
HAL Id: hal-03516799
https://hal.inria.fr/hal-03516799

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Formal Conformance Testing to Generate
Scenarios for Autonomous Vehicles

Jean-Baptiste Horel, Christian Laugier, Lina Marsso, Radu Mateescu, Lucie
Muller, Anshul Paigwar, Alessandro Renzaglia, Wendelin Serwe

To cite this version:
Jean-Baptiste Horel, Christian Laugier, Lina Marsso, Radu Mateescu, Lucie Muller, et al.. Using
Formal Conformance Testing to Generate Scenarios for Autonomous Vehicles. DATE/ASD 2022 -
Design, Automation and Test in Europe - Autonomous Systems Design, Mar 2022, Antwerp, Belgium.
pp.532-537, �10.23919/DATE54114.2022.9774581�. �hal-03516799�

https://hal.inria.fr/hal-03516799
https://hal.archives-ouvertes.fr

Using Formal Conformance Testing to
Generate Scenarios for Autonomous Vehicles

Jean-Baptiste Horel
Univ. Grenoble Alpes

Inria
38000 Grenoble, France

jean-baptiste.horel@inria.fr

Christian Laugier
Univ. Grenoble Alpes

Inria
38000 Grenoble, France
christian.laugier@inria.fr

Lina Marsso
Dept. of Computer Science

University of Toronto
Toronto, Canada

lina.marsso@utoronto.ca

Radu Mateescu
Univ. Grenoble Alpes

Inria, CNRS, Grenoble INP∗, LIG
38000 Grenoble, France
radu.mateescu@inria.fr

Lucie Muller
Univ. Grenoble Alpes

Inria, CNRS, Grenoble INP∗, LIG
38000 Grenoble, France

lucie.muller@inria.fr

Anshul Paigwar
Univ. Grenoble Alpes

Inria
38000 Grenoble, France
anshul.paigwar@inria.fr

Alessandro Renzaglia
Univ. Grenoble Alpes

Inria
38000 Grenoble, France

alessandro.renzaglia@inria.fr

Wendelin Serwe
Univ. Grenoble Alpes

Inria, CNRS, Grenoble INP∗, LIG
38000 Grenoble, France
wendelin.serwe@inria.fr

Abstract—Simulation, a common practice to evaluate au-
tonomous vehicles, requires to specify realistic scenarios, in par-
ticular critical ones, occurring rarely and potentially dangerous
to reproduce on the road. Such scenarios may be either generated
randomly, or specified manually. Randomly generating scenarios
is easy, but their relevance might be difficult to assess. Manually
specified scenarios can focus on a given feature, but their design
might be difficult and time-consuming, especially to achieve
satisfactory coverage. In this work, we propose an automatic
approach to generate a large number of relevant critical scenarios
for autonomous driving simulators. The approach is based on
the generation of behavioral conformance tests from a formal
model (specifying the ground truth configuration with the range
of vehicle behaviors) and a test purpose (specifying the critical
feature to focus on). The obtained abstract test cases cover, by
construction, all possible executions exercising a given feature,
and can be automatically translated into the inputs of autonomous
driving simulators. We illustrate our approach by generating
thousands of behavior trees for the CARLA simulator for several
realistic configurations.

Index Terms—Behavior trees, CARLA simulator, Formal meth-
ods, Input-output conformance, Scenario generation, Test purpose

I. INTRODUCTION

AV (Autonomous Vehicles) are complex and safety critical
systems. Although their main objective is to propose a safer
alternative to human-driven cars, in the last years autonomous
cars were involved in several accidents, some of them even
fatal (e.g., the ones of a Uber car in 2018 and a Tesla in

A part of the work has been performed in the project ArchitectECA2030
that has been accepted for funding within the Electronic Components and
Systems for European Leadership Joint Undertaking in collaboration with
the European Union’s H2020 Framework Programme (H2020/2014-2020) and
National Authorities, under grant agreement No. 877539. A part of this work
has been supported by the PRISSMA project, co-financed by the French Grand
Défi on Trustworthy AI for Industry. Experiments presented in this paper were
carried out using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Universities as
well as other organizations (see https://www.grid5000.fr).

