
HAL Id: hal-03512005
https://hal.inria.fr/hal-03512005

Submitted on 5 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zero-Knowledge : trust and privacy on an industrial
scale

Daniel Augot, Sarah Bordage, Youssef El Housni, Gilles Fedak, Anthony
Simonet

To cite this version:
Daniel Augot, Sarah Bordage, Youssef El Housni, Gilles Fedak, Anthony Simonet. Zero-Knowledge :
trust and privacy on an industrial scale. 2022. �hal-03512005�

https://hal.inria.fr/hal-03512005
https://hal.archives-ouvertes.fr

Zero-Knowledge :
trust and privacy
on an industrial scale

Zero-Knowledge :
trust and privacy
on an industrial scale

Outlook #1, September 2021Outlook #1, September 2021

3

One of the main obstacles to the deployment of blockchains is the fact that the data managed on
a blockchain is publicly accessible. This is unthinkable in the health or banking sectors, for example.

Zero-knowledge technologies can resolve precisely this contradiction. These technologies can be
implemented either by deploying a blockchain specifically designed to integrate zero-knowledge, or
by deploying zero-knowledge software components on an existing blockchain that is technologically
capable of integrating them.

This concept of zero-knowledge is so amazing and promising that it earned its inventors, Shafi
Goldwasser and Silvio Micali, the Turing Award in 2012.

To present this counter-intuitive technology and put it into perspective with uses and services, the
“Blockchain and B2B Platforms” chair hosted at École Polytechnique and supported by CapGemini,
NomadicLabs and Caisse des Dépôts, chose to interview two doctoral students, Sarah Bordage
and Youssef El Housni, who are doing their research at the École Polytechnique’s computer science
laboratory as part of the chair, and Anthony Simonet-Boulogne and Gilles Fedak, from the startup
iExec, who see zero-knowledge as technology to be integrated into their offer.

Introduction

5

What is “zero-knowledge”?

Daniel Augot : In the world of blockchains and cryptocurrencies, we hear a lot about zero-knowledge
as a solution to privacy issues, i.e. confidentiality and privacy. Indeed, this technology can satisfy the
two conflicting goals of make information public (or recording or sharing information) and, on the
other hand, keeping that information confidential.

In a very simplified way, the principle is as follows: a minimal “trace” or “fingerprint” (cryptographic
commitment1, or pledge) of a piece of information is recorded on a blockchain, whether public or not
(for example a transaction). On the basis of this trace it is possible to prove facts about this information
without revealing the information itself. A pledge, or commitment, of an item of information consists of
producing a seal also called a hash, possibly a very short one, which means that only this information
is certified by this hash. This hash can also hide the certified information.

The applications are: confidentiality of financial transactions on a blockchain, identity management,
proof of solvency, protection of health data, etc.

How is this possible? It seems counter-intuitive... A playful presentation based on Waldo’s game is
presented in the box.

Where is Waldo ?

The game is well known: it is one of those books with large, dense and detailed illustrations.
Waldo hides in them, easily recognisable, once he has been found. A child (the prover) will
prove to his father (the verifier) that he has found Waldo without showing where Waldo is.

He proceeds as follows:

1. he prepares a card as big as nine times the page

2. he cuts out the silhouette of Waldo from this card

3. he presents this card to his father

4. he positions the book behind the card so that Waldo appears in the cut-out

5. the father sees Waldo through the cut-out but does not see Waldo’s position
on the page.

The father is convinced that his child knows where Waldo is, without learning where Waldo is.

1 Words in bold font are explained in text or in the glossary

6

What does zero-knowledge bring to data privacy?

Daniel Augot : Generally, when we speak of data confidentiality, we are referring to encryption, i.e. a
cryptographic algorithm that makes the data unintelligible, using an encryption key. The only way to
retrieve the data is to decipher it, using the decryption key. Thus, the legitimate recipient can decipher
the data with the decryption key. It’s an all-or-nothing solution, either you know nothing or you see
everything, and possession of the decryption key determines who has access to plaintext information.

In contrast, zero-knowledge proofs can be used to prove the truth of statements about data that have
been kept hidden by encryption (or commitment, cryptographic hashing or pledging). These proofs
do not reveal any information other than the fact that these properties or statements are true. For
example, if a digital fingerprint of passport data is stored, the user of that passport will be able to prove
that they are of age without revealing their age or other passport information. In the banking world,
bank accounts would be recorded and accompanied by the publication of a public fingerprint (the
root of a Merkle tree. A Merkle tree allows a large amount of data to be pledged with a very short
fingerprint.) Based on this fingerprint, the bank can prove that all accounts do not exceed a certain
reporting threshold without revealing the status of the accounts.

Recent advances have made it possible to move beyond original zero-knowledge, which historically
dealt with abstract, mathematical statements from number theory. Now, one can deal with real-life
statements, such as those described above for age or for the threshold for reporting bank accounts.
Essentially, it is a kind of compilation of a high-level language into mathematical equations (see box).

A second important advance, thanks to this increased flexibility, is to allow proofs that calculations
have been carried out correctly, without having to redo the calculation, and without revealing all
the information necessary for this calculation. These calculations involve data, some public, some
private, and it can be proven that the result is correct without revealing the private data. To go
beyond the previous banking example of verifying a static threshold, the bank has the possibility of
producing a more dynamic calculation result, such as the median or average of the accounts under
its management, accompanied by a zero-knowledge proof that this calculation is correct. In short,
someone who has made a complex calculation on data can convince that this result is correct by
producing the associated proof, but without revealing the data in question.

