open science

Graph problems motivated by (low and high) resolution models of large protein assemblies

Viet-Ha Nguyen

- To cite this version:

Viet-Ha Nguyen. Graph problems motivated by (low and high) resolution models of large protein assemblies. Computer Science [cs]. I3S, Université Côte d'Azur; ABS, Inria Sophia Antipolis; COATI, Inria Sophia Antipolis, 2021. English. NNT: . hal-03510188

HAL Id: hal-03510188
https://hal.inria.fr/hal-03510188
Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ÉCOLE DOCTORALE

SCIENCESET
TECHNOLOGIES DE
L'INFORMATION ET DE
LA COMMUNICATION

THĖSE DE DOCTORAT

Problèmes de graphes motivés par des modèles basse et haute résolution de grands assemblages de protéines

Thi Viet Ha NGUYEN

I3S, Inria Sophia Antipolis

Présentée en vue de l'obtention du grade de docteur en informatique d'Université Côte d'Azur

Dirigée par: Frédéric Havet
Co-encadrée par: Dorian Mazauric
Soutenue le : 13/12/2021

Devant le jury, composé de :
Etienne Birmelé, PR, IRMA (rapporteur)
Guillaume Fertin, PR, LS2N (rapporteur)
Christophe Paul, DR, CNRS, LIRMM
Blerina Sinaimeri, Ass. Prof., LUISS (Italie)
Stéphane Vialette, DR, CNRS, LIGM
Frédéric Havet, DR, CNRS, I3S
Dorian Mazauric, CR, Inria Sophia Antipolis

PhD thesis
Inria Sophia Antipolis Méditerranée
Université Côte d'Azur, France

Graph problems motivated by (low and high) resolution models of large protein assemblies

Viet-Ha Nguyen

Directors:
Fréderic Havet, CNRS Research Director, I3S
Dorian Mazauric, Inria Researcher, Centre Inria d'Université Côte d'Azur

Résumé

Pour comprendre les fonctions biologiques d'un assemblage moléculaire (AM), il est utile d'en avoir une représentation structurale. Celle-ci peut avoir deux niveaux de résolution : basse résolution (i.e. interactions moléculaires) et haute résolution (i.e. position relative et orientation de chaque sous-unité, appelée conformation). Cette thèse s'intéresse à trouver de telles représentations à l'aide de graphes.

Dans la première partie, nous cherchons des représentations basse résolution. Etant donné la composition des complexes d'un AM, notre but est de déterminer les interactions entre ses différentes sous-unités. Nous modélisons l'AM à l'aide d'un graphe : les sous-unités sont les sommets, les interactions entre elles sont les arêtes et un complexe est un sous-graphe induit. Utilisant le fait qu'une sous-unité n'a qu'un nombre limité d'interactions, nous arrivons au problème suivant. Pour un graphe F et un entier k fixés, étant donné un hypergraphe H et un entier s, MAx $(\Delta \leq k)$ - F OVERLAY consiste à décider s'il existe un graphe de degré au plus k tel qu'au moins s hyperarêtes de H induisent un sous-graphe contenant F (en tant que sous-graphe). La restriction au cas $s=|E(H)|$ est appelée $(\Delta \leq k)$ - F-OVERLAY. Nous donnons une dichotomie de complexité (P vs. NP-complet) pour MAX $(\Delta \leq k)$ - F-OVERLAY et ($\Delta \leq k)$ - F-OVERLAY en fonction du couple (F, k).

Dans la seconde partie, nous nous attaquons à la haute résolution. Nous sont donnés un graphe représentant les interactions entre sous-unités, un ensemble de conformations possibles pour chaque sous-unité et une fonction de poids représentant la qualité de contact entre les conformations de deux sous-unités interagissant dans l'assemblage. Le problème Discrete Optimization of Multiple INteracting Objects (DOMINO) consiste alors à trouver les conformations pour les sous-unités qui maximise une fonction d'utilité globale. Nous proposons une nouvelle approche à ce problème en relâchant la fonction de poids, ce qui mène au problème de graphe Conflict Coloring. Nous donnons tout d'abord des résultats de complexité et des algorithmes (d'approximation et à paramètre fixé). Nous menons ensuite des expérimentations sur des instances de CONFLICT COLORING associées à des diagrammes de Voronoi dans le plan. Les statistiques obtenues nous informent sur comment les parmètres de notre montage expérimental influe sur l'existence d'une solution.

Mots clés: résolution d'assemblage de protéines, biologie structurale, complexité, algorithme, graphe, hypergraphe, coloration.

Abstract

To explain the biological function of a molecular assembly (MA), one has to know its structural description. It may be ascribed to two levels of resolution: low resolution (i.e. molecular interactions) and high resolution (i.e. relative position and orientation of each molecular subunit, called conformation). Our thesis aims to address the two problems from graph aspects.

The first part focuses on low resolution problem. Assume that the composition (complexes) of a MA is known, we want to determine all interactions of subunits in the MA which satisfies some property. It can be modeled as a graph problem by representing a subunit as a vertex, then a subunit-interaction is an edge, and a complex is an induced subgraph. In our work, we use the fact that a subunit has a bounded number of interactions. It leads to overlaying graph with bounded maximum degree. For a graph family \mathcal{F} and a fixed integer k, given a hypergraph $H=(V(H), E(H))$ (whose edges are subsets of vertices) and an integer s, MAX $(\Delta \leq k)$ - F-Overlay consists in deciding whether there exists a graph with degree at most k such that there are at least s hyperedges in which the subgraph induced by each hyperedge (complex) contains an element of \mathcal{F}. When $s=|E(H)|$, it is called $(\Delta \leq k)$ - F-Overlay. We present complexity dichotomy results (P vs. NP-complete) for MAX $(\Delta \leq k)$ - F-Overlay and $(\Delta \leq k)$ -F-Overlay depending on pairs (F, k).

The second part presents our works motivated by high resolution problem. Assume that we are given a graph representing the interactions of subunits, a finite set of conformations for each subunit and a weight function assessing the quality of the contact between two subunits positioned in the assembly. Discrete Optimization of Multiple INteracting Objects (Domino) aims to find conformations for the subunits maximizing a global utility function. We propose a new approach based on this problem in which the weight function is relaxed, CONFLICT Coloring. We present studies from both theoretical and experimental points of view. Regarding the theory, we provide a complexity dichotomy result and also algorithmic methods (approximation and fixed paramater tracktability). Regarding the experiments, we build instances of CONFLICT COLORING associated with Voronoi diagrams in the plane. The obtained statistics provide information on the dependencies of the existences of a solution, to parameters used in our experimental setup.

Keywords: resolution of protein assembly, structural biology, complexity, algorithm, graph, hypergraph, coloring.

Contents

1 Introduction 7
1.1 Structural biology context to Graph Model 7
1.2 Outline of this thesis 9
1.3 Preliminaries 10
1.3.1 Definitions 10
1.3.2 Matching problems 12
1.3.3 Boolean Satisfiability 15
1.3.4 Graph coloring 17
I Overlaying a hypergraph with a graph 23
2 Introduction 25
2.1 Approaches of Connectivity Inference problem 25
2.2 Overlaying graph with bounded maximum degree 27
2.3 Overview of this part 28
2.4 Warm up: graphs with one edge 28
$3 \operatorname{MAx}(\Delta \leq k)$ - F-OVERLAY 35
3.1 Proof overview 35
3.2 NP-completeness 35
$4 \quad(\Delta \leq k)$ - F-OVERLAY 41
4.1 Polynomial results 41
4.1.1 Regular graphs 41
4.1.2 Paths 44
4.2 Ultimate NP-completeness 45
4.2.1 Reduction to Theorem 34 47
4.2.2 Particular cases 52

CONTENTS

4.3 Proof of Theorem 34 61
4.4 On neat hypergraphs 79
4.4.1 Equivalence with Neat (\mathbf{d}, k)-Splitting 79
4.4.2 Polynomial results 81
4.4.3 NP-completeness for graphs with $\lambda_{1}=1$ 83
Conclusion of Part I 87
II Conflict Coloring problems 91
5 Introduction 93
5.1 Determining the high resolution model with DOMINO 93
5.2 Conflict coloring 94
5.3 Related problems 95
5.3.1 H-COLORING and Constraint Satisfaction Problem (CSP) 96
5.3.2 CONFLICT COLORING and comparisons to H-COLORING and CSP 97
5.4 Our contributions 98
6 Complexity results 101
6.1 Unrestricted conflict coloring 101
6.2 Restrictions to the family $\mathcal{B}(k, m)$ 102
7 Algorithms 113
7.1 Approximation algorithm for FULFILL 2-COLORING using Semidefi- nite programming (SDP) 113
7.2 Polynomial-time algorithms for graphs with bounded treewidth 116
7.2.1 Max DOMino 117
7.2.2 Max Threshold Conflict Coloring 119
8 Experiments 121
8.1 Geometric random instances of conflict coloring 121
8.2 Parameters monitored 123
8.3 Results 124
8.3.1 Conflict coloring is hard 125
8.3.2 Existence of one solution 125
8.4 Running times 126
8.5 Values and thresholds: upper bounds, lower bounds, and solutions 128
Conclusion of Part II 131
Bibliography 133

Chapter 1

Introduction

1.1 Structural biology context to Graph Model

Structural modeling of macromolecular assemblies. All biological phenomena (cognition, immune response, metabolism, etc) are based on structural description of macromolecular assemblies (MA): complexes of interacting molecules (subunit), namely proteins or nucleic acids [Fer99]. As conveyed by the simplistic lock-and-key model, the association of two or more molecules forming a complex requires these partners to be complementary. In fact, structural studies of molecules are carried out under the structure-dynamics-function paradigm, as it is the structure and the dynamics of molecules which explain biological functions. However, while genome sequencing projects have produced hundreds of millions of genes, there are only of the order of 10^{5} structures in the Protein Data Bank (https://www.rcsb.org/). Thus, little is known in terms of macro-molecular interactions, at the structural level. Structures of molecules and complexes may be ascribed to two levels of resolution. At low resolution, the only information available may consists of the pairwise interactions of the subunits in the MA. A higher resolution, the relative position and orientation of the individual subunits may be known. Such models culminate with atomic resolution models, where individual atomic positions are known precisely. Because each atom has three Cartesian coordinates, such systems involve hundreds of thousands of degrees of freedom. This high dimensionality is naturally very challenging from the modeling standpoint. Structure determination is equally challenging from the experimental / structural biology standpoint. There are a number of experimental techniques which help providing structural information both at low and high resolution. We now discuss them in the context of low and high resolution models.

CHAPTER 1. INTRODUCTION

Low resolution problem. Native mass spectrometry is an experimental technique well suited to gather low resolution information. Assume that the composition of a MA, in terms of individual subunits, is known. A given assembly can be chemically split into complexes by manipulating chemical conditions, and measuring the mass of these complexes makes it possible to infer which subunits participate to each complex. In this context, the CONNECTIVITY Inference (CI) problem [ACCC15] aims at inferring plausible pairwise contacts between subunits in the MA, given the composition (in terms of subunits) of the individual complexes. Additional biological constraints can also be incorporated [CHM ${ }^{+} 19$, HMNW20]. This problem can be conveniently modeled by graphs and hypergraphs. We consider the hypergraph H whose vertices represent the subunits and whose hyperedges are the complexes. We are then looking for a graph G with the same vertex set as H whose edges represent the contacts between subunits, and satisfying some properties based on biological structure constraints. Solving CONNECTIVITY INFERENCE yields an interaction graph $G=(V, E)$ that represents the macromolecular assembly. The vertices are the subunits (e.g. proteins) and the edges are the (plausible) connections between subunits. However, such a graph falls short from providing high-resolution information.

High resolution problem. The main techniques to gather high resolution information are X ray crystallography, nuclear magnetic resonance (NMR), an elite club recently joined by cryo-electron microscopy. These techniques usually deliver static snapshots of molecules and complexes. Therefore, understanding dynamic processes requires building and animate models from these static complexes. A convenient way to do so consists of synergizing two types of models, namely a low resolution model for a MA, and high resolution (atomic) models for its subunits. Assume that the low resolution model provides the interaction graph of its subunits. Also assume that a finite set of high resolution conformations has been computed for each of the individual subunits. A route of choice to build a high resolution model of the MA consists of choosing and assembling individual conformations for each subunit. In doing so, we assume that a scoring function assessing the quality of the contact between two subunits positioned in the assembly is available. This problem was formalized using Discrete Optimization of Multiple INteracting Objects (DOMINO) in [LTSW09], so as to pick positions for the subunits maximizing a global utility function.

Indeed, the higher the score, the better connection of an assembly in global. A way to see this as a graph problem is using coloring where a set of conformations for each subunit is represented as a color set of the corresponding vertex in the interaction graph. We are given a graph, each vertex v receives a set of possible colors $C(v)$, and a function w that assigns a weight $w((u, i),(v, j))$ in $\mathbb{R} \cup\{-\infty\}$, for each edge $u v \in E(G)$, and every pair of colors $i \in C(v), j \in C(u)$. Hence, for each coloring of the graph, every edge is assigned a weight, and the Domino problem consists in
deciding whether there exists a coloring of G which satisfies some properties.

1.2 Outline of this thesis

In this thesis, there are two parts corresponding to the previously mentioned two problems.

In Part I, we investigate the low resolution problem. Let G and H be respectively a graph and a hypergraph defined on a same set of vertices, and let F be a fixed graph. We say that G-overlays a hyperedge S of H if F is a spanning subgraph of the subgraph of G induced by S (i.e. $|S|=|F|$ and $G[S]$ has a copy of F as a subgraph), and that $G F$-overlays H if it F-overlays every hyperedge of H. We exploit the fact that the number of contacts of a subunit is bounded, then the interaction graph has a bounded maximum degree. We study the computational complexity the following problem. Given a fixed graph F and a fixed integer $k, \operatorname{MAX}(\Delta \leq k)$ - F-OVERLAY, is given a hypergraph H and an integer s, consists in deciding whether there is a graph with maximum degree at most k that F-overlays at least s hyperedges of H. And a particular case when $s=|E(H)|,(\Delta \leq k)$ - F-OvERLAY consists in deciding whether there is a graph with maximum degree at most k that F-overlays H. These problems will be precisely presented in Chapter 2. We give a complete polynomial/NP-complete dichotomy for the Max $(\Delta \leq k)$ - F-Overlay problems depending on the pairs (F, k). Then we study $(\Delta \leq k)$ - F-Overlay in the next chapter which includes polynomial proofs of several pairs (F, k) in Section 4.1 but mainly in the next two sections, we aim to prove that for any graph F which is neither complete nor anticomplete, there exists a positive integer k_{0} such that $(\Delta \leq k)$ - F-OVERLAY is NP-complete for all $k \geq k_{0}$. Last, we investigate ($\Delta \leq k$)- F-OvERLAY restricted on the class of hypergraphs called neat hypergraphs (in which any two hyperedges intersect in at most one vertex).

In Part II, the high resolution problem is studied by first introducing formally DOMino and then giving a new approach based this problem in which the weight function is relaxed. We denote by $[k]$ the set of integers $\{1, \ldots, k\}$. In Domino, given a graph G, each edge $u v \in E(G)$ is given an edge-weighted complete bipartite graph $K_{u v}^{k}$ (which is the complete bipartite graph $K_{k, k}$ on vertex sets ($[k],[k]$) with an edgeweighted function). We denote by (u, i) the color i at vertex v in this graph, for $i \in[k]$. In the latter, the edge-weighted function is reduced by fixing a weight threshold λ. For any edge $u v \in E(G)$ with $K_{u v}^{k}$, an edge $(u, i)(v, j)$ is then fulfilled if its weight is at least λ and conflict otherwise. And so the graph which contains all the conflict edges is called the conflict graph of the edge $u v$. Given a graph G and two integers k, q, and the set of conflict graphs the Fulfill Coloring problem consists in determining whether there is a coloring of G such that the number of fulfilled edges is at least q, and CONFLICT COLORING consists in deciding whether there exists a coloring of G with non-conflict edges. The particular case of these problems when k is fixed

CHAPTER 1. INTRODUCTION

are called Fulfill k-Coloring, Conflict k-Coloring. We then establish the complexity dichotomies (P vs NP-complete) for Fulfill k-Coloring, Conflict k-COLORING and some of their restrictions in Chapter 6. The next chapter includes some algorithms which we give an approximation one to FUlfill 2-Coloring and show a polynomial-time algorithm that solves Domino for graphs with bounded treewidth. Finally, in Chapter 8, we present experimental works in which we build instances of CONFLICT COLORING associated with Voronoi diagrams in the plane. The obtained statistics provide information on the dependencies of the existences of a solution, to parameters used in our experimental setup.

1.3 Preliminaries

1.3.1 Definitions

Graphs

A graph G is an order pair (V, E) where V is the finite set of elements called vertices and E is the set of edges in which each is a pair of vertices, which are also called endvertices (or endpoints). The vertex set and edge set are respectively referred to as $V(G)$ and $E(G)$. We denote by $|G|$ the order of G which is the size of the vertex set $|V(G)|$. For an edge $u v$, we say u, v are adjacent to each other and are neighbors. The neighborhood of a vertex v, denoted by $N_{G}(v)$, or simply $N(v)$ when G is clear from the context, is the set of vertices adjacent to v and its degree, denoted by $d_{G}(v)$ or simply $d(v)$, is the cardinality of $N_{G}(v)$. If G is such that all its vertices have the same degree r, then G is an r-regular graph. A vertex is isolated in G if it has degree 0 . The minimum and maximum degree of G are respectively denoted by $\delta(G)$ and $\Delta(G)$. Hence a graph F has no isolated vertices if and only if $\delta(F) \geq 1$. We denote by V_{i} (resp. $V_{\leq i}, V_{\geq i}$) the set of vertices of G that has degree exactly (resp. at most, at least) i in G. A graph H is a subgraph of G if $V(H) \subseteq$ and $E(H) \subseteq E(G)$. If $E(H)=\{u v \in E(G) \mid u, v \in V(H)\}$, then H is an induced subgraph of G. A connected component is an induced subgraph in which there is a path between any two vertices.

An independent set of graph is a set of pairwise non-adjacent vertices. A graph is complete (resp. anticomplete) if its vertices are pairwise adjacent (resp. non-adjacent). The complete (resp. anticomplete) graph on p vertices is denoted by K_{p} (resp. \bar{K}_{p}). Since the latter has no edges, it is also called an edgeless graph. We denote by P_{t} the path on t vertices. For $v \in V(G), G-v$ is the graph obtained by removing v and its incident edges. The disjoint union of two graphs G_{1}, G_{2} is denoted by $G_{1}+G_{2}$. A matching of a graph is a set of independent edges (i.e. pairwise non-intersecting edges). A matching is maximum if it contains the largest possible of edges. A graph G is bipartite if its vertex set $V=A \cup B$ a partition into two disjoint sets A, B and any edge has an endvertex in A and the other in B, often write $G=((A, B), E)$

A directed graph consists of a vertex set and a set of directed edges (arcs). A strongly connected component (for directed graph) is a subgraph in which there is a directed path from every vertex to every other.

Hypergraphs

Let a hypergraph H. We denote by $V(H)$ and $E(H)$ respectively its sets of vertices and hyperedges where a hyperedge is a subset of vertices. A hypergraph is p-uniform for some $p \in \mathbb{N}$, if all its hyperedge have exactly p vertices. A hypergraph is neat if any two distinct hyperedges intersect in at most one vertex. We denote by $K(H)$, the graph obtained by replacing each hyperedge by a complete graph. In other words, $V(K(H))=V(H)$ and $E(K(H))=\{x y \mid \exists S \in E(H),\{x, y\} \subseteq S\}$. The edge-weight function induced by H on $K(H)$, denoted by w_{H}, is defined by $w_{H}(e)=\mid\{S \in E(H) \mid$ $e \subseteq S\} \mid$. In words, $w_{H}(e)$ is the number of hyperedges of H containing e. A hypergraph H is connected if $K(H)$ is connected, and the connected components of a hypergraph H are the connected components of $K(H)$.

Complexity classes P and NP

In computational complexity theory, P is one of fundamental class where any decision problem in this class can be solved in polynomial time. Many problems are known in P including the decision versions such as finding a maximum matching of a graph [Sch03], and deciding whether two given vertices of a directed graph are in the same strongly connected component [Tar72].

NP is the class of decision problems in which any "yes" instance has a polynomial size certificate and certificates can be checked in polynomial time. Thus P is included in NP. The hardest problems in NP are NP-complete, a notion first introduced in 1971 by Cook and Levin [Coo71]. A decision problem is NP-hard if any NP problem can be reduced to it in polynomial time, and NP-complete if it is also in NP. As a fundamental consequence, if we can solve efficiently (i.e. in polynomial time) any NP-complete problem, so do we for all NP problem.

A problem is proven to be in P by either directly giving a polynomial time algorithm or reducing to a P problem. In this case the reduction from problem A to problem B in P gives an upper bound on the complexity of problem A. However, NP-completeness gives the lower bound of complexity because showing the NP-completeness of a problem B, we build a polynomial time reduction from a NPcomplete problem A to B which implies that B is at least as difficult as A. The first NP-complete problem, known as SAT (see section 1.3 .3 below), was directly proven from the definition of NP using Turing machines.
In this thesis, we use complexity results of some typical problems for our complexity proofs. The problem Independent Set (decision version) is given a graph and

CHAPTER 1. INTRODUCTION

an integer α, decides that there exists an independent set with at least α vertices. It is proven by Karp in [Kar72], to be NP-complete even for cubic graphs (i.e. 3regular graphs). And mostly, we use 3-SAT, (Proper) COLORING for reductions in NP-complete proofs and MATCHING for polynomial results.

1.3.2 Matching problems

A matching in a graph is a set of pairwise non-intersecting edges. For the sake of simplicity, we say that a vertex belongs to a matching M when it is an endvertex of an edge in M.We also say that it is matched (covered or saturated). A vertex that is not matched by M is unmatched. A matching is maximal if it is not included in any other matching; and a matching is maximum if it contains the largest possible number of edges, so obviously maximal. A matching which covers all vertices of a graph is a perfect matching. A maximal matching can easily be found using a greedy algorithm: start from an empty set M, and as long as it is possible, add to M an edge in G which is independent (i.e. has no common endvertex) with all the edges already in M. But in many problems, we need to find a maximal matching that optimizes some properties. A first example is the problem Maximum Matching which consists in finding a maximum matching that is an a maximal matching with the maximum number of edges. A generalization of Maximum Matching to edge-weighted graphs (that graphs equipped with a weight function on the edges) is Maximum-Weight MATCHING: given an edge-weighted graph, find a matching with maximum weight (i.e. sum of weights of its edges).

MAXIMUM MATCHING. This problem is a very classic optimization problem in graph theory which finds a maximum matching of given a graph. It can be solved in polynomial time. A key notion to do so, is the one of "augmenting path". Let M be a matching in a graph G. An M-alternating path is a path along which the edges are alternately in M and not in M. An M-augmenting path is an alternating path whose endvertices are unmatched. Let P be an M-augmenting path, a new matching M^{\prime} is obtained by replacing edges in $P \cap M$ by all edges in $E(P) \backslash(E(P) \cap M)$. Thus $M^{\prime}=(M \backslash(E(P) \cap M) \cup(E(P) \backslash M))=M \triangle E(P)$ and we have $\left|M^{\prime}\right|=|M|+1$ (Figure 1.1). Hence, if a matching is maximum, then there is no augmenting paths. By Berge's lemma, this necessary condition is also sufficient.

Lemma 1 ([Ber57]). M is maximum if and only if there is no M-augmenting paths.
This is the main idea of many polynomial-time algorithms for finding a maximum matching. And we can describe an algorithm as follows.

1. Initialize a matching $M:=\emptyset$.
2. While there exists an M-augmenting path P do $M:=M \triangle E(P)$.

Figure 1.1: Example of an M-augmenting path. In the figure to the left, there is a matching M of two blue edges, the two red vertices are unmatched, and there is an M-augmenting path P (dashed red) between these two unmatched vertices. We obtain a new matching with one more edge by removing blue edges in P from M and adding the other black edges in P to M. We then get the matching depicted in blue on the figure to the right.

In bipartite graphs. MATCHING in bipartite graphs is an important special case by its practical roles in real world [Rob03] and even is the first studies of MATCHING problems in general, known as Hall's (marriage) theorem. Imagine that there are two groups of men and women. Each woman has a set of men, any of which and the woman are happy to marry. The marriage theorem answers whether it is possible to match the woman and man so that everyone is happy.

Let a bipartite graph $G=((A, B), E)$ with $|A|<|B|$. If there is a matching covering all vertices of A then it is maximum. Hence, we want to answer whether there exists a matching which covers A. It is necessary that for any $S \subseteq A,|S| \leq|N(S)|$ where $N(S)$ is the set of vertices that are adjacent to at least one vertex of S. The fact that this is also sufficient is known as Hall's theorem.

Theorem 2 ([Hal35]). Let $G=((A, B), E)$ be a bipartite graph. G has a matching covering all vertices of A if and only if $|N(S)| \geq|S|$ for all $S \subseteq A$.

When $|A|=|B|$, his result applies to perfect matching. In bipartite graphs, in order to find a maximum matching in the view of Lemma 1, we have to find augmenting paths. There is a simple way to solve it as follows: given $G=((A, B), E)$ and M an arbitrary matching, we build a directed graph D_{M} by orienting any edge $u v$ (for $u \in A, u \in B$) from v to u if $u v \in M$, otherwise from u to v. Now, finding a directed path in D_{M} from a vertex in $A \backslash M$ to a vertex in $B \backslash M$ if any is equivalent to finding an M-augmenting path. Since such a path can be found in time $O(|E|)$ (e.g. by using breadth first search) and there are at most $|A|$ such paths. A maximum matching in a bipartite graph can be found in time $O(|E \| V|)$.
There are many faster algorithms than this one to solve Maximum Matching. One of them, due to Hopcroft and Karp in 1973 [HK73] runs in $O(|E| \sqrt{|V|})$. This improvement searches for a maximal set of augmenting paths, and makes only $O(\sqrt{|V|})$ such searches.

In general graphs. The idea of using augmenting path is still a key for finding a maximum matching in general graphs. As described in the algorithm above, in bi-

CHAPTER 1. INTRODUCTION

partite graphs, we can always orient the edges, whereas we cannot in general graphs (because of odd cycles). To solve this problem, Edmonds introduced in 1965 the term blossom. An M-alternating path $P=v_{0} v_{1} \ldots v_{t}$ where t is odd, $v_{0}, \ldots v_{t-1}$ are distinct, v_{0} is unmatched by M and $v_{t}=v_{i}$ for some even $i<t$. The cycle $v_{i} v_{i+1} \ldots v_{t}$ is an M blossom. Observe that if there is an augmenting path $v_{0} v_{1} \ldots v_{i} \ldots v_{j} v_{j+1} \ldots v_{t^{\prime}}$ where $v_{i} \ldots v_{j}$ is a subpath of P, and we identify all vertices in the blossom to a new vertex v_{B} (so contract the blossom), then we have $v_{0} \ldots v_{B} v_{j+1} \ldots v_{t^{\prime}}$ which is also an augmenting path (see Figure 1.2 for an example). It is the core of Edmonds' algorithm. Define G^{\prime} the contracted graph obtained from G by contracting an M-blossom, and M^{\prime} is the matching $M \cap G^{\prime}$. We have the following.

Theorem 3. G has an M-augmenting path if and only if G^{\prime} has an M^{\prime}-augmenting path.

Figure 1.2: Example of blossom. The cycle $B=v_{2} \ldots v_{6} v_{2}$ is a blossom with respect to a matching in blue and there is an augmenting path P (dashed red) (left figure). The right figure shows the contraction of the blossom to a new vertex v_{B}. This changes P to P^{\prime} which is still an augmenting path.

The following problems are two of generalizations of MAXIMUM MATCHING.
Maximum k-Matching Given a graph G, a k-matching M is a subgraph of G with maximum degree at most k. Thus, a matching is the case when $k=1$. Maximum k-MATCHING is the problem of finding a k-matching with the maximum number of edges. There are several poly-time algorithms for finding a maximum k-matching. An easy one is to reduce it to Matching. Given a graph G, we build a graph G^{\prime} as follows. For each vertex $v \in V(G)$, we add k vertices v_{1}, \ldots, v_{k} to $V\left(G^{\prime}\right)$; and for each edge $u v \in E(G)$, we add k^{2} edges connecting the k vertices corresponding to u to those corresponding to v.

Note that this construction also work to find a subgraph of a bipartite graph $G=$ $((A, B), E)$ such that all vertices in A have degree at most a and those in B have degree at most b.

MAXimum-weight Matching Let G be a graph with edge-weighted function, the problem finds a matching with maximum weight. Matching is the case when the weight of every edge is 1 . In Maximum-weight Matching, the notation of augmenting path is the same which is a path alternating edges in and not in a matching
and its two endpoints are unmatched. In bipartite graph, it is Assignment ProbLEM and typically Hugarian's method is one of algorithms solving this problem. This algorithm finds augmenting paths by using a modified shortest path search. Given a bipartite graph $G=((A, B), E)$ with an edge-weighted function w and a matching M. Let D_{M} be the directed graph obtained from G by orienting each edge $u v \in M$ (for $u \in A, v \in B$) from v to u with length $l_{\overrightarrow{v u}}:=w_{u v}$, otherwise from u to v with length $l_{\overrightarrow{u v}}:=-w_{u v}$. Hence, we aim to find a shortest path P from $A \backslash M$ to $B \backslash M$ (so P is an augmenting path) with negative length (which then increases the total weight of new matching after exchanging edges in P).

In non-bipartite graphs, the problem is much more complicated. And it can be solve by using the unweighted Edmonds' algorithm as a subroutine.

1.3.3 Boolean Satisfiability

Boolean Satisfiability problem (SAT) determines, given a boolean formula, if there exists an assignment which satisfies the formula. It is known as the first NP-complete problem, proved by Cook-Levin in 1970s [Coo71]. An instance of SAT is combined from variables and operators (disjunction \vee, conjunction \wedge, negation \neg) with parentheses. Note that, we use both $\neg x, \bar{x}$ as the negation of a variable x).
SAT for disjuntive normal form is obvious, indeed such a formula is satisfiable if and only if at least one clause is satisfiable which is equivalent to that no variable and its negation belong to the same clause.
Every SAT formula can be transformed to an equivalent conjunctive normal form (CNF) (which may be exponentially longer). The complexity results are related to SAT for CNF formulas, which is also called CNF-SAT. Hence, when we say a SAT instance, we mean a CNF-SAT one.

A restriction of the problem is on the number of literal per clause. k-SAT is when the number of literal per clause is exactly k. As shown by Cook [Coo71], 3-SAT is NPcomplete which is the tightest possible on the number of variables per clause because 2-SAT is in P.

Theorem 4 ([ES76]). 2-SAT is in P .

Proof sketch. We use an implication graph which is a directed graph. There are two vertices per variable (one for this variable x_{i} and one for its negation $\neg x_{i}$). Each clause gives pair of implications on its two variables (e.g. $\left(x_{1} \vee \neg x_{2}\right)$ gives arcs $\neg x_{1} \rightarrow \neg x_{2}$ and $x_{2} \rightarrow \neg x_{1}$). We can build such an implication graph from any instance of 2-SAT, in polynomial time. An instance is satisfiable if and only if no variable and its negated are in the same strongly connected component of the implication graph. This can be checked in linear time [APT79].

CHAPTER 1. INTRODUCTION

According to the algorithm used in [APT79], if a 2-SAT formula is satisfiable, then we can also find in linear time an assignment satisfying it. The implication graph of a formula gives chains of implications which help to order variables and make choice to them.

3-SAT can be seen as the starting point leading to a number of problems which are NP-complete. Those first ones are Karp's list of NP-complete problems [Kar72] and then many of studied problems are variants of 3-SAT. It is pointed out that studies on the dichotomy of (strongest possible) restrictions of a problem help understanding the boundary between P and NP-complete cases of a problem, as well as establishing the NP-completeness of problems which may be easier to reduce from, for future studies [HS78]. (r, k)-SAT is the class of instances of k-SAT where every variable appears in at most r clauses. It is proven in [Tov84] that (3,4)-SAT is NP-complete.

Theorem 5 ([Tov84]). (3,4)-SAT is NP-complete.
A usual way to transform a SAT formula to another formula with restrictions on the number of literals per clause or the number of occurrences of a variable, is to add new variables in order to validate these conditions, and then add new clauses enforcing constraints on these new variables.

Proof sketch. A reduction from 3-SAT. Let Φ be a formula of this problem with n variables and m clauses. We build a formula Φ^{\prime} of $(3,4)$-SAT as follows. For each variable x which appears in $r \in[4]$ clauses, create r new vertices x_{1}, \ldots, x_{r} and replace the i-th occurrence of x with x_{i} in Φ^{\prime}. There are m clauses.
We want that x_{i} for $i \in[r]$ are all true or all false, so that they correspond to one original variable. To enforce this, we use the following structure: $\bigwedge_{i \in[r]}\left(x_{i} \vee \bar{x}_{i+1}\right)$ with subscripts taken modulo r. Since each of these clauses $\left(x_{i} \vee \bar{x}_{i+1}\right)$ has only two literals, we introduce a new literal y_{i}, and add the clause $\left(x_{i} \vee \bar{x}_{i+1} \vee \bar{y}_{i}\right)$ to Φ^{\prime}. There are $3 m$ clauses.
We now enforce y_{i} to be true by adding the following clauses to Φ^{\prime} :

- $\left(y_{i} \vee a_{i} \vee b_{j}\right)$ for $j \in[3]$,
- $\left(d_{j} \vee a_{j} \vee b_{j}\right),\left(d_{j} \vee a_{j} \vee \bar{b}_{j}\right),\left(d_{j} \vee \bar{a}_{j} \vee b_{j}\right)$ for $j \in[3]$,
- $\left(\bar{d}_{1} \vee \bar{d}_{2} \vee \bar{d}_{3}\right)$.

There are 13 clauses for each y_{i}, and there are $3 m$ such variables. Thus, Φ^{\prime} contains 43 m clauses in total. And Φ^{\prime} is satisfiable if and only if so is Φ.

If repetitions of a variable in a clause is not allowed, then Theorem 5 is optimal, because (r, r)-SAT is solvable in constant time (Theorem 6 below). Note however that if clauses are allowed to have size 2 or 3 , then the satisfaction problem with at most 3 occurrences per variable is NP-complete [Tov84].

Theorem 6 ([Tov84]). (r, r)-SAT is satisfiable for any integer r.

Proof sketch. Let Φ be a formula with the set X of n variables and the set C of m clauses. We construct the bipartite graph G such that the vertex set is $X \cup C$ and there is an edge between variable $x_{i} \in X$ and clause $c_{j} \in C$ if and only if a literal of x_{i} belongs to c_{j} in Φ. Now (r, r)-SAT is satisfiable if and only if there exists a C-perfect matching of G, i.e. every vertex of C is in the matching. It turns out that such a matching exists, by Hall's marriage theorem: for any $C^{\prime} \subseteq C$ we have $\left|C^{\prime}\right| \leq\left|N\left(C^{\prime}\right)\right|$, otherwise a vertex in X has degree strictly bigger than r, i.e. a variable has strictly more than r occurrences.

Many other variants of SAT were studied which relate to the constraints on solutions, instances or operators such as 1-IN-3-SAT (exactly one true literal per clause), NAE-3-SAT (no clause has all three true literals), Horn-SAT (each clause has at most one positive literal), XOR-SAT (each clause contains XOR rather than OR operators). For these mentioned problems, the two first are NP-complete and the latter three are in P. The restrictions above are particular cases of Schaefer's dichotomy theorem which states necessary and sufficient conditions, such that a finite set of relations over Boolean domain generates a SAT variant which is NP-complete or solvable in polynomial time. Schaefer's dichotomy theorem allows us to determine the complexity results of many variants of SAT problems, but it does not apply to all variants: (r, k) SAT is a typical example because given a set of relations, there is no way to restrict the occurrences of a variable.

Remark that not all problems may be either in P or NP-hard. Ladner's theorem states that, under the assumption $P \neq N P$, there exits an infinite hierarchy of classes between P and NP (called NP-intermediate, problems in NP but neither in P nor NPhard).

1.3.4 Graph coloring

A coloring of G is a function from $V(G)$ to a finite set of labels, called colors. If the number of used colors is k, then we call it a k-coloring. A coloring is proper if any two adjacent vertices in G have different colors. If G admits a proper k-coloring, then G is k-colorable. If each vertex of G is assigned a different color, then $k=|V(G)|$ and this coloring is trivially proper. An interesting question is to minimize k such that G is k-colorable, and the smallest such k is called the chromatic number of G, denoted $\chi(G)$. The decision version of this problem, called Coloring, consists in, given a graph G and an integer k, deciding whether $G k$-colorable? It is a typical one of NP-hard problems shown by Karp [Kar72]. However, this problem is obvious for some special classes of graphs. For example, the complete graph K_{p} has $\chi\left(K_{p}\right)=p-1$, or $\chi\left(\bar{K}_{p}\right)=$ 1 for anticomplete graphs \bar{K}_{p}, and the chromatic number of bipartite graphs is 2 . Bipartite graphs are by definition the 2-colorable graphs. They can be recognized in polynomial time and that a 2 -coloring of a bipartite graph can be found in polynomial

CHAPTER 1. INTRODUCTION

time. In contrast, it is NP- complete to recognize the 3-colorable graphs and given an 3 -colorable graph, it is NP-hard to find a 3-coloring and even a 4 -coloring.

An alternative way of deciding the chromatic number is to study the decision version of this problem, called k-coloring problem which decides whether a graph G is k-colorable. It is obvious when $k=1$, the family of anticomplete graphs is the only 1 -colorable. And for $k=2$, a graph is 2-colorable if and only if it is bipartite which can be checked in polynomial-time. Alternatively, we can prove 2-coloring problem is in P by reducing to another P problem.

Theorem 7. 2-Coloring is in P .

Proof. We will reduce to 2-Sat. Let G be a graph with $V(G)$ of n vertices and $E(G)$ of m edges. We construct a formula Φ on n variables and $2 m$ clauses as follows. For each vertex $v \in V(G)$, there is a variable x_{v}. And for each edge $u v \in E(G)$, we add two clauses $\left(x_{u} \vee x_{v}\right),\left(\bar{x}_{u} \vee \bar{x}_{v}\right)$ to Φ. These two clauses enforce that x_{u}, x_{v} must be different which corresponds to that u, v have different colors. Hence, G is 2-colorable if and only if Φ is satisfiable. In this case, let ϕ be a truth assignment of Φ, a 2-coloring c of G can be defined by taking $c(v)=1$ (resp. 2) if $\phi\left(x_{v}\right)=$ true (resp. false).

Hence a 2-coloring can be found through a satisfying assignment of a 2-SAT formula. Alternatively, we can also find a 2 -coloring by partitioning the vertex set into two subsets (bipartite graph).

However, only these two cases which are polynomial-time solvable.
Theorem 8 ([GJS76]). 3-Coloring is NP-complete.
Proof. A reduction from 3-SAT. Given a formula Φ of this problem with n variable x_{i} for $i \in[n]$ and m clauses, we construct a graph G as follows. The vertex set $V(G)$ contains 3 vertices t, f, b; two vertices v_{i}, \bar{v}_{i} for each variable x_{i}; and six vertices $y_{j}, y_{j}^{1}, \ldots, y_{j}^{5}$ for each clause C_{j}. G has two types of gadgets as described in Figure 1.3: one variable gadget and a clause gadget for each clause. And, we add edges $y_{j} b, y_{j} f$ for $j \in[m]$.

Figure 1.3: Construction of graph G. Variable gadget (left) and a clause gadget for ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) (right) where each literal ℓ_{i} is corresponding to a literal vertex ℓ_{i} for $i \in[3]$ and the output of the clause is represented by the output vertex y.

First, G can be build in polynomial time. Observe that t, f, b must have 3 different colors $1,2,3$ respectively, hence every y_{j} has color 1 since it is adjacent to b and f. By the construct of clause gadgets, any 3-coloring of this gadget satisfies that y has color 1 if and only if there exists $i \in[3]$ such that l_{i} has color 1 .
Now, let c be a coloring of G, we define an assignment ϕ of Φ by taking $\phi\left(x_{i}\right)=$ true (resp. false) if $c\left(v_{i}\right)=1$ (resp. 2). And so ϕ satisfies Φ.
Let ϕ be an assignment satisfying Φ, a coloring c of G is defined by taking $c\left(v_{i}\right)=1$ (resp. 2) if $\phi\left(x_{i}\right)=$ true (resp. false). Since there is at least one true literal in each clause, then the corresponding vertex has color 1 which implies that the output vertex is colored $1 \mathrm{by} c$. Thus, c is a 3 -coloring of G.

In 1941, Brooks gave a relationship between the maximum degree of a graph and its chromatic number.

Theorem 9 ([Bro41]). Let G be a connected graph, then $\chi(G) \leq \Delta(G)$, except for G an odd cycle or a complete graph, $\chi(G)=\Delta(G)+1$.

According to this theorem, every connected cubic graph except K_{4} is 3-colorable. However, it becomes hard for graphs of maximum degree 4.

Theorem 10 ([Hol81]). 3-COLORING is NP-complete on 4-regular graphs.
We then obtain that k-COLORING is NP-complete for any $k \geq 4$ by an inductive proof whose base case is 3-Coloring. From a graph G of $(k-1)$-Coloring, we can construct a graph G^{\prime} of k-COLORING by adding a universal vertex (this new vertex connects to every vertex of G). Then, it must be colored by a new color k. Therefore, $\chi\left(G^{\prime}\right)=\chi(G)+1$.

Corollary 11. k-COLORING is NP-complete for $k \geq 3$.
A graph is planar if it can be drawn in the plane without any edge crossing. Related to these graphs, Euler's formula is a very well-known equation which relates the number of vertices, edges and faces in planar graphs, respectively denoted by n, m, f :

$$
n-m+f=2 .
$$

Since a face is bound by at least 3 edges and any two adjacent faces share an edge, then $3 f \geq 2 m$. Using Euler's formula, we obtain $3 n-6 \geq m$ as a corollary. Moreover, gathering with the following fact that the total degree of vertices is twice the number of edges, $\sum_{v \in V(G)} d(v)=2 m$, as a consequence there is a vertex in G of degree at most 5. The Five Color Theorem was found down in 1890 by P.J. Heawood.

Theorem 12 ([Hea90]). Every planar graph is 5-colorable.

CHAPTER 1. INTRODUCTION

Figure 1.4: Example of coloring vertex $v . v$ is not yet colored and 5 neighbors of v have different colors (left). Since there is no path between v_{2} and v_{4} in the induced subgraph by yellow and blue, then recolor v_{4} (and yellow vertices in the subgraph) blue and color v yellow (right).

Proof. By induction on the number of vertices.
First, it is obvious to color a graph with at most 5 vertices using 5 colors.
Suppose that $n>5$. Assume that v is a vertex of degree at most 5 . By induction, we know that $G-v$ is 5 -colorable.
If $d(v) \leq 4$, then we color v with a color different from its neighbors, which is a 5 coloring of G. If $d(v)=5$, and if its neighbors are colored with at most 4 colors, then it is easy to color v. Assume now the neighbors of v, say v_{1}, \ldots, v_{5} (in clockwise order) have colors $1, \ldots, 5$, respectively. Let $G_{i j}$ be the induced subgraph of G on vertices having colors i, j. If there is no path from v_{1} to v_{3} in G_{13}, then we can change the color of v_{1} to 3 , and switch colors of vertices in the same component as v_{1} in G_{13}, so we can give color 1 to vertex v.
If v_{1}, v_{3} are in the same connected component of G_{13}, then there is no path between v_{2} to neither v_{4} nor v_{5} because of the planarity of G (Figure 1.4). Hence, we can apply the same reasoning as the previous case.

While the Five Color Theorem is rather simple, it is not the case for the Four Color Theorem. It was first proven by Appel and Haken around a century later, in 1976.

Theorem 13 ([AH89, AH77a, AH77b]). Every planar graph is 4-colorable.
In 1996, [RSST96] presented a quadratic-time algorithm finding a 4-coloring on planar graphs, they also gave a linear-time algorithm which finds a 5 -coloring on these graphs. One year later, they improved the proof of the Four Color Theorem shown by Appel and Haken, with a simpler and clearer proof. In spite of that, 3coloring on planar graphs is NP-complete. Namely,

Theorem 14 ([Dai80]). 3-CoLORING is NP-complete on planar 4-regular graphs.
There are many other studies of the coloring problem on particular families of graphs: dense graphs [Edw86], and recently graphs of H-free subgraphs [HKL ${ }^{+} 10$, $\mathrm{BCM}^{+} 18$, GJPS17].

Reasearchers have also generalized the coloring problem. For example, PrecolORING EXTENSION where a coloring c is given on a subset of vertices of a graph G and decides whether c can be extended to a coloring of G [Bod93] (in coloring problem the precoloring c is empty), LIST COLORING where each vertex is given a list of admissible colors and the coloring must give to each vertex a color from its list [GJPS17] (in k-coloring problem the list of each vertex is $[k]$), or H-coloring which is a coloring with respect to a fixed graph H whose vertices represent colors and edges give the binary relation of allowed neighboring colors [HN90] (in k-coloring problem we have $H=K_{k}$). In Part II of this thesis, we investigate another generalization of coloring problem, CONFLICT COLORING.

Part I

Overlaying a hypergraph with a graph

Chapter 2

Introduction

2.1 Approaches of Connectivity Inference problem

In order to obtain the low resolution structure of molecule-macro assemblies, the following problem, known as Connectivity Inference arose. The list of subunits is known, and given a set of complexes, one has to determine the plausible contacts between subunits of an assembly. This problem can be modeled using a hypergraph: each of its vertices represents a subunit and a hyperedge represents a complex. Then the aim is to find a graph G on the same vertex set whose edges associate to contacts between subunits and so must satisfy (i) some local properties for every complex (i.e. hyperedge), and (ii) some other global properties.

For example, consider the following properties: (i) the subset of vertices of every hyperedge must form a connected subgraph of G and (ii) there is an upper bound on the degree of any vertex. The first property comes from the fact that the complexes obtained (e.g. by native mass spectrometry) are connected components of a given assembly. The second property is deduced from a limited number of contacts of a subunit to the other in an assembly in practice. In our example in Figure 2.1, we use the first property and assume that the degree of every vertex does not exceed 3 . Consider a hypergraph H whose hyperedges are $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}, v_{5}\right\},\left\{v_{3}, v_{4}, v_{5}\right\}$, and $\left\{v_{4}, v_{5}, v_{6}, v_{7}\right\}$ as depicted in Figure 2.1 (left) in which a vertex labeled i represents v_{i}. The graph G described in Figure 2.1 (right) satisfies the previous properties: the induced subgraph of G on every hyperedge is connected and the maximum degree of G is 3 .

We first focus on the local properties. They are usually modeled by a (possibly infinite) family \mathcal{F} of admissible graphs to which each complex must belong: to this

CHAPTER 2. INTRODUCTION

Figure 2.1: Example of a hypergraph and an inference graph. A hypergraph composed of seven vertices and four hyperedges (left). A graph G satisfying local properties (every hyperedge induces a connected subgraph in G) and a global property (every vertex has degree at most a given number which is 3 in this case).
end, we define the notion of enforcement of a hyperedge and a hypergraph. A graph G \mathcal{F}-enforces a hyperedge $S \in E(H)$ if the subgraph $G[S]$ of G induced by S belongs to \mathcal{F}, and $G \mathcal{F}$-enforces H if $G \mathcal{F}$-enforces all hyperedges of H. Very often, the considered family \mathcal{F} is closed on taking edge supergraphs [ACCC15, $\left.\mathrm{CHM}^{+} 19\right]$: if $F \in \mathcal{F}$, then every graph obtained from G by adding edges is also in \mathcal{F}. Such a family is completely defined by its set $\mathcal{M}=\mathcal{M}(\mathcal{F})$ of minimal graphs that are the elements of \mathcal{F} which are not edge supergraphs of any other. In this case, a graph $G \mathcal{F}$-enforcing S is such that there is an element of \mathcal{M} which is a spanning subgraph of $G[S]$. This leads to the following notion of overlayment when considering minimal graph families.

Definition 15. A graph $G \mathcal{F}$-overlays a hyperedge S if there exists $F \in \mathcal{F}$ such that F is a spanning subgraph of $G[S]$, and $G \mathcal{F}$-overlays H if $G \mathcal{F}$-overlays every hyperedge of H.

As said previously, the graph sought will also have to satisfy some global constraints. Since in a macro-molecular assembly the number of contacts is small, the first natural idea is to look for a graph G with the minimum number of edges. This leads to the MIN- \mathcal{F}-Overlay problem: given a hypergraph H and an integer m, decide if there exists a graph $G \mathcal{F}$-overlaying H such that $|E(G)| \leq m$.

A typical example of a family \mathcal{F} is the set of all connected graphs, in which case $\mathcal{M}(\mathcal{F})$ is the set of all trees. In [ACCC15], Agarwal et al. focused on Min- $\mathcal{M}(\mathcal{F})$ Overlay for this particular family in the aforementioned context of structural biology. However, this problem was previously studied by several communities in other domains [CKN $\left.{ }^{+} 15\right]$. Indeed, it is also known as Subset Interconnection Design, Minimum Topic-Connected Overlay or Interconnection Graph Problem, and was considered (among others) in the design of vacuum systems [DK95, DM88], scalable overlay networks [CMTV07, $\mathrm{HHI}^{+} 12$, OR11], and reconfigurable interconnection networks [FHWE08, FW08]. Some variants have also been considered in the contexts of inferring a most likely social network [AAR10], determining winners of combinatorial auctions [CDS04], as well as drawing hypergraphs [BCPS10, JP87, KS03].

In $\left[\mathrm{CHM}^{+} 17, \mathrm{CHM}^{+} 19\right]$, Cohen et al. presented a dichotomy regarding the polynomial vs. NP-hard status with respect to the considered family \mathcal{F}. Roughly speaking, they showed that the easy cases one can think of (e.g. when edgeless graphs of the right sizes are in \mathcal{F}, or if \mathcal{F} contains only cliques) are the only families giving rise to a polynomial-time solvable problem: all others are NP-complete. They also considered the FPT/W[1]-hard dichotomy for several families \mathcal{F}.

2.2 Overlaying graph with bounded maximum degree

In this part of the thesis, we consider the variant in which the additional constraint is that G must have a bounded maximum degree: this constraint is motivated by the context of structural biology, since a subunit (e.g. a protein) cannot be connected to many other subunits. This yields the following problem for any family \mathcal{F} of graphs and an integer k.

$(\Delta \leq k)$ - \mathcal{F}-OVERLAY

Input: A hypergraph H.
Question: Does there exist a graph $G \mathcal{F}$-overlaying H such that $\Delta(G) \leq k$?

We denote a graph $G \mathcal{F}$-overlaying H with maximum degree at most k by (\mathcal{F}, H, k) graph (resp. (F, H, k)-graph) for \mathcal{F} is a graph family (resp. F a graph).

And we call $\operatorname{over}_{\mathcal{F}}(H, G)$ the number of hyperedges of H that are \mathcal{F}-overlaid by G. A natural generalization is to find $\operatorname{over}_{\mathcal{F}}(H, k)$, the maximum number of hyperedges \mathcal{F}-overlaid by a graph with maximum degree at most k.
$\operatorname{MAX}(\Delta \leq k)$ - \mathcal{F}-OVERLAY
Input: A hypergraph H and a positive integer s.
Question: Does there exist a graph G such that $\Delta(G) \leq k$ and $\operatorname{over}_{\mathcal{F}}(H, G) \geq s$?
Observe that there is an obvious reduction from $(\Delta \leq k)$ - \mathcal{F}-OVERLAY to MAX $(\Delta \leq k)$ - \mathcal{F}-OVERLAY (by setting $s=|E(H)|$).

Figure 2.2: Examples of $(\Delta \leq k)-\mathcal{F}$-OVERLAY and max $(\Delta \leq k)$ - \mathcal{F}-OVERLAY. In the figure, an instance H (left), a graph G with $\Delta(G) \leq 1$ that O_{3}-overlays H (with O_{3} being the graph with three vertices and one edge) (center), and a $\left(C_{3}, H, 3\right)$-graph to MAx $(\Delta \leq 3)-C_{3}$-OVERLAY (with C_{3} being the cycle on three vertices) (right).

