
HAL Id: tel-03508143
https://hal.inria.fr/tel-03508143

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supersingular Group Actions and Post-quantum Key
Exchange

Mathilde Chenu

To cite this version:
Mathilde Chenu. Supersingular Group Actions and Post-quantum Key Exchange. Cryptography and
Security [cs.CR]. Ecole Polytechnique, 2021. English. �NNT : �. �tel-03508143�

https://hal.inria.fr/tel-03508143
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

X
12

0

Supersingular Group Actions and
Post-quantum Key Exchange

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 17 décembre 2021, par

MATHILDE CHENU–DE LA MORINERIE

Composition du Jury :

Anne Canteaut
Directrice de recherche Inria Paris Présidente

Sylvain Duquesne
Professeur des universités Université Rennes 1 Rapporteur

Damien Robert
Chargé de recherche Inria Bordeaux - Sud-Ouest Rapporteur

Frédéric Chyzak
Chargé de recherche Inria Saclay Examinateur

Kirsten Eisenträger
Professeur Pennysylvania State University Examinateur

Nicolas Sendrier
Directeur de recherche Inria Paris Examinateur

François Morain
Professeur École polytechnique Directeur de thèse

Benjamin Smith
Chargé de recherche Inria Saclay Co-directeur de thèse

2

Contents

Résumé en français 6

1 Introduction 9
1.1 Landscape of cryptology . 9
1.2 Computationally hard problems 10
1.3 Original Diffie–Hellman . 12
1.4 Quantum revolution . 12
1.5 Isogeny history . 14
1.6 Problematic . 16
1.7 Overview . 16

Notations and conventions 17

I Preliminaries 21

2 Mathematical preliminaries for isogeny-based cryptography 23
2.1 Quadratic imaginary order and class groups 24

2.1.1 Quadratic fields, orders and ideals 24
2.1.2 Fractional ideals . 25
2.1.3 Ideal class group . 25

2.2 Algebraic plane curves . 25
2.2.1 Affine plane curves . 26
2.2.2 Projective plane curves 26
2.2.3 Function field . 26
2.2.4 Smooth algebraic plane curves 27
2.2.5 Morphisms of plane curves 29
2.2.6 Divisor of a function . 29
2.2.7 Divisor class group . 30
2.2.8 Genus . 30

2.3 Elliptic curves . 31
2.3.1 Representation of elliptic curves 31
2.3.2 Algebraic group . 33
2.3.3 Torsion . 34

3

2.3.4 Invariant differential . 35
2.4 Isogenies . 35

2.4.1 Definitions . 35
2.4.2 Vélu’s formulae . 36
2.4.3 Example . 37
2.4.4 Modular curves . 38

2.5 Endomorphisms and curve classification 39
2.5.1 The endomorphism ring 39
2.5.2 Supersingular and ordinary cases 40

2.6 Deuring correspondence and the action of the ideal class group . 41
2.6.1 Action of the ideal class group on elliptic curves 41
2.6.2 Deuring correspondence 43

2.7 Isogeny graphs . 43
2.7.1 Ordinary case . 43
2.7.2 Supersingular case over Fp 44
2.7.3 Supersingular over Fp2 . 46

3 Isogeny-based key exchange protocols 49
3.1 Ordinary case (CRS) . 49

3.1.1 Security of the scheme and parameter sizes 50
3.1.2 Couveignes key exchange protocol 50
3.1.3 Rostovstev–Stolbunov key exchange protocol 51
3.1.4 Computation . 53

3.2 Supersingular case over Fp2 (SIDH and SIKE) 53
3.2.1 Commutative diagram . 53
3.2.2 SIDH key exchange protocol 54
3.2.3 Underlying security problems 55
3.2.4 From SIDH to SIKE . 57

3.3 Supersingular case over Fp (CSIDH) 57
3.3.1 The ideal class group action 57
3.3.2 CSIDH key exchange protocol 58
3.3.3 Security of the scheme . 59
3.3.4 Computation . 60

3.4 Key validation . 62
3.5 Comparison of CRS, SIDH, SIKE and CSIDH 62

II CSIDH implementation 65

4 Protecting CSIDH against side-channel attacks 67
4.1 Preliminaries: side-channel attacks 67

4.1.1 Timing attacks . 68
4.1.2 Power consumption analysis 69
4.1.3 Fault injection . 69
4.1.4 Constant-time and dummy-free algorithms 70

4.2 Previous constant-time implementations 72

4

4.2.1 Meyer–Campos–Reith . 72
4.2.2 Onuki–Aikawa–Yamazaki–Takagi 73

4.3 Contribution: Fault-attack resistance 73
4.4 Contribution: Derandomized CSIDH 76

4.4.1 Flawed pseudorandom number generators 76
4.4.2 Derandomized CSIDH with dummies 76
4.4.3 Derandomized dummy-free CSIDH 77

4.5 Following constant-time implementations 77

III CSIDH generalization: higher-degree supersingular
group actions 83

5 (d, �)-structures 85
5.1 Curves with a d-isogeny to their conjugate 85

5.1.1 Galois conjugates . 85
5.1.2 (d, �)-structures . 86
5.1.3 Isogenies of (d, �)-structures 87
5.1.4 Twisting . 88
5.1.5 Involutions . 89
5.1.6 Supersingular (d, �)-structures 89
5.1.7 Curves with non-integer d2-endomorphisms 90

5.2 Action on supersingular (d, �)-structures 90
5.2.1 Preliminaries on orientations 90
5.2.2 Action on primitive O-oriented curves 92
5.2.3 Natural orientation for supersingular (d, �)-structures . . . 93
5.2.4 Link between natural and induced orientation 94
5.2.5 Free and transitive class group action 95

5.3 The (d, �)-supersingular isogeny graph 96
5.3.1 General structure . 96
5.3.2 Examples . 98
5.3.3 Involutions . 98
5.3.4 Automorphism of order 3 100

5.4 Crossroads: curves with multiple (d, �)-structures 100
5.5 Map from (d, �)-structures to modular curves 101
5.6 Parametrization . 103

5.6.1 Representing (2, �)-structures 103
5.6.2 Representing (3, �)-structures 104
5.6.3 Representing (5, �)-structures 105
5.6.4 Representing (7, �)-structures 105

6 HD CSIDH: Higher degree commutative supersingular Diffie–
Hellman 107
6.1 HD CSIDH: Higher degree CSIDH 107

6.1.1 Hard problems . 108
6.1.2 HD CSIDH . 110

5

6.2 Practical computation . 112
6.2.1 Vélu approach . 112
6.2.2 Modular approach . 114

6.3 Example . 115
6.4 Public key compression . 116

6.4.1 Key compression with modular curves 116
6.4.2 Key compression with parametrization 117

6.5 Public key validation . 118
6.5.1 CSIDH versus HD CSIDH 118
6.5.2 Checking (d, �)-structures 119
6.5.3 Checking supersingularity: Sutherland’s algorithm 119
6.5.4 Adaptation of Sutherland algorithm 120
6.5.5 Determining the level . 122
6.5.6 Validation algorithm for HD CSIDH 122
6.5.7 CSIDH and HD CSIDH validation comparison 123

IV Cryptanalysis 125

7 Cryptanalysis for SIDH 127
7.1 The Delfs–Galbraith algorithm 127

7.1.1 The general supersingular isogeny problem 127
7.2 Generalization . 131

7.2.1 Generalized Delfs–Galbraith algorithm 131
7.2.2 Choosing the set D . 132
7.2.3 Comparisons . 133

7.3 Application to SIDH/SIKE cryptanalysis 133
7.3.1 Specific case: weak public keys in SIKEp434 133
7.3.2 General case: SIDH, shortcut 134

Perspectives 135

Bibliography 139

6

Résumé en français

La cryptographie à clés publiques, ou asymétrique, découverte il y a 50 ans par
Whitfield Diffie et Martin Hellman, utilise des paires de clés (une clé privée
et une clé publique) pour construire des protocoles sécurisés. Elle est devenue
une part essentielle des systèmes quotidiennement utilisés, en particulier pour
construire des protocoles d’échanges de clés. Ces protocoles sont essentiels pour
établir des clés secrètes dans le cadre de la cryptographique symétrique.

Cependant, les ordinateurs quantiques sont capables d’attaquer efficacement
les problèmes de théorie des nombres garantissant la sécurité des systèmes à
clés publiques les plus courants aujourd’hui, particulièrement la factorisation
(sur lequel repose notamment RSA) et le logarithme discret (sur lequel repose
la cryptographie basée sur les courbes elliptiques). Pour anticiper cette menace,
des algorithmes post-quantiques sont actuellement développés, qui résistent à la
fois aux attaques classiques et aux attaques quantiques.

Une des familles de cryptosystèmes post-quantiques repose sur les isogénies,
c’est-à-dire des homomorphismes entre les courbes elliptiques. En particulier,
deux protocoles d’échange de clés basés sur les isogénies sont en cours d’étude:
SIDH (Supersingular Isogeny Diffie-Hellman) et CSIDH (Commutative Super-
singular Isogeny Diffie-Hellman). Par ailleurs le protocole SIKE (Supersingular
Isogeny Key Encapsulation), dérivé de SIDH, est actuellement en phase d’étude
en vue d’une possible standardisation pour la cryptologie post-quantique. Notre
problématique est la suivante: comment renforcer la confiance dans la sécurité
et la faisabilité des protocoles d’échanges de clés post-quantiques basés sur les
isogénies ?

Nous proposons quatre axes de réponse dans cette thèse: développer les
forces de la cryptographie basée sur les isogénies, renforcer ses faiblesses, généraliser
les protocoles existants, et construire des attaques pour éprouver leur robustesse.
Cette thèse développe ces axes dans trois parties.

La première concerne le protocole CSIDH. Nous en proposons une implémentation
en temps constant, construite avec des contre-mesures envers les attaques par
étude du temps d’exécution, de la consommation de courant, et par injection
de fautes. Pour y parvenir, les paramètres publiques et l’espace de clé autorisés
sont soigneusement choisis afin que chaque calcul soit nécessaire à l’obtention
d’une clé valide. Nous proposons également une variante de ces paramètres qui
permet de réaliser le protocole sans avoir recours à un générateur d’aléa.

Nous proposons dans une seconde partie une généralisation du protocole

7

d’échange de clés de CSIDH. Pour cela nous utilisons des ensembles de courbes
ayant une isogénie de degré d vers leur conjuguée. Nous nommons ces cou-
ples (courbe, d-isogénies) des (d, �)-structures. Nous prouvons l’existence d’une
action libre et transitive du groupe de classe d’idéaux sur des sous-ensembles
des (d, �)-structures supersingulières, et nous utilisons cette action pour étudier
la structure des graphes d’isogénies obtenus. Par la suite nous dérivons de
cette étude un protocole d’échange de clés baptisé HD CSIDH pour Higher
Degree Commutative Supersingular Isogeny Diffie-Hellman. Nous décrivons
concrètement son utilisation, et nous en analysons la sécurité. Finalement nous
développons des techniques de compression et de validation des clés spécifiquement
pour HD CSIDH, et nous les comparons avec CSIDH.

Dans une troisième partie nous étudions les applications cryptanalytiques de
cette nouvelle action libre et transitive, en particulier sur les protocoles SIDH
et SIKE. Nous montrons qu’elle amène une généralisation de l’attaque de Delfs
et Galbraith ([DG16]) sur SIDH, et nous évaluons sa complexité et son impact
concret sur la sécurité. Enfin nous identifions un ensemble de courbes faibles
particulièrement vulnérables à cette attaque dans le cas spécifique de SIKE et
des paramètres choisis pour le premier niveau de sécurité de la spécification.
Cependant nous montrons que ces attaques ne sont pour l’instant pas suffisam-
ment efficaces pour menacer la robustesse de SIDH et SIKE.

8

Chapter 1

Introduction

1.1 Landscape of cryptology

Cryptology is literally the science of secrecy. It aims to ensure some or all of
the following guarantees on the information exchanged:

• confidentiality: nobody other than the recipients of a message can have
access to its content;

• authenticity: someone cannot pretend to send a message as someone else;

• integrity: the message cannot be modified by a third party.

Cryptography invisibly surrounds us in our every-day life such as in encrypted
chats, storage of sensitive information, payments on the internet, among other
examples. Considering the importance of the digital world nowadays, cryptog-
raphy is more necessary than ever, for states, companies and private individuals,
to ensure protection against spying and attacks on their digital data.

Symmetric and asymmetric settings Cryptology is often divided into two
main branches: symmetric and asymmetric.

In the symmetric setting, the sender and the receiver share a common secret
key that enables them to encrypt and decrypt their messages. This branch
of cryptography allows fast encryption with block ciphers and stream ciphers.
However some cryptographic primitives, such as signatures, cannot be achieved
with symmetric cryptography. Besides, the problem of securely establishing
the secret key between two parties remains. Two encryption standards chosen
by the American National Institute of Standards and Technology (NIST) are
symmetric block ciphers, namely the Data Encryption Standard (DES) from
1976 to 2001, replaced by the Advanced Encryption Standard (AES) since 2001.

In asymmetric settings, each party, sender and receiver, has a private key
and an associated public key. Asymmetic cryptography is often slower than

9

its symmetric counterpart, however it also provides a different and comple-
mentary range of primitives, such as signatures, multiparty computation, key
encapsulation, and especially key exchange protocols. For example, the RSA
algorithm, from the name of its inventors (Rivest Shamir and Adleman) in 1977,
is a famous asymmetric cryptosystem, and the basis of a widely-used signature
scheme, whose security relies on the hardness of factoring. The RSA algorithm
can be used for encryption, but due to its relative slowness, it is mostly used to
encapsulate and exchange secret keys before being used in a symmetric protocol.

Key exchange protocols Key exchange protocols are crucial to ensure that
two parties Alice and Bob can create a shared secret key from their respective
private and public key, and later use this shared secret in symmetric encryption
and/or authentification. In this sense, key exchange protocols are the bridge
between the asymmetric and symmetric worlds.

Key exchange protocols have first been introduced by Diffie and Hellman in
their 1976 article “New directions in cryptography” [DH76]. In this revolution-
ary paper, they introduce key exchange protocols as a way to provide a secure
method for two parties to obtain a shared secret.

Elliptic curves Modern cryptography is heavily based on mathematical the-
ory and computer science practice. In particular, a huge part of contemporary
asymmetric cryptology relies on elliptic curves. These curves first appeared in
cryptology in 1986, and now benefit from years of research, both in mathematics
(where they have been used and studied since the 19th century) and computer
science area. Thanks to these developments, they provide fast and compact
protocols that are widely used in encryption systems like Signal, Telegram or
WhatsApp, signatures for e-commerce, or information encryption in biometric
passports.

1.2 Computationally hard problems

Protocols in cryptography rely on computationally hard problems, i.e. problems
that are assumed not to be solvable efficiently by a computer unless the under-
lying secret is known. This is crucial to ensure that the secret key in symmetric
cryptography, or the private key in asymmetric cryptography, remain secret.
Otherwise the protocol is corrupted and an attacker can decrypt messages or
usurp the identity of someone else. An example of a hard computational prob-
lem used in symmetric protocols is to compute preimages of hash functions, but
from now on we will focus on asymmetric protocols.

Widely used computationally hard problems for asymmetric cryptography
include factorization and discrete logarithm. Note that algorithms to solve these
two problems are known, but that their requirements in time or memory grow
sub-exponentially or exponentially with the size of the input, making them
unpractical for the sizes used in cryptography.

10

Factorization Let p and q be two (large) primes. Given their product pq
only, the factorization problem is to recover the factors p and q.

For this problem, the computational effort needed to find the answer grows
subexponentially with the size of the integer pq to be factored. Hence, for
p and q sufficiently large, factorizing their product becomes computationally
infeasible (in the sense that the time needed would be greater than the age of
the universe). The factorization problem is the underlying building block for
the security of the widely used RSA scheme.

Discrete logarithm problem

Definition 1 (Discrete Logarithm Problem). Let (G,×) be a group and g a
generator. Let e be a secret integer. Given ge only, the discrete logarithm
problem is to find e.

For this problem, the computational effort needed to find the answer depends
on the underlying group G: it is quasi-polynomial or subexponential in finite
fields, but exponential on elliptic curves. The discrete logarithm problem is the
building block for elliptic curve cryptography.

Hard Homogeneous Spaces The discrete logarithm problem has been gen-
eralized by Couveignes [Cou06] as an instance of a Hard Homogeneous Space
(HHS). Hard Homogeneous Spaces are the kind of settings that allow key ex-
change protocols.

Definition 2 (Homogeneous space). Let G be a finite commutative group. A
homogeneous space H for G is a finite set H of the same cardinality S = #H =
#G which is acted on freely and transitively by G.

This definition means that there is a single orbit and for any g ∈ G not
the identity, the permutation of H induced by g has no fixed points. In other
words, for two elements h1, h2 ∈ H there is a unique g in G that maps h1 to h2.
The homogeneous spaces of interest for us are the ones where the following
computational problems are easy:

• Group operations for G: Given strings encoding of group elements g1 and
g2, decide if they represent elements in G and if these elements are equal
or not. Given g1, g2 ∈ G compute g1g2, g

−1
1 and decide if g1 = g2.

• Random element for G: Find a random element in G with uniform prob-
ability.

• Membership for H: Given a string h decide if h represents an element
in H.

• Equality in H: Given h1, h2 ∈ H decide if h1 = h2.

• Action of G on H: Given g ∈ G and h ∈ H compute the action of g on h.

11

For cryptographic purposes, we are interested in homogeneous spaces having
additional hard computational problems. We consequently define the notion of
hard homogeneous spaces.

Definition 3 (Hard homogeneous space or HHS). A hard homogeneous space
H for G is a homogeneous space for which the following problems are hard:

• Vectorization: Given h1, h2 ∈ H, find g ∈ G such that h2 is the result of
the action of g on h1 .

• Parallelization: Let δ(h2, h1) be the unique group element mapping h1 to
h2. Given h1, h2, h3 ∈ H, compute the unique h4 such that δ(h4, h3) =
δ(h2, h1) .

It is conjectured (and proven in quantum settings) that parallelization and
vectorization are equivalent, in the sense that if we can solve one problem effi-
ciently, we can then use it to solve the other problem efficiently too.

1.3 Original Diffie–Hellman

We now present the original version of the Diffie–Hellman key exchange from
[DH76] in Figure 1.1. It requires a finite cyclic group G of order n, and a
generating element g in G.

Alice and Bob both choose random integers as private keys. They derive
their public keys by exponentiating the group generator by their private keys.
Both of them can compute a shared secret by applying their own private key to
the counterpart’s public key, thanks to the group commutativity.

Note that a passive attacker observing the information exchanged between
Alice and Bob would not be able to obtain any information on the private keys.
The security depends on the hardness of the Diffie–Hellman problem, which is
analogous to Parallelization in a HHS, and on the Discrete Logarithm Problem,
which is analogous to Vectorization.

1.4 Quantum revolution

Contemporary cryptography faces a major threat: the arrival of quantum com-
puters. The publication in 1994 of Shor’s algorithm [Sho94] has been a game
changer. Shor proves that with a quantum computer, his algorithm can solve
the factorization and discrete logarithm problem in polynomial time in the size
of the input. This means that while these two building blocks problems remain
hard against an attacker having only classical resources, they are no longer safe
to be used against an attacker having access to a quantum computer.

Note that when Shor first published his algorithm, there were no quantum
computers available yet. However after years of research, the development of
quantum computers is rapidly growing. While bits on a classical computer have
two distinct states 0 or 1, quantum bits, or qubits, can be in a superposition of

12

Public parameters:
A finite cyclic group G of order n (here G is written multiplicatively).
A generating element g in G.
Alice Bob
Private key: Private key:
a ∈ N, a < n b ∈ N, b < n
Public key: Public key:
PKA = ga PKB = gb

PKA�
PKB

Shared secret Shared secret
computation: computation:
(PKB)

a mod n (PKA)
b mod n

Shared secret: Shared secret:
gab gab

Figure 1.1: Original Diffie–Hellman protocol

both states 0 and 1. This allows new type of algorithms to be developed, namely
quantum algorithms, that outperform classical ones on several computational
problems, including several problems on which current cryptography is based.

Today, these quantum computers are not powerful enough to break currently
used cryptography, but they might be in the near future. Current attempts are
far from being enough to implement the quantum algorithm of Shor on integers
of cryptographic size, which would need about 100 logical qubits, scaling up to
thousands of physical qubits due to the need for error corrections. Nonetheless
the power of quantum machines is rapidly growing, and large quantum machines
capable of running interesting instances of Shor’s algorithm could be operational
in five to ten years according to some experts, rendering obsolete many of the
algorithms used in cryptology. While most symmetric cryptosystems can be
patched by roughly doubling the size of the keys, the current state-of-the-art
in asymmetric cryptography, including elliptic-curve based cryptography, will
completely collapse, because the factorization and discrete logarithm problems
would be rendered easy enough to solve.

The consequences of the availability of a fully operational quantum computer
would be disastrous: secure communications, digital signatures, and online pay-
ments, among others would not be safe to use any more. Considering this threat,
there is an urgent need to find new protocols that would be resistant against
quantum attacks. This is exactly what post-quantum cryptography is: algo-
rithms, possibly running on classical computers, that can resist both classical
and quantum adversaries.

The potential post-quantum cryptosystems have five dominant underlying
mathematical techniques:

13

� Lattice-based systems, which rely on the hardness of problems such as
finding a short vector in a given lattice;

� Code-based systems, which rely on hard problems from the theory of error
correcting codes;

� Multivariate systems, which rely on the difficulty of solving various kinds
of polynomial systems;

� Hash-based systems, which rely on the difficulty of inverting cryptographic
hash functions;

� Isogeny-based systems, which take advantage of the hardness of finding
paths in the graph of isogenies between ordinary or supersingular elliptic
curves.

These problems are currently believed to be hard even for an attacker equipped
with a quantum computer. To encourage efforts in post-quantum research, NIST
(the American National Institute of Standards and Technology) has launched
in 2017 a five-year-program, aiming to standardize a portfolio of quantum-
resistant cryptosystems. The isogeny-based key encapsulation candidate, SIKE
[JAC+17], is one of the alternate third round finalists.

1.5 Isogeny history

Elliptic curve cryptography has been used for years due to its efficiency and
compactness. However it relies on the discrete logarithm problem which can be
solved efficiently by quantum computers, triggering the need for a replacement.

Isogenies are morphisms between elliptic curves (preserving the point at in-
finity). In that sense isogeny-based systems naturally evolve from elliptic curve
cryptography. Isogenies have been historically studied for point counting algo-
rithms or endomorphism ring computation on elliptic curves. However, while
the underlying hard problems for elliptic-curve-based systems are easily attack-
able by a quantum computer, the problem of finding an isogeny between two
given elliptic curves remains conjecturally hard for both classical and quantum
attackers. This makes isogenies a suitable candidate for post-quantum cryptog-
raphy.

Isogeny-based cryptography is the youngest of post-quantum paradigm. How-
ever it benefits from years of studies made on elliptic curve cryptography, which
prepared a fertile soil for its growth. It first appeared in 1996, when Couveignes
proposed a key-exchange protocol based on the action of the ideal class group
on an isogeny class of ordinary elliptic curves [Cou06]. Although his discovery
did not spark much interest at the time, a few years later in 2004 the same
scheme was independently rediscovered by Rostovstev and Stolbunov [RS06]
who claimed its post-quantum security. This time it captured more attention,
or at least enough attention for a quantum subexponential attack on the scheme

14

to be published. Indeed, Childs, Jao and Soukharev showed in 2010 the exis-
tence of a quantum subexponential attack [CJS14]. This attack, added with the
fact that the scheme is inconveniently slow, despite recent steps towards greater
practicability of the scheme in [DKS18], seemed to temporarily end interest on
the use of isogenies between ordinary elliptic curves for cryptographic purposes.

In order to avoid the quantum subexponential attack on the ordinary case,
De Feo, Jao and Plût proposed in [JD11] and [DJP14] to use isogenies be-
tween supersingular elliptic curves over Fp2 instead of ordinary ones. Indeed,
the attack of [CJS14] strongly relies on the fact that the endomorphism ring
of ordinary elliptic curves is commutative, which is not the case for supersin-
gular curves over Fp2 . Using a commutative diagram to replace the missing
commutativity, they provide a quantum-resistant key exchange protocol à la
Diffie–Hellman, named SIDH for Supersingular Isogeny Diffie–Hellman.

The SIDH protocol later lead to SIKE (Supersingular Isogeny Key Encapsu-
lation), the isogeny-based proposal for the post-quantum NIST contest. It has
moved on through the competition to reach the alternate third-round pool. It
offers the shortest key sizes, perhaps the only one being in accessible range for
practical use in some applications (less than kilobytes versus megabytes).

Attempting to improve the ordinary case key exchange protocols of CRS,
Castryck, Lange, Martindale, Panny and Renes had the idea of using supersin-
gular curves defined over Fp (instead of Fp2 in SIKE). The endomorphism ring
over Fp then happens to be an order in a quadratic field, which is commutative,
exactly as in the ordinary case. Using ideas from De Feo, Kieffer and Smith
initially intended to accelerate the ordinary case protocol [DKS18], they pro-
posed in [CLM+18] a key exchange protocol with efficient public-key validation,
and without sending additional torsion points. This scheme, named CSIDH for
Commutative Supersingular Isogeny Diffie–Hellman still suffers from the subex-
ponential quantum attack, but it offers a nice and complementary alternative
to SIKE with an acceptable running time and the hope that it offers more flex-
ibility to derive other primitives. Note that the existence of a subexponential
quantum attack does not necessarily mean that the protocol is unusable: the
extensively used RSA protocol also has a subexponential attack, and it is the
most currently-used cryptographic protocol.

A growing number of isogeny-based protocols are being developed and stud-
ied, offering a portfolio of quantum-resistant cryptographic primitives. We give
a non-exhaustive list of such primitives to give an idea of the variety of possi-
bilities:

• Hash functions: Charles–Goren–Lauter [CLG09];

• Key exchange protocols: Couveignes [Cou06], Rostovtsev–Stolbunov [RS06],
SIDH [JD11], CSIDH [CLM+18], CSURF [CD20], BSIDH [Cos20], OS-
IDH [CK20], CTIDH [BBC+21];

• Key encapsulation protocol: SIKE [JAC+17];

• Signatures: SeaSign [DG18], CSI–FiSh [BKV19], SQISign [DKL+20];

15

• Verifiable delay functions: [Wes20], [DMPS19];

• Oblivious Transfer: [Vit19];

• Threshold schemes: [DM20];

Isogeny-based cryptosystems benefit from being the natural successor of el-
liptic curves cryptography, taking full advantage of the years of research and
confidence on curves. It is also the only post-quantum system offering a close
analogue of the Diffie–Hellman key exchange protocol, as opposed to key encap-
sulation only.

On the downside, isogeny-based cryptography is criticised for being slower
than other post-quantum families, meaning that much effort on implementations
is needed to make protocols practicable. Since isogeny-based cryptography is a
young field, more research is needed to increase the confidence in the underlying
hard problems.

1.6 Problematic

Considering the advantages and drawbacks of isogeny-based cryptography de-
scribed above, our problematic is the following: how can we increase confi-
dence in the security and practicability of isogeny-based key exchange
protocols?

We base our argumentation on four axes of confidence:

• Mitigating weaknesses: implementation to make key exchange fast and
secure;

• Re-enforcing strengths: key management to provide protocols with effi-
cient public key compression and validation;

• Constructive approach: generalization of existing protocols to cover the
different needs of cryptography;

• Destructive approach: cryptanalysis to test and estimate the resistance of
isogeny-based key exchanges.

1.7 Overview

We start by recalling in Chapter 2 the necessary mathematical preliminaries
to study isogeny-based protocols. We first gather notions on quadratic fields
in order to define the ideal class group in Section 2.1. Then, from algebraic
plane curves in Section 2.2, we gather the tools to properly define elliptic curves
in Section 2.3. We then define the morphisms between these curves, namely
isogenies, in Section 2.4, and the classification of curves that arise from the
structure of their endomorphism ring in Section 2.5. We make precise the action
of the ideal class group in the case of ordinary and supersingular elliptic curves

16

in Section 2.6, which allows us to detail the structure of isogeny graphs in
Section 2.7.

In Chapter 3 we introduce isogeny-based key exchanges. We detail three ex-
isting key exchange protocols : the ordinary case (CRS [Cou06, RS06, Sto10]) in
Section 3.1 , the supersingular case of Fp2 (SIDH [JD11][DJP14]) in Section 3.2
and the supersingular case over Fp (CSIDH [CLM+18]) in Section 3.3. Eventu-
ally, we compare these schemes in Section 3.5 and we briefly introduce notions
of key management in cryptography in Section 3.4.

After these introductory chapters we study in Chapter 4 the constant-time
implementation of the CSIDH key exchange protocol. We start by recalling
several models of side-channel attacks in Section 4.1, and previous works on
this subject in Section 4.2. Having gathered the necessary notions, we present
a dummy-free fault-attack-resistant constant-time implementation of CSIDH in
Section 4.3, as well as a derandomized variant implementation in Section 4.4.
These two results are part of the joint work in [CCC+19]. For completeness,
we present the results published by the research community after [CCC+19] in
Section 4.5.

We then move on to a generalization of the CSIDH group action in Chap-
ter 5. The results of this section have been published in [CS21]. The chapter
begins with the study of curves having a degree-d isogeny to their Galois conju-
gate in Section 5.1. We call these (d, �)-structures. Next we prove in Section 5.2
that there is a free and transitive action of the ideal class group of Q(

√−dp)
on isogeny classes of (d, �)-structures. This result allows us to prove and de-
scribe the structure of the isogeny graph of (d, �)-structures in Section 5.3. We
eventually show how these structures can be parametrized via modular curves
in Section 5.5 and Section 5.6.

The study of the properties of (d, �)-structures paves the way for our Higher
Degree Commutative Supersingular Isogeny Diffie–Hellman (HD CSIDH) pre-
sented in Chapter 6. We describe the key exchange protocol in Section 6.1 and
detail the practical computation and related algorithms in Section 6.2, illus-
trated by a concrete key exchange example in Section 6.3. We then focus on
key management for this new isogeny-based key exchange, in particular public
key compression in Section 6.4, and public key validation in Section 6.5.

Finally we study cryptanalytic aspects of SIDH in Chapter 7. We start by
recalling the Delfs–Galbraith attack from [DG16] in Section 7.1, before general-
izing the approach in Section 7.2 using the tools developed for (d, �)-structures.
We study the consequences for SIDH in Section 7.3

17

18

Notations and conventions

• K is a perfect field, i.e. a field K in which every irreducible polynomial
over K has distinct roots. In most applications it will be a finite field.

• K̄ is the algebraic closure of K.

• k is a quadratic field.

• Ok is the maximal order of k.

• An is the affine space over K of dimension n, An(K) is the set of points
defined over K, and An(K) is the set of points defined over K.

• Pn is the projective space over K of dimension n, Pn(K) is the set of points
defined over K, and Pn(K) the set of points defined over K.

• n = (nk−1...n0)2 is the decomposition in base 2 for an integer n, written
with least significant bits on the right.

• (np) is the Legendre symbol, equal to 0 if p divides n, 1 if n is a nonzero
square modulo p, and −1 otherwise.

• log for the logarithm in base 2.

19

20

Part I

Preliminaries

21

Chapter 2

Mathematical preliminaries
for isogeny-based
cryptography

The building block for isogeny-based cryptography is elliptic curves. An elliptic
curve is a smooth curve of genus one with a distinguished rational point. To un-
derstand this definition we start by recalling notions about quadratic fields and
ideal class groups. We then study affine and projective plane curves, along with
the notions of non-singularity, dimension, function fields, divisors and genus.
Having gathered the tools to properly define elliptic curves, we turn to their
properties: an elliptic curve is an algebraic variety but also an algebraic group.
We define the addition in this group using divisors, then scalar multiplication
and torsion subgroups. Finally, we introduce the invariant differential.

After studying properties of elliptic curves we focus on morphisms between
such curves, namely isogenies. We define the notions of separable isogeny, dual
and degree. We give Vélu’s formulae, which are used to compute isogenies in
practice, as well as a concrete example. We conclude the section with an intro-
duction to modular curves an their link to isogenies. We then focus on isogenies
from one curve to itself, i.e. endomorphisms, and recall how the endomorphism
ring of ordinary and supersingular curves differs. We describe the Deuring corre-
spondence which links the world of isogenies with the world of fractional ideals,
and introduce the action of the ideal class group on different subset of elliptic
curves. Finally we introduce isogeny graphs to describe the structure of isoge-
nies linking curves from a given set. With graphical example we highlight the
differences that arise depending on the endomorphism ring properties.

23

2.1 Quadratic imaginary order and class groups

We start by recalling notions of quadratic fields, orders, (integral) ideals, invert-
ible and principal fractional ideals, gathering the tools to formally define the
ideal class group itself.

2.1.1 Quadratic fields, orders and ideals

A quadratic field is Q(
√
d) where d �= 0, 1 is a squarefree integer. If d < 0 then

the field is called an imaginary quadratic field. The discriminant of Q(
√
d) is

D = d if d ≡ 1 (mod 4) or D = 4d otherwise.
An order in a field k containing Q is a subring R of k that is finitely generated

as a Z-module and is such that R ⊗Z Q = k. An order O is maximal if every
order O� such that O ⊂ O� ⊂ k is such that O� = O. Any order of a quadratic
field is contained in a unique maximal order (see [BV07] Theorem 8.1.4).

Proposition 1. Let O be an order of an imaginary quadratic field k = Q(
√
d).

The maximal order is Ok = Z+ωZ, where ω = 1
2 (1+

√
d) if d is congruent to 1

modulo 4 or ω =
√
d otherwise. If O is an order of a quadratic field k, then

O is a submodule of the maximal order, and can be written as O = Z + fωZ,
where f = [O : Ok] is called the conductor.

Proof. See [BV07] Proposition 7.2.6 and [Gal12] Section A.12..

Proposition 2. Let I be an integral ideal of an order O = Z+ fωZ in Q(
√
d),

where ω =
√
d if d �≡ 1 (mod 4) and ω = 1

2 (1 +
√
d) otherwise. We have

I = c(aZ+ (b+ fω)Z), where a, b and c are integers such that c > 0, a > b � 0,
and

• a divides b2 − d if d �≡ 1 (mod 4) ;

• a divides b(b+ 1)− d−1
4 if d ≡ 1 (mod 4) .

Proof. See [BV07], Equation (8.8) and Proposition 8.4.5, with q = 1, and
√
Δ =

f
√
−d.

Recall that the norm of an ideal I is defined as N(I) = |O/I| . The norm
is multiplicative, i.e. N(IJ) = N(I)N(J) . An ideal I strictly included in a
ring R is said to be a prime ideal if for every element a and b in R such that ab
belongs to I, then a or b belongs to I. Using the link between integral ideals and
integral binary quadratic forms, it is possible to show that every ideal whose
norm is coprime to the conductor has unique factorization into a product of
invertible prime ideals (see [BV07] Theorem 8.6.8).

