
HAL Id: hal-03521218
https://hal.inria.fr/hal-03521218

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalysis of a lightweight primitive submitted to
the NIST standardization process: ASCON

Jules Baudrin

To cite this version:
Jules Baudrin. Cryptanalysis of a lightweight primitive submitted to the NIST standardization pro-
cess: ASCON. Cryptography and Security [cs.CR]. 2021. �hal-03521218�

https://hal.inria.fr/hal-03521218
https://hal.archives-ouvertes.fr

Master Thesis

Cryptanalysis of a lightweight primitive submitted to

the NIST standardization process: Ascon

Submitted to University of Versailles Saint-Quentin-en-Yvelines (UVSQ)
in partial full�llment of the requirements for the Degree of Master in

Applied Algebra

Jules Baudrin (M2 Algèbre appliquée, UVSQ)
supervised by Anne Canteaut & Léo Perrin (INRIA)

August 2021

Abstract

In this document I present the main aspects of my �rst research experience as an intern at Inria supervised
by Anne Canteaut & Léo Perrin within the COSMIQ team from March to August 2021.

We focus on Ascon, a lightweight symmetric cipher submitted to the current NIST standardization process.
We mostly analyze di�erent properties which could lead to cube attacks. A presentation of Ascon and a non-
exhaustive literature review are drawn as complements to the chronological overview of the work done during
these six months. They altogether enable to assess the hindsight obtained month after month.

This internship is part of the requirements to get my Master’s degree from UVSQ (Université de Versailles
Saint-Quentin-en-Yvelines, M2 Algèbre appliquée).

ii

Acknowledgments

First of all, I would like to thank Anne Canteaut & Léo Perrin for their support and involvement during this
internship; I could not have hoped for a better �rst research experience! Thank you as well for your renewed
con�dence, I am really looking forward to spending the next three years at your side.

I also would like to thank every member of the COSMIQ team for their kindness and enthusiastic welcome;
even with a single on-site day per week at �rst, you all contribute to make me feel as I belong!

Finally, I would like to thank Christina Boura and Yann Rotella who put me in contact with the team and
who supported my application; this was a valued help. I really hope we will be able to work together in the
future.

iii

Contents

Abstract ii

Acknowledgments iii

Contents iv

1 Context and overview 1

I Symmetric cryptography and cryptanalysis . 1
II Lightweight cryptography in the IoT era . 2
III International competition and standardization process . 2
IV Internship’s environment . 3

2 Ascon 4

I Mode of operation . 4
I.1 Notation . 5
I.2 Ascon’s AEAD encryption work�ow . 6

II Ascon’s permutation . 7
III Ascon’s S-box . 8
IV Advantages and security claims . 9

3 Previous works and related topics 10

I Mathematical background . 10
II Higher-order di�erentials and integral attacks . 11
III Cube attacks . 14

III.1 Classical cube attacks . 14
III.2 Practical attacks on Keccak and Ascon . 15
III.3 Bordeline cubes . 16
III.4 Generalized conditional cube attacks . 16
III.5 Cube-like key-subset technique . 16
III.6 First misuse-free key-recovery attack on 7-round Ascon 17

IV Generalized integral attacks using the division property . 18

4 Our work 19

I Motivations and choices made at the beginning of the study 19
II First steps in studying and understanding Ascon . 20

II.1 First results . 20
II.2 Column dependencies . 21
II.3 On the loss of degree . 21

iv

CONTENTS v

III Statistical and combinatorial study . 22
III.1 Number of variables . 23
III.2 Number of distinct maximal monomials . 23
III.3 Variables distribution . 24
III.4 Study of the binomials . 24

IV Study of the general ANF . 26
V Di�erent representations of Ascon’s permutation . 27

V.1 Splitting the S-box into two parts . 27
V.2 Changes of variables . 28
V.3 Di�erent changes in the domain and codomain . 29

VI Other initializations scenarios . 30
VI.1 About Rohit et al.’s distinguishers . 31
VI.2 Focusing on terms of degree 8 during the fourth round 32

VII Analysis of Ascon’s cyclicity and the respective role of IV and round constants 33
VII.1 Cyclic properties and anomalies . 33
VII.2 Visual results on the in�uence of the IV and of the round constants 36

VIII Searching for a superpoly in a nonce-misuse scenario . 37
VIII.1 An attempt at formalizing straight-forward monomials 41
VIII.2 An attempt at �nding many more straight-forward monomials 43

5 Conclusion and perspectives 45

Bibliography 46

List of Figures 50

List of Tables 51

1 Context and overview

As stated in this document’s title, our main concern during the last six months was to analyze the security of
a lightweight primitive named Ascon (designed by Dobraunig, Eichlseder, Mendel and Schlä�er [DEMS19]),
which is one of the �nalists of a current standardization process from the American National Institute of
Standards and Technology (NIST, [NIS17]). However, before diving into this state-of-the-art subject, I would
like to present the context around Ascon. The feeling I have after this 6-month experience is that the better
I understood and clari�ed the overall setting, the easier it was for me to focus on what our questions really
were, and to try to answer them.

This �rst chapter thus intends to give a proper survey to start with. It will be followed by a brief literature
study of previous works about symmetric cryptanalysis (more precisely about integral and cube attacks which
were our main focus). Then, I will give a detailed description of Ascon in order to �nally summarize our
research work and present a few ideas for future developments.

I Symmetric cryptography and cryptanalysis

For a few decades now, discussing and sharing information secretly and remotely has really become a daily
matter: on a communication channel which may be accessible to unwanted listeners (such as the World Wide
Web), one often needs to exchange data in such a way that only the legitimate recipient can understand
it, even if someone else were to eavesdrop on the exchange. This need, con�dentiality, is the core concept
of cryptography since its early stage. In order to achieve it, the oldest methods known shared a common
principle: before being able to communicate secretly, the sender and the recipient need �rst to agree on a
common framework which includes a common secret (called secret key) shared only by the two protagonists.

Those methods are known as symmetric encryption or secret-key encryption, the former insisting on the
common information shared beforehand while the latter insists on the fact that this information must be
known only by them. On the contrary, the framework itself does not need to be secret. Even more, it is
commonly accepted that in order to properly analyze the security of an encryption method, one must not
base one’s reasoning on some unknown elements of the framework. Rather, the only secret should be the
key. This is known as Kerckho�s’ principle. Following this framework, the secret key (shared by the two
parties) is used to both encrypt and decrypt, in other words: �rst to transform the message in an unintelligible
shape (called ciphertext, this is done by the sender) and then to transform it back to its genuine shape (called
plaintext, this is done by the recipient).

The goal of an adversary who would like to eavesdrop on the exchange is to discover as much information
as possible about the original message sent without the initial knowledge of the key (if the key is known at
the beginning, then nothing is hidden as the adversary knows as much as the recipient and both are able to
decrypt the message). The most powerful attacks are key-recoveries which enable the adversary to gain during

1

CHAPTER 1. CONTEXT AND OVERVIEW 2

communication the same power as the recipient, but there exist a lot of other ways to break cryptosystems.

In order to build more secure systems, it is necessary to analyze the security of the primitives designed.
This is not an easy task for many reasons. First, we need formal de�nitions and understanding of what
security means. To do so, a lot of parameters have to be taken into account: what are the resources of the
adversary (computational power, data accessible...), which piece of information can or should not leak, or even
what are we actually trying to achieve (we spoke about con�dentiality but integrity and authenticity are also
major concerns of cryptographers). Secondly, trust and con�dence in a symmetric cryptosystem are gained
by evaluating its resistance against a lot of attacks. The more unsuccessful ones, the more we gain trust. The
e�ort can thus seem endless: billions of unsuccessful attacks will only mean that the system is secure enough
but a single successful one could ultimately lead to an untrustworthy feeling... This is the role of cryptanalysis.

II Lightweight cryptography in the IoT era

Even though cryptography is thousand of years old, it was reserved until recently to political and military
contexts. The �rst “computers” were invented in order to break military ciphers during World War II, and
since then started what we can call modern cryptography: the scienti�c study of secret exchanges. Shannon’s
work [Sha49] is considered as one of the �rst major theoretical milestones in cryptography. Through his
communication theory, he built the �rst mathematical approach to rigorously study ciphers and their security
(and even actual primitive designs are still inspired by his work, as we will see later).

Since, thanks to the development of computer science and even more to the growth of the Internet,
cryptography has really become an everyday matter with billions of messages shared daily and needing to
be safely transmitted. Even though a lot of solutions have been proposed to carefully exchange data over the
World Wide Web, most of them were designed to be used by computers or servers. This usage does not suit
all the purposes anymore. More and more constrained devices are used in a lot of di�erent areas (healthcare,
embedded systems, “smart home”, connected objects...): we entered what some call the Internet of Things era
(IoT). All of these devices have in common the fact that they cannot a�ord as much computational power as
desktop computers.

“As much computational power as desktop computers” seems blurry, yet we usually de�ne in the same
blurry way lightweight cryptosystems as primitives trying to provide authenticity, integrity and/or con�dentiality
at “smaller costs”. The constraints and costs have many di�erent natures [BP17]: some solutions o�er smaller
printed circuit boards, less power and/or RAM consumption, a small number of logical gates, optimizing
either hardware or software implementations... This way, lightweight cryptosystems can, for example, secure
devices (such as sensor networks or RFID tags) which often run on battery and whose main purpose is not
data protection. In a more general manner, lightweight cryptography tries to �nd the best trade-o� between
size, speed and security, while taking into account some external constraints and requirements imposed by
the future conditions of use.

III International competition and standardization process

In this general context where more and more cryptographic schemes live together, there is an incontestable
need to guide their usage and to determine the best of them depending on the needs. Some national or

CHAPTER 1. CONTEXT AND OVERVIEW 3

international organizations or projects (such as the European ECRYPT or the Japanese CRYPTREC) evaluate
and recommend the usage of chosen ciphers, while some others (such as the American NIST) aim to standardize
them, that is, to create a common documented frame of reference. These standards will then either be followed
de facto (thanks to their dominant usage) or be legally regulated (we then speak of de jure standards). Through
these processes, their intention is to identify in the most (yet not always) transparent way algorithms to be
used broadly and securely. At the same time, they prevent the usage of hundreds of algorithms (some of which
are insecure): a few of them are enough as long as they are being properly studied.

In order to involve academic communities around this same common goal, international competitions are
organized by those institutes: expert researchers thus design and analyze algorithms, their guidance being a
key element of the selection process and of the future standard’s legitimacy. Regarding symmetric lightweight
primitives, two recent competitions are of particular interest for us:

• CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness [CAE14])
which had a “lightweight applications (resource constrained environments)” category and ended in
2019; and

• the NIST’s lightweight cryptography competition ([NIS17]) which started with its round-1 candidates
in April 2019. They selected the candidates for the second round in August 2019 and the �nalists
were announced in March 2021. According to them, “the �nal round of the standardization process
is expected to last approximately 12 months”.

Ascon is a symmetric lightweight cipher which is in the �nal portfolio from CAESAR and a �nalist in
the NIST standardization process mentioned. In this now clari�ed context, it seems natural and interesting to
study this primitive and its security. This was the purpose of this internship within Inria’s COSMIQ team.

IV Internship’s environment

Inria (Institut National de Recherche en Informatique et en Automatique - French Institute for Research in
Computer Science and Control) is a French Public Scienti�c and Technical Research Establishment (EPST)
which mainly focuses on computer science and applied mathematics.
The COSMIQ team (one of the 200 project-teams which build Inria’s research ecosystem) gathers researchers
working mainly on the design and analysis of cryptographic primitives through di�erent angles: symmetric
cryptography, code-based cryptography and quantum information theory.

With Anne Canteaut and Léo Perrin who supervise my internship, we focus (as already discussed) on
symmetric cryptography.

2 Ascon

As described in the NIST submission [DEMS19], the goal of the Ascon suite is to provide a solution with
a “very low memory footprint in hardware and software, while still being fast, robust and secure”. In the
context of lightweight cryptography, the authors o�er a trade-o� between size, speed and security while
focusing mainly on the size.

To do so, they based their work on many modes (i.e ways using a block cipher to securely process plaintexts
and ciphertexts longer than one block), primitives (low-level cryptographic algorithms) and cryptographic
solutions already analyzed and/or standardized (such as the Sponge Duplex mode of operation [BDPV12,
BDPA11a], or the famous SHA-3 hash function’s permutation [BDPA11b]). Their idea is thus to provide a
design “with comfortable security margin”.

Ascon is a familly of lightweight primitives. We focus here on the Authenticated Encryption with Associated
Data modes (AEAD) of Ascon (namely Ascon-128, Ascon-128a and Ascon-80pq) which motivate the attack
models we will choose. This kind of primitives aims to provide integrity and con�dentiality both with
authenticity in an e�ective integrated manner, instead of using generic methods to combine encryption and
message authentication codes (MAC). The former authenticated encryption (AE, [BN00]) model evolves into
a new version whose goal is to ensure, on top of that, the authenticity of associated public data (such as public
headers) along with the message’s authenticity (AEAD, [Rog02]).

Even if they will not be studied here, let us note that two closely related hash functions are also presented
in the NIST submission (Ascon-Hash and Ascon-Xof).

As we were mainly interested in the permutation during this internship, I will only brie�y describe the
way the whole mode works, before diving more deeply in the speci�cations of the permutation and the S-box.

I Mode of operation

An AEAD mode for Ascon is pretty straight forward. It takes as input a secret key K , a nonce N , associated
data A and a plaintext P and outputs a cipher text C for P and an authentication tag (for A,P, and N). We
will name the internal state S and its external and internal parts respectively Sr and Sc.

The permutation used in the Sponge construction is p and will be precisely described in Section II.

4

CHAPTER 2. ASCON 5

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗‖1

P1C1

r

c
pb

Pt−1Ct−1

r

c
pb

Plaintext

PtCt

r

c

K‖0∗

pa

Finalization

K

T

128

Figure 2.1: Ascon AEAD encryption1

Table 2.1 presents the parameters’ values for the studied (and recommended) versions of Ascon where:

• a, b are the number of iterations of the permutation,

• k is the key size,

• r is the absorption/squeezing rate, that is, the number of bits either input and processed, or output,

• c is the capacity, that is, the size of the other part of the internal state which is inaccessible from outside
in an ideal scenario.

k |S| r c |N | |T | a b

Ascon-128 128 320 64 256 128 128 12 6
Ascon-128a 128 320 128 192 128 128 12 8

Ascon-80pq 160 320 64 256 128 128 12 6

Table 2.1: Parameters’ values for recommended versions of Ascon

Ascon-80pq works exactly as Ascon-128 but with a longer key (for post-quantum security, in order to
resist an exhaustive key search with Grover algorithm). Ascon-128a also works exactly in the same way
except it has a larger rate (and thus a smaller capacity) which forces to iterate a bit more (8 intermediate p
iterations instead of 6 because the smaller capacity may imply a lower security).

As shown in Figure 2.1, Ascon’s AEAD mode of operation follows four steps which are detailled just
below.

I.1 Notation

• ⊕ will indicate a bitwise addition of two binary strings (XOR).

• || will be used to indicate the concatenation of two bitstrings.

• ← means “assign the value”.

• 0∗ means “enough 0 bits to �ll up the state”.

• bxci, dxej indicate the respective truncation of the �rst i and last j bits of a bitstring (most and least
signi�cant i and j bits respectively).

1All Ascon’s �gures in this document are highly based (if not identical) on the ones found on the authors’ page [DEMS] and on
the TikZ for Cryptographers’ repository [Jea16].

CHAPTER 2. ASCON 6

I.2 Ascon’s AEAD encryption work�ow

1. Initialization:
S ← IV ||K||N
S ← pa(S)

S ← S ⊕ (0∗||K)

Here, IV is an initial vector which only depends on the version used (IV ← k||r||a||b||0160−k). The
�nal XOR is used as a domain separator and to avoid some known attacks.

2. Associated data absorption:
S ← S ⊕ (Ai||0∗)
S ← pb(S)

This step is repeated for every (padded) associated data blocks and is followed by a similar domain
separation after the last block: S ← S ⊕ (0∗||1)

3. Plain message absorption and encryption:
S ← S ⊕ (Pi||0∗)
Ci ← bScr (bSc|P | mod r instead for the last block so that |P | = |C|)
S ← pb(S) (does not occur for the last block)
This step is repeated for every plain text block (with minor changes for the last one) and is also followed
by a domain separation step: S ← S ⊕ (0r||K||0320−r−k).

4. Finalization and tag creation:
T ← dSe128 ⊕ dKe128

In order to decrypt, the work�ow is almost the same: after the two �rst identical steps each cipher blocks
are input one after the other, the corresponding plain text is then output, and the cipher text is used to obtain
the appropriate state to carry on.

