
DCT2net: an interpretable shallow CNN for image
denoising

Sébastien Herbreteau and Charles Kervrann

Abstract—This work tackles the issue of noise removal from
images, focusing on the well-known DCT image denoising algo-
rithm. The latter, stemming from signal processing, has been
well studied over the years. Though very simple, it is still
used in crucial parts of state-of-the-art ”traditional” denoising
algorithms such as BM3D. Since a few years however, deep
convolutional neural networks (CNN) have outperformed their
traditional counterparts, making signal processing methods less
attractive. In this paper, we demonstrate that a DCT denoiser
can be seen as a shallow CNN and thereby its original linear
transform can be tuned through gradient descent in a supervised
manner, improving considerably its performance. This gives birth
to a fully interpretable CNN called DCT2net. To deal with
remaining artifacts induced by DCT2net, an original hybrid
solution between DCT and DCT2net is proposed combining the
best that these two methods can offer; DCT2net is selected to
process non-stationary image patches while DCT is optimal for
piecewise smooth patches. Experiments on artificially noisy im-
ages demonstrate that two-layer DCT2net provides comparable
results to BM3D and is as fast as DnCNN algorithm composed
of more than a dozen of layers.

Index Terms—Convolutional Neural Network, image denoising,
Canny edge detector, artifact removal.

I. INTRODUCTION

IMAGE denoising is one of the most widely explored
problems in computational imaging. In its most studied

formulation, an image x is assumed to be corrupted by additive
white Gaussian noise (AWGN), ε, with variance σ2. The
observed noisy image y = x + ε has then to be processed
to recover the original signal x while removing the noise
component ε.

Over the years, a rich variety of methods have been pro-
posed to deal with this issue with inspiration coming from mul-
tiple fields. Frequency-based methods, aiming at decomposing
the signal in a DCT or wavelet basis and then shrinking some
transform coefficients, were considered quite early [1], [2].
This strategy, coming from compression algorithms [3], has
the advantage to be both simple and fast but also the drawback
of suppressing fine details in the image. An improvement
of such methods consists in considering an overcomplete
dictionary instead, under an assumption of sparse represen-
tation: each patch of an image is supposed to be sufficiently
represented by a few vectors of an overcomplete basis [4]. In
the meantime, the N(on)L(ocal)-means algorithm [5] opened
the door to a new category of denoising algorithms exploiting
the self-similarity assumption. Indeed, it was observed that,
within the same image, similar patches are repeated in the

Sébastien Herbreteau and Charles Kervrann are with Inria Rennes - Bre-
tagne Atlantique and UMR144-CNRS Institut Curie PSL, Paris, France (e-
mail: sebastien.herbreteau@inria.fr and charles.kervrann@inria.fr)

whole image [6]. By gathering together the most similar
patches and denoising them all at once, considerable gains in
performance can be obtained [7], [8], [9], [10], [11], [12], [13],
[14]. Most of those methods achieved state-of-the-art results
until recently.

In the last five years, the development of deep learning have
revolutionized computer vision, through significant accuracy
improvements, denoising task being no exception. A lot of
convolutional neural networks have been proposed [15], [16],
[17], [18], [19], [20], [21] and they all outperformed the
traditional algorithms via image training sets. Though fast and
efficient, they all suffer from their lack of interpretability. Act-
ing as ”black boxes”, it can be very challenging to thoroughly
understand how they produce a result, which can be prohibitive
for critical applications such as medical imaging.

Our work contributes to the recent trend, which builds on
traditional algorithms and revisits them with a dose of deep
learning, while keeping the original intuition [22], [23]. We
focus specifically on the DCT denoiser [1] and show that it
can be seen as a shallow CNN with weights corresponding
to the DCT projection kernel and a hard shrinkage function
as activation function. By training this particular CNN given
external dataset, we can refine the resulting transform and
boost its performance. As the so-called DCT2net inherently
may create unpleasant artifacts in flat regions of the image,
we apply a two-class classification procedure based on the
Canny egde detector [24] applied to the image denoised with
the original DCT denoiser. The classification produces a binary
map that separates homogeneous regions from textured regions
and contours. DCT2net is then applied to the set of pixels with
more complex geometries, while DCT is applied to stationary
patches (i.e., with no significant spatial gradients). Surpris-
ingly, this strategy does not alter performances in terms of
Peak Signal-to-Noise Ratio (PSNR) while visually improving
the results.

The remainder of the paper is organized as follows. In
Section II, we present the principle of DCT denoiser and
the properties of DCT2net which has the advantage to be
invariant to the level of noise in image unlike other CNN-
based denoisers [15], [17], [18]. In Section III, we interpret
the ”pseudo” basis learned by DCT2net and show that patch
denoising and aggregation are jointly performed unlike tradi-
tional patch-based denoisers. In Section IV, we analyze the
behavior of DCT2net which is further mixed with the usual
DCT denoiser to reduce unpleasant visual artifacts. In Section
V, experimental results on datasets demonstrate that DCT2net
is very fast as DnCNN, improves significantly the DCT results
and is comparable to BM3D in terms of performance while
remaining very simple and interpretable as the DCT denoiser.

2

Fig. 1. Some examples of the notation yi,jk,p.

II. FROM POPULAR DCT DENOISING TO DCT2NET

In what follows, the vector representation of an image is
adopted. A noisy 2D image y composed of n pixels is formally
represented by a vector of Rn.

A. Traditional DCT denoiser

In its most mature formulation for image denoising [1], the
DCT denoiser proceeds on small overlapping patches accross
the image. Each patch of size p×p is denoised independently,
so that each pixel is in fact denoised p2 times. For each pixel,
the final denoised value is then obtained by averaging those
p2 estimators. Typical values for p are powers of 2 (generally
8 or 16) for practical reasons in the computation of the fast
discrete cosine transform. However, we focus here on the case
where p is an odd number, without loss of generality.

For the sake of representation, we denote by yi,jk,p the p× p
patch, in the vector form, for which the central pixel, is located
j pixels at the right of the kth pixel of y and i pixels beneath
it (see Fig. 1). Note that i and j can be negative numbers. Let
us denote q = bp2c (i.e. closest integer less than or equal to
p/2). The DCT denoiser denoted F can then be expressed as:

F (y)k =
1

p2

q∑
i=−q

q∑
j=−q

[Pϕλ(P−1yi,jk,p)]s(i,j) (1)

where P is a matrix of size p2× p2, ϕλ is the hard shrinkage
function ϕλ(x) = x× 1R\[−λ,λ](x), and s(i, j) = (q − i)p+
q − j + 1 . According to [1], the most appropriate choice for
λ is 3σ.

