
HAL Id: hal-03510747
https://hal.inria.fr/hal-03510747

Submitted on 8 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Combining Reinforcement Learning and Monte
Carlo for Dynamic Virtual Network Embedding
Ghina Dandachi, Yassine Hadjadj-Aoul, Abdelkader Outtagarts

To cite this version:
Ghina Dandachi, Yassine Hadjadj-Aoul, Abdelkader Outtagarts. On Combining Reinforcement Learn-
ing and Monte Carlo for Dynamic Virtual Network Embedding. LCN 2021 - 46th IEEE Conference
on Local Computer Networks, Oct 2021, Edmonton, Canada. IEEE, pp.1-3, 2021. �hal-03510747�

https://hal.inria.fr/hal-03510747
https://hal.archives-ouvertes.fr


On Combining Reinforcement Learning and Monte
Carlo for Dynamic Virtual Network Embedding

Ghina Dandachi1, Yassine Hadjadj-Aoul1, and Abdelkader Outtagarts2

1Inria, Univ Rennes, CNRS, IRISA, France
2Nokia-Bell Labs, France

Abstract—Network slicing is one of the key building blocks in
the evolution towards “zero touch networks”. Indeed, this will
allow 5G and beyond 5G networks to deploy services dynamically,
on the same substrate network, regardless of their constraints. In
this demo, we introduced a platform for dynamic virtual network
embedding, a problem class known to be NP-hard. The proposed
solution is based on a combination of a deep reinforcement
learning strategy and a Monte Carlo (MC) approach. The idea
here is to learn to generate, using a Deep Q-Network (DQN),
a distribution of the placement solution, on which a MC-based
search technique is applied. This makes the agent’s exploration
of the solution space more efficient.

Index Terms—Virtual network embedding, Deep Q-Network,
Control theory.

I. INTRODUCTION

Networks’ operators (NOs) have been focusing for several
years on evolving their networks to accommodate the current
and future services, with reducing operational and investment
costs. Among these evolutions, the virtualization of network
functions (VNFs) [1], and more generally services, is the
one that has brought the most in-depth changes for network
management. The concept of Network Slicing (NS) has been
introduced in 5G to support a wide range of services within
the same substrate network.

The problem of network slicing refers to the placement of
constrained services [2]. This research problem generalizes
the bin-packing problem, which has been extensively studied
in the literature and well known to be an NP-hard problem.
Indeed, service placement, as envisioned by 5G, implies not
only the placement of nodes, representing the components of
the service, but also links representing the network constraints
existing between these different components (i.e., services
in the form of a graph, namely Virtual Network Function
Forwarding Graph (VNF-FG)).

Several approaches have been proposed in the literature to
solve the service placement problem [3]. In [4], the authors
proposed to combine a Deep Reinforcement Learning (DRL)
strategy with a heuristic, to make the placement safer at the
cost, however, of effectiveness. In [5], a Monte Carlo Tree
Search (MCTS) strategy is proposed. It allows to find a sub-
optimal solution to the placement problem, whereas the cost of
a new research remains substantial since there is no learning.
More recently, the authors, in [6], proposed to combine Graph
Neural Networks with DRL to efficiently solve the service
embedding problem.

Unlike the majority of existing works, we present, in this
demo paper, a demonstrator of a DRL technique that considers
dynamic requests of network slices with dynamic requirements
and resource requests. The proposed solution leverages on
DQN [7] with Monte Carlo (MC) search to learn the best
placement solutions. The combination of these two approaches
increases the exploration of the solutions’ space. The proposed
demo shows that our proposal improves the performance of
heuristics such as a First-Fit, but also to improve the approach
based on a pure MC strategy.

The rest of this paper is structured as follows. In Section
II, we introduce the architecture of the proposed solution. On
Section III, we introduce the experimentation settings and the
obtained results. Section IV concludes the paper.

II. SYSTEM ARCHITECTURE

The proposed simulator demo is implemented in Python,
using the PyTorch library. Figure 2 shows the GUI of the
demonstrator, the user can choose the simulation time, the
strategy, and the number of MC iterations. The problem resides
in the ability of the controller to learn while having dynamic
arrival of slices’ requests, contrarily to most existing work,
considering a fixed setting for slices’ requests.

A. Architecture description

The architecture of our demo is presented in Figure 1.
The Simulator loads the substrate information and receives
dynamic virtual network requests (VNRs). The DRL agent
extracts the features from the system state defined by the
substrate available resources and VNR requirements. The MC
strategy allows the explorer to generate several node-by-node
DQN-based distributions for the VNR placement. The explorer
selects a feasible placement with the highest revenue to the
cost (r2c) and checks the nodes placement feasibility as well
as edges connecting the VNR nodes. Then, it updates the
substrate information with the new VNR placement. The DQN
agent writes the placement solution to the batch memory for
future learning.

1) System State:
• Substrate state: Defined in the file Substratesim.py to

create the substrate instance and update its available
resources.

• VNR state: Defined in vnrsim.py to create an instance of
an arriving VNR with its requirements.



Fig. 1. Demo architecture

2) DRL agent: Defined in the file DQN.py.
• Two three-layers Neural Network (NN) extracts the sys-

tem state features, for substrate and VNR, respectively.
• A DQN agent uses the state features in the three layers

NN to provide the explorer with distributions node by
node.

