
HAL Id: hal-03518596
https://hal.inria.fr/hal-03518596

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biomolecule Trafficking and Network Tomography-based
Simulations

Charles Kervrann

To cite this version:
Charles Kervrann. Biomolecule Trafficking and Network Tomography-based Simulations. Edited by:
Ninon Burgos and David Svoboda. The MICCAI Society book Series, Academic Press, pp.543-569,
2022, Biomedical Image Synthesis and Simulation, 978-0-12-824349-7. �hal-03518596�

https://hal.inria.fr/hal-03518596
https://hal.archives-ouvertes.fr


HAL Id: hal-03518596
https://hal.inria.fr/hal-03518596

Preprint submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biomolecule Trafficking and Network Tomography-based
Simulations

Charles Kervrann

To cite this version:
Charles Kervrann. Biomolecule Trafficking and Network Tomography-based Simulations. 2022. �hal-
03518596�

https://hal.inria.fr/hal-03518596
https://hal.archives-ouvertes.fr


Biomolecule Trafficking and Network 
Tomography-based Simulations

Charles Kervranna,1

aEPC Serpico, Inria Rennes, CNRS-UMR144, Institut Curie, PSL Research, Campus universitaire                
de Beaulieu, 35 042 Rennes Cedex, France

ABSTRACT
During the past two decades many ground-breaking technologies, including Green Flu-
orescent Protein (GFP)-tagging and super-resolution microscopy, emerged and allowed
the visualization of protein dynamics and molecular interactions at different levels of
spatial and temporal resolution. In the meantime, the automated quantification of mi-
croscopy images depicting moving biomolecules has become of major importance in
cell biology since it offers a better understanding of fundamental mechanisms including
membrane transport, cell signaling, cell division and motility. Consequently, dedicated
image analysis methods have been developed to process challenging temporal series of
2D-3D images and to estimate individual trajectories of biomolecules. Nevertheless, the
current tracking methods cannot provide global information about biomolecule traffick-
ing. This motivated the development of simulation techniques able to generate realistic
fluorescence microscopy image sequences depicting trafficking of small moving particles
in interaction, with variable velocities within the cell. In this chapter, we describe a sim-
ulation approach based on the concept of Network Tomography (NT) which is generally
used in network communications and transport to infer the main routes of communication
between origins and destinations. The trafficking model, scaled down for microscopy, is
combined with real 2D-3D image sequences to generate artificial videos depicting fluo-
rescently tagged moving proteins within cells. Simulation in bioimaging is timely since
it has become essential to build ground truth datasets for image processing algorithm
evaluation such as biomolecule detectors and trackers, as well as to generate training
datasets for deep learning algorithms.
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1.1 MOTIVATION

The discovery of fluorescent labeling probes (Green Fluorescence Protein, Nobel
Prize in chemistry 2008) and recent advances in optics and digital sensors (e.g.
PALM (Photo Activated Localization Microscopy), STED (Stimulated Emis-
sion Depletion Microscopy) and SIM (Structure Illumination Microscopy)) have
been key developments which have served to overcome the theoretical optical
diffraction limit (200 nm) established in the 19th century. Because of these
technological breakthroughs and their impacts in life sciences, contemporary
microscopy has been praised through prestigious awards, such as the Nobel
Prizes awarded to inventors of the concepts of super-resolution microscopy
(2014) and cryo-electron microscopy (2017). Fluorescent microscopy imaging
has become the spearhead of modern biology as it is able to generate videos
comprising dozens of Gigabytes of data within an hour, and can depict long-
term 4D nanoscale cell behaviors with low photo-toxicity. The ability to follow
nanoscale cellular events is also proving to be of immense clinical relevance,
especially for the study of cancer progression and viral infections. All these tech-
nological advances in microscopy have created new challenges for researchers in
signal-image processing, and have even modified conventional paradigms once
digital processing became a key component in the surmounting of the diffraction
barrier (e.g. PALM, SIM).

In fluorescence microscopy systems record signals emitted by molecules
tagged with genetically engineered proteins within cells. In a conventional setup
photons are collected and registered at a given pixel (or voxel in 3D imaging).
The measured fluorescence intensity is a scalar value, generally proportional
to the density of tagged-molecules representing a few dozens of nanometers
within a pixel/voxel (see Fig. 1.1). Fluorescence includes intensity (biomolecule
density), wavelength (absorption and emission spectrum), time (fluorescence
decay lifetime) and polarization (which arises from the dipole orientation). As
the image data are 3D+Time signals, which could potentially depict several
fluorescently taggedmolecular species (multi-channel images), the interpretation
of these signals represents a challenge in signal-image processing, and one for
which several scientific barriers must be overcome. These barriers translate into
un-solved challenges in image analysis, modeling, and simulation which need to
be surmounted in order for this technology to be adopted in large-scale biological
studies.