∗ Institute of Engineering Univ. Grenoble Alpes

2019 [3]1). To prevent these accidents, all the components of
an autonomous vehicle—which include both the sensors (e.g.
LiDAR, cameras, GPS, etc.) and the algorithms that are behind
the perception, decision making and control modules—need to
be thoroughly tested to ensure they handle critical situations
even better than human drivers. To avoid taking unnecessary
risks, and because such critical situations are unlikely to
happen—at least frequently enough—in real road traffic situa-
tions, a common and essential [8] practice is to reproduce these
critical situations in a simulator, such as CARLA [7]. However,
these scenarios to drive a simulator need to be specified. Two
techniques are used currently: constrained random generation
and manual specification [21]. Randomly generated scenarios
can be easily produced, but their relevance might be difficult to
assess, since they can present a high level of redundancy, which
is hard to detect and strongly limits their coverage [21]. On the
other hand, manually specifying a large number of scenarios
is extremely time consuming and a satisfactory coverage of all
possible situations is hardly achievable.

In this work we propose to apply formal methods to automat-
ically generate scenarios, which are guaranteed to be relevant
for testing AV’s behaviour in a particular situation (e.g., colli-
sion, near miss, etc). More precisely, we will use a conformance
testing tool to generate scenarios from a formal model and a test
purpose characterizing the situation. The formal model is spe-
cialized to a given configuration, which includes a scene map
and several actors with their initial positions and constraints
on their trajectories. Precise trajectories of the actors will be
automatically induced by the generated scenarios. In general,
each test purpose will yield several scenarios, with guarantees
to cover all relevant variations of the behavior related to the test
purpose. These scenarios are then automatically transformed
to be used as input for a driving simulator. To ensure the
generation of relevant and critical scenarios, test purposes (e.g.,
reaching a collision) and test configurations can be defined

1See also https://www.tesladeaths.com/ for a list of fatal accidents.

https://www.grid5000.fr
https://www.tesladeaths.com/

based on critical situations emerging from road accident data
[6]. We illustrate our approach with CARLA by providing
a method to translate the scenarios into behavior trees. Our
approach is evaluated on ten configurations, involving three
scene maps (T-crossing, highway, and X-crossing) and various
actors, for which we generated several scenarios featuring
collisions of the AV with other actors, near-misses of such
collisions, and arrivals at the destination.

The rest of the paper is organized as follows. Section II
compares our approach to existing ones for scenario generation
in driving simulators. Section III gives a bird’s eye view of
our approach. Section IV illustrates the application of our
approach on several configurations. Finally, Section V gives
some concluding remarks and future work directions.

II. RELATED WORK

Although AV scenario generation approaches have been in-
tensively studied [21], current methods never test the complete
ODD (Operational Design Domain) of the AV, but rather restrict
scenarios to specific configurations, such as highway overtaking
or an urban intersection. Hence, the testing methods can neither
verify the full safety of the AVs nor be used at industrial scale,
as they do not guarantee a complete coverage of the ODD.

A common way to create interesting and critical AV sce-
narios is to start from an existing abstract and parameterized
scenario, from which several AV scenarios can be generated by
choosing the values of the parameters. As not all of them are
critical and interesting to run, several studies adopt optimization
methods to find critical sets of parameters. The three following
approaches use stochastic optimization methods to search the
parameters values leading to the corner cases of an abstract
scenario. The Matlab toolbox S-TaLiRo implements several
optimization methods used in [22] to generate scenarios causing
the motion controller of an AV to fail in an overtaking abstract
scenario and generating a collision. Bayesian optimization is
used by [9] to generate AV scenarios from a parameterized
abstract scenario. In particular, to find the values of these
parameters that cause collision between a car and a pedestrian,
the optimization method also exploits the feedback from the
simulated execution of the previously generated scenario. An
AEB (Automatic Emergency Braking) system is tested in [13]
using constrained randomization techniques to generate AV
scenarios from an abstract scenario and then converge to
critical AV scenarios by reducing the constraints. Our approach
generates the actors behaviors (like car trajectories), thus we do
not use an abstract scenario with predefined and parameterized
behaviors as input. Additionally, our approach can generate
several different scenarios covering better the many possible
outcomes of an abstract scenario.