By definition of DCT, the mathematical expression of the
coefficient of the matrix P at row i = xp+ y+ 1 and column
j = up+ v + 1 for (x, y, u, v) ∈ J0, p− 1K4 is given by:

P i,j =
2

p
α(u)α(v) cos

[
(2x+ 1)uπ

2p

]
cos

[
(2y + 1)vπ

2p

]
(2)

where α(u) =

{ 1√
2

if u = 0

1 otherwise
is a normalizing scale

factor to make the transformation orthonormal. The columns
of the matrix P are, in fact, the basis in which the signal is
decomposed (see Fig. 4a). The matrix P is considered as a
basis, in the sense that every signal (represented as a vector)
can be decomposed in a unique way as a linear combination
of the columns of P . Alternatively, the term ”dictionary” is
also used in image processing. In the case of DCT, this basis

has the particularity of being orthonormal, which implies that
P−1 = P T where the superscript T denotes the transpose
operator. The elements of this basis are generally ordered,
in the zig-zag pattern, from the smoothest vector to the one
containing the highest frequencies (see Fig. 4a). This ordering
is very useful for applications in compression as frequencies
higher than a certain threshold are typically canceled.

A small improvement of [1], called adaptive aggregation and
inspired from [7], was proposed in [26]. The idea is to give
higher weight to patches that have a sparser representation in
the DCT domain, enabling to reduce the ringing effects near
edges. The expression of the improved DCT denoiser then
becomes:

F (y)k =
1

Wk

q∑
i=−q

q∑
j=−q

wi,j,k[Pϕλ(P−1yi,jk,p)]s(i,j) (3)

with wi,j,k = (1 + ‖ϕλ(P−1yi,jk,p)‖0)−1, where ‖.‖0 denotes
the `0 pseudo-norm that counts the number of non-zero entries

and Wk =

q∑
i=−q

q∑
j=−q

wi,j,k. We used this latter expression to

derive DCT2net.

B. DCT2net: a CNN representation of a DCT denoiser

Interestingly, one of the easiest implementation of a DCT
denoiser, as formulated in (3), can be done with a neural
network. Indeed, all operations involved can be interpreted
in terms of convolutions with a hard shrinkage function as
activation function.

Our shallow CNN is first composed of a convolutional layer
with kernel size p× p leading to p2 output channels. Figure 2
shows such an architecture when p = 5. Note that the weights
involved in kernels are to be found in the matrix P−1: each
row is associated with one convolutional kernel. The action of
this layer can be summed up as follows: each pixel is replaced
by the patch formed by its neighborhood, after transformation
by P−1. Then, the hard shrinkage function is applied element-
wise. Afterwards, a 1× 1 convolution layer operates on those
patches where the weights correspond to the elements of the
matrix P . In order to compute the adaptive aggregation, we
have to generate a weight map from the first layer computing
the values wi,j,k in (3). This latter is used to balance the
features resulting from the second layer by channel-wise mul-
tiplication. The weighted pixels are then repositioned at their
corresponding locations and then aggregated by summation.
This can be implemented with the help of a last convolutional
layer where the values of weights are either 0 or 1. Note
that, for computational efficiency, a 2D transposed convolution
is recommended. Finally, a normalization by Wk (see (3))
is performed by dividing the last layer by the weight map,
beforehand convolved by a kernel composed of ones.

We want to stress that our DCT2net is the strict implemen-
tation of the formulation in (3). Equipped with the correct
weights given by the definition of the DCT in (2), it exactly
produces the same results as those obtained with the traditional
implementation.

3

Fig. 2. Architecture of DCT2net for a patch size p = 5.

C. Improvement of the transform

As it is usually done with neural networks, we can train
our DCT2net on an external dataset composed of N pairs of
noise-free and noisy images (xi,yi)i∈{1,...,N} to improve the
underlying transform. More precisely, our objective is to solve
the following optimization problem:

P ∗ = arg min
P

N∑
i=1

‖FP (yi, σi)− xi‖22 (4)

where FP denotes the network (Fig. 2) and P gathers the
unknown parameters.

To that extent, we need to restrict the model to the original
transform where only one matrix is involved (the other one
being its inverse) and where the other convolutions of the
network composed of 0 and 1 are frozen. This can be achieved
with the help of modern machine learning libraries such as
Pytorch for which automatic differentiation can be kept on
for complex operations such as matrix inversion but also
deactivated for some layers. Nevertheless, the thresholding
operation must be slightly adapted in a context of gradient
descent where differentiation is needed. Thus, we replace the
function 1R\[−λ,λ] by ζm,λ(x) = x2m

x2m+λ2m with m ∈ N∗. This
choice is legitimate as the sequence of functions (ζm,λ)m∈N∗
converges pointwise to 1R\[−λ,λ]. The hard shrinkage function
ϕλ then becomes ϕm,λ(x) = x2m+1

x2m+λ2m . Figure 3 shows how
close this approximation is from the original hard shrinkage
function with ever growing values of m. By the way, this
approximation is adopted only during the training phase for
facilitating the optimization process. To stick with the original
DCT denoiser, we use the original hard shrinkage function
for the testing phase that gives the same results in terms of
PSNR with no noticeable visual differences for the denoised
images. It is worth noting that the use of the original hard
shrinkage function instead of our differentiable approximation
for the training phase does not work in our case, leading to

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Classical hard threshold
Differentiable threshold for m=2
Differentiable threshold for m=4
Differentiable threshold for m=8
Differentiable threshold for m=16
Differentiable threshold for m=32

Fig. 3. Approximation of the hard thresholing function ϕλ by the sequence
of differentiable functions ϕm,λ for λ = 1 and m ∈ {2, 4, 8, 16, 32}.

a poor suboptimal local minimum, even though this activa-
tion function is available in most modern machine learning
libraries. It is likely that this disappointing behavior is due to
the discontinuity of the original function.

Finally, as recommended in [1], the threshold parameter λ
is set to 3σ to significantly remove noise. But the choice of the
multiplicative constant in front of σ is actually of little impor-
tance and any other constant would produce same results as
long as P can adapt itself. Indeed, for two levels of threshold
λ and λ′, we have ϕλ(x) = λ

λ′ϕλ′(
λ′

λ x). In particular, for
two choices of multiplicative constant c and c′, ϕcσ(x) =
c
c′ϕc′σ(c

′

c x), hence Pϕcσ(P−1y) = Qϕc′σ(Q−1y) with
Q = c

c′P This means that, in theory, choosing a value
other than 3 would result in estimating the same transform,
up to a multiplicative constant, and with exactly the same
denoising performance. Appendix A gives more details about
the choice of threshold, studying more particularly the case
where multiple thresholds are used.

4

(a) Original DCT basis (b) DCT2net learned basis

(c) DCT2net trained on flat areas (d) DCT2net trained on contours

(e) DCT2net trained to effectively
denoise patches before aggregation

(f) DCT2net with random
initialization

Fig. 4. Different bases in which patches are decomposed and thresholded for
image denoising.

Note that, in practice, optimizing over the set of invertible
matrices GLp2(R) in (4) is not an issue and the problem can
be treated through stochastic gradient descent without specific
precaution. It is attributable to the fact that GLp2(R) is dense
in Mp2(R) but Mp2(R)\GLp2(R) is not.

