
HAL Id: hal-03519504
https://hal.inria.fr/hal-03519504

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Build WebAudio and JavaScript Web Applications using
JSPatcher: A Web-based Visual Programming Editor

Shihong Ren, Laurent Pottier, Michel Buffa

To cite this version:
Shihong Ren, Laurent Pottier, Michel Buffa. Build WebAudio and JavaScript Web Applications
using JSPatcher: A Web-based Visual Programming Editor. Web Audio Conference 2021, Jun 2021,
Barcelone, Spain. �hal-03519504�

https://hal.inria.fr/hal-03519504
https://hal.archives-ouvertes.fr

Build WebAudio and JavaScript Web Applications using
JSPatcher: A Web-based Visual Programming Editor

Shihong Ren
Université Jean Monnet
Saint-Etienne, France

shihong.ren@univ-st-
etienne.com

Laurent Pottier
Université Jean Monnet
Saint-Etienne, France

laurent.pottier@univ-st-
etienne.fr

Michel Buffa
Université Côte d’Azur, CNRS, INRIA

Sophia Antipolis, France

michel.buffa@univ-cotedazur.fr

ABSTRACT

Many visual programming languages (VPLs) such as Max [1] or

PureData [2] provide a graphic canvas to allow developers to

connect functions or data between them. This canvas, also known

as a patcher [3], is basically a graph meant to be interpreted as

dataflow computation by the system. Some VPLs are used for

multimedia performance or content generation as the UI system is

often an important part of the language. This paper presents a web-

based VPL, JSPatcher, which allows not only to build audio graphs

using the WebAudio API, but also to design graphically

AudioWorklet DSPs with FAUST toolchain, [4] [5] or to create

interactive programs with other language built-ins, Web APIs or

any JavaScript modules.

1. INTRODUCTION
Visual programming languages are likely to be more user-friendly

to non-coders, artists, designers or children as these programs seem

closer to the flowchart diagram, which often corresponds to the way

things work in our physical world, especially in the audio

processing field. Connecting signal processors using audio cables

to produce sounds and effects is a common practice even though

we can now bring this practice to the digital world. Max, PureData

and Vvvv, 1 which are well-known VPLs for audio and video

processing, use patchers, connections with cables and boxes, to

describe the dataflow of the program.

Patcher-like VPLs are massively developed especially on the web.

WebPd 2 is a web-based PureData patcher interpreter using

JavaScript and the WebAudio API. Cables.gl3 is a video-oriented

patcher editor on the web that also handles WebAudio nodes.

WebAudio Visual Editor,4 WebAudioDesigner,5 Mosaicode6 [6]

and Olos7 are web-oriented VPLs for audio processing.

However, with many web-based VPL, users can create patchers

only from a limited number of different types of boxes (box objects),

which are high-level abstractions like generators, audio and video

1 https://vvvv.org/

2 https://github.com/sebpiq/WebPd

processors, or UI components. It is possible to create simple audio

or video sequences, but insufficient to implement more complex

web applications that need to deal with lower-level Web APIs.

The patcher system we designed aims to be able to create a patcher

from boxes that represent JavaScript usages, such as variables,

getters, setters and functions. The language built-ins or Web APIs

available under the current global scope will be imported to the

system, along with usages from other JavaScript modules that can

be included dynamically. These imported box objects allow users

to create programs from lower-level APIs just like code with

JavaScript.

On top of these lower-level box objects, we implemented two

additional layers of patcher interpretation. The first is a

representation of the WebAudio graph which contains connections

between WebAudio Nodes. The graph is similar and fit to a patcher

system in which boxes are the Nodes and cables are the connections

between them. Another layer is designed to carry subpatchers

(patchers in patcher) that can be in different modes: imperative or

compiled.

A patcher can be imperative, interactive with UI components and

process dataflow in real-time; or compiled, to generate a program

to execute at runtime. For example, Max is mainly an imperative

VPL but can include Gen8 patchers, which will be compiled to

Max’s DSP modules after edit.