Remarks I.1.

1. |A| and |P | can be arbitrary long but a padding must be applied in order to obtain messages of length
divisible by r. It is a simple injective pad: always add 1 at the end of the message and then add the
minimum number of 0 to �ll the last block.

2. The nonce can be a simple counter, the only constraint is that the sender must ensure that it is used
only once per key.

3. The XORs used as domain separators are there in order to protect against some key-recovery attacks and
tag forgeries in case of an intermediate-state recovery (using manipulation with related keys/nonces/plaintexts).
The two separators which use K are shifted one from the other to avoid XOR cancellation if only a single
block is encrypted.

4. the IV constant plays a crucial role in Ascon’s security. Its reasons to be may seem unclear to the reader
for the moment, but I will detail them later.

CHAPTER 2. ASCON 7

II Ascon’s permutation

We will now describe the permutation p which is the core element designed by the authors and which will
be of major interest in the rest of this document. It is built on a Substitution Permutation Network (SPN)
logic: p is the composition of a constant adding function, a non-linear substitution layer and a linear di�usion
transformation: p = pL ◦ pS ◦ pC , thus following Shannon’s confusion-di�usion paradigm [Sha49].

In order to understand better the way pworks, we use the following decomposition ofS = X0||X1||X2||X3||X4

into �ve 64-bit words (X0 is the most signi�cant, X4 the least one).

X4

X3

X2

X1

X0

Figure 2.2: Ascon’s state S

• The constant adding step consists of XORing an 8-bit constant to the word X2. The constant only
depends on the index of the iteration that takes place. There are di�erent pools of constants depending
on how many iterations we are computing (pa or pb), and they are easily computable: when a = 12,
the most signi�cant half of the constant is decremented from 15 to 4 throughout the rounds while the
least signi�cant one is incremented from 0 to 11.

X4

X3

X2

X1

X0

⊕⊕⊕⊕⊕⊕⊕⊕

Figure 2.3: The round constant adding function pC

• The substitution layer is made of 64 parallel uses of a single S-box on each column of the state. Those
operations can be done at the same time considering the fact that the S-box has a bit-slicing design
using only bitwise XOR, AND or NOT. This also implies what the authors call a “natural side-channel
protection” as no look-up table is necessary. We will discuss the S-box in details in Section III.

X4

X3

X2

X1

X0

Figure 2.4: The S-box layer pS

CHAPTER 2. ASCON 8

• The linear di�usion layer is made of �ve calls to �ve di�erent linear functions Σi on each row of the
state. For each i ∈ {0, 1, 2, 3, 4}, Σi(Xi) only consists on the XOR of the ith row Xi with two rotated
versions of itself. The indexes of rotations are �xed and only depend on i.

X4

X3

X2

X1

X0

X0 = X0 ⊕ (X0 ≫ 19) ⊕ (X0 ≫ 28)

X1 = X1 ⊕ (X1 ≫ 61) ⊕ (X1 ≫ 39)

X2 = X2 ⊕ (X2 ≫ 1) ⊕ (X2 ≫ 6)

X3 = X3 ⊕ (X3 ≫ 10) ⊕ (X3 ≫ 17)

X4 = X4 ⊕ (X4 ≫ 7) ⊕ (X4 ≫ 41)

Figure 2.5: The linear layer pL

This choice was inspired by SHA-2’s Σ [NIS15] which was replaced by �ve distinct versions instead of
one. This choice was made in order to provide a better di�usion (more and more di�erential and linear active
S-boxes at the end of each round), while keeping a relatively minimal cost (rotations are “almost free in
hardware and relatively cheap in software”).

About the choice of the rotation constants, there are no other motivation given than that it achieves “a
good di�usion after 3 rounds of Ascon”. Nevertheless, it is interesting to note that other designs were inspired
by Ascon and that the authors chose to change those constants: two of them in the case of DryGascon [Rio19]
and all of them in the case of Sycon v1.0. [SMS19]2. However, Sycon v1.0. was not selected for the second
round of the NIST competition (a new version called Sycon [MSST21] is supposed to compensate the “lack in
good di�usion property” with a new linear layer of the form X = (X ⊕ (X ≪ i) ⊕ (X4 ≪ 2i)) ≪ j)
whereas DryGascon went to round 2 without being selected as a �nalist.

III Ascon’s S-box

As providing non-linearity is often costly, a lot of designs use small non-linear functions which are applied
locally on the full state to achieve this purpose. It enables at the same time an easier study of the substitution
layer.

Ascon follows the same principle. Its S-box is a 5-bit permutation, in other words S : F5
2 → F5

2.
It is well-known (see Theorem I.4) that any S-box S : Fn

2 → Fn
2 can be uniquely represented as a collection

of multivariate polynomials of F2[x1, · · · , xn]/(x21 + x1, · · · , x2n + xn) known as its Algebraic Normal Form
(ANF). Figure 2.6 presents the algebraic normal form of Ascon’s S-box and we can observe that it is indeed
the only source of non-linearity as its algebraic degree is equal to 2.

2In the case of DryGascon, the S-box used is the same as Ascon’s. With Sycon v1.0. and Sycon, the S-box was changed; it
could explain the search for a compatible linear layer.

CHAPTER 2. ASCON 9

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0

y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

Figure 2.6: Algebraic normal form (ANF) of Ascon’s S-box

The choice of an S-box is of primary matter in a design and it was an important part of the process
according to the authors. The design of Ascon’s S-box was inspired by the already well-studied Keccak’s χ
([DR02]). Actually, this S-box is a�ne equivalent toχ and the authors thus managed to correct some unwanted
properties (higher linear and di�erential branch numbers, no more �x-point, higher dependency in the input
bits). It was built all at once with the linear layer to provide good enough di�usion. They decided to go with
an “alright” S-box in terms of linear/di�erential properties instead of a “perfect” one to minimize the cost (a
performance/security trade-o�). But part of the defects are compensated by the number of iterations. It is
invertible and has no �x point. It has a low algebraic degree (2) which was chosen to facilitate masking and
threshold implementation, which are side-channel countermeasures. This low algebraic degree might lead to
integral attacks (presented in the following chapter). However, the column-wise way of applying the S-boxes,
together with the row-wise injection of data was thought in order to avoid some of those attacks (preventing
the control of all entries of a single S-box by an adversary).

IV Advantages and security claims

The claimed level of security by the designers of Ascon’s AEAD mode is 128 bits for each of the versions in
terms of plaintext con�dentiality and plaintext, data and nonce integrity under three hypotheses:

1. the single usage of each nonce;

2. the outputting of a decrypted plaintext only if the tag is correct;

3. the encryption of less than 264 blocks using the same key.

A lot of choices were made in order to protect against side-channel attacks (domain separation against
implementation attacks which could lead to recover intermediate states, low algebraic degree to facilitate
masking, no use of look-up tables thanks to bitslicing...) which is of primary matter for the targeted usage.

Dobraunig et al. claim that Ascon achieves “high security and robustness in practice with a very low area
footprint in both software and hardware implementations, particularly for short messages”. The software
implementation is straight-forward, light and quick while optimizations and trade-o�s are possible on the
hardware implementation. After �ve years of competition and analysis, Ascon still seems to have a reasonable
security margin and is a viable option to be used in the context of lightweight symmetric cryptography.

A lot of third-party studies were made on Ascon to support this claim. Some of them are now presented
in the following chapter. It is not an exhaustive description of the existing attacks on Ascon, but rather a
selection of the ones which are, directly or indirectly, related to the study we made.

3 Previous works and related topics

In Chapter 2, we quickly mentioned a fundamental tool which will be of major interest in the following topics:
the Algebraic Normal Form. In this section, I will start by de�ning properly what is the ANF of a Boolean
function, as well as the other mathematical tools needed to fully understand the rest of this document. Next, I
will present integral and cube-like attacks which are closely related to the study we made (and which will be
precisely presented in the following chapter) but also some variants already used to put to the test Ascon’s
reliability.

I Mathematical background

Notation I.1. In the following sections:

• n will be a non-zero integer (n ∈ N \ {0}).

• We will denote F2 the �nite �eld of size two (F2 = {0, 1}).

• We will denote J1, nK the set {1, · · · , n}.

• We will also use an exponential notation when looking at the AND of multiple variables:

xu :=
n−1∏
i=0

xui
i ∈ F2[x0, · · · , xn−1]/(x20 + x0, · · · , x2n−1 + xn−1), where u = (u0, · · · , un−1) ∈ Fn

2 .

• If x and y are two Boolean vectors of size n, x 4 y will mean: xi ≤ yi for all i ∈ J1, nK.

• f ≡ 0 will mean that f is the null function.

The �rst objects we are interested in are of course S-boxes, which are a generalization of Boolean functions.

De�nition I.2 (Boolean function). A Boolean function of n variables is a function of the form: f : Fn
2 → F2.

De�nition I.3 (S-box). An S-box is a collection of a �nite number of Boolean functions of n variables. If the
collection is of size m ∈ N \ {0}, an S-box can be viewed as a vectorial Boolean function f : Fn

2 → Fm
2 where

each individual Boolean function is called a coordinate function.

As the domain and codomain are �nite (Fn
2 , Fm

2 respectively), it is natural to describe our functions
through their truth tables (a table in which we associate each antecedent to its image). However, there exist
other representations of Boolean functions (each of them having some advantages and drawbacks). Thereafter,
we will only use the algebraic normal form of Boolean functions.

Theorem I.4 (Algebraic Normal Form [Can16]). Let f be a Boolean function of n variables. Then, there exists
a unique multivariate polynomial in F2[x0, · · · , xn−1]/(x20 + x0, · · · , x2n−1 + xn−1) such that:

f(x0, · · · , xn−1) =
∑
u∈Fn

2

aux
u, au ∈ F2, ∀ u ∈ Fn

2 .

10

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 11

This multivariate polynomial is called the algebraic normal form (ANF) of f .

We can of course consider the ANF of an S-box by collecting all the ANF of its coordinates.

If we know the truth table of an S-box, we can determine its ANF thanks to the binary Möbius transform
(see [Can16]). However in practice, this transformation is often costly (about n2n−1 operations and n = 320

in the case of Ascon’s permutation), and very hard to carry out: we need to already know the entire truth
table, which is very restrictive. The following proposition gives a way to gain partial information about the
ANF of a function, only by having access to some of its values.

Proposition I.5 (ANF’s coe�cient computation [Can16]). Let f be a Boolean function of n variables whose
ANF is

∑
u∈Fn

2

aux
u. Then, for any u ∈ Fn

2 , the coe�cient au satis�es: au =
∑
x4u

f(x).

We are also able to de�ne the degree of a Boolean function as the degree of the largest monomial appearing
in its ANF:

deg(f) := max
u∈Fn

2 , au 6=0
wt(u).

and the degree of an S-box will naturally be the largest degree of its coordinates.

However, in our case, we also are interested in some derived functions ([HSWW20]) from f which are
obtained by �xing some variables to known constants. The number of variables thus goes down and the
remaining ones, depending on their public or private access rights, cannot be considered the same way.
That is why we will look at our polynomials in rings like A[v0, · · · , v63]/(v20 + v0, · · · , v263 + v63) where
A = F2[k0, · · · , k128]/(k20 + k0, · · · , k2127 + k127), thus dissociating public variables (vi in this example) from
secret ones (ki here). The number of variables and their names will be clari�ed depending on the context.
The derived degree will be the one in which we will be interested, that is, the degree with respect to the public
variables.

It is known since Shannon ([Sha49], page 711) that, by building a su�ciently large system of equations
(in a known-plaintext kind of attack) in which the unknowns are the secret variables (namely, the key bits),
it is possible, in theory, to break a cryptosystem algebraically by solving the aforementioned system. This is
the main reason why we need non-linear parts inside a primitive and why it is important to study the role
of those components in the growth of the degree, round after round. The described attack would imply the
knowledge of the full ANF of the permutation and the solving of a system of very high degree which is, in
practice, infeasible. However, there exist some attacks which exploit the fact that the functions used inside
primitives are not randomly chosen, but instead, built round after round by composing low-degree layers.
I present in the next sections some of these methods which in�uenced our work and the way we looked at
Ascon.

II Higher-order di�erentials and integral attacks

We now focus on a chosen-plaintext attack (CPA) in which an adversary will gain information, not from single
messages or pairs independently (like with di�erential or linear attacks) but rather from the whole pool of
chosen messages at once. Integral attacks (as they are now commonly called) are usually based on two kinds
of knowledge:

• the way the growth of the degree evolves throughout the rounds; and/or

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 12

• the internal structure and the precise understanding of each sub-function composed or concatenated
to build the full permutation.

Di�erent names have been given to this kind of attacks: Sqare attack because of the �rst cipher attacked
by Daemen et al. [DKR97], saturation attack as we will “saturate” a word in input (meaning that we will make
it take all possible values while keeping the other words �xed, name due to Lucks [Luc02]), multiset attack
as we will consider the set of chosen messages not as a set of �nite word sequences but instead as the �nite
sequence of each word’s multiset (this is introduced by Biryukov & Shamir [BS01]), and �nally integral attack
in reference to the analytical tool (we here sum over a �nite integral domain, name due to Knudsen and Wagner
[KW02] in an attempt to formalize in a uni�ed way all those attacks).

The following results directly lead to some higher-order di�erential1 distinguishers.

De�nition II.1 (Derivative along a vector). Let F : Fn
2 → Fm

2 . Let a ∈ Fn
2 . We de�ne the derivative of F

along a as DaF : x 7→ F (x)⊕ F (x⊕ a).

Proposition II.2. [Lai94] Let F : Fn
2 → Fm

2 . Let V be a vector subspace of Fn
2 and (a1, · · · , ad) a basis of V .

Then (Da1 ◦ · · · ◦Dad)F (x) =
∑
v∈V

F (x⊕ v) for any x ∈ Fn
2 .

We can therefore de�ne the derivative of F along V (as the previous value does not depend on the choice
of the basis).

De�nition II.3 (Derivative along a vector subspace). Let F : Fn
2 → Fm

2 . Let V ⊂ Fn
2 be a vector subspace.

Let (a1, · · · , ad) be a basis of V . We de�ne the derivative of F along V as DV F = (Da1 ◦ · · · ◦Dad)F .

Proposition II.4. [Lai94] Let F : Fn
2 → Fm

2 . Let V be a vector subspace of Fn
2 .

Then, deg(DV F) ≤ deg(F)−dim(V). In particular, if the dimension of V is strictly higher than deg(F), then
DV F ≡ 0.

Thus, in order to distinguish the studied function from randomly chosen ones with similar properties, one
only needs a bound on the function’s degree. It will then cost 2deg(f)+1 chosen messages.

This property can also be used (once with fa and once with f−b for well-chosen values of a and b) to
build zero-sum distinguishers. This method enables to distinguish the permutation from a random function,
because as stated in [BC11], “it is expected that a randomly chosen function does not have many zero-sum”.
In order to lower the cost (or to enable attacks on more rounds), it is su�cient to �nd tighter bounds on the
degree of a composition of functions [BC11, BC13]. It is done in [BC11] using Walsh spectrum analysis. By
using an improvement to add “a free round in the middle”, one can �nally mount a distinguishing attack on
11 rounds of Ascon’s permutation (which is a�ne-equivalent to Keccak’s one) for 285 and on the 12-round
version for 2130. But as stated by Dobraunig et al. [DEMS15], this non-random behavior does not seem to
lower the cipher’s security as no attack exploits this property yet.

In a more general manner, with integral attacks, we are interested in the evolution of some multiset
properties through the di�erent layers of the cipher. Here, we only assume that all S-boxes are bijective.

1In F2, as addition and substraction are the same operation, the terminology oscillates between integral and di�erential,
depending on the way we look at it.

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 13

De�nition II.5 (Multiset properties). Let us consider messages of length n = k × m bits where k is the
number of S-boxes of a substitution layer. Let W be a multiset composed of 2m m-bit values. We say that W
has the multiset property:

• C if W contains a single value (constant) occuring 2m times.

• P (for permutation, sometimes called A for all) if W contains each 2m possible value, once.

• B if the multiset is balanced, meaning that XORing over W gives 0m:
⊕

w∈W
w = 0.

• E if all the values occur an even number of times and D (dual) if W has property E or P .

With these de�nitions we can look at the previous distinguisher as the transformation of a subspace V
which has property P to a set f(V) which has property B. Zero-sums can be seen as paths from B to B.
These distinguishers (in their initial versions) do not use any internal structure to study this evolution, only
the knowledge of a bound on the degree. It can however be interesting to use the internal structure, as shown
by the following proposition.