CHAPTER 2. INTRODUCTION

2.3 Overview of this part

Our contribution is to provide the dichotomy of complexity (P vs NP) for MAX ($\Delta \leq$ k)- \mathcal{F}-Overlay and $(\Delta \leq k)$ - \mathcal{F}-Overlay considering pairs (F, k). We mainly consider the case when the family \mathcal{F} contains a unique graph F. We abbreviate $(\Delta \leq k)$ -$\{F\}$-Overlay and Max $(\Delta \leq k)$ - $\{F\}$-Overlay to $(\Delta \leq k)$ - F-Overlay and Max ($\Delta \leq k$)- F-Overlay, respectively. By definition those two problems really make sense only for $|F|$-uniform hypergraphs i.e. hypergraphs whose hyperedges are of size $|F|$. Therefore, we work often with hypergraphs that are uniform, without specifying it.

Remark 16. If F is a graph with maximum degree greater than k, then solving $(\Delta \leq k)$ -F-Overlay or Max $(\Delta \leq k)$ - F-Overlay is trivial as the answer is always ' $N o$ '. So we only study the problems when $\Delta(F) \leq k$.

If F is an anticomplete graph (i.e. with no edges), then MAx $(\Delta \leq k)$ - F-Overlay is also trivial, because for any hypergraph H, the anticomplete graph on $V(H)$ vertices F-overlays H. Hence the first natural interesting cases are the graphs with one edge which in Section 2.4, we present the complete dichotomy for this graph family.

Then, in Chapter 3, we give a complete polynomial/NP-complete dichotomy for the $\operatorname{MAX}(\Delta \leq k)$ - F-Overlay problems.

In Chapter 4, we investigate the complexity of $(\Delta \leq k)$ - F-Overlay problem. We believe that each such problem is either polynomial-time solvable or NP-complete. However the dichotomy seems to be more complicated than the one for MAX ($\Delta \leq$ k)- F-Overlay. So we first exhibit several pairs (F, k) such that ($\Delta \leq k$)- F-OVERLAY is polynomial-time solvable, while $\operatorname{MAx}(\Delta \leq k)$ - F-OVERLAY is NP-complete in Section 4.1. In the next two sections, we present the NP-complete results of $(\Delta \leq k)-F$ OVERLAY problem which we prove that except when F is complete or anticomplete, if k is large enough (with respect to F), then $(\Delta \leq k)$ - F-OVERLAY is NP-complete.

Remark 17. Our aim is to prove that ($\Delta \leq k$)-F-Overlay is NP-complete under some assumptions on k and F. Observe that, given a graph G, we can easily check whether $G F$-overlays H or not in polynomial-time solvable, thus the problem is clearly in NP. Therefore, we only need to prove that the problem is NP-hard.

2.4 Warm up: graphs with one edge

In this section, we consider graphs with one edge which for each on $p \geq 2$ vertices, we denote by O_{p}, then we establish the following dichotomy theorem.

Theorem 18. Let $k \geq 1$ and $p \geq 2$ be integers. If $p=2$ or if $k=1$ and $p=3$, then $\operatorname{MAX}(\Delta \leq k)$ - O_{p}-OVERLAY and $(\Delta \leq k)$ - O_{p}-OVERLAY are polynomial-time solvable. Otherwise, they are NP-complete.

Let $p \geq 2$, and H be a p-uniform hypergraph. Consider the edge-weighted graph $\left(K(H), w_{H}\right)$. For every matching M with at least one edge of this graph, let $G_{M}=$ $(V(H), M)$. Every hyperedge O_{p}-overlaid by G_{M} is a superset of at least one edge of M and at most $\left\lfloor\frac{p}{2}\right\rfloor$ edges of M. We thus have the following:

Observation 1. For every matching M of $K(H)$, we have:

$$
\begin{equation*}
\frac{1}{\left\lfloor\frac{p}{2}\right\rfloor} w_{H}(M) \leq \operatorname{over}_{O_{p}}\left(H, G_{M}\right) \leq w_{H}(M) \tag{2.1}
\end{equation*}
$$

where $w_{H}(M)=\sum_{e \in M} w_{H}(e)$.
Consider first the case when $p=2$. Let H be a 2 -uniform hypergraph. Every hyperedge is an edge, so $K(H)=H$. Moreover, a (hyper)edge of H is O_{2}-overlaid by G if and only if it is in $E(G)$. Hence $\operatorname{MAx}(\Delta \leq k)-O_{2}$-OVERLAY is equivalent to finding a maximum k-matching (that is a subgraph with maximum degree at most k) in $K(H)$. This problem is polynomial-time solvable, see [Sch03, Chap. 31], hence:

Proposition 19. $\operatorname{MAX}(\Delta \leq k)-O_{2}$-OVERLAY is polynomial-time solvable for all positive integer k.

If $p=3$, Inequalities (2.1) are equivalent to $\operatorname{over}_{O_{3}}\left(H, G_{M}\right)=w_{H}(M)$. Since the edge set of a graph with maximum degree 1 is a matching, MAx $(\Delta \leq 1)-O_{3}$ OVERLAY is equivalent to finding a maximum-weight matching in the edge-weighted graph $\left(K(H), w_{H}\right)$. This can be done in polynomial-time, see [Jun13, Chap. 14].

Proposition 20. MAX $(\Delta \leq 1)-O_{3}$-OVERLAY is polynomial-time solvable.
We shall now prove that if $p \geq 4$, or $p=3$ and $k \geq 2$, then $\operatorname{MAX}(\Delta \leq k)$ - $O_{p^{-}}$ OVERLAY is NP-complete. We prove it by a double induction on k and p. Theorem 21 and Theorem 22 first prove the base cases of the induction and Lemma 23 corresponds to the inductive steps.

Theorem 21. $(\Delta \leq 1)-O_{4}$-OVERLAY is NP-complete.
Proof. We reduce 3-SAT to $(\Delta \leq 1)-O_{4}$-OVERLAY.
We shall need the following gadget hypergraph $J=J(A, B) . V(J)=A \cup B$ with $|A|=3$ and $|B|=4$ and $E(J)=\{A \cup\{b\} \mid b \in B\}$.
Claim 21.1. Every $\left(O_{4}, J, 1\right)$-graph contains exactly one edge with both endvertices in A.
Proof of claim: Let G be an $\left(O_{4}, J, 1\right)$-graph. Each hyperedge of J contains an edge of G, which necessarily has an endvertex in A. Since $\Delta(G) \leq 1, G$ has at most three edges with an endvertex in A. Since J has four hyperedges, there is an edge of G contained in two hyperedges of J. The two endvertices of this edge are in A.

Let Φ be an instance of 3 -SAT with m clauses C_{1}, \ldots, C_{m} on n variables x_{1}, \ldots, x_{n}. Let $H=H(\Phi)$ be the 4-uniform hypergraph constructed as follows (see Figure 2.3).

CHAPTER 2. INTRODUCTION

Figure 2.3: The construction in the reduction. In a variable gadget (left), a blue (resp. red) edge corresponds to that the variable is true (resp. false). And an example of clause gadget of $C_{1}=\left(x_{1} \vee \overline{x_{4}} \vee \overline{x_{5}}\right)$ (right) with three edges $u_{1} v_{1}, u_{4} \bar{v}_{4}, u_{5} \bar{v}_{5}$ which corresponds to an assignment ϕ such that $\phi\left(x_{1}\right)=\phi\left(\bar{x}_{4}\right)=\phi\left(\bar{x}_{5}\right)=$ true.

- For each variable x_{i}, we create the variable gadget $V G_{i}$ as follows.

Its vertex set is $\left\{u_{i}, v_{i}, \bar{v}_{i}, w_{i}, \bar{w}_{i}, w_{i}^{\prime}, \bar{w}_{i}^{\prime}, u_{i}^{\prime}\right\} \cup B_{i}$, with $\left|B_{i}\right|=4$. We add the hyperedges of $J\left(\left\{u_{i}, v_{i}, \bar{v}_{i}\right\}, B_{i}\right), J\left(\left\{v_{i}, w_{i}, w_{i}^{\prime}\right\}, B_{i}\right), J\left(\left\{\bar{v}_{i}, \bar{w}_{i}, \bar{w}_{i}^{\prime}\right\}, B_{i}\right)$, and $J\left(\left\{u_{i}^{\prime}, w_{i}^{\prime}, \bar{w}_{i}^{\prime}\right\}, B_{i}\right)$.

- For each clause $C_{j}=\ell_{1} \vee \ell_{2} \vee \ell_{3}$, we create the clause hypergraph $C G_{j}$. Its vertex set is $\left\{z_{j}\right\} \cup \bigcup_{k=1}^{3}\left\{s_{j}^{k}, t_{j}^{k}, u_{j}^{k}, v_{j}^{k}\right\}$. Set $Z_{j}=\left\{t_{j}^{1}, t_{j}^{2}, t_{j}^{3}, z_{j}\right\}$ and for $k \in\{1,2,3\}$, set $T_{j}^{k}=\left\{s_{j}^{k}, t_{j}^{k}, u_{j}^{k}, v_{j}^{k}\right\}$. The hyperedge set of $C G_{j}$ is $\left\{Z_{j}, T_{j}^{1}, T_{j}^{2}, T_{j}^{3}\right\}$. Then for each $k \in\{1,2,3\}$, we identify u_{j}^{k} and v_{j}^{k} with u_{i} and v_{i} if $\ell_{k}=x_{i}$ and with u_{i} and \bar{v}_{i} if $\ell_{k}=\bar{x}_{i}$.

Let us prove that there is an $\left(O_{4}, H, 1\right)$-graph if and only if Φ is satisfiable. The general idea of the proof is that the variable gadget enforces only one of edges $u_{i} v_{i}$, $u_{i} \bar{v}_{i}$ to belongs G and that $u_{i} v_{i} \in E(G)$ (resp. $u_{i} \bar{v}_{i} \in E(G)$) if and only if the corresponding variable x_{i} is true (resp. false), thus the appearance of such an edge in a clause gadget implies that there is a true literal in the clause.

Assume first that there is an $\left(O_{4}, H, 1\right)$-graph G.
Claim 21.2. For each $1 \leq i \leq n, G$ contains either the edge $u_{i} v_{i}$ or the edge $u_{i} \bar{v}_{i}$. Moreover, for each $x \in\left\{u_{i}, v_{i}, \bar{v}_{i}\right\}$ there is some $x^{\prime} \in V G_{i}$ such that x and x^{\prime} are adjacent in G.

Proof of claim: Since $V G_{i}$ contains $J\left(\left\{u_{i}^{\prime}, w_{i}^{\prime}, \bar{w}_{i}^{\prime}\right\}, B_{i}\right)$, by Claim 21.1, G contains an edge $e^{\prime \prime}$ with both endvertices in $\left\{u_{i}^{\prime}, w_{i}^{\prime}, \bar{w}_{i}^{\prime}\right\}$. Assume that $e^{\prime \prime}$ is incident to w_{i}^{\prime}. Now $V G_{i}$ contains $J\left(\left\{v_{i}, w_{i}, w_{i}^{\prime}\right\}, B_{i}\right)$. So, by Claim 21.1, G contains an edge e^{\prime} with both endvertices in $\left\{v_{i}, w_{i}, w_{i}^{\prime}\right\}$. Since $\Delta(G) \leq 1, e^{\prime}$ is not incident to w_{i}^{\prime}, so $e^{\prime}=v_{i} w_{i}$. Now $V G_{i}$ contains $J\left(\left\{u_{i}, v_{i}, \bar{v}_{i}\right\}, B_{i}\right)$. So, by Claim 21.1, G contains an edge e with both endvertices in $\left\{u_{i}, v_{i}, \bar{v}_{i}\right\}$. This edge is not incident to v_{i}, so $e=u_{i} \bar{v}_{i}$. Similarly, we get that G contains $\bar{v}_{i} \bar{w}_{i}$ and $u_{i} v_{i}$ if $e^{\prime \prime}$ is incident to \bar{w}_{i}^{\prime}.

In view of this claim, one defines the truth assignment ϕ by $\phi\left(x_{i}\right)=$ true if $u_{i} v_{i} \in$ $E(G)$ and $\phi\left(x_{i}\right)=$ false if $u_{i} \bar{v}_{i} \in E(G)$. Let us prove that it satisfies Φ. Consider a clause $C_{j}=\ell_{1} \vee \ell_{2} \vee \ell_{3}$ and its corresponding clause gadget $C G_{j}$. If there is none of $u_{j}^{k} v_{j}^{k}$ in $E(G)$ (for all $k \in\{1,2,3\}$), that means both u_{j}^{k} and v_{j}^{k} are incident to an edge which is incident to a vertex in the variable gadget it they belongs to, T_{j}^{k} must
be O_{4}-overlaid by the edge $s_{j}^{k} t_{j}^{k}$. So, t_{j}^{k} (for all $k \in\{1,2,3\}$) has degree one in G. However, the hyperedge Z_{j} is O_{4}-overlaid by $z_{j} t_{j}^{k}$ or $t_{j}^{k} t_{j}^{k^{\prime}}$ for $k^{\prime} \neq k$ and $k, k^{\prime} \in$ $\{1,2,3\}$, which implies that there is one of vertices t_{j}^{k} which is of degree one in $G\left[Z_{j}\right]$. It is a contradiction, thus there is an edge $u_{j}^{k} v_{j}^{k} \in E(G)$ (for some $k \in\{1,2,3\}$). Hence $\phi\left(\ell_{k}\right)=$ true. Hence ϕ satisfies Φ.

Conversely, assume ϕ is an assignment satisfying Φ. Let G be the graph with vertex set $V(H)$ and whose edge set is constructed as follows. For every $1 \leq i \leq n$, add $\left\{u_{i} v_{i}, w_{i} w_{i}^{\prime}, u_{i}^{\prime} \bar{w}_{i}^{\prime}, \bar{w}_{i} \bar{v}_{i}\right\}$ to $E(G)$ if $\phi\left(x_{i}\right)=$ true and $\left\{u_{i} \bar{v}_{i}, \bar{w}_{i} \bar{w}_{i}^{\prime}, u_{i}^{\prime} w_{i}^{\prime}, w_{i} v_{i}\right\}$ to $E(G)$ if $\phi\left(x_{i}\right)=$ false. For every clause $C_{j}=\ell_{1} \vee \ell_{2} \vee \ell_{3}$, there exists $k \in\{1,2,3\}$ such that $\phi\left(\ell_{k}\right)=$ true. Add the edges $z_{j} t_{j}^{k}, s_{j}^{k+1} t_{j}^{k+1}$ and $s_{j}^{k+2} t_{j}^{k+2}$ (the superscript are modulo 3) to $E(G)$. One easily checks that G is an $\left(O_{4}, H, 1\right)$-graph.

Theorem 22. ($\Delta \leq 2$)- O_{3}-Overlay is NP-complete.

Proof. In order to simplify the proof, we will prove that the problem $(\Delta \leq 2)-O_{3}$ OVERLAY WITH HANDICAP is NP-complete, where, in addition to a hypergraph H, we are given a subset of vertices $A \subseteq V(H)$ (called handicap vertices), and we ask for a graph G that O_{3}-overlays H with the additional constraint that for every $v \in$ A, the degree of v is at most 1 . Observe that we can easily reduce this problem to $(\Delta \leq 2)-O_{3}$-Overlay: for every $v \in A$, add six vertices $t_{v}^{1}, \ldots, t_{v}^{6}$, and hyperedges $\left\{v, t_{v}^{1}, t_{v}^{p}\right\}$ for every $p \in\{2,3,4,5,6\}$. Let H^{\prime} be the obtained hypergraph. Observe that an $\left(O_{3}, H, 2\right)$-graph G in which every $v \in A$ has degree at most 1 can be extended into an ($O_{3}, H^{\prime}, 2$)-graph by adding the edge $v t_{v}^{1}$ (and all vertices of $V\left(H^{\prime}\right) \backslash V(H)$). Conversely, $\left(O_{3}, H^{\prime}, 2\right)$-graph G^{\prime} must contain the edge $v t_{v}^{1}$, and thus v is of degree at most 1 in $G^{\prime}[V(H)]$.

We reduce 3 -Sat to ($\Delta \leq 2$)- O_{3}-OvERLAY WITH HANDICAP. Let Φ be an instance of 3 -SAT with m clauses C_{1}, \ldots, C_{m} on n variables x_{1}, \ldots, x_{n}. We construct a 3 uniform hypergraph H as follows (see Figure 2.4 for an example).

- For every variable x_{i}, we create a variable gadget $V G_{i}$ composed of vertices $a_{i}^{1}, \ldots, a_{i}^{p_{i}}, \alpha_{i}^{1}, \ldots, \alpha_{i}^{p_{i}}, b_{i}^{1}, \ldots, b_{i}^{p_{i}}, \beta_{i}^{1}, \ldots, \beta_{i}^{p_{i}}, z_{i}^{1}, \ldots, z_{i}^{p_{i}}$, and $\zeta_{i}^{1}, \ldots, \zeta_{i}^{p_{i}}$ where p_{i} is the number of clauses where x_{i} appears. Then, for every $j \in\left[p_{i}\right]$, we create the following hyperedges (additions in superscripts are modulo p_{i}, and we write p_{i} instead of 0): $h_{i, j}^{1}=\left\{z_{i}^{j}, a_{i}^{j}, \alpha_{i}^{j}\right\}, h_{i, j}^{2}=\left\{z_{i}^{j}, b_{i}^{j}, \beta_{i}^{j}\right\}, h_{i, j}^{3}=\left\{a_{i}^{j}, z_{i}^{j}, b_{i}^{j}\right\}$, $h_{i, j}^{4}=\left\{z_{i}^{j}, b_{i}^{j}, \zeta_{i}^{j}\right\}, h_{i, j}^{5}=\left\{b_{i}^{j}, \zeta_{i}^{j}, a_{i}^{j+1}\right\}, h_{i, j}^{6}=\left\{\zeta_{i}^{j}, a_{i}^{j+1}, z_{i}^{j+1}\right\}$.
Moreover, all vertices $z_{i}^{1}, \ldots, z_{i}^{p_{i}}$, and $\zeta_{i}^{1}, \ldots, \zeta_{i}^{p_{i}}$ are handicap vertices.
- For every clause C_{j}, we create a clause gadget $C G_{j}$ composed of vertices c_{j}^{1}, \ldots, c_{j}^{5}, and, for every $p \in[5]$, of the hyperedge $\left\{c_{j}^{p}, c_{j}^{p+1}, c_{j}^{p+3}\right\}$ (additions are modulo 5 , and we write 5 instead of 0). The vertices c_{j}^{4} and c_{j}^{5} are handicap vertices.

CHAPTER 2. INTRODUCTION

Figure 2.4: An example of the reduction for $\Phi=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{2}} \vee x_{3} \vee x_{4}\right)$. The dotted lines join two vertices that are identified. The thick red lines indicate the handicap vertices.

- Finally, for every clause $C_{j}=\ell_{1} \vee \ell_{2} \vee \ell_{3}$, if $\ell_{p}=x_{i}$ (resp. $\ell_{p}=\bar{x}_{i}$) for some $p \in\{1,2,3\}$, then we identify the vertex c_{j}^{p} of $C G_{j}$ with the vertex α_{i}^{j} (resp. β_{i}^{j}) of $V G_{i}$.
The general idea of the proof is the following. There are only two possibilities to overlay a variable gadget $V G_{i}$ (either by a set T_{i} or a set F_{i} of edges) (see Claim 22.1). This two possibilities correspond to the two possible values (true or false) of the variable x_{i}. Then a clause gagdet $C G_{j}$ imposes that not all literals of the clauses are assigned false with this correspondence.

Assume first that there is an $\left(O_{3}, H, 2\right)$-graph G such that all handicap vertices have degree at most 1.

For $i \in[n]$, let $T_{i}=\bigcup_{j=1}^{p_{i}}\left\{z_{i}^{j} a_{i}^{j}, b_{i}^{j} \beta_{i}^{j}, b_{i}^{j} \zeta_{i}^{j}\right\}$ and $F_{i}=\bigcup_{j=1}^{p_{i}}\left\{a_{i}^{j} \alpha_{i}^{j}, z_{i}^{j} b_{i}^{j}, \zeta_{i}^{j} a_{i}^{j+1}\right\}$.
Claim 22.1. Let $i \in[n]$. We have the following:
(i) $z_{i}^{j} \zeta_{i}^{j} \notin E(G)$ and $\zeta_{i}^{j} z_{i}^{j+1} \notin E(G), j \in[m]$.
(ii) Either $T_{i} \subseteq E(G)$ or $F_{i} \subseteq E(G)$.

Proof of claim: (i) Assume for a contradiction that $z_{i}^{j} \zeta_{i}^{j} \in E(G)$. Since z_{i}^{j} and ζ_{i}^{j} are handicap vertices, the hyperedges $h_{i, j}^{2}, h_{i, j}^{3}, h_{i, j}^{5}$ must be O_{3}-overlaid by the edges $b_{i}^{j} \beta_{i}^{j}$, $a_{i}^{j} b_{i}^{j}, b_{i}^{j} a_{i}^{j+1}$, respectively, contradicting the fact that b_{i}^{j} has degree 2 in G.
Similarly, if $\zeta_{i}^{j} z_{i}^{j+1} \in E(G)$, then the hyperedges $h_{i, j}^{5}, h_{i, j+1}^{1}, h_{i, j+1}^{3}$ must be O_{3}-overlaid by the edges $b_{i}^{j} a_{i}^{j+1}, a_{i}^{j+1} \alpha_{i}^{j}, a_{i}^{j+1} b_{i}^{j+1}$, respectively, a contradiction.
(ii) By (i) the hyperedge $h_{i, j}^{4}$ is O_{3}-overlaid by $z_{i}^{j} b_{i}^{j}$ or $\zeta_{i}^{j} b_{i}^{j}$.

In the first case $z_{i}^{j} b_{i}^{j} \in E(G)$, since z_{i}^{j} is a handicap vertex, the hyperedge $h_{i, j-1}^{6}$ must be O_{3}-overlaid by $\zeta_{i}^{j-1} a_{i}^{j}$, and so hyperedge $h_{i, j-1}^{3}$ is O_{3}-overlaid by $z_{i}^{j-1} b_{i}^{j-1}$. And by induction, we get that $\bigcup_{j=1}^{m}\left\{\zeta_{i}^{j} a_{i}^{j+1}, z_{i}^{j} b_{i}^{j}\right\} \subseteq E(G)$. Since the z_{i}^{j} are handicap vertices, the hyperedge $h_{i, j}^{1}$ is O_{3}-overlaid by $a_{i}^{j} \alpha_{i}^{j}$. Hence $F_{i} \subseteq E(G)$.

In the second case $\zeta_{i}^{j} b_{i}^{j} \in E(G)$, a symmetrical argument shows $T_{i} \subseteq E(G)$. \triangleleft

We define the truth assignment ϕ by $\phi\left(x_{i}\right)=$ true if $T_{i} \subseteq E(G)$ and $\phi\left(x_{i}\right)=$ false if $F_{i} \subseteq E(G)$. This is well-defined by Claim 22.1 and the fact that $E(G)$ cannot contain both T_{i} and F_{i} because it has maximum degree 2.

Now, for any $j \in[m]$, there exists $p \in\{1,2,3\}$ such that c_{j}^{p} has degree 2 in $G\left[C G_{j}\right]$ (If not, then there are at most 2 edges. Hence there is a vertex c_{j}^{p} of degree 0 , and thus there is a hyperedge containing c_{j}^{p} which is not overlaid). Therefore, it has degree 0 in the variable gadget c_{j}^{p} belongs to. By our definition of ϕ, we get that $\phi\left(\ell_{p}\right)=$ true. Hence ϕ satisfies Φ.

Suppose now that $\phi:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{$ true, false $\}$ is an assignment satisfying Φ.
Let us first select a set of edges in the variable gadgets. For every $i \in[n]$, if $\phi\left(x_{i}\right)=$ true, then select edges $\left\{z_{i}^{j}, a_{i}^{j}\right\},\left\{b_{i}^{j}, \beta_{i}^{j}\right\}$ and $\left\{\zeta_{i}^{j}, b_{i}^{j}\right\}$ for all $j \in\left[p_{i}\right]$. If $\phi\left(x_{i}\right)=$ false, then select edges $\left\{z_{i}^{j}, b_{i}^{j}\right\},\left\{a_{i}^{j}, \alpha_{i}^{j}\right\}$ and $\left\{\zeta_{i}^{j}, a_{i}^{j+1}\right\}$ for all $j \in\left[p_{i}\right]$ (additions are modulo $\left.p_{i}\right)$. Let E_{1} be the set of selected edges, and $G_{1}=\left(V(H), E_{1}\right)$. Observe that $G_{1} O_{3}{ }^{-}$ overlays the hyperedges of all variable gadgets: for every $i \in[n]$ and every $j \in\left[p_{i}\right]$,

- $h_{i, j}^{1}$ contains the edge $\left\{z_{i}^{j}, a_{i}^{j}\right\}$ if $\phi\left(x_{i}\right)=$ true, and the edge $\left\{a_{i}^{j}, \alpha_{i}^{j}\right\}$ otherwise.
- $h_{i, j}^{2}$ contains the edge $\left\{b_{i}^{j}, \beta_{i}^{j}\right\}$ if $\phi\left(x_{i}\right)=$ true, and the edge $\left\{z_{i}^{j}, b_{i}^{j}\right\}$ otherwise.
- $h_{i, j}^{3}$ contains the edge $\left\{z_{i}^{j}, a_{i}^{j}\right\}$ if $\phi\left(x_{i}\right)=$ true, and the edge $\left\{z_{i}^{j}, b_{i}^{j}\right\}$ otherwise.
- $h_{i, j}^{4}$ contains the edge $\left\{\zeta_{i}^{j}, b_{i}^{j}\right\}$ if $\phi\left(x_{i}\right)=$ true, and the edge $\left\{z_{i}^{j}, b_{i}^{j}\right\}$ otherwise.
- $h_{i, j}^{5}$ contains the edge $\left\{\zeta_{i}^{j}, b_{i}^{j}\right\}$ if $\phi\left(x_{i}\right)=$ true, and the edge $\left\{\zeta_{i}^{j}, a_{i}^{j+1}\right\}$ otherwise.
- $h_{i, j}^{6}$ contains the edge $\left\{z_{i}^{j+1}, a_{i}^{j+1}\right\}$ if $\phi\left(x_{i}\right)=$ true, and the edge $\left\{\zeta_{i}^{j}, a_{i}^{j+1}\right\}$ otherwise.
Moreover the vertices $z_{i}^{1}, \ldots, z_{i}^{p_{i}}$, and $\zeta_{i}^{1}, \ldots, \zeta_{i}^{p_{i}}$ have degree 1 in G_{1} and the vertices α_{i}^{j} have degree 0 in G_{1} if and only if $\phi\left(x_{i}\right)=$ true and the vertices β_{i}^{j} have degree 0 in G_{1} if and only if $\phi\left(x_{i}\right)=$ false.

We now select a set of edges in the clause gadgets for every clause $C_{j}=\ell_{1} \vee \ell_{2} \vee \ell_{3}$. Since ϕ satisfies Φ, there exists $p=p_{j} \in\{1,2,3\}$ such that $\phi\left(\ell_{p}\right)=\operatorname{true}$. Select the edges $\left\{c_{j}^{p}, c_{j}^{p+2}\right\},\left\{c_{j}^{p}, c_{j}^{p+3}\right\}$ and $\left\{c_{j}^{p+1}, c_{j}^{p+4}\right\}$. Let E_{2} be the set of selected edges in clause gadgets, and $G_{2}=\left(V(H), E_{2}\right)$. Clearly, $G_{2} O_{3}$-overlays all hyperedges of the clause gadgets and the vertices c_{j}^{4} and $c_{j}^{5}, j \in[m]$, have degree 1 in G_{2}. Moreover, for all $j \in[m]$ the vertex $c_{j}^{p_{j}}$ is identified with the vertex α_{i}^{j} or β_{i}^{j}, which has degree 0 in G_{1} since $\phi\left(\ell_{p}\right)=$ true. Thus $G:=\left(V(H), E_{1} \cup E_{2}\right)$ has maximum degree 2 , which proves that it is an $\left(O_{3}, H, 2\right)$-graph.

Lemma 23. If $(\Delta \leq k)-O_{p}$-OVERLAY is NP-complete, then $(\Delta \leq k)-O_{p+1}$-OVERLAY and $(\Delta \leq k+1)$ - O_{p}-OVERLAY are NP-complete.

Let k and p be two positive integers with $p \geq 2$, let $H_{k, p}$ be the p-uniform hypergraph on $(k+1)(p-1)$ vertices whose hyperedge set contains all possible p-subsets of vertices.

We first need the following claim in order to prove Lemma 23.

CHAPTER 2. INTRODUCTION

Claim 23.1. Every $\left(O_{p}, H_{k, p}, k\right)$-graph is k-regular. Moreover, there exists an $\left(O_{p}, H_{k, p}, k\right)$ graph.

Proof of claim: Let G be an $\left(O_{p}, H_{k, p}, k\right)$-graph. Assume for a contradiction that it has a vertex v of degree at most $k-1$. Then, observe that $|V(G) \backslash N[v]| \geq(k+1)(p-2)+1$. Now, by removing successively the closed neighborhood of a vertex of the graph (chosen arbitrarily) until the graph is anticomplete, we can construct, together with v, an independent set S of G of size p. This is impossible, since S is a hyperedge of $H_{k, p}$ which is not O_{p}-overlaid by G.
Finally, observe that the disjoint union of $p-1$ cliques of size $k+1$ is a k-regular graph which O_{p}-overlays $H_{k, p}$.

Proof of Lemma 23. First, we will reduce from $(\Delta \leq k)-O_{p}$-OvERLAY to $(\Delta \leq k)-O_{p+1^{-}}$ Overlay. Let H be a p-uniform hypergraph. We construct a $(p+1)$-uniform hypergraph H^{*} from a copy of H and replace, for every hyperedge S, a hyperedge $S^{\prime}=S \cup\left\{v_{s}\right\}$. We also add, for every hyperedge S, a set of $(k+1) p-1$ new vertices N_{S}, and form, together with v_{S}, a hypergraph H_{S} isomorphic to $H_{k, p+1}$.

Let G be an $\left(O_{p}, H, k\right)$-graph. Construct G^{*} from G by adding, for every hyperedge S of H, a disjoint union of p cliques of size $k+1$ on the vertices $N_{S} \cup\left\{v_{S}\right\}$. Clearly, G^{*} is an $\left(O_{p+1}, H^{*}, k\right)$-graph.

Conversely, if G^{*} is an $\left(O_{p+1}, H^{*}, k\right)$-graph, then, by Claim 23.1, v_{S} must have degree k in N_{S} for every hyperedge S of H. Thus, the restriction of G^{*} to the vertices of H is an $\left(O_{p}, H, k\right)$-graph.

Now, we reduce $(\Delta \leq k)$ - O_{p}-OVERLAY to $(\Delta \leq k+1)$ - O_{p}-OVERLAY. Let H be a p-uniform hypergraph. Let H^{\prime} be the p-uniform hypergraph obtained from H by doing the following for each vertex $v \in V(H)$:

- add the vertices $x^{v}, y_{1}^{v}, \ldots, y_{p-2}^{v}$ and the hyperedge $S_{v}=\left\{v, x^{v}, y_{1}^{v}, \ldots, y_{p-2}^{v}\right\}$.
- for any $i=\{1, \ldots, p-2\}$, add a copy H_{i}^{v} of $H_{k+1, p}$ whose vertices are y_{i}^{v} and $(p-1)(k+2)-1$ new vertices.
Assume that G^{\prime} is an $\left(O_{p}, H^{\prime}, k+1\right)$-graph. By Claim 23.1, the graph induced by G^{\prime} on $V\left(H_{i}^{v}\right)$ is $(k+1)$-regular, for all $v \in V(H), 1 \leq i \leq p-2$. Therefore each y_{i}^{v} has $k+1$-neighbors outside the hyperedge S_{v}. Hence G^{\prime} must contain the edge $v x^{v}$ because it O_{p}-overlays S_{v}. Thus the subgraph $G=G^{\prime}[V(H)]$ has maximum degree at most $\Delta\left(G^{\prime}\right)-1 \leq k$ and $G O_{p}$-overlays H. In other words, G is an $\left(O_{p}, H, k\right)$-graph.

Conversely, assume G is an $\left(O_{p}, H, k\right)$-graph. Let G^{\prime} be the graph with vertex set $V\left(H^{\prime}\right)$ and whose edge set is the union of $E(G),\left\{v x^{v} \mid v \in V(H)\right\}$, and the edge set of an $\left(O_{p}, H_{v}^{i}, k+1\right.$-graph (which exists by Claim 23.1), for all $v \in V(H), 1 \leq i \leq p-2$. One easily checks that G^{\prime} is $\left(O_{p}, H^{\prime}, k+1\right)$-graph. Therefore, there is an $\left(O_{p}, H, k\right)$ graph if and only if there is an $\left(O_{p}, H^{\prime}, k+1\right)$-graph.

Propositions 19 and 20, Theorems 21 and 22, and Lemma 23 imply Theorem 18.

Chapter 3

MAX $(\Delta \leq k)$ - F-OVERLAY

In this chapter, we address the complexity of MAX $(\Delta \leq k)$ - F-OVERLAY and prove the following theorem.

Theorem 24. $\operatorname{MAX}(\Delta \leq k)$-F-OVERLAY is polynomial-time solvable if either $\Delta(F)>k$, or F is an anticomplete graph, or $F=O_{2}$, or $k=1$ and $F=O_{3}$. Otherwise it is NPcomplete.

3.1 Proof overview

Polynomial cases. As noticed in Section 2.3, if $\Delta(F)>k$ or F is an anticomplete graph then MAx $(\Delta \leq k)$ - F-OVERLAY is trivially polynomial-time solvable.
Moreover, by Propositions 19 and 20, $\operatorname{MAx}(\Delta \leq 1)-O_{3}$-OVERLAY and MAX $(\Delta \leq k)$ -O_{2}-OVERLAY (for all positive integers k) are also polynomial-time solvable.

NP-completeness. It suffices now to prove that MAX $(\Delta \leq k)$ - F-OVERLAY is NPcomplete when $\Delta(F) \leq k, F \neq \bar{K}_{|F|},|F| \geq 3$ and $(F, k) \neq\left(O_{3}, 1\right)$.
Let F^{\prime} be the graph induced by the non-isolated vertices of F. Then $F=F^{\prime}+\bar{K}_{q}$ with $q=|F|-\left|F^{\prime}\right|$. If $\left|F^{\prime}\right|=2$, then $F=O_{|F|}$, and we have the result by Theorem 18. If $\left|F^{\prime}\right| \geq 3$, then we can conclude using Theorem 25 and Lemma 26 which are described in the next section.

3.2 NP-completeness

We first establish the NP-completeness when F has no isolated vertices.

CHAPTER 3. MAX $(\Delta \leq K)$ - F-OVERLAY

Theorem 25. Let F be a graph on at least three vertices with no isolated vertices. If $k \geq$ $\Delta(F)$, then MAX $(\Delta \leq k)$ - F-Overlay is NP-complete on neat hypergraphs.

Proof. Assume $k \geq \Delta(F)$. Let $n=|F|, a_{1}, \ldots, a_{n}$ be an ordering of the vertices of F such that $\delta(F)=d\left(a_{1}\right) \leq d\left(a_{2}\right) \leq \cdots \leq d\left(a_{n}\right)=\Delta(F)$.
Let $\gamma=\lfloor k / \delta(F)\rfloor-1, \beta=k-\gamma \delta(F)$. Observe that $\delta(F) \leq \beta \leq 2 \delta(F)-1$.
We shall give a reduction from Independent Set for cubic graphs [Kar72]. We distinguish two cases depending on whether $d\left(a_{2}\right)>\beta$ or not. Let $\gamma_{2}=\lfloor(k-$ $\left.\left.d\left(a_{2}\right)\right) / \delta(F)\right\rfloor$ and $\gamma_{3}=\left\lfloor\left(k-d\left(a_{3}\right)\right) / \delta(F)\right\rfloor$. And we define the value γ_{2} as follows.

- If $d\left(a_{2}\right)>\beta$, let $\gamma_{1}=\gamma_{2}$.
- If $d\left(a_{2}\right) \leq \beta$, let $\gamma_{1}=\left\lfloor\left(k-d\left(a_{1}\right)\right) / \delta(F)\right\rfloor$.

Let Γ be a cubic graph. For each vertex $v \in V(\Gamma)$, let $\left(e_{1}(v), e_{2}(v), e_{3}(v)\right)$ be an ordering of the edges incident to v. We shall construct the neat hypergraph $H=H(\Gamma)$ as follows.

- For each vertex $v \in \Gamma$, we create a hyperedge $S_{v}=\left\{a_{1}^{v}, \ldots, a_{n}^{v}\right\}$. Then, for $1 \leq i \leq 3$, we add $\gamma_{i} a_{i}^{v}$-leaves, that are hyperedges containing a_{i}^{v} and $n-1$ new vertices.
- For each edge $e=u v \in \Gamma$, let i and j be the indices such that $e=e_{i}(u)=e_{j}(v)$. We create a new vertex z_{e} and hyperedges $S_{u}^{e}\left(S_{v}^{e}\right)$ containing $z_{e}, a_{i}^{u}\left(a_{j}^{v}\right)$, and $n-2$ new vertices, respectively. Then, we add γz_{e}-leaves, that are hyperedges containing z_{e} and $n-1$ new vertices.
From the construction, observe that γ_{i} will be useful to enforce the degree of vertex a_{i}^{v} for $v \in V(G)$ which could have degree at most $d\left(a_{3}\right)$ in the hypergraph. We shall prove that $\operatorname{over}_{F}(H, k)=\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)|V(\Gamma)|+(\gamma+1)|E(\Gamma)|+\alpha(\Gamma)$, where $\alpha(\Gamma)$ denotes the cardinality of a maximum independent set in Γ.

The following claim shows that there are optimal solutions with specific structure. This leads to the inequality:

$$
\operatorname{over}_{F}(H, k) \leq\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)|V(\Gamma)|+(\gamma+1)|E(\Gamma)|+\alpha(\Gamma)
$$

Claim 25.1. There is a graph G with $\Delta(G) \leq k$ that F-overlays over ${ }_{F}(H, k)$ hyperedges of H such that:
(a) each x-leaf L is F-overlaid and x is incident to $\delta(F)$ edges in $G[L]$ (with $x=a_{i}^{v}$ or $x=z_{e}$).
(b) for each edge $e=u v \in E(\Gamma)$, exactly one of the two hyperedges S_{u}^{e} and S_{v}^{e} is F overlaid. Moreover if $S_{u}^{e}\left(S_{v}^{e}\right)$ is F-overlaid, then $a_{i}^{u}\left(a_{j}^{v}\right)$ is incident to at most $d\left(a_{2}\right)$ edges in $S_{u}^{e}\left(S_{v}^{e}\right)$, respectively.
(c) the set of vertices v such that S_{v} is F-overlaid is an independent set in Γ.

Proof of claim: (a) Let G be a graph with $\Delta(G) \leq k$ that F-overlays over $_{F}(H, k)$ hyperedges of H. Observe first that since H is a neat hypergraph, we may assume that, for every hyperedge S of $H, G[S]=F$ if S is F-overlaid and $G[S]$ has no edge otherwise.

Therefore if an x-leaf L is F-overlaid, then replacing $G[L]$ by a copy of F in which x has degree $\delta(F)$, we obtain another graph with maximum degree at most k that F overlays $\operatorname{over}_{F}(H, k)$ hyperedges of H. Henceforth we may assume that if an x-leaf is F-overlaid then x is incident to $\delta(F)$ edges included in it.

Now assume that the z_{e}-leaf L, for $e \in E(\Gamma)$, is not F-overlaid by G. We have $d_{G}\left(z_{e}\right)>k-\delta(F)$ for otherwise adding on L the edges of a copy of F in which z_{e} has degree $\delta(F)$, we obtain a graph F-overlaying more hyperedges than G. But since there are γz_{e}-leaves and z_{e} is incident to $\delta(F)$ edges in each of them, at least one of the hyperedges S_{u}^{e} and S_{v}^{e} is F-overlaid. Now replacing the edges of G in this hyperedge by those of a copy of F in L, in which z_{e} has degree $\delta(F)$, we obtain another graph with maximum degree at most k that F-overlays $\operatorname{over}_{F}(H, k)$ hyperedges of H. Henceforth we may assume that every z_{e}-leaf is F-overlaid.

A similar reasoning shows that every a_{i}^{v}-leaf is F-overlaid, for all $v \in V(\Gamma), i \in$ $\{1,2,3\}$.
(b) Now by (a) each vertex z_{e} is incident to $\gamma \delta(F)=k-\beta>k-2 \delta(F)$ edges in the z_{e}-leaves. Thus z_{e} is incident to at most β edges in $S_{u}^{e} \cup S_{v}^{e}$. Since $\beta \leq 2 \delta(F)-1$, at most one of S_{u}^{e} and S_{v}^{e} is F-overlaid.
Moreover, if S_{u}^{e} is F-overlaid and $\beta<d\left(a_{2}\right)$ (resp. $d\left(a_{2}\right) \leq \beta$), then z_{e} must have degree $d\left(a_{1}\right)$ (resp. at most $\left.d\left(a_{2}\right)\right)$ in $G\left[S_{u}^{e}\right]$.
Assume now that none of S_{u}^{e}, S_{v}^{e} is F-overlaid, and let $e=e_{i}(u)$, a_{i}^{u} has $\gamma_{i} a_{i}^{u}$-leaves, so a_{i}^{u} is incident to $\gamma_{i} \delta(F) \leq k-d\left(a_{i}\right)$ edges in these leaves.
Thus, replacing the edges of G in S_{u}^{e} by those of a copy of F, in which

- if $d\left(a_{2}\right)>\beta$, we have $d_{G}\left(a_{i}^{u}\right) \leq k-d\left(a_{2}\right)$, then z_{e} has degree $\delta(F)$ and a_{i}^{u} has degree $d\left(a_{2}\right)$.
- if $d\left(a_{2}\right) \leq \beta$, since $d_{G}\left(a_{1}^{u}\right) \leq k-d\left(a_{1}\right)$, then for $i=1, a_{i}^{u}$ must have degree $d\left(a_{1}\right)$, so z_{e} has degree $d\left(a_{2}\right)$. And for $i=\{2,3\}$, let $d\left(z_{e}\right)=d\left(a_{1}\right), d\left(a_{i}^{u}\right)=d\left(a_{2}\right)$.
Hence, we obtain another graph with maximum degree at most k that F-overlays $\operatorname{over}_{F}(H, k)$ hyperedges of H. Henceforth, we may assume that at least one of S_{u}^{e} and S_{v}^{e} is F-overlaid.
(c) Consider now a vertex $v \in V(\Gamma)$ such that S_{v} is F-overlaid. We distinguish the following cases.
- If $d\left(a_{2}\right)>\beta$, then by (a), vertex a_{1}^{v} is incident to $\gamma_{1} \delta(F)$ edges in the a_{1}^{v}-leaves and at least $\delta(F) \in S_{v}$. Therefore $S_{v}^{e_{1}(v)}$ cannot be F-overlaid for otherwise, by (b), a_{1}^{v} would have degree at least $\gamma_{1} \delta(F)+\delta(F)+d\left(a_{2}\right)>k$. Similarly, $S_{v}^{e_{2}(v)}$ cannot be F-overlaid.
Assume now for a contradiction that $S_{v}^{e_{3}(v)}$ is F-overlaid. By (a) and (b), a_{3}^{v} is incident to $\gamma_{3} \delta(F)$ edges in the a_{3}^{v}-leaves and at least $d\left(a_{2}\right) \in S_{v}^{e_{3}(v)}$. Since $\gamma_{3} \delta(F)+d\left(a_{2}\right)+d\left(a_{3}\right)>k, a_{3}^{v}$ is incident to less than $d\left(a_{3}\right)$ edges in S_{v}. Thus, there is a vertex $a \in\left\{a_{1}^{v}, a_{2}^{v}\right\}$ which is incident to at least $d\left(a_{3}\right)$ edges in S_{v} and

CHAPTER 3. MAX $(\Delta \leq K)$ - F-OVERLAY

thus at least $\gamma_{1} \delta(F)+d\left(a_{3}\right)$ edges in G. But a_{3}^{v} is adjacent to at least $\delta(F)$ edges in S_{v} so at least $\gamma_{3} \delta(F)+d\left(a_{2}\right)+\delta(F)$ edges in total. Thus $\gamma_{3} \delta(F)+d\left(a_{2}\right)+\delta(F) \leq k$, so $\gamma_{3} \leq \gamma_{1}-1$. Thus a is adjacent to at least $\left(\gamma_{3}+1\right) \delta(F)+d\left(a_{3}\right)>k$ edges, a contradiction.

- If $d\left(a_{2}\right) \leq \beta$, then by (a), vertex a_{1}^{v} is incident to $\gamma_{1} \delta(F)$ edges in the a_{1}^{v}-leaves and at least $\delta(F) \in S_{v}$. If $S_{v}^{e_{1}(v)}$ is F-overlaid, then (b) yields $d\left(a_{i}^{v}\right)=\gamma_{i} \delta(F)+$ $\delta(F)+\delta(F)>k$, a contradiction. If $S_{v}^{e_{2}(v)}$ is F-overlaid, then $d\left(a_{2}^{v}\right)=\delta$ in $G\left[S_{v}\right]$. We obtain that $d\left(a_{2}^{v}\right)=\gamma_{2} \delta+d\left(a_{2}\right)+\delta \leq k$ which implies that $\gamma_{2} \leq \gamma_{2}-1$, a contradiction. If $S_{v}^{e_{3}(v)}$ is F-overlaid, then we get a contradiction in the same way as that in the case $d\left(a_{2}\right)>\beta$.
To summarize, if S_{v} is F-overlaid, then none of $S_{v}^{e_{1}(v)}, S_{v}^{e_{2}(v)}, S_{v}^{e_{3}(v)}$ is F-overlaid. Together with (b), this implies (c).

Conversely, consider W a maximum independent set of Γ.
Let G be the graph with vertex $V(H)$ which is the union of the following subgraphs:

- for each x-leaf L, we add a copy of F on L in which x has degree $\delta(F)$;
- for each vertex $v \in W$, we add a copy of F on S_{v} in which a_{i}^{v} has degree $d\left(a_{i}\right)$ for all $1 \leq i \leq n$.
- for each edge $e \in E(\Gamma)$, we choose an endvertex u of e such that $u \notin W$, and add a copy of F in which z_{e} has degree $d\left(a_{1}\right)$ and a_{i}^{u} has degree $d\left(a_{2}\right)$ (with i the index such that $e_{i}(u)=e$) except the case when $d\left(a_{2}\right) \leq \beta$ and $i=1$, we do that but $d\left(z_{e}\right)=d\left(a_{2}\right)$ and $d\left(a_{1}^{u}\right)=d\left(a_{1}\right)$ in $G\left[S_{u}^{e_{1}(u)}\right]$.
It is simple matter to check that $\Delta(G) \leq k$ and that $G F$-overlays
$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)|V(\Gamma)|+(\gamma+1)|E(\Gamma)|+\alpha(\Gamma)$ hyperedges of H. Thus over $F(H, k) \geq$ $\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)|V(\Gamma)|+(\gamma+1)|E(\Gamma)|+\alpha(\Gamma)$.

We then investigate the problem when F has isolated vertices. In order to prove it, we exploit the induction method by using Theorem 25 as the base case, and the induction part is the following.

Lemma 26. Let k be a positive integer, let F be a graph with $\delta(F) \geq 1$, and let q be a non-negative integer. If MAX $(\Delta \leq k)-\left(F+\bar{K}_{q}\right)$-OVERLAY is NP-complete, then MAX $(\Delta \leq k)-\left(F+\bar{K}_{q+1}\right)$-OVERLAY is also NP-complete.

Proof. We shall reduce MAX $(\Delta \leq k)-\left(F+\bar{K}_{q}\right)$-Overlay to MAX $(\Delta \leq k)-\left(F+\bar{K}_{q+1}\right)-$ Overlay. Set $p=|V(F)|$ and $r=\lfloor k / \delta(F)\rfloor$. Note that $r \geq 1$, for otherwise MAX $(\Delta \leq k)-\left(F+\bar{K}_{q}\right)$-Overlay would trivially be polynomial-time solvable.

Let H^{\prime} be a $(p+q)$-uniform hypergraph. Let H be the $(p+q+1)$-uniform hypergraph obtained from H^{\prime} as follows. Its vertex set is partitioned into $V\left(H^{\prime}\right), P_{1}, \ldots, P_{r}$, K, and $\{z\}$ with $\left|P_{i}\right|=p-1$ for all $1 \leq i \leq r$ and $|K|=(m+1)(k+1)+k p$
with $m=\max \left\{\left|E\left(H^{\prime}\right)\right|, q+1\right\}$. The hyperedge set of H contains $Q \cup P_{i} \cup\{z\}$ for all $(q+1)$-subsets Q of K and all $1 \leq i \leq r$, and $S \cup\{z\}$ for all $S \in E\left(H^{\prime}\right)$.

The reduction can be performed in polynomial time, because for each hyperedge in H^{\prime} we construct a polynomial number of hyperedges in H (recall that q is fixed), and each of them is straightforward to obtain. We shall now prove that over $_{F+\bar{K}_{q+1}}(H, k)=$ over $_{F+\bar{K}_{q}}\left(H^{\prime}, k\right)+r\binom{|K|}{q+1}$.

Let G_{0}^{\prime} be a graph with $V\left(G_{0}^{\prime}\right)=V\left(H^{\prime}\right)$ and $\Delta\left(G_{0}^{\prime}\right) \leq k$ that $\left(F+\bar{K}_{q}\right)$-overlays over $_{F+\bar{K}_{q}}\left(H^{\prime}, k\right)$ hyperedges of H^{\prime}. For $1 \leq i \leq r$, let F_{i} be a copy of F on $P_{i} \cup\{z\}$ in which z has degree $\delta(F)$. Let G_{0} be the graph defined by $V\left(G_{0}\right)=V(H)$ and $E\left(G_{0}^{\prime}\right) \cup \bigcup_{i=1}^{r} E\left(F_{i}\right)$. Clearly, $\Delta\left(G_{0}\right) \leq k$ and $G_{0} F$-overlays all hyperedges of H except hyperedges $S \cup\{z\}$ in which $S \in E\left(H^{\prime}\right)$ are not overlaid by G_{0}^{\prime}. So over ${ }_{F+\bar{K}_{q+1}}(H, k) \geq$ over $_{F+\bar{K}_{q}}\left(H^{\prime}, k\right)+r\binom{|K|}{q+1}$.

Conversely, let G be a graph with $V(G)=V(H)$ and $\Delta(G) \leq k$ that maximizes the number of $\left(F+E_{q+1}\right)$-overlaid hyperedges.

Claim 26.1. In G, vertex z has at least $\delta(F)$ neighbors in each $P_{i}, 1 \leq i \leq r$.
Proof of claim: Suppose for a contradiction that z has less than $\delta(F)$ neighbors in P_{i}. Since $\Delta(G) \leq k$, at most $k p$ vertices of K are incident to an edge with an endvertex in $P_{i} \cup\{z\}$. Thus there is a subset R of K of $(m+1)(k+1)$ vertices non-adjacent to all vertices of $P_{i} \cup\{z\}$. Now $G[R]$ has maximum degree k and is thus $(k+1)$-colorable. Hence $G[R]$ has an independent set S of size $m+1$. Observe that for each $(q+1)$-subset Q of S, the subgraph $G\left[Q \cup P_{i} \cup\{z\}\right]$ has $q+2$ vertices of degree less than $\delta(F)$ (namely the ones of $Q \cup\{z\}$), and so the hyperedge $Q \cup P_{i} \cup\{z\}$ is not $\left(F+\bar{K}_{q+1}\right)$-overlaid. Thus there are at least $m+1 \geq\left|E\left(H^{\prime}\right)\right|+1$ hyperedges not $\left(F+\bar{K}_{q+1}\right)$-overlaid by G. This contradicts the maximality of G as G_{0} overlays more hyperedges of H. \triangleleft

Now z has degree at least $r \delta(F)$ in $\bigcup_{i=1}^{r} P_{i}$ and so less than $\delta(F)$ in each hyperedge $S \cup\{z\}$ for $S \in E\left(H^{\prime}\right)$. Hence if $G\left(F+\bar{K}_{q+1}\right)$-overlays $S \cup z$, it must also $\left(F+\bar{K}_{q}\right)$ overlay S. Thus over ${ }_{F+\bar{K}_{q+1}}(H, k) \leq$ over $_{F+\bar{K}_{q}}\left(H^{\prime}, k\right)+r\binom{|K|}{q+1}$.

