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Affine Iterations and Wrapping Effect: Various

Approaches

Nathalie Revol ∗

Abstract

Affine iterations of the form xn+1 = Axn + b converge, using real arith-
metic, if the spectral radius of the matrix A is less than 1. However, substi-
tuting interval arithmetic to real arithmetic may lead to divergence of these
iterations, in particular if the spectral radius of the absolute value of A is
greater than 1. We will review different approaches to limit the overesti-
mation of the iterates, when the components of the initial vector x0 and b
are intervals. We will compare, both theoretically and experimentally, the
widths of the iterates computed by these different methods: the naive itera-
tion, methods based on the QR- and SVD-factorization of A, and Lohner’s
QR-factorization method. The method based on the SVD-factorization is
computationally less demanding and gives good results when the matrix is
poorly scaled, it is superseded either by the naive iteration or by Lohner’s
method otherwise.

Keywords: interval analysis, affine iterations, matrix powers, Lohner’s QR
algorithm, QR factorization, SVD factorization

1 Introduction

The problem we consider is the evaluation of the successive iterates of{
xn+1 = Axn + b,
x0 given,

where A ∈ Rd×d, xn ∈ Rd for every n ∈ N and b ∈ Rd. More specifically, the focus
is on the use of interval arithmetic to evaluate these iterates.

In what follows, interval quantities will be denoted in boldface.
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1.1 A Toy Example

This problem was brought to us through this example of an IIR (Infinite Impulse
Response) linear filter in a state-space form:

xn = 1.8 ∗ xn−1 − 0.9 ∗ xn−2 + 4.7.10−2 ∗ (un−2 + un−1 + un)

for x0 = 0 and x1 ∈ [1, 1.1]. We assume that un ∈ u = [9.95 , 10.05] for every n.
This iteration can also be written as a linear recurrence in R2:(

xn−1

xn

)
= A.

(
xn−2

xn−1

)
+ bn,

where A =

(
0 1

−0.9 1.8

)
and bn =

(
0

4.7.10−2 ∗ (un−2 + un−1 + un)

)
.

This toy example will be used to illustrate the various approaches mentioned in
this paper. The first iterates, obtained using floating-point arithmetic, with ran-
dom values for x1 ∈ [1, 1.1] and each un ∈ [9.95 , 10.05], are given on the left two
columns below.

n xn

0 0
1 1.0617
2 3.3183
3 6.4234
4 9.9851
5 13.6031
6 16.9117
7 19.6103
8 21.4884
9 22.4394
10 22.4595
12 20.1508
15 13.8931

n xn

20 9.1518
30 17.0186
40 12.4414
50 15.0305
60 13.6130
70 14.3858
80 13.9680
90 14.1510
100 14.0949
200 14.0870
300 14.1443
400 14.1282
500 14.0828

n wid(xn)

0 0
1 0.1000
2 0.1941
3 0.4535
4 1.0051
5 2.2313
6 4.9350
7 10.905
8 24.085
9 53.182
10 117.42
12 572.31
15 6158.0

n wid(xn)

20 3.2293.105

30 8.8808.108

40 2.4423.1012

50 6.7164.1015

60 1.8470.1019

70 5.0794.1022

80 1.3969.1026

90 3.8415.1029

100 1.0564.1033

200 2.6137.1067

300 6.4663.10101

400 1.5998.10136

500 3.9580.10170

The system stabilizes around 14, with variations due to the random values
taken by the un. However, the following snippet of Octave code computes the
successive iterates using interval arithmetic, using the interval [1 , 1.1] for x1 and
u = [9.95 , 10.05] for the un, that is, we replace un−2 + un−1 + un by 3 ∗ u.

A=[[0 1];[-0.9 1.8]];

xn=[infsup(0,0);infsup(1,1.1)];

b=4.7e-2 * 3.0*[infsup(0,0);infsup(9.95,10.05)];

n=500; for i=1:n, i , xn=A*xn+b, wid(xn(1)), end;

On the right two columns above are the widths of the successive iterates xn: the
widths of the iterates diverge rapidly to infinity.

