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Entropic Unbalanced Optimal Transport :
Application to Full-Waveform Inversion and Numerical Illustration

par Miao Yu

Résumé

Lesméthodes de tomographie sismique visent à inférer les propriétés physique et reconstruire le
“modèle”, i.e. les structures de l’intérieur de la Terre, à partir des ondes mécaniques - radiées par
des sources naturelles ou anthropogéniques - enregistrées par des récepteurs en surface sous la
forme de sismogrammes. Les méthodes d’inversion de formes d’onde ont été activement déve-
loppées dans les contextes académiques et industriels et sont devenus des outils puissants pour
améliorer l’estimation des propriétés physiques et des structures d’objets géologiques depuis les
échelles globales jusqu’aux échelles locales de la géophysique d’exploration.

L’inversion de formes d’onde est formulée comme un problème d’optimisation non linéaire, as-
socié à un système d’équations aux dérivées partielles. Il est classiquement résolu par des mé-
thodes d’optimisation locale via la minimisation itérative d’une fonction coût qui mesure la di�é-
rence entre les sismogrammes observés et synthétiques, et utilisent desméthodes d’état adjoint.
Les méthodes d’état adjoint permettent le calcul des dérivées de la fonction coût par rapport aux
paramètres du modèle en combinant le champ d’onde direct et un champ d’onde adjoint gou-
verné par un système d’équations adjointes et des conditions adjointes complémentaires.

Les méthodes d’inversion de forme d’onde, qui inversent simultanément les courtes et grandes
longueurs d’onde, sou�rent malheureusement en pratique de di�cultés qui restreignent leur uti-
lisation pratique. Leurs capacités se détériorent du fait du dé�cit en basse fréquence des obser-
vations et d’un bon modèle initial. Des limitations qui sont associées à la nature mal posée du
problème inverse qui peut facilement être piégé dans un minimum local.

Une direction proposée, a�n de réduire la dépendance vis à vis du modèle initial, est de rem-
placer la fonction classique, basée sur une distance de type moindres carrés, par de nouvelles
fonctions coûts, pouvant impliquer une transformation non linéaire du signal, a�n de promouvoir
la convexité et élargir le bassin d’attraction du minimum global.

La théorie du Transport Optimal (OT) a récemment été utilisée dans le cadre des problèmes in-
verses et de l’apprentissage automatique. Le transport optimal généralise les propriétés de la
distance euclidienne au carré à l’espace des distributions de probabilité. La valeur optimale (au
carré) du transport lui-même dé�nit une distance appelée distance 2-Wasserstein. Cette quantité
est à nouveau convexe mais maintenant sur l’ensemble des distributions de probabilité.

Le Transport Optimal est déjà utilisé en FWI, cette thèse en fait partie. L’approche OT est encore
largement ouverte sur trois fronts : les formes d’onde sismiques ne sont ni positives ni de masse
totale normalisée. La convexité par rapport au modèle n’est pas garantie et �nalement le calcul
réel de la distance OT est coûteuse.

Dans ce travail, nous utilisons et combinons - d’un point de vue académique - deux extensions ré-
centes d’OT dans le contexte FWI. D’abord la distance OT “non-équilibrée”, qui dé�nit rigoureuse-
ment une distance sur l’ensemble desmesures de Radon positives contournant ainsi le problème
de normalisation des données (mais pas le problème de positivité). Puis le cadre du Transport
Optimal entropique et en particulier la variante simple et facile à calculer appelée divergence de
Sinkhorn fournissant une bonne approximation de la distance 2-Wasserstein. La divergence de
Sinkhorn peut être naturellement étendue au transport “non-équilibré”.

Nous utilisons ces outils pour construire etmettre enœuvre une fonction coûtOT “non-équilibrée”.
Nous discutons de son utilisation dans le contexte FWI au travers d’un certain nombre d’exemples
académiques et de problèmes de référence classiques.

Mots-clés

Transport-optimal entropique non-équilibré, divergence de Sinkhorn, inversion de formes d’onde,



Abstract

Seismic tomography aims at inferring physical properties and reconstructing quantitatively the
“model”, i.e. structures of the Earth interior, from the mechanical waves – radiated by natural and
man-made seismic sources – that are recorded at the surface by receivers in the form of seis-
mograms. Over the past decades, Full-Waveform inversion (FWI) has been actively developed in
both academia and industry, and has proven to be a powerful tool that dramatically improved the
capability to estimate physical properties and structures of various geological targets from global
to local scales.

Full-waveform inversion (FWI) is formulated as a nonlinear, PDE-based optimisation problem that
is classically solved by iterative minimisation of an objective function – measuring the mis�t bet-
ween synthetic andobserved seismicwaveforms–using adjoint-based solutionmethods. Adjoint-
based solution methods allow the computation of the derivative of the objective function with
respect to the model parameters by combining the synthetic forward wave�eld and an adjoint
wave�eld governed by a set of adjoint equations and adjoint subsidiary conditions.

In practice, however, solving FWI problems using local, nonlinear optimisation methods is facing
challenges that preclude routine use. The quality of the inversion, simultaneously dealing with
long and short wavelengths information, is degraded by the lack of low frequencies and also
depends on a good starting model. These limitations are linked to the ill-posed nature of the
inverse problem which can be easily trapped into a local minimum.

One proposed research direction to reduce the dependency on the initial model, is to replace the
classical least-squares based mis�t by other objective functions – possibly involving nonlinear
transformation of the seismic signal –hence promoting the convexity and trying to enlarge the
basin of attraction of the global minimum.

Optimal Transport (OT) theory has recently been use in inverse problems and machine learning.
Optimal Transport lifts the properties of the squared Euclidean distance to the space of probability
distributions. The optimal value (squared) of the transport itself de�nes a distance called the 2-
Wasserstein distance. This quantity is again convex but now on the set of probability distributions.

This trend is already active for FWI, this thesis is part of it. The OT approach is still largely open
on three fronts : Seismic Waveforms are not probability distributions, lacking positivity and nor-
malised total mass. Convexity with respect to the model is not guaranteed and �nally the actual
computation of the OT distance is not cheap.

In this work we use and combine – from an academic point of view – two recent extensions of
OT in the context of FWI. First the “unbalanced” OT distance, which rigorously de�nes a distance
on the set of positive Radon measure thus by-passing the data normalisation issue (but not the
positivity problem). Then, the entropic regularisation OT framework and in particular the simple
and easy to compute variant called Sinkhorn divergence providing a good approximation of the
2-Wasserstein distance. The Sinkhorn divergence can be naturally extended to unbalanced OT.

We use these tools to construct and implement our unbalanced OT mis�t and discuss its use
in the context of full-waveform inversion through a number of academic examples and classical
benchmark problems.
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Résumé en Français

La tomographie sismique vise à déduire des propriétés physiques et à reconstruire quantitativement des

structures de l’intérieur de la Terre à partir des ondes mécaniques qui sont rayonnées par des sources sismiques

naturelles ou artificielles, et enregistrées à la surface par des récepteurs sous la forme de sismogrammes,

également appelés traces sismiques. Il s’agit d’un problème fondamental en géophysique avec des applications

sociétales et industrielles telles que la découverte et l’exploitation de ressources énergétiques, l’investigation

de sites pour le génie civil, les gisements minéraux et l’approvisionnement en eau souterraine, l’aléa sismique

et l’atténuation des risques.

En sismologie et en géophysique d’exploration le développement de nouveau systèmes d’acquisition et de

l’utilisation de nouvelles sources (naturelles et/ou artificielles) ont favorisé des méthodes d’imagerie sismique

haute résolution exploitant des quantités et une diversité de données de plus en plus importantes. Cela

a conduit à des modèles de profondeur de résolution de plus en plus élevée à des échelles locales, allant

de dizaines de mètres à des dizaines de kilomètres, selon l’énergie de la source et la géométrie du système

d’acquisition.

Les interactions entre les ondes et le milieu géologique dépendent : de la bande de fréquence, de la durée

des sources sismiques et de leur énergie rayonnée ; des échelles d’hétérogénéité caractéristiques du milieu ; et

du trajet de propagation de l’onde entre la source et les récepteurs. L’extraction d’information à partir des

sismogrammes enregistrés n’est pas une simple tâche du fait que ces interactions sont intégrées le long de la

distance de propagation.

La méthode d’inversion de forme d’onde (FWI), ainsi que la méthode élégante et constructive de l’état

adjoint, inverse simultanément les courtes et grandes longueurs d’onde du signal et ainsi de simplifier le flux de

travail en imagerie sismique classique impliquant une étape de tomographie suivie d’une étape de migration.

la méthode FWI est formulé comme un problème d’optimisation non linéaire dans lequel l’état du systèmes

est caractérisé par le champ d’ondes dont la réalisation physique est régie, sous certaines approximations,

par un systèmes de PDEs pour une paramétrisation donnée du modèle.

Les méthodes de l’état adjoint permettent le calcul du gradient d’une fonction coût - mesurant la différence

entre les observations et les observables prédites - par rapport aux paramètres du modèle en combinant le

champ d’onde incident prédit par les équations d’onde, ainsi que les valeurs initiales et les conditions aux

limites associées, et le champ d’onde adjoint régi par un ensemble d’équations adjointes, ainsi que les valeurs

finales et conditions aux limites adjointes associées. Au cours des dernières décennies, FWI a été activement

étudié dans le monde académique et industriel, tirant parti de : (1) le développement de nouvelles méthodes
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de modélisation physique et numérique pour la propagation du champ d’ondes 3D - de l’acoustique au

viscoélastique - dans des milieux hétérogènes et complexes ; (2) l’augmentation rapide des capacités du

calcul haute performance ; (3) la quantité et la couverture croissantes des données sismiques large bande.

Dans la pratique, cependant, la résolution des problèmes FWI à l’aide de méthodes d’optimisation locales

non linéaires est confrontée à des défis qui limitent son utilisation en production: (1) la physique des ondes

sismiques est complexe et la fonction coût est peu sensible aux composants du modèle dont les nombres d’onde

sont plus petits que les longueurs d’ondes sismiques résolus par l’opérateur de propagation; (2) l’absence de

basses fréquences et le bruit dans les observations, ainsi qu’une mauvaise connaissance du modèle initial

conduisent à un problème d’inversion mal posé et détériorent sa précision.

Les données sismiques sont par nature des signaux oscillatoires, dont la composant à fréquence nulle

n’est pas enregistrée. Le problème d’optimisation étant hautement non linéaire avec une fonction coût

multimodale, un mauvais modèle cinématique initial peut piéger la solution dans des minima locaux. Dans

la forme standard de FWI, la fonction coût est basée sur la distance des moindres carrés, qui mesure des

différences locales en intensité, et est oscillante et non convexe dans les directions associées aux composantes

du modèle dont les nombres d’onde sont plus longues que la moitié de la longueur d’onde dominante. Pour

des erreurs cinématiques importantes, les algorithmes d’optimisation locale feront correspondre des phases

incorrectes entre les signaux prédits et observés, rendant la méthode sujette à ce que l’on appelle l’effet de

“cycle skipping”. L’inversion converge vers un minimum local, éventuellement éloigné du minimum global,

du fait des erreurs cinématiques introduites par le mauvais modèle de départ.

La thèse fournit un rapide aperçu des fondements de ma méthode FWI, et de l’état adjoint, avec une

illustration dans le cade de l’approximation acoustique scalaire, ainsi qu’un revue des différentes méthodes

proposées pour prévenir les problèmes associés à cette méthodes, dans l’espace des données et/ou des images.

Cette thèse est une contribution à une nouvelle approche qui se développe activement aujourd’hui pour

la formulation de nouvelles fonctions coût des les problèmes inverses (et l’apprentissage statistique) basés

sur les distances de transport optimal (OT). Les distances OT transforment la mesure intensive locale des

moindres carrés en une mesure globale, sensible a tous les défauts de correspondance en espace, temps et

amplitude. Les distances basées sur l’OT sont de nature lagrangienne et en particulier convexes par rapport

aux translations et aux dilatations. Cette propriété en fait de bons candidats pour résoudre le problème du

“cycle skipping”.

A ce jour, plusieurs familles de fonctions coût basées sur l’OT ont été proposées :

• Une première famille, proposée à l’origine par Engquist et ses collaborateurs est liée à la métrique 2-

Wasserstein. Elle est limitée à des mesures de probabilité. Les signaux sismiques nécessitent alors une

transformation et une normalisation ad-hoc pour être comparés à l’aide de cette métrique. Cela peut

altérer les informations de phase et d’amplitude, et favoriser la non-convexité par rapport aux décalages

temporels. Le calcul de la métrique 2-Wasserstein en utilisant la formulation de Monge-Ampère soit

avec des différences finies optimisées, des solveurs linéaires, ou une stratégie semi-discrète ajoute un

coût de calcul significatif à le FWI. Dans la pratique l’application de la distance 2-Wasserstein a souvent
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été restreinte au transport 1D-optimal, c’est-à-dire à la comparaison trace par trace moins couteuse.

• Une deuxième famille, proposée par Métivier et collaborateurs fait appel à la métrique 1-Wasserstein,

instance particulière de la métrique de Kantorowitch-Rubinstein, associée à la formulation duale du

problème de transport optimal. Cette métrique OT est désormais définie pour des mesures signées

et peut être utilisée pour gérer un transport optimal déséquilibré, évitant la transformation et la

normalisation ad hoc du signal. Cela conduit à un problème d’optimisation convexe sous contraintes

linéaires qui peut être résolu en utilisant des méthodes d’optimisation convexe non lisses qui permettent

de réduire significativement le coût de calcul par rapport à la métrique 2-Wasserstein. La convexité de

la fonction objectif n’est cependant pas garantie vis-à-vis des transformations en temps et en amplitude.

• Une troisième famille récemment introduite par Métivier et collaborateurs est liée à une distance de

transport optimale dans l’espace étendu du graphe des données. Faisant ainsi suite aux développements

originaux de la distance de transport Lp pour l’analyse du signal par Thorpe et collaborateurs. Des

graphes discrets des signaux prédits et observés sont comparés plutôt que les signaux eux-mêmes.

Le signal temporel est représenté, après discrètisation temporelle, par une mesure empirique dans

le domaine 2D temps-amplitude, ce qui assure la positivité des données comparées. Cette nouvelle

fonction coût montre des propriétés de convexité prometteuses en ce qui concerne les transformations

en temps et en l’amplitude. En 2D, la distance peut être calculée avec un coût supplémentaire modéré

en tant qu’un problème d’affectation linéaire. Cependant, l’extension à des dimensions de domaine

plus élevées reste à développer et à évaluer, et cela pourrait augmenter considérablement le coût de

calcul.

Dans cette thèse, nous avons développé une troisième famille de fonctions coût, continues et différentiables,

basées sut l’OT issues en combinant deux extensions récentes:

• La variante OT « déséquilibrée » introduite récemment et qui définit rigoureusement une distance sur

l’espace des mesures de Radon positives contournant ainsi le problème de la normalisation des données.

Cette classe de distance OT a été déjà fait l’objet d’une application FWI par Li et collaborateurs en

2021.

• La méthode de régularisation entropique de OT qui permet une implémentation efficace à l’aide de

l’algorithme de Sinkhorn. L’OT entropique ne définit pas réellement une distance mais fournit une

approximation du second ordre de la distance 2-Wasserstein sous la forme dite de divergence Sinkhorn,

qui réduit significativement le coût de calcul. La divergence de Sinkhorn peut être étendue à un OT

déséquilibré. Cette approche nécessite une separation du signal en partie positive et partie negative

ainsi qu’un filtrage.

Nous donnons dans ce document un aperçu du cadre théorique de ces deux extensions récentes de l’OT

conduisant à des fonctions objectifs lisses et différentiables dans le contexte de FWI, dans le contexte général

de la théorie du transport optimal, ainsi qu’une revue des différentes approches existantes. Ces extensions
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récentes sont en particulier analysées dans le contexte d’une application ) la méthode de FWI au travers

d’études paramétriques 1D et 2D. Leur implémentation, exploitant le.s propriétés de tensorisation pour

des espaces discrets cartésiens sont présentées ainsi qu’une évaluation de la complexité de l’algorithme de

Sinkohrn.

Nous illustrons numériquement l’utilisation de ces fonctions coût dans le cadre de FWI au travers de

cas académiques et d’un example de référence (Marmousi-I). Les illustrations numériques font cependant un

certain nombre d’hypothèses physiques par souci de simplicité qui doivent être gardées à l’esprit :

• Nous utilisons l’approximation acoustique classique des ondes élastiques et supposons une densité

constante dans les illustrations 2D ; dans ce cas, la vitesse du son est le seul paramètre du modèle.

Dans l’approximation acoustique, la conversion de mode n’est pas prise en compte et le milieu est

isotrope. En pratique, lorsqu’il s’agit de milieux hétérogènes, une telle approximation peut être remise

en cause Cance et Capdeville (2015)

• Nous supposons que la source sismique est ponctuelle et connue, alors qu’en pratique la source doit

être déterminée ou calibrée, généralement à partir d’une arrivée directe.

• Nous supposons que les observables sont des échantillons ponctuels de la solution de l’équation des ondes

acoustiques, plutôt que des versions filtrées (à la fois dans l’espace et dans le temps) des perturbations

de pression mesurées par les récepteurs.

• Nous ne traitons pas la problématique des bruits d’acquisition dans les observations (ex : dysfonction-

nement des détecteurs, bruit sismique ambiant, diffusion incohérente des structures qui ne sont pas

à imager). En tant que telles, les illustrations numériques 2D présentées dans ce travail doivent être

considérées comme des illustrations académiques qui doivent être étudiées plus avant et évaluées dans

des contextes plus réalistes.

Les résultats de cette étude ne permettent pas de conclure quand à l’efficacité de cette approche par rap-

port aux autres methode existantes mais met partiellement en lumière l’impact non trivial des différents

paramêtres de régularisation et de lissages intervenants dans la mise en oeuvre de ces distances OT en-

tropiques. Elle permet toutefois de confirmer leur efficacité computationelle.
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Chapter 1

Introduction

Seismic tomography aims at inferring physical properties and reconstructing quantitatively structures of the

Earth interior from the mechanical waves that are radiated by natural and man-made seismic sources and

recorded at the surface at receivers in the form of seismograms also called seismic traces. This is a fundamental

problem in geophysics with applications to societal concerns such as the discovery and exploitation of energy

resources, site investigation for civil engineering, mineral deposits and underground water supplies, seismic

hazard and risk mitigation.

With respect to other physics-based osculating methods – e.g. gravimetry, geomagnetism, and elec-

tromagnetism – seismic waves have large source-dependent penetration depths and provide high-resolution

reconstruction due to their source-dependent short wavelengths. They are today recorded with increasing

accuracy by extended arrays with a large number of receivers – seismometers, accelerometers, hydrophones,

geophones, fibre optic cables – at the surface (land and sea) or near-surface (boreholes) of the Earth.

In seismology, passive source tomography that makes use of natural seismic sources – e.g. earthquakes

radiating very energetic seismic waves – have been actively developed in the last decades, and provide

significant insights of the deep Earth interior from global to regional scales. The main limitation being the

distribution and the frequency content of the natural sources, together with the available data coverage at

these scales. In exploration geophysics, the development of controlled man-made sources –e.g. explosive and

vibro-seis sources on land, air-gun sources at sea – and of long and very long offset acquisition systems has

foster the development of high-resolution seismic imaging methods exploiting increasingly large amount of

data. This led to higher and higher resolution subsurface models at local scales, from dozens of meters to

dozens of kilometers, depending on the source energy and the acquisition system geometry.

Interactions between the waves and the geological medium depend on: the limited frequency-band, the

duration and radiated energy of the seismic sources; the characteristic heterogeneity scales of the medium;

and of the source-receiver wave propagation path and distance. Extracting information from the recorded

seismograms is not a trivial task as these interactions get integrated over the propagation distance. Usable

data in seismic tomography have long been restricted to secondary observables such as travel times, phase

speeds or waveforms – a small portion of the full recorded seismograms – by the limited capability of the

physics and numerical wave propagation modelling.
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Most discoveries related to the structure of the Earth interior – such as the Earth inner core, asthenosphere

and the major seismic discontinuities – have long been based on ray theory describing short-wavelength

energy propagation and travel-time attributes. In the ray theoretical framework, the arrival time of the

seismic phases are sensitive to the wave speeds along the ray path connecting source and receiver. Travel

time tomography (Aki et al., 1977; Luo and Schuster , 1991; Pratt and Goulty , 1991; Schuster and Quintus-

Bosz , 1993; Trampert and Woodhouse, 1995; Ekström et al., 1997; Nemeth et al., 1997; Zelt , 1999; Boschi

and Dziewonski , 2000; Rawlinson and Sambridge, 2003; Romanowicz , 2003) is a fast and cost effective tool.

It is however limited to well-isolated body-wave phases or surface waves, for which the fundamental and

higher modes are well separated. High-frequency approximation does not take into account the source

finite-frequency band, and is only applicable to smooth media, in which the characteristic scales of the

inhomogeneities are much larger than the dominant wavelength. As such the velocity structure derived from

travel-time tomography is only sub-optimal, and ray-based method can yield distorted results and fail at

caustics (Čeverný and Pšenčík , 2011).

Efforts to overcome the limitations of ray theory led to the development of finite-frequency travel-time

tomography, a semi-analytical extension of the ray-based inverse problem accounting for spatially extended,

finite-frequency 3D wave-sensitivity kernels, together with the integration of different data sets (Čeverný

and Soares, 1992; Masters et al., 1996; Friederich, 1999, 2003; Ritsema et al., 1999; Dahlen et al., 2000;

Romanowicz , 2000; Gu et al., 2001; Montelli et al., 2004; Yoshizawa and Kennett , 2004, 2005; Boschi , 2006;

Sigloch et al., 2008). In particular asymptotic finite-frequency kernels allowed to exploit weighted, low-

amplitude energy wave packets in the seismograms (Li and Romanowicz , 1996; Mégnin and Romanowicz ,

2000; Gung and Romanowicz , 2004) leading to improved global tomographic models.

In exploration seismology, more controlled setup and multifold acquisition systems have enabled accurate,

passive seismic imaging methods making use of both travel times and reflectivity energy information. However

limited offsets of the seismic reflection surveys and limited frequency band of the source make seismic imaging

poorly sensitive to intermediate wavelengths (Jannane et al., 1989).

As such, two broad regimes of wave interactions were mainly considered: a transmission regime, in which

wave interactions are dominated by the slow variations of the physical properties, and the seismic phases and

their propagation direction are slightly perturbed with a dominant forward scattering; a reflectivity regime,

in which wave interactions are dominated by the fast variations of the physical properties, and the seismic

phases and their propagation directions are strongly perturbed with a significant back scattering. However,

it is worth to note that other types of interactions such as multiple scattering may also contribute to the

recorded traces.

As one phase is mixing different interaction regimes during their propagation, the recorded seismic traces

contain both kinematic information and reflectivity information. Following the early breakthroughs by Claer-

bout (1971, 1976), two-step seismic imaging workflows orchestrating a tomography mode and a migration

mode were actively developed, assuming that reflectivity result from small perturbation in velocity under

the Born approximation, and that data – up to a first-order perturbation – linearly depend on the short
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wavelengths of the velocity model.

In tomography mode, long wavelength components of the velocity model are reconstructed using the

kinematic information of the wave propagation. In migration mode, short wavelengths images of the sub-

surface structures, which appear as a discontinuity for a given seismic signal frequency, are reconstructed

after kinematic corrections by amplitude summation and back-projection using different types of migration

methods (Claerbout and Doherty , 1972; Gazdag , 1978; Stolt , 1978; Baysal et al., 1983; Nemeth et al., 1999;

Yilmaz , 2001; Biondi and Symes, 2004) formulated in the time or the frequency domain.

The notion of full wave form inversion (FWI), which is the context of this thesis, was first introduced to

the geophysical community in the early ’80s together with the elegant and physically insightful adjoint-state

method (Bamberger et al., 1977, 1982; Lailly , 1983; Tarantola, 1984a,b, 1987, 1988). It was later extended

to the frequency domain (Pratt and Worthington, 1990; Pratt , 1990, 1999; Sirgue and Pratt , 2004).

FWI goes one-step further by inverting simultaneously the short and long wavelengths with the potential

to bridge the gap between the transmission and the reflectivity regimes, overcoming the limitations of the

conventional sequential seismic-imaging workflow involving a tomography step followed by a migration step.

FWI is formulated as a nonlinear PDE-based optimisation problem that considers the full wavefield

information to estimate the Earth interior properties. The adjoint-state methods allows the computation of

the derivative of an objective function – measuring the difference between the observations and the predicted

observables – with respect to the model parameters by combining the predicted incident wavefield governed

by the wave equations, together with appropriate initial and boundary equations, and the adjoint wavefield

governed by a set of adjoint equations, together with adjoint subsidiary terminal and boundary conditions.

In the last decades, FWI has been actively studied in both academia and industry, taking advantage of:

(1) the development of new physical and numerical modelling methods for 3D full wavefield propagation –

from acoustic to viscoelastic – in heterogeneous, complex media; (2) the rapidly increasing capability and

capacity of high-performance computing; (3) the increasing amount and coverage of broadband seismic data.

FWI has proven to be a powerful tool that dramatically improved the capability to estimate physical

properties and structures of various geological targets from global to regional scales (Komatitsch et al., 2002;

Tromp et al., 2005; Fichtner et al., 2006a,b; Tape et al., 2007; Liu and Tromp, 2008; Fichtner et al., 2008;

Fichtner , 2011; Peter et al., 2011; Fichtner et al., 2013; Zhu et al., 2015; Komatitsch et al., 2016; Tromp, 2020)

and local scales in exploration geophysics (Pratt et al., 1996; Pratt and Schipp, 1999; Virieux and Operto,

2009; Brossier et al., 2009; Plessix and Perkins, 2010; Sirgue et al., 2010; Plessix et al., 2012; Warner et al.,

2013; Stopin et al., 2014; Vigh et al., 2014; Operto et al., 2015; Shen et al., 2018; Borisov et al., 2019).

