
HAL Id: hal-03510898
https://hal.inria.fr/hal-03510898

Submitted on 4 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unfolding ML datatype declarations without loops
Nicolas Chataing, Gabriel Scherer

To cite this version:
Nicolas Chataing, Gabriel Scherer. Unfolding ML datatype declarations without loops. ML Family
Workshop, Aug 2021, online, South Korea. �hal-03510898�

https://hal.inria.fr/hal-03510898
https://hal.archives-ouvertes.fr

Unfolding ML datatype declarations without loops
Nicolas Chataing, Gabriel Scherer

1 Introduction
Unboxing a single-constructor datatype. ML-family lan-

guages support both type abbreviations, which provide a

synonym for an existing type, and datatypes (sums/variants

and records) that provide a new type (distinct from previous

types) specified by its constructors or fields.

Since 4.06 (June 2016), OCaml additionally supports un-
boxed datatypes, which are single-constructor variants or

single-field records that behave like datatypes during type-

checking (they are distinct types) and abbreviations at run-

time – constructor application or pattern-matching are erased.

type an_abbrev = int list

type a_datatype = Short of int | Long of int list

type an_unboxed_type = Short of int [@@unboxed]

(SML uses an explicit datatype keyword for datatype dec-

larations, and Haskell uses data for datatypes, type for ab-
breviations and newtype for unboxed datatypes.)

Unboxing individual constructors within a datatype.
In ocaml/RFCs#14 Jeremy Yallop proposed to allow unboxing

a constructor even if the datatype has other constructors:

type partial_unboxing =

| Short of int [@unboxed]

| Long of int list

This example makes sense because, even if the Short con-

structor is elided at runtime, the representation is unambigu-

ous: primitive integers int can always be distinguished from

blocks like Long of int list.
For example, the pattern-matching clauses

| Short n -> ...

| Long li -> ...

would previously test whether the head constructor of the

value is Short or Long. With the unboxed annotation, Short
is not present at runtime, but we can instead check whether

we have a primitive integer or Long.
In the general case, unboxing a constructor could be al-

lowed whenever the representation of its parameter is dis-

joint/distinguishable from the representation of all the other

values of the datatype. If this disjointness condition does

not hold, we will not be able to implement pattern-matching

on this datatype; the unboxing declaration must be rejected

with an error.

Our work. We are working on an implementation of this

proposal to allow individual constructor unboxing. In par-

ticular, to determine whether unboxing a given constructor

should be allowed or rejected, we compute the head shape

of type expressions and type declarations, that is some ab-

stract over-approximation of the set of possible values used

to check this disjointness condition.

Unfolding without loops? To compute the head shape

of a type expression int t, we need to inspect/unfold the

definition of the datatype 'a t, which in turn requires com-

puting the head shape of the parameters of its unboxed con-

structors. For example, with

type 'a t =

| Foo of foo [@unboxed]

| Bar of bar [@unboxed]

the head shape is the union of the shapes of foo and bar,
whose computation may in turn require following (data)type

definitions.

In presence of mutually-recursive datatypes, repeated un-

folding may lead to non-termination. For a pathological ex-

ample:

type loop = Loop of loop [@unboxed]

How can we compute type properties (in our case, head

shape) by repeatedly unfolding datatype definitions without

risking non-termination on cyclic definitions? This question

is the topic of the present workshop submission.

Head tags and head shapes. We define the head tag ℎ of

a value to be either some (non-unboxed) datatype construc-

tor 𝐶 occurring at the head of the value, or a datatype con-

structor among a fixed set of primitive constructors t̂ with
distinguished representations (înt, �string, �array, �tuple,�function, etc.), or the worst approximation ⊤ which con-

tains all possible values. We want to compute a head shape
𝐻 for any type expression 𝜏 , which is just a list of possible

head approximations.