Example 1. The order Ok = Z+ (1+
√−3)
2 Z is a maximal order of the quadratic

field k = Q(
√
−3). The suborder O = Z + 5

√
−3Z has conductor 10. Set

ω = (1+
√−3)
2 . The ideal I = 5(21Z + (5 − ω)Z) is an ideal of Ok, with norm

525. It is the product of three prime ideals, namely 3Z+ (1− 2ω)Z with norm
3, 7Z+ (4 + 2ω)Z with norm 7, and 5Z with norm 25.

24

2.1.2 Fractional ideals

From integral ideals we move on to fractional ideals of an order O. Since frac-
tional ideals are not ideals, we will reserve the term ideal for integral ideals in
order to avoid confusion. Fractional ideals will always be named as such.

A fractional ideal of an order O in a field k is a subset a of k such that aa
is an (integral) ideal O of k for some positive integer a ∈ Z. A fractional ideal
of an order O in a quadratic field k is said to be principal if it can be written
as a = αO for some α in k. It is said to be invertible if there exist a fractional
ideal b such that ab = O .

In the maximal order of a quadratic field, all nonzero fractional ideals are
invertible. Moreover every principal fractional ideal is invertible (see [BV07]
Corollary 8.4.15, with the second point following from the definition).

The set of fractional ideal forms an abelian semigroup under multiplication
(with usual multiplication of ideals). The set of invertible fractional ideals I(O)
is a subgroup, in which the set of principle ideals Pr(O) is a normal subgroup
(see [BV07] Proposition 8.4.10 and Theorem 8.4.13).

Example 2. Consider the quadratic imaginary field k = Q(
√
−3) and its max-

imal order Ok = Z +
√
−3Z. Consider the ideal I = 6Z + (3 +

√
−3)Z of Ok.

Taking α = 2 + 3
4

√
−3 ∈ Q(

√
−3)∗, αOk and αI are fractional ideals (and not

an integral ideal) of Ok.

2.1.3 Ideal class group

Definition 4. Let O be an order of an imaginary quadratic field. The ideal
class group is

Cl(O) = I(O)/Pr(O) .

Intuitively, this means that we will consider equivalence classes of invertible
fractional ideals up to multiplication by an non-zero element of Q(

√
d). For

example, the fractional ideals I and αI belong to the same class.

Proposition 3. The order of the ideal class group of Ok asymptotically satisfies

log(#Cl(O)) ∼ log
�
|d| .

Proof. The is a special case of the Brauer–Siegel theorem (see [Lan94]). See
also [BV07] Theorem 9.3.10.

2.2 Algebraic plane curves

This section aims to gather all the elements needed to define elliptic curves,
namely the notion of affine and projective spaces, plane curves, dimensions,
smoothness and genus. See [Gal12] for references of the results in this section.

25

2.2.1 Affine plane curves

Let K be a perfect field. The affine 2-space over K is the plane A2(K) = {(x, y) :
x, y ∈ K}. The set of K-rational points of A2 is the set A2(K) = {(x, y) ∈ A2 :
x, y ∈ K}.

An affine plane curve is defined by a single polynomial equation f(x, y). An
algebraic plane curve C is defined over K if its defining polynomial is defined
over K . We denote this by C/K. If C/K is a curve defined by f(x, y) = 0 with
f a polynomial in K̄[x, y], and K�/K is an extension, then C(K�) = {(x, y) ∈
A2(K�) : f(x, y) = 0}.

2.2.2 Projective plane curves

Let K be a perfect field. The projective 2-space (over K), denoted by P2 or
P2(K̄) is the set of all triplets (X,Y, Z) ∈ A3 such that at least one parameter is
nonzero, modulo the equivalence relation (X,Y, Z) � (X �, Y �, Z �) if there exists
a λ ∈ K̄∗ such that X = λX �, Y = λY �, Z = λZ �.

An equivalence class (λX,λY,λZ) : λ ∈ K̄∗ is denoted by (X : Y : Z), and
the individual X,Y, Z are called homogeneous coordinates for the corresponding
point in P2 . The set of K-rational points in P2 is the set P2(K) = {(X : Y :
Z) ∈ P2 : X,Y, Z ∈ K}.

A projective plane curve is defined by a single homogeneous polynomial
equation f(X,Y, Z) = 0.1 It is defined over K if its generating polynomial is
defined over K . We denote this by C/K. If C/K is a projective plane curve
defined by f(X,Y, Z) = 0 with f a homogeneous polynomial in K̄[X,Y, Z], and
K�/K is an extension, then C(K�) = {(X : Y : Z) ∈ P2(K�) : f(X,Y, Z) = 0}.
Example 3. We start with an example of an affine plane curve. Let f =
x3+7x+21−y2 ∈ K[x, y]. Then f defines an affine plane curve C/K = {(x, y) ∈
A2 : x3 +7x+21− y2 = 0}. The polynomial F = X3 +7XZ2 +21Z3 − Y 2Z =
Z3f(X/Z, Y/Z) ∈ K[X,Y, Z] is homogeneous, and defines a projective closure
of C in P2.

2.2.3 Function field

2.2.3.1 Affine case

Definition 5. Let C be a affine algebraic plane curve defined over K generated
by a polynomial f . The coordinate ring of C over K is K[C] = K[x, y]/(f). The
function field is K(C) = {f1/f2 : f1, f2 ∈ K[C], f2 /∈ (f)}S with the equivalence
relation f1/f2 ≡ f3/f4 if and only if f1f4 − f2f3 ∈ (f), the ideal of K[C]
generated by f .

In other words, K(C) is the field of fractions of the affine coordinate ring
K[C] over K. Elements of K(C) are called rational functions. For a ∈ K the
rational function f : V �→ k given by f(P) = a is called a constant function.

1A polynomial f ∈ K̄[X,Y, Z] is homogeneous of degree d if f(λX,λY,λZ) = λdf(X,Y, Z)
for all λ ∈ K̄.

26

2.2.3.2 Projective case

Definition 6. Let C be a projective algebraic set defined over K. The homoge-
nous coordinate ring of C over K is K[C] = K[X,Y, Z]/f . The function field
is K(C) = {f1/f2 : f1, f2 ∈ K[C] homogeneous of the same degree , f2 /∈ (f)}
with the equivalence relation f1/f2 ≡ f3/f4 if and only if f1f4 − f2f3 ∈ (f).

In other words, K(C) is the field of fractions of the projective coordinate
ring K[C] over K. Elements of K(C) are called rational functions.

2.2.4 Smooth algebraic plane curves

We study the regularity, or smoothness, of a curve. As an introduction to this
notion, we provide two examples in figures 2.1 and 2.2. The first former is
regular whilst the latter presents a singularity at the origin. We then formally
define these two notions.

−10 −5 0 5 10
−10

−5

0

5

10

x

y

Figure 2.1: Smooth curve y2 = x3 + 7x+ 21 over R.

2.2.4.1 Affine case

Let C be a plane curve defined by the polynomial f(x, y), and P ∈ C. Then C
is singular at P if the partial derivatives

∂(f(x, y))

∂x
(P) and

∂(f(x, y))

∂y
(P)

27

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5
0

0.5

1

1.5

2

x

y

Figure 2.2: The curve over R defined by y2 = x3+x2 is singular curve at (0, 0).

are both zero at P . If C is nonsingular at every point, then we say that C is
nonsingular.

Example 4. Let C = {(x, y) ∈ A2 : x3 + 7x + 21 − y2 = 0} and P ∈ C. The
plane curve C is smooth at P , since

�
∂(x3+7x+21−y2)

∂x (P)
∂(x3+7x+21−y2)

∂y (P)

�
=

�
7 + 3x2

2y

�

has rank 1.

2.2.4.2 Projective case

Let C be a projective plane curve, let P ∈ C , and choose A2 ⊂ P2 with P ∈ A2.
Then C is nonsingular (or smooth) at P if C ∩ A2 is nonsingular at P . If C is
nonsingular at every point, then we say that C is nonsingular.

Example 5. The curve C = {(X : Y : Z) ∈ P2 : X3+7XZ2+21Z3−Y 2Z = 0
is a smooth projective plane curve. Indeed let P ∈ C different from the point
at the infinity. Then taking an affine plane S with Z �= 0, C ∩ S = {(x, y) ∈
A2 : x3 + 7x+ 21− y2 = 0), which is smooth. For the point at the infinity, we
choose another affine plane S with Y �= 0 and proceed similarly.

28

2.2.5 Morphisms of plane curves

Let C be a plane curve and let f ∈ K(C). Then f is defined or regular at P if
it can be written as f1/f2 with f2(P) �= 0 with f1, f2 ∈ K[C].

Definition 7. Let C and C � be two plane curves defined over K. A rational
map ϕ : C → C � over K which is regular at every point P ∈ C(K) is called
a morphism. If there exists a morphism ψ : C � → C over K such that ϕ ◦ ψ
and ψ ◦ ϕ are the identity on C � and C, respectively, then ϕ is a plane curve
isomorphism.

2.2.6 Divisor of a function

The divisor of a function is a formal sum representing its zeros and poles counted
with multiplicities. The formal definition of a divisor requires the notion of the
valuation of a function at a point. The valuation carries the information of
the behaviour of the function at this point: if it is a zero (resp. a pole), the
valuation is equal to its multiplicity (resp. minus its multiplicity); otherwise,
the valuation is simply zero. To formally define divisors of functions, we first
introduce the local ring of a variety and its maximal ideal.

Definition 8. Let C be a plane curve over K. The local ring over K of C at
a point P ∈ C(K) is OP,K(x,y) = {f ∈ K(x, y) : f is regular at P}. We write
mP,K(x,y) = {f ∈ OP,K(x,y) : f(P) = 0} ⊆ OP,K(x,y) for the maximal ideal of
OP,K(x,y). A uniformizer for C at P is any generator of mP,K(x,y).

Definition 9. Let K be a field. A discrete valuation on K is a function v :
K∗ �→ Z such that:

1. for all f, g ∈ K∗, v(fg) = v(f) + v(g);

2. for all f, g ∈ K∗ such that f + g �= 0, v(f + g) ≥ min(v(f), v(g));

3. there is some f ∈ K∗ such that v(f) = 1 (equivalently, v is surjective to
Z).

Let C be a plane curve over K and P ∈ C(K). Let mP = mP,K(C) be as in
Definition 8 and define m0

P = OP,K(X). Let f ∈ OP,K(X) be such that f �= 0.
Then the function f �→ vP (f) = max{m ∈ N : f ∈ mm

P } defines a discrete
valuation. We say that vP (f) is the order of f at P . If vP (f) = 1 then f has a
simple zero at P .

For each point P on the curve, let gP and hP be functions in OP,K(X)

such that gP /hP = f . The divisor of f is Div(f) =
�

P∈C(K) vP (gP)(P) −�
P∈C(K) vP (hP)(P). The divisor of a function is also called a principal divisor.

We write Prin(C) = {Div(f) : f ∈ K(C)∗}.

29

2.2.7 Divisor class group

The divisor group of a curve C defined over K, denoted by Div(C), is the free
abelian group generated by the points of C. Thus a divisor D ∈ Div(C) is a
formal sum

D =
�

P∈C(K)

nP (P) ,

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C(K). The degree of D
is defined by

degD =
�

P∈C(K)

nP .

We write
Div0(C) = {D ∈ Div(C) : deg(D) = 0} .

A divisor D =
�

P∈C(K) nP (P) is effective, denoted by D ≥ 0, if nP ≥ 0

for every P ∈ C. Similarly, for any two divisors D1, D2 ∈ Div(C), we write
D1 ≥ D2 to indicate that D1 −D2 is effective.

Definition 10. Let C be a curve defined over K and let D =
�

P∈C(K) nP (P)

be a divisor on C. For σ ∈ Gal(K/K) define σ(D) =
�

P∈C(K) nP (σ(P)).

Then D is defined over K if σ(D) = D for all σ ∈ Gal(K/K). We write DivK(C)
for the set of divisors on C that are defined over K.

Lemma 4. Prin(C) is a subgroup of Div0K(C).

Proof. See [Gal12] Chapter 7 Section 7 Lemma 7.7.6.

The degree zero divisor class group of a curve C over K is Pic0(C) =
Div0(C)/Prin(C). We call two divisors D1, D2 ∈ Div0(C) linearly equivalent
and write D1 ≡ D2 if D1−D2 ∈ Prin(C). The equivalence class (called a divisor
class) of a divisor D ∈ Div0(C) under linear equivalence is denoted [D].

2.2.8 Genus

Over C, the genus represents the number of “holes” on a curve viewed as a
Riemann surface. It is formally defined for curves over any field using the
divisor class group.

Definition 11. Let D ∈ Div(C). We associate to D the set of functions
L(D) = {f ∈ K̄(C)∗ : Div(f) ≥ −D} ∪ 0. The set L(D) is a finite-dimensional
K̄-vector space, and we denote its dimension by �(D) = dimK̄ L(D).

Theorem 5 (Riemann2). Let C be a plane curve over a field K. There is an
integer g ≥ 0 such that �(D) ≥ deg(D) + 1 − g for all divisors D on C . The
smallest such g is called the genus of C .

Proof. See [Gal12] Chapter 8 Theorem 8.4.7.
2this theorem is a weak form of the Riemann–Roch theorem, but we do not need the full

Riemann–Roch in what follows.

30

2.3 Elliptic curves

Elliptic curves have been used in cryptography since Miller and Koblitz pub-
lished independent triggering papers in 1985 [Mil85][Kob87]. Elliptic curve pro-
tocols provide speed and compact keys. Moreover they benefit from enhanced
security compared to analogous algorithms for finite fields, since the discrete
logarithm problem is believed to be harder to solve on elliptic curves of the
same size.

We start by introducing two common representations of elliptic curves, and
the j-invariant that allows us to identify curves up to isomorphism. Using divi-
sors, we then show that elliptic curves are algebraic groups. From the additive
group law we define scalar multiplication. We also categorize elliptic curves
defined over a finite field into ordinary and supersingular ones.

2.3.1 Representation of elliptic curves

Definition 12. An elliptic curve defined over a field K is a smooth, projec-
tive, algebraic plane curve of genus one defined over K, on which there is a
distinguished point OE called the infinity.

Let E and E� be two elliptic curves defined over K. A morphism of elliptic
curves ϕ : E → E� over K is a plane curve morphism with ϕ(OE) = OE� . If
there exists a morphism ψ : E� → E over K such that ϕ ◦ ψ and ψ ◦ ϕ are the
identity on E� and E respectively then ϕ is an elliptic curve isomorphism. The
curves E and E� are said to be isomorphic, written E � E�.

Proposition 6. Every elliptic curve is isomorphic to a curve in the projective
space P2 given by the following Weierstrass equation :

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 ,

where the coefficients a1, ..., a6 belong to the field K. If the characteristic of the
field K is different than 2 or 3, the equation can even be simplified to an affine
short Weierstrass equation as:

y2 = x3 + ax+ b ,

where a and b belong to K, and x = X/Z, y = Y/Z .

Proof. See [Sil09] Chapter III section 1.

In addition to the short Weierstrass form, in this thesis we also use exten-
sively elliptic curves in Montgomery form.

Definition 13. Let p ≥ 5 be a prime and Fp the finite field of order p. For A,B
in Fp, an elliptic curve defined by

By2 = x3 +Ax2 + x

is called an elliptic curve in Montgomery form.

31

Not every short Weierstrass curve has a Montgomery equivalent, however
the following proposition gives a useful criteria to determine an isomorphism.

Proposition 7. A Weierstrass form elliptic curve E : y2 = x3 + ax + b is
transformable to the Montgomery form if and only if

1. the equation x3 + ax+ b = 0 has at least one root in Fp, and

2. the number 3α2 + a is quadratic residue in Fp, where α is a root of the
equation x3 + ax+ b = 0 in Fp.

Let s be one of the square roots of (3α2 + a)−1 in Fp, and set B = s,
A = 3αs. Then, the function mapping point (x, y) on E to (s(x− α), sy) gives
an isomorphism E to the Montgomery form elliptic curve defined by By2 =
x3 +Ax2 + x.

Proof. See [OKS00] Proposition 1.

The Montgomery form of curve provides numerous algorithmic improve-
ments when using elliptic curves in protocols, including compact representation
of the points by dropping the y coordinate with optimized fast multiplication
using the so-called Montgomery ladder (see [Mon87] for the original article and
[CS18] for a survey on Montgomery curves).

Definition 14. In both the short Weierstrass and Montgomery models, using
the notation above, we define the j-invariant of an elliptic curve E defined over
a field K by:

j(E) = 256
(A2 − 3)3

A2 − 4
=

−1728(4a)3

−16(4a3 + 27b2)
.

Note that in the Montgomery case, the j-invariant does not depend on the
coefficient B of the curve. Two elliptic curves defined over K are isomorphic
over K̄ if and only if they have the same j-invariant (see [Sil09] chapter III
section 1). We warn the reader that curves isomorphic over K are not necessarily
isomorphic over K.

Definition 15. Let α be an element of Fq \ {0}. For each elliptic curve E :
y2 = x3 + ax+ b defined over Fq, there is a curve

Eα/Fq(α
2) : y2 = x3 + α4ax+ α6b

and an Fq(α)-isomorphism τα : E → Eα defined by (x, y) �→ (α2x,α3y). Abus-
ing notation, we write τα for this map on every elliptic curve; with this conven-

tion, τβ ◦ τα = ταβ . If δ is a nonsquare in Fq then E
√
δ is the quadratic twist

(which, up to Fq-isomorphism, is independent of the choice of nonsquare δ)
and τ√δ is the twisting isomorphism.

Let E be an elliptic curve over Fq with char(Fq) �= 2, 3, and j its j-invariant.
If j �= 0, 1728, then the quadratic twist is the only twist up to isomorphism (see
[Gal12] Lemma 9.5.7).

32

2.3.2 Algebraic group

One of the many interesting mathematical properties of elliptic curves is that
they are commutative algebraic groups. Indeed, it is possible to define an ad-
dition law on the set of points of the curve. We introduce the group law using
properties of divisors, before giving explicit formulae described with a graphical
interpretation via the chord-and-tangent rule.

Theorem 8. There is a one-to-one correspondence between the points of E and
Pic0(E), namely P → (P)−(OE). It follows that E is an algebraic group for the
law induced by pulling back the divisor class group operations via this bijection.

Proof. See [Sil09], Chapter III, Proposition 3.4.

Under the bijection, the point at infinity O maps to 0, making O the neutral
element of the group. It follows that if P +Q = O then P = −Q, which defines
the negation of a point. It corresponds to an involution (x, y) → (x,−y) on the
curve.

2.3.2.1 Link with “chord-and-tangent” rule

In practice explicit formulae are derived from Theorem 8 using the “chord-and-
tangent” rule. Let P and Q be two points on an elliptic curve. Let l(x, y) = 0
be the line through P and Q (chord if P �= Q, tangent to the curve otherwise).

• If P = −Q, then l(x, y) = x − xP is the vertical line passing through P .
It has zeroes P and −P , and one pole O with multiplicity two. Hence
(P)− (O) + (Q)− (O) = Div(l), so P +Q = O under the bijection.

• If P �= −Q, then the line l(x, y) cuts the elliptic curve at a third point
R. The line has zeroes P , Q and R, and one pole O with multiplicity
three. Now let v(x) = 0 be the vertical line through R. It has zeroes
R and −R and pole O with multiplicity two. Hence Div(l/v) = (P) +
(Q) + (R) − 3(O) − (R) − (−R) + 2(O) = (P) + (Q) − (R) − (O). Then
(P)− (O) + (Q) − (O) = Div(l/v) + (−R)− (O), so P +Q = −R under
the bijection.

By expressing the lines l(x, y) and v(x) depending on P , Q, and the model
of the curve we obtain explicit formulae for the addition.

2.3.2.2 Weierstrass curves

We first consider formulae for the short Weierstrass model E : y2 = x3 + ax+ b
where E is defined over a field K. The point at infinity O is the identity element
for the addition: for all P ∈ E(K) we have P +O = O + P = P . The negation
of a point P = (x, y) is −P = (x,−y). Let P,Q ∈ E such that P,Q �= O with
P = (xP , yP) and Q = (xQ, yQ). If Q = −P then P +Q = O. In the remaining
cases let

λ =

�
3x2

P+a
2yP

if P = Q ,
yQ−yP

xQ−xP
if P �= ±Q ,

33

and set xP+Q = λ2 − xP − xQ and yP+Q = −λ(xP+Q − xP) − yP . Then
P +Q = (xP+Q, yP+Q).

2.3.2.3 Montgomery curves

We now consider formulae for the Montgomery model E : By2 = x3 +Ax2 + x
where E is defined over a field K. As usual, O is the point at infinity.

Addition The point at infinity is the identity element for the addition: for
all P ∈ E(K) we have P +O = O+P = P . The negation of a point P = (x, y)
is −P = (x,−y). Let P,Q ∈ E such that P,Q �= O with P = (xP , yP) and
Q = (xQ, yQ). If Q = −P then P +Q = O. For the remaining cases let

λ =

�
(3x2

P+2AxP+1)
(2ByP) if P = ±Q ,

(yQ−yP)
(xQ−xP) if P �= ±Q ,

and set xP+Q = Bλ2−(xP +xQ)−A and yP+Q = (2xP +xQ+A)λ−Bλ3−yP =
λ(xP − xP+Q)− yP . Then P +Q = (xP+Q, yP+Q) .

Pseudo-addition The Montgomery model allows us to compute an x-coordinate-
only pseudo-addition, i.e. compute xP+Q = x(P + Q) in terms of xP = x(P),
xQ = x(Q), and xP−Q = x(P −Q). Assume P �= Q and P −Q �= (0, 0) . Since
P −Q /∈ {O, (0, 0)}, we know that xP−Q �= 0. If we set

XP+Q = [(xP − 1)(xQ + 1) + (xP + 1)(xQ − 1)] ,

ZP+Q = xP−Q[(xP − 1)(xQ + 1)− (xP + zP)(xQ − zQ)] ,

then xp+Q = XP+Q/ZP+Q.
Most isogeny-based protocols use elliptic curves in the Montgomery form,

which provides efficient arithmetic and compact data representation since points
can be represented by their x-coordinate only. First introduced by Mont-
gomery in [Mon87], this idea has been improved over the years as Costello
and Smith outlined in [CS18]. An optimized version of the Montgomery lad-
der has also been introduced by Faz-Hernández, López, Ochoa-Jiménez and
Rodŕıguez-Henŕıquez in [FLOR18].

2.3.3 Torsion

Having an addition law on the set of points of the curve, written E(K), we can
also define a multiplication by integer scalars. For an integer m we define the
endomorphism:

[m] : E(K) −→ E(K) by [m]P = P + P + ...+ P

that is the sum of m copies of P. If m < 0, then [m]P = [−m](−P). The kernel
of the multiplication by m, i.e.

ker([m]) = {P ∈ E(K̄) : [m]P = OE} ,

34

is called the m-torsion group of E, written E[m]. Points in this subgroup are
calledm-torsion points. If we want to restrict to the torsion group over a subfield
L ⊂ K̄, we write E[m](L) for the L-rational m-torsion subgroup.

2.3.4 Invariant differential

Let C be a curve. The space of differential forms on C, denoted by ΩC , is the
K-vector space generated by symbols of the form dx for x ∈ K(C), subject to
the usual relations:

1. d(x+ y) = dx+ dy for all x, y ∈ K(C).

2. d(xy) = xdy + ydx for all x, y ∈ K(C).

3. da = 0 for all a ∈ K

Definition 16. Let E a elliptic curve over a field K defined by the Weierstrass
equation E : y2+ a1xy+ a3y = x3+ a2x

2+ a4x+ a6 . The invariant differential
is defined to be

ω =
dx

2y + a1x+ a3
∈ ΩC .

For both short Weierstrass and Montgomery forms, we have

ω =
dx

2y
.

2.4 Isogenies

After studying elliptic curves, we now study morphisms between these curves.
They will be at the heart of the quantum-resistant cryptographic protocols. We
introduce definitions and characteristic of isogenies, before providing computa-
tional details and examples. We then focus on the set of isogenies from a curve
to itself, namely the endomorphism ring.

2.4.1 Definitions

Definition 17. An isogeny ϕ is a non-constant morphism between two elliptic
curves E1 and E2 that maps OE1

, the point at infinity of E1, to OE2
, the point

at infinity of E2.

Proposition 9. An isogeny of elliptic curves is necessarily (geometrically) sur-
jective, and must have finite kernel. It is also a homomorphism.

Proof. See [Sil09] Chap.3 Remark 4.3.

Let E1/K and E2/K be curves and let ϕ : E1 �→ E2 be a nonconstant rational
map defined over K. Then composition with ϕ induces an injection of function
fields fixing K, ϕ# : K(E2) �→ K(E1), ϕ

#f = f ◦ ϕ, called pullback.

35

An isogeny is said to be separable, inseparable, or purely inseparable if the
field extension K(E1)/ϕ

#(K(E2)) is separable
3, inseparable, or purely insepara-

ble respectively. A separable isogeny is defined by its kernel up to isomorphism
(see [Gal12] Theorem 9.6.19).

Definition 18. An isogeny ϕ : E → E� is normalised if ϕ#(ωE) = ωE .

Definition 19. Let G be a finite subgroup of an elliptic curve E. We define
E/G to be the codomain of the normalized separable isogeny with kernel G.

The degree of an isogeny is the degree of the finite extension [K(E1) :
ϕ#(K(E2))]. For separable isogenies, the degree is also the cardinality of the
kernel defining the isogeny. For a positive integer d, a d-isogeny is an isogeny
of degree d. For every d-isogeny ϕ from a curve E1 to a curve E2, there exists
a dual isogeny with degree d from E2 to E1 such that �ϕ ◦ ϕ = [d].

Recall the definition of the quadratic twist (Definition 15). Let E and E�

be two elliptic curves defined over Fp2 . For each isogeny ϕ : E → E� defined
over Fp2 , and α an element of Fp \ {0}, there is an Fp2(α2)-isogeny, called the
twisted isogeny

ϕα := (τα ◦ ϕ ◦ τ1/α) : Eα −→ (E�)α .

where τα is the Fp2(α)-isomorphism τα : E → Eα defined by (x, y) �→ (α2x,α3y).
Every separable isogeny ϕ : E → E� defined over K can be split as a (gener-

ally not unique) composition ϕ = ϕ1 ◦ · · · ◦ϕm ◦ [n] where (ϕi)1≤i≤m are prime
degree isogenies defined over K and deg(ϕ) = n2

�m
i=1 deg(ϕi) (see [Gal12] The-

orem 25.1.2).

Definition 20. Let E be an elliptic curve over Fq. The isogeny class of E is
the set of Fq-isomorphism classes of elliptic curves over Fq that are isogenous
to E over Fq.

Theorem 10 (Tate). Two elliptic curves E and E� over Fq are Fq-isogenous
if and only if #E(Fq) = #E�(Fq).

Proof. See [Tat66].

2.4.2 Vélu’s formulae

Now we recall Vélu’s formulae [Vé71] for computing explicit normalized sepa-
rable isogenies. For proofs, see [Gal12] Theorem 25.1.6. We focus on the case
of prime degree �. We need different formulae for odd and even �.

Let E : y2 = x3 + ax + b be an elliptic curve defined over K. Let � be an
odd prime and G a subgroup of order �. The map ϕ defined by

ϕ(P) = (xP +
�

Q∈G\OE

(xP+Q − xP), yP +
�

Q∈G\OE

(yP+Q − yP))

3An algebraic field extension E ⊇ F is separable if for every α ∈ E, the minimal polynomial
of α over F is a separable polynomial.

36

is invariant under translation by elements of G, and the kernel of ϕ is G. Using
the group law on the curve, we also see that ϕ can be written in terms of rational
functions. Indeed let G∗ = G \ OE . Partitioning G into two sets G+ and G−

such that G∗ = G+∪G−, and P ∈ G+ iff −P ∈ G− and for each point P ∈ G+,
we define the following quantities:

gxP = 3x2
P + a

gyP = −2yP

vP = 2gxP

uP = (gyP)
2

v =
�

P∈G+

vP

w =
�

P∈G+

(uP + xP vP) .

Then the �-isogeny ϕ : E �→ E� is given by

ϕ(x, y) = (x+
�

P∈G+

(
vP

x− xP
− uP

(x− xP)2
), y−

�

P∈G+

2yuP

(x− xP)3
+vP

y − yP − gxP g
y
P

(x− xP)2
) .

The equation for the image curve is E� : y2 = x3 + (a− 5v)x+ (b− 7w).
For even-order subgroup we need different formulae. Let � = 2 and Q a

point of order 2. The map ϕ defined by

ϕ(P) = (xP + (xP+Q − xP), yP + (yP+Q − yP))

is invariant under translation by elements of G = �Q�, and the kernel of ϕ is G.
Using the group law on the curve, we also see that ϕ can be written in terms of
rational functions. We define the following quantities:

gxG = 3x2
G + a

v = gxG

w = xGvG .

Then the 2-isogeny ϕ : E �→ E� is given by

ϕ(x, y) = (x+
v

x− xG
, y − v

y − yG
(x− xG)2

) .

The equation for the image curve is

E� : y2 = x3 + (a− 5v)x+ (b− 7w) .

2.4.3 Example

Let E1 and E2 be the elliptic curves defined over Fp given by the equations
y2 = x3 + x and y2 = x3 − 4x, respectively. Then

37

ϕ : E1 −→ E2

(x, y) �−→ (x+ 1
x , y −

y
x2)

defines an isogeny of degree two with kernel generated by (0, 0). The curves E1

and E2 have the same j-invariant, hence they are isomorphic over Fp, but not
necessarily over Fp: the curves are Fp-isomorphic if and only if

√
−1 is in Fp,

that is if and only if p ≡ 1 (mod 4). One isomorphism E2 → E1 is defined by
(x, y) �→ (−i/2x, (i+1)/4y), where i =

√
−1. It follows that the isogeny ϕ is an

endomorphism over Fp if p ≡ 1 mod 4, or Fp2 if p �≡ 1 (mod 4). This isogeny
is illustrated in the case p = 7 in Figure 2.3.

(0, 0)

(1, 3)

(1,−3)

(3, 3)

(3,−3)

(−2,−2)

(−2, 2)

(0, 0)

(1, 2)

(1,−2)

(2, 0)

(3, 1)

(3,−1)

(−2, 0)

OE OE�

E/F7 : y2 = x3 + x E�/F7 : y2 = x3 − 4x

Figure 2.3: Homomorphism E1(F7) → E2(F7) induced by the isogeny from
Section 2.4.3 with kernel (0, 0) between curves E1/F7 : y2 = x3 + x (on the
left) and E2/F7 : y2 = x3 − 4x (on the right). The kernel (0, 0) is indicated
with a blue square node. Arrows indicate the images of points in E1 through
the isogeny. Although the isogeny is surjective over F7, note that over F7 some
points of E2 do not have preimages.

The dual isogeny from E2 to E1, with kernel generated by (0, 0) on E2, is
given by

�ϕ : E2 −→ E1

(x, y) �−→ (14 (x− 4
x),

1
8 (y + 4 y

x2)) .

2.4.4 Modular curves

This section introduces the correspondence between modular curves and el-
liptic curves with a cyclic subgroup of order d. Let n be a positive integer.

38

The nth modular polynomial Φn(X,Y) defined over Z parametrizes pairs of el-
liptic curves up to isomorphism with a cyclic isogeny of degree n between them,
i.e

Φn(j, j
�) = 0 ⇔ {there exists an n-isogeny between curves of j-invariant j and j� } .

Note that Φn(X,Y) = Φn(Y,X) from the definition and the existence of
the dual isogeny. The value of Φn for a positive integer n can be precomputed.
For a given j-invariant j in Fp, we can also efficiently compute the polynomial
Φn(j, Y) using the algorithm from [Sut13].

Example 6.

Φ2(X,Y) =X3 −X2Y 2 + 1488X2Y − 162000X2 + 1488XY 2 + 40773375XY

+ 8748000000X + Y 3 − 162000Y 2 + 8748000000Y − 157464000000000

Let n be a positive integer. The classical modular curve, written X0(n), is a
completion of the affine plane curve Y0(N) defined by the classical modular poly-
nomial Φn(X,Y). On this curve there is an Atkin–Lehner operator, ωn, which
sends an isogeny to its dual. In terms of the modular polynomial Φn(X,Y), the
operator ωn swaps the coordinates X and Y (see [Che10] Proposition 3.6 and
following discussion).

2.5 Endomorphisms and curve classification

2.5.1 The endomorphism ring

Endomorphisms are homomorphisms that map a curve to itself. The ring formed
by all endomorphisms carries information about the curve itself.

Definition 21. The endomorphism ring End(E) of an elliptic curve E is the
set of all the isogenies from the curve to itself, with the ring operations being
the pointwise addition and composition.

The scalar multiplication by any integer m is an endomorphism. Moreover
[m] �= [n] if and only ifm �= n, that is, the map from Z to End(E) is injective: Z is
always a subring of the endomorphism ring. The Frobenius endomorphism of
an elliptic curve E over a finite field Fq is given by

πq : E −→ E

(x, y) �−→ (xq, yq) .

Proposition 11. Every endomorphism of E satisfies a quadratic integer poly-
nomial.

Proof. See [Gal12] Theorem 9.9.3.

39

The quadratic integer polynomial satisfied by the Frobenius endomorphism
is called the characteristic polynomial of Frobenius.

Theorem 12 (Hasse). The characteristic polynomial of Frobenius has the form
P (X) = X2 − tX + q, where |t| ≤ 2

√
q.

Proof. See [Gal12] Chapter 9 Theorem 9.10.7.

Corollary 13. For a curve E defined over a field Fq, we obtain

P (1) = q + 1− t = #E(Fq) .

Theorem 14 (Waterhouse). Let q = pm where p is prime and let t ∈ Z be such
that |t| ≤ 2

√
q. Then there is an elliptic curve over Fq with #E(Fq) = q− t+1

if and only if one of the following conditions holds:

1. gcd(t, p) = 1;

2. m is even and t = ±2
√
q;

3. m is even, p �≡ 1 (mod 3) and t = ±√q;

4. m is even and p �≡ 1 (mod 4) and t = 0;

5. m is odd, p = 2, 3 and t = ±p
(m+1)

2 ;

6. m is odd and t = 0.

Proof. See [Gal12] Theorem 9.10.12.

2.5.2 Supersingular and ordinary cases

A consequence of Proposition 11 is that the possible endomorphism rings are
orders in quadratic fields and quaternion algebras. The endomorphism ring
gives some information about the curve itself, since its type allows to classify
the curves as ordinary or supersingular. Each type has special properties that
are used in different cryptographic protocols.

Definition 22. Let E be an elliptic curve defined over a field K of character-
istic p. Then E is supersingular if and only if E[p] = E[p](k) = OE . Otherwise
it is ordinary.