Technical aspects of zero knowledge proof

First a bit of terminology: the prover is the person who produces a convincing proof (in
Waldo’s example this is the child), and the verifier is the person who checks the proof (in
Waldo’s example this is the parent). The prover uses a proof algorithm to construct the
proof and the verifier uses a verification algorithm to verify the proof.

Historically, since the 1980s, cryptographers have built low-level zero-knowledge protocols,
which make it possible, among other things, to prove that a system of algebraic equations
has a solution, that a «discrete logarithm» is known, etc. These low-level protocols are
expressed in mathematical and computational terms, far removed from the concrete
problems of everyday life.

But we should remember that in computing, all information processing comes down
to manipulating bits, i.e. 0s and 1s. To make the programmer’s job easier, a computer
program is written in a high-level language, such as Rust or C++, and then compiled into
a low-level language that the machine can understand.

Here, the situation is the same: a natural statement requiring a natural proof is compiled
into a mathematical statement. The natural proof is likewise compiled into a low-
level mathematical proof, which will be processed by the low-level cryptographic and
mathematical zero-knowledge protocol. Verifying the proof of a high-level statement in
zero-knowledge is the same as verifying the associated low-level proof in zero-knowledge.

7

It is said that the mathematical problem is the backend and the high-level language is
the frontend. However, the lower cryptographic layer may have specifics depending on
the proof system that impact higher level applications. In this talk, we consider SNARKs
(Succinct Non Interactive Argument of Knowledge) and STARKs (Scalable Transparent
ARguments of Knowledge) which are the two most industrially advanced technologies.

It is a scientific, technological and engineering feat to integrate cryptographic protocols into
a software suite making it easy for the programmer to express natural problems. Moreover,
there is an effort to standardise these systems and protocols, bringing industrialists and
academics together.

What are the criteria for choosing zero-knowledge systems for different applications?

Youssef El Housni : For a given application, this question can be dealt with according to two axes of
analysis, depending on the technological constraints of the environment in which the application will
be deployed or according to the functionalities and needs of the application.

On the first axis, to analyse according to technological constraints, the question in the context of
blockchains and smart contracts is to know how and in what environment the proof verification
algorithm will be executed. A smart contract is a program that is irrevocably stored in the blockchain
under consideration, and whose execution is triggered automatically. It typically enables more
complex transactions than simple financial transactions, and the development of more sophisticated
financial tools.

For example, for Ethereum, the Ethereum virtual machine that executes the smart contracts must
be pre-compiled with non-standard complex instructions. These non-standard complex instructions
implement, among other things, advanced elliptic curve operations needed to verify a zero-knowledge
proof on-chain. They specify a rigid mathematical context, such as a specific well-defined elliptic
curve, which then restricts the whole proof system and sets a technological limit. Indeed, changing
the curve would imply a heavy change consisting in adding new precompiled instructions to the
Ethereum virtual machine.

On the other hand, for a new application or a new blockchain with no prior context, the freedom of
choice of the elliptic curve makes it possible to incorporate the most recent advances in research.

Sarah Bordage : For STARKs, the platform requirements are relatively light, requiring a library of
algorithms for addition and multiplication of large numbers and polynomials. This is not as specific
and mathematically complex as choosing an elliptic curve for SNARKs.

Youssef El Housni : For the second axis, to consider a zero-knowledge system according to the functionalities
of the application, it is a question of characterising the proofs in relation to their size, the time taken to
generate the proofs and the time taken to verify the proofs. In an application where evidence is stored
permanently after verification, the size of the proof is of primary importance. It is therefore necessary that
these proofs are as small as possible, such as those of SNARKs. If the application requires the prover to
make proofs quickly, STARKs with a faster proof algorithm than SNARKs should be used.

On the other hand, a zero-knowledge algorithm, whose verification times depend on the statement
and are not constant, would pose problems for use in an application that verified different statements
of varying sizes. This would greatly impact the performance of the application, which would no longer
be in real time. SNARKs have constant verification times, so have less impact, on the verifier’s side, on
the performance of the applications that use them.

For example, in Zcash, proofs of each transaction are stored on the blockchain and are verified by miners:
to keep them short and quickly verifiable, SNARKs are used to control the rate of block production.

8

SNARKs STARKs

Trusted Setup YES NO

Universal Trusted Setup YES Non applicable

Proof Calculation Cost Fast Very fast

Proof Checking Cost Constant Logarithmic

Proof size Constant Logarithmic

Anthony Simonet-Boulogne : From my point of view, these different zero-knowledge protocols enable
us to adjust the cursor between the traceability of transactions on the one hand, which is essential in
blockchain applications, and the confidentiality of data on the other. In the end, it is therefore the specific
needs of each application that will guide our choice between the various solutions.

For example, the time taken to generate proofs can be very restrictive in certain situations. A payment
system such as Zcash needs extremely fast proofs to be generated as it needs to be able to issue
transactions almost instantly, possibly on a light terminal (smartphone). On the other hand, I think there
are many application areas, such as oracles (an actor entering external information into the blockchain,
which intrinsically is not verifiable by miners or validators with only the information in the blockchain, e.g.
a local weather forecast), where the trust in the external information that is inserted into the blockchain is
so great, that one could accept much longer proof generation times to certify this external information
introduced by an oracle.