Chapter 4

($\Delta \leq k$)- F-OVERLAY

In this chapter, we investigate the complexity of $(\Delta \leq k)$ - F-Overlay problem. Unlike MAx $(\Delta \leq k)$ - F-Overlay which is very hard so leads to a simple dichotomy, ($\Delta \leq k$)- F-OvERLAY should have a more complicated one. As a consequence, we first present in Section 4.1 several pairs (F, k) for which $(\Delta \leq k)$ - F-Overlay is in P . NP-completeness results are then proved in Sections 4.2, 4.3. Through both sections, we aim to prove that for a graph F, which is is neither a complete nor an anticomplete graph, there is $k_{0}=k_{0}(F)$ such that $(\Delta \leq k)$ - F-OVERLAY is NP-complete for all $k \geq k_{0}$. A graph F having this property is called ultimately NP-complete.
In Section 4.4, we study the restriction of $(\Delta \leq k)$ - F-OVERLAY on neat hypergraphs. This problem is called Neat $(\Delta \leq k)$ - F-Overlay.
In the final section, we give some remarks and present some open questions for further research.

4.1 Polynomial results

Recall the dichotomy for graphs O_{p} in Section 2.4. ($\Delta \leq k$)- O_{p}-OverLAY is polynomialtime solvable (if and only if under the assumption $\mathrm{P} \neq \mathrm{NP}$) when $p=2$ or when $p=3$ and $k=1$. We now exhibit more pairs (F, k) such that $(\Delta \leq k)$-F-OVERLAY is polynomial-time solvable. Precisely, it is the case for some regular graphs and paths.

4.1.1 Regular graphs

Proposition 27. For every complete graph K and every positive integer k, $(\Delta \leq k)-K-$ Overlay is polynomial-time solvable.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Proof. Observe that a $|V(K)|$-uniform hypergraph H is a positive instance of $(\Delta \leq k)$ -K-Overlay if and only if $K(H)$ is a (K, H, k)-graph.

Proposition 28. For every connected k-regular graph $F,(\Delta \leq k)$ - F-OVERLAY is polynomialtime solvable.

Proof. One easily sees that a $|V(F)|$-uniform hypergraph H admits an (F, H, k)-graph if and only if the hyperedges of H are pairwise non-intersecting.

Let C_{4} denote the cycle on 4 vertices. Proposition 28 implies that $(\Delta \leq 2)$ - C_{4} Overlay is polynomial-time solvable. We now show that ($\Delta \leq 3$)- C_{4}-Overlay is also polynomial-time solvable.

Theorem 29. ($\Delta \leq 3$)-C4-OvERLAY is polynomial-time solvable.
Proof. Let H be a 4 -uniform hypergraph.
Let us describe an algorithm to decide whether there is a ($C_{4}, H, 3$)-graph. It is sufficient to do it when H is connected since the disjoint union of the ($C_{4}, K, 3$)-graphs for connected components K of H is a ($C_{4}, H, 3$)-graph.

Observe first that if two hyperedges of H intersect in exactly one vertex u, then no such graph exists, since u must have degree 2 in each of the hyperedges if they are C_{4}-overlaid, and thus degree 4 in total. Therefore if there are two such hyperedges, we return ' No^{\prime}. At this point we may assume that $|E(H)| \geq 2$ for otherwise we return 'Yes'.

From now on we may assume that two hyperedges either do not intersect, or are adjacent (intersect on at least two vertices).

Claim 29.1. If two hyperedges S_{1} and S_{2} intersect on three vertices and there is a $\left(C_{4}, H, 3\right)$ graph G, then $|V(H)| \leq 6$.

Proof of claim: Assume $S_{1}=\left\{a_{1}, b, c, d\right\}$ and $S_{2}=\left\{a_{2}, b, c, d\right\}$. Let G be a $\left(C_{4}, H, 3\right)$ graph. Observe that a_{1} and a_{2} must have two common neighbors, say b, c, in common in $\{b, c, d\}$, for otherwise their unique common vertex would have degree 4 in G. This forces d to be also adjacent to b and c.

Consider a hyperedge S_{3} intersecting $S_{1} \cup S_{2}$. Since it is C_{4}-overlaid by G, at least two edges connect $S_{3} \cap\left(S_{1} \cup S_{2}\right)$ to $S_{3} \backslash\left(S_{1} \cup S_{2}\right)$. The endvertices of those edges in $S_{1} \cup S_{2}$ must have degree 2 in $G\left[S_{1} \cup S_{2}\right]$. Hence, without loss of generality, there is a vertex e not in $S_{1} \cup S_{2}$ such that either $S_{3}=\left\{a_{1}, a_{2}, b, e\right\}$ and $\left\{a_{1} e, a_{1} e\right\} \subseteq E(G)$, or $S_{3}=\left\{a_{1}, b, d, e\right\}$ and $\left\{a_{1} e, d e\right\} \subseteq E(G)$. Now no hyperedge can both intersect $S_{1} \cup S_{2} \cup S_{3}$ and contain a vertex not in $S_{1} \cup S_{2} \cup S_{3}$, for such a hyperedge must contain either the vertices d, e or a_{2}, e which are at distance 3 in $G\left[S_{1} \cup S_{2} \cup S_{3}\right]$. (However there can be more hyperedges contained in $S_{1} \cup S_{2} \cup S_{3}$.) Hence $|V(H)| \leq 6$. \triangleleft

In view of Claim 29.1, if there are two hyperedges with three vertices in common, either we return ' No^{\prime} if $|V(H)|>6$, or we check all possibilities (or follow the proof of the above claim) to return the correct answer otherwise. Henceforth, we may assume that any two adjacent hyperedges intersect in exactly two vertices.

Let S_{1} and S_{2} be two adjacent hyperedges, say $S_{1}=\{a, b, c, d\}$ and $S_{2}=\{c, d, e, f\}$. Note that every $\left(C_{4}, H, 3\right)$-graph contains the edges $a b, c d$ and $e f$, and that $N(c) \cup$ $N(d)=S_{1} \cup S_{2}$ in this $\left(C_{4}, H, 3\right)$-graph.

Claim 29.2. If there is another hyperedge than S_{1} and S_{2} containing c or d, and there is a $\left(C_{4}, H, 3\right)$-graph G, then $|V(H)| \leq 8$.

Proof of claim: Without loss of generality, we may assume that G contains the cycle (a, b, d, f, e, c, a) and the edge $c d$. Hence the only possible hyperedges containing c or d and a vertex not in $S_{1} \cup S_{2}$ are $S_{3}=\{a, c, e, g\}$ for some $g \notin S_{1} \cup S_{2}$ and $S_{4}=\{b, d, f, h\}$ for some $h \notin S_{1} \cup S_{2}$.

If H contains both S_{3} and S_{4}, then G contains the edges $a g, e g, b h$ and $h f$. If G contains also $g h$, then $G\left[S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right]$ is 3-regular, so $G=G\left[S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right]$. If G does not contain $g h$, then the only vertices of degree 2 in $G\left[S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right]$ are g and h, and they are at distance at least 3 in this graph. Thus every hyperedge intersecting $S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ is contained in this set, so $|V(H)|=8$.

Assume now that H is a superset of only one of S_{3}, S_{4}. Without loss of generality, we may assume that this is S_{3}. Hence G also contains the edges $a g$ and $e g$. If $V(G) \neq$ $S_{1} \cup S_{2} \cup S_{3}$, then there is a hyperedge S that intersects $S_{1} \cup S_{2} \cup S_{3}$ and that is not contained in $S_{1} \cup S_{2} \cup S_{3}$. It does not contain c and d. Hence it must contain one of the vertices a or e, because it intersects each S_{i} along an edge of G or not at all. Without loss of generality, $a \in S$. Hence $S=\{a, b, i, g\}$ for some vertex i not in $S_{1} \cup S_{2} \cup S_{3}$, and G contains the edges $b i$ and $i g$. Now, as previously, either i and f are adjacent and $G=G\left[S_{1} \cup S_{2} \cup S_{3} \cup S\right]$ or they are not adjacent, and every hyperedge intersecting $S_{1} \cup S_{2} \cup S_{3} \cup S$ is contained in this set. In both cases, $|V(H)|=8$.

We now summarize the algorithm: if $|V(G)| \leq 8$, then we solve the instance by brute force. Otherwise, for every pair of hyperedges S_{1}, S_{2}, if their intersection is of size 1 or 3 , we answer ' No^{\prime}. In the remaining cases, if S_{1} and S_{2} have non-empty intersection, then, they must intersect on two vertices c and d, and these vertices do not belong to any other hyperedges but S_{1} and S_{2}. Hence, if a vertex is in at least 3 hyperedges, then we return ' No^{\prime}. If not, then every hyperedge intersects at most two hyperedges on two disjoint pairs of vertices. We can then return the $\left(C_{4}, H, 3\right)$ graph obtained as follows. If a hyperedge $S=\{a, b, c, d\}$ intersects either two other hyperedges S_{1} and S_{2} is $\{a, b\}$ and $\{c, d\}$, or exactly one hyperedge on $\{a, b\}$, then add the edges $a b, b c, c d, d a$ to $E(G)$.

Clearly, the above-described algorithm runs in polynomial time.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

4.1.2 Paths

Let \mathcal{P} be the set of all paths. We have the following:
Theorem 30. $(\Delta \leq 2)$-P-Overlay is linear-time solvable.
Proof. Clearly, if H is not connected, it suffices to solve the problem on each of the components and to return ' No ' if the answer is negative for at least one of the components, and 'Yes' otherwise. Henceforth, we shall now assume that H is connected. In such a case, a $(\mathcal{P}, H, 2)$-graph is either a path or a cycle. However, if H is \mathcal{P}-overlaid by a path P, then it is also \mathcal{P}-overlaid by the cycle obtained from P by adding an edge between its two endvertices. Thus, we focus on the case where G is a cycle.

Let \mathcal{S} be a family of sets. The intersection graph of a family \mathcal{S} is the graph $\operatorname{IG(\mathcal {S})}$ whose vertices are the sets of \mathcal{S}, and in which two vertices are adjacent if the corresponding sets in S intersect.

The intersection graph of a hypergraph H, denoted by $\operatorname{IG}(H)$, is the intersection graph of its hyperedge set. We define two functions l_{H} and s_{H} as follows:
$l_{H}(S)=|S|-1$ for all $S \in E(H)$ and $s_{H}\left(S, S^{\prime}\right)=\left|S \cap S^{\prime}\right|-1$ for all $S, S^{\prime} \in E(H)$.
Let \mathbb{C}_{ℓ} be the circle of circumference ℓ. We identify the points of \mathbb{C}_{ℓ} with the integer numbers (points) of the segment $[0, \ell]$, (with 0 identified with ℓ). A circular-arc graph is the intersection graph of a set of arcs on \mathbb{C}_{ℓ}. A set \mathcal{A} of arcs such that $\operatorname{IG}(\mathcal{A})=G$ is called an arc representation of G. We denote by A_{v} the arc corresponding to v in \mathcal{A}. Let G be a graph and let $l: V(G) \rightarrow \mathbb{N}$ and $s: E(G) \rightarrow \mathbb{N}$ be two functions. An arc representation \mathcal{A} of G is l-respecting if A_{v} has length $l(v)$ for any $v \in V(G)$, s-respecting if $A_{v} \cap A_{u}$ has length $s(u, v)$ for all $u v \in E(G)$, and (l, s)-respecting if it is both l-respecting and s-respecting. One can easily adapt the algorithm given by Köbler et al. [KKW15] for (l, s)-respecting interval representations to decide in linear time whether a graph admits an (l, s)-respecting arc representation in \mathbb{C}_{n} for every integer n.

Claim 30.1. Let H be a connected hypergraph on n vertices. There is a cycle \mathcal{P}-overlaying H if and only if $I G(H)$ admits an $\left(l_{H}, s_{H}\right)$-respecting arc representation into \mathbb{C}_{n}.

Proof of claim: Assume that H is \mathcal{P}-overlaid by a cycle $C=\left(v_{0}, v_{1}, \ldots, v_{n-1}, v_{0}\right)$. There is a canonical embedding of C to \mathbb{C}_{n} in which every vertex v_{i} is mapped to i and every edge $v_{i} v_{i+1}$ to the circular arc $[i, i+1]$. For every hyperedge $S \in E(H), P[S]$ is a subpath, which is mapped to the circular arc A_{S} of \mathbb{C}_{n} that is the union of the circular arcs to which its edges are mapped. Clearly, $\mathcal{A}=\left\{A_{S} \mid S \in E(H)\right\}$ is an $\left(l_{H}, s_{H}\right)$-respecting interval representation of $I G(H)$.

Conversely, assume that $I G(H)$ admits an $\left(l_{H}, s_{H}\right)$-respecting interval representation $\mathcal{A}=\left\{A_{S} \mid S \in E(H)\right\}$ into \mathbb{C}_{n}. Let S_{0} be a hyperedge of minimum size. Free

Figure 4.1: Example of an intersection graph and a corresponding circular representation. Given a hypergraph H (left), we determine its graph $I G(H)$ (middle) with each vertex represents the hyperedge of the same color in which the value of any vertex $S \in V(H)$ is $l_{H}(S)$ and the weight of an edge between S, S^{\prime} is $s_{H}\left(S, S^{\prime}\right)$. And a circular arc representation (each arc is associated to a hyperedge of the same color) is shown in the right which is (l, s)-respecting.
to rotate all intervals, we may assume that $A_{S_{0}}$ is $\left[1,\left|S_{0}\right|\right]$. Now since \mathcal{A} is $\left(l_{H}, s_{H}\right)$ respecting and H is connected, we deduce that the extremities of A_{S} are integers for all $S \in E(H)$. Let v_{1} be a vertex of H that belongs to the hyperedges whose corresponding arcs of \mathcal{A} contain 1 . Then for all $i=2$ to $n=|V(H)|$, denote by v_{i} an arbitrary vertex not in $\left\{v_{1}, \ldots, v_{i-1}\right\}$ that belongs to the hyperedges whose corresponding arcs of \mathcal{A} contain i. Such a vertex exists because \mathcal{A} is $\left(l_{H}, s_{H}\right)$-respecting. Observe that such a construction yields $S=\left\{v_{i} \mid i \in A_{S}\right\}$ for all $S \in E(H)$. Furthermore, the cycle $C=\left(v_{1}, \ldots, v_{n}, v_{1}\right) \mathcal{P}$-overlays H. Indeed, for each $S \in E(H)$, $C[S]$ is the subpath corresponding to A_{S}, that is $V(C[S])=\left\{v_{i} \mid i \in A_{S}\right\}$ and $E(C[S])=\left\{v_{i} v_{i+1} \mid[i, i+1] \subseteq A_{S}\right\}$.

The algorithm to solve $(\Delta \leq 2)-\mathcal{P}$-OvERLAY for a connected hypergraph H in linear time is thus the following:

1. Construct the intersection graph $I G(H)$ and compute the associated functions l_{H} and s_{H}.
2. Check whether graph $I G(H)$ has an $\left(l_{H}, s_{H}\right)$-respecting interval representation. If it is the case, return 'Yes'. If not return ' No^{\prime}.

Remark 31. We can also detect in polynomial time whether a connected hypergraph H is \mathcal{P}-overlaid by a path. Indeed, similarly to Claim 30.1, one can show that there is a path \mathcal{P}-overlaying H if and only if $I G(H)$ admits an $\left(l_{H}, s_{H}\right)$-respecting interval representation.

4.2 Ultimate NP-completeness

The aim of this section is to show that for a fixed graph $F,(\Delta \leq k)-F$-OVERLAY is NP-complete when $k \geq k_{0}$ (that k_{0} depends of F), then it is ultimately NP-complete

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY
(according to k).
We thus define $\operatorname{np}(F)$ the minimum integer k_{0} such that ($\Delta \leq k$)- F-Overlay is NPcomplete for all $k \geq k_{0}$ or $+\infty$ if no such k_{0} exists. Determining the value $\operatorname{np}(F)$ for some F is interesting in order to answer the complexity dichotomy of $(\Delta \leq k)$ - F Overlay.

Theorem 32. $\mathrm{np}(F)=+\infty$ if and only if F is complete or anticomplete.
Let H be a p-uniform hypergraph. The anticomplete graph on $V(H)$ vertices \bar{K}_{p}-overlays H. Thus, for any non-negative integer k, the answer to $(\Delta \leq k)-\bar{K}_{p^{-}}$ OVERLAY is always affirmative, and so this problem can be trivially solved in polynomial time. Hence, $\operatorname{np}\left(\bar{K}_{p}\right)=+\infty$ for all positive integer p.

If K_{p} is complete, then let G be te graph with vertex $V(H)$ in which two vertices are adjacent if and only if they belong to a same hyperedge of H. Obviously, a graph K_{p}-overlays H if and only if it contains G as a subgraph. Hence, to solve $(\Delta \leq k)-K_{p}$ OVERLAY it suffices to build G and to check whether $\Delta(G) \leq k$, which can be done in polynomial time. Thus $\mathrm{np}\left(K_{p}\right)=+\infty$ for all positive integer p.

The next is for the remaining graphs.
Theorem 33. If F is neither a complete graph nor an anticomplete graph, then $\operatorname{np}(F)<+\infty$.
We first show it is sufficient to prove Theorem 33 for F with no isolated vertices. Then we prove in Lemma 40 that for such a graph F, as soon as there exists k such that $(\Delta \leq k)$ - F-Overlay is NP-complete, then $\operatorname{np}(F)<+\infty$. It then remains to prove the following one.

Theorem 34. Let F be a graph with no isolated vertex and which is not complete. There exists k such that $(\Delta \leq k)$-F-OvERLAY is NP-complete.

In Section 4.2.2, we first prove Theorem 34 when F is in some particular classes of graphs : F is regular (Theorem 41), F is a complete graph K minus an edge, denoted by K^{-}(Theorem 42), and F is a disjoint union of the complete bipartite graph $K_{a, a+1}$ (Theorem 43). Then, in Section 4.3, we prove Theorem 34 in full. Its proof requires the previously established particular cases and uses the techniques introduced in proving them.

Some notations and definitions

In the previous sections, we obtained the complexity results which for graphs with specific structures. Such structure are an advantage to exploit and provide the proofs. In this section, the result is general and so we cannot look at every graph and use its own structure. Instead, we use some characteristic of graphs, the degree of each vertex in a graph.

The degree sequence of a graph F is the non-decreasing sequence $\mathbf{d}=\left\{d_{1}, d_{2}, \ldots, d_{p}\right\}$ such that there exists an ordering $\left(v_{1}, \ldots, v_{p}\right)$ of the vertices of F such that $d\left(v_{i}\right)=d_{i}$ for all $i \in[p]$. We denote by $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{t}$ the different values of \mathbf{d} (that are the integers λ in which there exists j such that $d_{j}=\lambda$). We also denote by α_{i} the multiplicity or number of occurrences of λ_{i} in $\mathbf{d}: \alpha_{i}=\left|\left\{j \mid d_{j}=\lambda_{i}\right\}\right|$. Observe that $d_{1}=\lambda_{1}=\delta(F)$ and $d_{p}=\lambda_{t}=\Delta(F)$.

The degree of a vertex v in H, denoted by $d_{H}(v)$ or simply $d(v)$ if H is clear from the context, is the number of hyperedges of H containing v. In a hypergraph H, a hyperedge S is pendant at a vertex x, if $d_{H}(v)=1$ for all $v \in S \backslash\{x\}$.

Let F be a graph, H a hypergraph, and G a graph F-overlaying H. For each hyperedge $S \in E(H)$, one can choose a copy F_{S} of F which is a subgraph of $G[S]$. We then say that v is a λ_{i}-vertex in S or has degree λ_{i} in S if v has degree λ_{i} in F_{S}.

4.2.1 Reduction to Theorem 34

Graphs with isolated vertices

Lemma 35. Let F be a graph. If $(\Delta \leq k)$ - F-Overlay is NP-complete, then $(\Delta \leq k)$ -$\left(F+\bar{K}_{1}\right)$-OVERLAY is also NP-complete.

Proof. We shall give a reduction from $(\Delta \leq k)$ - F-Overlay to $(\Delta \leq k)-\left(F+\bar{K}_{1}\right)-$ Overlay.
Let \mathbf{d} be the (non-decreasing) degree sequence of F, and let λ^{+}be the first non-zero value in this sequence. ($\lambda^{+}=\lambda_{1}$ if F has no isolated vertex, and $\lambda^{+}=\lambda_{2}$ otherwise.) Let H be an $|F|$-uniform hypergraph. We construct an $(|F|+1)$-uniform hypergraph H^{\prime} as follows.

- Let H_{1}, \ldots, H_{t} be $t=\left\lfloor\frac{k}{\lambda^{+}}\right\rfloor|E(H)|+1$ disjoint copies of H. We add $V\left(H_{i}\right)$ to $V\left(H^{\prime}\right)$ for all $i \in[t]$.
- For any $S \in E(H)$, we add a new vertex v_{S} to $V\left(H^{\prime}\right)$. For all $i \in[t]$, denoting by S_{i} the copy of S in H_{i}, we add the hyperedge $S_{i}^{\prime}=S_{i} \cup\left\{v_{S}\right\}$ to H^{\prime}.
We shall prove that there is an (F, H, k)-graph G if and only if there exists an $(F+$ $\left.\bar{K}_{1}, H^{\prime}, k\right)$-graph G^{\prime}.

Assume first that there is an (F, H, k)-graph. We build a graph G^{\prime} by taking $G^{\prime}\left[H_{i}\right]=G$ for any $i \in[t]$. Observe that $G^{\prime}\left[S_{i}^{\prime}\right]$ is $\left(F+\bar{K}_{1}\right)$-overlaid since $G\left[S_{i}\right]$ is F-overlaid and v_{S} is an isolated vertex. Furthermore G^{\prime} has at most degree k. Thus, G^{\prime} is an $\left(F+\bar{K}_{1}, H^{\prime}, k\right)$-graph.

Conversely, assume that there exists an $\left(F+\bar{K}_{1}, H^{\prime}, k\right)$-graph G^{\prime}. We will prove that there exists a copy H_{i} of H such that $G^{\prime}\left[H_{i}\right]$ is an (F, H, k)-graph. Observe that, for any $S \in E(H)$, the vertex v_{S} is either isolated or has degree at least λ^{+}in each $G^{\prime}\left[S_{i}^{\prime}\right]$ for $i \in[t]$. Thus, v_{S} is not a 0 -vertex in at most $\left\lfloor\frac{k}{\lambda^{+}}\right\rfloor$hyperedges. Since there

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

are $|E(H)|$ such vertices, there exists a copy H_{i} of H such that for any $S \in E(H)$, vs is a 0 -vertex in all hyperedges $G^{\prime}\left[S_{i}^{\prime}\right]$. Thus $G^{\prime}\left[H_{i}\right]$ is an (F, H, k)-graph.

Applying the lemma several times, we get the following.
Corollary 36. Let F be a graph and q a positive integer. If $(\Delta \leq k)$ - F-Overlay is NPcomplete, then $(\Delta \leq k)-\left(F+\bar{K}_{q}\right)$-Overlay is also NP-complete. Hence $\operatorname{np}\left(F+\bar{K}_{q}\right) \leq$ $\mathrm{np}(F)$.

The family of graphs with isolated vertices to which this result does not apply is $K_{p}+\bar{K}_{q}$ because $(\Delta \leq k)$ - K_{p}-Overlay is in P . We then need the following.

Theorem 37. $\operatorname{np}\left(K_{p}+\bar{K}_{1}\right) \leq 2 p-2$ for all $p \geq 2$.
Proof. Let $p \geq 2$ and $k \geq 2 p-2$. We shall prove that $(\Delta \leq k)-\left(K_{p}+\bar{K}_{1}\right)$-OverLay is NP-complete.

Let q and r be the integers such that $k=(p-1) q+r$ with $0 \leq r<p-1$. Note that $q \geq 2$ since $k \geq 2(p-1)$.

We need the following gadget. Let u be a vertex. A $(p-1)$-gadget at u is the hypergraph H_{u} constructed as follows. The vertex set of H_{u} is the disjoint union of $\{u, v\}$ and $q+1$ sets U_{1}, \ldots, U_{q+1} of $p-1$ vertices, and its hyperedges are $\{u, v\} \cup U_{i}$ for $i \in[q+1]$, see Figure 4.2.

Claim 37.1. Let H_{u} be a $(p-1)$-gadget at u.
(i) u has degree at least $p-1$ in every $\left(F, H_{u}, k\right)$-graph.
(ii) There is an $\left(F, H_{u}, k\right)$-graph in which u has degree $p-1$.

Figure 4.2: The gadget H_{u} at vertex u. An example of an $\left(F, H_{u}, k\right)$-graph where v has degree $p-1$ in each of hyperedges U_{1}, \ldots, U_{q} and u has degree $p-1$ in U_{q+1}.

Proof of claim: (i) Let G_{u} be an $\left(F, H_{u}, k\right)$-graph. Assume for a contradiction that u has degree less than $p-1$. Then u must be a 0 -vertex in each $S_{i}, i \in[q+1]$. Hence v must be adjacent to the $p-1$ vertices of U_{i} in each S_{i}. Thus v as degree at least $(p-1)(q+1)>k$ in G_{u}, a contradiction.
(ii) For $i \in Q$, let F_{i} be a copy of $K_{p}+\bar{K}_{1}$ in which u is isolated, and let F_{q+1} be a copy of $K_{p}+\bar{K}_{1}$ in which v is isolated, and let $G_{u}=\bigcup_{B \in[q+1]} F_{i}$. Clearly, G_{u} F-overlays H_{u}, v has degree $q(p-1) \leq k$ in G_{u} and u has degree $p-1$ in G_{u}. So G_{u} is the desired $\left(F, H_{u}, k\right)$-graph.

We give a reduction from 3-COLORING on 4-regular graphs.
Given a 4-regular graph G, we build a p-uniform hypergraph H as follows.

Figure 4.3: The construction in the reduction. The vertex gadget $V G_{v}$ in the left with 3 hyperedges (left) in which at least one of $c_{v}^{1}, c_{v}^{2}, c_{v}^{3}$ can be a ($p-1$)-vertex in its parent hyperedge. At each of c_{v}^{i}, we add to binary tree (middle) where every couple of red edges are replaced by an x-edge-gadget (right) which enforces vertex children having the same degree as its vertex parent in their parent hyperedges. A vertex c_{v}^{i} is a $(p-1)$-vertex in its parent hyperedge S_{v}^{i} if and only if v has color i in a proper coloring.

- For each vertex $v \in V(G)$, we create a vertex gadget $V G_{v}$ with three hyperedges $S_{v}^{i}=\left\{c_{v}, c_{v}^{i}\right\} \cup X_{v}^{i}$ for $i \in[3]$ where $\left|X_{v}^{i}\right|=p-2$. We add $q-2(p-1)$-gadgets at c_{v}. We say that S_{v}^{i} is the parent hyperedge of c_{v}^{i} for each $i \in[3]$.
- For each vertex v and each $i \in[3]$, we construct a color gadget $C G_{v}^{i}$ for $i \in[3]$ as follows.
- We create a binary tree T_{v}^{i} with vertex set $\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}, \ell_{v}^{i, 1}, \ell_{v}^{i, 2}, \ell_{v}^{i, 3}, \ell_{v}^{i, 4}\right\}$ and edge set $\left\{c_{v}^{i} a_{v}^{i}, c_{v}^{i} b_{v}^{i}, a_{v}^{i} \ell_{v}^{i, 1}, a_{v}^{i} \ell_{v}^{i, 2}, b_{v}^{i} \ell_{v}^{i, 3}, b_{v}^{i} i_{v}^{i, 4}\right\}$, rooted at c_{v}^{i}. In this tree, a_{v}^{i} and b_{v}^{i} are the children of $c_{v}^{i}, \ell_{v}^{i, 1}$ and $\ell_{v}^{i, 2}$ are the children of a_{v}^{i}, and $\ell_{v}^{i, 3}$ and $\ell_{v}^{i, 4}$ are the children of b_{v}^{i}.
- For any vertex $x \in\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}\right\}$, let y_{1}, y_{2} be its children in T_{v}^{i}, and let $e_{1}=$ $x y_{1}, e_{2}=x y_{2}$. We construct an x-edge-gadget as follows: we add a set Y_{x} of $p-2$ new vertices, the hyperedges $S\left(e_{1}\right)=\left\{x, y_{1}\right\} \cup Y_{x}$ and $S\left(e_{2}\right)=$ $\left\{x, y_{2}\right\} \cup Y_{x}$. For convenience, we say that $S\left(x y_{1}\right)$ (resp. $S\left(x y_{2}\right)$) is the parent hyperedge of y_{1} (resp. y_{2}). Moreover, for any leaf $\ell_{v}^{i, j}$, we denote by $S_{v}^{i, j}$ the hyperedge containing the vertex $\ell_{v}^{i, j}$. We then add $q-1(p-1)$-gadgets at x.
- For every vertex $v \in V(G)$, let $e_{v}^{1}, e_{v}^{2}, e_{v}^{3}, e_{v}^{4}$, be an ordering of the edges incident to v. For each edge $u v \in E(G)$, let j_{u} and j_{v} be the indices such that $u v=e_{u}^{j_{u}}=$ $e_{v}^{j_{v}}$. Then, for all $i \in[3]$, we identify the vertices $\ell_{u}^{i, j_{u}}$ and $\ell_{v}^{i, j_{v}}$ and we add $q-1$ ($p-1$)-gadgets at this vertex.

Let us now prove that there is a proper 3 -coloring of G if and only if there is an (F, H, k)-graph G^{*}.

Assume first that there is an (F, H, k)-graph G^{*}.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Let $v \in V(G)$. By Claim 37.1 (i), the vertex c_{v} has degree at least $p-1$ in each of its $(p-1)$-gadgets. Thus it has degree at most $2(p-1)+r$ in $S_{v}^{1} \cup S_{v}^{2} \cup S_{v}^{3}$. But those hyperedges pairwise intersect in $\left\{c_{v}\right\}$. Thus there is $i \in[3]$ such that c_{v} is a 0 -vertex in S_{v}^{i}. Since we have only one 0 -vertex in S_{v}^{i}, thus c_{v}^{i} must be a $(p-1)$-vertex in S_{v}^{i}. Therefore, we can define a 3 -coloring ϕ by $\phi(v)=i$ where i is an index such that c_{v}^{i} is a ($p-1$)-vertex in S_{v}^{i}. Let us now prove that ϕ is proper. We need the following claim.

Claim 37.2. Let $v \in V(G)$ and $i \in[3]$. If c_{v}^{i} is a $(p-1)$-vertex in S_{v}^{i}, then so is the leaf $\ell_{v}^{i, j}$ in $S_{v}^{i, j}$ for all $j \in[4]$.

Proof of claim: It suffices to prove that for any $x \in\left\{c_{v}^{i}, b_{v}^{i}, a_{v}^{i}\right\}$, if x is a $(p-1)$-vertex in its parent hyperedge, then so are both y_{1}, y_{2} in their parent hyperedges.

Assume that x is a $(p-1)$-vertex in its parent hyperedge. Since x has degree at least $p-1$ in each of its ($p-1$)-gadgets by Claim 37.1 (i), it has degree at most r in $S\left(x y_{1}\right) \cup S\left(x y_{2}\right)$. It implies that x is a 0 -vertex in both $S\left(x y_{1}\right), S\left(x y_{2}\right)$. Hence, the vertex y_{1} (resp. y_{2}) must be a $(p-1)$-vertex in $S\left(x y_{1}\right)$ (resp. $S\left(x y_{2}\right)$).

Consider an edge $u v \in E(G), i \in[3]$. By Claim 37.1 (i), the vertex $\ell=\ell_{u}^{i, j_{u}}=\ell_{v}^{i, j_{v}}$ has degree at least $p-1$ in each of its $q-1(p-1)$-gadgets. Thus it has at most $(p-1)+r$ neighbors in $S_{u}^{i, j_{u}} \cup S_{v}^{i, j_{v}}$. As ℓ is the unique common vertex of $S_{u}^{i, j_{u}}$ and $S_{v}^{i, j_{v}}$, it is a ($p-1$)-vertex in at most one of those. Hence, by the Claim 37.2, at most one of c_{u}^{i}, c_{v}^{i} is a $(p-1)$-vertex in its parent hyperedge. Thus at most one of u, v is colored i by ϕ. Therefore, ϕ is a proper 3-coloring of G.

Conversely, let ϕ be a proper 3-coloring of G. We construct a graph G^{*} as follows.

- For any vertex gadget $V G_{v}, i \in[3]$, let $G^{*}\left[S_{v}^{i}\right]$ be a copy of F in which every vertex in X_{v}^{i} is a $(p-1)$-vertex, and c_{v} is a 0 -vertex (resp. ($p-1$)-vertex) and c_{v}^{i} is a $(p-1)$-vertex (resp. 0 -vertex) in S_{v}^{i} if $\phi(v)=i($ resp. $\phi(v) \neq i)$.
- In every color gadget $C G_{v}^{i}$, for $x \in\left\{c_{v}^{i}, b_{v}^{i}, a_{v}^{i}\right\}$ with children y_{1} and y_{2}, let $G^{*}\left[S\left(x y_{1}\right)\right]$ and $\left.G^{*}\left[S\left(x y_{2}\right)\right]\right)$ be two similar copies of F such that:
- if $i \neq \phi(v)$, then x has degree $p-1$ in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right] ; y_{1}$ and y_{2} are 0-vertices in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$, respectively (so x has degree $p-1$ in $\left.G^{*}\left[S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]\right)$.
- if $i=\phi(v)$, then x has degree 0 in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right] ; y_{1}$ and y_{2} are ($p-1$)-vertices in $S\left(x y_{1}\right)$ and $S\left(x y_{2}\right)$, respectively (so x has degree at most $p-1$ in $\left.G^{*}\left[S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]\right)$.
- every vertex in Y_{x} is a $p-1$ vertex in both $S\left(x y_{1}\right)$ and $S\left(x y_{2}\right)$ and so has degree at most p in $G^{*}\left[S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]$;
- For any $(p-1)$-gadget H_{x} at vertex some x, we let $G^{*}\left[V\left(H_{x}\right)\right]$ be an $\left(F, H_{x}, k\right)$ graph in which v has degree $p-1$. Such a copy exists by Claim 37.1 (ii).

By construction, $G^{*} F$-overlays H. Let us check that $\Delta\left(G^{*}\right) \leq k$. Let u be a vertex of G^{*}.

- If u is in at most two hyperedges (in particular, if u is in X_{v}^{i} or u is in Y_{x} for x internal vertex in some T_{v}^{i} or u is only in a ($p-1$)-gadget), then u has degree at most $2(p-1)$, and so at most k.
- Assume now that $u \in\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}\right\}$ for $i \in[3]$ with u parent of y_{1}, y_{2}. Then u has degree $p-1$ in each of its $q-2(p-1)$-gadgets. Moreover if $i=\phi(v)$ (resp. $i \neq \phi(v)$), then u has degree $p-1$ (resp. 0) in its parent hyperedge and $p-1$ (resp. 0) in $G^{*}\left[S_{u y_{1}}^{1} \cup S_{u y_{2}}^{1}\right]$. Hence u has degree at most $(q-1)(p-1)+(p-1)=$ $q(p-1) \leq k$.
- Assume that u is the identification of $\ell_{v}^{i, j_{v}}$ and $\ell_{w}^{i, i_{w}}$ for an edge $v w \in E(G)$. First, u has degree $p-1$ in each of its $q-1(p-1)$-gadget. Moreover, since either $\phi(v) \neq i$ or $\phi(w) \neq i$, then u has degree $p-1$ in at most one of $S_{v}^{i, j_{v}}, S_{w}^{i, j_{w}}$ and 0 in the other. Therefore, u has degree at $\operatorname{most} q(p-1) \leq k$ in G^{*}.
Consequently, G^{*} is an (F, H, k)-graph.
Corollary 36 and Theorem 37 directly imply the following.
Corollary 38. Theorem 33 holds if and only if it holds for graphs with no isolated vertices.

Reduction to Theorem 34

By Corollary 38, one can restrict our study to graphs F with $\delta(F) \geq 1$. We shall now prove that for such an F, we have $\mathrm{np}(F) \leq+\infty$ as soon as there is some k for which $(\Delta \leq k)$ - F-Overlay is NP-complete. To prove this, we introduce the notion of degree-gadget that will be useful in almost all the later proofs.

Let F be graph with $\delta(F) \geq 1$. For any integer $d \geq \lambda_{1}$, a d-degree-gadget (with respect to F) at vertex v, is the subgraph $D(d, v)$ defined as follows. Let $\alpha=\left\lfloor d / \lambda_{1}\right\rfloor$ and $\beta=d-\alpha \lambda_{1}$. If $\beta=0$, then $D(d, v)$ is the union of α pendant hyperedges at v. If $\beta \geq 1$, then $D(d, v)$ is the union of $\alpha-1$ pendant hyperedges at v and two hyperedges which intersect in $I \cup\{v\}$ where I is a set of $\lambda_{1}-\beta$ vertices (see Figure 4.4).

Figure 4.4: A d-degree-gadget D at vertex v. The set $I \neq \emptyset$ is the intersection of the two blue hyperedges. $\beta \neq 0$ when I is different from these two hyperedges; and $\beta=0$ when I and the two blue hyperedges are equal.

Degree-gadgets are useful because of the following proposition whose easy proof is left to readers.

Proposition 39. Let F be graph with $\delta(F) \geq 1$. Then for any $d \geq \lambda_{1}$, we have the following.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

(i) In any graph G that F-overlays $D(d, v)$, vertex v has degree at least d.
(ii) There is a graph G_{v} that F-overlays $D(d, v)$ in which v has degree exactly d, and every other vertex has degree at most $\Delta(F)$ if $\delta(F)$ divides d (i.e. $\beta=0$) and at most $2 \Delta(F)-1$ otherwise.

Lemma 40. Let F be a graph with $\delta(F) \geq 1$. Assume that ($\Delta \leq k_{0}$)-F-Overlay is NP-complete.
(i) If $\delta(F)=1$, then $\operatorname{np}(F) \leq k_{0}$.
(ii) $\mathrm{np}(F) \leq \max \left\{k_{0}+\delta(F), 2 \Delta(F)-1\right\}$.

Proof. Observe that $k_{0} \geq \Delta(F)$, because ($\Delta \leq k$)-F-OvERLAY is trivially polynomialtime solvable for every $k<\Delta(F)$.
(i) Let $k>k_{0}$. We shall prove that $(\Delta \leq k)$ - F-OvERLAY is NP-complete. We give a reduction from $\left(\Delta \leq k_{0}\right)$ - F-Overlay. Let H_{0} be an $|F|$-uniform hypergraph. Let H be the hypergraph obtained from H_{0} by adding a $\left(k-k_{0}\right)$-degree-gadget $D G_{v}$ on every vertex v. Such a degree-gadget exists because $k-k_{0} \geq 1=\delta(F)$. Let us prove that there is an $\left(F, H_{0}, k_{0}\right)$-graph G_{0} if and only if there exists an (F, H, k)-graph G.

Assume there is an (F, H_{0}, k_{0})-graph G_{0}. By Proposition 39-(ii), for every $v \in$ $V\left(H_{0}\right)$, there is a graph G_{v} that F-overlays $D G_{v}$, in which v has degree $k-k_{0}$, and every other vertex as degree at most $\Delta(F) \leq k_{0}$. Consider $G=G_{0} \cup \bigcup_{v \in V\left(H_{0}\right)} G_{v}$. Clearly, G is an (F, H, k)-graph.

Conversely, assume that there is an (F, H, k)-graph G. By Proposition 39-(i), every vertex v of $V\left(H_{0}\right)$ has degree at least $k-k_{0}$ in $D G_{v}$. Thus it has degree at most k_{0} in $G\left[V\left(H_{0}\right)\right]$. Therefore, $G\left[V\left(H_{0}\right)\right]$ is an $\left(F, H_{0}, k_{0}\right)$-graph.
(ii) The proof is identical to (i). Taking $k \geq \max \left\{k_{0}+\delta(F), 2 \Delta(F)-1\right\}$ and using the same reduction as above we get that $(\Delta \leq k)$ - F-Overlay is NP-complete. Note that ($k-k_{0}$)-degree-gadgets exist because $k-k_{0} \geq \delta(F)$.

By this lemma, in order to prove that $(\Delta \leq k)$ - F-OVERLAY is NP-complete for any $k \geq k_{0}$ for some k_{0}, it suffices to prove that $\left(\Delta \leq k_{0}\right)$ - F-OVERLAY is NP-complete and thus it is an upper bound of $\mathrm{np}(F)$.

4.2.2 Particular cases

In this section, we prove the NP-completeness of $(\Delta \leq k)$ - F-OvERLAY for pairs (F, k) where F is either a regular graph, or a complete graph minus an edge K^{-}(i.e. it is obtained by removing an edge from K_{p}) or a disjoint union of the graph $K_{a, a+1}$, and k is an integer (depending on F).

Regular graphs

Theorem 41. Let λ be a positive integer, and let F be a λ-regular graph which is not complete.
Then $(\Delta \leq 6 \lambda-1)-F$-OvERLAY is NP-complete.

Proof. Set $p=|F|$. Since F is not complete, we have $p>\lambda+1$.
We give a reduction from $(3,4)$-SAT to $(\Delta \leq 6 \lambda-1)-F$-OvERLAY.
Given a formula Φ of $(3,4)$-SAT with n variables $x_{t}, t \in[n]$, and m clauses $C_{j}, j \in$ [m], we construct a p-uniform hypergraph H as follows.

- For each variable x_{t}, we construct a variable gadget H_{t} as follows. We first create a center vertex w_{t}, a set of $4 p-4$ vertices $U_{t}=\left\{u_{t}^{1}, \ldots, u_{t}^{4 p-4}\right\}$, and $4 p-4$ hyperedges $S_{t}^{j}=\left\{w_{t}, u_{t}^{j}, \ldots, u_{t}^{j+p-2}\right\}$ (superscripts are modulo 4) for $j \in[4 p-4]$. We then add a $(2 \lambda-1)$-degree-gadget at w_{t} and a 4λ-degree-gadget on each $u_{t}^{(p-1) i-j}$ for any $i \in[4]$ and $j \in[\lambda-1]$. For $r \in[4]$ let $x_{t}^{r}=u_{t}^{r(p-1)-p+2}$ and $\bar{x}_{t}^{r}=u_{t}^{r(p-1)-p+3}$. Set $X_{t}=\left\{x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right\}$ and $\bar{X}_{t}=\left\{\bar{x}_{t}^{1}, \bar{x}_{t}^{2}, \bar{x}_{t}^{3}, \bar{x}_{t}^{4}\right\}$. The vertices of X_{t} (resp. \bar{X}_{t}) are called the non-negated (resp. negated) literal vertices of H_{t}. See Figure 4.5.

Figure 4.5: The variable gadget H_{t}. The center vertex w_{t} is in a $(2 \lambda-1)$-degree-gadget. There are four sets of $\lambda-1$ vertices (in black) adjacent to the center vertex w_{t}; each of them is in a 4λ-degree-gadget. Blue and red vertices are respectively non-negated and negated literal vertices. All blue ones (resp. red ones) are adjacent to w_{t} if and only if $\phi\left(x_{t}\right)=$ true (resp. false).

- For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ we identify y_{1}, y_{2}, y_{3} into a clause vertex c_{j}, where $y_{i}=x_{t}^{r}$ if $\ell_{i}=x_{t}$ and ℓ_{i} is the r-th occurrence of x_{t}, and $y_{i}=\bar{x}_{t}^{r}$ if $\ell_{i}=\bar{x}_{t}$ and is the r-th occurrence of x_{t}.

We will prove that there exists an assignment ϕ satisfying Φ if and only if there is an $(F, H, 6 \lambda-1)$-graph G. The general idea is that a variable $x_{t}=$ true (resp. false) if and only if the vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ have degree $2 \lambda-1$ in $G\left[V\left(H_{t}\right)\right]$ and so they are adjacent to the center vertex while those one of the other set are not.

Assume that there exists an assignment ϕ satisfying Φ. Let G be the graph obtained as follows.

For each $t \in[n]$, let $\left(v_{0}, v_{1}, \ldots, v_{p-1}\right)$ be an ordering of $V(F)$ such that $N_{F}\left(v_{0}\right)=$ $\left\{v_{p-\lambda+1}, \ldots, v_{p-1}\right\} \cup\left\{v_{1}\right\}$ if $\phi\left(x_{t}\right)=$ true and $N_{F}\left(v_{0}\right)=\left\{v_{p-\lambda+1}, \ldots, v_{p-1}\right\} \cup\left\{v_{2}\right\}$ if $\phi\left(x_{t}\right)=$ false. For every $j \in[4 p-4]$, we let $G\left[S_{t}^{j}\right]$ be the copy of F in which w_{t} corresponds to v_{0} and u_{t}^{i} for $i \in\{j \ldots, j+p-1\}$ corresponds to the vertex $v_{i^{\prime}}$ such that $i \equiv i^{\prime} \bmod (p-1)$. Observe that each u_{t}^{i} corresponds to the same vertex of F in all the $p-1$ copies of F induced by the S_{t}^{j} to which it belongs. Therefore either u_{t}^{i} is not adjacent to w_{t} and it has 2λ neighbors in $G\left[H_{t}\right]$ or u_{t}^{i} is adjacent to w_{t} and it has $2 \lambda-1$ neighbors in $G\left[H_{t}\right]$. In particular, if $\phi\left(x_{t}\right)=\operatorname{true}$ (resp. $\phi\left(x_{t}\right)=$ false), then all vertices of X_{t} (resp. \bar{X}_{t}) have degree $2 \lambda-1$ in $G\left[H_{t}\right]$ In addition, for every d-degreegadget D at some vertex v, we let $G[V(D)]$ be an $(F, D, 6 \lambda-1)$-graph in which v has degree d.

Let us check that every vertex has degree at most $6 \lambda-1$ in G.

- Each center vertex w_{t} has degree $2 \lambda-1$ in its $(2 \lambda-1)$-degree-gadget and it is adjacent to 4λ vertices in H_{t}, so $6 \lambda-1$ in total.
- Every vertex in $\left\{u_{t}^{(p-1) i-j} \mid i \in[4]\right.$ and $\left.j \in[\lambda-1]\right\}$ has $2 \lambda-1$ neighbors in H_{t} and 4λ other in its 4λ-degree-gadget. Hence its total degree is $6 \lambda-1$.
- Every vertex in $U_{t} \backslash\left\{u_{t}^{(p-1) i-j} \mid i \in[4]\right.$ and $\left.j \in[\lambda-1]\right\}$ which is not identified in a clause vertex has only neighbors in H_{t} and thus degree at most $2 \lambda<6 \lambda-1$.
- Each clause vertex is the identification of three literal vertices which have degree 2λ or $2 \lambda-1$ in their variable gadgets. Moreover, at least one of the literals is true, so at least one of those vertices has only $2 \lambda-1$ neighbors in its variable gadget. Hence its degree in G is at most $6 \lambda-1$.
Hence, G is an $(F, H, 6 \lambda-1)$-graph.
Conversely, assume that G is an $(F, H, 6 \lambda-1)$-graph.
Consider a variable gadget H_{t}. The center vertex w_{t} has degree at least $2 \lambda-1$ in its $(2 \lambda-1)$-degree-gadget, so it has at most 4λ neighbors in H_{t}. Since w_{t} has degree at least λ in each of the S_{t}^{j}; and hyperedges $S_{t}^{j}, S_{t}^{j+p-1}, S_{t}^{j+2 p-2}, S_{t}^{j+3 p-3}$ pairwise intersect only in w_{t}. So this vertex has exactly λ neighbors in each of these sets. Hence w_{t} has exactly λ neighbors in each S_{t}^{j}. Furthermore, if u_{t}^{j} is adjacent to w_{t}, then w_{t} has $\lambda-1$ neighbors in $\left\{u_{t}^{j+1}, \ldots, u_{t}^{j+p-2}\right\}$ and so u_{t}^{j+p-1} is adjacent to w_{t} because S_{t}^{j+1} contains λ neighbors of w_{t}. In particular, the vertices of X_{t} (resp. \bar{X}_{t}) are either all adjacent to w_{t} or all non-adjacent to w_{t}.

Now each of the $\lambda-1$ vertices in $\left\{u_{t}^{p-r+2}, \ldots, u_{t}^{p-1}\right\}$ is in a 4λ-gadget in which it has degree 4λ. Therefore, it has degree $2 \lambda-1$ in H_{t} and must be adjacent to w_{t}. Hence at most one vertex in $\left\{x_{t}^{1}, \bar{x}_{1}^{t}\right\}$ is adjacent to w_{t}. Thus the vertices of X_{t} and those of \bar{X}_{t} cannot be simultaneously adjacent to w_{t}.

Let ϕ be the truth assignment defined by $\phi\left(x_{t}\right)=$ true if w_{t} is adjacent to X_{t}, and
$\phi\left(x_{t}\right)=$ false otherwise. In any clause vertex c_{j}, we identified three literal vertices corresponding to the three literals. But c_{j} has degree at most $6 \lambda-1$, so there is at least one literal vertex having degree $2 \lambda-1$ in its variable gadget. This implies that this literal is true. Therefore, ϕ satisfies Φ.

Complete graph minus an edge

Theorem 42. $(\Delta \leq 3 p-1)$ - K_{p}^{-}-Overlay is NP-complete for all $p \geq 3$.
Proof. Reduction from (3,4)-SAT. Given a formula Φ of this problem, we build a hypergraph H as follows.

- For each variable x_{t}, we add a variable gadget H_{t} containing a center set C_{t} of size $p-2$, a set U_{t} of 8 vertices $U_{t}=\left\{u_{t}^{1}, \ldots, u_{t}^{8}\right\}$, and 8 hyperedges $S_{t}^{i}=C_{t} \cup$ $\left\{u_{t}^{i}, u_{t}^{i+1}\right\}$ (superscripts are modulo 8) for $i \in[8]$. Set $X_{t}=\left\{u_{t}^{2 i-1} \mid i \in[4]\right\}$ and $\bar{X}_{t}=\left\{u_{t}^{2 i} \mid i \in[4]\right\}$. The vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ are called the non-negated literal vertices (resp. negated literal vertices).
- For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$, we add a clause vertex c_{j} in which, for each literal ℓ_{i} which is the r-th occurrence of the variable x_{t}, we identify $u_{t}^{2 r-1}$ (resp. $\left.u_{t}^{2 r}\right)$ if $\ell_{i}=x_{t}\left(\right.$ resp. $\left.\ell_{i}=\bar{x}_{t}\right)$.
- In any center set C_{t}, if $p=3$ which $\left|C_{t}\right|=1$, we add a ($2 p-2$)-degree-gadget at this vertex; if $p \geq 4$, we add a $(2 p-4)$-degree-gadget at $\max \{0,6-p\}$ vertices and $(2 p-5)$-degree-gadget at $\min \{4,2 p-8\}$ vertices among the other ones.
We will show that there is an assignment ϕ satisfying Φ if and only there is a ($K_{p}^{-}, H, 3 p-1$)-graph G.