Proposition 15 (Ordinary curves). The endomorphism ring of an ordinary
elliptic curve defined over a finite field Fq is an order in an imaginary quadratic

field k, i.e. End(E)⊗Q � Q(
√
d), where d = |t2 − 4q| and t is the trace of the

Frobenius endomorphism. In the ordinary case, we have #E(Fq) = q − t+ 1.

Proof. See [Koh96] Chapter 4.

Let O be an order of an imaginary quadratic field k = Q(
√
d). The Hilbert

class polynomial is the monic polynomial hd whose roots are the distinct j-
invariants of all elliptic curves with endomorphism ring isomorphic to O.

40

Example 7. The Hilbert class polynomial for Q(
√
−23) is h−23(x) = x3 +

3491750x2 − 5151296875x+ 12771880859375 .

Proposition 16 (Supersingular curves). The endomorphism ring over Fp of a
supersingular elliptic curve 4 is an order in a quaternion algebra, i.e. End(E)⊗
Q � Q�i, j� where ij = −ji, and i2, j2 belong to Q.

Proof. See [Gal12] Theorem 9.11.2.

2.6 Deuring correspondence and the action of
the ideal class group

2.6.1 Action of the ideal class group on elliptic curves

For O an order of an imaginary quadratic field k, the ideal class group Cl(O)
acts on the set of ordinary elliptic curves with Fp-rational endomorphism ring O,
but also on special subsets of the class of supersingular elliptic curves. We start
by recalling notions on group actions, before describing the specific properties
of the ideal class group action for each type of elliptic curves.

Definition 23 (Action). Let G be a group with identity element e. Let X be
a set. A (left) group action α of G on X is a function

α : G×X → X ,

(with α(g, x) often shortened to gx or g · x when the action being considered is
clear from context), that satisfies the following two properties:

1. Identity: e · x = x for all x in X

2. Compatibility: g · (h · x) = (gh) · x for all g and h in G and all x in X.

A set X together with an action of G is called a (left) G-set.

The action is free if, given g, h inG, the existence of an x inX with g·x = h·x
implies g = h. The action is transitive if X is non-empty and if for each pair
x, y in X there exists a g in G such that g · x = y.

For any elliptic curve E defined over a finite field, and for any order O of a
quadratic field such that O ⊂ End(E), we can define an action of Cl(O) on E.
However, what will be important for us is to determine on which set of elliptic
curves the action is free and transitive, since these are useful properties when
building key exchange protocols.

Let E be an elliptic curve defined over a finite field Fq, with q = pn. Let πp

be the p-power Frobenius. Let p be a prime ideal over p corresponding to the
isogeny πp. Let O be an order of a quadratic field k such that O ⊂ End(E).
Let [a] be an element of Cl(O) with integral representative a and let r and a� be
such that a = (p)ra�, where a� is integral and not contained in p (the existence
of r and a� follow from unique factorization of ideals in O).

4When considering endomorphisms defined over Fp only, the restricted endomorphism ring
is not a quaternion algebra any more, but a quadratic imaginary order. See Theorem 19.

41

Definition 24. With the notation above: Let E[a] :=
�

α∈a ker(α) for the ideal
a ⊂ End(E). We define φa : E → E/E[a] to be the isogeny (up to isomorphism)
whose normalized part is the isogeny with kernel

�
α∈a� kerα , and whose purely

inseparable part is r iteration of the Frobenius πp. The image of E under the
action of a is the codomain of the isogeny φa.

Theorem 17. We keep the same notation as above, and write [E] for the iso-
morphism class of curves with O ⊂ End(E). The map (a, [E]) �→ [E/E[a]]
defines an action of Cl(O) on the set of isomorphism classes.

Proof. See [Wat69] Section 3.2 Kernel ideals.

2.6.1.1 The ordinary case

Let O be an order of Q(
√
d). In the ordinary case, the action of the ideal class

group Cl(O) is free and transitive on the set of curves having same cardinality
over their base field and their endomorphism ring isomorphic to O.

Theorem 18. Let Ellp(O,πp) be the set of elliptic curves E defined over Fp

with Endp(E) � O such that πp corresponds to the Fp-Frobenius endomorphism
of E. Let O be an order in an imaginary quadratic field that Ellp(O,πp) is
non-empty. Then the ideal-class group Cl(O) acts freely and transitively on the
set Ellp(O,πp) via the map

Cl(O)× Ellp(O,πp) −→ Ellp(O,πp)

([a], E) �−→ E/E[a]

in which a is chosen as an integral representative.

Proof. See [Wat69] Theorem 4.5.

2.6.1.2 The supersingular case over Fp

In the supersingular case, we can define a free and transitive group action on
(sub)set of supersingular elliptic curves defined over Fp.

Theorem 19. Let O be Z[πp] or Z[1+πp

2]) Let S be the set of supersingular
elliptic curves over Fp with endomorphism ring over Fp equal to O . The ideal
class group Cl(O) acts freely and transitively on S.
Proof. See [Wat69] Theorems 4.5.

2.6.1.3 The supersingular case over Fp2

In the supersingular case over Fp2 , the endomorphism ring is a maximal order
in a non-commutative quaternion algebra. Hence we cannot have a free and
transitive action from the ideal class group of a quadratic order on the entire
set of curves. However there are subsets in which the action is free and transitive.
See Chapter 5 and [Onu21]. In Chapter 6 we extend this action to subsets of
supersingular elliptic curves equipped with distinguished isogenies.

42

2.6.2 Deuring correspondence

For elliptic curves whose endomorphism ring is an order O in a quadratic field,
Deuring established the following correspondence between isogenies up to iso-
morphism and elements of the ideal class group, allowing another representation
of isogenies.

Theorem 20. Let E be an elliptic curve defined over a field K whose endo-
morphism ring over K is isomorphic to an order O in a quadratic field. Let E�

be an elliptic curve isogenous to E. We have the following dictionary between
fractional ideals and isogenies.

Endomorphism ring End(E) Order O of a quadratic field

Isogenies from E to E� Invertible fractional ideals I(O)

Endomorphisms of E Principal fractional ideals Pr(O)

Isogeny composition Ideal multiplication

Dual isogeny Inverse

In this thesis, we will use Theorem 20 in the case of ordinary curves and
supersingular curves defined over Fp, for which the endomorphism ring over
their base field is a order of a (commutative) quadratic field.

Proof. [Wat69] Chapters 4 for the general case, and [Voi17] Chapter 42 in the
supersingular case over Fp.

Since principal fractional ideals correspond to endomorphisms of the curve,
and invertible fractional ideals are associated with isogenies, we quotient the
abelian subgroup of invertible fractional ideals I(O) by the normal subgroup
of principal fractional ideals Pr(O) in order to keep only isogenies and “kill”
endomorphisms. The equivalence classes of the ideal class group Cl(O) hence
corresponds to isogenies up to endomorphism.

2.7 Isogeny graphs

Definition 25. Let K be a finite field of characteristic p, or its algebraic closure.
Let L be a set of primes not including p. The isogeny graph Γ(K, L) is the
directed graph where the vertices are K-isomorphism classes of elliptic curves
defined over K, and the edges are classes of K-isogenies with degree � ∈ L
between the curves. We write Γ(K, �) when we consider only L = {�}.

2.7.1 Ordinary case

In the ordinary case, the �-isogeny graph for a prime � resembles a volcano,
as defined by [FM02]. An �-volcano V is a connected undirected graph whose

43

vertices are partitioned into one or more levels V0, ..., Vd such that the following
hold:

1. The subgraph on V0 (the surface) is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbour in level Vi−1, and
this accounts for every edge not on the surface.

3. For i < d, each vertex in Vi has degree �+ 1.

Level Vd is called the floor of the volcano; the floor and surface coincide when
d = 0.

Theorem 21 ([Koh96]). Let Fq be a finite field, let � � q be a prime, let l be
an ideal above �, and let V be an ordinary component of Γ(Fq, �) that does not
contain curves with j-invariants 0 or 1728. We write tπp

for the trace of the
Frobenius (every curve in the graph having the same cardinality over Fq, hence
the same trace). Then V is an �-volcano for which the following hold:

1. The vertices in level Vi all have endomorphism ring isomorphic to the
same order Oi.

2. � � [OK : O0] and [Oi : Oi+1] = � for ≤ i < d.

3. The subgraph on V0 has degree 1 + (disc(O0)
�).

4. If (disc(O0)
�) ≥ 0, then |V0| is the order of [l] in Cl(O0); otherwise |V0| = 1.

5. The depth of V is d, where d is such that 4q = (tπp)
2− �2dv2disc(O0) with

� � v.

Proof. Although the theorem is originally from [Koh96] Proposition 23, the vol-
cano terminology first appear in [FM02]. See also [FM02] in particular Lemmas
2.3, 2.4, and 2.5 and [Gal12] 25.4.6.

Figure 2.4 illustrates a 2-isogeny volcano of depth 3.

2.7.2 Supersingular case over Fp

In the supersingular case over Fp, the �-isogeny graph for a prime � is again a
volcano, but with limited depth: for � = 2 it has at most two levels, and for any
other � only one.

Theorem 22 ([DG16]). Let p > 3 be a prime.

1. If p ≡ 1 (mod 4), then there are h(−4p) Fp-isomorphism classes of super-
singular elliptic curves over Fp, all having the same endomorphism ring
Z[
√−p]. From every one there is one Fp-rational horizontal 2-isogeny as

well as two horizontal �-isogenies for every prime � > 2 with (−p
�) = 1.

44

Crater, End(E) = O0

Level 1, End(E) = Z+ 2O0

Floor, End(E) = Z+ 22O0

Figure 2.4: 2-isogeny volcano

2. If p ≡ 3 (mod 4), then from each vertex there are two horizontal �-
isogenies for every prime � > 2 with (−p

�) = 1. There are two levels
in the supersingular 2-isogeny graph.

(a) If p ≡ 7 (mod 8), then on each level there are h(−p) vertices. The
upper and lower levels are connected 1 : 1 with 2-isogenies. On the
upper level we also have two horizontal 2-isogenies from each vertex.

(b) If p ≡ 3 (mod 8), then we have h(−p) vertices on the surface and
3h(−p) on the floor. Each vertex on the surface has three 2-isogenies
to the lower level. There are no horizontal 2-isogenies.

These graphs are illustrated in Figure 2.5 and Figure 2.6, for p = 101 and
� = 2 and 3 respectively. Classes of elliptic curves are represented with the
Montgomery A coefficient of the curve. Note that a curve and its quadratic
twist correspond to two different vertices since they are isomorphic over Fp2 but
not over Fp. For this reason, the twist of a curve written in black is written in
grey. Since p ≡ 1 (mod 4), there are h(−4p) = 14 supersingular elliptic curves
defined over F101 up to Fp-isomorphisms.

0 66

0 66

21

21

57 64

57 64

3 59

3 59

Figure 2.5: Γ(F101, 2) For the 2-isogeny graph, because each vertex has one 2-
neighbour, we have several connected components, each a special type of crater
that is reduced to two points. Note that there is a 2-endomorphism defined over
Fp for the curve defined by y2 = x3 + 21x2 + x.

45

0 64 3 21 59 57 66

665759213640

Figure 2.6: Γ(F101, 3) In the 3-isogeny graph, each vertex has two neighbours.
Every curve is in the same connected component, which is a large crater, because
the ideal class group of Q(

√
101) is cyclic: it is generated by a prime ideal with

norm 3.

2.7.3 Supersingular over Fp2

In the supersingular case over Fp2 the �-isogeny graph for a prime � is an �+ 1
regular expander graph, meaning that it has good mixing properties: a suffi-
ciently long random walk on the graph has the same probability to end up on
any point of the graph. Even better, it is a Ramanujan graph

Definition 26 (Ramanujan graph). A Ramanujan graph G is a regular graph
of degree k such that the eigenvalues λ not equal to ±k of the adjacency matrix
satisfy the bound |λ| ≤ 2

√
k − 1.

See e.g. [LPS88] for a survey on Ramanujan graphs.

Proposition 23. Let G be a Ramanujan graph. Let S be any subset of the
vertices of G, and x be any vertex in G. Then a random walk of length at least

|S|−1/2 log (2|G|)
log k

c

starting from x will land in S with probability at least |S|
2|G| .

Proof. See [LPS88].

Theorem 24 ([Piz98]). Γ(Fp2 , �) is a connected k = � + 1-regular multigraph

satisfying the Ramanujan bound of |λ| ≤ 2
√
� = 2

√
k − 1 for the non-trivial

eigenvalues of its adjacency matrix.

These graphs are illustrated in Figure 2.7 and Figure 2.8, for p = 101 and
� = 2 and 3 respectively.

46

0 66

α

ᾱ

21 57 64 3 59

3

Figure 2.7: Γ(F1012 , 2). Classes of elliptic curves are represented with the Mont-
gomery A coefficient of the curve. Here, α = 37+ t and ᾱ = 37− t are conjugate
and defined over Fp2 \ Fp with t2 = 2. There are 9 supersingular elliptic curves
defined over F1012 up to isomorphism. The 2-isogeny graph is 3-regular with
edges counted with multiplicity.

0

66

α

ᾱ

21

57

64 3

59

3

2

2

Figure 2.8: Γ(F1012 , 3). Isomorphism classes of elliptic curves are represented
with the Montgomery A coefficient of the curve, except for the two classes of
curves labelled with α = 37+ t and ᾱ = 37− t that are conjugated and defined
over Fp2 \ Fp with t2 = 2. There are 9 supersingular elliptic curves defined over
F1012 up to isomorphism. The 3-isogeny graph is 4-regular with edges counted
with multiplicity.

47

48

Chapter 3

Isogeny-based key exchange
protocols

In this chapter we describe three isogeny-based key exchange protocols, fol-
lowing the chronological order of their discovery. We start by presenting the
isogeny-based key exchange protocol in the ordinary case from Couveignes and
Rostovstev–Stolbunov (CRS). We then present SIDH (Supersingular Isogeny
Diffie–Hellman) discovered by Jao and De Feo, on which is based SIKE, the
NIST candidate key exchange protocol. Finally we describe CSIDH (Com-
mutative Supersingular Diffie–Hellman) that uses supersingular elliptic curves
defined over Fp, developed by Castryck, Lange, Martindale, Panny and Renes.
This protocol is based on the commutative action of the ideal class group on the
set of elliptic curves. We compare the strength and weaknesses of these three
scheme.

3.1 Ordinary case (CRS)

We start by describing the underlying security problems in the ordinary case.
We then present the parameters and the key exchange protocol from Couveignes
[Cou06], and Rostovstev–Stolbunov [RS06], before presenting the computational
improvements proposed by De Feo, Kieffer and Smith in [DKS18]. We eventually
discuss the feasibility of the scheme. In the following, we refer to the key
exchange over ordinary curves as the CRS protocol, unless we want to highlight
which version is considered, in which case we use full names.

Recall Theorem 18 from Chapter 2: If Ellq(O) is the set of isomorphism
classes over Fq of ordinary curves with O ∼= End(E) a maximal order, then
Cl(O) acts freely and transitively on Ellq(O). This free and transitive action is
at the heart of the CRS protocol.

49

3.1.1 Security of the scheme and parameter sizes

The set Ellq(O) of isomorphism classes over Fq = Fpr of ordinary curves with
O ⊂ End(E) is a conjectural hard homogeneous space for Cl(O). The security
hence relies on the vectorization and parallelization problems (see Definition 3).
Graphically speaking, the security of the scheme relies on the difficulty of finding
a path between two given elliptic curves in an ordinary isogeny graph.

Classical attack The best classical attack known on vectorization is to use
random walks on the graph of isogeny as in [DG16]), which gives a solution after

an expected O(p
1
4) isogeny steps.

Quantum attack Since vectorization is an instance of the Abelian Hidden
Shift Problem, the best quantum attack is Kuperberg’s algorithm [Kup05, Reg04,
Kup13] using the Childs–Jao–Soukharev quantum isogeny-evaluation algorithm
as a subroutine [CJS14]. The result is a subexponential algorithm running in
time LN [1/2,

√
2], with N the cardinality of the ideal class group. There is some

debate as to the concrete cost of this quantum algorithm, and the size of the
ideal class group required to provide a cryptographically hard problem instance
for common security levels [BLMP19, BS20, Pei20].

3.1.2 Couveignes key exchange protocol

Public parameters The protocol requires: a prime p; an order O in a
quadratic field; and an initial ordinary elliptic curve E0 defined over Fq, where
q = pr, such that O ⊂ End(E0). The structure of the ideal class group Cl(O)
and the lattice of relations between the ideals are necessary to compute the ac-
tion of a randomly-sampled fractional ideal: without that structure, there is no
way to convert a random ideal to an equivalent product of small-norm ideals.
This lattice of relations as well as the class number can be computed using the
Hafner–McCurley algorithm [HM89] as noted in [Cou06].

Key generation Alice randomly samples her private key a ∈ Cl(O) and
computes her public key EA = E0/a. Bob proceeds similarly: he samples his
private key b ∈ Cl(O), and computes his public key EB = E0/b.

Key exchange Upon receiving Bob’s public key, Alice computes EB/a. Bob
computes EA/b. From the commutativity of the group action, these two curves
are isomorphic. The shared secret is their j-invariant.

This protocol is summarized in Figure 3.1.

We also give a graphical approach to the protocol: Alice chooses a secret walk
on the isogeny graphs, starting from curve E0. She arrives on a curve EA that
will be her public key. Bob does the same and arrives on a curve EB which is his

50

Public parameters: q = pr, an ordinary curve E0 such that O ⊂ End(E0),
where O is an order of an imaginary quadratic field.
The structure of Cl(O) and the lattice of relations between the ideals.
Alice Bob
Private key: Private key:
a ∈ Cl(O) b ∈ Cl(O)

Public key Public key
computation: computation:
Compute a smooth ideal Compute a smooth ideal
a� equivalent to a b� equivalent to b
using the group structure. using the group structure.

Public key: Public key:
EA = E0/a

� EB = E0/b
�

EA�
EB

Shared secret Shared secret
computation: computation:
EAB = EB/a

� EBA = EA/b
�

Shared secret: Shared secret:
j(EAB) j(EBA)

Figure 3.1: Couveignes key exchange protocol.

public key. After this key generation step, Alice and Bob are ready to compute a
shared secret. Alice simply reproduces her secret walk, but starting from Bob’s
curve EB , and arrives on a curve EAB . Bob does the same, reproducing his
secret walk starting at Alice’s curve, and arrives on a curve EBA. Thanks to
the commutativity property of the ideal class group action, the curves EAB and
EBA are isomorphic and thus share the same j-invariant. This j-invariant is
precisely the shared secret of Alice and Bob.

3.1.3 Rostovstev–Stolbunov key exchange protocol

Public parameters The protocol requires a prime p; an orderO in a quadratic
field; an initial ordinary elliptic curve E0 defined over Fq, where q = pr, such

thatO ⊂ EndE0; a set of primes �i such that the Kronecker symbol
�
t2−4p

�i

�
= 1,

where t is the trace of Frobenius; a fractional ideal li above each �i; a set of
possible integer exponents S.

Key generation Alice samples a private exponent vector (ei)1≤i≤n ∈ S,
sets a =

�n
i=1 l

ei
i ∈ Cl(O) and computes her public key E0/a. Bob pro-

51

ceeds similarly, he samples his private exponent vector (e�i)1≤i≤n ∈ S, sets

b =
�n

i=1 l
e�i
i ∈ Cl(O) and computes his public key E0/b.

Key exchange Upon receiving Bob’s public key, Alice computes EB/a. Bob
computes EA/b. From the commutativity of the group action, these two curves
are isomorphic. The shared secret is their j-invariant.

This protocol is summarized in Figure 3.2.

Public parameters: q = pr, an ordinary curve E0 such that O ⊂ End(E0),
where O is an order of an imaginary quadratic field;

primes �i such that
�
t2−4p

li

�
= 1;

a fractional ideal li above each �i.
Alice Bob
Private key: Private key:
(ei)1≤i≤n ∈ S (e�i)1≤i≤n ∈ S

Public key: Public key:
EA = E/a EB = E/b

such that a =

n�

i=1

leii such that b =

n�

i=1

l
e�i
i

EA�
EB

Shared secret Shared secret
computation: computation:
EAB = EB/a EBA = EA/b

Shared secret: Shared secret:
j(EAB) j(EBA)

Figure 3.2: Rostovstev–Stolbunov key exchange protocol.

Differences between the Couveignes and Rostovstev–Stolbunov pro-
tocols Using a set of given prime ideals and a set of exponents avoids the prob-
lem of needing to compute the class group structure and the p-smooth equiva-
lent ideals in Couveignes’ version. The work of [DKS18] and later [CLM+18] are
built on the Rostovstev–Stolbunov protocol rather than on Couveignes version.
However this convenience comes with a drawback: we are probably not working
with the entire Hard Homogeneous Space, and the key sampling may not be
uniform.

52

3.1.4 Computation

The CRS protocols are elegant but also very slow, since several minutes are
needed to compute the key exchange on a laptop [DKS18]. This is due to the
fact that computing the action of the ideal class group using the algorithms
of Couveignes and Rostovstev–Stolbunov involves computing roots of modular
polynomials over field extensions.

To address this drawback, De Feo, Kieffer and Smith used the underlying
mathematical structure to accelerate the computational time. They look for a
starting curve having the special property that the number of points defined
over Fp, i.e. #E(Fp), is divisible by as many small �i as possible. This en-
sures that the ideal class group action is much faster to compute for these �i.
Indeed, it implies that the points defining the kernel all lie in Fp, and are ex-
actly the �i-torsion subgroups. This allows us to compute the action using only
Vélu’s formula, and completely avoids modular polynomials and field extensions
[DKS18].

However, it turns out to be difficult to find an ordinary curve with many
such �i simultaneously, and De Feo, Kieffer and Smith only managed to apply
this acceleration for seven primes after an extensive search for starting curves.
However their improvement already accelerates the key exchange protocol by a
factor of 4. This idea is reused in the supersingular case over Fp that will be de-
scribed below, and hence opens a door to new efficient cryptographic protocols,
and primitives.

Timings For 128-bits of classical security, the proof-of-concept algorithm in
[DKS18] needs 520 seconds for a key generation. Although that is a factor 4
faster than the original CRS algorithm, and not optimized on the field arithmetic
level, this timing keeps the CRS key exchange in the impracticable protocols
league.

3.2 Supersingular case over Fp2 (SIDH and SIKE)

First published in 2011 by Jao and De Feo [JD11], Supersingular Isogeny Diffie–
Hellman (SIDH) is the building block for Supersingular Isogeny Key Encapsu-
lation (SIKE) [JAC+17]. The protocol SIKE is one of the round-3 alternate
candidates for the NIST post-quantum contest. Both protocols use isogenies
between supersingular elliptic curves over a finite field Fp2 , which gives a faster
scheme than CRS with more resistance to a quantum computer.

3.2.1 Commutative diagram

The endomorphism rings of supersingular curves over Fp2 are orders in a (non-
commutative) quaternion algebra. Although it is possible to define a free and
transitive group action on some specific subsets of the supersingular isogeny
classes (see Section 3.3 and Chapter 6), there is no known commutative action

53

having these properties on the full set of supersingular elliptic curves. In order
to circumvent the lack of a commutative action, Jao and De Feo proposed in
[JD11] to use the commutativity of quotient isogenies, as in Figure 3.3.

E0
φA−−−−→ EA = E0/�GA�

φB

� φAB

�

EB = E0/�GB� φBA−−−−→ EAB

� EB/�φB(GA)�
� EA/�φA(GB)�

Figure 3.3: Commutative diagram for supersingular curves, with E0 an elliptic
curve and �GA�, �GB� two subgroups of E0.

This commutative diagram allows to have a key exchange protocol à la
Diffie–Hellman, while the lack of a commutative group action protects the
scheme against the subexponential attack of Childs, Jao and Soukharev [CJS14],
offering a more quantum-resistant key exchange protocol than the ordinary case.

3.2.2 SIDH key exchange protocol

The commutative diagram in Figure 3.3 is at the heart of the key exchange
protocol. Alice computes the horizontal arrows of the commutative diagram in
Figure 3.3, whereas Bob computes the vertical ones.

Public parameters Let p be a prime number such that p = f · �eAA �eBB ± 1,
where �A and �B are primes, and f is a cofactor making p prime. Let E be a
supersingular elliptic curve such that #E(Fp2) = (p ∓ 1)2 = (f · �eAA �eBB)2. Let
(PA, QA) and (PB , QB) be bases of E[�eAA] and E[�eBB], the subgroups of �eAA and
�eBB -torsion respectively.

Key generation Alice chooses two secret integers mA and nA, computes the
point GA = [mA]PA+[nA]QA, the separable quotient isogeny φA of kernel �GA�,
and the curve EA = E/�GA�. She also computes the image of PB and QB under
her isogeny φA. Her private key is the couple (mA, nA), and her public key is
(EA,φA(PB),φA(QB)).

Bob does the same using his own secret (mB , nB) and the points of �B-torsion
PB and QB , instead of PA and QA, to get a public key (EB ,φB(PA),φB(QA)).

Shared secret Alice receives Bob’s public key and computes

EAB = EB/�φB(GA)� = EB/�[mA]φB(PA) + [nA]φB(QA)� .

54

Bob receives Alice’s public key and computes

EBA = EA/�φA(GB)� = EA/�[mB]φA(PB) + [nB]φA(QB)� .

Thanks to the commutativity of quotient isogenies, these two curves are iso-
morphic. Their j-invariant is the shared secret. The protocol is summarized in
Figure 3.4.

Public parameters: p = f · �eAA �eBB ± 1;
E supersingular with cardinality (p∓ 1)2 = (f · �eAA �eBB)2;
(PA, QA) and (PB , QB) bases of E[�eAA] and E[�eBB], respectively.
Alice Bob
Private key: Private key:
mA, nA ∈R Z/�eAA Z mB , nB ∈R Z/�eBB Z
Public key: Public key:
EA = E/�[mA]PA + [nA]QA� EB = E/�[mB]PB + [nB]QB�
φA(PB), φA(QB) φB(PA), φB(QA)�
Shared secret Shared secret
computation: computation:
GAB = GBA =
[mA]φB(PA) + [nA]φB(QA) [mB]φA(PB) + [nB]φA(QB)
EAB = EB/�GAB� EBA = EA/�GBA�

Shared secret: Shared secret:
j(EAB) j(EBA)

Figure 3.4: SIDH key exchange.

We also give an intuitive graphical explanation of the protocol. Alice chooses
a walk on the �A-isogeny graph to a curve EA that will be her public key. Bob
does the same on the �B-isogeny graph to a curve EB . To compute the shared
secret, Alice and Bob will switch places and apply their secret walk again, on
the �A and �B-isogeny graphs respectively. They will arrive on two curves that
are isomorphic over Fp2 , and that consequently share the same j-invariant. This
j-invariant is their shared secret.

The absence of short cycles1 in this isogeny graph (see [OAT20]) implies that
the subgraphs reached by these isogenies look like regular trees. The shared
secret is uniformly distributed on the set of curves with a cyclic �eAA �eBB -isogeny
from E0.

3.2.3 Underlying security problems

Let E0[�
eA
A] and E0[�

eB
B] be subgroups of �eAA and �eBB torsion respectively. LetGA

and GB be the generators of subgroups in E0[�
eA
A] and E0[�

eB
B] respectively. In

1at least shorter than the number of steps in SIKEp434 and SIKEp503

55

the case of supersingular elliptic curves defined over Fp2 , the image of φA(�GB�)
and φB(�GA�) are needed to complete the commutative diagram. This con-
straint leads to analogues of the vectorization and parallelization problems.

Definition 27 (Computational Supersingular Isogeny (CSSI) problem [JD11]).
We keep the same notations as above. Additionally let (PB , QB) be a ba-
sis of E0[�

eB
B] and let φA : E0 → EA be an isogeny whose kernel is equal

to �GA�. Given EA, φA(PB), and φA(QB), the Computational Supersingular
Isogeny problem is to find φA.

Definition 28 (Supersingular Computational Diffie–Hellman (SSCDH) prob-
lem [JD11]). We keep the same notations as above. Additionally let mA, nA

(respectively mB , nB) be chosen at random from Z/�eAA Z (respectively Z/�eBB Z)
and not both divisible by �A (respectively �B). Let φA : E0 → EA be an isogeny
whose kernel is equal to �[mA]PA + [nA]QA�, and let φB : E0 → EB be an
isogeny whose kernel is �[mB]PB + [nB]QB�. Given the curves EA, EB and the
points φA(PB), φA(QB), φB(PA), φB(QA), the Supersingular Computational
Diffie–Hellman problem is to find the j-invariant of E0/ �[mA]PA + [nA]QA, [mB]PB + [nB]QB�.

Both problems are considered to be weaker instances of the isogeny path
problem due to the additional information contained in the torsion points images
revealed. However when �eAA and �eBB are balanced, we do not currently know of
any attacks that exploit this information.

Classical attack The best classical attacks is the Van–Oorschot and Wiener
collision finding algorithm, as shown in [ACC+18]. It runs in time O(�eAA) =

O(p
1
4) (when �eAA and �eBB are balanced, i.e. when �eAA � �eBB).

Quantum attack As there is no commutative action involved, the Kuper-
berg algorithm used in the ordinary case does not apply to SIDH. The best
quantum attack against vectorization uses Tani’s algorithm [Tan20]. It is expo-

nential, and runs in O(p
1
6). However the analysis of Adj, Cervantes-Vázquez,

Chi-Domı́nguez, Menezes, and Rodŕıguez-Henŕıquez [ACC+18] shows that this
exponential attack requires a huge amount of memory, and that the classical
van Oorschot and Wiener attack might turn out to be more efficient in practice.

Timings Isogeny-based cryptography benefits from years of research and op-
timization on elliptic curves protocol, which allows us to reach an acceptable
running time for a widespread use. Improvements have been made on formu-
lae for isogeny computation and on efficient arithmetic by Costello, Longa and
Naehrig in [CLN16] and Costello and Hisil in [CH17]. For 128-bits of classical
security, the actual SIKE implementation runs in 5.9 ms for the encapsulation
and decapsulation as claimed in [JAC+17], Table 2.1 (running on a 3.4GHz Intel
Core i7–6700 (Skylake) processor with the use of hand-tuned x64 assembly).

56

3.2.4 From SIDH to SIKE

In its call for quantum protocols, NIST required key encapsulation mechanisms
(KEM). Key encapsulation uses asymmetric encryption to transmit a ciphertext,
from which a symmetric key is derived on both sides, later used for message
encryption. In the case of SIDH, going from a Diffie–Hellman protocol to a key
encapsulation protocol can be done following two steps:

1. The first step derives a public key encryption (PKE) protocol from SIDH,
by XORing the hash of the shared secret obtained from SIDH with the
message to be encrypted.

2. The second step uses the Hofheinz, Hövelmanns and Kiltz transform [HHK17]
(a derivative of the Fujisaki–Okamoto transform [FO13]) to create a key
encapsulation mechanism from the PKE protocol. It uses long-term asym-
metric keys for authentification, and ephemeral asymmetric keys to en-
crypt an ephemeral symmetric key.

3.3 Supersingular case over Fp (CSIDH)

The action of Cl(Q(
√−p)) on the set of supersingular elliptic curves defined

over Fp described in Section 2.6 can be used for key exchange and encapsula-
tion [CLM+18], signatures [DG18, DPV19, BKV19], and other more advanced
protocols. We focus on the key exchange protocol, CSIDH, in the following.

Compared to SIDH [JD11, DJP14], CSIDH is slower. On the positive side,
CSIDH has smaller public keys (although it depends on security estimates for
parameters), is based on a better-understood security assumption, and supports
an easy key validation procedure, making it better-suited than SIDH for static
key exchange.

3.3.1 The ideal class group action

Recall Theorem 19 from Section 2.6. Let Sp be the set of supersingular elliptic
curves over Fp. Let O = Z[

√−p]. The ideal class group Cl(O) acts freely and
transitively on Sp.

Let E be a supersingular elliptic curve defined over Fp with End(E) ∼=
Z[
√−p]. For CSIDH, we are interested in computing the action of small prime

ideals. Consider one of the primes �i dividing p + 1; the principal ideal (�i) ⊂
Z[
√−p] splits into two primes, namely li = (�i,πp − 1) and l̄i = (�i,πp + 1),

where πp is the element of Z[
√−p] mapping to the Frobenius endomorphism of

the curves. Since l̄ili = (�i) is principal, we have l̄i = l−1
i in Cl(Q(

√−p)), and
hence

l̄i · (li · E) = li · (̄li · E) = E .

A graphical toy example Figure 3.5 represents the graph of supersingular
isogenies over Fp for p = 59 = 4 · 3 · 5 − 1. The circular black graph is the

57

graph of 3-isogenies obtained by applying ideals in the class of [(3,πp − 1)] that
correspond to 3-isogenies having their kernel in E(Fp). The graph in blue is the
graph of 5-isogenies obtained by applying ideals in the class of [(5,πp − 1)].

Figure 3.5: The supersingular 3-isogeny (the black circle) and 5-isogeny (the
blue star) graph over Fp for p = 59. Vertices are labelled by the A coefficient of
the Montgomery representation of the curves.

3.3.2 CSIDH key exchange protocol

Public parameters The protocol requires a prime p = 4 · �1 · · · �n · f − 1,
where �i are primes and f is a cofactor, and an exponent space S ∈ Zn. We
then choose an initial supersingular curve E defined over Fp with cardinality
E(Fp) = (p+ 1). We write li = [(�i,πp − 1)].

Key generation Alice samples a private exponent vector (ei)1≤i≤n ∈ S, sets
a =
�n

i=1 l
ei
i ∈ Cl(Z(

√−p)) and computes her public key E0/a as a sequence of
ei actions by each li. Bob proceeds similarly, he samples his private exponent

vector (e�i)1≤i≤n ∈ S, sets b =
�n

i=1 l
e�i
i ∈ Cl(Z(

√−p)) and computes his public
key E0/b.

Key exchange Upon receiving Bob’s public key, Alice computes EB/a. Bob
computes EA/b. From the commutativity of the group action, these two curves

58

are isomorphic. The shared secret is their j-invariant.

This protocol is summarized in Figure 3.6. Graphically speaking, we navigate
on the �i-isogeny graphs using the action of the ideal class group on curves
exactly as in the ordinary case.

.
Public parameters: A prime p = 4 · �1...�n · f − 1;
A list of prime ideals li above �i for each i;
A supersingular curve E defined over Fp such that End(E) � O,
where O is an imaginary quadratic order;
An exponent space S in Zn

Alice Bob
Private key: Private key:
(ei)1≤i≤n ∈ S (e�i)1≤i≤n ∈ S

Public key: Public key:
EA = E/a EB = E/b

such that a =
n�

i=1

leii such that b =
n�

i=1

l
e�i
i

EA�
EB

Shared secret Shared secret
computation: computation:
EAB = EB/a EBA = EA/b

Shared secret: Shared secret:
j(EAB) j(EBA)

Figure 3.6: CSIDH key exchange.