Youssef El Housni : It is very important to consider the issue of trust in the implementation of SNARKs.
Indeed, the person who generates the structured reference string, the proof and verification
algorithms manipulates secrets that allow him to make false proofs. He must therefore be trusted
to have destroyed these secrets. In an application where there is only one type of statement to
prove, a SNARK is relevant because its trusted setup only needs to be done once. Thus for the Zcash
cryptocurrency, where transactions are secret, there is only one type of proof that is used to verify the
validity of transactions according to the criteria of the Zcash protocol: no money creation, no double
spending, legitimacy of the issuer of the transaction, etc. Once these criteria have been specified,
and thus the type of statement to be verified (we are referring to the language of valid transactions),
everything is set in stone and only one implementation is needed for the associated proof system. The
SNARK solution is appropriate.

On the other hand, in a smart contract application on Ethereum, which verifies a zero-knowledge
proof on-chain, depending on the logic of the smart contract, it would be necessary to set up a
structured reference string for each new smart contract that has to verify zero-knowledge proofs.
The variability of the statements to be verified and the complexity of their implementation make it
unreasonable to deploy such a trusted setup for each smart contract. It would then be appropriate
to consider STARKs, which do not require such a set-up of the initial trust framework.

9

SNARKs : Succinct Non Interactive Arguments of Knowledge

Youssef El Housni : My thesis topic is SNARKs. The implementation of SNARKs requires a
trusted third party. This trusted third party generates data called the structured reference
string, which is a string of bytes needed for the proof and verification algorithms to work.
This structured reference string is said to be trapped, which means that secrets (discrete
logarithms) were needed to set up this string, which is however public. Whoever knows
these secrets has the means to fabricate false evidence: a trapdoor. He must therefore
be trusted not to use this power and to have destroyed the secrets once the structured
reference string has been published. This trapdoor is colloquially called toxic waste.
Moreover, the result of the implementation is specific to the proven statement: it must be
redone for each type of statement (language). However, cryptographic advances have
made it possible to construct universal SNARKs, with a valid implementation for several
statements, e.g. PLONK.

In mathematical terms, SNARKs are based on number theory : elliptic curves over finite
fields (these objects allow rudimentary arithmetic, limited to addition), pairings (allow
more advanced operations, such as multiplication), as well as the associated algorithmic
and cryptographic problems. A natural problem can thus be coded into an additions
and multiplications problem involving hidden objects. The structured reference string is
actually a set of elliptic curve points, whose discrete logarithm are known by the trusted
third party building the structured reference string.

Once set up for a given statement, any prover can use the proof algorithm and associated
structured reference string to produce proof of a statement without revealing what makes
the statement true. Any verifier can use the verification algorithm, the proof and the
structured reference string to verify that the statement is true.

The size of the SNARK proof is very small (a few hundred bytes) and does not depend on
the complexity of the statement to be proved (this complexity is however found in the
structured reference string which grows with the statement to be proved). Consequently,
the SNARK verification algorithm is not only very fast but also has a constant cost with
respect to the size of the statement.

SNARKs have been made popular in the blockchain world by the advent of the
cryptocurrency Zcash. In the Zcash protocol, users do not broadcast their monetary
transactions in plaintext but broadcast an opaque version of them, of which only a
commitment will be made public, associated with a zero-knowledge proof. This zero-
knowledge proof allows miners to publicly verify that the transaction is correct, even though
the sender, receiver and amounts are hidden.

The small size of SNARK proofs and their high speed of verification mean that they can
be verified and written to the Zcash blockchain without impacting the performance of
the blockchain miners. The issue of the trusted third party when setting up the structured
reference string presents a crucial problem. Indeed, the person or persons who know the
trapdoor can make invalid transactions whose proof will nevertheless be accepted as
correct. In the Zcash framework, it is always the same type of statement that is proven, the
one defined by the validity restrictions of the transactions. This problem only arises once here.

To remedy this, developers have resorted to complex distributed protocols known as
MPC (secure multiparty computation). An MPC protocol allows multiple participants to
collaborate on a common calculation, depending on each participant’s secret, without
the participants revealing their secrets to each other.

Each participant contributes to the protocol with their own secret, which results in the
establishment of the structured reference string without any of them knowing the global
secret (the trapdoor) associated with this structured reference string.

10

Consensys, my employer, is developing the «gnark» library, which autonomously allows the
implementation of the structured reference string, the proof algorithm, the verification
algorithm, for statements written in the Go language. Higher application layers specific to
blockchains can use the gnark library.

Why is zero-knowledge often mentioned as a solution to the problem of scalability?

Youssef El Housni : We talk about zero-knowledge as a solution to ensure data confidentiality but it can
also be used to solve the problem of scalability. Previously, we talked about the types and families of
zero-knowledge that can be characterised by the size of the proof. Rollups are a direct application of
SNARKs (or STARKs) thanks to their very short proofs (constant for SNARKs, logarithmic in the size of the
computation for STARKs).

The principle of rollup, as the name suggests, is to group together numerous off-chain transactions
that will be recorded in a single short transaction on the blockchain, accompanied by the proof that
all these transactions are correct. This solves the scalability problem by increasing bandwidth: a single
short on-chain transaction actually encodes thousands of transactions, with a tiny size of the proof of
correctness of these transactions. This takes up little of the blockchain’s space and miners can quickly
ensure that all these transactions are correct.

So it is not primarily the zero-knowledge component that is important here. It is mainly the fact that the
zero-knowledge proof is of constant or logarithmic size that is interesting.