Assume that ϕ satisfies Φ, then we construct G as follows.
In a variable gadget H_{t}, for every $i \in[8]$, we let $G\left[S_{t}^{i}\right]$ be a copy of K_{p}^{-}in which $G\left[H_{t}\right]$ is such that

- every vertex in C_{t} which is not in any degree-gadget is a $(p-1)$-vertex, so it is adjacent to all vertices in H_{t};
- if $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false), then each vertex in X_{t} (resp. \bar{X}_{t}) is a ($p-2$)-vertex in every hyperedge containing it and each vertex in \bar{X}_{t} (resp. X_{t}) is a $(p-1)$-vertex in every hyperedge containing it.
- any vertex in C_{t} which is in a d-degree-gadget is adjacent to all vertices in H_{t} except $p+5-(3 p-1-d)$ literal vertices in exactly one of the two sets X_{t}, \bar{X}_{t}. For any d-degree-gadget D at a vertex v, let $G[V(D)]$ be a ($K_{p}^{-}, D, 3 p-1$)-graph in which v has degree d.
Let us check that $\Delta(G) \leq 3 p-1$.
- Each vertex in C_{t} which is not in any degree-gadget is adjacent to all vertices in H_{t}. So it has degree at most $p+5$ in G.
- Each vertex in C_{t} which is in a d-degree-gadget has degree d in its degree-gadget and is adjacent to $3 p-1-d$ vertices in H_{t}. So it has degree $3 p-1$ in G.
- Any literal vertex which is not identified in any clause vertex has degree either $p-1$ or p in its variable gadget (adjacent to $p-3$ vertices of C_{t} and two literal vertices which each is in the same hyperedge). Thus, it has degree less than $3 p-1$.
- Each clause vertex is the identification of three literal vertices. Each of those has degree either $p-1$ or p in its variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex has degree $p-1$ in its variable gadget. Therefore the clause vertex has degree at most $3 p-1$.
- Any vertex which is in a degree-gadget but in no variable gadget belongs to at most two hyperedges, then it has degree at most $2(p-1)<3 p-1$.

Hence, G is a ($K_{p}^{-}, H, 3 p-1$)-graph.
Conversely, assume that G is a ($K_{p}^{-}, H, 3 p-1$)-graph. For every hyperedge S of H, let F_{S} be a subgraph of $G[S]$ isomorphic to K_{p}^{-}.

Claim 42.1. Any $G\left[H_{t}\right]$ satisfies the following.
(i) $G\left[C_{t}\right]$ is complete.
(ii) For $i \in[8], u_{t}^{i} u_{t}^{i+1} \in E\left(G\left[H_{t}\right]\right)$ (superscripts are modulo 8).
(iii) All vertices of exactly one of X_{t}, \bar{X}_{t} are ($p-2$)-vertices in all hyperedges of H_{t} which it belongs and those of the other are ($p-1$)-vertices.

Proof of claim: (i) Assume that $G\left[C_{t}\right]$ is not complete, then there is an edge $u v \notin G\left[C_{t}\right]$ for $u, v \in V\left(C_{t}\right)$. Since all hyperedges of H_{t} is F-overlaying and F is a clique minus an edge, so the edge $u v$ is the removing edge from the clique K_{p} in all hyperedges of H_{t}. It implies that in any hyperedge containing a literal vertex, this one must be adjacent to all vertices. Hence every literal vertex has degree p in $G\left[H_{t}\right]$ and thus any clause vertex must have degree $3 p>3 p-1$ which is a contradiction.
(ii) Assume for a contradiction that there is $i \in[8]$ such that $u_{t}^{i} u_{t}^{i+1}$ is not an edge of $G\left[H_{t}\right]$. Thus, with the six other literal vertices, there are at most three non-edges between them to vertices in C_{t} (because otherwise, there are two non-edges in an induced subgraph of $G\left[H_{t}\right]$ by a hyperedge). However, since any vertex in C_{t} which is in a d-degree-gadget has degree at least d in its degree-gadget, at most $3 p-1-d$ in $G\left[H_{t}\right]$. Hence, they must be non-adjacent to at least 4 literal vertices which is a contradiction.
(iii) By (ii), there are at least four none-edges and they are not in $G\left[C_{t}\right]$ by (i), then each of them is between a literal vertex and a vertex in C_{t} which belongs to a degreegadget (there are at most 4 such vertices). Moreover, since any hyperedge S_{t}^{i} for $i \in[8]$ is F-overlaid, then there is at most one non-edge in $G\left[S_{t}^{i}\right]$. Assume $w u_{t}^{i} \notin E\left(G\left[H_{t}\right]\right)$ for some $w \in C_{t}$ and it belongs to a degree-gadget, so u_{t}^{i} is $p-2$ in hyperedges which contain it. Thus, there are four none-edges and all vertices of exactly one of the
sets X_{t}, \bar{X}_{t} are $(p-2)$-vertices in hyperedges it belong and those of the other set are ($p-1$)-vertices.

By Claim 42.1, we define an assignment ϕ by $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false) if all vertices in X_{t} are $(p-2)$-vertices (resp. ($p-1$)-vertices) in the hyperedges of H_{t} to which they belong.
Observe that, each of these ($p-2$)-vertices has degree $p-1$ (it is adjacent to $p-3$ vertices of C_{t} and two literal vertices) and each of those ($p-1$)-vertices has degree p (it is adjacent to all vertices of C_{t} and two literal vertices) in $G\left[H_{t}\right]$.

A clause vertex c_{j} is the identification of three literal vertices. Since it has degree at most $3 p-1$, then at least one of those literal vertices has degree at most $p-1$ in its variable gadget. Hence, this vertex is a $(p-2)$-vertex in the hyperedges of H_{t} to which it belongs. Thus this vertex corresponds to a true literal in the clause C_{j}. Therefore, ϕ satisfies Φ.

Disjoint union of the complete bipartite graph $K_{a, a+1}$

In this section, we study on the family of disjoint union of the graph $K_{a, a+1}$. We aim to prove the following.

Theorem 43. Let $r K_{a, a+1}$ be the disjoint union of r copies of $K_{a, a+1}$. Then $\mathrm{np}\left(r K_{a, a+1}\right) \leq$ $3 a+5$.

In order prove this theorem, we first prove Theorem 44 which show that $\mathrm{np}\left(K_{a, a+1}\right) \leq$ $3 a+5$, and then deduce using Lemma 45 .

Theorem 44. $(\Delta \leq 3 a+5)-K_{a, a+1}$-OVERLAY is NP-complete.
Proof. Reduction from (3,4)-SAT. Given a formula Φ of $(3,4)$-SAT with variables $x_{t}, t \in[n]$ and clauses $C_{j}, j \in[m]$, we build a hypergraph H as follows.

- For each variable x_{t}, we add a variable gadget H_{t} containing a set C_{t}^{1} of size a, a set C_{t}^{2} of size $a-1$ and a set U_{t} of eight vertices $U_{t}=\left\{u_{t}^{1}, \ldots, u_{t}^{8}\right\}$, and eight hyperedges $S_{t}^{i}=C_{t}^{1} \cup C_{t}^{2} \cup\left\{u_{t}^{i}, u_{t}^{i+1}\right\}$ (superscripts are modulo 8) for $i \in[8]$. Set $X_{t}=\left\{u_{t}^{1}, u_{t}^{3}, u_{t}^{5}, u_{t}^{7}\right\}$ and $\bar{X}_{t}=\left\{u_{t}^{2}, u_{t}^{4}, u_{t}^{6}, u_{t}^{8}\right\}$. The vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ are called the non-negated literal vertices (resp. negated literal vertices).
- For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$, we add a clause vertex c_{j} in which, for each literal ℓ_{i} which is the r th occurrence of the variable x_{t}, we identify $u_{t}^{2 r-1}$ (resp. $\left.u_{t}^{2 r}\right)$ if $\ell_{i}=x_{t}\left(\right.$ resp. $\left.\ell_{i}=\bar{x}_{t}\right)$.
- We add degree-gadgets on some vertices:
- we add a $(2 a+2)$-degree-gadget at each of vertices in C_{t}^{1}.
- we add a $(2 a+1)$-degree-gadget at each of vertices in C_{t}^{2}.

We will show that there is an assignment ϕ satisfying Φ if and only there is a ($\left.K_{a, a+1}, H, 3 a+5\right)$-graph G.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Assume that ϕ satisfies Φ, then we construct G as follows.
In a variable gadget H_{t}, for every $i \in[8]$, we let $G\left[S_{t}^{i}\right]$ be a copy of $K_{a, a+1}$ such that

- every vertex in C_{t}^{1} is an a-vertex and each vertex in C_{t}^{2} is an ($a+1$)-vertex (so $G\left[C_{t}\right]$ is $K_{a, a-1}$ with partition $\left(C_{t}^{1}, C_{t}^{2}\right)$);
- if $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false, then each vertex in $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ is an a-vertex in every hyperedge containing it and each vertex in \bar{X}_{t} (resp. X_{t}) is an ($a+1$)-vertex in every hyperedge containing it.
For any d-degree-gadget D at a vertex v, let $G[D]$ be a $\left(K_{a, a+1}, D, 3 a+5\right)$-graph in which v has degree d.

Let us check that $\Delta(G) \leq 3 a+5$.

- Each vertex in C_{t}^{1} has degree $2 a+2$ in its $(2 a+2)$-degree-gadget. It is also adjacent the $a-1$ vertices in C_{t}^{2}, and to the four vertices of exactly one of the two sets X_{t}, \bar{X}_{t}. Thus, this vertex has degree $3 a+5$ in G.
- Each vertex in C_{t}^{2} has degree $2 a+1$ in its $(2 a+1)$-degree-gadget. It is also adjacent the a vertices in C_{t}^{1} and to the four vertices in exactly one of sets X_{t}, \bar{X}_{t}. Hence, it has degree $3 a+5$.
- Any literal vertex which is not identified in any clause vertex has degree at most $a+2$ in its variable gadget. So, it has degree $a+2<3 a+5$ in G.
- Each clause vertex is the identification of three literal vertices. Each of those has degree either $a+1$ or $a+2$ in its variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex has degree $a+1$ in its variable gadget. Therefore the clause vertex has degree at most $2(a+2)+a+1=3 a+5$.
- Any vertex which is in a degree-gadget but in no variable gadget has degree at most $2(a+1)<3 a+5$ since it belongs to at most two hyperedges.
Hence, G is a ($K_{a, a+1}, H, 3 a+5$)-graph.
Conversely, assume that G is a ($K_{a, a+1}, H, 3 a+5$)-graph. For every hyperedge S of H, let F_{S} be a subgraph of $G[S]$ isomorphic to $K_{a, a+1}$. Free to remove some edges, we may assume that G is the union of the F_{S} over all hyperedges S of H. We have the following.

Claim 44.1. For every $t \in[n]$, the following hold.
(i) In a hyperedge of H_{t}, the two literal vertices cannot be both a-vertices or both $(a+1)$ vertices.
(ii) In every hyperedge of H_{t}, the vertices in C_{t}^{1} are a-vertices and the vertices in C_{t}^{2} are $(a+1)$-vertices.
(iii) The vertices of one of the two sets X_{t}, \bar{X}_{t} are a-vertices in all hyperedges of H_{t} to which they belong, and the vertices of the other of those sets are $(a+1)$-vertices in all hyperedges of H_{t}.

Proof of claim: Observe that any vertex in C_{t}^{1} is in a $(2 a+2)$-degree-gadget, so it has degree at most $a+3$ in $G\left[H_{t}\right]$. Similarly, any vertex in C_{t}^{2} is in a ($2 a+1$)-degree-gadget, so it has degree at most $a+4$ in $G\left[H_{t}\right]$.
(i) Assume for a contradiction that there is $i \in[8]$ such that u_{t}^{i}, u_{t}^{i+1} are both a vertices in S_{t}^{i}. There are $a-1$ other a-vertices in S_{t}^{i}. Thus, at least one vertex v in C_{t}^{1} is an $(a+1)$-vertex in S_{t}^{i}, and thus adjacent to u_{t}^{i}, u_{t}^{i+1} and the $a-1$ other a-vertices in S_{t}^{i} which are in $C_{t}^{1} \cup C_{t}^{2}$.

Assume for a contradiction that v is adjacent to exactly $a-1$ vertices in $C_{t}^{1} \cup C_{t}^{2}$. Then because v has degree at least a in every hyperedge, it must be adjacent to at least one literal vertex in each $S_{t}^{i^{\prime}}$ for all $i^{\prime} \in[8]$. In particular v is adjacent to at least one literal vertex in S_{t}^{i+2}, S_{t}^{i+4}, and S_{t}^{i+6}. Hence v has degree $a+4$ in $G\left[H_{t}\right]$, a contradiction to the above observation.

Consequently, v is adjacent to at least a and at most $a+1$ vertices in $C_{t}^{1} \cup C_{t}^{2}$.

- If v is adjacent to exactly a vertices in $C_{t}^{1} \cup C_{t}^{2}$, then there is a vertex u in $C_{t}^{1} \backslash\{v\}$ which is adjacent to v since there are only $a-1$ vertices in C_{t}^{2}. Vertex u has degree at least a in S_{t}^{i}. Since v has degree $a+2$ in $S_{t}^{i} \cup C_{t}^{1} \cup C_{t}^{2}$, it is adjacent to at most one vertex, among the six literal vertices $u_{t}^{i+1+j}, j \in[6]$. Hence there are two hyperedges S, S^{\prime} in $\left\{S_{t}^{i+2}, S_{t}^{i+4}, S_{t}^{i+6}\right\}$ such that v is adjacent to no literal vertex of S and S^{\prime}. Now in each of those two hyperedges, v has degree exactly a. Hence it must be an a-vertex, and each of its neighbors, including u, is an $(a+1)$-vertex and thus is adjacent to the two literal vertices. Hence u is adjacent to at least $a+4$ vertices in $G\left[H_{t}\right]$ (at least a in S_{t}^{i} plus the four literal vertices of S and S^{\prime}). This is a contradiction.
- If v is adjacent to $a+1$ vertices in $C_{t}^{1} \cup C_{t}^{2}$, then there are two vertices u, u^{\prime} in $C_{t}^{1} \backslash\{v\}$ which are adjacent to v and each of them has degree at least a in S_{t}^{i}. Since v has degree $a+2$ in $S_{t}^{i} \cup C_{t}^{1} \cup C_{t}^{2}$, it is not adjacent to any of the six other literal vertices than u_{t}^{i}, u_{t}^{i+1}. Consider the three hyperedges $S_{t}^{i+2}, S_{t}^{i+4}, S_{t}^{i+6}$;
- if v is an $(a+1)$-vertex in one of these hyperedges, then u, u^{\prime} must be a vertices and thus adjacent to the two literal vertices in this hyperedge.
- if v is an a-vertex in one of those hyperedges, then at least one of u, u^{\prime} is an $(a+1)$-vertex in this hyperedge and is adjacent to its two literal vertex.
Thus at least one of u, u^{\prime} is adjacent to at least four literal vertices in $S_{t}^{i+2} \cup S_{t}^{i+4} \cup$ S_{t}^{i+6}, and so has degree at least $a+4$, a contradiction.
This proves that the two literal vertices of a hyperedge of H_{t} are not both a-vertices.
Let us now prove that the two literal vertices of a hyperedge of H_{t} cannot be both $(a+1)$-vertices. Assume for a contradiction that there is $i \in[8]$ such that u_{t}^{i}, u_{t}^{i+1} are both $(a+1)$-vertices. Any a-vertex x in S_{t}^{i} is adjacent to u_{t}^{i}, u_{t}^{i+1} and at least $a-2$ vertices in $C_{t}^{1} \cup C_{t}^{2}$. If x is adjacent to exactly $a-2$ (resp. $a-1$) vertices in $C_{t}^{1} \cup C_{t}^{2}$, then, since it has degree at least a in any hyperedge, it is adjacent to all six (resp. at
least three) literal vertices in $S_{t}^{i+2} \cup S_{t}^{i+4} \cup S_{t}^{i+6}$. Thus x has degree $a+6$ (resp. $a+4$) in $G\left[H_{t}\right]$, a contradiction. Hence every a-vertex in S_{t}^{i} has at least a neighbors in $C_{t}^{1} \cup C_{t}^{2}$. There are $a+1 a$-vertices in S_{t}^{i}, so there must be one, say v, in C_{t}^{1}. It has degree at most $a+3$ in $G\left[H_{t}\right]$ and at least $a+2$ in S_{t}^{i}. Thus it is adjacent to at most one literal vertex in $S_{t}^{i+2} \cup S_{t}^{i+4} \cup S_{t}^{i+6}$. Hence v is not adjacent to the literal vertices of two hyperedges S, S^{\prime} in $S_{t}^{i+2} \cup S_{t}^{i+4} \cup S_{t}^{i+6}$. Thus the literal vertices of the hyperedge S (resp. S^{\prime}) are both in a same part of F_{S} (resp. $F_{S^{\prime}}$), and so they are $(a+1)$-vertices.
Now in each hyperedege of H_{t}, there are more a-vertices than $(a+1)$-vertices. Thus there is a vertex z which is an a-vertex in at least three hyperedges S_{1}, S_{2}, S_{3} in $S_{t}^{i} \cup$ $S_{t}^{i+2} \cup S_{t}^{i+4} \cup S_{t}^{i+6}$. In any of these hyperedges at least one of the literal vertices is an $(a+1)$-vertex, and in at least two of them the two literal vertices are $(a+1)$-vertices. Hence z is adjacent to at least five literal vertices. Moreover, as above, we can show that z has at least a neighours in $C_{t}^{1} \cup C_{t}^{2}$. Thus z has degree at least $a+5$ in $G\left[H_{t}\right]$, a contradiction. This completes the proof of (i).
(ii) Assume for a contradiction that a vertex $w \in C_{t}^{1}$ is an $(a+1)$-vertex in S_{t}^{i}. By (i), w is adjacent to a literal vertex in S_{t}^{i}, and so it is adjacent to a other vertices in $C_{t}^{1} \cup C_{t}^{2}$. Furthermore, by (i), in each hyperedge of H_{t}, w is adjacent to a literal vertex (either to an a-vertex or an ($a+1$)-vertex). Thus w is adjacent to four literal vertices in H_{t}, and so has degree at least $a+4$ in $G\left[H_{t}\right]$, a contradiction. Therefore the a vertices of C_{t}^{1} are a-vertices. Moreover, by (i), one of the literal vertex of each S_{t}^{i} is an a-vertex. Therefore all vertices of C_{t}^{2} must be ($a+1$)-vertices.
(iii) Let v be a vertex in C_{t}^{1}. It is an a-vertex in each S_{t}^{i}, so by (i) it is adjacent to one vertex in $\left\{u_{t}^{i}, u_{t}^{i+1}\right\}$ for all $i \in[8]$ and it is adjacent to the $a-1$ vertices of C_{t}^{2}. But v has degree at most $a+3$ in $G\left[H_{t}\right]$, so v is either adjacent to all vertices of X_{t} and non-adjacent to all vertices of \bar{X}_{t}, or non-adjacent to all vertices of X_{t} and adjacent to all vertices of \bar{X}_{t}.

By Claim 44.1, we define a truth assignment ϕ by $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false) if all vertices in X_{t} are a-vertices (resp. $(a+1)$-vertices) in the hyperedges of H_{t} to which they belong.

Observe that, by Claim 44.1, if a literal vertex u_{t}^{i} is an $(a+1)$-vertex in the hyperedges of H_{t} to which it belongs then it has degree at least $a+2$ in $G\left[H_{t}\right]$ because it is adjacent to the a vertices of C_{t}^{1} and the two literal vertices u_{t}^{i-1}, u_{t}^{i+1}.

A clause vertex c_{j} is the identification of three literal vertices. Since it has degree at most $3 a+5$, then at least one of those literal vertices has degree at most $a+1$ in its variable gadget. By the above observation, this vertex is an a-vertex in the hyperedges of H_{t} to which it belongs. Thus this vertex corresponds to a true literal in the clause C_{j}. Therefore, ϕ satisfies Φ.

Lemma 45. Let r be a positive integer. If $(\Delta \leq k)-K_{a, a+1}$-Overlay is NP-complete, then $(\Delta \leq k)$-r $K_{a, a+1}$-OVERLAY is NP-complete.

Proof. $K_{a, a+1}$ has $a+1$ vertices of degree a and a vertices of degree $a+1$. Hence, in $r K_{a, a+1}$, there are $r(a+1)$ vertices of degree a and $r a$ vertices of degree $a+1$.

We shall give a reduction from $(\Delta \leq k)-K_{a, a+1}$-OVERLAY to $(\Delta \leq k)-r K_{a, a+1^{-}}$ Overlay.
Let H be a $(2 a+1)$-uniform hypergraph. We construct an $r(2 a+1)$-uniform hypergraph H^{\prime} from H as follows. We create a set A of $(r-1)(a+1)$ vertices, a set B of $(r-1) a$ vertices, and a set C of $2 a+1$ vertices. We add the hyperedge $S_{C}=A \cup B \cup C$ to $E\left(H^{\prime}\right)$, and for every hyperedge S of H, we add the hyperedge $S^{\prime}=S \cup A \cup B$ to $E\left(H^{\prime}\right)$. Finally, we add a $(k-a)$-degree-gadget at every vertex in A and a $(k-a-1)$ -degree-gadget at every vertex in B.

Let us prove that there is a $\left(K_{a, a+1}, H, k\right)$-graph G if and only if there is an $\left(r K_{a, a+1}, H^{\prime}, k\right)$ graph G^{\prime}.

Assume that G is a $\left(K_{a, a+1}, H, k\right)$-graph. We construct G^{\prime} from G as follows. Let $G^{\prime}[H]=G[H]$, so $G^{\prime}[S]=G[S]$ for each $S \in E(H)$; let $G^{\prime}[C]$ be a copy of $K_{a, a+1}$; let $G^{\prime}[A \cup B]$ be a copy of $(r-1) K_{a, a+1}$ in which every vertex in A has degree a and every vertex in B has degree $a+1$; for each d-degree-gadget D at a vertex v, let $G^{\prime}[D]$ be an $\left(r K_{a, a+1}, D, k\right)$-graph in which v has degree d. Clearly, for any $S^{\prime} \in E\left(H^{\prime}\right), G^{\prime}\left[S^{\prime}\right]$ contains $r K_{a, a+1}$ and so does $G^{\prime}\left[S_{C}\right]$. Moreover, one easily checks that every vertex of G^{\prime} has degree at most k. Therefore, G^{\prime} is an $\left(r K_{a, a+1}, H^{\prime}, k\right)$-graph.

Assume now that there is an $\left(r K_{a, a+1}, H^{\prime}, k\right)$-graph G^{\prime}. Every vertex $v \in A$ is in a $(k-a)$-degree-gadget, so it has degree at most a in $G^{\prime}[V(H) \cup A \cup B \cup C]$. Thus it must be an a-vertex in every hyperedge S^{\prime} for all $S \in E(H)$.

Let v be a vertex in A. It is adjacent to $a-i$ vertices in B. Then v must be adjacent to at least i vertices in C and i vertices in $V(H)$. Thus the degree of v is at least $a+i$ in $G^{\prime}[V(H) \cup A \cup B \cup C]$. Therefore $i=0$, so v is adjacent to a vertices in B and no vertex in $V(H) \cup C$.

This implies that there are $(d-1) a(a+1)$ edges between A and B. But every vertex $u \in B$ is in a $(k-a-1)$-degree-gadget, and so has degree at most $a+1$ in $G^{\prime}[V(H) \cup A \cup B \cup C]$. Thus, each vertex in B has $a+1$ neighbors in A, and is adjacent to vertex in $V(H) \cup C$.

Consider now a hyperedge $S^{\prime}=S \cup A \cup B$. The graph $G^{\prime}\left[S^{\prime}\right]$ contains $r K_{a, a+1}$. Since there is no edge between $A \cup B$ and $V(H)$, necessarily $G^{\prime}[S]$ contains $K_{a, a+1}$. So S is $K_{a, a+1}$-overlaid by G^{\prime}. Consequently, $G=G^{\prime}[V(H)]$ is a $\left(K_{a, a+1}, H, k\right)$-graph.

4.3 Proof of Theorem 34

The aim of this section is to prove Theorem 34. The proof divides into four cases, Theorem 41, Theorem 46, Theorem 47 and Theorem 48 as follows.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Proof of Theorem 34 (assuming Theorems 46, 47 and 48). Let F be a graph with degree values $1 \leq \delta(F)=\lambda_{1}<\cdots<\lambda_{t}=\Delta(F)$.

If $t=1$, (i.e. F is regular), then we have the result by Theorem 41. Henceforth, we may assume that $t \geq 2$.

If there exists $i \in[t-1]$ such that $\lambda_{i+1}>\lambda_{i}+1$, then Theorem 46 yields the result. Henceforth, we may assume that $\lambda_{i+1}=\lambda_{i}+1$ for all $i \in[t-1]$.

If $t \geq 3$, then $\lambda_{t}+\lambda_{1} \geq 2 \lambda_{2}$ and Theorem 47 yields the result. Henceforth, we may assume that $t=2$ which we then have the result by Theorem 48 .

It thus remains to prove Theorems 46,47 and 48 .
The proofs of the first two are reductions from 3-Coloring on 4-regular graphs which are similar to the one used to prove Theorem 37. Given a 4-regular graph G, we build a hypergraph H which includes, for each vertex $v \in V(G)$, a vertex gadget with three hyperedges which makes three choices of degrees on vertices $c_{v}^{1}, c_{v}^{2}, c_{v}^{3}$ (as three colors labeled $1,2,3$ of vertex v) and a color gadget represented as a binary tree with 4 leaves which copies each choice to four (leaves) vertices in other hyperedges (with respect to four neighbors of $v \in V(G)$). For any edge $u v$, we simply identifies the two leaves of u, v. The idea is that for a proper coloring c of $G, c(v)$ corresponds to a vertex c_{v}^{i} having a certain degree d; then $c(v)=i$ if and only if c_{v}^{i} as degree d in its vertex gadget (see Figure 4.6). However, the set of hyperedges which are in a color gadget of the two theorems are different, see Figure 4.7 in Theorem 46 and Figure 4.8 in Theorem 47.

Figure 4.6: The construction of the reduction. The vertex gadget for vertex v (left) and the color gadget represented as a binary tree with 4 leaves (right). In the construction, each edge of this tree is replaced by hyperedges such that the degree of the root c_{v}^{i} is transmitted to all its descendants.

Theorem 46. Let F be a graph on p vertices with degree values $1 \leq \lambda_{1}<\cdots<\lambda_{t}$. If there exists $i^{*} \in\{2, \ldots, t\}$ such that $\lambda_{i^{*}} \geq \lambda_{i^{*}-1}+2$, then there is k such that $(\Delta \leq k)$ - F Overlay is NP-complete.

Proof. Set $k=\max \left\{2 \lambda_{t}, 2 \lambda_{i^{*}}+\lambda_{i^{*}-1}+\lambda_{1}\right\}$. We give a reduction from 3-CoLORING on 4-regular graphs.
Given a 4-regular graph G, we build a hypergraph H as follows.

- For each vertex $v \in V(G)$, we create a vertex gadget H_{v} with three hyperedges $S_{v}^{i}=\left\{c_{v}, c_{v}^{i}\right\} \cup X_{v}^{i} \cup Y_{v}^{i}$ for $i \in[3]$ where $\left|X_{v}^{i}\right|=\sum_{j=1}^{i^{*}-1} \alpha_{j}-1,\left|Y_{v}^{i}\right|=p-\left|X_{v}^{i}\right|-2$. We add a $\left(k-\lambda_{i^{*}}+1\right)$-degree-gadget at each vertex $x \in X_{v}^{i}$ for $i \in[3]$, a $(k-$ $2 \lambda_{i^{*}}-\lambda_{i^{*}-1}$)-degree-gadget at c_{v}. We say that S_{v}^{i} is the parent hyperedge of c_{v}^{i} for each $i \in[3]$.
- For each vertex v and each $i \in[3]$, we construct a color gadget H_{v}^{i} for $i \in[3]$ as follows.
- We create a binary tree T_{v}^{i} with vertex set $\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}, \ell_{v}^{i, 1}, \ell_{v}^{i, 2}, \ell_{v}^{i, 3}, \ell_{v}^{i, 4}\right\}$ and edge set $\left\{c_{v}^{i} a_{v}^{i}, c_{v}^{i} b_{v}^{i}, a_{v}^{i} \ell_{v}^{i, 1}, a_{v}^{i} \ell_{v}^{i, 2}, b_{v}^{i} \ell_{v}^{i, 3}, b_{v}^{i} e_{v}^{i, 4}\right\}$, rooted at c_{v}^{i}. In this tree, a_{v}^{i} and b_{v}^{i} are the children of $c_{v}^{i}, l_{v}^{i, 1}$ and $\ell_{v}^{i, 2}$ are the children of a_{v}^{i}, and $\ell_{v}^{i, 3}$ and $\ell_{v}^{i, 4}$ are the children of b_{v}^{i}.
- For any vertex $x \in\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}\right\}$, let y_{1}, y_{2} be its children in T_{v}^{i}, and let $e_{1}=$ $x y_{1}, e_{2}=x y_{2}$. We first add a $\left(k-2 \lambda_{i^{*}}+1\right)$-degree-gadget at x. Then we construct an x-edge-gadget as follows: we add a set A_{x} of $\sum_{j=1}^{i^{*}-1} \alpha_{j}-1$ new vertices and a set B_{x} of $p-\left|A_{x}\right|-2$ new vertices, the hyperedges $S\left(e_{1}\right)=\left\{x, y_{1}\right\} \cup A_{x} \cup B_{x}$ and $S\left(e_{2}\right)=\left\{x, y_{2}\right\} \cup A_{x} \cup B_{x}$, and a $\left(k-\lambda_{i^{*}}+1\right)$ -degree-gadget at every vertex $a \in A_{x}$. For convenience, we say that $S\left(x y_{1}\right)$ (resp. $S\left(x y_{2}\right)$) is the parent hyperedge of y_{1} (resp. y_{2}). Moreover, for any leaf $\ell_{v}^{i, j}$, we denote by $S_{v}^{i, j}$ the hyperedge containing the vertex $\ell_{v}^{i, j}$.
- For every vertex $v \in V(G)$, let $e_{v}^{1}, e_{v}^{2}, e_{v}^{3}, e_{v}^{4}$, be an ordering of the edges incident to v. For each edge $u v \in E(G)$, let j_{u} and j_{v} be the indices such that $u v=e_{u}^{j_{u}}=$ $e_{v}^{j_{v}}$. Then, for all $i \in[3]$, we identify the vertices $\ell_{u}^{i, j_{u}}$ and $\ell_{v}^{i, j_{v}}$ and we add a $\left(k-\lambda_{i^{*}}-\lambda_{1}\right)$-degree-vertex at this vertex.
Note that each of the d-degree-gadgets exists because we have $d \geq \lambda_{1}$ by our choice of k.

Figure 4.7: The binary tree T_{v}^{i} and an example of the edge-gadget at vertex c_{v}^{i} (corresponding to red edges).

Let us now prove that there is a proper 3-coloring of G if and only if there is an (F, H, k)-graph G^{*}.

Assume first that there is an (F, H, k)-graph G^{*}. For sake of clarity, we say that a vertex has degree d in a set S if it has degree d in $G^{*}[S]$.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Let $v \in V(G)$. The vertex c_{v} has degree at least $\left(k-2 \lambda_{i^{*}}-\lambda_{i^{*}-1}\right)$ in its $\left(k-2 \lambda_{i^{*}}-\right.$ $\lambda_{i^{*}-1}$)-degree-gadget. Hence c_{v} has degree at most $2 \lambda_{i^{*}}+\lambda_{i^{*}-1}$ in $S_{v}^{1} \cup S_{v}^{2} \cup S_{v}^{3}$. But those hyperedges pairwise intersect in $\left\{c_{v}\right\}$. Thus there is $i \in[3]$ such that c_{v} has degree less than $\lambda_{i^{*}}$ in S_{v}^{i}. Moreover, since any vertex $x \in X_{v}^{i}$ has degree at least $k-\lambda_{i^{*}}+1$ in its $\left(k-\lambda_{i^{*}}+1\right)$-degree-gadget, so it has degree less than $\lambda_{i^{*}}$ in S_{v}^{i}. Thus c_{v}^{i} must have degree at least $\lambda_{i^{*}}$ in S_{v}^{i}. Therefore, we can define a 3 -coloring ϕ by $\phi(v)=i$ where i is an index such that c_{v}^{i} has degree at least $\lambda_{i^{*}}$ in S_{v}^{i}.
Let us now prove that ϕ is proper. We need the following claim.
Claim 46.1. Let $v \in V(G)$ and $i \in[3]$. If c_{v}^{i} has degree at least $\lambda_{i^{*}}$ in S_{v}^{i}, then so does the leaf $\ell_{v}^{i, j}$ in $S_{v}^{i, j}$ for all $j \in[4]$.

Proof of claim: It suffices to prove that for any $x \in\left\{c_{v}^{i}, b_{v}^{i}, a_{v}^{i}\right\}$, if x has degree at least $\lambda_{i^{*}}$ in its parent hyperedge, then both y_{1}, y_{2} have degree at least $\lambda_{i^{*}}$ in their parent hyperedges.

Assume that x has degree at least $\lambda_{i^{*}}$ in its parent hyperedge. Since x has degree at least $k-2 \lambda_{i^{*}}+1$ in its $\left(k-2 \lambda_{i^{*}}+1\right)$-degree-gadget, it has degree at most $\lambda_{i^{*}}-1$ in $S\left(x y_{1}\right) \cup S\left(x y_{2}\right)$. Moreover, any $a \in A_{x}$ has degree at least $k-\lambda_{i^{*}}+1$ in its $\left(k-\lambda_{i^{*}}+1\right)$ -degree-gadget and so has degree less than $\lambda_{i^{*}}$ in $S\left(x y_{1}\right) \cup S\left(x y_{2}\right)$ and so in each of $S\left(x y_{1}\right), S\left(x y_{2}\right)$. Since A_{x} is of size $\sum_{j=1}^{i^{*}-1} \alpha_{1}-1$, the vertex y_{1} (resp. y_{2}) must have degree at least $\lambda_{i^{*}}$ in $S\left(x y_{1}\right)$ (resp. $S\left(x y_{2}\right)$).

Consider an edge $u v \in E(G), i \in[3]$. The vertex $\ell=\ell_{u}^{i, j_{u}}=\ell_{v}^{i, j_{v}}$ has degree at least $k-\lambda_{i^{*}}-\lambda_{1}$ in its $\left(k-\lambda_{i^{*}}-\lambda_{1}\right)$-degree-gadget and is the unique common vertex of the hyperedges $S_{u}^{i, j_{u}}$ and $S_{v}^{i, j_{v}}$. Therefore it has degree $\lambda_{i^{*}}$ in at most one of $S_{u}^{i, j_{u}}, S_{v}^{i, j_{v}}$. Hence, by the Claim 46.1, at most one of c_{u}^{i}, c_{v}^{i} has degree $\lambda_{i^{*}}$ in its parent hyperedge. Thus at most one of u, v is colored i by ϕ. Therefore, ϕ is a proper 3-coloring of G.

Assume now that ϕ is a proper 3-coloring of G. We construct a graph G^{*} as follows.

- For any vertex gadget $H_{v}, i \in[3]$, let $G^{*}\left[S_{v}^{i}\right]$ be a copy of F in which every vertex in X_{v}^{i} has degree at most $\lambda_{i^{*}-1}$, every vertex in Y_{v}^{i} has degree at least $\lambda_{i^{*}}$, and c_{v} has degree $\lambda_{i^{*}-1}$ (resp. $\lambda_{i^{*}}$) and c_{v}^{i} has degree λ_{1} (resp. $\lambda_{i^{*}}$) in S_{v}^{i} if $\phi(v)=i$ $($ resp. $\phi(v) \neq i)$.
- In every color gadget H_{v}^{i}, for $x \in\left\{c_{v}^{i}, b_{v}^{i}, a_{v}^{i}\right\}$ with children y_{1} and y_{2}, let $G^{*}\left[S\left(x y_{1}\right)\right]$ and $\left.G^{*}\left[S\left(x y_{2}\right)\right]\right)$ be two similar copies of F such that:
- if $i \neq \phi(v)$, then x has degree $\lambda_{i^{*}}$ in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$ (and so at most $\lambda_{i^{*}}+1$ in $\left.G^{*}\left[S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]\right)$ and y_{1} and y_{2} have degree λ_{1} in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$ respectively.
- if $i=\phi(v)$, then x has degree $\lambda_{i^{*}-1}$ in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$ (and so at most $\lambda_{i^{*}-1}+1$ in $\left.G^{*}\left[S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]\right)$ and y_{1} and y_{2} have degree $\lambda_{i^{*}}$ in $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$ respectively.
- every vertex in A_{x} has degree at most $\lambda_{i^{*}-1}$ in both $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$ and so at most $\lambda_{i^{*}}+1$ in $\left.G^{[} S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]$;
- every vertex in B_{x} is degree at least $\lambda_{i^{*}}$ in both $G^{*}\left[S\left(x y_{1}\right)\right]$ and $G^{*}\left[S\left(x y_{2}\right)\right]$ and so at most $\lambda_{t}+1$ in $G^{*}\left[S\left(x y_{1}\right) \cup S\left(x y_{2}\right)\right]$;
- For any d-degree-gadget D at vertex v, we let $G^{*}[V(D)]$ be an (F, D, k)-graph in which v has degree d.

By construction, $G^{*} F$-overlays H. Let us check that $\Delta\left(G^{*}\right) \leq k$. Let u be a vertex of G^{*}.

- If u is in at most two hyperedges (in particular, if $=u$ is in Y_{v}^{i} or u is in B_{x} for x internal vertex in some T_{v}^{i} or u is only in a d-degree-gadget), then u has degree at most $2 \lambda_{t} \leq k$.
- If $u \in X_{v}^{i}$ for $v \in V(G)$, then u has degree $k-\lambda_{i^{*}}+1$ in its $\left(k-\lambda_{i^{*}}+1\right)$-degreegadget and at most $\lambda_{i^{*}-1}$ in $\left.S_{v}^{i}\right]$, thus u has degree at most $k-\lambda_{i^{*}}+\lambda_{i^{*}-1}+1 \leq k$.
- If $u \in A_{x}$ for $v \in V(G)$ and x internal vertex in some tree T_{v}^{i}, then u has degree $k-\lambda_{i^{*}}+1$ in its $\left(k-\lambda_{i^{*}}+1\right)$-degree-gadget and at most $\lambda_{i^{*}-1}+1$ in $G^{*}\left[S\left(x y_{1}\right) \cup\right.$ $\left.S\left(x y_{1}\right)\right]$, thus u has degree at most $k-\lambda_{i^{*}}+\lambda_{i^{*}-1}+2 \leq k$.
- For $u \in\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}\right\}$ for $i \in[3]$ with u parent of y_{1}, y_{2}, it has degree $k-2 \lambda_{i^{*}}+1$ in its $\left(k-2 \lambda_{i^{*}}+1\right)$-degree-gadget. And if $i=\phi(v)($ resp. $i \neq \phi(v))$, then u has degree $\lambda_{i^{*}}$ (resp. λ_{1}) in its parent hyperedge and $\lambda_{i^{*}-1}+1$ (resp. $\lambda_{i^{*}}+1$) in $G^{*}\left[S_{u y_{1}}^{1} \cup S_{u y_{2}}^{1}\right]$. Hence u has degree at most $k-\lambda_{i^{*}}+\lambda_{i^{*}-1}+2 \leq k$.
- Assume that u is the identification of $\ell_{v}^{i, j_{v}}$ and $\ell_{w}^{i, i_{w}}$ for an edge $v w \in E(G)$. First, u has degree $k-\lambda_{i^{*}}-\lambda_{1}$ in its $\left(k-\lambda_{i^{*}}-\lambda_{1}\right)$-degree-gadget. Moreover, since either $\phi(v) \neq i$ or $\phi(w) \neq i$, then u has degree λ_{1} in one of $S_{v}^{i, j_{v}}, S_{w}^{i, j_{w}}$ and at most $\lambda_{i^{*}}$ in the other. Therefore, u has degree at most k in G^{*}.
Consequently, G^{*} is an (F, H, k)-graph.
Theorem 47. Let a graph F on p vertices with degree sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{p}\right)$ such that $\lambda_{t}+\lambda_{1} \geq 2 \lambda_{2}$. Then there exists k such that $(\Delta \leq k)$-F-OVERLAY is NP-complete.

Proof. Observe that the condition $\lambda_{t}+\lambda_{1} \geq 2 \lambda_{2}$ implies $t \geq 3$. Set $k=2 \lambda_{t}+\lambda_{t-1}$. We give a reduction from 3-COLORING on 4-regular graphs.

Given a 4-regular graph G, we build a p-uniform hypergraph H as follows.

- For each vertex $v \in V(G)$, we create a vertex gadget H_{v} with three hyperedges $S_{v}^{i}=\left\{c_{v}, c_{v}^{i}\right\} \cup X_{v}^{i} \cup Y_{v}^{i}$ for $i \in[3]$ where $\left|X_{v}^{i}\right|=\sum_{i=1}^{t-1} \alpha_{i}-1,\left|Y_{v}^{i}\right|=p-\alpha_{t}-1$. For $i \in[3]$, we add a $\left(k-\lambda_{t-1}\right)$-degree-gadget at each vertex $x \in X_{v}^{i}$ We say that S_{v}^{i} is the parent hyperedge of each $c_{v}^{i}, i \in[3]$.
- For each vertex $v \in V(G)$ and each $i \in[3]$, we construct a color gadget H_{v}^{i} for $i \in[3]$ as follows.
- We create a binary tree T_{v}^{i} with vertex set $\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}, \ell_{v}^{i, 1}, \ell_{v}^{i, 2}, \ell_{v}^{i, 3}, \ell_{v}^{i, 4}\right\}$ and edge set

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

$\left\{c_{v}^{i} a_{v}^{i}, c_{v}^{i} b_{v}^{i}, a_{v}^{i} \ell_{v}^{i, 1}, a_{v}^{i} \ell_{v}^{i, 2}, b_{v}^{i} \ell_{v}^{i, 3}, b_{v}^{i} \ell_{v}^{i, 4}\right\}$, rooted at c_{v}^{i}. In this tree, a_{v}^{i} and b_{v}^{i} are the children of $c_{v}^{i}, \ell_{v}^{i, 1}$ and $\ell_{v}^{i, 2}$ are the children of a_{v}^{i}, and $\ell_{v}^{i, 3}$ and $\ell_{v}^{i, 4}$ are the children of b_{v}^{i}.

- For each edge $e=x y$ of T_{v}^{i} with x the parent of y in T_{v}^{i}, we construct an edgegadget containing x, y, a new vertex z_{e}, and four disjoint sets $U_{e}^{1} W_{e}^{1}, U_{e}^{2}, W_{e}^{2}$ of new vertices, U_{e}^{1} of size $\alpha_{1}-1, W_{e}^{1}$ of size $p-\left|U_{e}^{1}\right|-1, U_{e}^{2}$ of size $p-\alpha_{t}-1$, W_{e}^{2} of size $\alpha_{t}-1$. We add the hyperedges $S_{e}^{1}=\left\{x, z_{e}\right\} \cup U_{e}^{1} \cup W_{e}^{1}$ and $S_{e}^{2}=\left\{z_{e}, y\right\} \cup U_{e}^{2} \cup W_{e}^{2}$. We finally add a $\left(k-\lambda_{t}-2 \lambda_{1}\right)$-degree-gadget at x, a $\left(k-\lambda_{1}\right)$-degree-gadget at each vertex of $U_{e}^{1}, \mathrm{a}\left(k-\lambda_{t}+1\right)$-degree-gadget at each of U_{e}^{2}, and a $\left(k-\lambda_{2}-\lambda_{t}+1\right)$-degree-gadget pendant at z_{e}.
- For every vertex $v \in V(G)$, let $e_{v}^{1}, e_{v}^{2}, e_{v}^{3}, e_{v}^{4}$, be an ordering of the edges incident to v. For each edge $u v \in E(G)$, let j_{u} and j_{v} be the indices such that $u v=e_{u}^{j_{u}}=$ $e_{v}^{j_{v}}$. Then, for all $i \in[3]$, we identify the vertices $\ell_{u}^{i, j_{u}}$ and $\ell_{v}^{i, j_{v}}$ and we add a ($k-2 \lambda_{t}+1$)-degree-gadget at this vertex.

Figure 4.8: The binary tree T_{v}^{i} and an example of the edge-gadget at vertex c_{v}^{i} (corresponding to red edges).

Let us now prove that there is a proper 3 -coloring of G if and only if there is an (F, H, k)-graph G^{*}.

Assume first that there is an (F, H, k)-graph G^{*}. For sake of clarity, we say that a vertex has degree d in a set S if it has degree d in $G^{*}[S]$.

Let $v \in V(G)$. The vertex c_{v} has degree at most $2 \lambda_{t}+\lambda_{t-1}$ in $S_{v}^{1} \cup S_{v}^{2} \cup S_{v}^{3}$. But those hyperedges pairwise intersect in $\left\{c_{v}\right\}$. Thus there is $i \in[3]$ such that c_{v} has degree less than λ_{t} in S_{v}^{i}.

Moreover, each vertex $x \in X_{v}^{i}$ has degree at least $k-\lambda_{t-1}$ in its $\left(k-\lambda_{t-1}\right)$-degreegadget, and so at most λ_{t-1} in S_{v}^{i}. Together with c_{v}, there are $\sum_{i=1}^{t-1} \alpha_{t}$ vertices of degree at most λ_{t-1} in S_{v}^{i}. Thus c_{v}^{i} have degree λ_{t} in its parent hyperedge S_{v}^{i}. Therefore, we can define a 3 -coloring ϕ by $\phi(v)=i$ where i is an index such that c_{v}^{i} has degree λ_{t} in S_{v}^{i}.

Let us now prove that ϕ is proper. We need the following claim.

Claim 47.1. Let $v \in V(G)$ and $i \in[3]$. If c_{v}^{i} has degree λ_{t} in S_{v}^{i}, then so does any leaf $\ell_{v}^{i, j}$ in $S_{v}^{i, j}$ for $j \in[4]$.

Proof of claim: It suffices to prove that for any $x \in\left\{c_{v}^{i}, b_{v}^{i}, a_{v}^{i}\right\}$, if x has degree λ_{t} in its parent hyperedge, then both y_{1}, y_{2} have degree λ_{t} in their parent hyperedges.

Assume that x is a λ_{t}-vertex in its parent hyperedge. Since x has degree at least $k-\lambda_{t}-2 \lambda_{1}$ in its $\left(k-\lambda_{t}-2 \lambda_{1}\right)$-degree-gadget, and degree λ_{t} in its parent hyperedge, it has has degree at most $2 \lambda_{1}$ in $S_{x y_{1}}^{1} \cup S_{x y_{2}}^{1}$, and so λ_{1} in each of $S_{x y_{1}}^{1}, S_{x y_{2}}^{1}$. Let $e=x y$ be one of the two edges $x y_{1}, x y_{2}$. Any vertex in U_{e}^{1} has degree at least $k-\lambda_{1}$ in its ($k-\lambda_{1}$)-degree-gadget, and thus λ_{1} in S_{e}^{1}. It implies that z_{e} has degree at least λ_{2} in S_{e}^{1}. Since it is also in a $\left(k-\lambda_{2}-\lambda_{t}+1\right)$-degree-gadget, z_{e} has degree less than λ_{t} in S_{e}^{2}. Moreover, any vertex in U_{e}^{2} is in a $\left(k-\lambda_{t}+1\right)$-degree-gadget, then none of them has degree λ_{t} in S_{e}^{2} except those in W_{e}^{2} which is of size $\alpha_{t}-1$. Thus, y must have degree λ_{t} in S_{e}^{2}.

Consider an edge $u v \in E(G), i \in[3]$. The vertex $\ell=\ell_{u}^{i, j_{u}}=\ell_{v}^{i, j_{v}}$ has degree at least $k-2 \lambda_{t}+1$ in its $\left(k-2 \lambda_{t}+1\right)$-degree-gadget and is the unique common vertex of the hyperedges $S_{u}^{i, j_{u}}$ and $S_{v}^{i, j_{v}}$. Therefore it has degree λ_{t} in at most one of $S_{u}^{i, j_{u}}$ and $G^{*} S_{v}^{i, j_{v}}$. Hence, by Claim 47.1, at most one of c_{u}^{i}, c_{v}^{i} has degree λ_{t} in its parent hyperedge. Thus at most one of u, v is colored i by ϕ. Therefore, ϕ is a proper 3coloring of G.

Assume now that ϕ is a proper 3-coloring of G. We construct a graph G^{*} as follows.

- For any vertex gadget $H_{v}, i \in[3]$, let $G^{*}\left[S_{v}^{i}\right]$ be a copy of F in which every vertex in X_{v}^{i} has degree at most λ_{t-1}, every vertex in Y_{v}^{i} has degree λ_{t}, and c_{v} has degree λ_{t-1} (resp. λ_{t}) and c_{v}^{i} has degree λ_{t} (resp. λ_{1}) if $\phi(v)=i$ (resp. $\phi(v) \neq i)$.
- In every color gadget H_{v}^{i}, for each edge $e=x y$ of T_{v}^{i} with x parent of y, let $G^{*}\left[S_{e}^{1}\right], G^{*}\left[S_{e}^{2}\right]$ be a copies of F such that:
- every vertex in U_{e}^{1} has degree λ_{1};
- every vertex in U_{e}^{2} has degree at most λ_{t-1};
- every vertex in W_{e}^{2} has degree λ_{t};
- if $i=\phi(v)$, then x has degree λ_{1} in S_{e}^{1}, z_{e} has degree λ_{2} in S_{e}^{1} and λ_{t-1} in S_{e}^{2}, and y has degree λ_{t} in S_{e}^{2};
- if $i \neq \phi(v)$, then x has degree λ_{2} in S_{e}^{1}, z_{e} has degree λ_{1} in S_{e}^{1} and λ_{t} in S_{e}^{2}, and y has degree λ_{1} in S_{e}^{2}..
- For any d-degree-gadget D at vertex v, we let $G^{*}[V(D)]$ be an (F, D, k)-graph in which v has degree d.

By construction, $G^{*} F$-overlays H. Let us check that $\Delta\left(G^{*}\right) \leq k$. Let u be a vertex of G^{*}.

- If u is in at most two hyperedges, (in particular if u is in Y_{v}^{i}, in $W_{e}^{1} \cup W_{e}^{2}$ in an edge-gadget or only in a degree-gadget), then u has degree at most $2 \lambda_{t}<k$ in G^{*}.
- If $u=c_{v}$, then it has degree λ_{t-1} in S_{v}^{i} for the index $i=\phi(v)$, and λ_{t} in S_{v}^{i} for the two indices $i \neq \phi(v)$. Hence c_{v} has degree $2 \lambda_{1}+\lambda_{t-1}=k$.
- If $u \in X_{v}^{i}$ for $v \in V(G)$, then u has degree $k-\lambda_{t-1}$ in its ($k-\lambda_{t-1}$)-degree-gadget and at most λ_{t-1} in S_{v}^{i}, thus u has degree at most k in G^{*}.
- If $u \in U_{e}^{1}$ for some edge e of T_{v}^{i}, then u has degree $k-\lambda_{1}$ in its degree-gadget and λ_{1} in S_{e}^{1}, thus u has degree k in G^{*}.
- If $u \in U_{e}^{2}$, then u has degree $k-\lambda_{t}+1$ in its degree-gadget and at most λ_{t-1} in S_{e}^{2}, thus u has degree at most k in G^{*}.
- If $u \in\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}\right\}$ for $i \in[3]$ with children y_{1}, y_{2}, then u has degree $k-\lambda_{t}-2 \lambda_{1}$ in its $\left(k-\lambda_{t}-2 \lambda_{1}\right)$-degree-gadget. Moreover, if $i=\phi(v)($ resp. $i \neq \phi(v)$), then u has degree λ_{t} (resp. λ_{1}) in its parent hyperedge and λ_{1} (resp. λ_{2}) in both $S_{u y_{1}}^{1}, S_{u y_{2}}^{1}$. Hence u has degree at most $k-\lambda_{t}-2 \lambda_{1}+\lambda_{t}+2 \lambda_{1}=k$ (resp. $k-\lambda_{t}-2 \lambda_{1}+\lambda_{1}+2 \lambda_{2} \leq k$ by the assumption $\lambda_{t}+\lambda_{1} \geq 2 \lambda_{2}$) in G^{*}.
- If $u=z_{e}$ for some edge e of T_{v}^{i}, then u has degree $k-\lambda_{2}-\lambda_{t}+1$ in its ($k-$ $\lambda_{2}-\lambda_{t}+1$)-degree-gadget. Moreover, if $i=\phi(v)$ (resp. $i \neq \phi(v)$), then u has degree λ_{2} (resp. λ_{1}) in S_{e}^{1} and λ_{t-1} (resp. λ_{t}) in S_{e}^{2}. Hence, u has degree at most $k-\lambda_{2}-\lambda_{t}+1+\lambda_{2}+\lambda_{t-1} \leq k$ (resp. $\left.k-\lambda_{2}-\lambda_{t}+1+\lambda_{1}+\lambda_{t} \leq k\right)$ in G^{*}.
- Assume that u is the identification of $\ell_{v}^{i, j_{v}}$ and $\ell_{w}^{i, i_{w}}$ for an edge $v w \in E(G)$. First, u has degree $k-2 \lambda_{t}+1$ in its $\left(k-2 \lambda_{t}+1\right)$-degree-gadget. Moreover, since either $\phi(v) \neq i$ or $\phi(w) \neq i$, then u has degree less than λ_{t} in one of $S_{v}^{i, j_{v}}, S_{w}^{i, j_{w}}$. Therefore, u has degree at most k in G^{*}.
Consequently, G^{*} is an (F, H, k)-graph.
Theorem 48. Let F be a graph with α_{1} vertices of positive degree λ_{1} and $\alpha_{2}=p-\alpha_{1}$ vertices of degree $\lambda_{2}=\lambda_{1}+1$. Then $(\Delta \leq k)$-F-OVERLAY is NP-complete for some k.

