improving the efficiency and chain properties. The literature
is rich with algorithms aimed at further improving the efficiency and robustness of such
sampling methods [170].

4.5.3 Diagnostics

The Markov chain stochastic model is guaranteed to converge to a given stationary distri-
bution when the number of samples drawn is large enough. This “large enough” number
can depend on the algorithm used to generate the samples as adaptive methods tend to
converge faster. Two questions come to mind when faced with the task of sampling from
a complex distribution: how large is “large enough”?, and how do we know we achieved
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convergence? To answer these questions we need to take a look at some of the diagnostics
methods and tools which help assess the chain convergence and properties. We sample a
Gaussian distribution x ⇠ N (µ,�) with hyperparameters µ = 5 and � = 2. Even though
it is not a complex distribution to sample from, it is a good example for the purpose of
illustrating the different MCMC diagnostics techniques and how to tell if our chain is well-
converged.

Trace plot. The most simple and straightforward way to assess the convergence of a
Markov chain is by plotting the trace of the MCMC samples. The lack of convergence
reveals itself by showing a clumsy trace if the proposal covariance is too small. In this
case, almost all proposed moves are accepted but they represent small movements and the
chain does not mix well. On the other hand, if the proposal covariance is quite large,
almost no move is accepted and the chain tends to stay in the same state for long periods.
A proposal covariance in between, closer to the actual value, allows a balance of accepted
and rejected moves in such a way that the chain mixes well and explores the full stationary
distribution support. The three examples are depicted in Fig. 4.1.

Acceptance rate. A simple way to avoid the two extremes of small and large proposal
covariances is to actually monitor the acceptance rate. Very high acceptance rate means
we are using a small proposal covariance. Conversely, low acceptance rate indicates the use
of a large proposal covariance. Ideally, we should remain in an interval between 0.1 and
0.6 for a good and efficient mixing of the chain. For the Gaussian example of Fig. 4.1, we
obtain acceptance rates of: 0.977 for the chain with small proposal covariance, 0.479 for the
chain with good proposal covariance, and 0.129 for the chain with large proposal covariance.

Autocorrelation function. Another efficient way to verify if a good proposal distribu-
tion is chosen is to plot the empirical autocorrelation function at different lags for each
component of the input vector [170]. The autocorrelation measures the interdependence
of the iterations of the chain. A good value of the proposal covariance would show a fast
decay of the autocorrelation function with the lag. Fig. 4.2 shows the corresponding auto-
correlation functions (ACF) for the same cases shown for the trace plot.

We can plot the resulting distributions and see how well they compare to the original
Gaussian distribution we are trying to sample from. Fig. 4.3 shows the three different
results we obtain when using different proposal covariances in the construction of our
Markov chains. In a real world case, we would not know how the complex distribution we
are trying to sample from should look like so these diagnostics methods are quite reliable
in assessing convergence.

There exist other more rigorous diagnostics approaches to assess the MCMC chain con-
vergence such as the ones proposed by Raftery et al. [172] and Cowles et al. [173]. In
this thesis, we make use of trace plots combined with estimations of the acceptance rates.
Even though the convergence cannot be guaranteed through these diagnostics methods,
the combination of several techniques provides good evidence of the asymptotic behavior
of the MCMC chains.
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Figure 4.1: Trace plots of a chain with small proposal covariance (upper left), large pro-
posal covariance (upper right), and good proposal covariance (lower center).

4.6 Bayesian hypothesis testing

The computation and exploration of Bayesian posterior distributions are aimed at cali-
brating parameters within the structure of a given model. It can also happen that our
ignorance goes beyond the model parameters and can affect the model structure itself. A
common problem in this scenario is how to quantify which model is the most suitable for
explaining the experimental data or which hypotheses are not supported anymore.

In this thesis, this is particularly relevant given that some hypotheses have to be made
about the physico-chemical nature of the reacting flows in the experiments in order to infer
other relevant parameters. In some cases, the experimental conditions are well understood
and the assumptions are backed by previous experiments and studies in the literature.
Nevertheless, there are other conditions for which the thermal behavior of the flow, together
with the structure of the wall boundary conditions are not so well understood. It is in these
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Figure 4.2: Autocorrelation plots of a chain with small proposal covariance (upper left),
large proposal covariance (upper right), and good proposal covariance (lower center).

selected cases that we have to remain uncertain about our model choices and assess them
against each other (Chapter 7).

In the previous sections we have discussed the computation or specification of the differ-
ent ingredients of the Bayes’ rule Eq. (4.4), except the normalization constant. We have
shown that its computation is not necessary to achieve the objective of sampling from the
posterior distribution for a given model. When different models are to be compared in
their predictive capabilities, the normalization constant becomes central.

Performing a hypothesis testing study entails the evaluation of the posterior probabilities
of each competing model (or hypothesis in our context). This comparison allows us to
weigh the relative merit of each model. At first thought, we might consider the most
suitable model to be the one that best fits the data. Difficulties quickly arise as we aim at
comparing models of different complexity. More complex models involving the definition
of more parameters can generally be more expressive and fit very well the data. In this



4.6. Bayesian hypothesis testing 93

Figure 4.3: Resulting probability distribution functions produced with a chain with small
proposal covariance (upper left), large proposal covariance (upper right), and good proposal
covariance (lower center) compared to the true underlying distribution we are trying to
simulate.

case, the results of hypothesis testing studies have the philosophical principle of Ockham’s
razor built in them. This principle embodies the fact that the simplest models that can
explain comparatively well the data are the preferred ones.

As said, to perform such assessment we need to compare the posterior distributions for
the different models. The comparison is driven through the posterior ratio

P(M1|yobs)

P(M0|yobs)
, (4.26)

where M0 and M1 are the two competing models we are considering. If the posterior ratio
is very much less than one, we would prefer model M0 and viceversa. If the ratio is of
order unity then the data do not provide enough evidence to preferentially support either
model. To analyse the effects of the different components on the model posteriors and the
ratio, we can decompose it according to the Bayes’ rule
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P(M1|yobs)

P(M0|yobs)
=

P(yobs|M1)

P(yobs|M0)
⇥ P(M1)

P(M0)
, (4.27)

where the posterior ratio is expressed as the product of the ratio of the marginalized
likelihoods and priors of the different models. The marginalized likelihoods of the different
models can also be expressed as the marginalization over each model’s parameters prior as

P(yobs|Mi) =

Z

X

P(yobs|xi,Mi)P(xi|Mi)dxi, 8i 2 {0, 1}, (4.28)

where xi is the vector of model parameters of each model and P(xi|Mi) is the prior
for xi under model Mi. P(yobs|Mi) is also known as the evidence of the data under
model Mi and it is the factor in the Bayes’ rule denominator which is often disregarded
as a proportionality constant in parameter inference. The evidence ratio expresses the
merit of each model based on two distinct aspects: how well the data is fitted, through
the presence of the likelihood P(yobs|xi,Mi), and how much prior space is given to each
model P(xi|Mi). Each evidence is the result of a likelihood average that decreases as the
prior space increases, penalizing complex models. The ratio of the evidences is also known
as the Bayes factor for M1 versus M0

BF10 =
P(yobs|M1)

P(yobs|M0)
. (4.29)

It quantifies the change from prior to posterior model odds brought about by the observa-
tions yobs.

In general for this thesis, the prior odds are taken as unity, giving both models the same
prior beliefs. The priors ratio can affect the results if we impose strong convictions about
a model and the data are not enough to balance the posterior odds towards an objective
estimation. In this case, one has to be careful not to bias the results with subjective beliefs.
This issue is more widely treated in the relevant literature in which detailed analyses of the
benefits and pitfalls of incorporating informative model prior distributions can be found in
more detail [174].

4.7 Bayesian model selection and averaging

The comparison of posterior distributions under different models is instrumental to de-
vise techniques that allow us to select among a pool of candidate models when model
uncertainty is to be included in the analysis.

An important ingredient in the posteriors ratio introduced in Sec. 4.6 is the Bayes factor
expressed as the ratio of the evidences for two different models given the observations. The
Bayes factor quantifies the relative strength of the evidence in favor of a model versus the
other. In this regard, it is straightforward to see that BF10 = 7 indicates that the data
are 7 times more likely under M1 than under M0, whereas BF10 = 0.2 indicates that the
observations are 5 times more likely under M0 than under M1.

Given the same prior odds for both models, this is a metric that allows us to quantify
the overall best performing model. In general, Bayes factors are expressed in logarithmic
scale

log10BF10 = log10 (P(yobs|M1))� log10 (P(yobs|M0)) , (4.30)
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for which typical thresholds for strong evidence in favor/against a given model are found
in the literature by Jeffreys [175] and Kass and Raftery [176].

Apart from Bayes factors, other model selection criteria are commonly used in the litera-
ture. One criterion that closely approximates the Bayes factor is the Bayesian Information
Criterion (BIC). Developed by Schwarz [177], the BIC serves as an asymptotic approx-
imation to a transformation of the Bayesian posterior probability of a candidate model.
The model corresponding to the minimum value of BIC is selected. Similarly, the Akaike
Information Criterion (AIC) score rewards models that achieve a high goodness-of-fit score
and penalizes them if they become overly complex [178]. The model with the lower AIC
score is expected to strike a superior balance. A comprehensive overview of AIC and other
popular model selection methods is given by Ding et al. [179].

In this thesis, we focus on computing Bayes factors as the metric used to discard different
thermochemical models and ablation boundary conditions (Chapter 7). An issue that arises
is the fact that Bayes factor thresholds are not very sharp and there can be a grey area
where the prior spaces for both models are comparable as well as their goodness-of-fit ratio.
There can also be a trade-off between prior space, or complexity, and goodness-of-fit in
such a way that the Bayes factor falls in the grey area. This would indicate that the more
complex model manages to overcome the complexity penalization by fitting the data much
better than the simpler model. In this case, discarding a given model is not possible on
the basis of the data and prior information we possess.

Already Chamberlin [180] advocated the concept of “multiple working hypotheses”, im-
plying that there is not a single “right” model; instead, there are several well-supported
models that are being entertained. If new experiments are well-designed to maximize their
informational content, the results tend to support one or more models while providing
less support for others. Repetition of this general approach leads to advances, combining
experimental design with comparison of theoretical models. New or more elaborate mod-
els are consequently postulated, while models with little empirical support are gradually
dropped from consideration.

Acknowledging this fact means incorporating model uncertainty stemming from the ex-
istence of more than one plausible model. Given these conditions, we may forego selection,
retaining the uncertainty across the model space. In this thesis, we focus on Bayesian
Model Averaging (BMA) [174]. The model averaged posterior density for the common
model parameters xj shared between M0 and M1 is sought out and reads

P(xj |yobs) =
X

i2{0,1}

P(xj |yobs,Mi)P(Mi|yobs). (4.31)

Here, the posteriors of xj under each model are weighted according to their model poste-
riors. If the prior odds is unity, the differential weighting is due to the differences in the
evidences of each model. Fig. 4.4 illustrates a practical example involving the weighted
average of two Gaussian posteriors for the common parameter x0 where the evidences for
models M0 and M1 change while the prior odds remain as unity.

BMA is important for expressing model uncertainty in a consistent way, thus, avoiding
over-confident inferences. Introduced by Roberts [181], who for the first time combined
two expert opinions in the statistical literature, BMA has a challenging implementation
due to the complex probability distributions it deals with and their integrations. Moreover,
assigning prior distributions to each specified model can be a source of caveats when the
choice is not obvious.
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Figure 4.4: Bayesian model averaging of two Gaussian posterior distributions with differ-
ent evidence weighting.

4.8 Making it more efficient

In general, Monte Carlo-based methods, such as MCMC, need a thorough exploration of
the distributions to have good statistical convergence. A good exploration of the poste-
rior distribution can, therefore, be very expensive in terms of model evaluations. If those
model evaluations are a system of non-linear tightly coupled PDEs with expensive closure
models, then MCMC methods can be rendered unfeasible for such task. Nevertheless,
there are different ways of aiding MCMC methods attain efficiency for complex models.
A straightforward way is by constructing surrogate models to replace the expensive cost
of the evaluations [182, 183]. A good surrogate model should be constructed on a lim-
ited number of model evaluations and should accurately emulate the underlying model.
Generalized regressions are standard surrogate modeling constructions that minimize the
squared error between a linear combination of a given functional basis and the true model
at selected training points. Examples of functional bases are polynomials and radial basis
functions [184, 185]. For high dimensional cases, sparse methods such as lasso or ridge re-
gression allow reducing the number of coefficients by using regularization techniques [186].
Alternatively, neural networks [187] are also gaining interest from the UQ community.
Non-parametric approaches such as kriging, also called Gaussian Processes (GP) [188]
have become popular for uncertainty quantification problems. In general, selecting a good
surrogate model is strongly linked to our knowledge of the shape of the underlying function
we are aiming to approximate.

One of the challenges associated with accurately approximating complex models is the
fact that a priori we might not be sure about the degree of smoothness of the model outputs
with respect to changes in the input quantities. Such is the case when chemical parameters,
such as those describing wall catalysis and ablation, are to be included in the surrogate
as free varying parameters with wide ranges of values. In this work, we choose Gaussian
processes given the possibility of using kernels of varying degree of smoothness and gen-
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eralization, together with the fact that we only need approximations for low dimensional
functions. Overall they present attractive characteristics for our problems.

In the particular case of this thesis, not only do we deal with likelihood functions that
are expensive to evaluate but also the experimental procedures consist of multiple steps
(Sec. 3.2) which, in turn, require multiple model evaluations for a single likelihood point,
adding to the complexity in detriment of the performance of sample-based posterior explo-
ration methods. We are then interested in cutting down the number of different simulations
needed to recover gas-surface interaction information from multi-step experiments. In this
case, we can benefit from performing sensitivity analyses to assess how important the free
parameters in our models are to the variability of the different experimental observations
that we are trying to recover. If certain boundary conditions do not play important roles,
we do not need to spend model evaluations simulating an additional experimental step
exclusively devoted to the determination of such boundary conditions. This is the case for
the boundary layer edge temperature in the nitridation experiments (Chapter 7). There,
separate measurements on a copper probe are included as part of the experimental dataset
to infer the edge temperature of the experiments. If, for example, the edge temperature
does not influence recession rates, from which we learn nitridation reaction efficiencies, we
do not need to evaluate the model and add to the likelihood function the observation made
with the copper probe. The edge temperature can be assumed fixed to a certain value as
it does not influence the results of the inverse problem.

Overall, the combination of surrogate modeling and sensitivity analysis of the forward
model represent good techniques for making the process of solving the inverse problem
more efficient without the need to trade accuracy in the process. The following sections
Secs. 4.8.1-4.8.2 introduce Gaussian processes and global sensitivity analysis in detail.

4.8.1 Surrogate modeling: Gaussian process

Gaussian process models have been widely used in uncertainty propagation, sensitivity
analysis, optimization and inverse problems [189]. Gaussian processes define distributions
over functions. In this sense, a GP can be thought of a function that takes a certain input
x to produce as output a realization of a Gaussian distribution with mean µ and variance
�
2. The interesting part is that due to their statistical nature, GPs provide a measure of

the uncertainty in the prediction, unlike other traditional deterministic regression methods.
This is very useful for informing the approximation on where more points or information is
needed such that different learning strategies can be devised. Adopting the notation used
by Rasmussen [188] a function described by a GP can be written as

f ⇠ GP(m(x), C(x,x0
)), (4.32)

where C(x,x0
) is the covariance function and m(x) is the mean function of the GP. Dif-

ferent parametrizations can be used to describe the mean and covariance functions, in
particular, different kernels are generally chosen for the parametrization of the covariance
function. The choice of kernel and the ensemble of hyperparameters are set a priori by
taking into account any information we have about the function to approximate. Useful
information is the expected smoothness as this is associated with the correlation length
parameter of the kernel. Overall, kernels encode assumptions we have about the function
being learned by defining the similarity between two points. We can distinguish two cat-
egories of kernels: stationary and non-stationary. Stationary kernels only depend on the
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absolute distance between points, making them invariant to translations in the input space.
Non-stationary kernels, on the other hand, depend on the particular values of the points.
Further, stationary kernels can be isotropic or anisotropic depending on whether they are
invariant to rotations in the input space or not. In this thesis, we choose stationary iso-
tropic kernels of smooth shape as we aim at approximating physical quantities which do
not change abruptly within the continuum input space explored. Particularly, we study
two different choices of kernels: zero-mean squared-exponential kernel and kernels of the
Matérn class [188]
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where CSE(·) is the squared-exponential kernel and CM(·) is the Matérn kernel. The
squared-exponential kernel is an infinitely smooth kernel and so is the GP constructed with
it. The parameters �GP, l are positive hyperparameters a priori unknown to be learned
from the training data.

The Matérn class of kernels represents intermediately smooth functions with �GP, l, ⌫

positive hyperparameters while K⌫(·) is a modified Bessel function and �(·) is the gamma
function. The regularity of the kernel is related to the ⌫ parameter. Through this pa-
rameter the Matérn kernel is a generalized squared-exponential kernel with the former
converging to the latter when ⌫ ! 1. Usually half integer values of ⌫ are selected since
the kernel becomes a product of a polynomial and an exponential. The Matérn kernel is
initially proposed to account for possible intermediate smoothness in the approximations
of the optimal likelihood function (Chapter 5) given the nature of the distance between
different optimized solutions. The following Fig. 4.5 shows the type of functions derived
from squared-exponential and Matérn kernels in untrained GPs.

Posterior GP. Once the kernel and hyperparameters are specified, we can use the pos-
terior GP to make predictions conditioned on observations or data. We can retrieve the
resulting Gaussian distributions for any new input point x⇤ as the function evaluation
f
⇤
(x⇤

) conditional on the training points y = (f(x1), ..., f(xn)) such as

f
⇤|y ⇠ N

�
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)
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)� k(x⇤

)
T
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where C(x⇤
,x⇤

) is the specified kernel, k(x⇤
) = (C(x⇤

,x1), ..., C(x⇤
,xn)) and Ki,j =

C(xi,xj) + �e�i,j with �i,j being the Kronecker symbol and �e the error on the estimation
of y. From this we can easily identify the new mean and covariance of any new prediction
f(x⇤

) at an unseen point x⇤

µ(x⇤
) = kT

(x⇤
)K�1y, (4.36)

�
2
(x⇤

) = C(x⇤
,x⇤

)� kT
(x⇤

)K�1k(x⇤
). (4.37)

As �e ! 0 the variance �2 on the training points vanishes. This hyperparameter is usually
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Figure 4.5: Functions drawn from GPs with squared-exponential kernel (left) with l = 1,
and Matérn kernel (right) with l = 1 and ⌫ = 3/2. The variance of the processes is �GP = 1

for both.

included when the training points consist of noisy observations, being �e the level of noise.
In our case, the parameter �e is set to a small but non-zero value to ensure that the matrix
K is invertible.

Training a GP. A kernel and its hyperparameters chosen a priori are not likely to repre-
sent accurately our real function. Constructing a trained GP, where the hyperparameters
are tuned to fit the training data best according to some metric, requires executing an
optimization exercise. The prior set of kernel hyperparameters, in light of the observations
or training points, is updated through a likelihood function

L = log(P(y|x,�)) = �1

2
log |K|� 1

2
(y � µ)TK�1

(y � µ)� n

2
log(2⇡), (4.38)

where K and µ = (µ(x1), ..., µ(xn)) are dependent on the set of points x = (x1, ...,xn).
Eq. (4.38) represents the log-likelihood function of a set of observations y for given x and
hyperparameters � = (�1, ...,�p), where p is the number of hyperparameters of the chosen
kernel. L is also known as the log marginal likelihood [190] and the hyperparameters chosen
are the ones that maximize this quantity. Fig. 4.6 shows different stages of the training of a
GP to approximate the benchmark function f(x) = x sin(x). Starting with the prior mean
and 95% confidence interval bounds, the hyperparameters get updated by optimizing the
log marginal likelihood with increasing number of training points. The increase of training
points generates a more accurate posterior GP.

Different strategies can be adopted as Design of Experiments (DoE) for GP regression
[191]. In this work, we employ what it is known as model-free DoE which does not rely on
model evaluations as an active learning strategy would require [192]. Model-free DoEs are
concerned with optimizing the exploration of the input space with a finite set of points. In
this case, we build a uniform grid for the optimal log-likelihood approximation (Chapter 5)
and use a Latin Hypercube Sampling (LHS) algorithm, introduced by McKay et al. [193],
for the problems of ablation (Chapter 7). The LHS sampling algorithm presents the advan-
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Figure 4.6: Training a GP with increasing number of data points.

tage of allowing us to survey the input space by devising a space filling strategy adapted
to the inputs probability distributions. This strategy consists of dividing the range of each
variable into n equally probable intervals in which sampling is performed at random in our
case.

4.8.2 Global sensitivity analysis

In contrast with deterministic approaches, stochastic formulations of inference problems
have the capability of relaxing assumptions to represent our true state of knowledge. How-
ever, this advantage comes with a drawback: the dimensionality of the problem escalates
as parameters are now considered uncertain. Sensitivity analysis comes in handy when we
want to study the dependencies of our model and discard possible irrelevant quantities to
the variability of the solution. We recall that in this thesis, global sensitivity analysis is
used to reduce the number of observations needed for the inference of nitridation rates,
given that the simulation of such observations is an expensive task. If the observations
we question do not contain information about the parameter to be inferred, we can dis-
regard them, simplifying the problem greatly as well as the experimental procedure. In a
way, performing sensitivity analyses is getting to know your model and its most important
sources of information. As Fürbringer put it rhetorically in 1996 while highlighting the
need to look into the model black box: “Sensitivity Analysis for Modelers: Would you go
to an orthopedist who did not use X-Ray?”.
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The literature behind sensitivity analysis took off with the so-called local analyses. These
are deterministic methods which estimate the impact of each input variable on the model
output as the effects of small deviations from the chosen input values through the com-
putation of partial derivatives. To overcome some of their limitations such as locality,
linearity and normality assumptions, global sensitivity analyses were brought forth. They
can take into account the whole domain of input variables and their interactions in a
statistical framework, without relying on partial derivatives on specified nominal points.
Different techniques for global sensitivity analysis were developed and are in use today.
Iooss et al. [194] and Borgonovo et al. [195] give complete and comprehensive reviews on
local and global sensitivity analysis methods ranging from screening methods [196], where
one can identify non-influential inputs with a small number of model calls, to moment-
independent methods. The latter assesses the changes in the full output distributions with
respect to the variability of the inputs by computation of some chosen metric [197, 198].
In between these two extremes, we focus on variance-based sensitivity methods [199]. This
group of methods can assess the importance of the various inputs on the variability of
the output through their contribution to the total output variance. Their advantage and
usefulness for this work reside on the fact that they can be used to analyze non-linear and
non-monotonic functions along with a measure of the importance of interactions between
inputs. The latter point is used to have a full picture of the influence of a given input
on the desired output. The sensitivity indices computed along these lines are the Sobol’
indices [200]. Sobol’ defined a product measure which entails independence among model
inputs. These sensitivity indices are based on a functional decomposition of the output
with respect to its variance called ANOVA (Analysis Of Variances) decomposition [200].
Computing Sobol’ indices comes down to performing high dimensional integrals, which
can be tackled by using simple Monte Carlo or Quasi Monte Carlo methods [200]. In this
context, surrogate models become important for such a task when the full model we are
trying to analyze has expensive evaluations. This option is proposed in this work to tackle
the problem of performing global sensitivity analysis through the computation of Sobol’
indices with Monte Carlo estimators.

It is important to underline the fact that ranking parameters by using the output vari-
ance as metric is an approximation that holds well for symmetric outputs for which higher
order statistics, such as skewness and kurtosis, are not needed for their description and
analysis. Other methods that mimic the ANOVA decomposition while taking into account
higher order statistics can be found in the literature [201]. In the remainder part of this
section, we introduce the variance decomposition and computation of sensitivity indices in
detail.

Variance decomposition. The model of interest can be expressed as a function f(x)
whose input x = (x1, ..., xn) is a vector in n-dimensional space and whose output is a scalar
y. For practical purposes, the n-dimensional space can be considered canonical where all
components of the input x 2 [0, 1]. This leads to the designation of the unit hypercube I

n

as the input space to explore for the global sensitivity analysis. It is also important to link
the inputs x to the random vector X = {x1, ..., xn} with a joint probability density function
(PDF) P(x) defined in the probability space (Rn

,Bn,P) where Bn is the n-dimensional
Borel space of all �-algebras with distributions P. The assumption of uncorrelated input
variables allows to express P(x) =

Qn
i=1 P(xi), where P(xi) is the marginal PDF of xi.

We can represent f(x) in I
n in the following form
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f(x) = f0 +

nX

s=1

nX

i1<···<is

fi1···is(xi1 , · · ·, xis) =

= f0 +

nX

i=1

fi(xi) +

nX

1i<jn

fij(xi, xj) + · · ·+ f1,...,n(x1, ..., xn).

(4.39)

Eq. (4.39) is known as the ANOVA decomposition and was first introduced by Sobol’
[199, 200] when the following condition holds

Z 1

0
fi1···is(xi1 , ..., xis)P(xi1 , ..., xis)dxk = 0, for k = i1, ..., is. (4.40)

The condition expressed in Eq. (4.40) implies that all of the terms in the ANOVA decom-
position are orthogonal and that the expectation of f(x) is f0. The original model f(x) is
decomposed into orthogonal lower-dimensional sub-models.

To be able to link this formulation to the sought out analysis of variances, we need to
impose that f(x) is square integrable, leading to square integrable sub-functions fi1···is .
Squaring Eq. (4.39) and integrating over the unit hypercube I

n we get the following ex-
pression

Z 1

0
f
2
(x)P(x)dx� f

2
0 =

nX

s=1

nX

i1<···<is

Z 1

0
f
2
i1···isP(xi1 , ..., xis)dxi1 · · · dxis , (4.41)

through which we can define the conditional variances for each component of the function

Di1···is = V[fi1···is ] =
Z 1

0
f
2
i1···isP(xi1 , ..., xis)dxi1 · · · dxis , (4.42)

where P(xi1 , ..., xis) is the joint PDF of the set of variables xi1 , ..., xis . From Eq. (4.42)
follows the relation

D =

nX

s=1

nX

i1<···<is

Di1···is , (4.43)

which states that the total variance can be decomposed into the different conditional vari-
ances of every function of the corresponding ANOVA decomposition.

Computation of Sobol’ indices. Building on the variance decomposition, Sobol’ [199]
defined a set of indices that can be used to quantify the sensitivity of the output to the
different inputs for non-linear functions with uncorrelated inputs. The indices are defined
through the ratios

Si1···is =
Di1···is

D
, (4.44)

which express the contribution to the total variance D of f(x) of the different conditional
variances Di1···is with the subscript s defining the order of such interaction. All the indices
Si1···is are non-negative and comply with
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nX

s=1

nX

i1<···<is

Si1···is = 1. (4.45)

From these definitions is straightforward to see that the indices accounting for the contri-
bution of only one variable Si1 are first order indices. Indices of higher order quantify the
variability of the output due to the interactions among different inputs.

Another useful index is the total Sobol index which accounts for a given input’s global
effect on the variability of the output. It is a combination of first order plus higher order
indices involving a given input

STi =

X

sj3i

Ssj , (4.46)

where sj denotes a multi-index associated with the i1, ..., is input indices. In words, the
total order indices are the result of a sum over all possible distinct sets of first and higher
order indices which include the input for which the total index is computed. First and
total indices are used together to assess the impact of a given input on the variability of
the solution. If the first order index is large enough, the input is influential in itself. If
both first and total order indices are negligible, such input can be ignored by fixing it
to a prescribed value in our subsequent computations. If first order and total order are
similar, the input affects the output mainly through direct interactions. If all the inputs
have similar first and total order indices, then the model can be said to be additive.

In practicality, computing Sobol’ indices amount to solving high dimensional integrals.
This can be tackled by means of Monte Carlo methods. In this work, we opt to solve for
Quasi Monte Carlo estimators to approximate such integrals. We can define two different
subsets of inputs ⇠ and ⌘. The variance due to the subset ⇠, D⇠, and related interactions
is expressed as

D⇠ =

Z 1

0
f(x)f(⇠, ⌘0)dxd⌘0 � f

2
0 , (4.47)

Similarly, we can define a conditional variance for the subset ⌘, D⌘, as

D⌘ =

Z 1

0
f(x)f(⇠0, ⌘)dxd⇠0 � f

2
0 , (4.48)

thus for obtaining S⇠ and ST⇠ = 1�S⌘ one has to compute four integrals for the expectation
of f(x), the variance and the conditional variances for the two distinct input subsets ⇠ and
⌘

f0 =

Z 1

0
f(x)P(x)dx, D + f

2
0 =

Z 1

0
f
2
(x)P(x)dx,

D⇠ + f
2
0 =

Z 1

0
f(x)f(⇠, ⌘0)P(x)P(⌘

0
)dxd⌘0,

D⌘ + f
2
0 =

Z 1

0
f(x)f(⇠0, ⌘)P(x)P(⇠

0
)dxd⇠0,

(4.49)

where P(⌘
0
) and P(⇠

0
) are the marginal PDFs for the ⇠ and ⌘ subsets. We can then defined
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the Monte Carlo estimators for such integrals

1

N

NX

i=1

f(xi)
P�! f0,

1

N

NX

i=1

f
2
(xi)

P�! D + f0,

1

N

NX

i=1

f(xi)f(⇠i, ⌘
0

i)
P�! D⇠ + f

2
0 ,

1

N

NX

i=1

f(xi)f(⇠
0

i, ⌘i)
P�! D⌘ + f

2
0 ,

(4.50)

with N the number of points used for the estimation, (⇠, ⌘) and (⇠
0
, ⌘

0
) two independent

sets of points randomly sampled from the joint distribution of the inputs P(x). The
Monte Carlo estimators for S⇠ and ST⇠ require three model evaluations for each point
f(x), f(⇠0, ⌘) and f(⇠, ⌘

0
) which can be very expensive if we want to achieve high accuracy.

