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Abstract

Functional connectivity (FC) can be represented as a network, and is frequently
used to better understand the neural underpinnings of complex tasks such as motor
imagery (MI) detection in brain-computer interfaces (BCIs). However, errors in
the estimation of connectivity can affect the detection performances. In this work,
we address the problem of denoising common connectivity estimates to improve the
detectability of different connectivity states. Specifically, we propose a denoising
algorithm that acts on the network graph Laplacian, which leverages recent graph
signal processing results. Further, we derive a novel formulation of the Jensen
divergence for the denoised Laplacian under different states. Numerical simulations
on synthetic data show that the denoising method improves the Jensen divergence
of connectivity patterns corresponding to different task conditions. Furthermore,
we apply the Laplacian denoising technique to brain networks estimated from real
EEG data recorded during MI-BCI experiments. Using our novel formulation of
the J-divergence, we are able to quantify the distance between the FC networks in
the motor imagery and resting states, as well as to understand the contribution of
each Laplacian variable to the total J-divergence between two states. Experimental
results on real MI-BCI EEG data demonstrate that the Laplacian denoising improves
the separation of motor imagery and resting mental states, and shortens the time
interval required for connectivity estimation. We conclude that the approach shows
promise for the robust detection of connectivity states while being appealing for
implementation in real-time BCI applications.

This work has been submitted to the IEEE for possible publication. Copyright may be transferred
without notice, after which this version may no longer be accessible
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1 Introduction

Functional connectivity describes how brain areas mutually interact [1]. This information
can be modeled as a graph, which is one of the most common formalism to characterize
networked data [2,3]. Many recent studies prove that mental states can be characterized
by graph statistics, such as node strength, efficiency, and modularity [4]. Detecting
brain connectivity-related features corresponding to different mental states can enhance
several technologies, such as brain-computer interfaces (BCIs). BCI systems allow
subjects to communicate and interact without peripheral neuro-muscular activity [5].
The requirement for the BCI functioning is therefore the correct detection of the user’s
mental states. While research on the subject has significantly advanced over the last
decade, there is still a key limitation known as BCI inefficiency [6]. It refers to the fact
that there is a percentage of users who cannot be trained to use the interface. This
limitation, together with system-user interaction problems [6], motivated us to develop
new tools with the intent of having a more robust estimate of brain connectivity with
the final goal of better separating two cognitive states. Implementing this estimate
from signals acquired at graph nodes (e.g. EEG electrodes) is a difficult task because
of the inherent noise, the number of links to estimate, the presence of artifacts, the
non-stationarity of the signal.

To address the problem of connectivity estimation together with the improvement of
separability between mental states to optimally control a BCI, it is necessary to combine
tools from different fields, such as neuroscience and signal processing. For example,
graph signal processing (GSP) can be applied in this scenario [7–9]. GSP has already
been used to deal with biological data, and in particular brain data [10,11]. Indeed, GSP
is potentially able to integrate information regarding brain structure, as represented by
the graph itself, with information regarding brain function, as represented by the graph
signals.

Another helpful tool to the brain connectivity estimation problem is the signal
detection theory. Detection procedures can be applied to investigate statistical differences
between the brain connectivity features of two different mental states, which corresponds
to motor imagery and resting state for our applications. In this context, widely adopted
statistics are the Likelihood Ratio (LR) of the features [12–19] as well as the linear detector
maximizing the so-called deflection [20–23]. With the aim of obtaining a distance metric
of features under two states, the case of normally distributed observations simplifies the
analysis. Indeed, for normally distributed observations with equal conditional variance
and different conditional means, the maximum deflection test coincides with the LR
test. Moreover, this latter can be extended to a linear quadratic detector so as to cope
with observations characterized by different conditional variances. [20, 21]. To obtain
a measure of separability between features under the two states, one possibility is the
Jensen divergence which reflects the maximum deflection test performance [12,14,19].

In the following sub-section, we present our original contributions.
Paper Contributions

• This paper proposes a novel graph Laplacian denoising algorithm, to enhance the
accuracy of brain connectivity estimates. In recent literature, several studies have
been conducted to improve the accuracy of link estimation, whereas few studies
approach this problem in terms of description of the graph algebraic structure (see
Section 2). We address this limitation by proposing a subspace-based Laplacian
denoising algorithm that preserves relevant connectivity features while rejecting
noise-dominated components. In particular, the Laplacian denoising preserves
i) the sub-spaces more directly related to the graph topology, as summarized by
the eigenvectors corresponding to the smallest Laplacian eigenvalues, and ii) the
sub-spaces estimated under a favourable signal-to-noise ratio, as summarized by the
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Notation Description

A ,Â adjacency matrix (real, estimated)
V set of all nodes
N total number of nodes
E set of all links

D, D̂ degree matrix (real, estimated)

L, L̂ Laplacian matrix (real, estimated)

λ, λ̂ eigenvalue (real, estimated)
u, û eigenvector (real, estimated)

UL, UM, UH subset of smallest, central, larger eigenvalues

L̃, l̃ filtered graph laplacian matrix and vector
T transformation matrix
x vectorized laplacian in the transformed domain
J J-divergence
S score

Table 1. Table of main notation.

eigenvectors corresponding to the largest Laplacian eigenvalues. The noise rejection
obtained by this twofold sub-space selection notably improves the separability
of two connectivity states. To sake of clarity, we refer to connectivity states as
the patterns of connectivity estimated while the brain performs distinct cognitive
tasks.

• In order to measure the improvement achieved by the proposed brain connectivity
denoising algorithm, we provide an analysis of the J-divergence of the Laplacian
coefficients, we explicit their contribution to the states’ separability in terms of
their first and second order moments of the test statistics, and we show that
the proposed Laplacian denoising actually increases the J-divergence of the brain
connectivity features rest (null) or motor imagery (alternative). The improvement
of the J-divergence of the graph Laplacian coefficients under different connectivity
states is assessed by numerical simulations on synthetic data.

• Finally, we present experimental results on real EEG data acquired during motor
imagery-based BCI experiments, and we prove that the proposed novel denoising
algorithm increases the J-divergence of brain connectivity states and paves the way
for connectivity estimation time interval reduction. As a relevant by-product of the
theoretical J-divergence analysis, we are able to attribute a score to each and every
Laplacian coefficient representing its marginal contribution to the J-divergence.
The score admits relevant biological interpretation confirming the efficacy of the
approach. These results can be assessed by further studies on the brain connectivity
features.