Proposition II.6 (Evolution of multiset properties [BS01]). Let S (state) be a sequence of k multisets composed
of 2m m-bit values.

1. If S has property Ci−1PCk−i then it is preserved by a layer of S-boxes.

2. If S has property Dk then it is preserved by a layer of S-boxes.

3. If S has property Dk then it is transformed into property Bk by a linear or a�ne layer on n = m× k bits.

4. If S has property Ci−1PCk−i then it is transformed into property Dk by an a�ne layer.

Thanks to these results, one can mount di�erent kinds of attacks:

• One can use internal properties in order to follow more accurately the evolution of multiset properties
and thus build either distinguishers, or attacks on the last round for round-reduced versions. Well-
known examples are the 3-round distinguisher of Sqare [DKR97], AES [DR02], Crypton [DBRP99]
and their corresponding 4-round attacks. They use an input sequence verifying Ci−1PCk−i. After
three rounds, the intermediate state has the distinguishing property Bk. Regarding the attack on the
last subkey, the adversary will �nd the subkey, byte by byte, by trying for each one of them all the
28 possibilities. Once a “bet” on a key byte is made, one can inverse the last-round, and �nd, from
a ciphertext byte, the value of the corresponding 3-round intermediate byte. It is then possible to
compute the integral (XOR) of the intermediate bytes corresponding to all the possible values of the
chosen ciphertext’s byte. This integral will always be null for the correct guess of the key and has
an about 1

256 probability of being null for an incorrect key (assuming a random behavior in this case).
Therefore, the expected number of probable byte is 1 + 255

256 ≈ 2. This reduces the key space to about
216 after carrying out this test for each of the 16 bytes. This attack can be adapted to 5 or 6 rounds of
the aforementioned ciphers.

• On the other hand, even without having any information on the cipher except its general structure, one
can still discover most of the data needed to encrypt or decrypt messages without �nding the key or the
exact internal structure: Biryukov & Shamir present in their article [BS01] a way to �nd “an equivalent
representation of all the elements in the scheme [which] may be di�erent from the original de�nitions
of these elements”.

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 14

Finally, we can also look at integral attacks from another angle, in the spirit of Proposition I.5:

Proposition II.7. Let f : Fn
2 → F2 be a Boolean function. Let V = 〈ei1 , · · · , eik〉 where (e0, · · · , en−1) is the

canonical basis of Fn
2 and ij ∈ J0, n − 1K for all j ∈ J1, kK. Let I be the set {i1, · · · , ik}. Then, looking at the

ANF, we get:

f(x0, · · · , xn−1) = DV f(x0, · · · , xn−1)xvI + g(x1, · · · , xn−1), with vI =
k⊕

j=0

eij

and where no monomial present in g is divisible by xvI .

We thus clearly observe that higher-order di�erential distinguishers are based on the absence of some
monomials in the ANF (all monomials divisible by xvI when we choose a speci�c I for which DV f ≡ 0,
and more generally all monomials of too high degree when a bound is known according to Proposition II.4).
The search for speci�c monomials whose coe�cients are constant2, that is, the search for monomials whose
presence is independent from the key used, is the main idea behind integral distinguishers. Cube attacks
(which are presented in Section III) are a way to derive integral distinguishers into key-recovery attacks. The
division property was introduced in order to study more precisely the ways integrals propagate. It will be
presented in Section IV).

III Cube attacks

III.1 Classical cube attacks

Cube attacks were introduced by Dinur and Shamir [DS09] in order to analyze cryptosystems viewed as
polynomial blackboxes. They designed a CPA method which enables the cryptanalyst to attack Boolean
polynomials (for example, the algebraic normal form of an encryption function) by using fewer calls to the
blackbox than an interpolation method. Dinur et al. [DMP+15] then applied it to attack some round-reduced
versions of Keccak.

The goal of the attack is to obtain, by the use of chosen cubes (i.e sets of public variables), multiple linear
combinations of secret variables, and then perform a classical linear system solving. The name “cube” comes
from the d−1-dimensional Boolean cube of possible values taken by the chosen variables. The main element
to observe is that the derivative of a polynomial of degree d with respect to a d − 1-dimensional vectorial
subspace is either linear or constant (according to Proposition II.4).

This attack is composed of two stages. During the �rst stage (the o�ine one) the attacker is allowed to
query the blackbox choosing both the public variables (i.e the plain-text, the nonce, the IV...) and the secret
ones (the secret key). This process is independent of the actual choice of the key and thus only needs to be
done once per cryptosystem. The second phase is the actual attack (done online) during which the attacker
can only query the system by choosing public variables.

A multivariate Boolean polynomial p can be uniquely written as p = xvI ×DVI
p+ q where I is a subset

of J0, n − 1K, xvI the corresponding monomial, VI the corresponding vector subspace and q a polynomial
which is not divisible by xvI (see Proposition II.7). This higher-order di�erential is often called superpoly
in the context of cube attacks. The value of the evaluated higher-order di�erential (which is in practice a

2We focused on null higher-order di�erentials/coe�cients but constant 1 also gives rise to a distinguisher.

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 15

polynomial in unknown variables) can thus be obtain by summing over VI (see Proposition I.5). Thus, if we
are able to �nd proper sets I such that DVI

p are a�ne combinations of secret values, then we can hope for
an e�ective key-recovery attack. This is the goal of the o�ine phase.

When a tight bound on the degree is known, we can discover linear combinations more easily (Proposition II.4
states that the higher-order di�erential will have a degree equal to 0 or 1). But it may also exist a lot of linear
or constant superpolys related to terms of degree less than d − 1. They are in general harder to �nd but,
according to Proposition I.5, computing their actual value requires less data. This could lead, if they are
found, to stronger attacks. In order to search for some of them, Dinur and Shamir use a method by testing the
linearity of a derivative with respect to a random subspace and adjusting the subspace’s dimension as long as
the derivative is not linear.

Once that one is (almost) sure that the derivative is linear (which can be tested through a BLR linearity
test), this linear combination is recovered by interpolation (let us keep in mind that during the o�ine phase
the secret variables can be chosen by the attacker, so, as

∑
v∈VI

p(v, x) =
r∑

i=1
aixi + c (vi are public variables

and xi unknown ones), we get c =
∑
v∈VI

p(v, 0) and then ai =
∑
v∈VI

p(v, ei) + c where ei is the vector which

has a single coordinate equal to one at index i).

Finally, during the online phase, the secret variables are already set (∼ is here to emphasize it) and
unknown to the attacker but by querying the blackbox for p(v, x̃) and summing over the cube VI , one is
now able to obtain a bit b which veri�es

∑r
i=1 aix̃i + c = b. If one has enough independent combinations,

one will then recover the values of the secret variables (or at least reduce the key space).

III.2 Practical attacks on Keccak and Ascon

This enables a key-recovery attack on �ve rounds of Keccak. In order to �nd linear higher-order di�erentials,
we focus on d− 1-dimensional cubes (where d is the expected degree of p, here d = 32) as the corresponding
derivative can only be linear or constant. So, by picking 31 out of the 128 public variables (nonce variables
in the case of Ascon’s initialization) randomly, the other ones being set to 0, and testing each coordinate’s
derivative, one can expect to �nd enough linearly independent combinations. For example in the case of
Keccak, Dinur et al. ([DMP+15]) were able to �nd 117 relations thanks to 19 cubes, so the cost of their attack
is about 19 × 231 ≈ 235 (the exhaustive search for the last 11 variables is negligible compared to the 235

queries).

For six rounds, we would need to consider cubes of dimension 63 which seems to make the o�ine phase
more di�cult if we want it to be done in reasonable time. In order to go one round further, Dinur et al.
managed to invert the last round in di�erent scenarios.

Those techniques can be adapted to attack a reduced-version of the initialization phase of Ascon: as stated
by Dobraunig et al. [DEMS15], the initialization is the only part where a nonce-respecting attacker “can keep
some inputs of the permutation constant and deterministically in�uence others” (the nonces being chosen).
Using input bits from associated data or plain-texts is possible but with a nonce-respecting condition this
would also mean changing the nonce at each query and thus changing each time the state after initialization,
which is problematic as it cannot be fully recovered in a sponge mode. The 5-round attack on the initialization

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 16

can be implemented as explained above.

A cube tester [ADMS09] (another name for what we previously called an integral distinguisher) can also
be created for a 6-round initialization by using a structural property of Ascon : as the S-box is the only non-
linear transformation during one round and as it is applied column by column on the state, by choosing the
cube variables on the same row, we are assured that, after round 1, no bit of the state contains any degree-2
monomial in the cube variables. With such a choice and after 6 rounds, the state bits cannot exceed a degree of
32 in the cube variables. By choosing a degree-33 cube on the same row, one can build a cube-tester: summing
over the cube will always give a null output sum.

III.3 Bordeline cubes

Another cube-like attack on a 5/6-round initialization is described by Dobraunig et al. [DEMS15]. It is based
on borderline cubes and on previous studies [DMP+15, FKM08]. The logic of the attack is to �rst select small
cubes whose superpolys (which are not necessarily linear anymore) only depend on a small amount of key bits.
If the cubes are well-chosen, the subkeys can be discovered independently from the rest of the key. Attacking
in a divide-and-conquer manner is thus possible. To do so, �rst compute the cube sum for each possible
choice of subkey (o�ine phase) and then, compare them to the online sum. In the case of Ascon’s 5-round
initialization, it is expected to �nd on average a single possibility for each independent subkey [DEMS15].
This thus leads to a key-recovery attack with a time complexity of 2× 4× 216 × 216 = 235 (two key-words
made of four 16-bit subkeys each, 216 possibilities for each subkey, and a cube-sum cost of 216) for a 5-round
initialization and about 4×264 for the 6-round version (if there is actually, on average, a single possibility for
each 32-bit subkeys).

III.4 Generalized conditional cube attacks

Li et al. [LDW17] continued testing the resistance of Ascon against cube-like attacks in two ways: �rst by
adapting and generalizing conditional cube attacks against Keccak used by Huang et al. [HWX+17] and then
by developing a new technique called cube-like key-subset. The idea behind those attacks is, as for bordeline
cubes, to enable the use of non-linear higher-order di�erentials. To do so, linear common divisors shared
by all the output bits’ di�erentials (with respect to a �xed cube) are searched. If such a divisor exists, we
are able to determine its value from the cube sums (cf. Property 4 of [LDW17]) as it will in�uence the value
of each output cube-sum. By carefully choosing 256 16-dimensional cubes, the authors are able to recover
the secret key from a 5-round initialization in about 256 × 216 = 224 queries (against 235 of the original
cube attacks, time and data share here the same complexity). Their selected cubes all follow the same logic:
under a simple linear key bit condition (such as ki = 0 or ki + kj = 0, which is in fact a common divisor
of the current superpolys), it is guaranteed that the monomial does not appear in any output coordinate. If
the monomial does appear, one is guaranteed that the condition is not respected. Using another cube for the
complementary condition, the authors actually manage to recover the full key, bit by bit. The same goes for
the 6-round version with a complexity of 256× 232 = 240 (against a previous theoretic complexity of 266).

III.5 Cube-like key-subset technique

The same logic is used for the attack against a 7-round initialization: the idea is to determine conditions on
the key bits which in�uence the disappearance of a term of order 65 in the output bits of the seventh round,
forcing the cube sum to be equal to 0. To do so, the authors worked on the ANF of two rounds of Ascon

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 17

and managed to �nd conditions on the secret key which “delete” the term3 of degree more than 2 after two
rounds. These conditions now constitute a system of linear equations (called partial divisors) and replace the
unique common divisor of the previous method. If the conditions are satis�ed by the key, the term of degree
65 will not appear in the output and the cube sums will then be equal to 0. On the other hand, the probability
of �nding 64 null cube sums with a random key is, according to Assumption 2 [LDW17], small (2−64, as we
recover 64 cube sums at once with the output of the �rst row). This can thus be used to detect whether the
conditions are satis�ed or not (or equivalently, to detect whether the key belongs to a certain subset of the
key space or not).

In fact, those subsets (which each determines a particular choice of a cube) are regrouped, thanks to the
use of control cube variables, into bigger subsets of size 2127 or 2126. Thus, each time a key belongs to one of
these bigger subsets, 8 bits of data are discovered (the linear systems are composed of 8 equations). On the
other hand, if after trying all subsets regrouped into a bigger one, one did not �nd any match (no computation
leads into �nding 64 null cube sums), one can assume that the key does not belong to this big subset and this
way �nds, more or less, 1 or 2 information bits of the key.

Finally, an adversary accumulates some one-bit conditions which enable to lower the cost of the exhaustive
search. In the best-case scenario (which appends for 1 key out of 2048), one obtains 52 bits of information
through a process costing about 276 and �nally adds an exhaustive search on the 76 missing bits for another
276; the complete cost is thus about 277. In the worst case, the complexity climbs up to about 2103.92.

III.6 First misuse-free key-recovery attack on 7-round Ascon

The problem with the previous attack described is that it uses cubes of dimension 65, meaning that it requires
265 chosen data (here nonces) to be used with the same key. However, Dobraunig et al. claimed in their
submission that “the number of processed plaintext and associated data blocks protected by the encryption
algorithm is limited to a total of 264 blocks per key”. This problem was �rst pointed out by Rohit et al.
[RHSS21] who present the �rst misuse-free key-recovery attack on 7-round Ascon using cube techniques.

To do so, they use initial con�gurations in which one nonce row is set to 0 while the other one will
contain 64 cube variables. This way, the maximal degree in the cube variables is still 1 after the �rst round
and the coe�cients of the linear terms only depend on one key bit (either ki or ki ⊕ ki+64 depending on
the con�guration). These con�gurations ensure that the coe�cients of the monomial of degree 64 after the
seventh round will necessarily be a sum of products of coe�cients in front of monomials of degree 32 after
the sixth round. Thus, by using their so-called partial polynomial multiplication technique, they manage to
recover the ANF of the superpolys of xvJ0,63K for each output coordinate by �rst computing the truth tables
and the ANF of the coe�cients of all the degree-32 terms after round 6. They are now able to evaluate
these superpolys for each possible 64-bit subkey (let us keep in mind that these superpolys only depend on
64 keybits), store those values in a hash table and compare the online cube sum in order to derive suggested
subkeys. According to them, there is, on average, only a single subkey which will be suggested. The remaining
unknown 64-bit subkey can �nally be obtained by an exhaustive search.

3There is only a single term of degree 2 after round 1. It is due to the choice of the 65 cube variables: 64 of them are on the same
row, leaving only two variables in the same column. This leads to a single term of degree 2.

CHAPTER 3. PREVIOUS WORKS AND RELATED TOPICS 18

The total costs of the re�ned version of this algorithm are dominated, for time complexity, by 2123.28

7-round Ascon evaluations, for memory complexity, by 2101 bits and for data complexity, 264 nonces used
with a single key during the online phase.

IV Generalized integral attacks using the division property

Integral and cube attacks have in common the way of obtaining meaningful information on a cipher’s permutation
(by saturating part of the input bits), especially by distinguishing a non-random behavior linked to constant
higher-order di�erentials. A very powerful cryptanalytic technique introduced by Todo [Tod15] enabled
to study more precisely these speci�c behaviors. By looking, on the one hand, at the evolution of some
general properties of input and output multisets, and, on the other hand, by focusing on the evolution of the
degree round after round, the newly introduced division property enabled to build new and more powerful
distinguishers. This tool and its variants (for example the three-subset bit-based division property [HLM+20],
3SBDP) are now more and more understood and studied from various angles (through parity sets [BC16],
division trails [XZBL16], monomial trails [HSWW20], etc.) and with the help of MILP (Mixed Integer Linear
Programming) solvers, it �nally became kind of a standard cryptanalytic approach.

Regarding Ascon, the division property was used by Rohit et al. in their already cited paper [RHSS21] for
two reasons:

• First, to obtain a more precise study of the complexity of their cube attack: by bounding more tightly
the maximum degree of the coe�cients of degree-32 terms after the sixth round, they manage to obtain
a better approximation of the actual complexity.

• Secondly, they build new integral distinguishers with the help of the three-subset bit-based division
property (3SBDP), which improve the existing ones in the case of 4-, 5- and 6-round Ascon . They also
found, with this same technique, the �rst 7-round Ascon distinguishers for a cost of 260 in data and
time complexity.

Both of the parts depicted above were obtained through the already mentioned division property/MILP
models association.

Those works, especially Rohit et al.’s article, were the starting point of our work on Ascon , which is
presented in the following chapter.