ℎ := 𝐶 | t̂ | ⊤ 𝐻 := ∅ | 𝐻,ℎ

If we knowwhen two head tags have disjoint low-level repre-

sentations, and we know how to compute the head shape of

a type expression, we can easily check the disjointness con-

dition for unboxed constructors 𝐶unboxed of 𝜏 : the unboxing
annotation is valid if the tags in the head shape are pairwise

disjoint.

In this document we do not discuss the first question (what

is the low-level representation of each head tag and which

definition of disjointness we use), which are low-level details

related to the OCaml implementation. We only discuss how

to compute those implementation-independent head shapes.

https://github.com/ocaml/RFCs/pull/14

Nicolas Chataing, Gabriel Scherer

2 Type unfolding with dynamic cycle
detection

Static or dynamic cycle detection? The problem of cy-

cles also occur with type synonyms/abbreviations. OCaml

will forbid cyclic type abbreviations such as

type 'a foo = ('a * 'a bar) and bar = 'a foo

This check is defined as a static check of well-formedness:

the graph of dependencies from one abbreviation to another

(the definition of foo mentions bar) must be acylic. Note

that cyclic mentions in datatypes are allowed, for example

this is valid:

type 'a foo = Cons of ('a * 'a bar)

and bar = 'a foo

We could follow the same approach, by considering that,

unlike constructors, unboxed constructors create dependen-

cies in this sense: a cycle of reference must go through at

least one boxed constructor to be accepted. However, we

found that this approach is too restrictive in practice. For

example:

type 'a thunk = unit -> 'a

type 'a stream =

| Next of ('a * 'a stream) thunk [@unboxed]

| End

The static displine would consider that 'a stream depends

on itself (in an unboxed position) due to the occurrence of

'a stream within an argument of thunk. But if we were to
unfold the definition of thunk, we would notice that this re-

cursive occurrence is under a function type, whose primitive

tag
�function does not depend on its input or output types.

The dynamic detection mechanism we propose is more

fine-grained than the static check, and in particular accepts

this declaration.

Naive dynamic cycle detection. A natural idea when

performing a series of unfoldings to compute a head shape is

to remember the set of type definitions that we have already

expanded. If we encounter a type definiton that is already

in this visited set, we are at risk of circularity and abort the

computation, rejecting the definition.

However, this approach is disappointing in practice. Con-

sider for example:

type 'a id = Id of 'a [@unboxed]

type t = Foo of int id id [@unboxed]

Computing the head shape of t would unfold id once, then

in turn compute the shape of int id, and abort as id was
already visited.

Call stacks. The two occurrences of id here are distinct

and both occur in t. The second occurrence should thus

count as a (second) dependency of t on id, not a use of id
within itself!

Our solution is to track, for each type subexpression of

our input, the definition in which it occurred (int id occurs
in t). More generally, we track the path of unfoldings that

led to this definition, which we call a call stack for this type

expression. In this example, computing the shape of t (in

the empty call stack) amounts to computing the shape of

int id id in the call stack [t], remembering that these

expressions come from the definition t, which we can write

((int[t] id)[t] id)[t]. Unfolding this definition brings

us to the definition of id, so we now consider the expres-

sion (int[t] id)[t] (the parameter of the first id) in the

call stack [t, id]. To compute this shape, we unfold the

remaining id, but from (int[t] id)[t] we know that it

comes from the call stack [t]; unfolding id again in this

stack is not cyclic, we get int[t], and terminate with the

primitive tag înt.
Note: the name call stack comes from viewing datatype

definitions as (mutually recursive) functions, and the prob-

lem of head shape computation as the evaluation of a call

to one of these recursive functions. Our call stacks really

correspond call stacks for those functions, in the setting of

call-by-name evaluation where the argument of a function

is not computed until needed — but its call stack comes from

its application site.

3 Our algorithm
Let us define a toy grammar for types 𝜏 and datatype decla-

rations 𝑑 .