[1] and [14] relate the criticality of a scenario to the
dimension of the solution space, defined as the control space
that does not lead to a collision. The solution space is computed
using reachability analysis. [14] uses an evolutionary algorithm
to find the best parameters (speeds, initial positions, etc.) of an
existing scenario to minimize the solution space, while [1] uses
optimization techniques by modeling the generation problem as
a quadratic problem with constraints. In contrast, our approach

does not start with an existing parameterized scenario to then
increase its criticality. We can generate this scenario based
on an abstract scenario, and one could reuse our generated
scenarios as an input for these approaches.

[16] proposes a different method to test an AEB system by
defining an ontology based on the ODD of the AEB system, and
then by using a combinatorial test generation approach to create
AV scenarios from the ontology. A machine learning-based
approach is also used to increase the criticality of the scenarios
by exploiting the result of the already simulated scenarios. In
contrast, our approach is used on several abstract scenarios
while the ontology is associated to one abstract scenario of AEB
testing. In addition, the complexity of the scenarios depends on
the number of parameters and their value range in the ontology,
and so this approach depends more on heavily parameterized
scenarios than our approach.

Machine learning is also used to create realistic and critical
scenarios. In [6], a neural network generates safety-critical AV
scenarios from an abstract scenario of an urban intersection.
The obtained scenarios are modeled as series of probability
distributions, from which a final one is sampled and run on
CARLA. [15] uses a generative adversarial network, trained
on a dataset of vehicle trajectories on a highway, to gen-
erate realistic lane change trajectories. While learning-based
generators are limited to what they learned, our approach
does not have standard machine learning drawbacks, does not
require long training, does not over fit the training data, and
hence can generalize to new domains, i.e., we can include
new configurations at inference time. Most importantly, our
approach comes with guarantees that the generated scenarios
are diverse (i.e, different trajectories), and all relevant to the
AV’s behavior in a given event (specified in the test purpose).

III. METHODOLOGY

Figure 1 gives an overview of the proposed flow. Its first
input is a configuration defining the scene with its objects and
their behavior, from which a formal model and a corresponding
CARLA configuration are derived. The second input is a test
purpose, describing the intent all test cases should focus on.
From these inputs, we automatically compute a comprehensive
test suite, and translate each generated test case into a behavior
tree to drive the CARLA simulator. The subsequent sections
present these steps, which are all fully automatic, besides the
two steps represented by dotted lines, i.e., deriving a formal
model and a CARLA configuration. To ease the latter two steps,
we provide libraries factoring common parts.

A. Formal model of a scene

We focus on scenes with an ego vehicle, called car, moving
around in the scene towards a goal or destination position,
trying to avoid any collision with the obstacles. The car features
sensors (e.g., camera, LiDAR, etc.) enabling it to perceive its
environment. Obstacles represent the different hazards that may
disturb the progression of the car. There are two kinds of
obstacles: the static, fixed ones (e.g., buildings, trees, parked
cars, etc.), and the dynamic, moving ones (e.g., cars, cyclists,
pedestrians, etc.). The trajectories of dynamic obstacles can be

test purpose

configuration

TESTOR
complete
test graph

test suite
extraction

test
cases concretization behavior

trees
CARLA

simulator

Fig. 1: Overview of the proposed approach to generate behavior trees from a configuration and a test purpose

(a) Ground truth grid (b) CARLA simulation

Fig. 2: Scene map of a urban road crossing

predefined or (partially) left random to leave more room for
varying behavior. Both kinds of obstacles can be transparent,
in which case the sensors of the car can perceive the status
of the cells behind the obstacle, so as to enable taking into
account the difference between, e.g., a ball and a truck.

Considering a discrete, two-dimensional projection, we rep-
resent the map of a scene as a grid composed of cells, which
can have one of the three different values: free, occupied by
the car, or occupied by an obstacle. This discrete modeling
helps to keep the size of the model tractable (note that the grid
resolution can be made finer at the price of increased computing
resources). The grid represents the ground truth under ideal
conditions and is updated at each move of one of the actors
(the car or a moving obstacle). Figure 2a shows the grid of a
road-crossing scene. The buildings delimiting the two roads are
represented as immobile obstacles (cells marked “I”) and the
car is denoted by the cell marked “C”. The scene also comprises
two moving obstacles (cells marked “M”): another vehicle in
front of the car, and a pedestrian crossing the trajectory of
the two vehicles. The cell of the pedestrian is depicted in a
lighter color than the one of the other vehicle to indicate that
the pedestrian is considered transparent and does not obstruct
the view on the cells behind. A screenshot of a corresponding
CARLA simulation is shown in Figure 2b.