1.1.1 Traffic flows of biomolecules

Eukaryotic cells are characterized by membrane bound organelles. Their abili-
ties to divide and fulfill their various functions within integrated tissues rely on
the tight regulation of membrane composition, on the generation of ubiquitous
and specialized organelles and on their capability to communicate with each
other. Current research efforts in cell biology have already contributed to iden-
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FIGURE 1.1 Acquisition of temporal series of 3D stacks in fluorescence spinning-disk confocal
microscopy. (Left)One 2D image (top) extracted froma3D stack depicting biomolecules (GFP-Rab6
proteins, see Section 1.3) in a single micro-patterned (disk-shaped) cell, and 2D image corresponding
to the maximum projection of the 3D stack along the depth axis (bottom). (Right) Volume rendering
of the fluorescent stack (top) and segmentation of transport vesicles and Golgi (bottom). The scale
bars correspond to 5 µm.

tify hundreds of components defining key machineries of essential functions.
It is well known now that, to preserve the structure, cohesion and functions
of the organism, the eukaryotic cell exchanges biomolecules between its com-
partments and organelles: endosomes, Golgi apparatus, endoplasmic reticulum
(ER)..., these intracellular exchanges require physical supports such as inter-
mediate and actin filaments, and microtubules. Microtubules are polymers of
tubulin that play an important role in a number of vital cell processes such as cell
division, intracellular transport, and cell architecture. Furthermore, the transport
pathways of biomolecules, mediated by vesicles propelled by molecular motors
of the dynein and kinesin families along the cytoskeleton, provide the routes
of communication between the organelles and the extra-cellular medium. The
molecular motors transform chemical energy with the mediation of Adenosine
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Tri-Phosphate (ATP) to mechanical work and driving energy for propelling the
vesicles. It has also been established that transport from one compartment to
the next one follows similar mechanistic principles, that is formation of coated
vesicles, which bud from a donor compartment and then fuse with the recip-
ient compartment. They involve similar protein networks controlling soluble
and membrane protein sorting and vesicle formation, transport vesicle move-
ment along cytoskeleton elements (actin nucleation machineries and molecular
motors) and membrane fusion.

Nevertheless, it is still difficult to understand how these different machineries
using multiple protein-protein and protein-lipid interactions are interconnected
and coordinated in time and space during a given reaction like for intracellular
transport, for instance. A long-term goal in fundamental biology is to deci-
pher the dynamic coordination and organization of interacting molecules within
molecular complexes at the single cell level and to explore the role of transport
intermediates (e.g., vesicles) to higher levels of complexity, as during remod-
eling of the plasma membrane, differentiation and cell migration in contexts in
forced two dimensions (micro-patterns), or in reconstituted three-dimensional
environments. In that context, the mathematical and biophysical models, as well
as estimation and simulation methods and algorithms, are particularly helpful
to decode the traffic flows of biomolecules. Here, we focus on traffic simula-
tion to describe the interactions between different cell compartments, membrane
domains and organelles.

1.1.2 Biomolecule tracking and dynamics estimation

In fluorescence microscopy a first important challenge is to track and analyze
the motion of biomolecules, with high precision, in 3D movies. This task is
challenging because of the complexity of the dynamic processes being observed,
such as association, dissociation, and recomposition of proteins, all of which are
driven by interactions between severalmolecular species and further complicated
by the particular phenomena of spatial coalescence related to image resolution.
To that end a number of stochastic models have been proposed to describe
the individual and collective motion of biomolecules [1, 2], including the jerky
motions corresponding to switches between free diffusion (or Brownianmotion),
subdiffusion, and motor-mediated motion [3, 4].

It turns out that most existing methods are tracking techniques [5] requir-
ing optimization or simulation in order to manage several thousands of tracks.
The most commonly-used tracking approach is the so-called “connexionist” (or
"detect-before-track") approach [6, 7, 8] which consists in detecting particles
independently in each frame in a first step [9, 10], and then linking the de-
tected particles over time. The related data association task is a critical step
in this approach, especially if the number of particles is very high and if the
trajectories interact. Multiple hypotheses tracking methods have then become
popular [11, 12], where a set of data association hypotheses are generated to
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account for all possible associations of tracking (or a suitable subset of those),
identifying the most likely hypothesis according to some criterion. The aim
of most Bayesian approaches for multiple object tracking [13] is to take into
account the fact that the trajectories can cross each other, particles can move in
and out of the frame, in and out of the depth of field, merge either by fusion
to form a single particle, split into two or more particles, temporarily disappear
due to mis-detection and so on. A very popular method is the U-track method
[14] which robustly tracks spots and estimates heterogeneous motion in high
density scenes whilst also exploiting recursive tracking in forward and backward
temporal directions. U-track enables the prediction and the recovery of abrupt
transitions, from freely (or confined) diffusive to directed motion, as well as the
handling of spot disappearance. Thereafter several probabilistic methods have
been designed to cope with different types of sub-cellular motion [15, 16]. All
these methods were carefully evaluated a few years ago on the particle tracking
challenge dataset [5], including robustness to noise and particle densities. It
results that all trackers were very competitive, each performing at their best once
on a target scenario.

Then, the tracks are exploited to infermolecular dynamics ormobility in cells.
For instance, the mean-square displacement (MSD) method, which is widely
used in biophysics and cell imaging, allows one to interpret biomolecule tracks
and discriminate free, confined diffusion and directed flow since they represent
the primary modes of mobility of molecules in living cells (see [10, 4]).

1.1.3 Network tomography for biomolecule trafficking modeling

The aforementioned tracking methods assume that the motion of individual
particle car be represented by some known mathematical models, including
Brownian motion or Markov models. Nevertheless, there is few satisfying
modeling approaches able to represent the collective motion of particles and
global biomolecule trafficking. In the specific case of vesicle trafficking within
cells, collective motion can be inferred from the transport pathways that link
"origin" regions to "destination" regions. The modeling is inspired from the
Network Tomography (NT) concept, introduced to estimate vehicle traffic flows
[17, 18], and further re-popularized to determine origin-destination traffic flows
in computer networks [19].