The mixed system like Max and its integrated Gen, allowing the

coexistence of compiled and imperative patchers in a single

environment, provides two advantages. First, compiled modules are

often more efficient compared to imperative ones as they are

considered as a single functional processor at runtime. The

compiled patchers can be used to design specific sub-process such

as DSPs or shaders. Second, while the compiled patchers are

encapsulated, they are extendable and reusable in other patchers,

which economizes computing resources and developer’s efforts.

3 https://cables.gl/

4 https://github.com/pckerneis/WebAudio-Visual-Editor

5 https://github.com/g200kg/webaudiodesigner

6 https://mosaicode.github.io/

7 https://www.jasonsigal.cc/portfolio/olos.

8 https://docs.cycling74.com/max8/vignettes/gen_overview

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2021, July 5–7, 2021, Barcelona, Spain.

© 2021 Copyright held by the owner/author(s).

https://vvvv.org/
https://github.com/sebpiq/WebPd
https://cables.gl/
https://github.com/pckerneis/WebAudio-Visual-Editor
https://github.com/g200kg/webaudiodesigner
https://mosaicode.github.io/
https://www.jasonsigal.cc/portfolio/olos
https://docs.cycling74.com/max8/vignettes/gen_overview

Besides, it would be interesting for the system to have different

compilers as options to interpret these patchers.

Using this approach, JSPatcher offers possibilities to design

AudioWorklet DSPs with compiled patchers thanks to FAUST

WebAssembly compiler [7] and to interact with them in real-time

from an imperative patcher.

The UI of JSPatcher is inspired by Max and meant to be close to

Max to facilitate the comprehension and the usage of Max-like VPL

developers. Yet, JSPatcher is designed for different purposes

compared to Max, as web applications for multimedia will not

perform as well as on native platforms in terms of efficiency and

reliability, but more flexible on device-compatibility, networking

and interactivity.

2. PRINCIPLES OF PATCHING9

2.1 Cables and Boxes
A patcher in JSPatcher, following Max’s convention, usually

contains cables and boxes. A box represents a function with or

without UI, can take data from its input ports (inlets) and send

processed data to its output ports (outlets). A cable represents a

connection between one inlet and one outlet, meaning that data is

flowing from the outlet to the inlet. One-to-many or many-to-one

port connections are possible.

The inlets of a box are on its top, the outlets are on its bottom,

aligned horizontally. A box will normally send out data to its outlets

from right to left. A box can be positioned anywhere in a 2D space.

The position will influence the priority while receiving data from

one outlet: When data coming from one outlet should be delivered

to multiple destination inlets, the position of these inlets will be

used to compare the priority. The inlet at the right side will have a

higher priority and receive firstly the data, if aligned vertically, the

one at the bottom will have a higher priority.

For example, in Figure 1, print B and print A are connected to

a message. In the two cases, print B will receive the message

earlier than print A.

Figure 1 Messaging priority

2.2 Box’s Class, Arguments and Properties
For any box with the default UI, its function is dynamic and

changeable by editing its text. When the box’s function is changed,

it’s number of IOs will also be actualized, the cables no longer

being used will be removed.

The behavior of a box is mainly determined by its text. The text

will be parsed to three parts: class, arguments and properties, each

element is separated by a white-space and be considered as a JSON

string. The first element is the class identifier to a registry in the

system that contains all the available classes. Elements after the

identifier are the arguments, as the parameters of a function. Then,

9 Interactive examples can be found at following URL:

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=01.%20basics.jspat

if an element string starts with the character “@”, it will be

considered as an identifier of the box’s property, elements after the

property identifier are its value.

The arguments and the properties indicated in the box’s text only

determine its initial state, they can be changed any time with any

operations without changing the text.