4 Our work

I Motivations and choices made at the beginning of the study

Let us now focus on the studies we made over the months and which actually kept us busy most of the
time (except the �rst month which was mostly used for the literature study). As already mentioned, the
starting point was mainly Rohit et al.’s article [RHSS21] and we thus used and analyzed Ascon in an AEAD
context. In this paper, they present a cube attack on Ascon’s initialization which is the only part where a
nonce-respecting attacker “can keep some inputs of the permutation constant and deterministically in�uence
others”. In this con�guration, the nonces (which are not given in the speci�cations and which can be set
freely1 by an adversary) are chosen, no associated data are used and a single plaintext is involved. As we can
see on Figure 4.1, as C is output and P is known (in a chosen-plaintext situation), one can recover the �rst
row output by pa by computing P ⊕ C .

IV‖K0‖K1‖N0‖N1

pa

P C

Figure 4.1: Ascon attack model inspired from [RHSS21]

A key-recovery attack on a 7-round version can thus be mounted: by choosing the cube formed by
all variables corresponding to N1, the associated superpoly only depends on the keybits of K0. Therefore
assuming that all the output coordinates are indeed of maximum degree in the cube variables (i.e
of degree 64 after seven rounds), one can expect that the value vector of the superpolys computed for some
keybits k0, · · · , k64 will match the actual value vector only for the correct choice of key bits.

This attack’s description leads to the following remark which �rst guided our work:

Remark I.1. This attack only works if the cube monomial actually appears after seven rounds in all of the
64 output coordinates. Otherwise, some or all of the superpolys are null, which means that we will not be
able to recover the 64-bit subkey (in fact we can expect to �nd on average 264−|{null superpolys}| subkeys which
will match the actual value vector). In the extreme case where all the superpolies are null, the key-recovery
attack degenerates to a distinguisher.

This remark motivated the search for the actual degree of the output coordinates in the cube variables or
more information on this degree, its bounds, its evolution throughout the rounds...

1the only constraint being to not use the same nonce twice

19

CHAPTER 4. OUR WORK 20

In order to simplify this study, we used multiple versions of Ascon, modifying either the IV , the addition
of constants, the S-box, etc. It enabled us to get a better understanding of the way the actual Ascon works.
Those modi�cations, their purposes, and the insights obtained thanks to them are described in Section II, III
and IV. In Section V, I describe some tracks we followed on Ascon’s other possible representations. Finally,
Section VI gives a summary of studies on di�erent initialization scenarios while Section VIII describes our
�nal study on a nonce-misuse kind of attack. All those topics are presented in a chronological order, in order
to observe how ideas came and went along the way. They however are all motivated by the search for a better
understanding of the degree’s growth throughout the rounds. I will try to show with the 6-month hindsight
we have now, how those subjects are linked one to another.

II First steps in studying and understanding Ascon

II.1 First results

As I explained earlier, the �rst initialization scenario we focused on was the one where all the accessible
variables are located on the �fth row r4 (N1) while IV and N0 (rows r0 and r3) stayed �xed and the two
key rows were unknown variables. We will respectively denote vi and ki, ki+64 the variable and the two key
bits located in column Ci. In order to use the array representation of the state, we will denote ci,j the output
coordinate located in column Cj on row ri; cri,j when the number of rounds r is needed.

In this setting and after one round, each coordinate of a given column only contains linear terms (column
Ci can only contain a linear term of the form q(ki, ki+64) × vi after pS and two other similar terms after
pL) and/or a constant term. This is because the S-box is applied column-wise, so multiplications can only
occur between constants and degree-1 monomials. If the2 monomial of degree 64 were to appear in some or
all coordinates of the �rst row after seven rounds, it necessarily means that the sequence of maximal degrees
after each round has the following �rst terms: 1, 2, 4, 8, 16, 32, 64. Indeed, the S-box is quadratic, so the
highest degree, with this initialization and after seven rounds, is upper-bounded by 27−1 = 64. In order to
obtain a term of such degree after seven rounds, it is necessary to also obtain the highest possible degree for
all the previous rounds as the multiplication of two Boolean monomials gives rise to a monomial of degree
d ≤ deg1 + deg2 with an equality when the two monomials are coprime3 (because in the Boolean world:
x2 = x).

These observations lead us to only focus on terms of highest possible degree throughout the rounds. This
further meant that we may skip the round constant addition pC (which only a�ects constant terms and thus
does not a�ect highest-degree monomials in the next rounds) and even more, focus only on the quadratic part
of the S-box (which is the only part from which a growth of degree is obtained).4

Furthermore, we can observe that the role of the IV (as well as the round constant additions) is to break
a cyclic behavior of the permutation:

Proposition II.1. Let use consider Ascon’s initialization with a null IV up to r rounds, r ∈ J1, 7K. Let V =

vi0vi1 · · · vi2r−1−1
be a monomial of highest possible degree. Then, for any (i, j) ∈ J0, 4K× J0, 63K, V is present

2Our polynomials belong to A[v0, · · · , v63]/(v20 +v0, · · · , v263+v63) where A = F2[k0, · · · , k128]/(k2
0 +k0, · · · , k2

127+k127),
that is why there is only a single monomial of degree 64.

3i.e they do not have any variable in common
4For the �rst round which acts di�erently, it is necessary to keep both the addition of the round constant and the linear part of

the S-box.

CHAPTER 4. OUR WORK 21

in coordinate ci,j if and only if vi0+kvi1+k · · · vi2r−1−1+k is present in coordinate ci,j+k, where variables indexes
are considered modulo 64.

Thus, by using a null IV , if we were able to determine whether the degree-64 monomial were present or
not in the ANF of an output coordinate in the �rst row, we would be able to obtain the same result for all the
other coordinates of the �rst row (v0v1 · · · v63 being equal to all its cyclic shifts). In order to study the terms
of highest degree independently from the column they are in, we decided to �rst study Ascon with a null IV .

Those simpli�cations (no round constant, quadratic part of the S-box, null IV) will be used further for
several results. They will be mentioned when needed.

II.2 Column dependencies

With Ascon, one needs to know 11 columns from the former round in order to compute a single column
(because of the 11 shifts used in the linear layer pL). To compute those 11 columns, one needs to know 45
columns of the second-to-last round and the full third-to-last state is needed to determine those 45 columns.
Therefore, in order to �nd information about a new round for one column, one needs to know almost the full
state two rounds before (two thirds of it). It thus seems unfeasible to get meaningful knowledge on future
rounds from just a partial knowledge of the current state. The choice of a null IV does not change this fact
(which only depends on the linear layer).

However, if we are interested in the ANF of a column (and not its actual value), by using a null IV and no
addition of round constants, the ANF of column i can be directly computed from any other column’s ANF. This
can be explain by the fact that the cyclic behavior generalizes from highest-degree terms (Proposition II.1)
to all terms when round constants are null. It further means that any information about some monomials
(presence, absence...) of column C0 can be then extended to similar knowledge on all the others columns.

II.3 On the loss of degree

Based of the fact that a product of two monomials will lead to a monomial of degree deg1 + deg2 if and only
if they are co-prime, I looked at some basic probabilities in order to get better intuitions on how things could
work in Ascon. The probability of randomly picking a monomial of degree d which is co-prime to a �xed
degree-d monomial is (64−d

d)
(64d)

. Assuming that degree-d monomials appear at random in each coordinate of a
single column (which is absolutely not the case, at least on the �rst rounds), it means that:

• the probability of going from two terms of degree 4 to one of degree 8 was about 77%,

• 32% from 8 to 16,

• 4h from 16 to 32,

• 1

(6432)
' 2−60.7 from 32 to 64, as once a term of degree 32 is �xed, there is only a single choice (the

complementary monomial).

This seems to lead to two intuitions:

• Until after six rounds, there are no “loss of degree”, meaning that there actually are terms of degree 32
in output of the sixth S-box layer (and the highest degrees are also reached at each previous rounds as

CHAPTER 4. OUR WORK 22

seen before). This is due to the fact that “enough” multiplications occur during these rounds compared
to the probability.

• However, there might not be a term of degree 64 after round 7 because of an insu�cient number of
random multiplications. Moreover, even if one multiplication between two right terms is enough, it
seems unlikely that the permutation was built in order to force the appearance of the degree-64 term,
in this particular setting.

To investigate on the former intuitions, I recovered, thanks to the use of Sage, the list of the degree-4
terms after the third S-box layer (and later on the degree-8 terms after the fourth one) which con�rmed the
“obvious” fact that some of them actually existed.

Afterward, using the �ve lists corresponding to the �ve coordinates of a �xed column, I was groping for
a degree-32 term. This search was based on two points:

• As seen before, a degree-32 term after round 6 necessarily comes from a product of two terms of
degree 16, which come from four terms of degree 8, coming from eight disjoint terms of degree 4 after
round 3. So it seems interesting to try following the trail from terms of degree 4 to the term of degree 32.

• During the linear layer, a row is modi�ed to become the sum of three rotated versions of itself, including
the null rotation. Thus, in a �xed column, we are guaranteed that some of the monomials present will
result from multiplications which occurred between previous coordinates of this �xed column.

Thus, I �rst �xed a chosen trail: I decided that the among the eight disjoint terms, one should come from c0,0,
one from c1,0, one from c2,0, two from c3,0 and three from c4,0 which is a valid choice. Using this trail in this
order, and �ltering the lists each time a new degree-4 term was chosen, I managed to �nd a combination of
eight terms which could lead to the appearance of a degree-32 term after round 6 in coordinate c0,0. This is
in line with the appearance of degree-32 terms after round 6 and a �rst “loss of degree” at round 6 or later.

However, it does not prove that this degree-32 term will surely appear in the ANF after round 6: We also
have to take into account that it might be canceled by the appearance of the same monomial with the same
coe�cient coming from another trail (or from a sum of terms from di�erent trails with di�erent coe�cients
but in front of the same monomial). This kind of phenomenon does happen from time to time, however they
seem to be marginal and do not seem to threaten the existence of some degree-32 term after round 6.

Here, coe�cients in front of the monomials were not taken into account, but they should. The study
presented in Section VIII is closely related to the preliminary work I just presented. Unlike this study, it aims
at focusing on the coe�cients which are of important matter: as polynomials in key variables, they contain
meaningful information in the context of a key-recovery.

III Statistical and combinatorial study

Another way of grasping Ascon and its permutation was to study statistical and combinatorial data. The �rst
idea was to look at very basic statistics such as the number of variables present in highest-degree terms, the
number of times a monomial appears in a single coordinate, row or column... The intuition behind this was
that it could be possible to bene�t from the fact that Ascon does not have optimal di�usion. In particular,
this should be visible in the way the highest-degree terms evolve throughout the rounds, and we may be able

CHAPTER 4. OUR WORK 23

to use this insight to study the absence or presence of some speci�c monomials.

To gather those data more e�ectively I implemented some Sage and C programs bene�ting either from
powerful libraries or powerful computations with very raw data structures; the truthfulness of the results
being veri�ed, when possible, on the other implementation.

The C implementation was actually less precise that the one done on Sage: it did not handle the coe�cients
in front of the monomials and thus did not manage to cancel some terms when the coe�cients were nulli�ed
by a XOR of two equal quantities. As a result, the sets studied were not the actual sets of maximal-degree
terms but instead bigger sets containing all the maximal terms. In the quest for non-appearing monomials
after 6 rounds, this is not a problem: the resulting set of absent monomials is smaller than the actual one but
they would all still be absent.

In order to be a little bit more precise, I managed to correct “by hand” the cancellations occurring during
the second round of Ascon in the null-IV scenario: it resulted in +10%,+1.5%,+1.4%,+1.4%,+17% terms
after the third round on each coordinate of a �xed column. The remaining errors are due to cancellations
occurring during round 3 which I did not handle. It however seems to predict that these cancellations will
occur in proportion less and less as the rounds go (cancellation during the second linear layer: 2 terms in y0
(11%) and 6 in y1 (50%)) which seems to go in the same way our intuition above went.

Thanks to all this preliminary work I managed to extract some data which are now presented.

III.1 Number of variables

• It seems pointless to study only the number of variables present in the maximal-degree monomials of
each row as they are all here after the second S-box layer (and even after the �rst one in the null-IV
scenario).

• Regarding the columns, they all contain all the variables in at least one maximal-degree monomial after
the third linear layer.

• After the fourth linear layer, all the variables will be present in at least one maximal-degree monomial
of each of the coordinates.

All those results seemed to indicate that it was pointless to continue in this way, I thus chose other
approaches.

III.2 Number of distinct maximal monomials

I computed the number of distinct highest-degree monomials after the �rst, second and third S-box layer
(which are the same as after the respective �rst, second and third linear layers which do not add any new
monomial): 64, 1602 and 364140. In comparison with

(
64
1

)
= 64,

(
64
2

)
= 2016,

(
64
4

)
= 635376, we observe

that, in proportion, more and more monomials are missing: 100% were present after the �rst S-box layer,
79.5% after the second one and �nally 57.3% after the third one. This tendency will certainly not stop after the
fourth one, as among the 364140 monomials of degree 4, all will not multiply together, and most importantly,
they are quite a lot to share common divisors, as we will see right now.

CHAPTER 4. OUR WORK 24

III.3 Variables distribution

I looked at the distribution of the variables among the highest-degree terms and throughout the rounds. After
three rounds of Ascon, the distribution is still highly biased (see Figure 4.2): some variables are still missing
whereas the variables present from the previous rounds have probability of appearing signi�cantly higher
than the newcomers. At that time, I had the feeling that we could study in the same way the distribution
of binomials among degree-4 terms, one round after, in order to follow more precisely what happens inside
Ascon’s S-box. But this would mean being able to distinguish binomials which already existed a round before
from the one created among a degree-4 term by a new multiplication. Again, the need to track the trail of the
possible multiplications arose (see Section VIII). This study was unfortunately not done, instead we looked at
the reasons which could explain the absence of some binomials.

 0

 20

 40

 60

 80

 100

S1 L1 S2 L2 S3 L3

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14
v15
v16
v17
v18
v19
v20
v21

v22
v23
v24
v25
v26
v27
v28
v29
v30
v31
v32
v33
v34
v35
v36
v37
v38
v39
v40
v41
v42
v43

v44
v45
v46
v47
v48
v49
v50
v51
v52
v53
v54
v55
v56
v57
v58
v59
v60
v61
v62
v63

Variables distribution

 0

 20

 40

 60

 80

 100

S1 L1 S2 L2 S3 L3

v0
v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14
v15
v16
v17
v18
v19
v20
v21

v22
v23
v24
v25
v26
v27
v28
v29
v30
v31
v32
v33
v34
v35
v36
v37
v38
v39
v40
v41
v42
v43

v44
v45
v46
v47
v48
v49
v50
v51
v52
v53
v54
v55
v56
v57
v58
v59
v60
v61
v62
v63

Variables distribution

Figure 4.2: Distribution of the public variables among the highest-degree terms in coordinate c0,0 (left) and
column C0 (right)

III.4 Study of the binomials

We now focus a little bit more on the study of the binomials. We will investigate the reason of the missing 384
binomials after round 2 in the null-IV case. As shown on Figure 4.3, we �nd for every variable, 12 binomials
that are missing in a cyclic manner. The missing couples are, for a �xed i, xixi+j , where:

j ∈ {5, 8, 14, 15, 27, 30, 34, 37, 49, 50, 56, 59} = {5, 8, 14, 15, 27, 30,−30,−27,−15,−14,−8,−5}.

The second writing is done modulo 64. It can be explained by the fact that xixi+j is missing if and only if
xi+jx(i+j)−j is missing. For a �xed variable xi, the missing binomials in which it is involved can be separated
in three groups:

• When j belongs to {8, 14, 15, 49, 50, 56}, xi and xi+j never appear in the same column before the
second S-box layer, thus no multiplication occur between them and thus no appearance.

• When j belongs to {5, 30, 34, 59}, the two variables appear together in a single column but on the same
row, leading to no multiplication through the S-box S and thus no appearance.

• Finally when j belongs to {27, 37}, the two variables appear together in a single column, on row 0 and 2
respectively but as x0x2 is one of the two missing binomials in the ANF of the S-box, it leads to no
multiplication and thus no appearance.

It seems very tempting to try generalizing the process used here in order to �nd, for example, missing
degree-8 terms after the 4th round. The main problem we will face trying to adapt recursively the technique

CHAPTER 4. OUR WORK 25

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 4.3: Missing binomials after 2 rounds of Ascon in the usual (left) and null (right) IV scenarios

used here is the following: in terms of missing binomials, as the entire set of variables is present after the
�rst round, the absence of a single binomial is equivalent to the non-multiplication of the two concerned
variables. For missing degree-4 terms or more, this is not the case anymore: the absence of a degree-4 term is
actually due to the non-multiplication of several pairs of binomials, each of these non-multiplications being
explained either by the absence of a binomial or an impossible multiplication between the two binomials (we
moreover do not take into account cancellation due to XORs of similar values!). This explains why we cannot
just replace variables by binomials and expect to claim the absence of a degree-4 term thanks to a single non-
multiplication as it was the case for degree-2 terms.