STARKs : scalable transparent arguments of knowledge

Sarah Bordage : Like SNARKs, the STARKs that constitute my thesis topic are proofs that
accompany the result of a computation to certify that the computation has been correctly
performed. STARKs can be zero-knowledge, in which case the verifier gains no information
about a secret input to the computation. These are known as ZK-STARKs.

Beyond the issues of confidentiality and privacy, STARK proofs are positioned as a solution to
the scalability problem that naturally emerges when moving from a centralised network to a
peer-to-peer network, such as a blockchain. The cost of verifying a STARK proof is logarithmic
in the size of the computation, and a prover can handle a large batch of transactions,
produce a single STARK proof certifying the validity of all transactions. This proof can then
be verified on-chain by miners using very little computing power. In a demonstration on
the Ethereum network, the StarkEx system generated a single STARK proof to verify 300,000
transactions, at a rate of 3,000 transactions per second, with a cost of 315 gas per transaction.

ZK-STARKs have several advantages over ZK-SNARKs. Firstly, their security does not depend on
trusting the correct execution of a trusted setup algorithm: there is no structured reference
string, nor a secret trapdoor that could be exploited to forge valid proofs of false claims.

In terms of comparison, SNARKs provide proofs of constant size, shorter than STARKs, due
to the set-up phase of the structured reference string that encodes the full complexity of
the associated statement. This setup phase, performed during the execution of the trusted
setup, is specific to the program to be verified. The counterpart of STARKs is that the proofs
are longer than those of SNARKs. However, they are extremely short: logarithmic in the size
of the computation to be proven.

If the security of the zero-knowledge application has to withstand the quantum computer,
for example for very long-term security, one should turn to STARKs for which there is probably
no quantum attack.

11

STARKs provide a great deal of flexibility, especially with the Cairo development platform,
recently developed by the start-up Starkware. Cairo is the first language that allows writing
generic programs that can be verified by STARK proofs. Executing a program written in Cairo
returns an execution trace that is sent to a STARK prover. From this trace, the proof algorithm
generates a STARK proof to certify the validity of the computation represented by the Cairo
program. For blockchain applications, the proof algorithm is typically executed outside the
blockchain network (off-chain). In contrast, a STARK verification algorithm can be deployed,
without trusted setup, via a single smart contract for any proof, capable of validating the
execution of any Cairo program.

STARKs are used in production in the StarkEx system: a set of smart contracts deployed
on Ethereum. It is a rollup that allows for the on-chain verification of a whole batch of off-
chain transactions, of which a STARK proof is provided by the system. Decentralised finance
applications (DeFi) such as dYdX (decentralised exchanges), DeversiFi (trades and swaps)
and Immutable (blockchain gaming) in turn use the Starkex platform.

How does the price of Ethereum gas impact the development and use of zero-
knowledge?

Youssef El Housni : Remember that in the case of SNARKs, there are three algorithms: a setup algorithm,
a proof generation algorithm and a proof verification algorithm. The first two algorithms for setting up
and generating the proof are not done on the blockchain (they use secret quantities and data). Only
the proof verification algorithm is executed on the blockchain by the miners or verifiers. It is therefore
this last algorithm that will impact the cost of using zero-knowledge on a blockchain. In the case of
a blockchain, such as Ethereum, where you have to pay for gas to verify a proof, we would like the
verification to be as cheap as possible in gas. Ideally, verification should always have the same cost
for any type of statement to be verified, regardless of its complexity. This is the case with SNARKs,
which allow us to have a constant cost of proof verification in terms of operations, irrespective of the
statement being proven, and therefore a perfectly controlled on-chain cost of proof verification.

Sarah Bordage : In contrast, in the case of STARKs, the cost of verification, although logarithmic,
depends on the complexity of the statement to be verified. In the case of Ethereum, the on-chain cost
varies according to the statement (the logic of the smart contract) and is no longer constant, albeit
very small. This is the counterpart of the transparency provided by STARKs, which do not require a
trusted setup and allow deployment without the need for trust.

12

Zcash cryptocurrency: a first example of large-scale deployment

The Zcash cryptocurrency, based on the zerocash protocol, has helped to introduce the
term ZK-SNARK and the notion of zero-knowledge to a large audience. This cryptocurrency
allows for transparent transactions like Bitcoin or Ethereum or opaque transactions. For
opaque transactions, Zcash is based on the notion of a note, hidden by its commitment.
A Zcash note describes in a non-explicit way an amount and a payment address, in and
out. A private key is assigned to each payment address, allowing the note to be spent.
This information is hidden: the amount and the address of the recipient of the payment are
known only to the person who creates the note.

Each note has a commitment associated with it, and a nullifier that can only be
computed with the private key associated with the note. It is impossible to link a nullifier to
a commitment without knowing the corresponding private key.

A valid consumable note at a given time is a note whose commitment exists publicly
and whose nullifier does not. The system publicly records commitments and nullifiers. The
system is considered here as orthogonal to this zero-knowledge payment system. Its role is
to check the validity of the transactions, which handle the notes, as shown below.