For example, in Figure 2, the box + 2 @textAlign right

initialized the box’s class as +, with one argument 2, and the value

right of the property textAlign.

2.3 States of a Patcher
A patcher in the presented system is editable while the patcher is

unlocked. In this state, users can add or remove boxes and cables,

move or resize the boxes, change the endpoints of the lines, or

change the boxes’ text, arguments or properties. If a patcher is

locked, the user can interact with the boxes if they provide UIs.

A patcher can also be in the presentation state, in which boxes can

be displayed or not, presented with another position and size

without affecting the program. As cables and non-UI-related boxes

will be hidden in the presentation state, this is an interesting feature

for the design of a user-friendly application with the system.

2.4 Bang Object
Similar to Max, JSPatcher uses a specific object “Bang” as an event

to tell any box object to proceed with its task. The Bang contains

no additional information, its only purpose is to trigger immediately

anything, which is likely to output the previous result or stored

value.

For example, in Figure 3, when the user clicks the button, it will

output a Bang that triggers the message to output the string “Do

something”, then alert will display the string in a dialog.

Figure 2 Box's text

Figure 3 Bang

3. PATCHING JAVASCRIPT
One of our main goals in JSPatcher is to offer a possibility to create

JavaScript programs with patchers. To achieve that, the patcher

system should in the first place have an equivalent way to program

for any ECMAScript statement or expression if necessary. Then,

get, set or store values, calling functions, methods or constructors

should be possible with any language built-ins, Web APIs or

external JavaScript modules.

3.1 Operators10
Most of the operators in the ECMAScript standard are available as

box objects. For binary operators, one argument can be provided to

initialize the second component which can also be changed from

the second inlet. The first component will be determined by the first

inlet, then, the operation will be executed and output immediately

10 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=02.%20ops.jspat

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=01.%20basics.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=01.%20basics.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=02.%20ops.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=02.%20ops.jspat

while receiving. For ternary operators, we are using the same

implementation unless the number of arguments is three.

3.2 Conditions and Iterations11
Patcher systems like Max provide several ways to handle

conditions and iterations because the representation of decision

branches is slightly different from literal expressions. A choice

from many inputs to one output, or output to a chosen branch from

one input, is likely to be easier to understand as a condition testing

object in a patcher system. For the iterations, a loop can be created

by connecting a cable from the output of a graph to its input. Also,

we provide box objects that will output all the iterated value with

one outlet, and a message using another outlet while the iteration is

ended, so that the rest of the program can be connected with this

outlet.

For example, in Figure 4, conditions can be verified using the

ternary operator or gate to block the dataflow. in Figure 5, the

graph on the left is a loop with a condition, the right one is a for

loop with predefined borders The message box receives a value

from its second inlet to set the value without output, a Bang from

the first inlet will output the current value. The sel true will

output from its first inlet a Bang if the input matches true.

Figure 4 Conditions

Figure 5 Loop with condition

Built-in iterators like Array.prototype.map can be called as

language built-in with a lambda function. The usage will be

presented in the next subsection.

3.3 Lambda functions12
In JSPatcher, a box object called lambda allows to create a

JavaScript anonymous function. The function body will be a graph

attached to this box, taking the box’s outputs as the function’s

arguments, then give back to the second inlet of the box the

function’s return value.

When the object receives a Bang from its first inlet, it will output

an anonymous function from its first outlet. The function’s number

of arguments can be declared as the box’s argument, which changes

the number of outlets of the box. When the function is called, the

values of arguments will be output starting from the third outlet,

along with a Bang from the second outlet. If the number of

arguments is not declared, the arguments will be output as an array

from the third outlet.

For example, in Figure 6, Array..map represents the

Array.prototype.map function. the first argument is the array

[1,2,3,4], the second is a lambda function where the function

11 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=03.%20cond-loop.jspat

12 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=04.%20lambda.jspat

body is * 2 which means to multiply each element in the array by

2.