• Once the explorer generates a VNF-FG, the DRL agent
updates the memory of the model for future learning.

3) Explorer: Defined in the file explorer.py
• Explorer nodebynode:

- receives the new VNR, deployed VNRs and, the
substrate.

- extracts the system state using the get state func-
tion.

- uses the DQN MCselect action function for nodes
selection, verifies the nodes and edge mapping, then
saves the VNF-FG chosen for this request, and
updates the substrate.

- sends information for the DQN agent to save it in
the batch memory and learn from previous actions.

• get state: Extract features from both substrate and VNRs
in the form of Tensors and sends them to the DQN agent

• DQN MCselect action: This is the main function as the
VNF-FG selection is decided in this step. Depending on
the number of MC chosen, at each iteration, this function:

– extracts substrate nodes selection probability distri-
bution using DQN

– selects a substrate node for the current VNR node
– obtain a VNF-FG and calculates its corresponding

r2c value
– keeps track of all the states visited during the selected

path for eventual usage by the DQN agent if the path
is chosen to be the best path

• selects the VNF-FG with the highest r2c
4) Parameters: The Simulator parameters are defined in

the file parameters.json and used during runtime. The main
constants are:

• The simulation time, i.e, the number of episodes
(SIM TIME).

• The explorer strategy: First-Fit (FF), MC, or DQN (im-
plicitly with MC if the number of iterations Niter > 1).

• The number of MC iterations.
• The mean time between arrival for two VNR requests

(MTBA).
• The minimum and maximum requested CPU

(vcpu range).
• The minimum and maximum request bandwidth

(vbw range).
• The maximum number of VNFs in a VNR (vnfs range).
• The minimum and maximum VNR duration

(vnr duration min, vnr duration max).

III. EXPERIMENTS

All the modules of our demonstrator have been installed on
a laptop. We consider for this demo the placement of VNRs
using the following strategies: the First-Fit heuristic, the MC
heuristic algorithm and the proposed DQN with MC solution.
The First-Fit heuristic consists in placing the virtual nodes in
the first available physical node, and then placing the paths
using the Dijkstra algorithm.

To assess the performance of the proposed approach, we
consider a network topology with 5 nodes and 4 full-duplex
links. We considered the placement of dynamic requests of
VNF-FGs, comprising between 3 VNFs each. For the physical
nodes, we considered CPU in the interval [20, 50]. For physical
links, we have considered bandwidth in the interval [20, 50].
For the virtual nodes, we considered CPU resources in the
interval [5, 10]. For the virtual links we considered bandwidth
in the interval [5, 10].

Figure 3 shows the results obtained with different strategies:
First-Fit (FF), DQN without MC (DQN), MC, and DQN with
MC (DQN + MC) for different number of iterations (2 and 4
iterations). The obtained results show the revenue to the cost
observed by the controller for a VNR placement defined as the
amount of resources requested by a VNR divided by the actual
amount of resources needed to achieve a VNR placement. We
observe that DQN without MC achieves higher r2c than FF.
By adding MC iterations to the path selection, the controller
is able to reach higher values of r2c.



Fig. 2. Demo GUI

5 10 15 20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mean Time Between arrival (s)

R
2C

FF
DQN
MC N=2
DQN + MC N=2
MC N=4
DQN + MC N=4

Fig. 3. Comparison of the r2c as a function of the Mean Time Between
arrival for the three approaches FirstFit, Monte Carlo and DQN.

IV. CONCLUSION

Service placement is an important technology required by
5G networks, especially for Intent based orchestration that
considers dynamic patterns as well as autonomous service
placement and control. In this demo, we propose a dynamic
slice placement tool for network slices based on deep rein-
forcement learning. It builds over the previously placed slicing,
and offers a long term gain when compared to the baseline
strategy (First-Fit). It also guarantees a minimum performance
similar to that offered by First-Fit. In the future, we are
planning to train our agent on a larger substrate network
topology and larger VNRs. We also intend to extend our
model definition and training algorithm to support the energy
status of substrate nodes in order to detect nodes failure during
embedding.

REFERENCES

[1] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive
survey of network function virtualization,” Computer Networks, vol. 133,
pp. 212–262, 2018.

[2] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore,
N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and
H. Bakker, “Network slicing to enable scalability and flexibility in 5g
mobile networks,” IEEE Communications Magazine, vol. 55, no. 5, pp.
72–79, 2017.

[3] S. Redana, Bulakci, C. Mannweiler, L. Gallo, A. Kousaridas,
D. Navrátil, A. Tzanakaki, J. Gutiérrez, H. Karl, P. Hasselmeyer,
A. Gavras, S. Parker, and E. Mutafungwa, “5G PPP Architecture
Working Group - View on 5G Architecture, Version 3.0,” Jun. 2019.
[Online]. Available: https://doi.org/10.5281/zenodo.3265031

[4] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318–1331, 2019.

[5] S. Haeri and L. Trajković, “Virtual network embedding via monte carlo
tree search,” IEEE Transactions on Cybernetics, vol. 48, no. 2, pp. 510–
521, 2018.

[6] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network embed-
ding: A deep reinforcement learning approach with graph convolutional
networks,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 6, pp. 1040–1057, 2020.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” nature, vol.
518, no. 7540, pp. 529–533, 2015.