3.3.3 Security of the scheme

The set Sp of supersingular elliptic curves over Fp is a conjectural hard homo-
geneous space for Cl(Z(

√−p)), assuming that finding isogenies between super-
singular curves is hard. The security of CSIDH hence relies on the vectorization
and parallelization problems (see Definition 3). Graphically speaking, the secu-
rity of the scheme relies on the difficulty of finding a path between two given
elliptic curves in a supersingular isogeny graph over Fp. For cryptographic pur-
poses, the exponent vectors (e1, . . . , en) must be taken from a space of size at
least 22λ, where λ is the (classical) security parameter.

Classical attack The best classical attack known on vectorization is to use
random walks on the isogeny graph as in [DG16], which gives a solution after

59

an expected O(p
1
4) isogeny steps.

Quantum attack As for CRS, since vectorization is an instance of the Abelian
Hidden Shift Problem, the best quantum attack is Kuperberg’s algorithm [Kup05,
Reg04, Kup13] using the Childs–Jao–Soukharev quantum isogeny-evaluation al-
gorithm as a subroutine [CJS14]. The result is a subexponential algorithm run-
ning in time Lp[1/2,

√
2]. There is some debate as to the concrete cost of this

quantum algorithm, and the size of p required to provide a cryptographically
hard problem instance for common security levels (see [BLMP19, BS20, Pei20]).

3.3.4 Computation

CSIDH works over a finite field Fp, where p is a prime of the form

p := 4
n�

i=1

�i − 1

with �1, . . . , �n a set of small odd primes. Concretely, the original CSIDH arti-
cle [CLM+18] defined a 511-bit p with �1, . . . , �n−1 the first 73 odd primes, and
�n = 587.

The set of public keys in CSIDH is a subset of all supersingular elliptic
curves defined over Fp, in Montgomery form y2 = x3 +Ax2 + x, where A ∈ Fp

is called the A-coefficient of the curve. The endomorphism rings of these curves
are isomorphic to orders in the imaginary quadratic field Q(

√−p). These orders
have to contain Z[

√−p], because the Frobenius endomorphism is always in the
endomorphism ring, which implies that there at most two possibilities: Z[

√−p],

and Z[1+
√−p
2] (if p ≡ 3 (mod 4)).

The authors of [CLM+18] choose to restrict the starting curve and pub-
lic keys to curves with endomorphism rings isomorphic to Z[

√−p]. However,
when p ≡ 3 (mod 4), it is also possible to use curves with endomorphism ring

isomorphic to Z[1+
√−p
2] as in CSURF [CD20].

At the heart of CSIDH is an algorithm that evaluates the class group action
described in Section 3.3.1 on any supersingular curve over Fp.

The input to the algorithm is an elliptic curve E : y2 = x3 + Ax2 + x,
represented by its A-coefficient, and an ideal class a =

�n
i=1 l

ei
i , represented by

its list of exponents (ei, . . . , en) ∈ Zn. The output is the (A-coefficient of the)
elliptic curve a · E = le11 · · · lenn · E.

The isogenies corresponding to li = (�i,πp − 1) can be efficiently com-
puted using Vélu’s formulæ and their generalizations: exploiting the fact that
#E(Fp) = p + 1 = 4

�
�i, one looks for a point R of order �i in E(Fp) (i.e., a

point in E[�i], that is, in the kernel of both the multiplication-by-�i map and
(πp − 1)), computes the isogeny φ : E → E/�R� with kernel �R�, and sets
li ·E = E/�R�. Iterating this procedure lets us compute lei ·E for any exponent
e ≥ 0.

The isogenies corresponding to l−1
i are computed in a similar fashion: this

time one looks for a point R of order �i in the kernel of (πp + 1), i.e., a point

60

in E(Fp2) of the form (x, iy) where both x and y are in Fp (since i =
√
−1

is in Fp2 \ Fp and satisfies ip = −i). Then one proceeds as before, setting
l−1
i · E = E/�R�.

In the sequel we assume that we are given an algorithm QuotientIsogeny

which, given a curve E/Fp and a point R in E(Fp2), computes the quotient
isogeny ϕ : E → E� ∼= E/�R�, and returns the pair (ϕ, E�). We refer to this
operation as isogeny computation. Algorithm 1, taken from the original CSIDH
article [CLM+18], computes the class group action.

Algorithm 1: KeyGenCSIDH: The original CSIDH class group action
algorithm for supersingular curves over Fp where p = 4

�n
i=1 �i−1. The

choice of ideals li = (�i,πp − 1), where πp is the element of Q(
√−p)

is mapped to the p-th power Frobenius endomorphism on each curve
in the isogeny class, is a system parameter. This algorithm constructs
exactly |ei| isogenies for each ideal li. In practice the y-coordinate of
the points on the curve is not required, and the scalar multiplications
can be done using Montgomery x-only arithmetic.

Input: A ∈ Fp such that EA : y2 = x3 +Ax2 + x is supersingular, and
an integer exponent vector (e1, . . . , en)

Output: B such that EB : y2 = x3 +Bx2 + x is le11 · · · · · lenn · EA,
1 B ← A
2 while some ei �= 0 do
3 Sample a random x ∈ Fp

4 s ← +1 if x3 +Bx2 + x is square in Fp, else s ← −1
5 S ← {i | ei �= 0, sign(ei) = s}
6 if S �= ∅ then
7 k ←�i∈S �i
8 Q ← [(p+ 1)/k]P , where P = (x, y) with y2 = x3 +Bx2 + 1
9 for i ∈ S do

10 R ← [k/�i]Q // Point to be used as kernel generator

11 if R �= ∞ then
12 (EB ,ϕ) ← QuotientIsogeny(EB , R)
13 Q ← ϕ(Q)
14 (k, ei) ← (k/�i, ei − s)

15 return B

Timings The current fastest constant-time implementation is the one from
CTIDH [BBC+21]. It takes about 40 ms for key generation for 128 bits of
classical security.

61

3.4 Key validation

During a key exchange protocol, an active attacker can transmit a flawed public
key to gain knowledge on the counterpart’s private key. To avoid such kinds
of attacks, two solutions are possible: restricting to ephemeral key exchange
protocols, or using static key exchanges with a key validation procedure.

On the one hand, ephemeral key exchange protocols require the private and
public key to be unique to each key establishment to avoid adaptative attacks.
This is the case in SIDH, where an attacker having a public key with dishonestly
chosen torsion points may recover information about the counterpart’s private
key if it is reused for several key exchanges.

On the other hand, static key exchange protocols requires a key-validation
procedure when receiving a public key to verify its correctness, i.e. that it has
been honestly generated. The private and public keys can be reused for several
key exchanges, under the condition that the public key must be validated by
counterparts before using it. The public key is generated only once, but it is
verified at each key exchange protocol. Concrete examples of validation will be
given in Section 6.5.

3.5 Comparison of CRS, SIDH, SIKE and CSIDH

Table 3.1 gives a summary of the main differences between the isogeny-based
key exchanges presented above. We also give a summary of the advantages and
drawbacks for each scheme presented above.

CRS The CRS scheme launched isogeny-based post-quantum cryptography,
and offers an elegant post-quantum Diffie–Hellman protocol. The improvements
of [DKS18] are reused in CSIDH described below, but the implementations of
Couveignes’ and Rostovstev–Stolbunov protocols remain too slow for a practical
and widespread use.

The existence of a subexponential quantum attack does not mean that the
protocol is insecure. Nevertheless, such an attack implies using bigger primes,
and thus bigger key sizes and an even slower protocol to reach an equivalent
security level.

SIDH and SIKE Thanks to algorithmic improvements, the SIDH and SIKE
protocols have reached an acceptable running time. SIKE has the shortest
public key size of all the NIST candidates. Hence it has positioned itself as a
promising post-quantum candidate for standardization.

However, some critiques have been made about the fact that the images of
the torsion points need to be sent in order to be able to compute the com-
mutative diagram without having Alice or Bob reveal their private key. This
may make the problem an easier instance of the quantum-resistant isogeny-path
problem. There have been a few attacks on the isogeny problem with torsion

62

point images for unbalanced parameters, i.e. when �eAA and �eBB have signifi-
cantly different sizes ([Pet17], [dQKL+21]), but none of them apply to SIDH
parameters. It is still unknown how to use this extra information properly in
the SIDH context.

Furthermore, SIDH and SIKE also lack of efficient public key validation to
verify that a public key has been honestly generated. Galbraith, Petit, Shani,
and Ti have shown in [GPST16] that some public key validation algorithms, if
they were efficient, would also give an attack on SIDH.

CSIDH CSIDH benefits from being several orders of magnitude faster than
its ancestor CRS. It also allows shorter public and private keys than SIDH at
the same security level: for 64 bits of quantum security, the first NIST security
level, SIDH public keys have 330 bytes, whereas CSIDH-512 public keys could
fit in 64 bytes. Unlike SIDH, it allows a secure non-interactive key exchange
protocol as it has efficient public key validation.

However, CSIDH is vulnerable to subexponential quantum attacks, and its
quantum security is the subject of intense discussion (see Section 3.3.3). Slower
than SIDH, it is close to being practical, but remains an order of magnitude
slower than other non-isogeny based key exchange protocols. Moreover, con-
sidering the on-going debates on the level of security offered by CSIDH, the
parameters might need to be larger than what we are currently using to main-
tain the claimed security level.

63

CRS CSIDH SIDH/SIKE

Field Fp or extensions Fp Fp2

Curves Ordinary Supersingular Supersingular

Prime (Any) 4
n�

i=1

�i ± 1 f�eA1 �eB2 ± 1

�-isogeny Crater or �-regular
graph Volcano depth-2-volcano expander graph

Origin of Ideal class Ideal class Commutative
commutativity group action group action diagram

non-interactive
key establishment Safe Safe Unsafe

Best known Exponential Exponential Exponential

classical attack O(p
1
4) O(p

1
4) O(p

1
4)

(in isogeny steps)

Best known Subexponential Subexponential Exponential

quantum attack Lp[1/2,
√
2] Lp[1/2,

√
2] O(p

1
6)∗

(in quantum queries) or O(p
1
4)

Table 3.1: Comparative table of isogeny-based key exchange schemes. The com-
plexity of the best known quantum attack for SIDH/SIKE is marked with an
asterisk ∗ because, according to the analysis of [ACC+18], its memory require-
ments are too big to be met in practice, meaning that the best quantum attack
would actually be the classical one.

64

Part II

CSIDH implementation

65

Chapter 4

Protecting CSIDH against
side-channel attacks

Abstract Side-channel attacks monitor physical parameters during the com-
putation of a cryptographic protocol. In particular, power consumption analysis,
timing attacks, and fault injections can be used to recover the private key dur-
ing a key exchange protocol. Some implementations of CSIDH have tackled the
issue of protecting the scheme against timing and power consumption analysis
[MCR19] [OAYT20]. However they use dummy operations to ensure that the
computation can be run in constant-time, which makes the scheme vulnerable
to fault injections. A dummy-free implementation of CSIDH is necessary to
avoid fault injections attacks. In this chapter we propose two constant-time
implementations of CSIDH which do not use dummy operations, including one
without randomness.

The results of this section have been published in [CCC+19].

4.1 Preliminaries: side-channel attacks

Side channel attacks were introduced in 1996 by Paul Kocher [Koc96], at the
time against contemporary RSA implementations. Today they are widely known
and used against any cryptographic protocol.

The idea of side-channel attacks is to recover the private key by monitoring
information about the execution of the protocol on a real platform, instead of
attacking the underlying mathematical problem. These methods grant differ-
ent powers to the attacker. In passive settings, side-channel attacks rely on
monitoring several computational parameters such as timing, power consump-
tion, sound, electromagnetic leaks, cache memory, or data remanence. In active
settings, an attacker is allowed to induce a voluntary perturbation during exe-
cution, such as fault-injections or the use of a flawed random number generator.
By observing the consequences of her perturbations she may deduce some in-
formation about the secret, or break the cryptosystem.

67

We detail four types of side-channel attacks that will be considered in the fol-
lowing sections: timing attacks, power consumption analysis, fault injection and
flawed random number generators. We also introduce the notion of constant-
time algorithms that are a countermeasure against such attacks.

4.1.1 Timing attacks

Timing attacks monitor the duration of the computation: some algorithms run
faster on some inputs and significantly slower on others. When this input is a
cryptographic secret, these variations leak information revealing part or all of it
(see [Koc96], [BB03], and more recently attacks such as Lucky Thirteen [AP13],
Meltdown [LSG+18] and Spectre [KHF+19]).

We give an example with the square-and-multiply algorithm 2 which is
widely used. This algorithm computes exponentiation in a multiplicative group,
e.g. in RSA. An analogue of this algorithm exists in the case of an additive group
law, as in elliptic curves, where square-and-multiply becomes double-and-add.
It relies on the following result: given an element x of a group G written multi-
plicatively and an integer n:

xn =

�
x(x2)

n−1
2 if n is odd

(x2)
n
2 if n is even

The square-and-multiply algorithm scans the bits of the exponent in base
two from most significant to least significant. If the bit is zero, we square the
previous result, but if it is one, we square the result and multiply by x. This is
computationally more expensive and takes more time.

Algorithm 2: Square-and-multiply exponentiation

Input: x an element of a multiplicative group G,
n ∈ N, n = (nk−1...n0)2

Output: xn

1 if n = 0 then
2 return 1

3 y ← 1
4 for i ← (k − 1) to 0 do
5 y ← y × y
6 if ni = 1 then
7 y ← y × x

8 return y

Execution timings reveal the proportions of 0s and 1s in the exponent, al-
though the exact places of the 0s and 1s is not revealed. When the exponent
is a secret value (such as an RSA or Diffie–Hellman private key), this leaks
information on the secret and creates security issues.

68

4.1.2 Power consumption analysis

Attacks by power consumption analysis monitor the power consumption vari-
ations of the computing device during the execution of an algorithm. These
variations can reveal part or all of a private key.

We give an example of Simple Power Analysis by considering again the
square-and-multiply exponentiation given in Algorithm 2. The power consump-
tion during a square-and-multiply step is different and distinguishable from the
consumption of a square step. When the exponent n is the private key of one
participant, the attacker could read the entire key from the power consump-
tion graph, since the variations reveal each bit of the exponent one by one, as
represented on Figure 4.1.

0
time

power consumption

square

multiply

Figure 4.1: Power consumption analysis indicative example – square-and-
multiply with exponent (1100100111011000101110)2. For clarity we use the
exaggerated ratio of 2 : 1 for the power consumed by a multiplication, relative
to a square.

For details on more powerful power-analysis attacks, such as Differential
Power Analysis, see [KJJ99].

4.1.3 Fault injection

Fault injection is a stronger attack model than timing attacks and power con-
sumption analysis: the attacker is allowed to be active, and not simply an
observer. The attacker can create one or several faults during the computation,
by cutting electrical power, or using a laser to flip some bits for example. Com-
paring the output with and without the faults may reveal information about the
private key. These attacks can be particularly useful when dummy operations
have been added to an implementation to protect against timing and power
consumption analysis attacks: if a fault is injected in a dummy operation, then
it has no impact on the output.

Let us give an example with a modified version of square-and-multiply in
Algorithm 3. In this version, timing and power consumption analysis attacks

69

have been prevented by adding fake and useless operations to the square-only
step, to ensure that it has the same computational cost as the square-and-
multiply step.

Algorithm 3: Modified square-and-multiply exponentiation with
dummy operations

Input: x an element of a multiplicative group G,
n ∈ N, n = (nk−1...n0)2

Output: xn

1 if n = 0 then
2 return 1

3 if n = 0 then
4 return 1

5 y ← 1
6 z ← x
7 for i ← (k − 1) to 0 do
8 if ni = 0 then
9 y ← y × y

10 z ← y × x // dummy operation

11 else
12 y ← y × y
13 y ← y × x

14 return y

In the fault injection model, an attacker could inject a fault during Step i
(at Lines 10 and 13), and observe if the output is the same as without the fault
injection. If the result is wrong, then the targeted operation was a real one and
the ith bit was 1; if the result is correct, then the operation was a fake one and
the ith bit was 0.

Of course, being able to insert faults at a precise moment requires more
sophisticated material, and a higher cost for the attacker [TDEP21]. It is non-
the-less feasible, even on everyday smart cards protected by RSA [BJL+14].

4.1.4 Constant-time and dummy-free algorithms

The implementation of an algorithm is said to be constant-time when the analy-
sis of its execution time provides no information on secret inputs. Constant-time
implementations hence ensure that no secret information visible via timing at-
tacks leaks during the execution.1

Constant-time implementations can be achieved by using dummy operations,
however such unnecessary steps create a vulnerability against fault injection. To

1Misleadingly, the execution time of a constant-time implementation does not need to be
constant: it can vary due to randomness, or as a function of public inputs, but not from the
secret inputs.

70

further protect an implementation against fault injection, every step has to be
necessary to compute the correct result. A protected version of the square-and-
multiply algorithm is given in Algorithm 5, where each conditional branch has
a square step and a multiply step, both necessary for the completion of the
algorithm [Mon87].

Algorithm 4: Montgomery square-and-multiply exponentiation

Input: x an element of a multiplicative group G,
n ∈ N, n = (nk−1...n0)2

Output: xn

1 x1 ← 1
2 x2 ← x
3 for i = k − 1 to 0 do
4 if ni = 0 then
5 (x1, x2) ← (x2

1, x1 × x2)
6 else
7 (x1, x2) ← (x1 × x2, x

2
2

8 return x1

Algorithm 4 has an if statement which should also be implemented in constant-
time to ensure a full constant-time algorithm. To that aim we use a conditional
constant-time swap between two values: cswap(a, b, t) returns (a, b) if t = 0 and
(b, a) otherwise. We obtain Algorithm 5.

Algorithm 5: Montgomery square-and-multiply exponentiation with
conditional swap

Input: x an element of a multiplicative group G,
n ∈ N, n = (nk−1...n0)2

Output: xn

1 x1 ← 1
2 x2 ← x
3 for i = k − 1 to 0 do
4 (x1, x2) ← cswap(x1, x2, ni)
5 x2 = x1 × x2

6 x1 = x2
1

7 (x1, x2) ← cswap(x1, x2, ni)

8 return x1

For completeness we also give in Algorithm 6 the additive version, double-
and-add, of the square-and-multiply algorithm for when the group law is written
additively and not multiplicatively (in elliptic curve scalar multiplication for
example).

71

Algorithm 6: Montgomery double-and-add exponentiation

Input: x an element of an additive group G, n ∈ N, n = (nk−1...n0)2
Output: n× x

1 x1 ← 0
2 x2 ← x
3 for i = k − 1 to 0 do
4 for i = k − 1 to 0 do
5 (x1, x2) ← cswap(x1, x2, ni)
6 x2 = x1 + x2

7 x1 = x1 + x1

8 (x1, x2) ← cswap(x1, x2, ni)

9 return x1

4.2 Previous constant-time implementations

Prior to our study, several authors had been tackling the issue of timing and
power consumption analysis in the case of CSIDH [MCR19][OAYT20]. We
briefly recall their protocols before explaining why they are not fault injection
resistant.

4.2.1 Meyer–Campos–Reith

As Meyer, Campos and Reith observe in [MCR19], the original CSIDH algorithm
(Algorithm 1, Section 3.3.2) performs fewer scalar multiplications when the key
has the same number of positive and negative exponents (balanced case) than
it does when the exponents are all positive or all negative (unbalanced case).
Indeed, when the key is balanced, the multiplication at Line 8 in Algorithm 1
has a cofactor of log p/2 bits, meaning that the following multiplications at Line
10 have cofactors of decreasing size from log p/2. However, when the private key
has only positive or only negative exponents, then the multiplication at Line
8 has a cofactor of log p, bits, hence the following multiplications at Line 10
have cofactors of decreasing size from log p only. Adding the bit length of mul-
tiplicative factors for the computation of one isogeny per degree in CSIDH-512,
[MCR19] finds 9066 bits in the balanced case and 16813 bits in the unbalanced
case. As the cost of a point multiplication depends on the size of the cofactor,
Algorithm 1 leaks information about the distribution of positive and negative
exponents under timing attacks.

The authors of [MCR19] also study power consumption attacks. They as-
sume that by studying the variations of power consumption, an attacker can
distinguish between a isogeny computation (Line 12), and a point multiplica-
tion (Line 10) in Algorithm 1. This allows the attacker to compare the degree of
the isogenies computed. They further assume that an attacker can distinguish
between the while-loops at Line 2 in Algorithm 1 in the computation, which
allows the attacker to identify when a new point is sampled. Recall that in

72

CSIDH, isogenies whose corresponding private exponents share the same sign
are computed together. This implies that the power consumption analysis de-
scribed above can compare the degree of the isogeny computed and observe
which batches of isogenies are computed together throughout the execution.
Since only isogenies having exponents of same sign exponent can be computed
together, this reveals information about the signs. Hence the possible key space
is reduced, and the complexity of finding the correct key is reduced as well.

In view of this vulnerability, Meyer, Campos and Reith proposed a constant-
time CSIDH algorithm in [MCR19] whose running time does not depend on the
private key (though, unlike [JAMJ19], it still varies due to randomness). The
essential differences between the algorithm of [MCR19] and classic CSIDH are
as follows. First, to address the vulnerability to timing attacks, they choose
to use only positive exponents in [0, 10] for each �i, instead of [−5, 5] in the

original version [CLM+18], while keeping the same prime p =
�74

i=1 �i − 1. To
mitigate power consumption analysis attacks, their algorithm always computes
the maximal amount of isogenies allowed by the exponent bound, using dummy
isogeny computations if needed. Their algorithm is described in Algorithm 7.

4.2.2 Onuki–Aikawa–Yamazaki–Takagi

Still assuming that the attacker can perform only power consumption analysis
and timing attacks, Onuki, Aikawa, Yamazaki and Takagi proposed a faster
constant-time version of CSIDH in [OAYT20]. The key idea is to use two points
to evaluate the action of an ideal, one in ker(πp − 1) (i.e., in E(Fp)) and one
in ker(πp + 1) (i.e., in E(Fp2) with x-coordinate in Fp). This allows them to
avoid timing attacks, while keeping the same primes and exponent range [−5, 5]
as in the original CSIDH algorithm. Their algorithm also employs dummy
isogenies to mitigate some power analysis attacks, as in [MCR19]. With these
improvements, they achieve a speed-up of 27.35% compared to [MCR19].

We include pseudocode for the algorithm of [OAYT20] in Algorithm 8, to
serve as a departure point for our dummy-free algorithm in Section 4.3. Al-
though not described here, the Elligator algorithm is used in this context as an
algorithm that allows us to randomly generate points on a given elliptic curve
(see [BHKL13]). Specifically, Elligator(E, u) returns T− in E[πp − 1] and
T+ in E[πp + 1].

Remark 1. Algorithms 7 and 8 can be adapted to use other curve models. The
Montgomery model here is used to exploit Montgomery arithmetic for x-only
scalar multiplication.

4.3 Contribution: Fault-attack resistance

This section presents the results obtained on constant-time implementation of
CSIDH in the joint work [CCC+19]. The use of dummy operations in the previ-
ous constant-time algorithms implies that the attacker can obtain information
on the private key by injecting faults during the computation. For example, if

73

Algorithm 7: The Meyer–Campos–Reith CSIDH algorithm for su-
persingular curves over Fp, where p = 4

�n
i=1 �i − 1. The ideals

li = (�i,πp − 1), where πp maps to the p-th power Frobenius endomor-
phism on each curve, and the exponent bound vector (m1, . . . ,mn), all
positive, are system parameters. This algorithm computes exactly mi

isogenies for each �i.

Input: A ∈ Fp such that EA : y2 = x3 +Ax2 + x is supersingular, and
a list of integers e = (e1, ..., en) with ei ∈ {0, 1, ..,mi} for all
i ≤ n.

Output: A� ∈ Fp, the curve parameter of the resulting curve EA� .
1 Initialize k = 4, e = (e1, ..., en) and f = (f1, ..., fn), where fi = mi − ei.
2 while some ei �= 0 or fi �= 0 do
3 Sample random values x ∈ Fp until x3 +Ax2 + x is a square in Fp.
4 Set P = (x : 1), P ← [k]P , S = {i | ei �= 0 or fi �= 0}.
5 foreach i ∈ S do
6 Let m =

�
j∈S,j≥i �i.

7 Set K ← [m]P .
8 if K �= O then
9 if ei �= 0 then

10 (EA� ,φ) ← QuotientIsogeny(EA, �K�)
11 A ← A�, P ← φ(P), ei ← ei − 1.

12 else
13 (,) ←QuotientIsogeny(EA, �K�) // dummy

14 A ← A, P ← [�i]P , fi ← fi − 1.

15 if ei = 0 and fi = 0 then
16 Set k ← k · �i.

17 return A�

one of the values in Line 19 of Algorithm 8 is modified without affecting the
final result, then the adversary learns whether the corresponding exponent ei
was zero at that point.

We propose an approach to constant-time CSIDH without dummy compu-
tations, making every operation essential for a correct final result. This gives
us some natural resistance to fault injections, at the cost of approximately a
twofold slowdown. Our approach is to change the format of secret exponent
vectors (e1, . . . , en). In both the original CSIDH and the Onuki et al. variants,
the exponents ei are sampled from an integer interval [−mi,mi] centered on 0.
For naive CSIDH, evaluating the action of leii requires evaluating between 0 and
mi isogenies corresponding to either the ideal li (for positive ei) or l

−1
i (for neg-

ative ei). If we follow the approach of [OAYT20], then we must also compute
mi − |ei| dummy �i-isogenies to ensure a constant-time behaviour.

74

For our new algorithm, the exponents ei are uniformly sampled from sets

S(mi) = {e | e = mi mod 2 and |e| ≤ mi},

that is, centered intervals containing only even or only odd integers. The inter-
esting property of these sets is that a vector drawn from S(m)n can always be
rewritten (in a non-unique way) as a sum of m vectors with entries {−1,+1}
(i.e., vectors in S(1)n). But the action of a vector drawn from S(1)n can clearly
be implemented in constant-time without dummy operations: for each coeffi-
cient ei, we compute and evaluate the isogeny associated to li if ei = 1, or the
one associated to l−1

i if ei = −1. It follows that we can compute the action of
vectors drawn from S(m)n by repeating this step m times.

More generally, we want to evaluate the action of vectors (e1, . . . , en) drawn
from S(m1) × · · · × S(mn). Algorithm 9 achieves this in constant-time, and
without using dummy operations. The outer loop at Line 3 is repeated exactly
max(mi) times, but the inner “if” block at Line 5 is only executed mi times
for each i; it is clear that this flow does not depend on secrets. Inside the “if”
block, the coefficients ei are implicitly interpreted as

|ei| = 1 + 1 + · · ·+ 1� �� �
ei times

+(1− 1)− (1− 1) + (1− 1)− · · ·� �� �
mi−ei times

,

i.e., the algorithm starts by acting by l
sign(ei)
i for ei iterations, then alternates

between li and l−1
i for mi− ei iterations. We assume that the sign : Z → {±1}

operation is implemented in constant time, and that sign(0) = 1. If one is
careful to implement the isogeny evaluations in constant-time, then the full
algorithm is also constant-time.

Note that Algorithm 9 is only an idealized version of the CSIDH group action
algorithm. Indeed, like in [MCR19, OAYT20], it may happen in some iterations
that Elligator outputs points of order not divisible by �i, and thus the action of
li or l

−1
i cannot be computed in that iteration. In this case, we simply skip the

loop and retry later: this translates into the variable zi not being decremented,
so the total number of iterations may end up being larger than max(mi). If the
input value u fed to Elligator is random, its output is uncorrelated to secret
values2, and thus the fact that an iteration is skipped does not leak information
on the secret. The resulting algorithm is summarized in Algorithm 10.

To maintain λ bits of classical security, the bounds mi must be chosen so
that the key space is at least as large as 2λ. For example, the original imple-
mentation [CLM+18] samples secrets in [−5, 5]74, which gives a key space of
size 1174; hence, to get the same security we would need to sample secrets in
S(10)74. But a constant-time version of CSIDH-512 à la Onuki et al. only needs
to evaluate five isogeny steps per prime �i, whereas Algorithm 10 would need
to evaluate ten isogeny steps, leading to an approximately twofold slowdown
for this variant compared to [OAYT20]. The field operation counts and clock

2Assuming the usual heuristic assumptions on the distribution of the output of Elligator,
see [BBC+21].

75

cycle counts for the constant-time CSIDH-512 implementations of [CCC+19]3

is given in Table 4.1 and Table 4.2 below.

4.4 Contribution: Derandomized CSIDH

4.4.1 Flawed pseudorandom number generators

Constant-time algorithms are usually allowed to depend on randomness, mean-
ing that the computation time variations cannot depend on secret parame-
ters, but may depend on random elements. Pseudorandom Number Generators
(PRNG) return a sequence of numbers that is computationally undistinguish-
able from a real random sequence, from a seed generated via a source of entropy
such as keyboard strokes, or nuclear disintegration). The quality of the PRNG
output depends on the quality of entropy available.

Flawed PRNGs can have disastrous consequences. If the source of ran-
domness is not sufficiently strong, an attacker might predict a supposed ran-
dom number and gain precious information on the computation. For example,
[ABC+19] describes a voting machine system in Brazil with a PRNG seeded
with switch-on time, but most of the machines were turned on at 8:00 exactly
[ABC+19], creating a breach in their security. Even a bias in the PRNG can
be sufficient, as the example of Taiwanese digital signatures showed [BCC+13]:
several RSA public keys had primes in common, making them insecure.

The algorithms presented in the previous section depend on the availability
of high-quality randomness for their security: the input to Elligator must be
randomly chosen to ensure that the total running time is uncorrelated to the
private key. Typically, this would imply the use of a PRNG seeded with high
quality true randomness that must be kept secret. An attack scenario where
the attacker may know the output of the PRNG, or where the quality of PRNG
output is less than ideal, therefore degrades the security of all algorithms. This
is true even when the secret was generated with a high-quality PRNG if the
keypair is static, and the private key is then used by an algorithm with low-
quality randomness.

4.4.2 Derandomized CSIDH with dummies

We can avoid this issue completely if points of order
�

�
|mi|
i , where |mi| is the

maximum possible exponent (in absolute value) for �i, are available from the
start. Unfortunately this is not possible with standard CSIDH, because such
points are defined over field extensions of exponential degree.

Instead, we suggest modifying CSIDH as follows. First, we take a prime
p = 4

�n
i=1 �i − 1 such that �n log(3)� = 2λ, where λ is a security parameter,

and we restrict to exponents of the private key sampled from {−1, 0, 1}. Then
we compute two points of order (p + 1)/4 on the starting public curve, one in
ker(πp−1) and the other in ker(πp+1), where πp is the Frobenius endomorphism.

3available at https://github.com/JJChiDguez/csidh .

76

This computation involves no secret information, and can be implemented in
variable-time; furthermore, if the starting curve is the initial curve with A = 0,
or a public curve corresponding to a long term private key, these points can be
precomputed offline and attached to the system parameters or the public key.
We also remark that for static public keys, this would additionally speed-up
the key validation process since a point of order p + 1 would be immediately
accessible.

Since we have restricted exponents to {−1, 0, 1}, every �i-isogeny in Algo-
rithm 8 can be computed using only (the images of) the two precomputed points.
There is no possibility of failure in the test of Line 13, and no need to sample
any other point. We note that this algorithm still uses dummy operations.

4.4.3 Derandomized dummy-free CSIDH

If fault-injection attacks are a concern, the exponents can be further restricted
to {−1, 1}, and the group action evaluated as in (a stripped down form of)
Algorithm 10. However this further increases the size of p, as n must now be
equal to 2λ.

This protection comes at a steep price: at the 128 bits security level, the
prime p goes from 511 bits to almost 1500. The resulting field arithmetic would
be considerably slower, although the global running time would be slightly offset
by the smaller number of isogenies to evaluate. Besides, the computation of
large degree isogenies would benefit from the latter published work of [BDLS20],
which shows that they can be computed in O(

√
�) instead of O(�).

On the positive side, the resulting system would have much stronger quan-
tum security. Indeed, the best known quantum attacks are exponential in the
size of the key space (≈ 22λ here), but only subexponential in p (see [CJS14,
DKS18, CLM+18]). Since our modification more than doubles the size of p
without changing the size of the key space, quantum security is automatically
increased. For this same reason, for security levels beyond NIST–1 (64 quan-
tum bits of security), the size of p increases more than linearly in λ, and the
variant proposed here becomes natural. Finally, parameter sets with a simi-
lar imbalance between the size of p and the security parameter λ have already
been considered in the context of isogeny based signatures [DG18], where they
provide tight security proofs in the quantum random oracle model.

4.5 Following constant-time implementations

We explored ways to protect CSIDH implementations against fault injection
and flawed PRNG. Several other studies have been published afterwards, and
we briefly summarize their content for completeness.

• Published in 2020, the work of [BDLS20] drastically reduces the com-
putational effort to compute large degree isogenies from O(�) to O(

√
�).

Although this makes original CSIDH and other variants more practical, it

77

is even more beneficial for the derandomized version of Section 4.4 which
involves larger prime-degree isogenies.

• The works of [CKM+20], [LH21], [TDEP21] show that fault injection is
not that easy to implement in practice, and rather propose to detect fault
injection during the computation while keeping dummy operations, in-
stead of avoiding them. They propose mechanisms to detect such intru-
sions, which make the scheme faster than the dummy-free version proposed
above.

• The work of [BBC+21], named CTIDH, shows a faster way for constant-
time implementations of CSIDH (with dummies) by carefully choosing the
exponent sets using batches of primes.

78

Algorithm 8: The Onuki–Aikawa–Yamazaki–Takagi CSIDH algo-
rithm for supersingular curves over Fp, where p = 4

�n
i=1 �i − 1. The

ideals li = (�i,πp−1), where πp maps to the p-th power Frobenius endo-
morphism on each curve, and the exponent bound vector (m1, . . . ,mn),
are system parameters. This algorithm computes exactly mi isogenies
for each �i.

Input: A ∈ Fp such that EA : y2 = x3 + ax2 + x is supersingular, and
an integer exponent vector (e1, . . . , en) with each
ei ∈ [−mi,mi].

Output: B the curve parameter of EB : y2 = x3 +Bx2 + x such that
EB = le11 · · · · · lenn · EA.

1 (e�1, . . . , e
�
n) ← (mi − |e1|, . . . ,mi − |en|) // Number of dummy

computations

2 EB ← EA

3 while some ei �= 0 or e�i �= 0 do
4 S ← {i | ei �= 0 or e�i �= 0}
5 k ←�i∈S �i
6 u ← Random

��
2, . . . , p−1

2

��

7 (T−, T+) ← Elligator(EB , u) // T− ∈ EB [πp − 1] and

T+ ∈ EB [πp + 1]

8 (P0, P1) ←
�
[(p+ 1)/k]T+, [(p+ 1)/k]T−

�

9 for i ∈ S do
10 s ← sign(ei) // Ideal lsi to be used

11 Q ← [k/�i]P 1−s
2

// Secret kernel point generator

12 P 1+s
2

← [�i]P 1+s
2

// Secret point to be multiplied

13 if Q �= ∞ then
14 if ei �= 0 then
15 (EB ,ϕ) ← QuotientIsogeny(EB , Q)

16 (P0, P1) ←
�
ϕ(P0),ϕ(P1)

�

17 ei ← ei − s

18 else
19 EB ← EB ; P 1−s

2
← [�i]P 1−s

2
; e�i ← e�i − 1 // Dummies

20 k ← k/�i

21 return B

79

Algorithm 9: An idealized dummy-free constant-time evaluation of
the CSIDH group action.