Figure 6 Lambda function

3.4 Built-ins and Web APIs13
When the JSPatcher is initialized, it scans recursively the global

variable window and imports its content which includes most of the

JavaScript built-ins and Web APIs. The imported variables, getters,

setters and functions are then usable as different box objects.

Box objects with imported variables have two inlets and one outlet.

A Bang from its first inlet will output the current value from its first

outlet, the second inlet can be used to set the value. For example:

Box objects with property getters have one inlet for a Bang to

trigger the getter and output its value from the first outlet.

Box object with property setters has one inlet that receives value to

be set.

If the property has both setter and getter, the box object will behave

like a variable box, have two inlets where the first serves as the

getter and the second serves as the setter.

In the example (Figure 7), click on the button or the message is

equivalent to execute the following JavaScript code:

console.log(window);

escape(",\>?");

Number.MAX_SAFE_INTEGER;

Figure 7 Imported Web APIs

For box objects with imported functions, the default number of

inlets corresponds to the number of arguments of the function, in

case the number is variable, users can also set the number by the

args property. The function’s argument values can be initialized

from the box’s arguments, and be set from the inlets. While the box

receives a Bang or an argument from its first inlet, the function will

be called with the arguments stored, then output the return value

from its first outlet, along with the arguments after calling the

function from the rest of the outlets.

13 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=05.%20imported.jspat

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/

wac.zip&file=06.%20graph.jspat

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=03.%20cond-loop.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=03.%20cond-loop.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=04.%20lambda.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=04.%20lambda.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=05.%20imported.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=05.%20imported.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=06.%20graph.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=06.%20graph.jspat

For the box objects which are imported from a JavaScript prototype,

these identifiers omit the string prototype, and there will be an

additional inlet and an additional outlet for passing an instance of

the prototype. This facilitates the calling of the instance’s methods

or using its setters, getters or properties.

To construct an object from its constructor function, users can use

the new box object, following by the identifier of the constructor’s

box object and the arguments. The box will evoke the new operator

on the constructor and output the instance from the first outlet.

To get of set a specific property by name from an object is possible

using set and get box object. Plus, call object can be used to call

a specific method by name from an object.

Here (Figure 8) are two examples to build a WebAudio graph

(oscillator-gain-destination) with JavaScript box objects, they are

equivalent:

Figure 8 WebAudio graph with JavaScript boxes

3.5 External JavaScript Modules
It is common that JavaScript module creators make their work

available in a CDN and can be fetched remotely. Websites like

unpkg.com provide available packages on NPM, a JavaScript

module registry. It is practical to get these public JavaScript

modules with a CDN URL and the package identifier.

The packages on NPM are designed for Node.js, using the

CommonJS module standard for import and export. The system

will simulate the Node.js’s environment to import these packages

as box objects under a given namespace. It is also possible to import

ES6 modules into the system.

A patcher can add packages with their URL and namespace as its

dependencies. When JSPatcher loads a patcher, it will

automatically import these packages from these URLs.

14 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=07.%20audioworklet.jspat

4. PATCHING WEBAUDIO

4.1 WebAudio Node Box
Apart from using JavaScript box objects to build a WebAudio

graph, JSPatcher provides a dedicated layer for WebAudio nodes.

In this layer, each box is a representation of one WebAudio node

that has node connections and its AudioParams becoming the box’s

inlets and outlets. If a cable is connected between an inlet and an

outlet both marked as a WebAudio connection, the cable will be

displayed differently, and call native WebAudio connect and

disconnect methods while manipulated.

The layer is compatible with normal box objects and cable, the data

passed through the normal cables can still be treated. For example,

inlets representing AudioParams can be connected from an

AudioNode as in the WebAudio API, or be connected from box

objects that generate numbers to be set as the value of the

AudioParam. Some customized WebAudio nodes can have their

inlet for receiving MIDI messages at the same time.