The explanation of this phenomenon is the following: the spectral radius of A
is strictly less than 1: ρ(A) ' 0.9487 < 1, and thus the exact (and, for that matter,
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floating-point) iterations converge. However, the recurrence satisfied by the widths
of the iterates is wid(xn) = 1.8∗wid(xn−1)+0.9∗wid(xn−2)+4.7.10−2 ∗3∗wid(u),
which corresponds to the 2-dimensional iteration wn = |A|.wn−1 + wb, with wn =
wid(xn), |A| the matrix whose coefficients are the absolute values of the coefficients
of A and wb = 4.7.10−2 ∗ 3 ∗wid(u). As the spectral radius of |A| is larger than 1,
indeed ρ(|A|) ' 2.208 > 1, the iterations diverge.

This phenomenon is a special case of the so-called wrapping effect. Its ubiquity
in interval computations has been put in evidence by Lohner in [6].

1.2 The Wrapping Effect

The wrapping effect is ubiquitous, as defined and developed in [6]. It can be
described as the overestimation due to the enclosure of the sought set in a set
of a given. simple structure. In our case, this simple structure corresponds to
multidimensional intervals or boxes, that is, parallelepipeds with sides parallel to
the axes of the coordinate system. When the computation is iterative, and when
each iteration produces such an overestimating set that is used as the starting point
of the next iteration, the size of the computed set may grow exponentially in the
number of iterations, even when the exact solution set remains bounded and small.

Lohner also put in evidence that the affine iteration we study in this paper,
namely xn+1 = Axn + b, or more generally xn+1 = Anxn + bn with xn+1, xn and
bn vectors in Rd and An ∈ Rd×d for every n ∈ N, is archetypal. It occurs in many
algorithms, and the examples cited in [6] include

• matrix-vector iterations as the ones studied in this paper;

• discrete dynamical systems: xn+1 = f(xn), x0 given and f sufficiently smooth;

• continuous dynamical systems (ODEs): x′(t) = g(t, x(t)), x(0) = x0, which is
studied through a numerical one step method (or more) of the kind xn+1 =
xn + hΦ(xn, tn) + zn+1;

• difference equations: a0zn+a1zn+1+. . .+amzn+m = bn with z1, . . . zm given;

• linear systems with (banded) triangular matrix;

• automatic differentiation.

In this paper, we concentrate on examples similar to the toy example presented
above: for every initial value x0 ∈ Rd, the sequence of iterates (xn)n∈N converges to
a finite value x∗ ∈ Rd, since ρ(A) < 1; however, the computations performed using
interval arithmetic diverge because their behaviour is dictated by ρ(|A|) which is
larger than 1. We are interested in the iterates computed using interval arithmetic:
it is established that these iterates increase in width, however different approaches
can be applied to counteract the exponential growth of the width of the iterates.
Several of them, some new as in Sections 2.3.2 and 2.3.3, and some already well
eestablished as in Section 2.4, will be tried and compared, in terms of the widths
of the results and the computational time.
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2 Theoretical Results

2.1 Problem and Notations

Let A be a d × d matrix in Rd×d, x0 ∈ IRd be an interval vector (boldface font is
used for interval quantities and IR stands for the set of real intervals), x0 a vector
in Rd with x0 ∈ x0, b ∈ IRd an interval vector, and b a vector in Rd and b ∈ b. In
what follows, n denotes the number of iterations.

It is assumed that ρ(A) < 1 and ρ(|A|) > 1.
A first goal is to determine the set of all fixed-points of the iteration{

x0 ∈ x0, b ∈ b,
xn+1 = Axn + b

for every x0 ∈ x0 and every b ∈ b.
It is known that xn can be written as

xn = Anx0 +

n−1∑
i=1

Aib,

thus

{xn : x0 ∈ x0} ⊂ Anx0 +

(
n−1∑
i=1

Ai

)
b.

However, when the vectors x0 and b are replaced in the iterative formula by
their interval enclosures x0 and b, one obtains the new interval vector xn+1, which
is computed as: {

x0 and b given,
xn+1 = Axn + b.

Another goal is to determine a tight enclosure for each iterate of this diverging set
of intervals.

As mentioned above, the increase in widths of the iterates can be attributed to
the use of parallelepipeds with sides parallel to the axes of the coordinate system,
and not to the geometry of the transformation. To cure this problem, changes of
coordinates will be applied, using an invertible matrix B, with x = By ⇔ y = B−1x
and its interval counterpart x = By. This yields the iteration{

xn+1 = Byn+1

yn+1 = B−1AByn +B−1b

and its interval counterpart{
xn+1 = Byn+1

yn+1 = B−1AByn +B−1b.