In this work, each model evaluation consists on solving a set of tightly coupled PDEs and
a range of auxiliary problems to obtain the closure data for the physico-chemical models.
Therefore, performing a sensitivity analysis via Monte Carlo estimators translates into a
very expensive task. A way of increasing the efficiency while still keeping the general Monte
Carlo approach is by using surrogate models.

The use of surrogate models for sensitivity analysis is not new and can be found in
numerous works in the literature. From Iooss et al. [202] who used a response surface
function to approximate the real model to Marseguerra et al. [203] who relied on neural
networks, passing by Marrel et al. [204] with Gaussian process surrogates.

4.9 Summary

This chapter introduces the fundamentals of statistical inverse analysis by means of Bayesian
methods. The different constitutive steps of comprehensive Bayesian inference analyses are
reviewed in light of the needs addressed in this thesis.

First, the formulation of general stochastic inverse problems is introduced, highlighting
the fundamental differences with deterministic approaches. The introduction of statistical
distributions to characterize variables leads to a whole new problem that must be solved to
retrieve uncertain model parameters in a consistent manner when accounting for different
sources of information. Given that we want to incorporate any a priori information we have
about the model parameters to be inferred, the statistical inverse problem is formulated
using the Bayesian formalism.

Generally, Bayesian inference problems can be broken down into three distinct tasks
and each of them poses challenges unfaced when dealing with deterministic inverse prob-
lems. We introduce the construction of the likelihood function and how the noise of the
observations is incorporated into the problem to encode the information coming from the
experimental data. The other source of information in Bayesian inference is the one com-
ing from any prior source that has not seen the data. In this chapter, we tackle the issue
of encoding objective prior information, particularly when this information is related to
bounds or scale of the parameters involved in the inference. The final task consists of
thoroughly exploring the posterior distribution to be able to derive useful estimators and
other relevant quantities.

Regarding the exploration of the Bayesian posterior, we introduce the Markov chain
stochastic model as a way of sampling complex distributions. This is achieved by building
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the chain whose stationary distribution is the sought out posterior. Markov chains with
certain properties are guaranteed to have a stationary distribution from which sampling
is equivalent to sampling from a transition function an infinite number of times. In order
to build a chain with such properties, a detailed balance equation involving the stationary
distribution and transition function must be satisfied.

Different Markov chain Monte Carlo algorithms relevant to this work are also introduced.
They concern the practical implementation of building a Markov chain with the sought
properties. The built chain generates samples from the posterior distribution. To monitor
convergence and properties of the chain as it is being built, some diagnostics methods are
also discussed with emphasis on trace plots and acceptance rates.

Very often, the lack of knowledge in inverse problems can also affect the model used
to infer its parameters. When the model structure is also considered uncertain among
different choices, we are dealing with a model selection problem. Model selection problems
are rooted on Bayesian inference as they evaluate different posterior distributions in light
of some available experimental data. Given the nature of the flow equations and their
tight coupling, the choosing of different closure models or boundary conditions can have
an impact on the model parameters we want to infer. It is for this reason that we must
remain uncertain regarding different model structures available to explain our experimental
data.

Two different methods relevant to the choosing of competing models are introduced.
Hypothesis testing represents a way of using the model posterior information to select
or, alternatively, leave out the model (or hypothesis) for which the data offer very small
evidence. In computing the evidence of the different models, the complexity inherent to
each model is also weighted in, giving an indication of the overall performance of fitting the
data and being a complex model. Given that the threshold for such task is quite diffused,
it often happens that the data are not enough to discard any given model. For this case,
we present the topic of Bayesian model averaging where the posteriors retrieved by the
different models are weighted by the model posterior as computed for hypothesis testing.
In doing so, we can express model uncertainty in a consistent way, avoiding over-confident
inferences.

Finally, we also introduce two different methods to lighten the burden of performing
a Bayesian inference analysis with expensive model evaluations. Surrogate models in the
form of Gaussian processes are introduced. GPs are used throughout this work to build
approximations of the different model outputs and likelihood functions. On the other
hand, global sensitivity analysis is also discussed as it helps to reduce the complexity
of the inferences by reducing the number of observations needed. This is important as
each observation in this thesis is associated with different models that should be run
independently, therefore making the process more time consuming.





Chapter 5

Bayesian framework for the inference of catalytic
recombination

This chapter deals with the inference of catalytic recombination parameters from plasma
wind tunnel experiments for reusable thermal protection materials. The main objective
of this chapter is to develop a dedicated Bayesian framework that allows us to infer cat-
alytic parameter values. The developed framework accounts for uncertainties involved in
the model definition and incorporates all measured variables with their respective uncer-
tainties. Furthermore, we propose an optimization procedure built on the construction of
the likelihood function to improve the quality of the inference. We substitute the optimal
likelihood of the experimental measurements with a surrogate model to make the inference
procedure both faster and more robust.

5.1 Motivation and problem definition

The interaction between a dissociated plasma flow and a reusable thermal protection system
is governed by the material behavior which acts as a catalyst for recombination reactions of
the atomic species in the surrounding gas mixture [205]. The determination of the catalytic
properties of thermal protection materials is a complex task subjected to experimental and
model uncertainties, and the design and performance of reusable atmospheric entry vehicles
must account for these uncertain characterizations.

Not only catalytic recombination is relevant for the design of re-usable systems but also
its inference is important for the production of high-quality wind tunnel data. As the
number of model parameters that need definition increases with complexity (as seen in
Chapter 2), the experimental data are too often pretty scarce for proper validation stud-
ies. Assuming values for model parameters becomes a common exercise when simulating
experimental conditions against which to compare our models, potentially biasing the ob-
tained results with partial understanding of the problem. Producing specifically tailored
calibration data to inform some of such parameters is becoming increasingly important in
validation tasks [40]. Catalytic recombination is very ubiquitous in ground testing where
typical TPS materials as well as other standard testing probes have catalytic properties
that must be quantified to understand the experimental data. Stochastic calibration of

The contents of this chapter have been published in

• A. del Val, O. P. Le Maître, O. Chazot, T. E. Magin and P. M.Congedo, A surrogate-based
optimal likelihood function for the Bayesian calibration of catalytic recombination
in atmospheric entry protection materials, Applied Mathematical Modelling (In press).
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such models can then compute objective uncertainty levels on the calibrated parameters,
producing better and more reliable predictions.

In the present chapter, we explore the possibility of exploiting experimental data result-
ing from measurements reported by Panerai and Chazot [19] for the purpose of inferring
catalytic recombination efficiencies. The inference focuses on a Bayesian approach that
has the advantage of providing a complete characterization of the parameters’ uncertainty
through their resulting posterior distribution. While conceptually simple, performing a
Bayesian inference raises several computational and practical difficulties at every one of its
constitutive steps, from expensive model evaluations to limited data [206–208]. The main
issue in our problem is related to the appearance of nuisance parameters within the model,
such as pressures, wall temperatures and the boundary layer edge enthalpy. These param-
eters are needed to perform the inference but we are not explicitly interested in getting
their distributions, nor we can measure all of them. Traditional Bayesian approaches deal
with this problem by prescribing prior distributions on such parameters at the expense
of some of the observations consumed to evaluate these nuisance parameter posteriors.
Consequently, it is important to remark their impact on the quality of the inference [209].

In the following sections we first present a review of previous experimental works and
inverse problems for catalysis determination found in the relevant literature. An analysis of
the BL code in the context of the simulation of our experiments is presented next in Sec 5.3.
Sections 5.4-5.5 describe the developed Bayesian framework and all its components. The
chapter ends with the presentation of results and discussion.

5.2 Review of previous works

The catalytic activity on a material surface cannot be measured directly. We need models
and simulations to bypass that lack of knowledge and use other measurable quantities to
rebuild the model parameters we are seeking. Numerical simulations can accomplish this
task by using experiments and models intertwined in a complex fashion. The literature
offers a compelling account of works carried out by various research groups in different
facilities to reconstruct catalytic properties. In the next sections, we make the distinction
between different experimental approaches that rely on the same deterministic rebuilding
principles and stochastic methods applied to existing experimental approaches.

5.2.1 Experimental efforts and deterministic inverse approaches

Two different families of experiments are highlighted. Such families constitute the main
core of experimental research regarding catalysis. Experiments in plasma wind tunnels,
such as inductively-coupled plasma facilities and arc-jets, rely on heat flux measurements
to assess the catalytic activity of materials. On the other hand, diffusion reactors and
flow tubes, operate on different principles, estimating the catalytic efficiencies through the
measurement of species concentrations in the vicinity of the stagnation point of a given
material.

Plasma wind tunnels. The main catalysis experiments performed in ICP wind tunnels
are from Kolesnikov et al. [14] at the Institute for Problems in Mechanics (IPM) in Moscow,
Pidan et al. [15] and Schüßler et al. [16] at the Institute of Space Systems (IRS) in Stuttgart,
and Conte et al. [17] at the CORIA Lab in Rouen. In the Aerodynamic Heating Facility
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(AHF), the arc-jet at NASA Ames Research Center, recent works on surface catalysis
determination were performed by Stewart et al. [18] for the Space Shuttle tiles coating.
The common thread in all of them is the fact that they measured the heat fluxes in
oxidized copper as well as the TPS material in question. The oxidized copper wall was
assumed fully catalytic in all cases. Comparing both measured heat fluxes allows them to
estimate the TPS catalytic activity sought out. This rebuilding method is plagued with
assumptions regarding the behavior of oxidized copper surfaces which, apart from being
considered perfectly known, their catalytic behavior was also assumed independent from
the flow conditions. The state of the plasma flow was considered in equilibrium in all cases.

Closer to home, the experimental work on which this chapter builds was performed by
Panerai and Chazot [19] in the VKI Plasmatron. In that work, the assumption of the
catalytic parameters being independent from the flow conditions was questioned and re-
combination coefficients were rebuilt for different chamber pressure conditions. The value
of the catalytic parameter for the copper probe was no longer assumed constant but depen-
dent on the chamber pressure conditions according to the available literature. A subsequent
experimental work by Viladegut and Chazot [20], set the basis for the determination of
copper catalysis for different testing conditions with the premise of relaxing the assump-
tion of perfectly knowing the catalytic response of copper surfaces even when considered
as function of chamber pressure. The experimental methodology relied on the catalytic
behavior of yet two other reference materials (silver and quartz) from which plausible up-
per and lower bounds for the catalytic response of copper could be obtained. Adding more
probes to the experiment increases its information content without necessarily incurring
in new major assumptions.

Diffusion reactors. Contrary to plasma wind tunnel testing where the aim is reproducing
the reacting boundary layer, diffusion reactors can produce more direct measurements of
the surface chemistry. They can do so by “turning off” the thermal and chemical processes
in the flow, such as temperature gradients for thermal diffusion, and gas phase chemistry.
In turn, the measurements in diffusion reactors only depend on surface recombination and
oxidation. An important technique used for the determination of surface recombination
efficiencies in such facilities is actinometry. Actinometrical techniques introduce a low
amount of a known gas, such as argon, and measure the evolution of the intensity ratio
of an oxygen line (for atomic oxygen) to an argon line along the reactor’s discharge zone.
Relevant works in these facilities include the rebuilding of recombination coefficients for
silicon carbides SiC, SiC + SiO2 and sintered Al2O3 by Balat et al. [210]. The same au-
thor also produced an extensive database for surface recombination on SiO2 (�-cristobalite
and quartz) [211] used by Bedra et al. [212] for the validation of a catalytic model. More
catalysis data on sintered Al2O3 can be found in [213]. Laser Induced Fluorescence (LIF)
techniques are also used in diffusion reactors, such as the NASA Ames side-arm reactor.
LIF techniques rely on exciting specific atomic energy levels using a laser beam and de-
tecting the emitted energy during the relaxation process. The efficacy of the technique
was demonstrated by Pallix et al. [214]. Stewart [215] combined diffusion type facilities
with arc-jet measurements to produce recombination efficiencies for a wide range of sur-
face temperatures. Sepka et al. [216] studied surface reactions in CO mixtures for Martian
entries. Marschall et al. [217, 218] are estimating recombination coefficients by fitting
the experimental concentration profiles with CFD results based on a 2D-axisymmetric
reaction-diffusion model.
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5.2.2 Statistical inverse approaches

The previous section evidences a clear tendency in empirical work in the aerothermody-
namics community. Part of the data released by experimentalists also include reconstructed
data such as surface recombination efficiencies which are already loaded with assumptions
buried in the reconstruction work. It is difficult, from the user perspective, to have an
estimation of how much we can trust such data. It is recalled from the introduction to this
thesis as well as Chapter 4 that scientific inferences can carry deep assumptions about a
given problem, its chosen mathematical representation, and our level of knowledge when it
comes to the understanding of the experimental conditions. It is imperative, for the proper
validation of models, that we start assessing such issues in a consistent and rigorous man-
ner.

The research in statistical inverse approaches for catalysis determination is still in the
early stages. It is a recently started effort within the aerothermodynamics community
for which a whole set of mathematical background is needed to tackle such a challenge.
The first related works start with Tryoen et al. [46] and Cortesi et al. [219] in which
the authors attempted to reconstruct free stream conditions from flight data. Tryoen et
al. acknowledged the epistemic uncertainties stemming from the catalytic response of the
protection material. Nevertheless, the complexity of the inverse problem when including
the catalytic parameter prevented them from estimating it in the inverse problem as a
quantity of interest. They concluded that adding the heat flux as an observation from
which to effectively learn catalytic parameters requires the development of novel methods.
They kept the value of the catalytic parameter fixed in the formulation of the inverse
problem. Cortesi et al. followed in this line of work and developed new techniques to deal
with measured heat fluxes from which the catalytic parameter could be learned. Even
though the data were not informative enough concerning catalysis, the result did not
depend on the chosen value for the catalytic parameter, avoiding biasing the result in this
way.

More down to Earth, first efforts on stochastic catalysis determination come from San-
son et al. [220]. In this precursor work, the authors solved a forward uncertainty problem
through conventional propagation of error bars as well as using a more general approach
through non-intrusive generalized polynomial chaos expansions. The inverse problem was
built deterministically and they propagated the uncertainties from the observations to the
model parameters through realizations of a polynomial chaos model. Sanson et al. used dif-
ferent values for the catalytic parameter of the reference material to assess its importance
in the obtained model parameters. In a subsequent work, Sanson et al. [5] recognized the
need for objective uncertainty estimates when it comes to catalysis, proposing to actually
learn the catalytic parameters from VKI Plasmatron data. This work represents a depar-
ture from the state of the art at the time, in which the reconstruction method no longer
had to make assumptions about the reference material used and both catalytic properties
could be learned jointly, in addition, the observations were also assumed to be subjected to
uncertainties. However, the results showed the difficulties faced with such a methodology,
since the authors claimed that the experimental data were not informative enough to learn
both catalytic parameters.
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5.3 On the boundary layer model

To identify the TPS catalytic properties �TPS, we simulate the chemically reacting bound-
ary layers in the vicinity of the probe stagnation points with the Boundary Layer code
reviewed in Sec. 3.1.1. The objective of such simulations is the prediction of the wall heat
fluxes on the reference and material probes which are then compared to the experimental
data for the model calibration.

Overall, for given local flow conditions, the wall heat flux contribution to the hydro-
dynamic equations computed by the BL code amounts to (see Sec. 2.2.2 for transport
properties)

qw = �
tot
w rTw +

X

i

⇢w,iVw,ihw,i, 8i 2 S, (5.1)

where hw,i is the enthalpy at the wall for species i, and �totw is the mixture thermal conduc-
tivity at the wall. Eq. (5.1) shows the different contributions to the overall wall heat flux
due to Fourier conduction and Dufour diffusion of enthalpy. Note that the dependency on
the catalytic parameter � is implicit in the species densities term at the wall ⇢w,i through
the catalytic mass balance equation Eq. (2.99) in Sec. 2.3.2.

For the momentum equation, we impose a no slip condition at the wall, and a wall
temperature for the energy flux. In depth details about the derivation, coordinate trans-
formations and numerical implementation of the BL code are available in Sec. 3.1.1.

In summary, the predictive quantity of the code is the wall heat flux which can be
expressed through a relationship with the hydrodynamic parameters needed to close the
flow equations. These parameters are proxies for the coefficients that appear in Eq. (5.1)
through the thermodynamic and transport closure models, and surface mass balances
(Secs. 2.2.1-2.2.2,2.3.2).

qw = qw

✓
�, Tw, P�, H�, �,

@u

@x

���
�
, v�

@

@y

✓
@u

@x

◆���
�

◆
. (5.2)

The free stream parameters are denoted with subscript � which refers to the boundary
layer thickness. The coordinates x and y denote the radial and axial directions along the
stagnation line, respectively. The last two arguments are the velocity gradient at location
�, which controls the local chemistry by imposing the residence time of the flow around
the stagnation point, and the axial velocity times the derivative of the velocity gradient
at location �, respectively. This last quantity is included in the formulation to account
for the fact that the free stream flow is highly viscous, unlike in classical boundary layer
formulations. To match the outer flow solution to the boundary layer solution, the last
argument in Eq. (5.2) has to be imposed to account for the extrapolation to the wall of
the external flow pressure gradient in the axial momentum equation [106].

If we did not have any more information about our experiments, we would have to as-
sume that all boundary layer edge conditions are unknown and we would have to estimate
them along with the model parameters of interest. On closer inspection, the experimental
boundary layer is generated by the VKI Plasmatron and its characteristics closely de-
pend on the operating conditions selected for the experiments as recalled from Sec. 3.3.
Given the electric power, injected mass flow, static pressure and probe geometry, we can
recuperate some boundary layer edge parameters. From the subsonic VKI Plasmatron
flowfield simulation depicted in Sec. 3.3, non-dimensional parameters for the boundary
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layer thickness �, the velocity gradient (@u/@x)

���
�
, and the axial gradient of the velocity

gradient (@ (@u/@x) /@y)

���
�
, are defined [145, 146]. The dynamic pressure, corrected for

viscous effects Pd/KH = 1/2⇢�v
2
� with KH as Homman’s correction factor [136], is used

as a convenient proxy for the axial velocity v� in Eq. (5.2) given that it is a measured
quantity [135]. As we are assuming a boundary layer edge in chemical equilibrium, the
density ⇢� in the dynamic pressure expression is defined by the enthalpy H� and pressure
P�. The variability of the non-dimensional parameters with the operating conditions is
small as shown by Panerai [4], therefore they can be considered known constants for each
experiment [220]. Finally, for given VKI Plasmatron operating conditions, the predictions
we are seeking to match the experimental data are now recast as

qw = qw (�, Tw, P�, H�, Pd) , (5.3)

where P� is taken as the chamber static pressure Ps, and the momentum boundary layer
edge conditions have been replaced by the dynamic pressure, given that the non-dimensional
parameters are taken as constants.

5.4 Proposed framework for the calibration of catalytic

parameters

In this section, the Bayesian formulation of the inference problem is derived in detail.
Fig. 5.1 shows a schematic representation of all the steps included to obtain the catalytic
parameters posterior. The proposed formulation uses all available measurements of heat
fluxes qrefw , q

TPS
w , surface temperatures T ref

w , T
TPS
w , and static and dynamic pressures Ps, Pd

on the reference and testing probes to jointly infer their catalytic parameters �ref , �TPS

assuming the same degree of prior uncertainty on both. We recall from Sec. 3.2.2 that the
experiments consist of different steps. First, the copper calorimeter referred to as “ref” is
subjected to the plasma flow and the heat flux to its surface is measured. Subsequently, the
probe with the TPS sample is subjected to the same plasma flow. The installation allows
switching probes without interrupting the plasma discharge. For this reason, the responses
of both probes are tied to the same plasma flow free stream condition, characteristic that
we exploit in the derivation of this framework.

The proposed formulation involves a particular treatment of the nuisance parameters
which are the inputs to the boundary layer code excluding the catalytic parameters we are
interested in calibrating. The effect of their uncertainties is reduced by solving an auxil-
iary maximum likelihood problem to derive an optimal likelihood function Popt

(yobs|�(⇠)),
where the variable ⇠ is the canonical transformation of the variable �. This maximum likeli-
hood problem alleviates the need to sample the nuisance parameters, and can then improve
the computational efficiency of the inference, providing more consistent and accurate pos-
terior distributions. Solving this auxiliary problem and sampling the posterior distribution
is expensive, as it requires multiple evaluations of the boundary layer equations. To mit-
igate this issue, we use a surrogate model Y (⇠) of the optimal log-likelihood function,
making the whole inference process faster and allowing for extensive exploration of the
posterior distribution. The posterior is sampled using the Metropolis-Hastings MCMC
algorithm [160, 221]. We choose this algorithm given its straightforward computational
implementation and the fact that most of the work to make the sampling of the posterior
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more efficient has been already carried out upstream with the construction of a surrogate
model.

The use of this methodology leads to an improved exploitation of the experimental
measurements with, as a result, a better estimation of the catalytic parameters for a wide
range of conditions.

Figure 5.1: Bayesian inference framework in a nutshell.

First, the likelihood function and prior distributions are defined, followed by the defini-
tion of the GP surrogate model used to approximate the optimal likelihood function.

5.4.1 Bayesian formulation of the inverse problem

The inference of the model parameters uses the Bayes formula which can be generically
formulated as

P(q|yobs) =
P(yobs|q) P(q)R

⌦ P(yobs|q) P(q)dq
. (5.4)

In (5.4), we denote q = (�ref , �TPS, T
ref
w , T

TPS
w , Ps, H�, Pd) the vector of model param-

eters to be inferred, yobs = (q
ref,meas
w , q

TPS,meas
w , T

ref,meas
w , T

TPS,meas
w , P

meas
s , P

meas
d ) the

vector of measurements or observations, P(q) the prior distribution of the parameters,
P(yobs|q) the likelihood of the measurements, P(q|yobs) the posterior distribution of q,
and

R
⌦ P(yobs|q) P(q)dq the evidence or marginal likelihood. The issue here is that the

model predictions are not just functions of the catalytic coefficients � = (�ref , �TPS), but
also depend on all the inputs of the BL code: the wall temperatures T

ref
w , T

TPS
w , the pres-
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sures Ps, Pd and the boundary layer edge enthalpy H�. The pressures and wall temperatures
are measured in the experiment, but only with limited precision, while the enthalpy H�

is simply not known. Consequently, there may be zero, or multiple, boundary layer edge
conditions consistent with the measurements. Since the boundary layer edge conditions
can not be completely characterized, the remaining uncertainty should be accounted for
when inferring the test probe catalytic coefficients.

One possibility to handle this issue is to consider the whole set of uncertain quantities,
not just the quantities of interest �ref and �TPS, but also the so-called nuisance parameters
included in q. The introduction of the nuisance parameters induces several difficulties
related to the necessity to specify their prior distributions, the increased dimensionality of
the inference space, and the consumption of information for the inference of the nuisance
parameters. This last issue is detrimental to learning the parameters of interest. In [5],
non-informative priors were used for all the nuisance parameters. This approach only ap-
proximates the posterior of q including the nuisance parameters, and the influence of the
(unknown) prior densities of these parameters is unclear. Not only that but the ability to
effectively learn from these experimental data is lost. In the following, we derive an alter-
native formulation for the joint inference of the two catalytic coefficients � = (�ref , �TPS).
Specifically, we consider the following Bayes formula

P(�|yobs) =
P(yobs|�) P(�)R

⌦ P(yobs|�) P(�)d�
, (5.5)

as before, P(yobs|�) refers to the likelihood of the measurements in yobs. This formulation
only depends on the two catalytic coefficients (�ref , �TPS) and not on the other nuisance
parameters. As a result, only the prior P(�) is needed.

5.4.2 Optimal likelihood function

Our objective is to design a reduced likelihood function which does not involve any nuisance
parameters. As stated before, the prediction of the heat fluxes involves not only the
catalytic coefficients �ref , �TPS, but also T

ref
w , T

TPS
w , Ps, H� and Pd. Assuming independent

unbiased Gaussian measurement errors, with magnitude �, the full likelihood of yobs with
the nuisance parameters would read as
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(5.6)

where the variables with the “meas” superscript refer to the measured quantities, �Ps ,
�Pd , �qw and �Tw are the standard deviations associated with each measurement, and �ref ,
�TPS, T ref

w , TTPS
w , Ps, H� and Pd are the components of q. The two probes differ in their

measurements of heat flux q
ref,meas
w and q

TPS,meas
w , and wall temperatures T

ref,meas
w and

T
TPS,meas
w . In this likelihood, the dependencies on �ref and �TPS are implicitly contained

in the heat flux terms. To reduce the dependencies of the likelihood to just the parameter
�, we propose to set the nuisance parameters q \ � to the values that maximize the like-
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lihood (5.6). In the following, we denote T
i,opt
w , P

opt
s , H

opt
� , P

opt
d , the maximizers of (5.6).

Note that these maximizers are functions of the catalytic coefficients. We shall also denote
q
i,opt
w (�) the corresponding model predictions of the heat fluxes for each probe. With these

values for the nuisance parameters, we define the optimal likelihood as
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(5.7)

where the dependence of the nuisance parameters on the two material properties has been
made explicit for clarity.

Given yobs and a value for the couple of catalytic coefficients, the optimal nuisance
parameters and associated heat fluxes are determined using the BL code. The procedure
for this optimization is the Nelder-Mead algorithm [222], which is a gradient-free method
requiring only evaluations of the BL model solution. Typically, a few hundreds resolutions
of the BL model are needed to converge to the optimum of (5.6). The computational cost
of the optimization prevents us from using directly this approach to draw samples of �
from their posterior distribution, and this fact motivates the approximation of the optimal
(log) likelihood in (5.7).

5.4.3 Prior distributions

To complete the Bayesian formulation, we now discuss the selection of the prior for the
catalytic coefficients �. We start by observing that, although it was assumed that the
reference probe is well characterized when designing the experiments, the expression of
the likelihood in Eq. (5.7) does not make any additional assumptions concerning �ref that
would bias the resulting possible values taken by the function. �ref is a free parameter
of the problem as it is �TPS. In fact, the observations should contribute to learn about
both material properties. In other words, the differences in the knowledge of � should
be reflected by their distinct priors and not in the design of the likelihood. Therefore, it
is important to select priors that fairly account for the initial beliefs in the values of the
catalytic coefficients. In this case, we have to be cautious with our choice. Considering
first the catalytic property of the reference calorimeter, previous works [223–232] show
that the a priori knowledge of �ref is actually quite poor: values proposed in literature
vary significantly from one experiment to another. Furthermore, �ref has been reported
for a limited number of conditions, leaving us with large prior uncertainties since in our
experiment the boundary layer edge conditions are unknown too. Similarly, the initial
knowledge of �TPS is poor. For instance, previous works (e.g. [19]) show that the value of
�TPS can span two orders of magnitude depending on the testing conditions. To conclude,
constructing a sharp prior distribution for �TPS on the basis of previous works is difficult,
while assuming a better knowledge of �ref is not realistic. For all these reasons, we decided
in this work to consider independent priors with initial ranges spanning few orders of



116 Chapter 5. Bayesian framework for the inference of catalytic recombination

magnitude, stating bounds on plausible values:

10
�4  �ref , �TPS  1.

The lower and upper bounds were set to encompass values proposed in the literature and
to ensure that they contain the values to be inferred. Based on the proposed bounds, the
last step to derive the prior consists in specifying the distribution within the range. Here,
instead of using a non-informative prior where any value is as likely as any other (i.e., a
uniform prior), we decided to go for log-uniform distributions,

log10(�TPS), log10(�ref) ⇠ U(�4, 1),

which express our prior ignorance more accurately when the a priori possible � values
range over several orders of magnitude [161].

The theoretical models describing the chemically reacting boundary layer, together with
the experimental data available are integrated in the Bayesian framework for the inference
of �. In the next section, we describe how we reduce the computational complexity inherent
to the sampling of the posterior. Specifically, we rely on a surrogate model for the log-
likelihood function to alleviate most of the computational burden.

5.5 Surrogate modeling

The likelihood function must be evaluated multiple times when sampling the posterior
distribution using MCMC methods. Since an evaluation of the likelihood requires many
resolutions of the reacting boundary layer model to determine the optimum boundary layer
edge conditions, direct sampling strategies based on the full model would be too costly. To
overcome this issue, the logarithm of the likelihood function in Eq. (5.7) is approximated
by a surrogate model whose evaluations are computationally cheap. In particular, it is
very common to proceed with the log-likelihood function instead of the likelihood as it
is smoother and it ensures the positivity of the approximation while keeping the same
relative structure in the parameter space (e.g. the same parameter values are favoured in
both cases).