One additional outlet of these WebAudio node box object outputs

the instance of the AudioNode for further possible usage via

JavaScript box object. For example, Figure 9 is equivalent to two

examples from Figure 8.

Figure 9 WebAudio graph

Figure 10 AudioWorklet example14

4.2 AudioWorklet
JSPatcher includes a set of box object that helps to code, register

and use an AudioWorklet node in the patcher system. Firstly, users

can add a code box to write an AudioWorklet processor with plain

JavaScript code. Then the box object audioWorklet allows users

to register the processor from the code, using internally

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=07.%20audioworklet.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=07.%20audioworklet.jspat

createObjectURL. After being registered, the box will output a

Bang that can be used to construct the AudioWorklet AudioNode

with the processor’s identifier. The node~ box object can bring any

AudioNode into the WebAudio connection layer so that the

constructed AudioWorklet node can be connected to other

AudioNode boxes.

In Figure 10, the AudioWorkletProcessor is written in a code box,

registered by the audioWorklet box. Then it’s created using the

AudioWorkletNode constructor, and transformed using node~ into

an AudioNode box.

4.3 WebAudio Plugin Box
We provide in this layer a box object plugin~ to bring any

WebAudio Plugin [8] [9] into the patcher with its UI. The box

behaves like a WebAudio node box, creating automatically

corresponded inlets and outlets. According to the WebAudio Plugin

standard, an URL is needed to fetch from a remote server a

JavaScript file that loaded its dependencies and returns an HTML

element as its UI, and an AudioNode to be connected and output

from the box’s last outlet.

Figure 11 Visualizations

4.4 UI with WebAudio Node
Audio signal analyzers with UI visualizations are commonly used

to display the features of audio streams. This can be achieved by an

AudioNode which receives and analyzes the real-time signal, and

HTML elements to display the result of the analysis. In JSPatcher,

like the WebAudio Plugins, an analyzer with visualization can be

packed in one WebAudio node box.

For example, a level meter can be a box object that displays instant

RMS (root mean square) values graphically, with one inlet as a

connection to an analyzer AudioNode.

Figure 11 is an example15 of different visualizations of three sine-

wave oscillators.

15 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=08.%20meter.jspat

4.5 AudioNode generated by FAUST16
FAUST is a functional, synchronous, domain-specific programming

language designed for real-time audio signal processing and

synthesis.

Multiple developments have been done to use the language on the

Web platform. Thanks to the Emscripten transpiler and the

WebAssembly format, the FAUST compiler is available as a

JavaScript module faust2webaudio [10] which can compile

FAUST code to a fully functional WebAudio AudioWorklet node.

The language also allows us to describe MIDI-controllable

parameters of the DSP or polyphonic MIDI instruments. The

parameters will be interpreted as AudioParams, and the node has

APIs to handle MIDI messages.

The compiler is available with the faustnode~ box object. When

receiving the FAUST code, it will try to compile the code and

transform itself into a WebAudio node box. Like the AudioWorklet

box, its AudioNode and AudioParams are connectable with other

WebAudio node boxes, in addition, it handles incoming MIDI

messages from its first inlet.

Figure 12 is an example to compile an eight-voice polyphonic

instrument from FAUST. The instrument is handling MIDI messages

from its first inlet.

Figure 12 Faust node

5. FAUST SUBPATCHER
The design of the FAUST programming language represents its code

with a patcher-like graph called block-diagram algebra (BDA) [11]

[12] that can be optimized and transformed into a high-performance

low-level code. The BDA acts as a middleware between the user-

written code and its internal code. Using the BDA, FAUST compiler

can generate a block diagram that shows the processing structure of

the compiling DSP.