III. A NON-INTUITIVE LEARNED TRANSFORM

What is particularly attractive in our model is that we
can easily display the learned transform and thus have a
direct visual intuition of what the network has learned. Once
DCT2net has been trained on an external dataset, a ”pseudo”
basis is derived, which is not orthonormal, but presumably
more appropriate to encode non-stationary signals than the
conventional DCT. Figure 4 shows a visual comparison of the
learned bases in different contexts for patches of size 9× 9.

A. On the orthonormality of the learned transform

In the definition of DCT2net (3), we impose no orthonor-
mality constraint to learn the basis. Therefore, it is no wonder
that, during the building of the matrix P through stochastic
gradient descent, the property of orthonormality gets lost. One

(a) λ = 3σ / 28.98 dB (b) λ = 2.55σ / 29.28 dB

(c) Several thresholds / 29.44 dB (d) λ = 2.55σ / 29.20 dB
(random initialization)

Fig. 5. Orthonormal bases learned by DCT2net by addition of a regularization
term. The threshold used is indicated (learned by optimization process when
different from 3σ) as well as the average PSNR on Set12 for σ = 25 with
each of these orthonormal bases. By way of comparison, the average PSNR on
Set12 for the unconstrained DCT2net with patch size 9× 9 is 29.57 dB. The
basis exposed with several thresholds corresponds actually to an orthogonal
basis with only one threshold as shown in appendix C.

way 1 to address this issue is to add a regularization term that
encourages orthonormality in the optimization process. The
problem amounts to solving:

P ∗ = arg min
P

N∑
i=1

‖FP (yi, σi)−xi‖22 + β‖I −P TP ‖1 (5)

where β ≥ 0 is the regularization parameter. We consider here
the `1 norm, defined for a matrix A by ‖A‖1 =

∑
|ai,j |,

but the `2 norm can be used instead. One can prove that this
optimization problem with a penalty term corresponds to an
underlying constraint problem of the form:

P ∗ = arg min
P

N∑
i=1

‖FP (yi, σi)− xi‖22

s.t. ‖I − P TP ‖1 ≤ t

(6)

which makes explicit the constraint of ”close-orthonormality”.
Note that the parameter t depends both on β and on the data
(xi,yi)i∈{1,...,N}.

It is worth noting that the resulting matrix P ∗ is not
guaranteed to be orthonormal whatever the parameter β is.
To derive an orthonormal matrix from P ∗, we can select its
nearest orthonormal matrix P ortho in the Frobenius norm sense.
The unique solution is given by P ortho = UV T where U and

1For a direct technique to derive an orthonormal matrix, with similar results
compared to the regularization form, see appendix B.

5

0 20 40 60 80

0

10

20

30

40

50

60

70

80

0

5

10

15

20

25

Fig. 6. Representation of the matrix P TP where P denotes the transform
learned by DCT2net for patches of size 9× 9. If P were orthogonal, P TP
would be equal to an invertible diagonal matrix. This is not strictly the case
here, but we can notice that the elements outside the diagonal are very close
to 0. Moreover, the diagonal represents an important weight of this matrix
as

∑
i q

2
i,i/

∑
i,j q

2
i,j ≈ 60% where the qi,j designate the coefficients of

P TP .

V are the matrices from the singular value decomposition of
P ∗ = UΣV T .

However, adding a constraint of orthonormality limits the
expressivity of the network and we observed that the denoising
performance was not as good as the regularization-free solu-
tion (see Fig. 5). Moreover, the choice of the regularization
parameter β can be challenging as it needs to be adapted for
each patch size. For all those reasons, we decided not to retain
a solution with an orthonormal matrix. In spite of this, the
matrix P learned by DCT2net is quite close to be orthogonal,
even if no constraint has been imposed. This is illustrated in
Fig. 6 which displays the matrix P TP for patches of size
9× 9. We can notice that the non-diagonal elements are close
to zero, which is expected for a matrix close to be orthogonal.
In appendix C, we show how orthogonal and orthonormal
matrices are linked, stating that if P is orthogonal, there exists
an orthonormal matrix Q that would give exactly the same
results in DCT2net as long as we set a different threshold by
element of the basis.

Finally, as regards the initialization for the stochastic gra-
dient descent, the original DCT basis (see (2)) is considered
by default. Considering random initializations such as Xavier
initialization which is common in deep neural networks, lead
to similar bases, even though the time for convergence is
slightly more important. The convergence to the same solution
whatever the initialization is a very good news, suggesting that
optimizing the underlying non-convex problem is tractable.

B. DCT2net does not denoise patches

When displaying the learned basis on a popular image
dataset such as BSD400 [27], one may be surprised. Interest-
ingly, this basis, in which each patch is decomposed, is much
more disorganized than the original DCT basis. One may doubt
that the DCT2net basis denoises better patches as it contains no
clear pattern. As a matter of fact, applying this basis does not

0.65 0.70 0.75 0.80
Values of the central pixel denoised pxp times

0

10

20

30

40

Co
un

ts

DCT
DCT2net

Noisy DCT DCT2net

0.3 0.4 0.5 0.6 0.7
Values of the central pixel denoised pxp times

0

2

4

6

8

10

12

14

Co
un

ts

DCT
DCT2net

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
Values of the central pixel denoised pxp times

0

5

10

15

20

25

Co
un

ts

DCT
DCT2net

Noisy DCT DCT2net Noisy DCT DCT2net

1

2 3

Fig. 7. For each noisy patch of size 13 × 13 extracted from House image
corrupted by AWGN with σ = 10, its denoised version is displayed when
processed by the original DCT and by the transform learned by DCT2net.
The patches produced by DCT2net are very noisy compared to the original
patches and patches denoised with DCT. Histograms show a comparison of
the p2 denoised values for the central pixel after transformation in each of
the p2 patches it belongs to (p = 13). The variance of pixels intensities is
higher with DCT2net.

denoise patches but rather degrades them even more as shown
in Fig. 7. The main reason is that the network actually denoise
image patches and performs aggregation at once, making it
difficult to understand why such a basis improves the PSNR
value of the restored image.

We observed that, for a given noisy pixel k belonging to p2

patches, the p2 ”denoised” versions of pixel k with DCT2net
have a very high variance when compared to the p2 denoised
values obtained with the DCT denoiser, for which all p2

denoised values are generally almost all the same, as illustrated
in Fig. 7. Nevertheless, after the adaptive aggregation step, the
pixels denoised by applying the learned transform are closer, in
average, to the ground truth ones. This is a counter-intuitive
result that questions our preconceptions on denoising. This
suggests that the final aggregation step is not a basic post-
processing step but plays an important role in denoising, as
confirmed below.