To construct the surrogate model, we first introduce new canonical random variables,
⇠ = (⇠1, ⇠2), for the parametrization of the catalytic coefficients. We set ⇠ to be uniformly
distributed over the unit square: ⇠ ⇠ U [0, 1]2. The uniform grid is chosen for its capability
to survey the input space evenly. This is particularly important when dealing with che-
mical parameters such as � which generally can cause irregular behavior of the simulated
quantities. Another concern is the fact that we are dealing with the approximation of an
optimal function which can also present high variability for neighbouring points. Given
these issues and the fact that a priori we do not know the exact behavior of the function
to be approximated, we propose a uniform grid which could potentially be enriched with
additional points if the approximation is not good enough. The parameters � are then
expressed as functions of the canonical variables ⇠, for this we fix �TPS(⇠1) = 10

�4⇠1 and
�ref(⇠2) = 10

�4⇠2 , such that �TPS(⇠) and �ref(⇠) are independent, identically distributed,
and follow log-uniform distributions with range [10

�4
, 1]. The Bayesian inference problem
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can finally be recast in terms of the canonical random variables, leading to

P(⇠|yobs) / Popt
(yobs|�(⇠))P(⇠), P(⇠) =

(
1, ⇠ 2 [0, 1]

2
,

0, otherwise.
(5.8)

We seek to construct a surrogate of the optimal log-likelihood logPopt
(yobs|�(⇠)) with this

parametrization. More precisely, we aim for a surrogate model of Y (⇠) defined by

Y (⇠)
.
= log

�
Popt

(yobs|�(⇠))
�
.

We then use a GP model to approximate Y (⇠). The realization of a Gaussian process
is characterized by its mean µ(⇠) and two-point covariance CGP(⇠, ⇠0) function which ex-
presses the mathematical relationship between two points in the domain ⇠ and ⇠0. Given
the observation of the function values Y

(i) at the sample points ⇠(i), one can derive the
posterior distribution of the GP model, and evaluate the GP mean and variance at any
new point ⇠. The selection of the prior of the GP model is a crucial step. In this work we
tested several zero-mean, stationary processes with covariance functions from the Matern’s
class [233]; we found that the log-likelihood function is well approximated using the stan-
dard isotropic squared exponential kernel, given that both catalytic parameters play the
same role in the likelihood. The covariance function then reads

CGP(⇠, ⇠
0
) = �

2
GP exp

✓
� 1

2L2
GP

(⇠ � ⇠0)T(⇠ � ⇠0)
◆
, (5.9)

where LGP and �2GP are the a priori correlation length and variance of the GP. All results
presented hereafter use the covariance function in (5.9). Denoting Y = (Y

(1) · · ·Y (p)
)
T

the vector of observations, we recall that the posterior mean of the GP model, or the best
prediction of Y (⇠) is

E [YGP(⇠)] = kT
(⇠)K�1Y , (5.10)

where the vector k(⇠) and matrix K are given by

ki(⇠) = CGP(⇠, ⇠
(i)
), Ki,j = CGP(⇠

(i)
, ⇠(j)) + �

2
✏ �i,j ,

where �i,j is the Kronecker symbol. The variance of the prediction is

V [YGP(⇠)] = CGP(⇠, ⇠)� kT
(⇠)K�1k(⇠),

which can be used to inform additional training points to improve the approximation.

5.6 Results on a case study

The methodology presented in the previous sections is used for a real case of plasma wind
tunnel testing. This case is used to assess the validity and possible shortcomings of the
approach.

5.6.1 Experimental data and associated uncertainties

The experimental run used for this case study is depicted in Table 5.1. As we recall from
the introduction to this chapter, this dataset was obtained by Panerai and Chazot [19].
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The uncertainties related to this experimental condition are reported in [5] and taken as
the 3� level of confidence. The errors associated with the different experimental quantities
are modeled as random variables following unbiased independent Gaussian distributions
with zero mean and standard deviation �. It is important to remark that q

TPS
w is derived

from the measurement of the material emissivity as already explained in Sec. 3.2.2.

Table 5.1: Experimental data and uncertainties considered in our case study.

Experiment S1 q
ref
w T

ref
w Ps Pd q

TPS
w T

TPS
w

[kW/m
2
] [K] [Pa] [Pa] [kW/m

2
] [K]

Reported value 195 350 1300 75 91.7 1200
Error std deviation (�) 6.5 11.7 1.3 1.5 3.05 40

5.6.2 Log-likelihood approximation

We run the optimization algorithm in a uniform grid of 176 points on the space of the
log10(�ref) and log10(�TPS) variables. This uniform grid is chosen slightly asymmetric,
11x16 points, repectively. This choice for an initial grid gives us better refinement on the
log10(�TPS) direction. From physical considerations, we expect the variability of this pa-
rameter to be greater on the posterior than log10(�ref). Therefore, providing a more refined
grid on log10(�TPS) could produce better approximations for less cost than a squared grid of
that size. Fig. 5.2 shows the log-likelihood function evaluated at these grid points. These
evaluations are then used to construct the surrogate approximation by transforming the
physical variables log10(�ref) and log10(�TPS) into their respective canonical counterparts
⇠.

Overall, the shape of the log-likelihood function falls from the compatibility of the given
pair of �ref and �TPS with the observed quantities measured in the plasma wind tunnel. In
general, for large values of �ref , log-likelihood values tend to be larger. The same happens
with �TPS for low values. This is already hinting at the fact that higher catalytic activity
is expected for the reference material than for the protection material in question, for the
given boundary layer edge conditions. On top of that, there is a range of values for �ref
and �TPS that represent the best agreement with the experimental data. This set of values
have to be interpreted jointly: for high �ref values, �TPS can only take values in a narrow
range placed at the middle of its spectrum. For low values of �ref (mid-spectrum), �TPS

can take down to the minimum value of 10
�4. For large values of �ref and low values

for �TPS, the heat flux, which is the quantity in the likelihood sensitive to our choice of
catalytic parameters, is not sensitive enough to changes in those specific ranges.

As already mentioned previously in Sec. 5.5, we need to properly capture all these
features of the log-likelihood with a surrogate model. Fig. 5.3 shows the normalized L2

error norm for the GP surrogate on a validation set with 10% of the available points
plotted against a varying number of training points used to infer the GP hyperparameters
of correlation length LGP and standard deviation �GP. We carry out this procedure 1,000
times with different validation sets each time. The results show the mean and the 95%
confidence interval of the computed error. The approximation falls below a 1% error on
the validation set as the number of training points gets closer to 160. In practice, we
use all model evaluations (176) to construct our GP, knowing that the approximation is
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Figure 5.2: Log-likelihood function evaluated on the chosen �ref , �TPS grid.

already good enough. Furthermore, this approximation obtained has a maximum predictive
standard deviation of 1%. Fig. 5.4 shows the apparent good agreement between the mean
value predicted by the GP and the data points computed for the log-likelihood in Fig. 5.2.

Figure 5.3: Normalized L2 error norm of the GP approximation with varying number of
training points.
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GP mean GP mean profile

Figure 5.4: GP surrogate comparison with the exact log-likelihood values in logarithmic
variables.

5.6.3 Sampling of the posterior distribution

We perform a MCMC sampling for the choice of GP surrogate. The chains obtained are
depicted in Fig. 5.5. We can see that the chains present no long-term correlation and mix
well.

1,000,000 steps 15,000 steps close-up

Figure 5.5: Chain obtained with 1,000,000 steps and 15,000 steps (right).

The posterior samples obtained are shown in Fig. 5.6. In general, the tendency of the
samples is to remain in a narrow area of the �TPS space when �ref takes large values. Once
�ref starts moving towards lower values this tendency is reversed and �TPS can take values
in a wider range while �ref is confined in a narrow region. This joint behavior falls from the
inference framework. The key variable here is the boundary layer edge enthalpy H� which
is shared between both materials tested (reference and TPS). When the model takes up
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large values for �ref , a large amount of the observed heat flux for the reference material is
explained in the model through the magnitude of this parameter, setting low the influence
of the enthalpy H�. Low enthalpy needs larger �TPS values to account for the observed
heat flux on the protection material surface. The same happens for low values of �ref
and �TPS. In this case, the values that lay interior to the shape defined by the posterior
samples are not in agreement with observations for the reason just explained: large �ref
needs large �TPS. The fact that “large” and “low” are also defined within a range (e.g not
more than ⇠ 10

�1.8 for �TPS and not less than ⇠ 10
�2 for �ref) is not imposed by the

inference problem setting but by the physics-based model which makes some assumptions
regarding the chemical nature of the flow. Some values of �ref and �TPS could not explain,
under the same H�, the observations. Overall, this behavior will naturally reflect on the
marginal posterior distributions depicted in the next section.

Figure 5.6: Joint posterior samples of the MCMC algorithm.

5.6.4 Discussion on the posterior distribution

The posterior marginals are reported below in Fig. 5.7. We can observe that the distribu-
tions of both �ref and �TPS drop to small values at both ends of the spectrum, reducing the
support from the prior distributions proposed. This satisfying behavior can be explained
by the proposed likelihood form, which uses all the available measurements to access the
fitness of the model predictions. As a result, the formulation predicts that the values of
H

opt
� that could explain the whole set of measured fluxes, temperatures and pressures, are

actually far away from the maximum likelihood points when �ref ⌧ 1 and �TPS reaches
large values. It is also important to notice that both distributions have well-defined peaks
for �ref ' 0.016 and �TPS ' 0.01. The ranges of values observed in our calibration for both
gammas fit perfectly with the model previously assumed by the experimentalists where
the reference parameter takes higher values than the catalytic parameter of the protection
material. It is also important to emphasize the fact that in this framework no assumptions
are made concerning �ref , which is estimated along with the protection material parameter
with no differences in their prior knowledge. It can be suggested that a deeper experimen-
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tal study can provide more insights to the behavior of the reference material and a different
prior can be defined for the same analysis where differences in knowledge between the two
probes can be then accounted for.

Figure 5.7: Posterior marginals obtained for �ref and �TPS.

The statistics associated with these distributions are gathered in Table 5.2, where MAP
refers to the Maximum A Posteriori and CV to the Coefficient of Variation. The differences
between these results and the outcomes of [5] are clear when looking at the values in the
table and the shapes of the distribution functions obtained. A reduction of almost 20%
of the standard deviation and 40% of the CV for the catalytic parameter of the reference
material is observed. There is no reporting of the posterior statistics for �TPS in [5]. The
capability of learning �TPS from experimental data is lost without any particular treatment
of the nuisance parameters in the formulation of the inference problem. In contrast, the
results of this work show that it is possible to learn �TPS from this experiment through
the optimal likelihood framework.

Table 5.2: Comparison of the posterior statistics for experiment S1 with the work of [5].

Experiment S1 Mean (µ) Std dev. (�) MAP CV [�/µ]

�ref 0.060 0.078 0.022 1.3
�TPS 0.0034 0.0047 0.008 1.4

Experiment S1 from [5]
�ref 0.042 0.095 0.018 2.3
�TPS - - - -

The distributions of the optimal parameters are also computed. For each of these quan-
tities, a GP surrogate is computed on the same �ref , �TPS grid than the log-likelihood. The
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resulting posterior samples of �ref and �TPS are used as input for these surrogates, obtain-
ing the distributions of the optimal parameters shown in Fig. 5.8. A bimodal distribution
is obtained for the enthalpy H

opt
� . The shape of this distribution is a direct result from

the optimization algorithm that computes the H
opt
� , where many of its best points (“best”

meaning the ones which maximize the likelihood) fall into two different groups of values,
decreasing the probability density between them. The physical system, represented by the
BL code, computes the quantity qw = qw(�, Tw, Ps, H�, Pd). For each Tw, Ps, Pd and qw, the
system relates the enthalpy H� and the catalytic parameter � through an S-shaped curve
(see Fig.5.9). During the optimization, the physics allow the S-shaped curves to move when
different parameters change. The pressure quantities play a minor role due to their small
uncertainties and the fact that both curves move together when these quantities change,
being common for both materials. It is also important to take into account that we have
information about all the nuisance parameters but the enthalpy H� which is not measured,
therefore, all the other nuisance parameters try to be close to their measured values as a
result of the optimization. The lack of information about H� gives more uncertainty in
the resulting H

opt
� . In turn, we can think of the optimization algorithm as looking for

the optimal H� while keeping the other nuisance parameters very close to their measured
values (within their prescribed standard deviation).

Fig. 5.10 shows the optimization procedure at work and how it finds a common enthalpy
H

opt
� that maximizes the likelihood function while reaching a trade-off among the other

quantities with respect to their measured values. The thick solid lines represent the S-
shaped curves for the reference and TPS material when taking the measured values of all
the nuisance parameters and the heat flux. The dashed lines represent a change of heat
flux from the values of the thick solid lines. The thin solid lines represent the final optimal
solution for the given �ref and �TPS (vertical dashed lines) for which a change of wall
temperature Tw is added to the change of heat flux qw, transforming the original curves
(thick solid lines) to the final optimal curves (thin solid ones). At the pair of �ref and �TPS

where the two thick S-shaped curves have the same H�, the algorithm finds the model to
agree perfectly with the experiments. For the pair of �ref and �TPS given in Fig. 5.10 as an
example, the reference and TPS material do not share the same H� for their corresponding
measured values (thick S-shaped curves). The optimization algorithm finds an optimum
H

opt
� which represents a trade-off between the deviations in wall temperatures Tw and

heat fluxes qw with respect to their measured values over their uncertainty range �. As
the deviation needed to find a common H� point for both curves increases, the value of
log

�
Popt

(yobs|�(⇠))
�

decreases. In turn, the algorithm performs this for every pair of �ref
and �TPS in our grid, defining the most likely values for the catalytic parameters in light
of the experimental data.

As a result, the points sampled by the MCMC algorithm are shown hereafter in Fig. 5.11.
We can appreciate how the points which maximize the likelihood are the ones falling in the
range where both S-shaped curves coincide in enthalpy levels. These points represent the
best agreement of the system response with respect to the experimental data. This logic
explains the bimodal distribution for the enthalpy and the rest of the optimal parameters.

It is an important exercise to put these results in perspective. We are able to relax
some assumptions in our model and propose a new functional relationship through the use
of the optimal likelihood function. Still, there are other assumptions that remain highly
uncertain in within the model. One contributor to such uncertainty is the chemistry of
the gas. Specifically, the speed of the different reactions considered can play a role in the
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Figure 5.8: Distributions of the optimal nuisance parameters after propagating the poste-
rior of �ref and �TPS.

Figure 5.9: Change on the S-shaped curves positions due to changes in heat flux (qw) or
wall temperature (Tw).
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Figure 5.10: Schematic of the optimization algorithm at work and how it finds a common
enthalpy H

opt
� while modifying the S-shaped curves.

Figure 5.11: Posterior samples along the S-shaped curves.

inference, given that a flow in chemical equilibrium or frozen can produce very different heat
fluxes under the same edge conditions. The chemistry should be calibrated in dedicated
experiments to obtain reliable predictions in the future, as it can impact whether or not the
chosen model can explain the experimental data, and this, in turn, influences the calibrated
�TPS obtained.

Another uncertain assumption is the thermodynamic state of the gas. Even though
this assumption has been validated using spectroscopic measurements [57] for the test
conditions considered, recent numerical investigations [234] suggest that LTE may not
hold under different conditions (e.g. lower mass flows). A more extensive use of this
framework with dedicated experimental campaigns can help shed light on these issues in
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the future.

5.7 Summary

In this chapter, we propose a novel Bayesian inference formulation for the calibration of
the catalytic parameters of reusable thermal protection materials. The calibration gives
estimates of the material catalytic parameter through its posterior probability distribution
which can be disseminated for uncertainty propagation analyses. In plasma wind tunnel
experiments, the characterization of the reference material behavior plays an important
role. In this dedicated framework we relax the assumption of having a well-characterized
reference material, as proven to be in conflict with the respective literature in many cases.
The Bayesian approach allows for the simultaneous computation of both materials in the
inference process which proves to be more accurate than the conventional sequential ap-
proach as already shown by Sanson et al.

Our main contribution is the methodology itself. We derive a likelihood function by
considering an optimization problem in the nuisance parameters space, reducing the di-
mensionality of the likelihood to just the quantities of interest �ref , �TPS. To cope with this
computationally demanding likelihood, we propose the use of a surrogate model. GP works
quite well for this problem yielding good results with low standard deviations on the chain
samples. In addition, the approach is robust, in the sense that the MCMC sampling method
works smoothly for any given conditions. Overall, the optimization formulation presented
has the impact of improving considerably the inference results by giving more consistent
and accurate posterior distributions of the catalytic parameters when compared to the
results of Sanson et al. The main differences being the reduced support, with a decrease
of 20% in the standard deviation, and well-defined peaks of the respective marginal pos-
teriors. Subsequently, it is possible to say that the catalytic parameters can be effectively
learned from the experimental conditions and under the considered model assumptions.

In the next chapter, dedicated experimental campaigns benefit from this work by ex-
ploiting the experimental data more thoroughly and adopting a more informative testing
methodology.



Chapter 6

Experimental methodology for accurate CMC
catalysis calibration

The main objective of this chapter is to develop a dedicated experimental methodology that
allows for a better characterization of catalytic recombination parameters for reusable CMC
materials when having uncertain measurements and model parameters. First, a synthetic
dataset is proposed to test whether or not an already existing experimental approach with
three different materials brings any advantages in terms of uncertainty reduction on the
sought out parameters. The evaluation is done through the use of the Bayesian framework
presented in Chapter 5. The experimental methodology is then adapted for testing ceramic
matrix composites with the choice of quartz as a low catalytic reference material. Mea-
surements are then used to jointly infer the catalytic parameters of the three materials,
together with the boundary layer edge conditions of the experiments. The testing methodol-
ogy proves to be a more reliable approach for characterizing these materials while reducing
the uncertainty on the calibrated catalytic efficiencies by more than 50 %. An account of
the posteriors summary statistics is provided to enrich the current state-of-the-art experi-
mental databases.

6.1 Motivation and problem definition

In Chapter 5, we present a Bayesian framework able to exploit more thoroughly plasma
wind tunnel data for catalysis determination. The framework is proven to give accurate
uncertainty estimates on the catalytic parameters while considering the observations and
some model assumptions to be uncertain. As it was recalled in the previous chapter, the
existing experimental databases available in the literature for catalysis in reusable TPS ma-
terials have various delicate assumptions built in them (Sec. 5.2.1). Further, there are not
reliable (if any) estimations on the bounds for different levels of confidence in the parame-
ters reported. Assuming that the reconstruction of catalytic properties from experimental
data is a defined process with well-known characteristics makes the following question not

Parts of this chapter have been published in
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worth asking: how should we perform experiments in order to get the most information
regarding catalytic coefficients under uncertain observations and model parameters?

The identification of uncertainty sources and how to deal with them unveils a new set
of issues, namely, how well we can learn the catalytic parameters we are after and how
to improve such estimation by acting on our experimental methodologies. The previously
trivial question now acquires central relevance if we want to move forward in the quest
for predictive models. The more informative our experiments get, the more useful are the
data to increase the confidence in our models or, conversely, invalidate them.

The objectives of this chapter are twofold: first, to show how the rules of the game for
catalysis testing have changed when introducing uncertain hypotheses and observations.
Second, to provide a first database of catalytic parameters for CMC materials and their
corresponding testing boundary conditions with associated probability distributions and
confidence levels.

The chapter is organized as follows. First, we assess different aspects of existing ex-
perimental methodologies, namely the role of different reference materials, and the gains
(reduction of uncertainty), or otherwise, of using two reference materials jointly with the
TPS material in question. This last idea was developed by Viladegut and Chazot [20] to
have a better estimation of the catalytic properties of copper under different plasma flow
conditions. Based on the results of both assessments, we propose to adapt the existing
3-probes methodology for the testing of TPS materials by choosing adequate reference
materials. Two sets of results are subsequently analysed: synthetic cases for the proposed
set-up and the actual Plasmatron test cases for which the catalytic efficiencies are recov-
ered through the stochastic methods developed in Chapter 5. Interpretation of results and
computation of summary statistics of the parameters’ posterior distributions follow.

6.2 Assessment of experimental methodologies

The developed inference methodology in Chapter 5 can help underpin the important char-
acteristics of testing for catalytic TPS, namely, the conditions and/or configurations that
can give the most information by decreasing the uncertainty to a minimum. In particular,
we first assess the role of the reference material used for testing. As extending the testing
methodology to include three different materials is already a possibility [20], we study the
information gain with this methodology with synthetic data. In this section, we discuss
how choosing different reference materials and performing experiments with more probes
impact the outcome of the inference.

6.2.1 Influence of the reference testing material

Apart from the different testing conditions that can be set for a given experiment (power
of the facility, static pressure in the testing chamber, mass flow and probe geometry), we
also have the freedom of choosing a reference material with which to gather information
about the boundary layer edge conditions.

As it is recalled from the introduction to this chapter, one fundamental uncertainty
in the way of rebuilding the TPS catalytic behavior is the fact that the boundary layer
edge conditions cannot be estimated accurately if the reference material behavior is not
a priori well-known. We explore an assessment of this argument by assuming a high
catalytic material (more than the conventional reference of copper) which resembles the
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catalytic response of a hypothetical probe made with silver [20]. We devise synthetic
data where the resulting heat flux to the proposed reference material is higher than the
previously considered copper, while still keeping the same wall temperature. The only
variable that changes from the case of copper to this synthetic case is the catalytic activity
at the proposed reference material surface. Table 6.1 shows the data used to simulate
this particular case. Results from the inference are depicted in Fig. 6.1 with the marginal
posterior distributions of the case study of Chapter 5 with copper as reference material
and the results obtained for the synthetic case. The distributions show the same features
than the case study with reduced support and well-defined peaks. We can appreciate that
both the supports of the synthetic silver and the TPS are further reduced from the one
with copper, giving a slightly better characterization of these properties.

Table 6.1: Synthetic data and uncertainties.

Experiment SAg q
Ag
w T

Ag
w Ps Pd T

TPS
w q

TPS
w

[kW/m
2
] [K] [Pa] [Pa] [K] [kW/m

2
]

Reported value 232 350 1300 75 1200 91.7
Error std deviation (�) 7.7 11.7 1.3 1.5 40 3.05

Figure 6.1: Marginal posteriors obtained in Chapter 5 for the case study with copper (left)
and marginal posteriors obtained for the TPS material and synthetic silver (right).

To assess the information gain with this particular testing configuration, we need to turn
to the enthalpy of the plasma flow and see if we manage to capture this information better
with synthetic silver. Fig. 6.2 shows the distribution of the optimal enthalpy for both the
case study in Chapter 5 and the synthetic case. It is easy to spot the benefits of changing
the reference material to a higher catalytic one. The support is greatly reduced when
comparing the resulting enthalpies recovered. In turn, the boundary layer edge conditions
obtained would be less uncertain in the latter case. More information is contained in
that experiment than in our case study. Still the characterization of the boundary layer
edge conditions could be further improved as we try to recover a more defined unimodal
distribution.
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Figure 6.2: Optimal enthalpy H
opt
� distribution obtained for the case study in Chapter 5

(left) and the synthetic case (right).

6.2.2 Influence of testing with an additional reference material

The characterization of catalytic parameters can be further studied with a testing method-
ology that uses two reference materials instead of one [20]. The information brought by this
additional probe is expected to improve the characterization of the boundary layer edge
conditions. For the following case study S

⇤

Ag, all the three probes seen so far, copper ref,
TPS and synthetic silver, are used jointly under the same boundary layer edge conditions
as the case study in Chapter 5 for comparison. In this case, we imagine an experiment
where the three materials are sequentially exposed to the same plasma flow and the heat
fluxes they experience are recorded. The inference uses now all measurements on the three
materials to assess their catalytic properties as well as the boundary layer edge conditions
jointly. For this, the synthetic dataset of Table 6.1 is enriched with the data from the
copper reference material in Table 5.1, given that they are all subjected to the same free
stream. This synthetic case allows us to test the benefits of this methodology with the po-
tential of reducing the uncertainty on the characterization of �TPS if adding an additional
material and measurements is informative enough.

Fig. 6.3 shows the marginal posterior distributions obtained. We can observe that both
the TPS and synthetic silver distributions are left almost unchanged from the case where
they were tested together (Fig. 6.1), although the tail of the synthetic silver distribution
shows some growth compared to the previous case. The most notable difference is the
posterior distribution of the copper reference material. The presence of a higher catalytic
material increases the information obtained for higher values of the catalytic parameters,
reducing, as a consequence, the support for high catalytic values of the copper probe.

Table 6.2 depicts the summary statistics of the reference copper and TPS parameters for
the case study considered in this chapter and the case study of Chapter 5. We can see that
the mean value for the reference probe is moved towards lower catalytic values as well as
the mean for the TPS. The standard deviation is decreased significantly for the reference
probe (�80%) and for the TPS probe (�45%) while the MAP values have suffered overall
less change.

Turning now to the optimal enthalpy, we can see in Fig. 6.4 that the resulting support is
comparable to the one obtained with just the TPS material and synthetic silver (Fig. 6.2).
We can appreciate a slight shift of the modes due to the fact that the error on the mea-
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Figure 6.3: Marginal posteriors obtained for the TPS material, reference material and
synthetic silver.

Table 6.2: Posterior statistics for the synthetic experiment S
⇤

Ag and the case study of
Chapter 5 S1.

Experiment S
⇤

Ag Mean (µ) Std dev. (�) MAP CV [�/µ]

�ref 0.041 0.015 0.025 0.36
�TPS 0.0027 0.0026 0.005 0.96

Experiment S1

�ref 0.060 0.078 0.022 1.3
�TPS 0.0034 0.0047 0.008 1.4

surements of the additional probe weighs in to build the optimized log-likelihood, bringing
the optimal enthalpy values closer to the lower plateau where both synthetic silver and
copper lay closely together as seen in Fig. 6.5. We recall from Chapter 5 that the S-shaped
curves are the resulting possible relationships between the parameters of the model that
are not directly observed, such as the edge enthalpy and catalytic efficiency, for given mea-
surements. The amount of information contained in this test case, with three different
materials and the previous case with TPS material and synthetic silver is the same and the
same support for the optimal enthalpy is retrieved. The materials laying in the extremes
of the catalytic spectrum are the ones carrying the information about the boundary layer
edge conditions. A closer look at Fig. 6.3 when compared to Fig. 6.1 reveals the fact that
the material with a catalytic behavior in between the other two is the best characterized
using this methodology.
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Figure 6.4: Optimal enthalpy H
opt
� distribution obtained by propagating the catalytic pa-

rameters posterior of the TPS material, reference material and synthetic silver.

Figure 6.5: Posterior samples on the S-shaped curves for the three tested materials.

6.3 Proposed experimental methodology

As we recall from the introduction to this chapter, new questions arise in how to devise
experiments once we accept and have to deal with uncertainty sources. As it has been
highlighted throughout this thesis, the state-of-the-art catalysis reconstruction assumes
the fact that we are able to perfectly characterize the environment under which a TPS
material is being tested, namely, all the fluid variables at the boundary layer inlet. In
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accepting this premise, we can then trace back the heat flux on the TPS sample to the
catalytic activity under a prescribed thermal and chemical state of the flow if the surface
temperature is measured along. When acknowledging the facts that we can only get noisy
observations from the tests and that the assumptions about the edge conditions/reference
material are quite uncertain, we need to propose experiments that better inform the sought
out catalytic parameters in the presence of such uncertainties.

In this section, we introduce the experimental set-up installed in the Plasmatron facility,
together with a brief description of the intrusive/non-intrusive measurement techniques
used.

6.3.1 Plasmatron set-up and methods

Based on the analysis of the case study presented in Sec. 6.2.2, the chosen set-up uses two
different reference materials. We refer to this general set-up as 3-probes testing method-
ology given that we test two different reference materials along with the TPS sample in
question. Although the 3-probes testing methodology was already devised by Viladegut
and Chazot [20] in a different context, the novelty introduced here is the choice of the
reference materials that accompany the testing of the CMC samples as well as the fact
that the 3-probes testing methodology has not been used before for better characterization
of TPS materials. Apart from the novelties in the set-up itself, there is also novelty in
the way we arrive at the proposed set-up by strictly performing stochastic analyses on
synthetic data. In other words, by finding constraints on the model parameters sought out
through a devised experimental set-up.

In this context, our aim is to perform tests where the CMC surface catalysis can be
framed between a lower and upper limits of catalytic recombination embodied in reference
materials which are the ones carrying the information about the boundary layer edge con-
ditions. The upper catalytic material is an obvious choice, being copper the most studied
material for this kind of testing. Conversely, the lower catalytic material is more challeng-
ing due to the nature of TPS materials, designed to purposefully be of low surface catalysis.
Furthermore, evidence of oxidation of the SiC coating of CMC materials can also impact
the catalytic activity on such TPS surfaces [4]. Nevertheless, we find a good option in
quartz from the experimental results of Viladegut and Chazot [20] when compared to the
tests of Panerai and Chazot [19] for CMC materials under similar conditions. This choice is
first tested on synthetic data (Sec. 6.4.1) to corroborate the good choice before attempting
the real experiments. The major hurdle in the way of the proposed set-up is that for achiev-
ing the full potential of the 3-probes methodology, the TPS material and quartz should
have catalytic responses that differ significantly. If the CMC material responds similarly
to quartz, adding quartz to the tests would not bring any new information. The results
with the proposed methodology would effectively be as 2-probes testing cases in terms of
uncertainties on the CMC catalytic parameters, giving out similar results as the case study
of Chapter 5. Even though the oxidation of the SiC coating on the TPS material surface
causes SiO2 (quartz) to form, the differences in wall temperatures can make the TPS and
quartz catalytic responses differ enough to achieve good characterizations. Furthermore,
microscopic considerations on the oxidized TPS layer could also prevent both catalytic
responses from being very similar. The ceramic matrix composite material is pyrolized
carbon-fiber-reinforced polymer (CFRP) coated with silicon carbide SiC manufactured by
MT Aerospace (MTA) in Germany.