In practice, however, solving FWI problems using local, nonlinear optimisation methods is facing chal-

lenges that preclude routine use.

The physics of seismic waves is complex and the objective functional is poorly sensitive to wavenumber

components of the model that are shorter than seismic wavelengths and only through information that is

homogenised by the wave propagation operator (Cupillard and Capdeville, 2018; Capdeville and Métivier ,

2018; Hedjazian et al., 2021). Accurate and computationally efficient models of wave propagation – from
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pure acoustic waves to anisotropic viscoelasticity – together with well-defined physics-based and data-based

parametrisation of the model need to be carefully considered in the FWI, specially in the case of multi-

parameter estimation and multi-mode modelling that remain very challenging (Operto et al., 2013). Despite

the rapidly increasing computational capabilities, numerical models can only process limited frequencies in

3D. While increasing the level of parametrisation allows more realistic models, the inversion problem becomes

more ill-posed and even non-unique when the model space dimension increases.

The accuracy deteriorates from the lack of low frequencies, observation noise and poor starting models

(Gauthier et al., 1986; Mora, 1987; Luo and Schuster , 1991; Fichtner et al., 2008; Virieux et al., 2014), unless

some prior information is employed (Bunks et al., 1995). In exploration geophysics, while ultra long-offsets

allow to recover partially low frequencies, the seismic traces contain a full-variety of integrated, frequency-

dependent information associated with different resolution and interaction regimes during the propagation.

This makes the inversion problem highly nonlinear with multimodal objective function. When using local

gradient-based optimisation methods, a poor initial model can cause the nonlinear optimisation problem to be

trapped easily in a local minimum e.g. Tarantola (2005). Global optimisation methods – such as Monte Carlo

(Sambridge and Gallagher , 2011; Ray et al., 2016; Biswas and Sen, 2017; Ray et al., 2018), and Hamiltonian

Monte Carlo (Fichtner et al., 2019; Fichtner and Zunino, 2019; Gebraad et al., 2020) sampling methods,

simulated annealing (Datta and Sen, 2016), particle swarm optimisation (Chen and Wang , 2017) – could

avoid theoretically this problem and quantify the uncertainties. However, owing to the large dimension of the

model space, these methods remain currently intractable and far from reaching the computational efficiency

needed to handle realistic large-scale seismic inversion problems in exploration geophysics.

Seismic data are oscillatory signals by nature, as the zero-frequency part is not recorded (Chauris,

2021). Since the optimisation problem is highly nonlinear with multimodal objective functions a poor initial

kinematic model may cause the solution to be trapped in local minima. In the standard form of FWI, the

objective function, measuring the misfit between the predicted observables and the observations, is based

on the least-squares distance, which is oscillatory and non convex in directions associated with wavenumber

components of the model that are longer than a half the dominant wavelength. For large kinematic errors,

local optimisation algorithms will match incorrect phases between the predicted and the observed signals,

making the method prone to the so-called cycle-skipping effect. The inversion converges in a local minimum,

possibly far from the global minimum, due to kinematic errors introduced by the poor starting model.

Different strategies have been developed to mitigate the non convexity of the FWI problem and to reduce

the dependency on the initial model:

• Improve the kinematic accuracy of the initial model using for example reflection tomography(Woodward

et al., 1973) or stereo-tomography methods (Lambaré, 2008), so that the initial model is not too far

from the correct model and the kinematic errors are reduced. Following a similar approach, it has also

been proposed to enhance the tomographic components at the early iterations and gradually reduce its

weights towards convergence (Tang et al., 2013), or to further separate the gradient components based

on the scattering angle at the imaging point (Alkhalifah, 2015). Although these methods do enhance
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the low wavenumber components of the FWI gradient, they reduce the flexibility of the FWI workflow

and can be rather time consuming.

• Mitigate multi-modalities and enlarge the basin of attraction of the objective function using a data

hierarchical approach: seeding it with low frequency data only, and slowly enlarge the data bandwidth

as the iterations of the gradient-based methods progress (Pratt , 1999; Shipp and Singh, 2002; Brossier

et al., 2009; Wang and Rao, 2009). Extension to the time domain involves different temporal and/or

offset selection of the observations. The idea is to reduce the number of propagated wavelengths to be

recovered simultaneously. Among the many factors that affect in practice the success of this approach,

the lowest starting frequency is an essential one. Broadband data with high signal-to-noise ratio may

not be always available or of sufficient quality preventing reliable model reconstruction. Moreover,

smart selection of the data is required for the different inversion stages, which remains often rather

empirical. Following similar approach, low frequency data extrapolation based on the phases and

amplitudes in the observed band has also been proposed, fitting smooth non-oscillatory functions to

represent and extrapolate wave physics to the unrecorded frequency band (Li and Demanet , 2015).

Other solutions based on a reformulation of the FWI have been extensively studied in the past decades

to reduce the non-linearity of the continuous PDE-based optimisation problem and to increase the convexity

of the inversion in higher-dimensions. This has led to different extension strategies that aim to restore the

dimensional balance between the model and the data space by considering artificial, extended models through

the introduction of redundant coordinates in the model space. The common feature in all model extension

strategies is their tendency to promote the same sort of long-wavelength velocity updates as does travel time

tomography, i.e. to extract kinematic information from the data.

Enforcing a consistency condition that link the unphysical, extended model to the original physical one

is widely viewed as a reasonable way of retrieving the background model in which waves propagate. There

are at least two different ways of enforcing the consistency relation:

• A first strategy in the image (reflectivity) domain was originally developed within the framework of

wave equation migration analysis (Symes, 2008) and relies on a scale separation assumption. The

idea is to introduce additional degrees of freedom at the reflectivity level extending the model space

along subsurface offset, plane-wave ray-parameter, or time-lag (Shen et al., 2003; Shen, 2004; Sava and

Fomel , 2006; Sun and Symes, 2012; Biondi and Almondin, 2014). The extended modelling operator

is now surjective under very general conditions in 3D, and as such an extended model can always

be found to match any data, regardless of wether the background kinematic model is correct. The

construction delocalises scattering events and the extended image (reflectivity) should take on near-zero

values because the wave fields are not supposed to interact constructively. The consistency condition

is then derived by penalising the additional parameters in order to focus the energy of the extended

reflectivity image (Chauris and Noble, 2001; Biondi and Symes, 2004; Sava and Fomel , 2006; Symes,

2008; Shen and Symes, 2008; Biondi and Almondin, 2014; Cocher et al., 2017) . The main drawback is
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the additional computational cost to the already computationally demanding FWI, associated to the

construction of the extended reflectivity images. Moreover since only primary reflections are used to

generate the images, considerable preprocessing – such as removing the multiples, muting the direct

arrivals, and diving waves – is required.

• A second strategy is the source-receiver extension strategy introducing the seismic source indexes as

additional coordinates in the model parameter space (van Leeuwen and Herrmann, 2013; Warner and

Guasch, 2016; Huang et al., 2017, 2018), initially including trace-based Wiener filters to compare the

observed and modelled data and later on the whole wavefield so that the reconstructed wavefield fits

the data by design. The imaging condition involves incident and adjoint fields computed in the ex-

tended model independently for each source. The consistency condition again relies on the concept

of differential semblance optimisation (Symes and Carrazone, 1991), which is a good though not fully

compelling choice of regularisation for model-extended waveform inversion. The applicability of these

methods is by no mean feat when multiple arrivals are present in the transmission data (Plessix et al.,

2000), as well as their extension to the time domain (Aghamiry et al., 2020). Current solutions ei-

ther rely on crude approximations (Wang et al., 2016) or on advanced iterative solutions, which are

computationally demanding (Aghamiry et al., 2020)

Apart from finding an adequate initial kinematic model, another line of investigation is to reformulate

the FWI using alternative ways to measure the difference between predicted observables and observations in

an attempt to mitigate the non convexity of the objective function with respect to the model parameters and

to enlarge the basin of attraction of the global minimum. Different families of misfit function with enhanced

convexity have been proposed in the past decades:

• A first family involves transforming the signal before measuring the difference between the predicted

observable and observations in the sense of the least-squares distance. Examples of such transformation

include: reconstruction of the envelope and the unwrapped phase of the signal (Wu et al., 2014; Luo and

Wu, 2015), extraction of the instantaneous phase and enveloppe of the signal by the Hilbert transform

(Fichtner et al., 2008; Bozdaǧ et al., 2011; Alkhalifah and Choi , 2012; Luo et al., 2018), normalised

integration of the signal leading to trace cumulative distribution (Liu et al., 2012; Donno et al., 2013).

• Another family involves more global measures in replacement of the least-squares distance. Correlation-

based objective functions, promoting the minimisation of travel-time shifts, were initially proposed

(Luo and Schuster , 1991; Dahlen et al., 2000; Zhao et al., 2000; van Leeuwen and Mulder , 2008, 2010;

Choi and Alkhalifah, 2012), leading to the so-called wave equation tomography strategy. However,

crosscorrelation-based measures tend to fail in the case of multiple energetic seismic arrivals. Matching

filter-based objective functions (Luo and Sava, 2011; Warner and Guasch, 2016; Huang et al., 2017,

2018; Zhu and Fomel , 2016) were then developed to circumvent these limitations, making use of a

normalised deconvolution, i.e. a Wiener filter, of the predicted and observed seismic traces , leading to

the so-called adaptive wave inversion method. The resulting objective function penalises the energy of
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the filter away from a band-pass Dirac filter, which would have resulted from a correct model. However,

these objective functions can still suffer from cycle-skipping and from a loss of resolution in the case

of complex multi-arrival signals.

Matching-filter-based objective functions can be seen as an attempt to regularise the ill-conditioned inverse

problem by controlling the slowly decaying energy associated to multiple arrivals and by removing effects of

the small eigenvalues – associated to wavenumber components of the model that are shorter than seismic

wavelengths – of the linearised forward wave operator.

Finally, a new trend has recently emerged in inverse problems and machine learning promoting optimal

transport (OT) distances to measure the difference between the predicted observables and the observations,

defining new objective or fidelity functions. Those newly proposed methods transform the local, sample-by-

sample least-squares measure to a global one, trace by trace, or even source gather by source gather. OT-based

distances are appealing because of their Lagrangian nature and convexity with respect to translations and

dilations of a prescribed probability distribution. To date several families of OT-based functions have been

proposed:

• A first family, proposed originally by Engquist and collaborators (Engquist and Froese, 2014; Engquist

et al., 2016; Qiu et al., 2017; Yang and Engquist , 2018; Yang et al., 2018; Sun and Alkhalifah, 2019;

Engquist and Yang , 2019; Engquist et al., 2020; Engquist and Yang , 2021) is linked to the 2-Wasserstein

metric associated to balanced optimal transport, which shows nice convex properties with respect to

time shifts and rotations. The classical 2-Wasserstein distance however only applies to probability

measures. Raw oscillatory seismic signals require ad-hoc transformation and normalisation (Qiu et al.,

2017; Yang and Engquist , 2018) to be compared using this metric. This can alter the phase and ampli-

tude information, and prone non-convexity with respect to time shifts. Computing the 2-Wasserstein

metric using the Monge-Ampère formulation either with optimised finite-difference, linear solvers (Ben-

amou et al., 2014; Froese, 2012) or semi-discrete strategy (Mérigot , 2011) add significant computational

cost to the FWI and in practice application of the 2-Wasserstein distance has often been restricted

1D-optimal transport, i.e. trace-by-trace comparison, for which an analytical solution exists.

• A second family, proposed by Métivier and collaborators (Métivier et al., 2016a,b; Métivier et al.,

2016), resorts to the 1-Wasserstein metric, a particular instance of the Kantorowitch-Rubinstein met-

ric, associated to the dual formulation of the optimal transport problem. This OT metric is now

defined for signed measures and can be lifted to handle unbalanced optimal transport, avoiding ad-hoc

signal transformation and normalisation. It leads to a convex optimisation problem under linear con-

straints that can be solved using proximal splitting methods (Combettes and Pesquet , 2011), reducing

significantly the additional computational compared to the 2-Wasserstein metric. The convexity of the

objective function is however not guaranteed with regard to time and amplitude transformations.

• A third family recently introduced by Métivier et al (Métivier et al., 2018;Metivier et al., 2019) is linked

to a graph-space optimal transport distance, following original developments in transport Lp distance
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for signal analysis by Thorpe et al. (2017). Discrete graphs of the predicted and observed signals are

compared rather than the signals themselves. The time-signal is represented, after time discretisation,

by a point cloud in the 2D time-amplitude domain, which ensure the positivity of the compared data.

This new objective function shows promising convexity properties with respect to time and amplitude

transformation, and in 2D the distance can be computed with moderate additional cost as a linear

assignment problem. However extension to higher domain dimensions is still under development and

remains to be evaluated, and it might increase significantly the computational cost.

To date, OT-based misfit functions have mostly been illustrated using 2D academic and benchmark cases,

and only few of them have been practically demonstrated for field data (Poncet et al., 2018; Messud and

Sedova, 2019; Sedova et al., 2019; Górszczyk et al., 2020, 2021; Pladys et al., 2021).

In this thesis, we developed a third family of OT-based, continuous and differentiable objective functional,

derived from combining two recent extensions of OT:

• an "unbalanced" OT variant introduced in (Chizat et al., 2018a; Chizar et al., 2018; Liero et al., 2018;

Kondratyev et al., 2016a), which rigorously defines a distance on the set of positive Radon measures thus

bypassing the data normalisation issue. This class of OT distance was proposed but not investigated

in details in Li et al. (2021).

• an entropic regularisation of the OT framework and its efficient implementation using the Sinkhorn

algorithm Cuturi (2013) Peyré and Cuturi (2019). Entropic OT does not actually define a distance

but provides a second-order approximation of the 2-Wasserstein distance, and the so-called Sinkhorn

divergence variant (Genevay et al., 2018; Feydy et al., 2019) leads to a very efficient computational

implementation. The Sinkhorn divergence can be naturally extended to unbalanced OT (Séjourné

et al., 2019).

We provide an overview of the theoretical framework of these two recent OT extensions leading to smooth

and differentiable objective functions in the context of FWI. We numerically illustrate, in the 2D acoustic

case, the use of these objective functions in the context of FWI with academic examples and the Marmousi

benchmark data sets.

The numerical illustrations make however a number of physical assumptions for sake of simplicity that

need to be kept in mind:

• We use the classical acoustic approximation of elastic waves and assume constant density in the 2D

illustrations ; in this case, the sound speed velocity is the only model parameter. In the acoustic

approximation mode conversion is not considered and the medium is isotropic. In practice, when

dealing with heterogeneous media such an approximation can be challenged Cance and Capdeville

(2015)

• We assume that the seismic source is ponctual and known, whereas in practice the source needs to be

determined or calibrated, usually from a direct arrival.
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• We assume that the observables are point samples of the solution of the acoustic wave equation, rather

than filtered versions (both in space and time) of pressure disturbances as measured by the receivers.

• We do not deal with the issue of acquisition noise in the observations (e.g. malfunctioning detectors,

ambient seismic noise, incoherent scattering from structures that are not to be imaged).

As such the 2D numerical illustrations presented in this work has to be considered as academic illustrations

that need to be further investigated and evaluated in more realistic contexts.

Outline of the manuscript

Chapter 2 (Seismic Background) presents the Full-waveform Inversion (FWI) problem of reconstructing a

background model and the classical adjoint state method used to compute the gradient of the misfit function,

and provides a discussion the so-called “cycle skipping” problem in the case of the classical least-squares misfit

function.

Chapter 3 (OT Background) a general presentation of the Optimal Transport (OT) theory and of the

main contributions using OT misfit functions in the FWI context is provided.

Chapter 4 (Entropic regularization of OT and its generalizations) presents recent branches of OT. First

its entropic penalization and companion Sinhkhorn algorithm . Then its “unbalanced” extension allowing to

define a bona fide distance between positive distributions with total mass. Finally how the two extension

can be combined and how to correct the bias introduced by the entropic penalization (Sinkhorn Divergence).

Chapter 5 (The unbalanced optimal transport misfit function) summarizes the construction of the

unbalanced misfit function from the model onward. We also illustrate its properties on two simple 1D and

2D parametric models.

Chapter 6 (2D FWI numerical illustrations) illustrates numerically the use in the FWI context of the

misfit function presented in chapter 4 on synthetic data, through simple canonical models, and discusses the

results.

Chapter 7 (Conclusion) gives partial conclusions supported by this study. We also describe a possible

follow up work program.
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Chapter 2

Seismic full-waveform inversion: an overview

This section provides a brief overview of the full-waveform inversion and of the adjoint-state formulation,

following closely the reviews of Tarantola (1988); Plessix (2006); Virieux and Operto (2009); Fichtner (2011);

Virieux et al. (2014); Chauris (2021)

2.1 A general setting

In the context of full-waveform inversion, the state of the dynamical system is determined by the wavefield

u(x, t) : Ω× [0, T ]→ Rnu for some nu. We assume that u belongs to a subset of W = L2([0, T ], [L2(Ω)]nu),

The physical or computational domain Ω ⊂ Rno can be open or bounded with boundary Γ.

The evolution of the dynamical system is governed, under some physical approximation, by a state

equations, i.e. a system of partial differential equations, represented by the differential operator L, the

behavior of which depends on model parameters m:

L (u(x, t),m(x))− f(x, t) = 0, ∀x ∈ Ω, ∀t ∈ [0, T ], (2.1)

where the seismic source f : Ω× [0, T ]→ Rnp is in W, and m : Ω→M ⊂ Rnm the model parameters that

define a vector-valued field, withM the admissible model parameters space. The solution of (2.1) defines a

physical realisation of the system u(m) = u(x, t; m) for fixed model parameters m.

The differential operator L governing the wavefield propagation, i.e. from acoustic to viscoelastic, is

generally a linear operator:

L(u,m) ≡ L[m] u, (2.2)

where L [m] is the wave-propagation operator associated to the physical approximation.

When L [m] is of order Q in times, the state equations (2.2) must be complemented with Q − 1 initial

conditions at t = 0 (we assume a null initial state to simplify)

∂qu

∂tq
(x, t = 0) = 0; ∀x ∈ Ω, ∀q = 0, .., Q− 1, (2.3)
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and possibly with appropriate boundary conditions along Γ when the physical domain is bounded.

In the data space D, observations dobs are seismograms recorded at nr receivers – e.g. seismometers,

hydrophones, geophones – for a source f :

dobs : {dobs(xr, t), r = 1, . . . , nr} ; t ∈ [0, T ] , (2.4)

where xr denotes the spatial position vector of the receiver r.

The predicted observables are defined accordingly as

dcal(m) : {dcal(xr, t; m), r = 1, . . . , nr} = Ru(x, t; m); t ∈ [0, T ] , (2.5)

whereR :W → D is an extraction operator mapping the physical realisation u(m) onto the receiver positions

xr

R : u(x, t; m)→ {u(x1, t; m), . . . ,u(xnr , t; m)} . (2.6)

Note that the definition of R supposes that u(x, t; m) is continuous at points x = xr; this holds generally

when the seismic source is regular enough and when the medium m(x) is constant around the receivers

x = xr

FWI is classically formulated as a nonlinear optimisation problem associated to an objective functional

J :M→ R attached to the observations and that acts on the physical observables:

J (m) = h (dcal(m),m; dobs) = h (Ru(m),m; dobs) , (2.7)

where the functional h(·), which may depend explicitly on m, measures the difference between the observa-

tions and the predicted observables associated to the physical realisation u(m) = u(x, t; m).

2.2 The optimisation problem and its solution.

The optimisation problem can be stated as finding the optimal model parameters m? such that J (m?) is

the global minimum of J for a given set of observations:

m∗ = argmin
m∈M

J (m) where J (m) = h (dcal(m),m; dobs) . (2.8)

This is not a trivial task as J depends on m through dcal and the relation between dcal and m is given by

the state equation (2.1)-(2.2) and (2.6) and is clearly non linear.

Global optimisation methods, which imply exploring the admissible model spaceM, still remain unfea-

sible today for most seismology applications owing to the large number of model parameters.

In practice, the minimisation proceeds iteratively toward the global minimum m?, starting from a plausi-

ble initial model m0, using local optimisation approach. Gradient-based methods Nocedal and Wright (2006),
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such as steepest descent, conjugate gradient or Newton-like methods can be formulated as:

mk+1 = mk + αk gk with gk ·∇mJ (mk) < 0, (2.9)

where J (mk+1) < J (mk), and gk is the local descent direction, with ∇m(·) the gradient operator with

respect to the model parameters, known as the Fréchet derivative.

The step length αk ∈ R+, must be chosen by a line search process so that J (mk−αkgk) is minimal, and

must satisfies the strong Wolfe conditions (Wolfe, 1969, 1971), which are sufficient conditions to assure the

convergence:

J (mk + αkgk) < J (mk) + c1 αk∇m(mk) ·gk (2.10)

|∇mJ (mk + αkgk)| < c2 |∇mJ (mk) ·gk| , (2.11)

with 0 < c1 < c2 < 1. The choice of the step length αk is therefore a balance between stability and speed.

The steepest descent algorithm corresponds to gk = −∇mJ (mk) and the conjugate gradient algorithm

to gk = −∇mJ (mk)/βk gk−1, with βk ≥ 0; whereas for Newton methods gk = −H−1
J (mk)∇mJ (mk) where

the functional Hessian HJ is defined as

HJ (mk) =
∇m∂J
∂m

(mk), (2.12)

and positive definite Hessian assures J (mk+1) < J (mk).

Gradient descent typically converges slowly, which is a significant impediment for large-scale problems,

whereas the Newton method, which takes into account the curvature of the objective function, converges

faster than gradient descent methods in the neighborhood of a local minimum when the Hessian of J is close

to being positive semi-definite.

Newton method is in general much more complicated to set up than gradient descent methods and much

more computationally demanding as the Hessian of J is a large matrix, costly to store and to invert.

Practical alternatives are the quasi-Newton methods which attempt to partially invert the Hessian of J .

mk+1 = mk − αk Qk∇mJ (mk), (2.13)

where Qk ≈ H−1
J , is symmetric and positive definite.

Among the quasi-Newton methods, the l-BFGS (Nocedal , 1980; Liu and Nocedal , 1989), a limited mem-

ory implementation of the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method, leads to an efficient

iterative algorithm for computing recursively Qk involving only the functional derivative of J at iteration k

and at the l previous iterations.

The objective functional (2.7) can be relatively insensitive to wavenumber components of the model

that are shorter than the seismic wavelengths. The eigenvalues of the Hessian of J corresponding to these

components are nearly zero and the optimisation problem (2.8) becomes locally ill-posed.
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The eigenvectors associated to these eigenvalues are directions in which J (m) have very small curvature

in the vicinity of m?, the curvature being twice the second directional derivative in the eigen-directions. Small

perturbations of the data or of the model m induce modifications of J that may result in large movements

of its global minimum in problematic directions in the vicinity of the null-space of the Hessian of J .

All gradient-based minimisation algorithms critically rely on the ability to efficiently compute the direc-

tional derivative of the objective function with respect to the model parameters.

2.3 Adjoint-state methods and gradient computation

Adjoint-state methods (Lions, 1971; Chavent , 1974; Chavent et al., 1975; Bamberger et al., 1982; Tarantola,

1988; Lailly , 1983; Plessix , 2006; Fichtner , 2011) allow to compute the directional derivatives of J with

optimal efficiency.

The adjoint wave equations can be derived from the wave equations, and the properties of the adjoint

wave field, solution of the adjoint wave equations, are determined by the adjoint source, which is completely

specified by the misfit function (2.7).

Generalisation of the adjoint method allows to compute the Hessian of J , which plays a fundamental

role in Newton-like methods of non-linear minimisation.

The variation of the wave field u, a functional of m, with respect to m in the direction of δm is given

by the functional derivative, known as the Gâteau derivative:

δu = ∇mu δm, (2.14)

where ∇m (·) is the gradient operator with respect to the model parameters, e.g. the Fréchet derivative.

The corresponding functional derivative of J is given by:

δJ = ∇mJ δm = ∇mh(Ru(m),m; dobs) δm +
〈
∇uh(Ru(m),m; dobs), δu

〉
W , (2.15)

where 〈·, ·〉W denotes the inner product in W,

〈u1,u2〉W =

∫ T

0

(∫
Ω

u1(x, t)u2(x, t) dx

)
dt, (2.16)

and the chain rule is used here together with the definition of δu.

The main problem with (2.15) is that explicitly computing the full kernel of the operator ∇mu can be

highly inefficient. The adjoint-state method is a very good way to eliminate ∇muδm so that δJ can be

computed in more favorable complexity.

In order to achieve this, the state equation L [m] u − f = 0 can be linearised, assuming a sufficiently

smooth seismic source, leading to:

[
∇mL [m] δm

]
u + L [m] δu = 0 (2.17)
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which shows that δu can be eliminated by composition with L [m] on the left. The main idea of the adjoint-

state method is that a copy of L [m] δu can materialise in (2.15) provided that ∇uh is seen as the adjoint

of L [m] applied to some field λ,

[L [m]]† λ = −∇uh(Ru(m),m; dobs) = −RT∇dcalh(dcal(m),m; dobs), (2.18)

with λ naturally called the adjoint field and (2.18) the adjoint-state equation. Then,

δJ = ∇mh(Ru(m),m; dobs)δm−
〈

(L [m])† λ, δu
〉
W

= ∇mh(Ru(m),m; dobs) δm−
〈
λ,L [m]δu

〉
W

Taking into account (2.17), the first variation of J , now reads

δJ = ∇mh(Ru(m),m; dobs) δm +
〈
λ, [∇mL[m] δm]u

〉
W (2.19)

which is often much easier to compute than (2.15)

2.4 Physics approximation: the acoustic wave

Physical approximation of the dynamical system is an important component in full-waveform inversion. In

this thesis, the behaviour of the dynamical system is described by the 2D acoustic wave equation.