C. Constraining DCT2net to effectively denoise patches is an
unsuccessful strategy

As the strategy followed by DCT2net is counter-intuitive
and hardly comprehensible for a human brain, we tried to
constrain the learned transform to effectively denoise patches.
In this study, aggregation is performed in a second step with
conventional weighted averages. This can be done in practice
by cutting our neural network represented in Fig. 2 after the
two first convolutional layers, so that the output FP (yi) is of

6

Noisy / 20.17 dB Binary classification map DCT / 31.18 dB DCT2net / 32.20 dB DCT/DCT2net / 32.26 dB

Fig. 8. Application of the proposed procedure to get a partition of the noisy image House. Pixels belonging to white areas after classification are denoised
with DCT2net and the others with a traditional DCT denoiser. Results (in PSNR) are given for each method for a noise level σ = 25.

TABLE I
THE AVERAGE PSNR (DB) RESULTS OF TWO DIFFERENT TRANSFORMS ON
PATCHES OF SIZE 15× 15 OF SET12 CORRUPTED WITH WHITE GAUSSIAN

NOISE AND σ = 15, 25 AND 50.

Methods σ = 15 σ = 25 σ = 50

Before aggregation
DCT 27.74 25.19 21.92

DCT2net trained on patches 28.18 25.98 22.97
After adaptive aggregation

DCT 31.08 28.53 25.37
DCT2net trained on patches 30.90 28.66 25.65

size (H − p + 1) × (W − p + 1) × p2. For a clean image
xi, we can compute its patch representation Π(xi) of size
(H−p+1)×(W −p+1)×p2 as well and solve the following
optimization problem:

P ∗ = arg min
P

N∑
i=1

‖FP (yi, σi)−Π(xi)‖22. (7)

Figure 4e shows the learned transform P ∗ that effectively
denoise patches. The resulting matrix P ∗ is much more natural
and interestingly very close the original DCT basis. The gain
in PSNR on patches of this new transform was evaluated on
the Set 12 dataset. The results reported in Table I show that the
learned transform produces systematically a higher PSNR in
average for the patches than the traditional DCT. One could
expect that this transform would outperform DCT after the
aggregation step. Unfortunately, this is not the case. Once the
transform has been re-used in our DCT2net shown in Fig. 2
with the adaptive aggregation integrated, the expected boost
compared to traditional DCT in terms of PSNR significantly
decreases. The difference of PSNR is insignificant, with a
visually less attractive result. We can notice an interesting
phenomenon for σ = 15: from better denoised patches, our
learned transform fails to outperform the traditional DCT after
any classical aggregation technique. This counter-intuitive
result confirms, once again, that the aggregation step is equally
important as denoising patches.

To go beyond DCT, the key issue is to follow a non-intuitive
path that consists in degrading the patches and performing
aggregation step to rearrange everything and produce a high-
quality denoised image.

Input noisy image

DCT denoiser DCT2net denoiser

Binary
classification

¬
� �

⊕

Reconstructed image

Fig. 9. Hybrid denoising scheme. A first rough denoising is performed by
DCT to improve the classification procedure. Then the denoised image is
recycled on the flat areas while DCT2net denoises the contours.

IV. DCT2NET MIXED WITH DCT TO REDUCE
UNPLEASANT VISUAL ARTIFACTS

Even though DCT2net produces high PSNR values as
BM3D [7], the visual results can be surprisingly not as good as
expected, especially in flat regions in images. This is due to the
emergence of structured unpleasant artifacts in those regions

7

Fig. 10. Image from BSD68 denoised with DCT2net producing unpleasant
visual artifacts (left) and denoised using both DCT and DCT2net in collab-
oration (right) for σ = 25. The difference between the noise-free image and
the denoised images is also provided, highlighting these artifacts.

that are extremely eye-catcher. Figure 10 shows an example
of those artifacts that are inherent to our method. They are
difficult to characterize and very different from what we would
get with a non-adaptive DCT denoiser. The visual impression
is as if the recovered image had been scratched in several
locations. These undesirable artifacts were probably promoted
by blind stochastic gradient descent, to produce the best PSNR
value in average. It is likely that this blind choice originates
from a trade-off between denoising flat regions and textures.
The problem was not solved by considering an adequate loss
function [25] or by adopting a multi-scale scheme [26].

To tackle this problem, we combine below the performance
of both transforms, that is the original DCT and the transform
learned by DCT2net. While the original DCT performs very
well in flat regions, DCT2net recovers details more efficiently
in the vicinity of contours and in fine textured regions. Our
idea is then to classify the pixels into two classes and to apply
the most appropriate denoiser at each pixel. In what follows,
we show how a binary map can be obtained, telling us which
pixels are to be denoised with DCT2net or DCT. Figure 8
illustrates an example of such a procedure applied to the House
image.

The noisy image must be roughly denoised beforehand
in order to robustly detect the flat regions, textured regions
and contours. The DCT denoiser (3) is appropriate in our
case, as illustrated in Figure 9. It has the advantage of
being particularly cost-efficient and nearly parameter-free. The
resulting denoised image is also re-used to produce the final
image, as illustrated in Fig. 9, saving time and resources.
Interestingly, letting the traditional DCT denoiser operate on a
large majority of pixels of the noisy image does not alter the
PSNR values in our experiments. As DCT produces smooth
images in homogeneous regions, the artifacts are removed and
the visual result is enhanced considerably.

a) Classification based on Canny edge detector: Multiple
choices of classification techniques are possible to separate
the flat regions from the contours and textured areas. A high

TABLE II
THE AVERAGE PSNR (DB) RESULTS OF OUR DCT/DCT2NET METHOD ON

SET12 CORRUPTED WITH WHITE GAUSSIAN NOISE AND σ = 20 FOR
DIFFERENT SIZES OF DILATION KERNEL.

Size of dilation 3 5 7 9 11 ∞
DCT/DCT2net 30.58 30.67 30.69 30.70 30.71 30.75

precision in the classification is not required as our goal is
to isolate parts of the image that are susceptible to contain
artifacts after denoising with DCT2net.

The classification problem into two classes can be achieved
with an efficient traditional technique: the Canny edge detector
[24]. This method uses Sobel filters in both horizontal and
vertical direction at its core to compute the gradient for each
pixel. The direction of edges is then analyzed to remove any
unwanted pixels which may not constitute contours. Finally, an
hysterisis thresholding is used to decide which pixels, detected
positively in the first instance, are actually edges. This last
step is based on the spatial analysis of connectivity, ensuring
some coherence in the final classification map. To enlarge the
support of edges found by this Canny edge detector, we apply
a simple dilation operation in the end.