Input: E an elliptic curve and (e1, . . . , en) ∈ S(m1)× · · · × S(mn)
secret vector

Output: (
�n

i=0 l
ei
i) · E

1 (t1, . . . , tn) ← (sign(e1), . . . , sign(en)) // Secret

2 (z1, . . . , zn) ← (m1, . . . ,mn) // Not secret

3 while some zi �= 0 do
4 for i ∈ {1, . . . , n} do
5 if zi > 0 then
6 E ← ltii · E
7 b = isequal(ei, 0)
8 ei ← ei − ti
9 ti ← (−1)b · ti // Swap sign when ei has gone past 0

10 zi ← zi − 1

11 return E

Implementation Constant- Dummy- M S A Ratio
time free

[CLM+18] No No 0.252 0.130 0.348 0.26
[MCR19] Yes No 1.054 0.410 1.053 1.00
[OAYT20] Yes No 0.733 0.244 0.681 0.67

Algo. 10, [CCC+19] Yes Yes 1.319 0.423 1.389 1.19

Table 4.1: Field operation counts for constant-time CSIDH-512. Counts are
given in millions of operations, averaged over 1024 random experiments. The
performance ratio uses [MCR19] as a baseline, considers only multiplication and
squaring operations, and assumes M = S.

Implementation Constant- Dummy- Mcycles Ratio
time free

[CLM+18] No No 155 0.39
[MCR19] Yes No 395 1.00

Algo. 10, [CCC+19] Yes Yes 481 1.22

Table 4.2: Clock cycle counts for constant-time CSIDH-512 implementations,
averaged over 1024 experiments. The ratio is computed using [MCR19] as base-
line implementation.

80

Algorithm 10: Dummy-free randomized constant-time CSIDH class
group action for supersingular curves over Fp, where p = 4

�n
i=1 �i − 1.

The ideals li = (�i,πp− 1), where πp maps to the p-th power Frobenius
endomorphism on each curve, and the vector (m1, . . . ,mn) of exponent
bounds, are system parameters. This algorithm computes exactly mi

isogenies for each ideal li.

Input: A supersingular curve EA over Fp, and an exponent vector
(e1, . . . , en) with each ei ∈ [−mi,mi] and ei ≡ mi (mod 2).

Output: EB = le11 · · · · · lenn · EA.

1 (t1, . . . , tn) ←
�
sign(e1)+1

2 , . . . , sign(en)+1
2

�
// Secret

2 (z1, . . . , zn) ← (m1, . . . ,mn) // Not secret

3 EB ← EA

4 while some zi �= 0 do

5 u ← Random
��

2, . . . , p−1
2

��

6 (T−, T+) ← Elligator(EB , u) // T− ∈ EB [πp − 1] and

T+ ∈ EB [πp + 1]
7 (T+, T−) ← ([4]T+, [4]T−) // Now T+, T− ∈ EB [

�
i �i]

8 for i ∈ {1, . . . , n} do
9 if zi �= 0 then

10 (G+, G−) ← (T+, T−)
11 cswap(G+, G−, ti) // Secret kernel generator: G+

12 cswap(T+, T−, ti) // Secret point to be multiply: T−
13 for j ∈ {i+ 1, . . . , n} do
14 G+ ← [�j]G+

15 if G+ �= ∞ then
16 (EB ,φ) ← QuotientIsogeny(EB , G0)

17 (T+, T−) ←
�
φ(T+),φ(T−)

�

18 b ← isequal(ei, 0)
19 ei ← ei + (−1)ti

20 ti ← ti ⊕ b
21 zi ← zi − 1

22 T1 ← [�i]T1

23 cswap(T+, T−, ti)

24 return B

81

82

Part III

CSIDH generalization:
higher-degree supersingular

group actions

83

Chapter 5

(d, �)-structures

Abstract A supersingular curve is defined over Fp if its defining equation
coefficients are elements of Fp. This property is equivalent to having a degree
one isogeny (i.e. an isomorphism) from the curve to its Galois conjugate. Due
to the existence of a free and transitive group action of the ideal class group on
the set of supersingular curve defined over Fp (see Section 2.6), they have been
used to build efficient cryptosystems like CSIDH [CLM+18] or CSURF [CD20].
While the isogeny graph for curves over Fp is well known ([DG16]), the isogeny
graph for curves having a degree d isogeny to their Galois conjugate has not
been studied. In this chapter, we prove the existence of a free and transitive
class group action on the set of curves having a d-isogeny to their conjugate.
We use this action to study the isogeny graph of such curves.

The results of this section have been published in [CS21].

5.1 Curves with a d-isogeny to their conjugate

In this section we define and study the properties of elliptic curves with a d-
isogeny to their conjugate.

5.1.1 Galois conjugates

The Galois conjugate of an elliptic curve over Fp2 is its image under the p-power
Frobenius. Let E be an elliptic curve. If E/Fp2 is an elliptic curve, then its

Galois-conjugate curve E(p) is defined by p-th powering all of the coefficients in
the defining equation of E. The curve E and its conjugate E(p) are connected by
inseparable “Frobenius” p-isogenies πp : E → E(p) and πp : E(p) → E, defined
by p-th powering the coordinates (abusing notation, all inseparable p-isogenies

will be denoted by πp). Observe that (E(p))
(p)

= E, and the composition of
πp : E → E(p) and πp : E(p) → E is the p2-power Frobenius endomorphism πE

of E.

85

Conjugation also operates on isogenies: each isogeny φ : E → E� defined
over Fp2 has a Galois conjugate isogeny φ(p) : E(p) → E�(p), defined by p-th
powering all of the coefficients in a rational map defining φ. We always have

(φ(p))
(p)

= φ and πp ◦ φ = φ(p) ◦ πp .

In particular, conjugation gives an isomorphism of rings between End(E) and

End(E(p)), because (φ1 + φ2)
(p)

= φ1
(p) + φ2

(p) and (φ1φ2)
(p)

= φ1
(p)φ2

(p).

5.1.2 (d, �)-structures

Let p > 3 be a prime, and d a squarefree integer prime to p.1 We are interested
in elliptic curves E/Fp2 equipped with a d-isogeny ψ : E → E(p). Given any
such d-isogeny ψ, we have two returning d-isogenies:

ψ(p) : E(p) → E and �ψ : E(p) → E .

E E(p)ψ

ψ̂

ψ(p)

Definition 29. Let E/Fp2 be an elliptic curve equipped with a d-isogeny ψ :

E → E(p) to its conjugate. We say that (E,ψ) is a (d, �)-structure if

�ψ = �ψ(p) with � ∈ {1,−1} .

Each (d, �)-structure (E,ψ) has an associated endomorphism

µ := πp ◦ ψ ∈ End(E) .

E E(p)ψ

πp

We say that (E,ψ) is ordinary resp. supersingular if E is ordinary resp.
supersingular.

The following lemma gives a useful criterion for identifying a (d, �)-structure,
though it does not distinguish between � = 1 and � = −1.

Lemma 25. If E/Fp2 is an elliptic curve with j(E) �∈ {0, 1728} and ψ : E →
E(p) is a d-isogeny, then (E,ψ) is a (d,±1)-structure if and only if kerψ(p) =

ker �ψ.
1Typically, p is very large and d is very small.

86

Proof. We have kerψ(p) = ker �ψ if and only if ψ(p) = σ �ψ for some σ in Aut(E),

and then ψ(p)ψ = σ �ψψ = σ[d]. If j(E) /∈ {0, 1728}, then Aut(E) = {±1}. If
σ = 1 then ψ is a (d, 1)-structure; if σ = −1 then ψ is a (d,−1)-structure.

Proposition 26. If (E,ψ) is a (d, �)-structure and µ is its associated endomor-
phism, then

µ2 = [�d]πE .

If πE is the Frobenius endomorphism of E and tE is its trace, then there exists
an integer r such that [r]µ = [p] + �πE in End(E), dr2 = 2p+ �tE in Z, and the
characteristic polynomial of µ is

Pµ(T) = T 2 − rdT + dp .

Proof. We have ψπp = πpψ
(p), so µ2 = πpψπpψ = πp(πpψ

(p))ψ = πE(ψ
(p)ψ).

Now ψ(p) = � �ψ (because (E,ψ) is a (d, �)-structure), so ψ(p)ψ = [�d], and
therefore µ2 = [�d]πE . For the rest: µ has degree dp, so it satisfies a quadratic
polynomial Pµ(T) = T 2 − aT + dp for some integer a. The first assertion then
implies [a]µ = µ2 + [dp] = [�d]πE + [dp]. Squaring, we obtain

([a]µ)2 = [d]2(π2
E + p2) + 2[dp][�d]πE

= [d]2(tEπE) + 2[dp][�d]πE

= [�d]πE([�d]tE + 2dp) ,

so a2 = �dtE +2dp, hence d | a2. But d is squarefree, so d | a, and then r = a/d
satisfies the given conditions.

Remark 2. In the situation of Proposition 26: If E is ordinary, then Z[µ] and
Z[πE] are orders in Q(πE) of discriminant d2r2 − 4dp and t2E − 4p2 = r2(d2r2 −
4dp), respectively, so |r| is the conductor of Z[πE] in Z[µ].

5.1.3 Isogenies of (d, �)-structures

The notions of isogenies, quadratic twists and supersingularity can be extended
from elliptic curves to these (d, �)-structures with minor adaptations.

Definition 30. Let (E,ψ) and (E�,ψ�) be two (d, �)-structures. We say that
an isogeny (resp. isomorphism) φ : E → E� is an isogeny (resp. isomorphism)
of (d, �)-structures if ψ�φ = φ(p)ψ, that is, if the following diagram commutes:

E E(p)

E� (E�)(p)

ψ

φ φ(p)

ψ�

87

It is easily verified that isogenies of (d, �)-structures follow the usual rules
obeyed by isogenies: the composition of two isogenies of (d, �)-structures is
an isogeny of (d, �)-structures, the dual of an isogeny of (d, �)-structures is an
isogeny of (d, �)-structures, and every (d, �)-structure has an isogeny to itself (the
identity map, for example). Isogeny therefore forms an equivalence relation on
(d, �)-structures.

5.1.4 Twisting

Lemma 27. Let (E,ψ) be a (d, �)-structure. Let δ be a nonsquare in Fp2 , and

let
√
δ be a square root of δ in Fp4 .

1. If (E,ψ) is a (d, �)-structure then

(E,ψ)
√
δ := (E

√
δ, τ(

√
δ)(p−1) ◦ ψ

√
δ)

is a (d,−�)-structure.

2. In particular, the isomorphism class of (E,ψ)
√
δ is independent of the

choice of nonsquare δ.

3. ((E,ψ)
√
δ)

√
δ ∼= (E,ψ).

4. If φ : (E,ψ) → (E�,ψ�) is an isogeny of (d, �)-structures, then φ
√
δ induces

an isogeny of (d,−�)-structures

φ
√
δ : (E,ψ)

√
δ → (E�,ψ�)

√
δ .

Proof. To ease notation, write α for
√
δ. Let ψ̃ := τα(p−1)ψα = ταpψτα−1 : Eα →

Eαp

= (Eα)(p). Now
�̃
ψ = τα �ψτα−p and (ψ̃)

(p)
= ταp2ψ(p)τα−p = ταp2 � �ψτα−p be-

cause ψ(p) = � �ψ, so (ψ̃)(p) = τα(p2−1)�
�
(ψ̃). But α(p2−1) = −α/α = −1, because α

is the square root in Fp4 of a nonsquare in Fp2 ; thus ταp2−1 = τ−1 = [−1], which
proves the first claim. The second and third claims are then straightforward, as

is the fourth: if ψ�φ = φ(p)ψ, then τα(p−1)(ψ�)αφα = (φα)
(p)

τα(p−1)ψα.

We call (E,ψ)
√
δ the quadratic twist of (E,ψ).

Remark 3. Twisting takes us from the category of (d, �)-structures into the
category of (d,−�)-structures and back again.

Example 8. Consider the case d = 1. Each (1, 1)-structure is Fp2 -isomorphic to
the base-extension to Fp2 of a curve defined over Fp (with the 1-isogeny being
[±1]); the associated endomorphism is the p-power Frobenius endomorphism
on the base-extended curve, and the integer r of Proposition 26 is the trace
of the p-power Frobenius. Each (1,−1)-structure is the quadratic twist of a
(1, 1)-structure: essentially, an ordinary (1,−1)-structure is isomorphic to a
GLS curve [GLS11]. of [Smi16, §3].

88

Definition 31. We write Dd,�(p) for the set of supersingular (d, �)-structures
over Fp2 up to Fp2 -isomorphism, and Γ(Dd,�(p)) for the graph on Dd,�(p) whose
edges are (Fp2 -isomorphism classes of) isogenies of (d, �)-structures. For each
prime � �= p, we write Γ�(Dd,�(p)) for the subgraph of Γ(Dd,�(p)) where the
edges are �-isogenies.

Since twisting takes isogenies of (d, �)-structures to isogenies of (d,−�)-

structures, in general (E
√
δ,ψ

√
δ) is not a (d,±1)-structure because conjugation

and twisting generally do not commute. Observe that the quadratic twist gives
an isomorphism of graphs Γ(Dd,�(p)) ∼= Γ(Dd,−�(p)).

5.1.5 Involutions

If (E,ψ) is a (d, �)-structure with associated endomorphism µ, then

−(E,ψ) := (E,−ψ) and (E,ψ)
(p)

:= (E(p),ψ(p))

are (d, �)-structures with associated endomorphisms −µ and µ(p), respectively.
If φ : (E,ψ) → (E�,ψ�) is an isogeny of (d, �)-structures, then φ : −(E,ψ) →
−(E�,ψ�) and φ(p) : (E,ψ)

(p) → (E�,ψ�)(p) are also isogenies of (d, �)-structures.
We thus have two involutions, negation and conjugation, on the category of
(d, �)-structures and their isogenies.

Remark 4. The isogenies ψ and πp : E → E(p) are both in fact isogenies of

(d, �)-structures (E,ψ) → (E,ψ)
(p)

.

5.1.6 Supersingular (d, �)-structures

Proposition 28. Let (E,ψ) be a (d, �)-structure with associated endomorphism
µ. If E is supersingular, then

1. µ2 = [−dp].

2. The trace of Frobenius satisfies tE = −2�p, and in particular E(Fp2) ∼=
(Z/(p+ �)Z)2.

Proof. With the notation of Proposition 26: The curve E is supersingular if
and only if p | tE . Now p � d, so p | r by Proposition 26. The characteristic
polynomial Pµ(T) of µ has discriminant (rd)2 − 4dp; this discriminant cannot

be positive, so |r| ≤ 2
�

p/d. Since p | r, we have r = 0, so µ2 = [−dp], and

tE = −2p
� = −2�p.

Proposition 28 tells us that if (E,ψ) is a supersingular (d, �)-structure, then
� is completely determined by the Fp2 -isogeny class of E. Further, tE can only
be ±2p: the special supersingular traces −p, 0, and p (corresponding to non-
quadratic twists of curves of j-invariant 0 and 1728, if these are supersingular)
cannot occur.

89

5.1.7 Curves with non-integer d2-endomorphisms

There exist rare cases of elliptic curve having a non-integer d2-endomorphism,
which are not (d, �)-structures but studied nonetheless for completeness. If
ψ : E → E(p) is a d-isogeny but (E,ψ) is not a (d,±1)-structure, then ψ(p) ◦ ψ
is a d2-endomorphism that is not ±[d]E . There are two ways that this can
happen. First, if Aut(E) �= {±1} then we could have ψ(p) ◦ψ = σ[d] for some σ
in Aut(E)\{±1}. Second, ψ(p)◦ψ could be a d2-endomorphism of E with cyclic
kernel.

We describe a technique that can be used to determine all of the j-invariants
of curves with cyclic d2-endomorphisms. These, together with j = 0 and 1728,
are the curves that we need to be careful with. Recall that if Φn(X,Y) is the
level-n classical modular polynomial, then Φd(j(E1), j(E2)) = 0 if and only if
there is a cyclic n-isogeny from E1 to E2 (possibly defined over some extension
field). Now if Φn(j(E), j(E)) = 0 then E has a cyclic n-endomorphism, so we
just need to be careful with the roots of Φd(X,X) and Φd2(X,X).

Example 9. Consider d = 2: we want to find all the curves that might have
cyclic 2- and 4-endomorphisms. This means we need to be careful with curves
whose j-invariants are roots (in Fp2) of

Φ2(X,X) = −(X − 1728)(X − 8000)(X + 3375)2

or

Φ4(X,X) = −2(X − 287496)(X − 54000)2(X + 3375)2

· (X2 + 191025X − 121287375)2 .

Other curves do not have cyclic 2- and 4-endomorphisms.

Example 10. Now consider d = 3: in this case, we need to be careful with
curves whose j-invariants are roots (in Fp2) of

Φ3(X,X) = −X(X − 54000)(X − 8000)2(X + 32768)2

or

Φ9(X,X) = −3(X − 8000)2(X + 32768)2(X + 12288000)2

· (X2 − 153542016X − 1790957481984)

· (X2 − 52250000X + 12167000000)2

· (X2 − 1264000X − 681472000)2

· (X2 + 117964800X − 134217728000)2 .

Other curves do not have cyclic 3- or 9-endomorphisms.

5.2 Action on supersingular (d, �)-structures

5.2.1 Preliminaries on orientations

Proposition 28 tells us that the associated endomorphism of each supersingu-
lar (d, �)-structure acts like a square root of −dp in the endomorphism ring.

90

We can make this notion more precise using orientations, as described by Coló
and Kohel in [CK20] and Onuki in [Onu21]. Before going further, we recall
some generalities. We start by introducing the notions of orientations, primi-
tive orientations and induced orientations from [CK20]. We write End0(E) for
End(E)⊗Q.

Definition 32 (Orientations). Let k be an imaginary quadratic field, Ok its
ring of integers, and O an order in k.

• A k-orientation on an elliptic curve E/Fp2 is a homomorphism ι : k →
End0(E); we call the pair (E, ι) a k-oriented elliptic curve.

• We say ι is an O-orientation, and (E, ι) is an O-oriented elliptic curve, if
ι(O) ⊆ End(E).

• An O-orientation ι : k → End0(E) is primitive if ι(O) = End(E) ∩ ι(k):
that is, if ι is “full” in the sense that it does not extend to an O�-orientation
for any strict super-order O� ⊃ O.

Example 11. Let E be an elliptic curve defined over Fp. Then the homomor-
phism ι : Q(

√−p) −→ End0(E) that maps
√−p to the p-power Frobenius πp is

a Q(
√−p)-orientation, and a Z[

√−p]-orientation. If the endomorphism ring of
the curve over Fp is Z[

√−p] then ι is also a primitive Z[
√−p]-orientation.

Definition 33 (Induced orientation). Let (E, ι) be a k-oriented elliptic curve.
If φ : E → E� is an isogeny, then there is an induced k-orientation φ∗(ι) on E�

defined by

φ∗(ι) : α �−→ 1

deg(φ)
φ ◦ ι(α) ◦ �φ .

We now describe isogenies and isomorphisms that preserve the orientation.

Definition 34 (k-oriented isogenies and isomorphisms). Given two oriented
curves (E, ι) and (E�, ι�), an isogeny φ : E → E� is said to be k-oriented, or
an isogeny of k-oriented elliptic curves, if ι� = φ∗(ι). In this case we write
φ : (E, ι) → (E�, ι�). If there exists a k-oriented isogeny φ̃ : (E�, ι�) → (E, ι)
such that φ̃ ◦ φ = [1]E and φ ◦ φ̃ = [1]E� , then we say that φ is a k-oriented
isomorphism, and we write (E, ι) ∼= (E�, ι�).

Note that φ : (E, ι) → (E�, ι�) is an oriented isomorphism if and only if the
underlying isomorphism of curves φ satisfies φ ◦ ι(α) = ι�(α) ◦ φ for all α in k.

From k-oriented isogenies we can define the notion of horizontal, ascending
and descending isogenies similarly to isogenies of ordinary elliptic curves. Let
φ : (E, ι) → (E�, ι�) be a k-oriented isogeny, with deg φ = � be a prime (not equal
to p), Then ι is a primitive O-orientation and ι� is a primitive O�-orientation
for some orders O and O� in k.

Moreover one of the following cases is true:

• O = O�, and φ is said to be horizontal ; or

• O ⊂ O� with [O� : O] = �, and φ is said to be ascending ; or

• O ⊃ O� with [O : O�] = �, and φ is said to be descending.

91

5.2.2 Action on primitive O-oriented curves

With the definitions above, we can describe the properties of action of the ideal
class group on the set of O-oriented elliptic curves. Onuki [Onu21] shows that
if we restrict to a certain subset of the primitive O-oriented curves, then this
action is transitive and free.

Definition 35. Let O be an order in a quadratic field k such that p does not
split in k or divide the conductor of O. Following [CK20], we let SSO(p) de-
note the set of O-oriented supersingular elliptic curves over Fp up to k-oriented
isomorphism. The subset of primitive O-oriented curves (up to k-oriented iso-
morphism) is denoted by SSpr

O (p).

Proposition 29 (Transitive action). There is a transitive group action

Cl(O)× SSO(p) −→ SSO(p) .

Proof. For any integral invertible ideal a in O and any O-oriented curve (E, ι),
we have a finite subgroup

E[a] := {P ∈ E | ι(α)(P) = 0 ∀α ∈ a} .

Now suppose a is prime to the conductor of O in Ok.
2 If φa : E → E/E[a] is the

quotient isogeny, then (φa)∗(ι) is an O-orientation on E/E[a], and φa is a hori-
zontal isogeny of O-oriented curves. If a is principal then (E/E[a], (φa)∗(ι)) ∼=
(E, ι), so the map

(a, (E, ι)) �→ (E/E[a], (φa)∗(ι))

extends to fractional ideals and factors through the class group, and as in [CK20]
we get a transitive group action Cl(O)× SSO(p) −→ SSO(p) .

We now introduce the main theorem of [Onu21]. Let O be an order in a
quadratic field k such that p does not split in k or divide the conductor of O.
Let JO denote the set of j-invariants of elliptic curves E over C (not Fp) with
O ⊂ End(E). All elements in JO are algebraic integers, so an elliptic curve
whose j-invariant is in JO has potential good reduction at any prime ideal.
Since JO is finite, we can take a number field L and a prime ideal p of L
above p such that for all j ∈ JO, there exists an elliptic curve over L with
good reduction at p and j-invariant j. Fix an injection of the residue field of L
modulo p into Fp. Let Ell(O) be the set of isomorphism classes of elliptic curves
E over L with good reduction at p and j-invariants in JO. For every such E,
we let [·]E be the normalized O-orientation: that is, such that for any invariant
differential ω on E, ([α]E)

∗ω = αω for all α in O. Then reduction mod p defines
a map

ρ : Ell(O) −→ SSpr
O (p)

E �−→ (�E, [.] �E) ,

2 Working with the class group, we can always replace ideals that are not prime to the
conductor with equivalent integral ideals that are.

92

where �E is the reduction of E/L at p and [·]Ẽ is the orientation such that
[α] �E = [α]E (mod p) for all α in O. The map ρ is surjective up to p-conjugation:

for all (E, ι) in SSpr
O (p), at least one of (E, ι) and (E(p), ι(p))) is in ρ(Ell(O))

(see [Onu21, Proposition 3.3]).

Theorem 30 (Onuki [Onu21, Theorem 3.4]). With the notation above: Cl(O)
acts freely and transitively on ρ(Ell(O)).

5.2.3 Natural orientation for supersingular (d, �)-structures

We aim to make Theorem 30 more precise and manageable by focusing on the
case k = Q(

√−dp). We prove that a natural orientation arises in this case, and
study some of its properties. From now on we let k = Q(

√−dp), and let Ok be
the maximal order of k.

Definition 36 (Natural orientation). If (E,ψ) is a supersingular (d, �)-structure
and µ is the associated endomorphism, then

ιψ : Q(
�
−dp) −→ End0(E)
�
−dp �−→ µ

is a Z[
√−dp]-orientation by Proposition 28. We call this the natural orientation.

Lemma 31. If E/Fp2 is a supersingular elliptic curve with #E(Fp2) = (p+ �)2

and ι is a Z[
√−dp]-orientation on E, then ι is the natural orientation for some

(d, �)-structure (E,ψ).

Proof. Let µ := ι(
√−dp) in End(E). We have deg(µ) = dp and p � d, so µ

factors over Fp2 into the composition of a d-isogeny and a p-isogeny. Since E
is supersingular, the p-isogeny is isomorphic to πp, and so µ = πpψ for some

d-isogeny ψ : E → E(p). It remains to show that �ψ = �ψ(p). Now [−dp] = µ2 =
πpψπpψ = ψ(p)π2

pψ = ψ(p)ψπ2
p, and π2

p = [−�p] because E is supersingular with

#E(Fp2) = (p+ �)2, so [d] = �ψ(p)ψ, and therefore �ψ = �ψ(p).

Lemma 32. Let (E,ψ) and (E�,ψ�) be (d, �)-structures with natural orienta-
tions ιψ and ιψ� , respectively. If φ : E → E� is an isogeny, then

φ∗(ιψ) = ιψ� ⇐⇒ φ(p) ◦ ψ = ψ� ◦ φ ;

that is, φ is an isogeny (resp. isomorphism) of Z[
√−dp]-oriented elliptic curves

(E, ι) → (E�, ι�) if and only if it is an isogeny (resp. isomorphism) of (d, �)-
structures (E,ψ) → (E�,ψ�).

Proof. Let µ resp. µ� be the associated endomorphisms of (E,ψ) resp. (E�,ψ�);

93

then

φ∗(ιψ) = ιψ� ⇐⇒ φ∗(ιψ)(
�
−dp) = ιψ�(

�
−dp) (

�
−dp generates Q(

�
−dp)

⇐⇒ φ ◦ µ ◦ �φ = µ�[deg φ] (multiplying by deg φ)

⇐⇒ φ ◦ µ = µ� ◦ φ (cancelling �φ)
⇐⇒ φ ◦ πp ◦ ψ = πp ◦ ψ� ◦ φ (by definition)

⇐⇒ πp ◦ φ(p) ◦ ψ = πp ◦ ψ� ◦ φ (πp ◦ φ = φ(p) ◦ πp)

⇐⇒ φ(p) ◦ ψ = ψ� ◦ φ (cancelling πp)

and the result follows on comparing definitions.

Coló and Kohel [CK20] and Onuki [Onu21] use class-group actions to study
the isogeny graphs Γ(SSO(p)) with vertex set SSO(p) for different orders O.
Proposition 33 allows us to transfer their results to our setting of (d, �)-structures.

Proposition 33. The graphs Γ(Dd,�(p)) and Γ(SSZ[
√−dp](p)) are explicitly iso-

morphic for � = 1 and � = −1.

Proof. This follows from Lemmas 31 and 32, once we can show that the iso-
morphism class of any Z[

√−dp]-oriented supersingular curve (E, ι) over Fp con-
tains a representative over Fp2 of order (p + �)2. Since j(E) is in Fp2 , after

a suitable Fp-isomorphism we may suppose that E is defined over Fp2 and
#E(Fp2) = (p+ �)2; and then ι is defined over Fp2 because for a supersingular
elliptic curve over Fp2 all of the endomorphisms are defined over Fp2 .

5.2.4 Link between natural and induced orientation

Let k = Q(
√−dp). The order Z[

√−dp] has index 2 in Ok if −dp ≡ 1 (mod 4),
and is equal to Ok otherwise. If −dp �≡ 1 (mod 4), then, every natural orienta-
tion is a primitive Ok-orientation; if −dp ≡ 1 (mod 4), each natural orientation
is either a primitive Z[

√−dp] orientation or a primitive Ok-orientation.

Proposition 34. Let (E,ψ) be a supersingular (d, �)-structure with natural
orientation ιψ.

1. If −dp �≡ 1 (mod 4), then ιψ is a primitive Ok-orientation.

2. If −dp ≡ 1 (mod 4), then ιψ is a primitive Ok-orientation if the asso-
ciated endomorphism µ fixes E[2] pointwise, and a primitive Z[

√−dp]-
orientation otherwise.

Proof. By definition, ιψ is a Z[
√−dp]-orientation. To complete Case (2), it suf-

fices to check whether the element ιψ(
1
2 (−1+

√−dp)) = 1
2 (µ− [1]) of End0(E)∩

ιψ(k) is in End(E) (because 1
2 (−1+

√−dp) generatesOk, but is not in Z[
√−dp]).

This is the case if and only if µ− [1] factors over [2], if and only if µ fixes E[2]
pointwise.

94

In the light of Propositions 33 and 34, we partition Dd,�(p) into two subsets:

Definition 37.
Dd,�(p) = Dmax

d,� (p) �Dsub
d,� (p) ,

where Dmax
d,� (p) contains the classes whose natural orientations are primitive

Ok-orientations, and Dsub
d,� (p) contains the classes whose natural orientations

are primitive orientations by the order of conductor 2 in Ok.

Proposition 35. If −dp �≡ 1 (mod 4), then Dmax
d,� (p) = Dd,�(p) and Dsub

d,� (p) =

∅. If −dp ≡ 1 (mod 4), then [Ok : Z[
√−dp]] = 2, so Dmax

d,� (p) resp. Dsub
d,� (p)

consists of the (d, �)-structures where µ acts trivially resp. non-trivially on the
2-torsion.

Proof. If −dp �≡ 1 (mod 4), then the maximal order of Q(
√−dp) is Z[

√−dp],
hence all orientations are primitive.

If −dp ≡ 1 (mod 4), then Ok = Z[1+
√−dp
2], and [Ok : Z[

√−dp]] = 2.
Let (E,ψ) be a (d, �)-structure, with associated endomorphism µ. When µ
acts trivially on the 2-torsion, 1+µ

2 is the identity and hence belongs to the
endomorphism ring. We obtain that (E,ψ) belongs to Dmax

d,� (p). Otherwise,
1+µ
2 is not an endomorphism and (E,ψ) belongs to Dsub

d,� (p).

Given Lemma 32, �-isogenies of (d, �)-structures are “ascending”, “descend-
ing”, and “horizontal” with respect to the natural orientations: we have hori-
zontal �-isogenies between vertices in Dmax

d,� (p) and between vertices in Dsub
d,� (p),

whileDmax
d,� (p) andDsub

d,� (p) are connected by ascending and descending 2-isogenies.
In the language of isogeny volcanoes, vertices in Dmax

d,� (p) form the “crater”, and

vertices in Dsub
d,� (p) the “floor”.

5.2.5 Free and transitive class group action

Having defined the natural orientation in the case k = Q(
√−dp), we are now

able to prove on which subsets the action is free and transitive, paving the way
for a new conjectural hard homogeneous space.

Proposition 33 translates the action of Cl(Q(
√−dp)) on SSZ[

√−dp](p) defined
above into an action on Dd,�(p). Theorem 36 makes this precise, showing that
Dmax

d,� (p) is a principal homogeneous space under Cl(Ok), and that if Dsub
d,� (p) is

not empty then it is a principal homogeneous space under Cl(Z(
√−dp)).

Theorem 36. Let k = Q(
√−dp), let Ok be its maximal order, let p be a prime

that does not split in k, and let � = ±1.

• The class group Cl(Ok) acts freely and transitively on Dmax
d,� (p).

• If Dsub
d,� (p) �= 0, then Cl(Z(

√−dp)) acts freely and transitively on Dsub
d,� (p).

Proof. Let O = Ok or Z[
√−dp]. Theorem 30 tells us that Cl(O) acts freely and

transitively on ρ(Ell(O)) ⊆ SSpr
O (p). Given the isomorphism of Proposition 33,

95

it only remains to prove that ρ(Ell(O)) = SSpr
O (p). For any (E, ι) in SSpr

O (p),

Proposition 3.3 of [Onu21] tells us that (E, ι) or (E, ι)
(p)

is in ρ(Ell(O)). In
our case, both are in ρ(Ell(O)), so the action on SSpr

O (p) is free: the action of

d = (d,
√−dp) on SSpr

O (p) maps (E, ι) to (E, ι)
(p)

, because it maps (E,ψ) to

(E,ψ)
(p)

, because E[d] = E[d] ∩ kerµ = kerψ.

Corollary 37. Let k = Q(
√−dp), with maximal order Ok. If we write hk =

#Cl(Ok), then

#Dmax
d,� (p) = hk and #Dsub

d,� (p) =

hk if −dp ≡ 1 (mod 8) ,

3hk if −dp ≡ 5 (mod 8) ,

0 otherwise .

Proof. By Theorem 36, we have #Dmax
d,� (p) = #Cl(Ok) and either #Dsub

d,� (p) = 0

(if −dp �≡ 1 (mod 4)) or #Dsub
d,� (p) = #Cl(Z[

√−dp]) (if −dp ≡ 1 (mod 4)).

It remains to compute #Cl(Z[
√−dp]) in the case −dp ≡ 1 (mod 4), where

Z[
√−dp] has conductor 2. In this case, the formula of [Cox13, Theorem 7.24]

#Cl(O) =
hk · f

[O×
k : O×]

�

�|f

�
1−
�
Δ

�

�
1

�

�

simplifies to

#Cl(Z[
�
−dp]) =

#Cl(Ok)

[O×
k : Z[

√−dp]×]

�
2−
�−dp

2

��
,

where (−dp/2) is the Legendre symbol. The result follows on noting that [O×
k :

Z[
√−dp]×] = 1, because −dp is never −3 or −4.

5.3 The (d, �)-supersingular isogeny graph

5.3.1 General structure

We can now describe the structure of the isogeny graph Γ(Dd,�(p)). Factoring
isogenies, it suffices to describe Γ�(Dd,�(p)) for each prime � �= p. The class group
actions of Theorem 36 imply the isogeny counts in the theorem illustrated in
Table 5.1.

Proposition 38. For � > 2, each vertex in Γ�(Dd,�(p)) has 1+(−dp
�) horizontal

�-isogenies, and no ascending or descending �-isogenies. For � = 2,

1. If −dp ≡ 1 (mod 8) then Dsub
d,� (p) �= ∅.

• Each vertex in Dmax
d,� (p) has two horizontal 2-isogenies to vertices in

Dmax
d,� (p), no ascending 2-isogenies, and one descending 2-isogeny to

a vertex in Dsub
d,� (p).

96

• Each vertex in Dsub
d,� (p) has no horizontal 2-isogenies, one ascending

2-isogeny to a vertex in Dmax
d,� (p), and no descending 2-isogenies.