Linearised isotropic, inviscid fluid flow, in the physical domain Ω ⊂ R2, leads to

∂u

∂t
= − 1

ρ?(x)
∇p, ∂p

∂t
= −κ?(x)∇ ·u (2.20)

where the model parameters m ∈ D are ρ? : Ω → R+, the background mass density, and κ? : Ω → R, the

background bulk modulus with κ? = ρ?[c?]2 with c? the sound speed.

The physical state of the dynamical system is w = (u, p) ∈ W, with u : Ω× R+ → R2 the displacement

perturbation and p : Ω× R+ → R the pressure perturbation.

The behaviour of the system is described by the linear wave operator

L(m)w(x, t) =

[
∂

∂t
+ S(m)

]
w(x, t) with S(m,x) =

 0 1
ρ?(x)∇

κ?(x)∇ · 0

 (2.21)

which defines a hyperbolic system of partial differential equations, and S is anti-self-adjoint, i.e. S† = −S,

with respect to the inner product

〈w, w̃〉 =
1

2

∫
Ω

(
ρ? u · ũ +

1

κ?
p p̃

)
dx (2.22)
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in which the factor 1/2 is chosen to be consistent with the physics convention for the energy.

The acoustic wave operator can be rewritten in term of the pressure perturbation only

[Lp(m) p](x, t) =

[
1

κ?(x, t)

∂2

∂t2
−∇ ·

(
1

ρ?(x)
∇
)]

p(x, t) (2.23)

leading to the scalar state equation

[Lp(m) p](x, t)− fp(x, t) =
1

κ?(x)

∂2p(x, t)

∂t2
−∇ ·

(
1

ρ?(x)
∇p(x, t)

)
− fp(x, t) = 0 (2.24)

where fp : Ω× R+ → R is the pressure perturbation associated to a seismic source, generally considered as

a point source: fp(x, t) = s(t)δ(x− xs) where xs ∈ Ω is the position of the source and s(t) the source time

function often modelled by a causal Ricker wavelet

s(t) =
[
1− 2π2f2

0 (t− t0)2
]

e−π
2f2

0 (t−t0)2
(2.25)

where the time shift t0 assures the causality, i.e. s(t) = 0, for t < 0, and f0 is the characteristic frequency

of the wavelet.

The state equation (2.24) needs to be completed by the initial conditions

∂p

∂t
(x, 0) = ṗ0(x) = 0 and p(x, 0) = p0(x) = 0; ∀x ∈ Ω. (2.26)

When the physical domain is limited by an upper free surface Γ1, the associated boundary condition is

p|Γ1= p(x, t) = 0, ∀x ∈ Γ1, ∀t ∈ [0, T ] . (2.27)

When the physical domain is unbounded, the computational domain must be truncated by artificial

interfaces Γ2 together with an appropriate absorbing boundary condition (ABCs). The simplest form of

ABC is the zero-order absorbing boundary condition (Clayton and Engquist , 1977; Engquist and Majda,

1977; Nataf , 2013) derived from the approximation of the one-way wave equation,

∂p

∂t
(x, t) + c?(x)∇p ·n = 0, ∀x ∈ Γ2, c?(x) =

√
κ?(x)

ρ?(x)
, (2.28)

where n the unit outward normal associated to Γ2.

Designing good absorbing boundary conditions is a somewhat difficult problem that has a long history.

The currently most popular solution to this problem is to slightly expand the computational domain through

an absorbing perfectly matched layer (PML) Berenger (1994). The PML shows great superiority in the

context of acoustic wave simulation over the classical ABC mentioned above (Arbanel and Gottlieb, 1997;

Diaz and Joly , 2006; Bermúdez et al., 2006; Gao et al., 2017). In particular, convolutional implementations

of complex frequency shifter perfectly matched layer (Roden and Gedney , 2000; Festa and Vilotte, 2005;
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Komatitsch and Martin, 2007) have become widely used in acoustic wave simulation (Pasalic and McGarry ,

2010; Gao et al., 2017). Here, to simplify the presentation, we adopt the first order absorbing condition

(2.28)

This leads to the forward modelling problem

1

κ?(x)

∂2p(x, t)

∂t2
−∇ ·

(
1

ρ?(x)
∇p(x, t)

)
− fp(x, t) = 0; ∀x ∈ Ω, ∀t ∈ [0, T ]

∂p

∂t
(x, 0) = ṗ0(x) = 0 and p(x, 0) = p0(x) = 0; ∀x ∈ Ω

p(x, t) = 0; ∀x ∈ Γ1, ∀t ∈ [0, T ]

∂p

∂t
(x, t) + c?(x)∇p(x, t) ·n(x) = 0, ∀x ∈ Γ2.

(2.29)

In order to specify the adjoint acoustic wave operator L†p let consider ∀λ ∈ W†;

〈
Lp(m)p, λ

〉
W =

〈
1

κ?(x)

∂2p(x, t)

∂t2
−∇ ·

(
1

ρ?(x)
∇p(x, t)

)
, λ

〉
W

=

∫ T

0

∫
Ω

1

κ?
∂2p

∂t2
−∇ ·

(
1

ρ?
∇p
)
λ dx dt.

(2.30)

After two integration by part:

∫ T

0

∫
Ω

(
1

κ?(x)

∂2p

∂t2

)
λ dx dt =

∫ T

0

∫
Ω

(
1

κ?
∂2λ

∂t2

)
p dx dt

+

∫ T

0

[(
1

κ?
∂p

∂t

)
λ

]t=T
t=0

dx−
∫

Ω

[(
1

κ?(x)

∂λ

∂t

)
p

]t=T
t=0

dx.

(2.31)

The initial conditions (2.26) imply that the first two last terms in the right hand side can be eliminated when

imposing the terminal conditions for λ

λ(x, T ) = 0 and
∂λ

∂t
(x, T ) = 0; ∀x ∈ Ω. (2.32)

Similarly applying the divergence theorem and the identity

∇ ·
(

1

ρ?
λ∇p

)
−∇ ·

(
1

ρ?
p∇λ

)
= λ∇ ·

(
1

ρ?
∇p
)
− p∇ ·

(
1

ρ?
∇λ
)
, (2.33)

together with the boundary condition (2.27) yields to

∫ T

0

∫
Ω
∇ ·
(

1

ρ?
∇p
)
λ dx dt =

∫ T

0

∫
Ω
∇ ·
(

1

ρ?
∇λ
)
p dx dt

+

∫ T

0

∫
Γ1

(
1

ρ?
λ∇p

)
·n ds dt+

∫ T

0

∫
Γ2

(
1

ρ?
λ∇p

)
·n ds dt

−
∫ T

0

∫
Γ2

(
1

ρ?
p∇λ

)
·n ds dt,

(2.34)
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where ds is a line element and n is the unit outward-pointing normal on the boundaries.

Making use of the absorbing boundary condition (2.28)

∫ T

0

∫
Γ2

(
1

ρ?
λ∇p

)
·n ds dt = −

∫ T

0

∫
Γ2

(
1

ρ?
λ

)
1

c

∂p

∂t
dsdt

=

∫ T

0

∫
Γ2

(
1

ρ?
p

)
1

c

∂λ

∂t
−
[∫

Γ2

1

ρ?
1

c
λ p ds

]t=T
t=0

,

(2.35)

where the last term can be eliminated when imposing the initial conditions (2.26) on p and the terminal

condition (2.32) on λ.

Gathering the previous results leads

〈
1

κ?
∂2p

∂t2
−∇ ·

(
1

ρ?
∇p
)
, λ

〉
W

=

〈
1

κ?
∂2λ

∂t2
−∇ ·

(
1

ρ?
∇λ
)
, p

〉
W

+

∫ T

0

∫
Γ2

1

ρ?

(
1

c

∂λ

∂t
−∇λ ·n

)
p ds dt

−
∫ T

0

∫
Γ1

(
1

ρ?
λ∇p

)
·n ds dt.

(2.36)

The two last terms in (2.36) can be eliminated by imposing to the adjoint field the boundary condition

 λ(x, t) = 0; ∀x ∈ Γ1, ∀t ∈ [0, T ]

∂λ

∂t
− c∇λ ·n = 0; ∀x ∈ Γ2, ∀t ∈ [0, T ] .

(2.37)

Finally, the equations governing the adjoint wavefield is

1

κ?
∂2λ

∂t2
−∇ ·

(
1

ρ?
∇λ
)

= −RT∇dcalh (dcal = Rp,m; dobs) ; ∀x ∈ Ω, ∀t ∈ [0, T ]

∂λ

∂t
(x, T ) = 0 and λ(x, T ) = 0; ∀x ∈ Ω

λ|Γ1= λ(x, t) = 0; ∀x ∈ Γ1, ∀t ∈ [0, T ]

∂λ(x, t)

∂t
− c?(x)∇λ(x, t) ·n(x) = 0, ∀x ∈ Γ2, ∀t ∈ [0, T ] .

(2.38)

The adjoint state λ is solution of a backward problem where initial conditions (2.26) are replaced by the

terminal condition (2.32). Homogeneous free surface boundary condition should be the same for the forward

and adjoint wave field, whereas absorbing boundary conditions involving time derivatives needs to be prop-

erly time-reversed.

Introducing the change of variable t̃→ T−t, the adjoint problem can be rewritten in the same form as the for-

ward problem with the auxiliary unknown:λ̃ = λ(x, T−t) and the time-reverse source−RT∇dcalh(dcal; dobs)(T−

t). The result needs then to be time-reverse at each point x. This is a nice property that enable to solve the

forward and the adjoint problem with the solver.

Note however that λ is not in general the physical wave field run backward in time because of the limited

Institut de Physique du Globe de Paris Miao YU, Ph.D. Thesis, 2021



2.5 23

sampling of the receivers, and instead is introduced purely out of computational convenience.

It is interesting to notice that changing the way to measure the distance between observed and modelled

data (i.e. modifying the definition of h) only amounts to modify the source term in the adjoint equation.

2.5 A simplification: the constant density model

To go further, we will assume the following hypothesis

1. The density is assumed to be constant. More precisely, we assume that

ρ?(x) = ρ0, κ?(x) = ρ0 [c?(x)]2.

In this situation, the only parameter is c?(x), the velocity law in Ω.

2. The admissible parameter setM is a convex subset of a finite dimensional vectorial space. Practically,

we choose M scalar non negative functions ψm(x), x ∈ Ω such that
∑

m ψm(x) = 1, x ∈ Ω and we

define (0 < v− < v+ are some given parameters)

M =

{
c?(x) =

M∑
m=1

vm ψm(x), v− ≤ vm ≤ v+, ∀m = 1, ..,M

}
. (2.39)

For example, given the partition Ω =
⊕

mCm, function ψm(x) can be 1 on Cm and 0 in Ω\Cm. Other

choices are of course possible.

3. Function h(dcal,m,dobs) does not depends on m = c?:

h(dcal,m,dobs) = h̃(dcal,dobs)

In this situation, (2.19) amounts to

δJ =
〈
λ, [∇c?Lp(c?) δc?]p

〉
W . (2.40)

With these simplifications, the pressure p(x, t) is the solution of



1

[c?(x)]2
∂2p(x, t)

∂t2
−∆p(x, t) = ρ0 fp(x, t); ∀x ∈ Ω, ∀t ∈ [0, T ]

∂p

∂t
(x, 0) = 0 and p(x, 0) = 0; ∀x ∈ Ω

p(x, t) = 0; ∀x ∈ Γ1, ∀t ∈ [0, T ]

∂p(x, t)

∂t
+ c?(x)∇p(x, t) ·n(x) = 0, ∀x ∈ Γ2, ∀t ∈ [0, T ] .

(2.41)

It is possible to show that when fp(x, t) is inW and c? is inM as given in (2.39) then p is in C1([0, T ], L2(Ω))∩
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C0([0, T ], H1(Ω)). Now, we define the source term for the adjoint equation as

Sad(x, t)) = −RT∇dcal h̃ (dcal = Rp,dobs) (x, t), (2.42)

or, more explicitely,

Sad(x, t) = −
∑
r

δ(x− xr)∇dcal h̃ (dcal = Rp,dobs) (xr, t). (2.43)

The adjoint state is solution of



1

[c?(x)]2
∂2λ(x, t)

∂t2
−∆λ(x, t) = Sad(x, t) ∀x ∈ Ω, ∀t ∈ [0, T ]

∂λ

∂t
(x, T ) = 0 and λ(x, T ) = 0; ∀x ∈ Ω

λ(x, t) = 0; ∀x ∈ Γ1, ∀t ∈ [0, T ]

∂λ(x, t)

∂t
− c?(x)∇λ(x, t) ·n(x) = 0, ∀x ∈ Γ2, ∀t ∈ [0, T ] .

(2.44)

Now, let us define the M -vector v = (v1, v2, ..., vM )T and p(x, t; v), λ(x, t; v) as p(x, t), and λ(x, t), the

solutions of (2.41)-(2.44) with c?(x) =
∑

m vmψm(x) ∈M; the functional is now a simple function of vector

v and is given by

J̃(v) = h̃ (Rp(x, t; v); dobs) = h̃ ((p(x1, t; v), p(x2, t; v), . . . , p(xR, t; v)); dobs) ,

and we have, according to (2.40),

δJ̃(v) =

∫ T

0

∫
Ω
λ(x, t) ([∇c?Lp(c?) δc?]p(x, t)) dxdt.

Since

Lp(c?) =
1

[c?]2
∂2

∂t2
−∆ + δΓ2

(
1

c?
∂

∂t
− n · ∇

)
,

we have

[∇c?Lp(c?) δc?] = −2δc?

[c?]3
∂2

∂t2
− δΓ2

(
δc?

[c?]2
∂

∂t

)
,

or, when c?(x) =
∑

m vmψm(x),

[∇c?Lp(c?) δc?] = −
M∑
m=1

(
2ψmδvm

[c?]3
∂2

∂t2
+ δΓ2

ψmδvm
[c?]2

∂

∂t

)
,

so that

δJ̃(v) =
∑
m

[
−
∫ T

0

(∫
Ω
λ(x, t)

2ψm(x)

[c?(x)]3
∂2p(x, t)

∂t2
dx +

∫
Γ2

λ(x, t)
ψm(x)

[c?(x)]2
∂p(x, t)

∂t
dx

)
dt

]
δvm,
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and finally, the gradient of J̃ at point v is given by

∂J̃

∂vm
(v) = −

∫ T

0

(∫
Ω
λ(x, t)

2ψm(x)

[c?(x)]3
∂2p(x, t)

∂t2
dx +

∫
Γ2

λ(x, t)
ψm(x)

[c?(x)]2
∂p(x, t)

∂t
dx

)
dt. (2.45)

2.6 Discretisation of the problem

The discretisation of the wave equation in heterogeneous medium is a classical topic and has been investigated

for a long time. Here, we adopt the simplest method but others are possible. The starting point of the problem

is to rewrite the wave problems (2.41) and (2.44) in a weak form, i.e.

Find p, λ in C1([0, T ], H1(Ω)) ∩ C2([0, T ], L2(Ω)) such that for all pt, λt in H1(Ω),

m

(
d2p

dt2
, pt; c?

)
+ b

(
dp

dt
, pt; c?

)
+ k(p, pt) = Sp(p

t, t)

m

(
d2λh
dt2

, λt; c?
)
− b

(
dλh
dt

, λt; c?
)

+ k(λh, λ
t) = Sλ(λt, t)

p(·, t = 0) = 0,
dp

dt
(·, t = 0) = 0, λ(·, t = T ) = 0,

dλ

dt
(·, t = T ) = 0.

(2.46)

In this formulation, appears three bilinear forms and two linear forms :

• The mass bilinear form

m(u, ut; c?) =

∫
Ω

u(x)ut(x)

[c∗(x)]2
dx.

• The stiffness bilinear form

k(u, ut) =

∫
Ω

~∇u(x) · ~∇ut(x) dx.

• The boundary mass bilinear form

b(u, ut; c?) =

∫
Γ2

u|Γ2
(x)ut|Γ2

(x)

c∗(x)
dx.

• The two linear forms associated to the second terms

Sp(p
t, t) = ρ0

∫
Ω
fp(x, t) p

t(x) dx, Sλ(λt, t) =

∫
Ω
Sad(x, t)λ

t(x) dx.

This weak formulation is obtained by multiplying each wave equation by a test function then integrating the

result over Ω and finally by using the Green’s Theorem as well as the boundary conditions.

Remark: When the sources are ponctual, this formulation makes no sense since H1(Ω) contains functions

which are not continuous on Ω. This problem can be avoided by regularizing the Dirac mass, i.e. replacing

δ(x − xo) by some smooth positive function δr(x − xo) supported by a small neighborrow of x0 such that∫
Ω δr(x− xo) = 1.
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2.6.1 Semi discretisation in space

We assume that Ω is a square in the plane, Γ1 is its top horizontal line and Γ2 is composed of the three

other sides of the square boundary. We mesh Ω with a regular grid of step h. The set of the nodes of this

grid is denoted by Ñ and the associated node is xn; in order to distinguish between interior nodes and nodes

located on the boundaries we set

Ñ = N ⊕NΓ1 , N = N0 ⊕NΓ2 .

The grid is decomposed in squared cells of side h; the set of all cells is denoted by C: Ω =
⊕

C∈C C; at

each node n ∈ N we associate C[n] the set of cells whose one vertex is node n. This set is composed of

four cells for n ∈ N0, two or one cell(s) for n ∈ NΓ2 ; we define Nh
n (x), n ∈ N the only continuous function

whose restriction on each cell is linear and such that Nh
n (xn) = 1, Nh

n (xn′) = 0, n 6= n′ ∈ N ′; its easy to see

that the support of Nh
n (x) is ∪C∈C[n]C. The semi discretization of problems (2.41) and (2.44) consists in

looking for approximate solutions in Vh(Ω) ⊂ H1(Ω), the vector space spanned by the family of functions{
Nh
n (x), n ∈ N

}
p(x, t) ' ph(x, t) =

∑
n∈N

pn(t)Nh
n (x), λ(x, t) ' λh(x, t) =

∑
n∈N

λn(t)Nh
n (x);

ph and λh are defined as the solution of

Find ph, λh in C2([0, T ], Vh(Ω)) such that for all Nh
n , n ∈ N

mh

(
d2ph
dt2

, Nh
n ; c?

)
+ bh

(
dph
dt

,Nh
n ; c?

)
+ k(ph, N

h
n ) = Sp(N

h
n , t)

mh

(
d2λh
dt2

, Nh
n ; c?

)
− bh

(
dλh
dt

,Nh
n ; c?

)
+ k(λh, N

h
n ) = Sad(Nh

n , t)

ph(·, t = 0) = 0,
dph
dt

(·, t = 0) = 0, λh(·, t = T ) = 0,
dλh
dt

(·, t = T ) = 0.

To obtain this semi-discrete problem, we made the substitutions p→ ph and λ→ λh and restricted the tests

functions to element of Vh(Ω). The linear and bilinear forms have been approximated (the substrict h) by

using a quadrature rule on each cell; more precisely, we assume that the restriction of c? is constant on each

cell

c?(x) =
∑
C∈C

vc 1C(x).

We split the integrals according to

∫
Ω

u(x)Nh
n (x)

[c?(x)]2
dx =

∑
C∈C(n)

∫
C

u(x)Nh
n (x)

[c?(x)]2
dx =

∑
C∈C(n)

1

v2
c

∫
C
u(x)Nh

n (x) dx.

∫
Γ2

u|Γ2
(x)Nh

n (x)

[c?(x)]
dx =

∑
C∈C(n)

∫
Γ2∩∂C

u|Γ2
(x)Nh

n (x)

[c?(x)]
dx =

∑
C∈C(n)

1

vc

∫
Γ2∩∂C

u|Γ2
(x)Nh

n (x) dx,
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then we use the quadature rule (V(C) is the set of the four vertexes of cell C and V(∂C) is the set of the two

vertexes of ΣC = ∂C ∩ Γ2 when ΣC is not empty)

∫
C
u(x)Nh

n (x) dx ' h2

4

∑
xm∈V(C)

u(xm)Nh
n (xm) =

h2

4
u(xn),

∫
Γ2∩∂C

u|Γ2
(x)Nh

n (x) dx ' h

2

∑
xm∈V(∂C)

u|Γ2
(xm)Nh

n (xm) =
h

2
u|Γ2

(xn).

With this process, we obtain

mh(uh, N
h
n ; c?) =

(
h2

4

∑
C∈C(n)

1

v2
c

)
uh(xn), bh(uh, N

h
n ; c?) =

(
h

2

∑
C∈C(n)

1

vc

)
[uh]|Γ2

(xn).

This approximation method is known asMass Lumping; it is essential to obtain in fine a time explicit scheme.

Now, we define the two diagonal mass matrices (δmn is the Kronecker symbol)

M(v)n,m = δmn (
h2

4

∑
C∈C(n)

1

v2
c

), B(v)n,m =


δmn

(
h
2

∑
C∈C(n)

1
vc

)
, if xn ∈ NΓ2

0 if xn ∈ N0

(2.47)

and the stiffness matrix

Kn,m =

∫
Ω

~∇Nh
n (x) · ~∇Nh

m(x) dx,

which corresponds for n or m in N0 (interior nodes) to a nine points stencil for h2 times the Laplacian. Note

that the coefficients of matrix K are bounded by a pure constant, we deduce that there exists a pure non

negative number κ such that

(KU,U) ≤ κ (U,U). (2.48)

These definitions being made, the semi discrete problem can be put in the following matricial form

Find P (t) = (pn(t))n∈N and Λ(t) = (λn(t))n∈N in C2([0, T ],R#N ) such that



M(v)
d2P (t)

dt2
+ B(v)

dP (t)

dt
+ KP (t) = S̃p(t)

M(v)
d2Λ(t)

dt2
− B(v)

dΛ(t)

dt
+ KΛ(t) = S̃ad(t)

P (t = 0) = 0,
dP

dt
(t = 0) = 0, Λ(t = T ) = 0,

dΛ

dt
(t = T ) = 0.

2.6.2 Discretisation in time

We pick a time step ∆t; our aim is to compute approximations of vectors P (t) and Λ(t) at discrete instant

k∆t

P k ' P (k∆t), Λk ' Λ(k∆t), k = 0, ...,K, K∆t = T.
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For that, we introduce the finite difference operators

[∂2
∆t2U ]k =

Uk+1 − 2Uk + Uk−1

∆t2
, [∂2∆tU ]k =

Uk+1 − Uk−1

2∆t
,

and define the totally discretised problem

Find P k and Λk in R#N , k = 0, ...,K such that for all k > 0,

M(v)[∂∆t2P ]k + B(v)[∂2∆tP ]k + KP k = S̃kp = S̃p(t = k∆t)

M(v)[∂∆t2Λ]k − B(v)[∂2∆tΛ]k + KΛk = S̃ad(t = k∆t)

P 0 = 0, P 1 = 0, ΛK = 0, ΛK−1 = 0.

Note that computing P k+1 (resp. Λk−1) from P k, P k−1 (resp. Λk+1, Λk) involves the inversion of matrix

M(v) + ∆t
2 B(v); this matrix being diagonal (thanks to Mass Lumping) the scheme is explicit.

2.6.3 Stability and CFL condition.

The stability of this scheme relies on a conservation of a pseudo energy. For simplicity, we drop the source

term and consider instead initial conditions. The model problem is now

Find Uk in R#N , k = 0, ...,K such that for all k > 0,
M(v)[∂∆t2U ]k + B(v)[∂2∆tU ]k + KUk = 0

1

2
(U1 + U0) = u(0),

U1 + U0

∆t
= u(1).

We take the scalar product of the equation in Uk by [∂2∆tU ]k, we obtain

(
M(v)[∂∆t2U ]k, [∂2∆tU ]k

)
+
(
KUk, [∂2∆tU ]k

)
+
(
B(v)[∂2∆tU ]k, [∂2∆tU ]k

)
= 0. (2.49)

Let us define

V k+ 1
2 = [∂∆tU ]k+ 1

2 =
Uk+1 − Uk

∆t
, [δ∆tU ]k+ 1

2 =
Uk+1 + Uk

2
,

it is straightforward to show that

∆t
(
M(v)[∂∆t2U ]k, [∂2∆tU ]k

)
=

1

2

(
M(v)

(
[∂∆tU ]k+ 1

2 − [∂∆tU ]k−
1
2

)
,
(

[∂∆tU ]k+ 1
2 + [∂∆tU ]k−

1
2

))
=

1

2

(
M(v)V k+ 1

2 , V k+ 1
2

)
− 1

2

(
M(v)V k− 1

2 , V k− 1
2

)
,

the last line being obtained thanks to the symmetry of matrix. M(v). In the same way, we have

∆t
(
KUk, [∂2∆tU ]k

)
=

1

2

(
KUk, Uk+1

)
− 1

2

(
KUk, Uk−1

)
.
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Now, define 
Uka =

(
B(v)[∂2∆tU ]k, [∂2∆tU ]k

)
≥ 0

Ek+ 1
2 =

1

2

(
M(v)V k− 1

2 , V k− 1
2

)
+

1

2

(
KUk, Uk+1

)
,

we get from (2.49),

Ek+ 1
2 − Ek−

1
2 + ∆tUka = 0, k ≥ 1,

and by a simple summation

Ek+ 1
2 +

k∑
q=1

∆tUqa = E
1
2 . (2.50)

At this point, the problem is that the potential energy 1
2

(
KUk, Uk+1

)
might be a negative term since vector

U is not taken at the same instant. However, we can rewrite

Uk+1 = [δ∆tU ]k+ 1
2 +

∆t

2
[∂∆tU ]k+ 1

2 , Uk = [δ∆tU ]k+ 1
2 − ∆t

2
[∂∆tU ]k+ 1

2 ,

and so (due to the symmetry of Matrix K),

(
KUk, Uk+1

)
=
(
K[δ∆tU ]k+ 1

2 , [δ∆tU ]k+ 1
2

)
− ∆t2

4

(
K[∂∆tU ]k+ 1

2 , [∂∆tU ]k+ 1
2

)
.