The structure of the paper is as follows. Section 2 reviews the scientific literature
related to our work. Section 3 describes the signal model used in the analysis. Section 4
details the novel graph denoising we propose. Section 5 describes the problem of Gaussian
detection, and it presents the novel formulation of J-divergence we use throughout the
paper. In section 6, we test our filtering method on synthetic graph to verify its ability
to separate two graphs. Section 7 applies our method on real EEG data, exhibiting its
capacity to estimate graph connectivity during motor imagery tasks and to discriminate
between two mental states. We conclude in section 8. In Table 1, we list of the main
notation used in the paper.
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2 Related Work

The problem of graph connectivity estimation has been well studied in literature in
different domains, from neuroscience to signal processing and graph theory [24–26].
State-of-the-art graph learning methods have the limitation that they usually present
over-simplified models for the signal on graph to overcome problems of computational
and memory cost. Some recent works, such as [27], propose different strategies to deal
with graph learning problems. Specifically, in the context of mental state identification,
authors in [27] present a novel technique to create and modify embeddings associated to
each graph node to efficiently compute the adjacency matrix. Since FC computation
requires a lot of time and computational power, one possibility consists in clustering FC
into relevant communities of synchronous components. One approach, recently proposed
in [28], goes in this direction with the application of k-means clustering algorithm
followed by a tensor decomposition to reduce the FC data.

FC estimation can leverage the generalization of classical signal processing operations
into the graph setting, where signals are localized on graph nodes, giving rise to novel
research domain of the graph signal processing (GSP) [7–9]. GSP has already showed
its potential to describe brain functioning in [29] and [10]. Indeed, GSP representation
naturally fits to the brain, where the structure can be described by the graph itself
while brain functioning directly corresponds to graph signals. An interesting application
is graph filtering [7, 30] which can be useful to extract meaningful brain behaviour
[31]. In [32], authors propose a mathematical model for brain fibers able to describe
neurophysiological mechanisms. The model, based on GSP techniques, extracts a subset
of graph eigenvectors which represent a suitable basis for filtering fiber tracts from brain
imaging data.

GSP techniques have been applied also to brain-computer interfaces with NIRS
signals [33]. Specifically, GSP analysis is leveraged in [33] in the context of feature
extraction to extract spatial information from the NIRS signals and it has been shown
to improve classification performances.

Classical signal processing techniques and eigenvector-based filtering have already
been used with brain data [34, 35]. In [36] and [37], eigenvector-based filters are applied
to fetal magnetic signals and diffuse optic imaging data to obtain more localized activities
and reduce artifacts and noise. Specifically, in [37], classical eigenvector-filtering, i.e.
based on larger eigenvectors, is used in diffuse optical imaging with the aim to improving
connectivity estimation.

In the following, stemming from the GSP approach to FC estimation, we propose
a novel Laplacian denoising algorithm, and we show that it improves the statistical
separation of distinguished connectivity states. To this aim, we provide an analysis of
the J-divergence, which naturally provides a metric to quantify the distance between
two distributions, for the problem under concern. Recently, the J-divergence has been
applied in [38] to investigate the time series’ irreversibility . Another recent application
of the J-divergence is proposed in [39], where authors present a novel approach to
vector-skew the J-divergence. This method is able to preserve J-divergence properties
and simultaneously to fine tune parameters for specific applications.

J-divergence has been also applied in the context of BCI design, to tackle one of
the most challenging issues of EEG-based BCIs, which is the long calibration time. In
general, the number of data required to calibrate the model is really high, because of the
noise and the non-stationarity of brain signals. One solution comes from [40], where a
subject-to-subject transfer learning is proposed to improve the classification performance
with limited training data. J-divergence is used in a transfer learning framework to test
their method by comparing the data of the target subject with the data from previous
subjects. In the following, we investigate the J-divergence under a different points of
view, namely i) we assess the performance of the denoising algorithm in separating
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connectivity states and ii) we provide criterion for scoring the Laplacian coefficients
based on their contribution to the connectivity states separation.

3 Signal Model

We are interested in analyzing signals defined on an undirected, connected, weighted
graph G = {V,E,A}, which consists of a finite set of vertices V with |V | = N , a set of
edges E and a weighted adjacency matrix A. If there is an edge e = (i, j) connecting
vertices i and j, the element Ai,j represents the weight of the edge; otherwise, Ai,j = 0.

The graph Laplacian, is a real symmetric matrix defined1 as:

L = D −A (1)

where the degree matrix D is a diagonal matrix whose ith diagonal element di is
equal to the sum of the weights of all the edges incident to vertex i. We denote by
{ui}i=0,1,...,N−1 set of orthonormal eigenvectors, corresponding to increasingly ordered
eigenvalues 0 = λ0 ≤ λ1 ≤ λ2... ≤ λN−1 = λmax.

In GSP, the Laplacian eigenvectors are considered as SoGs and provide a basis for
the Graph Fourier Transform. For a SoG s, the GFT is defined as the projection of
s on the eigenvectors of the graph Laplacian: ŝ(λl) = sHul. The graph Laplacian
eigenvalues λl, l = 0, · · ·N−1 have an analogous meaning to Fourier transform frequency,
i.e. smaller eigenvalues are associated to eigenvectors that exhibit smoother variations
over connected nodes.

In many SoG application problems, including brain functional connectivity estimation,
signal values are actually represented by discrete sequences, obtained by sampling a
continuous time signal at each graph node.

Let us denote the sequences of samples acquired over an observation period Toss
with sampling pace Ts as yn[kTs], n = 0, . . . N − 1, k = 0, . . . Ns, Ns = bToss/Tsc, or in
vector form as y[kTs] = [y0[kTs] . . . yN−1[kTs]] The vector sequence y[kTs], k = 0, . . . Ns
is used to estimate the graph adjacency matrix A by computing a similarity metric
on each and every node pair. There are many state-of-the-art methods to estimate
Ai,j , i, j = 0, · · ·N−1, which associate link weights according to different interaction
properties [1, 41–43]. Thereby, the adjacency matrix A is actually represented by its

estimated version Â, which contains the connectivity values Âi,j estimated for each

graph node pair (i, j), i, j = 0, · · ·N−1. Accordingly, the estimated degree matrix D̂ is

computed, so as to derive the estimated laplacian L̂ through Eq. 1, that becomes here:

L̂ = D̂ − Â (2)

Any estimation error on the adjacency matrix affects the Laplacian estimate, and it
results into less distinguishable connectivity states. In the following section we address
the denoising of the estimated Laplacian for the purpose of improving the separation of
connectivity states.