A FAUST code is therefore always represented by a graph that leaves

the possibility to generate code from an equivalent graph. In

JSPatcher, we designed a specific mode of patcher to build a

FAUST-compatible graph, that will be firstly interpreted to an

equivalent FAUST code which can be used in other FAUST tools, then

be compiled to a WebAudio node using faust2webaudio. While

16 Video demonstration on https://youtu.be/vYgqjakKYwo

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=08.%20meter.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=08.%20meter.jspat
https://youtu.be/vYgqjakKYwo

patching in this mode, users have a panel that shows the interpreted

code of the actual patcher in real-time. [13]

The implementation of this mode of patcher is inspired by Gen,

which is also a graph-to-code system that can be compiled into a

high-performance DSP.

Figure 13 The generated code can be previewed in on the right

panel (synchronized to the patcher)

Figure 14 A FAUST patcher can be compiled to a WebAudio

node box (the patcher on the right is the FAUST patcher)17

6. FUTURE WORK

6.1 Timeline and Musical Notation
Patcher-like VPLs are good choices to build musical applications

or event music generators, as a timeline or a musical score can be

displayed in real-time in a patcher. As an example, OpenMusic [14]

is a VPL to design computer-aided composition which provides

different musical representation including score and timeline. For

the timeline, a JavaScript audio library Tone.js implemented an

AudioWorklet-based timing and scheduling system, which is an

interesting and more accurate method for musical timing. These

features could be included in the JSPatcher.

6.2 AudioWorklet Generators
Aside from FAUST, Csound [15] is also a language that can be

compiled into an AudioWorklet node thanks to the WebAssembly

17 https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../example

s/wac.zip&file=09.%20pfaust.jspat

18 https://threejs.org/, example at

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/

wac.zip&file=10.%20gl.jspat

19 https://d3js.org/, example at

version of the Csound compiler. [16] Using the compiler, it is

possible to generate a WebAudio node box from Csound code.

Besides, it will be interesting to design an AudioWorklet’s

processor with JavaScript boxes in a subpatcher by having a

dedicated patcher system in the audio thread. It enables the

possibility to design imperative patchers to process audio buffers

or event FFT data.

6.3 File System
We are working on a virtual file system in the JSPatcher so that

dependencies like audio files or subpatchers can be loaded and

saved to the file system. This feature can change the design of a

project under JSPatcher, as it can be separated into several patchers

for different roles in the project. For example, an interactive

performance can have a host that sends messages to clients using

WebRTC standard, in this case, the project will have a dedicated

patcher for host and another for clients.

Some DSPs or synthesizers, like a sampler or a granular synthesizer,

need to load audio files in advance. They can load files remotely

using an URL, but it will be more efficient to get them directly from

the virtual file system.

6.4 SDK
The box objects in the JSPatcher are extendable and meant to be

fully accessible for developments from community contributors.

We should offer a software development kit (SDK) based on these

built-in box objects. With the SDK, developers can create their box

object packages which can be imported from an URL into the

JSPatcher.

7. CONCLUSIONS
The pros and cons of dataflow VPLs have been discussed for

decades. Compared to textual languages, VPLs are more accessible

and illustrative in some fields like multimedia processing, but lack

clearance and performance in some complex algorithms. [17] In the

design of WebAudio applications, JSPatcher is similar to some

other platforms, allowing users to manipulate an audio graph and

control the parameters. But we try to provide more flexibilities and

potentials to JSPatcher, to design an AudioWorklet, and to gain

control of other JavaScript-based web features. Developers can also

write code in boxes to implement complex algorithms, then connect

UI components with them. With this hybrid system where compiled

and imperative patcher and code coexist, we try to overcome the

disadvantages of VPLs.

Indeed, the project starts from an aspect of audio programming, but

its actual implementation seems to have more use cases to us. We

have experimented on the platform to program with three.js 18

OpenGL rendering, d3.js19 data visualization, or Tensorflow.js20

web-based neural networking as proofs of concept. Hopefully, the

platform could facilitate the design of interactive multimedia

projects in the future.