In what follows, to establish bounds and their proofs, we assume A diagonaliz-
able (this will not necessarily be the case for the experiments) and A can be diago-
nalized as A = P−1ΛP where Λ is a diagonal matrix with the eigenvalues λ1, . . . λd
of A on the diagonal and the columns of P−1 are the corresponding eigenvectors.
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The iteration considered in this paper corresponds to xn = Anx0 +
∑n−1
i=0 A

ib.
The numerical unstability of computing the matrix power An and applying it to a
vector, is well known: Anx0 tends to be aligned with the eigenvector of A associated
with the largest (in module) eigenvalue, and the information corresponding to the
contribution of the other eigenvectors is lost. To avoid this well-known problem of
the power method, we will consider orthogonal changes of coordinates. The choice
of the orthogonal matrices is related to A, the matrix of the iteration.

We will first consider the QR-factorization of A: A = QR with Q ∈ Rd×d
orthogonal, that is, QQ′ = Q′Q = I is the identity matrix and R ∈ Rd×d is upper
triangular.

The other factorization used in this paper is the SVD-factorization of A: A =
UΣV ′ with U , V and Σ ∈ Rd×d, where U and V are orthogonal and Σ is a diagonal
matrix with the singular values σ1, . . . σd of A on the diagonal. We also assume
that σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. This idea has been sketched but not completely
developed by Beaumont in [2].

2.2 Known results

Mayer and his co-authors have extensively studied the existence of a fixed-point
for the iteration studied in this paper. In [7], Mayer and Warnke have thoroughly
established formulas for the fixed-point in the case of ρ(|A|) < 1: this fixed-point is
independent of the starting interval x0. In [1], Arndt and Mayer have established
necessary and sufficient condition on A for a fixed-point to exist, when ρ(|A|) = 1.
In this case, the fixed-point is an interval of nonzero width, that is, a non-degenerate
interval. It is well-known that the widths of the iterates diverge when ρ(|A|) > 1,
and thus that no fixed-point exists in this case. Our goal is to study the speed of
divergence of the iterates in this case.

2.3 Different Approaches along with Theoretical Bounds

The main idea is to use an orthogonal change of coordinates which is related to
the matrix of the iteration. As the matrix A is kept constant for all iterations (and
this is not the case in the more general approach of Lohner, see Section 2.4), the
change of coordinates is also kept constant and given by an orthogonal matrix B.
The two orthogonal matrices considered in what follows are either B = Q from the
QR-factorization of A, or B = U , resp. B = V ′, from the SVD-factorization of A.

2.3.1 Orthogonal Change of Coordinates

Before diving into the specificities of these changes of coordinates, let us study the
general change of coordinates using an orthogonal matrix B, that is, B−1 = B′,
with x = By ⇔ y = B−1x and its interval counterpart x = By. The interval
iteration is {

xn+1 = Byn+1

yn+1 = B−1AByn +B−1b.
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Thus the iteration satisfied by the width of the yn is

wid(yn+1) = |B−1AB|wid(yn) + |B−1|wid(b)
≤ |B−1|.|A|.|B|wid(yn) + |B−1|wid(b)

where the inequalities are to be understood componentwise. By induction on n,

wid(yn) ≤ (|B−1|.|A|.|B|)n.wid(y0) +

n−1∑
i=0

(|B−1|.|A|.|B|)i.|B−1|.wid(b).

Taking norms, one gets

‖wid(yn)‖ ≤
(
‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖

)n ‖.wid(y0)‖

+
∑n−1
i=0

(
‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖

)i
.‖ |B−1| ‖.‖wid(b)‖

≤
(
‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖

)n ‖.wid(y0)‖

+
(‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖)

n−1

‖ |B−1| ‖.‖ |A| ‖.‖ |B| ‖−1 ‖ |B
−1| ‖.‖wid(b)‖.