The energy term can be rewritten

Ek+ 1
2 =

1

2

(
M̃(v)V k− 1

2 , V k− 1
2

)
+

1

2

(
Kδ∆tU

k+ 1
2 , δ∆tU

k+ 1
2

)
, M̃(v) = M(v)− ∆t2

4
K.

Our claim is that if this matrix is definite positive, i.e. ∆t2

4 K <M(v), then our explicit scheme is stable. We

can get a crude approximation of this condition using (2.48) :

∆t2

4
(KU,U) ≤ κ

∆t2v2
+

4h2

h2

v2
+

(U,U) ≤ κ

4

∆t2v2
+

h2
(M(v)U,U),

with v+ the maximum of the components of v. Finally, there exists a pure constant α2 ≤ κ
4 such that when

C = α2 ∆t2v2
+

h2
< 1 (CFL condition), (2.51)

then Ek+ 1
2 is always positive and consequently (see (2.50) and use Uqa > 0)

0 ≤ Ek+ 1
2 ≤ E

1
2 .

It is easy to see that this a priori estimation implies that for each node n

(
Uk+1
n − Ukn

)2
≤

4v2
+∆t2

h2
E

1
2 ≤ 4

α2
E

1
2 ,
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and Ukn can only grow linearly with k : the scheme is stable.

The estimates for the discretized problem with a source term is more involved and we fail to derive a

simple estimate involving some norm of the source term in this case.

2.6.4 Accuracy: the dispersion effect

Analysis of the precision of such schemes are usually done for infinite grids (i.e. Ω = R2) and constant

velocity. The scheme is simply
h2

c2
[∂2

∆t2U ]k + KUk = 0.

The scheme being invariant by time and spatial translations, there exists particular solutions of the form

(discrete plane wave solution)

Uk = U (0), eiωk∆t, with
1

h2
KU? =

4 sin2(ω∆t
2 )

c2∆t2
U?.

U? is an eigenvector of matrix K. Let xn = ihx̂+ jhẑ, we look for eigenvectors in the form

U?n = ei
~kh(ω)·xn = ei(k

h
x(ω)ih+kyh(ω)jh).

Plugging this expression, we obtain the dispersion relation of the scheme

4 sin2(ω∆t
2 )

c2∆t2
=

1

h2
K̂(khx(ω)h, khy (ω)h) ; (2.52)

K̂ is the symbol of matrix K. We skip its exact definition, but only retain that due to both the centered

nature and the consistency of the scheme, we have

1

h2
K̂(khx(ω)h, khy (ω)2) = [khx(ω)2 + khy (ω))]

(
1 +O((khx(ω)h)2) +O((khy (ω)h)2)

)
.

Now the Taylor development of sinx
x gives immediately

ω2

c2
= [khx(ω)2 + khy (ω))2]

(
1 +O((khx(ω)h)2) +O((khy (ω)h)2) +O((ω∆t)2)

)
,

and the relation of dispersion ω2

c2(k2
x+k2

y)
= 1 is asymptotically recovered: the scheme is consistent. However,

there is a second order error in space and time and this error is the cause of what is called the Pollution

effect; as the wave propagates in the medium, the errors accumulate and this, all the more since the duration

of the wave increases. It is usually mentioned that 10 points per wavelengh is enough to get a “precise”

result, let us say ε = 0.1% for some h. As the matter of fact, this result has been obtained in the seventies,

when the computers only allows for a propagation over roughly 6 wavelengh. As the errors are second order

in time and space, a propagation along 4× 6 wavelengh would induce an error of 2ε. To get the same error

we need to divide the space step h (as well as the time step for a constant CFL) by
√

2.
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The analysis of the error of the numerical schemes for wave equations in heterogeneous medium has not

been studied a lot. Usually, a thumb rule consists of choosing Fc, a cut frequency of the seismic source and

take nλ points per wavelenghts at this frequency and for the slowest velocity in the medium. The formula is

h =
v−

Fcnλ
. (2.53)

The choice of nλ depends, as we said above, on the size of the domain of propagation and on the required

accuracy.

Note that for our inverse problem, we do not have a precise knowledge of the values of the velocities

involved. The simplest way to control the dispersion effect is to find their values into a given and not too

large interval.

2.6.5 The discrete functional and its gradient

At this point we have a process to compute an approximation of ph(x, t) at nodes xn of grid and time k∆t.

Our discrete observed data set Dh,∆t are seismograms recorded at nr receivers located on the grid

dobs : {dobs(xnr , k∆t), nr ∈ Nr ⊂ N , k ∈ Kr ⊂ {1, ...,K} .} , (2.54)

The discrete predicted observables are defined as

dcal(v) :
{
P (v)knr = Rh,∆tP (v); nr ∈ Nr, k ∈ Kr

}
, (2.55)

where Rh,∆t : [R#N ]K → Dh,∆t is the discrete extraction operator.

Rh,∆t : P = (P kn )k=1,..,K,n∈N → (P kn )k∈Kr,n∈Nr (2.56)

The discrete functional is now

J (v) = h̃h,∆t (dcal = Rh,∆tP (v); dobs) .

To compute the first variation of the discrete functional J , we move parameter from v to v+δv, the solution

P = P (v) of the direct problem move to P + δP and to the first order we have

δJ (v) =
∑
k∈Kr

∑
nr∈Nr

∇calh(xnr , k∆t)δP knr =
K∑
k=1

(
RTh,∆t∇dcalh(Rh,∆tP (v); dobs), δP

k
)
. (2.57)

Now, to the first order we have
M(v)[∂∆t2δP ]k + B(v)[∂2∆tδP ]k + KδP k = − δM(v)[∂∆t2P ]k − δB(v)[∂2∆tP ]k

δP 1 = δP 0 = 0.
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We take the scalar product of each of these equations by Λk and sum over k = 1, ...,K. Thanks to time discrete

integrations by parts and using the null initial and final conditions, we get ΛK = ΛK−1 = δP 1 = δP 0 = 0



K∑
k=1

(
M(v)[∂∆t2δP ]k,Λk

)
=

K∑
k=1

(
M(v)[∂∆t2Λ]k, δP k

)
K∑
k=1

(
B(v)[∂2∆tδP ]k,Λk

)
= −

K∑
k=1

(
B(v)[∂2∆tδΛ]k, δP k

)
K∑
k=1

(
KδP k,Λk

)
=

K∑
k=1

(
KΛk, δP k

)
.

Adding the three equations and using the equations satisfied by Λk and δP k, we get

−
K∑
k=1

(
δM(v)[∂∆t2P ]k,Λk

)
−

K∑
k=1

(
δM(v)[∂∆t2P ]k,Λk

)
=

K∑
k=1

(
Skad, δP

k
)
. (2.58)

Returning back to (2.57), we get

δJh,∆t =
K∑
k=1

(
δM(v)[∂∆t2P ]k,Λk

)
+
(
δB(v)[∂2∆tP ]k,Λk

)
, (2.59)

as soon as

(Skad)n = −∇calh(xnr , k∆t) for k ∈ K, n ∈ Nr, and 0 elsewhere.

From this we deduce the expression of the gradient of Jh,∆t,

∂Jh,∆t
∂vc

=

K∑
k=1

(
∂M(v)

∂vc
[∂∆t2P ]k,Λk

)
+

(
∂B(v)

∂vc
[∂2∆tP ]k,Λk

)
. (2.60)

What we have done here is to compute the exact gradient of the discrete functional. It is nowadays

well known that discretizing directly the gradient of the continuous functional given in (2.45) by some other

consistent scheme leads to problems of coherency when using a solver.

From the very expressions of both diagonal matrices M and B (see (2.47)), it is seen that the two scalar

products in (2.60) involve only a finite number of terms at each time step k∆t. The remaining problem is

that P k is computed forward in time while Λk is computed backward in time. Storing all the P k’s is memory

consuming (solving the scheme only requires to store two successive instants). To overcome this the P k’s

are first computed for k = 1, ..,K, then we restart from the two last instants PK and PK−1 and recompute

backward in time the P k and Λk, k = K,K − 1..., 1; in order to avoid instability problems, it is nevertheless

necessary to store all the P kn at node n ∈ NΓ2 (i.e. on the absorbing boundary) since the boundary condition

is only absorbant in the forward direction.
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2.7 Algorithms and Computational framework

We have now all the ingredients for designing the algorithm for our Full Waveform Inversion method. A

simple FWI workflow can be summarised by the flow chart of Figure 2.1.

For a given seismic source and an initial model:

Figure 2.1: Flow chart of a simple full-waveform inversion workflow.

1. Solve numerically the forward problem defined by the state equations (2.1), together with appropriate

initial and boundary conditions, to retrieve a physical realisation of the incident wavefield u?(m)

2. Extract and map the physical realisation in the admissible state domainW to the receivers in the data

domain D and compute the objective function (2.7)

3. Compute the gradient of the objective function with respect to the predicted observable and map it

from the data domain to the admissible state domain to define the adjoint sources

4. Solve numerically the adjoint state equations (2.38), together with the complementary terminal condi-

tions and boundary conditions, to retrieve the adjoint wave field

5. Compute the gradient of the misfit function with respect to the model parameters m using (2.19),

which can be achieved by a local zero-lag cross correlation between the incident and the adjoint wave

fields

6. Update the model parameters m using a gradient-based algorithm

7. Iterate until a prescribed convergence criterion based on the misfit function is achieved.
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To implement this workflow, all the developments made during this thesis have been implemented within

PySIT Hewett et al. (2013); Hewett and Demanet (2020)): the Python Seismic Imaging Toolbox. PySIT

is an open Python-based platform that provides an efficient environment for incorporating new research on

relatively short time scale and for accelerating the development and the prototyping of numerical methods

in seismic imaging and full-waveform inversion.

In PySIT, the 2D acoustic wave forward and adjoint problems are solved using standard second-order finite

differences in space and time on a uniform mesh in space together with a second-order explicit integration

scheme in time with constant time step. Complex shifted frequency (CFS) PMLs are implemented following

(Sim, 2010; Grote and Sim, 2011). Thus, there is slight differences from what we have presented in the

previous subsections (first order absorbing conditions instead of PML, a different molecule for the discrete

Laplacian,..) but all the ideas remain the same: we have a CFL condition, see (2.51), and the dispersion of

the waves must be controlled using a large enough number of points per shortest wavelenghts (i.e. for the

maximum frequency of the signal and the minimum velocity).

2.8 Least-squares misfit function and the cycle-skipping problem

Since the introduction of full-waveform inversion, the most commonly used objective function measures the

L2 norm difference between the synthetic observables and the observations.

As previously seen, in the data space D, observations dobs are common shot-gather of seismograms, often

called seismic traces, recorded at nr receivers for a source s:

dsobs : {dsobs(xr, t), r = 1, . . . , nr} , t ∈ [0, T ] (2.61)

where xr denotes the spatial position vector of the receiver r

The predicted observables are defined accordingly for a physical realisation satisfying the state equation

L[m]u− f s, together with the appropriate initial and boundary conditions

dscal(m) : {dscal(xr, t; m), r = 1, . . . , nr} = Rus(x, t; m); t ∈ [0, T ] (2.62)

where R :W → D defined in (2.6) and maps the physical realisation onto the receiver positions xr.

The least-squares based objective function is defined as

J (m) = h̃(dcal(m); dobs) =
1

2

ns∑
s=1

∫ T

0
|dscal(m)− dobs|2 dt

=
1

2

ns∑
s=1

∫ T

0
|Rus(m)− dobs|2 dt

(2.63)

where ns is the number of seismic source used in the seismic survey.

Both seismic observations and predicted observables are oscillatory signals by nature. As such the least-

squares based misfit function (2.63) is oscillatory and non convex in directions associated with wavenumber
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components of the model that are longer than seismic wavelengths, i.e. longer than a half-period of the

dominant inverted wavelet. For large kinematic errors, local optimisation algorithms will match incorrect

phases between the predicted and observed signals, making the method prone to the so-called cycle-skipping

effect, i.e. the inversion converges in a local minimum possibly far from the global minimum due to poor

starting model. This can be illustrated in Figure2.2 with a very simple example where both the observed

and predicted signals are sinusoidal signals of period T .

Apart from finding a good initial kinematic model, reformulating the FWI with alternative ways to

measure the difference between predicted observable and observations to mitigate the non convexity with

respect to time and space shifts has long been recognised in the FWI community as a proxy for the convexity

of the FWI problem with respect to the model wave velocities (Jannane et al., 1989).

Figure 2.2: Simple example illustrating cycle-skipping artefact. The solid black line signal in the middle represents
the observed sinusoidal signal with period T . The upper dashed line signal represents a predicted signal, which is
simply the observed signal shifted by a time delay greater than, T/2. In this case the local optimisation problem will
update the model so that the n + 1-th phase of the predicted signal matches the n-th phase of the observed signal.
The lower dashed line signal represents a predicted signal, which is the observed signal shifted by a time delay of less
than T/2. In that case the local optimisation problem will rightly update the model such that the n-th phases of the
observed and predicted signals match. From Virieux and Operto (2009).

The monotonicity of the optimal transport with respect to time-and-space shifts and dilations, together

with improved robustness with respect to noise, has attracted the interest of the image processing and

machine learnings. Today, there is a growing interest of the FWI community to extend the optimal transport

in the context of seismic oscillatory signals for developing alternative continuous and differentiable objective

functions. In the next section, a brief overview of the theoretical optimal transport framework of the optimal

transport and of some of the current limitations in the context of FWI is provided.
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Chapter 3

A brief overview of the Optimal Transport.

This chapter provides a very brief overview of optimal transport introducing the main notions needed in this

thesis, comprehensive presentation of optimal Transport can be found for example in Santambrogio (2015)

and Peyré and Cuturi (2019), and the references therein.

Optimal transport (OT), is an old problem originally formulated by Monge (1781) as finding the optimal

way of moving soil from two places through a volume preserving transport in order to make embarkments.

Assuming constant density and no mass creation or loss during the transport, the problem is to find a

transport map that minimises the mechanical work , i.e. the mass µ(x) times the moving distance. The

later being defined commonly as a Lp transport distance with p ≥ 1.

3.1 Monge’s problem

Let consider two probability measures: a "source" µ and a "target" ν that have a compact support X ∈ Rd

and Y ∈ Rd, respectively, and the density defined with respect to the Lebesgue measure.

Mathematically, the problem is to find a transport map T̃ from X to Y such that

MP(µ, ν) : T̃ = arg inf
T∈M

∫
X
‖x− T (x)‖p dµ(x), (3.1)

where the displacement cost, i.e. the ground cost, is here defined as the Lp distance, while value function in

(3.1) is called the transport cost.

Let denote M := {T : X → Y |T#µ = ν} the set of all measure preserving maps between µ and ν with

T#µ the pushforward of the measure µ, defined as:

[T#µ] (B) = µ(T−1(B)), For any measurable subsetB ∈ Y

The Monge formulation (3.1) defines a non-convex optimisation problem with non linear constraints.

However when, for example, µ and ν have densities, then the optimal transport map T ? exist a give a natural

interpolation between the two measures. In particular for the Lp distance, the map Tt(x) = (1−t)x+t T ?(x)

describes the path of particle x and furthermore the measure of µ pushed forward by Tt is the geodesic, i.e.
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shortest path for the OT induced metric, between µ and ν.

If the map is smooth and the measures absolutely continuous, the constraint can be written as an equation

for the Jacobian of T :

µ(x) = ν (T (x)) |det∇T (x)| (3.2)

3.2 Monge Ampère and semi-discrete formulation

Since Brenier’s theorem Brenier (1991) it is known that the quadratic cost OT problem, i.e. p = 2, has nice

properties: under very general assumptions on the densities µ and ν, there exists a unique transport map,

which is characterised as the gradient of a convex potential ϕ(x) : T̃ (x) = ∇ϕ(x).

Using this result in (3.2) yields the Monge-Ampère form of Monge problem :

µ(x) = ν (∇ϕ(x))
∣∣det∇2ϕ(x)

∣∣ ∇ϕ(X) ⊂ Y (3.3)

where ϕ is a convex function.

When ν(x) := µ(x − τ), the convex potential is given analytically by ϕ(x) = 1
2‖x

2‖ − τ · x + C (this is

unique up to a constant). Plugging this in (3.1) the transport cost is ‖τ‖2, i.e quadratic with respect to the

shift τ . We will illustrate this property in chapter 5.

Several numerical methods have been proposed to discretise and solve this problem:

• A first class of methods (Benamou et al., 2014; Benamou and Duval , 2018) is based on the discretisation

of X using cartesian grids and optimised finite difference stencils. The measure µ is approximated as a

discrete measure prescribed on the grid but ν requires a given analytic function or an oracle based on

interpolation of ν, evaluated at ∇ϕ(x) in Y . This is the approach followed in particular by Engquist

and collaborators (Engquist and Froese, 2014; Engquist et al., 2016; Yang et al., 2018) in the context

of full-waveform inversion.

• A second class of methods (Mérigot and Thibert , 2021; Lévy and Schwindt , 2018) relies on a semi-

discrete approach, in which (3.3) is solved from a dual point of view. The measure ν is assumed to be

an arbitrary empirical measure, i.e. a weighted point cloud, and a continuous oracle is still needed but

only for µ.

Both approaches lead to a non-linear set of equations that can be solved with a quasi-newton solver in

O(N logN) operations, N being the number of points of the discrete measure, but with a problem-dependent

constant that may be large.

3.2.1 Kantorovich Formulation

When both probability measures µ and ν have discrete support, e.g. as in numerical approximations,

rearranging the mass using a one-to-one map T may become impossible, see Figure 3.1. For example, there
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is no transport map T transforming a single Dirac measure into the sum of two Dirac measures.

-
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Figure 3.1: Kantorovich’s transport plan between two discrete distributions of masses defined on spaces X and Y ,
allowing to distribute mass from the one location to multiple locations.

Kantorovich (1942) suggested to optimise instead a relaxed functional with respect to the transport plans:

KP(µ, ν) = inf
γ∈Π(µ,ν)

∫
X×Y

‖x− y‖p dγ(x,y). (3.4)

The set of admissible transport plans

Π(µ, ν) = {γ ∈ P(X × Y ) | PX# γ = µ, P Y# γ = ν} (3.5)

is the set of probability measures on the product space X × Y , also called “couplings”, with prescribed

marginal laws µ and ν, and PX : X × Y → X and P Y : X × Y → Y stand for the projections onto each

space.

Transport plans still transport the µ-mass repartition to the ν-mass repartition but the mass at location

x can be split and sent to different locations y, see blueFigure 3.1 for illustration. The cost is again the total

work, i.e. mass times ground cost.

For the Lp ground cost, p > 1, the Monge and the Kantorovich formulations are equivalent. They both

define the same distance on the set of probability measures: the Wasserstein distance denoted W p
p (µ, ν),

W p
p (µ, ν) = inf

γ∈Π(µ,ν)

∫
X×Y

‖x− y‖p dγ(x,y) = inf
T∈M

∫
X
‖x− T (x)‖p µ(x) dx (3.6)

and, when µ has continuous densities, the support of any optimal transport plan γ? is contained on the graph

of a function T ?. In particular this implies γ?(A,B) = µ ({x : x ∈ A, T ?(x) ∈ B}) and furthermore that the

optimal plane defines a mapping between µ and ν.
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The dual problem associated to (3.6) is formulated as

W p
p (µ, ν) = sup

φ∈C(X), ψ∈C(Y ) s.t.

φ(x)+ψ(y)≤‖x−y‖p,∀(x,y)∈X×Y.

∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y). (3.7)

When freezing ν and considering the Wasserstein distance as a function of µ, the Wasserstein distance is the

supremum of affine functions µ parameterised by (φ, ψ), and as such is convex with respect to µ. The dual

formulation (3.7) leads to a convex, linear optimisation problem with linear constraints.

Under the primal form (3.6), the optimal transport is defined for probability measures, while the dual

form (3.7) admits a notion of first variation over the space of general mesures, provided they have the same

total mass, see Santambrogio (2015) section 7.2 for details.

3.2.2 Discrete Kantorovich problem

When X and Y are discrete, i.e. X = {xi, i = 1, ..., N}, Y = {yj , j = 1, ..., N} where the xi and yj are in

Rd, µ and ν can be written as the sums of Dirac masses:

µ(x) =
N∑
i=1

µiδxi and ν(y) =
N∑
j=1

νjδyj .

The weights µi and νj have to satisfy the positivity and the total mass balance constraints:


µi > 0, νj > 0,∑
i

µi = 1 ,
∑
j

νj = 1 .
(3.8)

The set of admissible plans becomes:

Π(µ, ν) =

γ ∈ SN,N :

N∑
j=1

γij = µi,

N∑
i=1

γij = νj , ∀i, j


with

SN,N =

γij ∈ RN×N+ :
N∑
i=1

N∑
j=1

γij = 1


The marginal constraints are given by summing over lines and columns the matrix γ.

Finally the optimisation problem becomes:

min
γ∈Π(µ,ν)

N∑
i=1

N∑
j=1

cijγij , cij = |xi − yj |p (3.9)

where cij is the ground cost between xi and yj .
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Let 〈·, ·〉 denote the L2 scalar product on RN×N , (3.9) can be written in short form,

OT(µ, ν) = min
γ∈Π(µ,ν)

〈γ, c〉. (3.10)

This is a linear optimisation problem with N2 unknowns and 2 × N linear constraints. The best known

linear programming methods have cubic complexity, see remark 3.3 in Peyré and Cuturi (2019), and cannot

be practically used for realistic seismic applications.

The dual formulation associated to (3.7) yields

OT(µ, ν) = max
u∈RN , v∈RN
ui+vj≤cij

∑
i

ui µi +
∑
j

vj νj (3.11)

In the context of this thesis, the discretisation (xi, yj) is assumed to be static, and defined by the receiver

positions and by the time sampling of the acquisition, and (µ, ν) are vectors in RN with coefficients (µi)s

and (νj)s.

The convexity of the map µ ∈ RN 7→ OT(µ, ν) again follows as the supremum of affine functions, and

Danskin’s theorem provides the gradient with respect to µ

∂

∂µi
OT(µ, ν) = u?i ,

∂

∂νj
OT(µ, ν) = v?j , ∀ i, j (3.12)

where (u?, v?) are the maximisers of (3.11).

The W1 distance

The case p = 1 is special. The Kantorovitch metric is well defined but the Monge problem has no unique

solution (Kantorovich and Rubinshtein, 1957; Villani , 2009).

Assuming X = Y , the dual formulation, a particular instance of the Kantorowitch-Rubinstein theorem,

e.g. Santambrogio (2015) section 3.2.1, yields

W1(µ, ν) = sup
Lip(ψ)≤1

∫
X
ψ(x) d(µ− ν). (3.13)

where Lip(ψ) denotes the minimal Lipschitz constant for ψ.

The 1-Lipschitz functions ψ, for the ground cost associated to the `1 distance on Rd, satisfy

ψ : X → R, |ψ(x)− ψ(y)| ≤ |x− y| , ∀(x,y) ∈ X ×X

with

|x− y| =
d∑
i=1

|xi − yi| , ∀(x,y) ∈ Rd

The Kantorovitch problem can be generalised when the total mass between µ and ν is not conserved, leading
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to the generalised W̃1 distance

W1(µ, ν) = sup
Lip(ψ)≤1s.t.
‖ψ‖∞≤C

∫
X
ψ(x) d(µ− ν). (3.14)

which is a particular instance of the KR norm (Bogachev , 2007) defined in the space of Radon measures.

This can also be seen as a generalisation of the L1 norm (Lellmann et al., 2014).

The generalised W̃1 metric, also referred to as the KR distance, was first introduced in the context of full-

waveform inversion by Métivier and collaborators (Métivier et al., 2016a,b; Métivier et al., 2016).

One advantage of the KR norm in the context of FWI is that there is no need to normalise the data to be

positive and mass balanced. The KR norm has no direct connection with optimal transport when µ and ν

are no more required to be probability measures.

The problem (3.14) leads to a convex optimisation problem under linear constraints that can be solved

efficiently using proximal splitting methods (Combettes and Pesquet , 2011), reducing significantly the com-

putational cost compared to the 2-Wasserstein metric.

3.2.3 Optimal Transport distances in the context of full-waveform inversion

Classical optimal transport defines distances W p
p , p > 1 on the set of probability measures, assuming

µ > 0, ν > 0, and
∫
X
dµ =

∫
Y
dν.

where µ and ν have for support X ∈ Rd and Y ∈ Rd, respectively.

In the context of full-waveform inversion, the observables dob and dcal are oscillatory signals in time,

recorded at receiver positions over a time window. As such the positivity assumption breaks down and the

total mass conservation needs to be carefully checked in practice.

Apart from data normalisation, there exists a significant amount of work from the mathematics commu-

nity to generalise optimal transport to what is called the unbalanced optimal transport, either by penalising

the marginal constraints (Benamou, 2003; Piccoli and Rossi , 2014, 2016; Lombardi and Maitre, 2015; Gangbo

et al., 2019) or by rigorously defining an “unbalanced” distance on the set of positive Radon measures (Chizat

et al., 2018b; Chizar et al., 2018; Kondratyev et al., 2016b; Liero et al., 2018). The later will be considered in

connexion with the entropic approximation of optimal transport and the Sinkhorn divergence formulation.

Optimal transport and oscillatory signals

In the mathematics community (Ambrosio et al., 2011; Mainini , 2012) different approach have been explored

to extend optimal transport to signed measure. One approach leads to split the predicted dcal and the

observed dobs signals into a positive and a negative part and to recombine them as

d̃cal = d+
cal + d−obs d̃obs = d+

obs + d−cal (3.15)
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This amounts to compute the optimal transport distance between the positive and negative parts of dobs−dcal
leading to the objective function h(dcal, dobs = W 2

2 (d̃cal, d̃obs). This type of transformation suffers however

from a convexity loss with respect to translation and from a loss of sensibility as translation increases

(Métivier et al., 2018).