4 Graph Connectivity Denoising

In order to introduce the Laplacian denoising algorithm, we consider the eigenvalue
decomposition of the estimated Laplacian matrix L̂ as follows:

L̂ =

N−1∑
i=0

λ̂iûiû
H
i (3)

1We refer here to the non-normalized graph Laplacian, also called the combinatorial Laplacian.
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Perturbations affect graph Laplacian estimation in terms of both eigenvalues and/or
eigenvectors. To elaborate on the effect of perturbations, we explicit the first, second
and third order error contributions to the estimated laplacian L̂ as:

L̂ =

N−1∑
i=0

(λi + ελi
)(ui + εui

)(ui + εui
)H

=

N−1∑
i=0

λiuiu
H
i︸ ︷︷ ︸

L

+λiuiε
H
ui

+ λiεui
uHi + ελi

uiu
H
i︸ ︷︷ ︸

first order error

+ λiεui
εHui

+ ελi
uiε

H
ui

+ ελi
εui

uHi︸ ︷︷ ︸
second order error

+ ελi
εui
εHui︸ ︷︷ ︸

third order error

(4)

Thereby, the estimated Laplacian can be approximated at the first order as the sum
of N terms:

L̂ ≈
N−1∑
i=0

(λi + ελi)uiu
H
i + λi(uiε

H
ui

+ εuiu
H
i ) (5)

Eq.(5) highlights the first order error contribution due to relative perturbation of
the Laplacian eigenvalues as well as of the eigenvectors direction. We are interested in
the Laplacian components whose perturbation is contained because either the relative
eigenvalue perturbation ελi/λi or the eigenvector perturbation εui is (relatively) small.
To this aim, we order the set of orthonormal eigenvectors UALL =

{
ûl, l = 0, 1, ..., N − 1

}
with increasingly eigenvalues 0 = λ̂0 ≤ λ̂1 ≤ λ̂2... ≤ λ̂N−1 := λ̂max, and we consider
three subsets of eigenvalues and associated eigenvectors: 1) the subset UL containing the
NL smallest eigenvalues; 2) the subset UH containing the NH largest eigenvalues; and 3)
the subset UM containing the remaining NM = N −NL −NH central eigenvalues, with
UL ∪ UM ∪ UH = UALL.

Firstly, we remark that the NH largest eigenvalues are more robust to eigenvalue
perturbation; this assumption is usually exploited in classical signal processing, where the
subspace UH is used for the estimation of the covariance matrix because of its favorable
signal-to-noise ratio [44].

Secondly, stemming on recent literature results [45], it can be expected that the
subspace UL is partially robust in terms of eigenvector perturbation. In fact, in [45]
the authors states that a connectivity estimation error on the Amn adjacency matrix
element, i.e. on the weight of the link between the m-th and the n-th nodes, induces
a perturbation εui of the i-th eigenvector depending on the difference between the
m-th and the n-th coefficients of ui. Thereby, eigenvectors smoothly varying across the
m-th and the n-th nodes are less affected by estimation errors on Amn. On the other
hand, in GSP, it is well known that UL eigenvectors, corresponding to small eigenvalues,
represent low frequency basis elements in the Graph Fourier Transform [46], [9] since
they are characterized by the smallest variations across strongly connected graph regions.
Thereby, the eigenvectors in UL are equipped with inherent resilience to connectivity
estimation error within these regions. On the other hand, the eigenvectors in UL are
tightly related to the network connectivity, and therefore they need to be involved in
the devised denoising method.

Stemming on these observations, we propose a denoising method based on preserving
the contribution to the Laplacian due to the subspaces UL, UH while discarding those
relative to the subspace UM . In formulas, given the estimated Laplacian

L̂ =
∑

i∈UL∪UM∪UH

λ̂iûiû
H
i (6)
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we compute the denoised Laplacian L̃ as follows:

L̃ =
∑
i∈UL

λ̂iûiû
H
i +

∑
i∈UH

λ̂iûiû
H
i (7)

We recognize that the proposed, subspace-based, Laplacian denoising approach allows
preservation of

• the sub-space UL, which is directly related to the graph connectivity features

• the sub-space UH , which is estimated with a favourable signal-to-noise ratio.

The proposed Laplacian denoising method, synthetically presented in Algorithm 1,
preserves the information relevant for the purpose of graph connectivity identification,
while rejecting noisy components. In order to quantify the improvement achieved in
terms of connectivity state separability, we resort to the J-divergence as a metric of
the distance between connectivity states. In the following we derive a formulation the
J-divergence for the problem under concern.

5 Jensen divergence of connectivity states

Several metrics can be adopted to determine the separability of two connectivity states
[47], as represented by the Laplacian matrix L. Herein, we resort to the notion of
J-divergence for characterizing the separability of connectivity states, and we reformulate
it for the problem under concern. Thus, J-divergence is used to identify the Laplacian
coefficients that are most relevant for detection purposes and later on to measure the
improvement achieved by the proposed denoising algorithm.

For the purpose of the analysis, we will assume that the Laplacian coefficients
obtained at the output of the denoising algorithm are normally distributed. Let us
remark that the Gaussian assumption stands in many applications2, including the case of
connectivity estimates carried out on real brain signals, and thereby it is often assumed
in the literature, e.g. for Laplacian estimation purposes [7]. Specifically, we assume that
the vector l̃ = Vec(L̃) is distributed according to a multidimensional Gaussian probability
whose mean vector and covariance matrix differ under two different connectivity states,
referred to as the null and the alternative hypotheses H0, H1 in the following: 3{

H0 : l̃ ∼ N (η0,K0)

H1 : l̃ ∼ N (η1,K1)
(8)

As an information theoretic measure of distance between l̃ under H0 and H1, we now
compute in analytical form the J-divergence, which is defined as the expected value of
the difference of the Log Likelihood Ratio under the two hypothesis H0 and H1 [14].
The J-divergence formulation will allow us to evaluate to which extent the connectivity
states represented by the Laplacian coefficients are distinguishable from each other.