In practice, the image is preliminary slightly smoothed
with a unit standard deviation Gaussian filter. The lower and
upper thresholds involved in the Canny edge detector are
set respectively to 0.1 and 0.2 (values of pixels being in
the interval [0, 1]). These thresholds are set once and for all
and are not changed in all experiments. Finally, the dilation
operation is performed using a kernel of size 5 × 5. This
choice of size of dilation kernel was motivated by its good
performance in terms of PSNR, without scarifying the visual
quality depending on the amount of artifacts (which is the
case for larger sizes). Table II reports the influence of the size
of the dilation operation on the PSNR values for σ = 20 on
the Set 12 dataset composed of 12 widely used images for
denoising. Unsurprisingly, the larger the dilation filter (that is,
the more pixels are processed with DCT2net), the higher the
PSNR value is. It can be noticed that considering small or
large kernels does not affect the PSNR values significantly. If
the dilation is very large, it amounts to applying DCT2net to
all pixels in the image.

b) Classification based on Total Variation: Alternatively,
classification can be performed by applying the local Total
Variation (TV). This amounts to computing the sum of gra-
dients on small windows, which is expected to be low in flat
regions and high on edges. After computing the value of the
TV for every pixel, a local-TV map is derived where values
are all the more important as the original noisy pixel belongs
to a complex geometry, that is edges or texture. By defining an
arbitrary threshold, it is possible to partition the image into two
distinct components: high gradient and low gradient pixels
where DCT2net and DCT are applied, respectively.

c) Comparisons of classification methods: Figure 11 shows
the computed binary masks on the image Lena for the two
aforementioned classification techniques as well as the recom-
posed denoised image using both DCT2net/DCT denoiser.

8

DCT / 31.91 dB Canny mask
with dilation 3× 3

Canny mask
with dilation 5× 5

Canny mask
with dilation 11× 11

Canny mask
with dilation 21× 21

TV mask
with threshold of 75%

DCT2net / 32.70 dB DCT/DCT2net / 32.59 dB DCT/DCT2net / 32.67 dB DCT/DCT2net / 32.67 dB DCT/DCT2net / 32.69 dB DCT/DCT2net / 32.62 dB

Fig. 11. Some examples of the classifications based on Canny edge detector and Total Variation on noisy Lena for σ = 20.

We can notice that the technique based on the Canny
edge detector gives a coherent classification where almost
all contours are detected. When dilating more and more
those contours with larger and larger dilation kernels, the
PSNR improves as more pixels are processed with DCT2net.
However, there is a risk of generating unpleasant artifacts near
contours as it is the case in our example with a dilation kernel
of size 21× 21 (see Fig. 11). That is why, we set the size of
this kernel to 5× 5 once and for all which is a good balance
between performance based on PSNR value and subjective
visual perception.

Compared to the classification based on the Canny edge
detector, the TV-based one is more limited. Indeed, some edges
are missing. Worse still, some isolated white blocks appear in
the background. It is very troublesome as those isolated zones
will create further unpleasant artifacts at the end, as shown on
Figure 11. It appears that the denoising styles of those two
denoisers are not compatible on similar zones. The human
eye quickly notices a lack of coherence in the denoising tone
which is prejudicial to the visual quality. We observed similar
issues for all size of windows for the TV computation and for
all thresholds. Those critical drawbacks are prohibitive in the
application of a such a method and we decided to focus on
the Canny edge detector in our experiments.

V. EXPERIMENTS

In this section, we describe the experiments conducted to
train our model DCT2net. Moreover, we provide comparisons
with traditional and deep-learning-based state-of-the-art algo-
rithms. The code and pre-trained models can be downloaded
here: https://github.com/sherbret/DCT2net/.

A. Training Settings

We trained our DCT2net on 400 gray-scale images from
the Berkeley segmentation dataset (BSDS) [27] where syn-
thetic Gaussian noise with zero mean and a random standard
deviation σ taken in ∈ [1, 55] was added in order to create our

pairs (xi,yi)i∈{1,...,N} with N � 400 (the xi are redundant).
Contrary to numerous deep learning models, our network can
adapt to the level of noise as the differentiable hard shrinkage
function depends on σ, so that we train our model only once
for all levels of noise at the same time.

During training, we randomly sample cropped images from
the training set of size 128 × 128 with a mini-batch size of
32. We use horizontal and vertical flipping as well as random
rotations ∈ {0◦, 90◦, 180◦, 270◦} as further data augmentation.
In total, 400×665 overlapping patches from 400 clean images
are used for training. The mean squared error was used as
loss function and we used Adam optimizer [28]. The learning
rate was set to 10−3 and decreased exponentially to 10−5

during the 15 epochs required for convergence. Note that
we initialized the weights of our networks according to the
original discrete cosine transform given by (2). Initializing the
weights randomly, for example with a Xavier initialization as
it is usually done with deep neural networks, only slows down
the time for convergence. As for the parameter m specifying
the degree of approximation of the hard shrinkage function
ϕλ, we took m = 32. Training a model took approximately 8
hours with a GeForce RTX 2080 Ti.

Note that a small improvement of our hybrid solution
DCT/DCT2net can be obtained by training DCT2net only on
parts of images where the learned transform will be applied.
In practice, this is done by pre-computing binary masks bi
according to the classification proposed for every image of
the external dataset and solving:

P ∗ = arg min
P

N∑
i=1

‖bi � (FP (yi, σi)− xi)‖22 (8)

where FP designates the network and � is the Hadamard
product.

We recall the parameters chosen for the Canny edge de-
tector: lower and upper thresholds are set once and for all
respectively to 0.1 and 0.2 and a supplementary dilation
operation is performed using a kernel of size 5× 5.

https://github.com/sherbret/DCT2net/

9

Noisy / 20.17 dB BM3D / 29.49 dB DnCNN / 30.15 dB LKSVD1,8,256 / 29.56 dB DCT / 28.27 dB DCT/DCT2net / 29.45 dB

Noisy / 20.17 dB BM3D / 26.86 dB DnCNN / 27.76 dB LKSVD1,8,256 / 27.39 dB DCT / 25.45 dB DCT/DCT2net / 26.90 dB

Noisy / 20.17 dB BM3D / 24.36 dB DnCNN / 24.80 dB LKSVD1,8,256 / 24.63 dB DCT / 23.31 dB DCT/DCT2net / 24.45 dB

Fig. 12. Denoising results (in PSNR) of some images from BSD68 corrupted with white Gaussian noise and σ = 20.

B. Results on test datasets

We tested the denoising performance of our architecture on
two well-known datasets: Set 12 and BSD68. According to
our experiments, the best model for DCT/DCT2net in terms
of performance (i.e., PSNR) and subjective visual quality is
obtained with a patch size of 13. Larger sizes of patch only
bring negligible enhancement for a complexity much more
important.

Tables III and IV compare the performance of traditional
and deep-learning-based state-of-the-art algorithms with our
model. We compare our DCT2net with BM3D [7] and PEWA
[11], both state-of-the-art traditional methods that exploit self-
similarity and DCT decomposition. We also compare DCT2net
to related algorithm Deep K-SVD [22]. Scetbon et al. [22]
proposed multiple models that depend on the patch size,
the dictionary size and the number of denoising steps. In
what follows, we consider the smallest model for which an

implementation is given by the authors and which is denoted
LKSVD1,8,256. We performed the training by ourselves for
each noise level, as no pretrained models were supplied by
the authors.