𝜏 := 𝛼 | (𝜏𝑖)𝑖 𝑡
𝑑 := type (𝛼𝑖)𝑖 𝑡 =

(
𝐶 𝑗 of 𝜏 𝑗

) 𝑗 (
𝐶unboxed
𝑘

of 𝜏 ′
𝑘

)𝑘
Each declaration comes with a family of (boxed) constructors

and a family of unboxed constructors, either of which could

be empty.

Our algorithm tracks the call stack in which type subex-

pressions appear. We represent this with annotated types
(𝜏 @ 𝑙), which contain a call stack 𝑙 at the top, and also on

each subexpression.

𝜏 @ 𝑙 := 𝛼 @ 𝑙 |
(
(𝜏𝑖 @ 𝑙𝑖)𝑖 𝑡

)
@ 𝑙

𝑙 := ∅ | 𝑙, 𝑡

Head shape of a type declaration 𝑑 .
Typedecl(
(𝛼𝑖 @ ∅)𝑖 𝑡

)
@ ∅⇒ 𝑅(

type (𝛼𝑖)𝑖 𝑡 = . . .
)
⇒ 𝑅

To compute the head shape of a type declaration type (𝛼𝑖)𝑖𝑡= . . .

we simply compute the head shape of the type expression

(𝛼𝑖)𝑖 𝑡 , with all type subexpressions annotated with the

empty call stack ∅. This type declaration will be rejected

by our implementation exactly if the computation returns

Cycle, or if two head tags with non-disjoint representations

are found in the result.

Unfolding ML datatype declarations without loops

Head shape of an annotated type expression 𝜏 @ 𝑙 .
We can now define our algorithm as a judgment 𝜏 @ 𝑙 ⇒ 𝑅,

which takes an annotated type expression 𝜏 @ 𝑙 and returns

a result 𝑅, either a head shape or a Cycle error.

𝑅 := 𝐻 | Cycle
Var∏

𝛼𝑙 ⇒ ⊤

Cycle

𝑡 ∈ 𝑙(
(𝛼𝑖 @ 𝑙𝑖)𝑖 𝑡

)
@ 𝑙 ⇒ Cycle

Prim

(𝑡, t̂) ∈ T̂(
(𝛼𝑖 @ 𝑙𝑖)𝑖 𝑡

)
@ 𝑙 ⇒ t̂

Type

𝑡 ∉ 𝑙 type (𝛼𝑖)𝑖 𝑡 = (𝐶 𝑗 of _) 𝑗 (𝐶unboxed
𝑘

of 𝜏 ′
𝑘
)𝑘

∀𝑘, 𝜏 ′
𝑘
[𝛼𝑖 ← 𝜏𝑖 @ 𝑙𝑖]@𝑙,𝑡 ⇒ 𝑅𝑘(

(𝜏𝑖 @ 𝑙𝑖)𝑖 𝑡
)
@ 𝑙 ⇒ merge

(
(𝐶 𝑗) 𝑗 , (𝑅𝑘)𝑘

)
When computing the shape of the datatype (𝛼𝑖)𝑖 𝑡 , the

datatype parameters 𝛼𝑖 could get instantiated with types of

any shape. Our rule Var thus gives those type variables the

shape ⊤.
Before unfolding a type constructor, we check that it is

not already in our call stack. If it is, the rule Cycle aborts

with a Cycle result.
We assume a relation T̂ from certain datatype constructors

to primitive shapes, used in the rule Prim.

The rule Type performs the unfolding of a datatype defini-

tion. Our input is a datatype (𝜏𝑖 @ 𝑙𝑖)𝑖 𝑡 at some call stack

𝑙 . We lookup the definition of the datatype (𝛼𝑖)𝑖 𝑡 in the

global datatype definition environment, split into a family

of boxed constructors and a family of unboxed constructors.

The resulting shape is obtained by concatenation of the tags

of boxed constructors, and shapes of unboxed constructor

arguments: for each boxed constructor 𝐶 𝑗 of 𝜏 𝑗 we add the

tag 𝐶 𝑗 , and for each unboxed constructor 𝐶unboxed
𝑘

of 𝜏 ′
𝑘
we

add the shape of 𝜏 ′
𝑘
. There are two subtleties in the rule:

• Computing the shape of a 𝜏 ′
𝑘
may fail with a Cycle

error; we use a merge (. . .) operator that propagates
this error, or concatenates the result shapes.