Let us first assume that the Laplacian moments η0,η1,K0,K1 are known. Detection
can then be conducted on a linear transformation of the observations:

x=T
(̃
l−η0

)
2The reason why this occurs is that the Gaussian assumption tightly models laplacian diagonal

elements, computed in each row as the sum of extradiagonal elements in that column, as well as
extradiagonal elements which are often computed as the result of correlation estimates.

3The notation l̃ ∼ N
(
ηj,Kj

)
, with j ∈ {0, 1} indicates that the random vector l̃ is Gaussian

distributed with mean vector ηj and covariance matrix Kj.
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where η
def
= T (η1−η0) and T = T (K0,K1) is an affine transform that simultaneously4

whitens the observations in the H0 hypothesis obtains uncorrelated observations in the
H1 hypothesis. An example of the action of the transform T , is shown in Fig. 1 for the
case of 2-dimensional Gaussian data whose mean and covariance matrix differ under the
H0,H1. The original data points are plotted in Fig. 1(a), whereas their transformed
counterparts are represented in Fig. 1(b). The transformed data are unitary variance,
zero-centered under H0 and are uncorrelated under H1.

Fig 1. Example of transformation effect. In a) we have 2-dimensional Gaussian distribution
which differ under mean and covariance matrix . In b) we report the same distributions after
the T transformation

In real detection systems, the moments η0,η1,K0,K1 can be either estimated from
a training set, e.g. during a BCI training phase, or coarsely initialized and tracked
throughout the system life, using methodologies, priors, and heuristics related to the
application-specific problem under concern [48–50]. Besides, the transformed data x
can be obtained even avoiding computation of the moments and of T , by applying
the laplacian coefficients l̃ to a suitably trained network [51], that will enforce the
afore-mentioned statistical constraints.

With these position, the observation model becomes:

H0 : x ∼ N (0, I) versus H1 : x ∼ N
(
η,Σ2

)
(9)

The J-divergence is then defined as:

J
def
= E {R(x)|H1} − E {R(x)|H0} (10)

being R(x) the Log-Likelihood Ratio5:

R(x) = xH
(
I−Σ−2

)
x + 2ηHΣ−2x (11)

Let us now associate the variables xn whose variance σ2
n 6= 1 to the first P indexes

and the remaining ones to the indexes n=P + 1, . . . , N6 so as to rewrite the LLR as
follows:

4The matrix T and the diagonal matrix Σ2 def
= diag(σ2

1 , . . . , σ
2
n, . . . , σ

2
N ) are computed as the gener-

alized eigenvectors and the generalized eigenvalues matrices of the pencil (K1,K0), respectively. Given
any square root Q0 of K−1

0 , i.e. such that QH
0 ·K0 ·Q0=I, we may conveniently employ the unitary

transformation V1 obtained from the eigenanalysis QH
0 ·K1 ·Q0 = V1 ·Λ1 ·VH

1 ; in fact, it is easily
proved that the matrix T = VH

1 ·QH
0 verifies T ·K0 ·TH=I ; T ·K1 ·TH=Σ2

with Λ1=Σ2.

5The Log-Likelihood Ratio R(x) is widely adopted classical LLR detection: R(x)

H1
↑
≷
↓

H0

θ, being θ

selected according to the desired detection versus missing probability tradeoff.
6Possibly, we might have P =N or P =0.
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R(x) =

N∑
n=1

1

σ2
n

[(
σ2
n − 1

)
x2n + 2ηn · xn

]
=

P∑
n=1

(
σ2
n − 1

)
|xn|2 + 2ηn · xn
σ2
n

+

N∑
n=P+1

2η∗n · xn

(12)

By adding and subtracting the term |η2n|/[σ2
n(σ2

n − 1)] we rearrange the summation (12)
as:

R(x) =

P∑
n=1

σ2
n − 1

σ2
n

∣∣∣∣xn +
ηn

σ2
n − 1

∣∣∣∣2︸ ︷︷ ︸
P quadratic terms

+

N∑
n=P+1

2ηn · xn︸ ︷︷ ︸
N−P linear terms

−
P∑
n=1

|η2n|
σ2
n

(
σ2
n − 1

)︸ ︷︷ ︸
constant to be included in the threshold

(13)
The P variates xn, n = 1, . . . , P , having different conditional variances under the
hypotheses H0,H1, contribute to the LLR by the P terms quadratic terms. The N−P
variates xn, n= P + 1, . . . , N , having equal unitary conditional variances under the
hypotheses H0,H1, contribute to the LLR by the N−P linear terms. To gain further
insight on the J-divergence, we resort to the following theorem, whose demonstration is
reported in the Appendix.

Theorem 1 Let ξ be a vector formed by the N statistically independent random variables:

ξn =

(
xn +

ηn

σ2
n − 1

)2

, n = 1, . . . , P

ξn = xn, n = P + 1, . . . , N

(14)

The LLR is expressed as R(x) = aH

LLR · ξ being aLLR constant coefficients defined as in
Eq.(25) and the J-divergence in Eq.(10) is computed as follows:

J =

P∑
n=1

(
σn−σ−1n

)2 [
1 +
|η2n|
σn

σn + σ−1n(
σn − σ−1n

)2
]

+

N∑
n=P+1

2|η2n|

=

P∑
n=1

J (σ,η)
n +

N∑
n=P+1

J (η)
n

(15)

Theorem 1 generalizes the result in [13,14] where only the case of variables having
equal conditional means and different covariances (i.e. η1 = η0, K1 6= K0) has been
addressed.

The J-divergence as formulated in Eq.(15) is a measure of the statistical distance of
the graph Laplacian coefficients under two connectivity states H1 and H0, and it will be
used to quantify the improvement of separability of brain connectivity states achieved
by the denoising algorithm described in section 4.

Furthermore, the above analysis sheds a light upon the variables that mostly contribute
to the states separability. From Eq.(15), we see a one-to-one correspondence between
the transformed space variables xn and the terms of the J-divergence J ; besides, the

December 23, 2020 9/26



term can be of two kinds

J (σ,η)
n =

(
σn−σ−1n

)2 [
1 +
|η2n|
σn

σn + σ−1n(
σn − σ−1n

)2
]

J (η)
n = 2|η2n|

(16)

depending on whether the variable changes both in conditional mean and standard

deviation, or in conditional mean only. The functions J
(σ,η)
n , J

(η)
n are plotted in Fig.2

for η between 0 and 1 and σ−1 from 0 to 10. Interestingly, in Fig.2 we recognize that a

Fig 2. J-Divergence contributions as function of mean η and standard deviation σ: a) J(σ,η)

for variables whose conditional standard deviation differ under H1 and H0 , and b) J(η) for
variables with invariant conditional standard deviation.

conditional variance change gives a higher contribution to J than an equal conditional
mean change.