Fig. 6.6 presents the experimental set-up proposed for this study. Copper, TPS and
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quartz samples are mounted on probe holders and are sequentially exposed to the same
plasma flow. In these experiments, “standard” ESA geometry probes (also known as Eu-
romodel) for typical non-equilibrium boundary layers, with a radius of 25 mm, are used.

Figure 6.6: Schematic of the experimental set-up (seen from top, not to scale) with py-
rometer and radiometer optical paths in front of the TPS material sample.

To calibrate the plasma flow conditions, we use two water-cooled 14 mm (sensing area)
copper and quartz calorimeters. They measure the cold wall heat flux at the stagnation
point (TCu

w ⇡ 350K and T
Qz
w ⇡ 750K, respectively). These heat fluxes are determined by

the water mass flow (ṁ), which is controlled by a calibrated rotameter, and the temperature
difference (T i

out � T
i
in) in the cooling water supply. Thus, the heat flux for the cold wall

probes (qiw) is given by the expression

q
i
w =

ṁcp(T
i
out � T

i
in)

A
, 8i 2 Cu,Qz, (6.1)

where cp is the water specific heat and A the area of the surface of the probe. The cold
wall heat flux probes are injected into the plasma flow once the air mass flow and chamber
pressure are stabilized. The dynamic pressure (Pd) is measured using a Valydine differential
pressure transducer and the static pressure (Ps) in the Plasmatron chamber is measured by
an absolute pressure transducer (Memberanovac DM 12, Leybold Vacuum, OC Oerlikon
Corporation AG). As the Plasmatron only has three probe holders, the dynamic pressure
is recorded during a different test case, where the copper heat flux and pressures of the
first experimental run are duplicated.

To analyse the surface temperature and emissivity of the TPS material, a two-colour
pyrometer and an infrared radiometer are used. As previously mentioned, cold wall heat
flux and pressure probes are used for jet calibration. The optical instruments (pyrometer
and radiometer) are calibrated with the aid of a black-body (BB) source (LANDCAL
R1500T, LAND Instruments International), which provides a reference temperature spot
with an emissivity value close to 1.

A two-colour Raytek Marathon Series MR1S-C infrared pyrometer with an operating
range between 1000 and 3000 �C is used. Optical access to the testing chamber is offered
through a 1 cm thick quartz window, placed at ⇠ 1 m distance to the probe, with an
orientation of 35� with respect to the stagnation line. To record the surface radiance,
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a broadband infrared radiometer (KT19, HEITRON-ICS Infrarot Messtechnik GmbH) is
used. This instrument is located at 47� angle relative to the surface normal in front
of a 1.8 cm thick KRS-5 window, which offers ⇠ 70 % optical transparency [4] in the
whole infrared range of the instrument (0.6� 39µm). Its temperature range is between
0 and 3000� C and the acquisition frequency is set to 1 Hz. The output provided is the
integrated thermal radiation over the spectral range, converted into equivalent temperature
through an adjustable emissivity value which, in the context of the Plasmatron facility, is
set to one. As the range between 0.6� 39µm contains the highest percentage of thermal
radiation at the operation temperatures of the Plasmatron [4], the actual radiance and
emissivity can be computed with the Stefann-Boltzmann law. Being T

pyro
w the real surface

temperature acquired by the pyrometer and T
radio
w the equivalent temperature measured

by the radiometer, the total emissivity can be determined as

" =
(T

radio
w )

4

(T
pyro
w )4

. (6.2)

Emissivity being estimated from the measurements of the pyrometer and radiometer, we
can now estimate the actual heat flux to the TPS sample by assuming radiative equilibrium
as

q
TPS
w = �" (T

pyro
w )

4
, (6.3)

where � is the Stefan-Boltzmann constant and T
pyro
w is the actual TPS material tempera-

ture measured with the pyrometer and referred to as T
TPS
w in the remaining of this work.

All the measured quantities here described present inherent uncertainties. These un-
certainties are due to the limited precision of the measuring devices as well as statistical
deviations due to the finite number of possible repetitions of such measurements to derive
a proper statistical distribution. In the case of the measurements described previously in
this section, the measurement uncertainty model is taken as independent unbiased Gaus-
sian distributions. Mean values represent the most likely outcome of the measurement
while standard deviations reflect the precision and statistical fluctuations. It is important
to take into account the fact that the measured quantities are not the raw experimental
measurements but calibrated and post-processed quantities. A forward propagation of un-
certainties is needed to estimate properly the uncertainty levels (standard deviations of
the Gaussian distributions) of the different post-processed quantities. In the limit case
where properties of the experimental apparatus (specific heat of water cp and area A used
in Eq. (3.61), for example) are not perfectly known, preliminary measurements may be
needed to calibrate the unknowns of the measurement chain through a Bayesian inference
framework. The calibrated coefficients of the system together with the raw experimental
data should then be forwardly propagated to obtain accurate uncertainty estimates on the
measured quantities.

The focus of this contribution is not to properly define the experimental uncertainties
involved in the set-up measurement chains. That would entail the development of a whole
set of frameworks for each measurement technique, involving calibration data. The ob-
jective of the chapter is centered around the possible improvement of the characterization
of catalytic efficiencies for TPS materials through experimental design alone, given exper-
imental uncertainties consistent with the current state-of-the-art Plasmatron testing for
comparison. In this case, the uncertainty estimates considered here are computed in agree-
ment with the methodologies followed in the available literature for experiments in the
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Plasmatron facility [3, 4]. The distributions associated to the static pressure Ps, dynamic
pressure Pd, wall heat fluxes q

Cu
w , qQz

w and q
TPS
w , and surface temperatures T

Cu
w , TQz

w and
T
TPS
w are given in Sec. 6.4.2.

6.3.2 On the dynamic pressure measurements

The experiments are performed with three sample probes (copper, TPS and quartz) which
is the maximum number of available probes to test in a single run in the Plasmatron facility.
Apart from the heat fluxes to the three materials of choice, we need a probe to mount the
pressure transducer which measures the dynamic pressure Pd. For each defined testing
case, a second experimental run is performed for the recording of the dynamic pressure.
Together with the pressure transducer probe, the water-cooled copper calorimeter is also
tested to give a reference for the testing conditions by looking at the resulting copper heat
flux measurement.

A correlation is established between heat flux and Pitot measurements [119], and linear
regressions for given static pressure and mass flow conditions are obtained with the copper
heat fluxes and dynamic pressures measured in the calibration run. The actual value of
the dynamic pressure in the first run is computed through the linear regressions for the
copper heat flux measured in the first run.

More details and additional experimental results can be found in Appendix C.

6.4 Results

In this section, we first perform a study of synthetic data. The study allows us to gauge
the viability of the methodology in terms of well defined posteriors for the TPS catalytic
parameters which is what we are looking for in defining these experiments.

Consequently, we apply the methodology previously discussed to real tests performed in
the Plasmatron facility. A brief discussion on the testing conditions selected is followed by
the analyses of the results.

6.4.1 Test cases based on synthetic data

As a proof of concept, the 3-probes testing methodology works well when the materials
tested have a range of different catalytic responses to the incoming flow (Sec. 6.2.2). We
could devise a synthetic case with the BL code where the catalytic parameters of copper,
quartz and TPS get assigned values consistent with the literature. The corresponding
synthetic observations such as heat fluxes and pressures can be corrupted by noise also
consistent with the measuring devices. From these synthetic observations we could check
if we could infer the catalytic parameters initially assigned and study the quality of the
posterior distributions. The problem with this common approach in our case is that the
catalytic parameter values consistent with the literature are already compromised based on
a priori knowledge about the corresponding reference materials. Our synthetic case would
not be representative of the actual Plasmatron tests we want to perform if we cannot have
a priori an accurate assessment of the catalytic response of quartz with respect to the TPS
material.

For this reason, we devise two synthetic cases from different existing experimental data.
On one hand, Panerai and Chazot [19] tested the TPS material we are interested in and
obtained measurements of its surface temperature under conditions we can consider. On



6.4. Results 137

the other hand, Viladegut and Chazot [20] tested quartz and copper calorimeters together
under similar conditions to Panerai and Chazot. The cases we are after concern the testing
of quartz, copper and TPS under the same incoming flow conditions. Panerai and Chazot,
and Viladegut and Chazot tested under the same static pressure which allows us to produce
accurate linear regressions for qTPS

w and T
TPS
w with increasing reference heat fluxes qCu

w . We
use Viladegut and Chazot’s measured reference heat fluxes to then retrieve the equivalent
q
TPS
w and T

TPS
w for Viladegut and Chazot’s testing conditions. The actual data from

Panerai and Chazot, and Viladegut and Chazot used to define our two synthetic cases as
well as the different linear regressions can be found in Appendix C.

Table 6.3 shows the resulting synthetic cases. Two static pressures, 15 mbar and 50
mbar, are selected from the tests of Panerai and Chazot, and Viladegut and Chazot. One
of the interesting aspects of this exercise is to see how sensitive the results are to different
testing conditions, especially static pressures.

Table 6.3: Experimental data and uncertainties considered in our synthetic data study.

Experiment Ps q
Cu
w T

Cu
w q

Qz
w T

Qz
w Pd q

TPS
w T

TPS
w

MTAs1 [hPa] [kW/m
2
] [K] [kW/m

2
] [K] [Pa] [kW/m

2
] [K]

Reported value 15 700 350 234 750 164 298 1561
Error std deviation (�) 0.075 35 17.5 11.7 37.5 16.2 9.6 7.8

Experiment Ps q
Cu
w T

Cu
w q

Qz
w T

Qz
w Pd q

TPS
w T

TPS
w

MTAs2 [hPa] [kW/m
2
] [K] [kW/m

2
] [K] [Pa] [kW/m

2
] [K]

Reported value 50 700 350 223 750 45 334 1600
Error std deviation (�) 0.25 35 17.5 11.1 37.5 4.5 11.4 8

Fig. 6.7 shows the results for the two cases. The priors selected for these cases follow
the same considerations as the case study of Chapter 5 given that we want to remain as
agnostic as possible about the material behaviors in order not to introduce biasing issues.
Thus, log-uniform distributions of range logU [�4, 0] are used for all three materials in
each case. In retrospective, more refined priors could be introduced for quartz for which
its catalytic properties are better characterized in the literature, nevertheless we choose to
stick to our previous analyses for consistency.

The marginal posterior distributions for the three catalytic parameters are what we were
looking for with this experimental methodology. Copper and quartz lay well at the extremes
of the catalytic parameter space, leaving the TPS marginal posteriors with significantly
reduced supports and well-defined peaks. The accuracy of these results over Chapter 5’s
case study, and even over the one presented in Sec. 6.2.2, clearly justifies the use of the
proposed methodology. We continue forward and perform the real experiments.

6.4.2 Plasmatron testing conditions

The experimental test cases are chosen to study the impact of changing the heat flux for the
same pressure (similar chemistry in the gas, higher TPS wall temperatures). Hence, heat
fluxes of 500, 700 and 900 kW/m2 are tested. Additionally, a higher static pressure (100
mbar) is tested for the same heat fluxes (where the gas is closer to chemical equilibrium).
Thereafter, we compare the impact of changing heat fluxes and pressures in the posterior
analysis. These cases are representative of material behaviors of copper and quartz as
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Figure 6.7: Marginal posterior distributions of the three catalytic parameters for MTAs1
(left) and MTAs2 (right).

discussed in [20], yielding good posterior distributions for the TPS material. Therefore,
we choose them for a first comprehensive study with the proposed set-up. A case with an
intermediate static pressure of 50 mbar is also proposed as it was used in the synthetic
case study of the previous Sec. 6.4.1.

To proceed with the experiments, the Plasmatron is switched on and the air mass flow
is set with a calibrated rotameter. The vacuum pumps are then regulated until the target
static pressure is reached inside the chamber. After that, the probe with the copper
calorimeter is injected into the plasma and the power is regulated according to the target
heat flux being measured, displayed and recorded in real time. Once the calorimeter reaches
a steady-state signal under the imposed conditions, the probe is removed from the plasma
jet and the one holding the quartz calorimeter is introduced. The heat flux is measured and
the injection/ejection process is repeated for the TPS sample. Tables 6.4 and 6.5 summarize
the experimental testing conditions and associated uncertainties. The uncertainty levels
are obtained following the same procedures as Viladegut [119], Panerai [4] and Helber [3],
adopting consistent error values for the different measurements.

Table 6.4: Plasmatron testing conditions (15, 50 and 100 mbar, atmospheric air) for
ṁ = 16 g/s: targetted cold wall heat flux q

Cu
w , dynamic pressure Pd, mean wall heat fluxes

q
Qz
w and q

TPS
w , and mean surface temperatures T

Cu
w , TQz

w and T
TPS
w .

Experiment Ps q
Cu
w T

Cu
w q

Qz
w T

Qz
w Pd q

TPS
w T

TPS
w

ID [hPa] [kW/m
2
] [K] [kW/m

2
] [K] [Pa] [kW/m

2
] [K]

MTAt1 15 500 350 219.3 750 121.5 227.8 1462.9
MTAt2 15 700 350 317.9 750 160.3 346.5 1631.0
MTAt3 15 900 350 374.1 750 196.6 417.2 1698.4
MTAt4 50 700 350 258.2 750 37.4 324.7 1585.6
MTAt5 100 500 350 251.0 750 13.6 302.5 1566.5
MTAt6 100 700 350 277.4 750 16.6 381.9 1655.8
MTAt7 100 900 350 337.0 750 19.6 470.4 1741.4
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Table 6.5: Experimental uncertainties for 2� level of confidence.
Experiment Ps 2�Ps 2�qCu

w
2�TCu

w
2�

qQz
w

2�
TQz
w

2�Pd 2�qTPS
w

2�TTPS
w

ID [hPa] [hPa] [kW/m
2
] [K] [kW/m

2
] [K] [Pa] [kW/m

2
] [K]

MTAt1 15 0.15 43.9 35 19.4 75 2.3 21.4 21.9
MTAt2 15 0.15 62.6 35 28.4 75 2.5 32.5 24.5
MTAt3 15 0.15 79.8 35 33.3 75 2.4 39.1 25.5
MTAt4 50 0.50 61.2 35 22.9 75 2.6 30.5 23.8
MTAt5 100 1.0 43.5 35 22.2 75 2.5 28.4 23.5
MTAt6 100 1.0 61.0 35 24.6 75 2.5 35.8 24.8
MTAt7 100 1.0 79.1 35 29.9 75 2.6 44.1 26.1

In the next sections, the cases are divided according to the static pressure of the tests
given that similar pressures produce similar trends in the results.

6.4.3 15 mbar cases

The �TPS marginal posterior distributions for MTAt2-3 present similar morphologies with
bimodal distributions and values centered around �TPS ⇡ 10

�2 (Fig. 6.8). The results for
MTAt1 are different in that the distribution for �TPS presents a single peak, although the
support is similar to MTAt2-3 and the distribution is also centered around �TPS ⇡ 10

�2.
The marginal posterior distributions for the reference materials are also similar among
them, favouring the extreme values of the catalytic parameter space. Even though the
information of the relative catalytic efficiencies among materials is not given in the form
of priors to the Bayesian analysis, the calibration ends up giving us this information from
experimental data alone.

The results seem to indicate that the experimental set-up is useful for obtaining peaky
distributions and reducing the uncertainty on the posterior of �TPS when compared to the
work of the previous Chapter 5. Nevertheless, we still need to perform a careful assessment
of the quality of the results. In particular, it is important to verify whether or not the
calibration achieved can, in turn, predict the experimental data. It is not a trivial question,
even for cases used for the calibration itself. Bayesian inference always gives some posterior
distribution around the maximum likelihood estimate (in the case of non-informative priors,
like the present study). It does not take into account the fact that the model might not be
able to reproduce the experimental data for some combination of the parameters and the
maximum estimate is just the best the model can do to reproduce the experimental data,
but not enough. Through careful scrutiny, we can pinpoint successful cases and formulate
new hypotheses for the cases that are not well calibrated, giving a way forward. Also this
analysis can help gain more insight into the results.

The best way to visualize the quality of the inference is through the computation of
the S-shaped curves. They represent the model output for the relationship between the
boundary layer edge enthalpy H� and the catalytic efficiency parameter � for given mea-
surements Ps, Pd, qw, Tw. In other words, they relate the possible values of the enthalpy
H� and � so that the prescribed measurements Ps, Pd, qw, Tw are predicted by the chosen
model. Propagating the uncertainty of the measurements on these S-shaped functions gives
us the boundaries of the allowed space where the curves should live if the model was a good
description of the experiments. Comparing the prescribed boundaries with the �TPS pos-
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Figure 6.8: Marginal posterior distributions for the recombination parameters of the three
materials for MTAt1 (upper left), MTAt2 (upper right) and MTAt3 (lower center).

terior and H
opt
� resulting distribution gives us an assessment of the quality of the inference

and its deviation from the experimental data. Fig. 6.9 depicts the three S-shaped curves
for each testing condition and the points drawn from the posterior distribution of �Cu, �Ag

and �TPS, and propagated to obtain H
opt
� . As it can be seen, for the three cases considered

under low pressure conditions, the calibrated �Cu, �Ag, and �TPS can successfully reproduce
the experimental data.

6.4.4 50-100 mbar cases

The �TPS marginal posterior distributions for these cases present similar morphologies
with a well-defined peak and a reduced support compared to the previous low pressure
cases (Fig. 6.10). Testing under higher pressures (50 and 100 mbar) give the most precise
catalytic efficiencies while relatively high heat fluxes and low pressure cases give more
uncertain outcomes. In low pressure conditions, the chemistry does not play such an
important role as in the higher pressure cases. The gas phase Damköhler number, defined
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Figure 6.9: �Cu, �Ag, �TPS and H
opt
� distributions projected onto S-shaped curves and their

2� confidence intervals for MTAt1 (upper left), MTAt2 (upper right) and MTAt3 (lower
center).

as the ratio between the characteristic diffusion time and the chemical relaxation time
Da = ⌧di↵/⌧chem, is small (O(10

2
)) for low pressure cases. This indicates that we are in a

reaction limited regime [99] and that the heat flux measured can be explained by widely
different combinations of catalytic activity at the surface and edge conditions. Given fast
diffusion time scales, catalytic activity at the surface becomes important as it modulates
a considerable amount of diffusive flux. In these cases, convective and diffusive heat fluxes
can be traded by modifying the recombination efficiencies, giving the same total heat
flux measured. High pressure cases, on the other hand, tend to be in a diffusion limited
regime (Damköhler number of the gas large, O(10

6
)) and the modulation achieved by the

recombination efficiency parameters is not so important, setting the diffusive flux to within
certain values for which only a handful of edge conditions suffice to match the total heat
flux measured. This reduction of the uncertainty that is case-dependent works better if
the materials have very different catalytic behaviors.

Fig. 6.11 depicts the S-shaped curves for each testing condition. As it can be seen, for
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Figure 6.10: Marginal posterior distributions for the recombination parameters of the three
materials for MTAt4 (upper left), MTAt5 (upper right), MTAt6 (lower left) and MTAt7
(lower right).

some of the cases considered under high pressure conditions, the calibrated �Cu, �Qz, �TPS

cannot successfully reproduce the experimental data. Particularly, the posterior distri-
butions of �Qz, �Cu and �TPS for cases MTAt6-7 cannot quite explain the experimental
data measured in the Plasmatron. The resulting deviations are beyond the 3� level of
confidence. In other words, the model fails to simulate our experiments if there is not a
single edge condition that can explain the different heat fluxes and surface temperatures
observed. Looking at it in reverse, the model cannot predict all three heat fluxes under the
requisite of a common edge condition. Therefore, in a follow-up analysis, we must highlight
problematic assumptions beyond the ones considered here and properly assess our knowl-
edge about them. There might be aspects of the system that are not known precisely in
addition to the unknowns considered in this work (edge conditions and catalytic efficiency
of all three materials).
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Figure 6.11: �Cu, �Ag, �TPS and H
opt
� distributions projected onto S-shaped curves and

their 2� and 3� confidence intervals for MTAt4 (upper left), MTAt5 (upper right), MTAt6
(lower left) and MTAt7 (lower right).

6.4.5 Interpretation of results and summary statistics

The main outcomes of the analyses are the �TPS marginal posterior distributions for the
different test cases. The objective being to obtain well defined probability distributions
for the catalytic parameters of the CMC material. A larger experimental study built on
this methodology could calibrate this parameter in different regimes, allowing to probe the
fundamental physics behind it.

15 mbar cases. It is seen that as the heat flux gets higher for the same pressure conditions,
the sensitivity of the problem to � is also higher (steeper S-shaped curves), broadening
the span of possible solutions. Higher heat fluxes for the same pressure involves a higher
degree of dissociation at the boundary layer edge as a consequence of the edge temperature
increase. For a flow in a reaction limited regime (Damköhler number in the gas small), this
higher dissociation degree means more sensitivity to surface reactions of the wall heat flux.
Overall, higher heat fluxes produce wider supports for the reference materials (MTAt2-3)
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and two equally probable values of �TPS in the form of bimodal distributions. The lower
�TPS peak corresponds to low values of �Qz and �Cu, while the opposite is observed for the
upper �TPS peak. The obtained bimodal distributions for �TPS can be explained due to
the fact that the priors assign the same probability to the different plausible values of the
various decades of catalytic parameters. This issue, coupled with the high sensitivity of the
problem to catalytic recombination at low pressures, produces two distinct favoured values
in the posterior distributions. As can be seen in Fig. 6.9 most of the obtained posterior
samples for MTAt2-t3 fall on one of the two plateaus of the optimal enthalpy with respect
to the catalytic parameter �. These two plateaus accummulate solutions for a certain
range of catalytic parameters while favouring mainly two different values of the optimal
edge enthalpy. Conversely, these two favoured values of the free stream also favour upper
and lower limits on the �TPS. Both solutions are equally likely and more information is
needed in either the priors or the experimental data to be able to pinpoint a more precise
distribution.

From only looking at the marginal distributions it may seem that �Qz and �TPS both
share simultaneous support for some values. As already mentioned, when �TPS values are
taken from the lower peak (support shared with �Qz), the possible values for �Qz are the
ones in the tail of the corresponding distribution. Due to the wall temperature differ-
ences, the model chosen can only consider low �TPS values for high boundary layer edge
enthalpies. Conversely, for quartz, the �Qz values shared with �TPS can only be considered
for substantially lower boundary layer edge enthalpies given the low wall temperature of
the quartz probe. In other words, �Qz and �TPS cannot both have the same values simul-
taneously (which could be expected if an oxide layer of quartz forms on the TPS material
surface). To actually gauge the importance of TPS oxidation on the determination of �TPS

and how it actually compares to �Qz, evidence of formation of a stable oxide layer and
microscopic analyses of the structure could be pursued.

50-100 mbar cases. It is seen that for some of the cases considered under high pressure
conditions, the calibrated �Cu, �Qz, �TPS cannot successfully reproduce the experimental
data. Due to the complexity of the involved physics, we acknowledge that there might be
aspects of the system that are not known precisely in addition to the unknowns considered
in this chapter. One candidate for such unknown is the chemistry of the gas. The chemi-
cal state of the gas poses epistemic uncertainties given that different models exist in the
literature and are widely used. Specifically, the speed of the different reactions considered
can play a role in the inference, given that a flow in chemical equilibrium or frozen can
produce very different heat fluxes under the same edge conditions. Catalytic activity can
also be relegated to be non-influential in the heat flux experienced by the material if the
gas chemistry has already consumed all the available energy contained in the dissociated
flow, and this is likely to occur under high pressure conditions. A numerical experiment
and a priori forward propagation of uncertainty can show if the effects of an uncertain
gas chemistry would have an impact on the possible solutions for high pressure cases such
as MTAt6 and MTAt7. The proposed exercise would indicate whether further analysis in
that direction would be needed in the future. A numerical experiment is a good exercise
to explore the models at hand while knowing exactly which assumption is not correctly
considered in a synthetic reconstruction of simulated data. It is something not possible
to achieve with experimental data due to the large number of unknowns involved, making
difficult to have a definitive assessment of the effects some assumptions have. The follow-
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ing exercise highlights the impact of the adequacy of the gas phase chemistry model on
the possible calibrated solutions. The results indicate that a model that overestimates the
speed of chemical reactions in the flow can fail to reproduce the experimental data, while
the opposite scenario would extend the uncertainty on the resulting calibrated parameters.

The numerical experiment is as follows. We simulate a boundary layer to which two
different materials of high (�H = 1) and low (�L = 10

�4) catalytic efficiencies are subjected.
The chosen conditions are similar to the experiments of this work and under the chemistry
model of Gupta et al. [235]. This model considers the reactions to be slower than the
alternative models of Park [88] and Dunn and Kang [118]. We choose the static pressure
of such numerical experiment to be Ps = 100 hPa, while the edge velocity is chosen so
that we obtain a dynamic pressure Pd = 16.6 Pa for an edge temperature of T� = 5500 K,
and Barker effect correction coefficient KH = 1.1 [136]. We impose the temperature at
the wall for the high catalytic material to be T

H
w = 350 K while the low catalytic material

has a wall temperature of T
L
w = 750 K similar to our copper and quartz probes. We

also take the non-dimensional parameters (Sec. 3.3) to be the same as the case MTAt6
which would be equivalent to a Plasmatron power of 191 W and mass flow of 16 g/s.
The uncertainties on all the considered measured quantities are consistent with the values
reported in the literature for Plasmatron and in this work. The simulated heat fluxes are
then taken as measurements from this numerical experiment with a ±10% uncertainty level
for a 2� confidence interval. We then compute the S-shaped curves from the simulated
heat fluxes with their true chemistry in Fig. 6.12 (Gupta et al. model, continuous lines)
and a faster chemistry model (Park, dashed lines). It can be appreciated that using a
faster chemistry model when the heat fluxes correspond to a simulation with a slower gas
chemistry model can result in S-shaped curves distancing away (or the opposite if the
model used to reconstruct the simulated data uses a slower chemistry model than the
original simulation). This issue can be evidence that in the high pressure experiments
S-shaped curves do not overlap because the chosen model overestimates the speed of the
chemical reactions in the gas phase.

Fig. 6.12 shows the line corresponding to the edge conditions of the numerical experi-
ment which touches each S-shaped curve at the limits of their � values as chosen for each
material. In Fig. 6.12, it can also be seen that low catalytic efficiencies need lower en-
thalpies to produce the same heat flux with a faster chemistry model than with a slower
one. Enthalpies for large catalytic efficiencies do not change under gas chemistry models.
This effect can be traced to the diffusive regime at the wall. The Damköhler number at the
wall for large recombination efficiencies (fast wall chemistry) is large, meaning that we are
in a diffusion limited regime. Different chemical models in the gas do not have an impact
on the diffusive fluxes at the wall, setting the same outer edge conditions for all cases. On
the other hand, reaction limited walls are more susceptible to the gas chemical models.
Slower chemistry produces smaller concentration gradients which are easily overcome by
species diffusion. This tendency produces smaller diffusion fluxes for the same pressure,
which has to be compensated by larger temperature gradients across the boundary layer.
As a result, higher enthalpies at the edge are required for the same heat flux in the case
of slower chemistry at small wall Danköhler numbers. It is equivalent to changing the
Damköhler number of the flow to smaller values as the chemistry gets slower, while the
diffusion time scale stays the same.

The right side of Fig. 6.12 shows the two S-shaped curves obtained with the Park chem-
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istry model and their associated confidence intervals when considering only the measure-
ments as uncertain. In this scenario, an assumption of faster gas chemistry is considered
where the actual data comes from a flow with slower chemistry. In this case, not even in-
cluding the measurements uncertainties can give any solutions, or common edge conditions.
The shaded grey area represents the added uncertainty when also the chemistry is assumed
uncertain. The uncertainty on the chemistry is bounded by the slowest and fastest models
that can be assumed for the problem, Gupta et al. and Park, respectively. This changes
the picture by enabling possible solutions. Nonetheless, it can be observed that more than
50% of the resulting uncertainty for low catalytic values is due to the chemistry alone.
The take away from this exercise is that the chemistry should be calibrated in dedicated
experiments to obtain reliable predictions in the future, as it is shown to impact whether or
not the chosen model can explain the experimental data, and this, in turn, influences the
calibrated �TPS obtained. This issue was already studied by Viladegut et al. [99] from a
different perspective. They studied different diffusion regimes while maintaining the same
chemistry models and showed that the coupling between diffusion and chemistry in the
flow has an impact on the computed values for catalytic efficiencies from experiments.

Figure 6.12: S-shaped curves for the chosen boundary layer simulation with slow and fast
chemistry (left). Propagated uncertainty on the S-shaped curves of the numerical experi-
ment, including uncertain chemistry models (right).

This issue does not influence the main outcomes of this study. If the adequacy of the
chemical models are case-dependent, then for the same cases the proposed experimental
methodology still should perform better under equal chemical model epistemic uncertain-
ties. The major impact would be related to the final calibrated values and how those are
affected by these epistemic uncertainties.

It is important to remark that the highlighted issues with the modeling of the gas phase
chemistry are just one hypothesis given to explain the discrepancies observed in the results
for high pressures. The likely real scenario might be a mix of different model inadequacies
in various closures and assumptions, such as assumed elemental fractions at the boundary
layer edge, thermal state of the gas, etc. The relevance of the numerical exercise rests on
the capability to define new research avenues and identify further model issues.