We consider a car equipped with a LiDAR. For each con-
figuration of the ground truth, the model can compute the
perception grid, corresponding to the ideal expected output
of the perception algorithm fed with the car’s LiDAR input.
We model the perception as a grid centered around the car,
indicating whether a cell is free, occupied, or unknown (hidden
from view). For each occupied cell, the perception also contains
information whether the cell was occupied before, enabling to
detect car or obstacle moves.

To formally model the behavior of such a scene, we use

LNT [4], [11], a language equipped with a formal semantics
rooted in concurrency theory and a syntax close to classical
programming languages. Actors (car and moving obstacles) are
represented as concurrent LNT processes that interact by means
of multiway rendezvous [5], [12], enabling synchronization and
communication. Each actor process has a local copy of the map,
to ensure that its moves obey the laws of physics. The current
status of the map is handled by a map manager process, in
charge of maintaining a consistent ground truth. When moving,
each actor sends its new position to the map manager, which
updates the map and broadcasts it to all actors. This allows to
represent moves to any adjacent cells (including diagonals) or
even farther cells. The scenario terminates when either the car
arrives at its destination, or a collision occurs: in these cases,
the model will perform one of the special actions ARRIVAL
or COLLISION and then stop immediately. This implies that
an execution sequence of the model will never contain both, a
collision and the arrival of the car at its destination.

LNT has an interleaving semantics, in which actions are
considered atomic and two different actions cannot be observed
simultaneously. To connect to a simulator where moves take
some time and can thus happen concurrently, we introduce a
notion of discrete time and add a scheduler process, which
generates special TICK actions and ensures that all actors move
at most once between two ticks. Thus, all moves between two
TICK actions can be executed in parallel in the simulator.
The scheduler also enforces a fixed order of execution of the
actors between two TICK actions, which prunes redundant
interleaving of actor executions and makes the subsequent
analyses more efficient.

To facilitate the handling of various configurations, the LNT
model of a configuration is split in two different parts: a generic
part, defining types, functions, and processes common to all
configurations, and a particular part, defining the constants
characterizing the considered configuration. The latter part
defines in particular the two dimensions of the rectangular grid,
the initial grid (indicating any static obstacles), the number of
obstacles, as well as the initial position and behavior of all
actors (car and obstacles).

The behavior of the car is defined as a sequence of actions,
specified by the speed and direction of move. When all actions
of the sequence have been performed, the car has arrived at
its destination. The behavior of an obstacle is defined in the
same way, with three extensions. First, an obstacle may choose
not to move (between two TICK actions). Second, an obstacle
may perform a random move, where the direction is chosen
arbitrarily (respecting the physical constraints of the scene and
avoiding collisions). Third, rather than stopping, an obstacle

0 1
COLLISION !PEDESTRIAN

ACCEPT

Fig. 3: Example test purpose “collision pedestrian”

may restart the execution of its behavior sequence. In the
current version of the model, the actors occupy a single cell and
can turn as they wish. In principle, it is possible to refine the
model and add constraints to represent rules of the dynamics
(e.g., turning in at least x cells).

The LNT model is compiled into an automaton (state-
transition graph) using the compilers of the CADP toolbox [10].
To generate tests from this automaton, we must specify which
of its actions (i.e., transition labels) are considered as inputs or
outputs. In our case, only the moves of the actors are inputs
(to control the simulation), all the other actions being outputs
(to observe the progress of the simulation), e.g., ground truth
map, perception, detection of a collision, and arrival of the
car. In the sequel, we will denote by “model” either the LNT
description or its underlying automaton, since both represent
the same behavior, albeit at different abstraction levels.

The model was validated using the CADP tools to ensure
that it represents the desired scene and behaviors of the actors.
Besides interactive simulation of the model (exploring back and
forth the transition sequences from the initial state), we also
checked the temporal logic property stating that a terminal state
(either a collision, or the arrival of the car at its destination)
will be eventually reached.