To sum up, the above analysis highlights the contribution of each of transformed
variable to the separability of the connectivity states, and allows to rank their relevance
to Jn, so as to identify the transformed variables which mostly differ under the two
hypothesis. This paves the way for an information theoretic scoring of the Laplacian
coefficients, described in the following.

5.1 J-Divergence based Laplacian coefficients scoring

As a by-product of the analysis, we are now able to identify which Laplacian coefficients
(i.e. links weights or nodes degrees), contribute mostly to the connectivity states
separability. This is obtained by attributing a score to the Laplacian coefficients
measuring their contribution to the J-divergence J .

By definition, the Laplacian coefficient l̃n, n = 0, · · ·N − 1, contribute to each
transformed variable xn. Thereby, we introduce a score Sn,, evaluated by suitable
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backpropagation of the Jn terms on each contributing Laplacian coefficient. Specifically,
the n-th coefficient score is computed as

Sn =
∑
n

Jn ·
tnn∑
k tnk

(17)

where we recognize that the weight tnn representing the contribution of the n-th Laplacian
coefficient to the n-th transformed variable is normalized with respect to the sum

∑
k tnk

of the weights of all the contributing coefficients.

Fig 3. Graphic interpretation of the score computed for the first element in the vector l̃

A graphical interpretation of the score is provided in Fig.3, where we represent the
set of variables l̃ belonging to the original domain (left), the set of variables x belonging
to the transformed domain (center) and the corresponding marginal contributions to J
(right). The relationship between l̃ and x is given by the transformation matrix T that
blends variables from the original domain to the transformed one. Each J-divergence
component Jn (colored circle on the right) is associated to the variable xn in the
transformed domain, which in turn is originated by many l̃n (shaded colored box on the
left). Thereby, Jn is backprojected to the original domain by weighting its contribution
as in Eq. 17. Back-projection and accumulation can also be applied by limiting the
summation in Eq.(17) to the largest ranking Jn terms. The score computation allows to
quantify the relevancy of the Laplacian coefficients l̃n for state separability, and in the
experimental results we show that it leads to meaningful results in case of real BCI data.
The Algorithm 2 review the main steps of the J-divergence computation and scoring
procedures.

6 Results on synthetic data

In this section, we test the performance of the Laplacian denoising presented in section
4 in improving the J-divergence of two estimated connectivity states over synthetic
SoGs. To this end, we first consider a graph and a model for signals at nodes under two
connectivity states, selected to represent an over-simplified model of brain EEG signals
functional connectivity; real brain signals are considered in the next section.

We compare our approach with the case of laplacian without filtering (that we refer
as UALL and with several of eigenvector-based filters, i.e. UL, UH). Then, we explain in
detail the analysis we performed and the related results.
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Algorithm 1 Graph Laplacian denoising

Input: Estimated Laplacian L̃
Output: Denoised Laplacian L̃

1: Compute the eigen-decomposition

L̂ =

N−1∑
i=0

λ̂iûiû
H
i

2: Compute the denoised Laplacian L̃ by
a: Selecting the number NL, of smallest eigenvalues and the number NH of largest
eigenvalues to retain
b: Computing

L̃ =

NL−1∑
i=0

λ̂iûiû
H
i +

N−1∑
i=N−NH

λ̂iûiû
H
i

6.1 Signal on Graph generation and connectivity estimation

In order to validate our framework on synthetic data, we define signals under the two
hypothesis H0 and H1 to obtain two distinct graph connectivity states.

Under H1, we model the network activity by considering H scalar generator signals
s(h)[kTs], h = 0, · · ·H − 1. Each generator signal simultaneously contributes to the
signals measured over a subset G(h), h = 0, · · ·H − 1 of nodes identified by the non-zero
component of the N × 1 binary vector g(h), h = 0, · · ·H − 1. A noise component w[kTs]
and a common component across all the nodes b[kTs] · 1 are also present. Under H0,
only these latter components are observed. With these positions, we come up with
the following expression for the vector of the observed signals y[kTs] under the two
hypothesis H1 and H0:

H1 : y[kTs] =

H−1∑
h=0

s(h)[kTs] · g(h) + w[kTs] + b[kTs] · 1

H0 : y[kTs] = w[kTs] + b[kTs] · 1

(18)

In the simulations, the noise w[kTs] is a realization of a discrete, stationary, white
Gaussian process, with E{w[k]} = 0, E{w[k]w[k]T } = σ2

wI ∀k; the samples of discrete
sequences b[kTs] are realizations of a zero mean Gaussian random distribution with
variance σ2

b ; and s(h)[kTs], h = 0, · · ·H − 1 are drawn from a zero mean unit variance
Gaussian random variable.

Once SoGs samples y[kTs] are obtained, we estimate the adjacency matrix. There
are many state-of-the-art methods to perform the estimation, such as spectral coherence
[42], imaginary coherence [43], phase-locking value which differently characterize brain
interactions [52]of the signals at two nodes i, j as:

Cij(ωk) =
|P̂ij(ωk)|√

P̂i(ωk) · P̂j(ωk)
(19)

In Eq. (19), P̂i(ωk), P̂j(ωk) and P̂ij(ωk) are the the estimated auto-spectra and cross-
spectrum of the signals yi[kTs], yj [kTs] at the nodes i and j, computed at the frequency
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Algorithm 2 J-divergence and score computation

Input: Conditional means µ0, µ1 and covariance matrices K0, K1 of l̃ = Vec(l̃) under
H1 and H0

Output: Jn, Sn, n = 0, · · ·N − 1

1: Step 1: Transform computation
a: Compute the square root matrix

Q0 ← K
−1/2
0

and the eigenvectors V1 and the eigenvalues σ2
0 , · · ·σ2

N−1 of the eigen-decomposition

QH0 K1Q0 = V1 diag
(
σ2
0 , · · ·σ2

N−1
)
V H1

b: Compute T as ← V H1 QH0 and Σ←
√

(eig(QH0 K1Q0)′)
2: Step 2: J-divergence computation

a: Define a threshold θ
b: Compute Jn, n = 0, · · ·N − 1 as

Jn ←


2|η2n|, ⇐⇒

(
σ2
n > θ

)
∪
(
|σ2
n − 1| > θ

)
(
σn−σ−1n

)2 [
1 +
|η2n|
σn

σn + σ−1n(
σn − σ−1n

)2
]
, otherwise

,
3: Step 3: Score computation

a: Compute Sn, n = 0, · · ·N − 1 as

Sn =
∑
n

Jn ·
tnn∑
k tnk

bin7 ωk =
2π

Ns
k. Given Cij(ωk) as in Eq. (19), the adjacency matrix Â,estimated is

averaging across the Ns frequency bins as follows:

Âij =

Ns−1∑
k=0

Cij(ωk) (20)

To sum up, our proposed signal model for synthetic data determines a simple graph
connectivity under the two hypotheses H1 and H0. The model successfully reproduces a
network characterized by distinguishable connectivity states in presence of controlled
perturbations. In Fig. 4, the estimated adjacency matrix is plotted under the two
conditions H1 and H0 in presence of perturbations. We recognize that under H0 there
are no links and Â fluctuates around zero because of the perturbations. Under H1 some
connections exist but their values are affected by the perturbations.

Once we have obtained the adjacency matrix estimations under H1 and H0, we
compute the estimated Laplacians as in Eq. (2) and then, we decompose it with its
eigenvalues and eigenvectors as in Eq. (3). In order to recall the eigenvectors’ behaviour,
we plot in Fig. 5 the first and the 10th eigenvectors on graph under H1 hypothesis. We
can see that the first eigenvector, in Fig. 5(a) perfectly appears smooth on the graph

7All the power spectral estimates are computed with Welch method, with 1s length Hanning windows
and overlap of 50%.
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Fig 4. Adjacency matrix with synthetic data. Âij [k] is represented under H1 in a) and under
H0 in panel b).

and within a subset of linked nodes. Fig. 5(b) describes the 10th eigenvector on graph.
Here, the eigenvector is mostly smooth, it highlights another community, but it shows
higher variability than the first eigenvector over linked nodes.

Fig 5. Eigenvectors on graph. In panel a) there is the fist eigenvector; in panel b) the 10th

eigenvector

This model will be used to test the proposed Laplacian denoising algorithm. To
this goal, we randomly produce 20 repetitions (or trials) for each statistical hypothesis,
as i.i.d. realizations of our model with a fixed set of parameters. Different noise and
polarization level will be considered.

6.2 Sub-space robustness on synthetic data

In this sub-section, we compare our laplacian-based filtering based on UL ∪ UH , shortly
denoted as UL∪H , with UALL, UL and UH . Specifically, we investigate the robustness of
the different sub-spaces with simulated data.

With the final goal of measuring the sub-space robustness, for each sub-space we take
into account two cases, namely the absence and the presence of perturbation, to which
we refer to as the ground truth (GT) and the noisy cases, respectively. Each ground
truth sub-space is compared to different noisy cases, corresponding to σw = 0, 1.2 for
noise and σb = 0, 2 for polarization. To quantify sub-space robustness on synthetic data,
we firstly measure the Frobenius subspace distance F [53] between the GT case and the
noisy configurations, varying the perturbation levels8. Results of this analysis are in Fig.
6. We plot F versus the trial for the subspace UH (red), the subspace UL (green), and
the subspace UL∪H (blue) in several perturbation conditions. In Fig. 6(a) we have the
zero perturbation case, in which, not surprisingly, F = 0 for every filter and every trial.
With a gradual increase of perturbations (i.e. noise only case in Fig.6(b) or polarization

8For each sub-space configuration, we compute the Frobenius distance F between its noisy and GT
versions. See Definition 2 in [53] for the mathematical formulation.
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only case in Fig.6(c)), the most favorable case is with UH for almost every trial. When
perturbations dramatically increase Fig.6(d), performances decrease in particular for UH
filter. In this figure, we do not report results for UALL case because F = 0 for all the
trials with all the eigenvectors.

Fig 6. Results of Frobenius distance on synthetic data. Several perturbation configuration are
represented: in panel a)σw=0 and σb=0,in panel b) σw=1.2 and σb=0,in panel c) σw=0 and
σb=2 and in panel d) σw=1.2 and σb=2. In the different colors (in the legend) we represent the
different sub-spaces.

It is then clear that the eigenvectors in UH are significantly robust. This is not
surprising, since in classical signal processing UH larger eigenvectors are used because of
their advantages in signal-to-noise-ratio (SNR). Still, the subspace UL∪H maintains the
robustness, while being relevant to describe the inherent topology of the graph. In the
next results, we show that the Laplacian denoising leveraging the subspace UL∪H leads
to better distinguishable connectivity states in absence and in presence of perturbation.

Fig 7. Results of J-divergence analysis on synthetic data. Several perturbation configuration
are represented: in panel a) σw=0 and σb=0, in panel b) σw=1.2 and σb=0, in panel c) σw=1.2
and σb=2. In the different colors (shown in the legend) we represent the different sub-spaces
for the filtering.

6.3 J-divergence computation on synthetic data

Finally, we test the ability to separate graph Laplacians under the hypotheses H1

and H0. The J-divergence analysis presented in section 5 ends with a measure of the
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statistical distance J between two states. Here, the analysis of separability between two
states is applied to graph laplacian in simulated scenario with the goal of comparing
the discriminant ability of our denoising method with respect to the other sub-space
configurations, i.e. UALL, UL and UH .

Here the two conditions are the two hypothesisH1 andH0 and we perform simulations
for several perturbation levels. In every case, we compute the total J as a measure
of statistical distance between the two conditions and we also evaluate the marginal
Jn as measure of the contribution of each n-variable to the final separability. Table 2
collects J-divergence values for several perturbation sets and for different sub-spaces.
Results show that in absence of perturbations the most favorable case is UALL. This
result is intuitive because in absence of perturbations there is no reason why reduced
sub-spaces should better discriminate. Interestingly, increasing perturbations (i.e. noise
and polarization), the most favorable case is UL∪H , which gives the highest J , i.e. the
best separability. It means that graph laplacian denoising through UL∪H preserves the
highest separability between the two hypothesis, even in presence of strong perturbation.
Fig 7, shows Jn behavior as function of the first 20 variables only for UALL and UL∪H
cases. These representations make clear the contribution of n variables to the final J .
From Fig 7 we recognize that increasing perturbations, variables in UL∪H generally give
higher Jn contributions compared to UALL.