There are several cases in the proof, depending on the structure of graph F. In each case, we give a reduction from (3,4)-SAT problem, which follows the same general idea as the proof of Theorem 41: we construct variable gadgets H_{t} containing some negated and non-negated literal vertices and identify some of them in such a way that for an assignment ϕ satisfying Φ of (3,4)-SAT problem, $\phi\left(x_{t}\right)=$ true (resp. false) if and only if non-negated (resp. negated) literal vertices in the variable gadget are adjacent to w_{t} in an (F, H, k)-graph.

Lemma 49. Let F be a graph on p vertices with α_{1} vertices of degree λ_{1} and $\alpha_{2}=p-\alpha_{1}$ vertices of degree $\lambda_{2}>\lambda_{1}$ such that $F\left[V_{\lambda_{2}}\right]$ is μ-regular but neither complete nor anticomplete. Then there exists k such that $(\Delta \leq k)$-F-Overlay is NP-complete.

Proof. Set $\gamma=\lambda_{2}-\mu$ and $k=\max \left\{4 \gamma\left(\alpha_{2}-1\right)+4 \mu+\lambda_{1}, 3 \gamma\left(\alpha_{2}-1\right)+6 \mu-1+\lambda_{1}\right\}$.
We give a reduction from (3,4)-SAT. Given a formula Φ of this problem, we construct a hypergraph H as follows.

1. For each variable x_{t}, we construct a variable gadget H_{t} in the following way.

We first create a center vertex w_{t}, a set of $4\left(\alpha_{2}-1\right)$ vertices $U_{t}=\left\{u_{t}^{1}, \ldots, u_{t}^{4\left(\alpha_{2}-1\right)}\right\}$, and for each $i \in\left[4\left(\alpha_{2}-1\right)\right]$, create a set of α_{1} new vertices W_{t}^{i}, and a hyperedge $S_{t}^{i}=W_{t}^{i} \cup\left\{w_{t}, u_{t}^{i}, \ldots, u_{t}^{i+\alpha_{2}-2}\right\}$ (superscripts are modulo $4\left(\alpha_{2}-1\right)$). For $r \in[4]$, let $x_{t}^{r}=u_{t}^{r\left(\alpha_{2}-1\right)-\alpha_{2}+2}$ and $\bar{x}_{t}^{r}=u_{t}^{r\left(\alpha_{2}-1\right)-\alpha_{2}+3}$. Set $X_{t}=\left\{x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right\}$ and $\bar{X}_{t}=\left\{\bar{x}_{t}^{1}, \bar{x}_{t}^{2}, \bar{x}_{t}^{3}, \bar{x}_{t}^{4}\right\}$. The vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ are called the non-negated (resp. negated) literal vertices of H_{t}.
2. For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$, we identify y_{1}, y_{2}, y_{3} into a clause vertex c_{j}, where $y_{i}=x_{t}^{r}$ if $\ell_{i}=x_{t}$ and ℓ_{i} is the r-th occurrence of x_{t}, and $y_{i}=\bar{x}_{t}^{r}$ if $\ell_{i}=\bar{x}_{t}$ and is the r-th occurrence of x_{t}.
3. Finally, we add degree-gadgets on some vertices.

- We add a $\left(k-4 \gamma\left(\alpha_{2}-1\right)-4 \mu\right)$-degree gadget on vertex w_{t}.
- We add a $\left(k-\lambda_{1}\right)$-degree gadget at every vertex in W_{t}^{i} for all $i \in\left[4\left(\alpha_{2}-1\right)\right]$.
- For $i \in[\mu-1]$, we add a $\left(k-\gamma\left(\alpha_{2}-1\right)-2 \mu+1\right)$-degree-gadget on each $u_{t}^{\left(\alpha_{2}-1\right) r-j}$ for $r \in[4]$.

Observe that every vertex in W_{t}^{i}, for $i \in\left[4\left(\alpha_{2}-1\right)\right]$, has degree at least $k-\lambda_{1}$ in its $\left(k-\lambda_{1}\right)$-degree-gadget, and so degree at most λ_{1} in S_{t}^{i}. Thus, each of those vertices must have degree λ_{1} in S_{t}^{i}. It implies that all the other vertices must have degree at least λ_{2} in any hyperedge of H_{t}. In particular, w_{t} has degree λ_{2} in any hyperedge of H_{t}. Since w_{t} is in a $\left(k-4 \gamma\left(\alpha_{2}-1\right)-4 \mu\right)$-degree-gadget and is adjacent to γ vertices in every W_{t}^{i} for $i \in\left[4\left(\alpha_{2}-1\right)\right]$, it has degree at most 4μ in $\bigcup_{i=1}^{4\left(\alpha_{2}-1\right)} S_{t}^{i} \backslash W_{t}^{i}$.

Moreover, each vertex $u_{t}^{i} \in U_{t}$ is a λ_{2}-vertex in every hyperedge $S_{t}^{i^{\prime}}$ of H_{t} containing it, and so adjacent to γ vertices in $W_{t}^{i^{\prime}}$. Since u_{t}^{i} belongs to $\alpha_{2}-1$ hyperedges of H_{t}, thus u_{t}^{i} is adjacent to $\gamma\left(\alpha_{2}-1\right)$ vertices in $\bigcup_{i^{\prime}=1}^{4\left(\alpha_{2}-1\right)} W_{t}^{i^{\prime}}$. For $i \in[\mu-1], u^{\left(\alpha_{2}-1\right) r-i}$ is in a $\left(k-\gamma\left(\alpha_{2}-1\right)-2 \mu+1\right)$-degree-gadget, then it has degree at most $\gamma\left(\alpha_{2}-1\right)+2 \mu-1$ in H_{t}, and so at most $2 \mu-1$ in $\bigcup_{i^{\prime}=1}^{4\left(\alpha_{2}-1\right)} S_{t}^{i^{\prime}}$. Moreover, $F\left[V_{\lambda_{2}}\right]$ is μ-regular (but not complete or anticomplete). The following is then similar to the proof of Theorem 41 for $F\left[V_{\lambda_{2}}\right]$. So we just sketch it.

Assume that there exists an assignment ϕ satisfying Φ. Let G be the graph obtained as follows.

We let $\left(v_{0}, v_{1}, \ldots, v_{\alpha_{2}-1}\right)$ be an ordering of $V_{\lambda_{2}}$ such that $N_{F}\left(v_{0}\right)=\left\{v_{\alpha_{2}-\mu+1}, \ldots, v_{\alpha_{2}-1}\right\} \cup$ $\left\{v_{1}\right\}$ if $\phi\left(x_{t}\right)=$ true and such that $N_{F}\left(v_{0}\right)=\left\{v_{\alpha_{2}-\mu+1}, \ldots, v_{\alpha_{2}-1}\right\} \cup\left\{v_{2}\right\}$ if $\phi\left(x_{t}\right)=$ false). For every $i \in\left[4 \alpha_{2}-4\right]$, we let $G\left[S_{t}^{i}\right]$ be the copy of F in which every vertex in W_{t}^{i} is a λ_{1}-vertex, w_{t} corresponds to v_{0} and $u_{t}^{i^{\prime}}$ for $i^{\prime} \in\left\{i, \ldots, i+\alpha_{2}-1\right\}$ corresponds to the vertex $v_{i^{\prime \prime}}$ such that $i^{\prime} \equiv i^{\prime \prime} \bmod \alpha_{2}-1$. In addition, for every d-degree-gadget D at some vertex v, we let $G[V(D)]$ be an (F, D, k)-graph in which v has degree d.

The graph $G F$-overlays H and one can check that $\Delta(F) \leq k$.
Conversely, assume that G is an (F, H, k)-graph. One can prove the following claim.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Claim 49.1. Every subgraph $G\left[H_{t}\right]$ satisfies the following.
(a) Every vertex in W_{t}^{i} for $i \in\left[4 \alpha_{2}-4\right]$ is a λ_{1}-vertex in S_{t}^{i}.
(b) w_{t} is a λ_{2}-vertex in every hyperedges of H_{t}. Furthermore, it is adjacent to γ vertices in each W_{t}^{i} and the vertices $u_{t}^{\left(\alpha_{2}-1\right) r-i}$ for $r \in[4], i \in[\mu-1]$.

Therefore the truth assignment ϕ defined by $\phi\left(x_{t}\right)=$ true (resp. false) if w_{t} is adjacent to $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$, satisfies Φ.

Proof of Theorem 48. Let V_{d} be the set of vertices of degree d in F and $\mathbf{d}=\left(d_{1}, \ldots, d_{p}\right)$ be the non-decreasing degree sequence of F. Let N_{s} be the set of vertices of $V_{\lambda_{2}}$ having exactly s neighbors in $V_{\lambda_{1}}$, and let $N_{\geq s}=\bigcup_{s^{\prime} \geq s} N_{s^{\prime}}$.

For technical reasons, we distinguish several cases as follows.
If $F\left[V_{\lambda_{1}}\right]$ is not anticomplete, then see Case A.
Otherwise, $F\left[V_{\lambda_{1}}\right]$ is anticomplete. Assume first that $F\left[V_{\lambda_{2}}\right]$ is regular. If $F\left[V_{\lambda_{2}}\right]$ is neither complete nor anticomplete, then we have the result by Lemma 49. If $F\left[V_{\lambda_{2}}\right]$ is anticomplete, then F is a disjoint of union of $K_{\lambda_{1}, \lambda_{1}+1}$ and we have the result by Theorem 43.
Hence we may assume that $F\left[V_{\lambda_{2}}\right]$ is complete. Observe $\alpha_{2} \geq \lambda_{1}$ because a vertex of $V_{\lambda_{1}}$ has all its neighbors in $V_{\lambda_{2}}$ and $\alpha_{2} \leq \lambda_{1}+1$ because every vertex of $V_{\lambda_{2}}$ is adjacent to all other vertices of $V_{\lambda_{2}}$ and at least one in $V_{\lambda_{1}}$. If $\alpha_{2}=\lambda_{1}+1$, then every vertex of $V_{\lambda_{2}}$ has exactly one neighbor in $V_{\lambda_{1}}$, and so $\alpha_{2}=\lambda_{1} \times \alpha_{1}$. Hence $\alpha_{2}=2=\alpha_{1}$ and $\lambda_{1}=1$. Thus $F=K_{3}^{-}$and we have the result by Theorem 42. If $\alpha_{2}=\lambda_{1}$, then every vertex of $V_{\lambda_{1}}$ is adjacent to all vertices of $V_{\lambda_{2}}$. Thus F is $K_{\lambda_{1}+2}^{-}$and we have the result by Theorem 42 . Henceforth, we may assume that $F\left[V_{\lambda_{2}}\right]$ is not regular, that is $F\left[V_{\lambda_{2}}\right]$ has at least two degree values. In particular, $\alpha_{2} \geq 2$.

If $N_{\geq 2}$ is empty, then $V_{\lambda_{2}}=N_{0} \cup N_{1}$ and both N_{0}, N_{1} are non-empty. See Case B-(i).

If there is a vertex in $N_{\geq 2}$ which is not adjacent to a vertex in $V_{\lambda_{1}}$, see Case C-(i).
Otherwise, every vertex in $N_{\geq 2}$ is adjacent to all vertices in $V_{\lambda_{1}}$ (so here $N_{\geq 2}=N_{\alpha_{1}}$ with $\alpha_{1} \geq 2$). If $N_{1}=\emptyset$, then see Case C-(ii). Otherwise, $N_{1} \neq \emptyset$ and any vertex in $V_{\lambda_{1}}$ is not adjacent to all vertices in N_{1}, see Case B.

Case A: We set k depending on the subgraph $F\left[V_{\lambda_{1}}\right]$ of F.
(1) If $F\left[V_{\lambda_{1}}\right]$ is not complete, then $k=6 \lambda_{1}-1$.
(2) If $F\left[V_{\lambda_{1}}\right]$ is complete, then every vertex of $V_{\lambda_{1}}$ is not adjacent to some vertex in $V_{\lambda_{2}}$. We set $k=6 \lambda_{1}+3$.

We give a reduction from (3,4)-SAT .
Given a formula Φ of this problem, we build a hypergraph H as follows.

1. For each variable x_{t}, we construct a variable gadget H_{t} in the following way. We first create a center vertex w_{t}, a set of $4 p-4$ vertices $U_{t}=\left\{u_{t}^{1}, \ldots, u_{t}^{4 p-4}\right\}$, and
$4 p-4$ hyperedges $S_{t}^{i}=\left\{w_{t}, u_{t}^{i}, \ldots, u_{t}^{i+p-2}\right\}$ (superscripts are modulo $4(p-1)$) for $i \in[4 p-4]$.
For $r \in[4]$, let $x_{t}^{r}=u_{t}^{r(p-1)-p+2}$ and $\bar{x}_{t}^{r}=u_{t}^{r(p-1)-p+3}$. Set $X_{t}=\left\{x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right\}$ and $\bar{X}_{t}=\left\{\bar{x}_{t}^{1}, \bar{x}_{t}^{2}, \bar{x}_{t}^{3}, \bar{x}_{t}^{4}\right\}$. The vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ are called the non-negated (resp. negated) literal vertices of H_{t}.
2. For each variable x_{t}, we add a set of $p-\lambda_{1}$ vertices W_{t}, and a hyperedge $S_{t}^{\prime}=$ $W_{t} \cup\left\{u_{t}^{p-1}, \ldots, u_{t}^{p-\lambda_{1}+1}\right\}$ and we add a $\left(k-4 \lambda_{1}-1\right)$-degree-gadget at w_{t}.
3. For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$, we identify y_{1}, y_{2}, y_{3} into a clause vertex c_{j}, where for all $i \in[3], y_{i}=x_{t}^{r}$ if $\ell_{i}=x_{t}$ and ℓ_{i} is the r-th occurrence of x_{t}, and $y_{i}=\bar{x}_{t}^{r}$ if $\ell_{i}=\bar{x}_{t}$ and is the r-th occurrence of x_{t}.

Let z be a vertex in $V_{\lambda_{1}}$ which is adjacent to the minimum number $a>0$ of vertices in this set. Let $\left(z, z_{1}, \ldots, z_{p-1}\right)$ be an ordering of F such that:

- z_{j} has degree λ_{1} and is adjacent to z for all $j \in[a]$,
- z_{j} has degree λ_{1} and is not adjacent to z for all $a+1 \leq j \leq \alpha_{1}-1$,
- z_{j} has degree λ_{2} and is adjacent to z for all $\alpha_{1} \leq j \leq \alpha_{1}+\lambda_{1}-a-1$.
- z_{j} has degree λ_{2} and is not adjacent to z for all $\alpha_{1}+\lambda_{1}-a \leq j \leq p-1$.

We will show that there is an assignment ϕ satisfying Φ if and only there is an (F, H, k)-graph G.

Assume that ϕ satisfies Φ, then we construct G as follows. For all $i \in[4 p-4]$, let $G\left[S_{t}^{i}\right]$ be copies of F such that w_{t} corresponds to the vertex z and the following hold.

In Case A-(1),

- if $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false), then each vertex in $X_{t}\left(\right.$ resp. \bar{X}_{t}) corresponds to z_{1}, and each of $\bar{X}_{t}\left(\right.$ resp. $\left.X_{t}\right)$ corresponds to $z_{\alpha_{1}-1}$.
- for all $r \in[4]$ and $2 \leq i \leq \alpha_{1}-2, u^{(p-1) r+1-i}$ corresponds to z_{i}.
- for all $r \in[4]$ and $\alpha_{1} \leq i \leq p-1, u^{(p-1) r+2-i}$ corresponds to z_{i}.

In Case A-(2),

- if $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false), then each vertex in X_{t} (resp. \bar{X}_{t}) corresponds to z_{1}, and each of \bar{X}_{t} (resp. X_{t}) corresponds to z_{p-1}.
- for all $r \in[4]$ and $2 \leq i \leq p-2], u^{(p-1) r+1-i}$ corresponds to z_{i}.

For any d-degree-gadget D at a vertex v, let $G[V(D)]$ be an (F, D, k)-graph in which v has degree d.

Let us check that $\Delta(G) \leq k$.

- w_{t} is adjacent to $4 \lambda_{1}$ vertices in H_{t} and one more in $W_{t} \subset V\left(S_{t}^{\prime}\right)$, and it has degree $k-4 \lambda_{1}-1$ in its degree-gadget. Thus w_{t} has degree k in total.
- Any literal vertex which is not identified to any clause vertex and is not in S_{t}^{\prime} has degree has degree at most $2 \lambda_{2}$ in its variable gadget. So, it has degree less than k.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

- Any literal vertex which is in S_{t}^{\prime} has degree has degree at most $2 \lambda_{2}$ in its variable gadget and it is adjacent to at most λ_{1} vertices in W_{t}. So, it has degree less than k.
- Each clause vertex c_{j} is in three literal variable gadgets. In Case A-(1) (resp. Case A-(2)), c_{j} has degree at most $2 \lambda_{1}$ (resp. $2 \lambda_{2}$) in each variable gadget. Moreover at least one of the literals is true so its corresponding literal vertex has degree $2 \lambda_{1}-1$ (resp. $2 \lambda_{2}-1$) Therefore c_{j} has degree at most $6 \lambda_{1}-1$ (resp. $6 \lambda_{2}-1$) in its variable gadget. Now it has degree $k-6 \lambda_{1}+1$ (resp. $k-6 \lambda_{2}+1$) in its degree-gadget, and so at most k in total.
- Any vertex which is in a degree-gadget but in no variable gadget has degree at most $2 \lambda_{t} \leq k$ since it belongs to at most two hyperedges.
- Any vertex in W_{t} has degree at most $\lambda_{2}<k$.

Hence, G is an (F, H, k)-graph.
Conversely, let G be an (F, H, k)-graph.
Claim 49.2. Any $G\left[H_{t}\right]$ satisfies the following.
(a) w_{t} has degree $4 \lambda_{1}$ in H_{t} and w_{t} has degree exactly λ_{1} in every hyperedge containing it.
(b) There is $I \in[p-1]$ of size λ_{1} such that for all $i \in I$ and $r \in[4], u_{t}^{(p-1) r-i+1}$ is adjacent to w_{t}; and $\left[\lambda_{1}-1\right] \subset I$.

Proof of claim: Observe that w_{t} is in a $\left(k-4 \lambda_{1}-1\right)$-degree-gadget, so it has degree at most $4 \lambda_{1}+1$ in $H_{t} \cup S_{t}^{\prime}$. Since w_{t} is in S_{t}^{\prime} which intersects S_{t}^{1} in $\lambda_{1}-1$ vertices and it is at least λ_{1} in S_{t}^{\prime}, then w_{t} is adjacent to at least one vertex in $W_{t} \subset V\left(S_{t}^{\prime}\right)$. Thus, w_{t} has degree at most $4 \lambda_{1}$ in H_{t}. Now for every $i \in[p-1], w_{t}$ belongs to the four hyperedges $S_{t}^{(p-1) r-i}, r \in[4]$, which pairwise intersect in $\left\{w_{t}\right\}$. Hence w_{t} has degree exactly λ_{1} in each $S_{t}^{(p-1) r-i}$ and then $4 \lambda_{1}$ in H_{t}. This proves (a).

Now, if a vertex u_{t}^{i} is adjacent to w_{t}, then so is u_{t}^{i+p-1} because w_{t} has degree exactly λ_{1} in both S_{t}^{i} and S_{t}^{i+1}. Therefore there is $I \in[p-1]$ of size λ_{1} such that w_{t} is adjacent to $u_{t}^{(p-1) r-i+1}$ for all $i \in I$ and $r \in[4]$.
Since w_{t} has degree $4 \lambda_{1}$ in H_{t}, then w_{t} is adjacent to exactly one vertex in W_{t} and so must be adjacent to $\lambda_{1}-1$ vertices in $S_{t}^{\prime} \backslash W_{t}$ which are $u_{t}^{p-1}, \ldots, u^{p-\lambda_{1}+1}$. It implies that $\left[\lambda_{1}-1\right] \subset I$. This proves (b).

Claim 49.2 implies that the vertices of X_{t} (resp. \bar{X}_{t}) are either all adjacent to w_{t} or all non-adjacent to w_{t}. Moreover, w_{t} is adjacent to $\lambda_{1}-1$ vertices not in $X_{t} \cup \bar{X}_{t}$. Hence if the vertices of X_{t} are adjacent to w_{t}, the vertices of \bar{X}_{t} are not (and vice-versa).

Let ϕ be the truth assignment defined by $\phi\left(x_{t}\right)=$ true if w_{t} is adjacent to H_{t}, and $\phi\left(x_{t}\right)=$ false otherwise. In any clause vertex c_{j}, we identified three literal vertices corresponding to the three literals.

- In Case A-(1), c_{j} has degree at most $k=6 \lambda_{1}-1$, so it has degree less than $2 \lambda_{1}$ in one of its three variable gadgets H_{t}. Since any vertex u_{t}^{i} for $i \in[4 p-4]$ belongs
to two hyperedges S_{t}^{i} and S_{t}^{i-p+2} which intersect in $\left\{u_{t}^{i}, w_{t}\right\}$ and has degree at least λ_{1} in each, then it has degree $2 \lambda_{1}-1$ in H_{t} only if it is adjacent to w_{t}. Hence, c_{j} is adjacent to w_{t}.
- In Case A-(2), c_{j} has degree at most $k=6 \lambda_{1}+3<6 \lambda_{2}$, so it has degree less than $2 \lambda_{2}$ in one of its three variable gadgets H_{t}.
Moreover, $F\left[V_{\lambda_{1}}\right]$ is complete, then w_{t} is adjacent to all λ_{1}-vertices in every hyperedges of H_{t} (because it is a λ_{1}-vertex in every hyperedge of H_{t}). If c_{j} is not adjacent to no center vertex of the three variable gadgets it belongs to, then it must be a λ_{2}-vertex in each hyperedge of those gadgets. Thus it has degree at least $2 \lambda_{2}$ in each variable gadget and so at least $6 \lambda_{2}$ in total, a contradiction. Thus c_{j} is adjacent to the center of at least one variable gadget w_{t}.
Hence, the corresponding literal to the literal vertex adjacent to w_{t} for variable x_{t} is true and clause C_{j} is satisfied.

Consequently, ϕ satisfies Φ.
Case B: Recall that in that case $N_{1} \neq \emptyset$. Let $\gamma=\max \left\{\left|N(v) \cap V_{\lambda_{1}}\right| \mid v \in V_{\lambda_{2}}\right\}$. We have $V_{\lambda_{2}}=\bigcup_{s=0}^{\gamma} N_{s}$. Let k as follows.
(i) If $N_{0} \neq \emptyset$, then set $k=\max \left\{6 \lambda_{2}-1+\lambda_{1}, \gamma \alpha_{2}+2\left(\lambda_{2}-\gamma\right)+\lambda_{1}\right\}$.
(ii) If $N_{0}=\emptyset, N_{\geq 2} \neq \emptyset$ and every vertex of $N_{\geq 2}$ is adjacent to all vertices of $V_{\lambda_{1}}$, then set $k=\max \left\{6 \lambda_{1}+3 \alpha_{2}-1+\lambda_{1}, \gamma \alpha_{2}+2\left(\lambda_{2}-\gamma\right)+\lambda_{1}\right\}$. Note that in that case every vertex in $V_{\lambda_{1}}$ is adjacent to a vertex in N_{1} but not all.

We give a reduction from $(3,4)$-SAT.
Given a formula Φ of this problem, we build a hypergraph as follows.

1. For each variable x_{t}, we construct a variable gadget H_{t} in the following way.

We first create a center vertex $w_{t}, 4 \alpha_{2}$ sets of $\alpha_{1}-1$ vertices A_{t}^{i} for $i \in\left[4 \alpha_{2}\right]$, a set of $4 \alpha_{2}$ vertices $U_{i}=\left\{u_{t}^{1}, \ldots, u_{t}^{4 \alpha_{2}}\right\}$, and $4 \alpha_{2}$ hyperedges $S_{t}^{i}=A_{t}^{i} \cup\left\{w_{t}, u_{t}^{i}, \ldots, u_{t}^{i+\alpha_{2}-1}\right\}$ (superscripts are modulo $4 \alpha_{2}$) for $i \in\left[4 \alpha_{2}\right]$.
For $r \in[4]$, let $x_{t}^{r}=u_{t}^{\alpha_{2}(r-1)+1}$ and $\bar{x}_{t}^{r}=u_{t}^{\alpha_{2}(r-1)+2}$. Set $X_{t}=\left\{x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right\}$ and $\bar{X}_{t}=\left\{\bar{x}_{t}^{1}, \bar{x}_{t}^{2}, \bar{x}_{t}^{3}, \bar{x}_{t}^{4}\right\}$. The vertices of X_{t} (resp. \bar{X}_{t}) are called the non-negated (resp. negated) literal vertices of H_{t}.
2. For each variable x_{t},

- we create a set of $p-\lambda_{1}$ vertices B_{t} and a hyperedge $S_{t}^{\prime}=B_{t} \cup\left\{w_{t}, u_{t}^{\alpha_{2}}, \ldots, u_{t}^{\alpha_{2}-\lambda_{1}+2}\right\}$.
- add a $\left(k-4 \lambda_{1}-1\right)$-degree-gadget on w_{t}.
- add a $\left(k-\lambda_{1}\right)$-degree-gadget on every vertex in A_{t}^{i} for $i \in\left[4 \alpha_{2}\right]$.

3. For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$, we identify y_{1}, y_{2}, y_{3} into a clause vertex c_{j}, where $y_{i}=x_{t}^{r}$ if $\ell_{i}=x_{t}$ and ℓ_{i} is the r-th occurrence of x_{t}, and $y_{i}=\bar{x}_{t}^{r}$ if $\ell_{i}=\bar{x}_{t}$ and is the r-th occurrence of x_{t}. We also add a $\left(k-6 \lambda_{2}-1\right)$-degree vertex at c_{j} in Case B-(i), and a $\left(k-6 \lambda_{1}-3 \alpha_{2}+1\right)$-degree vertex at c_{j} in Case B-(ii).

We will show that there is an assignment ϕ satisfying Φ if and only there is an (F, H, k)-graph G.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Let z be a vertex in $V_{\lambda_{1}}$ adjacent to a vertex y in N_{1} and let \bar{y} be a vertex in N_{0} in Case B-(i) or a vertex in N_{1} not adjacent to z in Case B-(ii). Note that \bar{y} and z are not adjacent. Let $\left(y_{1}, \ldots, y_{\alpha_{2}-2}\right)$ be an ordering of $V_{\lambda_{2}} \backslash\{y, \bar{y}\}$ such that $y_{1}, \ldots, y_{\lambda_{1}-1}$ are adjacent to z and $y_{\lambda_{1}}, \ldots, y_{\alpha_{2}-2}$ are not adjacent to z.

Assume that there is ϕ satisfying Φ, we construct a graph G as follows. Let $G\left[S_{t}^{\prime}\right]$ be a copy of F such that w_{t} has degree λ_{1} and is adjacent to the $\lambda_{1}-1$ vertices $u_{t}^{\alpha_{2}}, \ldots, u_{t}^{\alpha_{2}-\lambda_{1}+2}$.
In a variable gadget H_{t}, for every $i \in\left[4 \alpha_{2}\right]$, we let $G\left[S_{t}^{i}\right]$ be a copy of F such that w_{t} corresponds to the vertex z, and

- A_{t}^{i} corresponds to $V_{\lambda_{1}} \backslash\{z\}$.
- if $\phi\left(x_{t}\right)=$ true (resp. $\phi\left(x_{t}\right)=$ false), then each vertex in X_{t} (resp. \bar{X}_{t}) corresponds to y, and each vertex in \bar{X}_{t} (resp. X_{t}) to \bar{y}.
- for $i \in\left[\alpha_{2}-2\right], u_{t}^{(p-1) r-i+1}$ corresponds to y_{i}.

For any d-degree-gadget D at a vertex v, let $G[V(D)]$ be an (F, D, k)-graph in which v has degree d.

Let us check that $\Delta(G) \leq k$.

- w_{t} is adjacent to $4 \lambda_{1}$ vertices in H_{t} and one more in $W_{t} \subset V\left(S_{t}^{\prime}\right)$, and it has degree $k-4 \lambda_{1}-1$ in its degree-gadget, then w_{t} has degree k in total.
- Any literal vertex which is not identified to any clause vertex and not in S_{t}^{\prime} has degree at most $\gamma \alpha_{2}+2\left(\lambda_{2}-\gamma\right)$ in its variable gadget (it is adjacent to at most γ vertices in each A_{t}^{i} in a hyperedge to which it belongs and there are α_{2} such hyperedges; and $f(x)=x \alpha_{2}+2\left(\lambda_{2}-x\right)$ is increasing). So, it has degree less than k.
- Any literal vertex which is not identified to any clause vertex and in S_{t}^{\prime} has degree at most $\gamma \alpha_{2}+2\left(\lambda_{2}-\gamma\right)$ in its variable gadget and is adjacent to at most λ_{1} vertices in B_{t}. So it has degree at most k.
- Each clause vertex c_{j} is in three variable gadget. In Case B-(i), c_{j} (resp. Case B(ii)), in each of these gadgets, c_{j} has degree either $2 \lambda_{2}-1$ if it is adjacent to w_{t} or $2 \lambda_{2}$ (resp. $\alpha_{2}+2\left(\lambda_{2}-1\right)$ otherwise. Moreover at least one of the literals is true, its corresponding literal vertex has degree $2 \lambda_{2}-1$ in its variable gadget. Therefore c_{j} at most $6 \lambda_{2}-1$ neighbors (resp. $2 \alpha_{2}+6\left(\lambda_{2}-1\right)+1$) in variable gadgets. It also has $k-6 \lambda_{2}+1$ (resp. $k-6 \lambda_{1}-3 \alpha_{2}+1$) neighbors in its degree-gadget. Hence, in G, it has degree at most k.
- Any vertex which is in a degree-gadget but in no variable gadget has degree at most $2 \lambda_{t} \leq k$ since it belongs to at most two hyperedges.
- Any vertex in B_{t} has degree at most $\lambda_{2}<k$.

Hence, G is an (F, H, k)-graph.
Conversely, let G be an (F, H, k)-graph.
Observe that any vertex in A_{t}^{i} for $i \in\left[4 \alpha_{2}\right]$ is in a $\left(k-\lambda_{1}\right)$-degree-gadget, then it has
degree at most λ_{1} in S_{t}^{i}. Since any vertex has degree at least λ_{1} in a hyperedge, then every vertex in $\bigcup_{i=1}^{4 \alpha_{2}} A_{t}^{i}$ is a λ_{1}-vertex in any hyperedge to which it belongs.

Claim 49.3. Any $G\left[H_{t}\right]$ satisfies the following.
(a) w_{t} has degree $4 \lambda_{1}$ in H_{t} and w_{t} is a λ_{1}-vertex in every hyperedge of H_{t}.
(b) There is $I \in\left[\alpha_{2}\right]$ of size λ_{1} such that for all $i \in I$ and $r \in[4], u_{t}^{\alpha_{2} r-i+1}$ is adjacent to $w_{t} ;$ and $\left[\lambda_{1}-1\right] \subset I$.

This claim can be proved in exactly the same way as Claim 49.2.
We have that every vertex in U_{t} is a λ_{2}-vertex in any hyperedge to which it belongs (since w_{t} and $\alpha_{1}-1$ vertices of A_{t}^{i} for $i \in\left[4 \alpha_{2}\right]$ are λ_{1}-vertices).
Claim 49.3 implies that the vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ are either all adjacent to w_{t} or all non-adjacent to w_{t}. Moreover, w_{t} is adjacent to $\lambda_{1}-1$ vertices in U_{t} but not in $X_{t} \cup \bar{X}_{t}$. Hence if the vertices of X_{t} are adjacent to w_{t}, the vertices of \bar{X}_{t} are not (and vice-versa).

Let ϕ be the truth assignment defined by $\phi\left(x_{t}\right)=$ true if w_{t} is adjacent to all vertices of X_{t} in H_{t}, and $\phi\left(x_{t}\right)=$ false otherwise.
A clause vertex c_{j} has degree at most k. Because of its degree-gadget, in Case B-(i) (resp. Case B-(ii)), it has degree at most $6 \lambda_{2}-1$ (resp. $6 \lambda_{1}+3 \alpha_{2}-1$) in H_{t}. Now, since it is the identification of three literal vertices, c_{j} has degree less than $2 \lambda_{2}$ (resp. $2 \lambda_{1}+\alpha_{2}$) in one variable gadget H_{t}.

Claim 49.4. Let $i \in\left[4 \alpha_{2}\right]$. If u_{t}^{i} is not adjacent to w_{t}, then the following holds.
(i) u_{t}^{i} has degree at least $2 \lambda_{2}$ in $G\left[H_{t}\right]$;
(ii) If $N_{0}=\emptyset$, then u_{t}^{i} has degree at least $2 \lambda_{1}+\alpha_{2}$ in $G\left[H_{t}\right]$;

Proof of claim: u_{t}^{i} has at least λ_{2} neighbors in each of S_{t}^{i} and $S_{t}^{i-\alpha_{1}+1}$. But the intersection of those hyperedges is $\left\{w_{t}, u_{t}^{i}\right\}$. As it is not adjacent to w_{t}, u_{t}^{i} has at least $2 \lambda_{2}$ neighbors in $S_{t}^{i} \cup S_{t}^{i-\alpha_{1}+1}$. This proves (i).

If $N_{0}=\emptyset$, then for all $i-\alpha_{2}+1<i^{\prime}<i$. u_{t}^{i} must be adjacent to at least one λ_{1}-vertex of $S_{t}^{i^{\prime}}$ which is in $A_{t}^{i^{\prime}}$. Hence u_{i}^{t} has at least $\alpha_{2}-2$ in $\bigcup_{i-\alpha_{2}+1<i^{\prime}<i} A_{t}^{i^{\prime}}$ which is disjoint from $S_{t}^{i} \cup S_{t}^{i-\alpha_{1}+1}$. Hence u_{t}^{i} has degree at least $2 \lambda_{2}+\alpha_{2}-2=2 \lambda_{1}+\alpha_{2}$ in $G\left[H_{t}\right]$. This proves (ii).

This claim implies that there is at least one variable gadget H_{t} in which c_{j} is adjacent to w_{t}. It implies that the corresponding literal of this vertex in C_{j} is true, and so C_{j} is satisfied.
Consequently, ϕ satisfies Φ.
Case C: In this case, $F\left[V_{\lambda_{1}}\right]$ is anticomplete, $F\left[V_{\lambda_{2}}\right]$ is not regular, and $V_{\lambda_{2}}$ satisfies one of the following.
(i) there is a vertex of $N_{\geq 2}$ that is not adjacent to all vertices in $V_{\lambda_{1}}$ in F.

CHAPTER 4. $(\Delta \leq K)$ - - -OVERLAY
(ii) $V_{\lambda_{2}}=N_{\geq 2} \cup N_{0}$ and every vertex of $N_{\geq 2}$ is adjacent to all vertices of $V_{\lambda_{1}}$. Since $F\left[V_{\lambda_{2}}\right]$ is not complete, then there is a vertex in $N_{\geq 2}$ which is not adjacent to a vertex in either N_{0} Case C-(ii)-a or $N_{\geq 2}$ Case C-(ii)-b.

We set $a=\max _{\substack{u \in V_{1} \\ v \in N(u)}}|N(v) \cap N(u)|$, and let $k=4(p-2)\left(2 \lambda_{1}-a\right)+4 \lambda_{1}+1$.
For conveniences, we denote some vertices of graph F as follows. Let z_{0} be a vertex in $N_{\geq 2}$ such that there is $z_{1} \in V_{\lambda_{1}}$ adjacent to z_{0} with $a=\left|N\left(z_{0}\right) \cap N\left(z_{1}\right)\right|$. Let $z \in N_{\geq 2}$ which is adjacent to the minimum number of vertices in N_{0}, and $y, y^{\prime} \in V_{\lambda_{1}}$ be vertices adjacent to z and

- in Case C-(i), let $\bar{y} \in V_{\lambda_{1}}$ be a vertex not adjacent to z.
- in Case C-(ii), let \bar{y} be a vertex not adjacent to z such that $\bar{y} \in N_{0}$ if z is not adjacent to all vertices in N_{0} and $\bar{y} \in N_{\geq 2}$ otherwise.

We give a reduction from (3,4)-SAT.
Given a formula Φ of this problem, we build a hypergraph as follows.

1. For each variable x_{t}, we construct a variable gadget H_{t} in the following way.

We first create a center vertex w_{t}, a set of $4(p-2)$ vertices $D_{t}=\left\{d_{t}^{1}, \ldots, d_{t}^{4(p-2)}\right\}$, a set of $4(p-2)$ vertices $U_{t}=\left\{u_{t}^{1}, \ldots, u_{t}^{4(p-2)}\right\}$, and $4(p-2)$ hyperedges $S_{t}^{i}=$ $\left\{w_{t}, d_{t}^{i}, u_{t}^{i}, \ldots, u_{t}^{i+p-3}\right\}$ (superscripts are modulo $4(p-2)$) for $i \in[4(p-2)]$.
For $r \in[4]$, let $x_{t}^{r}=u_{t}^{r(p-2)-p+3}$ and $\bar{x}_{t}^{r}=u_{t}^{r(p-2)-p+4}$. Set $X_{t}=\left\{x_{t}^{1}, x_{t}^{2}, x_{t}^{3}, x_{t}^{4}\right\}$ and $\bar{X}_{t}=\left\{\bar{x}_{t}^{1}, \bar{x}_{t}^{2}, \bar{x}_{t}^{3}, \bar{x}_{t}^{4}\right\}$. The vertices of $X_{t}\left(\right.$ resp. $\left.\bar{X}_{t}\right)$ are called the non-negated (resp. negated) literal vertices of H_{t}.
2. For each variable x_{t},

- We create a set Y_{t} of $p-\lambda_{1}$ vertices and a hyperedge $S_{t}^{\prime}=Y_{t} \cup\left\{w_{t}\right\} \cup$ $\left\{u_{t}^{p-2}, \ldots, u_{t}^{p-\lambda_{1}}\right\}$.
- For any $i \in[4(p-2)]$, we add two sets of $p-\lambda_{1}-1$ vertices A_{t}^{i}, B_{t}^{i} and a set of $\lambda_{1}-1$ vertices C_{t}^{i}, and two hyperedges $A_{t}^{i} \cup C_{t}^{i} \cup\left\{d_{t}^{i}, w_{t}\right\}$ and $B_{t}^{i} \cup C_{t}^{i} \cup\left\{d_{t}^{i}, w_{t}\right\}$. We call this a fickle-gadget F_{t}^{i}.
- We add a $\left(k-2 \lambda_{1}+1\right)$-degree-gadget on every vertex in D_{t}.

3. For each clause $C_{j}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$, we identify y_{1}, y_{2}, y_{3} into a clause vertex c_{j}, where $y_{i}=x_{t}^{r}$ if $\ell_{i}=x_{t}$ and ℓ_{i} is the r-th occurrence of x_{t}, and $y_{i}=\bar{x}_{t}^{r}$ if $\ell_{i}=\bar{x}_{t}$ and is the r-th occurrence of x_{t}. We also add at c_{j} a $\left(k-6 \lambda_{1}+1\right)$-degree-gadget in Case C-(i), a $\left(k-6 \lambda_{1}-3\right)$-degree-gadget in Case C-(ii)-a, and a $\left(k-6 \lambda_{1}-3 p+6\right)$ -degree-gadget in Case C-(ii)-b.

We will show that there is an assignment ϕ satisfying Φ if and only if there is an (F, H, k)-graph G.

Assume that there is ϕ satisfying Φ, we construct a graph G as follows.
Let $\left(y_{1} \ldots, y_{p-4}\right)$ be an ordering of $V(F) \backslash\left\{z, y, y^{\prime}, \bar{y}\right\}$ such that $y_{1}, \ldots, y_{\lambda_{1}-2}$ are adjacent to z and $y_{\lambda_{1}-1}, \ldots, y_{p-4}$ are not adjacent to z.

In both hyperedges of any fickle-gadget F_{t}^{i}, w_{t} corresponds to z_{0} and d_{t}^{i} corresponds z_{1}. d_{t}^{i} is adjacent to w_{t} and all vertices in C_{t}^{i}, while w_{t} is adjacent to a vertices in C_{t}^{i} and $\lambda_{2}-a$ other ones in each of A_{t}^{i}, B_{t}^{i}.
Let $G\left[S_{t}^{\prime}\right]$ be a copy of F such that w_{t} has degree λ_{1} and is adjacent to the $\lambda_{1}-1$ vertices $u_{t}^{p-2}, \ldots, u_{t}^{p-\lambda_{1}}$.

For each variable gadget H_{t}, for every $i \in 4\left[\alpha_{2}\right]$, let $G\left[S_{t}^{i}\right]$ be a copy of F such that w_{t} corresponds to z, and

- if $\phi\left(x_{t}\right)=$ true (resp. false), then each vertex of X_{t} (resp. \bar{X}_{t}) corresponds to y and each vertex of \bar{X}_{t} (resp. X_{t}) corresponds to \bar{y}.
- in any S_{t}^{i}, d_{t}^{i} corresponds to y^{\prime}.
- for $i \in[p-4]$ and $r \in[4], u_{t}^{(p-2) r+1-i}$ corresponds to y_{i}.

For any d-degree-gadget D at a vertex v, let $G[V(D)]$ be an (F, D, k)-graph in which v has degree d.

Let us check that G has degree at most k.

- Any vertex $d_{t}^{i} \in D_{t}$ has degree $\left(k-2 \lambda_{1}+1\right)$ in its degree-gadget and λ_{1} in the fickle-gadget F_{t}^{i} and $\lambda_{1}-1$ other vertices in $V\left(S_{t}^{i} \backslash\left\{w_{t}\right\}\right)$, thus it has degree k.
- Any vertex in $Y_{t} \subset V\left(S_{t}^{\prime}\right)$ has degree at most λ_{2}.
- w_{t} has $\left(2 \lambda_{1}-a\right)$ neighbor in each of the $4(p-2)$ fickle-gadgets and is adjacent to $4 \lambda_{1}$ vertices in U_{t} and one more in Y_{t}. Thus it has degree k in G.
- Any vertex in a degree-gadget which is not in H_{t} has degree at most $2 \lambda_{2}$.
- Any vertex in U_{t} but not in $X_{t} \cup \bar{X}_{t} \cup S_{t}^{\prime}$ has degree at most $2 \lambda_{2}$ if it is not adjacent to any vertex in D_{t} or at most $2 \lambda_{2}+p-2$ if adjacent to a vertex in D_{t} for each hyperedge to which it belongs.
- Any vertex in $U_{t} \cap S_{t}^{\prime}$ has degree at most $2 \lambda_{1}+p-2$ in H_{t} and it is adjacent to at most λ_{1} vertices in Y_{t}, so it has degree less than k.
- Any clause vertex c_{j} has degree d in its d-degree-gadget. Moreover, in each of its variable gadget, c_{j} has degree either $2 \lambda_{1}-1$ if it adajcent to the center vertex or $2 \lambda_{1}$ in Case C-(i), $2 \lambda_{2}$ in Case C-(ii)-a, and $2 \lambda_{1}+p-2$ in Case C-(ii)-b otherwise. Since there at least one of three literals of the clause C_{j} is true, c_{j} has $2 \lambda_{1}-1$ in one of its variable gadget, and thus degree at most k in total.
Hence, G is an (F, H, k)-graph.
Conversely, let G be an (F, H, k)-graph.

Claim 49.5. For any variable x_{t}, we have the following.
(a) For all $i \in[4(p-2)]$, d_{t}^{i} is adjacent to w_{t} and has degree λ_{1} in any hyperedge of $F_{t}^{i} \cup S_{t}^{i}$.
(b) w_{t} is a λ_{2}-vertex in every hyperedge of H_{t}. Furthermore, there is $I \in[p-2]$ of size λ_{1} such that for all $i \in I$ and $r \in[4], u^{(p-2) r-i+1}$ is adjacent to w_{t} and $\left[\lambda_{1}-1\right] \subset I$.
(c) w_{t} has degree k in G.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Proof of claim: Observe that any vertex $d_{t}^{i} \in X_{t}$ is in a $\left(k-2 \lambda_{1}+1\right)$-degree-gadget, then it has degree at most $2 \lambda_{1}-1$ in $G\left[F_{t}^{i} \cup S_{t}^{i}\right]$. Since S_{t}^{i} and F_{t}^{i} intersect only in $\left\{d_{t}^{i}, w_{t}\right\}$ and d_{t}^{i} has degree at least λ_{1} in each, then d_{t}^{i} has degree at least $2 \lambda_{1}-1$ in $G\left[F_{t}^{i} \cup S_{t}^{i}\right]$. The equality holds when d_{t}^{i} is adjacent to w_{t} and $\lambda_{1}-1$ vertices in C_{t}^{i}. Thus, d_{t}^{i} has degree λ_{1} in all hyperedges of $F_{t}^{i} \cup S_{t}^{i}$ and is adjacent to w_{t}. This proves (a).

In any fickle-gadget F_{t}^{i}, from (a), every vertex in $\left\{w_{t}\right\} \cup C_{t}^{i}$ is adjacent to d_{t}^{i} and must be a λ_{2}-vertex in the two hyperedges of F_{t}^{i}. Thus, w_{t} is adjacent to at most a vertices in C_{t}^{i}, and so has degree at least $2 \lambda_{2}-a$ in $G\left[F_{t}^{i}\right]$. Since w_{t} is in $4(p-2)$ ficklegadgets, then it has degree at least $4(p-2)\left(2 \lambda_{2}-a\right)$ in $G\left[\bigcup_{i=1}^{4(p-2)} F_{t}^{i}\right]$.
Moreover, from (a), for $i \in[4(p-2)]$, w_{t} is adjacent to d_{t}^{i} which has degree λ_{1} in S_{t}^{i}. Thus w_{t} must be a λ_{2}-vertex in S_{t}^{i} because F is anticomplete.
Since w_{t} is in S_{t}^{\prime} which intersects H_{t} in $\lambda_{1}-1$ vertices and w_{t} must have degree at least λ_{1} in $G\left[S_{t}^{\prime}\right]$, then it is adjacent to at least one vertex in $Y_{t} \subset V\left(S_{t}^{\prime}\right)$. Therefore, w_{t} is adjacent to at most $k-4(p-2)\left(2 \lambda_{2}-a\right)-1=4 \lambda_{1}$ vertices in H_{t}.
Now for every $i \in[p-2]$, w_{t} belongs to four hyperedges $S_{t}^{(p-2) r-i}, r \in[4]$, which pairwise intersect in $\left\{w_{t}\right\}$. Hence w_{t} has degree exactly λ_{1} in each $S^{(p-2) r-i} \backslash\left\{d_{t}^{(p-2) r-i}\right\}$ and then is adjacent to $4 \lambda_{1}$ vertices in U_{t}.

If a vertex u_{t}^{i} is adjacent to w_{t}, then so is u_{t}^{i+p-2} because w_{t} has degree exactly λ_{1} in both $S_{t}^{i} \backslash\left\{d_{t}^{i}\right\}$ and $S_{t}^{i+1} \backslash\left\{d_{t}^{i+1}\right\}$. Therefore there is $I \in[p-2]$ of size λ_{1} such that w_{t} is adjacent to $u_{t}^{(p-2) r-i+1}$ for all $i \in I$ and $r \in[4]$.
Since w_{t} has degree $4 \lambda_{1}$ in H_{t}, then w_{t} is adjacent to exactly one vertex in Y_{t} and so must be adjacent to $\lambda_{1}-1$ vertices in $S_{t}^{\prime} \backslash Y_{t}$ which are $u_{t}^{p-2}, \ldots, u_{t}^{p-\lambda_{1}}$. It implies that $\left[\lambda_{1}-1\right] \subset I$. This completes the proof of (b).

From (a), (b) we have that w_{t} has degree $4(p-2)\left(2 \lambda_{2}-a\right)$ in $G\left[\bigcup_{i=1}^{4(p-2)} F_{t}^{i}\right]$, it is adjacent to $4 \lambda_{1}$ vertices in U_{t} and one in Y_{t}. Thus, w_{t} has degree k in total. This proves (c).

Claim 49.5(b) implies that the vertices of X_{t} (resp. \bar{X}_{t}) are either all adjacent to w_{t} or all non-adjacent to w_{t}. Moreover, w_{t} is adjacent to $4\left(\lambda_{1}-1\right)$ vertices in $U_{t} \backslash\left(X_{t} \cup \bar{X}_{t}\right)$. Hence if the vertices of X_{t} are adjacent to w_{t}, the vertices of \bar{X}_{t} are not (and viceversa).

Let ϕ be the truth assignment defined by $\phi\left(x_{t}\right)=$ true if w_{t} is adjacent to all vertices of X_{t} in H_{t}, and $\phi\left(x_{t}\right)=$ false otherwise. Observe the following.

- In Case C-(i), any clause vertex c_{j} is in a $\left(k-6 \lambda_{1}+1\right)$-degree-gadget, so it has degree at most $6 \lambda_{1}-1$ in the union of its three variable gadgets. Thus it has degree less than $2 \lambda_{1}$ in one of its variable gadgets H_{t}. Since any vertex in U_{t} has degree at least $2 \lambda_{1}-1$ in $G\left[H_{t}\right]$, with equality only if it is adjacent to w_{t}, the vertex c_{j} is adjacent to w_{t}. Hence, the corresponding literal to this literal vertex is true and so C_{j} is satisfied.
- In Case C-(ii), any clause vertex c_{j} is in a $(k-d)$-degree-gadget, then has degree at most d in the union of its three variable gadgets. Hence c_{j} has degree at most $\lfloor d / 3\rfloor$ neighbors in one of those variable gadget, say H_{t}. Let i be the index such that $c_{j}=u_{t}^{i}$.

Suppose for a contradiction that c_{j} is not adjacent to w_{t}. Then it is a λ_{2}-vertex in every hyperedge of H_{t}.
Vertex c_{j} has at least λ_{2} neighbors in each of S_{t}^{i} and S_{t}^{i-p-3} which intersect in $\left\{c_{j}, w_{t}\right\}$. Hence c_{j} has at least $2 \lambda_{2}$ neighbors in $S_{t}^{i} \cup S^{i-p-3}$. In Case C-(ii)-a, $\lfloor d / 3\rfloor=2 \lambda_{1}+1<2 \lambda_{2}$, so we get a contradiction.
In Case C-(ii)-b, since w_{t} is adjacent to all d_{t}^{i} by Claim 49.5 (b), c_{j} corresponds to a vertex in $N_{\geq 2}$ in every hyperedge of H_{t} to which it belongs. Therefore it is adjacent to all λ_{1}-vertices in these hyperedges and thus in particular to all d_{t}^{i} for all $i-p+3<i^{\prime}<i$. Hence c_{j} has degree at least $2 \lambda_{2}+p-4$ in $V\left(H_{t}\right)$. But $\lfloor d / 3\rfloor=2 \lambda_{1}+p-3=2 \lambda_{2}+p-5$, a contradiction.

In both subcases, the vertex c_{j} is adjacent to w_{t}. Hence, the corresponding literal to this literal vertex is true and so C_{j} is satisfied.
Consequently, ϕ satisfies Φ.