B. Computation of a Complete Test Graph

To obtain test scenarios focused on specific situations, we
apply the conformance testing tool, which generates interaction
scenarios with the simulator—in their simplest form, a sequence
of transitions. As shown in Figure 1, we first extract a CTG
(complete test graph) from the model and a TP (test purpose)
using the TESTOR tool [18]. A TP is an automaton with special
“ACCEPT” labels characterizing the states to be reached by the
scenario, and a CTG is an automaton that contains all transition
sequences leading to these states.

As an example, Figure 3 shows a TP to generate scenarios
leading to a collision of the car with a pedestrian. This TP
has two states and two transitions, requesting to reach (after
an arbitrary number of transitions) a collision, represented by
a transition labeled with “COLLISION !PEDESTRIAN”.

When computing a CTG, only the transitions corresponding
to a controllable input or observable output of the SUT (system
under test, in our case the CARLA simulator) are necessary.
Thus, we can hide—and reduce the model—all other transitions
(e.g., the broadcast of the ground truth map) that are useful for
validation, but irrelevant for test generation.

C. Extraction of test cases

In general, a CTG contains states for which several inputs
can lead to a successful run. Thus, we apply the techniques of
[19] to extract a test suite, i.e., a set of TCs (test cases) covering
all transitions of the CTG. Each TC is an automaton interacting
with the SUT to drive it towards the accepting states specified

by the TP. Thus, for a given model, using even a simple TP as
the one shown in Figure 3, several different TCs (and hence,
scenarios) can be generated. In our setting, all generated TCs
are sequences, since from a given state there cannot be two
different outputs.

D. Translation of test cases into behavior trees
The TCs extracted from the model and a TP are represented

in an abstract form as automata, and must be transformed into
a more concrete form to be used as simulation scenarios. This
last step is dependent on the simulator considered; we describe
below the procedure we developed for the CARLA simulator. A
simulation scenario in CARLA begins by initializing the con-
figuration (scene map and placement of actors) symmetrically
w.r.t. the formal model, and then specifying the behaviors of
the actors. To run a simulation scenario, we use (an extended
version of) the scenario runner2 feature of CARLA, which
takes as input a behavior tree and uses it to control the actor
moves during the scenario.

Our procedure to translate a TC into a behavior tree consists
of three steps. Firstly, the TC is converted to a textual form,
more suitable for parsing. Given that in our setting a TC is
always a sequence of transitions, its corresponding text file
contains one action per line, ending with a PASS action that
denotes the end of the sequence (i.e., the accepting state of
the TP). Secondly, the text file is analyzed line-by-line using
a shell script, which extracts the necessary information about
the moves and new positions of the actors, and produces
a JSON file containing an initialization part (declaration of
the actors with their initial placement and orientation) and a
behavior part describing the sequence of moves for each actor.
Thirdly, this JSON file is fed as input to a Python program
that parses it, builds a behavior tree in memory using the
scenario runner primitives, and traverses this behavior tree to
drive the simulation in CARLA by sending the commands
associated to the tree nodes.

Figure 4 shows an example of TC and Figure 5 shows its
corresponding behavior tree. To make the simulation smooth
and realistic, the moves of the actors between two consecutive
TICK actions in the TC are executed simultaneously by en-
capsulating them in parallel nodes of the behavior tree. These
parallel nodes are then encapsulated into one sequential node
(the root of the behavior tree) representing the sequence of all
simultaneous moves in the scenario.

IV. EXPERIMENTS

We illustrate our approach on several configurations, with
different maps and obstacle behaviors. The experiments were
performed on the troll cluster of the Grid’5000 platform,
i.e., servers with an Intel Xeon Gold 5218 processor and
384 GB of RAM. The CARLA simulations were run on a
laptop with an Intel i5-7440HQ, 16 GB of RAM, and an
Nvidia Quadro P4000. The simulation was synchronized with
CARLA’s scenario runner to ensure that, for each simulation
step, the simulation time was constant and the scenario runner
completed its control loop.

2https://github.com/carla-simulator/scenario runner

https://github.com/carla-simulator/scenario_runner

... 6 7 8 9 10 11 12 13
TICK CAR MOVE ... WALKER MOVE ... OBSTACLE MOVE ... TICK CAR MOVE ... COLLISION ...

PASS

Fig. 4: Excerpt of a test case generated for model “X-crossing1” (see Fig. 2) and test purpose “collision pedestrian” (see Fig. 3)

sequence

parallelparallel

walker
move

car
move

obstacle
move

parallel

car
move

......