A transaction covertly describes an incoming A note and an outgoing B note. Specifically,
it reveals the NA nullifier of the spent note, and reveals a CB commitment of the outgoing
note, without revealing the outgoing B note itself, or to which spent A note the NA nullifier
corresponds. More precisely, a plaintext transaction would be formally correct if

1. There is a CA public commitment of a note corresponding to the A note.

2. The NA nullifier is the one corresponding to the A note of the previous CA
commitment

3. The entry note has not already been spent (no double spending)

4. The input and output values match (no money creation)

5. The CB commitment of the outgoing note is correctly formed, corresponding
to a payment address.

This information is known to the person creating the transaction. The five properties above
are verifiable in zero-knowledge mode as follows

1. There is a past public commitment corresponding to the entry note, but this
commitment is kept hidden

2. The revealed nullifier corresponds to the note of the previous commitment,
but this commitment is kept hidden

3. The nullifier is new

4. Input and output values match but are not revealed

5. The commitment CB of the outgoing note is correctly formed, corresponding
to a B note, without revealing the outgoing note.

Only 3. above is checked publicly: a list of already publicised nullifiers is maintained. A
transaction revealing an already publicly known nullifier is considered a double spend,
and will be rejected.

13

The role of the system (e.g. miners) is to verify the zero-knowledge proof that
points 1. 2. 4. and 5. above are true, and to maintain the list of nullifiers to verify 3.

We can see that the statement to be proven (the language defined by points 1
2 4 5) is defined by the protocol, and that it is always the same during the whole
execution of the protocol. The problem of the trusted setup only arises once.
However, if the protocol should evolve and the validity criteria of a transaction
change, the trusted setup must be redone. However, SNARKs are still preferred
because the proofs are extremely short and quick to verify, with relatively little
impact on the system.

What are the other costs or issues associated to a zero-knowledge proof system ?

Gilles Fedak : There are two main costs to managing zero-knowledge: the cost of the computations
to generate the proofs and the cost associated with setting up the trusted setups. These are
computations that require a lot of computing and memory resources. They are therefore not at all
suitable for blockchains. On the other hand, from the point of view of iExec, which is a distributed
computing solution, there could be an opportunity here to use our infrastructure itself to compute
proofs or to carry out trusted setups in a distributed manner, a bit like the ceremony of Tau.

Anthony Simonet-Boulogne : Indeed, the trusted setup for SNARKs is an interesting example because
it represents a non-negligible cost in both computation time and complexity of implementation. We
have learnt that only the person who has done the trusted setup will be able to be truly convinced
that the toxic waste has been eliminated. This person will have confidence in the structured reference
string because he or she knows that the trusted setup was done correctly, but this confidence is
difficult to convey. In other words, it is not easy to convince people to trust the reference string and to
believe that the toxic waste is destroyed.

14

Improvements to the trusted setup: ceremony of Tau, perpetual ceremony.

Anthony Simonet-Boulogne : From my point of view, we have a centralisation problem with
SNARKs because their implementation is, in a way, centralised.

Youssef El Housni : That is correct. However, in all applications in production today, the
trusted setup is done with a Secure multiparty computation (MPC) protocol. Secure
multiparty computation protocols allow separate partners to obtain a common result of a
certain computation, based on data provided by the participants, without the participants
having to share their data with each other. Thus, the structured reference string can be
constructed by several partners without any of them knowing the secret quantities that
form the toxic waste.

This was historically done for the crypto-currency Zcash in 2016 for the first time and then
in 2017 according to the ceremony of Tau. Since then, there have been other MPCs to
generate structured reference strings for different statements (Tornado.cash ceremony,
Aztec Ignition, Celo Plumo, filecoin ceremony). These protocols ensure that if only one
participant is honest and destroys its secret input, the toxic waste cannot be reconstructed
by any other participant, or even by a collaborating group.

Anthony Simonet-Boulogne : I would also like to add the notion of a perpetual ceremony
of Tau, where structured reference strings are constantly being made, strung together.
Anyone can add their contribution to the new structured reference string, and thus have
trust. This makes it possible to join the system and take the keys generated by the previous
setups or to add a link in the chain with its own setup. If I don’t want to benefit from the
entropy of the structured reference string that others have inserted before me, I can add
entropy that I have generated myself, and thus be confident that what I have in my hands
is trusted. But once I have done this very costly operation, the newly gained trust only works
for me because I cannot easily pass it on to others, except in the form of a promise.

One technology often mentioned when it comes to data protection is the «TEE» (Trusted
Execution Environment) which is hardware technology proposed by manufacturers
(Intel, AMD, ARM). Why and how does iExec use these technologies?

Gilles Fedak : The term Trusted Execution Environments (TEE) refers to hardware technology
implemented at processor level, for example Intel with SGX enclaves, ARM with TrustZone or AMD with
SEV. The idea is that a part of the memory is permanently encrypted and can only be decrypted in
the secure enclave. Neither the users nor even the owner of the machine have unencrypted access to
what this protected part of memory contains. This technology is interesting for iExec because it ensures
the correct and confidential treatment of private data by machines that we do not trust (they are
provided on our marketplace). The user encrypts the data before it is circulated on the network and
the TEE ensures that this data always remains confidential, even when processed after decryption in
the TEE. This technology is therefore complementary to zero-knowledge, in the sense that it ensures the
confidentiality of off-chain data, whereas zero-knowledge ensures the confidentiality of information
whose trace is stored on the blockchain.

For us, there are two advantages to using TEE technology. The first is that it allows users to encrypt their
data so that it can be processed by approved programs, while guaranteeing its confidentiality. This
is known as end-to-end encryption. The second advantage is that it is possible to report and record
in the blockchain the fact that the result of the execution of an application could not be modified
or altered, either by the person who owns the machine on which the application is executed, or by
the network, or by anyone else. This makes it possible to transfer to the blockchain a proof of proper
execution, of the proper performance of the service for which people have paid.