4.4 On neat hypergraphs

In this section, we consider the problem on a neat hypergraph which is a hypergraph in which any two hyperedges intersect in at most one vertex. We reuse the notions of degree sequence \mathbf{d} of a graph F and the multiplicity numbers of degrees in \mathbf{d}. The restriction of $(\Delta \leq k)$ - F-Overlay to neat hypergraphs is called Neat $(\Delta \leq k)$ - F Overlay.

4.4.1 Equivalence with Neat (d, k)-Splitting

Let $\mathbf{d}=\left(d_{1}, \ldots, d_{p}\right)$ be p-uple of positive non-decreasing integers and k be a positive integer. Given a p-uniform hypergraph H, a (\mathbf{d}, k)-splitting is a set $\boldsymbol{\partial}=\left\{\partial_{S} \mid S \in\right.$ $E(H)\}$ of bijections $\partial_{S}: S \rightarrow \mathbf{d}$, such that for every $u \in V(H)$

$$
\Sigma_{\boldsymbol{\partial}}(u)=\sum_{S \ni u} \partial_{S}(u) \leq k .
$$

We thus have the following problem :

```
(d, k)-SPLITTING
Input: A hypergraph H.
Question: Does there exists a (d, k)-splitting of H ?
```


CHAPTER 4. $(\Delta \leq K)$ - - -OVERLAY

We call the restriction of (\mathbf{d}, k)-Splitting to neat hypergraphs NeAt (\mathbf{d}, k)-Splitting. If \mathbf{d} is a sequence of non-negative integers, we define $\mathrm{np}(\mathbf{d})$ (resp. $\mathrm{np}^{\prime}(\mathbf{d})$) as the minimum integer k_{0} such that (\mathbf{d}, k)-Splitting (resp. Neat (\mathbf{d}, k)-Splitting) is NPcomplete for all $k \geq k_{0}$ or $+\infty$ if no such k_{0} exists.

Lemma 50. Let F be a graph with degree sequence \mathbf{d}, let H be a neat $|F|$-uniform hypergraph, and let k be a positive integer. There is an (F, H, k)-graph if and only if there is a (\mathbf{d}, k) splitting of H.

Proof. Assume first that there is an (F, H, k)-graph G. Since H is neat, free to remove some edges, we may assume that $G[S]$ is a copy of F for all hyperedge S. Hence the mapping d_{S} defined by $d_{S}(v)=d_{G[S]}(v)$ is a bijection $S \rightarrow \mathbf{d}$. Now, for each vertex v,

$$
\sum_{S \ni v} d_{S}(v)=\sum_{S \ni v} d_{G[S]}(v)=d_{G}(v) \leq k
$$

because G is an (F, H, k)-graph. Thus $\left\{d_{S}, \mid S \in E(H)\right\}$ is a (\mathbf{d}, k)-splitting of H.
Reciprocally, assume that there is a (\mathbf{d}, k)-splitting $\mathcal{D}=\left\{d_{S}, \mid S \in E(H)\right\}$ of H. For every hyperedge S, take a copy of F_{S} of F such that $d_{F_{S}}(v)=d_{S}(v)$. Let G be the union of the F_{S}. By construction, $G F$-overlays H. Moreover, since H is neat, for each vertex v,

$$
d_{G}(v)=\sum_{S \ni v} d_{G[S]}(v)=\sum_{S \ni v} d_{F_{S}}(v)=\sum_{S \ni v} d_{S}(v) \leq k
$$

because \mathcal{D} is a (d, k)-splitting. Hence G is an (F, H, k)-graph.

Corollary 51. If two graphs F_{1} and F_{2} have the same degree sequence \mathbf{d}, then Neat $(\Delta \leq$ $k)$ - F_{1}-Overlay and Neat $(\Delta \leq k)$ - F_{2}-Overlay have the same complexity, the one of Neat (d, k)-Splitting.

Remark 52. Note that (Neat) (\mathbf{d}, k)-Splitting is also defined for sequences \mathbf{d} which are not degree sequences. In particular, we might allow the elements of \mathbf{d} to be negative. However, we shall restrict ourselves to non-negative sequences, which are sequences all elements of which are non-negative..

Let $\mathbf{d}=\left(d_{1}, \ldots, d_{p}\right)$ and $\mathbf{d}^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{p^{\prime}}^{\prime}\right)$ be two sequences. The concatenation of \mathbf{d} and \mathbf{d}^{\prime}, denoted by $\mathbf{d} \cdot \mathbf{d}^{\prime}$, is the sequence of $p+p^{\prime}$ elements of d and d^{\prime} in nondecreasing order. We denote by 0^{p} the sequence of p elements equal to 0 . A degree sequence is potentially connected if there is a connected graph G with degree sequence d.

Theorem 53 (Folklore). Let degree sequence (d_{1}, \ldots, d_{n}) is potentially connected if and only if $d_{1} \geq 1$ and $\sum_{i=1}^{n} d_{i} \geq 2(n-1)$.

Many results obtained from the previous sections for $(\Delta \leq k)$ - F-Overlay can be adapted to Neat $(\Delta \leq k)$ - F-Overlay and (d, k)-Splitting. For F with isolated vertices and F^{\prime} is the induced subgraph of F by non-isolated vertices, Corollary 36 gives a sufficient condition in which the NP-completeness of ($\Delta \leq k$)- F^{\prime}-Overlay implies that of $(\Delta \leq k)$ - F-Overlay. It is also true for (\mathbf{d}, k)-Splititing and even stronger on neat hypergraphs.

Corollary 54. Let F be a graph, \mathbf{d} a non-negative sequence, and q a positive integer.
(i) If (\mathbf{d}, k)-splitting is NP-complete, then $\left(\mathbf{0}^{q} \cdot \mathbf{d}, k\right)$-splitting is also NP-complete.
(ii) If Neat $(\Delta \leq k)$ - F-Overlay is NP-complete, then $(\Delta \leq k)-\left(F+E_{q}\right)$-Overlay is also NP-complete.

4.4.2 Polynomial results

Observe that for F an r-regular graph, Neat $(\Delta \leq k)$ - F-Overlay is simple. Since a hyperedge intersects another in at most one vertex in a neat hypergraph, then the total degree of a vertex v in a graph $G F$-overlays H must be $r d_{H}(v)$. Therefore, if the maximum degree of a vertex in H is at most $\left\lfloor\frac{k}{r}\right\rfloor$, then there exists an (F, H, k)-graph for the problem. We then provide a proof when F has two degree values.

Theorem 55. Let F be a graph with degree values $\lambda_{1}<\lambda_{2}$ and k be a non-negative integer. Neat $(\Delta \leq k)$ - F-Overlay is in P .

Proof. Let H be a neat $|F|$-uniform hypergraph.
If there is a vertex v such that $\lambda_{1} \cdot d_{H}(v)>k$, then we answer ' No '. Indeed in an (F, H, k)-graph G, the vertex v has degree at least λ_{1} in each subgraph of G induced by a hyperedge to which it belongs, and so degree at least $\lambda_{1} \cdot d_{H}(v)$ in G because H is neat. Hence, we assume that $\lambda_{1} \cdot d_{H}(v) \leq k$ for every vertex.

Let $B(H)$ be the incidence graph of H : its vertex set is $E(H) \cup V(H)$ and there is an edge between a hyperedge $S \in E(H)$ and a vertex $v \in V(H)$ if and only if $v \in S$.

Claim 55.1. There is an (H, F, k)-graph if and only if $B(H)$ has a subgraph in which every hyperedge vertex has degree α_{2} and every vertex has degree at most $\left\lfloor\frac{k-\lambda_{1} \cdot d_{H}(v)}{\lambda_{2}-\lambda_{1}}\right\rfloor$.

Proof of claim: Assume that there is an (H, F, k)-graph G. Observe that since H is a neat hypergraph, free to remove some edges, we may assume that $G[S]$ is isomorphic to F for every hyperedge S of H. Let B^{\prime} be the subgraph of $B(H)$ in which a vertex v is adjacent to a hyperedge S if and only if v has degree λ_{2} in S. By definition every hyperedge has degree α_{2} in B^{\prime}. Consider now a vertex v. Its degree in G is the sum of its degree in the subgraphs induced by the hyperedges S to which it belongs because H is neat. Hence $d_{G}(v)=\lambda_{2} \cdot d_{B^{\prime}}(v)+\lambda_{1}\left(d_{H}(v)-d_{B^{\prime}}(v)\right)=\lambda_{1} \cdot d_{H}(v)+\left(\lambda_{2}-\lambda_{1}\right) d_{B^{\prime}}(v)$. But G is an (F, H, k)-graph, so $d_{G}(v) \leq k$. With the previous equality, this yields $d_{B^{\prime}}(v) \leq \frac{k-\lambda_{1} \cdot d_{H}(v)}{\lambda_{2}-i_{1}}$, and so $d_{B^{\prime}}(v) \leq\left\lfloor\frac{k-\lambda_{1} \cdot d_{H}(v)}{\lambda_{2}-\lambda_{1}}\right\rfloor$.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Conversely, assume $B(H)$ has a subgraph B^{\prime} in which every $S \in E(H)$ has degree α_{2} and any $v \in V(H)$ has degree at most $\left\lfloor\frac{k-\lambda_{1} \cdot d_{H}(v)}{\lambda_{2}-\lambda_{1}}\right\rfloor$. We construct G as follows: for each hyperedge S, the induced subgraph $G[S]$ is a copy of F such that any vertex v where $(S, v) \in E\left(B^{\prime}\right)$ is of degree λ_{2} (there are α_{2} such vertices) and the remaining vertices have degree λ_{1}. Clearly, $G F$-overlays H. Moreover every vertex $v \in V(H)$ has degree λ_{2} in at most $\left\lfloor\frac{k-\lambda_{1} \cdot d_{H}(v)}{\lambda_{2}-\lambda_{1}}\right\rfloor$ subgraphs and degree λ_{1} in the remaining subgraphs induced by hyperedges to which it belongs. Hence v has degree at most k in G. Therefore G is an (F, H, k)-graph.

Now the existence of a subgraph of $B(H)$ as shown in Claim 55.1 can be done in polynomial time (see [HHKL90] Chap. 10).

By Corollary 51, we obtain the following.
Corollary 56. Let \mathcal{F} be a family of graphs with the same degree sequence such that it has only one value λ or exactly two degree values $\lambda_{1}<\lambda_{2}$, and k be a non-negative integer. $(\Delta \leq k)$-F-OVERLAY is in P .

The theorem also implies the following.
Corollary 57. Let F be a graph with degree values $\lambda_{1}<\lambda_{2}$ and k be a non-negative integer. If F is such that all vertices of $V_{\lambda_{1}} \cup V_{\lambda_{2}}$ have the same number of neighbors in $V_{\lambda_{3}}$ and $k<\lambda_{3}+\lambda_{1}$, then one can solve ($\Delta \leq k$)-F-OvERLAY in polynomial time.

Proof. Let j be the number of neighbors in $V_{\lambda_{3}}$ that each vertex of $V_{\lambda_{1}} \cup V_{\lambda_{2}}$ has.
Let H be an $|F|$-uniform hypergraph. Observe that if a vertex has degree λ_{3} in the subgraph induced by a hyperedge, then it cannot be in any other hyperedge, for otherwise it would have degree at least $\lambda_{3}+\lambda_{1}>k$. Therefore, we first check whether every hyperedge S contains a set $I(S)$ of $\left|V_{\lambda_{3}}\right|$ vertices that are uniquely in S. If not, then we return ' No^{\prime}. If it is the case, let $F^{\prime}=F-V_{\lambda_{3}}$ and H^{\prime} be the hypergraph whose vertex set is $V(H) \backslash \bigcup_{S \in E(H)} I(S)$ and whose hyperedge set is $\{S \backslash I(S) \mid S \in E(H)\}$, and let $k^{\prime}(v)=k-j \cdot d_{H}(v)$ for every $v \in V\left(H^{\prime}\right)$. Since all vertices of $V_{\lambda_{1}} \cup V_{\lambda_{2}}$ have exactly j neighbors in $V_{\lambda_{3}}$, it is then easy to prove the following claim:

Claim 57.1. There is an (F, H, k)-graph G if and only if there is a graph $G^{\prime} F^{\prime}$-overlaying H^{\prime} such that $d_{G}(v) \leq k^{\prime}(v)$ for all $v \in V\left(H^{\prime}\right)$.

Deciding whether such a graph G^{\prime} exists can be done similarly as the proof of Theorem 55 replacing k by $k^{\prime}(v)$.

The proofs of Theorem 55 and Corollary 57 directly generalize to (\mathbf{d}, k)-Splitting for general hypergraphs.

Theorem 58. Let \mathbf{d} be a non-decreasing sequence and a positive integer k.
(i) If \mathbf{d} contains at most two different values, then (\mathbf{d}, k)-SPlitting is polynomial-time solvable.
(ii) If \mathbf{d} is a non-decreasing sequence with three values $\lambda_{1}<\lambda_{2}<\lambda_{3}$, then (\mathbf{d}, k) Splitting is polynomial-time solvable for $k<\lambda_{3}+\lambda_{1}$.

4.4.3 NP-completeness for graphs with $\lambda_{1}=1$

The previous section showed that (\mathbf{d}, k)-Splitting and NeAt $(\Delta \leq k)$ - F-Overlay is in P for \mathbf{d} with at most two different values. It remains the case for \mathbf{d} with at least three values. In this section, we aim to prove the following.

Theorem 59. If \mathbf{d} is a sequence with at least three values and with minimum value 1 , then $n p(d) \leq n p^{\prime}(\mathbf{d}) \leq+\infty$.

We first restrict an arbitrary sequence \mathbf{d} to only one with only three different values.

Lemma 60. Let k be an integer, let $\mathbf{d}=\left\{d_{1}, d_{2}, \ldots, d_{p}\right\}$ be a non-decreasing sequence such that $d_{p} \leq k$, and let $\mathbf{d}^{\prime}=\left\{d_{1}, d_{2}, \ldots, d_{p^{\prime}}\right\}$ be a subsequence for some $p^{\prime} \leq p$.
(i) If $\left(\mathbf{d}^{\prime}, k\right)$-Splitting is NP-complete, then (\mathbf{d}, k)-Splitting is NP-complete.
(ii) If Neat $\left(\mathbf{d}^{\prime}, k\right)$-Splitting is NP-complete, then Neat (\mathbf{d}, k)-Splitting is NPcomplete.

Proof. Let H^{\prime} be a p^{\prime}-uniform hypergraph with hyperedges $S_{1}^{\prime}, \ldots, S_{m}^{\prime}$. Let H be the p-uniform hypergraph obtained from H^{\prime} as follows: for each $j \in[m]$, we add a set $X_{j}=\left\{x_{i}^{j} \mid i \in\left[p-p^{\prime}\right]\right\}$ of $p-p^{\prime}$ new vertices and define $S_{j}=S_{j}^{\prime} \cup X_{j}$.

Assume that there is a $\left(\mathbf{d}^{\prime}, k\right)$-splitting $\boldsymbol{\partial}^{\prime}$ of H^{\prime}. Let $\boldsymbol{\partial}$ be defined as follows. For every $j \in[m]$, let $\partial_{S_{j}}(v)=\partial_{S_{j}^{\prime}}^{\prime}(v)$ if $v \in S_{j}^{\prime}$ and $\partial_{S_{j}}\left(x_{i}^{j}\right)=d_{p^{\prime}+i}$ for all $i \in\left[p-p^{\prime}\right]$. One easily checks that ∂ is a (\mathbf{d}, k)-splitting of H.

Reciprocally, assume that there is a (\mathbf{d}, k)-splitting $\boldsymbol{\partial}$ of H. An inversion of $\boldsymbol{\partial}$ is a pair of vertices (v, x) with $v \in S_{j}$ and $x \in X_{j}$ for some j such that $\partial_{S_{j}}(v)>\partial_{S_{j}}(x)$. Without loss of generality, we may assume that ∂ is the (\mathbf{d}, k)-splitting of H with the minimum number of inversions. Then $\boldsymbol{\partial}$ has no inversion (v, x) for otherwise replacing $\partial_{S_{j}}$ by the bijection obtained from it by swapping the images of v and x yields a (d,k)-splitting of H with less inversions. Henceforth for each $j \in[m]$ the restriction $\partial_{S_{j}^{\prime}}^{\prime}$ of $\partial_{S_{j}}$ to S_{j}^{\prime} is a bijection from S_{j}^{\prime} into \mathbf{d}^{\prime}. By construction $\boldsymbol{\partial}^{\prime}=\left(\partial_{S_{j}^{\prime}}^{\prime}\right)_{j \in[m]}$ is a $\left(\mathbf{d}^{\prime}, k\right)$-splitting of H^{\prime}.

Thus there is a (\mathbf{d}, k)-splitting $\boldsymbol{\partial}$ of H if and only if there is a $\left(\mathbf{d}^{\prime}, k\right)$-splitting $\boldsymbol{\partial}^{\prime}$ of H^{\prime}. This proves (i).

Observe that if H^{\prime} is neat then H is also neat. This the above reduction also yields (ii).

It suffices now to prove for \mathbf{d} with three values. Let F be a graph with the degree sequence \mathbf{d} which has three degree values $1=\lambda_{1}<\lambda_{2}<\lambda_{3}$. We will prove the NP-completeness of Neat $(\Delta \leq k)$ - F-Overlay Hence, it implies for Neat (\mathbf{d}, k) Splitting.

Theorem 61. Let $\mathbf{d}=\left(d_{1}, \ldots, d_{p}\right)$ be a non-decreasing sequence with exactly three values $1=\lambda_{1}<\lambda_{2}<\lambda_{3}$. Then $\mathrm{np}^{\prime}(\mathbf{d}) \leq \max \left\{\lambda_{2}+\lambda_{3}, d_{2}+2 \lambda_{2}\right\}$.

Proof. Let $k \geq \max \left\{\lambda_{2}+\lambda_{3}, d_{2}+2 \lambda_{2}\right\}$. Set $\delta=k-\lambda_{2}-\lambda_{3}+1, \beta=k-\lambda_{3}+1$, $\gamma=k-\lambda_{2}+1$, and $\theta=\max \left\{0, k-2 \lambda_{3}+1\right\}$.

We give a reduction from 3-COLORING on 4-regular graphs to (\mathbf{d}, k)-Splitting. Given a graph 4-regular G, we construct a p-uniform hypergraph H as follows.

- For each vertex $v \in V(G)$, create a vertex gadget H_{v} as follows.
- We first create a hyperedge $S_{v}=\left\{c_{v}^{1}, c_{v}^{2}, c_{v}^{3}\right\} \cup X_{v} \cup Y_{v}$ with $\left|Y_{v}\right|=\alpha_{3}-1$ and $\left|X_{v}\right|=p-\alpha_{3}-2$, and then add β hyperedges pendant at each vertex $x_{v} \in X_{v}$.
- We create a binary tree T_{v}^{i} with vertex set $\left\{c_{v}^{i}, a_{v}^{i}, b_{v}^{i}, \ell_{v}^{i, 1}, \ell_{v}^{i, 2}, \ell_{v}^{i, 3}, \ell_{v}^{i, 4}\right\}$ for each $i \in[3]$, and edge set $\left\{c_{v}^{i} a_{v}^{i}, c_{v}^{i} b_{v}^{i}, a_{v}^{i} \ell_{v}^{i, 1}, a_{v}^{i} \ell_{v}^{i, 2}, b_{v}^{i} \ell_{v}^{i, 3}, b_{v}^{i} \ell_{v}^{i, 4}\right\}$. In this tree, c_{v}^{i} is the parent of a_{v}^{i} and b_{v}^{i}, a_{v}^{i} is the parent of $\ell_{v}^{i, 1}$ and $\ell_{v}^{i, 2}$, and b_{v}^{i} is the parent of $\ell_{v}^{i, 3}$ and $\ell_{v}^{i, 4}$.
- For each edge $e=x y$ of T_{v}^{i} with x the parent of y in T_{v}^{i}, we construct an edgegadget containing x, y, a new vertex z_{e}, and four disjoint sets $U_{e}^{1}, W_{e}^{1}, U_{e}^{2}, W_{e}^{2}$ of new vertices, U_{e}^{1} of size $\alpha_{1}-1, W_{e}^{1}$ of size $p-\alpha_{1}-1, U_{e}^{2}$ of size $p-\alpha_{3}-1$, W_{e}^{2} of size $\alpha_{3}-1$. We add the hyperedges $S_{e}^{1}=\left\{x, z_{e}\right\} \cup U_{e}^{1} \cup W_{e}^{1}$ and $S_{e}^{2}=\left\{z_{e}, y\right\} \cup U_{e}^{2} \cup W_{e}^{2}$. We add δ hyperedges pendant at x, γ pendant hyperedges at each vertex of U_{e}^{1} and β hyperedges pendant at each of U_{e}^{2}, δ hyperedges pendant at z_{e}.
For convenience, for any leaf $\ell_{v}^{i, j}$, we denote by $S_{v}^{i, j}$ the hyperedge containing the vertex $\ell_{v}^{i, j}$.
- For every vertex $v \in V(G)$, let $e_{v}^{1}, e_{v}^{2}, e_{v}^{3}, e^{4}$, be an ordering of the edges incident to v. For each edge $v w \in E(G)$, let j_{v} and j_{w} be the indices such that $v w=e_{v}^{j_{v}}=$ $e_{w}^{j_{w}}$. Then, for all $i \in[3]$, we identify the vertices $\ell_{v}^{i, j_{v}}$ and $\ell_{w}^{i, j_{w}}$, and at such a vertex, we add θ pendant hyperedges.
Let us prove that there is a 3 -coloring of G if and only if there is a (\mathbf{d}, k)-splitting ∂ of H.

Assume first that there is a (\mathbf{d}, k)-splitting $\boldsymbol{\partial}$ of H. Observe that for any $v \in V(G)$, no vertex in X_{v} can be λ_{3}-vertex since there are β pendant hyperedges at such a vertex in which it has value at least 1. Therefore, at least one vertex of $\left\{c_{v}^{1}, c_{v}^{2}, c_{v}^{3}\right\}$ is a λ_{3}-vertex in S_{v}. Moreover, since the vertices of Y_{v} are contained in exactly one hyperedge, we may assume that all vertices of Y_{v} are λ_{3}-vertices. Hence, exactly one vertex of $\left\{c_{v}^{1}, c_{v}^{2}, c_{v}^{3}\right\}$ is a λ_{3}-vertex in S_{v}.

Let ϕ be the 3-coloring of G defined by $\phi(v)=i$ if c_{v}^{i} is a λ_{3}-vertex of S_{v}. We will prove that ϕ is proper. We need the following claim.

We have the following claim.
Claim 61.1. Let $v \in V(G)$ and $i \in\{1,2,3\}$.If c_{v}^{i} is a λ_{3}-vertex of S_{v}, then $\ell_{v}^{i, j}$ is a λ_{3}-vertex of $S_{v}^{i, j}$ for all $j \in[4]$.

Proof of claim: It suffices to prove that if $e=x y$ is an edge of T_{v}^{i} with x the parent of y in T_{v}^{i} and x is a λ_{3}-vertex of its parent hyperedge (that is S_{v} if $x=c_{v}^{i}$ or $S_{w x}^{2}$ with w the parent of x in T_{v}^{i}) then y is a λ_{3}-vertex of S_{e}^{2}.

Assume that x is a λ_{3}-vertex of its parent hyperedge. Then x must be a 1-vertex in S_{e}^{1} for otherwise $\Sigma_{\boldsymbol{\partial}}(v)$ would be greater than k. Moreover any $u \in U_{e}^{1}$ must be a 1-vertex in S_{e}^{1} because it is in γ pendant hyperedges. Therefore z_{e} is not λ_{1}-vertex and so has value at least λ_{2} in S_{e}^{1}. Now because there are pendant hype δ pendant hyperedges at z_{e}, this vertex is not a λ_{3}-vertex of S_{e}^{2}. Moreover no vertex of U_{e}^{2} is a λ_{3}-vertex of S_{e}^{2} because each of them is in β pendant hyperedges. Therefore y must be a λ_{3}-vertex of S_{e}^{2}.

Consider now an edge $v w$ in $E(G)$ and $i \in\{1,2,3\}$. By construction the vertices $\ell_{v}^{i, j_{v}}$ and $\ell_{w}^{i, j_{w}}$ are identified. This vertex is in θ pendant hyperedges, so it cannot be λ_{3}-vertex in both $S_{v}^{i, j_{v}}, S_{w}^{i, j_{w}}$. Thus, by Claim 61.1, either c_{v}^{i} is not a λ_{3}-vertex of S_{v} or c_{w}^{i} is not a λ_{t}-vertex of S_{w}. Hence, there is no $i \in[3]$ such that c_{v}^{i} is a λ_{3}-vertex of S_{v} and c_{w}^{i} is an λ_{3}-vertex of S_{w}. In other words, $\phi(v) \neq \phi(w)$.

Therefore the 3 -coloring is proper, and so G is 3 -colorable.
Conversely, assume that G has a proper 3-coloring ϕ. Let us define $\boldsymbol{\partial}=\left\{\partial_{S}\right) \mid S \in$ $E(H)\}$ by doing the following for every $v \in V(G)$ with $i=\phi(v)$ and $J=\left\{j_{1}, j_{2}\right\}=$ $[3] \backslash\{i\}$.

- Pick a bijection $\partial_{S_{v}}$ from S_{v} into d such that $\partial_{S_{v}}\left(c_{v}^{i}\right)=\lambda_{3}, \partial_{S_{v}}\left(c_{v}^{j_{1}}\right)=d_{1}$, $\partial_{S_{v}}\left(c_{v}^{j_{2}}\right)=d_{2}$, and $\partial_{S_{v}}(u)=\lambda_{3}$ for all $u \in Y_{v}$.
- For each edge $e=x y$ of T_{v}^{i} with x parent of y, pick a bijection $\partial_{S_{e}^{1}}$ from S_{e}^{1} into d such that $\partial_{S_{e}^{1}}(u)=1$ for all $u \in U_{e}^{1} \cup\{x\}$ and $\partial_{S_{e}^{1}}\left(z_{e}\right)=\lambda_{2}$, and pick a bijection $\partial_{S_{e}^{2}}$ from S_{e}^{2} into d such that $\partial_{S_{e}^{2}}\left(z_{e}\right)=1$ and $\partial_{S_{e}^{2}}(u)=\lambda_{3}$ for every $u \in W_{e}^{2} \cup\{y\}$.
- For each $j \in J$ and each edge $e=x y$ of T_{v}^{j} with x parent of y, pick a bijection $\partial_{S_{e}^{1}}$ from S_{e}^{1} into d such that $\partial_{S_{e}^{1}}(u)=1$ for all $u \in U_{e}^{1} \cup\left\{z_{e}\right\}$ and $\partial_{S_{e}^{1}}(x)=\lambda_{2}$, and pick a bijection $\partial_{S_{e}^{2}}$ from S_{e}^{2} into d such that $\partial_{S_{e}^{2}}(u)=\lambda_{3}$ for every $u \in W_{e}^{2} \cup\left\{z_{e}\right\}$ and $\partial_{S_{e}^{2}}(y)=\lambda_{1}$.
- Finally for each hyperedge S pendant at a vertex x, we pick a bijection ∂_{S} from S into d such that $\partial_{S}(x)=\lambda_{1}$.
Let us check that $\boldsymbol{\partial}$ is a (\mathbf{d}, k)-splitting of H.
Let u be a vertex of H. We need to check that $\Sigma_{\boldsymbol{\partial}}(u) \leq k$.

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Assume now that u is in two vertex-gadgets H_{v} and H_{w}. By construction, $v w$ is an edge of G and there is i such that $u=\ell_{v}^{i, j_{v}}=\ell_{w}^{i, j_{w}}$. Moreover, since ϕ is a proper 3 -coloring of G, either $\phi(v) \neq i$ or $\phi(w) \neq i$. Thus by definition of ∂, u is a 1-vertex in one of $S_{v}^{i, j_{v}}, S_{w}^{i, j_{w}}$. Therefore, $\Sigma_{\boldsymbol{\partial}}(u)=\partial_{S_{v}^{i, j_{v}}}(u)+\partial_{S_{w}^{i, j} w}(u)+\theta \leq 1+\lambda_{3}+\theta \leq k$.

Henceforth we may assume that u is a unique vertex gadget H_{v} for some $v \in$ $V(G)$.

If u is in a unique hyperedge S, then $\Sigma_{\boldsymbol{\partial}}(u)=\partial_{S}(u) \leq \lambda_{3} \leq k$. This is in particular the case if u is in a hyperedge pendant at a vertex distinct from u, or if $u \in Y_{v}$, or if $u \in W_{e}^{1} \cup W_{e}^{2}$ for an edge e of T_{v}^{i} for some $i \in[3]$.

If $u \in X_{v}$ or U_{e}^{2} for some edge e of some T_{v}^{i}, then $\Sigma_{\boldsymbol{\partial}}(u) \leq \beta+\lambda_{2} \leq k$.
If $u \in U_{e}^{1}$ for some edge e of some T_{v}^{i}, then $\Sigma_{\boldsymbol{\partial}}(u) \leq \gamma+1 \leq k$.
Suppose $u=c_{v}^{i}$ for $i \in[3]$. If $i=\phi(v)$, then u is a λ_{3}-vertex in S_{v} and a 1vertex in both $S_{c_{v}^{i} a_{v}^{i}}^{1}$ and $S_{c_{v}^{i} b_{v}^{i}}^{1}$, so $\Sigma_{\boldsymbol{\partial}}(u)=\lambda_{3}+2 \leq \lambda_{3}+\lambda_{2} \leq k$. If $i \neq \phi(v)$, then $\partial_{S_{v}}(u) \in\left\{d_{1}, d_{2}\right\}$, and u is a λ_{2}-vertex in both $S_{c_{v}^{i} a_{v}^{i}}^{1}$ and $S_{c_{v}^{i} b_{v}^{i}}^{1}$, so $\Sigma_{\boldsymbol{\partial}}(u) \leq d_{2}+2 \lambda_{2} \leq k$.

Assume $u=a_{v}^{i}$ or $u=b_{v}^{i}$. If $\phi(v)=i$, then u is a λ_{3}-vertex in its parent hyperedge and a 1-vertex in the two other hyperedges containing it. Thus $\Sigma_{\boldsymbol{\partial}}(u)=\lambda_{3}+2 \leq k$. If $\phi(v) \neq i$, then u is a 1 -vertex in its parent hyperedge and a λ_{2}-vertex in the two other hyperedges containing it. Thus $\Sigma_{\boldsymbol{\partial}}(u)=1+2 \lambda_{2} \leq k$.

Theorem 61 and Lemma 60 immediately imply Theorem 59.

Conclusion of Part I

The first part was to study the complexity dichotomy of Overlaying problems which we aim to answer the general following problem.

Problem 62. Characterize the pairs (\mathcal{F}, k) for which MAX $(\Delta \leq k)$ - \mathcal{F}-OVERLAY or ($\Delta \leq k$)- \mathcal{F}-OVERLAY is polynomial-time solvable and those for which it is NP-complete.

A first step to answer this problem is to address it with a graph F. We gave the complete dichotomy of both problems for $F=O_{p}$ the graph on p vertices with one edge. Theorem 24 characterizes the complexity of MAX $(\Delta \leq k)$ - F-OVERLAY which left us to study on $(\Delta \leq k)-F$-OVERLAY. It is more complicated for $(\Delta \leq k)-F$ OVERLAY, some evidences are given in Section 4.1 which presents several polynomial cases for $k \geq \Delta(F)$. In order to attack the problem, it would be helpful to prove the following conjecture.

Conjecture 63. If $(\Delta \leq k)$ - F-OVERLAY is $\mathcal{N} \mathcal{P}$-complete, then $(\Delta \leq k+1)$ - F-OVERLAY is also $\mathcal{N} \mathcal{P}$-complete.

We gave several evidences to this conjecture. We first showed that the NP-completeness for k implies one for $k+\delta(F)$. In particular, the conjecture holds for $\delta(F)=1$.

We devoted a partial answer to Problem 62 for $(\Delta \leq k)$ - F-OVERLAY which is the ultimate NP-completeness of the problem for every graph F different from K_{p} and \bar{K}_{p} in Section 4.2. Precisely, we proved that $\mathrm{np}(F)<+\infty$ if and only if F is standard, that is neither a complete graph nor an anticomplete graph. It would be nice to get the characterization asked by this problem. Such a characterization might be complicated and hard to obtain, but we can certainly obtain further results. Indeed, in our proof, we made no attempt to minimize the upper bound on $\operatorname{np}(F)$, but just to prove such a bound exists. In fact, our proof shows the general upper bound $\operatorname{np}(F) \leq 8|F| \delta(F)$ for every standard graph F. However, there are many graphs for which the proof shows

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

Figure 4.9: The complexity dichotomy of $(\Delta \leq k)$ - F-Overlay for F standard. (see below Table 4.1 for the definitions of the notations) P and NP-complete results are respectively corresponding to pairs (F, k) and (F, k). For $k<\Delta-1$, the problem is in P (red box) but is it NP-complete for $k \geq 8|F| \delta$ (blue box). For a pair (F, k), k is an upper bound of $\mathrm{np}(F)$.

Δ, δ	$\Delta(F), \delta(F)$ the maximum and minimum degree of F
$O_{p>3}$	the graph on p vertices and one edge with $p>3$
(c.)r.g	(connected) regular graphs
$r K_{a, a+1}$	disjoint union of r copies of $K_{a, a+1}$
$K_{p}+\bar{K}_{q}$	disjoint union of K_{p} and \bar{K}_{q}
$\mathcal{F}_{\mathbf{d} \geq 3}$	the family of graphs with at least three degree values
K_{p}^{-}	K_{p} minus one edge
$\mathcal{F}_{d>1}$	the family of graphs F with d such that $\exists i, d_{i}-d_{i-1}>1$
$\mathcal{F}_{d=1}$	the family of graphs F with d such that $\forall i, d_{i}-d_{i-1}=1$

Table 4.1: Table of notations in Figure 4.9.
$\mathrm{np}(F) \leq 6|F|$ or even $\mathrm{np}(F) \leq 6 \Delta(F)$ (see Figure 4.9 for a description of results). It motivates the following question.

Problem 64. Does there exist a constant c such that $\mathrm{np}(F) \leq c \cdot \Delta(F)$ for every standard graph F ?

Getting lower bounds would also be interesting. The trivial lower bound is $\operatorname{np}(F) \geq$ $\Delta(F)$. There are graphs for which this lower bound is attained, the graphs with one edge of at least 4 vertices for example. It would be nice to characterize the graphs corresponding to the difference $\operatorname{np}(F)-\Delta(F)$. The largest known value is 2 for C_{4}, the cycle on four vertices by Theorem 29.

The results for $\mathcal{F}=\{F\}$ of size 1 are useful because the NP-completeness of the problems for F implies the NP-completeness for the families \mathcal{F} such that $F \in \mathcal{F}$ and $|F| \neq\left|F^{\prime}\right|$ for all other $F^{\prime} \in \mathcal{F}$. It would be nice to answer whether we can also extend the ultimate NP-completeness of a standard graph F to a family containing F.

Conjecture 65. If \mathcal{F} contains a standard graph F and both $K_{|F|}, \bar{K}_{|F|}$ are not in \mathcal{F}, then $\operatorname{np}(\mathcal{F})<+\infty$.

This is far from trivial for many graph families. For example, depending on the degree sequences of graphs in a family \mathcal{F}. Let $F, F^{\prime} \in \mathcal{F}$ whose degree sequences
respectively $\mathbf{d}, \mathbf{d}^{\prime}$ such that $|F|=\left|F^{\prime}\right|$ and $d_{i} \leq d_{i}^{\prime}$ for all $i \in[|F|]$, then it be easier to use only F overtime to overlay a hyperedge rather than F^{\prime}. Otherwise, it is difficult to decide whether a hyperedge should be F-overlaid or F^{\prime}-overlaid.

Since the NP-completeness results for many family \mathcal{F} are obtained from the NPcompleteness of a graph $F \in \mathcal{F}$, an interesting question is to ask for polynomiality results associated to $k \geq \max _{F \in \mathcal{F}} \Delta(F)$.

Problem 66. Let \mathcal{F} be a family such that $\left(\Delta \leq k_{F}\right)$ - F-Overlay is in P for $F \in \mathcal{F}$, is $(\Delta \leq k)$ - \mathcal{F}-Overlay in P for some $\max _{F \in \mathcal{F}} \Delta(F) \leq k \leq \max _{F \in \mathcal{F}} k_{F}$?

For \mathcal{F} a family of graphs with the same degree sequence such that it has at most two degree values, Neat $(\Delta \leq k)-\mathcal{F}$-Overlay is in P by Corollary 56. Now, let $\mathcal{F}=\left\{K_{2}, C_{4}\right\}$ and $k=2$, we know that $(\Delta \leq 2)$ - F-Overlay is in P for any F in \mathcal{F}. For a hypergraph H in which its hyperedges are of size either 2 or 4 , it is easy to overlay all hyperedges of size 2 (by taking the edge between the two vertices of a hyperedge). Thus, these edges are sure in G and we have to complete G using these edges. It motives the following question.

Problem 67. let H be a hypergraph and a graph G (which overlays a subset of hyperedges of H), can G extend to an (\mathcal{F}, H, k)-graph?

Let H be a hypergraph and a graph G (which overlays a subset of hyperedges of $H)$, can G extend to an (\mathcal{F}, H, k)-graph?

Furthermore, by the set of given edges of G, we can compute the remaining degree of a vertex which would be used to extend G to a graph \mathcal{F}-overlaying H (for an example with \mathcal{F} above, after overlaying all hyperedges of size 2 , this leaves hyperedges of size 4 and the remaining degree of any vertex is either 0,1 or 2 (it is when this vertex respectively, belongs to 2,1 or no hyperedges of size 2). Thus, it leads to the following problem.

Problem 68. Given a hypergraph H and a function $f: V(H) \rightarrow[k]$, does it exist a graph $G F$-overlaying H such that $d_{G}(v) \leq f(v)$?

In the end, we have studied the restriction of $(\Delta \leq k)$ - \mathcal{F}-Overlay to neat hypergraphs Neat $(\Delta \leq k)$ - \mathcal{F}-Overlay and (d, k)-Splitting. Its restriction on neat hypergraphs is Neat (\mathbf{d}, k)-Splitting is equivalent to Neat $(\Delta \leq k)$ - \mathcal{F}-Overlay for \mathcal{F} the graph family with degree sequence \mathbf{d}. We conjecture the following.

Conjecture 69. (d, k)-Splitting is NP-complete if and only if Neat (\mathbf{d}, k)-Splitting is NP-complete.

We have seen Neat $(\Delta \leq k)$ - \mathcal{F}-Overlay and (\mathbf{d}, k)-Splititing are in P for \mathbf{d} having at most two values; or \mathbf{d} with three values and $k<\lambda_{3}+\lambda_{1}$. For \mathbf{d} with at least three values and if $\lambda_{1}=1$, then they are ultimately NP-complete which is precisely

CHAPTER 4. $(\Delta \leq K)$ - F-OVERLAY

$\mathrm{np}^{\prime}(\mathbf{d})<\max \left\{3 \lambda_{3}, \lambda_{t}\right\}$ by Theorem 61. It would be nice to relax the condition $\lambda_{1}=1$ to an arbitrary value.

Conjecture 70. If \mathbf{d} be a sequence of positive integers with at least three different values, then $\mathrm{np}(\mathbf{d})=\mathrm{np}^{\prime}(\mathbf{d})<+\infty$.

By Lemma 60, it suffices to prove the conjecture for sequences with only three values and the greatest one appearing only once.

Determining the complexity is a first step of studying problems. We know how to solve those in P. For an NP-complete problem, it would be interesting to design algorithms solving the problem. As a start, we can build heuristic algorithms or a simple greedy algorithm which can be helpful to compute an approximation-ratio to study on approximation algorithms.

For each pair (F, k) such that $\operatorname{MAx}(\Delta \leq k)$ - F-Overlay is NP-complete and ($\Delta \leq k$)-F-OVERLAY is polynomial-time solvable, we can consider the parameterized complexity of MAX $(\Delta \leq k)$ - F-Overlay when parameterized by $|E(H)|-s$.

Furthermore, these problems are motivated by biology problems, it is necessary to attack on problems with instances restricted to biological properties (e.g. an upper bound on the maximum degree k, typical numbers of subunits per complex).

Part II

Conflict Coloring problems

Chapter 5

Introduction

5.1 Determining the high resolution model with Domino

Assume that the low resolution model of a molecular assembly (MA) provides the interaction graph of its subunits. We are given a finite set of conformations for each subunits. A scoring function measures the quality of the contact between two conformations of a subunit-contact in the assembly. An issue of determining the high resolution model for a MA is to chose a conformation for each subunit in which together, they are well structured in the whole MA. This problem was defined using DOMINO [LTSW09] which outputs a set of conformations for subunits maximizing a global function. This can be modeled as a coloring problem as the following.

Let $G=(V, E)$ be an interaction graph representing a given assembly in which V represents the set of subunits and E is the set of contacts between them. We label the set of conformations for each subunit to a color set of the corresponding vertex in V. We assume that every vertex has the same number of colors which is an integer k, hence the set of colors is $[k]=\{1,2, \ldots, k\}$. For every $u v \in E$, the scoring function provides the edge-weighted complete bipartite graph $K_{u v}^{k}$ which is defined as follows: $V\left(K_{u v}^{k}\right)=\{(u, i), i \in[k]\} \cup\{(v, j), j \in[k]\}, E\left(K_{u v}^{k}\right)=\{(u, i)(v, j), i, j \in[k]\}$, and the weight function $w_{u v}^{k}: E\left(K_{u v}^{k}\right) \rightarrow \mathbb{R} \cup\{-\infty\}$. We denote by $w^{k}=\left\{w_{u v}^{k}, u v \in E\right\}$ the set of weight functions over all the edges $u v \in E$.
Hence, for every vertex $v \in V$, the vertex set $\{(v, i), i \in[k]\}$ represents the k possible conformations of the subunit associated with v. For every $u v \in E$, the weight $w_{u v}^{k}((u, i)(v, j))$ represents the score between the i-conformation of u and the j-one of v. Meaning by the scoring function, the higher the score, the better the connection between the two associated subunits.

CHAPTER 5. INTRODUCTION

In general, the number of colors is not the same for all vertices. However, we can easily change it so that all vertices have the same number k of colors: it suffices to add extra "fake" colors and to assign weight $-\infty$ to all edges incident with these colors in the graph $K_{u v}^{k}$. It explains our assumption of the same number of colors for all vertices.

We are now able to formalize DOMino as a graph coloring problem, which consists in finding a coloring such that the sum of the weights is at least a given lowerbound.

Domino.
Input: A graph $G=(V, E)$, an integer $k \geq 1$, a set of weight functions w^{k}, and $\gamma \in \mathbb{R}$. Question: Does there exist a coloring c of G such that $\sum_{u v \in E} w_{u v}^{k}((u, c(u))(v, c(v))) \geq \gamma$?

In structural biology, conformations of subunits are compatible according to the lock-and-key model. Thus, the total score of a set of conformations reflects whether the assembly defined by this set is well constructed and robust. It is the property used to define Domino.

Domino is clearly in NP. We can easily construct a reduction from k-coloring, as follows. Given a graph G, we define the weight function by taking, for any $u v \in E(G)$, $w_{u v}^{k}((u, i)(v, i))=0$ and $w_{u v}^{k}((u, i)(v, j))=1$ for $j \neq i$. Then G is k-colorable if and only if it has a coloring c with total weight at least $\gamma=|E(G)|$.

Domino with additional weights on the vertices, has been mostly studied from biology point of view and some works are related to computational approaches. As a corollary of NP-completeness of DOMINO, this closely related problem is also NPcomplete, which has been proven in [Lat94]. There are also methods to solve this latter problem with heuristic approaches, using tree decomposition [LTSW09, XJB05] or linear programming [XLKX03].

5.2 Conflict coloring

An important constraint, from computational structural biology, consists in having a lower bound $\lambda \in \mathbb{R}$ on the weight of every edge $u v \in E$. More precisely, the coloring c must satisfy $w_{u v}^{k}((u, c(u)),(v, c(v))) \geq \lambda$ for every $u v \in E$. This constraint may imply a stable structure of the macromolecular assembly, that is without "bad connection" between two subunits.

To take into account such a constraint, we define a conflict k-graph $M_{u v}^{\lambda}$ for every edge $u v \in E$ as follows. $M_{u v}^{\lambda}$ is the subgraph of $K_{u v}^{k}$ such that $(u, c(u))(v, c(v)) \in$ $E\left(M_{u v}^{\lambda}\right)$ if and only if $w_{u v}^{k}((u, c(u)),(v, c(v)))<\lambda$. We denote by $\mathcal{M}^{\lambda}=\left\{M_{e}^{\lambda}\right.$ for all $e \in$ $E\}$, the set of conflict k-graphs (k-SoC). An edge $u v \in E$ is \mathcal{M}^{λ}-conflicting for a k coloring c if $(u, c(u))(v, c(v)) \in E\left(M_{u v}^{\lambda}\right)$, otherwise it is \mathcal{M}^{λ}-fulfilled.

It leads to the following problem with $\mathcal{M}=\mathcal{M}^{\lambda}$.
FULFILL Coloring.
Input: A graph $G=(V, E)$, an integer k, a k-SoC \mathcal{M}, and a positive integer q.
$\overline{\text { Question: }}$ Does there exist a k-coloring c of G with at least $q \mathcal{M}$-fulfilled edges ?
An important particular case of this problem is when $q=|E|$. In that case, the problem, called Conflict Coloring, is to determine whether G is \mathcal{M}-conflict colorable, that is whether it admits a k-coloring with no \mathcal{M}-conflict edges. Such a coloring is called an \mathcal{M}-conflict coloring. This notion of conflict coloring was introduced by Dvořák and Postle [DP17] and Fraigniaud et al. [FHK16].

We shall consider the restrictions of Fulfill Coloring, and Conflict ColorING to the case when k is fixed. These are called Fulfill k-Coloring, and Conflict k-Coloring, respectively.

Observe that Fulfill Coloring is the particular case of Domino for which $\gamma=$ q and $w^{k}\left((u, c(u)(v, c(v)))=1\right.$ if $\left(\left(u, c(u)(v, c(v)) \notin E\left(\mathcal{M}_{u v}\right)\right.\right.$ and $w^{k}((u, c(u)(v, c(v)))=$ 0 otherwise.

We finally define variants of Fulfill Coloring and its restrictions, in which \mathcal{M} is contained in some restricted family \mathcal{B} of bipartite graphs. For example, \mathcal{B} CONFLICT k-COLORING is the restriction of CONFLICT k-COLORING in which each conflict k-graph M_{e} must belong to \mathcal{B}. We denote by $\mathcal{B}(n, m)$ the class of subgraphs of $K_{n, n}$ with m edges. Figure 5.1 describes an instance of $\mathcal{B}(3,2)$-Conflict 3-COLORING and a solution. When \mathcal{B} is the family of matchings (i.e. bipartite graphs with maximum degree 1), \mathcal{B}-CONFLICT k-COLORING is known as CORRESPONDENCE COLORING or DP-COLORING (formally defined in the next section). Since it is a generalization of the classical notions of coloring and list coloring, it has been extensively studied over the past five years (see e.g., [Ber19, DP17, KO19, RSYG19]).

Figure 5.1: Example of conflict coloring. A graph G on four vertices (left) and a 3-SoC \mathcal{M} of G (right) with 3 colors yellow, blue and red; $M_{e} \in \mathcal{B}(3,2)$: for every $e \in E(G)$ contains two edges. An \mathcal{M}-Conflict Coloring c of G is $c(a)=c(c)=c(d)=$ "blue", $c(b)=$ "red". Coloring c is a solution of $\mathcal{B}(3,2)$-Conflict 3-Coloring.

5.3 Related problems

We have seen (PROPER) COLORING problem in Section 1.3.4. A generalization of this problem is LIST COLORING which is formally defined as follows: for a graph G, a

CHAPTER 5. INTRODUCTION

list assignment L is a function from any vertex $v \in V(G)$ to $L(v)$ a list of colors; an L-coloring c of G is a proper coloring such that $c(v) \in L(v)$ for every $v \in V(G)$. The problem consists, given a graph G and a list assignment L to decide whether there is an L-coloring of G. A problem which is more general than List coloring is CorreSPONDENCE COLORING (DP-COLORING), first defined in [DP17]. Given a graph G, a list assignment L and a function C from any edge $u v \in E(G)$ to a matching $C_{u v}$ of the complete bipartite graph $K_{u v}^{L(u), L(v)}$ (the vertex set is $\{(u, i), i \in[L(u)]\} \cup\{(v, j), j \in$ $[L(v)]\}$ and the edge set is $\{(u, i)(v, j), i \in[L(u)], j \in[L(v)]\}$. An (L, C)-coloring c of G is an L-coloring such that $(u, c(u))(v, c(v)) \notin E\left(C_{u v}\right)$ for every edge $u v \in E(G)$. Hence, DP-coloring generalizes List coloring which is when $C_{u v}$ contains only edges of the same colors in $L(u)$ and $L(v)$ for any $u v \in E(G)$. Furthermore DPCOLORING is a particular case of CONFLICT COLORING, since in this latter we can choose an arbitrary conflict graph rather than a matching.

Complexity dichotomies of some generalizations of coloring problems have been obtained. A typical example is H-COLORING.

5.3.1 H-COlORING and Constraint Satisfaction Problem (CSP)

Let H be a fixed graph (possibly directed and loops are allowed), whose vertices are colors. An H-coloring of a graph G is a coloring c assigning to each vertex of G a vertex of H such that $c(u) c(v) \in E(H)$ for any $u v \in E(G)$. Observe that k-COLORING is the case when H is the complete graph K_{k}. For a fixed (directed) graph $H, H-$ COLORING problem is to decide whether a given (directed) graph G admits an H coloring. A complexity dichotomy for such problems with H undirected has been known for several decades.

Theorem 71 ([HN90]). Let H be an undirected graph. H-COLORING problem is polynomialtime solvable if H is bipartite or has a loop, and NP-complete otherwise.

CSP is a very general problem which an instance is defined by a triple $(\mathcal{V}, \mathcal{D}, \mathcal{C})$ where $\mathcal{V}=\left\{V_{1}, \ldots, V_{n}\right\}$ is a set of variables, $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ is a domain of values and $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is a set of constraints. Each variable V_{i} can take a value in its domain D_{i}. Every constraint C_{j} is a triple (r_{j}, t_{j}, R_{j}) where r_{j} is a positive integer called arity of the constraint, t_{j} is an r_{j}-tuple of variables and R_{j} is an r_{j}-ary relation on t_{j}. An evaluation satisfies a constraint $\left(r_{j}, t_{j}, R_{j}\right)$ if the variables of t_{j} are assigned values which satisfies R_{j}. An evaluation which satisfies all constraints is called a solution. Observe that H-COLORING and CONFLICT COLORING are particular cases of binary CSP where all constraints are binary relations (on variable domains corresponding to the vertex colors).

A finite constraint language Γ is a finite domain and a finite set of relations over this domain. $\operatorname{CSP}(\Gamma)$ is the constraint satisfaction problem where instances are only
allowed to use constraints in Γ. This problem is equivalent to some H-coloring for some directed graph in [FV98] by Feder and Vardi in 1998. They conjectured that $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete (CSP conjecture). In 2017, this conjecture was independently proven by Zhuk [Zhu17] and Bulatov [Bul17] and yielded the following corollary for H-COLORING with directed graph H.

Corollary 72. For a fixed directed graph H, H-COLORING is either in P or NP-complete.

5.3.2 CONFLICT COLORING and comparisons to H-COLORING and CSP

For any graph H with vertex set $[k]$, we define the bipartite graph B_{H} as follows: the vertex set is $A \cup B$ in which A, B copies of $[k]$ and their vertices are respectively denoted by i_{A}, j_{B} for $i, j \in[k]$; if there is an (undirected) edge $i j \in E(H)$ (resp. directed $\overrightarrow{i j} \in E(H)$), then $i_{A} j_{B}, i_{B} j_{A} \in E\left(B_{H}\right)$ (resp. $i_{A} j_{B} \in E\left(B_{H}\right)$). Thus, the H COLORING problem is equivalent to CONFLICT k-COLORING with $k=|V(H)|$ and the k-SoC containing only the complement $\overline{B_{H}}$ of $B_{H}\left(\right.$ i.e. $V\left(\overline{B_{H}}\right)=V\left(B_{H}\right)$ and $E\left(\overline{B_{H}}\right)=$ $\left.\left\{u v \mid \forall u v \notin E\left(B_{H}\right)\right\}\right)$, see Figure 5.2. Hence, this problem and even its restriction $\mathcal{B}(k,|E(\bar{H})|)$-Conflict k-Coloring are more general than H-Coloring.