...

Fig. 5: Excerpt of the generated behavior tree for Figure 4

model #obst. #lines states transitions time memory
T-cross 1 96 258 449 10 651

highway 2 97 1277 2431 13 599
X-cross-1 2 107 4860 9403 24 744
X-cross-2 2 104 1848 3432 19 745
X-cross-3 2 104 3232 6166 19 745
X-cross-4 2 105 1865 3684 16 745
near miss 3 121 18359 38753 252 842

immobile car 3 114 345166 707363 7497 14831
X-cross-rand1 2 107 111401 226558 1408 3741
X-cross-rand2 2 107 144045 296559 1761 4490

TABLE I: Formal models of the considered configurations

Table I gives statistics about the formal models (LNT de-
scriptions and their underlying automata) of the considered
configurations. For each model, the table indicates the number
of obstacles, the number of LNT lines specific to the configu-
ration (the generic part, common to all models, has 1130 LNT
lines) and the size (number of states and transitions) of the
minimized automaton. The execution time in seconds (resp.,
memory requirements in MB) corresponds to the sum (resp.,
peak) of both generation and minimization of the automaton.

All models except “highway” and “T-cross” use the map
shown in Figure 2a. Models “X-cross-N” (N ∈ {1, 2, 3, 4})
focus on a collision between the ego car and a pedestrian, fea-
turing also another moving car; differing in the initial positions
and behavior, these configurations were designed as simple tests
of the approach. In model “near miss” the itinerary of the car is
crossed by different obstacles, leading to near misses (i.e., an
obstacle passing very close to the car, but without colliding
with it). Model “immobile car” features the car stopped in
the middle of the crossroad, with various obstacles moving
around, but without causing any collision. Model “X-cross-
rand1” introduces additional variability by enabling random
moves of the pedestrian and the other car; their precise moves
in a TC will be chosen according to the TP. Model “X-cross-
rand2” is similar to “X-cross-rand1”, but features a different
and longer trajectory of the ego car (11 moves instead of 7).
Model “T-cross” uses a map with a T-shaped crossroad, with a
collision between the ego car and another car ignoring priority
rules. Model “highway” uses a rectangular map representing a
long horizontal highway with the ego car on the middle lane,
a faster car trying to overtake it, and a slower car ahead of it,

but leaving the lane to let the ego car pass.
The difference in the model sizes can be explained by the

varying number of obstacles and the number of moves of the
actors. Models “immobile car” and “near miss” feature three,
instead of two, obstacles, with a large number of moves (in
total, 12 moves for “near miss” and 23 for “immobile car”).
In particular, a random obstacle move amounts to possibly five
transitions, corresponding to each direction it can go (up, down,
right, left, or none). Also, as the model stops when the ego car
has finished, the longer the car trajectory, the larger the size of
the underlying automaton, as can be seen by comparing models
“X-cross-rand1” and “X-cross-rand2”.

We consider different test purposes for these models. Purpose
“arrival” requires the car to complete its behavior without
any collision. Purpose “collision X” requests a collision with
obstacle X (X ∈ {car, pedestrian}). Purpose “lidar” requests
the LiDAR to perceive an obstacle right next to the car.

Table II gives statistics about the test suite extraction for
various pairs of a model and a test purpose. For each pair,
columns three to six give statistics about the computation of the
complete test graph: its size, generation time, and peak memory
requirement. Columns seven to eleven give statistics about the
generated test suite: number of test cases/scenarios, total size
of the test suite (sum of states and transitions), generation
time, and peak memory requirement. Column twelve gives
the standard deviation (σ) for the number of test case states,
showing that the test cases are of comparable size. Column 13
gives the total number of lines of the generated behavior trees.

In our experiment, we generated 9700 scenarios in total for
testing AV’s behavior in ten different configurations involving
four TPs. Importantly, this did not require any prior knowledge
about the configurations that lead to realistic scenarios. Instead,
such configurations were found iteratively. Indeed, after run-
ning the behavior trees in CARLA, we observed unrealistic
behaviors (e.g., actors performing discrete moves rather than
continuous ones), which allowed us to improve the model by
introducing a scheduler.