2. If −dp ≡ 5 (mod 8) then Dsub
d,� (p) �= ∅.

• Each vertex in Dmax
d,� (p) has no horizontal or ascending 2-isogenies,

and three descending 2-isogenies to vertices in Dsub
d,� (p).

• Each vertex in Dsub
d,� (p) has no horizontal 2-isogenies, one ascending

2-isogeny to a vertex in Dmax
d,� (p), and no descending 2-isogenies.

3. Otherwise, Dsub
d,� (p) = ∅ and Dd,�(p) = Dmax

d,� (p). Each vertex in Dd,�(p)
has one horizontal 2-isogeny, and no ascending or descending 2-isogenies.

Proof. Let � > 2. Let V be a vertex in the graph. From the free and tran-
sitive group action given in Theorem 36 there are no descending or ascending
�-isogenies from V . If � is split, i.e. if (−dp

�) = 1, then (�) is a product of two
distinct prime ideals of Ok, and there are two horizontal isogenies from V . If �
is inert, i.e. if (−dp

�) = −1, then (�) is a prime ideal, and there is no horizontal

isogeny from V . If � is ramified, i.e. if (−dp
�) = 0, then (�) is the square of a

prime ideal of Ok, and there is one horizontal isogeny from V .
Now we consider the case � = 2. If −dp ≡ 1 (mod 4), then the maximal

order is Z[1+
√−dp
2], and Dsub

d,� (p) �= ∅.

• If −dp ≡ 1 (mod 8), then (−dp
2) = 1, the ideal (2) is split in Ok, and there

are two horizontal 2-isogenies and � − 1 = 1 descending 2-isogeny from
vertices in Dmax

d,� (p).

• If −dp ≡ 5 (mod 8), then (−dp
2) = −1, the ideal (2) is inert in Ok, and

there are �+1 = 3 descending 2-isogenies, and no ascending or horizontal
2-isogenies from vertices in Dmax

d,� (p).

In both cases, from the volcano structure, each vertex in Dsub
d,� (p) has one as-

cending 2-isogeny to a vertex in Dmax
d,� (p).

Prime � Conditions on (d, p) Vertex (sub)set → � �

� = 2

−dp ≡ 1 (mod 8)
Dmax

d,� (p) 2 0 1

Dsub
d,� (p) 0 1 0

−dp ≡ 5 (mod 8)
Dmax

d,� (p) 0 0 3

Dsub
d,� (p) 0 1 0

−dp �≡ 1, 5 (mod 8) Dd,�(p) 1 0 0

� > 2 – Dd,�(p) 1 + (−dp
�) 0 0

Table 5.1: The number of horizontal, ascending, and descending �-isogenies from
each vertex in the �-isogeny graph Γ�(Dd,�(p)).

97

5.3.2 Examples

Figures 5.1, 5.2, and 5.3 display �-isogeny graphs on D3,1(83), D3,1(101), and
D3,−1(97), for various � generating the class groups. These figures also form
examples of the various 2-isogeny structures listed in Table 5.1. Vertices are
encoded using the Hasegawa parameters for d = 3 that we will introduce in
Section 5.6.2.

C(p)

A −C

−B(p)

DB

C

−A −C(p)

−B

D(p)B(p)

Figure 5.1: Γ�(D3,1(83)) for � = 2 (solid), � = 3 (dashed) and � = 5 (dotted).
All isogenies are horizontal. We have Cl(Q(

√
−3 · 83)) ∼= Z/2Z × Z/6Z, with

the Z/2Z-factor generated by the ideal above 3, and the Z/6Z-factor generated
by an ideal above 5 (we see this in the length-6 cycles). The ideal above 2
is the cube of an ideal above 5. The correspondence between vertex labels
and parameters for the degree-3 Hasegawa family of §5.6.2 (with Δ = 2) is
A ↔ 0, B ↔ 32, C ↔ 40; the vertex D, which corresponds to the Hasegawa
parameter ∞, is (E : y2 = x3 +1,ψ) where ψ maps (x, y) to (((72

√
2+ 14)x3 +

(39
√
2 + 56))/x2,

√
2(35x3 + 52)y/x3). Note that −A = A(p) and −D = D(p).

5.3.3 Involutions

There are two obvious involutions on Γ(Dd,�(p)), negation and conjugation.
These are generally not the only involutions. Every prime � dividing the dis-
criminant ramifies in Ok (and Z[

√−dp]); the prime l over � gives an element of
order 2 in Cl(Ok) (and Cl(Z[

√−dp])), and thus an involution on Γ(Dd,�(p)).
Let d1, . . . , dn be the primes above the prime factors of d, and p the prime

above p; note that [d1] · · · [dn] = [p], because d1 · · · dnp = (µ).

• If−dp ≡ 1 or 2 (mod 4) then Cl(Ok)[2] = �[d1], . . . , [dn], [p]�, so Cl(Ok)[2] ∼=
(Z/2Z)n.

• If −dp ≡ 3 (mod 4), then Cl(Ok)[2] = �[a], [d1], . . . , [dn], [p]� where a is
the ideal above 2, and Cl(Ok)[2] ∼= (Z/2Z)n+1.

In each case, the action of the ideal class
�

i[di] = [p] on any (d, �)-structure
(E,ψ) is realised by the isogeny ψ : (E,ψ) → (E(p),ψ(p)), and is therefore equal
to the conjugation involution.

98

A

−A B

−BB(p)

−B(p)

C

−C C(p)

−C(p)

D

−DD(p)

−D(p)

E

−EE(p)

−E(p) F

−F

Figure 5.2: Γ2(D3,1(101)) for � = 2. The class group of Q(
√
−303) is isomorphic

to Z/10Z, and generated by an ideal over 2 (we see this in the length-10 cy-
cle). The correspondence between vertex labels and parameters for the degree-3
Hasegawa family of §5.6.2 (with Δ = 2) is A ↔ 0, B ↔ 6, C ↔ 24, D ↔ 25,
and E ↔ 42; the vertex F , which corresponds to the Hasegawa parameter ∞, is
(E,ψ) with E : y2 = x3+1 and ψ : (x, y) �→ ((67x3+66)/x2, (89x3+96)

√
2y/x3).

Note that A(p) = −A and F (p) = −F . The underlying curves of B and C are
isomorphic.

A

−B −C D

−A(p)

B(p) C(p) −D(p)

A(p)

−B(p) −C(p) D(p)

−A

B C −D

Figure 5.3: The isogeny graphs Γ2(D3,−1(97)) (solid) and Γ5(D3,−1(97)) (dot-
ted). We have Cl(Q(

√
−3 · 97)) ∼= Z/4Z, generated by an ideal over 5. The

2-isogenies are ascending/descending up/down the page; the 5-isogenies are
horizontal. The correspondence between vertex labels and parameters for the
degree-3 Hasegawa family of §5.6.2 (with Δ = 5) is A ↔ 47, B ↔ 1, C ↔ 14,
and D ↔ 22. The underlying curves of A and C are isomorphic.

Since the group actions are free, each of the involutions that come from
non-trivial two-torsion elements in the class groups – including conjugation –
has no fixed points. Negation, on the other hand, can have fixed points: for
example, if p ≡ 3 (mod 4) and E is the curve with j-invariant 1728, and i is
an automorphism of degree 4, then (E, i) is a (1, 1)-structure, and −(E, i) ∼=
(E,−i). This is the only fixed point among (1, 1)-structures, and its existence
is implied by the fact that the class number of Cl(

√−p) is odd when p ≡ 3
(mod 4).

99

5.3.4 Automorphism of order 3

If −dp ≡ 5 (mod 8), then there is an order-3 automorphism T of Dsub
d,� (p) cycling

the triplets of vertices with ascending 2-isogenies to the same vertex in Dmax
d,� (p).

In fact T is induced by the action of an ideal class in Cl(Z[
√−dp]). The ideal

t = (4,
√−dp − 1)Z[

√−dp] has order 3 in Cl(Z[
√−dp]), but capitulates to

become the principal ideal (2) in Ok (where
√−dp−1 = 2ω, where ω is the unit

1
2 (
√−dp − 1)). Indeed, t generates the kernel of the canonical homomorphism

Cl(Z[
√−dp]) → Cl(Ok). Since t intersects non-trivially with the conductor,

its action on Dsub
d,� (p) is not well-defined, but we can consider the action of an

equivalent ideal in the class group. Let
�

i �
ei
i be the prime factorization of

(dp + 1)/4 (and note that each �i is odd); then (
√−dp − 1) = t ·�i l

ei
i where

li := (�i,
√−dp−1). The product

�
i l

ei
i is equivalent to t in Cl(Z[

√−dp]), prime
to the conductor, and its action on Dsub

d,� (p) induces the automorphism T . In
the case where d = 1 (CSIDH), this is explained at length in [OT20].

5.4 Crossroads: curves with multiple (d, �)-structures

The map (E,ψ) �→ E defines a covering from Γ(Dd,�(p)) onto a subgraph of the
isogeny graph of all supersingular curves over Fp2 . For d1 �= d2 the images of
Γ(Dd1,�(p)) and Γ(Dd2,�(p)) can intersect, forming “crossroads” where we can
switch from walking in Γ(Dd1,�(p)) into Γ(Dd2,�(p)), and vice versa.

Definition 38. Let d1 and d2 be integers such that d1d2 > 1 is squarefree. We
say that a supersingular curve E/Fp2 with #E(Fp2) = (p + �)2 is a (d1, d2)-
crossroad if there exist isogenies ψ1 : E → E1 and ψ2 : E → E2 such that
(E,ψ1) is a (d1, �)-structure and (E,ψ2) is a (d2, �)-structure.

If (E,ψ) is a (d1, �)-structure, then we can easily check whether E is a
(d1, d2)-crossroad by evaluating the classical modular polynomial Φd2

at (j(E,), j(E)p).
However, (d1, d2)-crossroads are generally very rare. Indeed, if E is a (d1, d2)-
crossroad, then it has an endomorphism of degree d1d2 with cyclic kernel. We
can therefore enumerate the entire set of (d1, d2)-crossroads over a given Fp2 by
computing the set of roots j of Φd1d2(x, x) in Fp2 , and then checking for which
j we have Φd1

(j, jp) = 0. The polynomial Φd1d2
(x, x) has degree

�
�(� + 1)

where � ranges over the prime factors of d1d2, so there are only O(d1d2) (d1, d2)-
crossroads (up to isomorphism) among the O(

√
dp) vertices in Γ(Dd1,�(p)).

But while crossroads are rare, computing the few examples is relatively
easy, and computing (d1, d2)-crossroads gives us a useful way of quickly con-
structing some vertices in Γ(Dd1,�(p)) (and in Γ(Dd2,�(p))) at least when the di
are small. Suppose we want to construct a vertex in Γ(Dd,�(p)). Choose the
smallest squarefree d� such that p does not split in the maximal order Ok of
k = Q(

√
−dd�), and then construct a curve E/Fp2 from a root j in Fp2 of the

Hilbert class polynomial for Ok. After a suitable twist, E is a supersingular
(d, d�)-crossroad with E(Fp2) ∼= (Z/(p + �)Z)2. All other vertices in Γ(Dd,�(p))
can then be reached through the class group action.

100

Another way of enumerating crossroads: Suppose that E is a (d1, d2) cross-
road, i.e. E has a (d1, �)-structure and a (d2, �)-structure. Composing the
d-isogeny with the dual of the d2-isogeny E has an endomorphism α of degree
d1d2. Its characteristic polynomial is X2 − tαX + d1d2, which has discriminant
Δα = t2α − 4d1d2. Because Δα is less than zero, there is only a small number of
possible tα.

We can use this necessary condition to find all (d1, d2) crossroads : for each
tα such that t2α < 4d1d2, compute the roots of the Hilbert class polynomial of
the discriminant Δα = t2α−4d1d2. For each root r, test if the elliptic curves with
j-invariant r are supersingular, and have a d1-isogeny and d2-isogeny to their
conjugate. Algorithm 11 computes a crossroad, if it exists, for two squarefree
integers d1 and d2 coprime to p, and such that d1d2 is squarefree.

Algorithm 11: Find (d1, d2)-crossroad

Input: p prime, d1, d2 squarefree integers coprime with p, and such
that d1d2 is squarefree

Output: A crossroad in Dd1,�(p) and Dd2,�(p)
1 Φd1d2 ← ModularPolynomial(d1d2) // precomputation

2 for j in Roots(Φd1d2
(x, x),Fp2) do

3 if Φd1
(j, jp) = 0 then

4 return j

5 return None

Remark 5. A formula for Φd1d2
in term of Φd1

and Φd2
is given in [Cox13]

Proposition 13.14.

5.5 Map from (d, �)-structures to modular curves

In this section we write Sd,� for the set of isomorphism classes of (d, �)-structures
over Fp2 .

Negation We consider the quotient of Sd,� by negation, which identifies (E,ψ)
with −(E,ψ). Taking elements of Sd,� up to negation allows to identify them
with their kernel, a cyclic subgroup of order d. An exception has to be made
for vertices with automorphism group different than {±1}, i.e. j = 0 and 1728,
but these isolated cases are easy to handle separately. Hence the quotient by
the negation maps the set Sd,� into X0(d)(Fp2), mapping

Sd,� � (E,ψ) −→ (E, ker(ψ)) ∈ X0(d)(Fp2)

(see Section 2.4.4 for an introduction to modular curves). It identifies (E,ψ)
and −(E,ψ).

Conjugation We now consider the quotient by conjugation. The Atkin–
Lehner involution ωd defined in Section 2.4.4, which maps a modular point onto

101

its “dual”, acts as conjugation on the image of Sd,�. It follows that the quotient
by the Atkin–Lehner involution X+

0 (d) = X0(d)/ �ωd� identifies ±(E,ψ) and

±(E,ψ)
(p)

.

Map from Sd,� onto X+
0 (d)(Fp) We consequently obtain a four-to-one map

from Sd,� into X+
0 (d), identifying the isomorphism class of (E,ψ) with −(E,ψ),

(E,ψ)
(p)

, and −(E,ψ)
(p)

. Since {±(E,ψ),±(E,ψ)
(p)} is stable by conjugation,

it is a point in X0(d)(Fp). We can therefore represent an element of Sd,� as a
point in X+

0 (d)(Fp) plus two bits: one to determine the sign of the isogeny, and
one to set which of the two conjugate structures is encoded.

Example 12. To illustrate the technique above in more detail, suppose we want
to compress (5, �)-structures over Fp2 to elements of Fp. The classical modular
polynomial of level 5 is a polynomial Φ5(J0, J1) with integer coefficients, of
degree 6 in J0 and J1. It is symmetric in J0 and J1, so we can write

Φ5(J0, J1) = −F5(J0 + J1, J0J1)

where

F5(T,N) = N5 + 40(93T + 41650211662)N4

+ 36(126415T 2 − 2996636724991200T + 12277031464804661791632)N3

+ · · ·

is an integer polynomial of degree 6 in T and 5 in N . In terms of modular
curves: Φ5 defines an affine model of X0(5), and the Atkin–Lehner involution
on X0(5) exchanges the variables J0 and J1 in this model, so F5 defines an affine
model of X+

0 (5), with the quotient map X0(5) → X+
0 (5) defined by (J0, J1) �→

(T,N) = (J0 + J1, J0J1).
Now suppose we are given a (5, �)-structure (E,ψ) over Fp2 ; we want to

compress (E,ψ) down to a single element of Fp plus a few bits. For simplicity,
we will assume that E has no extra automorphisms. First, there is an element
γ of Fp2 such that ψ∗(ωE(p)) = γωE , where ωE and ωE(p) are the invariant

differentials on E and E(p), respectively. Fixing a sign function on Fp2 , we can
encode the sign of the isogeny ψ as a bit �1 determining the sign of γ. Now
(E,ψ) is determined by (E, kerψ, �1).

The pair (E, kerψ) corresponds to the point (j(E), j(E(p))) = (j(E), j(E)p)
on X0(5). Set t = j(E)+ j(E)p) and n = j(E)j(E)p, both in Fp, and let �2 be a
bit determining j(E) as one of the roots in Fp2 of the quadraticX2−tX+n; then
(E,ψ) corresponds to (�1, �2, t, n). Now let 1 ≤ i ≤ 5 determine the position of
n (in lexicographic order, say) among the (at most) 5 roots in Fp of the quintic
F5(t,X); then (E,ψ) corresponds to (�1, �2, i, t).

Working in the other direction: given (�1, �2, i, t), we compute the roots of
F5(t,X) in Fp, sort them, and let n be the i-th one; then we use �2 to choose a

root α of X2− tX+n; then we construct a curve Ẽ with j(Ẽ) = α, and recover
a 5-isogeny ψ̃ : Ẽ → Ẽ(p) using Elkies’ algorithm, for example (see [Sch95, §7

102

and §8]). We use �1 to correct the sign of ψ̃ if required by looking at the action
on invariant differentials.

5.6 Parametrization

We can also find a compact representation of the modular curve X+
0 (d)(Fp).

If X+
0 (d) is a curve, it can be viewed as a cover of P1, allowing us to further

compress the representative point in X+
0 (d)(Fp) to one element of Fp plus a few

bits. This step depends strongly on the geometry of X+
0 (d)(Fp): for example,

if X+
0 (d) has genus 0 then we can rationally parametrize it, giving a simple

compression of points in X+
0 (d)(Fp) to single elements of Fp; if X

+
0 (d) is hy-

perelliptic, then we can compress points in X+
0 (d)(Fp) to a single element of Fp

plus a “sign” bit in the usual way. As the gonality of X+
0 (d) increases, so does

the number of auxiliary bits required.
Useful explicit constructions for d = 2, 3, 5 and 7 appear in [Smi16], de-

rived from explicit parametrizations of Q-curves due to Hasegawa [Has97]. We
reproduce these parametrizations below.

Let E be an elliptic curve over a quadratic field k. We say E is a quadratic
Q-curve of degree d if E is d-isogenous to its Galois conjugate with respect
to k/Q. Note that if p is an inert prime in k, then the good reduction of E
modulo p has a d-isogeny to its p-conjugate, and hence we get a (d, �)-structure.

It is known that any Q-curve of degree d without complex multiplication
defined over a quadratic field corresponds to a point of X+

0 (d)(Q) (see [GLQ04]
Section 2). Having a map from Sd,� onto X+

0 (d)(Fp), and a parametrization of
Q-curves due to Hasegawa, we obtain a parametrization of elements in Sd,� up
to negation and conjugation. We have already used these parametrizations in
our examples in the previous chapter, namely in Figures 5.1, 5.2 and 5.3.

5.6.1 Representing (2, �)-structures

Proposition 39. Let Δ be a nonsquare in Fp, and fix a square root
√
Δ in Fp2 .

Let � = −(−2/p). The following map gives a parametrization of (2, �)-structures:

Fp −→ D2,�(p)
u −→ (E2,u,ψ2,u)

with
E2,u/Fp2 : y2 = x3 − 6(5− 3u

√
Δ)x+ 8(7− 9u

√
Δ)

ψ2,u : (x, y) �−→
�
−x

2
− 9(1 + u

√
Δ)

x− 4
,

y√
−2

�
−1

2
+

9(1 + u
√
Δ)

(x− 4)2

��
.

Proof. [Smi16] Let Δ be a nonsquare in Fp, and fix a square root
√
Δ in Fp2 .

For each u in Fp, the curve

E2,u/Fp2 : y2 = x3 − 6(5− 3u
√
Δ)x+ 8(7− 9u

√
Δ)

103

has a rational 2-torsion point (4, 0), which generates the kernel of a 2-isogeny

ψ2,u : E2,u → E2,u
(p) defined over Fp2 . If we use Vélu’s formulae to compute

the (normalized) quotient isogeny E2,u → E2,u/ �(4, 0)�, then the isomorphism

E2,u/ �(4, 0)� → E2,u
(p) is τ1/

√−2. Composing, we obtain an expression for ψ2,u

as a rational map:

ψ2,u : (x, y) �−→
�
−x

2
− 9(1 + u

√
Δ)

x− 4
,

y√
−2

�
−1

2
+

9(1 + u
√
Δ)

(x− 4)2

��
.

At this point we can either directly compute the dual isogeny �ψ2,u and compare

it with ψ2,u
(p), or we can compose ψ2,u

(p) with ψ2,u and compare the result with
[2]E2,u

. Either way, we find that (E2,u,ψ2,u) is a (2,−(−2/p))-structure, that
is, (E2,u,ψ2,u) is a (2, 1)-structure if p ≡ 5, 7 (mod 8), or a (2,−1)-structure
if p ≡ 1, 3 (mod 8). (To obtain a family of (2,−1)-structures when p ≡ 5, 7
(mod 8) or (2, 1)-structures if p ≡ 1, 3 (mod 8), it suffices to take the quadratic
twist.)

When � is the opposite sign of the one wanted, one can simply take the
quadratic twist of the curve given by the parametrization. Similarly, when the
isogeny wanted is the one with opposite sign, then one takes (E2,u,−ψ2,u).

5.6.2 Representing (3, �)-structures

Proposition 40. Let Δ be a nonsquare in Fp, and fix a square root
√
Δ in Fp2 .

Let � = −(−3/p). The following map gives a parametrization of (3, �)-structures:

Fp −→ D3,�(p)
u −→ (E3,u,ψ3,u)

with

E3,u/Fp2 : y2 = x3 − 3
�
5 + 4u

√
Δ
�
x+ 2

�
2u2Δ+ 14u

√
Δ+ 11

�

the kernel polynomial of ψ3,u being

χ(ψ3,u) = x− 3

Proof. [Smi16] Let Δ be a nonsquare in Fp, and fix a square root
√
Δ in Fp2 .

For each u in Fp, the elliptic curve

E3,u/Fp2 : y2 = x3 − 3
�
5 + 4u

√
Δ
�
x+ 2

�
2u2Δ+ 14u

√
Δ+ 11

�

has a subgroup of order 3 defined by the polynomial x − 3, consisting of the
points O and (3,±2(1− u

√
Δ)). Taking the quotient with Vélu’s formulae and

composing with τ1/
√−3 yields an explicit 3-isogeny ψ3,u : E3,u → E3,u

(p), and
we find that (E3,u,ψ3,u) is a (3,−(−3/p))-structure, that is, (E3,u,ψ3,u) is a
(3, 1)-structure if p ≡ 2 (mod 3), or a (3,−1)-structure if p ≡ 1 (mod 3). (To
obtain a family of (3,−1)-structures when p ≡ 2 (mod 3) or (3, 1)-structures if
p ≡ 1 (mod 3), take the quadratic twist.)

104

When � is the opposite sign of the one wanted, one can simply take the
quadratic twist of the curve given by the parametrization. Similarly, when the
isogeny wanted is the one with opposite sign, then one takes (E3,u,−ψ3,u).

5.6.3 Representing (5, �)-structures

For d = 5, there exists a family of Q-curves of degree 5 for every prime p ≡ 3
(mod 4).

Proposition 41. Let p be a prime such that p ≡ 3 (mod 4). The following
map gives a parametrization of (5, 1)-structures:

Fp −→ D5,1(p)
u −→ (E5,u,ψ5,u)

with
E5,u/Fp2 : y2 = x3 + 3A(u)x+B(u)

where

A(u) = −27u(11u− 2)(3(6u2 + 6u− 1)− 20u(u− 1)
√
−1),

B(u) = 54u2(11u− 2)2((13u2 + 59u− 9)− 2(u− 1)(20u+ 9)
√
−1)

and the kernel polynomial of ψ5,u being

χ(ψ5,u) = (1+ 2
�
−1)(x− 3u(11u− 2)(2−

√
−1))2 +81u(11u− 2)(1+ u

√
−1)2

Proof. The proof is similar to that of Proposition 39 and Proposition 40. See
[Smi16].

For primes p such that p ≡ 1 (mod 4), Hasegawa gives in Proposition 2.3
of [Has97] a methodology to find a quadratic Q-curve of degree 5, provided we
have an element Δ such that (5/pi) = 1 for every prime pi �= 5 dividing Δ.

5.6.4 Representing (7, �)-structures

For d = 7, there exists a family of Q-curves of degree 7 for every prime p ≡ 3
(mod 4).

Proposition 42. Let Δ be a nonsquare in Fp, and fix a square root
√
Δ in Fp2 .

Let � = −(−7/p). The following map gives a parametrization of (7, �)-structures:

Fp −→ D7,�(p)
u −→ (E7,u,ψ7,u)

with
E7,u/Fp2 : y2 = x3 + 3A(u)x+B(u)

where
A(u) = −3C(u)(85 + 96u

√
Δ+ 15u2Δ),

105

B(u) = 14C(u)(9(3u4Δ2 + 130u2Δ+ 171) + 16(9u2Δ+ 163)u
√
Δ)

C(u) = 7(27 + u2Δ)

and

χ(ψ7,u) = (x−C(u))3−42(1−u
√
Δ)2C(u)[3(x−C(u))+4(1−u

√
Δ)(27+u

√
Δ)]

Proof. The proof is similar to that of Proposition 39 and Proposition 40. See
[Smi16].

106

Chapter 6

HD CSIDH: Higher degree
commutative supersingular
Diffie–Hellman

Abstract In Chapter 5 we introduced a generalization of the CSIDH group
action. We extended it from elliptic curves defined over Fp to any elliptic curve
having a degree d-isogeny to their conjugate, named as (d, �)-structures, CSIDH
being the case d = 1. Having a generalization of the group action, we want to
build a key exchange protocol using (d, �)-structures. In this chapter, we detail
the derived key exchange protocol HD CSIDH, study the underlying security
problems and the practical computation, as well as key compression and key
validation procedures.

The results of this section have been published in [CS21].

6.1 HD CSIDH: Higher degree CSIDH

We use the same notations as in Chapter 5: let k = Q(
√−dp) with Ok the max-

imal order of k, let Dmax
d,� (p) be the set of isomorphism classes of supersingular

(d, �)-structure over Fp2 whose natural orientation are primitive Ok-orientations,
and Dsub

d,� (p) the set of classes whose natural orientations are primitive orienta-
tions by the order of conductor 2 in Ok.

The action of Cl(Ok) on Dmax
d,� (p) and Cl(Z[

√−dp]) on Dsub
d,� (p) makes the

graph Γ(Dd,�(p)) a natural candidate for HHS-based post-quantum cryptosys-
tems following Stolbunov [RS06, Sto09, Sto10] and Couveignes [Cou06]. For
each d > 1, we can define a key exchange algorithm on Dd,�(p) generalizing
CSIDH [CLM+18] and CSURF [CD20], which use respectively the action of
Cl(Z[

√−p]) on Dsub
1,1 (p) and Cl(Q(

√−p)) on Dmax
1,1 (p).

Despite the prominence of orientations, the relationship between key ex-
change in Dd,�(p) and the “oriented-SIDH” OSIDH protocol [CK20] is distant.

107

The O-orientations in OSIDH involve orders O with massive conductors in Ok

where Ok has tiny class number; here, O has tiny conductor and Ok has massive
class number. In OSIDH, the path is a descending path within the graph start-
ing from a curve with an O-orientation where O is an order of large conductor
in Ok, and #Cl(Ok) = 1. In our case, we use curves with an O-orientation
where O has tiny conductor in Ok, and #Cl(Ok) is huge.

6.1.1 Hard problems

The conjectural hard problems for the action of Cl(Ok) on Dd,�(p) are vector-
ization and parallelization from Couveignes’ Hard Homogenous Spaces frame-
work [Cou06]. We describe the instances of Vectorization and Parallelization
from Definition 3 in this special context:

Vectorization Given (E,ψ) and (E�,ψ�) in Dd,�(p), find a ∈ Cl(Ok) such
that a · (E,ψ) = (E�,ψ�).

Parallelization Given (E0,ψ0), (E1,ψ1), and (E2,ψ2) in Dd,�(p), compute
the unique (E3,ψ3) in Dd,�(p) such that (E3,ψ3) = (a1a2) · (E0,ψ0) where
(Ei,ψi) = ai · (E0,ψ0) for i = 1 and 2.

Solving Vectorization immediately solves Parallelization. In the opposite di-
rection, no classical reduction is known in the abstract HHS framework or in the
concrete world of isogenies. The quantum equivalence of these two problems is
shown in [GPSV18].

An extensive study of the possible classical and quantum attacks on Vec-
torization for d = 1 can be found in [CLM+18]. All of these attacks extend to
d > 1 with a slowdown at most polynomial in d for class groups of the same
size, with that slowdown due to the more complicated isogeny evaluation and
comparison algorithms involved in working with (d, �)-structures instead of plain
elliptic curves.

The best classical attack known on Vectorization is to use random walks in
Γ(Dd,�(p)) (exactly as in the d = 1 case in [DG16]), which gives a solution after
an expected O((dp)1/4) isogeny steps.

Since vectorization is an instance of the Abelian Hidden Shift Problem, the
best quantum attack is Kuperberg’s algorithm [Kup05, Reg04, Kup13] using
the Childs–Jao–Soukharev quantum isogeny-evaluation algorithm as a subrou-
tine [CJS14], adapted to push the d-isogeny ψ to the conjugate through the
�-isogenies. This adaptation may incur a practically significant but asymptot-
ically negligible cost; the result is a subexponential algorithm running in time
Ldp[1/2,

√
2]. Even for d = 1, there is some debate as to the concrete cost of

this quantum algorithm, and the size of p required to provide a cryptographi-
cally hard problem instance for common security levels [BLMP19, BS20, Pei20].
(If and) when some consensus forms on secure parameter sizes for CSIDH, the

108

same parameter sizes should make Vectorization and Parallelization in Dd,�(p)
cryptographically hard, too.

We argue that using d > 1 instead of d = 1 does not dramatically affect
the security, but that it rather increase it asymptotically. When we compare
Q(

√−dp) with Q(
√−p), the class number grows by 1

2 log(d) bits asymptotically
as mentioned in Proposition 3. Using d > 1 instead of d = 1 hence leads
asymptotically to using a larger class group, and to more security. However we
need small d (< log(p)) for efficiency reasons, so if there is a net gain in security
it is only modest.

However these are asymptotics that do not apply for the sizes of p and d
that would be used in cryptographic practice. For these kinds of small d, and
concrete p, computing the two class numbers #Cl(

√−dp) and #Cl(
√−p) and

comparing them is the only way to tell if there is more or less security between
CSIDH and HD CSIDH. This idea is illustrated in Example 13 in Section 6.3.

6.1.1.1 Impact of involutions

We consider the impact of the various involutions existing in Γ(Dd,�(p)) exhib-
ited in Section 5.3.3 on the security analysis, again comparing with CSIDH,
which is the case d = 1.

The negation involution already exists for d = 1, where it essentially flips
between a curve and its quadratic twist over Fp. This involution has not yet
been exploited to give an interesting speed-up in solving vectorization or par-
allelization in the case d = 1; a speed-up for any d would be an interesting
result.

For d > 1, however, there is at least one new involution: namely, conjugation.
We note that solving vectorization modulo conjugation solves vectorization, be-
cause a vertex and its conjugate are always connected by the action of an ideal
of norm d. Working modulo conjugation allows us to shrink search spaces by a
factor of 2, yielding a speed-up by a factor of up to

√
2 analogous to working

modulo negation when solving the classical ECDLP (as in [BLS11]). When d
has n prime factors, we get more involutions that would allow us to work with
equivalence classes of 2n vertices, shrinking the search spaces by a factor of 2n.
Prime d therefore seems the simplest and strongest case to us.

6.1.1.2 Impact of crossroads

Finally, we note that if a random walk should wander into a crossroad, then
we have found an isogeny to a supersingular curve with much known on its
endomorphism ring. In this case, attacks analogous to that of [GPST16] should
apply. But as we have seen, crossroads are vanishingly rare, the chance of ran-
domly wandering onto one is negligible for cryptographic size p. Their existence
should not create any weakness for schemes based on Γ(Dd,�(p)), no more than
they do for CSIDH.

109

6.1.2 HD CSIDH

We now describe the non-interactive key exchange protocol based on the class
group action on Γ(Dd,�(p)), generalizing CSIDH (the case d = 1). We believe
that the flexibility of the class group action allows many more cryptographic
applications as for CSIDH.

The public parameters are

• a prime p;

• a prime d;

• an � in {1,−1};

• a set of primes {�i}ni=1 coprime to dp and splitting in Q(
√−dp), together

with a prime ideal li above each �i;

• a starting vertex (E0,ψ0) in Dd,�(p) (constructed using the crossroad tech-
nique from Section 5.4, for example).

We also fix a private keyspace K ⊂ Zn of exponent vectors such that #K ≥ 22λ

to provide λ bits of security against meet-in-the-middle attacks (though smaller
K may suffice: see [CSCDJRH20]). The prime p must be large enough that
vectorization and parallelization cannot be solved in fewer than 2λ classical
operations, or a comparable quantum effort.

For key generation, each user randomly samples their private key as a vector
(ei)1≤i≤n from K, representing the ideal class [a] = [

�n
i=1 l

ei
i] in Cl(Ok). Their

public key is a vertex (E,ψ) representing [a] · (E0,ψ0), which we can compute
using the methods of Section 6.2.

For key exchange, suppose Alice and Bob have key pairs ([a], (EA,ψA)) and
([b], (EB ,ψB)), respectively. Alice receives and validates (EB ,ψB), and com-
putes SAB = (EAB ,ψAB) = [a] · (EB ,ψB); Bob receives and validates (EA,ψA),
and computes SBA = (EBA,ψBA) = [b] · (EA,ψA). The commutativity of the
group action implies that SAB

∼= SBA, so Alice and Bob have a shared secret
up to isomorphism.

To obtain a unique shared value for cryptographic key derivation, they can
take j(EAB) = j(EBA). Although this deletes the isogeny and its sign, for
a general vertex the curve only has one isogeny to its conjugate (up to sign).
Hence for a general vertex (E,ψ), using j(E) instead of the modular invariant
representing the (d, �)-structure only loses one bit of information (the sign of
the isogeny). Even if the vertex curve had two different kernels of isogenies
to its conjugate, we would only be losing two bits of information by using the
j-invariant. The advantage of this approach is that we avoid computing the
possibly complicated isomorphism invariants of the isogeny ψ. This protocol is
described in Figure 6.1.

Remark 6. When ideal classes represent cryptographic secrets, it is important to
compute their actions in constant time. A number of techniques have been pro-
posed for this in the context of CSIDH [MCR19, OAYT20, CCC+19, CKM+20,

110

Public parameters: A prime p;
A squarefree d ∈ Z, d < p;
An � in {1,−1};
A set of primes {�i}ni=1 coprimes to dp and splitting in k = Q(

√−dp);
A prime ideal li above each �i;
A starting vertex (E0,ψ0) in Dd,�(p);
A private keyspace K ⊂ Zn.
Alice Bob
Private key: Private key:
(ei)

n
i=1 ∈ K (e�i)

n
i=1 ∈ K

Public key: Public key:
(EA,ψA) = [a] · (E0,ψ0) (EB ,ψB) = [b] · (E0,ψ0)

with a =
�n

i=1 l
ei
i ∈ Cl(Ok) with b =

�n
i=1 l

e�i
i ∈ Cl(Ok)

(EA,ψA)�
(EB ,ψB)

Shared secret Shared secret
computation: computation:
(EAB ,ψAB) = (EBA,ψBA) =
[a] · (EB ,ψB) [b] · (EA,ψA)

Shared secret: Shared secret:
j(EAB) j(EBA)

Figure 6.1: HD CSIDH key exchange protocol.