15

iExec is a French technological startup founded in 2016 by two former IT
researchers. Based in Lyon, the company currently employs 26 people in the
R&D and marketing departments. iExec is developing the first decentralised
marketplace allowing individuals or companies to monetise their computing
resources. These may be applications such as artificial intelligence algorithms,
data sets, or computing resources, during computer downtime for example.

A particularity of iExec is that it financed itself through an ICO (Initial Coin
Offering) in April 2017, which raised the equivalent of €11m in Bitcoin. An
ICO consists of issuing a new cryptocurrency (in this case the RLC), and
exchanging it for existing short-term cryptocurrencies. The RLC token is the
exchange medium between the marketplace’s stakeholders; it is also a
key part of the design of the algorithms that govern the marketplace and
implement economic principles to ensure incentive alignment. iExec’s mission
is therefore to develop technology to address trust, governance and security in
the marketplace. To do this, iExec relies mainly on blockchain and confidential
computing, including zero-knowledge proofs.

The first users of iExec are blockchain startups as well as large industrial partners.
The use cases involve the sharing of confidential data, the use of services in
smart-city platforms or the governance of access to user mobility data by a
motorway operator.

16

Glossary of terms

Educational material

Selectes bibliographic references

Zero-Knowledge low-level computed librairies

Industrial applications

Performances

Standardisation effort

What is the interest of this technology for iExec?

Anthony Simonet-Boulogne : Zero-knowledge and rollups make it possible to find a compromise, this
time between performance and centralisation. To enable scaling, most sidechains rely on Proof-of-
Authority protocols which have the effect of more or less «recentralising» consensus by introducing
checkpoints. A Proof-of-Authority protocol simply consists of identifying authorities that have
administrative and validation rights, and therefore control. With zero-knowledge, we hope to achieve
similar performance but retain the decentralisation that is so important to us.

Gilles Fedak : iExec is a decentralised marketplace and proposes a protocol to verify that all commercial
transactions between stakeholders have taken place at the level of trust they requested when making
the deal. This protocol we invented is called «proof of contribution» or PoCo, and is implemented as
smart contracts on the Ethereum blockchain.

Since this protocol is executed via smart contracts, Ethereum miners have to be paid for their
execution each time it is triggered. In the Ethereum blockchain, there is a gas mechanism that is
consumed to pay for the execution of the smart contract, which represents a real financial cost.
In addition, the execution of smart contracts is relatively slow. So, since this protocol runs on every
business interaction, it has a huge impact on performance and therefore for users on usability, user
experience, and service quality.

To solve this problem we run our own protocol on a different, faster and cheaper structure than the main
blockchain. This is called a sidechain. Thanks to this approach, PoCo now runs without any operating
costs for users because the gas is free. In addition, bridges form between the main blockchain and
our sidechain. In the end we are indeed faster and have no running costs, but at the cost of some
drawbacks.

The main drawback is that we have somewhat recentralised the whole process in the sense that this
sidechain is largely administered by iExec. Users ultimately have to trust us to administer and secure
the sidechain. In addition, the bridges themselves are a centralising factor and a key point of trust:
since they are the ones that allow a status to be transmitted from the sidechain to the main chain,
such as proof that deals have been made and that commercial transactions leading to payments
have been carried out. This state allows transactions on the sidechain to be translated into valuable
transfers on the main chain.

Here, in terms of the trade-off between performance and centralisation, we have focused on
performance. We have lost decentralisation but we have gained on economic performance and on
performance in terms of transaction throughput.

What we hope is that rollups will provide a solution to this problem. One way would be to use rollups
to link the information in the sidechain to the main chain in a secure and again decentralised way.
Zero-knowledge could be used to express conditions such as: "Pay me on the main chain because I
put in the main chain the proof that in the sidechain a commercial transaction took place and that
the service was rendered".

Daniel Augot : In conclusion, we can see that the subject of zero-knowledge, which has already
been highly industrialised by certain start-ups, is very promising in the world of blockchains. It has the
potential to solve crucial industrial problems relating to confidentiality and scaling. The discussion
with iExec highlighted the immediate industrial interest of these technologies related to privacy. It is
fascinating that an old subject is now opening up great prospects but research is still active to improve
the performance of existing systems and to remedy certain defects. The discussion we have just had
may be out of date in a year’s time, even if standardisation is on the horizon. Stay tuned!

Appendix

Glossary of terms

Educational material

Selectes bibliographic references

Zero-Knowledge low-level computed librairies

Industrial applications

Performances

Standardisation effort

18

Glossary of terms

To illustrate the notions of zero-knowledge, we use the notion of a compound number, N, with two
prime factors P and Q, where N = P* Q

• Langage: for a relation, it is the set of instances that admit a witness that satisfies the
relation between the instance and the witness. Example: the language of the "set of
numbers composed of two prime factors"

• Instance: public data known to the prover and verifier. "N"

• Relation: logical link between an instance and a witness. "N = P*Q"

• Statement: say that an instance belongs to a language. Example "N is composed of two
prime factors": "N" is the instance and the language is that of numbers composed of two
factors.

• Proof (or witness): data known only to the prover, which establishes that the instance
belongs to the language. Example "P and Q" where N = P*Q

• Non-interactive zero-knowledge proof: A string of bytes produced by a prover, which can
be verified by the verifier. It must be short, and hide information. It will prove that N = P*Q
without revealing P and Q.