Another approach (Engquist and Froese, 2014; Engquist et al., 2016) with regard to the positivity as-

sumption is to split the predicted dcal and the observed dobs signals into a positive and a negative part, and

to scale them by their respective total mass. The objective function h(dcal, dobs) is defined as the sum of the

associated Wasserstein distances

h(dcal, dobs) = W 2
2

(
d+
cal
〈d+

cal〉
,
d−cal
〈d−cal〉

)
+W 2

2

(
d+
obs
〈d+

obs〉
,
d−obs
〈d−obs〉

)
(3.16)

where d+ = max {d, 0} and d− = max {−d, 0}.

This strategy assures convexity, but provides no guarantee that the positive part, respectively the negative

part, of the predicted signal has the same total mass than the positive part, respectively the negative part,

of the observed signal. Moreover such a transformation is not differentiable, which is problematic when

computing the Fréchet derivatives of the objective function in the context of local gradient-based optimisation

methods.

Signal transformation into probability distribution

Another approach to achieve data positivity and mass balance is to directly transform the seismic data into

probability densities by linear or nonlinear scaling functions (Qiu et al., 2017; Yang and Engquist , 2017,

2018; Engquist and Yang , 2021). The objective function is now defined as h(dcal, dobs) = W 2
2 (d̃cal, d̃obs)

A first type of transformation is the affine transformation

d̃cal =
dcal + b

〈dcal + b〉
, d̃obs =

dobs + b

〈dobs + b〉
, b > 0 (3.17)

where b is chosen such that d̃cal and d̃obs are both positive.

This kind of transformation is straightforward and ensures the total mass conservation. The convexity

of the objective with respect to translation is however affected under such transformation as the constant b

leads to the creation of artificial mass in the optimal transport.

A second class of transformation is the exponential transformation

d̃cal =
exp(b dcal)

〈exp(b dcal)〉
, d̃obs =

exp(b dobs)

〈exp(b dobs)〉
, b > 0 (3.18)

or the more stable Softplus version of the scaling,

d̃cal =
log(exp(b d̃cal) + 1)

〈log(exp(b d̃cal) + 1)〉
, d̃cal =

log(exp(b d̃cal) + 1)

〈log(exp(b d̃cal) + 1)〉
, b > 0 (3.19)

Under such transformations the influence of the high-positive values and of the high-negative values are not
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the same. To mitigate this effect, it has been proposed to add in (3.18) and (3.19) the same transformation

applied −dcal and −dobs, leading to symmetric transformations.

Other type of transformations originally proposed in the context of FWI least-squares objective function

by (Liu et al., 2012; Donno et al., 2013) are of relevance for optimal transport. They consider the normalised

cumulative distributions associated to positive transforms of dcal and dobs,

Qcal(xr, t) =

∫ t
0 d̃calc(xr, t) dt∫ T
0 d̃calc(xr, t) dt

, Qobs(xr, t) =

∫ t
0 d̃obs(xr, t) dt∫ T
0 d̃obs(xr, t) dt

(3.20)

where

d̃ =


|d| , [absolute value of the signal] ,

d2, [square of the signal] ,

E(d), [enveloppe of the signal]

(3.21)

Other strategies for full-waveform inversion

Seemingly uncorrelated with the previously mentioned strategies, Métivier et al (Métivier et al., 2016a,b;

Métivier et al., 2016) developed an approach based on a generalised dual W1 distance (3.14), see Section

3.2.2.

This is a particular instance of the KR norm defined on the space of signed measures (Bogachev , 2007;

Lellmann et al., 2014) that is lifted by adding a simple bound constraint on the dual potential to deal

with unbalanced mass transport. As such there is no need to normalised the data to be positive and mass

balanced.

The resulting objective function is differentiable and allows for simultaneous comparison of 2D and 3D

shot gathers following the numerical strategy of Métivier et al. (2016a); Métivier et al. (2016). This strategy

was shown in Métivier et al. (2018) to be equivalent to the one proposed by Mainini (2012) in the case of

the 1-Wasserstein distance.

However the KR norm has no direct connection with optimal transport once we no longer require dobs

and dcal to be probability measures (Vershik , 2013), and the convexity is not guaranteed with respect to

large translation.

A more recent strategy introduced by Métivier et al. (2018); Metivier et al. (2019) is linked to a graph-

space optimal transport distance, following the original developments of transport Lp distance for signal

analysis by Thorpe et al. (2017).

After discretisation in time, the predicted dcal and the observed dobs signals are mapped into the 2D

time-amplitude graph space as point clouds that are compared rather than the signals themselves. The

graph-space optimal transport distance can be efficiently computed as a linear assignment problem.This

signal graph representation ensures positivity.

This new objective function shows promising convexity properties with respect to translation and ampli-

tude variation. This has been demonstrated for field data applications (Górszczyk et al., 2020, 2021; Pladys
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et al., 2021). However extension to 2D and 3D source gathers remain to be evaluated as it might increase

significantly the computational cost.
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Chapter 4

Entropic regularization of OT and its

generalizations

A new class of numerical methods based on “entropic regularisation” has been introduced for OT computa-

tions in Cuturi (2013) (see also the book Peyré and Cuturi (2019)). It penalises OT(µ, ν) with the Shannon

entropy of the transport plan. A small parameter, often denoted as ε, controls this penalisation.

This research topic has been very active since for two reasons: the method comes with a simple compu-

tational method called the Sinkhorn algorithm for which there are now countless variants and acceleration

techniques; the class of problems it can applied to is very flexible and includes in particular the recent ex-

tension of OT to positive radon measure called “unbalanced” optimal transport (Chizat et al., 2018a; Chizar

et al., 2018; Liero et al., 2018). See section 4.2. We discuss its use in connection with positive/negative mass

splitting in chapter 5.

Two problems arise when using entropic OT as a proxy for the classical OT distance or unbalanced

OT distance. First, the numerical stability and cost of Sinkhorn algorithm deteriorates when ε goes to 0.

Second, the entropic OT cost is not a mathematical distance on the set of probability measure anymore. A

simple variant called Sinkhorn divergence (Genevay et al., 2018; Séjourné et al., 2019) fixes this issues. It is

presented in section 4.3 and this is the misfit used in chapter 5.

This chapter follows Vialard (2019) and Peyré and Cuturi (2019), and adopts a discrete formulation of

the Kantorovitch problem, see section 3.2.2, unless otherwise specified.

4.1 Entropic regularisation and Sinkhorn algorithm

4.1.1 Entropic regularisation

This section is presented in the discrete Kantorovich setting, section 3.2.2. The entropic regularisation of

(3.4)-(3.5) has been introduced in the OT context by Cuturi (2013), the Shannon entropy is defined as

Ent(γ)
def.
= −

∑
i,j

γij(log(γij)− 1), ∀(i, j) ∈ [1, n]× [1,m] (4.1)
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The Entropic regularised problem becomes

OTε(µ, ν) = min
γ∈Π(µ,ν)

〈γ, c〉 − εEnt(γ), (4.2)

where ε > 0 is a parameter, and c is the ground cost, with the associated pairwise cost matrix cij = c(xi,xj)

evaluated on the support of µ and ν. We will assume (as is the case in FWI) that µ and ν have the same

support, and will restrict to the quadratic ground cost (i.e. p = 2)

cij = ‖xi − xj‖2 (4.3)

Later, in the context of FWI, x = (t, x) will be a point in time t and offset x.

The problem (4.2) is an ε-strongly convex program with a unique optimal solution γ?ε . The solution γ?ε

converges to the solution with maximal entropy within the set of all optimal solutions of the Kantorovitch

problem, i.e. OTε
ε→0−−−→ OT.

Problem (4.2) can be reformulated as a projection onto the transport plans of the Gibbs kernel associated

to the ground cost with respect to the Kullback-Leibler divergence

OTε(µ, ν) = min
γ∈Π(µ,ν)

〈γ, c〉+ ε
∑
i,j

γij(log(γij)− 1),

= min
γ∈Π(µ,ν)

ε
∑
i,j

KL
(
γij | Kε

ij

)
.

(4.4)

where Kε
ij

def.
= exp {−cij/ε}, is the Gibbs kernel associated to the ground cost, and the Kullback-Leibler

divergence is defined as

KL(s | t) def.
=


s log( st )− s for(s, t) > 0,

+∞ for t = 0

(4.5)

The Kullback–Leibler divergence or relative entropy takes two arguments s and t, and is a particular instance

of statistical divergences that has nice analytical, and computational properties. As illustrated in Figure 4.1,

it is strictly convex with its minimum at s = t, e.g. t = 1 in this case.

A key insight is that, as ε increases, the entropic part of the cost function favours mass spreading

and smooths out small scale transport of the non-regularised OT. The optimal coupling becomes less and

less sparse. While this has the effect of both accelerating computational algorithms and promoting faster

convergence, it introduces a penalisation bias in the transport that tends to destroy the distance properties.

In particular, OTε(µ, µ) > 0 and µ is no more necessarily the minimum of ν 7→ OTε(µ, ν) as it may become

cheaper to diffuse from µ than not moving. This is illustrated by the 1D example in Figure 4.3.

Remark on the reference measure In order to simplify the presentation of this chapter, we used the

penalization −Ent(γij) = KL(γij |1). This is the relative entropy with respect to the uniform measure 1

(Lebesgue). A standard practice is to use KL(γij |µi νj) which yields a smaller value for the the penalization
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Figure 4.1: KL function. s 7→ KL(s|1) + 1.

and also a more accurate (in the sense of the non entropic problem) support of the entropic plan. All

formulations and algorithms are easily extended to this more general case.

4.1.2 Sinkhorn algorithm

Derivation

Problem (4.2) is a (strictly) convex program with linear (marginal) constraints. The Entropy function

x 7→ x log(x) has infinite derivative at x = 0 and acts as an optimization barrier, lifting the positivity

constraint on γij . The solution of the problem (4.2) has a specific form, which can be parameterised using

n+m variables. That parameterisation is essentially dual as γij has n×m variables but n+m constraints.

Problem (4.2) can be recast, ∀(i, j) ∈ [1, n]× [1,m], as a saddle point problem:

inf
γij

sup
ui,vj

L(γij , ui, vj) := γij cij + ε
∑
i,j

γij(log(γij)− 1)

− ui (
∑
j

γij − µi)− vj (
∑
i

γij − νj) ,
(4.6)

The Lagrangian L is convex in γ, and the first variation in γij yields:

cij + ε log(γij)− ui − vj = 0, ∀(i, j) ∈ [1, n]× [1,m] (4.7)

where {ui, i = 1, . . . , n} and {vj , j = 1, . . . ,m} are the Lagrangian multipliers associated to the n-constraints
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∑
j γij = µi and the m-constraints

∑
i γij = νj , respectively.

The unique optimal coupling (plan) for entropic regularisation has the specific form

γij = exp

{
ui + vj − cij

ε

}
= aiK

ε
ij bj , ∀(i, j) ∈ [1, n]× [1,m] (4.8)

where

Kε
ij = exp

{
−cij
ε

}
; ai = exp

{ui
ε

}
; bj = exp

{vj
ε

}
. (4.9)

with a and b being non negative vectors.

Using the marginal constraints in Π(µ, ν), it leads to the nonlinear system

ai

 m∑
j=1

Kε
ijbj

 = µi, and bj

(
n∑
i=1

Kε
jiai

)
= νj (4.10)

which involves two unknowns ai and bj

ai =
µi∑m

j=1K
ε
ij bj

and bj =
νj∑n

i=1K
ε
ji ai

(4.11)

or in compact form ( Kε = (Kε
ij)(i,j)∈[1,n]×[1,m]. is now a matrix)

a� (Kε b) = µ, and b�
(
Kε T a

)
= ν (4.12)

where � corresponds to the entry side multiplications of vectors, and the unknowns a and b are

a = µ� (Kεb), and b = ν � (Kε Ta) (4.13)

where � corresponds to the entry side divisions of vectors.

That problem is known in the numerical analysis community as the matrix scaling problem, see Nemirovski

and Rothblum (1999) and references therein. An intuitive way is to solve it iteratively. The Sinkhorn

algorithm (Sinkhorn and Knopp, 1967) constructs iteratively the solution

γ(l+1) = a(l+1) Kε b(l), γ
(l+1)
ij = a

(l+1)
i Kε

ij b
(l+1)
j . (4.14)

where a(l+1) = µ� (Kb(l)) and b(l+1) = ν � (KTa(l+1)),

a
(l+1)
i =

µi∑m
j=1K

ε
ij b

(l)
j

and b
(l+1)
j =

νj∑n
i=1K

ε
ji b

(l+1)
i

(4.15)

initialised with an arbitrary vector b0 = 1m, where 1m is the m-vector of ones..
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The convergence error at iteration l can be monitored using the residual in the Kullback-Leibler sense :

err(l)
KL =

n∑
i=1

KL

a(l+1)
i

m∑
j=1

Kε
ij b

(l)
j

∣∣∣ µi
+

m∑
j=1

KL

(
b
(l)+1
j

n∑
i=1

a
(l+1)
i Kε

ji

∣∣∣ νj) . (4.16)

Alternatively, the residual of the Kantorovich potentials in sup norm between successive iterations can also

be used

err(l)
∞ = ε

∥∥∥∥∥log

(
a

(l+1)
i

a
(l)
i

)∥∥∥∥∥
∞

+

∥∥∥∥∥log

(
b
(l+1)
j

b
(l)
j

)∥∥∥∥∥
∞

 (4.17)

The Sinkhorn algorithm converges linearly, e.g. see Peyré and Cuturi (2019) Remark 4.13, but the asymptotic

convergence rate deteriorates when ε → 0. In the case of quadratic optimal transport (4.3) the algorithm

behaves as O(1 − ε). An example borrowed from Peyré and Cuturi (2019), and reproduced in Figure 4.2,

illustrates this effect.

Figure 4.2: Influence of the regularization parameter ε on the convergence rate for (4.16) of Sinkhorn’s algorithm
(source: Peyré and Cuturi (2019))

It is also known, e.g. Léonard (2014) proposition (13), that when ε → 0, the unique minimiser γ?ε of

OTε(µ, ν) converges to the maximal entropy plan among the possible optimal transport plans of OT(µ, ν).

An example borrowed from Benamou et al. (2015), and reproduced Figure 4.3, illustrates the behaviour

of the optimal transport plan when ε decreases. The optimal entropic plan γ?ε converges to the unregularized

optimal transport plan solution of (3.10) and concentrates on the graph of the optimal transport map. The

middle line shows how the mass is progressively shifted away from the diagonal during the Sinkhorn iterations

for a fixed ε.

Numerical stability

When implementing and using the Sinkhorn algorithm it is important to keep in mind that the Kernel Kε

scales like exp−τd/ε where τ is the scale of the ground transport and d the dimension of the physical space,
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Figure 4.3: (top) The input densities p (blue) and q (curve) as functions of x and y. (center) Evolution of the
couplings γl at iteration l of the Sinkhorn algorithm. (bottom) solution γ?ε of problem (4.4) for several values of ε.
(source: Benamou et al. (2015)). The coupling are plotted in grey level in x× y space.

which depends on the data µ and ν. The numerical stability therefore depends on these parameters, and the

convergence of the Sinkhorn algorithm deteriorates when ε→ 0.

The Sinkhorn algorithm often fail to terminate as soon as some of the elements of the kernel Kε become

too negligible for the machine precision. This can then result in a matrix product Kεb or Kε Ta with very

small entries with respect to the machine precision, resulting in a division by 0 numerically in the Sinkhorn

update (4.15). Such issues can be partly resolved by carrying out computations in the log domain or using

a technique called ε-scaling, e.g. Schmitzer (2019).

Cost

Denoting by N the number of points used in the discretisation of the marginal densities,i.e. {a1, . . . ,aN}

and {b1, . . . ,bN} a naive Sinkhorn algorithm involves a O
(
niter × (n×m)2

)
complexity. where niter is the

number of Sinkhorn iterations to converge, which would be prohibitive in practical FWI applications. For

small ε the sparsity of the Kernel can be used to reduce the cost, e.g. Schmitzer (2019).

Speed-up for separable kernels

As discussed in Chizat (2017) and in Peyré and Cuturi (2019) Remark 4.15, an important particular case,

relevant in FWI applications, for which the complexity of each Sinkhorn iteration can be significantly reduced

is when each index i and j considered in the ground cost-matrix cij can be described as a d-uple taken in
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the cartesian product of d finite sets [1, n1] , . . . , [1, nd].

i = (ik)
d
k=1 , j = (jk)

d
k=1 ∈ [1, n1]× . . .× [1, nd]

When the ground cost is additive along the sub-indices, namely there exists d matrices C1, . . . ,Cd, each of

respective size n1 × n1, . . . , nd × nd such that

cij =

d∑
k=1

ckikjk ,

then the kernel appearing in the Sinkhorn iterations has a separable multiplicative structure

Kij = Πd
k=1K

k
ikjk

leading to fast and exact matrix-vector multiplication, speeding-up the Sinkhorn algorithm.

Let illustrate the Kernel separability in the context of FWI. For 2D horizontal shot-gathers, the predicted

dcal(xi, tj) = dcalij and the observed dobs(xj , tj) = dobsij are discrete realisations at the i = 1, . . . , nr receiver

spatial positions and the j = 1, . . . , nt time samples, which define on a 2D grid in the space and time domain.

As such dcal and dobs are instantiated as nr ×nt matrices, and as a consequence the Lagrange multiplier

u and v. For the quadratic cost, ciljm = |xi − xl|2 + |tj − tm|2, the associated kernel matrix yields

Kε
ilmj = exp

(
−|xi − xl|

2 + |tm − tj |2

ε

)
= Kx

il K
t
mj (4.18)

where Kx
il = exp

(
− |xi − xl|2 /ε

)
and Kt

mj = exp
(
− |tm − tj |2 /ε

)
are nr × nr and nt × nt convolution

matrices defined on the receiver and time finite sets, respectively. In this case a multiplication by Kε can be

carried out more efficiently.

Such a separable multiplicative structure allows for a fast and exact multiplication by K when applying

each 1-D convolution matrix along “slice” of the 2D shot-gather grid. Let rewrite a and b as A and B,

respectively, to emphasise the fact that the multipliers are reshaped as nr × nt matrices. Then computing

K B, which would naively require (nr × nt)2 operations with a naive implementation, can be obtained by

applying two 1-D convolutions separately, as

(
Kx
(
KtB

)T)T
= Kx B Kt

to recover a nr × nt matrix in
(
n2
r nt + nr n

2
t

)
operations instead of n2

r n
2
t operations.

The computation above is for d = 2, this is the time dimension plus a 1D offset line. For d = 3, e.g.

a 2D dimension offset, one needs to apply these very same 1-D convolutions to each slice of B, reshaped
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as a tensor of suitable size. The relative gain is even higher at
(
n2
r1 nt + n2

r2 nt + (nr1 + nr2)n2
t

)
operations

instead of n2
r1 n

2
r2 n

2
t .

In order to get a simplified view of the tensorization gain, let us assume nt ' nr := N1/d where N is the

total number of points in time × offset. Then the cost of one Sinkhorn iteration is O(N1+1/d) in place of

O(N2). Of course one still has to iterate Sinkhorn until convergence.

Acceleration by the Successive Over-Relaxation (SOR)

Since the Sinkhorn algorithm is a fixed-point algorithm, standard linear or even non linear relaxation schemes

to enhance the conditioning of the fixed-point mapping near the solution and improve the linear convergence

rate. A Successive Over-Relaxation (SOR) algorithm, with an acceleration parameter θ ∈ [1, 2] is presented

in Chizat (2017), which yields.


a

(l+1)
i = (a

(l)
i )1−θ

(
µi∑m

j=1K
ε
ij b

(l)
j

)θ

b
(l+1)
j = (b

(l)
j )1−θ

(
νj∑n

i=1K
ε
ji b

(l+1)
i

)θ (4.19)

Numerical experiments in Chizat (2017) illustrate that the convergence rate can be improved by up to orders

of magnitude when using SOR, and a detailed convergence analysis is provided, which explicit the best choice

of the acceleration parameter θ. All the experiments in thesis have been performed for θ = 1.4.

4.1.3 Computation of the Gradient

From (4.6), convex duality yields

OTε(µi, νj) = sup
(ui,vj)

=
∑
i

ui µi +
∑
j

vj νj − ε
∑
ij

aiKε(xi, yj) bj . (4.20)

As in the non entropic case the dual formulation shows that the map µ ∈ RN 7→ OTε(µ, ν) is the supremum

of linear functional, hence convex. The gradient is easily deduced as in (3.12), ∀(i, j) ∈ [1, N ]× [1, N ]

∂

∂µi
OTε(µ, ν) = u?i = ε log a?i ;

∂

∂νj
OTε(µ, ν) = v?j = ε log b?j (4.21)

where (u?, v?) are the maximisers of the entropic dual problem (4.20). .

4.2 Unbalanced Optimal Transport

In order to deal with seismic unbalanced data we want to drop the hard marginal constraints in Π(µ, ν).

Recently, a new metric on positive Radon measures has been independently introduced in Chizat et al.

(2018b), Kondratyev et al. (2016b) and Liero et al. (2018).
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It allows mass to be transported and also created or destroyed, but at a cost. The “good” additional

cost turns out to be the Kullback-Leibler divergence between the data and the marginal of the plan. The

Sinkhorn algorithm is very easily adapted to this distance that eliminates the total mass balance constraint.

4.2.1 Penalisation of the marginal constraints

The hard marginal constraints are replaced by the following soft penalisations:

OTλ(µ, ν) = min
γ

N∑
i=1

N∑
j=1

cijγij + λ1

N∑
i=1

KL

 N∑
j=1

γij

∣∣∣ µi
+ λ2

N∑
j=1

KL

(
N∑
i=1

γij

∣∣∣ νj) (4.22)

where KL is the Kullback-Leibler divergence defined in (4.5). The λ1 > 0 and λ2 > 0 are parameters quan-

tifying the cost of unbalanced mass relaxation. If µ and ν are balanced, the classical optimal transport can

be recovered by letting λ1,2 → +∞.

A nice interpretation of (4.22) is that, depending on the value of λ, available mass on both side will be

either transported or just created or destroyed locally if it is cheaper through the KL penalization of the

marginal constraint.

In the case of the quadratic ground cost (4.3), the value function OTλ is called the Gaussian Hellinger-

Kantorovich(GHK) distance, Liero et al. (2018).

4.2.2 Entropic regularised unbalanced OT problem

Entropic regularisation can also be applied to (4.22) as in (4.4), which yields:

OTε,λ(µ, ν) = min
γ∈Π(µ,ν)

εKL
(
γ
∣∣∣ Kε

)
+ λ1

N∑
i=1

KL

 N∑
j=1

γij

∣∣∣ µi
+ λ2

N∑
j=1

KL

(
N∑
i=1

γij

∣∣∣ νj) . (4.23)

The dual formulation of the entropic regularised unbalanced optimal transport problem in discrete form

follows again from convex duality

OTε,λ(µi, νj) = sup
(ui,vj)

−λ1

∑
i

(
exp

{
− ui
λ1

}
− 1

)
µi − λ2

∑
j

(
exp

{
− vj
λ2

}
− 1

)
νj

− ε
∑
ij

aiKε(xi, yj) bj .

(4.24)
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As explained in Chizat et al. (2018b) the optimal plans are again in the form (4.8) and can be computed

iteratively using the modified Sinkhorn iterations :

al+1
i =

( µi∑
j

(Kε(xi, yj)b
l
j

) λ1

λ1 + ε , ∀i,

bl+1
j =

( νj∑
i

KT
ε (xi, yj) a

l+1
i

) λ2

λ2 + ε , ∀j.

(4.25)

As before ai = exp {ui/ε} and bj = exp {vj/ε} and the Sinkhorn algorithm obeys to the same convergence

properties. In practice we use the error (4.17) to monitor the convergence.

The dual formulation (4.24) shows again that the map µi 7→ OTε,λ(µi, νj) is concave. Applying Danskin’s

theorem once more the differentials of OTε,λ(µi, νj) with respect to µi and νi can be directly obtained as the

differentials with respect to µi and νi of the right hand side of (4.24) for the optimal (u?i , v
?
i )s:

∂

∂µi
OTε,λ(µ, ν) = −λ1

(
exp

{
−u?i
λ1

}
− 1

)
= −λ1

(
a
−ε/λ1

i − 1
)

∂

∂νj
OTε,λ(µ, ν) = −λ2

(
exp

{−v?j
λ1

}
− 1

)
= −λ2

(
b
−ε/λ2

i − 1
)
.

(4.26)

4.3 Sinkhorn divergence

4.3.1 Sinkhorn divergence for balanced OT problems

As previously seen in Section 4.1, the entropic regularised optimal transport problem (4.4) can be efficiently

solved with the Sinkhorn algorithm as long as the regularisation parameter ε is large enough. The larger

the ε is, the faster the convergence of the iterative Sinkhorn algorithm. The entropic regularisation however

introduces a bias increasing with ε.

In the continuous setting asymptotic results by Conforti and Tamanini (2021) and Pal (2019) on OTε

when ε→ 0, reminding that OTε → OT when ε→ 0, offer a better understanding of the entropic bias

OTε(µ, ν)−OT(µ, ν) ' 2 ε
√

2π ε+ ε [KL (µ | ν) +KL (ν | ν)] +O(ε2). (4.27)

This result holds for measures (µ, ν) which have smooth densities with respect to the Lebesgue measure, still

denoted here as µ, ν by abuse of notation.

The definition of the KL divergence in (4.5) is also an abuse of notation,

KL (µ | ν)
def.
=


∫

µ(x)

(
log

{
µ(x)

ν(x)

}
− 1

)
dx if µ absolutely continuous w.r.t ν.

+∞ otherwise
(4.28)

It is worth to note that the densities µ and ν are decoupled in the first-order term. A simple idea to remove
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these terms is to use the symmetric entropic OT between the marginals and to remove them, keeping in

mind that OT(µ, µ) = 0

Sε(µ, ν) = OTε(µ, ν)− 1

2
{OTε(µ, µ) + OTε(ν, ν)} (4.29)

which is, formally at least, a second order approximation of OT(µ, ν) with respect to ε.