Nevertheless, the second round scheme is a “non-multiplication between columns scheme” and it could be
useful later on. At the end of the �rst round, each coordinate of each column contains the variable indexed by
the column. So the missing binomials after round 2 give in fact information about a general round behavior:
if xixj is a missing binomial, it means that the content of columns i and j will never multiply each other after
one round of Ascon. In other words, if, in an appropriate context, one needs to know that a multiplication
between two terms does not happen, one may for example use the fact that these two terms appear exclusively
and respectively in columns i and j. We could be more precise by just studying the missing degree-2 terms in
the general ANF (in 320 variables), thus replacing impossible multiplications between columns by impossible
multiplications between coordinates.

From another point of view, we can also try to take advantages of the knowledge of those missing
binomials after round 2. As a degree-4 term abcd can only come from the multiplication of two binomials,
abcd will NOT appear after round 3 if and only if:

1. ab does not multiply cd AND

2. ac does not multiply bd AND

3. ad does not multiply bc.

As we already stated, the non-multiplication of two terms can either comes from the absence of one of
them or from an impossible multiplication due to their position. The second case does not interest us here as it
uses knowledge about existing binomials. As we know the missing binomials, we can build missing degree-4

CHAPTER 4. OUR WORK 26

term by choosing them such that for each condition 1, 2 and 3, one of the two binomials involved is missing.
By renaming appropriately the variables, there exist only two kinds of possible choices:

• Choice 1: ab, ac and ad are missing.

• Choice 2: ab, ac and bc are missing.

Choice 1 is easy to �nd: when the �rst variable is �xed, we only need to loop through the 3-subsets of
the o�sets given above. For choice 2, once the �rst variable a is �xed, we need to investigate if, for a choice
of variable corresponding to an o�set b, there exists another variable c such that both binomials ac and bc
do not appear. The only choice for (b, c) are (15, 30), (15, 49), (34, 49) (in “o�sets” notation according to a).
d can �nally be chosen freely in the set of the 61 other variables. In the end, we �nd 16256 missing 4-term
monomials after round 3.

In the same way, a su�cient condition for the absence of abcdefgh after round 4 can be determined only
thanks to missing binomials: if ab, ac, ad, ae, af, ag, ah do not appear after round 2, abcdefgh will certainly
not appear after round 4. With this method, we �nd 64×

(
12
7

)
= 50688 missing degree-8 terms after round 4,

since the set {j | xixi+j is missing} has size 12.

These methods (choice 1 of round 3 and the su�cient condition for round 4) cannot lead to a list of missing
terms after round 5 in the same way because (16− 1) ≥ 12.

I also tried to look at other su�cient conditions for the absence of abcdefgh thanks to the absence of
other sets of binomials. There exist 105 decompositions of a single 8-uple into four binomials and for any
binomial, there exist 15 decompositions that contain it. Therefore, as 7×15 = 105, 7 is the minimum number
of absent binomials needed to guarantee the absence of an 8-uple. There is no other 7-binomial condition
than the ab, ac, ad, ae, af, ag, ah condition we used above. There does not exist any 8-binomial condition
that does not contain any of the 7-condition used before.

IV Study of the general ANF

Another way I followed in order to get more insights on Asconwas to study the general ANF. By general
ANF, I mean the function p : F320

2 → F320
2 which depends on 320 input bits compared to the derived function

(see Section I) used before which had 64 public variables and 128 key variables. This permutation is the core
of Ascon and its study, even if it is surely more di�cult than the studies of its derived versions, is a goal in
itself. I did not managed to get very relevant results on it, however some observations made at that time are
still interesting and could be useful in some ways, if properly used.

Figure 4.4 presents how the highest-degree terms of a column’s coordinates depend on all the 320 inputs
variables: each time a monomial of degree 4 after two rounds (or of degree 8 after three rounds) is divisible by
one of the 320 variables, the corresponding square is blackened. This way, we obtain a global picture of how
the dependency actually looks like. Note that we present here only a single column as the cyclic behavior of
Ascon stands with the general ANF: we can determine the dependency of the highest-degree terms of each
other column by shifting the �gures cyclically.

We can make a few remarks on these �gures:

CHAPTER 4. OUR WORK 27

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

0 10 20 30 40 50 60
01234

Figure 4.4: Dependencies of a column’s highest-degree terms after two (left) and three (right) rounds

• The dependencies after two rounds are so sparse that we could use it to track the next existing maximal-
degree terms: it either can give an overview of the possible terms of degree 4 in each coordinate after
two rounds, but also, maybe, to use knowledge about a current state and “push it” two rounds forward.

• We can observe, among the impossible combinations on two rounds, a lot of empty columns either
shared by the �ve coordinates or some of them. It means that column C0 will never depend on those
columns (this is only due to indexes which are impossible to obtain when summing two shift values of
a same row). A more remarkable point is the empty row on the diagram corresponding to row r2: it
means that the highest-degree terms on row r2 will never depend on the highest-degree terms on the
same row two rounds before.

• On the other hand, after three rounds, a column is now dependent of almost every variable (or the
highest-degree terms in a column depend on almost every previous highest-degree terms three rounds
before). However we can distinguish full columns that will not be taken into account while computing
three more rounds, leading to some impossible combinations.

This kind of study was also made on other decompositions of Ascon’s permutation which are presented
in the following section. It gave comparable results but they seemed often less exploitable.

V Di�erent representations of Ascon’s permutation

V.1 Splitting the S-box into two parts

In order to better understand the evolution of the degree throughout the rounds, we decided to look at other
representations of Ascon’s permutation. Ascon’s S-box seems quite sparse (among the �ve coordinates,
there are only 11 binomials in the ANF and only 8 distinct ones out of the 10 possible) and it is the only source
of non-linearity. We thought it could be possible to look at it in such a way it would minimize those two
quantities, by using linear changes of variables on the domain or codomain.

First, I looked at some changes of variables on the codomain. By computing all the 31 non-null linear
combinations of the S-box coordinates, I tried to select �ve linearly independent ones, while minimizing the
number of binomials appearing. It led to the only possible minimizing choice: y2 and y0 + y4 (with a single
binomial each) and y3, y4, y0 + y1 + y4 (with two binomials each). It actually coincides with the choice of
replacing y0 by y0 +y4 and y1 by y0 +y1 +y4. With this invertible change of variables which we will noteA,

CHAPTER 4. OUR WORK 28

we can actually write that S = A−1 ◦A ◦ S = A−1 ◦ (AS). And as A−1 is a linear function we can actually
look at one round of Ascon, as L′ ◦ S′ = LA−1 ◦AS. The ANF of S′ and L′ are given below:

y0 = x0 + x1x2 + x2 + x4

y1 = x1x3 + x1 + x2x3 + x3

y2 = x1 + x2 + x3x4 + x4 + 1

y3 = x0x3 + x0x4 + x0 + x1 + x2 + x3 + x4

y4 = x0x1 + x1x4 + x1 + x3 + x4

−
y0 = (x0 + x4) + (x0 + x4) ≫ 19 + (x0 + x4) ≫ 28

y1 = (x0 + x1) + (x0 + x1) ≫ 61 + (x0 + x4) ≫ 39 other unchanged

Figure 4.5: ANF of S′ and partial ANF of L′

As we can see, this representation of the permutation enables to get rid of the products appearing twice. In
a way, it allows a better understanding of how Ascon works: the S-box actually includes a linear transformation
which is the reason of some binomials appearing twice. One can look at the simpli�ed S-box S′ as the part
which produces the binomials and at the more complex linear layerL′ as the part which duplicates and di�uses
some of the binomials.

V.2 Changes of variables

As the example above shows, it seems that some ways of looking at the S-box can simplify it a bit. We just split
the S-box into two parts and add the second one to the linear layer but another idea is to completely change
our basis. By choosing a single invertible change of variables for the domain and codomain, we can see the
S-box di�erently. In particular, we may �nd changes of variables through which the S-box will be sparser. As
the S-box only handles 5 bits, we can try a brute-force approach to select the best possible changes (at the

cost of |GL5(F2)| =
4∏

k=0

(25 − 2k) = 9999360 tries).

We are interested in minimizing both the number of binomials and the number of distinct binomials
appearing in the ANF of the S-box. From the �rst experimental results it seemed that the sum of those two
values cannot be less than 16 but these cases are actually already better than the S-box original representation
(11 + 8 = 19). Two special cases seemed to be of particular interest: the 9 + 7 and the 11 + 5 which are the
extreme cases.

After looking more carefully at the 9+7 and 11+5 cases, we observed that each of them occurred 120 times.
It was intriguing to �nd the same amount for both cases but it can actually be explained quite easily. Instead
of looking at all the possible changes of variables (i.e . at all ofA◦S◦A−1 whereA is an invertible matrix), we
can instead look at them up to permutations (i.e consider Ā instead of A, where .̄ represents the class modulo
S5). Indeed, it is of no particular interest for us to consider two changes which are in the same class as two
distinct changes: changing the variables’ labels and the order of the S-box coordinates accordingly does not
enable us to look at S di�erently and leave the amount of binomials and distinct binomials unchanged.

CHAPTER 4. OUR WORK 29

As |S5| = 5! = 120, we can observe that there actually exists a single 9 + 7 case, a single 11 + 5 case, and
four intermediate 10 + 6 cases. Two representations of the respective 9 + 7 and 11 + 5 cases are given below.
They were chosen among the 120 possibilities in order to avoid useless changes of labels.

y0 = x0 + x1x2 + x2

y1 = x0 + x1x2 + x1x3 + x1 + x2x3 + x2 + x3

y2 = x1 + x2 + x3x4 + x4 + 1

y3 = x0x3 + x0x4 + x0 + x1 + x2 + x3x4 + x3 + x4

y4 = x0x1 + x1 + x3 + x4

A =


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Figure 4.6: Representation of S minimizing the number of binomials (9 + 7): ANF of A ◦ S ◦A−1

y0 = x0 + x1x2 + x2

y1 = x0 + x1x2 + x1 + x2x3 + x2 + x3

y2 = x0 + x1x2 + x1 + x2x3 + x3x4 + x3 + x4 + 1

y3 = x0x4 + x0 + x2 + x3x4 + x3 + x4

y4 = x0x1 + x0x4 + x0 + x1 + x2 + x3x4 + x3

A =


1 0 0 1 1
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1



Figure 4.7: Representation of S minimizing the number of distinct binomials (11 + 5): ANF of A ◦ S ◦A−1

V.3 Di�erent changes in the domain and codomain

Later on, we also studied linear changes of variables in its most general way, namely PSQ−1 where P and
Q are linear invertible functions. Indeed, in the study we wanted to look at, there was no point of using the
same change in both domain and codomain. The space of all changes of this form is however way bigger and
we did not use the same brute-force approach. It was clear from experimental trials that we could �nd better
results than before: a 8 + 5 = 13 case was for example found by chance. But we also had a 5 + 5 = 10 case
at hand since the beginning! As a matter of fact, a circuit representation is given in the speci�cations (also
reproduced here, see Figure 4.8) in order to describe the bit-slice implementation of Ascon. On this �gure, we
can actually observe two linear transformations (Q and P), which give rise to the mentioned representation
containing �ve binomials, all of which distinct from the others.

With this point of view, S̃ is of course the new S-box and the new linear layer will be L̃ = Q ◦ L ◦ P . In
order to use this representation, we however need to go throughQ−1 before the �rst round and through P−1

after the last round in order to follow the right input-output couple. The study of the S-box is way simpli�ed
by these considerations: the only product appearing in each row is the product of the two following rows (in
descending order). However the linear layer is not operating row by row anymore: a coordinate can depend
(according to the row number) on coordinates from two, three or four rows after the new linear layer. After
looking at this representation in the same spirit as we looked at the general ANF in Section IV, it is still not
clear how this representation can be used.

CHAPTER 4. OUR WORK 30

x0

x1

x2

x3

x4

Q

1

1

1

1

1

S̃

1

P

x0

x1

x2

x3

x4

Figure 4.8: Ascon’s circuit representation

On the other hand, this representation is the “best” representation we can hope for if we want to minimize
both the number of binomials and the numbers of distinct binomials in its ANF.

Proof. • Minimum number of binomials. By contradiction, let us suppose that there exist P,Q such that
PS̃Q contains at most four binomials in its ANF. One of the coordinate is therefore at most linear in
the input variables. It is also the case of PS̃ = (PS̃Q)Q−1 (as the former input variables are replaced
by linear combinations of themselves). PS̃ having a linear coordinate means that there exists a linear
combination of the coordinates of S̃ canceling the quadratic terms. This is absurd as the binomials in
each of them are, “by de�nition” of a polynomial ring, linearly independent. So the minimum number
of binomials is therefore 5.

• Minimum number of distinct binomials. By contradiction, let us suppose that there exist P,Q such
that PS̃Q contains at most four distinct binomials in its ANF. Then, there exists a linear component
Sb of PS̃Q: we can look at the quadratic part of the coordinates as Boolean vectors of size at most 4

indicating whether the quadratic terms are present or not; 5 vectors of a 4-dimensional vector space

are necessarily linearly dependent. This further means that E(Sb + ϕa) =

{
0 if a 6= b

25 if a = b
(where E

is the bias of a function and ϕa the linear Boolean function corresponding to a ∈ F5
2, see [Can16] for

more details). In particular, 25 = 32 appears in the LAT of PS̃Q. But the values of the LAT of PS̃Q
are among the ones in the LAT of Ascon’s S-box (as they are a�ne equivalent, see Proposition 2.16
of [Can16]). 32 does not appear in the LAT of Ascon’s S-box (the LAT can be found in Table 11 of
[DEMS19]), so this is absurd. The minimum number of distinct binomials is therefore 5.

VI Other initializations scenarios

After spending a lot of time switching from the general ANF to the derived one related to the initialization
presented before (the nonce row N0 (r3) being �xed, while the public input variables were set on the row
N1(r4), now referred as Scenario 1), we decided to look at other possible initialization scenarios:

• Scenario 2: It is the “reverse” one where N1 stays constant while the public variables are set in N0.

• Scenario 3: We insert each given public variable vi in both N0 and N1 in column Ci (vi is inserted in
coordinates c3,i and c4,i)

CHAPTER 4. OUR WORK 31

Ci =


IVi

ki
ki+64

0
vi

 Ci =


IVi

ki
ki+64

vi
0

 Ci =


IVi

ki
ki+64

vi
vi


Figure 4.9: Initializations of Scenarios 1, 2 and 3 (from left to right)

For each of these three scenarios, we use either a null IV or the genuine one. All those di�erent initialization
possibilities give rise to di�erent 64-variable functions with di�erent properties. Scenarios 1, 2 and 3 are used
by Rohit et al. in their article [RHSS21].

These new scenarios (2 and 3) seemed at �rst sights more appropriate to our study. As a matter of fact,
Scenario 2 enables to �nd a constant coordinate after the �rst S-box layer: no nonce variable appears after
one round on row r2. Consequently, fewer binomials are present after two rounds, as products involving this
coordinate will not lead to binomials anymore. On another subject, the coe�cients in front of the linear terms
after the �rst round are only dependent of the 64 �rst key variables (those on row r1). This means that, as long
as the highest-degree terms are obtained only by multiplications of highest-degree terms, those coe�cients
of highest-degree terms will only depend on 64 bits of the key. This is the main point used by Rohit et al. in
order to mount their attack on one half of the key (which is followed by an exhaustive search for the other
half).

With Scenario 3, there are now two coordinates per column with no linear terms (on rows r2 and r3). As a
result, we observe that only three products (x0x1, x0x4, x1x4) of coordinates can lead to binomials after two
rounds and thus only three of the output coordinates (x0, x3, x4) actually contain quadratic terms. After the
third round, again, only three products lead to degree-4 terms and only two coordinates (x2, x3) will contain
them. Finally, only one product will lead to degree-8 terms which is contained in a single coordinate’s ANF:
after the fourth S-box layer, a single coordinate contains degree-8 terms. It further means that after the �fth,
sixth and seventh S-box layer, we surely will not �nd any terms of degree 16, 32, or 64. This is the reason
why Rohit et al. are able to �nd better distinguishers that the previous one using this initialization scenario.
Unlike in Scenario 2, the coe�cients in front of highest-degree terms may depend on the full range of keybits.