• Backend: an implementation of cryptographic and low-level mathematical protocols:
elliptic curves on finite fields, very long error correcting codes.

• Frontend: A way to express statements and proofs in a user-friendly computer language,
which are then compiled into a low-level mathematical representation suitable for the
backend.

• Trapdoor, trapped: an algorithm is said to be trapped if there is a secret quantity, the
trapdoor, which allows its behaviour or properties to be modified. For example, in a public
key encryption system, the decryption key is often interpreted as a trapdoor: the encryption
is impossible to reverse, except for the one who possesses the trapdoor, which in this case
is the decryption key.

• Encryption key, decryption key: An encryption algorithm takes a message and an
encryption key as input and calculates an encrypted message, which will therefore be
unintelligible. A decryption algorithm takes an encrypted message and a decryption key
as input and calculates the corresponding plaintext message.

• Cryptographic hashing, hash: an algorithm that takes arbitrarily long messages as input,
and calculates a very short hash (typically 32 bytes). This algorithm has the property of
making it impossible, given a hash, to find the input message.

• Commitment: publishing or sharing a document hash, without revealing the document.
For example, the document hash can be stored in a blockchain, instead of the document.

• Opening a commitment: given a commitment of a document or data, the document is
revealed and compared with its hash. It is verified that the document has been pledged. For
example, the commitment can be recorded in a blockchain. The owner of the document
can then use the block recording the hash as the date of registration and cannot change
the document once it has been pledged. This is a kind of blind notarisation. Here, however,
zero-knowledge evidence can prove the validity of statements about a document
committed by its hash without revealing it.

19

• Merkle tree: an aggregative data structure for pledging a batch of a large number of
documents using successive hashes. It has two interesting properties. The root hash is
that of all the documents and remains very short. Second, it is possible for the Merkle tree
manager to prove at low cost that a document is part of the batch, without revealing the
other documents.

• Oracle: A blockchain can only certify the data already recorded in the blockchain and the
transactions made on it. A blockchain in itself does not guarantee the quality of external
data inserted. For example, if smart contracts depend on a local micro weather forecast,
one has to trust the operator who enters the weather data to record it in the blockchain.
The term oracle is used to designate such an operator and to emphasise the notion of trust
in external data.

• SideChain: this is a blockchain set up in parallel with the main chain for reasons of
performance and confidentiality, with validation and consensus mechanisms that may
be different from those of the main chain. This raises the problem of the compatibility and
reconciliation of transactions executed in the two chains.

• ZK-Rollup: a transaction batch is generated outside the main blockchain. This batch is
recorded in a Merkle tree, of which only the root is recorded in the main chain. This root
is accompanied by a short zero-knowledge proof that all transactions in the batch are
correct.

• Proof-of-authority: this is simply an electronic signature with the private key of a well-
identified entity, in which the system or part of the system trusts and is able to verify the
signatures issued by that entity. This allows the validation of transactions in private or
permissioned blockchains, but is antagonistic to the notions of public blockchains and
decentralisation.

• Trusted setup: The process by which a ZK-SNARK is initialised. This process produces a
structured reference string.

• Structured reference string, toxic waste: In the context of ZK-SNARKs, which allow very
short proofs to be verified quickly, all the complexity is pushed into a byte string, which
encodes the algebraic steps that must be performed to verify a zero-knowledge proof. This
string is set up at system initialisation, for a given language. This string, built according to the
principles of public key cryptography, is trapped. Whoever knows about the trapdoor can
then make proofs that are accepted as correct of false statements, hence the common
expression "toxic waste" to refer to the trapdoor.

• Smart contract: a computer program stored in the blockchain. This program is executed
by validators or miners when transactions trigger it. A smart contract typically allows the
deployment of its own application logic on top of the blockchain that holds it, for example
the issue of fungible or non-fungible tokens, or certificates for digital assets, etc. In addition,
a smart contract allows purchases or sales between tokens and the blockchain’s native
currency.

• Trusted Environment Execution: hardware technology implemented at the processor level
(Intel SGX, ARM TrustZone with TrustZone, AMD SEV). This is a part of the memory that is
permanently encrypted and can only be decrypted in the secure enclave, according to
the manufacturer’s guarantees. In addition, a calculation can be performed on the data
in the enclave and output the result, with the guarantee that the calculation is correct. This
guarantee is evidenced by a publicly verifiable electronic signature.

20

Educational materials

• A simple and clear presentation: How to Explain Zero-Knowledge Protocols to Your
Children. Quisquater, Jean-Jacques ; Guillou, Louis C. ; Berson, Thomas A. CRYPTO ‘89.
[online] http://www.cs.wisc.edu/~mkowalcz/628.pdf

• Compiling a program into a system of polynomials :
https://electriccoin.co/blog/snark-explain5/

• Step by step presentation of the cryptographic mechanisms of a SNARK:
https://electriccoin.co/blog/snark-explain/

• Zokrates, an environment for building SNARKs and associated smart contracts:
https://zokrates.github.io/

• Step-by-step process of a STARK based on an example:
https://starkware.co/developers-community/stark101-onlinecourse/

Selected bibliographic references

• Invention of zero-knowledge: The knowledge complexity of interactive proof systems.
Goldwasser, S., Micali, S., Rackoff, C. (1989). SIAM Journal on Computing, 18 (1) : 186–208.
[online] http://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20
Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf

• Seminal paper on proofs based on elliptic curves and pairings: Short Pairing-Based
Non-interactive Zero-Knowledge Arguments. Jens Groth, ASIACRYPT 2010.
[online] https://www.iacr.org/archive/asiacrypt2010/6477323/6477323.pdf

• Introduction of the SNARK term: From Extractable Collision Resistance to Succinct Non-
Interactive Arguments of Knowledge, and Back Again. Nir Bitansky and Ran Canetti and
Alessandro Chiesa and Eran Tromer, ICTS’12. [online] https://eprint.iacr.org/2011/443

• First efficient SNARK: Pinocchio: Nearly Practical Verifiable Computation. Bryan Parno
and Craig Gentry and Jon Howell and Mariana Raykova, IEEE Symposium on Security &
Privacy 2013. [online] https://eprint.iacr.org/2013/279

• Invention of STARKs: Scalable, transparent, and post-quantum secure computational
integrity. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, Michael Riabzev. March 6, 2018
[online] https://eprint.iacr.org/2018/046.pdf. Simplified version by the same authors:
Scalable Zero Knowledge with no Trusted Setup, CRYPTO 2019 [by subscription]

http://www.cs.wisc.edu/~mkowalcz/628.pdf
https://electriccoin.co/blog/snark-explain5/
https://electriccoin.co/blog/snark-explain/
https://zokrates.github.io/
https://starkware.co/developers-community/stark101-onlinecourse/
http://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20 Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pd
http://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20 Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pd
https://www.iacr.org/archive/asiacrypt2010/6477323/6477323.pdf
https://eprint.iacr.org/2011/443
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2018/046.pdf

21

Zero-knowledge low-level computer libraries

• libsnark (Scipr-lab.org association of academics)

• gnark (Consensys)

• starkware-libs (Starkware)

• Bellman (as used in zcash)

Industrial applications

• Zcash

• StarkEx: rollup in production

• Aztec.network (zk.money, rollup PLONK)

• zkSync (ZK rollup in production)

• Filecoin : peer-to-peer storage system in exchange for payment

Performances

• ZK-SNARKs for Zcash : 130,000 gate circuits as a matter of routine

• Filecoin requires a proof system for a circuit with nearly a billion gates.

• Starks : 3 000 transactions per second
https://medium.com/starkware/the-great-reddit-bake-off-2020-c93196bad9ce

• Example outside blockchain: systems pushed to the extreme by DARPA (Defense Advanced
Research Projects Agency). This involves proving the existence of a software flaw in a
program without revealing the flaw in question. The proof can be gigantic in this case.

Standardisation effort

• Zkproof.org

http://Scipr-lab.org
https://medium.com/starkware/the-great-reddit-bake-off-2020-c93196bad9ce
http://Zkproof.org

23

Daniel Augot
Director of research at Inria
(French National Institute for Re-
search in Computer Science and
Control), he obtained a thesis in
computer science in 1993 and
the accreditation to direct re-
search in 2007. He supervises doc-
toral and post-doctoral students
at the École Polytechnique. With
Julien Prat, he is responsible for
the Blockchain and B2B platform
chair, supported by CapGemini,
NomadicLabs, and the Caisse
des dépôts.

Louis Bertucci
Researcher at the Louis Bache-
lier Institute. He obtained a PhD
in finance from the University of
Paris-Dauphine. He has been
working on blockchains since
2017..

Sarah Bordage
A doctoral student since 2018 at
École polytechnique under the
supervision of Daniel Augot. She
is working on zero-knowledge
proof constructions for verifiable
computation.

Noémie Dié
Doctoral student at the Econo-
mics Department of Télécom
Paris (Institut Polytechnique Pa-
ris) in partnership with Bpifrance
Le Lab.

Youssef El Housni
Engineer at ConsenSys, member
of the «gnark» team and PhD
student at École polytechnique
under the supervision of Daniel
Augot and François Morain. He is
working on zkSNARKs proofs and
the underlying cryptographic
primitives, in algorithmic number
theory.

Gilles Fedak
PhD in computer science from
the University of Paris Sud. After
a post-doctorate at the Univer-
sity of California in San Diego,
he became an INRIA researcher
at ENS Lyon. He is the recipient
of the Chinese PIFI prize. Gilles
Fedak is CEO and founder of
iExec, a cloud computing plat-
form based on blockchains..

Xavier Lavayssière
Independent researcher on
technological and regulatory
aspects of digital assets. He foun-
ded the ECAN, https://ecan.fr/.
training centre on blockchain
technologies and teaches at
Paris I Panthéon Sorbonne.

Anthony Simonet-Boulogne
PhD in Computer Science from
the École Normale Supérieure
de Lyon in 2015. He has worked
on problems related to distri-
buted computing, cloud com-
puting and blockchain at Inria,
Rutgers University and has been
Scientific Project Manager at
iExec since 2019.

Director of publication: Daniel Augot

With the kind participation of:

Sarah Bordage
Youssef El Housni

Gilles Fedak
Anthony Simonet-Boulogne

And the proofreading assistance of:

Louis Bertucci Xavier Lavayssière

Editorial assistance: Noémie Dié

Graphic design and layout: Centre Polymédia de l’Ecole Polytechnique
Outlook publication of the Polytechnique Blockchain&Platform Chair

Capgemini, CDC, NomadicLab. All rights reserved