Summary statistics. The resulting summary statistics for the different �TPS parameters
are shown in Table 6.6. The resulting statistics for Hopt

� after propagation of the calibrated
parameters are shown in Table 6.7. Only the cases with successful inferences are shown.
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Table 6.6: �TPS marginal posterior distributions: mean, Maximum A Posteriori and 95%
C. I. values.

Experiment Ps Mean (µ) MAP 95% C.I.
ID [hPa] �TPS �TPS �TPS

MTAt1 15 0.01 0.012 [0.0029, 0.0276]
MTAt2 15 0.011 0.019 [0.0036, 0.0289]
MTAt3 15 0.013 0.023 [0.0044, 0.0303]
MTAt4 50 0.0048 0.0048 [0.0030, 0.0076]
MTAt5 100 0.0077 0.0076 [0.0035, 0.0167]

Table 6.7: Hopt
� distributions: mean, Maximum A Posteriori and 95% C. I. values.

Experiment Ps Mean (µ) MAP 95% C.I.
ID [hPa] H

opt
� [MJ/kg] H

opt
� [MJ/kg] H

opt
� [MJ/kg]

MTAt1 15 12.6 11.5 [10.8, 15.7]
MTAt2 15 21.1 15 [14.3, 31.7]
MTAt3 15 26.0 17.8 [17.3, 36.7]
MTAt4 50 14.7 14.7 [13.9, 15.5]
MTAt5 100 11.2 11.2 [10.7, 11.7]

6.5 Summary

In this chapter, we extend the contribution of Chapter 5 by proposing a more informative
experimental methodology and performing stochastic analyses on the resulting plasma
wind tunnel data, enriching current catalysis databases.

First, we study the choice of reference material with respect to the information that
it brings about the free stream. As the difference between the catalytic responses of
the materials tested grows, so does the information we can obtain about the free stream
conditions in the wind tunnel. On these lines, we also perform a study of a 3-probes testing
methodology and show an overall improvement on the characterization of copper catalysis
up to 80% with respect to the results of Chapter 5. The 3-probes testing methodology case
study reveals that the ideal possible testing scenario is with three materials where a good
characterization is achieved for the one in the middle of the catalytic parameter space.

Following these preliminary studies, we propose an experimental set-up for the accu-
rate calibration of catalytic efficiencies of CMC materials. The proposed 3-probes testing
methodology proves to be a good experimental approach due to the fact that the sur-
face catalytic activity of the TPS material lays in between the catalytic activity of the
two reference materials chosen (copper and quartz). This conclusion is first reached by
performing a synthetic case study which combines data from two different experimental
campaigns available in the literature. The results of this synthetic study increases our
confidence in the proposed methodology with which real experiments are performed in the
VKI Plasmatron by Luís et al. [236] for the context of this study.

A set of seven test cases is proposed under different static pressures and heat fluxes
to study their influence on the results. The results show two different classes of charac-



148 Chapter 6. Experimental methodology for accurate CMC catalysis calibration

terizations achieved. First, for low pressures of 15 mbar, we show an improvement of 50
% over previous analyses. Even though it is still an improvement, we can appreciate a
considerable support for the TPS material marginal distribution and a tendency towards
following bimodal distributions.

In contrast, higher pressure cases such as 50 and 100 mbar, yield very precise parameters.
Nevertheless, we should not lose sense of the fact that the gas chemistry is considered
well-known. The diffusive fluxes in these cases are set in within some limits due to the
chemistry being most likely in equilibrium, leaving little room for the outer edge enthalpy
values which, in turn, are heavily conditioned. In this regard, a well characterized and
precise TPS catalytic parameter can be obtained. The reduction of the uncertainty in
this case is 30-50 % with respect to the previous 15 mbar cases and it relies solely on the
chosen testing conditions. Nevertheless, not all the inferred parameters can be trusted.
The model is found not to be a good representation of the experiments for two of the
cases. Alternative explanations such as the uncertainty on the chemical state of the gas
could lead to an improvement.

In the future, dedicated experimental campaigns, including spectroscopic measurements,
can benefit from this work by exploiting the experimental data more thoroughly and in-
corporating additional knowledge and uncertainties in terms of the gas phase chemistry.



Chapter 7

Calibration of graphite ablation models for nitrogen
flows

In this chapter, we study the problem of carbon ablation when subjected to high temperature
nitrogen flows. In this context, we seek to infer nitrogen ablation model parameters com-
bining different experimental measurements and various flow model assumptions. First,
the dependencies of the proposed stagnation line forward model are studied to establish the
influence of the different parameters on the available observations. The model calibrations
are performed taking into account the relevant observations for the unknown parameters
such as boundary layer edge and wall conditions, and nitrogen ablation parameters. We
compare the results of the various inferences performed for which different relevant ob-
servations are considered. The comparisons allow us to test the consistency of the given
observations. Using only the trustworthy experimental data, a calibration of the Arrhenius
law parameters for nitridation efficiencies is performed taking into account all available
experimental conditions jointly. Finally, we test different flow modeling choices against
the same experimental data for which we define hypotheses testing scenarios. Based on the
successful models we build model averages on the common inferred nitridation parameters
to capture the epistemic uncertainties due to the thermal state of the flow as well as the
heterogeneous chemistry at the surface. The resulting summary statistics of the averaged
parameter posteriors are given.

7.1 Motivation and problem definition

Characterizing ablation phenomena for different atmospheric and material compositions
is quite challenging. It is important to understand the coupling mechanisms between
material surface properties and the resulting ablation rates which in turn are coupled to
the flowfield computations [237]. A key element of the modeling behind these phenomena
is the surface chemical processes that are taken into account to explain the experiments.
It is not always straightforward, from an a priori point of view, to know which chemical
processes underpin the macroscopic effects we see in thermal protection materials subjected
to reactive flow environments. Through dedicated experiments which manage to isolate and
identify different chemical mechanisms, we are now in the position to fill in the knowledge
of the selected model parameters with experimental data.

Parts of this chapter have been published in

• A. del Val, O. P. Le Maître, O. Chazot, P. M. Congedo and T. E. Magin, Inference meth-
ods for gas/surface interaction models: from deterministic approaches to Bayesian
techniques, Uncertainty Quantification & Optimization 2020 conference proceedings.
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The nitridation reaction Cs +N! CN+ 0.34eV on a solid (s) carbon surface is still
weakly understood. There have been experimental efforts to characterize it [21, 44, 139]
but the different methods used to rebuild nitridation efficiencies from experimental data
give out results that differ by several orders of magnitude. Even though the low exothermic
energy of the nitridation reaction does not directly have a significant influence on the wall
heating rate, it can indirectly affect exothermic recombination reactions at the wall. In
recent works, Helber et al. [22] determined the nitridation reaction efficiency of graphite at
surface temperatures up to 2,575 K with a coupled deterministic experimental-numerical
approach. For the reconstruction of the nitridation efficiency parameter, they used reces-
sion rate measurements, while assuming negligible the recombination of nitrogen at the
wall. The proposed methodology was validated with the experiments by comparing the
predicted CN species densities in the boundary layer with the CN densities experimentally
derived from the recorded CN violet emission.

In the present chapter, we explore the possibility of exploiting such experimental data
for the purpose of inferring nitridation reaction efficiencies in a statistical setting by means
of a Bayesian approach. We first conduct an a priori analysis of the forward model, a
thermal equilibrium stagnation line flow with nitridation as the only surface mechanism.
We can assess the sensitivity of the model to each input parameter by propagating a priori
uncertainty ranges. To lighten the computational burden of the propagation, we construct
different GP surrogates for the model outputs. This a priori exploration of the model
leads to the simplification of the inference problem by prescribing the important exper-
imental observations for nitridation efficiencies determination. Recession rates and local
CN densities are used, together with static pressures, dynamic pressures and wall temper-
atures, to infer all parameters needed to define the flow solutions: boundary conditions
and constitutive relation parameters, where we include the nitridation reaction efficiencies.
When used independently, measured recession rates and CN densities each give information
about nitridation reactions. As they are both part of the same experiments, one model
should be capable of explaining both observations at once. Checking for this consistency
with the available data has the potential of improving the characterization of nitridation
mechanisms and signaling issues with the model and/or the experiments. We make use of
the surrogate models built previously for the sensitivity analysis to make the problem of
the inference computationally efficient when sampling the posterior distribution. Further,
we also propose to combine all available measurements for the calibration of a stochastic
Arrhenius law, extending the computation of nitridation efficiencies to a broader span of
surface temperatures for which there are no reliable experimental data.

Lastly, the assumption of a thermal equilibrium model with only nitridation as surface
process is questioned. Hypothesis testing scenarios are proposed to gauge the evidence
in the available experimental data towards different modeling assumptions considering
thermal non-equilibrium in the flow, as well as the importance of nitrogen surface recombi-
nation. The final parameter posterior distributions obtained under each successful model
are weighted and summed using Bayesian model averaging to account for the epistemic
uncertainties stemming from these different modeling assumptions. We find weak evidence
for thermal non-equilibrium at the wall, and are able to set a plausible upper limit for
nitrogen surface recombination.

This chapter is structured as follows. First, we include a literature review of nitridation
experiments and estimations to discuss and highlight the state-of-the-art results. A detailed
study of the stagnation line model follows, where we discuss the assumptions considered
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in the baseline forward model, and what are the parameters that need estimation from the
experimental data. We then perform an a priori study of this model where a sensitivity
analysis of its inputs with respect to its outputs is carried out by means of surrogate models.
The developed Bayesian methodology and results for the baseline model are included next.
Finally, we discuss the methods and results of the model assessments and averaging.

7.2 Review of previous works

In general, nitridation reaction efficiencies result from elaborated processes that combine
models and experiments. In the next sections, we show a summary of experimental methods
and how nitridation efficiencies are derived from them. This review includes traditional
deterministic estimations usually carried out by the experimentalists themselves as well as
state-of-the-art statistical approaches.

7.2.1 Experimental efforts and deterministic inverse approaches

In the literature, there exist multiple experimental ways of testing for carbon nitridation
efficiencies, from ICP wind tunnels to molecular beams. Except for the case of the molec-
ular beam, not a single experiment has a straightforward interpretation for the derivation
of nitridation efficiencies. They require several layers of assumptions about the experi-
mental apparatus and its theoretical modeling that could render the obtained parameters
dubious. Molecular beam experiments, on the other hand, can directly measure reaction
probabilities through the products scattering dynamics. Nevertheless, it is difficult to re-
late hypersonic boundary layer conditions to those recreated with the beam which are
limited to low pressure conditions.

Microwave discharges. The experimental work of Goldstein in 1964 [238] was the first in
which the nitridation reaction was carefully assessed as function of the surface temperature.
The microwave-activated nitrogen would react with the exposed carbon surface and cause
it to lose mass through heterogeneous chemistry reactions. By measuring the concentra-
tion of products of such interactions and the concentration of nitrogen atoms at the inlet,
Goldstein was able to pinpoint the ratio of cyanogen products to active nitrogen available.
Zhang et al. [44] studied the problem experimentally with similar methods to the ones used
by Goldstein. They employed a furnace-heated quartz flow tube coupled to a microwave
discharge. The N-atom concentrations entering and exiting the furnace were measured
by chemical titration as done previously by Goldstein. The missing piece was the atom
concentration at the graphite sample location. For that, they used a simple reactive-flow
model with which they interpolated the atomic nitrogen concentrations measured in the
inlet and outlet. The reaction efficiency for graphite nitridation was derived from the in-
terpolated N-atom concentration and the measured graphite mass loss for a given test time.

Shock tubes. Park and Bogdanoff [239] decided to extract nitridation reaction efficiencies
from shock tube experiments at the NASA Ames Electric Arc Shock-Tube (EAST) for lower
surface temperatures. They placed a grid of metal wire coated with carbon downstream
the discharge of the shock tube. The observations were based entirely on the radiative
signature of the gas cyanogen (CN) present in the wake of the flow after passing through
the exposed grid. From the intensity of the radiation detected, they could determine CN
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concentrations by using a radiation model based on Boltzmann populations of the internal
energy levels of the participating particles. A flow model was used to obtain predictions
of the nitrogen atom concentrations in the freestream. The concentration of CN in the
wake compared to that of N in the impinging stream gives out the fraction of atoms that
actually reacted to create CN, defining the reaction rate coefficient.

Plasma wind tunnels. Suzuki et al. [21] in 2008 were the first ones to derive nitrida-
tion reaction efficiencies from ICP wind tunnels. They heated a graphite rod subjected
to a high-temperature nitrogen flow in the test section of the wind tunnel. The amount
of mass loss and the surface temperature of the graphite rod were measured during the
experiments. The value of the atomic nitrogen number density striking onto the graphite
rod was estimated by calculating the flowfield around the graphite rod without account-
ing for nitridation at the surface. Nitridation reaction efficiencies were deduced from the
amount of mass loss rate, the surface temperature, and the atomic nitrogen number density
computed. The results obtained differed significantly from the ones derived by Park and
Bogdanoff which sparked more contributions to the topic. In 2010, Suzuki et al. [240] pro-
vided new data and inferred nitridation reaction efficiencies for lower surface temperatures
following the same methodology. More recently, Helber et al. [22] performed experiments
in the VKI Plasmatron to determine nitridation reaction efficiencies. They pushed the
boundaries of the state of the art with respect to the work of Suzuki et al. [21] for higher
surface temperatures. They did so by including nitridation in the computation of atomic
nitrogen wall concentration as well as adding optical emission spectroscopy measurements
of the CN radiative signature in the flowfield in front of the graphite sample. The more
accurate modeling, together with an additional independent measurement sensitive to CN
production allowed them to compute an updated Arrhenius law for nitridation reaction
efficiencies backed-up by the validation with the spectroscopy measurements.

All the above experimental techniques and methods to retrieve nitridation reaction ef-
ficiencies rely on modeled components such as the atomic nitrogen concentrations at the
sample locations. Depending on the nature of the experimental facility, different assump-
tions are made about the flow and the physical models used. Park and Bogdanoff’s esti-
mations are two orders of magnitude above the other researchers. Their choice to rely on
radiation models adds complexity and, therefore, assumptions to their inference problem.
Plasma wind tunnels and microwave discharges data also differ substantially from each
other.

Molecular beams. In the last couple of years, molecular beam experiments at lower pres-
sures were performed by Murray and Minton [29] for the study of ablation in hypersonic
flight. A pulsed molecular beam containing atomic and molecular nitrogen was directed
at a vitreous carbon surface held at temperatures relevant to hypersonic flight. They mea-
sured the scattering products at different angles and their Time Of Flight (TOF). The
scattering dynamics of CN in such environment indicated that it was formed through a
mechanism in thermal equilibrium with the surface. They also computed the activation
energy of nitridation reaction efficiencies following an Arrhenius rate law with the surface
temperature. More recently, Murray et al. [30] produced another set of molecular beam
data with a continuous beam to address some of the assumptions and uncertainties of the
previous work. The experiments had relatively modest incident velocities with high atom
fluxes and roughened and disordered surfaces to make the exposure conditions similar to
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those of actual hypersonic flights. Consequently, Prata et al. [241] built an air-carbon
ablation model for hypersonic flight which includes nitridation based on such data. Most
of the parameters of the finite-rate chemistry model were physically motivated a priori
or fitted from different experiments. Their aim was to identify pressure dependent char-
acteristics in the proposed finite-rate air ablation model by deterministically comparing
their predictions to the available data in the literature at high and low pressures. While
the molecular beam experiments manage to get a direct estimation of nitridation reac-
tion efficiencies without the need to introduce many assumptions, the extrapolation of the
beam experimental conditions to actual duplication of hypersonic reacting boundary lay-
ers is very much subjected to additional uncertainties. The more detailed surface chemical
mechanism and generalization of the model to different pressures need to be leveraged with
proper stochastic approaches to really see how much far ahead we can see.

7.2.2 Statistical inverse approaches

The only account of stochastic approaches for the inference of nitridation reaction efficien-
cies is found in the work of Upadhyay et al. [43]. In their work, the authors re-formulated
the inference problem performed by Zhang et al. [44] as a statistical inverse problem, which
they solved using the Bayesian formalism. They formulated four different model classes
that differ in the physical model itself and the parameters considered uncertain. They were
able to calibrate power laws for each model class for the dependence of nitridation reaction
efficiencies with surface temperatures.

It is difficult to derive definite conclusions from this work given the fact that they
compared the different model classes by only looking at the marginal posteriors of the
different parameters. A proper hypothesis testing study is lacking to really assess the
evidence of each model for such experimental data. Even though the parameters to be
calibrated are the same for the two physical models proposed, the more detailed model
can achieve so by considering some of its parameters as perfectly known which might not
be the case. Extra parameters can make the detailed model perform poorly compared
to the simpler one on the basis of complexity in a hypothesis testing study. Further, the
physical models used were built on many assumptions which also prevents us from deriving
consistent takeaways from this work. Moreover, the final calibrated power law does not
capture any of the additional nitridation data reported in the literature.

7.3 On the stagnation line model

The stagnation line code reviewed in Sec. 3.1.2 is used to perform efficient simulations of
the reacting boundary layers in front of the graphite samples with ablative wall conditions.

The inlet boundary condition imposed for the simulations of such reacting flows com-
prises species densities ⇢i, temperature T , and velocity components u, v, while the surface
conditions are temperature at the wall Tw, which closes the energy equation; we assume no
slip condition, which closes the momentum equations, and we define surface mass balances
for the species mass equations. These mass balances need the chemical mechanism at the
surface to be specified and we also need to give values to the different parameters. The
information needed to prescribe the boundary condition at the free stream pertains to a
supersonic inlet even though we want to carry out subsonic simulations. This methodology
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has been investigated and discussed in [123], where it was verified that the solution of the
Riemann problem at the boundary interface automatically screens the information needed
from the inlet.

All in all, we intend to find the flow solutions that are compatible with our experimental
observations under the considered model. This means that from the observations reported
by Helber et al. [22], we want to infer the inlet conditions and the wall conditions in such
a way that we are left with a population of possible flow solutions. As we work with
a mixture of 9 species: S = {e�,C+

,C2,C3,CN,C,N,N
+
,N2}, we are left with a 14-

dimensional problem if we only consider nitridation at the wall. The predictive quantities
ṡ and ⇢CN we are after would read

ṡ = ṡ
�
⇢�,i, u�, v�, T�, Tw, �

CN
N

�
, 8i 2 S, (7.1)

⇢CN = ⇢CN
�
⇢�,i, u�, v�, T�, Tw, �

CN
N

�
, 8i 2 S, (7.2)

where the subscript � defines the boundary layer edge conditions. The terms u� and v� refer
to the radial and axial stagnation line velocities, respectively. The fact that we carry out
one dimensional simulations and we need to specify two velocity components falls from the
assumed ansatz for the derivation of the dimensionally-reduced Navier-Stokes equations
(Sec. 3.1.2). The velocity components should be set to comply with the velocity gradient
and dynamic pressure we want to impose at the inlet. As can be appreciated, not all the
unknown parameters are of interest for us given that we are only interested in learning the
nitridation parameter �CN

N . Nevertheless, these nuisance parameters must be included in
the inference as they constitute unknowns of the problem and they are needed to carry out
the flow simulations.

We can reduce the dimensionality of the problem by taking into account some physical
relationships. As we recall, for the VKI Plasmatron, given the electric power, injected
mass flow, static pressure and probe geometry, we can recuperate some boundary layer
edge parameters. The radial velocity u� can be expressed as a linear relationship with v�

through the velocity gradient (@u/@x)
���
�
= (u� + v�)/R0 [61], where x is spatial coordinate

for the radial direction and R0 is the equivalent spherical radius of the probe. From
the subsonic VKI Plasmatron flowfield simulation depicted in Sec. 3.3, non-dimensional
parameters (NDPs) for the boundary layer thickness �, the velocity gradient, and the
axial gradient of the velocity gradient, both at location �, can be defined [145, 146]. The
dynamic pressure, corrected for viscous effects Pd/KH = 1/2⇢�v

2
� with KH as Homman’s

correction factor [136], is used as a convenient proxy for the axial velocity v�. Together, the
non-dimensional parameters and the dynamic pressure define the inlet velocities imposed
by the experimental conditions. As we are assuming a boundary layer edge in chemical
equilibrium, the density ⇢� in the dynamic pressure expression, as well as ⇢�,i are defined by
the temperature T� and pressure P� for a fixed elemental composition. In sum, the following
functional relationships are introduced as valid additional relations of the boundary layer
edge conditions to some characteristics of the experimental set-up

⇢�,i = ⇢�,i(T�, P�), (7.3)

u� = u�(NDPs, Pd, T�, P�), (7.4)
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v� = v�(NDPs, Pd, T�, P�). (7.5)

It is possible to test these assumptions by getting rid of the additional structure in our
model, considering species densities and different thermal bath temperatures as unknowns
of the inference problem. At the end of the analysis, for given Plasmatron operating
conditions, we are left with the expressions

ṡ = ṡ
�
Pd, T�, P�, Tw, �

CN
N

�
, (7.6)

⇢CN = ⇢CN
�
Pd, T�, P�, Tw, �

CN
N

�
, (7.7)

where the momentum boundary layer edge parameters u�, v� have been replaced by the
dynamic pressure Pd, given that the non-dimensional parameters are taken as constant.
These expressions constitute the dependencies of the forward model.

Apart from the dedicated nitridation measurements, Helber et al. performed another
set of tests aimed at recovering the free stream conditions T� for each case by using a
water-cooled copper calorimeter [22] (see Sec. 3.2.2). In this chapter, we evaluate how
important is the information about the free stream conditions in the inference of �CN

N . For
this purpose, we only depict here the additional pressure measurements which are a priori
included in the inference proposed. A water-cooled Pitot probe measures the dynamic
pressure Pd within the plasma jet, and an absolute pressure transducer records the static
pressure Ps in the Plasmatron chamber.

7.4 A priori analysis of the forward model

This section explores the different dependencies of the forward model and builds a hierarchy
of influential parameters on the predictive quantities. This helps us understand what
parameters are the drivers of the inference and what observations are relevant to consider.

The forward model depicted in Sec. 7.3 depends on a set of nuisance parameters and
quantities of interest. We are concerned with the capabilities of learning �

CN
N from the

experimental data of Helber et al. [22]. For this purpose, we first perform an uncertainty
propagation by assuming a priori uncertainty ranges on the input parameters. We then
perform a variance-based sensitivity analysis and derive sensitivity indices for the depen-
dencies of the model.

Non-intrusive uncertainty propagation involves multiple evaluations of the forward model.
This step can be very expensive and burdensome as each individual evaluation should also
have good convergence properties. We decide to lighten the burden by building surrogates
on the predictive quantities ṡ and ⇢CN. These surrogate models are also used later in the
inference.

7.4.1 Surrogate modeling

To construct the surrogates, we first introduce new canonical random variables for the
5 parameters upon which ṡ and ⇢CN depend, ⇠ = (⇠Pd , ⇠T� , ⇠P� , ⇠Tw , ⇠�CN

N
). We set ⇠ to

be defined over the unit hypercube: ⇠ 2 [0, 1]
5 in order to simplify the training and use

of the surrogate models. We then fix the a priori ranges in the physical variables to be
Pd(⇠Pd) = 200 + ⇠Pd160, T�(⇠T�) = 9000 + ⇠T�4000, P�(⇠P�) = 1200 + ⇠P�500, Tw(⇠Tw) =
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2000 + ⇠Tw2000, and �
CN
N (⇠�CN

N
) = 10

�4⇠
�CN
N , such that they all have canonical range 1.

The ranges are chosen large enough to acommodate possible parameter values under the
experimental conditions considered.

We seek to construct surrogates of the ṡ and ⇢CN with this parametrization. In particular,
we decide to proceed with the log of ṡ and ⇢CN (from now on referred to as log variables)
instead of the natural variables as it ensures the positivity of the approximation. More
precisely, we aim for surrogate models of Yṡ(⇠) and Y⇢CN(⇠) defined by

Yṡ(⇠)
.
= log (ṡ(⇠)) , (7.8)

Y⇢CN(⇠)
.
= log (⇢CN(⇠)) . (7.9)

We propose to use Gaussian process models to approximate these functions (Sec. 4.8.1).
The surrogate models are built on an initial 600 points grid where Latin Hypercube

Sampling (LHS) is chosen due to its capability to explore all the unit hypercube evenly.
This is particularly important when dealing with chemical parameters such as �CN

N which
generally can cause irregular behavior of the simulated quantities, especially if the surface
temperature Tw can also vary from point to point. An extra 600 points are added in a
Monte Carlo fashion to enrich the approximation around the areas with largest variance of
the GP prediction if needed. Fig. 7.1 shows the normalized L2 norms of the errors of the
surrogate approximations for both log variables. The L2 norms are changing as we increase
the number of points used to train the surrogates while keeping the same validation sets
to compute the errors (10% of all available points). This process is done 1,000 times with
different validation sets to produce the 95% confidence intervals depicted in Fig. 7.1. The
normalized errors drop fairly quickly below 1%.

Figure 7.1: Normalized L2-error norms of the log variables approximations.
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7.4.2 Sensitivity analysis

Once we have built the surrogate models, we can propagate the uncertainty from the inputs
and model parameters to the outputs. Particularly, we are interested in knowing if the
uncertainty on the free stream information T� is important for the variability of recession
rates ṡ and CN densities ⇢CN. If those two observed quantities are not sensitive enough
to the variation of temperature T�, we would not need to add the additional experimental
data to our inference as it would not bring any useful information for �CN

N . Furthermore,
the treatment of the measurements for free stream determination entails additional models
and computations, increasing the complexity of the inference for no gain.

We propagate the input distributions depicted in Table 7.1. In this case, we only per-
form this analysis for one of the experimental cases as the modeling and experimental
data remain consistent for all. Whenever possible, the ranges and distributions of the in-
put variables are taken directly from the available measurements. When no experimental
counterpart is available, the same ranges as the ones prescribed for the construction of
the surrogates are used. This is the case for the boundary layer edge temperature T� and
the nitridation reaction efficiency �

CN
N . The pressure at the edge of the boundary layer

P� is taken as the chamber static pressure Ps, therefore its uncertainty is taken as the
corresponding experimental uncertainty associated with Ps.

Table 7.1: Input uncertainties for the a priori forward model analysis.
Experiment Pd Tw P� T� �

CN
N

ID [Pa] [K] [Pa] [K] -

G5 N (268, 2.68) N (2410, 12.05) N (1500, 22.5) U [9000, 13000] logU [�4, 0]

The values in the table are normalized within the ranges prescribed for building the
surrogates. We then obtain the corresponding uncertainty distributions for the canonical
variables ⇠ from which to input the GP surrogate models and perform the propagation.
Fig. 7.2 shows the values of ṡ and ⇢CN for the propagated canonical inputs ⇠. This exercise
clearly shows which parameter dominates the variability of each predicted quantity ṡ and
⇢CN. Under the considered testing conditions (and also for the other test cases), �CN

N is
the most important parameter for the variability of recession rates and CN densities. None
of the other parameters play a substantial role. We can appreciate a small influence of T�

on the variability of ⇢CN but qualitatively seems very negligible compared to the effect of
�
CN
N .
Quantitatively, we can compute the associated first and total order Sobol’ indices (see

Sec. 4.8.2) to establish a hierarchy among the variables and reliably assess the influence
of the uncertainty of T� on ṡ and ⇢CN. Fig. 7.3 shows the outcome of the Sobol’ indices
computation. The result shows almost two orders of magnitude difference in the influence
of the uncertainty of �CN

N over the uncertainty of T� on ⇢CN and even more for ṡ. A red
arrow is placed to highlight the indices associated with �

CN
N . This shows the fact that

good knowledge of the boundary layer edge conditions does not play a significant role in
the inference of �CN

N from recession rates and/or CN densities when the other variables are
known to the prescribed degree of uncertainty. We can now safely ignore the rest of the
experimental data gathered by Helber et al. (no depicted in this work, see [22]).
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Figure 7.2: Resulting recession rates and CN densities for the propagated a priori uncer-
tainty distributions of the canonical variables ⇠.

Figure 7.3: First and total order partial variance decompositions for ṡ and ⇢CN. The
rectangles represent the change from first to total order sensitivity indices.
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7.5 Bayesian inference methodology

In this section, the Bayesian framework is presented in detail. First, the formulation of
the inverse problem is reviewed for the inference of nitridation reaction efficiencies. The
likelihood function and prior distributions are highlighted next.

7.5.1 Bayesian formulation of the inverse problem

The inference of model parameters uses the Bayes formula which can be generically for-
mulated as

P(q|yobs) =
P(yobs|q) P(q)R

⌦ P(yobs|q) P(q)dq
, (7.10)

where q = (Pd, T�, P�, Tw, �
CN
N ) is the generic vector of parameters, having for compo-

nents the parameters of the analysis. The vector q results from the stagnation line modeling
and physical considerations presented in Sec. 7.3. The term yobs = (P

meas
d , P

meas
s , T

meas
w ,

ṡ
meas

, ⇢
meas
CN ) is the vector of the measured quantities used for the analysis. For compact

notation, we split the observations and parameters to be inferred in two distinct subsets.
The subset q0 = (Pd, P�, Tw) whose parameters have direct measured counterparts, and
the subset q00 =

�
T�, �

CN
N

�
whose parameters appear implicitly in the model outputs de-

pendencies such that q = (q0, q00). Similar subsets are defined for the observations set.
The subset y0

obs = (P
meas
d , P

meas
s , T

meas
w ), and the subset y00

obs = (ṡ
meas

, ⇢
meas
CN ) are defined

such that yobs = (y0

obs,y
00

obs). We denote P(q) the prior probability distribution of the
parameters.