This formulation has been studied under the name “Sinkhorn divergence” in Genevay et al. (2018); Feydy

et al. (2019). It does not define a distance but has nice properties. We immediately see that Sε(µ, µ) = 0 for

any ε > 0, a property that was lost for OTε. It is also proven in Séjourné et al. (2019); Feydy et al. (2019)

that it is symmetric in µ and ν, and remains positive and convex with respect to µ and ν. It also metrises

the weak convergence of measures.

The Sinkhorn divergence (4.29) can be computed as well as its gradient just by applying the Sinkhorn

algorithm three times. For small ε, The Sinkhorn divergence Sε for the quadratic ground cost is therefore a

better approximation of OT0 = W 2
2 than OTε, inheriting the good properties of Entropic Optimal Transport:

strict convexity, smoothness and the Sinkhorn computational algorithm.

4.3.2 Sinkhorn divergence for unbalanced OT problem

The Sinkhorn divergence has a natural extension to the unbalanced case (Séjourné et al., 2019), yielding

Sε,λ(µ, ν) = OTε,λ(µ, ν)− 1

2
{OTε,λ(µ, µ) + OTε,λ(ν, ν)}+

ε

2
(m(µ)−m(ν))2 . (4.30)

where OTε,λ(µ, ν) is the entropic regularised unbalanced optimal transport problem defined in (4.23), while

m(µ) =
∑

i µi and m(ν) =
∑

j νj are the total mass of µ and ν, respectively, which can be different.

It is proved in Séjourné et al. (2019) that Sε,λ(µ, ν) is again positive, definite, and convex. A comparison

between OTε,λ(µ, ν) with Sε,λ(µ, ν) is illustrated using 1D wavelets in the next chapter.

4.3.3 Computing the unbalanced Sinkhorn divergence and its gradient

In order to solve problem (4.30), let first look at OTε,λ(µ, ν). Following section 4.2.2, OTε,λ(µ, ν) can be

solved as a fixed-point problem with the Sinkhorn iterations 4.25. For the symmetric case OTε,λ(µ, µ), the

Sinkhorn algorithm simplifies Séjourné et al. (2019).

The dual problem becomes a concave maximisation problem, symmetric with respect to a unique unknown

vector ui:

OTε,λ(µi, µj) = sup
(ui

−2λ
∑
i

(
exp

{
− ui
λ1

}
− 1

)
µi − ε

∑
ij

aiKε(xi, yj)Uj . (4.31)

where ai = exp (−ui/ε). At iteration l + 1, the optimal vector al+1
i can be computed as

al+1
i =

(
µi∑

jKε(xi, xj)alj

) λ

λ+ ε
(4.32)
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As in (4.26), the first variation of OTε,λ(µ, µ) with respect to µ can be directly obtained from the dual

formula (4.31):
∂

∂µi
OTε,λ(µ, µ) = −2λ

(
a
−ε/λ
i − 1

)
. (4.33)

The Sinkhorn divergence Sε,λ can be computed using the Sinkhorn iterations (4.25) to solve the standard

problem OTε,λ(µ, ν) and using the Sinkhorn iterations (4.32) to solve the symmetric problem OTε,λ(µ, µ)

and OTε,λ(ν, ν).

The gradient of the unbalanced Sinkhorn divergence Sε,λ(µi, νj) with respect to µi is finally given by:

∂

∂µi
Sε,λ(µ, ν) =

∂

∂µi
OTε,λ(µ, ν)− 1

2

∂

∂µi
OTε,λ(µ, µ) + ε (m(µ)−m(ν)) (4.34)

where the first term is given by (4.26) and the second term by (4.33).

4.4 Metric and domain scaling

4.4.1 A 2D illustration of metric scaling

In the context of FWI, the data are just pixelized images to be compared. Using a local misfit function (L2

for instance) the relative size of the domain in time and offset does not impact the minimization. This is not

the case when using a non local OT misfit.

When comparing seismograms, a natural question is how to measure the displacement of mass in time

and offset space and how to choose the dimensions of along these two axis. This is equivalent to use a

normalized domain [0, 1]2 and scaling the ground cost (4.3) (x = (t, x)) We introduce a rescaled cost

cijml = cos2(θM ) |xi − xm|2 + sin2(θM ) |tj − tl|2 (4.35)

depending on an angle θM ∈]0, π/2[. We are going to discuss how the translation of specific data depends

on θM .

Let the observed data

µ(t, x) = δ{cos(θD)x+sin(θD) t=0}

represent an idealized plane wave event. A single straight line carrying a weight of 1 and making an angle

θD with the offset axis. The other part of the data (the simulation):

ντ (t, x) = µ(t− τ sin(θD), x− τ cos(θD))

is a simple translation depending on a parameter τ in the direction (cos(θD), sin(θD)). This emulates the

misfit associated with an erroneous constant background velocity and as explained in the introduction will

cause cycle skipping when using L2 misfit.
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Assuming for simplicity that we are in a periodic box, the classical (non entropic) optimal transport map

is a pure parallel translation of the support of µ. This is a consequence of Brenier’s theorem which can be

extended to ground costs formed as convex functions the vector y − x such as (4.35) Gangbo and McCann

(1996). The translation may however not occur in the normal direction θD + π
2 because the shortest path

now depends on the distance induced by (4.35) and the angle θM .

The OT misfit can therefore be reduced to computing the shortest path squared from the origin to the

translated line. It is given by solving the convex program:

d2
τ = argmin

(x,t), s. t.
cos(θD)x+sin(θD) t=τ

cos(θM )2

2
|x|2 +

sin(θM )2

2
|t|2

= C
τ2

2

(4.36)

where

C =
1

cos(θD)2

cos(θM )2
+

sin(θD)2

sin(θM )2

. (4.37)

Figure 4.4 shows the value of this parameter for different regimes (θD, θM ).

The OT misfit remains quadratic in τ but C governs the strong convexity. We observe that the convexity

modulus degenerates (C → 0) only when the metric angle θM moves away from θD.

Figure 4.4: Colormap of C (4.37) as a function of θM (the Metric Angle) and θD (the Propagation Angle).

Real or synthetic complex seismic data may be interpreted a collection of local event possibly misplaced.
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The discussion above raises the interesting but still untouched question of building a data dependent ground

cost function where (α, β) depends on (t, x). One could even consider more general metrics such as Finsler

metric for example Benamou et al. (2018).

4.4.2 On the (t, x) range of Entropic OT plans

In the entropic version of OT, the plan (4.8) is a diagonal scaling of the interaction Kernel which “governs”

mass displacement. In its separable version (4.18) it becomes

Kijml = e
−
|xi − xm|2

2 ε e
−
|tj − tl|2

2 ε . (4.38)

Let us discuss the choice of the relative size of the domain in time and offset and their discretization. Let

(T,Nt) and (X,Nx) be the maximum time, respectively offset, and number of points in time, respectively

offset, used in the computation of the misfit. That gives a computational grid size (dt, dx) = ( TNt ,
X
Nx

).

Setting kx dx = xi − xm and kt dt = tj − tl we rewrite (4.38):

Kε
ijml = e

−
(kx dx)2

2 ε e
−

(kt dt)
2

2 ε = e
−

(kxX)2

2 εN2
x e

−
(kt T )2

2 εN2
t (4.39)

Freezing ε and assuming (Nt, Nx) are given either by the data (number of lines) or though time sampling

to limit the computational cost. The range of “horizontal” (in offset) or respectively “vertical” (in time) mass

displacement is therefore governed by (kt T, kxX). Setting the finite precision 0 at exp−36 the Kernel above

will vanish when

kt T = 6
√

2 εNt or kxX = 6
√

2 εNx.

Entropic Optimal Transport therefore allows to choose a smooth transport window of grid points in time

and offset. It is possible to use (T,X) to control the width of this window. Let (kmaxt , kmaxx ) be a prescribed

maximum allowed displacement in terms of grid points and set

T = 6

√
2 εNt

kmaxt

or X = 6

√
2 εNx

kmaxx

. (4.40)

(also note that (T,X) can be interpreted as penalization of time/offset displacement in the ground cost as

in the previous section ).

Trace by trace misfit with entropic OT

We recall that the system solved by the Sinkhorn algorithm (4.11) is equivalent (in tensorized form (4.38

)) to the marginal constraints: 
∑
ml

AijK
x
imK

t
jlBml = µij ∀ i, j

∑
ij

AijK
x
imK

t
jlBml = νml ∀m, l

(4.41)
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Setting kmaxx = 1 in particular corresponds to 1D "trace by trace" misfit. The offset part of the Kernel Kx
im

will vanish except when kx = 0, i.e. xi = xm, in (4.38) where it is just 1. The 2D marginal constraints (4.41)

will therefore reduce for all offsets xi to the 1D marginal constraints :


∑
l

AijK
t
jlBil = µij ∀ j

∑
j

AijK
t
jlBil = νil ∀ l

(4.42)

and therefore we solve the 1D trace by trace OTε problem. This remark naturally extends to unbalanced

(soft marginal constraints) and Sinkhorn divergence variants.
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Chapter 5

The unbalanced optimal transport misfit

function

The general abstract form of the misfit to minimize (see (2.8)) is

J (m) = h (dcal(m),dobs) (5.1)

where m is the model we strive to reconstruct and dobs is some given observation. The map m 7→ dcal(m) is

the forward model and in this thesis we used a 2D constant-density acoustic finite difference wave modeling.

We also limit ourselves to synthetic data sets that is dobs := dobs(mtrue), the observation is constructed with

the same forward mode ling using a true model which is known a priori.

We recall that we have implemented on top of PySIT (https://pysit.org/) is an “an open source tool-

box for seismic inversion and seismic imaging developed by Russell J. Hewett and Laurent Demanet at MIT".

It was designed to allow for fast prototyping of the h component of the misfit function (5.1). Developers can

implement their own misfit on top of the available forward models (in our case 2D constant-density acoustic

finite difference wave modeling) and optimisation method (we have been using the Limited-memory BFGS

method).

The rest of this chapter explains how we constructed the h function using the entropic OT costs and

shows its behavior on simple parametric models.

5.1 The misfit function

In an attempt to preserve phase information, we follow the strategy of comparing separately the positive

and negative parts (f+ = max(f, 0) and f− = max(−f, 0)) of the observed and predicted seismic signal

as proposed in (Engquist and Froese, 2014; Engquist et al., 2016). This is to take care of the positivity

constraint on the data. As explained in chapter 4 instead of normalizing and using the classic W 2
2 quadratic
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Wasserstein distance, we can use the unbalanced OT modification and its various entropic approximations.

A first choice is to use (4.23)

hOTε,λ(dcal,dobs) = OTε,λ
(
d+
cal,d

+
obs)
)

+ OTε,λ
(
d−cal,d

−
obs
)

(5.2)

but we will mostly focus on its “debiased” Sinkhorn divergence version (4.30)

hSε,λ (dcal,dobs) = Sε,λ
(
d+
cal,d

+
obs
)

+ Sε,λ
(
d−cal,d

−
obs
)
. (5.3)

This will not be used in this chapter but in order to ensure misfit function differentiability, we will split

the signal, here denoted f , into a smooth positive f+
δ = Pδ(f) and smooth negative f−δ = Pδ(−f) part,

where Pδ is given by

Pδ(f) =
1

2

(
f +

√
f2 + (δ f0)2

)
(5.4)

The parameter δ is a small parameter that controls the smoothness of Pδ and f0 carries the dimension of

the signal (typically f0 = ‖dobs‖∞.). This function is plotted in in Figure 5.1, for a simple function f(t) = t,

f0 = 1 and different values of δ.

Figure 5.1: Illustration of the effect of δ for the transformation Pδ defined by (5.4), applied to the function f(t) =
t, ∀t ∈ [−1, 1], which changes sign at t = 0. As δ increases, Pδ(f) is getting smoother and smoother in the vicinity of
t = 0, but increasing artificial mass is getting created that lead to possible bias in optimal transport.
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In summary the misfit function, used for FWI in the last chapter, is

hSε,λ (dcal,dobs) = Sε,λ
(
(dcal)

+
δ , (dobs)

+
δ

)
+ Sε,λ

(
(dcal)

−
δ , (dobs)

−
δ

)
. (5.5)

and for completeness the adjoint-source to be used in the adjoint wave propagation (2.42) is given by

∂

∂dcal
h (dcal; dobs) =

∂

∂dcal
Sε,λ

(
(dcal)

+
δ , (dobs)

+
δ

) ∂

∂dcal
Pδ (dcal)

− ∂

∂dcal
Sε,λ

(
(dcal)

−
δ , (dobs)

−
δ

) ∂

∂dcal
Pδ (−dcal) .

(5.6)

where the differentials of the Sinkhorn divergence (4.30) with respect to dcal is given by (4.34).

Figure 5.2 shows that the smoothness of adjoint source, given by the pixel wise multiplication of the Sε,λ

gradient and the Pδ derivative depends on the parameter δ.

Figure 5.2: The top row are a three layer synthetic model recording (dobs) and data (dcal) for one of the intermediate
models in the simulation. The bottom line show the Sε,λ gradient for the positive part and the Pδ derivative of the
signal needed to smooth the gradient.

5.2 1/2D parametric examples

In this section we skip the smoothing related to the sign splitting of the data. We will use misfits (5.2) and

(5.3) and they will be referred to as OTε,λ and Sε,λ. We will omit the λ when the data is balanced and there

is no need for unbalanced OT.
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5.2.1 Translation/shift of a 1D signal

We are considering two copies of the same Ricker wavelet, with 20Hz peak frequency, denoted f(t), playing

the role of the observed signal dobs(t), and g(t), playing the role of the predicted signal dcal(t). The two

wavelets are shifted in time such that g(t; s) = f(t− s) see Figure 5.3. We will study the effect on the misfit

of the variations in s the time shift.

We recall the classical result (see section 3.2): the squared Wasserstein distance W 2
2 is quadratic, hence

convex with respect to the translation of identical data. Sign splitting will preserve the mass balance and

the translation and as such will not change this property. This was already verified numerically in (Engquist

and Froese, 2014). We here compare the behaviour of the L2, OTε, and Sε misfit functions, Figure 5.4. In

this example, the data is balanced so we do not need the unbalanced version of the transport distance. For

such a simple example there is not much difference between the entropic OTε and the Sinkhorn divergence

but the debiasing effect discussed in section 4.3.1 is noticeable. We are very close to a perfect s 7→ 2 s2 (the

2 factor comes from sign splitting). Sinkhorn divergence is known to be a good proxy for non entropic OT.

In all experiments ε = 10−2 and λ = 10.

Figure 5.3: Top figure: Ricker wavelets f(t) (solid blue line) and g(t) (solid red line), the latter being a shifted
version for a translation s = 0.25. Bottom Figures: the negative (bottom-left figure) and the positive (bottom-right
figure) parts of the two Ricker wavelets. Also their negative and positive parts.

Institut de Physique du Globe de Paris Miao YU, Ph.D. Thesis, 2021



5.2 67

Figure 5.4: Misfit with respect to the shift s.

In the next experiment, Figure 5.6, we consider the misfit behaviour as a function of the time shift

between the two Ricker wavelets when a Gaussian noise is added to one of the wavelet (linked for instance

to the acquisition of dobs), see Figure 5.5.
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Figure 5.5: Top figure: Ricker wavelets g(t) (solid blue line) and f(t) (solid red line), with an added Gaussian
noise. Bottom figures: the negative (bottom-left figure) and the positive (bottom-right figure) parts of the two Ricker
wavelets.

We compare the L2 and the unbalanced OTε,λ and Sε,λ misfit functions for an increasing level of Gaussian

noise (1, 5, 10, 20 %). The data is now unbalanced because of the noise. We also consider the balanced Sε

after normalisation of the data (as in (Engquist and Froese, 2014; Engquist et al., 2016)).

As expected L2 global minima remains centred but more local minima appear due to the noise. The

balanced (normalised) Sε remains convex as expected but the global minimum is shifted up because of the

noise. It is indeed built to be positive convex and vanish when comparing two identical measures, this never

is the case with added noise. A constant is added for all the mass creation. The position of the minimum

depicted by a black cross is biased because the noisy and normalized signal does not satisfy the initial Ricker

symmetry anymore.

We recall that unbalanced OT remains a distance on radon measures, the marginal constraint on the data

is penalised using the Kullback-Leibler divergence KL see (4.22) (we have used λ1 = λ2 = λ). Unbalanced
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Sinkhorn Divergence Sε,λ is also covex positive and corrects the unbalanced OTε,λ by removing the diagonal

terms and therefore achieves a lower miminum. Again it cannot be zero as we are comparing different

measures. The unbalanced version seems however to do a better job as the minimum is closer to the zero

shift.

Finally, we remark that the noise is akin to add mass everywhere therefore impacting the transport.

Because we use the quadratic ground cost (4.3), the transport will favor moving the nearby noise mass when

possible instead of fetching the shifted Ricker. This effect increases with the noise level, reduces the range

of the transport and the modulus of convexity of the misfit.

Figure 5.6: Comparison between the L2 (solid blue curve), the balanced (normalised) Sε,λ (solid purple curve),
and the unbalanced OTε,λ (solid red curve) and Sε,λ (solid yellow curve) misfit functions as a function of the time
shift between the two Ricker wavelets for increasing Gaussian noise added to one of the wavelet. From top-left to
bottom-right N (0, 0.01), N (0, 0.05), N (0, 0.1), N (0, 0.2): 1,5,10 and 20 %.

In figure 5.7 and or a fixed noise (5%) we explore the behavior of the different misfit for different values of ε

and λ. In the first line ε is decreased, as expected OTε,λ and Sε,λ (the second order approximation in ε of OTλ

converge). We also notice that normalizing the data induce a significant bias to the minimum. The second

line, when the marginal constraint are locally relaxed, the relative diminution of the mass transport leads

to degeneracy of the convexity property with respect to translation (the amount of mass beeing transported

decrease).
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Figure 5.7: Comparison between the L2 (solid blue curve), the balanced (normalised) Sε,λ (solid purple curve), and
the unbalanced OTε,λ (solid red curve) and Sε,λ (solid yellow curve) misfit functions as a function of the time shift
between the two Ricker wavelets (one with added 5% noise) for decreasing ε and λ.

We perform the same experiment, Figure 5.9, when instead of adding noise to the recorded wavelet, we

change its frequency content, see Figure 5.8. We roughly have the same observation as in figure 5.7. We

notice that the normalisation approach does much better, probably because the support of the wavelet is

localised.

Institut de Physique du Globe de Paris Miao YU, Ph.D. Thesis, 2021



5.2 71

Figure 5.8: Top figure: Ricker wavelet g(t) (solid blue line) and Ormsby Wavelet f(t) (solid red line) with charac-
teristic frequencies (5,10,30,35Hz) . Bottom figures: the negative (bottom-left figure) and the positive (bottom-right
figure) parts of the two wavelets.
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Figure 5.9: Comparison between the L2 (solid blue curve), the balanced (normalised) Sε,λ (solid purple curve), and
the unbalanced OTε,λ (solid red curve) and Sε,λ (solid yellow curve) misfit functions as a function of the time shift
between Ricker and Ormsby wavelets for decreasing ε and λ.

5.2.2 Linear 2D model

A simple two-parameter model, borrowed from Métivier et al. (2016a), allows the 2D representation of the

L2, OTε,λ and Sε,λ misfit functions. We use sign splitting for the positivity for the transport misfits. Let

consider a 2D-acoustic wave approximation model, with constant density, parameterised by the background

acoustic velocity v0 and a depth gradient α, such that

v = v0 + αz (5.7)

The physical domain is a 2D rectangular domain 17 km long and 3.5 km deep. A single seismic source

is located at x = 8.45 km at a depth of 50m. The radiated acoustic waves are recorded at 168 receivers

located at the same depth position that the source and regularly deployed with a spacing of 100m for

x ∈ [0.15, 16, 85] km. The source wavelet is a Ricker wavelet centred at 5Hz.

The observed signals dobs(xr, t) correspond to a numerical physical realisation, using second-order finite

difference stencils on a regular finite difference grid and a second-order leap-from time integration, for a

model parameterised with v?0 = 2 km/s and α? = 0.67 s−1.

The L2, OTε,λ and Sε,λ misfit functions are compared for predicted signals dcal(xr, t) corresponding

to numerical physical realisations when exploring the parameter space v0 ∈ [1.75, 2.25] km/s and α ∈

[0.49, 0.91] s−1 with ∆v0 = 0.0125 km/s and ∆α = 0.015 s−1, leading to a discretised model space of 29× 41

points. For the OT misfit functions, the entropic parameter is chosen as ε = 0.01.

The L2 misfit function, in Figure 5.10, exhibits multiple local minima, and convergence to the global

minimum with local gradient-descent methods requires to start with a good enough initial model, otherwise

the optimisation problem will be trapped in a local minimum.
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Figure 5.10: The L2 misfit function as a function of the model parameters v0 and α. The red star indicates the
location of the global minimum, while in the right figure the intersection of the two dashed lines indicate the reference
model v?0 , α? in the model space.

The (OTε,λ) misfit function, in Figure5.11, exhibits better convexity property but poor sensitivity with

a large basin of attraction toward the global minimum. As seen in the Figure 5.11, the location of the global

minimum in the model space, indicated by the red star, does not recover the position of the reference model

v?0, α
?, indicated by the blue star in the left figure. This is the signature of a bias in the transport associated

to the Entropic penalization: it may become cheaper (lower entropy) to diffuse from dcal or dobs than not

moving them.

Figure 5.11: The OTε,λ misfit function as a function of the model parameters v0 and α. The red star indicates
the location of the global minimum. The blue star indicates the position of the reference model v?0 , α? in the left the
figure, while in the right figure this position is indicated as the intersection of the two dashed lines.

The Sε,λ misfit function, in Figure 5.12, exhibits nice convexity and sensitivity properties, together with

a large basin of attraction toward the global minimum. It is worth to remind that while the mapping

dcal 7→ Sε,λ(dobs, dcal) is strictly convex, here this is the mapping (v0, α) 7→ Sε,λ(dobs, dcal(v0, α)) that is

actually plotted.
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Figure 5.12: Misfit function based on the Sinkhorn divergence (Sε,λ), with respect to v0 and α. The red star is the
location of the global minimum, while the position of the reference model v?0 , α? is indicated as the intersection of the
two dashed lines.
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Chapter 6

2D FWI numerical illustrations

6.1 Preliminaries

This section provides numerical illustrations for the use of the misfit function, see (5.6), based on the Sinkhorn

divergence formulation of unbalanced, entropic optimal transport , see (4.30), through canonical 2D models.

The first model, i.e. the Camembert model, focuses on transmission and reflection configurations. The

second model, i.e. layered model, focuses on simple reflection configurations. The third model, i.e. the

Marmousi model, focus on a more realistic configuration.

All the numerical examples are performed using 2D constant-density acoustic wave modelling and local

gradient-based optimisation as implemented in the PySIT platform. This is reviewed in section 2. The seimic

source is assumed to be a point source with a Ricker wavelet for time function.

For all the numerical experiments, the main parameters values associated to the Sε,λ-misfit function and

the iterative Sinkhorn algorithm are summarised below

Parameter (used value) Use

ε = 10−2 Entropic regularisation, see section 4.1.
λ1,2 = 10−1 KL unbalanced penalisation of the marginal constraints on dcal and dobs, see

section 4.2.2.
δ = 10−3 Pδ-transform into positive/negative part of dcal and dobs, see section 5.1.
tol = 10−09 Sinkhorn convergence error (4.17). With the choice of parameters above and

an optimal transport grid size considered of the order 102 in space and 128
in time, the number of iterations to achieve this precision is always of the
order of 102 iterations and never exceeded 103 iterations.

nt = 128 Number of discretisation points in time used for the OT computation. This
implies a sampling of the signals which discretization vary according to the
model and nr.

nr problem-dependent Number of discretisation points in offset for the OT computation. It also is
by default the number of receivers used in the acquisition configuration and
the FD discretization of the forward model.

kmaxt = [25, 1] Transport window in time (in number of points) (see section 4.4.2), kmaxt = 1
corresponds to the trace by trace misfit.

kmaxx = [25, 1] Transport window in space (in number of points) (see section 4.4.2).
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6.2 Velocity anomaly inclusion

This is the classical circular velocity anomaly inclusion inclusion model in a homogeneous medium, and is

inspired from Pladys et al. (2021). The physical model is defined on a 1000× 1000m square domain, and is

parametrised by a homogeneous background acoustic wave velocity set to 1300m/s, and a circular inclusion

of 100m radius centred in space, with a homogeneous wave velocity 1700m/s (≈ 30% anomaly).

The computational domain includes additional perfectly matched layers along each of the boundaries.

The constant-density, acoustic wave equation is solved in space on a regular grid of 256 × 256 points using

a sixth-order, centred finite difference scheme and a second-order leap-frog integration scheme in time with

constant time step satisfying the CFL condition, as implemented in PySIT.

The FWI inversion problem is solved using the l-BFGS method, as implemented in PySIT, and the

number of FWI iterations is initially fixed to 25 iterations. Two homogeneous initial models are considered:

initial model-A with acoustic wave velocity set to 1300m/s; and initial model-B with acoustic wave velocity

set to 1700m/s.

Both the predicted dcal and the observed dobs data, i.e. the latter corresponding to the "true" model,

are physical realisations obtained with the same wave propagation solver, and without considering additional

noise to the data, i.e. the inversion crime setting.

Unless otherwise specified, the Sε,λ-misfit function is constructed as discussed in Chapter 5. The observed

and predicted signals are decomposed into positive and negative parts using the Pδ-transforn in (5.4), and

transported separately using the Sinkhorn divergence formulation of unbalanced optimal transport.

The numerical experiments focus on transmission and reflection configurations.

6.2.1 Transmission configuration

The acquisition system is composed of 48 sources evenly-spaced below the upper boundary of the physical

domain, at 200m depth, and of 256 evenly-spaced receivers located 200m above the lower boundary of the

physical domain. The source-time function is a Ricker wavelet with a central frequency of fc = 3Hz, and the

recording time is set to 2s.