Figure 5.2: Convert H-coloring to Conflict $|V(H)|$-Coloring. If $H_{1}=K_{3}$, then the corresponding conflict graph is a subgraph of $K_{3,3}$ which contains three edges of same colors (two leftmost). The conflict graph associated to the second graph H_{2} contains conflict (incompatible) edges which are complement to H. Note that first two graphs H are undirected, then their conflict graphs of an edge $u v$ are symmetric but it is not true if H is directed, then it implicitly implies an orientation of edge $u v$ to apply the conflict graph to $u v$. An example is shown in the last graph H_{3} directed and its conflict graph.

A bipartite conflict graph M in a k-SoC \mathcal{M} can be converted to a binary relation R_{M} with $\left(c, c^{\prime}\right) \in R_{M} \Longleftrightarrow\left(c, c^{\prime}\right) \notin E(M)$ for all $c, c^{\prime} \in[k]$. As a consequence we can reduce an instance of k-CONFLICT COLORING to the instance of CSP with variables $V(G)$ on domain $[k]$ and the set of constraints $\left\{R_{M_{u v}}, u v \in E(G)\right\}$ corresponding to the conflict edges. However, when \mathcal{M} is restricted to a family \mathcal{B} of bipartite graphs, the constraint language $\Gamma_{\mathcal{B}}=\left\{R_{M}, M \in \mathcal{B}\right\}$ gives a problem $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$ with more instances than \mathcal{B}-CONFLICT k-Coloring, in other words \mathcal{B}-CONFLICt k-COLORING is a restriction of $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$. Indeed, in $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$ we can choose arbitrary constraints among the relations and, in particular, multiple constraints on the same couple of variables; let say they are represented as conflict graphs M_{1}, \ldots, M_{ℓ}. So this would correspond in \mathcal{B}-CONFLICT k-Coloring to a conflict graph for the same couple of

CHAPTER 5. INTRODUCTION

vertices which is the union of M_{1}, \ldots, M_{ℓ} (because CSP is a conjunction of constraints). From this reasoning we deduce the following:

Lemma 73. If \mathcal{B} is closed by union, i.e. $\left(M, M^{\prime} \in \mathcal{B} \Longrightarrow\left(M \cup M^{\prime}\right) \in \mathcal{B}\right)$, then \mathcal{B}-Conflict k-Coloring is equivalent to $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$ with $\Gamma_{\mathcal{B}}=\left\{R_{M}, M \in \mathcal{B}\right\}$.

As a consequence, complexity upper bounds on $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$ apply to \mathcal{B}-CONFLICT k-COLORING, and complexity lower bounds on \mathcal{B}-CONFLICT k-COLORING apply to $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$. In particular, when \mathcal{B} is not closed by union, we cannot immediately apply the complexity lower bound results from $\operatorname{CSP}\left(\Gamma_{\mathcal{B}}\right)$.

5.4 Our contributions

We first study the computational complexity of Fulfill- k-COLORING, CONFLICT- k COLORING and their restrictions on graph families $\mathcal{B}(k, m)$ in Chapter 6.

If for every $u v \in E(G)$, the edge set of $M_{u v}$ is the matching $\{\{(u, i),(v, i)\} \mid i \in[k]\}$, then the graph is \mathcal{M}-conflict colorable if and only if it is k-colorable. Therefore k Coloring is a particular case of Conflict k-Coloring. It is well-known that k-Coloring is NP-complete if and only if $k \geq 3$ (Section 1.3.4). Henceforth, the problems Conflict k-Coloring and Fulfill k-Coloring are NP-complete for all $k \geq 3$. Thus, the problems Conflict Coloring and Fulfill Coloring are NP-complete. We prove in Theorem 75 that CONFLICT 2-Coloring is polynomialtime solvable. On the other hand, Fulfill 2-Coloring is more general than Max Cut (decision version). This problem is given a graph and an integer, and aims to determine whether there is a partition of vertices into two disjoint sets such that there number of edges between them is at least the number. It is known to be NPcomplete [Kar72]. Therefore Fulfill 2-Coloring is also NP-complete.

We next study $\mathcal{B}(k, m)$-Fulfill k-Coloring and $\mathcal{B}(k, m)$-Conflict k-Coloring. We prove polynomial vs. NP dichotomy results with respect to the considered values k and m. All those complexity results are summarized in Table 5.1.

Remark 74. Given a coloring, we can easily check whether it satisfies the problems Fulfill-Coloring or Conflict-Coloring in polynomial time. Thus, these two problems are in NP and we only prove the NP-hardness of NP-complete results.

In Chapter 7, we expose several algorithms solving the problems. As the decision problem Max CUT is a particular case of Fulfill 2-Coloring, we investigate whether results for MAX CUT (for decision or optimization problem) can be also generalized to our problem on two colors. Hadlock [Had75] showed that Max Cut is polynomial-time solvable for planar graphs. In contrast, we observe that Fulfill 2Coloring is NP-complete (Remark 79). Goemans and Williamson [GW95] proved

	FULFILL k-COLORING	CONFLICT k-COLORING
$k=1$	P	P
$k=2$	NP-complete	P
$k \geq 3$	NP-complete	NP-complete
	$\mathcal{B}(k, m)$-FULFILL	$\mathcal{B}(k, m)$-CONFLICT
	k-COLORING	k-COLORING
$m=0$	P	P
$1 \leq m \leq k^{2}-3$	NP-complete	NP-complete
$m \in\left\{k^{2}-1, k^{2}-2\right\}$	NP-complete	P
$m=k^{2}$	P	P

Table 5.1: Dichotomy results on conflict coloring.
that MAX CUT is 0.87856 -approximable using semidefinite programming. In Section 7.1, we use their approach to construct approximation algorithms for finding a coloring with maximum number of fulfilled edges (optimization version of FULFILL 2-Coloring).

Next, in Section 7.2, we show a polynomial-time algorithm that solves the maximization version of DOMINO for graphs with bounded treewidth. Similarly, we prove a polynomial-time algorithm that solves the problem (for bounded treewidth graphs) that consists in determining the maximum threshold λ for which, given a graph G, integers k, q, a set of weight functions w^{k}, there is a k-coloring of G that \mathcal{M}^{λ}-fulfills all edges. For these studies on algorithms, we later know that there already exists an algorithm using tree decomposition for the optimization of DOMINO with additional weights on the vertices in computational biology communities. And we have mentioned the article in the end of Section 5.1.

The last chapter describes an experimental works. We first introduce our setup to construct (geometric) instances of CONFLICT Coloring and then present some statistics which we obtain from our experiments. Namely, instances of Conflict Coloring are associated with Voronoi diagrams in the plane in which we retain as vertices those data points have a finite Voronoi region. Then, we build a k-SoC \mathcal{M} by generating a set of k (randomly) perturbed polygons of the finite Voronoi polygon of a point, and given an intersection area threshold τ_{c}, a conflict between two perturbed polygons of adjacent Voronoi regions is when their intersection area is greater than τ_{c} (detail in Section 8.1). Hence, a random instance and a threshold τ_{c} yield a set of conflicts. The obtained statistics provide information on the relationship between the existence of a solution and thresholds which are derived from some local conditions.

Chapter 6

Complexity results

The aim of this chapter is to prove results in Table 5.1.

6.1 Unrestricted conflict coloring

We first establish the complexity of CONFLICT k-COLORING and Fulfill k-Coloring, and then consider the restrictions of the problems to the family $\mathcal{B}(k, m)$.

CONFLICT 1-COloring and Fulfill 1-Coloring are trivial: there is only one possible color for each vertex, we just need to check which edges e are fulfilled, that is such that M_{e} is edgeless.
We now consider CONFLICT 2-COLORING and obtain the following.
Theorem 75. CONFLICT 2-COLORING is polynomial-time solvable.
Proof. Let $G=(V, E)$ be a graph and let $M_{u v}$ be the conflict 2-graph for each edge $u v \in E$. If there is an edge $e \in E$ such that $M_{e}=K_{2,2}$, then the answer is 'No' because e cannot be fulfilled. If there is an edge $e \in E$ such that $M_{e}=K_{2,0}$ (edgeless graph), then e is always fulfilled. Without loss of generality, we assume that the conflict 2graph of every edge is neither $K_{2,2}$ nor $K_{2,0}$.
Now, from G and the set of conflict 2-graphs $M_{u v}$ for each edge $u v \in E$, we construct a 2-SAT formula Φ as follows.

1. For a vertex $v \in V$ and a color in $\{1,2\}$, create a variable x_{v} for $(v, 1)$ and \bar{x}_{v} for $(v, 2)$. So we denote by ℓ_{v}^{i} a literal of variable x_{v}, in which $\ell_{v}^{1}=x_{v}$ and $\ell_{v}^{2}=\bar{x}_{v}$.
2. For an edge $u v \in E$ with $M_{u v}$, we create a clause gadget $C_{u v}=\bigwedge_{(u, i)(v, j) \in E\left(M_{u v}\right)}\left(\overline{\ell_{u}^{i}} V\right.$ $\left.\bar{\ell}_{v}^{j}\right)$.

CHAPTER 6. COMPLEXITY RESULTS

We will prove that G admits a conflict coloring c if and only if there is an assignment ϕ satisfying Φ.
Observe that, for any $u v \in E(G)$, the clause gadget $C_{u v}$ contains a clause for each edge $(u, i)(v, j) \in M_{u v}$ which is the negation of $\left(\ell_{u}^{i} \wedge \ell_{v}^{j}\right)$. It implies that c does not conflict on $u v$ by edge $(u, i)(v, j) \in M_{u v}$ if and only if $\neg\left(\ell_{u}^{i} \wedge \ell_{v}^{j}\right)$ is satisfiable by ϕ. Thus, $u v$ is fulfilled by c if and only if $C_{u v}$ is satisfiable by ϕ.
Therefore, one can determine c from ϕ by taking $c(v)=1$ (resp. $c(v)=2$) if $\phi\left(x_{v}\right)=$ true (resp. $\phi\left(x_{v}\right)=$ false).

In contrast to Conflict 2-Coloring, Fulfill 2-Coloring generalizes the wellknown NP-complete problem Max Cut, and thus it is also NP-complete. For $k \geq 3$, CONFLICT k-COLORING generalizes the NP-complete problem k-COLORING and so is NP-complete. Hence, Fulfill k-Coloring is also NP-complete.

Proposition 76. Conflict k-Coloring is NP-complete for all $k \geq 3$. Fulfill k Coloring is NP-complete for all $k \geq 2$.

6.2 Restrictions to the family $\mathcal{B}(k, m)$

Now, we look at the restrictions of those problems when every conflict k-graph M_{e} is in $\mathcal{B}(k, m)$, that is a bipartite graph with k vertices in each part and m edges. We assume that $k \geq 2$. If $m=0$ (resp. $m=k^{2}$), then the conflict k-graphs are edgeless (resp. complete bipartite) and so every k-coloring fulfills all edges (resp. no edges). Hence $\mathcal{B}(k, 0)$-FULFILL k-COLORING and $\mathcal{B}\left(k, k^{2}\right)$-FULFILL k-COLORING are trivially polynomial-time solvable.

When $k=2, \mathcal{B}(2, m)$-Conflict 2-Coloring is in P by Theorem 75. We prove the following for $\mathcal{B}(2, m)$-FULFILL 2 -Coloring.

Theorem 77. $\mathcal{B}(2, m)$-FuLfill 2-Coloring is NP-complete for $m \in\{1,2,3\}$.
Proof. An easy observation is that $\mathcal{B}(2,2)$-FULFILL 2-Coloring is NP-complete since it generalizes MAX CUT. Thus, we now prove for graph classes $\mathcal{B}(2,1)$ and $\mathcal{B}(2,3)$.

1. $\mathcal{B}(2,1)$-Fulfill 2 -Coloring is NP-hard.

A reduction from MAx-2-SAT problem which is known to be NP-hard [GJS76].
Given a 2-SAT formula Φ with N variables x_{1}, \ldots, x_{N} and l clauses, each contains exactly 2 literals. We construct a graph G and the conflict 2-graph M_{e} for any $e \in E(G)$ as follows (see Figure 6.1 for an example):

- For each variable x_{t}, we create a vertex v_{t}, and if x_{i} appears in α_{t} clauses, then we create three copies $v_{t 1}^{r}, v_{t 2}^{r}, v_{t}^{r}$ for each r-occurrence of $x_{t}, r \in\left[\alpha_{t}\right]$. We add edges $v_{t 1}^{r} v_{t}^{r}, v_{t 2}^{r} v_{t}^{r}$ to $E(G)$; and $\left(v_{t 1}^{r}, 1\right)\left(v_{t}^{r}, 2\right) \in M_{v_{t 1}^{r}} v_{t}^{r}$ and $\left(v_{t 2}^{r}, 2\right)\left(v_{t}^{r}, 1\right) \in$ $M_{v_{t 2}^{r} v_{t}^{r}}$. For $r \in[\alpha]$, we create a cycle on vertices $v_{t}, v_{t 1}^{r}, v_{t 2}^{r}$, and for (ordered

Figure 6.1: An example of the construction for $\left.\Phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right)\right)$. The graph G (left) and the corresponding conflict 2-graphs of edges in the dashed box (colors 1, 2 are respectively blue, red).
edge) $u v \in\left\{v_{t} v_{t 1}^{r}, v_{t 1}^{r} v_{t 2}^{r}, v_{t 2}^{r} v_{t}\right\}, M_{u v}$ contains only edge $(u, 2)(v, 1)$. For conveniences, we call the subgraph on four vertices $v_{t}, v_{t 1}^{r}, v_{t 2}^{r}, v_{t}^{r}$ is a v_{t}^{r}-graph for every $r \in\left[\alpha_{t}\right]$.

- For each clause, assume that $C=\left(\ell_{1} \vee \ell_{2}\right)$ where ℓ_{1}, ℓ_{2} are respectively the r_{1}-th occurrence of x_{p}, r_{2}-th occurrence of x_{q} in C. We add to $E(G)$ the clause edge $e=v_{p}^{r_{1}} v_{q}^{r_{2}}$, and create its conflict 2-graph M_{e} as follows:
- If $\ell_{1}=x_{p}$ and $\ell_{2}=x_{q}$, then $\left(v_{p}^{r_{1}}, 2\right)\left(v_{q}^{r_{2}}, 2\right) \in M_{e}$.
- If $\ell_{1}=x_{p}$ and $\ell_{2}=\bar{x}_{q}$, then $\left(v_{p}^{r_{1}}, 2\right)\left(v_{q}^{r_{2}}, 1\right) \in M_{e}$.
- If $\ell_{1}=\bar{x}_{p}$ and $\ell_{2}=x_{q}$, then $\left(v_{p}^{r_{1}}, 1\right)\left(v_{q}^{r_{2}}, 2\right) \in M_{e}$.
- If $\ell_{1}=\bar{x}_{p}$ and $\ell_{2}=\bar{x}_{q}$, then $\left(v_{p}^{r_{1}}, 1\right)\left(v_{q}^{r_{2}}, 1\right) \in M_{e}$.

We shall prove that Φ admits an assignment which satisfies at least k clauses if and only if there is a 2 -coloring c which fulfills at least $10 l+k$ edges of G.

Assume that we have an assignment ϕ satisfying at least k clauses of Φ. Then, we take a coloring as follows:

- if $x_{t}=$ true (resp. false), then $c\left(v_{t}\right)=1$ (resp. $c\left(v_{t}\right)=2$).
- all its copies $v_{t 1}^{r}, v_{t 2}^{r}, v_{t}^{r}$ for $r \in\left[\alpha_{t}\right]$ have color $c\left(v_{t}\right)$.

We now check that there are at least $10 l+k$ fulfilled edges in G. Indeed, for each satisfied clause, the corresponding clause edge in $E(G)$ is fulfilled, then we have at least k such edges. For each variable x_{t}, and $r \in\left[\alpha_{t}\right]$, the v_{t}^{r}-graph has all 5 fulfilled edges. There are $2 l$ such graphs which have totally $10 l$ fulfilled edges. Therefore, c fulfills at least $k+10 l$ edges of G.

Conversely, let a coloring c which fulfills at least $10 l+k$ edges of G.
Remark 78. We can easily check the following: all five edges in a v_{t}^{r}-graph are fulfilled if and only if its four vertices have the same colors.

Claim 78.1. There is always a coloring c such that it fulfills all edges of v_{t}^{r}-graphs (for $t \in$ $[N], r \in\left[\alpha_{t}\right]$).

Proof of claim: Assume a coloring in which there is a v_{t}^{r}-graph which has a conflict edge. Observe that if v_{t}^{r} has at least two conflict edges or the clause edge at v_{t}^{r} is conflict, then we can fulfill all edges of v_{t}^{r}-graph by Remark 78 and obtain more fulfilled

CHAPTER 6. COMPLEXITY RESULTS

edges which contradicts to the maximality of c. Hence, v_{r}^{t}-graph contains only one conflict edge and the clause edge at v_{t}^{r} is fulfilled by c. We can fulfill all edges of this graph by changing the color of v_{r}^{t}, which leads to the following cases:

1. The clause edge $v_{i}^{j} u^{j}$ is still fulfilled, and we obtain more fulfilled edges which is a contradiction (Figure 6.2).

Figure 6.2: Corresponding to a color at each vertex, v_{t}^{r}-graph has one conflict (dashed) edge and the clause edge at v_{t}^{r} is fulfilled (left). After changing the color of v_{t}^{r}, the clause edge is still fulfilled and all edges of v_{t}^{r}-graph are now fulfilled (right).
2. The clause edge at v_{t}^{r} changes to a conflict edge, and we still have the same number of fulfilled edges of G (Figure 6.3).

Figure 6.3: The case after changing the color of v_{t}^{r}, the clause edge becoms a conflict (dashed) edge and all edges of v_{r}^{t}-graph are now fulfilled (right).

Therefore, there is a coloring which fulfills all edges of v_{t}^{r}-graphs.
From a coloring c satisfying Claim 78.1, we define ϕ by taking $\phi\left(x_{t}\right)=$ true (resp. false) if $c\left(v_{t}\right)=1$ (resp. $c\left(v_{t}\right)=2$). Since c fulfills all edges of v_{t}^{r}-graphs ($10 l$ in total), then c fulfills at least k clause edges in G. Thus, ϕ satisfies at least k clauses of Φ.

2. $\mathcal{B}(2,3)$-FULFILL 2-COLORING is NP-hard.

We reduce from 3-SAT. Given a formula Φ of this problem with N variables x_{t}, $t \in[N]$ and l clauses $C_{i}, i \in[l]$, we construct a graph G and M_{e} for any $e \in E(G)$ as follows (see Figure 6.4 for an example).

- For each variable x_{t}, create a vertex $v_{t} \in V(G)$.
- For each clause C_{i}, we create a clause gadget X_{i} which contains six vertices $c_{1}^{i}, \ldots, c_{6}^{i}$. We add (ordered) edges $c_{4}^{i} c_{5}^{i}, c_{5}^{i} c_{6}^{i}, c_{6}^{i} c_{4}^{i}$ and for each edge $u v$ of them, $M_{u v}$ has three edges which are not $(u, 1)(v, 2)$. And add (ordered) edges $c_{1}^{i} c_{4}^{i}, c_{2}^{i} c_{5}^{i}, c_{3}^{i} c_{6}^{i}$ and for each edge $u v$ of them, $M_{u v}$ has three edges which are not $(u, 2)(v, 2)$. If $C_{i}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3}\right)$ where each ℓ_{i} is a literal of variable $x_{t_{i}}$, we then add a set

Figure 6.4: An example of the construction in the reduction. The graph G (left) which is associated to $\Phi=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \bar{x}_{3} \vee \bar{x}_{4}\right)$ and an example of graphs M_{e} for $e \in E(G)$. Note color 1 (resp. 2) is presented as blue (resp. red).
Y_{i} of variable-clause edges $v_{t_{1}} c_{1}^{i}, v_{t_{2}} c_{2}^{i}, v_{t_{3}} c_{3}^{i}$. For $j \in[3], M_{v_{t_{j}} c_{j}^{i}}$ has three edges which are not $\left(v_{t_{j}}, 1\right)\left(c_{j}^{i}, 1\right)$ (resp. $\left(v_{t_{j}}, 2\right)\left(c_{j}^{i}, 1\right)$) if $\ell_{j}=x_{t_{j}}$ (resp. $\ell_{j}=\bar{x}_{t_{j}}$). For conveniences, for a clause C_{i}, the edge set which contains all edges of X_{i} and Y_{i} is called clause-edge set, denoted by S_{i}.
We can easily check by hand the following.
Claim 78.2. For each clause C_{i}, a coloring fulfills no edges in Y_{i} if and only if it can fulfill at most three edges in S_{i}. Furthermore, there exists a coloring which fulfills four edges in S_{i} in which at least one of them is in Y_{i}.

We shall show that there is ϕ satisfying Φ if and only if there is a 2-coloring of G with $4 l$ fulfilled edges. The idea is that a variable $\phi\left(x_{t}\right)=$ true (resp. false) when $c\left(v_{t}\right)=1$ (resp. $c\left(v_{t}\right)=2$), and a literal $\ell_{j}=x_{t}$ (resp. $\ell_{j}=\bar{x}_{t}$) is true in a clause C_{i} when the edge $v_{t} c_{j}^{i} \in Y_{i}$ is fulfilled and then v_{t} is colored 1 (resp. 2).

Assume that there is an assignment ϕ satisfying Φ. We define a coloring c of G by taking $c\left(v_{t}\right)=1$ if $\phi\left(x_{t}\right)=$ true or $c\left(v_{t}\right)=2$ if $\phi\left(x_{t}\right)=$ false, and we complete c such that if C_{i} is true, then c fulfills four edges of S_{i} which includes the variable-clause edge of every true literal in C_{i}; otherwise, c fulfills three edges in S_{i} and none of them is in Y_{i}. This can be done by Claim 78.2. Since there are l clauses of Φ which are true, then c fulfills $4 l$ edges.

Conversely, assume that we have a 2-coloring c of G with $4 l$ fulfilled edges. By Claim 78.2, c must fulfill at least one edge in Y_{i} for any clause C_{i}. As a consequence, we obtain ϕ by taking $\phi\left(x_{t}\right)=$ true (resp. false) if $c\left(v_{t}\right)=1$ (resp. 2), hence ϕ satisfies Φ.

Remark 79. MAx CUT can be solved in polynomial time for planar graphs [Had75]. In contrast, $\mathcal{B}(2,3)$-FULFILL 2 -COLORING is NP-complete on planar graphs by reducing from PLANAR 3-SAT which is NP-complete [Lic82] with the same reduction in Theorem 77-2.

When $k \geq 3$, we use reductions from k-COLORING to establish the following.

CHAPTER 6. COMPLEXITY RESULTS

Theorem 80. Let $k \geq 3$ be an integer. If $1 \leq m \leq k^{2}-3$ then $\mathcal{B}(k, m)$-CONFLICT k COLORING is NP-complete, and if $m=\left\{k^{2}-1, k^{2}-2\right\}$ then it is polynomial-time solvable.

The proof is separated to several cases depending of m.
Polynomial cases when $m \in\left\{k^{2}-1, k^{2}-2\right\}$. Given a graph G, we shall find a conflict k-coloring c of G if it exists.
If $m=k^{2}-1$, in order to fulfill an edge $u v \in E$, we have to take $c(u)=i, c(v)=j$ for the only edge $(u, i)(v, j) \notin M_{u v}$. If we can assign a color to every vertex, then we obtain a conflict k-coloring of G. Otherwise, G is not conflict colorable.
If $m=k^{2}-2$, the problem can be solved as follows. Initially, let $\tilde{c}(v)=\emptyset$ for every $v \in V$. We sequentially apply the following rules for all vertices.
Rule 1: For every edge $u v \in E$, if there is $i \in[k]$ such that the two edges $(u, i)\left(v, j_{1}\right),(u, i)\left(v, j_{2}\right) \notin M_{u v}$, then $\tilde{c}(u):=\tilde{c}(u) \cup\{i\}$.
If there is a vertex v such that $|\tilde{c}(v)| \geq 2$, then there is no coloring c because v needs two colors to fulfill all its incident edges. Otherwise, let $S=\{v \in V \mid$ $|\tilde{c}(v)|=1\} \subseteq V$.
We sequentially apply the following for all vertices $V \backslash S$.
Rule 2: For every vertex v with all its neighbors $\left\{u_{1}, \ldots, u_{q}\right\}$ and for every color $i \in[k]$ such that $(v, i)\left(u_{j}, c_{j}\right) \notin M_{v u_{j}}$ for all $j \in[q]$ and some $c_{j} \in[k]$, then we set $\tilde{c}(v):=\tilde{c}(v) \cup\{i\}$.
Observe that $|\tilde{c}(v)| \leq 2$ for every $v \in V$. If there is a vertex $v \in V$ such that $\tilde{c}(v)=$ \emptyset, then there is no conflict coloring for G because there is no color for v that allows to fulfill all its incident edges. Without loss of generality, we assume that $G[V \backslash S]$ is connected (otherwise, we repeat the following for all the connected components). There are two cases:
(i) If there is a vertex $v \in V \backslash S$ such that $|\tilde{c}(v)|=1$, let $\left(v_{1}=v, v_{2}, \ldots, v_{t}\right)$ be the ordering obtained by a breadth-first search algorithm in $G[V \backslash S]$. By construction of S, and $V \backslash S$, this ordering gives a unique color for all vertices of $V \backslash S$, that is $c\left(v_{1}\right)=\tilde{c}\left(v_{1}\right)$, and $c\left(v_{i}\right)=c_{i}$ with c_{i} the unique color such that $\left(v_{i-1}, c\left(v_{i-1}\right)\right)\left(v_{i}, c_{i}\right) \notin M_{v_{i-1} v_{i}}$ for every $i \in\{2, \ldots, t\}$. Finally, once the colors $c(v)$ have been determined for all vertices $v \in V$, we have to verify if all the edges of E are fulfilled.
(ii) If $|\tilde{c}(v)|=2$ for every $v \in V \backslash S$, take any vertex $v \in V \backslash S$ and fix one color $c(v) \in \tilde{c}(v)$ and apply the procedure above in (i). If there is a coloring that fulfills all edges, then it terminates. Otherwise, apply the procedure in (i) for the other color in $\tilde{c}(v)$. Hence either we find a conflict k-coloring or G has no such a coloring.

The NP-completeness when $m \in\left[k^{2}-3\right]$. We denote by $[a, b]$ for $a \leq b$ the set of integers $\{a, a+1, \ldots, b\}$. For an edge $u v$, we reuse the notation $K_{u v}^{k}$ which is the complete bipartite with the vertex set $V\left(K_{u v}^{k}\right)=\{(u, i), i \in[k]\} \cup\{(v, j), j \in[k]\}$ and
$E\left(K_{u v}^{k}\right)=\{(u, i)(v, j), i, j \in[k]\}$.
We reduce from k-COLORING and the proof includes the three following cases.
Case 1: $\frac{k}{2} \leq m \leq(k-1)^{2}$:
Given a graph $G=(V, E)$ of k-COLORING, we construct, for $\mathcal{B}(k, m)$-CONFLICT k Coloring, a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and a k-SoC \mathcal{M} as follows (Figure 6.5):

- For each $v \in V$, we add to V^{\prime} a vertex v^{\prime}, and for each edge $u v \in E$, add k vertices $a_{1}^{u v}, \ldots, a_{k}^{u v}$. We set $E_{u v}^{\prime}=\left\{u a_{i}^{u v}, v a_{i}^{u v} \mid i \in[k]\right\}$ and add it to E^{\prime}.
- For any $u v \in E$ and $i \in[k], M_{u a_{i}^{u v}}$ contains $t=\min \{m, k-1\}$ edges $(u, i)\left(a_{i}^{u v}, j\right)$ for $j \in[t]$ and $t^{\prime}=m-(k-1)$ (if $t^{\prime}>0$) edges of B_{u} where B_{u} is the complete bipartite graph whose vertex sets are $\bigcup_{j \in[k] \backslash\{i\}}\{(u, j)\}$ and $\bigcup_{j \in[2, k-1]}\left\{\left(a_{i}^{u v}, j\right)\right\}$. The conflict graph $M_{v a_{i}^{u v}}$ contains t edges $(v, i)\left(a_{i}^{u v}, k\right), \ldots,(v, i)\left(a^{u v}, k-t+1\right)$ and t^{\prime} (if $t^{\prime}>0$) edges of B_{v} where B_{v} is the complete bipartite graph whose vertex sets are $\bigcup_{j \in[k] \backslash\{i\}}\{(v, j)\}$ and $\bigcup_{j \in[2, k-1]}\left\{\left(a_{i}^{u v}, j\right)\right\}$.

Figure 6.5: An example of the construction when $k=5$. An edge $u v \in E$ and its set $E_{u v}^{\prime}$ (left). The conflict k-graphs of red edges $u a_{3}^{u v}, v a_{3}^{u v}$ when $m=3$ (third graph); and if $m>4$, there are $t=4$ black edges and the $t^{\prime}=m-k+1$ other edges are chosen among grey edges (rightmost).

Observe that by the construction of the set \mathcal{M}, the value m is at most $(k-1)^{2}$, because for any edge $u v \in E$ and $i \in[k], M_{u a_{i}^{u v}}$ and $M_{v a_{i}^{u v}}$ contains at most $k-1+\left|E\left(B_{u}\right)\right|=$ $k-1+\left|E\left(B_{u}\right)\right|=(k-1)^{2}$ edges.

We shall prove that G is k-colorable if and only if G^{\prime} is \mathcal{M}-conflict colorable.
Assume that c is a k-coloring of G, then we can construct a coloring c^{\prime} of G^{\prime} as follows: $c^{\prime}\left(v^{\prime}\right)=c(v)$ for any $v \in V, c^{\prime}\left(a_{i}^{e}\right)=k$ for all $e \in E, i \in[k]$. We can check easily that c^{\prime} fulfills all edges of G^{\prime}.

Conversely, there is an \mathcal{M}-conflict coloring c^{\prime} of G^{\prime}. Observe that if $c^{\prime}(u)=i$ (for some $i \in[k]$), then $c^{\prime}\left(a_{i}^{u v}\right) \in[t, k]$. It implies that $c^{\prime}(v) \neq i$ because otherwise $t \geq k / 2$, so $v a_{i}^{u v}$ is not fulfilled. Thus, $c^{\prime}(u) \neq c^{\prime}(v)$ and we then obtain a coloring c of G by taking $c(v)=c^{\prime}\left(v^{\prime}\right)$ for every $v \in V$.

Case 2: $1 \leq m<\frac{k}{2}$:
We need the following lemma.
Lemma 81. There is a graph family $\{G(k, m)\}$ for any $k, m \geq 1$ such that $G(k, m)$ is not $\mathcal{B}(k, m)$-conflict k-colorable.

CHAPTER 6. COMPLEXITY RESULTS

Proof. Given $m \geq 1$, we shall construct a family $\{G(k, m)\}$ and a k-SoC \mathcal{M} by induction on k.
Let $G(k, m)=(V(k, m), E(k, m))$. Consider the following cases.
(i) For $m=k^{2}$, let $G(k, m)$ on 2 vertices a_{1}, a_{2} and it has one edge $a_{1} a_{2}$. And let the conflict k-graph $M_{a_{1} a_{2}}=K_{a_{1} a_{2}}^{k}$ (Figure 6.6).

Figure 6.6: Graph $G\left(k, k^{2}\right)$.
(ii) For $k^{2}>m \geq k, G(k, m)$ has $k+1$ vertices a, a_{1}, \ldots, a_{k} and k edges $a a_{i}$ for all $i \in[k]$. For each of them, the conflict k-graph $M_{a a_{i}}$ contains k edges $(a, i)\left(a_{i}, j\right)$ for all $j \in[k]$, and $m-k$ other edges are chosen among the other edges of $K_{a a_{i}}^{k}$ (Figure 6.7).

Figure 6.7: An example of graph $G(5, m)$ with $\mathbf{5}$ colors. The conflict 5 -graph of red edge $a a_{2}$, when $m=5, M_{a a_{2}}$ contains five black edges $(a, 2)\left(a_{2}, i\right)$ for all $i \in[5]$; and when $m=7$, then $M_{a a_{2}}$ contains these black edges and two grey edges which are in the remaining edges of $K_{a a_{2}}^{5}$.
(iii) For $k>m, G(k, m)$ is build as follows (Figure 6.8). We add $k+1$ vertices a, a_{1}, \ldots, a_{k} to $V(k, m)$, and add k edges $a a_{i}$ for all $i \in[k]$ to $E(k, m)$. Now, for each vertex a_{i}, add a set X_{i} of $|G(k-m, m)|-1$ new vertices, and let a copy C_{i} of the graph $G(k-m, m)$ on $a_{i} \cup X_{i}$. Then, connect a to all vertices of this copy C_{i}.

Now, we construct a set of conflict k-graphs for $G(k, m)$. For each edge $a b$ (for every $\left.b \in C_{i}, 1 \leq i \leq k\right)$, the conflict k-graph $M_{a b}$ contains m edges $(a, i)(b, j)$ for all $j \in[m]$. In each copy C_{i}, we apply $(k-m)$-SoC \mathcal{M}^{\prime} of graph $G(k-m, m)$ for $k-m$ colors $\{m+1, \ldots, k\}$, if $m \geq(k-m)^{2}$, then the conflict $(k-m)$ graph $M_{u v}$ for $u v \in C_{i}$ contains the complete bipartite on two sets $\{(u, m+$ $1), \ldots,(u, k)\},\{(v, m+1), \ldots,(v, k)\}$ and $m-(k-m)^{2}$ remaining edges are taken in $K_{u v}^{m}$.
Trivially, graphs in case (i) have no \mathcal{M}-conflict coloring.
In case (ii), $G(k, m)$ has no conflict coloring, since choosing any color $i \in[k]$ for a implies that edge $a a_{i}$ is not fulfilled.

Figure 6.8: An example of graph $G(5,3)$. A copy $C_{i}=G(2,3)$ for all $i \in$ [5]. The conflict k-graph of red edges and copy C_{2} (right): vertex $(a, 2)$ connects threes first vertices ($b, 1$), ($b, 2$), ($b, 3$) (presented as blue, red, yellow) and the set 2-SoC of $G(2,3)$ is applied to vertices $(b, 4),(b, 5)$ (presented as green, white) for any $b \in V\left(C_{2}\right)$.

In case (iii), by the construction, colors of a_{1}, \ldots, a_{k} are not in $[m]$. However, if we choose a color for each a_{i} in $[m+1, k]$, then it can not fulfill all edges of the copy C_{i} because $G(k-m, m)$ is not conflict colorable with its $(k-m)$-SoC. Thus, the graphs of this case have no conflict coloring.

Now, we give a reduction from k-COLORING problem to $\mathcal{B}(k, m)$-CONFLICT k COLORING for $1 \leq m<k / 2$.
Given a graph $G=(V, E)$, we construct a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and a k-SoC \mathcal{M} as follows.

- Let A be a copy of V and add A to V^{\prime}. For each edge $u v \in E$ with $u^{\prime}, v^{\prime} \in$ A copies of u, v, we add k copies $C_{1}^{u v}, \ldots, C_{k}^{u v}$ of the graph $G(k-2 m, m)$, and add edges from each u^{\prime}, v^{\prime} to all vertices in these k copies. Let $V_{u v}^{\prime}=$ $\left\{u^{\prime}, v^{\prime}, V\left(C_{1}^{u v}\right), \ldots, V\left(C_{k}^{u v}\right)\right\}$.
- For any induced subgraph $G^{\prime}\left[V_{u v}^{\prime}\right], u^{\prime} \in A, a \in V\left(C_{i}^{u v}\right)$ and $i \in[k]$, the conflict k-graph $M_{u^{\prime} a}$ has m edges $(u, i)(a, 1), \ldots,(u, i)(a, m)$; and the conflict k-graph $M_{v^{\prime} b}$ for any $b \in V\left(C_{j}^{u v}\right), j \in[k]$ has m edges $(v, j)(b, k), \ldots,(v, j)(b, k-m+1)$. In each $C_{i}^{u v}$, we apply the $(k-2 m)$-SoC of the graph $G(k-2 m, m)$ for $k-2 m$ colors $[m+1, k-m]$.
If G has a k-coloring c then we have c^{\prime} for G^{\prime} as follows: for each $V_{u v}^{\prime}$, let $c^{\prime}\left(v^{\prime}\right)=c(v)$, $c^{\prime}\left(u^{\prime}\right)=c^{\prime}(a)=c(u)$ for all $a \in \underset{i \in[k] \backslash c(u)}{\bigcup} V\left(C_{i}^{u v}\right)$ and $c^{\prime}(a) \in[k, k-m+1]$ for all $a \in V\left(C_{c(u)}^{u v}\right)$. Hence, c^{\prime} is a conflict coloring of G^{\prime}.

Conversely, assume G^{\prime} has a k-coloring c^{\prime}, then we prove that $c^{\prime}\left(u^{\prime}\right) \neq c^{\prime}\left(v^{\prime}\right)$ for all $u^{\prime}, v^{\prime} \in A \cap V_{u v}^{\prime}$. Observe that for any $a \in V\left(C_{c^{\prime}\left(u^{\prime}\right)}^{u v}\right)$, its color is not in $[k, k-m+1]$ because of the construction of $C_{c(u)}^{u v}$. Moreover, if $a \in C_{i}^{u v}$ has color $j \notin\{m+1, \ldots, k-$ $m\}$, then (a, j) is either adjacent to $\left(u^{\prime}, i\right)$ in the conflict k-graph $M_{u a}$ or (v, i) in $M_{v a}$ for $i \in[k]$. Thus $c^{\prime}\left(u^{\prime}\right) \neq c^{\prime}\left(v^{\prime}\right)$. Therefore, we take $c(v)=c^{\prime}\left(v^{\prime}\right)$ for all v^{\prime} the copy of v and it is a k-coloring of G.

CHAPTER 6. COMPLEXITY RESULTS

Case 3: $(k-1)^{2}<m \leq k^{2}-3$.
We use an induction on $k^{2}-m$ as follows. The base case is when $k=3$ and $1 \leq m \leq 6$. From these two cases above, it suffices to prove for $m \in\{5,6\}$.

Claim 81.1. $\mathcal{B}(3, m)$-Conflict k-Coloring is NP-complete for $m=\{3,4,5,6\}$.
The inductive result is obtained by the following.
Claim 81.2. If $\mathcal{B}(k, m)$-Conflict k-Coloring is NP-complete, then so is $\mathcal{B}\left(k^{\prime}, m^{\prime}\right)$ CONFLICT k^{\prime}-COLORING for $k^{\prime}>k$ and $k^{\prime 2}-m^{\prime}=k^{2}-m$.

Observe that if $\mathcal{B}(k, m)$-Conflict k-Coloring is NP-complete for $1 \leq m \leq(k-$ $1)^{2}$, then so is $\mathcal{B}\left((k+1), m^{\prime}\right)$-CONFLICT k-COLORING by Claim 81.2 for m^{\prime} such that $m^{\prime}=2 k+1+m$, thus $2 k+2 \leq m^{\prime} \leq(k+1)^{2}-3$. Therefore, we have the following.

Theorem 82. $\mathcal{B}(k, m)$-Conflict k-Coloring is NP-complete for $k \geq 3$ and $(k-1)^{2}<$ $m \leq k^{2}-3$.

It remains to prove Claim 81.1 and Claim 81.2.
Proof of Claim 81.1. A reduction from 3-Coloring. Given a graph $G=(V, E)$ of this problem, we construct for $\mathcal{B}(3, m)$-CONFLICT k-COLORING, a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and a set of conflict 3-graphs \mathcal{M} as follows (see Figure 6.9).

Figure 6.9: Construction of the reduction. For each edge $u v \in E(G)$, there is a gadget $\mathcal{G}^{u v}$. And an example on red edges is the structure of their conflict 3-graphs: it is obligatory that black edges are in conflict 3-graphs while gray ones are not. We obtain that $c(u)=1$ if and only if $c(v) \neq 1$.

- For each edge $e=u v \in E$, add a gadget \mathcal{G}^{e} of 8 vertices $u^{\prime}, v^{\prime}, a_{1}^{e}, b_{1}^{e}, a_{2}^{e}, b_{2}^{e}, a_{3}^{e}, b_{3}^{e}$ to V^{\prime} where u^{\prime}, v^{\prime} are respectively copies of u, v; and we add to E^{\prime} edges $u a_{i}^{e}, a_{i}^{e} b_{i}^{e}, b_{i}^{e} v$ for all $i \in[3]$.
- For each induce subgraph $G^{\prime}\left[\mathcal{G}^{u v}\right]$, we construct the conflict 3-graphs of edges $u^{\prime} a_{i}^{u v}, a_{i}^{u v} b_{i}^{u v}, b_{i}^{u v} v^{\prime}$ for any $i \in[3]$ as follows:
- $M_{u^{\prime} a_{i}^{u v}}$ contains two edges $\left(u^{\prime}, i\right)\left(a_{i}^{u v}, 1\right),\left(u^{\prime}, i\right)\left(a_{i}^{u v}, 2\right)$ and any $m-2$ other edges is in $K_{u^{\prime} a_{i}^{u v}}^{3}$ except three edges $\left(u^{\prime}, i\right)\left(a_{i}^{u v}, 3\right),\left(u^{\prime}, j\right)\left(a_{i}^{u v}, 1\right)$ for $j \neq i$.
- $M_{a_{i}^{u v} b_{i}^{u v}}$ contains three edges $\left(a_{i}^{u v}, 2\right)\left(b_{i}^{u v}, 3\right),\left(a_{i}^{u v}, 3\right)\left(b_{i}^{u v}, 2\right),\left(a_{i}^{u v}, 3\right)\left(b_{i}^{u v}, 3\right)$ and any $m-3$ other edges in $K_{a_{i}^{u v} b_{i}^{u v}}^{3}$ except two edges $\left(a_{i}^{u v}, 1\right)\left(b_{i}^{u v}, 3\right),\left(a_{i}^{u v}, 3\right)\left(b_{i}^{u v}, 1\right)$.
- $M_{b_{i}^{u v} v^{\prime}}$ contains two edges $\left(b_{i}^{u v}, 1\right)\left(v^{\prime}, i\right),\left(b_{i}^{u v}, 2\right)\left(v^{\prime}, i\right)$ and any $m-2$ other ones in $K_{b_{i}^{u v} v^{\prime}}^{3}$ except three edges $\left(b_{i}^{u v}, 3\right)\left(v^{\prime}, i\right),\left(b_{i}^{u v}, 1\right)\left(v^{\prime}, j\right)$ for $j \neq i$.
By the construction of \mathcal{M}, each conflict graph $M_{e} \in M$ needs at least three conflict edges and at least three edges not in M_{e}. Thus, $3 \leq m \leq 6$.

We prove now G is 3-colorable if and only if there is c^{\prime} which fulfills all edges of G^{\prime}.
If G has a k-coloring c, then G^{\prime} has also a conflict k-coloring by, for all $\mathcal{G}^{u v}$, taking $c^{\prime}\left(u^{\prime}\right)=c(u), c^{\prime}\left(v^{\prime}\right)=c(v), c^{\prime}\left(a_{i}^{u v}\right)=3, c^{\prime}\left(b_{i}^{u v}\right)=1$.

Conversely, let a coloring c^{\prime} which fulfills all edges of G^{\prime} has a k coloring. Observe that $c^{\prime}(u) \neq c^{\prime}(v)$ for any $u, v \in \mathcal{G}^{u v}$ because by the construction of $G^{\prime}\left[\mathcal{G}^{u v}\right]$, if $c^{\prime}\left(u^{\prime}\right)=$ $c^{\prime}\left(v^{\prime}\right)=i$, then three edges $u a_{i}^{u v}, a_{i}^{u v} b_{i}^{u v}, b_{i}^{u v} v$ are not all fulfilled. Therefore, we define a coloring c of G by taking $c(v)=c^{\prime}\left(v^{\prime}\right)$ for any $v^{\prime} \in E^{\prime}$ copy of $v \in E$.

Proof of Claim 81.2. Let a graph G and a k-SoC \mathcal{M} for $\mathcal{B}(k, m)$-CONFLICT k-COLORING. We will construct for $\mathcal{B}\left(k^{\prime}, m^{\prime}\right)$-CONFLICT k^{\prime}-COLORING, a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ and \mathcal{M}^{\prime}, as follows:

- Let G^{\prime} be a copy of G (i.e. V^{\prime}, E^{\prime} are respectively copies of V and E.
- For each edge $u^{\prime} v^{\prime}$ of $G^{\prime}, M_{u^{\prime} v^{\prime}}^{\prime}$ contains the following: a copy of the conflict graph $M_{u v}$ for colors in $[k]$, the complete bipartite graph between two sets $\{(u, i) \mid$ $\left.i \in\left[k+1, k^{\prime}\right]\right\}$ and $\left\{(v, j) \mid j \in\left[k^{\prime}\right]\right\}$, and the complete bipartite graph between two sets $\left\{(u, j) \mid j \in\left[k^{\prime}\right]\right\}$ and $\{(v, i) \mid i \in[k+1, k]\}$.
If c be a coloring which fulfills all edges of G, then taking $c^{\prime}\left(v^{\prime}\right)=c(v)$ for all $v^{\prime} \in V^{\prime}$ copy of $c \in V$. Thus, c^{\prime} also fulfills all edges of G^{\prime}.

Conversely, there is a coloring c^{\prime} which fulfills all edges of G^{\prime}. Consider that for any $u^{\prime} v^{\prime} \in E^{\prime},(v, i)$ is adjacent to (u, j) for all $i \in\left[k+1, k^{\prime}\right]$ and $j \in\left[k^{\prime}\right]$, then $c^{\prime}\left(v^{\prime}\right) \in[k]$ for all $v^{\prime} \in V^{\prime}$. Let c be a coloring of G by taking $c(v)=c^{\prime}\left(v^{\prime}\right)$ for $v \in V$, thus c fulfills all edges of G^{\prime}.

Therefore, we complete the proof of Theorem 80. It implies that $\mathcal{B}(k, m)$-FULFILL k-Coloring is NP-complete for $k \geq 3$ and $1 \leq m \leq k^{2}-3$. Moreover, by using the same construction in Claim 81.2, we make a reduction from $\mathcal{B}(2,4-i)$-FULFILL k-Coloring to $\mathcal{B}\left(k, k^{2}-i\right)$-FUlfill k-Coloring for $i \in\{1,2\}$. Thus $\mathcal{B}\left(k, k^{2}-i\right)$ FULFILL k-COLORING is NP-complete when $i \in\{1,2\}$. We obtain the following.

Corollary 83. $\mathcal{B}(k, m)$-FULFILL k-COLORING is NP-complete for $k \geq 3$ and $m \in\left[k^{2}-1\right]$.

Chapter 7

Algorithms

In this chapter, we investigate algorithm techniques to solve Fulfill 2-Coloring and Domino. Namely, the first section present an approximation algorithm for FULFILL 2-Coloring. And in the next section, we give an FPT algorithm parameterized by treewidth for solving Max Domino, the optimization version of Domino and a similar one for MAX THRESHOLD CONFLICT COLORING which outputs the maximum threshold value such that there exists a coloring which fulfills all edges of G.

7.1 Approximation algorithm for Fulfill 2-Coloring using Semidefinite programming (SDP)

Observe that MAX CUT is a particular case of FULFILL 2-COLORING in which the conflict 2-graph of any edge $u v$ contains two edges $(u, 1)(v, 1)$ and $(u, 2)(v, 2)$. Goemans and Williamson showed a 0.87856 -approximation algorithm for MAX CUT based on SDP [GW95]. In this section, we show how this method can be adapted to construct an approximation algorithm for FUlfill 2-Coloring. We will prove the following result.

Theorem 84. Fulfill 2-Coloring is 0.79607 -approximable.
Proof. Let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be the set of vertices of a given a graph G. Let $y_{i} \in\{-1,1\}$ be a variable corresponding to v_{i}. Let y_{0} be an additional variable which determines if $y_{i}=1$ corresponds to color $c\left(v_{i}\right)=1$ or 2 . Precisely, $y_{i}=y_{0}$ if and only if v_{i} has color 1.

Let e be an edge of G. We shall define a formula $f(e)$ depending on M_{e} which is equal to 1 (resp. 0) if the edge is fulfilled (resp. conflict). M_{e} is one of the conflict 2-

CHAPTER 7. ALGORITHMS

graphs depicted in Figure 7.1: there are i and j such that $e=v_{i} v_{j}$ and v_{i} is the bottom vertex and v_{j} the top vertex.

Figure 7.1: The possible conflict 2-graphs (up to top-bottom symmetry). Blue is color 1 and red is color 2.

Observe that if $M_{e}=M_{0}$, then e is fulfilled, so we set $f(e)=1$, and if $M_{e}=M_{4}$, then e is never fulfilled, so we set $f(e)=0$.

$$
\begin{array}{ll}
f(e)=\frac{1-y_{0} y_{i}}{4}+\frac{1-y_{0} y_{j}}{4}+\frac{1-y_{i} y_{j}}{4} & \text { if } M_{e}=M_{1}^{1} ; \\
f(e)=\frac{1-y_{0} y_{i}}{4}+\frac{1+y_{0} y_{j}}{4}+\frac{1+y_{i} y_{j}}{4} \quad \text { if } M_{e}=M_{1}^{2} ; \\
f(e)=\frac{1+y_{0} y_{i}}{4}+\frac{1+y_{0} y_{j}}{4}+\frac{1-y_{i} y_{j}}{4} & \text { if } M_{e}=M_{1}^{3} ; \\
f(e)=\frac{1-y_{i} y_{j}}{2} \text { if } M_{e}=M_{2}^{1} ; & f(e)=\frac{1+y_{i} y_{j}}{2} \quad \text { if } M_{e}=M_{2}^{2} ; \\
f(e)=\frac{1-y_{0} y_{i}}{2} \text { if } M_{e}=M_{2}^{3} ; & f(e)=\frac{1+y_{0} y_{i}}{2} \quad \text { if } M_{e}=M_{2}^{4} ; \\
f(e)=\frac{1-y_{0} y_{i}-y_{0} y_{j}+y_{i} y_{j}}{4} \quad \text { if } M_{e}=M_{3}^{1} ; \\
f(e)=\frac{1+y_{0} y_{i}+y_{0} y_{j}+y_{i} y_{j}}{4} \quad \text { if } M_{e}=M_{3}^{2} ; \\
f(e)=\frac{1+y_{0} y_{i}-y_{0} y_{j}-y_{i} y_{j}}{4} \quad \text { if } M_{e}=M_{3}^{3} .
\end{array}
$$

Note that if $M_{e} \in\left\{M_{1}^{1}, M_{1}^{2}, M_{1}^{3}\right\}$, then the formulas are the ones for MAX 2-SAT (where $c(u)=1$ corresponds to u being true and $c(u)=2$ to u being false), if $M_{e} \in$ $\left\{M_{2}^{1}, M_{2}^{2}\right\}$, then the formulas are the ones for MAX CUT, and if $M_{e} \in\left\{M_{3}^{1}, M_{3}^{2}, M_{3}^{3}\right\}$, then the formulas are similar to those of MAx DICut [GW95].

We formulate our problem as an integer programming problem (P) which maximizes $S=\sum_{e \in E(G)} f(e)$ subject to $y_{i} \in\{-1,1\}$. Since in any case $f(e)$ is a nonnegative linear combination of $1-y_{i} y_{j}, 1+y_{i} y_{j}$ and $1-y_{i} y_{j}-y_{i} y_{k}+y_{j} y_{k}, 1+y_{i} y_{j}+y_{i} y_{k}+y_{j} y_{k}$, there are nonnegative coefficient $a_{i j}, b_{i j}, c_{i j k}$ and $d_{i j k}$ such that

$$
S=\sum_{0 \leq i, j, k \leq n} a_{i j}\left(1-y_{i} y_{j}\right)+b_{i j}\left(1+y_{i} y_{j}\right)+c_{i j k}\left(1-y_{i} y_{j}-y_{i} y_{k}+y_{j} y_{k}\right)+d_{i j k}\left(1+y_{i} y_{j}+y_{i} y_{k}+y_{j} y_{k}\right) .
$$

We can relax (P) by replacing every y_{i} to a unit vector $x_{i} \in S_{n}$, the n-dimentional unit sphere. This results in the problem $\left(\mathrm{P}^{\prime}\right)$ which maximizes
$S^{\prime}=\sum_{0 \leq i, j, k \leq n} a_{i j}\left(1-x_{i} x_{j}\right)+b_{i j}\left(1+x_{i} x_{j}\right)+c_{i j k}\left(1-x_{i} x_{j}-x_{i} x_{k}+x_{j} x_{k}\right)+d_{i j k}\left(1+x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}\right)$
subject to $x_{i} \in S_{n}$. This is a SDP problem with positive semidefinite matrix X with $X_{i j}=x_{i} x_{j}$. Using the method of Goemans and Williamson, we have the following algorithm.