Another improvement concerns the translation of the discrete
(grid-based) moves to the continuous environment of CARLA.
When improving our model (for example by adding lane
changing and turns at intersection) we had to smooth the
trajectories (the motion control of the actors) for more realism.
To do so, we represented in the scenario runner the sequence
of grid-based moves as a sequence of waypoints the actors
must pass through, following a realistic trajectory obtained by
applying PID (Proportional Integral Derivative) controllers at
each simulation step.

V. CONCLUSION

We proposed an approach that exploits behavioral confor-
mance testing to automatically generate, from a formal model
and test purposes, scenarios in the form of behavior trees for the

model test purpose complete test graph test suite (all test cases / scenarios) behavior
states transitions time mem. nb states transitions time mem. σ JSON lines

T-cross collision car 37 64 3 68 8 151 165 119 37 2 656
T-cross arrival 238 453 3 69 71 4170 4847 1010 39 16 9761

highway arrival 1105 2197 3 75 312 28078 29743 4341 38 41 78556
highway collision car 67 118 3 68 3 298 320 1 36 18 735

X-cross-1 collision pedestrian 177 338 3 70 48 1803 1908 680 37 8 7296
X-cross-2 collision pedestrian 206 396 3 72 55 2042 2128 778 38 12 8432
X-cross-3 collision pedestrian 490 923 3 73 110 5666 5940 1549 39 17 25194
X-cross-4 collision pedestrian 299 580 3 72 87 2752 2856 1225 38 6 13964
near miss lidar 2035 4459 3 940 688 26617 29325 9950 46 9 125200
near miss arrival 16385 36403 3 978 3603 746616 836030 50400 63 40 898978

immobile car lidar 5301 10210 4 262 1294 126640 131776 18637 50 14 312633
X-cross-rand1 lidar 2278 4805 4 378 981 41465 43127 14118 57 5 219734
X-cross-rand2 collision pedestrian 2667 5970 3 459 1668 103589 105951 24128 63 11 454210
X-cross-rand2 collision car 1701 3680 3 456 772 92085 96953 11191 59 8 189752

TABLE II: Test suite extraction statistics

CARLA simulator. Besides being to a large extent automatic,
the generated scenarios are guaranteed to focus on specified
test purposes, which provide a versatile manner of targeting
corner-case situations. The approach has been illustrated on
several examples of configurations (scenes and moving actors).

Our approach makes possible the formalization (as test
purposes) of safety requirements defined in standards, such as
ISO 26262, and the generation of test cases, similarly to [17].
The test cases can be used both for producing simulation
scenarios (as we illustrated here) and for assessing the correct
functioning of AVs in their environment.

Concerning future work, we plan to extend our approach
to take advantage of new AV simulation standards gaining
popularity, such as OpenDRIVE3 for map representation and
OpenSCENARIO4 for scenario description (both already used
by CARLA). We also plan to enhance the formal model by
including near miss thresholds [20] and the traffic-sign rules [2],
which would make possible a refined scenario selection accord-
ing to different levels of criticality.

REFERENCES

[1] M. Althoff and S. Lutz. Automatic generation of safety-critical test
scenarios for collision avoidance of road vehicles. IEEE Intelligent
Vehicles Symposium (IV), pages 1326–1333, 2018.

[2] G. Bagschik, T. Menzel, and M. Maurer. Ontology based scene creation
for the development of automated vehicles. In IEEE Intelligent Vehicles
Symposium, IV, pages 1813–1820, 2018.

[3] N. Boudette. ‘It Happened So Fast’: Inside a Fatal Tesla
Autopilot Accident. https://www.nytimes.com/2021/08/17/business/
tesla-autopilot-accident.html, Aug. 2021.

[4] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty,
V. Powazny, F. Lang, W. Serwe, and G. Smeding. Reference Manual
of the LNT to LOTOS Translator (Version 7.0). INRIA, Grenoble, Mar.
2021.

[5] A. Charlesworth. The Multiway Rendezvous. ACM Transactions on
Programming Languages and Systems, 9(3):350–366, July 1987.

[6] W. Ding, B. Chen, M. Xu, and D. Zhao. Learning to collide: An adaptive
safety-critical scenarios generating method. In International Conference
on Intelligent Robots and Systems (IROS), pages 2243–2250. IEEE, 2020.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA:
An open urban driving simulator. In 1st Annual Conference on Robot
Learning, pages 1–16, 2017.