Remark: if the considered norm is the matrix norm induced by the vector Eu-
clidean norm, then ‖|B|‖2 = ‖B‖2 for any matrix B. Similarly, ‖|B|‖∞ = ‖B‖∞ ≤√
d for any d× d orthogonal matrix B. In such cases, the bound becomes

‖wid(yn)‖ ≤ (κ(B).‖ |A| ‖)n ‖wid(y0)‖

+ (κ(B).‖ |A| ‖)n−1
κ(B).‖ |A| ‖−1 ‖B

−1‖.‖wid(b)‖,

where κ(B) denotes ‖B‖.‖B−1‖, the condition number of B for the problem of
solving a linear system.

Since ‖B‖2 = ‖B−1‖2 = κ2(B) = 1 for an orthogonal matrix B, this bound
simplifies even further with the Euclidean norm:

‖wid(yn)‖ ≤ ‖A‖n.‖wid(y0)‖+ ‖A‖n−1
‖A‖−1 .‖wid(b)‖.

In other words, theoretically there is no difference in the bounds on the widths of
the iterates, whether an orthogonal change of coordinates takes place or not.

In what follows, we assume again A diagonalizable (this will not necessarily be
the case for the experiments) and A can be diagonalized as A = P−1ΛP where Λ is
diagonal. If we replace A by P−1ΛP in the iteration, one gets the mathematically
equivalent formulation

yn+1 = B−1P−1ΛPByn +B−1b
= (PB)−1Λ(PB)yn +B−1b,

thus
wid(yn) = (|(PB)−1|.|Λ|.|PB|).wid(yn) + |B−1|.wid(b),
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and by induction

wid(yn) = (|(PB)−1|.|Λ|.|PB|)n.wid(y0) +

n−1∑
i=0

(|(PB)−1|.|Λ|.|PB|)i.|B−1|.wid(b).

Taking the Euclidean norm of vectors and the induced matrix norm, one gets

‖wid(yn)‖2 ≤ (κ2(PB)‖Λ‖2)
n
.‖wid(y0)‖2

+ (κ2(PB)‖Λ‖2)n−1
κ2(PB)‖Λ‖2−1 .‖wid(b)‖2.

Let us note that κ(PB) = κ(P ). Furthermore, as Λ is diagonal, ‖Λ‖ is the
largest eigenvalue (in module) of A, that is, ‖Λ‖ = ρ(A) < 1. This implies

‖wid(yn)‖2 ≤ (κ2(P )ρ(A))
n
.‖wid(y0)‖2 + (κ2(P )ρ(A))n−1

κ2(P )ρ(A)−1 .‖wid(b)‖2,

This inequality puts in evidence the influence of the condition number of P , the
matrix of eigenvectors. For instance, in the ideal case where the eigenvectors form
an orthonormal basis, no overestimation occurs.

2.3.2 Use of the QR Factorization

When the orthogonal change of coordinates involves Q from the QR-factorization
of A, the algorithm can be written as

A = QR,
xn+1 = Qyn+1

⇔ yn+1 = Q′xn+1

yn+1 = Q′AQyn +Q′b

In exact arithmetic, one should get

yn+1 = RQyn +Q′b.

The interval counterpart is

xn+1 = Qyn+1

yn+1 = Q′AQyn +Q′b.

2.3.3 Use of the SVD Factorization

Our second and third proposals consist in using respectively U and V from the
SVD-factorization of A: from A = UΣV ′, we use either B = U or B = V ′, which
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yields

xn+1 = Uyn+1

⇔ yn+1 = U ′xn+1,
yn+1 = U ′AUyn + U ′b.

In exact arithmetic, this corresponds to

yn+1 = ΣV Uyn + U ′b.

The interval counterpart is

xn+1 = Uyn+1

yn+1 = U ′AUyn + U ′b.

xn+1 = V ′yn+1

⇔ yn+1 = V xn+1,
yn+1 = V AV ′yn + V b.

In exact arithmetic, this corresponds to

yn+1 = V UΣyn + V b.

The interval counterpart is

xn+1 = V ′yn+1

yn+1 = V AV ′yn + V b.

Remark: V U is also an orthogonal matrix.

2.4 Lohner’s QR Method

A well-known approach is given in Lohner, e.g. in [6] and studied in details by
Nedialkov and Jackson in [8]. It is usually presented for the iteration xn+1 =
Anxn + bn, that is when the matrix and the affine term vary at each iteration.