In this general modeling, we consider a network defined as a graph G (E,V)
which consists of |V | (cardinal of V) vertices and |E | (cardinal of E) edges,
where E and V denote the set of edges and vertices, respectively. Each pair of
neighbor vertices is connected by two edges in order to enable traffic in both
directions. A “toy” graph involving only four vertices is shown in Fig. 1.2 (top)
for illustration. The particles are assumed to move from one vertex to another
vertex by crossing edges. They follow a path defined by an origin vertex (or
node), a destination vertex, and possible intermediate(s) vertex(ices). The set of
paths can be then characterized by the origin and destination vertices, that is the
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FIGURE 1.2 4-nodes graph and routing matrix for Network Tomography. (Top) The vertices
of the graph are labelled by letters and the edges by numbers. (Bottom) Several rows of the routing
matrix A corresponding to the “toy” graph. The routing for the OD pairs is defined as the shortest
paths using the Euclidean distance between vertices.

Origin-Destination pairs (OD pairs). Given |V | vertices in the graph, the number
K of possible OD pairs is K = |V |(|V | − 1).

In NT, given the temporal measurements corresponding to the number of
particles detected as going from one vertex to a neighbor vertex in the graph, the
goal is to estimate the proportions of particles for each OD pair. More formally,
let xk ,t be the number of particles belonging to the path k that joins the "Origin"
node to the "Destination" node (OD pair k) at time t. The measurements ze,t
correspond to the number of particles that pass through edge e at time t. In the
traffic flow problem, we then assume the following model:

Z = AX, (1.1)

where Z = {ze,t }e∈{1, · · · , |E | }, t∈{1, · · · ,T } and X = {xk ,t }k∈{1, · · · ,K }, t∈{1, · · · ,T } are
matrices and denote the set of measurements and the unknown OD flows, re-
spectively, and T is the number of images in the sequence. Here, A denotes the
|E | × K routing matrix with binary elements: ae,k = 1 if edge e belongs to the
path for the OD pair k, and 0 otherwise. Usually, it is assumed that there exists
a single path for one OD pair defined as the shortest path in the graph. Further-
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more, a cost is associated to each edge and the Dijkstra algorithm [20] is applied
to the whole graph for computing the shortest path for each OD pair. In Fig. 1.2
(bottom), we show a few rows of the binary routing matrix A corresponding
to the graph shown in Fig. 1.2 (top) when the Euclidean distance between the
vertices is considered.

In NT, the traffic flow problem (1.1) aims at estimating the matrix X given
the routing matrix A and the counting measurements Z . This problem is an
under-constrained problem since K is greater than |E | (see (1.1)). If we are only
interested in the proportions of particles on each OD pair, we need to solve the
following optimization problem:

min
x̄
‖ z̄ − Ax̄‖2 subject to x̄k ≥ 0, k ∈ {1, . . . ,K}, (1.2)

where x̄ = (x̄1, . . . , x̄K )T contains the positive proportions of particles for each
OD pair and z̄ = (z̄1, · · · , z̄ |E |)T corresponds to temporal averages. Additional
constraints can be considered. For instance, Vardi proposed a Poisson distribu-
tion for x̄ because the data are counts [19]; as there is a lot of possible OD pairs
but at the same time the traffic is observed only on a few of them, one can prefer
to impose a sparsity constraint as follows:

min
x̄
‖ z̄ − Ax̄‖2 + λ‖ x̄‖0 subject to x̄k ≥ 0, k ∈ {1, . . . ,K}, (1.3)

where λ > 0 is weighting parameter and ‖ x̄‖0 = #{ x̄k , 0}, k ∈ {1, . . . ,K}.

1.2 SIMULATION FOR BIOMOLECULE TRAFFICKING ANALYSIS

In this section, we describe a Network Tomography-based simulation framework
able to generate complex motions and interactions between moving particles
with variable velocities within the cell. We design graphical representations
and dynamical models built from representative fluorescence microscopy im-
age sequences. These representations are exploited to generate artificial image
sequences that mimic biomolecules trafficking observed in real image sequences.

1.2.1 History and state of the art

In biomedical imaging, simulations are required for validating physical models,
understanding recorded data, evaluating the performance of image analysis al-
gorithms [5], or training complex models from large-scale synthetic datasets as
recently investigated with supervised Deep Learning methods [21, 22]. Nev-
ertheless, the proposed simulation methods used to build benchmarking data
sets are limited yet since they are not able to represent the whole complexity of
interacting biomolecules as observed in real image sequences.

In past years, random walks combined with parametric drift models (e.g.
[23]) and diffusion models in sub-regions in the cell [21] were considered for
simulating images depicting biomolecule motions. A more realistic approach
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consists in simulating particles undergoing stochastic motions depending on
interactions with the cytoskeleton and the cytosol within the cell as described
in [24]. The intracellular particles move along the microtubule network via
molecular motors, or diffuse in the cytosol. Formally, a transport vesicle is
generally represented by a particle p(t) ∈ Rd × {1, · · · ,T}, d = 2,3 whose
dynamics follows a stochastic rule [24]:

dp(t) =

{ √
2Kd dw(t) if p(t) is free within the cytosol,

Vm if p(t) is bound to a microtubule,
(1.4)

where w is Brownian motion, Kd ∈ R is the diffusion constant in the cytosol, and
Vm is the constant drift motion along the microtubules. Thus, a given transport
vesicle switches between diffusion in the cytosol (Brownian motion) and active
motion along microtubule (directed motion). The molecular motor allows the
vesicle to be propelled at a given speed Vm. In [24], the cells are assumed
to be flat and the cytosol is represented by a two-dimensional (d = 2) ring of
maximum radius (outer membrane of the cell) and minimum radius (nuclear
envelope). The microtubules are uniformly and radially distributed, coming
from the nucleus towards the outer membrane. In this line of modeling work,
Klann et al. proposed an alternative mechanistic agent-based simulation able
to combine signal transduction and membrane trafficking, to study the effect of
receptor-mediated endocytosis on signaling [25].