3https://www.asam.net/standards/detail/opendrive/
4https://www.asam.net/standards/detail/openscenario/

[8] W. F. for the Harmonization of Vehicle Regulations. New assessment/test
method for automated driving (natm) - master document. Technical report,
UNECE, 2021.

[9] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P. A.
Jennings. Identification of test cases for automated driving systems using
bayesian optimization. In Intelligent Transportation Systems Conference
(ITSC), pages 1961–1967. IEEE, 2019.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: A Toolbox
for the Construction and Analysis of Distributed Processes. Springer Int.
J. on Software Tools for Technology Transfer (STTT), 15(2):89–107, 2013.

[11] H. Garavel, F. Lang, and W. Serwe. From LOTOS to LNT. In ModelEd,
TestEd, TrustEd – Essays Dedicated to Ed Brinksma on the Occasion of
His 60th Birthday, volume 10500 of LNCS, pages 3–26. Springer, 2017.

[12] H. Garavel and W. Serwe. The Unheralded Value of the Multiway
Rendezvous: Illustration with the Production Cell Benchmark. In 2nd
Workshop on Models for Formal Analysis of Real Systems (MARS’17),
volume 244 of EPTCS, pages 230–270, 2017.

[13] S. Khastgir, G. Dhadyalla, S. Birrell, S. Redmond, R. Addinall, and
P. Jennings. Test scenario generation for driving simulators using
constrained randomization technique. Technical report, SAE Technical
Paper, 2017.

[14] M. Klischat and M. Althoff. Generating critical test scenarios for
automated vehicles with evolutionary algorithms. In IEEE Intelligent
Vehicles Symposium (IV), pages 2352–2358, 2019.

[15] R. Krajewski, T. Moers, D. Nerger, and L. Eckstein. Data-driven
maneuver modeling using generative adversarial networks and variational
autoencoders for safety validation of highly automated vehicles. In
W. Zhang, A. M. Bayen, J. J. S. Medina, and M. J. Barth, editors,
International Conference on Intelligent Transportation Systems (ITSC),
Maui, HI, USA, pages 2383–2390. IEEE, 2018.

[16] Y. Li, J. Tao, and F. Wotawa. Ontology-based test generation for
automated and autonomous driving functions. Information and software
technology, 117:106200, 2020.

[17] D. Makartetskiy, G. Marchetto, R. Sisto, F. Valenza, M. Virgilio, D. Leri,
P. Denti, and R. Finizio. (User-friendly) formal requirements verification
in the context of ISO26262. Engineering Science and Technology, an
International Journal, 23:494–506, 2020.

[18] L. Marsso, R. Mateescu, and W. Serwe. TESTOR: A Modular Tool for
On-the-Fly Conformance Test Case Generation. In 24th Int. Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’18), volume 10806 of LNCS, pages 211–228. Springer, 2018.

[19] L. Marsso, R. Mateescu, and W. Serwe. Automated Transition Coverage
in Behavioural Conformance Testing. In 32nd IFIP Int. Conference on
Testing Software and Systems (ICTSS’20), pages 219–235, 2020.

[20] A. Pierson, W. Schwarting, S. Karaman, and D. Rus. Learning risk
level set parameters from data sets for safer driving. In IEEE Intelligent
Vehicles Symposium, IV 2019, Paris, France, pages 273–280. IEEE, 2019.

[21] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer. Survey
on scenario-based safety assessment of automated vehicles. IEEE Access,
8:87456–87477, 2020.

[22] C. E. Tuncali, T. P. Pavlic, and G. E. Fainekos. Utilizing s-taliro as
an automatic test generation framework for autonomous vehicles. In
International Conference on Intelligent Transportation Systems (ITSC),
Rio de Janeiro, Brazil, pages 1470–1475. IEEE, 2016.

https://www.nytimes.com/2021/08/17/business/tesla-autopilot-accident.html
https://www.nytimes.com/2021/08/17/business/tesla-autopilot-accident.html
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/

	Introduction
	Related Work
	Methodology
	Formal model of a scene
	Computation of a Complete Test Graph
	Extraction of test cases
	Translation of test cases into behavior trees

	Experiments
	Conclusion
	References