We can notice that DCT2net achieves comparable perfor-
mances with state-of-the-art traditional algorithms on both
Set12 and BSD68 datasets, outperforming its original counter-
part DCT2 [1]. Unlike BM3D and PEWA and other algorithms
such as NL-Bayes [9], DCT2net is a very simple one-pass
algorithm, able to produce similar performances to Deep K-
SVD for high noise level while it is not trained specifically to
address such challenging situations.

Beyond the performance assessed with the PSNR criterion,
nothing can replace the subjective assessment of a human eye.
On this criterion, our DCT/DCT2net can hold its own against

2The non-adaptive version of DCT denoiser was considered as it produced
a slightly higher PSNR, despite its poor subjective visual quality.

10

TABLE III
THE PSNR (DB) RESULTS OF DIFFERENT METHODS ON SET12 CORRUPTED WITH WHITE GAUSSIAN NOISE AND σ = 15, 25 AND 50. THE BEST TOW

RESULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS, RESPECTIVELY.

Images C.man House Peppers Starfish Monarch Airplane Parrot Lena Barbara Boat Man Couple Average
Noise Level σ = 15
BM3D [7] 31.91 34.93 32.69 31.14 31.85 31.07 31.37 34.26 33.10 32.13 31.92 32.10 32.37
PEWA [11] 31.88 34.72 32.64 30.85 31.83 31.04 31.29 34.09 32.73 31.90 31.81 31.88 32.22

DnCNN [15] 32.61 34.97 33.30 32.20 33.09 31.70 31.83 34.62 32.64 32.42 32.46 32.47 32.86
LKSVD1,8,256 [22] 32.07 34.26 32.79 31.62 32.49 31.37 31.62 34.03 31.84 31.97 32.07 31.85 32.33

DCT [1] 30.77 33.56 31.65 30.09 30.62 30.17 30.64 33.44 31.63 31.36 31.04 31.20 31.35
DCT2net 31.60 34.31 32.57 31.04 31.69 30.99 31.36 33.96 31.81 31.95 31.97 31.89 32.10

DCT/DCT2net 31.49 34.30 32.52 30.88 31.60 30.93 31.27 33.93 31.90 31.82 31.78 31.78 32.02
Noise Level σ = 25
BM3D [7] 29.45 32.85 30.16 28.56 29.25 28.42 28.93 32.07 30.71 29.90 29.61 29.71 29.97
PEWA [11] 29.48 32.77 30.30 28.13 29.13 28.41 28.90 31.89 30.28 29.65 29.50 29.48 29.83

DnCNN [15] 30.18 33.06 30.87 29.41 30.28 29.13 29.43 32.44 30.00 30.21 30.10 30.12 30.43
LKSVD1,8,256 [22] 29.49 31.99 30.19 28.76 29.73 28.75 29.09 31.67 28.86 29.66 29.65 29.33 29.76

DCT [1] 28.09 31.18 29.02 27.30 27.71 27.50 28.10 31.05 28.69 28.94 28.72 28.70 28.75
DCT2net 29.29 32.20 30.15 28.45 29.16 28.48 28.96 31.76 29.16 29.71 29.64 29.51 29.71

DCT/DCT2net 29.16 32.26 30.08 28.32 29.08 28.42 28.88 31.75 29.29 29.56 29.41 29.41 29.64
Noise Level σ = 50
BM3D [7] 26.13 29.69 26.68 25.04 25.82 25.10 25.90 29.05 27.22 26.78 26.81 26.46 26.72
PEWA [11] 26.25 29.29 26.69 24.53 25.46 25.07 25.82 28.83 26.58 26.64 26.67 26.02 26.49

DnCNN [15] 27.03 30.00 27.32 25.70 26.78 25.87 26.48 29.39 26.22 27.20 27.24 26.90 27.18
LKSVD1,8,256 [22] 26.26 28.53 26.52 25.12 26.00 25.31 25.93 28.32 24.75 26.55 26.68 26.07 26.34

DCT [1] 24.67 27.73 25.48 23.93 24.10 24.05 24.78 27.71 24.98 25.81 26.01 25.55 25.40
DCT2net 26.20 28.78 26.59 24.86 25.54 25.15 25.91 28.55 25.53 26.62 26.70 26.27 26.39

DCT/DCT2net 26.20 29.05 26.48 24.74 25.41 25.15 25.89 28.63 25.73 26.47 26.56 26.20 26.38

TABLE IV
THE AVERAGE PSNR (DB) RESULTS OF DIFFERENT METHODS ON BSD68 CORRUPTED WITH WHITE GAUSSIAN NOISE AND σ = 15, 25 AND 50. THE

BEST TWO RESULTS ARE HIGHLIGHTED IN RED AND BLUE COLORS, RESPECTIVELY.

Methods BM3D PEWA DnCNN LKSVD1,8,256 DCT DCT2net DCT/DCT2net
σ = 15 31.07 31.04 31.72 31.33 30.32 31.09 30.97
σ = 25 28.57 28.52 29.23 28.76 27.76 28.64 28.53
σ = 50 25.62 25.53 26.23 25.68 24.86 25.68 25.59

TABLE V
RUNNING TIME (IN SECONDS) OF DIFFERENT METHODS FOR DENOISING IMAGES WITH SIZE 256×256, 512×512 AND 1,024×1,024. RUN TIMES ARE

GIVEN ON CPU (LEFT) AND GPU (RIGHT) WHEN POSSIBLE.

Image size BM3D[7] PEWA[11] DnCNN[15] LKSVD1,8,256 [22] DCT 16×16[1] DCT2net DCT/DCT2net
256×256 1.73 38.85 0.87 / 0.010 1.15 / 0.020 0.49 / 0.005 0.39 / 0.005 1.05
512×512 6.65 190.82 3.47 / 0.037 5.78 / 0.082 2.02 / 0.037 1.56 / 0.027 4.08

1,024×1,024 26.90 803.76 18.35 / 0.145 25.78 / 0.332 8.70 / 0.161 5.88 / 0.112 16.87

TABLE VI
MODEL COMPLEXITIES COMPARISON OF OUR PROPOSED METHOD WITH

TWO POPULAR NETWORKS

Methods DnCNN LKSVD1,8,256 DCT2net
Number of layers 17 5 2

Number of parameters 556,096 35,138 28,561

established methods such as BM3D as shown in Figure 12. The
use of the traditional DCT on flat areas produces, for example,
a better-looking sky than Deep K-SVD or BM3D when applied
to the Castle image. Unsurprisingly, DCT/DCT2net (based on
two layers) cannot compete with very deep neural networks
such that DnCNN [15] but it is faster (see below and Table
V).

Nevertheless, the performance has to be put in perspective
with the complexity of the model which is studied in the next
subsection.

C. Complexity and low-cost training

We want to emphasize that DCT2net is very light and fast
compared to its traditional and deep-learning-based counter-
parts. In Table VI, we reported the complexity in terms of
layers numbers and parameters. The number of parameters of
DCT2net represents only 5% of the total of parameters of
DnCNN. Moreover, the underlying parameters are the same
whatever the noise level is, which is not the case for DnCNN
or Deep K-SVD where the models have to be trained from
scratch for every noise level3

In addition to the number of parameters, the executing
time is a crucial feature of denoising algorithms. Table V is
provided for information purposes only, as the implementation,
the language used and the machine on which the code is run,

3Although solutions for handling multiple noise levels within the same
network were proposed, including a noisemap at the network entry by the
authors of [16].