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/

wac.zip&file=11.%20d3.jspat

20 https://www.tensorflow.org/js, example at

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/

wac.zip&file=12.%20prnn.jspat

https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=09.%20pfaust.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=09.%20pfaust.jspat
https://threejs.org/
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=10.%20gl.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=10.%20gl.jspat
https://d3js.org/
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=11.%20d3.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=11.%20d3.jspat
https://www.tensorflow.org/js
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=12.%20prnn.jspat
https://fr0stbyter.github.io/jspatcher/dist/?projectZip=../examples/wac.zip&file=12.%20prnn.jspat

8. ACKNOWLEDGMENTS
Our thanks to GRAME-CNCM (Lyon, France) for ideas to the

design of the FAUST-based patcher.

9. REFERENCES

[1] M. Puckette and D. e. a. Zicarelli, "Max/msp," Cycling, 1990.

[2] M. Puckette, "Pure Data," in Proceedings of the International

Computer Music Conference, Thessaloniki, 1997.

[3] M. Puckette, "The patcher," in Proceedings of the

International Computer Music Conference, San Francisco,

United States, 1986.

[4] Y. Orlarey, D. Fober and S. Letz, "FAUST : an Efficient

Functional Approach to DSP Programming," in New

Computational Paradigms for Computer Music, E. D.

France, Ed., 2009, p. 65–96.

[5] H. Choi, AudioWorklet: The future of web audio, Ann

Arbor, MI: Michigan Publishing, University of Michigan

Library, 2018.

[6] F. L. Schiavoni, L. L. Gonçalves and A. L. N. Gomes, "Web

Audio application development with Mosaicode," in

Proceedings of the 16th Brazilian Symposium on Computer

Music, São Paulo, Brazil, 2017.

[7] S. Letz, S. Denoux, Y. Orlarey and D. Fober, "Faust audio

DSP language in the Web," in Proceedings of the Linux

Audio Conference, Mainz, 2015.

[8] M. Buffa, J. Lebrun, J. Kleimola, O. Larkin and S. Letz,

"Towards an open Web Audio plugin standard," in

Companion Proceedings of the The Web Conference 2018,

2018.

[9] M. Buffa, J. Lebrun, S. Ren, S. Letz, Y. Orlarey, R. Michon

and D. Fober, "Emerging W3C APIs opened up commercial

opportunities for computer music applications," in The Web

Conference 2020 DevTrack, 2020.

[10] S. Ren, S. Letz, Y. Orlarey, R. Michon, D. Fober, M. Buffa,

E. Ammari and J. Lebrun, "FAUST online IDE: dynamically

compile and publish FAUST code as WebAudio Plugins," in

Proceedings of the Web Audio Conference, Trondheim,

2019.

[11] Y. Orlarey, D. Fober and S. Letz, "An Algebra for Block

Diagram Languages," in Proceedings of the International

Computer Music Conference, Gothenburg, 2002.

[12] Y. Orlarey, D. Fober and S. Letz, "Syntactical and

Semantical Aspects of Faust," Soft Computing, 2004.

[13] S. Ren, L. Pottier and M. Buffa, "From Diagram to Code: a

Web-based Interactive Graph Editor for Faust DSP Design

and Code Generation," in Proceedings of the 2nd

International Faust Conference, Saint-Denis, 2020.

[14] J. Bresson, C. Agon and G. Assayag, "OpenMusic: visual

programming environment for music composition, analysis

and research," in Proceedings of the 19th ACM international

conference on Multimedia, 2011.

[15] V. Lazzarini, S. Yi, J. Heintz, Ø. Brandtsegg, I. McCurdy and

others, Csound: a sound and music computing system,

Springer, 2016.

[16] S. Yi, V. Lazzarini and E. Costello, "WebAssembly

AudioWorklet Csound," in Proceedings of the Web Audio

Conference, Berlin, 2018.

[17] R. Stephens, "A survey of stream processing," Acta

Informatica, vol. 34, p. 491–541, 1997.