Table 2. J-divergence values on synthetic data. We report in bold characters the highest
J-divergence value for each perturbation configuration.

Our results with synthetic data show that in presence of perturbations our laplacian
filtering succeeds in distinguishing graphs under two conditions. This conclusion remains
true if the system is perturbed by noise but also if there is an artefact of different nature,
i.e. a common artifact that we indicated as polarization and which can represent real
phenomena.

7 Real BCI measurements

In this section, we present experimental results of our graph laplacian filtering on real
data, recorded during motor-imagery BCI experiments. In this case the H1 and H0

hypothesis directly correspond to he hypothesis that subject performs motor imagery
(H1) or he/she is in resting state (H0).

7.1 Experimental Protocol and Preprocessing

The study was conducted on twenty healthy subjects (aged 27.60± 4.01 years, 8 women),
all right-handed. All the subjects, which did not present any disorder, received financial
compensation for their participation and they signed a written informed consent. The
ethical committee CPP-IDF-VI of Paris approved the experimental protocol. During
the BCI experiments, every subject was in front of a screen with a target. Subjects were
instructed to perform right hand - motor imagery task when the target was up, while
remaining at rest when the target was down [54]. A 74-channel system was used to
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record EEG data in a standard 10-10 configuration. The reference for EEG were set to
mastoid signals; the ground electrode was located on the left scalpula; and impedences
were lower than 20 kOhms. Sampling frequency for EEG recordings was 1 kHz, and then
downsampled to 250 Hz. For each subject, recorded sequences have been segmented to
obtain NT trials of motor imagery and NT trials of resting state. The total length of
each trial was 5s.

EEG data analysis was preceded by a pre-processing stage. Specifically, an Indepen-
dent Component Analysis (ICA) was performed to eliminate artifacts, such as ocular
and cardiac signals [55]; in particular, the Infomax Algorithm [56] was implemented with
Fieldtrip toolbox [57].

7.2 J-divergence of brain connectivity states

Here, we perform the J-divergence analysis on real motor-imagery data. To this aim,
we take EEG signals from one subject and NT trials for H1 and NT trials for H0, with
NT = 20. We use spectral coherence to build the connectivity matrix, as in Eq. (19).

Then, the estimated adjacency matrix Â is computed as in Eq. (20), and thanks to

the Eq. (2), we can derive L̂. As for synthetic data, we compute the filtered graph
laplacian L̃ with the subset UL∪H . We compare results on real data with UALL, UH , UL.
In each case, we compute J-divergence J as in Eq. (10) and the marginal contribution
Jn associated to the n-th variable as in Eq.(15).

Table 3. J-divergence values on real data. We report in bold characters the highest J-divergence
value.

Fig 8. Results of J-divergence analysis for real data. We report the CJn in Eq.(21) as function
of the involved variables. In the different colors (shown in the legend) we represent the different
sub-spaces used for filtering.

In Table 3, we report J-divergence results for each sub-space configuration. Comparing
all the methods, the highest J value relates to UL∪H case. This result is very important
because it means that the sub-space UL∪H is suitable to separate real EEG data and it
is useful to correctly detect the subject mental state.

With the aim of understanding the contributions of different variables, we firstly
compute the Jn marginal contributions to obtain a weight to each variable in the
transformed domain. Then, we compute the cumulative sum of the first n variables.
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Once the Jn vector is sorted, we evaluate the cumulative J-divergence CJn to investigate
the impact of the variables to the total J-divergence, as follows:

CJn =

n∑
k=1

Jk (21)

Results in Fig. 8 show that the cumulative sum of the first 20 variables, is always higher
for UL∪H than all the other sub-space configurations. In other words, if a given number
of variables are retained, the overall achieved J-divergence is always larger using the
proposed denoising algorithm. This confirms the contribution of the proposed Laplacian
denoising to discrimination of the two mental states.

7.3 Scoring of Laplacian coefficients in β band

Given that the filtering with UL∪H enables a better discrimination between motor
imagery and resting state, we now exploit the above introduced scoring procedure to
determine, based on an information theoretic grounded criterion, which connectivity
coefficients mostly contribute to separate the resting and motor imagery states.

To proceed, it is important to underline that the brain response to motor tasks in
general is not uniform across the frequencies, but it is mostly evident in α (8-13 Hz) or
β (14-29 Hz) band [58], depending on the subject.

As a proof of concept, we show results in β band, but in a training BCI scenario, the
frequency band of interest can be tuned according to the subject response. Here, we
filter the connectivity matrix in the selected frequency band, as follows:

Âij =
∑

ωk/Ts∈β

Cij(ωk) (22)

Thereby, having stated that the denoising based on UL∪H sub-space provides best
results in separating Laplacians under H1 and H0, we restrict the analysis to UL∪H and
UALL for score analysis in β band. We compute the scores as described in section 5(A)
and we report the score results in Fig. 9. In the first row, we collect the results referring
to extra diagonal elements of L̃, i.e. links, and in the second row, we report results for
diagonal elements, i.e. nodes weights. Besides, on the left and right columns we provide
the results achieved without and with application of the proposed Laplacian denoising.

The first interesting observation is that, also when the analysis is restricted to the β
band, application of the proposed denoising improves the J-divergence of the observed
connectivity states (from 79.47 to 160.77).

As far as the score analysis is concerned, different remarks are in order.
In Fig. 9(c-d), the score associated to nodes weigths (Laplacian diagonal elements )

is represented. The score range in absence of denoising is smaller, ie. maximum values
are 0.4 and 0.7. Furthermore, the scoring obtained without denoising is larger on nodes
located in frontal, temporal or parietal area, such as FPZ and P4. After denoising, the
scores are more pronounced on sensory-motor areas, and we are able to pinpoint some
more relevant nodes, such as C2 and FC5. Let us now analyze the score associated to
links’ weigths (Laplacian extra- diagonal elements). In absence of denoising, recognizing
contributions of different brain areas is difficult because all the link weights are generally
low, ie. between 0 and 0.035. Besides, we can observe that the 20 links with highest score
do not involve sensory-motor nodes. On the contrary, when the denoised Laplacian is
considered, link scores achieve higher values, i.e. 0.42, the strongest links are localized in
sensory-motor areas, and links connecting contro-lateral motor areas, such as CP3 − C3

rank highest.
Thereby, the scoring based on the denoised Laplacian provides a mean for analysis

and interpretation of the observed connectivity states.
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Fig 9. Results of score computation for real data. We report results for UALL subspace filtering
in panels a,c);for UL∪H subspace filtering in panels b,d). In the first line, score values refer
to links (i.e. extra-diagonal elements) and in the second line, they relate to elements in the
principal diagonal (i.e. nodes). For sake of clarity, in all the figures we plot the 20 nodes or
links with highest score.