Afterward, we spent more time analyzing Scenario 3 which seems to be more promising than Scenario 2.
In Scenario 3, the linear terms after the �rst S-box layer are independent from the IV value. The study was
here made with a null IV but the same stays true with the genuine IV .

VI.1 About Rohit et al.’s distinguishers

By keeping track of upper bounds on the degree and taking into account the multiplications in the computation
of each coordinate, we can �nd upper bounds on the degree for each coordinate, round after round. This is
the same method as before, only a bit more precise. This way, we obtain a table (see Table 4.1) similar to
Table 3 of [RHSS21] (Part 7.2): only a single value is di�erent (we are a bit less precise). While they used the
division property and a MILP model to �nd it, it seems to be explained in a more straight-forward manner as
done above. This leads to distinguishers costing 260 chosen data (only row r0 is output and all monomials of
degree 60 are absent).

CHAPTER 4. OUR WORK 32

Round 0 (Init.) 1 2 3 4 5 6 7
Row r0 0 1 2 3 7 15 30 59
Row r1 0 1 1 3 8 15 29 59
Row r2 0 0 1 4 7 13 29 60
Row r3 1 0 2 4 7 14 30 60
Row r4 1 1 2 3 6 15 30 59

5

Table 4.1: Upper bounds of coordinates in each row using Scenario 3

VI.2 Focusing on terms of degree 8 during the fourth round

Looking at Scenario 3, we can also have a deeper understanding of round 4 and its maximal-degree terms:
not only are they present on a single row, but also their structure is very strict. We were able to �nd a list
of 72 binomials such that each 8-tuple will at least contain one of them. In other words, one fourth of these
8-tuples can be very easily determined.

As already mentioned, our way of �nding upper bounds on the degree of coordinates was based on two
points:

• upper bounds of the degree for each coordinate at the previous round; and

• multiplications occurring between coordinates of a single column during the S-box layer.

We can be more precise. After the third S-box layer, coordinate c2,i will only contain terms of degree 2
coming from the product x3x4 and coordinate c3,i will only contain terms of degree 2 coming from products
x0x3 and x0x4.

After the fourth S-box layer, coordinate c1,i will only contain degree-4 terms coming from the product
x2x3.

Based on those possible choices, we can observe that each 8-tuple associated to a degree-8 term (present
on row r1) contains at least one out of 72 binomials: one half of a 8-tuple necessarily comes from coordinate
c32,i after the third linear layer. But each possible 4-tuple comes from three di�erent columns (the current
one and two others according to the shifts of row r2) and one half of each 4-tuple comes from coordinate
c23,i,c23,i+1, or c23,i+6, depending of where they come from. After the second linear layer, coordinate 3 (of a
�xed column) contains 24 binomials, meaning that every �rst half of an 8-tuple necessarily contains at least
one of the 3× 24 = 72 mentioned binomials.

Below are listed all binomials in coordinate c23,0. For the full list, one just needs to shift all the variables
by 1 and 6 (in a cyclic manner, modulo 64).

(29 51) (7 28) (0 28) (10 51) (10 29) (17 58) (0 19) (28 41) (24 45) (10 38) (19 41) (17 29)
(7 19) (38 51) (0 41) (45 58) (24 36) (17 45) (17 38) (10 17) (0 7) (36 58) (17 24) (17 36)

Figure 4.10: List of all binomials in coordinate c23,0 in Scenario 3

5This value is replaced by 58 in the mentioned article.

CHAPTER 4. OUR WORK 33

These results seem to indicate that, in Scenario 3, the growth of the degree is slower that in other scenarios
(as seen in the previous part), but the di�usion and the mixing among the highest-degree terms seems also to
be less signi�cant. We were tempted to use this knowledge to better understand the coe�cients in front of
those degree-8 terms. For example we could be tempted to say that, knowing an existing degree-8 term which
is divisible by xaxb, and knowing the coe�cient in front of xaxb at the end of round 2, we would be able to
guarantee that the coe�cient after round 4 would be divisible by it. This is not true because product xaxb
in the degree-8 terms could come from two di�erent halves. The following study (presented in Section VIII)
aims at �nding techniques to search for coe�cients of some chosen monomials.

Moreover, the study we just made here on the fourth round in Scenario 3 is very speci�c and it seems
that we cannot use it to go a few rounds further. The main reason is that, during round 5 and beyond, the
highest-degree terms are not obtained by the multiplication of two highest-degree terms anymore (there is
only a single coordinate in which terms of degree 8 are present). This is a good news for distinguishers, a
worse one if we want to obtain information about further rounds. A lot of case-by-case analysis would need
to be done (if it can be done).

Finally, I also tried to get more information about the degree-8 terms in Scenario 1 in a way similar to the
one used for Scenario 3 but it was actually not so easy (after the �rst S-box layer, there are four coordinates
per column in which a linear term is present compared to three coordinates in Scenario 3). I was not able to
�nd such a small set for binomials dividing the terms of degree 8. However, the di�erent amount of terms of
degree 8 after the fourth S-box layer in the di�erent scenarios can be partially explained thanks to a study
which is similar to the one made to �nd the list of binomials.

We decided at that time to change a bit our direction of study.

VII Analysis of Ascon’s cyclicity and the respective role of IV and round

constants

VII.1 Cyclic properties and anomalies

As already stated, when used with a null-IV (or an all-one IV) and no constant addition at each round,
Ascon is very structured. In fact, by knowing (or assuming) that a monomial is in the ANF of a coordinate, one
can deduce that it is also “present” in the other coordinates of the same row in a cyclic way: if xa appears in
the ANF of ci,j then xa+k will surely be in the ANF of ci,j+k. This works in the same manner for monomials
of higher degree. This also explains Proposition II.1, as round constants do not in�uence the presence of
highest-degree terms in the ANF during the �rst rounds.

Using this fact, we were able to have a more optimized way to study the maximal-degree terms in the
�rst rounds: instead of keeping track of all the maximal-degree terms in all the columns, we only kept track
of the ones in column C0 and deduced the ones in column Cj by shifting the ones in C0. This enables us to
�nd our �rst upper bounds on the number of maximal-degree terms after four rounds of the permutation in
the di�erent scenarios (they are here given row per row):

Here, we did not take into account possible deletions due to XOR cancellation, implying that the previous
numbers are upper bounds on the number of monomials of degree 8.

CHAPTER 4. OUR WORK 34

Scenario 1 3
Row r0 47759848 1.079% 0 0%
Row r1 65511919 1.480% 10983660 0.248%
Row r2 21397928 0.483% 0 0%
Row r3 39453281 0.891% 0 0%
Row r4 31045646 0.701% 0 0%

Table 4.2: Upper bounds of the number of monomials of degree 8 in Scenarios 1 and 3 and the respective
proportions compared to

(
64
8

)

Following the study of the cyclicity of the simpli�ed Ascon, we decided to look at the true Ascon
permutation and tried to �nd some cyclic properties, or at least to observe if some of them also occur in this
context. With a null IV and no round constant, Ascon’s initialization has the following cyclic property:

pb(0∗, Ri(k), Ri(M)) = Ri ◦ pb(0∗, k,M) ∀ k,M ∈ {0, 1}128,∀ i ∈ J0, 63K

where Ri is a rotation of i positions. This is not the case anymore in the true setting as the IV and the round
constants intend to break this kind of properties, sometimes known as self-similarity properties [BDLF10,
BB02].

In order to study the cyclic/non-cyclic behaviors on the true Ascon’s permutation, I implemented a
program to compute cube sums. With a �xed IV and key, we can look at the outputs of Scenario 3 as
multivariate polynomials of 64 variables. With this approach, we can be interested in looking at the value
of the coe�cient of a monomial. This coe�cient is a multivariate polynomial in the key variables. Its actual
value can be obtain thanks to Möbius transform (see Proposition I.5).

Studying maximal-degree terms in the �rst rounds (on which I already worked) enabled us to understand
the �rst details on the role of the IV and the round constant.

In the case of Scenario 3, the IV does not play any role in the coe�cients of the maximal-degree terms in
the �rst rounds as it only modi�es the constant terms after the �rst S-box layer (and not the coe�cients of the
linear terms). However, the constant c0 does play a role on the linear terms as it �ips four keybits of k1 before
any S-box or linear layer. With the real IV and no round constant, the maximal-degree terms through the
�rst rounds are actually acting cyclically. The only constant being able to modify this behavior for the �rst
rounds is c0 and it actually breaks the cyclic behavior. We can show that after the second S-box layer, a term
of degree 4 will be present in all of the columns in a cyclic manner. However, if the corresponding coe�cients
depend on some bits of k1, then their values will never be the same for all the 64 cyclic siblings; as c1 will
always �ip four �xed bits of k1, while k1 is rotated. The number of columns in which the value is di�erent can
give some information on the way the coe�cient of the monomial was built (which multiplications between
which rows, which original row for each variable, etc). It is also important to note that the cyclic behavior
of a monomial depends on the row on which it is found: the presence of a monomial in two rows of a single
column does not imply the same cyclic behavior as the coe�cients in front of them can be di�erent (it depends
on the building trail of the monomials).

Even if c0 �ips a few bit of the key, this is not of major interest as (not) knowing a keybit or its �ipped
version does not change anything and we can actually compensate the cyclicity problem it creates:

CHAPTER 4. OUR WORK 35

Proposition VII.1. Let R be a rotation of the columns of a 5 × 64 matrix. Let E be r initialization rounds of
Ascon , with r ∈ J1, 4K, as in Scenario 3. Let x(i,j) be any output coordinate of ER(k⊕c0)⊕c0 ◦ R (k and c0 are
viewed as 5 × 64 matrices) and y(i,j) be the corresponding output coordinate of R ◦ Ek. Then, x(i,j) and y(i,j)
have the same maximal-degree monomials in their respective ANF: in other words, the same terms of degree 1, 2,
4 or 8 if E is respectively a 1-, 2-, 3- or 4-round initialization.

We then studied the in�uence of the IV and the round constants on the cyclicity. Now that the role of the
constants on the terms of maximal degree is understood for the few �rst rounds, we looked up how they could
in�uence terms of smaller degrees. By intuition, it is expected that the constants can break the cyclic behavior
of monomials of smaller degrees: if we look at monomials of degree inferior to the upper bound, then it is very
likely that they were created through at least a multiplication of a constant and a monomial (only likely as
the multiplication of degree-d terms can lead to a monomial of degree smaller than 2d if they are not coprime).

I �rstly worked on a null-IV version in order to isolate the role of the round constants. While looking
at monomials of degree 7 after S4 and their cyclic “siblings”, every time a unusual behavior occurred (i.e
each time that a sibling appeared when the referential one did not or the other way around) we were able to
observe the presence of c1: anytime an anomaly happened, three others happened according to c1’s pattern
(0x00000000000000e1, which has a Hamming weight of 4).

We only talked here about c1 as no other round constant can play a role on the coe�cients of terms of
degree 7 after the fourth S-box layer: indeed, if a round constant modi�es a coe�cient of a term, then it
necessary means that a constant was multiplied by a monomial leading to a “loss of degree”. But a constant-
monomial multiplication involving c2 during the third S-box layer necessarily leads to a loss of at least 2, and
in the same manner a constant-monomial involving c3 during the fourth S-box layer necessarily leads to a
loss of at least 4 which thus cannot be the case. Moreover, for the terms of degree d−1, if an anomaly actually
occurs then the monomial cannot result from the multiplication of two monomials of degree d as they would
not be in�uenced by c1.

This also implies that round-constant dependency may be studied in a case-by-case manner, by focusing
on both the degree of the monomial and the index of the round studied.

From the ANF of the S-box, we can �gure out which part of the linear terms after the second S-box layer
are in�uenced by any of the constant (depending of course of the column we are looking at). Indeed, a round
constant is always added on the second row before any S-box, which means that the linear terms which will
have a cyclic anomaly are the ones on row r0 coming from x1x2 (with a linear part in x1) and the ones on
row r1 coming from x3x2 or x2x1 (with a linear part in x3 or x2).

One remarkable detail is that a single constant can in�uence the cyclic behavior of a monomial multiple
times. This is due to the di�erent building trails a monomial can follow: following di�erent trails leads to
di�erent coe�cients in front of the monomial which may be �ipped thanks to c1.

Indeed, as we already mentioned, when we choose a monomial which was built through a multiplication
between a constant on row r2 and a linear term during the second S-box layer, then it will almost always
lead to the appearance of c1’s pattern among the cyclic anomalies. After a few investigations, with the choice
we just described, most of the coe�cients will depend of a single constant coming from r2, leading to the

CHAPTER 4. OUR WORK 36

appearance of c1’s pattern among the anomalies. On the other hand, when, through the two �rst linear
layers, shifts are combined “correctly”, it can happen that those coe�cients depend on more than a single
constant coming from r2, leading to the appearance of other patterns among the anomalies.

Contrary to the role of c1, the role of the IV seems to be more delicate to study. It is easier to obtain
a multiplication between a linear combination of multiple IV -bits and a linear term: after the �rst S-box
layer, an IV -variable is present among three out of �ve constants of the corresponding column, it will then
propagate thanks to the following linear layer in ten other coordinates. Thus many of the degree-7 monomials’
coe�cients will depend of a former linear combination of multiple IV bits. This seems to be the reason why,
even when the IV is the only part responsible for cyclic anomaly of a monomial (when no round constants
are used) it is more di�cult to observe its action through the cyclic anomalies’ “portrait”.

VII.2 Visual results on the in�uence of the IV and of the round constants

Using 100000 random keys-nonces pairs, I compared the state after multiple versions of the permutation.

First I compared a null-IV version with a null-IV version without any round constant in order to understand
the global in�uence of the addtion of round constants, pC . Figure 4.11 depicts the results as heat-maps of
di�erences after 3, 4 and 5 rounds: each time the two values of a coordinate were di�erent, the corresponding
cell was incremented.

0 10 20 30 40 50 60

0
1
2
3
4

0 20000 40000 60000 80000 100000

0 10 20 30 40 50 60

0
1
2
3
4

0 10000 20000 30000 40000 50000 60000 70000

0 10 20 30 40 50 60

0
1
2
3
4

49600 49700 49800 49900 50000 50100 50200 50300 50400

Figure 4.11: Comparison of states with or without round constants after 3, 4 and 5 rounds

We can observe that until four rounds (included), we can still �nd columns which are not altered by the
constant additions. This is not the case anymore after �ve rounds: for each cell the number of equalities
between the two versions is between 49600 and more than 50400, in other words a probability of equality
around 50%.

We can observe the same way the in�uence of the IV on the permutation by comparing two versions
with or without the real IV , both with no round constant (see Figure 4.12).

CHAPTER 4. OUR WORK 37

0 10 20 30 40 50 60

0
1
2
3
4

0 20000 40000 60000 80000 100000

0 10 20 30 40 50 60

0
1
2
3
4

0 20000 40000 60000 80000 100000

0 10 20 30 40 50 60

0
1
2
3
4

0 10000 20000 30000 40000 50000 60000 70000 80000

0 10 20 30 40 50 60

0
1
2
3
4

49600 49800 50000 50200 50400

Figure 4.12: Comparison of states with or without round constants after 1, 2, 3 and 4 rounds

IV‖K‖N

pa

Initialization

0∗‖K

P1 .

pb

Encryption

0∗C2

Figure 4.13: Nonce-misuse Scenario

VIII Searching for a superpoly in a nonce-misuse scenario

As we did not manage to get hold of Ascon through our previous studies6, we decided to make a fresh start
by changing our way of looking at it. In the following, we consider Ascon in a nonce-misuse scenario. In
other words, we suppose that a nonce is used multiple times with the same key. We do not try to attack
the initialization anymore, instead, we look at the second phase (as shown on Figure 4.13).

In this context, we consider a chosen-plaintext attack where an adversary can choose plaintext blocks (he
thus controls the �rst row of the external state) and then recovers the next cipherblock (the attacker thus aims
at recovering the �rst row after 6 rounds). As Ascon uses a Sponge construction, the goal of the adversary is
to gain information about the capacity after the initialization. Discovering the full intermediate state (external
state known, internal state recovered) could enable to get a lot of information: if the XORwith the keywere

absent, it could be possible to invert pa, which is a permutation independent of any unknown variables. This
would enable the recovery of the initial state which includes the secret key. In the case of Ascon, this does
not seem to be a security problem as the XOR with the key at the end of the initialization7 (which is, this time,
a permutation depending of 128 unknown variables) prevents from recovering backward the initial state.