Lohner’s QR method consists in performing the following iteration:
y0 = x0, Q0 = I, [Q1, R1] = qr(A) that is, A = Q1R1

[Qn+1, Rn+1] = qr(RnQn)
yn+1 = Q′n+1AQnyn +Q′n+1b
xn+1 = Qn+1yn+1

and its interval counterpart is
y0 = x0, Q0 = I, [Q1, R1] = qr(A) that is, A = Q1R1

[Qn+1, Rn+1] = qr(RnQn)
yn+1 = Q′n+1AQnyn +Q′n+1b
xn+1 = Qn+1yn+1.

In the case of a constant – throughout the iterations – matrix A, one can
recognize Francis’ and Kublanovskaya’s QR-algorithm. Using the convergence of
(Rn) towards the matrix of eigenvalues of A (or towards its Schur form), in [8],
Nedialkov and Jackson established the following bounds:

w(xn) ≤ cond(P )ρ(A)nw(x0) +
cond(P )ρ(A)n−1 − 1

cond(P )ρ(A)− 1
w(b) + b

where we recall A diagonalizable: A = P−1ΛP .
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2.5 Comparison

Two aspects are compared: the complexity and the accuracy, that is, the bounds
on the widths of the iterates, of each method.

Let us first examine the computational complexity. Let us recall that the QR-
factorization, resp. SVD-factorization, of a d× d matrix has a computational com-
plexity of O(d3). In the algorithms of Sections 2.3.2 and 2.3.3, the factorization of
a matrix is performed only once, and not at every iteration: for n iterations, these
algorithms thus have complexity O(d3 +nd2). In comparison, Lohner’s QR method
has complexity O(nd3), which is significantly larger when d is large. In comparison,
the cost of the factorization is negligible when the number n of iterations is large.

Let us now compare the accuracy of these different methods, from a theoretical
point of view. The bounds we get on the width of the iterate xn are larger than the
bounds obtained by Nedialkov and Jackson, as the condition number of the matrix
P appears to the n-th power in the formula for the QR- and SVD-algorithms,
whereas it appears without this n-th power in the bound for Lohner’s QR-algorithm.
As a condition number is always larger or equal to 1, this means that the bound for
Lohner’s QR-algorithm is tighter than the bounds for the QR- and SVD-algorithms.

3 Experiments

3.1 Experimental Setup

After the results on the widths of the iterates of the toy example given in Section 1.1,
Section 3.2 presents the computation of each corner of the initial box, to illustrate
that it is possible to get tight enclosures, on such a small example.

All algorithms presented in this paper, namely the naive (or brute-force) appli-
cation of the iteration, the QR-algorithm of Section 2.3.2, the two versions of the
SVD-algorithm of Section 2.3.3, and Lohner’s QR algorithm given in Section 2.4
have been implemented in Octave using Heimlich’ interval package [3], then in Mat-
lab using Rump’s Intlab package [10]. Two other methods have been implemented
and compared. The first technique [9] consists in the determination of k such that
ρ(|Ak|) < 1, then it computes only one iterate every k step, in other words it
computes

x(k+1)n = Akxkn +

k−1∑
i=0

Aib :

this iteration converges even when interval arithmetic is employed. The other tech-
nique is the use of affine arithmetic, as advocated by Rump in a private commu-
nication. In the experimental results presented below, each technique is associated
to a color:
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algorithm color
brute force black
QR cyan
SVD U red
SVD V magenta
Lohner’s QR dark blue
every k-th iterate green
affine arithmetic yellow

The factorizations use only the basic QR and SVD factorizations available in
Matlab, but neither the pivoted QR recommended by Lohner in [6] nor more elab-
orate versions presented by Higham in [4].

Sections 3.3 and 3.4 contain the evolution of the radii of the iterates computed
by these different techniques, for two matrix dimensions: 10 × 10 and 100 × 100.
The y-axis for the radii uses a logarithmic scale. For both dimensions, four kinds of
matrices A have been used for the experiments. On the one hand, matrices which
are well-conditioned (with a condition number of order 102) and ill-conditioned
(with a condition number of order 1010) have been generated. On the other hand,
the scaling of the matrices varies: matrices which are well-scaled and matrices which
are ill-scaled, with the order of magnitude of their coefficients varying between 1 and
1010. These are only orders of magnitudes, as the matrices, originally generated by
a call to Matlab’s randsvd were then added to a multiple of the identity matrix and
multiplied by a constant, in order to satisfy both ρ(A) < 1 and ρ(|A|) > 1. It can
also be noted that degrading the scaling of the matrix also degrades its condition
number; in other words, a “well-conditioned ill-scaled” matrix has a much worse
condition number than a “well-conditioned well-scaled” matrix, even if the required
condition numbers, in the call to randsvd, are initially the same.