11

highly influence the execution time. The CPU used is a 2,3
GHz Intel Core i7 and the GPU is a GeForce RTX 2080 Ti.
We used the IPOL implementation [29] for BM3D [7] and
the implementation provided by the authors for the others
algorithms, except for DCT [1] that we re-implemented with
Pytorch on our own, leveraging the network unfolding scheme
already used in [22]. By the way, DCT2net can be easily
adapted to this specific unfolding implementation, as there is
no difference between DCT2net and DCT denoiser, apart from
the underlying bases.

We also tried to train our network on fewer images than
the original BSD400 dataset. As our network relies on a
two-layers architecture, it is less prone to overfitting and
the learning can be performed only from several dozens of
images. With 10 and 40 images, corresponding to 10×665 and
40 × 665 overlapping patches of size 128 × 128 respectively,
our DCT/DCT2net achieves almost the same performance with
no visual difference. By way of comparison, training a model
with 40 images takes less than one hour with a GeForce RTX
2080 Ti and the average PSNR values on Set12 are 32.07dB,
29.69dB and 26.39dB, for σ = 15, 25 and 50 respectively.

VI. DISCUSSION AND CONCLUSION

DCT2net is one of the first attempts to create an inter-
pretable shallow CNN for image denoising. Sure enough, the
performance of DCT2net still falls short when compared to
state-of-the-art deep-learning-based methods such as DnCNN
[15]. However, manipulating shallow networks has much to
offer. Beyond the fact that they are extremely fast as the
number of hidden layers is limited, these networks challenge
us to think differently our approach to neural networks and en-
courage us to be more creative than the traditional ”Transform-
BatchNorm-ReLU” repeated dozens of times. With shallow
networks, the activation function must be carefully designed
to best match its purpose. Thus, during the training phase,
DCT2net uses an approximation of a hard shrinkage function
as activation function that depends on the noise level. This is,
to the best of our knowledge, the first time such a function is
used in a CNN.

Moreover, DCT2net is fully interpretable, unlike Deep K-
SVD [22] that uses a multilayer perceptron (MLP) ahead of
its sparsity-based network. This interpretability is an important
advantage, making the method more robust. At the end of the
optimization process, it is possible to check what the network
has just learned and, in the case of DCT2net, to directly display
the learned basis. By easily exploring the different steps of the
process, some usages, usually taken for granted, are disproved
by the machine. Thus, we were surprised to realize that the
aggregation step that is common in denoising methods based
on patches, is not a basic post-processing step but can be fully
integrated in the denoising process to considerably improve the
performance.

This study shows that signal processing methods such as
the popular DCT denoising algorithm can have a comeback
by improving the transform involved through deep learning
framework. We showed that fully interpretable CNNs can be
designed, for which denoising performances compare favor-
ably with state-of-the-art traditional algorithms. We hope that

our work will open the door to new architectures, more reliable
and understandable for the human brain.

APPENDIX A
WHY IS TAKING MULTIPLE THRESHOLDS USELESS ?

In the definition of DCT2net (and traditional DCT), a unique
threshold λ, dependent on the level of noise σ, is applied to
all the coefficients of the vector P−1y, corresponding to the
frequency representation of the signal y. One may wonder
what would bring a different threshold for every coefficient,
replacing the function ϕλ by ϕλ1,...,λn defined by:

∀x ∈ Rn, ϕλ1,...,λn(x) = (ϕλ1
(x1), . . . , ϕλn(xn))

As a matter of fact, defining multiple thresholds is useless
as the matrix P and the threshold values λ1, . . . , λn can be
”encoded” in a single matrix as explained by the following
result.

Proposition 1. Let λ1, . . . , λn > 0 be n values of threshold
and Λ = diag(λ1, . . . , λn).
∀P ∈ GLn(R),∀y ∈ Rn,∀σ > 0,

Pϕλ1σ,...,λnσ(P−1y) = (PΛ)ϕσ((PΛ)−1y)

Proof. The result can be easily derived thanks to the property
on hard shrinkage functions, stating that for two levels of
threshold λ and λ′, we have ϕλ(x) = λ

λ′ϕλ′(
λ′

λ x).

APPENDIX B
DIRECT TECHNIQUE TO DERIVE AN ORTHONORMAL

MATRIX FOR DCT2NET

In addition to the technique relying on the introduction of
a regularization term, we expose here a direct technique that
is based on the following lemma.

Lemma 1. Let On(R) be the set of orthonormal matrices,
GLn(R) the set of invertible matrices and S++

n the set of
symmetric positive definite matrices of size n× n. Then,

On(R) =

{
M
(√

MTM
)−1

|M ∈ GLn(R)

}
.

where
√
A designates the only matrix of S++

n such that A =√
A×

√
A (exists and is unique if A ∈ S++

n).

Proof. First of all, ∀M ∈ GLn(R), MTM ∈ S++
n . More-

over, ∀A ∈ S++
n , A is invertible (with A−1 ∈ S++

n).
Therefore, for all M ∈ GLn(R), M(

√
MTM)−1 is well

defined.
Now, by double inclusion:

(⊂): Let Q ∈ On(R). We set M = Q ∈ GLn(R).√
MTM = I is invertible and Q = M(

√
MTM)−1.

(⊃): Let M ∈ GLn(R) and Q = M(
√
MTM)−1. Us-

ing that for all A ∈ S++
n , (

√
A)−1 =

√
A−1, we have:

QQT = M(
√
MTM)−1(

√
MTM)−1MT

= M
√

(MTM)−1
√

(MTM)−1MT

= M(MTM)−1MT

= MM−1(MT)−1MT

= I

12

hence, Q ∈ On(R).

Let FP denote the network DCT2net where P is the
learned transform. The direct technique consists in solving the
following optimization problem:

M∗ = arg min
M∈GLp2 (R)

N∑
i=1

‖F
M(
√
MTM)

−1(yi, σi)− xi‖22

(9)
Similarly to the unconstrained formulation of DCT2net (4), the
optimization problem is solved by stochastic gradient descent,
leveraging the power of automatic differentiation in modern
machine learning libraries such as Pytorch. The learned trans-
form P ∗ is reconstructed at the end and is guaranteed to be
orthonormal thanks to Lemma 1:

P ∗ = M∗
(√

M∗TM∗
)−1

APPENDIX C
LINK BETWEEN ORTHONORMAL MATRICES AND

ORTHOGONAL ONES IN DCT2NET

Although often used as synonyms in the literature, a clear
distinction between orthonormal matrices and orthogonal ones
is made in this paper.

Definition 1. Let P be a matrix of size n× n.