Reconstructed models with the L2 and the Sε,λ misfit functions are shown in Figure 6.1 after only 25

iterations for both initial models at which the inversion has not yet fully converged, Figure 6.2

For the initial model-A both the L2 and Sε,λ based inversion reconstruct reasonably well the model after

only 25 iterations. The L2 based inversion recovers the peak-amplitude of the velocity anomaly, whereas the

peak-amplitude is not yet fully recovered (≈ 1550m/s) after 25 iterations with the Sε,λ based inversion.

For the initial model-B the L2-based misfit function suffers from cycle-skipping, and the inversion problem

gets trapped in a local minimum and fails reconstructing the inclusion while the Sε,λ-based inversion provides

more reasonable results and shows less sensitivity with respect to the initial model. even though the the

background velocity is not yet fully recovered after 25 iterations. The improved convexity of the Sε,λ-misfit

function avoids the FWI problem to be trapped in local minima and enable the convergence toward the

global minimum.
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Transmission initial A L2-inv Sε,λ-inv

Transmission initial B L2-inv Sε,λ-inv

Figure 6.1: Numerical inversion after 25 iterations

Transmission initial A L2-Inv Sε,λ-Inv

Transmission initial B L2-inv Sε,λ-inv

Figure 6.2: Inversion convergence

For initial model-B, the Sε,λ inversion is clearly improved after 100 iterations, as shown in Figure??. The

peak amplitude of the velocity anomaly is now well recovered.

As expected, the resolution for both initial models is higher in the horizontal direction that in the vertical

direction due to the acquisition geometry, with a vertical smoothing of the reconstructed velocity anomaly.
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The shape of the inclusion is not fully recovered possibly due to limited offset and deficit in long-wavelength

components of the transmitted waves and lack of reflected wave information.

Transmission (initial B) 25 iterations 100 iterations

convergence convergence

Figure 6.3: Sε,λ inversion: transmission (initial model B)

Initial model-A

Reconstructed models with the L2 and the Sε,λ misfit functions are shown in Figure 6.4.

The L2-misfit function suffers from cycle-skipping., and the inversion problem gets trapped in a local

minimum and fails reconstructing the inclusion.

The Sε,λ-misfit function provides reasonably accurate results, and the observed and predicted seismic

traces are in phase after 25 iterations, as illustrated in Figure 6.5, even though the exact background velocity

is not fully recovered.

As expected, the resolution is higher in the horizontal direction that in the vertical direction due to the

acquisition geometry, leading to vertical smoothing of the reconstructed velocity anomaly.

The peak-amplitude of the velocity anomaly is not fully recovered after 25 iterations, see Figure 6.4 and

Figure 6.6, as well as the exact background velocity. The shape of the inclusion is not fully recovered also

possibly due to limited offset and relative deficit in long-wavelength components.

The initial and final predicted data, are shown in the time-receiver domain Figure 6.7. A diffraction

pattern can be observed due to the relatively strong velocity anomaly in the inclusion.

The improved convexity of the Sε,λ-misfit function avoids the FWI problem to be trapped in local minima

and enable the convergence toward the global minimum.
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INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.4: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).

Figure 6.5: Seismic traces with the Sε,λ-misfit function: initial (solid-green line) and predicted data (solid-red line)
after 25 FWI iterations, together with observed data (solid-blue line).
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Figure 6.6: Velocity profile along a vertical section of the physical domain at a surface position x = 600 m as
reconstructed by the Sε,λ based inversion.

Wavefield True Wavefield Initial

Wavefield Inversion Wavefield True-Inversion

Figure 6.7: Wavefield in the time-receiver domain for the common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); wavefield at the final FWI iteration (lower-
right figure); difference between the "true" wavefield and the wavefield at the final FWI iteration (lower-left figure).
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Initial model-B

Reconstructed models with the L2 and the Sε,λ misfit functions are shown in Figure 6.8.

The L2-misfit function now does not suffer from cycle-skipping, and both the L2 and Sε,λ inversion

reconstruct reasonably well the model. The observed and predicted seismic traces are in phase after 25

iterations, as illustrated for the Sε,λ based inversion in Figure 6.9.

The L2 based inversion recovers the peak-amplitude of the inclusion velocity anomaly, whereas the peak-

amplitude is not yet fully recovered (≈ 1550m/s) after 25 iterations with the Sε,λ based inversion.

The Sε,λ based inversion shows little sensitivity with respect to the initial model, see Figures 6.4 and 6.8.

INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.8: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).
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Figure 6.9: Seismic traces: initial (solid-green line) and predicted data (solid-red line) after 25 FWI iterations,
together with observed data (solid-blue line).

With both the L2 and Sε,λ based inversion, the shape of the inclusion is not fully reconstructed, due

limited offset and relative deficit in long-wavelength components. The resolution in the horizontal direction

is higher than in the vertical one, leading to vertical smoothing.

The L2 and Sε,λ adjoint-sources are different, as shown in Figure 6.10, leading to different sensitivity

kernels.

L2 Gradient Sε,λ Gradient

Figure 6.10: Ajoint-source in the time-receiver domain at the first FWI iteration.

The L2 adjoint source is sparse and keeps memory of the Ricker wavelet due to the low kinematic errors

associated with the initial model B.

The Sε,λ adjoint source is more complicated with the signature of a mass-spreading over the whole

domain. This is primarily due to the penalisation of the marginals in the unbalanced Sinkhorn divergence

formulation, and more specifically to the gradient of Kullback-Leibler divergence, and possibly to the separate

2D-transport of the positive and negative parts of the seismic signals.

The initial and final predicted data, in the time-receiver domain, are shown in Figure 6.11 together with

the "true" data, i.e. the observed data. A diffraction pattern can be observed as well as a resolution deficit

in the long wavelengths components, which precludes accurate reconstruction of the inclusion shape.
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Wavefield True Wavefield Initial

Wavefield Inversion Wavefield True-Inversion

Figure 6.11: Wavefield in the time-receiver domain for the common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); wavefield at the final FWI iteration (lower-
right figure); difference between the "true" wavefield and the wavefield at the final FWI iteration (lower-left figure).

FWI results, using different implementations of the Sε,λ-misfit function are shown in Figure 6.12 and

Figure 6.13 for comparison.

A first implementation makes use of the squared-transformation, without normalisation, of the observed

and predicted signals. With this signal transformation, the 2D Sε,λ-misfit function leads to reasonably correct

model reconstruction, and relatively improved estimation of the peak-amplitude of the velocity anomaly

compared to the 2D Sε,λ-misfit function based on the decomposition into positive and negative parts of the

signals.

Another implementation makes use of the separability of the Sinkhorn kernel matrix and of appropriate

scaling of the transport domain, see section 4.4.2. The Sε,λ-misfit can be reduced to either 1-D unbalanced

transport in time (trace-by-trace) or 1-D unbalanced transport in space (offset-by-offset).
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Both leads to similar results that with the 2-D Sε,λ-misfit function. The trace-by-trace 1D unbalanced

transport in time appears to provide a better reconstruction of the peak-amplitude of the velocity anomaly,

see for instance Figure 6.13.

Sε,λ (2D - Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) Sε,λ (1D-Time-Pδ)

Figure 6.12: Reconstructed models for different implementation strategies of the Sε,λ-misfit function: 2-D transport
after decomposition of the signals into poistive and negative parts (upper-left figure); Squared-transform of the signals
before 2-D transport (upper-left figure); 1-D transport in space (offset-by-offset) after decomposition of the signals
into positive and negative parts (lower-left figure); 1-D transport in tile (trace-by-trace) (in time) after decomposition
of the signals into positive and negative parts (lower-right figure). The later two implementations make use of the
separability of the Gibbs matrix in the Sinkhorn algorithm and of the appropriate scaling of the transport domain.
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Sε,λ (2D-Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) SD (1D-Time-Pδ)

Figure 6.13: Velocity profile along a vertical section of the physical domain for different FWI iterations and different
implementations of the Sε,λ-misfit function.

6.2.2 Reflection configuration

The acquisition system is now composed of 48 evenly-spaced sources along the upper boundary of the

physical domain, at 200m depth, and of 256 evenly-spaced receivers located at the same depth position that

the sources. The source-time function of the point sources is a Ricker wavelet with a central frequency of

fc = 3Hz, and the recording time is set to 2s.

Initial model-A

Reconstructed models with L2 and Sε,λ based inversion are shown in Figure 6.14.

The L2-misfit function suffers, as expected, from cycle-skipping, and the inversion problem gets trapped in

a local minimum and fails reconstructing the model, while the improved convexity of the Sε,λ-misfit function

avoids this pittfall.

The Sε,λ based inversion provides a meaningful model reconstruction after 25 iterations, and the data are

in phase, see Figure 6.15.
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INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.14: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).

Figure 6.15: Seismic traces: initial (solid-green line) and predicted data (solid-red line) after 25 FWI iterations,
together with observed data (solid-blue line).

The peak-amplitude of the velocity anomaly is reasonably well retrieved, see Figure 6.17. The upper

interface and horizontal extension of the inclusion is meaningful, whereas the lower inclusion boundary is

not properly resolved and appears as "melted" because reflections from the lower inclusion boundary have

not been sufficiently recorded due to the limited offset.
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The initial and final predicted data are shown in the time-receiver domain Figure 6.18. Reflection phase

associated to the lower boundary of the inclusion, and the weaker multiple reflections behind, are poorly

resolved. The background velocity also is not exactly retrieved.

The Sε,λ based inversion exhibits a monotonous convergence rate and the misfit keeps continuing to

decrease after 25 iterations, see Figure 6.16.

Figure 6.16: Convergence rate for the Sε,λ based inverstuin

Figure 6.17: Velocity profile along a vertical section of the physical domain for Sε,λ.
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Wavefield True Wavefield Initial

Wavefield Inversion Wavefield True-Inversion

Figure 6.18: Wavefield in the time-receiver domain for the common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); wavefield at the final FWI iteration (lower-
right figure); difference between the "true" wavefield and the wavefield at the final FWI iteration (lower-left figure).

Initial model B

Reconstructed models after 25 iterations with the L2 and the Sε,λ based inversion are shown in Figure 6.19.

The L2-misfit function now does not suffer from cycle-skipping, and both the L2 and Sε,λ based inversion

reconstruct meaningful models. The observed and predicted data are in phase, see Figure 6.9 for the Sε,λ-

misfit function.

The peak-amplitude of the velocity anomaly is not yet fully recovered after 25 iterations with the L2-

misfit function, whereas with the Sε,λ-misfit function a relatively more accurate peak-amplitude is recovered,

see Figures 6.19 and 6.21.

In such a control case, the L2 based inversion should recover the peak-amplitude of the inclusion anomaly
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when letting the inversion iterate to convergence.

INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.19: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).

Figure 6.20: Seismic traces: initial (solid-green line) and predicted data (solid-red line) after 25 FWI iterations,
together with observed data (solid-blue line).

In both cases, the position of the upper interface and the extension of the inclusion are meaningful. The

lower interface of the inclusion is not recovered and appears as melted due to limited offset.

The L2 and Sε,λ adjoint sources are again quite different, as shown in Figure 6.22.
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L2-misfit Sε,λ-misfi

Figure 6.21: Velocity profile along a vertical section of the physical domain at surface position x = 600 m at different
inversion iterations with the L2 and the Sε,λ misfit functions.

L2 Gradient Sε,λ Gradient

Figure 6.22: Ajoint-source in the time-receiver domain at the first FWI iteration.

The L2 adjoint source is rather sparse and keeps memory of the Ricker wavelet. In the Sε,λ adjoint source

the signature of a mass-spreading over the whole domain can be seen, the origin of which is related to the

gradient of the Kullback-Leibler divergence in the Sinkhorn divergence formulation of unbalanced entropic

transport, and possibly to the separate transport of the positive and the negative parts of the seismic signals.

The initial and final predicted data are shown in the time-receiver domain Figure 6.23, which again show

poor resolution at the lower inclusion interface, and tonly a partial reconstruction of the background velocity

model.

Convergence rate of the L2 and Sε,λ based inversion is shown in Figure 6.26. In both cases the convergence

rate is monotic and the misfit distance keep continuing to decrease after 25 iterations.
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Wavefield True Wavefield Initial

Wavefield Inversion Wavefield True-Inversion

Figure 6.23: Wavefield in the time-receiver domain for the common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); wavefield at the final FWI iteration (lower-
right figure); difference between the "true" wavefield and the wavefield at the final FWI iteration (lower-left figure).

Different implementations of the Sε,λ-misfit function are compared in Figures 6.24 and in 6.25. Both

the trace-by-trace, 1-D unbalanced transport in time, and the offset-by-offset, 1-D unbalanced transport in

space, implementations of the Sε,λ-misfit function provide meaningful results after 25 iterations. The peak-

amplitude of the velocity anomaly is better estimated with the trace-by-trace, 1D unbalanced transport in

time, implementation than with the offset-by-offset, 1D unbalanced transport in space. As expected, the 2D

Sε,λ-misfit function based on the squared-transformed signals fails and does not recover a meaningful model.
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Sε,λ (2D - Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) Sε,λ (1D-Time-Pδ)

Figure 6.24: Reconstructed models for different implementation strategies of the Sε,λ-misfit function: 2-D transport
after decomposition of the signals into poistive and negative parts (upper-left figure); Squared-transform of the signals
before 2-D transport (upper-left figure); 1-D transport in space (offset-by-offset) after decomposition of the signals
into positive and negative parts (lower-left figure); 1-D transport in tile (trace-by-trace) (in time) after decomposition
of the signals into positive and negative parts (lower-right figure). The later two implementations make use of the
separability of the Gibbs matrix in the Sinkhorn algorithm and of the appropriate scaling of the transport domain.
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Sε,λ (2D-Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) SD (1D-Time-Pδ)

Figure 6.25: Velocity profile along a vertical section of the physical domain for different FWI iterations and different
implementations of the Sε,λ-misfit function.

L2 Sε,λ

Figure 6.26: Convergence rate of the L2 (left) and Sε,λ (right) based inversion
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6.3 Layered reflection Models

6.3.1 One-layer reflection model

The one-layer model is inspired from (Pladys et al., 2021).

The physical model is defined on a rectangular domain of 2000× 1000 m dimension, and is parametrised

by a homogeneous background acoustic wave velocity set to1500 m/s and by a 100 m thick layer at 300 m

depth with a homogeneous wave velocity of 1600 m/s (postive anomaly) or 1400 m/s (negative anomaly).

The surface acquisition is the same for both models with 48 evenly-spaced seismic sources and 251 evenly-

spaced receivers, both at 42 m depth below the upper boundary of the physical domain. The sources are

point sources and the source-time function is a Ricker wavelet with central frequency fc = 3Hz, and the

recording time is set to 4 s.

The computational domain includes additional perfectly matched layers along each boundary of the

physical domain. The constant-density acoustic wave equation is solved in space on a regular grid with

256× 128 points using a sixth-order finite difference scheme and a second-order leap-frog integration scheme

in time with constant time step satisfying the CFL condition, as implemented in PySIT.

The FWI problem is solved by a l-BFGS gradient-based method, as implemented in PySIT, with a fixed

number of iterations set to 50. The initial model for both model configurations is a homogeneous model with

wave velocity set to the correct background velocity 1500 m/s.

Both the predicted dcal and the observed dobs data, i.e. the latter corresponding to the "true" model, are

physical realisations obtained with the same wave propagation solver, without considering additional noise

to the data, i.e. the inversion crime setting.

Unless otherwise specified, the Sε,λ-misfit function is formulated as discussed in Chapter 5. The observed

and predicted signals are decomposed into positive and negative parts, with the Pδ - transform defined in

(5.4), and transported separately using the Sinkhorn divergence formulation for unbalanced optimal trans-

port.
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One-layer reflection model: positive velocity anomaly

INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.27: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).

Figure 6.28: Velocity profiles reconstructed with the L2 and the Sε,λ based inversion at receivers 67 and 84: initial
(solid-green line) and predicted data (solid-red line) after 50 iterations, together with the velocity profile in the "True"
model (solid-blue line).
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L2-misfit Sε,λ-misfit

Figure 6.29: Velocity profiles in the physical domain at surface position x = 1000 m for different iterations of the
L2 and Sε,λ based inversion.

L2 Sε,λ

Figure 6.30: Convergence rate with the L2 (left) and the Sε,λ (right) based inversion.

Reconstructed models, after 50 iterations, with the L2 and Sε,λ based inversion are shown in Figure 6.27.

The L2 and Sε,λ based inversion provide similar meaningful reconstructions.

Results for the L2 based inversion were expected since the L2-misfit function is sensitive to amplitude

variation and polarity. Results for the Sε,λ-based inversion are less intuitive since the Sε,λ-misfit function is

based on signal decomposition into positive and negative parts and does not guarantees the preservation of

phase and polarity information. The data are in phase for the Sε,λ based inversion, after 50 iterations, see

Figure 6.28.

The initial and final predicted data for both L2 and Sε,λ based inversion are shown in the time-receiver

domain Figure 6.32.

The peak-amplitude of the velocity anomaly is correctly retrieved by the L2 based inversion after 50

iterations, but only partially retrieved by the Sε,λ based inversion, see Figure 6.29. The Sε,λ based inversion

recovers only half of the anomaly, with relatively more vertical smoothing than in the L2 case, see also Figure

6.27.
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This could possibly result from the entropic regularisation, which tends to spread mass and smooth

discontinuity. The Sε,λ based inversion shows slower convergence rate compared to the L2 based inversion,

see Figure 6.30, but the misfit distance keep continuing to decrease after 50 iterations.

The L2 and Sε,λ adjoint sources and optimisation gradients, at the first iteration, are shown in Figure

6.31. The Sε,λ adjoint source shows the signature of a mass-spreading over the whole domain as previously

discussed, and the gradient is smoother than the L2 one, even though both capture similar features.

L2 adjoint source Sε,λ adjoint source

L2 gradient Sε,λ gradient

Figure 6.31: Adjoint source and gradient at first iteration for the L2 and Sε,λ misfit functions.
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L2 Sε,λ

Figure 6.32: Wavefield in the time-receiver domain for a common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); inverted wavefield and difference between
the "true" wavefield and inverted wavefield for L2 (lower-left figures) and Sε, λ (lower-right figures).

Inversion results for different implementations of the Sε,λ-misfit function are shown in Figure 6.33

Somewhat surprisingly, meaningful model reconstructions, similar to results of the L2 based inversion,

are obtained with the 2D Sε,λ-misfit function based on squared-amplitude transformation of the signals, for

which reflected waves polarity is lost. The peak-amplitude of the velocity anomaly is well reconstructed

after 50 iterations, and improved with respect to the 2-D Sε,λ-misfit function implementation based on signal

decomposition into positive and negative parts. This result might be related to the low kinematic errors

associated with the initial model. For less control set-up and in the case of additional noise, this result might

not be guaranteed.

Results obtained with trace-by-trace Sε,λ-misfit function, i.e. 1-D unbalanced entropic transport in time,

are similar to the L2 results, Figure 6.27. The peak-amplitude of the velocity anomaly is well retrieved and
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improved compared to the 2-D Sε,λ misfit function based the signal decomposition into positive and negative

parts.

Results obtained with the offset-by-offset Sε,λ, i.e. 1-D unbalanced transport in space, are less satisfactory.

In particular the reconstruction of the positive anomaly layer is altered by strong horizontal smoothing

artefacts.

Sε,λ (2D - Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) Sε,λ (1D-Time-Pδ)

Figure 6.33: Reconstructed models for different implementation strategies of the Sε,λ-misfit function: 2-D transport
after decomposition of the signals into poistive and negative parts (upper-left figure); Squared-transform of the signals
before 2-D transport (upper-left figure); 1-D transport in space (offset-by-offset) after decomposition of the signals
into positive and negative parts (lower-left figure); 1-D transport in tile (trace-by-trace) (in time) after decomposition
of the signals into positive and negative parts (lower-right figure). The later two implementations make use of the
separability of the Gibbs matrix in the Sinkhorn algorithm and of the appropriate scaling of the transport domain.
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6.3.2 One-layer reflection model: negative velocity anomaly

INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.34: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).

L2-misfit Sε,λ-misfit

Figure 6.35: Velocity profiles in the physical domain at surface position x = 1000 m for different iterations with the
L2 and the Sε,λ based inversion.
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L2 Sε,λ

Figure 6.36: Convergence rate with the L2 (left) and the Sε,λ (right) based inversion.

L2 adjoint source Sε,λ adjoint source

L2 gradient Sε,λ gradient

Figure 6.37: Adjoint source and gradient at first iteration for the L2 and Sε,λ misfit functions

Reconstructed models, after 50 iterations, with the L2 and Sε,λ based inversion are shown in Figure 6.27.

Both inversion provide similar meaningful reconstructions.

For the L2 based inversion, the recovered peak-amplitude of the velocity anomaly slightly exceeds the

"true" one, see Figure 6.35, whereas for the Sε,λ based inversion, the peak-amplitude is only partially recov-

ered after 50 iterations.
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Sε,λ (2D - Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) Sε,λ (1D-Time-Pδ)

Figure 6.38: Reconstructed models for different implementation strategies of the Sε,λ-misfit function: 2-D transport
after decomposition of the signals into poistive and negative parts (upper-left figure); Squared-transform of the signals
before 2-D transport (upper-left figure); 1-D transport in space (offset-by-offset) after decomposition of the signals
into positive and negative parts (lower-left figure); 1-D transport in tile (trace-by-trace) (in time) after decomposition
of the signals into positive and negative parts (lower-right figure). The later two implementations make use of the
separability of the Gibbs matrix in the Sinkhorn algorithm and of the appropriate scaling of the transport domain.

The L2 and Sε,λ adjoint sources and optimisation gradients, at the first iteration, are shown in Figure

6.37. The gradient associated to Sε,λ appears smoother compared to the L2 one, even though both capture

similar features.

The convergence rate of the Sε,λ based inversion is similar to the L2 one, and the misfit distance keep

continuing to decrease after 50 iterations see Figure 6.36.

Inversion results for different implementations of the Sε,λ-misfit function are shown in Figure 6.38 and

Figure 6.39.

The 2-D Sε,λ misfit function based on squared-amplitude signal transformation, leads to a meaningful

reconstruction similar to the L2 results in Figure 6.34. The peak-amplitude of the velocity anomaly is only

partially reconstructed after 50 iterations, and similar to the one obtained with the 2-D Sε,λ-misfit function

based on signal decomposition into positive and negative parts, see Fig 6.39.

The results obtained with the trace-by-trace Sε,λ-misfit function, i.e. 1-D unbalanced transport in time,

are very similar to the L2 results, Figure 6.27. The peak-amplitude of the velocity anomaly is well retrieved
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and improved compared to the 2-D Sε,λ-misfit function, together with higher resolution of the lower interface

of the interface.

The results obtained with the offset-by-offset Sε,λ-misfit function, i.e. 1-D unbalanced transport in space,

are more meaningfull than in the case of a positive velocity anomaly, see section 6.3.2.

Sε,λ (2D-Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) SD (1D-Time-Pδ)

Figure 6.39: Velocity profile along a vertical section of the physical domain for different FWI iterations and different
implementations of the Sε,λ-misfit function.

6.3.3 Three-layer reflection model

Model configuration

The three-layer model is inspired from (Yang , 2018).

The physical model is defined on a rectangular domain of 15× 6 km dimension, with three homogeneous

layers: a first layer [0, 1] km, with a homogeneous wave velocity set to 1 km/s; a second layer [1, 2] km with

a homogeneous wave velocity set to 2 km/s; and a third layer [2,∞] km with a homogeneous wave velocity

set to 4 km/s.

The surface acquisition is composed of 48 evenly-spaced seismic sources and 300 evenly-spaced receivers,

both at 100m depth below the upper interface. The sources are point sources and the source-time function

is a Ricker wavelet with central frequency fc = 15Hz, and the recording time is 4 s.

The computational domain includes additional perfectly matched layers along each boundary of the

physical domain. The constant-density acoustic wave equation is solved in space on a regular grid with

300× 120 points using a sixth-oder finite difference scheme and a second-order leap-frog integration scheme
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in time with constant time step satisfying the CFL condition as implemented in PySIT.

The inversion problem is solved using the l-BFGS gradient-based method, as implemented in PySIT,

with a fixed number of iterations set to 500 iterations. The initial model is a model where the deepest third

layer is unknown, see Figure 6.40.

Both the predicted dcal and the observed dobs data, i.e. the latter corresponding to the "true" model,

are physical realisations obtained with the same wave propagation solver, and without considering additional

noise to the data, i.e. the inversion crime setting.

Unless otherwise specified, the Sε,λ-misfit function is formulated as in Chapter 5. The observed and

predicted signals are decomposed into positive and negative parts, with the Pδ - transform defined in (5.4),

and transported separately using the Sinkhorn divergence formulation for unbalanced optimal transport.

In this model configuration, there is no back-scattered information from the interior of the third layer

returning to the receivers.

INITIAL TRUE

Figure 6.40: Three-layer model: initial (upper-left figure) and true (upper-right figure) models.
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Results

INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.41: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).

L2-misfit Sε,λ-misfit

Figure 6.42: Velocity profiles in the physical domain at surface position x = 7500 m for different iterations of the
L2 and the Sε,λ based inversion
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Reconstructed models with the L2 and Sε,λ based inversion are shown in Figure 6.41. Both the L2 and

Sε,λ based inversion provide meaningful reconstructions. The L2 based inversion does not provide however

much information beside the local velocity change at the upper third-layer interface, whereas the Sε,λ based

inversion recovers part of the velocity information below the upper third-layer interface.

Both inversions converge slowly, see Figure 6.43, with a relatively better convergence rate, after 500

iterations for Sε,λ.

The first arrivals in the observed and predicted data are in phase but smaller-amplitude reflected phases

behind are not properly recovered for larger offset, see Figure 6.44.