More generally, two modeling approaches have been investigated for simula-
tion at the scale of single cell in past years: data-driven modeling and physics-
based modeling. The physics-based approach relies on the physical properties
of the components in the cell. The main advantage is that the model parameters
are easily interpreted as they are well grounded in biophysics. This approach
is generally considered to investigate complex spatiotemporal biological events,
for instance to study the dynamics of microtubule networks [26, 27, 28], or to
characterize diffusion of biomolecules in nano-domains [21]. By tuning the con-
trol parameters, an expert can artificially generate dynamics which are visually
similar to those observed in real data, provided that the underlying dynamical
models are well designed. The data-driven modeling aims at describing image
sequences through statistical models learned from real images. This approach
can only "imitate" dynamical processes but is not able to fully transcribe the
physical properties of dynamical processes. However, unlike physics-based
modeling, the data-driven approach can capture the features of complex multi-
scale systems as awhole. The data-driven and physics-based approaches can also
be gently combined to model the main components of the image sequence, as
recently investigated in [22] to mimic calcium dynamics in astrocytes observed
in lattice light sheet microscopy.

Finally, byminimizing the discrepancy between a set of descriptors computed
from a real image sequence and the same set of descriptors computed from a sim-
ulated sequence, the parameters of the simulation method can be tuned to obtain
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an artificial sequence that reveals apparently the same dynamical characteristics
as the observed sequence. This line of research is related to data assimilation,
developed on a controlled trade-off between observations of a phenomena and a
model accounting for its likely dynamics.

1.2.2 Network tomography-inspired simulation

The simulation approach falls in the category of data-drivenmethods and exploits
real image sequences as inputs. In the simulation scenario, the fluorescence-
tagged biomolecules are assumed to be transported via transport vesicles pro-
pelled by molecular motors along the cytoskeleton composed of actin filaments,
intermediate filaments, as well as microtubules. Here, we focus on microtubules
which are polymers with a diameter of about 25 nm. They have an exceptional
bending stiffness and form a dense network (see illustration in Fig. 1.3(b)). The
dynein and kinesin proteins are two classes of molecular motors associated with
microtubules. In stable conditions, the speed and polarization of these motors
is assumed to be constant. This explains partially why the observed velocity of
vesicles is constant if they move along the same microtubule. In the simulation
framework, we assume that the microtubule network is static when compared to
moving biomolecules.

Modeling of transport vesicle appearance. In video-microscopy, the vesicles
appear as small bright spots against a dark background (Figs. 1.3 (a) and 1.4).
The vesicle diameter theoretically ranges from 60 to 150 nm, that is below the
spatial resolution of the microscope which is about 200 nm. However, the point
spread function of the microscope makes them appear as larger structures in
acquired images. As illustrated in Fig. 1.4, the stretching is more significant as
the vesiclemoves rapidly. Furthermore, when the density of objects increases, the
vesicles gather together and constitute small rods. Consequently, large vesicles or
sets of nearby vesicles can be satisfyingly represented by anisotropic Gaussian
spots as proposed in [30, 23] with variances related to the spot dimensions
ranging from 60 to 150 nm, which is very close to the pixel size. In the
simulation framework, the covariance matrix of the anisotropic Gaussian spot
is a function of the displacement direction. The ellipticity also depends on the
velocity, induced by molecular motors bound to the microtubules. Figure 1.5
schematically illustrates how the covariance matrix of the anisotropic Gaussian
function allows one to modify the orientation of spots according to the direction
of the microtubule axis. As we wish to simulate image sequences close to
those acquired with a spinning disk microscope, we first measure the maximum
intensity of a large number of vesicles on real sequences, which approximately
follows a Gaussian distribution.

Modeling of microtubule network. In order to generate a synthetic but re-
alistic microtubule network, we exploit real image sequences as input for the
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(a) (b)

(c) (d)

FIGURE 1.3 Biomolecule trafficking in cells. (a) GFP-Rab6 vesicles in micro-patterned (disk-
shaped) cell where the Golgi and the vesicles are delineated with green and red curves, respectively.
(b) Fluorescently tagged microtubule network. (c) Extraction of a microtubules network from (b) by
applying a dedicated algorithm [29] and manual correction. (d) Labeling of nodes (blue) and edges
(white) of the network. The origin and destination nodes are depicted in green and red, respectively.
The scale bar corresponds to 5µm.

modeling. A real network can be tagged with green fluorescence protein (GFP)
as illustrated in Fig. 1.3(b) but this network is generally very complex and indi-
vidual microtubules cannot be easily extracted (see Fig. 1.3(c)). Alternatively,
the microtubule network can be coarsely obtained from the maximum intensity
projection (MIP) map with respect to time, that is from the paths followed by the
tagged vesicles. The bright paths in the MIP map enlighten the main routes used
by the vesicles, assumed to be the traffic motorways of the microtubule network.
Figure 1.6(a) shows theMIP image of a real 2D sequence of 300 images acquired
with a spinning disk confocal microscope, defined as:

MIP(I)(s) = maxt∈{1, · · · ,T } I(s, t), ∀s ∈ Ω, (1.5)
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FIGURE 1.4 Appearance of vesicles in cells. Twenty regions of interest extracted from a real
spinning disk confocal microscopy image sequence in which a vesicle (bright spots) moves from
right to left.

where T denotes the number of images in the sequence, and I(s, t) is the fluores-
cence intensity observed at time t and at pixel s in the image domain Ω. This
simple projection allows one to select the main routes used for the intracellular
trafficking, leading to a network with lower complexity. In practical imaging,
the routes are extracted by applying an appropriate line detection algorithm [29]
and by manually adding segments to complete the discontinued paths (see Fig.
1.6(b)). The fluorescent background is preliminary removed by applying ded-
icated algorithms (e.g. [31]). Each route is defined by a list of points, and
each point of this list is parameterized by the width of the road, and its ori-
entation. Finally, the crossing between routes serve to detect nodes which are
further labelled as "origin" nodes and "destination" nodes, according to NT (see
Fig. 1.6(b)).