• P is an orthonormal matrix, and we note P ∈ On(R),
if P TP = PP T = In.

• P is an orthogonal matrix, and we note P ∈ Ogn(R), if
P TP = D, with D an invertible diagonal matrix.

In other words, a matrix P is said to be orthonor-
mal if its columns c1, . . . , cn have the property: ∀i, j ∈
{1, . . . , n}, 〈ci, cj〉 = δi,j where δi,j is the Kronecker delta.
The orthogonality property is less restrictive as its columns
must satisfy ∀i, j ∈ {1, . . . , n}, 〈ci, cj〉 = 0⇔ i 6= j.

Taking P ∈ On(R) with multiple values of threshold
amounts to considering only one value of threshold with
P ∈ Ogn(R) and conversely. Indeed, let P ∈ Ogn(R). There
exists D an invertible diagonal matrix such that P TP = D.
We can write P = Q

√
D with Q = P (

√
D)−1 ∈ On(R).

Now applying Prop. 1 for λi =
√
Di,i > 0 and Q gives that

∀y ∈ Rn,∀σ > 0,

Pϕσ(P−1y) = Qϕλ1σ,...,λnσ(Q−1y)

ACKNOWLEDGMENT

This work was supported by Bpifrance agency (funding)
through the LiChIE contract. Computations were performed
on the Inria Rennes computing grid facilities partly funded by
France-BioImaging infrastructure (French National Research
Agency - ANR-10-INBS-04-07, “Investments for the future”).

We would like to thank R. Fraisse (Airbus) for fruitful
discussions.

REFERENCES

[1] G. Yu and G. Sapiro, “DCT image denoising: a simple and effective
image denoising algorithm,” in Image Processing On Line, vol. 1, pp.
292–296, 2011.

[2] H. Chipman, E. Kolaczyk, and R. McCulloch, “Adaptive Bayesian
Wavelet Shrinkage,” in Journal of the American Statistical Association,
vol. 92, no. 440, pp. 1413-1421, 1997.

[3] W. B. Pennebaker and J. L. Mitchell, “JPEG: still image data compression
standard,” Van Nostrand Reinhold, New York, 1992.

[4] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” in IEEE Transactions on Image
Processing, vol. 15, no. 12, pp. 3736-3745, 2006.

[5] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising
algorithms, with a new one,” in SIAM Journal on Multiscale Modeling
and Simulation, vol. 4, no. 2, pp. 490-530, 2005.

[6] M. Zontak and M. Irani, “Internal statistics of a single natural image,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Colorado Springs, CO, USA, 2011, pp. 977-984.

[7] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3D transform-domain collaborative filtering,” in IEEE Transactions
on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.

[8] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-
local sparse models for image restoration,” in IEEE 12th International
Conference on Computer Vision, Tokyo, Japan, 2009, pp. 2272-2279.

[9] A. Buades, M. Lebrun, and J.-M. Morel. “A Non-local Bayesian image
denoising algorithm,” in SIAM Journal on Imaging Science, vol. 6, no.
3, pp. 1665-1688, 2013.

[10] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted Nuclear Norm
Minimization with Application to Image Denoising,” in IEEE Conference
on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014,
pp. 2862-2869.

[11] C. Kervrann, “PEWA : Patch-based exponentially weighted aggregation
for image denoising,” in Neural Information Processing Systems, Mon-
treal, Canada, 2014, pp. 2150–2158.

[12] Q. Jin, I. Grama, C. Kervrann, and Q. Liu, “Non-local means and optimal
weights for noise removal,” in SIAM Journal on Imaging Sciences, vol.
10, no. 4, pp. 1878-1920, 2017.

[13] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,” in IEEE Transactions on Image Processing, vol.
15, no. 10, pp. 2866-2878, 2006.

[14] C. Kervrann and J. Boulanger, “Local adaptivity to variable smoothness
for exemplar-based image denoising and representation,” in International
Journal of Computer Vision, vol. 79, no. 1, pp. 45-69, 2008.

[15] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian
denoiser: residual learning of deep CNN for image denoising,” in IEEE
Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155, 2017.

[16] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a Fast and Flexible
Solution for CNN based Image Denoising,” in IEEE Transactions on
Image Processing, vol. 27, no. 9, pp. 4608–4622, 2018.

[17] X. Mao, C. Shen, and Y. Yang. “Image restoration using very deep con-
volutional encoder-decoder networks with symmetric skip connections,”
in Advances in Neural Information Processing Systems, pp. 2802–2810,
2016.

[18] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration,” in IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp.
1256–1272, 2017.

[19] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and Thomas S
Huang, “Non-local recurrent network for image restoration,” in Advances
in Neural Information Processing Systems, pp. 1673–1682, 2018.

[20] P. Tobias and R. Stefan, “Neural Nearest Neighbors Networks,” in
Advances in Neural Information Processing Systems (NeurIPS), 2018.

[21] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?,” in IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2392–2399, 2012.

[22] M. Scetbon, M. Elad, and P. Milanfar, “Deep K-SVD Denoising,” in
IEEE Transactions on Image Processing, vol. 30, pp. 5944 - 5955, 2021.

[23] D. Yang and J. Sun, “BM3D-Net: A Convolutional Neural Network for
Transform-Domain Collaborative Filtering,” in IEEE Signal Processing
Letters, vol. 25, no. 1, pp. 55-59, Jan. 2018.

[24] J. Canny, “A computational approach to edge detection,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6,
pp. 679–698, 1986.

[25] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss Functions for
Image Restoration With Neural Networks,” in IEEE Transactions on
Computational Imaging, vol. 3, no. 1, pp. 47-57, 2017.

13

[26] N. Pierazzo, J.-M. Morel, and G. Facciolo, “Multi-Scale DCT Denois-
ing,” in Image Processing On Line, vol. 7, pp. 288–308, 2017.

[27] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in International Confer-
ence on Computer Vision, vol. 2, pp. 416–423, 2001.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference for Learning Representations, 2015.

[29] M. Lebrun, “An Analysis and Implementation of the BM3D Image
Denoising Method,” in Image Processing On Line, vol. 2, pp. 175–213,
2012.

	I Introduction
	II From popular DCT denoising to DCT2net
	II-A Traditional DCT denoiser
	II-B DCT2net: a CNN representation of a DCT denoiser
	II-C Improvement of the transform

	III A non-intuitive learned transform
	III-A On the orthonormality of the learned transform
	III-B DCT2net does not denoise patches
	III-C Constraining DCT2net to effectively denoise patches is an unsuccessful strategy

	IV DCT2net mixed with DCT to reduce unpleasant visual artifacts
	V Experiments
	V-A Training Settings
	V-B Results on test datasets
	V-C Complexity and low-cost training

	VI Discussion and conclusion
	Appendix A: Why is taking multiple thresholds useless ?
	Appendix B: Direct technique to derive an orthonormal matrix for DCT2net
	Appendix C: Link between orthonormal matrices and orthogonal ones in DCT2net
	References