All experiments have been performed on a 2.7 GHz Quad-Core Intel Core i7 with
16GB RAM. Timings are averaged over 100 executions, except for affine arithmetic
where at most 10 executions were performed.

3.2 Toy Example

First, the toy example presented in Section 1.1 is considered. As the iteration is
affine, one can compute separately the images of the endpoints of the initial vector,
to get the endpoints of the successive iterates. That is, we compute separately

xn = 1.8 ∗ xn−1 − 0.9 ∗ xn−2 + 4.7.10−2 ∗ 3 ∗ u

for x0 = 0 and x1 = 1 and for x0 = 0 and x1 = 1.1. However, we use the interval
vector u = [9.95, 10.05] in the iteration. The convex hull of the 10 first iterates
are represented on the left part of Figure 1. It is obvious that the width of the
successive iterates grow rapidly.

Then we compute separately

xn = 1.8 ∗ xn−1 − 0.9 ∗ xn−2 + 4.7.10−2 ∗ 3 ∗ u
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for x0 = 0 and x1 = 1 and for x0 = 0 and x1 = 1.1, and for u = 9.95 and
u = 10.05. The convex hull of the 10 first iterates are represented on the right part
of Figure 1. In this case, the width of the successive iterates remain small, of the
order of magnitude of 1% of the midpoint of the interval.

Figure 1: Left: the 10 first iterates of the toy example, where the endpoints of x0

are considered separately. Right: the 10 first iterates of the toy example, computed
corner by corner.

In this toy example, the iterations had to be performed 4 times, that is, once for
each corner of the initial values, in order to get a tight enclosure. This can clearly
not be generalized to high dimensions, as the number of corners grows as 4d with
the dimension d of the problem.

3.3 Example of dimension 10

Figure 2 gives the radii (in logarithmic scale) for the successive iterates computed by
the methods detailed above. When the number of iterations is large (visually, above
30 or 40 iterations), the iterates computed by all methods presented in Section 2
diverge rapidly, as can be seen on the plots on the left. When one concentrates
on the first iterations, the behaviours compare differently. One can also note that
unscaling the matrix A speeds the divergence, for all methods. On the contrary,
the k-step method and the use of affine arithmetic preserve the convergence of the
iterates.

The timings in seconds are given below:

method well-cond. ill-cond. well-cond. ill-cond.
well-scaled well-scaled ill-scaled ill-scaled

naive 0.0088 0.0084 0.0093 0.0086
k-th step 0.0044 0.0015 0.0043 0.0045
QR 0.0161 0.0155 0.0160 0.0157
SVD U 0.0162 0.0156 0.0161 0.0166
SVD V 0.0147 0.0145 0.0324 0.0332
Lohner’s QR 0.0170 0.0164 0.0165 0.0177
affine arith. 8.1859 8.7911 8.6595 8.2754
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The methods presented in Sections 2.3.2, 2.3.3 and 2.4 all exhibit similar exe-
cution times. The naive method performs less operations and is thus faster. The
k-th step method is fast as well, the variations in its execution time are due to the
preprocessing, that is to the determination of the power k such that ρ(|Ak|) < 1:
the execution time is larger when k is larger. With this method, the convergence
is good. The use of affine arithmetic significantly slows down the computations,
however the iterates converge.

3.4 Example of dimension 100

Figure 3 gives the radii (in logarithmic scale) for the successive iterates computed
by the methods detailed in Section 3.1. When the number of iterations is large
(visually, above 40 or 50 iterations), the iterates computed by all methods, except
the k-step method, diverge rapidly, as can be seen on the plots on the left. Again,
when one concentrates on the first iterations, the behaviours compare differently.