Modeling of particle trafficking. According to the NT concept, the vesicles
are transported along the microtubule network from origin nodes to destination
nodes. The network microtubule is represented by a graph and trafficking
is driven by the routing matrix. The first step of the modeling consists in
building a graph from the microtubule network automatically extracted from
real images as explained above. Each intersection and each end-point is labeled
as a vertex of the graph G. The |V | vertices form the set V = {v1, · · · , v |V |} and
each connection between two vertices is associated with two edges allowing to
establish the transport of particles in both directions. The |E | edges constitute
the set E = {e1, · · · , e |E |}.
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FIGURE 1.5 Gaussian model of the spot oriented in the direction of the microtubule axis. The
covariance matrix of the Gaussian function depends on the velocity of the vesicle. The simulated
vesicles are then elongated along with the displacement direction. The anisotropic Gaussian spots
have an average length of 180 nm and a standard deviation of 90 nm.

In the next step, an Origin-Destination (OD) pair is characterized by an
origin vertex and a destination vertex in the graph. The user specifies a certain
number of OD pairs among the K = |V |(|V | − 1) possible OD pairs, and assigns
to each of them a proportion of traffic. The routing is used to complete the
description and aims at establishing a list of successive edges in the graph to
derive an OD pair, corresponding to one or more paths, to connect an origin
node to a destination node. The basic approach consists in assigning one path
to only one OD pair. The resulting routing matrix is generally a binary matrix,
as considered in telecommunication networks (see Fig. 1.2). Nevertheless, as
all vesicles do not necessarily take the same routes for a uniquer origin node to
reach a destination node, we identify, instead, all possible paths in the graph for
each OD pair. The shortest paths are especially used to transport the vesicles
and are identified with appropriate algorithms such as the Yen’s algorithm [32].
A cost C(Γ) is assigned to each path Γ and defined as the sum of costs {c(ej)}
attached to edges {e1, · · · , e |E |}: C(Γ) =

∑N (Γ)
j=1 c(ej), where N(Γ) denotes the

number of edges in the path Γ. In what follows, the cost C(Γ) is proportional to
the path length and is translated into a probability as follows:

P(Γ) ∝ exp
(
−

C(Γ)
κ

)
, (1.6)

where κ > 0 is a parameter used to encourage "short" paths (if κ is small); if κ
is very large, the probabilities are the same for all paths. All the probabilities
are then used to establish the routing matrix A of dimension |E | × K and to
determine the prior distribution of paths. Let {Γ`

e,k
}, ` = {1, · · · , L}, be the set
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(a) (b)

(c) (d)

FIGURE 1.6 Design of traffic network for GFP-Rab6 proteins in a single cell. (a) Maximum
intensity projection (MIP) map built from 300 images. (b) Extraction of microtubules network
(white curves) and graph made of 159 nodes and 398 directed edges. The expert manually selected
origin nodes (green balls) in the central part of the network (small ring) while the destination nodes
(red balls) are located at the periphery. (c) Simulated image at time t = 250. Vesicles are only
going from the Golgi (central region) to the "end-points" located at the periphery of the cell. Thus,
the retrograde transport from "end-points" to Golgi is prohibited and assumed to be inhibited by
bio-chemical alterations. Among the 25,122 possible origin-destination pairs, 252 origin-destination
pairs were observed in this simulated image sequence. (d) Zoom-in view of the region of interest
delineated by a yellow rectangle in (c).

of paths for a given OD pair k, that use the edge e, and P(Γ`
e,k
) denotes the

associated probabilities. For a given OD pair k, we compute the elements of
matrix A = {ae,k} as follows:

ae,k =
∑L
`=1 P(Γe,k)∑ |E |

e′=1
∑L
`=1 P(Γe′,k)

. (1.7)

In summary, the strategy for simulation consists then in assigning a vesicle
to an OD pair and drawing path depending on prior probabilities (1.6). The
dynamics of particles is fully established from the routing matrix A. Here, at
each time step∆t, the vesicle is moved along themicrotubule with a displacement
step which is a proportional to the velocity. To display the vesicles in each image
of the sequence as illustrated in Figs. 1.6(c)-(d), the appearance model presented
earlier and illustrated in Fig. 1.5, is used.
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Modeling of dynamical events.
Let p be a particle assigned to an OD pair and Γp be a path among the shortest

paths that join the origin and destination nodes of the OD pair. Let γp be the
curve in the image domain associated to the path Γp . At the initialization, the
vesicle is positioned at the origin of the curve γp . Then, it moves with variable
velocities depending on curvature until it reaches its destination node, and then
disappears. Nevertheless, in real image sequences, we observed additional
events corresponding to "stop-and-go" [33], which may be induced by traffic
congestion. These events are taken into account in the simulation framework as
follows.