111

BBC+21]. Each of these methods generalizes in a straightforward way to com-
pute class-group actions on (d, �)-structures. The only real algorithmic difference
when evaluating an isogeny φ : (E,ψ) → (E�,ψ�) is that the isogeny ψ must
be pushed through φ in constant-time as well. For d = 2 and 3, this amounts
to pushing the x-coordinate of a single point through the isogeny, something
that is already part of constant-time CSIDH implementations. For d > 3 the
kernel polynomial of ψ can be pushed through φ using the theory of elementary
symmetric functions (see Section 6.2.1).

6.2 Practical computation

For our computations, we can represent a (d, �)-structure (E,ψ) as (E, fψ,α),
where fψ is the kernel polynomial of ψ (that is, the monic polynomial whose
roots are the x-coordinates of the nonzero points in kerψ) and α is the element
such that ψ = τα ◦ ψ̃, where ψ̃ : E → E/ kerψ is the normalized “Vélu” isogeny.
Note that for j �= 0, 1728, α is determined by (E, fψ) up to sign, so we can just
store a single bit to encode α if desired, though this complicates the resulting
algorithms.

We now detail how the ideal class group action can be computed. We start
with a theoretical result, before presenting two possible approaches for the com-
putation.

Lemma 43. Let k = Q(
√−dp) and Ok = Z[ω] its maximal order. Let I be an

(integral) ideal of Ok of norm �. If there exists b ∈ Z such that b < � and

• � | (dp+ b2) if −dp �≡ 1 (mod 4), or

• � | (b(b+ 1) + dp+1
4) if −dp ≡ 1 (mod 4)

then I = (�, b± ω).

Proof. From Proposition 2, taking into account that the norm of the ideal is
prime, which implies (a, c) = (�, 1) or (1, �).

Remark 7. Note that b depends only on p, d and �, and can be included in
public parameters.

We now want to compute (E�,ψ�), the image of (E,ψ) under the action of the
ideal l = (�, b+ω) with ω such that Ok = Z[ω]. Following [DKS18], we consider
two approaches: “Vélu” and “modular”. The first one keeps track of ψ, while
the second tracks kerψ and is oblivious of the sign, which occasionally makes
two possible ψ collide for curves that have two d-isogenies to their conjugates.

6.2.1 Vélu approach

In the “Vélu” approach, we compute a generator K� of the kernel E[�] of φ.
This point may only be defined over an extension Fp2r of Fp2 . We then compute
the quotient isogeny φ : E → E� := E/ �K�� using Vélu’s formulae, at a cost

112

of O(�) Fp2r -operations, or using the algorithm of [BDLS20] in �O(
√
�) Fp2r -

operations.

Finally, we push ψ through φ by computing the image of its kernel sub-
group and choosing the correct sign for the d-isogeny. If we are given an Fp2 -
rational generator G for kerψ, then pushing ψ through φ essentially costs one
isogeny evaluation; otherwise, this amounts to computing symmetric functions
(see paragraph below), with a cost on the order of O(d) isogeny evaluations.

Each evaluation costs O(�) or �O(
√
�) Fp2r -operations. The total cost is dom-

inated by the cost of the multiplication by the cofactor #E(Fp2r)/� needed
to find K�: we have log (#E(Fp2r)/�) = 2r log p, so constructing K� requires
O(r2 log p) operations in Fp2 . The algorithm to compute a single �-isogeny step
using this approach is presented in Algorithm 12.

Algorithm 12: ComputeOrientedNeighborVélu: For a vertex V on
the crater, computes its neighbour V � in the direction given by b, i.e.
the action by the ideal (�, µ+ [b]).

Input: V , �, b
Output: V �

1 (Fd,φd) ← IsogenyFromKernel (E, χ)
2 µ ← πp ◦ φd

// Computing the image curve by the action

3 Compute K� in E[�] such that µ(K�) + [b]K� = O
4 χ� ← KernelPolynomial(K�)

5 (F�,φ�) ← IsogenyFromKernel(E, χ�)

6 Assert Φd(j(F�), j(F�)
p) = 0

// Finding the d-isogeny to its conjugate

7 for (Fd, τd) in ComputeKernelPolynomials (F , d) do
8 V � = (F, τd, 1)
9 V �� = (F, τd,−1)

10 if IsOrientedEllNeighbor(V, V �, �, χ�) then
11 return V �

12 else if IsOrientedEllNeighbor(V, V ��, �, χ�) then
13 return V ��

Symmetric functions Let Sn,k(X1, ..., Xn) =
�

1≤j1<j2<...<jk≤n Xj1 ...Xjn

be the elementary symmetric polynomial with n variables and degree k. For
example the elementary symmetric polynomials with 3 variables are

S3,1 = X1 +X2 +X3

S3,2 = X1X2 +X2X3 +X1X3

S3,3 = X1X2X3.

Theorem 44 (Fundamental theorem of symmetric polynomials). Let f be a
rational function symmetric in n variables on a field K. Then there exist a

113

unique rational function g on K such that

f(X1, ..., Xn) = g(Sn,1, ..., Sn,n)

with Sn,k(X1, ..., Xn) =
�

1≤j1<j2<...<jk≤n Xj1 ...Xjn

Proof. See Chapter I, Section 2, paragraph Elementary symmetric functions in
[Mac98].

Let χd be the kernel polynomial of a degree d-isogeny. Then

χd(X) =

n�

i=0

(−1)n−iciX
i

with the ci satisfying ci = Sn,n−i(α1, ...,αn) where the αi are the roots of χd.
Now let τd be the kernel polynomial of the image of the degree d-isogeny through
a degree �-isogeny φ�. Then

τd(X) =
n�

i=0

(−1)n−ic�iX
i

with the ci satisfying ci = Sn,n−i(φ�(α1), ...,φ�(αn)) where the φ�(αi) are the
roots of τd. For every i ∈ {1, ..., n}, c�i is symmetric in α1, ...,αn. Hence there
exist a function gi such that c�i = gi(Sn,1(α1, ...,αn), ..., Sn,n(α1, ...,αn)) =
gi(c1, ..., cn). By computing the gi, we can compute τ �d from the coefficients
of χd without having to find the roots of the polynomial.

6.2.2 Modular approach

The “modular” approach uses modular polynomials. It requires the preceding
neighbour E0 to be given to indicate the direction to be taken, by avoiding
backtracking.

The motivation for this second approach is that cases where there is more
than one d-isogeny to the conjugate of a curve are extremely rare. More pre-
cisely, when it occurs, the curve has an endomorphism of degree d2. Hence its
j-invariant is a root of the modular polynomials Φd(X,X(p)) and Φd2(X,X).
Because Φd2(X,X) has degree d2 + 1, there are at most d2 + 1 j-invariants
concerned, compared to O(12 (log d)

√
p) curves in Dd,�(p). Hence, in the vast

majority of cases, the d-isogeny to the conjugate is unique and can be recovered
easily, although up to sign only. Note that in this case the class group action is
not strictly free and transitive any more. In practice, if using this method leads
to a curve with two d-isogenies to its conjugate, we can always stop and switch
to the Vélu method to disambiguate.

To compute the action of an ideal l on (E,ψ), we computeG = gcd(Φd(X,Xp),Φ�(j(E), X))
(if d = 1, then we take Φ1(X,Xp) = Xp −X). In general G has only two roots
in Fp2 , corresponding to the two �-neighbours. In a non-backtracking walk we
can divide by X− j(E�), where (E�,ψ�) is the preceding vertex, to find the next

114

step. Otherwise, we can distinguish between the two neighbours by examining
the action of µ on the �-torsion. However, note that ψ� cannot be recovered
with certainty. This method is presented in Algorithm 13.

To compute gcd(Φd(X,Xp),Φ�(j(E), X)), we compute F (X) := Φ�(j(E), X)
in O(�) Fp2 -operations, and then Y := Xp mod F (X) using the square-and-
multiply algorithm inO(� log p) Fp2 -operations. We then compute Z := Φd(X,Y)
mod F , and then gcd(Z,F), in O(d2�2) Fp2 -operations. Generally � is polyno-
mial in log p, but typically it is even smaller, and then the dominating step is
the computation of Y . Note that depending on the size of d with respect to p,
the dominating cost might switch between the first step and the second one.

Algorithm 13: ComputeOrientedNeighborModular: For a vertex V
on the crater, computes its neighbour V in the direction given by b, i.e.
the action by the ideal (�, µ+ [b]).

Input: V , �, b
Output: V �

1 (Fd,φd) ← IsogenyFromKernel (E, χ)
2 µ ← πp ◦ φd

// Computing the image curve by the action

3 Compute K� in E[�] such that µ(K�) + [b]K� = O
4 χ� ← KernelPolynomial(K�)

5 (F�,φ�) ← IsogenyFromKernel(E, χ�)

6 Assert Φd(j(F�), j(F�)
p) = 0

// Finding the d-isogeny to its conjugate

7 for (Fd,χ
�
d) in ComputeKernelPolynomials (j(F), d) do

8 V � = (j(F), F,χ�
d, 1)

9 V �� = (j(F), F,χ�
d,−1)

10 if IsOrientedEllNeighbor(V, V �, �, χ�) then
11 return V �

12 else if IsOrientedEllNeighbor(V, V ��, �, χ�) then
13 return V ��

As in the ordinary case described in [DKS18], for Fq = Fpr the Vélu approach
is more efficient when r2 < �; in particular, when K� is defined over Fp2 . If we
are free to choose p, then we can optimize systems that use the action of a series
of small primes �i. This can be achieved by taking p such that the �i split in
Z[
√−dp] i.e. (Δ/�i) = 1 where Δ is −dp or −4dp, and p = c ·�n

i=1 �i − � with
c a cofactor making p prime. In the case d = 1, this is exactly the optimization
that is key to making CSIDH practical. Choosing d in a similar way allows to
have r = r� = 1, reducing the complexities.

6.3 Example

We present a toy example of the HD CSIDH key exchange protocol for

p = 35419 = 4× 5× 7× 11× 23− 1 ,

115

with Fp2 defined as Fp(t) with t2 = 2. We consider the supersingular elliptic
curves having an 11-isogeny to their conjugate, and the �-isogenies between them
for � ∈ {5, 7} (the primes 5 and 7 are both split in Q(

√−11p)). The starting
vertex is given by the curve E0 : y2 = x3 + 24260x+ 22318 and the 11-isogeny
generated by the point (15782t+ 184, 13566t+ 24868, 1) on E0 which lands on

E0
(p).
We follow the steps described in Figure 6.1. Alice starts by generating her

public key PKA from her private key SKA = [2, 1]. She computes two 5-
isogenies and one 7-isogeny from E0 using Algorithm 12 or Algorithm 13. She
obtains her public key

PKA : (y2 = x3 + (26533t+ 34484)x+ (18638t+ 9766);

kerϕ11 = �(16432t+ 22256, 27739t+ 28012)�)

composed of the supersingular elliptic curve and the 11-isogeny with kernel
kerϕ11 to its conjugate. The curve has j-invariant jA = 26208t+ 11691.

Bob proceeds similarly with his private key SKB = [0, 3] and obtains his
public key

PKB : (y2 = x3 + (30329t+ 18059)x+ (22203t+ 34829);

kerϕ11 = �(11315t+ 28673, 19838t+ 20559)�)

composed of the supersingular elliptic curve and the 11-isogeny with kernel
kerϕ11 to its conjugate. The curve has j-invariant jB = 6864t+ 31835.

Alice then applies her private key to Bob’s public key and Bob his private
key to Alice’s public key. They both land on the same vertex which has a
representative

(y2 = x3 + (34232t+ 7209)x+ (3505t+ 15937);

kerϕ11 = (7122t+ 21835, 22925t+ 30171)) .

Their shared secret is the j-invariant of the curve, i.e. 28267t+ 8980.

6.4 Public key compression

6.4.1 Key compression with modular curves

Suppose we are given a (5, �)-structure (E,ψ) over Fp2 ; we want to compress
(E,ψ) down to a single element of Fp plus a few bits, using the ideas of Sec-
tion 5.5. For simplicity, we will assume that E has no extra automorphisms.

Sign First, there is an element γ of Fp2 such that ψ∗(ωE(p)) = γωE , where

ωE and ωE(p) are the invariant differentials on E and E(p), respectively. Fixing
a sign function on Fp2 , we can encode the sign of the isogeny ψ as a bit �1
determining the sign of γ. Now (E,ψ) is determined by (E, kerψ, �1).

116

From (d, �)-structures to modular curves The pair (E, kerψ) corresponds
to the point (j(E), j(E(p))) = (j(E), j(E)p) on X0(5). Set t = j(E) + j(E)p

and n = j(E)j(E)p, both in Fp, and let �2 be a bit determining j(E) as one
of the roots in Fp2 of the quadratic X2 − tX + n; then (E,ψ) corresponds to
(�1, �2, t, n).

Compression Now let 1 ≤ i ≤ 5 determine the position of n (in lexicographic
order, say) among the (at most) 5 roots in Fp of the quintic F5(t,X); then (E,ψ)
corresponds to (�1, �2, i, t).

Decompression Working in the other direction: given (�1, �2, i, t), we com-
pute the roots of F5(t,X) in Fp, sort them, and let n be the i-th one; then we

use �2 to choose a root α of X2 − tX + n; then we construct a curve Ẽ with
j(Ẽ) = α, and recover a 5-isogeny ψ̃ : Ẽ → Ẽ(p) using Elkies’ algorithm, for
example (see [Sch95, §7 and §8]). We use �1 to correct the sign of ψ̃ if required
by looking at the action on invariant differentials.

Size The encoding (E,ψ) �→ (�1, �2, i, t) requires �log(p)� + 5 bits, since 1 ≤
i ≤ 5 can be encoded in three bits. We see that for general d, the number
of extra bits depends (logarithmically) on the gonality of the modular curve
X+

0 (d) (i.e., its degree in N above). Using alternate models of modular curves
may reduce this to some extent.

6.4.2 Key compression with parametrization

When the modular curve has genus 0, it can be rationally parametrized over
Fp2 as described in Section 5.6. This lets us get down to a single element of Fp

plus a choice of sign, as in [Smi16, §5].

Compression The parameters �1 and �2 are computed as in Section 6.4.1.
Then we use the parametrization of the modular curve to encode the parameters
n and t from Section 6.4.1 as a single element u in Fp. The parametrization
encodes elements of (Dd,1(p)) or (Dd,1(p)). We add a single bit �0 to indicate
whether the twist of the curve needs to be taken or not.

Decompression Working in the other direction: given (�0, �1, �2, u), we com-
pute the corresponding curve and isogeny using the parametrization. Then we
use �2 to choose a root α of X2 − tX + n; then we construct a curve Ẽ with
j(Ẽ) = α, and recover a 5-isogeny ψ̃ : Ẽ → Ẽ(p) using Elkies’ algorithm, for
example (see [Sch95, §7 and §8]). We use �1 to correct the sign of ψ̃ if required
by looking at the action on invariant differentials. We use �0 to know if the
computation of the quadratic twist is needed.

Size The encoding (E,ψ) �→ (�0, �1, �2, u) requires �log(p)�+ 3 bits.

117

6.5 Public key validation

The public key validation procedure in CSIDH allows a secure static key ex-
change protocol, meaning that public keys can be reused across multiple runs
of the key exchange protocol (see Section 3.4). The generalization of CSIDH
described in Chapter 5 would benefit from a public key validation algorithm
for the same reasons. Recall that in this case, public keys are pairs (E,ψ). A
public key is valid if and only if it is a (d, �)-structure and if E is supersingular.

6.5.1 CSIDH versus HD CSIDH

The validation process for CSIDH from [CLM+18] turns out to be irrelevant for
HD CSIDH. In CSIDH, i.e. for the case d = 1 and p ≡ 3 (mod 8) with p > 5,
an element A ∈ Fp is a valid public key if the Montgomery curve defined by
y2 = x3+Ax2+x is supersingular and if its endomorphism ring over Fp Endp(E)
is isomorphic to Z[

√−p]. The validation process in CSIDH uses Proposition 45
and Proposition 46 below.

Proposition 45. Let p ≥ 5 be a prime such that p ≡ 3 (mod 8), and let E/Fp

be a supersingular elliptic curve. Then Endp(E) = Z[
√−p] if and only if there

exists A ∈ Fp such that E is Fp-isomorphic to the curve EA : y2 = x3+Ax2+x.
Moreover, if such an A exists then it is unique.

Proof. See Proposition 7 in [CLM+18].

Hence when the curve y2 = x3 +Ax2 + x is proven to be supersingular, the
form of the endomorphism ring over Fp immediately follows.

Proposition 46 ([CLM+18]). Let p = 4
�n

i=0 �i − 1, p ≥ 5 and let E be an
elliptic curve defined over Fp. If there exists a point of order

�
j∈J �j greater

than 4
√
p for J a subset of {1, ..., n} then E is supersingular.

Proof. As p ≥ 5, an elliptic curve E defined over Fp is supersingular if and only
if #E(Fp) = p + 1. The existence of a point of order d > 4

√
p implies that

there exists only one multiple of d in the Hasse interval [p + 1 − 2
√
p, p + 1 +

2
√
p]. Besides, since d =

�
j∈J �j , this multiple must be p + 1 by Lagrange’s

theorem.

To validate a public key in CSIDH, following the propositions above, a point
on the curve is sampled, and its order is computed. If it is greater than 4

√
p, then

the curve is supersingular (Proposition 46) and the key is valid (Proposition 45).
Otherwise the process is repeated until a suitable point is found. In the case a
repeated failure, the curve is ordinary.

However this technique for supersingularity proving does not extend to the
case d greater than 1, because the curves are defined over Fp2 . Indeed in this
case an adaptation of the proof from Proposition 46 would require to check if
E/Fp2 has a point of order at least 4p to be able to use the result on the Hasse
interval. But our valid curves have E(Fp2) ∼= (Z/(p + �)Z)2, and therefore no

118

points with order greater than 4p. Hence the same methodology cannot be
applied.

Instead we proceed in two steps: we first check that the HD CSIDH public
key (E,ψ) is a (d, �)-structure, then we prove the supersingularity of E using
an adapted and faster version of Sutherland’s supersingularity test tailored for
HD CSIDH specific context [Sut12]. We now describe these two steps in detail.

6.5.2 Checking (d, �)-structures

To check that (E,ψ) is a (d, �)-structure, we first verify that ψ is indeed an

isogeny from E to E(p) and then that �ψ = �ψ(p). If this is the case then the
key is valid, otherwise it is to be rejected. This can be checked with two d-
isogeny computations, one for the conjugate and one for the dual. Using Vélu’s
formulæ, it costs O(log d) curve operations when d is small, and O(log

√
d) curve

operations for larger d (see [BDLS20]).

In the case of Montgomery curves, there exist explicit formulae to compute
the dual of a degree d-isogeny for small d in [NR19]; those formulae could
be generalized to other curve forms. When a key is encoded using Hasegawa
parameters as in Section 6.4, there is no need to check if it is a (d, �)-structure,
because every such parameter specifies a curve and an isogeny from a family of
(d, �)-structures. It only remains to verify the supersingularity of the curve.

6.5.3 Checking supersingularity: Sutherland’s algorithm

In order to verifying supersingularity for d > 1, we specialize the determinis-
tic supersingularity test of Sutherland [Sut12], which we recall below in Algo-
rithm 14. It relies on the following result.

Proposition 47. Let πp2 be the Frobenius endomorphism of E/Fp2 . If E is
ordinary, then the maximal height of the 2-isogeny volcano containing E is
log(p) + 1.

Proof. Let πE be the Frobenius endomorphism of E/Fp2 . The discriminant of
Z[πE] is bounded by 4p2, so the conductor of Z[πE] in the maximal order Ok is
bounded by 2p; hence, if E is ordinary, then the maximal height of the 2-isogeny
volcano containing E is log(p) + 1.

Since the height of an ordinary volcano is bounded, Sutherland’s supersin-
gularity test takes random non-backtracking 2-isogeny walks starting from each
of the three 2-isogeny neighbours of E. If E is ordinary, then at least one of
these walks will descend the 2-isogeny volcano, and will therefore terminate
(with no non-backtracking step defined over Fp2) after at most log(p)+ 1 steps.
Conversely, if no walk terminates after log(p) + 1 steps, then E must be super-
singular.

119

Algorithm 14: IsSupersingular

Input: (E,ψ)
Output: True if E is supersingular, False otherwise

1 Compute the set T of 2-neighbours.
2 if #T �= 3 then
3 return False

4 for E in T do
5 Take a 2-isogeny step to the neighbour E� of E.
6 i ← 1
7 while i < log(p) do
8 Compute the set T � of 2-neighbours of E�.
9 if T � = {E�} then

10 return False

11 E� ← random element in T � \ E�

12 i ← i+ 1

13 return True

6.5.4 Adaptation of Sutherland algorithm

The supersingularity testing algorithm can be optimized for (d, �)-structures
(E,ψ) by taking advantage of the information contained in ψ.

Walk length First, the walk length limit can be reduced once we know that
the public key (E,ψ) is a (d, �)-structure, using the following proposition.

Proposition 48. Let (E,ψ) be a (d, �)-structure. If E is ordinary, then the
length of the path from the curve to the bottom of the 2-isogeny volcano is not
longer than log(2

�
p/d) + 1.

Proof. Let µ be the endomorphism obtained from ψ as in Section 5.1. We know
that the endomorphism ring of the curve considered contains Z[µ]. Besides
Z[πE] ⊂ Z[µ], and the conductor of Z[πE] in Z[µ] is the integer |r| of Propo-
sition 26, which is bounded by 2

�
p/d. From Subsection 2.7.1 and the bound

on the conductor of Z[πE] in Z[µ], the length of the path from the curve to the
bottom of the volcano is not longer than log(2

�
p/d) + 1. We can therefore

reduce the walk length limit from log(p) + 1 to 1
2 (log(p)− log(d)) + 1.

Direction We can also avoid trying every direction in the first step of Suther-
land algorithm, but instead choose a descending path directly from the start.

• If −dp �≡ 1 (mod 4), then we know that the maximal order of Q(
√−dp) is

Z[
√−dp], hence the graph Γ(D2,�(p)) has only one level, and only horizon-

tal isogenies. Hence we can choose a descending path in the full 2-isogeny
graph by choosing the only neighbour that is not a (d, �)-structure.

120

Figure 6.2: Illustration for the adaptation of Sutherland supersingularity check-
ing algorithm. The graph above represents part of the 2-isogeny graph. The
nodes in black are the curves having a 2-isogeny to their conjugate. The black
edges are 2-isogenies which are also isogenies of (2, �)-structures. Dotted edges
are regular 2-isogenies. The curve to be validated in highlighted in orange. The
blue arrows represent the supersingularity checking steps. We first choose a
descending direction using the structure of the graph of (d, �)-structures , then
compute a sufficiently long path in the regular 2-isogeny graph.

• If−dp �≡ 1 (mod 4) however, the maximal order ofQ(
√−dp) is Z[1+

√−dp
2],

and the graph Γ(D2,�(p)) has two levels. Let (E,ψ) be the (d, �)-structure
considered, and µ its associated endomorphism.

– If (E,ψ) belongs to the upper level, i.e. if µ fixes the 2-torsion point
wise, then it has two horizontal neighbours and one descending neigh-
bour in Γ(D2,�(p)). Hence we choose the only neighbour (E�,ψ�)
whose associated endomorphism does not fix the 2-torsion (ensuring
that it is on the lower level of the graph).

– If (E,ψ) belongs to the lower level, i.e. if µ does not fix the 2-torsion
point wise, then it has one ascending neighbour in Γ(D2,�(p)), and
two descending neighbours in the full 2-isogeny graph. Hence we
choose any of the two neighbours not on the upper level, i.e. with
associated endomorphism not fixing the 2-torsion.

Using the induced orientation in Γ(D2,�(p)) hence allows to choose the right
path from the beginning within at most two steps in the graph, and omit the
other two paths. Note that in Sutherland algorithm this is not possible without
computing an orientation first.

121

6.5.5 Determining the level

If required, and only if −dp ≡ 1 (mod 4), we can determine whether (E,ψ) is
in Dmax

d,� (p) or Dsub
d,� (p) (defined in Definition 37). This is done by computing

the action of µ on the 2-torsion (at the cost of one or two d-isogeny evaluations)
or by computing the 2-neighbours of (E,ψ) in Γ2(Dd,�(p)). Note that we have
E(Fp2) ∼= (Z/(p+ �)Z)2 from Proposition 28. Since 2 divides (p+ �) we obtain
that E(Fp2)[2] = Z/2Z × Z/2Z hence E[2] = E[2](Fp2), meaning that the full
two-torsion is rational over Fp2 . The procedure is described in Algorithm 15.

Algorithm 15: Dmax
d,� (p) or Dsub

d,� (p)

Input: (E,ψ) ∈ Dd,�(p)
Output: “max” if (E,ψ) ∈ Dmax

d,� (p), “sub” if (E,ψ) ∈ Dsub
d,� (p)

1 µ ← πp ◦ ψ
2 Compute the two-torsion E[2](Fp2).
3 for P ∈ E[2] do
4 if µ(P) �= P then
5 return sub

6 return max

6.5.6 Validation algorithm for HD CSIDH

We now describe the full validation process for HD CSIDH public keys. To
verify that a pair (E,ψ) is a valid public key, we have to check that (E,ψ) is
a (d, �)-structure, then verify that E is a supersingular elliptic curve. If needed
we also determine if (E,ψ) is in Dmax

d,� (p) or Dsub
d,� (p). To check that (E,ψ) is a

(d, �)-structure we use the results of Section 6.5.2. This step costs two d-isogeny
computations. To verify that E is a supersingular elliptic curve, we use the
results of Section 6.5.3 and the adaptation of Sutherland’s algorithm. This step
costs (12 (log(p)− log(d))+ 5) 2-isogeny computations. We obtain the validation

122

algorithm described in Algorithm 16.

Algorithm 16: HD CSIDH public key validation

Input: (E,ψ)
Output: True or False

1 Check that (E,ψ) is a (d, �)-structure as in Section 6.5.2
2 Compute the set T of 2-neighbours of E.
3 Pick a descending neighbour E� as in paragraph Direction of

Section 6.5.4.
4 i ← 1

5 while i < (12 (log(p)− log(d))) do
6 Compute the set T � of 2-neighbours of E�.
7 if there exist E�� in T � such that E�� �= E� then
8 E ← E�

9 E� ← E��

10 i ← i+ 1

11 else
12 return False

13 return True

Total cost The total cost of the procedure is the cost of computing two d-
isogenies and (12 (log(p) − log(d)) + 5) 2-isogenies. Considering that d is in
O(log p), and that the cost of computing the 2-isogeny is asymptotically the
cost of finding the roots of a quadratic (or cubic for the first step) polynomial
which costs O(log(p)) operations in Fp, we obtain a total asymptotic complexity
of O(log(p)2) operations in Fp.

6.5.7 CSIDH and HD CSIDH validation comparison

We give a comparison between CSIDH and HD CSIDH validation process in
Table 6.1. It details the parameters on which the complexity depends, the
complexity itself, and the main steps of the validation.

123

Scheme Process Complexity

CSIDH Supersingularity O(log(p) log(n)log(log n)) F

checking in Fp

HD CSIDH Element of Dd,�(p)
1 O(log d) F 1

(or O(log
√
d) F)

Supersingularity O(log(p)2) F
checking using
special structure

HD CSIDH Supersingularity O(log(p)2) F
with Hasegawa checking using

special structure
1 Not needed when using Hasegawa parameters.

Table 6.1: Comparison for validations, where F stands for the cost of a multi-
plication in Fp2 .

124

Part IV

Cryptanalysis

125

Chapter 7

Cryptanalysis for SIDH

Abstract To address the general supersingular isogeny problem of finding a
path in the graph of supersingular elliptic curves defined over Fp2 , Delfs and
Galbraith use in [DG16] the action of the ideal class group on the subset of su-
persingular curves defined over Fp. Since we proved in Section 5.2 the existence
of free and transitive actions on other subsets of supersingular elliptic curves,
we study how the Delfs–Galbraith algorithm can be generalized. We provide a
generalized algorithm using several subsets at once. We study its complexity,
the set of relevant parameters to be chosen, and measure the improvement of-
fered by this enlarged approach. Finally, we focus on the parameters in SIDH
and SIKE. We highlight a set of weak public keys, and propose a combination
of the Van Oorschot and Wiener attack with the generalized Delfs–Galbraith
algorithm.

The results of this section have been published in [CS21].

7.1 The Delfs–Galbraith algorithm

7.1.1 The general supersingular isogeny problem

Definition 39 (The general supersingular isogeny problem). Given two su-
persingular elliptic curves E1 and E2 defined over Fp2 , compute an isogeny
φ : E1 �→ E2.

This problem is believed to be hard in the sense that the best classical (resp.
quantum) algorithms to solve it have exponential (resp. subexponential) com-
plexities in the size of the underlying finite field. In [DG16], Delfs and Galbraith
proposed an algorithm to solve the general supersingular isogeny problem. It
takes advantage of the free and transitive action of the ideal class group Cl(

√−p)
on the subset of supersingular curves defined over Fp.

Let Sp2 be the set of supersingular curves over Fp2 , up to isomorphism, and
Sp the subset of curves defined over Fp2 . Let E1 and E2 be two curves in Sp2 .

127

In order to find an isogeny between E1 and E2, the Delfs–Galbraith algorithm
has two phases:

The first phase computes a random non-backtracking isogeny walk from E1

(resp. E2) until landing on a curve E�
1 (resp. E�

2) in Sp. These walks yield
isogenies φ1 : E1 → E�

1 and φ2 : E2 → E�
2. The isogeny graph on Sp2 has

excellent mixing properties, and since #Sp2 ≈ p/12 and #Sp = O(
√
p), this

first phase takes an expected O(
√
p) random isogeny steps.

The second phase finds an isogeny φ� : E�
1 → E�

2 using the action of Cl(Q(
√−p))

on Sp. It starts by selecting a set of primes L such that the L-isogeny graph
is connected, ensuring that a path between E�

1 and E�
2 exists. Under the Gen-

eralized Riemann Hypothesis, Cl(Q(
√−p)) is generated by the set L of ide-

als of prime norm up to 6 log (|Δ|)2, where Δ is the discriminant of Q(
√−p)

(see [Bac84]) though in practice we do not need so many primes [DG16]. The
L-isogeny graph on Sp is therefore connected, and we can use random walks in
this subgraph to construct φ� : E�

1 → E�
2. By the birthday paradox, this phase

takes an expected O(4
√
p) random steps before finding the collision yielding φ�.

In total, O(
√
p) isogeny steps (via roots of modular polynomials, not actual

isogeny evaluations) are needed to find the isogeny φ = φ1 ◦ φ� ◦�φ2 from E1

to E2. These two steps are detailed in Algorithms 17 and 18. The concrete
computation uses roots of modular polynomials in Fp and Fp2 .

128

Algorithm 17: Delfs–Galbraith path finding algorithm: Step 1

Input: A supersingular elliptic curve E defined over Fp2 , and a bound
B = 6 log (|Δ|)2, where Δ is the discriminant of Q(

√−p).
Output: A supersingular elliptic curve E� defined over Fp and path S

from E to E�.
1 j ← j(E)
2 S ← []
3 found ← false

4 �
R←− prime < B

5 Φ� ← ModularPolynomial(�)

6 j�
R←− Roots(Φ(j,X),Fp2)

7 Append(S, j�)
8 if j� ∈ Fp then
9 found ← true

10 while not found do

11 �
R←− prime < B

12 Φ� ← ModularPolynomial(�)

13 j��
R←− Roots(Φ�(j

�, X),Fp2) with j�� �= j // non-backtracking

14 Append(S, j�)
15 if j� ∈ Fp then
16 found ← true

17 j ← j�

18 j� ← j��

19 return (j, S)

129

Algorithm 18: Delfs–Galbraith path finding algorithm: Step 2

Input: Two supersingular elliptic curves E�
1 and E�

2 defined over Fp,
and a bound B = 6 log (|Δ|)2, where Δ is the discriminant of
Q(

√−p).
Output: A path S in the L-isogeny graph of elliptic curves defined

over Fp from E�
1 to E�

2.
1 L ← {primes � < B | (−p

�) = 1}
2 S ← []
3 Take vertical 2-isogenies (if required) so that E�

1 and E�
2 are on the

surface, i.e. endomorphism ring over Fp is the maximal order in
Q(

√−p)).
4 disjoint ← true
5 for i ∈ {1, 2} do
6 ji ← j(E�

i)
7 Si ← [ji]

8 �
R←− L

9 Φ� ← ModularPolynomial(�)

10 j�i
R←− Roots(Φ�((ji, X),Fp))

11 Append(Si, j
�
i)

12 if j�1 ∈ S2 then
13 disjoint ← false
14 k ← Index(S2, j1)
15 S ← Cat(S1, Reverse(S2[1, ..., k]))

// S is the concatenation of S1 with S2 from first to

kth element, taken in reverse order.

16 while disjoint do
17 for i ∈ {1, 2} do

18 �
R←− L

19 Φ� ← ModularPolynomial(�)

20 j��i
R←− Roots(Φ�(ji, X),Fp) with j��i �= ji // non-backtracking

21 Append(Si, j
��
i)

22 ji ← j�i
23 j�i ← j��i
24 if j�1 ∈ S2 then
25 disjoint ← false
26 k ← Index(S2, j

�
1)

27 S ← Cat(S1, Reverse(S2[1, ..., k]))
// S is the concatenation of S1 with S2 from first to

kth element, taken in reverse order.

28 return S

130

7.2 Generalization

The Delfs–Galbraith algorithm exploits the action of Cl(Q(
√−p)) on Sp. Note

that this is a special case of the group action we described in Section 5.2, namely
the action of Cl(Q(

√−p)) on D1,1(p).

We proved in Section 5.2 that for any squarefree d there is a free and transi-
tive action of Cl(

√−dp) on Dd,�(p). We can hence extend the subset of related
curves used in the second step of Delfs–Galbraith algorithm [DG16]. Making
the distinguished set larger allows us to reduce the number of random steps to
be taken before reaching it.

We generalize the Delfs–Galbraith algorithm by replacing the distinguished
subgraph Γ(D1,�(p)) with a union of subgraphs �d∈DΓ(Dd,�(p)) where D is a
set of coprime squarefree integers prime to p. We further require that the
set D is such that for all pairs (d, d�) ∈ D2, dd� is squarefree, there exists a
(d, d�)-crossroad (see Section 5.4). We study the new complexity of the attack
and show that it reduces the number of operations needed to solve the general
supersingular isogeny problem. Throughout this chapter we write Dd,�(p) for
the underlying set of curves of Dd,�(p), i.e. forgetting the data of the d-isogeny
to the conjugate.