We define it below.

• The 𝜏 ′
𝑘
mention the formal datatype parameters (𝛼𝑖)𝑖

of the datatype declaration. We substitute them with

the actual datatypes parameters (𝜏𝑖)𝑖 used the type

expression at hand. More precisely, we have anno-

tated types (𝜏𝑖 @ 𝑙𝑖)𝑖 , which we substitute under a

non-annotated type 𝜏 ′
𝑘
. To get an annotated type as

expected, we need to use a call stack for all type subex-

pressions of 𝜏 ′
𝑘
that are not variables (each variable 𝛼𝑖

gets the call stack 𝑙𝑖 from our input). Those subexpres-

sions get the call stack 𝑙, 𝑡 , tracing the fact that they

come from the expansion of 𝑡 in the current context 𝑙 .

To summarize, our substitution operation 𝜏 [𝜎]@𝑙
takes

an unannotated type 𝜏 , a substitution 𝜎 from its type

parameters to annotated types 𝜏𝑖 @ 𝑙 , and an “ambiant

call stack” 𝑙 to use on all non-variable type expressions.

We define it below.

merge (. . . , Cycle, . . .) = Cycle
merge

(
(𝐻𝑖)𝑖

)
= (𝐻𝑖)𝑖

𝛼 [𝜎]@𝑙 = 𝜎 (𝛼)
(𝜏𝑖)𝑖 𝑡 [𝜎]@𝑙 =

(
(𝜏𝑖 [𝜎]@𝑙) 𝑡

)
@ 𝑙

3.1 Termination
We have a proof sketch (not a complete proof yet) of termi-

nation that goes as follow.

We say that the parent of a non-empty call stack 𝑙, 𝑡 is the

call stack 𝑙 .

We have to prove that any potentially-infinite derivation

of 𝑑 ⇒ 𝑅 is finite. It suffices to prove that any path of ap-

plications of the rule type within such a derivation is finite.

Indeed, the three other rules, Var, Cycle and Prim, terminate

the derivation, and the width of each Type application is

bounded by the maximal number of constructors of a type

declaration in the global environment (which we assumed

finite.

For a path 𝑃 of Type applications we look at the input types

(𝜏𝑝 @ 𝑙𝑝)𝑝∈𝑃 along this path, and in particular the path of

locations (𝑙𝑝)𝑝∈𝑃 . (We order 𝑃 by position in the derivation,

with the smallest element 𝑝0 corresponding to the root of

the derivation.)

Lemma. If the stack 𝑙𝑝 occurs at position 𝑝 in the stack, all
prefixes of 𝑙 can be found at some earlier position 𝑝 ′ ⩽ 𝑝 .

We build a tree structure on this path 𝑃 . Note: the tree is

not the derivation, is is overlayed over one linear path.

The root of the tree is the first element 𝑝0 of the path.

Remark that it is the unique element with the empty call

stack ∅.

Any other element of the path has a call stack 𝑙, 𝑡 ; we place

it as a children of the closest element earlier in the trace with

the parent call stack 𝑙 , which must exist by the lemma above.

By construction, the parent of a child in the tree has the

parent call stack.

Our termination argument is that this tree is finite (so the

trace is finite):

• Its height is bounded: a call stack 𝑙 can only mention

each datatype once, so the height of any call stack

(and thus of the tree) is bounded by the number of

datatypes in the global environment.

• Each node has a finite number of children. Intuitively

the argument is if a node corresponds to some type

(𝜏𝑖)𝑖 𝑡 , each child corresponds to one sub-expression

occurring in the expansion of the datatype 𝑡 , with

each sub-expression occurring at most once among

the children. (This is the delicate part of the proof.)