6There are some exploitable observations, but we did not manage to use them properly (yet).
7This looks like a Davies-Meyer construction, where the input is XORed to the image in order to make the inversion more

di�cult.

CHAPTER 4. OUR WORK 38

It is also important to note that we divert a bit from the authors’ recommendations: they warned that
Ascon’s security claim was only in a nonce-respecting scenario.

Given a �xed key-nonce pair, our goal is to recover the coe�cients (a multivariate polynomial in the
capacity’s bits after the initialization) of enough terms in order to gain information on the capacity. By
knowing the actual values of the coe�cients and the corresponding multivariate polynomials, we can hope
for an easily-solvable system. We focused on highest-degree terms (degree 32 after 6 rounds), as they are now
better understood.

The entire capacity cannot be determined with this method. Indeed, after one round, the coe�cients of
linear terms are actually independent of the second row r2. This is a pity in our case as it does not enable
the recovery of the full capacity. However this is a surprising property which could maybe used for another
purpose.

We have some data at our disposal:

• Let us denote M = {i0, · · · , i31}, ij < ij+1 ∀ j ∈ J0, 30K the set of indexes associated to our cube’s

variables, CM the corresponding vector subspace of dimension 32 (cube) in F64
2 , andM =

31∏
j=0

vij the

corresponding monomial of degree 32.

• For every coordinate (y, x), y ∈ J0, 4K, x ∈ J0, 63K, we know the list of all degree-4 terms (and the
respective 4-tuples) after L3 (the third linear layer). In particular, we know the list of all 4-tuples after
L3 whose coordinates are among the ones in our cube M :

Qy,x = {{i00, i01, i02, i03}, · · · , {i
uy,x

0 , i
uy,x

1 , i
uy,x

2 , i
uy,x

3 }}, ihj < ihj+1 ∀ j ∈ J0, 2K ∀ h ∈ J0, uy,xK,

ihj ∈M ∀ j ∈ J0, 3K ∀ h ∈ J0, uy,xK.

• We also know the general ANF of coordinate c(0,0) after S3 (the third S-box layer) and we thus have
the list of all terms of degree 8 in it. We will call them trails as our monomial was actually obtained by
following one or more of those trails. The set of all trails is named P :

P = {{p00, · · · , p07}, · · · , {pw0 , · · · , pw7 }}, phj < phj+1 ∀ j ∈ J0, 6K, ∀ h ∈ J0, wK,

phj ∈ J0, 4K× J0, 63K ∀ j ∈ J0, 6K ∀ h ∈ J0, wK.

Let us consider
∑

m∈F64
2

wt(m)=32

amx
m the degree-32 homogeneous component of coordinate c(0,0) after 5.5 rounds

(as we can partially invert the linear layer on the �rst row, we can compute the cube sum (i.e the actual value
of a coe�cient) after 5.5 rounds from the cube sum after 6 rounds:

aM =

 ∑
v∈CM

p−1L ◦ p
6(v, c)


(0,0)

=

p−1L

 ∑
v∈CM

p6(v, c)


(0,0)

,

where [·](0,0) denotes the “coordinate (0, 0) of the state”). We are interested in �nding the expression of aM .
To do so, let us introduce our set of solutions S (see below). As a single degree-32 term can come from di�erent
products of eight degree-4 terms, it is not su�cient to only keep track of the 8-tuples of degree-4 terms. That

CHAPTER 4. OUR WORK 39

is the reason why, in our solutions, we will keep the information of the degree-4 terms which are multiplied,
as well as the trail they followed:

S = {(s0, · · · , s7, p0, · · · , p7) | (p0, · · · , p7) ∈ P, si ∈ Qpi ∀ i ∈ J0, 7K,
6⋃

i=0

si = M}

Terms of degree 32 can only be obtained by successive products of maximal-degree terms from round 2 to
round 6. In an ideal case, if each intermediate highest-degree term is only obtained by a single product, we are

guaranteed that aM =
7∏

i=0
dsi,pi where dsi,pi is the coe�cient associated to monomial xvsi (xvsi =

∏
e∈si

xe)

in coordinate pi after three rounds. By intuition, this kind of behaviors should not happened often. Indeed,
we might expect that at least one of the intermediate highest-degree terms is obtained through two (or more)
di�erent multiplications between highest-degree terms from the previous round. This makes the search for
the superpoly way more di�cult. However, with our ideal case described above (which coincides with the
case |S| = 1), the superpoly can be recovered as the product of eight known multivariate polynomials
corresponding to the eight coe�cients of terms of degree 4 which were multiplied to build our targeted
monomial.

∏∏∏
Figure 4.14: Part of the superpoly recovery: �nding monomials coming from a single product

In order to study this straight-forward monomial behavior (no detour is made to go from the third round
to the sixth, only a single trail is followed and a single product occurs), we want to compute S , from the
knowledge of P and Qx,y,∀x, y.

Algorithm 1 describes the way we look at our problem. Once a trail is chosen, the algorithm allows to list
all the possible input degree-4 terms which lead to our targeted monomial by following the speci�ed trail.

More precisely, this function takes as input the eight sets of degree-4 terms corresponding to the choice
of our monomial and trail (eight sets Qpk0

, · · · , Qpk7
with the already introduced notation). It will return

the (possibly empty) list of all degree-4 terms combinations (one term per coordinate) whose multiplication
results in our targeted monomial. It works as follow: for any possible choice of a degree-4 term in the �rst
coordinate, it �rst �lters the remaining coordinates’ sets (and thus excludes all terms which are not coprime
with the selected one). Then it checks if the �ltered sets are not empty. If none of them is empty (which
means that are we are not in a dead-end (yet)), the selected degree-4 term is added to the current result and
the function is called recursively with the current result and the list of the remaining �ltered sets. Finally, the
results of all recursive calls are stored and returned by the function.

As we can see this function actually terminates: if the list of sets is empty (which can only occur if
eight choices were made, i.e, when a possible combination was found), the list of the eight degree-4 terms is
returned. Otherwise, dead-end are skipped thanks to the continue command, and partial results are added
one after the other. Note that the �nal returned value is a nested list containing lists in a tree fashion (parent
nodes return the (possibly empty list) of all results found in children nodes).

CHAPTER 4. OUR WORK 40

Algorithm 1: A recursive function for searching for trails, rec
Input: a list of sets of possible 4-tuples, sets_possible_4tuples; a partial list of some chosen degree-4

terms, result.
Output: An updated list of found trails.
if sets_possible_4tuples is empty then

return result;
end

return_value← [];
for q ∈ sets_possible_4tuples[0] do

new_sets← �lter(q, sets_possible_4tuples[1 :]);
if one of the sets in new_sets is empty then

continue;
end

result.insert(q);
return_value.insert(rec(new_sets, result));

end

return return_value;

Using this recursive algorithm on each trail of the hull (the entire set of trails leading to a targeted
coordinate), one can determine if the targeted monomial is either a straight-forward monomial or not.

The search algorithm is practical for 2-round trails of size 4, i.e a trail with four input coordinates which
multiply together through two rounds of the permutation. It allows to list all the straight-forward degree-4
monomials after round 3. It takes only a few seconds on a personal laptop. From the knowledge of these
straight-forward degree-4 monomials, it is also possible to obtain the number of products which lead to a
random degree-16 monomial after �ve rounds in a comparable amount of time. I think it could be optimized
for the search for degree-32 terms with some future re�nements.

v0
a0

b0
c0
d0

Unkwown capacity

Chosen external state (a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0 + · · ·

Terms of degree 4
extracted from

the ANFS1 L1 - S2 - L2 - S3 - L3

Highest-degreee terms grow
from deg 1 to deg 4

Filtering the terms to keep only the ones coming from a single product (Algorithm 1)

Figure 4.15: First stage: Recovering all the straight-forward degree-4 terms after L3

Regarding the recovery of terms of degree 32 with the same method (using 3-round trails of size 8 instead
of 2-round trails of size 4), it is now way too long to recover the superpoly of a random term. However, it
might be possible if they were chosen properly (it is still unclear what “properly” should mean and which
properties of such terms could speed up the process). There are at least two reasons it becomes impractical:

• The pre�lter which eliminates terms whose support is not included in the support of our targeted
monomial is way less e�cient: instead of discarding each term which contains one of 64 − 16 = 48

useless variables, it only discards each term which contains one of 64 − 32 = 32 variables. This leads
to bigger lists of monomials which could be multiplied together and this has an unfortunate avalanche
e�ect...

CHAPTER 4. OUR WORK 41

• In addition, the number of trails to investigate is now way bigger: it grows from 363 to about 430 000.

Nevertheless, this kind of process could lead to cube-like attacks, following these steps:

1. Find a list of straight-forward monomials and recover their superpolys thanks to this method;

2. Compute the corresponding cube sum and start building a system of equations;

3. Finally recover most of the capacity by solving the system.

This motivated us to follow in this way.

With an optimized algorithm (in order to get rid of most of Sage’s expensive structures and to privilege
lists and sets of integers), I managed to study more precisely how degree-16 terms were built. I identi�ed
some terms of degree 16 after �ve rounds which were built only through a single multiplication: our �rst
straight-forward monomials for round 5!

This property is very intriguing and many new questions arose at that moment and guided the end of my
internship:

• How can we explain this behavior? Is it due to the trail? to the degree-4 terms? to both? at which
extent?

• Is it possible assemble those kinds of monomials to build bigger ones?

• Can they be used in order to mount distinguishers and/or attacks?

• Is it re�ecting a kind of “bad di�usion behavior”?

In order to investigate those questions, we �rst searched for precise de�nitions and results on our straight-
forward monomials. Then we had to �nd a method in order to generate a lot of them. All of this is presented
in the following sections.

VIII.1 An attempt at formalizing straight-forward monomials

In this part is presented an attempt at formalizing the notion of straight-forward monomials. The word trail
is used in order to emphasize the link with the work by Hu et al. [HSWW20]. It is still necessary to determine
exactly and precisely the relationship between the two notions.

De�nition VIII.1 (Trail). Let k, t be two integers. Let us consider x0, · · · , xk−1 ∈ J0, 63K and y0, · · · , yk−1 ∈
J0, 4K and the corresponding coordinates cyi,xi for all i ∈ J0, k − 1K. Let (Y,X) ∈ J0, 4K × J0, 63K be
associated to coordinate cY,X . We de�ne a trail over t rounds of Ascon as: ({cy0,x0 , · · · , cyk−1,xk−1

}, cY,X),
such that the product of coordinates cyi,xi for all i ∈ J0, k− 1K is present in the ANF of coordinate cY,X after
t rounds. We will denote it: {cy0,x0 , · · · , cyk−1

} t−→ cY,X . Otherwise we will name it a false trail and denote it
{cy0,x0 , · · · , cyk−1

} 6 t−→ cY,X .

De�nition VIII.2 (Straight-forward monomial). Let cY,X be a �xed coordinate after t rounds. We de�ne a
straight-forward monomial of cY,X over t rounds as a monomialM =

∏k−1
i=0 vi present in the ANF of cY,X

after t rounds which results from a single trail over t rounds and a single product of variables.

CHAPTER 4. OUR WORK 42

De�nition VIII.3 (Predecessor). LetM be a monomial present in the ANF of coordinate cY,X . We de�ne
one of its sets of 1-round predecessors as the family composed of:

• two coordinates which are multiplied and present in the ANF of cY,X over one round;

• two monomials whose product is equal toM and such that each of them is contained in one of the two
given coordinates.

In other words, a set of 1-round predecessors is given as: ((cy1,x1 ,M1) , (cy2,x2 ,M2)) such thatMi is present
in the ANF of cyi,xi , with i ∈ {1, 2},M1M2 =M, and {cy1,x1 , cy2,x2}

1−→ cY,X .

We can de�ne in the same way sets of “older” predecessors: a set of t-round predecessors can be viewed
as 2t-tuple of monomial/coordinate pairs, whose coordinates constitute a trail over t rounds towards cY,X .

Example VIII.4. In the nonce-misuse scenario described, v0 is input in coordinate c0,0, and v25 is input in
coordinate c0,25. Through the �rst S-box layer and the �rst linear layer, v25 is di�used into coordinate c0,1,
while v0 is still present in c0,08.

Through the second S-box layer, coordinates c0,0 and c1,0 are multiplied together, their product appears
in coordinate c0,0. The second linear layer does not change anything, so we have {c0,0, c1,0}

1−→ c0,0. Thus,
((c0,0, v0) , (c1,0, v25)) is a set of 1-round predecessors of v0v25 in c0,0 at the end of round 2. ((c4,0, v0) , (c1,0, v25))

is another one, using the trail {c4,0, c1,0}
1−→ c0,0.

Proposition VIII.5. LetM be a straight-forward monomial of cY,X following {cy0,x0 , · · · , cyk−1
} t−→ cY,X .

The coe�cient atM,Y,X (which is a polynomial in secret variables) ofM in cY,X can be directly deduced from the

knowledge of the coe�cients associated to each variable vi in coordinate cyi,xi . More precisely: atM,Y,X =
k−1∏
i=0

a0vi,yi,xi
,

where a0vi,yi,xi
is the coe�cient in front of vi in cyi,xi at initialization.

Proof. By hypothesis, our monomialM results from a single trail over t rounds. It does mean that the only
product leading toM in cY,X is this particular choice of variables/coordinates pairs. The coe�cient atM,Y,X

is thus the product of the coe�cients associated to those pairs.

Proposition VIII.6. Any straight-forward monomial only has straight-forward predecessors. The converse is
not always true.

Proof. If one of its predecessors is not straight-forward, then there are at least two choices of a trail and
variables which lead to this predecessor. Ultimately, there are at least two choices of a trail and variables
leading to our monomial.
On the other hand, a monomial can be obtained by two di�erent sets of straight-forward predecessors and
thus it would not be straight-forward itself.

Example VIII.7. v0v25 in c0,0 after two rounds has two sets of straight-forward predecessors; as it has two sets
of predecessors, is cannot be a straight-forward monomial.

PropositionVIII.8. (Su�cient conditions on predecessors to be straight-forward) Let us consider a set of t2-round
predecessors ofM following {cy0,x0 , · · · , cyk−1,xk−1

} t2−→ cY,X : ((cy0,x0 ,M0), · · · , (cyk−1,xk−1
,Mk−1). Let

us suppose that each monomial is present in the ANF of the respective coordinate after t1 rounds. Moreover, let us
suppose that:

8As the �rst round is acting di�erently from the next ones (no growth of degree) and as it is very easy to keep track of the changes
during this round, we often use the state after round 1 as our “initial” state.

CHAPTER 4. OUR WORK 43

• M0, · · · ,Mk−1 are pairwise coprime;

• this choice of a set of t2-round predecessors and of a trail over t2 rounds is the only choice leading to
M =

∏k−1
i=0 Mi in cY,X .

ThenM is a straight-forward monomial of cY,X after t1 + t2 rounds.

Proof. It is exactly the de�nition of a straight-forward monomial.

So the search for straight-forward monomials could be done round after round if we are able to discuss
whether the second condition is respected or not. In order to do so, the algorithm presented above is for the
moment our only option. More precisely, let us suppose that we found a family ofMi and a trail as in the
previous proposition (the second bullet being not veri�ed for the moment). In order to verify that this is the
only choice leading toM in coordinate cY,X , we can use the knowledge of all the monomials present in all
coordinates after t1 rounds and all the trails leading to cY,X over t2 rounds to check whether no other product
leads toM. This is detailed in the following section.

VIII.2 An attempt at �nding many more straight-forward monomials

In order to study and better understand straight-forward monomials, we need to be able to generate a lot of
straight-forward monomials. To do so, we thought of going back and forth: compute products of straight-
forward monomials one round before (see the necessary condition in Proposition VIII.6) in order to “climb
up” one more round and then check if it is an actual straight-forward monomial by “going down” through all
possible trails (see Figure 4.16).

After S3:
straight-forward terms

of degree 4

After L4:
presumed straight-forward terms

of degree 8

After S5:
presumed straight-forward terms

of degree 16S4 - L4

multiplied together
and di�used

S5

multiplied together
and di�used

Recover straight-forward monomials by
going down along 1-round trails of size 2

Recover straight-forward monomials by going down along 1.5-round trails of size 4

1

2

3

4

Figure 4.16: Second stage: going back and forth through the next rounds

There are multiple issues. Let us suppose that we are aware of all possible monomials appearing in all
coordinates after t rounds. By going “down”, we can �lter every straight-forward monomial after t rounds. If
we now want to go a step further we have at least two options, both with drawbacks:

• we can use the quadratic part of the S-box (and the linear layer) in order to push further our straight-
forward monomials (let us keep in mind that we are for the moment only interested in monomials of
highest degree) without taking into account the coe�cients of the monomials (we are indeed trying
to guess them by only knowing the coe�cients after round 1). The problem with this method is that
we cannot distinguish when a XOR deletes a monomial from the coordinate or transforms it to a non-
straight-forward monomial. It results in a list of monomials whose predecessors are surely straight-
forward (necessary condition respected) but which can be non-straight-forward and even absent.