7.4 Fast estimation of Laplacian coefficients in β band

BCIs aim to provide real time interaction between the subject and the interface [54, 59];
thereby, reducing the observation time Toss for Laplacian estimation is beneficial for
potential applicability to online motor-imagery BCI. With this application framework
in mind, we test the Laplacian denoising when the observation time window length is
reduced to Toss = 1s. In the following we consider a moving window of length Toss = 1s
and shift it by m∆t,m = 0 · · ·M − 1, with M = 9 ∆t = 0.5s, so as to analyze the total
available recording length of 5s over nine 50% overlapping temporal intervals. [60].

For each of the 20 subjects of the experimental study, we compute the spectral
coherence on the m-th temporal interval, m = 0 · · ·M − 1 as in Eq. (19) both for resting
(H1) and motor imagery (H0) state. Then we derive the conditional (H1, H0) estimated
adjacency matrix Â as in Eq.(22), the estimated graph laplacian L̂ as in Eq. (3), and
its denoised version L̃ as in Eq.(7). Then, we evaluate the J-divergence between the
two hypotheses as in Eq. (15). Finally, we average the J obtained on the m-th window
m = 0 · · ·M − 1 in each time-interval across subjects. For comparison sake, we repeat
the above computations in absence of denoising.

Fig. 10 reports results of this analysis by plotting the J-divergence, averaged across
subject, as a function of the time window index m, m = 0 · · ·M − 1. Our findings show
that in the majority of the considered time intervals, i.e. on 7 intervals out of 9, the
denoised Laplacian L̃ , leveraging the UL∪H subspace, leads to higher J-divergence than
the estimated Laplacian L̂ (UALL subspace). This result is really interesting because it
shows that, even with short time-interval, our method succeeds in separating the two
mental states. The above findings on real EEG data show that the proposed Laplacian
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Fig 10. Results of J-divergence analysis over a moving window on real data. We plot the
J-divergence over M = 9, 1s long, time intervals with 50% overlapping, versus the time interval
index. The J-divergence is computed in β band and averaged across subjects.

denoising applies also on short time-windows and improves the potential to correctly
detect motor imagery state. This paves the way to application of the proposed Laplacian
denoising to real BCI applications.

8 Conclusion and further work

This work has proposed a Laplacian denoising algorithm for the purpose of graph
connectivity states detection. A novel formulation of the Jensen divergence has been
derived. The J-divergence formulation is used to quantify the performance of the denoising
algorithm, as well as to attribute a score to the Laplacian coefficients in terms of their
contribution to the connectivity states separability. The Laplacian denoising algorithm
performances are assessed by numerical simulations on synthetic data. Furthermore, the
Laplacian denoising algorithm has been applied to real EEG data acquired within motor
imagery BCI experiments. The proposed Laplacian denoising improves the separation
of the two mental states of motor imagery and resting state, even under restrained
observation time intervals. Besides, the J-divergence based scoring sheds light over
the contribution of different connectivity coefficients to motor imagery state detection.
Thereby, the proposed approach is promising for the robust detection of connectivity
states while being appealing for implementation in real-time BCI applications.

Appendix A Theorem 1

Let us consider the problem of binary classification of Gaussian variables H0 : x ∼
N (0, I), H1 : x ∼ N

(
η,Σ2

)
, corresponding to the uncommon mean, uncommon

covariance case, by means of the LLRT formulation in Eq.(11). By simple algebraic

manipulation, we recognize that the test R(x)

H1
↑
≷
↓

H0

t′ corresponds to:

R′(x) =

P∑
n=1

σ2
n − 1

σ2
n

∣∣∣∣xn +
ηn

σ2
n − 1

∣∣∣∣2︸ ︷︷ ︸
P quadratic terms

+

N∑
n=P+1

2ηn · xn︸ ︷︷ ︸
N−P linear terms

H1
↑
≷
↓

H0

t′′
(23)
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with t′′= t′ +
∑P
n=1 |η2n|

[
σ2
n

(
σ2
n − 1

)]−1
.

Let us consider the linear-quadratic observation space Ξ of the N -dimensional random

vector ξ
def
= [ξ1 . . . ξN ]

T
defined as (see Eq. (14))

ξn =

(
xn +

ηn

σ2
n − 1

)2

= x2n + 2 xn
ηn

σ2
n − 1

+

(
ηn

σ2
n − 1

)2

;n = 1, . . . , P

ξn = xn, n = P + 1, . . . , N

(24)

In the space Ξ the LLRT R′(x)

H1
↑
≷
↓

H0

t′′ rewrites as follows:

N−1∑
0

aLLR,nξn = aH

LLR · ξ
H1
↑
≷
↓

H0

t′′ (25)

where the elements of aLLR
def
= [aLLR,1, . . . , aLLR,N ]

T
are:

aLLR,n
def
=


σn − σ−1n

σn
for n = 1, P

2ηn for n = P + 1, N
(26)

With these positions,

J
def
= E {R(x)|H1} − E {R(x)|H0}
= E {R′(x)|H1} − E {R′(x)|H0}

=

N−1∑
n=0

aLLR,n (E {ξn|H1} − E {ξn|H0})

(27)

By computing the above expectations it can be straightforwardly shown that the n-th
term aLLR,n (E {ξn|H1} − E {ξn|H0}) of the above sum equals to

Jn
(σn,ηn) =

σn − σ−1n
σn

(
σ2
n + η2n + 2

η2n
σ2
n − 1

− 1

)
=
(
σn − σ−1n

) [(
σn − σ−1n

)
+
η2n
σn

σ2
n + 1

σ2
n − 1

]
=
(
σn − σ−1n

)2 [
1 +

η2n
σn

σ2
n + 1(

σn − σ−1n
)

(σ2
n − 1)

]

=
(
σn − σ−1n

)2 [
1 +

η2n
σn

σn + σ−1n(
σn − σ−1n

)2
]
, n = 1, · · ·P

Jn
(ηn) = 2η2n, n = P, · · ·N − 1.

(28)

and
J (ηn)
n = 2η2n, n = P, · · ·N − 1. (29)

QED.
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