Let E(p, t) = {S,M,PS} be the state of the vesicle p at time t, where ’S’, ’M’
and ’PS’ denote the "Stop", "Motion", and "Pseudo-Stable" states, respectively.
A proportion of particles located in the neighborhood of the destination node, are
in the "Pseudo-Stable" state just before reaching the destination node. Formally,
it means that the vesicle p stops during a time interval TPS . Hence, at the
initialization, a binary variable bp ∈ {0,1} is drawn according to a Bernouilli
distribution (with probability PPS); if bp = 1, the particle p will stop transiently
before reaching the destination node. The position rp(t + ∆t) of the particle p at
time t + ∆t along the curve γp is then defined as follows:

rp(t + ∆t) =


rp(t) + Vp(t)∆t if E(p, t + ∆t) = M
rp(t) if E(p, t + ∆t) = S
rp(t) if E(p, t + ∆t) = PS

(1.8)

whereVp(t) denotes the velocity of the particle along the curve γp . Furthermore,
we define the transition probabilities to switch from one state to another as
follows:
• Probability to stop at time t + ∆t (M → S):

P(E(p, t + ∆t) = S | E(p, t) = M) = PM→S .

• Probability to re-start at time t + ∆t (S → M):

P(E(p, t + ∆t) = M | E(p, t) = S) = PS→M .

• Probability to stop transiently at time t + ∆t such as 0 ≤ t ≤ TD (M → PS):

P
(
E(p, t + ∆t) = PS | E(p, t) = M, bp = 1, |t − TD | < αTD

)
= PM→PS

where 0 ≤ α ≤ 1 and TD is the time necessary to reach the destination node.
• Probability to re-start at time t + ∆t in the neighborhood of the destination

node (PS → M):

P(E(p, t + ∆t) = M | E(p, t) = PS,E(p, t − TPS(p))) = PPS→M .
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The particle p is "Pseudo-Stable" during the time interval TPS(p), uniformly
drawn in the interval [Tmin

PS
,Tmax

PS
]. The probability to switch to the Pseudo-

Stable" state is determined by bp and the spatial position of the particle rp(t)
along the curve γp with respect to the position of the destination node.

Finally, we have consider additional events such as "fusion" events when two
particles p1 and p2 are located on the same pixel in the image domain at time
t. The "fusion" event is an unlikely event and the corresponding probability is
denoted PF . If the particles are fused, the new particle p is assigned to one of the
two OD pairs with the same probability. Finally we consider "turnaround" events
suggesting that the particle moves back and takes another path with probability
PT = P(Γp → Γ

′

p) to reach the destination node.
As all these probabilities cannot be set a priori, they are determined from the

analysis of particle trajectories estimated given real image sequences.

1.3 APPLICATIONS

In this section, we give a few examples of simulation, including experiments
with real images depicting GFP-Rab6 vesicle trafficking. Rab6 is a member
of the Rab family of small GTPases, which is involved in the vesicle budding,
docking, tethering, and fusion steps during transport. It was well established
that it regulates retrograde transport from the Golgi complex to the Endosplamic
Reticulum [34]. In real experiments, we used HeLa cells stably transfected with
GFP-tagged proteins. The HeLa cell line is a human cancer continuous cell
line. The most attractive properties of HeLa cells is the ability to proliferate
indefinitely and to multiply rapidly (< 24 hours). These properties make them
the perfect cell line to study molecular mechanisms of carcinogenesis. Temporal
series of 380×380×8 stacks were acquired with a confocal microscope equipped
with spinning disk system (voxel resolution: 64.5 nm×64.5 nm×300 nm; frame
rate: one stack per second).

1.3.1 Simulation of toy examples

First, we consider a very simple network which is manually defined inside a
square domain of 128 × 128 pixels. The network is composed of five nodes and
sixteen edges corresponding to eight routes (see Fig. 1.7). We selected two
origin nodes (1 and 3) and two destination nodes (2 and 4). We then generated
the movements of 20 spots started from the two origin nodes. In Fig. 1.7,
each moving spot is assigned a particular color. At the initialization (t = 0), all
the vesicles are located inside the vicinity of two origin nodes. Therefore, the
fluorescence concentration is relatively high. Later on, the collective movements
of individual vesicles form trains after a few seconds. Because of the different
paths taken by them and the variance of their velocities, the packets diffuse, and
eventually the vesicles are distributed over the whole network.

In the second example, we apply the simulation framework to generate a
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t = 0 t = 500

FIGURE 1.7 Simulation of a sequence from a 4-node network. (Left) Network composed of
routes, two origin nodes (1 and 3) and two destination nodes (2, 4). (Right) Movements of 20
artificial vesicles at time t = 0 and t = 500, respectively. Each moving spot is assigned a particular
color.

synthetic image sequence based on the network shown in Fig. 1.8 (b)(c). An
image extracted from this sequence is shown in Fig. 1.8 (d). The simulated
image sequence is composed of 121 images containing 1000 moving vesicles
in the whole sequence. The vesicles are moving from the center region (green)
in the network to “end-points” (red) located at the periphery of the image (see
Fig. 1.8(c)). For each generated vesicle, a destination among all the possible
“end-points” is selected to ensure that the distribution of vesicles is uniform on
all OD pairs.

A last example is shown in Fig. 1.9 and depicts a hand-crafted network (a)
composed of 25 nodes and 70 edges corresponding to 35 routes. The origin
nodes (green) are the nodes located at the top right of the image while the
destination nodes (red) are the nodes located at the bottom left. Twenty vesicles
are superimposed on a dynamical backgroundmodeled as linear function of time,
to mimic real fluorescence image sequences. The background intensity IB(s, t)
at pixel s ∈ Ω and time t is represented as follows: IB(s, t) = a0(s)+ a1(s)t. The
coefficients a0(s) and a1(s) varies with the spatial image position and are shown
in (b) and (c), respectively. Two typical images extracted from a 128×128×150
image sequence are shown in (d-e). The intensity of the 20 moving vesicles is
assumed to follow a Gaussian law with mean 30 and standard deviation 3.