We recall that usually the posterior distribution in Eq. (7.10) is not known in a closed
form due to the complexity of the mapping q !M(q) where M(q) is the vector of model
predictions using the forward model. The noise and error models can also complicate
calculations. Therefore, sampling strategies, such as MCMC methods (Sec. 4.5.2), are used
to estimate the statistics of the posterior distribution of q (e.g., mean, moments, median,
and mode). In this chapter, we use the Metropolis-Hastings (MH) algorithm (Sec. 4.5.2),
adapting the proposal covariance matrix using previously sampled points in a burn-in
stage [160]. The scaling factor is selected to ensure an acceptance rate varying between 20
and 50% following Roberts et al [221], and ensure a sufficiently fast decorrelation of the
chain. The starting point for the MCMC algorithm is also important. In this context, we
shall also consider the computation of the the Maximum A Posteriori (MAP) point, qMAP,
defined by

qMAP = argmax
q

P(q|yobs). (7.11)

The MAP can be estimated by solving Eq. (7.11) with a dedicated optimization pro-
cedure. To calculate the MAP, we rely on the Nelder-Mead algorithm which is robust
enough as it does not make use of gradients [222]. The main drawback of both the MCMC
and optimization approaches is that they require a large number of evaluations of the
forward model M(q). In our case, this means solving a system of coupled PDEs in one
dimension with auxiliary problems for the closure terms at least thousands of times. As
a result, the approach would be computationally intractable. Instead, we use a surrogate
model M̂(q), with low evaluation cost and good accuracy, that can be used in place of the
original model M(q) in the likelihood, as proposed in other works such as [242]. If the
surrogate model can be constructed at a reasonable computational cost, the sampling of
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the posterior distribution can be orders of magnitude faster and cheaper than the direct
sampling using the full forward problem. Moreover, we can use sampling algorithms that
have a straightforward implementation, such as MH, given that most of the work to make
the process more efficient has been done upstream with a surrogate model.

Lastly, we recall that the integral under the denominator in Eq. (7.10) extends to the
space of q, denoted here with the Greek letter ⌦. In practical terms, this integral is
called the evidence and it is a single number. It usually does not mean anything by itself,
but becomes useful when we compare one evidence with another evidence. Formally, the
evidence is a likelihood function. Specifically, it is the completely marginalized likelihood
function. It is therefore sometimes denoted P(yobs) with no q dependence. It can be
thought as the probability that the measurements are obtained under the considered model.

7.5.2 Likelihood function and prior distributions

In Sec. 7.3 we referenced the model used to simulate the reacting boundary layer encoun-
tered in the experiments. Specifically, we can predict recession rates and CN densities
which we can then compare to the observations. As already mentioned, without further
modeling assumptions, we would have to infer 15 parameters, all nuisance except for the
one �CN

N we are interested in. Further reasonable physical assumptions often adopted in the
literature let us reduce the problem to a 5-dimensional inference where the most influential
parameter is our quantity of interest �CN

N . Having our different sets of measurements and
parameters defined, for each experimental case we propose a general likelihood of the form

P(yobs|q(⇠)) /
N 0Y

i=1

exp

2

4�
|y0obs,i � q

0

i(⇠
0

i)|2

2�2y0obs,i

3

5⇥
N 00Y

j=1

exp

2

4�
|y00obs,j � Yj(⇠)|2

2�2y00obs,j

3

5, (7.12)

where q
0

i, y
0

obs,i represent the ith elements of the q0,y0

obs sets, while y
00

obs,j is the jth element
of the y00

obs set. The terms N 0 and N
00 refer to the number of elements in the prime q0,y0

obs
sets, and the observations double prime y00

obs set, respectively. The dependency of the
quantities q0i with ⇠0i has been made explicit for clarity. In this case, ⇠0i denotes the canonical
variables associated to the variables in q0. As we recall from Sec. 7.4.1, the surrogates for
recession rate and CN density Y =

�
10

Yṡ , 10
Y⇢CN

�
are built on their logarithms to ensure

the positivity of the approximation. The term Yj(⇠) is the jth element of the surrogates
Y set already converted to natural scale. The standard deviations of the elements in both
sets of measurements are expressed as �y0obs,i and �y00obs,j .

As can be appreciated, in this likelihood, the measurement noise is assumed to follow
independent Gaussian distributions with standard deviations �. It is worth mentioning
than in the first formulation of the dependencies of ṡ and ⇢CN (Eqs (7.1),(7.2)) we have
an explicit relation with the velocity components u�, v�. In the formulation of Eq. (7.12),
the set q does not contain the velocity components but the dynamic pressure Pd. Even
though we carry out the inference on the variable Pd instead of the velocity components,
the relationship between them is computed externally and the velocity components are
fed to the model to output ṡ and ⇢CN. It is simpler to keep the original inputs to the
solver which would let us use this framework as it is to assess possible discrepancies due
to the assumptions embedded in the freestream computations, thereby having to include
the velocities in the inference problem in the future.
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Besides the likelihood function, we need to define prior distributions for all the param-
eters in q. In the available literature for tests in the VKI Plasmatron and stagnation line
plasma flows [3, 4, 110, 119] we can only establish some bounds a priori. In a maximum
entropy set-up [161] with this a priori information, the resulting prior distributions are
uniform over the prescribed range (Sec. 4.4). The priors of Pd, Ps and Tw are not going
to be very relevant as we have direct measured counterparts for these parameters which
will dominate in the final posterior. In this regard, we are not concerned with imposing
a tight prior for these parameters when compared to the literature. We have to be more
careful with T� and �

CN
N . Even though the influence of the uncertainty on T� on ṡ and

⇢CN is very small compared to �CN
N , we have to take into account that when performing an

inference from ṡ and ⇢CN jointly, we might run into inconsistencies among measurements
and T� might become important for the model to attain predictability for these cases as the
second most influential parameter. For this reason, the priors for T� and �

CN
N are chosen

conservatively wide. Table 7.2 shows the precise chosen prior distributions.

Table 7.2: Prior distributions for the inference parameters.

Pd [Pa] T� [K] Ps [Pa] Tw [K] �
CN
N

U [200, 360] U [9000, 13000] U [1200, 1700] U [2000, 4000] logU [�4, 0]

7.6 Results on the baseline model

We apply the developed methodology to real experimental cases. The objectives are to
compute reliable and accurate nitridation reactions efficiencies with uncertainty estimates
as well as extend such estimation to a broader span of surface temperatures. In the fol-
lowing sections, the experimental data with their respective uncertainties are presented.
Different inferences are then performed using the various available measurements and com-
pared against each other. Inconsistent data are identified and left out for the calibration
of an Arrhenius law that encompasses all consistent experimental data under the available
conditions and their associated uncertainties.

7.6.1 Experimental conditions and associated uncertainties

The different cases comprise a set of experimental conditions with high heating and high
surface temperatures. High heating helps dissociating the molecular nitrogen, creating a
higher concentration of atomic nitrogen which enables more nitridation activity at the wall.
The high surface temperatures play the same role in promoting nitridation reactions at the
wall, enhancing the phenomenon we want to observe. The following tables summarize the
different measurements and uncertainties used. In Table 7.3 the measured quantities are
the dynamic pressure Pd, the wall temperature Tw, the chamber static pressure Ps, the
recession rate ṡ, and the CN densities ⇢CN estimated from spectra measurements locally
resolved. Each experimental case represents one data point for the given Plasmatron
conditions.

The experimental uncertainties in Table 7.4 are assumed independently distributed
Gaussian distributions with the standard deviations � taken considering the bounds given
on the measurements as 2� levels of confidence [3].
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Table 7.3: Experimental data.

Experiment ID Pd [Pa] Tw [K] Ps [Pa] ṡ [µm/s] ⇢CN [µg/m3]

G4 231 2225 1500 1.41 385
G5 268 2410 1500 1.64 800
G6 312 2535 1500 2.60 1850
G7 330 2575 1500 2.51 1050

Table 7.4: Experimental uncertainties.
Experiment ID Pd [Pa] Tw [K] Ps [Pa] ṡ [µm/s] ⇢CN [µg/m3]

G4 N (231, 2.31) N (2225, 11.12) N (1500, 22.5) N (1.41, 0.26) N (385, 52)

G5 N (268, 2.68) N (2410, 12.05) N (1500, 22.5) N (1.64, 0.27) N (800, 100)

G6 N (312, 3.12) N (2535, 12.67) N (1500, 22.5) N (2.60, 0.27) N (1850, 250)

G7 N (330, 3.3) N (2575, 12.87) N (1500, 22.5) N (2.51, 0.25) N (1050, 162)

Our inference analyses are carried out from different sources of information to potentially
unveil some inconsistency issues with the model chosen and/or the measurements. The
latter could be due to a bad reconstruction of the corresponding physical quantities from the
raw data. Helber et al. [22] used the experimental data for two different tasks. They used
recession rates to rebuild nitridation reaction efficiencies, and CN densities for validation
of their rebuilding methodology. Recession rates are well understood and the transition
from raw data to the physical quantity itself is rather straightforward. On the other hand,
CN densities are the result of an elaborated rebuilding procedure with intermediate steps
and modeling choices [243]. Unless a very careful uncertainty analysis was carried out
upstream, from the raw data to the reduced model parameters of the ICCD sensor of the
spectrograph and on to the gas temperatures and CN densities, we cannot be confident in
the bounds given for the CN densities or even the nominal values reported. Therefore, it is
not fair for the model in question to be validated against dubious experimental data. Cross-
validating this way sources of information is useful for detecting inconsistencies stemming
from inappropriate experimental data treatment and/or modeling choices. The key for this
task is that nitridation influences both recession rates and CN densities and we can then
compare their information on �CN

N in an objective Bayesian inference scenario.
The next sections contain results and discussions on the inferences from different mea-

surements on a one by one basis and also when combined all together in a single analysis.
We recall that each experimental condition is treated separately and nitridation reaction
efficiencies are computed for each case independently. Conversely, for the calibration of an
Arrhenius law, the measurements from all cases are combined together.

7.6.2 Inference from recession rates

For the case of using only recession rates, pressures and wall temperatures, the likelihood
formulated reads
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P(ṡ
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Results are depicted in Fig. 7.4 where we can see that the marginal posterior distributions
obtained for �CN

N are well defined with a very reduced support. If we take a look at the
experimental conditions, we would expect to see a tendency where �

CN
N increases as a

function of the temperature at the wall, which is what is seen in these results (Fig. 7.5).
Compared to the deterministic rebuilding performed by Helber et al., our results show
agreement and consistency. This is due to the strong dependency of the recession rate
with the nitridation reaction efficiency and their quasi-linear relationship as seen in Fig. 7.2.
We can also notice in Fig. 7.5 that the distribution on the measured wall temperatures are
recovered after the model calibration.

Figure 7.4: Posterior marginal distributions of �CN
N from recession rates.

7.6.3 Inference from CN densities

If the chosen model can explain the experiments and the treatment of the raw experimental
data is fully consistent with the workings of the experimental apparatus, one can expect the
inference from different sources of information to give us consistent answers. In this regard,
we explore the possibility of learning nitridation efficiencies from CN densities estimated
from spectra measurements of the CN violet system. This measurement is plagued with
assumptions about the nature of the CN radiative signature in these experiments. The
fact that recession rates give us enough information about nitridation helps us assess the
quality and assumptions on the spectra measurements. In the case of the inference from
⇢CN, the likelihood considered in this case reads
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Figure 7.5: Joint posterior distribution of �CN
N and Tw from recession rates.
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Fig. 7.6 shows the inference performed from CN densities, pressures and wall tempera-
tures. The results are visibly different from Fig. 7.4 but the tendency of �CN

N increasing
with wall temperatures is also observed (Fig. 7.7), even though G6 seems to infer a quite
higher �CN

N than that from recession rates in order to match a ⇢CN that is larger than any
of the other cases. We can notice as well that the support is larger compared to the support
from recession rates in Fig. 7.4, meaning that CN density is a less precise measurement
and also more sensitive to other parameters than recession rates. We can also see that
there are two orders of magnitude of difference between the calibrated �CN

N for G4 and G6,
while for recession rates results were more clustered around 10

�2. Overall, there is less
information content in this set of measurements than the previous inference with ṡ

meas.

Even though we do not take into account the details of how the CN densities are rebuilt
from spectrometer measurements, we could already signal inconsistencies with this mea-
surement for the different cases here considered. This can trigger a more detailed spectra
rebuilding in the future that can potentially enhance the information obtained for �CN

N
with this set of experimental data. In addition, signalling these problems help with the
validation of the model when the data considered are the ones coming from the spectrom-
eter. A more thorough treatment and uncertainty propagation would make the validation
process more fair for the model when including this set of measurements.
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Figure 7.6: Posterior marginal distributions of �CN
N from CN densities.

Figure 7.7: Joint posterior distribution of �CN
N and Tw from CN densities.

7.6.4 Inference from all available measurements

We could expect to learn better �CN
N if we use all sources of available information. This

would be true if we assume that the model error is zero and that the raw data is correctly
transformed into meaningful physical quantities. If somehow the model chosen to simulate
our experiments is inadequate and there are some missing modeled components, we can
probably expect to see a depart of the calibrated distributions obtained independently
from each other. In turn, this tension among measurements under the chosen model will
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find a trade-off distribution when all measurements are used together in the inference
but the predictive capabilities might be lost. We would also expect to see the marginal
posteriors of �CN

N from ṡ
meas and ⇢meas

CN to share supports with each other. We can expect
this overlapping fraction of the �CN

N posterior marginals to explain all measurements with a
reduced support and information gain on the calibrated �CN

N . In this regard, the likelihood
now includes all measurements following Eq. (7.12).

We can see in Fig. 7.8 the different inferences that we carried out when using each piece
of information independently and jointly. Overall, we can see that the calibration seems
consistent, the support of the distributions obtained with all measurements is contained
in within the support of each of the parts and one can see some information gain (reduced
support compared to either of the parts’). Overall, good agreement seems to be found,
although we can clearly see that as the wall temperature increases, there seems to be
an over prediction of ⇢CN that is not fully consistent with the measurements of recession
rates. This is reflected on the calibration of �CN

N as both measurements are directly and
greatly affected by it. If we pay attention to case G6 (lower left), we can see that the
overlap of support is very small and the distribution that contains the information of both
measurements does not share most of its support with the calibration obtained by using
only CN densities. It is clear that, in this case, the results represent a trade-off between
the two measurements and this case must be studied further.

The inconsistencies with the measurements of G6 are likely to signal an issue with the
measurements. The fact that things look good for all cases but G6 makes it unlikely
for the chosen physico-chemical model to only fail at the conditions under which G6 is
recorded, given that the testing conditions were steadily changed from one case to the
next, always under the same static pressure. The testing conditions reach top values for
G7, for which the inferences do not present any inconsistencies. For this reason, we are
led to consider this issue to be related to the measurements. Based on the work of Helber
et al., no dedicated uncertainty propagation was carried out on the spectra measurement
chain. This is particularly important given the intertwined and complex rebuilding to get
from the integrated line-of-sight spectrum to local CN densities. We therefore base our
attempt at explaining these results on the inadequacy of the uncertainty levels given by
Helber et al. on the CN densities.

7.6.5 Inference with experimental uncertainty unknown

In this section, we include the uncertainty on ⇢meas
CN as an additional parameter in the infer-

ence with all available measurements. We are interested in retrieving the values of �⇢meas
CN

that would make the cases (specially G6) consistent across all measurements. Introducing
an additional parameter in our inferences implies defining a prior distribution for such
parameter and its role in the likelihood function. The latter issue is straightforward as the
parameter introduced is a standard deviation which does not need to pass through any
physical model or alter our likelihood formulation a priori.

We need to specify an objective prior for the standard deviation of a Gaussian distribu-
tion. For this, we prescribe a Jeffrey’s prior [162] for �⇢meas

CN
for each experimental case. We

recall from Sec. 4.4, that the family of Jeffrey’s priors are able to objectively capture our
ignorance regarding parameter scaling which is what the standard deviation of a Gaussian
distribution represents. The �⇢meas

CN
prior for each experimental case is defined as follows
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Figure 7.8: Posterior marginal distributions of �CN
N from recession rates, CN densities and

both measurements for G4 (upper left), G5 (upper right), G6 (lower left) and G7 (lower
right).

P(�⇢meas
CN

) =

8
<

:

1

�⇢meas
CN

�⇢meas
CN
� �⇤⇢meas

CN
,

0 otherwise.

(7.15)

with �⇤⇢meas
CN

being the originally prescribed �⇢meas
CN

by Helber et al. We are implicitly assum-
ing that the actual uncertainty on the CN density experimental estimation is larger than
what was originally computed, given the assumptions that go into it and not taken into
account in the uncertainty computation.

The problem is now reduced to jointly infer q and �⇢meas
CN

from all the available observa-
tions yobs for each experimental case. We proceed by using the full likelihood depicted in
Eq. (7.12) together with the priors defined in Table 7.2 and Eq. (7.15). We want to analyse
the results and, particularly, the marginal posteriors for �⇢meas

CN
for each experimental case.

We also recall from Table 7.4 that the value of �⇤⇢meas
CN

is dependant on each experimental
case.

Fig. 7.9 shows the calibrated �⇢meas
CN

for each case, as well as the transformed distribution
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for the logarithmic increment of �⇢meas
CN

with respect to each case’s �⇤⇢meas
CN

. On the left
plot of Fig. 7.9, we can see the different marginal posteriors for which their lower bounds
coincide with their respective �

⇤

⇢meas
CN

which are dependent on each case (vertical lines),
reason why they appear slightly shifted from each other. Overall, we retrieve the same
kind of posteriors for all cases but G6, as expected. On the right plot of Fig. 7.9, while all
the other cases posteriors still support their respective �⇤⇢meas

CN
values (zero), G6 practically

gives no chance to its initially prescribed standard deviation in order to be able to support
the experimental data with the chosen model.

Figure 7.9: Left: posterior marginal distributions of �⇢meas
CN

. The vertical lines signal �⇤⇢meas
CN

for each case. Right: Their transformed logarithmic increment distributions with respect
to the given values of �⇤⇢meas

CN
for each case.

A minimum of a 10% increment on G6’s �⇤⇢meas
CN

could already be enough to attain con-
sistency and produce compatible results, although the optimal for G6 would be between
one and ten times its �⇤⇢meas

CN
(100% and 1000% increment, respectively). A 10% increment

is certainly a possibility. Twice the prescribed value of G6’s �⇤⇢meas
CN

would not be a large
stretch either, given the complexity of the densities rebuilding from the measured spec-
trum and all the parameters uncertainties that should be involved and are not yet. Even
though from this procedure we have no way to actually prove that this is the reason why
we observe inconsistencies in the inferences under G6 conditions, we can already prescribe
the repetition of measurements and an adequate treatment of the raw data and associated
uncertainties. In any case, this analysis can already rule out the possibility of learning
from G6’s ⇢meas

CN to obtain a useful calibrated model given that the data cannot be fully
trusted.

We also show in Fig. 7.10 the resulting posterior marginals for �CN
N with �⇢meas

CN
unknown.

We can appreciate how we retrieve consistent posteriors across the different measurements.
It is also important to notice that as we let �⇢meas

CN
be calibrated, it will, in general, be larger

than each �⇤⇢meas
CN

thus, in the inference, the recession rate ṡ
meas is the measurement driving

the calibration of �CN
N . As the certainty in the measurement of ⇢meas

CN decreases (larger
values of �⇢meas

CN
), the posterior marginals of �CN

N when using all available measurements
are exactly the posterior marginals when using only ṡ

meas.
The new parametrization of this inference problem is not free of caveats. As we let �⇢meas

CN
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Figure 7.10: Posterior marginal distributions of �CN
N from recession rates, CN densities

and both measurements for G4 (upper left), G5 (upper right), G6 (lower left) and G7 (lower
right) with �⇢CN unknown.

vary freely without any upper bound, the resulting distributions for the measurement error
of ⇢meas

CN can lead to possible negative values which is not physical. For this reason, we also
consider a log-normal statistical model [244] for the measurement error of ⇢meas

CN for which
the resulting possible values are always kept positive. We propose the same Jeffrey’s prior
for the log-normal standard deviation but in this case, the values �⇤⇢meas

CN
are taken as the

logarithm of the �⇢meas
CN

originally prescribed by Helber et al. (see Table 7.4). The likelihood
proposed in this case is structured as follows

P(yobs|q(⇠)) /
N 0Y
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exp

2
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#
.

(7.16)
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The results of the inference for this error model are shown in Fig. 7.11. Here, �⇢meas
CN

is
taken in decades. We can already observe the same tendency as with the previous error
model. All cases have now an equivalent �⇤⇢meas

CN
in the log-normal distribution around 0.1

decades which makes the posterior marginals start from roughly the same values in all
cases. The posterior marginals for �CN

N do not present visible changes for the inference
performed with all measurements (Fig. 7.12). On the other hand, the resulting posterior
marginals for �CN

N when considering only ⇢
meas
CN are quite different. This is due to the

appearance of an additional term in the likelihood function. For a log-normal likelihood
we have to take into account an additional term as the inverse of the density ⇢CN, which
is transformed as the negative value of the log of ⇢CN when considering the log-likelihood
function for the MCMC sampling. This additional term favours smaller ⇢CN over larger
ones, giving as a consequence preference to smaller �CN

N values in the calibration as seen
in Fig. 7.12. Overall, we can draw the same conclusions regarding the data from G6.

Figure 7.11: Posterior marginal distributions of �⇢CN and their transformed logarithmic
increment distributions with respect to the equivalent �⇤⇢CN

from all measurements.

7.6.6 Calibration of an Arrhenius law

The scrutiny of the different sources of information for �CN
N allows us to build a calibrated

Arrhenius model with the remaining consistent experimental data. In theory, we could
propose any mathematical form for the relationship between �CN

N and surface temperatures
Tw. An Arrhenius law of the form

�
CN
N = A exp

✓
�Ta

Tw

◆
, (7.17)

with the pre-exponential factor A, and the activation energy (given in temperature units)
Ta, is a familiar model in the state-of-the-art nitridation modeling [22, 240]. Apart from
the possibility of producing direct comparisons between the models derived in this chapter
and in the relevant literature, an Arrhenius law model also captures some of the underlying
macroscopic physics through its parameters [71].

For this analysis, we aim at calibrating the pre-exponential factor A and the activation
energy Ta which are the same for all cases. Along with the Arrhenius parameters, we
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Figure 7.12: Posterior marginal distributions of �CN
N from recession rates, CN densities

and both measurements for G4 (upper left), G5 (upper right), G6 (lower left) and G7 (lower
right) with the log-normal �⇢CN unknown.

need to add all the nuisance parameters to the calibrations. In this case, each nuisance
is represented as a different variable for each experimental case. The compact notation is
as follows. For each case (i) in G = (G4,G5,G6,G7), we define the set of parameters to
be inferred as q(i) = (q

0(i)
, q

00(i)
), and the set of observations from which we infer y(i)

obs =

(y
0(i)
obs,y

00(i)
obs ). While the sets of observations remain the same as in the previous sections,

the set of parameters to be inferred is now changed to q(i) = (P
(i)
d , T

(i)
� , P

(i)
� , T

(i)
w , A, Ta),

where A and Ta do not depend on the experimental conditions and they are the same for
all cases. The split for the set q(i) is now q

0(i)
= (P

(i)
d , P

(i)
� , T

(i)
w ), and q

00(i)
= (T

(i)
� , A, Ta).

For this new inference problem we need to define a new parametrization in the form of
likelihood and prior parameters. We propose the following likelihood

P(yobs|q(⇠))
.
=

Y

i2G

P(y(i)
obs|q

(i)
(⇠)), (7.18)
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with
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We use this formulation to compare the results of the inferences when using only recession
rates to the ones obtained when using all consistent data jointly. We recall that in the case
of conditions G6, only the measured recession rate is used.

We perform the different inferences with 18 parameters to be calibrated. The prior
distribution is taken as independent priors on all parameters, already specified in Sec. 7.5.2.
For A we prescribe the same prior as for �CN

N as it is an equivalent parameter, in this case,
A ⇠ logU [�4, 0]. The prior on Ta is chosen wide enough with the same lower bound as
the prior on Tw, given that we expect the activation energy to be at least as low as the
a priori possible lowest Tw. It is not easy to prescribe a good upper bound as there is
not so much literature on this particular reaction parameter. We choose the upper bound
conservatively large based on the results of Suzuki et al. [240] and Helber et al. [22], having
Ta ⇠ U [2000, 10000].

The results of these inferences are shown in Fig. 7.13. The plot on the left is the
calibrated Arrhenius law that results from using all available measurements except G6’s
⇢
meas
CN , while the right plot contains the calibrated Arrhenius law when using only recession

rates from all cases. The up-close plots show the two dimensional joint probability density
functions of �CN

N and Tw as the result of each individual inference for comparison with the
Arrhenius bounds obtained. The calibrated laws are represented by their mean and 95%
confidence interval bounds. We can see that there is a reduction of the law parameters
uncertainty when using all available information compared to using just recession rates.
From recession rates we can learn A = 0.26

+0.22
�0.22 and Ta = 8027.4

+1899.6
�3832.3 to that precision,

while incorporating all measurements gives us different estimations A = 0.28
+0.22
�0.21 and

Ta = 8337.8
+1608.2
�3308.3. The major uncertainty reduction is in the activation energy Ta and it

mainly comes from the combined measurements of G5. We already saw a reduction of the
�
CN
N posterior marginal uncertainty for G5 when using all measurements. This is also the

case for the Arrhenius parameters. For G4 and G7, we saw that the posterior marginals
of �CN

N changed little or nothing when using recession rates or all measurements, while for
G5 the combination of ṡmeas and ⇢CN

meas saw a more prominent reduction of the support
than for any one measurement alone. The data used for G6 is the same in both cases as
we cannot trust the CN density reported. Both results contain the fit produced by Helber
et al. in their posterior. The major discrepancy is seen in the low temperature region for
which our inferences do not use any experimental data, unlike Helber et al., who included
in their fit some selected cases in the lower temperature region.

It is interesting to show the results that are obtained if the measured CN density of case
G6 is taken into account. Fig. 7.14 shows the obtained calibrated Arrhenius model, as well
as a close-up plot of the two dimensional joint posteriors for the different cases. From the
close-up plot, we can observe that the case G6 has more weight in the inverse problem,
considerably deviating upward the general trend followed by the other cases captured in the
Arrhenius laws of Fig. 7.13. Consequently, the resulting law is significantly modified for the
upper and lower values of wall temperatures. The upper surface temperature region leaves
completely out the estimation by Helber et al., while for lower surface temperatures, the
calibrated law encompasses Helber et al.’s estimation at the very limit of the confidence
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Figure 7.13: Calibrated Arrhenius laws from the data used in this chapter. Left: resulting
law using all consistent measurements. Right: resulting law using only recession rates.

interval. There is a substantial modification of the resulting uncertainty levels in the
lower surface temperatures region for which no additional experimental data are taken
into account. In turn, this result falsely decreases the uncertainty levels in the range of
lower surface temperatures.

Figure 7.14: Calibrated Arrhenius law from all the available measurements, including the
measured CN density of case G6.

7.7 Assessment of models and averaging

Several model assumptions stand at the basis of the previous analyses. The flow is as-
sumed in thermochemical equillibrium and the ablative wall conditions amount to only
nitridation reactions. Furthermore, measuring the surface temperature also allows us to
test ablation energy balance models. In the available literature regarding experimental
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studies for nitridation, flow simulations are a needed component to compute atomic nitro-
gen concentrations at probe locations. The resulting nitridation reaction efficiencies rely
heavily on such computations which are full of assumptions about the flow and material
behaviors. Suzuki et al. [21, 240] used flow simulations that did not account for nitridation
at the surface. Helber et al. [22] showed that the atomic nitrogen concentration profile
along the stagnation line of the boundary layer is significantly different (⇠10%) when ni-
tridation is turned on/off. Suzuki et al. underestimated nitridation reaction efficiencies
this way.

The thermal estate of the gas is not expected to impact the previous estimations of
nitridation reaction efficiencies given that the recession rates and surface temperatures
are accurately measured. Nevertheless, this set of experimental data presents a great
opportunity to study the evidence for thermal non-equilibrium and surface energy balance
models. The fact that the material tested is graphite in a pure nitrogen flow gives us an
unprecedented window for testing hypotheses concerning the flow and wall states without
having to add important uncertainties stemming from other physical processes such as
pyrolysis and oxidation. Together with the thermodynamics and energy wall conditions,
nitrogen recombination reactions are added to our models. As recombination reactions
compete with nitridation reactions for the available atomic nitrogen, it is important to
evaluate their impact in our calibrations. Moreover, we are also interested in learning
about nitrogen recombination from these experiments.

Overall, four different model scenarios of additive physical richness are presented:

• M0: This is the baseline model used in the previous analyses. It is a one temperature
model with no recombination at the surface for which the surface temperature is
imposed.

• M1: This model accounts for nitrogen recombination at the surface by introducing
an extra parameter �N2

N . It considers the flow to be in thermal equilibrium and
imposes the surface temperature.

• M2: In this model the thermal state is considered in equilibrium, surface recombi-
nation is taken into account, and the surface temperature is now a prediction of the
model through a Surface Energy Balance (SEB) as seen in Sec. 2.3.3.