L2 Sε,λ

Figure 6.43: Convergence rate for the L2 (left) and the Sε,λ (right) based inversion

Figure 6.44: Seismic traces at receivers 84 and 101: initial (solid-green line) and predicted data (solid-red line) after
500 FWI iterations with the Sε,λ-misfit function; observed data (solid-blue line)

A closer look at the reconstructed velocity models during the L2 and Sε,λ based inversion iterations, see

Figure 6.42, shows that the Sε,λ based inversion recovers gradually part of the velocity information below the

upper third-layer interface. Both the L2 and Sε,λ based inversion seem to converge toward a local minimum

with more artificial deep reflectors, see Figure 6.41, which could be the signature of an ill-posed inversion

problem rather than a cycle-skipping problem.
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L2 adjoint source Sε,λ adjoint source

L2 gradient Sε,λ gradient

Figure 6.45: Adjoint source and gradient at first iteration for the L2 and Sε,λ misfit functions.

It is not intuitive that the Sε,λ based inversion can recover velocity information in the third layer while

no waves through this region return to the receivers. Velocity information of the third layer is printed in

the amplitude of the reflected phases associated to the third-layer interface and in the head waves, the later

being more easily retrieved with the 2D Sε,λ-misfit function, even for limited offset.

As the Sε,λ based inversion gradually recovers deep velocity information, the reconstructed velocity model

in the shallower region exhibits higher-amplitude, zero-mean oscillations around the "true" velocity model,

compared to the L2 based inversion. The amplitude of these oscillations slowly decrease as inversion iterate.

Both the L2 and Sε,λ based inversion overshoot the peak-amplitude of the velocity contrast at the third-layer

interface.

The initial and final predicted data are shown in the time-receiver domain Figure 6.46 for both the L2

and Sε,λ based inversion. The L2 and Sε,λ adjoint sources and optimisation gradients, at the first iteration,

are shown in Figure 6.45.

The initial predicted data do not contain the reflected phases at the third-layer interface, which has a

strong signature in the L2 and the Sε,λ adjoint sources beside kinematic errors on reflected phases associated

to the second-layer interface and the diving waves.
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L2 Sε,λ

Figure 6.46: Wavefield in the time-receiver domain for a common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); inverted wavefield and difference between
the "true" wavefield and inverted wavefield for L2 (lower-left figures) and Sε,λ (lower-right figures).

The Sε,λ contains additional signature of a mass-spreading over the whole domain. This can be associated

to the penalisation of the marginals in the Sinkhorn divergence formulation of unbalanced entropic optimal

transport, and more specifically of the local gradient of the Kullback-Leibler. The level of mass is linked to

how mass-unbalanced are the predicted and observed data, and as such to the initial model. For strongly

unbalanced observed and predicted data the transport cost relatively decreases. The gradient in the Sε,λ

based inversion is smoother at the third-layer interface, and with with less subsurface artefacts compared to

L2 based inversion.
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Sε,λ (2D - Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) Sε,λ (1D-Time-Pδ)

Figure 6.47: Reconstructed models for different implementation strategies of the Sε,λ-misfit function: 2-D transport
after decomposition of the signals into poistive and negative parts (upper-left figure); Squared-transform of the signals
before 2-D transport (upper-left figure); 1-D transport in space (offset-by-offset) after decomposition of the signals
into positive and negative parts (lower-left figure); 1-D transport in tile (trace-by-trace) (in time) after decomposition
of the signals into positive and negative parts (lower-right figure). The later two implementations make use of the
separability of the Gibbs matrix in the Sinkhorn algorithm and of the appropriate scaling of the transport domain.

Inversion results for different implementations of the Sε,λ-misfit function are shown in Figure 6.47 and

Figure 6.48.

The 2-D Sε,λ-misfit function based on squared-amplitude transformation of the signals, without normali-

sation, leads to unsatisfactory model reconstruction, note the different velocity-amplitude scale in figure 6.47.

The velocity contrast at the third-layer interface is not correctly retrieved. This is not actually surprising as

reflected waves polarity are lost in the squared-transformation.

Interestingly, results obtained with the offset-by-offset Sε,λ-misfit function, i.e. 1-D unbalanced transport

in space, are meaningful and similar to the 2-D Sε,λ results based on the signal decomposition into positive

and negative parts. The inversion gradually recovers also the velocity below the third-layer interface. In this

configuration, i.e. homogeneous, horizontally-layered medium, 1-D unbalanced transport in space retrieves

velocity information associated to head waves and reflection waves at the third-layer interface. The peak-

amplitude of the velocity anomaly exceeds slightly the one retrived by the 2D Sε,λ based inversion.

Results obtained with the trace-by-trace Sε,λ misfit function, i.e. 1-D unbalanced transport in time, are
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also meaningful in this case, and the inversion gradually recovers the velocity below the third-layer interface.

The amplitude of the zero-mean oscillations in the subsurface region seems better mitigated than with 2D

transport.

Sε,λ (2D-Pδ) Sε,λ (2D-Squared Amp.)

Sε,λ (1D-Offset-Pδ) SD (1D-Time-Pδ)

Figure 6.48: Velocity profile along a vertical section of the physical domain for different FWI iterations and different
implementations of the Sε,λ-misfit function.
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6.4 Marmousi Models

6.4.1 Mini-square Marmousi I model

Model configuration

This model is derived from the synthetic Marmousi I, originally generated at the Institut Français du Petrole

(IFP) using a 2D acoustic wave solver (Versteeg , 1994).

The model is defined on a 9000 × 3000 m domain and contains many reflectors, steep dips, and strong

velocity variations in bot lateral and vertical dimensions, with a minimum velocity of 1500 m/s and a

maximum velocity of 5500 m/s.

The physical model here is defined on a mini-square domain extracted from the Marmousi I model, with

origin x = 4680 m and 3000 × 3000 m dimension. The constant density, acoustic wave velocity model is

shown in Figure 6.49

The surface acquisition is composed of 48 evenly-spaced seismic sources and 150 evenly spaced receivers,

both at 500 m depth below the upper interface. The sources are point sources and the source-time function

is a Ricker wavelet with central frequency fc = 10Hz, and the recording time is set to 3 s.

The computational domain includes additional perfectly matched layers along each side of the physical

domain. The constant-density acoustic wave equation is solved in space on a regular grid with 150 × 150

points, i.e. dx = dz = 20 m, using a sixth-order finite difference scheme and in time using a second-order

leap-frog integration scheme with constant time step satisfying the CFL condition, as implemented in PySIT.

The inversion problem is solved using the l-BFGS gradient-based method, as implemented in PySIT,

with a fixed number of FWI iterations set to 200 iterations.

The initial model, Figure 6.49, is derived from the true velocity model using a smooth low-pass filter

with a frequency of 1/300, which preserves part of the long-wavelength components of the true model.

Both the predicted dcal and the observed dobs, i.e. the latter corresponding to the "true" model, are

physical realisations obtained with the same wave propagation solver, and without considering additional

noise to the data, i.e. the inversion crime setting.

Unless otherwise specified, the Sε,λ-misfit function is formulated as in Chapter 5. The observed and

predicted signals are decomposed into positive and negative parts, using the Pδ-transform defined in (5.4),

and transported separately using the Sinkhorn divergence formulation for unbalanced optimal transport.
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INITIAL TRUE

Figure 6.49: Mini-square Marmousi I: initial (upper-left figure) and true (upper-right figure) models.

Results

INITIAL TRUE

L2-INVERSION Sε,λ-INVERSION

Figure 6.50: Final reconstructed models: initial model (upper-left figure) and targeted model (upper-right figure);
FWI results with the L2- misfit function (bottom-left figure) and the Sε,λ-misfit function (bottom-right figure).
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TRUE INITIAL

L2 FINAL Sε,λ FINAL

Figure 6.51: Wavefield in the time-receiver domain for a common shot gather associated to the centred source:
"true" wavefield (upper-right figure); initial wavefield (upper-left figure); inverted wavefield and difference between
the "true" wavefield and inverted wavefield for L2 (lower-left figures) and Sε,λ (lower-right figures).

Reconstructed models with the L2 and Sε,λ based inversion are presented in Figure 6.50.

Both the L2 and Sε,λ based inversion recover similar velocity models in the shallow region (above 1.5 km),

with accurately resolved fine layers and normal faults, but have more trouble resolving a high resolution and

accurate velocity model in the deep region because reflections from the dipping reflectors and the anticline

structure have not been sufficiently recorded due to the limited offset.

Pseudo velocity logs at two surface locations reconstructed with the L2 and the Sε,λ based inversion are

compared in Figure 6.54. Velocity models in both inversion recover reasonably well the true velocity model

above 1500 m, whereas quality of the inverted models degrades with depth. Both inversion fail to update

at depth (below 2000 m) the low wavenumber structure of the velocity model and place reflectors at wrong
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positions.

The initial and final predicted data are shown in the time-receiver domain Figure 6.51 for both the L2

and Sε,λ based inversion.The L2 and Sε,λ adjoint sources and optimisation gradients, at the first iteration,

are shown in Figure 6.52.

The predicted data at the first iteration miss, as expected, the reflected phases and are only reasonably

in phase at short offset for the diving waves. This is reflected into the L2 adjoint source.

The Sε,λ adjoint source is more complicated with signature of mass-spreading over the whole domain as

a result of mass-unbalanced predicted and observed data induced by the smooth initial model.

The gradient in the L2 and Sε,λ based inversion are different and smoother for Slε,λ. Signature of the

limited offset is visible in both cases.

The convergence rate of the Sε,λ based inversion, over 200 iterations, is relatively faster than the L2 one,

rapidly reducing the misfit distance by one order of magnitude after 20 iterations. The misfit distance keeps

continuing slowly decreaseing after 200 iterations.

L2 adjoint source Sε,λ adjoint source

L2 gradient Sε,λ gradient

Figure 6.52: Adjoint source and gradient at first iteration for the L2 and Sε,λ misfit functions
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L2 Sε,λ

Figure 6.53: FWI convergence curve with the L2 (left) and the Sε,λ (right) misfit functions.

L2 Sε,λ

Figure 6.54: Pseudo velocity logs at two surface locations x = 6480 m (first row) and x = 7380 m (second row) for
the L2 (left) and Sε,λ based inversion

6.4.2 Fracture-zone Marmousi II model

Model configuration

This example is derived from the Marmousi II P-wave velocity model (Martin et al., 2006). The original

dimension of the Marmousi II model is 18× 3.5 km, with 400 m deep water layer at the top.

The physical model, i.e. fracture zone model, is defined on a domain, extracted from the Marmousi II

model, with origin x = 8630 m and 3520×3000 m dimension, with a constant density, acoustic wave velocity

model as shown in Figure 6.55
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The surface acquisition is composed of 48 evenly-spaced seismic sources and 176 evenly-spaced receivers,

both at 500m depth below the upper boundary of the physical domain. The sources are point sources and

the source-time function is a Ricker wavelet with central frequency fc = 4Hz, and the recording time is set

to 7s.

The computational domain includes additional perfectly matched layers along each side of the physical

domain. The constant-density acoustic wave equation is solved in space on a regular grid of 176×150 points,

with dx = dz = 20m, using a sixth-order finite difference scheme and in time using a second-order leap-frog

integration scheme with constant time step satisfying the CFL condition, as implemented in PySIT.

The inversion problem is solved using the l-BFGS gradient-based method, as implemented in PySIT,

with a fixed number of FWI iterations set to 250 iterations.

Two initial models are considered: a S-500 initial model, which is derived from the "true" velocity model

applying a smooth low-pass filter with a frequency set to 1/500; a 1D-GRAD initial model, which is a

homogeneous model with a linearly depth-increasing velocity from 1500 m/s at the bottom of the water layer

to 3500 m/s at depth. While the S-500 initial model conserves some of the long-wavelength content of the

true model, the 1D-GRAD initial does not contain anymore signature of the long wavelength components of

the true model. With both initial models it is a challenging task for FWI to recover large low-wavenumber

discrepancies between the initial and "true" model.

Both the predicted dcal and the observed dobs data, i.e. the latter corresponding to the "true" model,

are physical realisations obtained with the same wave propagation solver, and without considering additional

noise to the data, i.e. the inversion crime setting.

Unless otherwise specified, the Sε,λ-misfit function is formulated as in Chapter 5. The observed and pre-

dicted signals are each decomposed into positive and negative parts, using the Pδ-transform defined in (5.4),

and transported separately using the Sinkhorn divergence formulation for unbalanced optimal transport.

Results

Reconstructed physical models with the L2 and Sε,λ based inversion are shown in Figure 6.55, for the two

initial models.
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True model S500 initial model 1D-GRAD Initial model

L2 results

Sε,λ results

Figure 6.55: Fracture zone Marmousi II model: results for L2 (second row) and Sε,λ (third row) misfit functions,
with the S-500 (second column) and 1D-GRAD (third column) initial models.

S− 500 initial model

Both the L2 and Sε,λ based inversion reconstruct partially meaningful models. Velocity models in both

cases are similar with low-resolution images of the fine layers and normal faults above 1500 m. Both inversion

have trouble resolving an accurate velocity model in the deep region (below 1500 m) because of the large low

wave-number discrepancies between the S-500 initial model and the "true" model, and because reflections

and the anticline structure in the deep region are not sufficiently recorded due to the limited offset.

Pseudo velocity logs, at two surface locations, reconstructed with the L2 and the Sε,λ based inversion are

compared in Figure 6.56.

Velocity models in both inversion recover reasonably well the true velocity model above 1500 m, whereas

quality of the inverted models degrades rapidly with depth. Both inversion fail to update at depth (below

1500 m) the low wavenumber structure of the velocity model and place reflectors at wrong positions.

The initial and final predicted data are shown in the time-receiver domain Figure 6.57 for both the L2

and Sε,λ based inversion. The adjoint sources and optimisation gradient, at the first iteration, are shown in
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Figure 6.58.

The observed data and the predicted data at the last iteration for both the L2 and Sε,λ based inversion

are reasonably in phase in the shallow region (above 1500 m).

In the predicted data at the first iteration reflected phases, as expected, are missing whereas diving

phases are reasonably in phase only at short offset. This reflects into the L2 and the Sε,λ adjoint sources.

The Sε,λ adjoint source is smooth and capture information of both diving and reflection phases. The source

captures also signature of a mass-spreading over the whole domain as a result of the unbalanced-mass between

predicted and observed data. At first iteration, the he L2 and the Sε,λ based inversion gradients look different

with different sensitivity regions at depth.

The Sε,λ based inversion convergence rate appears faster than the L2-based inversion one and the misfit

distance keeps continuously decreasing after 250 iterations.

L2 Sε,λ

Figure 6.56: S-500 initial model: pseudo velocity logs at two surface locations x = 10730 m (first row) and x = 11430
m (second row) for the L2 (left) and Sε,λ based inversion
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True model: observed wavefield Initial wavefield

L2 final wavefield Sε,λ final wavefield

Figure 6.57: S-500 initial model: wavefield in the time-receiver domain for a common shot gather associated to a
source et the middle of the domain: observed wavefield (upper-right figure); initial wavefield (upper-left figure); final
wavefield for the inverted model and difference between the observed and final wavefield for L2 (lower-left figures) and
Sε,λ (lower-right figures).

Institut de Physique du Globe de Paris Miao YU, Ph.D. Thesis, 2021



6.4 120

L2 adjoint source Sε,λ adjoint source

L2 gradient Sε,λ gradient

Figure 6.58: S-500 initial model: adjoint source and gradient at first iteration for the L2 and Sε,λ misfit functions

L2 Sε,λ

Figure 6.59: S-500 initial model: FWI convergence with the L2 (left) and the Sε,λ (right) misfit functions

Results with the 2-D and the 1-D trace-by-trace Sε,λ misfit functions are shown in Figure 6.60 for

comparison.

Results with the trace-by-trace Sε,λ-misfit function, i.e. 1-D unbalanced transport in time, are not

satisfactory compared to the 2-D Sε,λ and the 1-D L2 misfit functions. The inversion does not recover

long-wavelength components and exhibit more artefacts.
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True Model L2 inversion

Sε,λ inversion Sε,λ (1D-Time) inversion

Figure 6.60: Reconstructed models for different implementation strategies of the Sε,λ-misfit function: 2-D transport
after decomposition of the signals into poistive and negative parts (upper-left figure); Squared-transform of the signals
before 2-D transport (upper-left figure); 1-D transport in space (offset-by-offset) after decomposition of the signals
into positive and negative parts (lower-left figure); 1-D transport in tile (trace-by-trace) (in time) after decomposition
of the signals into positive and negative parts (lower-right figure). The later two implementations make use of the
separability of the Gibbs matrix in the Sinkhorn algorithm and of the appropriate scaling of the transport domain.

1D-GRAD initial model

Reconstructed models with the L2 and Sε,λ based inversion are not satisfactory after 250 iterations., even

if some long-wavelength components start emerging in a more satisfactory way for Sε,λ. It is an extremely

challenging task for FWI to recover large low-wavenumber discrepancies between this initial model and the

true model, especially in the deeper region (below 1500 km) where reflections from the dipping reflectors and

the anticline structure are not sufficiently recorded due to the limited offset.

Emerging signatures of the fine layers and normal faults in the shallow region (above 1500 km) appear

better retrieved with the L2 based inversion, whereas the Sε,λ based inversion is relatively less prone to

spurious artefacts in the deeper region (below 1500 m) than the L2 based inversion, which may suffer from

cycle-skipping associated to deep reflections in the central region.

Pseudo velocity logs, at two surface locations, reconstructed with the L2 and the Sε,λ based inversion are

compared in Figure 6.62. Velocity models in both inversion recover reasonably well the true velocity model

above 1000 m, whereas quality of the inverted models degrades rapidly with depth. Both inversion fail to

Institut de Physique du Globe de Paris Miao YU, Ph.D. Thesis, 2021



6.4 122

update at depth below 1000 m the velocity model and place reflectors at wrong positions.

The initial and final predicted data are shown in the time-receiver domain Figure 6.64 for both L2 and

Sε,λ, based inversion. The adjoint sources and optimisation gradients, at the first iteration, are shown in

Figure 6.63.

The predicted data at last iteration does not fit well the observed data for both the L2 and Sε,λ based

inversion. Long wavelength error components appears for L2 possibly as a result of cycle-skipping issue.This

appears less an issue for Sε,λ.

The L2 and Sε,λ adjoint source are again different and does not capture the same space and time informa-

tion in the early and late times of the source. The gradient of the Sε,λ exhibit large lobe-sided, long-wavelength

updates in the shallow part (above 800 m) and relatively less sensitivity in the deeper region. The gradient

of the L2 based inversion exhibits more complicated and stronger updates in the region between 800-2000 m

depth.

The convergence rate, over the first 250 iterations, appears faster with the Sε,λ based inversion compared

to the L2 based inversion, and the misfit keeps continuing decreasing.

L2 Sε,λ

Figure 6.61: 1D-GRAD initial model: FWI convergence with the L2 (left) and the Sε,λ (right) misfit functions.
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L2 Sε,λ

Figure 6.62: 1D-GRAD initial model: pseudo velocity logs at two surface locations x = 10730 m (first row) and
x = 11430 m (second row) for the L2 (left) and Sε,λ based inversion
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L2 adjoint source Sε,λ adjoint source

L2 gradient Sε,λ gradient

Figure 6.63: 1D-GRAD initial model: adjoint source and gradient at first iteration for the L2 and Sε,λ misfit
functions.
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True model: observed wavefield Initial wavefield

L2 final wavefield Sε,λ final wavefield

Figure 6.64: 1D-GRAD initial model: wavefield in the time-receiver domain for a common shot gather associated to
a source et the middle of the domain: observed wavefield (upper-right figure); initial wavefield (upper-left figure); final
wavefield for the inverted model and difference between the observed and final wavefield for L2 (lower-left figures) and
Sε,λ (lower-right figures).
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Chapter 7

Conclusion

This thesis aims at investigating application of entropic unbalanced optimal transport in the context of full-

waveform seismology. We provide a brief overview of full-waveform inversion in seismology and of the main

issues encountered in practice and that are associated to the inherent ill-posedness and the non-convexity of

the inversion problem, together with a brief review of different research directions that have been attempting

to resolve these issues.

The premise of this study is that transport based distances can be a reasonably effective tool, partly

because of their Lagrangian nature, for designing objective functions alternative to classical Lp based misfit

functions that improve convexity and enlarge the basin of attraction of the full-waveform inversion prob-

lem. This has been already promoted by a number of studies investigating transport distances, such as

2-Wasserstein distance, earth mover’s distance and Graph optimal distance. This Thesis can be seen as a

contribution to this new trend.

More specifically in Chapter 4, we present the Sinkhorn divergence formulation of entropic unbalanced

optimal transport, correcting the bias introduced by the entropic penalisation, that benefits from the easy

to use and cost effective Sinkhorn algorithm associated to the entropic penalisation, and specifically discuss

its use in the context of full-waveform inversion. The Sε,λ distance still interprets signals as positive mea-

sures, requiring ad-hoc signal transformation into positive and negative parts (discussed in chapter 5) but

unbalanced transport avoids ad-hoc normalisation methods that can often dampen features and reduce the

intensity range of a signal.

This new misfit function is assessed in the most generic and reproducible way through several synthetic

cases (presented in chapter 5 and 6) from 1D toy models (focussing on shifted patterns) to 2D FWI nu-

merical illustrations on simple canonical configurations in transmission and reflection, and on more realistic

heterogeneous configurations extracted from Marmousi models.

Comparison between misfit functions based on L2 and different formulations of Sε,ε, associated to different

signal transformations and ground cost metrics linked to transport domain scaling, is made simple by the

adjoint state formalism of the FWI (presented in Chapter 2). For reproducibility, all misfit functions and

numerical tests developed in this Thesis have been implemented within the Python Seismic Imaging Toolbox

(PySIT), an open-source platform developed by Russel J. Hewett and Laurent Demanet in the Imaging and
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Computing group of the Department of Mathematics at MIT.

The numerical illustrations provided in this Thesis make however a number of assumptions, for sake

of simplicity and computing cost, that need to be kept in mind when reaching conclusions. First they all

assume constant density, acoustic wave propagation (only one model parameter) and as such mode conversion

and anisotropy are not considered. Second, all observables are point samples solution of the acoustic wave

equation, using the same solver and without additional noise such as acquisition noise (full control set-up,

so called inversion crime setting). Third seismic sources are assumed to be known and modelled as point

sources with a Ricker wavelet source-time function.

As such, the numerical illustrations provided in this Thesis have to be considered as academic illustrations

that need to be further investigated and evaluated in more realistic contexts before drawing any practical

conclusion in term of field data applications.

At the end of this document, we cannot unfortunately provide a definitive conclusion on the relevance of

using Entropic Unbalanced OT in FWI even just in the context of academic models. We here give where we

stand and the various ideas arising from this work.

Based on chapter 6 we can say, as expected, that Sε,λ provides similar results as the 2-Wasserstein

distance promoted by the Engquist group under the use of signal sign splitting. It is yet unclear whether the

introduction of unbalanced OT, avoiding signal normalisation, improves the inversion or not.

Introducing unbalanced (to avoid normalisation) and entropic (for its numerical performance and flex-

ibility) OT is appealing but introduces two new parameters ε and λ which have so far simply been set by

trial and visual assessment on the numerical tests. We do not have a clear understanding of the impact of

these parameters on the convexity of the misfit and how they can be optimised. One of the conclusion is

therefore that this should be first investigated in more details in the 2D parametric example (section 5.2).

The potential use of these parameters in simulated annealing strategies could also be investigated.

On the positive side, our Entropic misfit function is easy to implement and the Sinkhorn divergence

formulation really allows to set ε such that the number of Sinkhorn iterations to convergence remains accept-

able. In all our experiments, it remained on the order of the discretisation of the offset line and in practice,

one OT gradient step never exceeded 10 times one L2 gradient step and was more like 5 times on average.

This is encouraging and indicates that the extension of this method to 3D FWI is possible thanks to the

tensorisation technique (section 4.1.2).

Another interesting research direction raised by this study is the choice of the ground metric, the metric

used to measure the distance (in time × offset) traveled by the mass (here the positive or the negative part

of the signal). A first discussion just on scaling the dimensions of the common shot gather is given in section

4.4 with two unrelated conclusions: first, scaling the domain will affect the modulus of convexity for simple

translating signals, and second when using entropic OT the scale of the domain will constrain the transport

range and can indeed be used to control it. In the OT theory and also numerical practice, it is legit to replace

the quadratic euclidean metric by a Riemanian or even a Finsler metric. The open question is wether such

a metric depending on the model could have better convexity properties and can this new non-linearity in
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the inverse problem be tackled theoretically and numerically.

The strategy developed in this thesis remains based on the awkward interpretation of seismic wavefield as

probability densities and we pay the heavy price of poorly understood non-linear signal transformations even

with the unbalanced OT (see above) normalisation, even though it avoids signal normalisation that often

dampen the features and reduces the intensity range. In contrast with the Lp distances that only considers

differences in intensity, OT distances are transport distances and as such less sensitive to high frequency

perturbations, the transport being on the order of the wavelength of the perturbation.

The representation of the data as a graph in the (Ramplitude × Rtime × Rd−1
offset) space proposed by the

Metivier group is more natural and gives good results. There is a numerical price to pay though and it has

remain until today limited to trace-by-trace comparisons. The application of Entropic OT maybe of interest

for its numerical efficiency and also the range controlling property mentioned above.

Finally let us remark that the “graph” strategy proposed above can be pushed further, e.g. a discretised

seismogram line (a collection of ordered points) can be interpreted as a Dirac measure in Rd−1
offset × Rnttime ×

Ramplitude and the OT distance can be defined on probability distributions over this space. This strongly

reduces the number of samples of the data distributions but the computational burden now resides on the

computation and storage of the ground cost. Interestingly, an efficient software exists (developed by J. Feydy

https://www.kernel-operations.io/geomloss/), based on an online strategy to evaluate the ground cost

and on a sophisticated GPU implementation, to compute Sinkhorn divergences in high dimensional spaces.

It may be interesting to test if OT distances based on deformations in these higher dimensional spaces can

be useful.
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