CHAPTER 4. OUR WORK 44

• we can also use the ANF of one round and �lter each monomial which is involved in a XOR operation
with itself. The resulting list would not take into account absent monomials and it would also delete
some unwanted non-straight-forward monomials. However this technique also deletes some straight-
forward monomials: for example when a monomial is XORed three times with itself, twice with the
same coe�cient and once with a di�erent one, the resulting monomial could be considered as straight-
forward9 but is deleted by this �ltering.

Another issue appears on the way down. The main reason we are focusing of this special kind of terms
(highest-degree, straight-forward) is because we cannot store the complete ANF of the permutation. However,
according to what was detailed above, we need to keep the lists of all monomials one round before in order
to guarantee that a monomial is straight-forward round after round. This seems problematic, especially after
�ve rounds. We can however use a “one-step-forward-two-step-backward” technique in which we verify if a
monomial of round t is straight-forward using the knowledge of the monomials of round t − 2 and 2-round
trails, as shown on Figure 4.16 with 1.5-round trails. We managed this way to generate non-exhaustive lists
of straight-forward degree-16 terms after the �fth S-box layer. All of these is still being investigated at the
moment of writing. While having the feeling of grasping something here, a lot of work is still needed to
deeply understand what we are looking at.

Finally, a last comment on the degree of the coe�cients in front of the highest-degree terms. By looking
at the coe�cients after the second S-box layer in this nonce-misuse scenario, we can see that only a single
row contains terms of degree 4 whose coe�cients are also of degree 4. This prevents the highest possible
growth of degree for coe�cients (the maximal degree of coe�cients in front of highest-degree terms is thus
7 after the next round). With an avalanche e�ect similar to the one studied in Section VI, the maximal degree
of the coe�cients is thus 28 after round 6. So, after round 6, there is always a probability higher than 2−28 for
the coe�cient of a straight-forward monomial to be equal to 1. Indeed, they are composed as the product of
at most 28 a�ne combinations of one bit of information about the key. In average, it will even be higher than
that: only about 10% of the coe�cients are of highest degree possible after round 3. This seems to indicate
that a straight-forward monomial of degree 32 will never give more information than 28 bits (for a cost of 232

plaintexts). On the other hand, we will have more chance to randomly �nd a coe�cient equal to 1 (and which
actually gives 28 bits of information, contrary to a coe�cient equal to 0) than if it was actually a product of 32
a�ne combinations. In other words, by forcing the coe�cients of our chosen straight-forward monomials to
have low degrees, we will manage to get less information, but more often. This part also needs to be looked
at more precisely.

9According to the de�nition given above, it is not a straight-forward monomial. However, its coe�cient can still be recovered
directly and easily as the product of several previous coe�cients. This could be another interesting way of de�ning straight-forward
monomials.

5 Conclusion and perspectives

At the end of this �rst experience in a research environment within Inria COSMIQ team, it is now time to
look at all what was done during those six months with the bene�t of hindsight.

As in Ascon, in the research world everything is not linear. Whether through the reading of an article
or while trying to get a new grasp at an already well-studied encryption method, it is very striking to see
how thoughts come and go: one second all seems to be brighter and clearer, one second later, doubt is coming
back. It is one thing to understand that it takes some time to make progress; it is another thing to experience it.

On the other hand, it is also noteworthy to look at the bigger picture of these six months. I tried in this
document to build links between the very �rst ideas we had and where we are at the time of writing. Even
unmeaning pists can later give some more meaningful insights. This was clearly not obvious for me when I
started.

Research temporality is disconcerting, and acclimatizing completely to this work seems to take some time
as well. It was also one of the goals of this internship and I have to admit that I came to really appreciate it.

Regarding our accomplished work, even though I cannot present a �nished product, I am con�dent that
it will lead to some other oddities at some point. It however raised a lot of interesting questions.

In particular, it seems possible to link most of the di�erent studies presented here in some new fashions.
The work on the straight-forward monomials in the nonce-misuse scenario is not �nished yet and needs to
be improved. It seems possible to study in the same way straight-forward monomials in a nonce-respecting
scenario and thus coming back to Scenarios 1, 2 and 3 studied before. Is it possible and/or interesting to
study them through other representations of Ascon? Could the cyclic behavior be used to be more e�ective
while looking at straight-forward monomials? Could the notion of di�usion, which underlies our study of the
shu�ing and mixing of the highest-degree terms, show any weakness in Ascon? Could it guide the design of
future encryption functions? Could we look at other NIST lightweight candidates in the way we are analyzing
Ascon? How does this interact with existing works, especially on monomial trails?

In front of so many questions, it is very easy to jump from one subject to another. Yet, I am very lucky to
be able to continue on this trail with guidance. Indeed, as of September 1st, I am starting a doctoral thesis co-
supervised by Anne Canteaut & Léo Perrin. I will be working on the “security analysis of [some] lightweight
symmetric primitives”; the remarks and questions presented above being the starting point of our studies.
I am really pleased to be able to continue this exciting experience while being as well supervised as I was
during this internship.

45

Bibliography

[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube testers and key recovery
attacks on reduced-round MD6 and Trivium. In Orr Dunkelman, editor, FSE 2009, volume 5665
of LNCS, pages 1–22, Leuven, Belgium, February 22–25, 2009. Springer, Heidelberg, Germany.

[BB02] Elad Barkan and Eli Biham. In how many ways can you write Rijndael? In Yuliang Zheng, editor,
ASIACRYPT 2002, volume 2501 of LNCS, pages 160–175, Queenstown, New Zealand, December 1–
5, 2002. Springer, Heidelberg, Germany.

[BC11] Christina Boura and Anne Canteaut. Zero-sum distinguishers for iterated permutations and
application to Keccak-f and Hamsi-256. In Alex Biryukov, Guang Gong, and Douglas R. Stinson,
editors, SAC 2010, volume 6544 of LNCS, pages 1–17, Waterloo, Ontario, Canada, August 12–13,
2011. Springer, Heidelberg, Germany.

[BC13] Christina Boura and Anne Canteaut. On the in�uence of the algebraic degree of f-1 on the
algebraic degree of G ◦ F. IEEE Trans. Inf. Theory, 59(1):691–702, 2013.

[BC16] Christina Boura and Anne Canteaut. Another view of the division property. In Matthew Robshaw
and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 654–682, Santa
Barbara, CA, USA, August 14–18, 2016. Springer, Heidelberg, Germany.

[BDLF10] Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque. Another look at
complementation properties. In Seokhie Hong and Tetsu Iwata, editors, FSE 2010, volume 6147
of LNCS, pages 347–364, Seoul, Korea, February 7–10, 2010. Springer, Heidelberg, Germany.

[BDPA11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge
functions, 2011. https://keccak.team/sponge_duplex.html.

[BDPA11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak reference,
2011. https://keccak.team/keccak.html.

[BDPV12] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge:
Single-pass authenticated encryption and other applications. In Ali Miri and Serge Vaudenay,
editors, SAC 2011, volume 7118 of LNCS, pages 320–337, Toronto, Ontario, Canada, August 11–
12, 2012. Springer, Heidelberg, Germany.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg,
Germany.

46

https://keccak.team/sponge_duplex.html
https://keccak.team/keccak.html

BIBLIOGRAPHY 47

[BP17] Alex Biryukov and Leo Perrin. State of the art in lightweight symmetric cryptography.
Cryptology ePrint Archive, Report 2017/511, 2017. https://eprint.iacr.org/2017/
511.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit P�tzmann, editor,
EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405, Innsbruck, Austria, May 6–10, 2001.
Springer, Heidelberg, Germany.

[CAE14] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness,
March 2014. https://competitions.cr.yp.to/caesar.html.

[Can16] Anne Canteaut. Lecture Notes on Cryptographic Boolean Functions, 2016. https://www.
rocq.inria.fr/secret/Anne.Canteaut/poly.pdf.

[DBRP99] Carl D’Halluin, Gert Bijnens, Vincent Rijmen, and Bart Preneel. Attack on six rounds of Crypton.
In Lars R. Knudsen, editor, FSE’99, volume 1636 of LNCS, pages 46–59, Rome, Italy, March 24–26,
1999. Springer, Heidelberg, Germany.

[DEMS] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlä�er. Ascon TikZ
�gures. https://ascon.iaik.tugraz.at/resources.html.

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlä�er. Cryptanalysis of
Ascon. In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 371–387, San Francisco,
CA, USA, April 20–24, 2015. Springer, Heidelberg, Germany.

[DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlä�er. Ascon v1.2.
Technical report, National Institute of Standards and Technology, 2019. https://csrc.
nist.gov/Projects/lightweight-cryptography/finalists.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square. In Eli Biham,
editor, FSE’97, volume 1267 of LNCS, pages 149–165, Haifa, Israel, January 20–22, 1997. Springer,
Heidelberg, Germany.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal Straus. Cube attacks
and cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 733–761,
So�a, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced Encryption
Standard. Springer-Verlag, 2002.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In Antoine Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 278–299, Cologne, Germany, April 26–30,
2009. Springer, Heidelberg, Germany.

[FKM08] Simon Fischer, Shahram Khazaei, and Willi Meier. Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In Serge Vaudenay, editor, AFRICACRYPT 08, volume 5023 of LNCS,
pages 236–245, Casablanca, Morocco, June 11–14, 2008. Springer, Heidelberg, Germany.

https://eprint.iacr.org/2017/511
https://eprint.iacr.org/2017/511
https://competitions.cr.yp.to/caesar.html
https://www.rocq.inria.fr/secret/Anne.Canteaut/poly.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/poly.pdf
https://ascon.iaik.tugraz.at/resources.html
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists

BIBLIOGRAPHY 48

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang. Modeling for three-
subset division property without unknown subset - improved cube attacks against Trivium and
Grain-128AEAD. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 466–495, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

[HSWW20] Kai Hu, Siwei Sun, Meiqin Wang, and Qingju Wang. An algebraic formulation of the division
property: Revisiting degree evaluations, cube attacks, and key-independent sums. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS, pages 446–
476, Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao. Conditional
cube attack on reduced-round Keccak sponge function. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 259–288, Paris, France,
April 30 – May 4, 2017. Springer, Heidelberg, Germany.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/tikz/,
2016.

[KW02] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In Joan Daemen and Vincent Rijmen,
editors, FSE 2002, volume 2365 of LNCS, pages 112–127, Leuven, Belgium, February 4–6, 2002.
Springer, Heidelberg, Germany.

[Lai94] Xuejia Lai. Higher order derivatives and di�erential cryptanalysis. In Richard E. Blahut, Daniel J.
Costello, Ueli Maurer, and Thomas Mittelholzer, editors, Communications and Cryptography: Two
Sides of One Tapestry, pages 227–233. Springer US, Boston, MA, 1994.

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced
ASCON. IACR Trans. Symm. Cryptol., 2017(1):175–202, 2017.

[Luc02] Stefan Lucks. The saturation attack - a bait for Two�sh. In Mitsuru Matsui, editor, FSE 2001,
volume 2355 of LNCS, pages 1–15, Yokohama, Japan, April 2–4, 2002. Springer, Heidelberg,
Germany.

[MSST21] Kalikinkar Mandal, Dhiman Saha, Sumanta Sarkar, and Yosuke Todo. Sycon: A new milestone in
designing ascon-like permutations. Cryptology ePrint Archive, Report 2021/157, 2021.

[NIS15] Secure Hash Standard (SHS). Technical Report Federal Information Processing Standard (FIPS)
180-4, National Institute of Standards and Technology U.S. Department of Commerce, August
2015.

[NIS17] NIST Lightweight Cryptography competition, January 2017. https://csrc.nist.gov/
Projects/lightweight-cryptography.

[RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. Misuse-Free Key-Recovery
and Distinguishing Attacks on 7-Round Ascon. IACR Transactions on Symmetric Cryptology,
2021(1):130–155, March 2021.

[Rio19] Sébastien Riou. DryGASCON. Technical report, National Institute of Standards and Technology,
2019. https://csrc.nist.gov/Projects/lightweight-cryptography/
round-2-candidates.

https://www.iacr.org/authors/tikz/
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

BIBLIOGRAPHY 49

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor,
ACM CCS 2002, pages 98–107, Washington, DC, USA, November 18–22, 2002. ACM Press.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

[SMS19] Sumanta Sarkar, Kalikinkar Mandal, and Dhiman Saha. Sycon v1.0. Technical report, National
Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/
lightweight-cryptography/round-1-candidates.

[Tod15] Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 287–314, So�a,
Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.

[XZBL16] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying MILP method to
searching integral distinguishers based on division property for 6 lightweight block ciphers. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS,
pages 648–678, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg, Germany.

https://csrc.nist.gov/Projects/lightweight-cryptography/round-1-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-1-candidates

List of Figures

2.1 Ascon AEAD encryption1 . 5
2.2 Ascon’s state S . 7
2.3 The round constant adding function pC . 7
2.4 The S-box layer pS . 7
2.5 The linear layer pL . 8
2.6 Algebraic normal form (ANF) of Ascon’s S-box . 9

4.1 Ascon attack model inspired from [RHSS21] . 19
4.2 Distribution of the public variables among the highest-degree terms in coordinate c0,0 (left) and

column C0 (right) . 24
4.3 Missing binomials after 2 rounds of Ascon in the usual (left) and null (right) IV scenarios 25
4.4 Dependencies of a column’s highest-degree terms after two (left) and three (right) rounds 27
4.5 ANF of S′ and partial ANF of L′ . 28
4.6 Representation of S minimizing the number of binomials (9 + 7): ANF of A ◦ S ◦A−1 29
4.7 Representation of S minimizing the number of distinct binomials (11 + 5): ANF of A ◦ S ◦A−1 . 29
4.8 Ascon’s circuit representation . 30
4.9 Initializations of Scenarios 1, 2 and 3 (from left to right) . 31
4.10 List of all binomials in coordinate c23,0 in Scenario 3 . 32
4.11 Comparison of states with or without round constants after 3, 4 and 5 rounds 36
4.12 Comparison of states with or without round constants after 1, 2, 3 and 4 rounds 37
4.13 Nonce-misuse Scenario . 37
4.14 Part of the superpoly recovery: �nding monomials coming from a single product 39
4.15 First stage: Recovering all the straight-forward degree-4 terms after L3 40
4.16 Second stage: going back and forth through the next rounds . 43

50

List of Tables

2.1 Parameters’ values for recommended versions of Ascon . 5

4.1 Upper bounds of coordinates in each row using Scenario 3 . 32
4.2 Upper bounds of the number of monomials of degree 8 in Scenarios 1 and 3 and the respective

proportions compared to
(
64
8

)
. 34

51

	Abstract
	Acknowledgments
	Contents
	Context and overview
	Symmetric cryptography and cryptanalysis
	Lightweight cryptography in the IoT era
	International competition and standardization process
	Internship's environment

	Ascon
	Mode of operation
	Notation
	Ascon's AEAD encryption workflow

	Ascon's permutation
	Ascon's S-box
	Advantages and security claims

	Previous works and related topics
	Mathematical background
	Higher-order differentials and integral attacks
	Cube attacks
	Classical cube attacks
	Practical attacks on Keccak and Ascon
	Bordeline cubes
	Generalized conditional cube attacks
	Cube-like key-subset technique
	First misuse-free key-recovery attack on 7-round Ascon

	Generalized integral attacks using the division property

	Our work
	Motivations and choices made at the beginning of the study
	First steps in studying and understanding Ascon
	First results
	Column dependencies
	On the loss of degree

	Statistical and combinatorial study
	Number of variables
	Number of distinct maximal monomials
	Variables distribution
	Study of the binomials

	Study of the general ANF
	Different representations of Ascon's permutation
	Splitting the S-box into two parts
	Changes of variables
	Different changes in the domain and codomain

	Other initializations scenarios
	About Rohit et al.'s distinguishers
	Focusing on terms of degree 8 during the fourth round

	Analysis of Ascon's cyclicity and the respective role of IV and round constants
	Cyclic properties and anomalies
	Visual results on the influence of the IV and of the round constants

	Searching for a superpoly in a nonce-misuse scenario
	An attempt at formalizing straight-forward monomials
	An attempt at finding many more straight-forward monomials

	Conclusion and perspectives
	Bibliography
	List of Figures
	List of Tables