• M3: This model assumes thermal non-equilibrium by considering two different ther-
mal baths for the translational-rotational and vibrational-electronic-electron temper-
atures. Furthermore, it is also agnostic about the wall surface energy condition by
allowing it to be in non-equilibrium (Sec. 2.3.1). Surface recombination reactions are
also included.

The main characteristics of each modeling scenario are depicted in the following Table 7.5

Table 7.5: Modeling scenarios considered in this chapter.

Modeling assumptions M0 M1 M2 M3

Thermal non-equilibrium No No No Yes
Surface energy balance No No Yes Yes
Surface recombination �N2

N No Yes Yes Yes
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A hypothesis testing study is performed to compare the resulting evidences under the
different models with each other. The baseline model M0 is used as reference (or null
hypothesis) for the comparisons.

As it is recalled from Sec. 4.7, we need to evaluate the posterior probabilities of each
competing model (or hypotheses in our context). This comparison allows us to weigh the
relative merit of each model. The comparison is driven through the posterior ratio

P(Mi|yobs)

P(M0|yobs)
, 8i 2 {1, ..., 3}, (7.20)

for which M0 is used as reference in the denominator. The comparison is performed
at the order of magnitude level. If the posterior of the baseline model is several orders
of magnitude below the competing model, we would prefer the competing model and
viceversa. If both posteriors are of similar orders of magnitude, the data does not provide
enough evidence to preferentially support either model.

The posterior ratio can be decomposed according to the Bayes’ rule

P(Mi|yobs)

P(M0|yobs)
=

P(yobs|Mi)

P(yobs|M0)
⇥ P(Mi)

P(M0)
, 8i 2 {1, ..., 3}, (7.21)

where the posterior ratio is expressed as the product of the ratio of the marginalized
likelihoods and priors of the different models. The marginalized likelihood of the data
under the assumptions of each model is expressed as follows

P(yobs|Mi) =

Z

⌦
P(yobs|q,Mi)P(q)dq, 8i 2 {0, ..., 3}, (7.22)

where the term P(yobs|q,Mi) is the likelihood P(yobs|q) in Eq. (7.10) for the different
models under consideration. P(q) is the prior of the parameters q. The marginallized
likelihood is also the normalization constant of the posterior P(q|yobs) under each model.
The normalization factor does not play a role in inference problems but it is the defining
characteristic of hypothesis testing studies.

The prior ratio P(Mi)/P(M0) is taken as unity in this case. We consider all models
to be equally likely to explain the experiments a priori. The results from the hypothesis
testing study is entirely based on how well each model fits the data (values of the likelihood
P(yobs|q,Mi)), and how complex each model is regarding the number and ignorance about
each model parameter (dimensionality of the integral in Eq. (7.22) and overall support of
the priors of q).

Following the hypothesis testing study, we use the models whose posteriors compare
similarly or better than the baseline to weigh the marginal posterior of nitridation reaction
efficiencies with their respective evidences for each experimental case (Sec. 4.7)

P(�
CN
N |yobs) =

X

i2{0,...,3}

P(�
CN
N |yobs,Mi)P(Mi|yobs). (7.23)

The result is an overall marginal posterior which gathers the information on nitridation
efficiencies provided by each valid model, incorporating this way model form uncertainties
in the calibration of �CN

N .
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7.7.1 Hypothesis testing results and discussion

The vector of parameters q has to be redefined for each model under consideration. The
following Table 7.6 details the parameters that are calibrated for each modeling scenario.

Table 7.6: Parameters to be calibrated and their priors for the different modeling scenarios.

Inference parameter M0 M1 M2 M3 Prior

Dynamic pressure Pd Yes Yes Yes Yes U [200, 360]
Edge translational temperature T� Yes Yes Yes Yes U [9000, 13000]
Static pressure Ps Yes Yes Yes Yes U [1200, 1700]
Surface temperature Tw Yes Yes No No U [2000, 4000]
Nitridation efficiency �CN

N Yes Yes Yes Yes logU [�4, 0]
Recombination efficiency �N2

N No Yes Yes Yes logU [�4, 0]
Emissivity ✏ No No Yes Yes U [0.5, 1]
Energy acommodation coefficient � No No No Yes U [�1, 1]
Collisional efficiency ↵ No No No Yes U [0, 1]

It is straightforward to see that the null hypothesis M0 is the simplest model in terms of
model parameters, while M3 is the most complex one. For M0 to be definitely invalidated
by the experimental evidence, its predictions must be way worse than the ones produced
by any other model. We have to consider this assessment with care. We already know
that the experimental data can be reasonably well explained with M0, and the fact that
a competing model does much better is reason enough to abandon the hypotheses behind
M0, or at least modify them. If M0 was not good enough to begin with, we would not
have any reason to consider it in the first place for our hypothesis testing study.

We then compute the evidences P(yobs|Mi) for each model and experimental case (see
Table 7.7). The objective of such study is the comparison of competing hypotheses for the
experimental data.

Table 7.7: Evidences or marginalized likelihoods P(yobs|Mi) of the different models for
the given experimental conditions.

Experiment ID M0 M1 M2 M3

G4 1.12 ⇥1011 5.6 ⇥1010 6.0 ⇥107 6.64 ⇥107
G5 7.31 ⇥1010 6.76 ⇥1010 2.85 ⇥105 7.73 ⇥106
G6 5.1 ⇥104 5.08 ⇥104 3.45 ⇥101 4.43 ⇥101
G7 3.7 ⇥1010 3.76 ⇥1010 5.0 ⇥105 3.7 ⇥106

Typically, the evidences are compared through the Bayes factor (Sec. 4.6)

BF =
P(yobs|Mi)

P(yobs|M0)
, 8i 2 {1, ..., 3}, (7.24)

where BF is the Bayes factor which is generally expressed in logarithmic scale as

log10BF = log10(P(yobs|Mi))� log10(P(yobs|M0)), 8i 2 {1, ..., 3}. (7.25)



7.7. Assessment of models and averaging 177

For strong evidences in favour or against a certain hypothesis, the Bayes factor should be
above a threshold of | log10BF | = 8, which indicates that as long as the evidences for each
model remain in within some orders of magnitude, we cannot conclude anything from the
data. Table 7.8 shows the results of the hypothesis testing study. Overall weak evidence
is found against any given model compared to M0. On the other hand, it means that
the SEB model does not perform too poorly compared to imposing the measured surface
temperature directly, giving us some confidence in such models for ablative surfaces under
the considered Plasmatron conditions. The baseline model M0 does pretty well compared
against the other models for which the larger number of parameters to be inferred penalize
the resulting evidence. In the case of model M2, the offset of the temperature prediction
is what lowers its evidence given that M0 and M2 have the same number of parameters
q. M2 also replaces Tw, which is a well-defined parameter within its experimental un-
certainty for M0, with the emissivity ✏ which does not have a measured counterpart in
these cases, also contributing to the lowering of M2’s evidence. Model M2 needs a perfect
prediction of Tw to amount to the evidence of M0 which is not achieved, although the
deviation is small to still consider the model good enough compared to the baseline. It is
important to recall that in the case G6 the models are compared on the basis of predicting
the recession rate and surface temperature measured. The CN density measurement was
deemed untrustworthy in the previous analyses, therefore, it is not used in the context of
this study.

Table 7.8: Bayes factors of the different models against the baseline model M0 for each
experimental condition.

Experiment ID M1 M2 M3

G4 -0.3 -3.27 -3.22
G5 -0.034 -5.4 -4.0
G6 -0.0024 -3.17 -3.06
G7 0.01 -4.87 -4.0

The results depicted in Table 7.8 show no definitive evidence against the baseline model
which considers thermal equilibrium and nitridation reactions as the only wall reactions.
Nevertheless, this study does not conclude that this is the truth but rather that the ex-
perimental data is consistent with the baseline model as well as the other models. If the
true flow was in non-equilibrium, other measurements would be needed in order to find
the relevant evidence and truly invalidate the baseline model of thermal equilibrium. The
same is applicable to the presence of recombination reactions. Concentrations of N2 in
the vicinity of the material surface that cannot be explained by the baseline model could
definitely give evidence of recombination reactions and their relative importance. So far,
the calibrations of the different models with this particular set of experimental data do not
provide enough information about recombination reactions. Fig. 7.15 depicts the marginal
posteriors for �N2

N under the different models that include such parameter. Almost flat
posteriors with the same support as the priors are recovered except for the 1T SEB model
M2 where the posterior support is reduced. In order for M2 to be able to explain the
experimental obbservations, recombination reaction efficiencies cannot surpass a certain
upper limit. Going over such limit would probaly throw off the prediction of the surface
temperature. Given that the other models have more parameters to control the surface
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temperature prediction, model M2 is able to place more constraints on �
N2
N . It can also

be appreciated that as the wall temperature measured decreases the posterior support for
�
N2
N shrinks toward lower values.

Figure 7.15: Posterior marginal distributions of �N2
N under the different modeling scenar-

ios for G4 (upper left), G5 (upper right), G6 (lower left) and G7 (lower right).

For more insight about model performance, we can look at the resulting residuals of the
statistical inverse problem for the measured quantities. We recall that the inverse problem
we are solving every time we perform an inference amounts to solving the equation

yobs = Y (q(⇠)) +E, (7.26)

where the stagnation line model evaluations are replaced by accurate GP surrogates Y
for the predictions of recession rates ṡ, CN densities ⇢CN, and surface temperatures Tw.
The error model is chosen as unbiased Gaussian distributions for which we prescribe the
different standard deviations � for each measurement. Once the model is calibrated and we
have posteriors on the parameters q, we propagate them through the model to generate the
resulting distribution of yobs�Y (q(⇠)). This distribution is what we call the residual and
it should match the error model distribution E initially prescribed for each measurement.
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Fig. 7.16 shows the residuals for case G5 for recession rate ṡ
meas, CN density ⇢

meas
CN

and surface temperature T
meas
w under the different modeling scenarios. The rest of the

results for the other experimental cases can be found in Appendix D. Overall all models
retrieve the noise of recession rate and CN density. Model M2 shows the largest deviations
in the predictions which are still quite small. The 1T SEB model tends to over predict
recession rates and under predict CN densities in the flowfield. The surface temperature
is perfectly captured by the 2T SEB model M3 while the 1T SEB model M2 shows some
deviation towards higher surface temperatures. The deviation is ⇠ 25 K which is rather
small compared to the range of surface temperatures we deal with in this problem (> 2,000
K).

Figure 7.16: Residuals of recession rate ṡ
meas, CN density ⇢meas

CN and surface temperature
T
meas
w for the different models under conditions G5.

It is interesting to reflect on how the 2T SEB model manages to achieve a lower prediction
of the recession rate and surface temperature, and yet perfectly recuperate the error of the
CN density. The only possibility for this to happen is through available thermal non-
equilibrium mechanisms which are not considered in the 1T SEB model. The 2T surface
energy balance in Eq. (2.95) contains an additional term for the conductive contribution
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of the internal energy to the total energy balance. Through this mechanism, the 2T SEB
model finds the combination of collisional efficiency ↵ and energy acommodation factor �
so that the internal energy contribution cools off the surface. Fig. 7.17 shows the resulting
marginal posterior distributions as well as samples from the joint distribution of the ↵ and
� parameters. The collisional efficiency ↵ is quite constrained by the experimental data
to low values, while the energy accommodation coefficient � keeps all the prior support.
The resulting distributions are shifted towards values that favour thermal non-equilibrium
(↵ < 1,� < 1).

Figure 7.17: Left: 100,000 samples from the joint posterior distribution of ↵ and �. Right:
posterior marginal distributions of ↵ and � under conditions G5.

Fig. 7.18 shows the propagated posterior solutions of the stagnation line model for both
the 1T SEB and 2T SEB models with their corresponding confidence intervals. Promoting
strong thermal non-equilibrium, as seen in the temperature profiles in Fig. 7.18, makes the
surface excite the internal energy modes, consequently lowering the resulting translational
surface temperature to match perfectly the experimental data. This feature of the 2T
SEB model can easily decouple the surface temperature prediction from the rest of the
temperature profile in the flowfield. The result is an overall increment of the flowfield
temperatures with respect to the 1T SEB model.

The fact that this change in the temperature profiles can also alter the chemical compo-
sition in the flowfield to match the observed ⇢CN (Fig. 7.19) brings forth the importance
of another set of assumptions: the gas phase chemistry. In particular, the resulting overall
depleition and creation of CN differs between the two models in such a way that a higher
CN density is achieved at the spectrometer location for the same concentration of CN
at the wall, dictated primarily by the recession rates predicted (schematic representation
can be found in Fig. 7.20). Additional experiments for the proper calibration of the gas
phase chemistry would be needed to have a realistic assessment on the evidence of thermal
non-equilibrium at the wall.

Still, considering the same chemical mechanism and reaction rates, we could also pro-
pose new experimental avenues to find strong evidence, or lack thereof, of thermal non-
equilibrium at the wall. In particular, the differences in the CN mole fraction profiles could
be exploited further by considering the addition of a spectrometer measurement in a differ-
ent location along the stagnation line. Such measurement could be performed downstream
the current spectrometer measurement, although the accuracy and uncertainty estimation
of the resulting CN concentration should be carefully addressed to be able to tell the two
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Figure 7.18: Propagated temperature profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals. The vertical black line represents the
position of the spectrometer measurement.

models apart. Upstream, the radiative signal would lose intensity and the observation
would become more noisy. In any case, it represents a challenge to find stronger evidence
in favour of thermal equilibrium or non-equilibrium at the wall.

Figure 7.19: Propagated mole fraction profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals. The vertical black lines represent the
position of the spectrometer measurement.
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Figure 7.20: Schematic representation of the modulating effect of the gas phase chemistry
in the calibration of the different stagnation line models. The CN concentration at the wall
is dominated by the recession rate while the CN density at the spectrometer location is a
combined result of the recession rate and the gas phase chemistry.

7.7.2 Model averaging results

All the modeling scenarios presented are so far consistent with the experimental data. We
want to incorporate the uncertainty of these multiple modeling choices into the resulting
calibrated nitridation reaction efficiencies �CN

N . We recall the model assumptions for which
we remain uncertain. The baseline model M0 considers a flow in thermal equilibrium for
which only one temperature is defined. As heterogeneous chemistry mechanism at the
wall it only considers nitridation. Model M1 introduces the possibility of having nitrogen
recombination reactions at the surface. Models M2 and M3 incorporate a surface energy
balance model for the prediction of surface temperatures which are not imposed in these
cases. Further, model M3 assumes the flow to be in a state of thermal non-equilibrium by
assuming two distinct thermal baths.

Fig. 7.21 shows the resulting �CN
N marginal posteriors under the different modeling sce-

narios. The resulting weighted average posterior is labelled as BMA. Overall, all the pos-
teriors share supports and are consistent with each other. This is to be expected as �CN

N
is dominated by the recession rate and surface temperature measurements which are quite
accurate in all cases and are not substantially affected by the differential features of the
models. We notice a broader support for the thermal equilibrium model with recombina-
tion �N2

N in it M1. As a competing mechanism, recombination reactions allow nitridation
reactions to have higher efficiencies for the same observed recession rates. The atomic
nitrogen available at the surface is more scarce for nitridation reactions when competing
with recombination reactions. Higher nitridation efficiencies would still produce the same
observed recession rates. The wider support is also extended to the averaged posterior
given that model M1 has similar weight as all the other models, consequently widening
the support for �CN

N . The models with the tightest supports are the baseline M0 and the
1T SEB M2 models. They are also the models with the least number of parameters to be
inferred, producing more defined peaks and less uncertainty for �CN

N .
The most relevant summary statistics for the resulting BMA distributions are gathered

in Table 7.9.
Given that we have different �CN

N calibrations under the various models, we can expect
the calibrated Arrhenius law to also be slightly different for the variety of models. In this
context, the calibration of an Arrhenius law of the same structure as the one in Sec. 7.6.6
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Figure 7.21: Posterior marginal distributions of �CN
N under the different modeling scenar-

ios and the resulting averaged posteriors for G4 (upper left), G5 (upper right), G6 (lower
left) and G7 (lower right).

Table 7.9: �CN
N posterior statistics of the resulting BMA distributions for the different

experimental cases.

Experiment ID Mean 95% C. I. MAP

G4 0.005 [0.003, 0.007] 0.005
G5 0.007 [0.005, 0.013] 0.007
G6 0.012 [0.008, 0.026] 0.010
G7 0.012 [0.009, 0.024] 0.010

is performed for all the models proposed. The results of the Arrhenius parameter marginal
posteriors can be seen in Fig. 7.22. Overall there is good agreement in their support and
the resulting BMA distributions follow closely the posterior obtained with the baseline
model M0. The summary statistics are gathered in Table 7.10.

Propagating the pre-exponential factor and activation energy posteriors we get an es-
timation of the variation of the nitridation parameter �CN

N with the surface temperature
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Figure 7.22: Calibrated Arrhenius parameters and their weighted average for the different
models considered.

Table 7.10: Posterior statistics of the resulting BMA distributions for the Arrhenius pa-
rameters.

Arrhenius parameter Mean 95% C. I. MAP

A 0.253 [0.065, 0.502] 0.42
Ta [K] 8328.7 [4996.1, 9944.2] 9669

Tw. Fig. 7.23 shows the different Arrhenius laws and the BMA with the 95% confidence
intervals. The right plot of Fig. 7.23 shows the obtained calibrated laws plotted against
the available experimental data. Even though the resulting laws are calibrated with the
data from Helber et al., we can project accurate confidence intervals to lower surface tem-
peratures, where the experimental data available differ by several orders of magnitude.
The data of Helber et al. are consistent with the experiments from Zhang et al. for lower
surface temperatures as well as Suzuki et al.’s data. This apparent agreement enhances
our confidence in the tools developed and the analyses performed.

Figure 7.23: Calibrated Arrhennius laws and their weighted average for the different mod-
els considered (left). The Arrhenius laws are compared against the available experimental
data (right).
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7.8 Summary

The aim of this chapter is to infer nitridation reaction efficiencies from plasma wind tunnel
experiments. We propose an a priori study of the chosen 1D thermal equilibrium stagnation
line forward model to discard some experimental data which are not important to the
phenomenon we want to study. To do so, we propagate a priori uncertainty levels on all the
input and model parameters and derive variance-based sensitivity indices. This procedure
shows that information of the boundary layer edge conditions does not play a role in the
inference we want to carry out. Consequently, we can drop some experimental data that
would otherwise complicate the inference by adding other models and computations to the
likelihood estimation. This result also informs the experimental procedures about which
data are informative for ablation processes, potentially allowing the simplification of future
experimental campaigns. To carry out the a priori analysis, we propose to use Gaussian
processes as surrogate models for the predicted quantities. The surrogate models are also
used for the inference procedure.

The inference is splitted in terms of the experimental data used. We want to gauge the
different levels of information that recession rates and CN densities bring to the inference of
nitridation efficiencies. By comparing and combining them we check for consistency issues
in the experimental data and/or the model. Overall the calibrations seem consistent, the
supports of the distributions obtained with all the measurements are generally contained
in within the support of each of the parts and one can see some uncertainty reduction.
We conclude that the spectrometer measurements for the case G6 present inconsistencies
which are likely to stem from the lack of uncertainty treatment in the complex rebuilding
chain from the line-of-sight spectra to local CN densities. We follow up the analysis by
including in the inference the uncertainty on the measured CN densities. Apart from the
initially adopted Gaussian measurement error model, we also adopt a log-normal error for
the CN density measurements. For both cases the conclusion about G6 is the same. We
recommend that the measurements are repeated and carefully analysed.

Gathering the consistent data from all the experimental conditions allows us to infer
Arrhenius law parameters, relating the nitridation efficiencies to different wall tempera-
tures. For this task, we compare the results when combining all consistent measurements
and when using only recession rates. The results differ mainly on the uncertainty levels
obtained for the activation energy. Most of the difference is due to the information given
by the combination of recession rates and CN densities for the case G5.

The final part of this contribution is devoted to model selection and averaging. The
model choice presented in the first part of the analyses is based on flow thermal equilibrium
assumptions which may not hold for such low static pressures. The heterogeneous chemical
mechanism is also ignoring the fact that nitrogen recombination might be important. We
consider three additional modeling scenarios which account for nitrogen recombination,
surface energy balances and thermal non-equilibrium in the flow and the wall. All these
modeling choices are assessed in a hypothesis testing study. Overall no strong evidence
is found against the baseline model and none of the considered models can be discarded.
The calibrations of models with surface recombination can define an upper limit for this
parameter at best. The calibrated solutions of the thermal non-equilibrium model point
to strong thermal non-equilibrium at the wall, although the evidence is weak. Model
averaging is performed for the nitridation efficiencies and Arrhenius laws obtained under
each model. Complete and accurate characterization of their posterior uncertainties is
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provided to update the current state-of-the-art databases.
The outcomes of this chapter direct our research efforts in this field towards two different

aspects. First, the spectrometer measurements should be studied in depth and proper un-
certainty propagation methods should be used to go from raw data to the parameters of the
reduced models of the apparatus and forward to flow temperatures and species concentra-
tions. In doing so, the inference of physical model parameters with the derived measured
quantities can improve and be more reliable when calibrating new models. Second, new
data and experiments are needed to be able to rule out some models and find definitive
evidence of thermal non-equilibrium and learn surface recombination.



Chapter 8

Conclusions and future outlook

The process of scientific inference has been a subject of study and debate for centuries. As
the mathematical models and experimental apparatus escalate in complexity, deterministic
methods for model calibration and validation are being replaced by statistical methods in
all disciplines of science and engineering. It happens often that these methods are so deeply
ingrained in the way we do science that not many questions are posed on them.

Aerothermodynamic models, particularly those concerning gas-surface interaction but
also kinetic models in general, have largely undefined uncertainty levels in their constitu-
tive parameters and, consequently, in their predictions. This is due to the fact that model
calibration in aerothermodynamics is largely based on single-point estimates, which, to
date, constitutes the standard approach in the state-of-the-art methodologies. This issue
limits the extent to which we can confidently validate our models and, consequently, attain
predictive performance. It is only in the last decade that an influx of research works have
started to pave the way for stochastic methodologies to settle in within the aerothermody-
namics community.

Predictive models and simulations represent the cornerstone for future Space exploration
missions. Since atmospheric conditions and physical phenomena of planetary entry flights
are so varied, it is practically impossible to test all aspects of flight as they would happen
during entry. Consequently, we have to rely on models and simulations to give us confi-
dence in our design choices. To estimate accurate confidence levels in our predictions and
databases, we need to introduce rigorous model calibration techniques which can handle
sources of uncertainties in our models and data.

As we recall from Chapter 1, we identified two overall objectives for this thesis. The first
one concerned the accurate inference of catalytic parameters for reusable TPS,
and the second was the calibration and assessment of graphite ablation models for
nitrogen flows. In the next section, we first summarize the contributions to each specific
objective in detail. We then discuss the broader perspective of such contributions to the
research in the aerothermodynamics community.

8.1 Contributions of this work

It is essential to highlight that this work was confined to the experimental data of the Plas-
matron facility at VKI. As such, a series of experimental and model assumptions were taken
into account as valid representations of the selected experiments used in this thesis. In this
context, using 1D boundary layer simulations for the reproduction of stagnation region
quantities allowed us to perform the comparisons with the experimental data, which also
concerned stagnation region quantities. Further, phenomenological gas-surface interaction
models were more suitable for the task of learning from Plasmatron data.
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8.1.1 Contributions to the specific objectives

A detailed account on how the objectives of this thesis were achieved is given. Both
objectives we set out for were further divided into two distinct tasks. The introdution
of each specific task is highlighted in bold. The objectives are presented in chronological
order as they appear in the thesis.

Objective 1: Accurate inference of catalytic parameters for reusable TPS

The accuracy of the inferred catalytic parameters is tightly coupled to the information
we have about the flow free stream (enthalpy). Deterministic methods tend to infuse the
calibration process with a set of delicate assumptions. Relaxing those assumptions and
including uncertainties reveal that a poor characterization of the enthalpy leads to large
uncertainties on the calibrated catalytic parameters. The conductive and diffusive heat
flux components can exchange values easily while giving out the observed wall heat flux.
This is the main caveat we dealt with to accomplish this first objective. Overcoming the
challenge required the development of inference and experimental methodologies.

First, a novel Bayesian inference formulation was proposed. The calibration gave
estimates of the material catalytic parameter through its posterior probability distribution.
The Bayesian approach allowed for the simultaneous computation of the catalytic param-
eters of the reference and Thermal Protection System (TPS) materials, which was already
proven to be more accurate than the conventional sequential approach. The improvement
of the methodology stemmed from the proposed likelihood function. An optimization prob-
lem in the nuisance parameters space was built on the likelihood definition, reducing its
dimensionality to just the quantities of interest �ref , �TPS. To cope with this computation-
ally demanding likelihood, we proposed the use of a surrogate model. Gaussian Processes
(GP) worked quite well for this problem yielding good results with low standard devia-
tions on the chain samples. In addition, the approach was robust, in the sense that the
Markov Chain Monte Carlo (MCMC) sampling method worked smoothly for any given
conditions. Overall, the optimization formulation presented has the impact of improving
considerably the inference results by giving more consistent and accurate posterior distri-
butions of the catalytic parameters when compared to the existing literature. The main
differences being the reduced support, with a decrease of 20% in the standard deviation,
and well-defined peaks of the respective posteriors. Subsequently, it is possible to say that
the catalytic parameters can be effectively learned from the experimental conditions and
under the considered model assumptions.

Having developed an efficient and effective inference methodology, we then defined an
experimental methodology that could take the results further in accuracy. A set of
seven test cases was proposed under different static pressures and heat fluxes to study
their influence on the results. The results showed two different classes of characterizations
achieved. First, for low pressures of 15 mbar, we showed an improvement of 50 % over
previous analyses. Even though it is still an improvement, we can appreciate a considerable
support for the TPS material marginal distribution and a tendency towards following
bimodal distributions. In contrast, higher pressure cases such as 50 and 100 mbar, yielded
very precise parameters. The reduction of the uncertainty in this case was 30-50 % with
respect to the previous 15 mbar cases and it relied solely on the chosen testing conditions.
Nevertheless, not all the inferred parameters could be trusted. The model was not found to
be a good representation of the experiments for two of the cases. Alternative explanations
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such as the uncertainty on the chemical state of the gas could lead to an improvement.

Objective 2: Calibration and assessment of graphite ablation models for
nitrogen flows

In general, nitridation reaction efficiencies result from elaborated processes that combine
models and experiments. The experimental techniques and methods used to retrieve ni-
tridation reaction efficiencies in the literature rely on modeled components such as the
atomic nitrogen concentrations at the sample locations. Depending on the nature of the
experimental facility, different assumptions are made about the flow and the physical mod-
els used. Generally, the estimations from the different facilities and models encountered in
the literature differ substantially from each other.

This second objective is accomplished by using state-of-the-art physico-chemical models
to represent the gas phase with also different surface mechanisms such as nitridation and
recombination, experimental data including radiation measurements which also provide
information about ablation, and stochastic methods to deal with uncertainties stemming
from the data and model definition.

First, the calibration is splitted in terms of the experimental data used. We wanted
to gauge the different levels of information that recession rates and CN densities bring
to the inference of nitridation efficiencies. By comparing and combining them we check
for consistency issues in the experimental data and/or the model. We concluded that
the spectrometer measurements presented inconsistencies for only one case. They were
likely to stem from the lack of uncertainty treatment in the complex rebuilding chain
from the line-of-sight spectra to local CN densities. Gathering the consistent data from
all the experimental conditions allowed us to infer Arrhenius law parameters, relating the
nitridation efficiencies to different wall temperatures.

The second part of this contribution was devoted to model selection and averaging.
The base model presented in the first part of the analyses was based on flow thermal equi-
librium assumptions which may not have been adequate for such low static pressures. The
heterogeneous chemical mechanism was also ignoring the fact that nitrogen recombination
might have been important. We considered three additional modeling scenarios which ac-
counted for nitrogen recombination, surface energy balances and thermal non-equilibrium
in the flow and the wall. All these modeling choices were assessed in a hypothesis testing
study. Overall no strong evidence was found against the baseline model and none of the
considered models could be discarded. The calibrations of models with surface recombi-
nation could define an upper limit for this parameter at best. The calibrated solutions
of the thermal non-equilibrium model pointed to strong thermal non-equilibrium at the
wall, although the evidence was weak. Model averaging was performed for the nitrida-
tion efficiencies and Arrhenius laws obtained under each model. Complete and accurate
characterization of their posterior uncertainties was provided to update the current state-
of-the-art databases.

8.1.2 General contributions

In a broader perspective, this thesis contributes to the general need in aerothermodynamics
of implementing model calibration methodologies from experimental data for future model
validation in a statistical setting. In this section, we discuss the aspects of the specific
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contributions outlined in Sec. 8.1.1 that also have an impact beyond the VKI Plasmatron
facility and its experimental techniques, as well as the choice of modeling used in this work.

Overall, three general contributions are outlined: 1) development of calibration method-
ologies applicable to plasma wind tunnels and common ground-testing experimental data,
2) computation of accurate uncertainty estimates for catalysis and ablation experimental
databases, and 3) application of general hypothesis testing techniques to assess flow models
and surface mechanisms in light of experimental data.