1.3.2 Simulation of GFP-Rab6 vesicle trafficking

In this section, we demonstrate the interest of the simulation methods to study
the GFP-Rab6 vesicular trafficking in single micro-patterned cells. It has been
established that Rab6 proteins are transiently anchored to moving transport
carriers from the Golgi apparatus located at the cell center to Endoplasmic
Reticulum entry sites or to plasma membrane [34, 35, 36, 37, 38, 39], both
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(a) (b)

(c) (d)

FIGURE 1.8 Simulation of a sequence from a simple microtubule network. (a) Simplistic
microtubule network. (b) Associated graph. (c) Network for traffic. The origin vertex is labelled
in green while the destination vertices are labelled in red. (d) One image extracted from the whole
simulated image sequence.

assumed to be located at the cell periphery, where they should dissociate from
membranes and recycle back to the cytosol.

In this study, shapes of the cells are constrainedwithmicro-fabricated patterns
[40] (see Figs. 1.10, 1.13 and 1.14). Micro-patterning is a well-established
strategy to reducemorphological variability by imposing constraints on adhesion
sites, which has been shown to influence the cytoskeleton geometry and transport
vesicle localization [40, 41, 42] and cellular endomembranes at the steady state
within fixed cells [43].

Preliminary experiments about GFP-Rab6 vesicle traffic orientation. In
this preliminary experiment, we demonstrate the dynamical orientation of Rab6
positive membranes in disk-shaped cells. According to the expert-biologists, the
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(a) network (b) a0 map (c) a1 map

(d) image at t = 75 (e) image at t = 100

FIGURE 1.9 Simulation of an image sequence with background. (Top) Network (a) composed
of 7 origin (red balls) and 7 destination nodes (green balls), and background components a0 and a1
in (b) and (c), respectively. (d-f) Movement of 20 vesicles at time t = 75 and 100, respectively, with
superimposed background IB .

vesicles mostly move from the Golgi Apparatus to “end-points” located at the
periphery of the cell. Accordingly, we analyzed the Rab6 vesicles fluxes with
a suitable image partition composed a central region, a crown, and additional
peripheral regions (see Fig. 1.11 (right)). The vesicles and Golgi are detected
and segmented by applying dedicated algorithms (e.g. C-CRAFT [31], ATLAS
[44] (see Fig. 1.10). The particle centers are defined as the mass centers of
the connected components extracted from the segmentation mask. From these
coordinates, the temporally-varying number of particles in every region of the
image partition has been computed, while discarding the Golgi region (central
region) as trafficking is not occurring in this particular region. By applying
a dedicated algorithm [45], we estimated the vesicle fluxes are furthermore
grouped according to four different categories related to direction (see Fig.
1.11): i) fluxes towards the cell periphery (green arrows in cell partitions); ii)
fluxes towards the Golgi (red arrows ); iii) lateral fluxes in the inner crown
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(a) (b) (c)

FIGURE 1.10 Background estimation and vesicle detection. Application of C-CRAFT algorithm
[31] to a disk-shaped cell image sequence (a) for vesicle detection (b) background estimation (c).

(purple arrows); iv) lateral fluxes in the outer crown (blue arrows).
This study confirmed that the Rab6 positive membranes predominantly move

to the cell periphery (as lateral directions are divided into two opposite direc-
tions, corresponding to 2 × 20%). Here, we divided the lateral directions into
two different categories to evaluate if the vesicles have the same behavior when
they are close to the Golgi or close to the cell periphery. The results are re-
ported in Fig. 1.11 (bottom). These results demonstrate that for micro-patterned
cells, Rab6 positive membranes are predominantly trafficking towards the cell
periphery. The lateral fluxes in the outer crown are more important than lateral
fluxes in the inner crown. This indicates that GFP-Rab6 vesicles trafficking is
more directed in regions close to the Golgi than in regions located at the cell
periphery. This behavior is related to the vesicle docking step that is happening
before vesicle reach their end-point.

Simulation of GFP-Rab6 dynamics. We applied the simulation framework
described in Section 1.2.2 to mimic GFP-Rab6 vesicle dynamics as observed in
spinning disk microscope images. A first simulated image sequence is shown
in Fig. 1.12 (b)-(d). The traffic is here uniformly distributed over each OD
pair. The microtubule network, estimated from temporal series of volumes
(64.5 × 64.5 × 300 nm3) is composed of 157 vertices (Fig. 1.12 (a)), involving
24,492 OD pairs. Three typical images extracted are shown in Fig. 1.12 (b)-(d).
In Table 1.1, we reported the typical values used to simulate this image sequence.

Meanwhile, we investigated two different cell geometries, the crossbow-
shaped pattern and the circular-shaped pattern. The speed of the vesicles ranges
from 1 to 10 pixels and the number of objects can be large (about a few hun-
dreds). Several consecutive images (1 frame/sec) extracted from both the real
and simulated sequences are shown in Figs. 1.13 and 1.14. To assess the quality
of simulated images sequences, we compare the images at time t and intensity
projections along the temporal, including the Maximum Intensity Projection
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FIGURE 1.11 Cell partition of a disk-shaped cell and GFP-Rab6 vesicle flux estimation. (Top)
The edge identification numbers are written next to each edge. Green edges are oriented towards the
cell periphery, red edges are oriented towards the Golgi, purple edges correspond to lateral fluxes in
the inner crown and blue edges to lateral fluxes in the outer crown. (Bottom) fluxes estimated over
all registered sequences and grouped according to four different categories.