1. Solve (P^{\prime})
2. Take a uniformly random vector r on the unit sphere S_{n}.
3. For $0 \leq i \leq n$, set $y_{i}=-1$ if $x_{i} r<0$, and $y_{i}=+1$ otherwise.
4. For $1 \leq i \leq n$, set $c\left(v_{i}\right)=1$ if $y_{i} y_{0}=1$ and $c\left(v_{i}\right)=2$ otherwise.
y_{i} may be seen as the sign of $x_{i} r$. By Step 3 and 4 , two vertices v_{i} and v_{j} have different colors if and only if $y_{i} \neq y_{j}$. This happens with probability $\frac{\theta_{i j}}{\pi}$ where $\theta_{i j}$ is the angle between x_{i}, x_{j}. Note that $x_{i} x_{j}=\cos \theta_{i j}$.

Let $S_{a}=\sum_{i, j} a_{i j}\left(1-y_{i} y_{j}\right), S_{b}=\sum_{i, j} b_{i j}\left(1+y_{i} y_{j}\right), S_{c}=\sum_{i, j, k} c_{i j k}\left(1-y_{i} y_{j}-y_{i} y_{k}+y_{j} y_{k}\right)$ and $S_{d}=\sum_{i, j, k} d_{i j k}\left(1+y_{i} y_{j}+y_{i} y_{k}+y_{j} y_{k}\right)$. We have $S=S_{a}+S_{b}+S_{c}+S_{d}$, so by linearity of the expectation $\mathbb{E}(S)=\mathbb{E}\left(S_{a}\right)+\mathbb{E}\left(S_{b}\right)+\mathbb{E}\left(S_{c}\right)+\mathbb{E}\left(S_{d}\right)$.

$$
\begin{aligned}
\mathbb{E}\left(S_{a}\right) & =2 \sum_{i, j} a_{i j} \mathbb{P}\left(y_{i} \neq y_{j}\right)=2 \sum_{i, j} a_{i j} \frac{\theta_{i j}}{\pi} \\
& \geq \alpha \sum_{i, j} a_{i j}\left(1-\cos \theta_{i j}\right)=\alpha \sum_{i, j} a_{i j}\left(1-x_{i} x_{j}\right)
\end{aligned}
$$

$$
\text { where } \alpha=\min _{0 \leq \theta \leq \pi} \frac{2}{\pi} \frac{\theta}{1-\cos \theta}>0.87856
$$

$$
\begin{aligned}
& \text { Similarly, } \mathbb{E}\left(S_{b}\right) \geq \alpha \sum_{i, j} b_{i j}\left(1+x_{i} x_{j}\right) \\
& \qquad \begin{aligned}
\mathbb{E}\left(S_{c}\right) & =4 \sum_{i, j, k} c_{i j k} \mathbb{P}\left(y_{i} \neq y_{j}=y_{k}\right) \\
& \geq 4 \sum_{i, j, k} c_{i j k} \frac{\theta_{i k}+\theta_{j k}-\theta_{j k}}{2 \pi} \\
& \geq \beta \sum_{i, j, k} c_{i j k}\left(1-x_{i} x_{j}-x_{i} x_{k}+x_{j} x_{k}\right)
\end{aligned}
\end{aligned}
$$

where $\beta=\min _{0 \leq \theta \leq \arccos (-1 / 3)} \frac{2}{\pi} \frac{2 \pi-3 \theta}{1+3 \cos \theta}>0.79607$ as shown in [GW95].
Similarly, $\mathbb{E}\left(S_{d}\right) \geq \beta \sum_{i, j, k} d_{i j k}\left(1+x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}\right)$.
Hence

$$
\begin{aligned}
\mathbb{E}(S) \geq & \alpha \sum_{i, j}\left(a_{i j}\left(1-x_{i} x_{j}\right)+b_{i j}\left(1+x_{i} x_{j}\right)\right) \\
& +\beta \sum_{i, j, k}\left(c_{i j k}\left(1-x_{i} x_{j}-x_{i} x_{k}+x_{j} x_{k}\right)+d_{i j k}\left(1+x_{i} x_{j}+x_{i} x_{k}+x_{j} x_{k}\right)\right) \\
\geq & \beta S^{\prime}
\end{aligned}
$$

CHAPTER 7. ALGORITHMS

But the x_{i} have been computed to give the maxi the optimization version ofmum value $\operatorname{OPT}\left(\mathrm{P}^{\prime}\right)$ of S^{\prime}, so $\mathbb{E}(S) \geq \beta \mathrm{OPT}\left(\mathrm{P}^{\prime}\right) \geq \beta \mathrm{OPT}(\mathrm{P})$. Therefore, the algorithm is a β-approximation of FULFILL 2-COLORING.

7.2 Polynomial-time algorithms for graphs with bounded treewidth

In this section, we give a polynomial-time algorithm that solves the maximization version of Domino, called Max Domino, when the treewidth of the graph is bounded. In a similar way, we can prove that for each fixed positive integer τ, there is a polynomialtime algorithm that solves Max Threshold Conflict Coloring, when the treewidth of the graph is at most τ. Given a graph G, integers k, q, and a set of weight functions w^{k}, Max Threshold Conflict Coloring consists in determining the maximum threshold λ for which there is a k-coloring that \mathcal{M}^{λ}-fulfills all edges of G.

Nice tree decomposition

A tree decomposition of a graph $G=(V, E)$ is a pair $\mathcal{T}=(T, \mathcal{X})$, where T is a tree and $\mathcal{X}=\left\{X_{x} \mid x \in V(T)\right\}$ is a family of subsets of V, called bags.

1. Every graph vertex $v \in V$ is in at least one bag;
2. For every edge $u v \in E$, there is at least one bag that contains both u and v;
3. For every graph vertex $v \in V$, the subgraph induced by the nodes whose bag contains v is a subtree T_{v} of T.
The width of a tree decomposition \mathcal{T} is $\tau(\mathcal{T})=\max _{B \in \mathcal{X}}|B|-1$, and the treewidth of a graph G, denoted by $\operatorname{tw}(G)$, is the minimum width among all the possible tree decompositions of G. Figure 7.2 depicts an example of a graph and a tree decomposition of width 2.

Figure 7.2: A graph and a tree decomposition of this graph.

In order to keep our algorithm and its analysis simple, we use a particular kind of tree decompositions called nice tree decompositions. A nice tree decomposition $\mathcal{T}=(T, \mathcal{X})$ is a tree decomposition such that T is rooted at a node r and satisfies the following conditions:

1. If $x \in V(T)$ is a leaf or the root, then $X_{x}=\emptyset$.

Figure 7.3: The nice tree decomposition of the tree graph depicted in Figure 7.2. The two leaves (leftmost nodes) and the root (rightmost node) are empty nodes, introduce nodes are blue, forget nodes are red and a join node is yellow.
2. Every other node x of T is one of the three following types:
a) x is an introduce node if x has a unique child y in T and $X_{x}=X_{y} \cup\{v\}$ for some $v \in V(G) \backslash X_{y}$. We say that v is introduced at x.
b) x is a join node if x has two children x_{1} and x_{2} in T and $X_{x}=X_{x_{1}}=X_{x_{2}}$.
c) x is a forget node if x has a unique child y in T and $X_{x}=X_{y} \backslash\{v\}$ for some $v \in X_{y}$. We say that v is forgotten at x.
Figure 7.3 describes an example of nice tree decomposition of the graph depicted in Figure 7.2.
Note that any graph vertex is forgotten only once (by Condition 3 of a tree decomposition) but may be introduced several times.

Lemma 85 ([CVFK $\left.\left.{ }^{+} 15\right]\right)$. Given a tree decomposition $\mathcal{T}=(T, \mathcal{X})$ of width at most τ of a graph G, one can compute in $O\left(\tau^{2} \max (|V(G)|,|V(T)|)\right)$ time a nice tree decomposition of width at most τ with at most $O(\tau .|V(G)|)$ nodes.

7.2.1 Max Domino

Theorem 86. Given a graph $G=(V, E)$ with treewidth at most τ, an integer $k \geq 1$, a set of weight functions w^{k}, the problem MAx DOMINO can be solved in time $O\left(\tau^{2} \cdot k^{\tau+2} \cdot|V|\right)$.

In order to prove this theorem, we need some definitions and observations. Let $\mathcal{T}=(T, \mathcal{X})$ be a nice tree decomposition of G and let r be the root of T. Let x be a node of T. We denote by T_{x} the subtree of T rooted at x and containing all the descendants of x. We construct the graph $G_{x}=\left(V_{x}, E_{x}\right)$ as follows. $V_{x}=\bigcup_{y \in T_{x}} X_{y}$ and E_{x} is constructed as follows.

1. If x is a leaf of T, then $E_{x}=\emptyset$.
2. If x is an introduce node with child y, then $E_{x}=E_{y}$.
3. If x is a forget node with child y, then $E_{x}=E_{y} \cup\left\{v w \in E(G) \mid w \in X_{x}\right\}$ with $\{v\}=X_{y} \backslash X_{x}$.
4. If x is a join node of T with children x_{1} and x_{2}, then $E_{x}=E_{x_{1}} \cup E_{x_{2}}$. Note that $V_{x}=V_{x_{1}} \cup V_{x_{2}}$.

CHAPTER 7. ALGORITHMS

By the construction of G_{x}, every edge of G_{x} has an endvertex that has been forgotten.

Given a node $x \in V(T)$ and a k-coloring $c_{x}: X_{x} \rightarrow[k]$, we define $S\left(x, c_{x}\right)$ as the value of an optimal solution for MAX DOMINO problem for the graph G_{x} with the additional constraint that $c(b)=c_{x}(b)$ for every $b \in X_{x}$. Formally,

$$
\begin{equation*}
S\left(x, c_{x}\right)=\max _{\substack{c: V_{x} \rightarrow[k] \\ \forall b \in X_{x}, c(b)=c_{x}(b)}} \sum_{u v \in E_{x}} w^{k}((u, c(u))(v, c(v))) . \tag{7.1}
\end{equation*}
$$

By convention we set $S\left(x, c_{x}\right)=0$ when x is a leaf. We are now able to precisely design our dynamic programming algorithm, called Max Domino Algorithm, that consists of computing $S\left(x, c_{x}\right)$ for every $x \in V(T)$ and every k-coloring c_{x} of X_{x}. Lemma 87 shows the formulas allowing such a computation.

Lemma 87. Let x be a node of T and c_{x} a k-coloring of X_{x}.
(a) If x is a join node with children x_{1} and x_{2}, then $S\left(x, c_{x}\right)=S\left(x_{1}, c_{x}\right)+S\left(x_{2}, c_{x}\right)$.
(b) If x is an introduce node with child y, then $S\left(x, c_{x}\right)=S\left(y, c_{y}\right)$, where c_{y} is the k coloring of X_{y} such that $c_{y}(v)=c_{x}(v)$ for all $v \in X_{y}$.
(c) If x is a forget node with child y, then

$$
S\left(x, c_{x}\right)=\max _{c_{y} \in \mathcal{C}\left(c_{x}\right)}\left\{S\left(y, c_{y}\right)+\sum_{\substack{w \in X_{x} \\ v w \in E_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right\}\right.
$$

where $\{v\}=X_{y} \backslash X_{x}$ and $\mathcal{C}\left(c_{x}\right)$ is the set of k-colorings of X_{y} such that $c_{y}(b)=c_{x}(b)$ for all $b \in X_{x}$.

Proof. (a) Suppose x is a join node with children x_{1} and x_{2}. We have $X_{x}=X_{x_{1}}=X_{x_{2}}$ and, by definition of a tree decomposition, any node in $V_{x_{1}} \backslash X_{x}$ (resp. $V_{x_{2}} \backslash X_{x}$) is not in $X_{x_{2}}$ (resp. $X_{x_{1}}$). Thus $S\left(x, c_{x}\right)=S\left(x_{1}, c_{x}\right)+S\left(x_{2}, c_{x}\right)$.
(b) Suppose x is an introduce node with child y. Then by definition, $E_{x}=E_{y}$. So clearly $S\left(x, c_{x}\right)=S\left(y, c_{y}\right)$.
(c) Suppose x is a forget node with child y. Let $\{v\}=X_{y} \backslash X_{x}$. By definition $G_{x}=G_{y} \cup\left\{v w \in E(G) \mid w \in X_{x}\right\}$. Let c^{*} be a k-coloring of V_{x} such that $S\left(x, c_{x}\right)=$ $\sum_{a b \in E_{x}} w^{k}\left(\left(a, c^{*}(a)\right)\left(b, c^{*}(b)\right)\right)$ and let c_{y} be the restriction of c^{*} to X_{y}. Note that $c_{y} \in$ $\mathcal{C}\left(c_{x}\right)$. Then

$$
\begin{aligned}
S\left(x, c_{x}\right) & =\sum_{a b \in E_{y}} w^{k}\left(\left(a, c^{*}(a)\right)\left(b, c^{*}(b)\right)\right)+\sum_{\substack{v w \in E(G) \\
w \in X_{x}}} w^{k}\left(\left(v, c^{*}(v)\right)\left(w, c^{*}(w)\right)\right) \\
& =\sum_{a b \in E_{y}} w^{k}\left(\left(a, c^{*}(a)\right)\left(b, c^{*}(b)\right)\right)+\sum_{\substack{v w \in E(G) \\
w \in X_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right)
\end{aligned}
$$

Since c^{*} maximizes this sum and the second term is the same for all coloring whose restriction to X_{y} is c_{y}, we get $S\left(x, c_{x}\right)=S\left(y, c_{y}\right)+\sum_{\substack{v w \in E(G) \\ w \in X_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right)$.
Therefore $S\left(x, c_{x}\right)=\max _{c_{y} \in \mathcal{C}\left(c_{x}\right)}\left\{S\left(y, c_{y}\right)+\sum_{\substack{w \in X_{x} \\ v w \in E_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right\}\right.$
Proof of Theorem 86. The algorithm is the following:

1. Compute a nice tree decomposition $\mathcal{T}=(T, \mathcal{X})$ of G with width at most τ.
2. Compute the value of $S\left(x, c_{x}\right)$ for all node x of T and all k-coloring c_{x} of X_{x}.
3. Return the maximum value of $S\left(r, c_{r}\right)$ over all k-colorings c_{r} of the bag X_{r} of the root r.

At Step 2, each value $S\left(x, c_{x}\right)$ is computed using the formulas of Lemma 87. If x is a leaf, a join node or an introduce node, then the value of $S\left(x, c_{x}\right)$ is obtained in constant time by the formula. If x is a forget node, then the algorithm takes the maximum over k values because $\left|\mathcal{C}\left(c_{x}\right)\right|=k$ (there are k possible colors for the vertex v of $\left.X_{y} \backslash X_{x}\right)$. The number of edge weights in the sum is upper-bounded by the size of X_{x}. Hence the value can be computed in $O(\tau \cdot k)$ time.
Now for each node x, there are at most $k^{\tau+1}$ possible k-colorings of X_{x}, so there are at most $k^{\tau+1} \cdot|V(T)|$ values $S\left(x, c_{x}\right)$, so at most $O\left(\tau \cdot k^{\tau+1} \cdot|V|\right)$ values by Lemma 85. As each of these values is computed in $O(\tau \cdot k)$ time, Step 2 runs in $O\left(\tau^{2} \cdot k^{\tau+2} \cdot|V|\right)$ time.

Clearly Step 1 and 3 can be done faster than Step 2, so the total running time of our algorithm is $O\left(\tau^{2} \cdot k^{\tau+2} \cdot|V|\right)$.

7.2.2 Max Threshold Conflict Coloring

In this section, we will prove the following theorem.
Theorem 88. Given a graph $G=(V, E)$ with treewidth at most τ, an integer $k \geq 1$, a set of weight functions w^{k}, the problem MAx Threshold Conflict Coloring can be solved in time $O\left(\tau^{2} \cdot k^{\tau+2} \cdot|V|\right)$.

Given a node $x \in V(T)$, a k-coloring $c_{x}: X_{x} \rightarrow[k]$, we define $\lambda\left(x, c_{x}\right)$ as the maximum threshold for MAX Threshold Conflict Coloring for graph G_{x} with the constraint that $c(b)=c_{x}(b)$ for all $b \in X_{x}$. Observe that, the objective of the problem is to maximize $\min _{u v \in E_{x}} w^{k}((u, c(u))(v, c(v)))$. Formally, we have

$$
\begin{equation*}
\lambda\left(x, c_{x}\right)=\max _{\substack{c: V_{x} \rightarrow[k] \\ \forall b \in X_{x}, c(b)=c_{x}(b)}} \min _{u v \in E_{x}} w^{k}((u, c(u))(v, c(v))) \tag{7.2}
\end{equation*}
$$

We set $\lambda\left(x, c_{x}\right)=+\infty$ if x is a leaf. We are now able to precisely design our dynamic programming algorithm, called Max Threshold Conflict Coloring

CHAPTER 7. ALGORITHMS

ALGORITHM, that consists of computing $\lambda\left(x, c_{x}\right)$ for every $x \in V(T)$ and every k coloring c_{x} of X_{x}. Lemma 89 shows the formulas allowing such a computation.

Lemma 89. Let x be a node of T and c_{x} a k-coloring of X_{x}.
(a) If x is a join node with children x_{1} and x_{2}, then $\lambda\left(x, c_{x}\right)=\min _{i \in\{1,2\}}\left\{\lambda\left(x_{i}, c_{x}\right)\right\}$.
(b) If x is an introduce node with child y, then $\lambda\left(x, c_{x}\right)=\lambda\left(y, c_{y}\right)$, where c_{y} is the k coloring of X_{y} such that $c_{y}(v)=c_{x}(v)$ for all $v \in X_{y}$.
(c) If x is a forget node with child y, then

$$
\lambda\left(x, c_{x}\right)=\max _{c_{y} \in \mathcal{C}\left(c_{x}\right)} \min \left\{\lambda\left(y, c_{y}\right), \min _{\substack{w \in X_{x} \\ v w \in E_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right\}\right.
$$

where $\{v\}=X_{y} \backslash X_{x}$ and $\mathcal{C}\left(c_{x}\right)$ is the set of k-colorings of X_{y} such that $c_{y}(b)=c_{x}(b)$ for all $b \in X_{x}$.

Proof. Similarly as in Lemma 87, (a) and (b) are easily obtained.
(c) For x a forget node with child y, let $v=X_{y} \backslash X_{x}$.

$$
\begin{aligned}
\lambda\left(x, c_{x}\right) & =\max _{\substack{c: V_{x} \rightarrow[k] \\
\forall b \in X_{x}, c(b)=c_{x}(b)}} \min _{u v \in E_{x}} w^{k}((u, c(u))(v, c(v))) \\
& =\max _{\substack{c: V_{x} \rightarrow[k] \\
\forall b \in X_{x}, c(b)=c_{x}(b)}} \min \left\{\min _{u v \in E_{y}} w^{k}((u, c(u))(v, c(v))), \min _{\substack{w \in X_{x} \\
v w \in E_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right)\right\} \\
& =\max _{c_{y} \in \mathcal{C}\left(c_{x}\right)} \min \left\{\lambda\left(y, c_{y}\right), \min _{\substack{w \in X_{x} \\
v w \in E_{x}}} w^{k}\left(\left(v, c_{y}(v)\right)\left(w, c_{y}(w)\right)\right\} .\right.
\end{aligned}
$$

We are now able to prove Theorem 88 (the proof is similar to that of Theorem 86).
Proof of Theorem 88. The algorithm is the following:

1. Compute a nice tree decomposition $\mathcal{T}=(T, \mathcal{X})$ of G with width at most τ.
2. Compute the value of $\lambda\left(x, c_{x}\right)$ for all node x of T and all k-coloring c_{x} of X_{x}.
3. Return the maximum value of $\lambda\left(r, c_{r}\right)$ over all k-colorings c_{r} of the bag X_{r} of the root r.

The running time is obtained by the same explanation of which in Theorem 86.

Chapter 8

Experiments

8.1 Geometric random instances of conflict coloring

As a test set, we consider instances associated with Voronoi diagrams in the plane. This geometric setting is especially interesting for several reasons: (i) the number of nodes (cells in the Voronoi diagram) can be tuned, and so is the number of colors (ii) the combinatorial structure of the Voronoi diagram can be used to infer local thresholds/constraints.

Given a set of 2D data points, recall that the Voronoi diagram (VD) is the partition of the plane into convex regions, such that all points in one region have a data point as nearest neighbor [BY98]. The 2D VD has a dual structure known as the Delaunay triangulation (DT), which (generically) consists of vertices, edges and triangles.

Consider the DT of a dataset P of N points drawn uniformly at random in a square of side $\sqrt{N} * 100$. This ensures that the average density of points is the same for any value of N, see Remark 91 below. Using this geometric setting, we define geometric instances of the conflict coloring problem as follows (Figure 8.1, Figure 8.2):

- (Nodes) The nodes of the graph correspond to the data set P of N points. More precisely, we retain as vertices those data points have a finite Voronoi region (there are N^{\prime} such vertices), or equivalently, which do not lie on the convex hull of the data points.
- (Conformations/colors) Consider a data point $p \in P$ and its Voronoi region $V_{r}(p)$ - the index r stands for reference. Let v be a Voronoi vertex of $V_{r}(p)$. (Note that all such points are finite since p is not on the convex hull.) We take a random perturbation of v in $\mathcal{D}(v, \delta) \backslash V_{r}(p)$ where $\mathcal{D}(v, \delta)$ is the disc centered at v and radius δ. The set of all such perturbed Voronoi vertices defines a random

CHAPTER 8. EXPERIMENTS

(perturbed) polygon for p. The set of all perturbed regions (polygons) for point p, denoted $C[p]$, defines its colors.

- (Conflict) Consider two Voronoi regions $V(p) \in C[p]$ and $V(q) \in C[q]$ of two neighboring points in DT. We compute the surface area of the intersection of these two regions, denoted $i a(V(p), V(q))$ for intersection area. The regions $V(p)$ and $V(q)$ are termed in conflict if $i a(V(p), V(q)) \geq \tau_{c}$, for some threshold τ_{c}.
Summarizing, a random instance is defined by the four tuple: $I=\left(P, \delta, C, \tau_{c}\right)$ with $P=\left\{p_{1}, \ldots, p_{N}\right\}$ a set of N points, δ the radius used to perturb the Voronoi vertices, c the number of colors/randomly perturbed Voronoi regions, and τ_{c} the threshold to define conflicts.

Figure 8.1: Random instance of color matching defined from perturbations of a 2D Voronoi diagram. (A) In a random 2D Voronoi diagram, points with a finite Voronoi cell (bold cells) a retained $-p_{1}, \ldots, p_{7}$ in the example; each such point corresponds to the vertices in the considered graph. The dotted line segments represent the Delaunay triangulation. (B) To create the colors associated with a node p of the graph, for each Voronoi vertex v of the Voronoi cell $V_{r}(p)$, a perturbed point of p is uniformly chosen at random in $\mathcal{D}(v, \delta) \backslash V_{r}(p)$.

Remark 90. (Implementation notes.) Recall that a polygon is termed simple if two of its edges do not intersect, except possibly at their endpoints. In this work, we use polygon representation provided by the Computational Geometry Algorithm Library

Figure 8.2: Instances corresponding to the construction of Fig. 8.1 upon varying the perturbation radius δ. Perturbed random polygons of the finite Voronoi regions (thick black polygons) given a data points of size $N=15$ after generating with perturbed radius $\delta=0.5$ (left), $\delta=1$ (middle) and $\delta=2$ (right) respectively and $c=5$.
[cga], see CGAL-doc. For the sake of simplicity, in sampling conformations, we retain simple polygons only.

8.2 Parameters monitored

A random instance and a threshold τ_{c} yield a set of conflicts. We wish to get insights on the relationship between the value of τ_{c} derived from local sufficient conditions, and the existence of global solutions.

Local constraints based on min intersection areas. We use the topological information contained in the DT to derive sufficient conditions on the existence of local solutions. More specifically, we consider three nested local levels:

- Edges. For an edge $p_{i} p_{j}$ of the DT, the reference regions $V_{r}\left(p_{i}\right)$ and $V_{r}\left(p_{j}\right)$ share a Voronoi edge, and the perturbed regions may overlap. For this edge, we compute the minimum intersection area $\tau_{2}\left(p_{i} p_{j}\right)$ of their perturbed regions, which ensures the existence of a local solution, this can be formalized as follows:

$$
\begin{equation*}
\tau_{2}\left(p_{i} p_{j}\right)=\min _{\substack{V_{i} \in C\left[p_{i}\right] \\ V_{j} \in C\left[p_{j}\right]}} i a\left(V_{i}, V_{j}\right) . \tag{8.1}
\end{equation*}
$$

The max value obtained over all edges is denoted $\tau_{2}^{\mathrm{Max}-\mathrm{Min}}$.

- Triangles. Consider a triangle $\left(p_{i} p_{j} p_{k}\right)$ (face) in DT. In a manner analogous to edges, we compute the minimum value $\tau_{3}\left(p_{i} p_{j} p_{k}\right)$ required have a local solution for this triple. Formally:

$$
\begin{equation*}
\tau_{3}\left(p_{i} p_{j} p_{k}\right)=\min _{\substack{V_{i} \in C\left[p_{i}\right] \\ V_{j} \in C\left[p_{j}\right] \\ V_{k} \in C\left[p_{k}\right]}} \max \left\{i a\left(V_{i}, V_{j}\right), i a\left(V_{i}, V_{k}\right), i a\left(V_{j}, V_{k}\right)\right\} . \tag{8.2}
\end{equation*}
$$

The max value obtained over all triangles is denoted $\tau_{3}^{\text {Max-Min }}$.

CHAPTER 8. EXPERIMENTS

- Stars. Finally, we consider the star centered at each data point p_{i}, that contains p_{i} and its set of neighbors $N\left(p_{i}\right)$ in the DT with finite dual Voronoi cell. We compute the minimum value $\tau_{*}\left(p_{i}\right)$ of the threshold, which ensures the existence of a local solution of the star. Formally:

$$
\begin{equation*}
\tau_{*}\left(p_{i}\right)=\min _{V_{\boldsymbol{i}} \in C\left[\boldsymbol{p}_{\boldsymbol{i}}\right]} \max _{p_{j} \in N\left(p_{i}\right)} \min _{V_{j} \in C\left[p_{j}\right]} i a\left(V_{i}, V_{j}\right) . \tag{8.3}
\end{equation*}
$$

The max value obtained over all stars is denoted $\tau_{*}^{\mathrm{Max}-\mathrm{Min}}$.
The values $\tau_{2}\left(p_{i} p_{j}\right), \tau_{3}\left(p_{i} p_{j} p_{k}\right)$ and $\tau_{*}\left(p_{i}\right)$ provide local necessary conditions. Observe that, in order to have a global solution for an instance, the threshold δ_{c} must be at least all these local values. We therefore define

$$
\begin{equation*}
\tau_{\text {loc. }}^{\text {Max-min }}=\max \left\{\tau_{2}^{\text {Max-Min }}, \tau_{3}^{\text {Max-Min }}, \tau_{*}^{\text {Max-Min }}\right\} \tag{8.4}
\end{equation*}
$$

Local constraints based on average intersection areas. In the previous equations, one uses the most stringent constraint for an edge / triangle / star. Consider the case where one increases the number of colors: the min values observed for an edge / triangle / star is expected to decrease. Which means in turn that in increasing the number of colors, fewer solutions are expected overall. We also consider a variant of the problem where the local thresholds are defined from mean intersection areas. Replace the (bold) min by mean in Equations 8.1, 8.2, 8.3 yield the following:

$$
\begin{equation*}
\tau_{\text {loc. }}^{\text {Max-Mean }}=\max \left\{\tau_{2}^{\text {Max-Mean }}, \tau_{3}^{\text {Max-Mean }}, \tau_{*}^{\text {Max-Mean }}\right\} \tag{8.5}
\end{equation*}
$$

Let m be some multiplicative factor - that will differ for $\tau_{c}^{\min }$ and $\tau_{c}^{\text {mean }}$. Using the previous quantities, we define global values of τ_{c} as follows:

$$
\left\{\begin{array}{l}
\tau_{c}^{\min }=m \times \tau_{\text {loc. }}^{\text {Max-Min }} \tag{8.6}\\
\tau_{c}^{\text {mean }}=m \times \tau_{\text {loc. }}^{\text {Max-Mean }}
\end{array}\right.
$$

Remark 91. In sampling data points in a square of side $\sqrt{N} * 100$, the expected area for each VD region is 10^{4}, the threshold values are in unit and we may mention also in brackets the fraction of a threshold value over the expected area, for example $\tau_{\text {loc. }}=$ 100 (1% of the expected area of a VD region).

8.3 Results

Setup. We consider two complementary analysis: the fraction of solutions in the entire search space, and the existence of at least one solution.

The following values are used in our experiments. Random instances are generated with parameters $N=15, \delta=1$.

For each instance, we compute the values of $\tau_{c}^{\min }$ and $\tau_{c}^{\text {mean }}$. We retain random instances whose $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{Min}} \leq 100$ (thus at most 1% of the expected area of a VD polygon). The number of colors used in the experiments varies in the set $C \in\{5,10,15,50,100\}$. The multiplicative factors vary $m \in m_{1}=\{1.01,1.5,2,3, \ldots, 10\}$ for $\tau_{c}^{\min }$ and $m \in$ $m_{2}=\{0.1,0.4,0.7, \ldots, 2.2,3,5\}$ for $\tau_{c}^{\text {mean }}$.

8.3.1 Conflict coloring is hard

Statistic. A combinatorial problem may display a phase transition [HW06], with instances moving from easy to hard when the parameters evolve. We study the hardness of conflict coloring in this respect, using the fraction of valid configurations $f_{c, m}$, namely fraction of valid configurations over the entire search space $\prod_{p_{i} \in P} C\left[p_{i}\right]$. We compute the value of $f_{c, m}$ (given the values of $\tau_{c}^{\min }$ and $\tau_{c}^{\text {mean }}$), by enumerating all these configurations. We repeat the calculation $R=100$, and make a violin plot of the values obtained ${ }^{1}$.

Results. The results show a marked difference for values of $\tau_{c}^{\text {min }}$ vs. $\tau_{c}^{\text {mean }}$ (Figure 8.3). For the former, values of $f_{1.01}$ and f_{2} are very small, and overall, the distribution of $f_{c, m}$ is shifted towards smaller values when the number of colors c increases. This is sound, as increasing the number of colors is expected to decrease the intersection area, whence the value of $\tau_{\text {loc }}^{\mathrm{Max}-\mathrm{Min}}$. On the other hand, $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{Mean}}$ being defined from average values, one expect its value to be less sensitive to the number of colors (Figure 8.7). This lesser sensitivity is obvious from the violin plots associated with $\tau_{c}^{\text {mean }}$, since these are much less sensitive to the number of colors.

8.3.2 Existence of one solution

Statistic. Our second analysis focuses on the existence of at least one solution, depending of our global thresholds $\tau_{c}^{\min }$ and $\tau_{c}^{\text {mean }}$ (Equation 8.6). We run our algorithm on $R=100$ instances, and define the success rate as $s_{c, m}=\#$ cases with one solution $/ R$.

Results. Statistics on $s_{c, m}$ complement those on $f_{c, m}$ Consider first the multiplicative factors m. It clearly appears that $s_{c, m}$ increases when increasing m, for both $\tau_{\text {loc. }}^{\text {Max-Mean }}$ and $\tau_{\text {loc. }}^{\text {Max-Min }}$ (Figure 8.4). Consider next the number of colors c. While the statistic $s_{c, m}$ hardly depends on the number of colors c for $\tau_{\text {loc. }}^{\text {Max-Mean }}$, it does so for $\tau_{\text {loc. }}^{\text {Max-Min }}$. Namely, in using $\tau_{\text {loc. }}^{\text {Max-Min }}, s_{c, m}$ decreases when increasing the number of colors. More precisely, our experiment shows that for $c \in\{5,10,15,50,100\}$, the average of $\tau_{\text {loc. }}^{\text {Max-mean }}$ is respectively around $(120,100,97,90,91)$ and $(38,40,11,1.3,0.05)$ for $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{min}}$. It explains the statistics of $s_{c, m}$ (Figure 8.4) and also $f_{c, m}$ (Figure 8.3).

[^0]
CHAPTER 8. EXPERIMENTS

Figure 8.3: Violin plots for the fraction $f_{c, m}$ of valid configurations in $\prod_{p_{i} \in P} C\left[p_{i}\right]$, for fixed values of the number of colors c and the multiplicative factors m in Equation 8.6. Each plot features three sub-plots corresponding to the number of colors $c \in\{5,10,15\}$; each sub-plot features violins where each of which is corresponding to a multiplicative value in m_{1} for for $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{Min}}$, or m_{2} for $\tau_{\text {loc }}^{\mathrm{Max}-\mathrm{Mean} \text {. Each violin plot }}$ corresponds to $R=100$ random instances. These experiments involve $N^{\prime}=8$ finite Voronoi regions.

Figure 8.4: Heat map representing the fraction $s_{c, m}$ of instances with at least one solution, for fixed values of the number of colors c (horizontal axis) and the multiplicative factor m (vertical axis). In the heat-map and the Tables: rows (resp. columns) correspond to values of c (resp. m). A total of $R=100$ random instances were used. White color infers value 0 .

8.4 Running times

We provide the running times of checking the existence of one solution for $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{min}}$ and $\tau_{\text {loc. }}^{\text {Max-mean }}$, see Figure 8.6. Clearly, the running augments when increasing c in general. Figure 8.6 also show that the time lines corresponding to values m in the

Figure 8.5: Heat map representing the fraction of conflict edges, averaged over all edges of the Delaunay triangulation. (Note that for a Delaunay edge, there are at most c^{2} conflict edges.) Total run of $R=100$. Pink color maps to values in $\left[0,10^{-3}\right)$.
left plot are quite similar. In the other hand, those in the right plot tend to 0 when m increases which is to say that instances get easier. Hence, the difficulty of an instance does not depend on m (exactly with m chosen in our experiment) for $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{min}}$ but it does for $\tau_{\text {loc. }}^{\text {Max-mean }}$.

On computational complexity point of view, CONFLICT COLORING is very hard which the running time for solving the problem is exponential to the size of the input. However, the statistics show that the running time does not explode for c big enough and N moderate. Indeed, they are less than 0.25 seconds for $N=15$ (with $N^{\prime}=8$) and $c \leq 100$ (Figure 8.6). Hence, it is capable to solve the problem Conflict Coloring in practice (with instances of tens of subunits).

Figure 8.6: Tables of average running times checking the existence of one solution for $\tau_{\text {loc. }}^{\text {Max-Min }}$ (left) and $\tau_{\text {loc. }}^{\text {Max-Mean }}$ (right) (in second). Total run of $R=100$.

CHAPTER 8. EXPERIMENTS

8.5 Values and thresholds: upper bounds, lower bounds, and solutions

From our experimental work, the statistics provide useful information about the relation between local constraints and global solutions.

Application-wise, an important question is the adjustment of lower and upper values for the thresholds τ_{c}, in order to get useful information. In the sequel, we explain how to infer such values via the choice of the multiplicative factor m, for the case of $\tau_{\text {loc. }}^{\text {Max-mean }}$ - that of $\tau_{\text {loc. }}^{\text {Max-min }}$ is similar.

The upper bound is generally application dependent. Large values of τ_{c} are such that most colorings are valid, yet, such large τ_{c} may be irrelevant application-wise. For example, transposing our Delaunay-Voronoi setting to molecular modeling, large intersection volumes between atomic representations (the equivalent of the intersection area used in this work) directly translate into prohibitive van der Waals interaction energies [?] (which explains interactions of subunits from physical aspects).

To choose a lower bound, one seeks the smallest value of m yielding the desired value of $s_{c, m}$. In our experiments, for $s_{c, m}=1, m \leq 0.7$ suffices whatever the value of c (the right plot of Figure 8.4). For $s_{c, m}=s_{0}(<1)$, relevant pairs (c, m) are obtained by seeking the smallest values of m and c such that $s_{c, m} \geq s_{0}$.

In addition, we provide Figure 8.5 which shows the density of conflict graphs corresponding to pairs (c, m). In fact, the statistics of density is opposite to the one of $s_{c, m}$ (i.e. for a fixed c, when m increases, a conflict graph is clearly sparser and it is the contrary for a fixed m and when c increases). Regarding pairs (c, m) whose $s_{c, m}=1$, the statistics show that the density is at most 47% when $(c=15, m=4)$ for $\tau_{\text {loc. }}^{\text {Max-min }}$ and at most 78% when $(c=100, m=0.1)$ for $\tau_{\text {loc. }}^{\text {Max-mean. }}$. And the density expects to increase when c increases (but m does not) for $\tau_{\text {loc. }}^{\mathrm{Max}-\mathrm{min}}$ but it keeps stable for $\tau_{\text {loc. }}^{\text {Max-mean }}$ when c increases. In this latter case, a high fraction of conflict edges does not jeopardize the existence of solutions, as evidenced e.g. by the pair ($c=100, m=$ 0.1) (fraction of conflict edges ~ 0.8 and $s_{100,0.1}=1$).

Figure 8.7: Distribution of intersection areas $i a(\cdot, \cdot)$ for Min (top row) and Mean values (bottom row). The three plots correspond to τ_{2}, τ_{3} and τ_{*}, respectively. A total of $R=100$ random instances were used. Note that y-axis presents the average number of edges, faces or stars of an instance; and x-axis infers values $\lfloor i a(\cdot, \cdot)\rfloor$.

Conclusion of Part II

In this part, we studied coloring problems based on Domino. We gave a complexity dichotomy for Fulfill Coloring, Conflict Coloring and their restriction to graph families $\mathcal{B}(k, m)$ of conflict k-graphs.

We have shown that the coloring problems are very hard in most graph families $\mathcal{B}(k, m)$. For a family \mathcal{B} such that \mathcal{B}-Fulfill- k-Coloring is NP-complete and \mathcal{B} -CONFLICT- k-COLORING is in P , we can exploit the latter to build an algorithm for solving the former. Assume that \mathcal{B} has the following property: each color of one vertex typically pairs up with only one color of the other, this yields the conflict graph which is a complete bipartite graph minus a matching. Let \mathcal{A} the set of graphs obtained from $K_{k, k}$ by deleting a matching. One can show that \mathcal{A}-Conflict Coloring is polynomial-time solvable. Hence, although \mathcal{A}-Fulfill k-Coloring is NP-complete, when the number q of fulfilled edges is fixed, the problem can be solved in polynomial time. Indeed, for each of the $O\left(m^{q}\right)$ possible subgraphs F of G, one can test in polynomial time if F admits a k-coloring with no conflict edges.

In Section 7.1, we gave a 0.79607 -approximation algorithm for FULFILL 2-COLORING. This approximation ratio is proved using an algorithm and analysis which are similar to the ones for MAx DICUT in [GW95]. Better SDP-based approximation algorithm for Max Dicut have been shown. The current best one has an approximation ratio of 0.863 [MM01]. It would be interesting to investigate whether their technique can be generalized for FULFILL 2-Coloring. It is natural to study approximation algorithms for large value of k, that is to approximate FULFILL k-Coloring.

Further, more than finding a solution, it would be interesting to enumerate all possible solutions. Theoretically, it is NP-hard, then takes exponential time, so it would be useful to find moderately exponential algorithms.

Problem 92. Is there a constant c_{k} such that all conflict k-colorings of a graph can be enumerated in $O\left(f(n) c_{k}^{n}\right)$ time where n is the number of vertices and f is a polynomial

CHAPTER 8. EXPERIMENTS

function?
For the path P_{n}, it is easy to find a conflict coloring of P_{n} and we can even count the number of conflict colorings of P_{n}, both can be done in linear time. If the number of solutions is $O\left(c^{n}\right)$, then we can enumerate all solutions of P_{n} in $O\left(n c^{n}\right)$. Therefore, it can be helpful to start this problem with some simple graphs G.

Regarding the experimental part, our geometric setup is associated with Voronoi diagrams in 2-dimension. The statistics give several relations between considered parameters. It would be similar if the setup is 3 -dimensional. Hence, our experiments allow us to estimate, in another setup, dependencies of parameters (which are used in our setup).

To structural biology, a central motivation for this work is the reconstruction of atomic models of macromolecular assemblies, based on (i) the interaction graph between subunits, and (ii) one set of conformations (colors) for each subunit. Two subunits in contact must exhibit a high steric complementarity, with in particular little overlap between atoms - that would otherwise, the interaction between two subunits becomes competitive and unbalanced. For this reason, the resulting conflict k-graphs are almost complete bipartite conflict k-graphs. We have noticed that in processing instances defined from the Delaunay-Voronoi setting, which mimics subunits with controlled overlap, a high fraction of conflict edges does not harm the existence of solutions. In our experimental settings, such a fraction can be at least 0.8 in average (i.e. 80% edges of the complete bipartite graph are in the conflict graph), and solutions are still found. It may be interesting to investigate further the frontier of density starting from which solutions cease to exist.

In practice, there are instances for which it is hard or even impossible to define the conflict graph of an edge. This is related to local properties of an input. For example, when all pairs of colors of an edge have similar weights which are much smaller compared to those of other edges, then choosing a global threshold may give complete conflict graphs for such edges. In this case, a possibility may be to use local thresholds, for example based on some local structural properties.

Moreover, an important issue in practice is to enumerate all sets of conformations for an assembly, because it presents different states of the assembly at times. Though this is very hard from a theoretical point of view, our experiments show that it is possible to enumerate all solutions for instances with moderate number of subunits.

Therefore, our further work would try to process cases with the order of tens of subunits, each exhibiting up to hundreds of conformations.

Bibliography

[AAR10] D. Angluin, J Aspnes, and L. Reyzin. Inferring social networks from outbreaks. In ALT '10, pages 104-118, 2010.
[ACCC15] D. Agarwal, C. Caillouet, D. Coudert, and F. Cazals. Unveiling Contacts within Macro-molecular assemblies by solving Minimum Weight Connectivity Inference Problems. Molecular and Cellular Proteomics, 14:22742284, 2015.
[AH77a] K. Appel and W. Haken. Every planar map is four colorable. Part I. Discharging. Illinois J. Math., 21:429-490, 1977.
[AH77b] K. Appel and W. Haken. Every planar map is four colorable. Part II. Reducibility. Illinois J. Math., 21:491-567, 1977.
[AH89] K. Appel and W. Haken. Every Planar Map Is Four Colorable. A.M.S. Contemp. Math., 98, 1989.
[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8:121-123, 1979.
$\left[\mathrm{BCM}^{+} 18\right]$ F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, and M. Zhong. Three-coloring and list three-coloring of graphs without induced paths on seven vertices. Combinatorica, 38(4), 2018.
[BCPS10] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Blocks of hypergraphs - applied to hypergraphs and outerplanarity. In IWOCA '10, pages 201-211, 2010.
[Ber57] C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences of the United States of America, 43:842-844, 1957.

BIBLIOGRAPHY
[Ber19] A. Bernshteyn. The Johansson-Molloy theorem for DP-coloring. Random Structures and Algorithms, 54(4):653-664, 2019.
[Bod93] H.L. Bodlaender. A linear time algorithm for finding treedecompositions of small treewidth. In Proceeding of STOC'1993, pages 226-234, 1993.
[Bro41] R.L Brooks. On coloring the nodes of a network. Mathematical Processing of the Cambridge Philosophical Society, 37:194-197, 1841.
[Bul17] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceeding of FOCS'2017, pages 319-330, 2017.
[BY98] J.-D. Boissonnat and M. Yvinec. Algorithmic geometry. Cambridge University Press, 1998. Translated by H. Brönnimann.
[CDS04] V. Conitzer, J. Derryberry, and T. Sandholm. Combinatorial auctions with structured item graphs. In Proceeding of $A A A I^{\prime} 2004$, pages 212-218, 2004.
[cga] CGAL, Computational Geometry Algorithms Library. http:/ /www.cgal.org.
$\left[\mathrm{CHM}^{+} 17\right]$ N. Cohen, F. Havet, D. Mazauric, I. Sau, and R. Watrigant. Complexity dichotomies for the minimum F-overlay problem. In Proceeding of IWOCA'2017), pages 116-127, 2017.
$\left[\mathrm{CHM}^{+} 19\right]$ N. Cohen, F. Havet, D. Mazauric, I. Sau, and R. Watrigant. Complexity dichotomies for the minimum F-overlay problem. Journal of Discrete Algorithms, 2019.
$\left[C K N^{+} 15\right]$ J. J. Chen, C. Komusiewicz, R. Niedermeier, M. Sorge, O. Suchý, and M. Weller. Polynomial-time data reduction for the subset interconnection design problem. SIAM J. Discrete Math., 29(1):1-25, 2015.
[CMTV07] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing scalable overlays for pub-sub with many topics. In PODC '07, 2007.
[Coo71] S.A. Cook. The complexity of theorem-proving procedures. Proceeding of STOC'1971, pages 151-158, 1971.
[CVFK ${ }^{+}$15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. 2015.
[Dai80] D. P. Dailey. Uniqueness of colorability and colorability of planar 4regular graphs are NP-complete. Discrete Mathematics, 30(3):289-293, 1980.
[DK95] D.-Z. Du and D. F. Kelley. On complexity of subset interconnection designs. Journal of Global Optimization, 6(2):193-205, 1995.
[DM88] D.-Z. Du and Z. Miller. Matroids and subset interconnection design. SIAM Journal on Discrete Mathematics, 1(4):416-424, 1988.
[DP17] Z. Dvořák and L. Postle. Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 . Journal of Combinatorial Theory, Series B, 129, 092017.
[Edw86] K Edwards. The complexity of colouring problems on dense graphs. Theor. Comput. Sci., 43, 1986.
[ES76] A. I. Even and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM J. Comput., 5:691-703, 1976.
[Fer99] A. Fersht. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. Freeman, 1999.
[FHK16] P. Fraigniaud, M. Heinrich, and A. Kosowski. Local conflict coloring. In Proceeding of FOCS'2016, pages 625-634, 102016.
[FHWE08] H. Fan, C. Hundt, Y.-L. Wu, and J. Ernst. Algorithms and implementation for interconnection graph problem. In Combinatorial Optimization and Applications, pages 201-210, 2008.
[FV98] T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and Constraint Satisfaction: A study through datalog and group theory. SIAM Journal on Computing, 28(1):57-104, 1998.
[FW08] H. Fan and Y.-L. Wu. Interconnection graph problem. In Proceedings of FCS'2008, pages 51-55, 2008.
[GJPS17] P. Golovach, M. Johnson, D. Paulusma, and Jiangli Song. A survey on the computational complexity of colouring graphs with forbidden subgraphs. J. Graph Theory, 84(4):331-363, 2017.
[GJS76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NPcomplete graph problems. Theoretical Computer Science, 1(3):237-267, 1976.
[GW95] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115-1145, 1995.

BIBLIOGRAPHY

[Had75] F.O. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput., 4:221-225, 1975.
[Hal35] P. Hall. On representatives of subsets. J. London Math. Soc., 10:26-30, 1935.
[Hea90] P. J. Heawood. Map colour theorem. Quart. J. Pure App1. Math., 24:332338, 1890.
[HHI^{+}12] J. Hosoda, J. Hromkovic, T. Izumi, H. Ono, M. Steinová, and K. Wada. On the approximability and hardness of minimum topic connected overlay and its special instances. Theor. Comput. Sci., 429:144-154, 2012.
[HHKL90] K. Heinrich, P. Hell, D. G. Kirkpatrick, and G. Liu. A simple existence criterion for (g < f)- factors. Discrete Mathematics, 85(3):313-317, 1990.
[HK73] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2:225-231, 1973.
[HKL $\left.{ }^{+} 10\right]$ T.-C. Hoàng, M. Kamiński, V. Lozin, J. Sawada, and X. Shu. Deciding kcolorability of p5-free graphs in polynomial time. Algorithmica, 57, 2010.
[HMNW20] F. Havet, D. Mazauric, V.-H. Nguyen, and R. Watrigant. Overlaying a hypergraph with a graph with bounded maximum degree. In Proceedings of CALDAM'2020, volume 12016 of LNCS, pages 403-414, 2020.
[HN90] Pavol H. and Jaroslav N. On the complexity of H-coloring. Journal of Combinatorial Theory, Series B, 48(1):92-110, 1990.
[Hol81] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718-720, 1981.
[HS78] E. Horowitz and S. Sahni. Fundamentals of computer algorithms. Computer Science Press, pages 151-158, 1978.
[HW06] A. K Hartmann and M. Weigt. Phase transitions in combinatorial optimization problems: basics, algorithms and statistical mechanics. John Wiley \& Sons, 2006.
[JP87] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity of drawing Venn diagrams. Journal of Graph Theory, 11(3):309-325, 1987.
[JRL08] N. Jussien, G. Rochart, and X. Lorca. Choco: an open source java constraint programming library. In Proceeding of OSSICP'08, pages 1-10, 2008.
[Jun13] D. Jungnickel. Graphs, Networks and Algorithms, volume 5 of Algorithms and Computation in Mathematics. Springer-Verlag Berlin Heidelberg, 2013.
[Kar72] R. M. Karp. Reducibility among Combinatorial Problems. Springer US, 1972.
[KKW15] J. Köbler, S. Kuhnert, and O. Watanabe. Interval graph representation with given interval and intersection lengths. J. Discrete Algorithms, 34:108-117, 2015.
[KO19] S.-J. Kim and K. Ozeki. A note on a brooks' type theorem for DP-coloring. Journal of Graph Theory, 91(2):148-161, 2019.
[KS03] E. Korach and M. Stern. The clustering matroid and the optimal clustering tree. Mathematical Programming, 98(1):385-414, 2003.
[Lat94] R.H. Lathrop. The protein threading problem with sequence amino acid interaction preferences is NP- complete. Protein Engineering, 7:1059-1068, 1994.
[Lic82] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11:329-343, 1982.
[LTSW09] K. Lasker, M. Topf, A. Sali, and H. Wolfson. Inferential optimization for simultaneous fitting of multiple components into a cryoem map of their assembly. Journal of molecular biology, 388(1):180-194, 2009.
[MM01] S. Matuura and T. Matsui. 0.863-approximation algorithm for MAX DICUT. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, pages 138-146, 2001.
[OR11] M. Onus and A. Richa. Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans. Netw., 19(5):1331-1343, 2011.
[Rob03] S. Robinson. Are medical students meeting their (best possible) match? SIAM News, 36, 2003.
[RSST96] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently fourcoloring planar graphs. In Proceedings of STOC'2016, 1996.
[RSYG19] L. Runrun, L. Sarah, Y. Yuxue, and Y. Gexin. DP-3-coloring of some planar graphs. Discrete Mathematics, 342(1):178-189, 2019.
[Sch03] A. Schrijver. Combinatorial optimization. Polyhedra and efficiency. Vol. A, volume 24 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 2003.
[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1:146-160, 1972.

BIBLIOGRAPHY
[Tov84] A. C. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8(1):85-89, 1984.
[XJB05] J. Xu, F. Jiao, and B. Berger. A tree-decomposition approach to protein structure prediction. In Proc IEEE Comput Syst Bioinform Conf, 2005.
[XLKX03] J. Xu, M. Li, D. Kim, and Y. Xu. Raptor: optimal protein threading by linear programming. Journal of Bioinformatics and Computational Biology, 1:95-117, 2003.
[Zhu17] D. Zhuk. A proof of the CSP dichotomy conjecture. In Proceeding of FOCS'2017, pages 331-342, 2017.

[^0]: ${ }^{1}$ To run the algorithm, we use Choco-a CSP solver see [JRL08].