First, the inference methodologies developed for catalysis and ablation parameters can
also be applied to different classes of plasma wind tunnels, such as arcjets, where ex-
periments on reusable materials are largely based on heat flux measurements in similar
environments, and ablation is assessed through the measurements of recession rates and
radiative signatures of the flow. Further, the work developed for the calibration of nitrida-
tion reaction efficiencies allows us to compare results obtained with different independent
measurements. Apart from obtaining uncertainty reductions on the marginal posteriors,
the comparisons allowed us to check for consistency in our experimental dataset as well
as in model assumptions across the experimental conditions. We know from the literature
that the quality and accuracy of the reported measurements represent the foundations on
which inference methods stand. So far, there is not a standard and reliable way of checking
the quality of experimental data. We have to either rely on the information passed on by
the experimentalists or assumed the standard deviation of the measurement errors to be
unknown. Independent measurements that give information about the same phenomenon
also allow for the accurate model calibration and model cross-validation.

Second, the Bayesian inference methodologies developed can be used as tools for op-
timal experimental design where the most informative experiments can be proposed. Ac-
curate calibration and experimental design can lead to a large improvement of future
gas-surface interaction experimental databases. We have shown the potential of such ap-
proaches through an experimental methodology capable of significantly improving current
catalysis estimations. Further, when epistemic uncertainties are recognised, such as the
ones stemming from the thermal state of the flow or the role of nitrogen recombination
in the experiments, we have shown how we can include them in our analyses by using
Bayesian model averaging. Overall, the resulting distributions for catalysis and ablation
parameters are available for use in CFD codes to propagate their uncertainties and assess
their impact on different model predictions.

Third, we have shown how hypothesis testing techniques can be used in aerothermo-
dynamics to gauge the evidence for different flow models and surface mechanisms. These
techniques do not rely on single-point estimates such as traditional comparisons between
model predictions and experiments in the state-of-the-art, but rather take into account
the full posterior distributions obtained from the calibrations. Moreover, the complexity
of each model is also taken into account through the extent of their parameter spaces. For
similar quality of their predictions, simple models are favoured over more complex ones.
Through these methods we were able to show that the presence of strong thermal non-
equilibrium at the wall is compatible with the ablation experimental data considered in
this thesis. Still, the baseline model of thermal equilibrium could not be discarded based
on the data alone, which indicates that more research is needed in that direction. Further,
we could find maximum values for nitrogen recombination efficiencies in the experiments
considered. These newly found insights are relevant for improving the overall understand-
ing of suitable boundary conditions for typical aerothermodynamic flows in plasma wind
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tunnels or in equivalent environments in real flight conditions.

8.2 Future work and perspectives

We now present perspectives which build on this work. Some of them take advantage of the
novelties introduced in this work while others improve some of the weak points highlighted.
Given the multidisciplinary nature of the contributions, future work recommendations are
given in two groups: related to the physics/models/experiments (application oriented),
and to the methods here used (methodology oriented).

Application oriented

• The experimental datasets for catalysis studies only rely on one type of measurement
technique to carry the information on the catalytic parameters. Another independent
source of information may be studied in the future. For instance, spectrometer
measurements of molecules spectra that result from catalytic recombination may be
of interest. Not only could this additional measurement reduce the uncertainty levels
on our estimations but also help with the calibration of the gas phase chemistry.
Anfuso et al. [245] have recently started an effort in this direction where they aim
at using numerical simulations to determine what to look for in the experiments in
order to get the most information about the chemistry and wall catalysis.

• The experimental methodology presented in Chapter 6 could be used to find the op-
timal experimental conditions for obtaining the most informative experiments, and
produce a more extensive catalysis database. This methodology is also able to iden-
tify the limits of the baseline model used in this thesis. Defining and understanding
the experimental conditions for which the baseline model can explain the data is im-
portant for accurate flight extrapolation and for the generation of reliable calibration
and validation data.

• Following the thread with experimental studies, it was shown in Chapter 7 that re-
ported spectrometer measurements might not be trustworthy. This issue is largely
due to the fact that physical quantities derived from spectrometer measurements,
such as CN concentrations, are the results of an elaborated measurement chain. As
such, proper propagation of uncertainties from the raw data to the physical quantities
should be carried out. Further, some intermediate steps, such as deriving flow tem-
peratures from radiative intensities, represent an additional inverse problem. Overall,
forward and backward uncertainty propagation techniques should be adopted for the
rigorous derivation of physical quantities from raw experimental data.

• In Chapter 7, we found some evidence of possible thermal non-equilibrium at the
wall. Given that the results are also conditioned on the gas phase chemistry, ad-
ditional measurements could be added to the experimental dataset to calibrate the
chemistry along with the ablation parameters. This might relax the condition of
non-equilibrium at the wall or, conversely, not change it. Measurements of N2 con-
centrations in the boundary layer along the stagnation line could also refine the
obtained calibration of nitrogen recombination efficiencies.
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• The results achieved for nitridation could be used as an upper bound for a prior
distribution in the calibration of air ablation in the VKI plasmatron. The knowl-
edge extracted from the nitrogen flow experiments can be used to inform future air
ablation experiments when it comes to nitridation. A full air ablation model could
be calibrated by using different experimental datasets in air and nitrogen under the
same plasma conditions. As nitridation would compete with oxidation for the sur-
face carbon, the values obtained when atomic nitrogen is the only reactive species
are probably higher than those obtained in air. The prior could be carefully chosen
to reflect this knowledge.

• Given the limitations on what we can validate in wind tunnels, the methodologies
developed in this thesis could help pave the way to achieve model calibrations and
validations with flight data. Although prohibitively expensive, flight data provide
an unprecedented window to the coupling of the various physical phenomena that
cannot be captured on ground. Cubesat platforms, such as HyCUBE [246] and
QARMAN [146], for which the object of study is the atmospheric entry itself, have
been proposed and designed for this purpose.

Methodology oriented

• The Bayesian inference methodology developed for catalysis in Chapter 5 is particu-
larly tailored to plasma wind tunnel data and physico-chemical models that consider
thermal equilibrium. Moreover, the results are conditioned on the gas phase chem-
istry model parameters which are considered known. As seen in Chapter 6, there
are some conditions for which the model proposed is not a good representation of
the experimental data. New hypotheses were proposed and tested with a numerical
experiment. It was shown that uncertainties stemming from the gas phase chemistry
could explain the discrepancies observed. Anfuso et al. [245] are already looking into
extending the optimal likelihood methodology developed in this thesis to cases where
the gas phase chemistry is also considered unknown. This task is not free of caveats.
For starters, the optimal likelihood problem could not have a global optimum, finding
local optima for different nuisance parameters. Further, the experimental data as it
is, with only heat fluxes and pressures, might not be enough to achieve successful
calibrations. In sum, new methodological and experimental avenues may have to be
studied and implemented.

• The methodologies developed in this work are heavily conditioned by the computa-
tional complexity of the fluid dynamic solvers. Calibrations of 2D, 3D and unsteady
flow models could be accomplished in the future. Further, hypothesis testing studies
could be run to assess the evidence for additional spatial and temporal structures that
are not currently captured. This would allow us to have a more complete picture.

• Dealing with more complex computational problems (2D, 3D or unsteady) surely
implies adopting different approaches to solving the inverse problem due to the ex-
ponentially more expensive model evaluations. Surrogate models of such flow models
would either need active training techniques or adaptive multi-fidelity approaches
(or both) to further reduce the number of model evaluations for the same accuracy.
Capriati et al. [247] are developing methods to cope with the computationally de-
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manding task of propagating uncertainties in complex unsteady 3D flows following
an error control strategy and adaptive multi-fidelity surrogate models.

• The Bayesian inferences here presented do not account for model errors. We assume
that the discrepancies between observations and model predictions are due only to
observational errors. This makes the obtained posteriors be the result of experimental
uncertainties and model discrepancies, moreover we do not have the capability to
distinguish between them. New refined estimations and insights could be acomplished
by including the model error as a different error source in the inverse problems. Leoni
et al. [248] are developing an inverse approach that accounts for the model error with
particular application to multiphase flows.

All in all, if we want to reliably use our state-of-the-art models to design atmopsheric entry
vehicles, we need to devise an overarching strategy for model calibration and validation.
Different methodologies can be tailored to the various ground-testing facilities, based on
the methods presented in this thesis. The ensemble knowledge of the generated databases
with their uncertainty estimations can be used to formulate suitable priors that inform the
full models including possible coupling mechanisms. If flight data is not available from
similar previous flights, the priors represent the best we can do, if not, they can be used
to calibrate the full models with flight data and generate the posteriors we are after. Final
calibrated models can be used to project accurate and relistic uncertainty estimates on the
design parameters, enabling future missions.

To successfully tackle these objectives with the methods presented in this thesis, we need
improvements in several fronts. Computational methods need to increase their efficiency
at producing high quality solutions for low computational cost. Experimental techniques
need to investigate new avenues for the direct and accurate probing of microscopic phe-
nomena for relevant flight conditions. Further, we need to estimate reliable uncertainty
levels on model data built upon well-established theories, such as quantum and statistical
mechanics, as well as experimental data such as kinetics. The improvement and successful
implementation of statistical methods for model calibration and validation hinders on all
these different disciplines.
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Appendix A

Transport systems

This appendix describes the evaluation of the linear transport systems necessary for com-
puting the transport properties shown in Chapter 2. For the most part, these equations
can be found in the results of [76], and are reproduced here for clarity and completeness.

Binary diffusion coefficients for heavy-heavy and heavy-electron are expressed as
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As discussed in Chapter 2, the transport systems result from Laguerre-Sonine polynomial
approximations of the Chapman-Enskog approximation to the non-dimensionalized Boltz-
mann equation. The resulting systems are summarized in Tables A.1-A.2 for heavy-heavy
interactions and all electron interactions, respectively.

The terms �ij and �ie are the correction functions to consider a higher order Sonine
polynomial for heavy-heavy interactions and heacy-electron interactions, respectively. First
order and second order approximations read
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for which the following relationship is used to fulfill Eq. (A.8) with the data from Table A.2

⇤
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64xe

75kB

r
me

2⇡kBTe
⇤̃
kl
ie , i 2 S, k, l 2 {0, 1}. (A.9)

The terms A
⇤

ij , B
⇤

ij and C
⇤

ij in Table A.1 are the usual expressions for collision integral
ratios and they read
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Table A.1: Summary of heavy particle transport subsystems used in this work, i, j 2 H.
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The term µi refers to the viscosity coefficient for heavy particles and reads

µi =
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p
⇡kBThmi
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, i 2 H. (A.13)
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Table A.2: Summary of heavy particle-electron and electron-electron transport subsystems used in this work, i 2 H.
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Appendix B

Physico-chemical model data

This appendix details the various mixtures and physico-chemical data used for the simu-
lations described in this thesis. The data here depicted include species involved, specific
reactions considered, as well as the collision integral data necessary to compute the trans-
port coefficients.

B.1 Mixtures

This section is devoted to the exposition of the chemistry model data used in the problems
involving catalysis in CMC materials and nitridation calibrations.

The mixtures described in Sections 3.1.1-3.1.2 are summarized in Table B.1. The table
provides lists of species included in the respective mixtures, and the numbers of species,
reactions, and collision pairs. Species thermodynamic properties were computed using
the RRHO model as described in Sections 3.1.1-3.1.2. The reaction mechanisms and rate
constants employed for the mixtures are detailed in the proceeding section followed by the
collision integral data required to compute transport coefficients.

Table B.1: Summary of the mixtures used in Chapters 5-7.
Mixture name Species # Species / Reactions # Collision Pairs

air7 O2,N2,NO,O,N, 7/21 28
NO

+
, e

�

nitrogen-carbon e
�
,C

+
,C2,C3,CN 9/37 45

C,N,N
+
,N2

B.2 Reaction mechanisms

This section presents the reaction mechanisms used for each of the mixtures summarized
in the previous section. For each mechanism, the corresponding reactions, rate constants,
and temperature dependencies are provided in Tables B.2-B.3.

B.3 Collision integrals

This section present summaries of the collision integral data used for each mixture presented
in Section B.1. In Figs. B.1-B.2, all collision integrals are either explicitly taken from the
given reference, or are computed using the Langevin (ion-neutral) and Coulomb (charged-
charged) potentials.
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Table B.2: Gas phase chemical reactions used in this work for the catalysis studies (air7
mixture). Forward reaction rate coefficients are computed using the modified Arrhenius
formula, kf (Tf ) = AT

�
f exp (�Ta/Tf ). Backward reaction rate coefficients are computed

in order to satisfy equilibrium at the temperature associated with the reverse reaction, kb =
kf (Tb) /keq (Tb). The sources for the listed rate constants are provided in the last column.

No. Reaction A � Ta Ref.
m, s, mol K

Dissociation reactions
1. O2 +M ⌦ 2O +M 3.6⇥ 10

18 -1.00 59 500 [118]
M = N,NO

2. O2 +O ⌦ 2O + O 9.0⇥ 10
19 -1.00 59 500 [118]

3. O2 +O2 ⌦ 2O + O2 3.24⇥ 10
9 -1.00 59 500 [118]

4. O2 +N2 ⌦ 2O + N2 7.2⇥ 10
18 -1.00 59 500 [118]

5. N2 +M ⌦ 2N +M 1.9⇥ 10
17 -0.50 113 000 [118]

M = O,NO,O2

6. N2 +N ⌦ 2N + N 4.085⇥ 10
22 -1.50 113 000 [118]

7. N2 +N2 ⌦ 2N + N2 4.7⇥ 10
17 -0.50 113000 [118]

8. NO+M ⌦ N+O+M 3.9⇥ 10
20 -1.50 75 500 [118]

M = N2,O2

9. NO+M ⌦ N+O+M 7.8⇥ 10
20 -1.50 75 500 [118]

M = O,N,NO

Exchange reactions
10. NO+O ⌦ O2 +N 3.2⇥ 10

9 1.00 19 700 [118]
11. N2 +O ⌦ NO+N 7.0⇥ 10

13 0.00 38 000 [118]
Associative ionization reaction

12. N+O ⌦ NO
+
+ e

�
1.4⇥ 10

6 1.50 31 900 [118]
Exchange ionization reaction

13. O2 +N2 ⌦ NO+NO
+
+ e

�
1.38⇥ 10

20 -1.84 141 000 [118]
Heavy-impact ionization reactions

14. N2 +NO ⌦ N2 +NO
+
+ e

�
2.2⇥ 10

15 -0.35 108 000 [118]
15. O2 +NO ⌦ NO

+
+O2 + e

�
8.8⇥ 10

15 -0.35 108 000 [118]
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Table B.3: Gas phase chemical reactions used in this work for the nitridation studies
(nitrogen-carbon mixture). Forward reaction rate coefficients are computed using the mod-
ified Arrhenius formula, kf (Tf ) = AT

�
f exp (�Ta/Tf ). Backward reaction rate coefficients

are computed in order to satisfy equilibrium at the temperature associated with the reverse
reaction, kb = kf (Tb) /keq (Tb). The sources for the listed rate constants are provided in
the last column.

No. Reaction Tf A � Ta Ref.
K m, s, mol K

Dissociation reactions
1. N2 +M ⌦ 2N +M

p
TTV 3.0⇥ 10

22 -1.60 113 200 [249]
M = C,N,C

+
,N

+

2. N2 +M ⌦ 2N +M

p
TTV 7.0⇥ 10

21 -1.60 113 200 [249]
M = N2,C2,C3,CN

3. N2 + e
� ⌦ 2N + e

�
p
TTV 1.20⇥ 10

25 -1.60 113 200 [249]
4. C2 +M ⌦ C+ C+M

p
TTV 3.7⇥ 10

14 0.00 69 000 [249]
5. CN+M ⌦ C+N+M

p
TTV 2.5⇥ 10

14 0.00 71 000 [249]
6. C3 +M ⌦ C2 +C+M

p
TTV 6.3⇥ 10

16 -0.50 101 200 [250]
Exchange reactions

7. N2 +C ⌦ CN+N T 1.1⇥ 10
14 -0.11 23 200 [249]

8. CN+ C ⌦ C2 +N T 5.0⇥ 10
13 0.00 13 000 [249]

Electron-impact ionization reactions
9. N+ e

� ⌦ N
+
+ e

�
+ e

�
T 5.08⇥ 10

16 0.00 121 000 [251]
10. C+ e

� ⌦ C
+
+ e

�
+ e

�
T 6.35⇥ 10

15 0.00 130 700 [251]

e
–

NO
+

N O NO N 2 O 2

e– -

NO+ + -

N [252][252][253]

O [252][252][253][253]

NO [252][252][252][252][252]

N2 [252][252][252][252][252][252]

O2 [252][252][252][252][252][252][252]

Figure B.1: Summary of collision integral data for the air7 mixture used in this work.
Cell colors represent type of collision (red : charged, orange : electron-neutral, green :
ion-neutral, blue : neutral-neutral). Numbers indicate reference source for each collision
pair. + : attractive, - : repulsive.
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e
–

C
+

C 2 C 3 CN C N N
+

N 2

e– -

C+ + -

C2 [254][255][255]

C3 [254][255][255][255]

CN [254] L [255][255][254]

C [254][254][255][255][254][254]

N [256][254][255][255][254][254][256]

N+ + - [255][255] L [254][257] -

N2 [256] L [255][255][254][254][256][257][256]

Figure B.2: Summary of collision integral data for the nitrogen-carbon mixture used in
this work. Cell colors represent type of collision (red : charged, orange : electron-neutral,
green : ion-neutral, blue : neutral-neutral). Numbers indicate reference source for each
collision pair. + : attractive, - : repulsive, L : Langevin potential.



Appendix C

VKI Plasmatron testing conditions

This appendix contains additional data and post-processing procedures related to the ex-
periments depicted in Chapter 6.

C.1 Experimental conditions

Table C.1: Experimental testing conditions and corresponding non-dimensional parame-
ters.

Test case Ps Pw ⇧1 ⇧2 ⇧3 ⇧4 ⇧5

[mbar] [kW] [-] [-] [-] [-] [-]

MTAt1 15 157 0.4053 0.3513 0.6454 0.3779 0.4487
MTAt2 15 202 0.3903 0.3158 0.5906 0.3309 0.4371
MTAt3 15 281 0.3856 0.3119 0.5850 0.3247 0.4344
MTAt4 50 185 0.3849 0.2952 0.5663 0.3089 0.4439
MTAt5 100 177 0.3765 0.2568 0.5344 0.2802 0.4481
MTAt6 100 191 0.3700 0.2524 0.5300 0.2709 0.4443
MTAt7 100 205 0.3644 0.2514 0.5310 0.2660 0.4414

C.2 Adaptation model

The test case MTAs1 is based on Panerai and Chazot [19] and Viladegut and Chazot [20]
experimental campaigns. The targeted reference heat flux for this analysis is 700 kW/m2.
However, as Panerai and Chazot did not target this heat flux, a scaling factor is applied.
The actual testing conditions of Panerai and Chazot’s work are summarized below in
Table C.2.

Table C.2: Actual testing conditions extracted from Panerai and Chazot [19].

Test case Ps q
Cu
w Pd q

TPS
w T

TPS
w

[mbar] [kW/m
2
] [Pa] [kW/m

2
] [K]

k1a 15 410 127 174 1400
k1b 15 760 162 331 1600
k2a 15 1150 232 476 1800
k2b 15 1465 290 626 2000
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Relations between the reference heat fluxes and each of the other parameters tested are
found. The linear regressions, with respective R

2, obtained for each of the parameters are
illustrated in Figs. C.1, C.2 and C.3 for the dynamic pressure, TPS heat flux and TPS
wall temperature, respectively. The relations are summarized in Eqs. (C.1)-(C.3).

Pd = 0.1571⇥ q
Cu
w + 54.08, (C.1)

q
TPS
w = 0.4215⇥ q

Cu
w + 2.89, (C.2)

T
TPS
w = 0.5617⇥ q

Cu
w + 1168.47. (C.3)

The remaining testing conditions are extracted from Viladegut and Chazot’s work as they
tested quartz and copper together. The testing parameters are summarized in Table C.3

Table C.3: Actual testing conditions extracted from Viladegut and Chazot [20].

Test Ps q
Cu
w q

Qz
w ⇧1 ⇧2 ⇧3 ⇧4 ⇧5

case [mbar] [kW/m
2
] [kW/m

2
] [-] [-] [-] [-] [-]

3a 15 700 233.8 0.4347 0.3137 0.5142 0.3407 0.4212

The scaling for any reference heat flux is done by replacing q
Cu
w in the previous equations

by the targetted heat flux, in this case the 700 kW/m2 from Viladegut and Chazot’s
experiment.
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Figure C.1: Linear regression between dynamic pressure and copper heat flux.
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Figure C.2: Linear regression between TPS and copper heat fluxes.
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Figure C.3: Linear regression between TPS wall temperature and copper heat flux.





Appendix D

Complementary results for nitrogen ablation

This appendix contains the results concerning the cases not included in Section 7.7.1.

D.1 Prediction residuals

Figs. D.1-D.3 show the residuals for cases G4, G6 and G7 for recession rate ṡ, CN density
⇢CN and surface temperature Tw under the different modeling scenarios. We recall that
we only take into account the recession rate measurements for case G6 for which the CN
density residual is not shown.

D.2 Calibrated flowfield solutions

Figs. D.4-D.9 show the propagated posterior solutions of the stagnation line model for both
the 1T SEB and 2T SEB models with their corresponding confidence intervals for cases
G4, G6 and G7.

D.3 Posterior distributions of the surface parameters for the

2T model

Fig. D.10 shows samples of the 2D joint posterior distributions of the parameters ↵ and �
in the 2T surface balance model, as well as their marginal posteriors for cases G4, G6, and
G7.
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Figure D.1: Residuals of recession rate ṡ, CN density ⇢CN and surface temperature Tw

for the different models under conditions G4.



D.3. Posterior distributions of the surface parameters for the 2T model 211

Figure D.2: Residuals of recession rate ṡ and surface temperature Tw for the different
models under conditions G6.
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Figure D.3: Residuals of recession rate ṡ, CN density ⇢CN and surface temperature Tw

for the different models under conditions G7.
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Figure D.4: Propagated temperature profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals for case G4. The vertical black line repre-
sents the position of the spectrometer measurement.

Figure D.5: Propagated mole fraction profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals for case G4. The vertical black lines rep-
resent the position of the spectrometer measurement.
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Figure D.6: Propagated temperature profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals for case G6. The vertical black line repre-
sents the position of the spectrometer measurement.

Figure D.7: Propagated mole fraction profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals for case G6. The vertical black lines rep-
resent the position of the spectrometer measurement.
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Figure D.8: Propagated temperature profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals for case G7. The vertical black line repre-
sents the position of the spectrometer measurement.

Figure D.9: Propagated mole fraction profiles for the 1T SEB (M2) and 2T SEB (M3)
models with their respective confidence intervals for case G7. The vertical black lines rep-
resent the position of the spectrometer measurement.
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Figure D.10: Left: 100,000 samples from the joint posterior distributions of ↵ and �.
Right: posterior marginal distributions of ↵ and � under conditions (from top to bottom)
G4, G6 and G7.
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Résumé : L’étude des phénomènes d’interaction gaz-

surface pour les véhicules d’entrée atmosphérique est

basée sur le développement de modèles théoriques

prédictifs et sur les capacités des installations

expérimentales actuelles. Toutefois, en raison de la

complexité de la physique et des divers phénomènes

qui doivent être étudiés dans ces installations,

les simulations tant numériques qu’expérimentales

génèrent des données qui présentent des incerti-

tudes. Cependant, il est courant dans le domaine de

l’aérothermodynamique de recourir à des méthodes

de calibration et de validation non adaptées à un trai-

tement rigoureux de ces incertitudes.

Cette thèse étudie le processus d’inférence scienti-

fique et ses ramifications dans certaines expériences

d’interaction gaz-surface. Ses principales contribu-

tions sont l’amélioration et la reformulation de la

calibration de modèles en tant que problème sta-

tistique inverse et l’extension résultante des bases

de données actuelles pour la catalyse et l’abla-

tion. La calibration des modèles utilise le formalisme

Bayésien où la caractérisation complète des distri-

butions de probabilités postérieures des paramètres

sélectionnés est calculée.

La première partie de la thèse présente une revue des

modèles théoriques, des expériences et des codes

de simulation numérique utilisés pour étudier la ca-

talyse et l’ablation dans le Plasmatron, la souffle-

rie à plasma de l’Institut von Karman. Cette par-

tie se termine par un résumé des sources possibles

d’incertitude présentes dans les données théoriques-

numériques et expérimentales. Ensuite, les méthodes

utilisées pour traiter mathématiquement ces sources

d’incertitude sont présentées en détail.

La deuxième partie présente les différentes contri-

butions originales de cette thèse. Pour les matériaux

catalytiques, une méthodologie de vraisemblance op-

timale pour l’inférence Bayésienne est développée.

Cette méthodologie offre une caractérisation

complète de l’incertitude des paramètres cataly-

tiques avec une diminution de 20% de l’écart type

par rapport aux travaux antérieurs. En utilisant cette

méthodologie, une stratégie de test produisant les

données expérimentales de catalyse les plus informa-

tives à ce jour est proposée. Ensuite, des expériences

et des analyses stochastiques sont effectuées, enri-

chissant les bases de données expérimentales de

catalyse existantes pour les composés à matrice

céramique à l’aide d’estimations précises de l’incerti-

tude.

La dernière contribution est la reformulation du

problème d’inférence des efficacités de réaction de

l’azote à la surface d’un matériau ablatif en graphite à

partir des données de soufflerie à plasma. Il s’agit de

la première étude dans la litérature où différentes ob-

servations de la même expérience sont utilisées en-

semble pour évaluer leur cohérence et les paramètres

d’ablation qui en résultent. Une loi d’Arrhenius sto-

chastique est déduite en utilisant toutes les données

disponibles, étendant la gamme de conditions à des

températures de surface plus basses, là où il n’y a

pas de données expérimentales fiables. L’incertitude

épistémique qui affecte la définition du modèle et les

conditions aux limites d’ablation sont étudiées par des

méthodes de test d’hypothèses. L’incertitude finale

sur l’efficacité de la réaction azotée est obtenue en

moyennant les résultats obtenus avec les différents

modèles.

Cette thèse met en évidence que le processus

d’inférence scientifique peut également imposer des

hypothèses sur la nature du problème et avoir un

impact sur la manière dont les chercheurs par-

viennent à des conclusions sur leur travail. En fin

de compte, cette thèse contribue aux premiers ef-

forts d’introduction de techniques précises et rigou-

reuses de quantification de l’incertitude dans le do-

maine de recherche de l’entrée atmosphérique. Les

méthodologies présentées ici permettront in fine le

développement de modèles prédictifs avec estimation

de niveaux de confiance.
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Abstract : The investigation of gas-surface interac-

tion phenomena for atmospheric entry vehicles relies

on the development of predictive theoretical models

and the capabilities of current experimental facilities.

However, due to the complexity of the physics and

the various phenomena that need to be investigated

in ground-testing facilities, both numerical and experi-

mental processes generate data subjected to uncer-

tainties. Nevertheless, it remains a common practice

in the field of aerothermodynamics to resort to calibra-

tion and validation methods that are not apt for rigo-

rous uncertainty treatment.

This thesis investigates the process of scientific infe-

rence and its ramifications for selected gas-surface in-

teraction experiments. Its main contributions are the

improvement and re-formulation of model calibrations

as statistical inverse problems with the consequent

extension of current databases for catalysis and abla-

tion. The model calibrations are posed using the

Bayesian formalism where a complete characteriza-

tion of the posterior probability distributions of selec-

ted parameters are computed.

The first part of the thesis presents a review of the

theoretical models, experiments and numerical codes

used to study catalysis and ablation in the context of

the von Karman Institute’s Plasmatron wind tunnel.

This part ends with a summary on the potential uncer-

tainty sources present in both theoretical-numerical

and experimental data. Subsequently, the methods

used to deal with these uncertainty sources are in-

troduced in detail.

The second part of the thesis presents the various ori-

ginal contributions of this thesis. For catalytic mate-

rials, an optimal likelihood framework for Bayesian ca-

libration is proposed. This methodology offers a com-

plete uncertainty characterization of catalytic parame-

ters with a decrease of 20% in the standard deviation

with respect to previous works. Building on this fra-

mework, a testing strategy which produces the most

informative catalysis experiments to date is proposed.

Experiments and consequent stochastic analyses are

performed, enriching existing catalysis experimental

databases for ceramic matrix composites with accu-

rate uncertainty estimations.

The last contribution deals with the re-formulation of

the inference problem for nitridation reaction efficien-

cies of a graphite ablative material from plasma wind

tunnel data. This is the first contribution in the litera-

ture where different measurements of the same flow-

field are used jointly to assess their consistency and

the resulting ablation parameters. An Arrhenius law is

calibrated using all available data, extending the range

of conditions to lower surface temperatures where no

account of reliable experimental data is found. Epis-

temic uncertainties affecting the model definition and

ablative wall conditions are gauged through various

hypothesis testing studies. The final account on the

nitridation reaction efficiency uncertainties is given by

averaging the results obtained under the different mo-

dels.

This thesis highlights the fact that the process of

scientific inference can also carry deep assumptions

about the nature of the problem and it can impact how

researchers reach conclusions about their work. Ulti-

mately, this thesis contributes to the early efforts of in-

troducing accurate and rigorous uncertainty quantifi-

cation techniques in atmospheric entry research. The

methodologies here presented go in line with develo-

ping predictive models with estimated confidence le-

vels.

Institut Polytechnique de Paris
91120 Palaiseau, France
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