The timings in seconds are given below:

method well-cond. ill-cond. well-cond. ill-cond.
well-scaled well-scaled ill-scaled ill-scaled

naive 0.0163 0.0145 0.0142 0.0142
k-th step 0.0046 0.0071 0.0048 0.0072
QR 0.1577 0.0363 0.0408 0.0409
SVD U 0.0427 0.0420 0.0437 0.0437
SVD V 0.0423 0.0390 0.0643 0.0638
Lohner’s QR 0.0611 0.0758 0.0646 0.0804
affine arith. 70.8724 72.6441 76.6102 71.2518

The comments on the timings apply again, with the exception of the use of affine
arithmetic, which is still much slower but does not manage any more to preserve
the convergence very long.

3.5 Comments

One can note that the k-step method, that is the method that resorts to a conver-
gent interval iteration, performs very well at a moderate computation cost. Even
the preprocessing time to determine the value of k has a negligible cost.

This method is a totally ad hoc approach for this problem and cannot be gen-
eralized. However, in the framework of filters and control theory, it has a physical
meaning: the divergence of the iterations can be attributed to a sampling time
which is too small to allow variations to be observed. Multiplying the sampling
time by k means sampling less frequently (by a factor k) and thus being able to
measure the evolution of the observed quantities.

The use of affine arithmetic, on the contrary, is a very general method and it ex-
hibits a very good accuracy, even if it eventually diverges (see the experiments with
the 100×100 matrices in Section 3.4). The counterpart is the execution time, which
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is at least a thousand times larger than for the other methods. This is not an issue
for the experiments presented here, as the time is of order of magnitude of a minute.

The methods based on the QR or SVD factorizations of the matrix A were
developed with geometric principles in mind. For the QR-algorithm, the idea was
to align the current box with the directions that are preserved by the product by A,
with a tradeoff between aligning the box along the eigenvectors and preserving an
orthonormal system of coordinates, hence the choice of Q. For the SVD-algorithm,
the idea was to align the box along the direction which gets the maximal elongation,
that is along the singular vector corresponding to the largest singular value.

In both cases, the benefit of these geometric transformations is mitigated with
the overestimation implied by extra computations, and there is either no clear ben-
efit for the QR-based approach, or a delicate balance for the SVD-based approach.
The SVD-algorithm is interesting when the matrix is ill-scaled, and particularly for
the first iterations.

The methods of choice remain either the naive approach, when the matrix A
is well-conditioned and well-scaled, or Lohner’s QR method when the matrix is
ill-conditioned. Surprisingly, the overhead of Lohner’s QR method, in terms of
computational time, is not as large as the formula for its complexity implies.

Our general recommendation is thus:

• to preprocess the matrix A in order to scale it;

• then to execute in parallel the naive approach and Lohner’s QR approach, in
order to converge reasonably well for any condition number of A.

Affine arithmetic is a solution of choice when other solutions fail and when the
analysis and developing time is a scarce resource.

4 Conclusion and Future Work

This study, both theoretical and experimental, has compared several approaches to
counteract the wrapping effect for the computation of affine iterations. Geometric
considerations have led to the proposed algorithms. The benefit of these approaches
is not always clear, as a better configuration is obtained through extra-computations
and thus extra-overestimation. To deepen this geometric approach, we will aim
at simplifying the resulting formulas, at getting formulas that are closer to the
mathematically equivalent, but simpler, ones that are given after each proposed
transformation. The main difficulty is to perform products such as Q.Q′ or U ′.U ,
without replacing them by the identity, but in a certified and tight way. As the
SVD-based approach seems more promising, our future work will concentrate on the
use of a certified SVD factorization, as proposed by van der Hoeven and Yakoubsohn
in [11]. We also plan to consider an interval version of the matrix, using the results
in [5] to keep guarantees on the singular quantities involved in the computations.
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a)

b)

c)

d)

Figure 2: The case of a 10 × 10 matrix (right part: zoom of the left part): a)
well-conditioned and well-scaled, b) ill-conditioned well-scaled, c) well-conditioned
ill-scaled, d) ill-conditioned ill-scaled.
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a)

b)

c)

d)

Figure 3: The case of a 100 × 100 matrix (right part: zoom of the left part): a)
well-conditioned and well-scaled, b) ill-conditioned well-scaled, c) well-conditioned
ill-scaled, d) ill-conditioned ill-scaled.