7.2.1 Generalized Delfs–Galbraith algorithm

Let E1 and E2 be two supersingular elliptic curves defined over Fp2 . Let D be
defined as above. In order to find an isogeny between E1 and E2, the algorithm
has two phases.

The first phase computes a random non-backtracking isogeny walk from
E1 (resp. E2) until we land on a curve E�

1 (resp. E�
2) in �d∈DDd,�(p). The

membership testing can be done using (the product of) modular polynomials
Φd for d ∈ D. These walks yield isogenies φ1 : E1 → E�

1 and φ2 : E2 → E�
2.

Since #Sp2 ≈ p/12 and # �d∈D Dd,�(p) = O((
�

d∈D

√
d)
√
p), this first phase

takes an expected O(
√
p/(
�

d∈D

√
d)) random isogeny steps.

Let d1 and d2 in D such that E�
1 ∈ Dd1,�(p) and E�

2 ∈ Dd2,�(p). The second
phase starts by computing a (d1, d2)-crossroad Ec. Note that this could be
precomputed. It then finds an isogeny E�

1 → Ec in Dd1,�(p) and an isogeny

E�
2 → Ec in Dd2,�(p) using the action of Cl(Q(

√−d1p)) (resp. Cl(Q(
√−d2p)))

acting on Dd1,�(p) (resp. Dd2,�(p)). By the birthday paradox, this phase takes
an expected O(4

√
d1p) (resp. O(4

√
d2p)) random steps before finding the collision

yielding the path.

These two steps are detailed in Algorithms 19 and 20. In total, O(
√
p/(
�

d∈D

√
d))

isogeny steps are needed to find an isogeny φ from E1 to E2, reducing the asymp-
totic complexity by a factor (

�
d∈D

√
d). Compared with the original algorithm,

less steps are needed to reach the subset of curves considered in Phase 1, but
the isogeny steps are more expensive than before because of the need to test
d-isogeny existence. In Phase 2, more steps are required because the subset is
larger, with the cost of one step growing with d as well. This means that the

131

elements of D must be quite small for this approach to be effective: polynomial
in O(log p) or in O(B), for example. In practice, we would probably work with
smaller d.

Computing modular polynomials Note that the modular polynomials Φ�

(mod p) can be precomputed and stored. If the storage capacity is not sufficient,
Φ�(j,X) ∈ Fq[X]) can also be computed modulo p on the fly using [Sut13].

Algorithm 19: Generalized Delfs–Galbraith algorithm: Step 1

Input: Supersingular elliptic curve E over Fp2 , a bound
B = 6 log (|Δ|)2, where Δ is the discriminant of
Q(
�
−max{d ∈ D}p).

Output: A supersingular elliptic curves E� in Dd,�(p) and path S from
E to E�.

1 L ← {primes � < B | (−p
�) = 1}

2 S ← [j(E)]
3 j ← j(E)
// First step

4 �
R←− L

5 Φ� ← ModularPolynomial(�)

6 j�
R←− Roots(Φ�(j,X),Fp2)

7 Append(S, j�)

8 if j� ∈ �d∈DDd,�(p) then
9 found ← true

// Other steps

10 while not found do

11 �
R←− L

12 Φ� ← ModularPolynomial(�)

13 j��
R←− Roots(Φ�(j

�, X),Fp2) with j�� �= j
14 Append(S, j��)

15 if j�� ∈ �d∈DDd,�(p) then
16 found ← true

17 j ← j�

18 j� ← j��

19 return (j, S)

7.2.2 Choosing the set D

The generalized Delfs–Galbraith algorithm is not worthwhile for large d or
large D. A balance needs to be found between the benefit of shorter walks
and the higher cost of testing the membership in Dd,�(p) in Phase 1 on the one
side, and the cost of longer walks in Γ(Dd,�(p)) in Phase 2 on the other side.

Asymptotically, #Dd,�(p) is in O((
�

d∈D

√
d)
√
p), so the expected number

132

of steps in phase 1 is reduced by a factor of O(
�

d∈D

√
d). However, the indi-

vidual steps become more expensive: if we use modular polynomials to check
membership of each Dd,�(p), then the number of Fp2 -operations per step grows
linearly with

�
d∈D d, overwhelming the benefit of the shorter walks. Asymptot-

ically, therefore, there is no benefit in taking large d or large D in phase 1. (For
more analysis of random walks into Dd,�(p), in different contexts, see [EHL+20]
and [CLG09].)

The generalized Delfs–Galbraith algorithm can become interesting forD con-
sisting of a few small d, precisely because the asymptotic κ(d, p) := #Dd,�(p)/#D1,�(p) ≈√
d no longer holds. For d < 10, we can have κ(d, p) substantially greater

than
√
d (and also substantially less than 1). Let us illustrate this idea with an

example:

Example 13. Let p be the toy SIDH-type prime 252 · 333 − 1. Then κ(5, p) ≈
4.916. If we can test for an isomorphism or a 5-isogeny to the conjugate faster
than we can compute six 2-isogenies, then we can take D = {1, 5} and walk
into D1,�(p) � D5,�(p) faster than walking into D1,�(p) alone. This speedup is

counterbalanced by a slowdown in Phase 2, because walking in Γ(D5,�(p)) costs
more, and because the walks need to be a square-root of κ(5, p) longer, though
we can work modulo conjugation to mitigate this cost.

7.2.3 Comparisons

Complexity comparisons between the original walk and its generalization with a
set D of coprime squarefree integers d prime to p are summarized in Table 7.1.

7.3 Application to SIDH/SIKE cryptanalysis

7.3.1 Specific case: weak public keys in SIKEp434

As we noted in Section 5.3, the probability of a random walk in the supersingular
�-isogeny graph hitting a vertex in Dd,�(p) is very low. It is even lower when we
consider SIDH/SIKE graphs, which cover only a very small proportion of the
full isogeny graph, resembling trees of walks of short, fixed length.

Nevertheless, when we look at specific SIKE graphs, we see that they contain
sections of Γ2(Dd,�(p)) and Γ3(Dd,�(p)) for various d. For example, let us con-
sider the starting curve in SIKEp434, defined in [JAC+17] as y2 = x3 + 6x2 + x
over Fp2 for the prime

p = 2216 · 3137 − 1

from the specification SIKEp434. This curve has a d-isogeny to its conjugate
for d ∈ D = {5, 13, 17, 29, 37, 41} (and possibly also for much higher, but less
practical values of d). If we consider the 2-isogeny graph, then we find that
Γ2(Dd,�(p)) passes through the starting curve and continues down through the
tree towards a public key for d = 17 and 41. Hence, if we can find a 2-isogeny
path from a SIKEp434 public key to a vertex in the image of D17,�(p) or D41,�(p),

133

then we have an express route to the starting curve. Such an attack succeeds in
a reasonable time with only a very small probability, but it is still devastatingly
effective for a tiny proportion of SIKEp434 keys.

E0

{5, 13, 17, 29, 37, 41}

E11

{17, 41}

E12

{2, 5, 13, 17, 29, 37, 41}

E13

{17, 41}

E21

{17, 41}
E22

{17, 41}
E23

{ }
E24

{ }

E31

{17, 41}
E32

{17, 41}
E33

{17, 41}
E34

{17, 41}
E35

{ }
E36

{ }
E37

{ }
E38

{ }

E41

{17, 41}
E42

{17, 41}
E43

{17}
E44

{17}
E45

{17}
E46

{17}
E47

{41}
E48

{41}
E49

{ }
E50

{ }
E51

{ }
E52

{ }
E53

{ }
E54

{ }
E55

{ }
E56

{ }

Figure 7.1: The beginning of the SIDHp434 2-isogeny “tree”, E0 being the
starting curve. Below the curves are indicated the d < 42 for which there exists
a d-isogeny to the conjugate. The 17-spine, and 41-spine are highlighted in
blue and orange. The curve E12 is the curve y2 = x3 + x which has additional
automorphisms, and two endomorphisms of degree 2.

7.3.2 General case: SIDH, shortcut

We now consider the more general settings of SIDH. Suppose we are searching
for a path from E1 to E2 in a SIDH graph. Unless log d is about the size of log p,
randomly scanning for near neighbours in Dd,�(p) will not be efficient. However,
it can be combined with attacks against SIDH to produce occasional shortcuts
in the pathfinding algorithms. The analysis of [ACC+18] suggests that the best
classical attack on this problem is the van Oorschot–Wiener golden collision-
finding algorithm, which computes a series of curves from E1 and E2 until a
“golden” (essentially unique) collision is found. Scanning for curves in Dd,�(p)
while searching for a golden collision allows us to use a possible shortcut: given
partial paths E1 → E�

1 and E2 → E�
2 with E�

1 and E�
2 both in Dd,�(p) for some

d, we can close the path between E�
1 and E�

2 in O(4
√
dp) steps using the ideal

134

class group action.

135

Algorithm 20: Generalized Delfs–Galbraith algorithm: Step 2

Input: Supersingular elliptic curves E�, Ec ∈ Dd,�(p), a bound
B = 6 log (|Δ|)2, where Δ is the discriminant of
Q(
�
−max{d ∈ D}p).

Output: A path S in Dd,�(p) from E� to Ec.
1 Ec ← CurveFromjInvariant (FindCrossroad (d1, d2, p))

L ← {primes � < B | (−p
�) = 1} // Precomputed

2 S ← []
3 Take vertical 2-isogenies (if required) so that E� and Ec are on the

surface, i.e. their endomorphism ring over Fp is the maximal order in
Q(

√−dp)).
4 j1 ← j(E�)
5 j2 ← j(Ec)
6 S1 ← [j1]
7 S2 ← [jc]
8 for i ∈ {1, 2} do

9 �
R←− L

10 Φ� ← ModularPolynomial(�)

11 j�i
R←− Roots((ji, X),Fp2)

12 Append(Si, j
�
i)

13 if j�1 ∈ S2 then
14 disjoint ← true

15 while disjoint do
16 for i ∈ {1, 2} do

17 �
R←− prime

18 Φ� ← ModularPolynomial(�)

19 j��i
R←− Roots(Φ�(j

�
i, X),Fp) with j��i �= ji // non-backtracking

20 Append(Si, j
��
i)

21 ji ← j�i
22 j�i ← j��i
23 if j�1 ∈ S2 then
24 disjoint ← false
25 k ← Index(S2, j

�
1)

26 S ← Cat(S1, Reverse(S2[1, ..., k]))
// S is the concatenation of S1 with S2 from first to

kth element, taken in reverse order.

27 return S

136

Generalized with a set D
[DG16] σ = (

�
d∈D d)

(Algorithms 19 and 20)

Distinguished subset graph D1,�(p) ∪DDd,�(p)
Size of the subgraph O(

√
p) O(

√
σp)

Length of walk to the subset O(p1/2) O((pσ)
1/2)

Length of walk in the subset O(p1/4) O((σp)1/4)

Total cost O(p1/2) O(pσ)
1/2)

Table 7.1: Complexity comparison in term of isogeny steps between the original
and the generalized Delfs–Galbraith path finding algorithms. The d in the set D
should be chosen to be small, making the cost of testing membership in Dd,�(p)
asymptotically negligible.

137

138

Summary and perspectives

Several contributions have been presented in this thesis:

1. By presenting efficient dummy-free and derandomized implementations of
CSIDH, we contributed to mitigating the relative slowness of CSIDH, as
well as filling a gap between theory and practical implementations.

2. By highlighting and studying new subsets of supersingular elliptic curves
having a free and transitive group action, we have contributed to a better
understanding of the isogeny theoretical landscape. The generalization of
CSIDH in Chapters 5 and 6 offers new alternatives and adaptability to
isogeny-based key-exchange protocols, building a wider range of construc-
tive options.

3. By proposing public key validation and compression in HD CSIDH, we re-
enforced the compactness and reusability of keys, two strengths of isogeny-
based protocols.

4. By studying the cryptanalysis consequences on SIDH of the new free and
transitive group actions, we have shown that they do not offer a significant
asymptotic advantage to an attacker. In the specific case of SIKE434, the
fact that only a very small subset of curves are vulnerable increases under-
standing of the security and confidence in the robustness of the protocol.

In the light of these contributions, we also identify several future directions to
be studied. First, the parameters of the generalized Delfs–Galbraith algorithm
can be fine-tuned to the specific parameters of SIDH and SIKE, in particular to
find the optimal balance between the number and size of underlying parameter d.
Then, more parametrized families for HD CSIDH in optimised curve form can
be exhibited. Finally, isogeny computation algorithms in the specific case of HD
CSIDH can be optimized to improve performances. The possibility to determine
formulae using the Hasegawa parameters cn also be considered.

139

140

Bibliography

[ABC+19] Diego F. Aranha, Pedro Y.S. Barbosa, Thiago N.C. Cardoso,
Caio Lüders Araújo, and Paulo Matias. The return of software
vulnerabilities in the Brazilian voting machine. Computers &
Security, 86:335–349, 2019.

[ACC+18] Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-
Domı́nguez, Alfred Menezes, and Francisco Rodŕıguez-
Henŕıquez. On the cost of computing isogenies between super-
singular elliptic curves. In Carlos Cid and Michael J. Jacobson
Jr., editors, Selected Areas in Cryptography SAC, volume 11349
of Lecture Notes in Computer Science, pages 322–343. Springer,
2018.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen:
Breaking the TLS and DTLS record protocols. In Symposium
on Security and Privacy, (SP) 2013, pages 526–540. IEEE Com-
puter Society, 2013.

[Bac84] Eric Bach. Analytic methods in the analysis and design of
number-theoretic algorithms. Association for Computing Ma-
chinery (ACM) Distinguished Dissertation. MIT Press, 1984.

[BB03] David Brumley and Dan Boneh. Remote timing attacks are
practical. In Proceedings of the 12th USENIX Security Sympo-
sium. USENIX Association, 2003.

[BBC+21] Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung
Chou, Tanja Lange, Michael Meyer, Benjamin Smith, and Jana
Sotáková. CTIDH: faster constant-time CSIDH. Transactions
on Cryptographic Hardware and Embedded Systems (CHES),
2021(4):351–387, 2021.

[BCC+13] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping
Chou, Nadia Heninger, Tanja Lange, and Nicko van Someren.
Factoring RSA keys from certified smart cards: Coppersmith

141

in the wild. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, volume 8270 of Lecture Notes in Computer Sci-
ence, pages 341–360. Springer, 2013.

[BDLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Ben-
jamin Smith. Faster computation of isogenies of large prime de-
gree. In Steven D. Galbraith, editor, Algorithmic Number The-
ory Symposium (ANTS), volume 4 of Open book series, pages
39–55. Mathematical Sciences Publishers, 2020.

[BHKL13] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja
Lange. Elligator: elliptic-curve points indistinguishable from
uniform random strings. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, Conference on Computer and
Communications Security, CCS 2013, pages 967–980. Associa-
tion for Computing Machinery ACM, 2013.

[BJL+14] Aurélie Bauer, Eliane Jaulmes, Victor Lomné, Emmanuel
Prouff, and Thomas Roche. Side-channel attack against RSA
key generation algorithms. In Lejla Batina and Matthew Rob-
shaw, editors, Cryptographic Hardware and Embedded Systems
(CHES) 2014. Springer, 2014.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren.
CSI-FiSh: Efficient isogeny based signatures through class group
computations. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer
Science, pages 227–247. Springer, 2019.

[BLMP19] Daniel J. Bernstein, Tanja Lange, Chloe Martindale, and Lorenz
Panny. Quantum circuits for the CSIDH: optimizing quantum
evaluation of isogenies. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, volume 11477 of Lecture Notes in
Computer Science, pages 409–441. Springer, 2019.

[BLS11] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. On the
correct use of the negation map in the Pollard rho method.
In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Anto-
nio Nicolosi, editors, Public Key Cryptography (PKC) 2011, vol-
ume 6571 of Lecture Notes in Computer Science, pages 128–146.
Springer, 2011.

[BS20] Xavier Bonnetain and André Schrottenloher. Quantum security
analysis of CSIDH. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, volume 12106 of Lecture Notes in Com-
puter Science, pages 493–522. Springer, 2020.

[BV07] Johannes Buchmann and Ulrich Vollmer. Binary Quadratic
Forms: An Algorithmic Approach. Springer, 2007.

142

[CCC+19] Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-
Domı́nguez, Luca De Feo, Francisco Rodŕıguez-Henŕıquez, and
Benjamin Smith. Stronger and faster side-channel protections
for CSIDH. In Peter Schwabe and Nicolas Thériault, editors,
LATINCRYPT 2019, volume 11774 of Lecture Notes in Com-
puter Science, pages 173–193. Springer, 2019.

[CD20] Wouter Castryck and Thomas Decru. CSIDH on the surface.
In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography (PQCrypto) 2020, volume 12100 of Lecture Notes
in Computer Science, pages 111–129. Springer, 2020.

[CH17] Craig Costello and Hüseyin Hisil. A simple and compact al-
gorithm for SIDH with arbitrary degree isogenies. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, volume
10625 of Lecture Notes in Computer Science, pages 303–329.
Springer, 2017.

[Che10] Amy Cheung. Consructing explicit isogenies using the modular
curve X0(�). Master’s thesis, University of Calgary, 2010.

[CJS14] Andrew Childs, David Jao, and Vladimir Soukharev. Construct-
ing elliptic curve isogenies in quantum subexponential time.
Journal of Mathematical Cryptology, 8(1):1–29, 2014.

[CK20] Leonardo Coló and David Kohel. Orienting supersingular
isogeny graphs. Journal of Mathematical Cryptology, 14(1):414–
437, 2020.

[CKM+20] Fabio Campos, Matthias J. Kannwischer, Michael Meyer, Hi-
roshi Onuki, and Marc Stöttinger. Trouble at the CSIDH:
Protecting CSIDH with dummy-operations against fault injec-
tion attacks. In Fault Detection and Tolerance in Cryptography
(FDTC) 2020, pages 57–65. IEEE, 2020.

[CLG09] Denis X. Charles, Kristin E. Lauter, and Eyal Z. Goren. Crypto-
graphic hash functions from expander graphs. Journal of Cryp-
tology, 22(1):93–113, 2009.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz
Panny, and Joost Renes. CSIDH: an efficient post-quantum com-
mutative group action. In ASIACRYPT 2018, volume 11274 of
Lecture Notes in Computer Science, pages 395–427. Springer,
2018.

[CLN16] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient
algorithms for supersingular isogeny Diffie-Hellman. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, volume
9814 of Lecture Notes in Computer Science, pages 572–601.
Springer, 2016.

143

[Cos20] Craig Costello. B-SIDH: supersingular isogeny Diffie-Hellman
using twisted torsion. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT 2020, volume 12492 of Lecture Notes in
Computer Science, pages 440–463. Springer, 2020.

[Cou06] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology
ePrint Archive, Report 2006/291, 2006. http://eprint.iacr.
org/2006/291.

[Cox13] David A. Cox. Primes of the Form x2 + ny2: Fermat, Class
Field Theory, and Complex Multiplication. Pure and Applied
Mathematics: A Wiley Series of Texts, Monographs and Tracts.
John Wiley and Sons, 2nd edition, 2013.

[CS18] Craig Costello and Benjamin Smith. Montgomery curves and
their arithmetic - the case of large characteristic fields. Journal
of Cryptographic Engineering, 8(3):227–240, 2018.

[CS21] Mathilde Chenu and Benjamin Smith. Higher degree supersin-
gular group actions. Journal of Mathematical Cryptology, 2021.

[CSCDJRH20] Jorge Chávez-Saab, Jesús-Javier Chi-Domı́nguez, Samuel
Jaques, and Francisco Rodŕıguez-Henŕıquez. The SQALE of
CSIDH: square-root Vélu quantum-resistant isogeny action with
low exponents. Journal of Cryptographic Engineering, 2020.

[DG16] Christina Delfs and Steven D. Galbraith. Computing isogenies
between supersingular elliptic curves over Fp. Designs, Codes
and Cryptography, 78(2):425–440, 2016.

[DG18] Luca De Feo and Steven D. Galbraith. SeaSign: Compact
isogeny signatures from class group actions. EUROCRYPT
2019, 11478:759–789, 2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in
cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[DJP14] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-
resistant cryptosystems from supersingular elliptic curve isoge-
nies. Journal of Mathematical Cryptology, 8(3):209–247, 2014.

[DKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit,
and Benjamin Wesolowski. SQISign: Compact post-quantum
signatures from quaternions and isogenies. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, volume 12491 of
Lecture Notes in Computer Science, pages 64–93. Springer, 2020.

144

[DKS18] Luca De Feo, Jean Kieffer, and Benjamin Smith. Towards prac-
tical key exchange from ordinary isogeny graphs. In Thomas
Peyrin and Steven D. Galbraith, editors, ASIACRYPT 2018,
volume 11274 of Lecture Notes in Computer Science, pages 365–
394. Springer, 2018.

[DM20] Luca De Feo and Michael Meyer. Threshold schemes from
isogeny assumptions. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptog-
raphy (PKC) 2020, volume 12111 of Lecture Notes in Computer
Science, pages 187–212. Springer, 2020.

[DMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio
Sanso. Verifiable delay functions from supersingular isogenies
and pairings. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer
Science, pages 248–277. Springer, 2019.

[DPV19] Thomas Decru, Lorenz Panny, and Frederik Vercauteren. Faster
seasign signatures through improved rejection sampling. In Jin-
tai Ding and Rainer Steinwandt, editors, Post-Quantum Cryp-
tography (PQCrypto) 2019, volume 11505 of Lecture Notes in
Computer Science, pages 271–285. Springer, 2019.

[dQKL+21] Victoria de Quehen, Péter Kutas, Chris Leonardi, Chloe Martin-
dale, Lorenz Panny, Christophe Petit, and Katherine E. Stange.
Improved torsion-point attacks on SIDH variants. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, volume 12827 of Lec-
ture Notes in Computer Science, pages 432–470. Springer, 2021.

[EHL+20] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Mor-
rison, and Jennifer Park. Computing endomorphism rings of su-
persingular elliptic curves and connections to path-finding in
isogeny graphs. In Steven D. Galbraith, editor, Algorithmic
Number Theory Symposium, volume 4 of Open book series, pages
215–232. Mathematical Sciences Publishers, 2020.

[FLOR18] Armando Faz-Hernández, Julio César López-Hernández, Ed-
uardo Ochoa-Jiménez, and Francisco Rodŕıguez-Henŕıquez. A
faster software implementation of the supersingular isogeny
Diffie-Hellman key exchange protocol. IEEE Transaction on
Computers, 67(11):1622–1636, 2018.

[FM02] Mireille Fouquet and François Morain. Isogeny volcanoes and
the SEA algorithm. In Claus Fieker and David R. Kohel, editors,
Algorithmic Number Theory (ANTS), volume 2369 of Lecture
Notes in Computer Science, pages 276–291. Springer, 2002.

145

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration
of asymmetric and symmetric encryption schemes. Journal of
Cryptology, 26(1):80–101, 2013.

[Gal12] Steven D. Galbraith. Mathematics of Public Key Cryptography.
Cambridge University Press, 2012.

[GLQ04] Josep Gonzalez, Joan-Carles Lario, and Jordi Quer. Arithmetic
of Q-curves. Progress in Mathematics, 224:125–139, 2004.

[GLS11] Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomor-
phisms for faster elliptic curve cryptography on a large class of
curves. Journal of Cryptology, 24(3):446–469, 2011.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo
Ti. On the security of supersingular isogeny cryptosystems. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages
63–91, 2016.

[GPSV18] Steven Galbraith, Lorenz Panny, Benjamin Smith, and Frederik
Vercauteren. Quantum equivalence of the DLP and CDHP for
group actions. Journal of Mathematical Cryptology, 2018.

[Has97] Yuji Hasegawa. Q-curves over quadratic fields. Manuscripta
Mathematica, 94(1):347–364, 1997.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A mod-
ular analysis of the Fujisaki-Okamoto transformation. In Yael
Kalai and Leonid Reyzin, editors, Theory of Cryptography TCC
2017, volume 10677 of Lecture Notes in Computer Science, pages
341–371. Springer, 2017.

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexpo-
nential algorithm for computation of class groups. Journal of
the American Mathematical Society, 2(4), 1989.

[JAC+17] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig
Costello, Luca De Feo, Basil Hess, Aaron Hutchinson, Amir
Jalali, Koray Karabina, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Geovandro Pereira, Joost Renes,
Vladimir Soukharev, and David Urbanik. SIKE – supersingular
isogeny key encapsulation, 2017. URL: https://sike.org/.

[JAMJ19] Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani,
and David Jao. Towards optimized and constant-time CSIDH
on embedded devices. In Ilia Polian and Marc Stottinger, ed-
itors, Constructive Side-Channel Analysis and Secure Design
(COSADE), volume 11421 of Springer Lecture Notes in Com-
puter Science (LNCS), pages 215–231, 2019.

146

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. In Post-
Quantum Cryptography (PQCrypto) 2011, pages 19–34, 2011.

[KHF+19] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. In Sympo-
sium on Security and Privacy (SP) 2019, pages 1–19. IEEE,
2019.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Michael J. Wiener, editor, CRYPTO, vol-
ume 1666 of Lecture Notes in Computer Science, pages 388–397.
Springer, 1999.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48:203–209, 1987.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Neal Koblitz, editor,
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Sci-
ence, pages 104–113. Springer, 1996.

[Koh96] David Kohel. Endomorphism rings of elliptic curves over finite
fields. PhD thesis, University of California at Berkeley, 1996.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm
for the dihedral hidden subgroup problem. Society for Indus-
trial and Applied Mathematics (SIAM), Journal of Computing,
35(1):170–188, 2005.

[Kup13] Greg Kuperberg. Another Subexponential-time Quantum Algo-
rithm for the Dihedral Hidden Subgroup Problem. In Simone
Severini and Fernando Brandao, editors, Theory of Quantum
Computation, Communication and Cryptography (TQC) 2013,
volume 22 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 20–34. Schloss Dagstuhl-Leibniz-Zentrum fur
Informatik, 2013.

[Lan94] Serge Lang. Algebraic Number Theory, volume 110 of Graduate
Texts in Mathematics. Springer, 1994.

[LH21] Jason T. LeGrow and Aaron Hutchinson. (short paper) anal-
ysis of a strong fault attack on static/ephemeral CSIDH. In
Toru Nakanishi and Ryo Nojima, editors, International Work-
shop on Security (IWSEC) 2021, volume 12835 of Lecture Notes
in Computer Science, pages 216–226. Springer, 2021.

147

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ra-
manujan graphs. Combinatorica, 8(3):261–277, 1988.

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading kernel memory from user space. In William Enck
and Adrienne Porter Felt, editors, USENIX Security Symposium
2018, pages 973–990. USENIX Association, 2018.

[Mac98] I. G. Macdonald. Symmetric functions and Hall polynomials.
Clarendon Press Oxford University Press, Oxford New York,
1998.

[MCR19] Michael Meyer, Fabio Campos, and Steffen Reith. On lions and
elligators: An efficient constant-time implementation of CSIDH.
In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum
Cryptography (PQCrypto) 2019, volume 11505 of Lecture Notes
in Computer Science, pages 307–325. Springer, 2019.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In
Hugh C. Williams, editor, CRYPTO 1985, volume 218 of Lecture
Notes in Computer Science, pages 417–426. Springer, 1985.

[Mon87] Peter L. Montgomery. Speeding the Pollard and elliptic curve
methods of factorization. Mathematics of Computation, 48:243–
234, 1987.

[NR19] Michael Naehrig and Joost Renes. Dual isogenies and their ap-
plication to public-key compression for isogeny-based cryptog-
raphy. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, volume 11922 of Lecture Notes in Computer
Science, pages 243–272. Springer, 2019.

[OAT20] Hiroshi Onuki, Yusuke Aikawa, and Tsuyoshi Takagi. The exis-
tence of cycles in the supersingular isogeny graphs used in SIKE.
In International Symposium on Information Theory and Its Ap-
plications, (ISITA) 2020, pages 358–362. IEEE, 2020.

[OAYT20] Hiroshi Onuki, Yusuke Aikawa, Tsutomu Yamazaki, and
Tsuyoshi Takagi. A constant-time algorithm of CSIDH keeping
two points. Transactions on Fundamentals of Electronics, Com-
munications, and Computer Science (IEICE), 103-A(10):1174–
1182, 2020.

[OKS00] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai.
Elliptic curves with the Montgomery-form and their crypto-
graphic applications. In Hideki Imai and Yuliang Zheng, editors,
Public Key Cryptography PKC 2000, volume 1751 of Lecture
Notes in Computer Science, pages 238–257. Springer, 2000.

148

[Onu21] Hiroshi Onuki. On oriented supersingular elliptic curves. Finite
Fields and Their Applications, 69:101777, 2021.

[OT20] Hiroshi Onuki and Tsuyoshi Takagi. On collisions related to
an ideal class of order 3 in CSIDH. In Kazumaro Aoki and
Akira Kanaoka, editors, Advances in Information and Computer
Security, pages 131–148. Springer, 2020.

[Pei20] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Can-
teaut and Yuval Ishai, editors, EUROCRYPT 2020, volume
12106 of Lecture Notes in Computer Science, pages 463–492.
Springer, 2020.

[Pet17] Christophe Petit. Faster algorithms for isogeny problems using
torsion point images. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, volume 10625 of Lecture Notes in
Computer Science, pages 330–353. Springer, 2017.

[Piz98] Arnold Pizer. Ramanujan graphs. Computational perspectives
on number theory 1995, 7:159–178, 1998.

[Reg04] Oded Regev. A subexponential time algorithm for the dihedral
hidden subgroup problem with polynomial space. arXiv, 2004.
http://arxiv.org/abs/quant-ph/0406151.

[RS06] Alexander Rostovtsev and Anton Stolbunov. Public-key cryp-
tosystem based on isogenies. Cryptology ePrint Archive, Report
2006/145, 2006. http://eprint.iacr.org/2006/145.

[Sch95] René Schoof. Counting points on elliptic curves over finite fields.
Journal de Théorie des Nombres de Bordeaux, 7(1):219–254,
1995.

[Sho94] Peter W. Shor. Polynominal time algorithms for discrete loga-
rithms and factoring on a quantum computer. In Leonard M.
Adleman and Ming-Deh A. Huang, editors, Algorithmic Num-
ber Theory (ANTS), volume 877 of Lecture Notes in Computer
Science, page 289. Springer, 1994.

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate
Texts in Mathematics. Springer New York, 2009.

[Smi16] Benjamin Smith. The Q-curve construction for endomorphism-
accelerated elliptic curves. Journal of Cryptology, 29(4):806–832,
2016.

[Sto09] Anton Stolbunov. Reductionist security arguments for public-
key cryptographic schemes based on group action. In
Stig F. Mjølsnes, editor, Norsk informasjonssikkerhetskonfer-
anse (NISK), 2009.

149

[Sto10] Anton Stolbunov. Constructing public-key cryptographic
schemes based on class group action on a set of isogenous ellip-
tic curves. Advances in Mathematics of Communications, 4(2),
2010.

[Sut12] Andrew V. Sutherland. Identifying supersingular elliptic curves.
LMS Journal of Computation and Mathematics, 15:317–325,
2012.

[Sut13] Andrew Sutherland. On the evaluation of modular polynomials.
In Everett W. Howe and Kiran S. Kedlaya, editors, Algorith-
mic Number Theory Symposium (ANTS), volume 1 of The Open
Book Series, page 531–555. Mathematical Sciences Publishers,
2013.

[Tan20] Seiichiro Tani. Quantum algorithm for finding the optimal vari-
able ordering for binary decision diagrams. In Susanne Al-
bers, editor, Scandinavian Symposium and Workshops on Algo-
rithm Theory (SWAT), volume 162 of LIPIcs, pages 36:1–36:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields.
Inventiones mathematicae, 2:134 – 144, 1966.

[TDEP21] Élise Tasso, Luca De Feo, Nadia El Mrabet, and Simon Pontié.
Resistance of isogeny-based cryptographic implementations to a
fault attack. In Springer Lecture Notes in Computer Science,
editor, Constructive Side-Channel Analysis and Secure Design
(COSADE), 2021.

[Vit19] Vanessa Vitse. Simple oblivious transfer protocols compatible
with supersingular isogenies. In Johannes Buchmann, Abderrah-
mane Nitaj, and Tajje-eddine Rachidi, editors, AFRICACRYPT
2019, volume 11627 of Lecture Notes in Computer Science, pages
56–78. Springer, 2019.

[Voi17] John Voight. Quaternion Algebras, volume 288 of Graduate
Texts in Mathematics. Springer International Publishing, 2017.

[Vé71] Jacques Vélu. Isogénies entre courbes elliptiques. Comptes-
rendu de l’académie des sciences de Paris, 1971.

[Wat69] William C. Waterhouse. Abelian varieties over finite fields. An-
nales scientifiques de l’ENS, 2(4):521 – 560, 1969.

[Wes20] Benjamin Wesolowski. Efficient verifiable delay functions. Jour-
nal of Cryptology, 33(4):2113–2147, 2020.

150

Titre : Actions de groupe supersingulières et échages de clés post-quantiques

Mots clés : Cryptography post-quantique, Isogénies, Courbes elliptiques

Résumé : Alice et Bob souhaitent échanger des in-
formations sans qu’un attaquant, même muni d’un or-
dinateur quantique, puisse les entendre. Pour cela,
ils ont recours à la cryptologie et en particulier à un
protocole d’échange de clés. Ces protocoles reposent
sur la théorie des nombres et la géométrie algébrique.
Cependant les protocoles actuellement utilisés ne
résistent pas aux attaques quantiques, c’est pour-
quoi il est nécessaire de développer de nouveaux
outils cryptographiques. L’un de ces outils repose

sur les isogénies, c’est-à-dire des homomorphismes
entre des courbes elliptiques. Dans cette thèse nous
proposons une implémentation d’un des protocoles
d’échange de clés basé sur les isogénies qui résiste
aux attaques par canaux auxiliaires (étude de la durée
d’exécution, de la consommation de courant et injec-
tion de fautes). Nous généralisons également ce pro-
tocole à un plus grand ensemble de courbes ellip-
tiques.

Title : Supersingular Group Actions and Post-quantum Key Exchange

Keywords : Post-quantum cryptography, Isogenies, Elliptic curves

Abstract : Alice and Bob want to exchange informa-
tion and make sure that an eavesdropper will not be
able to listen to them, even with a quantum computer.
To that aim they use cryptography and in particular a
key-exchange protocol. These type of protocols rely
on number theory and algebraic geometry. However
current protocols are not quantum resistant, which is
the reason why new cryptographic tools must be deve-

loped. One of these tools rely on isogenies, i.e. homo-
morphisms between elliptic curves. In this thesis the
first contribution is an implementation of an isogeny-
based key-exchange protocol resistant against side-
channel attacks (timing and power consumption ana-
lysis, fault injection). We also generalize this protocol
to a larger set of elliptic curves.

Institut Polytechnique de Paris
91120 Palaiseau, France