(MIP) and the Standard Deviation Intensity Projection (SDIP) maps defined as:

SDIP(I))(s) =
(

1
T

∑T
t=1(I(s, t) − Ī(s))

)1/2 (1.9)

where T denotes the number of images in the sequence, and Ī(s) represents the
average intensity measured at pixel s. The MIP and SDIP maps computed from
real and simulated image sequences are consistent as illustrated in Figs. 1.13
and 1.14 (bottom). The Golgi apparatus is characterized by a very bright spot
on the projection maps, while vesicle trafficking is represented by a number of
segments corresponding to fractions of vesicle trajectories.

Traffic estimation from simulated image sequences In the last experiment,
we applied the NT-based analysis method [46] to simulate image sequences
from the network and the image partition shown in Fig. 1.15. The simulated
sequence consisting of about 300 2D frames, has been obtained as before. For
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FIGURE 1.12 Simulation of GFP-Rab6 vesicles in a circular-shaped cell. (a) Microtubule
network (white) and origin (green) and destination (red) nodes. (b)-(d) Three images extracted from
the simulated sequence.

each generated vesicle, a destination among all the possible “end-points” is
selected to ensure that the distribution of vesicles is uniform on all OD pairs.
The segmentation of the OD regions has been achieved by manually partitioning
the disk-shaped cell domain into 5 regions as illustrated with colors in Fig. 1.15
(right). In Fig. 1.16, we display the estimated OD flows (average proportions). In
this experiment (5 image sequences), the algorithm [46] estimated the three OD
pairs that were manually selected for simulation (ground truth). The algorithm
which amounts to solving the optimization problem (1.3) presented in Section
1.1.3, was able to identify the main traffic directions.
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RS = 64.5 × 64.5nm2 Spatial resolution of the 2D simulated image
∆t = 1 sec Time interval between two consecutive simulated images
Dv ∼ N(180, 900) Size of Gaussian spots (vesicle)
Iv ∼ N(25, 100) Intensity model of Gaussian spots
Vv ∼ N(650, 2502) Velocity of vesicles
PM→S = 0.7 Probability for a vesicle to stop
Ps→M = 0.1 Probability for a vesicle to re-start
PPS = 0.5 Probability for vesicle to be in a “Pseudo-Stable” state
PM→PS = 0.0004 Probability for a vesicle to stop transiently
PF = 0.4 Probability that a particle p1 fuses with another particle p2
PT = 0.001 Probability that a vesicle moves back and takes another path
Tmin
P S = 30 sec Lower bound of TPS

Tmax
PS

= 100 sec Upper bound of TPS

TABLE 1.1 Default parameters used for GFP-Rab6 vesicle trafficking simulation.

1.4 CONCLUSION, FUTUREDIRECTIONSANDNEWCHALLENGES

We have described a general framework for traffic flow simulation in video-
microscopy at the scale of a single cell. The method, based on the concept
of Network Tomography mainly used in network communications, has been
adapted to cell imaging and microscopy. It requires the extraction of origin-
destination nodes automatically estimated or manually labelled by the user, as
well as the setting of probabilities related "stop-and-go" events induced by traffic
congestion. Background, noise and blur can be potentially added to producemore
realistic images. We demonstrated the interest of the method for the modeling
of GFP-Rab6 vesicle trafficking and the evaluation of image analysis algorithms.
This approach is very flexible and can be adapted to many intracellular traffic
simulations.

The limit of this simulation approach is related to the memory size needed to
store the routing matrix and very large graphs with several thousands of nodes.
In addition, additional efforts are required to extend the method dedicated to
2D+time image synthesis, to simulate temporal series of volumes for several
minutes or hours as routinely acquired with microscopy set-ups. Finally, deep
learning methods, including Generative Adversarial Networks [47], combined
to Network tomography open new opportunities for data augmentation and data-
driven simulation of biomolecule trafficking.

1.5 SUMMARY

The characterization of biomolecule dynamics is essential in cell biology since it
offers a better understanding of fundamental mechanisms including membrane
transport, cell signaling, cell division and motility. In that context, modeling and
simulating trafficking of biomolecules has become helpful for prediction, data
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(a) (b)

(c) (d)

FIGURE 1.13 Comparison between real and simulated images depicting GFP-Rab6 vesicles in
circular-shaped cells. (a) Circular micro-pattern (red) [40] and images extracted from a real image
sequence. (b) Simulated images obtained from the network estimated by applying the algorithm
[29] to the real image sequence shown in (a). The origin (green) and destination (red) nodes are
superimposed on the microtubule network, at the center and the periphery of the cell, respectively.
(c) MIP map and SDIP maps computed from 300 real images. (d) MIP and SDIP maps computed
from 300 simulated images.

assimilation, learning, as well as for bioimage analysis algorithm evaluation. As
the biomolecule transport in a cell can be interpreted as a vesicle trafficking
depending on the organization of cytoskeleton components and regulated by
specific proteins, we explored the potential of Network Tomography for image
sequence simulation. As the network may be very complex, it is estimated from
real microscopy images. The user then specifies the origin and destination nodes
by labelling few nodes in the graph, and adds event features, depending on prior
knowledge in cell biology. The resulting simulation algorithm is data-driven and
is able to generate artificial 2D image sequences depicting fluorescently tagged
proteins in video-microscopy.
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(a) (b)

(c) (d)

FIGURE 1.14 Comparison between real and simulated images depicting GFP-Rab6 vesicles
in crossbow-shaped cells. (a) Crossbow micro-pattern (red) [40] and images extracted from a
real image sequence. (b) Simulated images obtained from the network estimated by applying the
algorithm [29] to the real image sequence shown in (a). The origin (green) and destination (red)
nodes are superimposed on the microtubule network, at the center and the periphery of the cell,
respectively. (c) MIP map and SDIP maps computed from the real image sequence (a). (d) MIP and
SDIP maps computed from 300 simulated images.
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