
HAL Id: tel-03521806
https://hal.inria.fr/tel-03521806

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling, Reverse Engineering, and Learning Software
Variability
Mathieu Acher

To cite this version:
Mathieu Acher. Modelling, Reverse Engineering, and Learning Software Variability. Software Engi-
neering [cs.SE]. Université de Rennes 1, 2021. �tel-03521806�

https://hal.inria.fr/tel-03521806
https://hal.archives-ouvertes.fr

Habilitation à diriger

des recherches

Mathieu Acher
Université de Rennes 1

Institut Universitaire de France (IUF)

Ecole Doctorale n° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Modelling, Reverse Engineering, and Learning
Software Variability

Habilitation présentée et soutenue à Rennes le 16 Novembre 2021
Unité de recherche : IRISA – UMR6074

Composition du Jury :
Rapporteurs
Krzysztof Czarnecki Professor

University of Waterloo, Canada
Ina Schaefer Professor

Technische Universität Braunschweig, Germany
Romain Rouvoy Professor

University of Lille, IUF, France

Examinateurs

Julia Lawall Senior Research Scientist
Inria, France

Christian Kästner Associate Professor
Carnegie Mellon University, USA

Jean-Marc Jézéquel Professor
University of Rennes 1, France

2

Contents

1 Introduction 5
1.1 Context . 6
1.2 Challenges and Objectives . 9
1.3 Overview of Scientific Contributions . 12
1.4 Research Methods . 13
1.5 Supervision . 15
1.6 Grants, Contracts, and Projects . 16
1.7 Organization of the manuscript . 16

2 Modelling Software Variability 19
2.1 Automated feature model management . 20

2.1.1 Composing and decomposing feature models 22
2.1.2 FAMILIAR, a language for combining feature model operators 30

2.2 Feature models and product comparison matrices 33
2.3 Sampling feature models’ configurations . 44

2.3.1 Effectiveness of sampling strategies for testing 44
2.3.2 Scalability and quality of uniform samplers 55

2.4 In search of the right variability language and models 61
2.5 Wrap-up, applicability, and limitations . 71

3 Reverse Engineering Software Variability 73
3.1 Synthesizing attributed feature models out of tabular data 74
3.2 Mining variability out of textual descriptions . 82
3.3 Reverse engineering Web configurators . 90
3.4 Reverse engineering architectural variability models 96
3.5 Wrap-up, applicability, and limitations . 108

4 Learning Software Variability 109
4.1 Learning variability constraints . 110

4.1.1 Using machine learning to infer constraints 111
4.1.2 Learning contextual variability models 121

4.2 Adversarial learning for variability . 124
4.3 Learning variability performance . 131
4.4 Transfer learning across variants and versions: the case of Linux 138
4.5 Wrap-up, applicability, and limitations . 152

3

4 CONTENTS

5 Conclusion 153

6 Perspectives 155
6.1 Deep Software Variability . 155
6.2 Software Variability and Security . 157

6.2.1 Debloating software variability . 157
6.2.2 Variability data and security . 159
6.2.3 Linux configurations and security . 159

6.3 Smart Build of Software Configurations . 160
6.4 Software Variability and Science . 161

Bibliography 165

Chapter 1

Introduction

Demander quelque chose au sujet d’une
chose en termes d’elle-même, ce n’est en
rien faire une recherche; mais pour se
poser vraiment une question au sujet de
quelque chose, il faut s’interroger sur
autre chose

Thomas d’Aquin, Commentaire de la
Métaphysique d’Aristote,
L. VII, leçon 17, § 1664.

Since the very beginning of my research journey in 2008, the idea of varying software has
never stopped to fascinate me. Without much surprise, I am starting this manuscript and first
chapter with a gentle introduction to software variability (Section 1.1). I continue this chapter
with the challenges and objectives addressed in the contributions presented in this habilita-
tion (Section 1.2). Then I present an overview of my contributions (Section 1.3). Section 1.4
describes the research methods followed during my research activities. Since the contribu-
tions are the result of a collaborative effort, I list in Section 1.5 the various collaborations
with students, researchers and software engineers who contributed to the results. Section 1.6
presents the research grants, industrial contracts and collaborative projects which supported
the overall research activities. Finally, Section 1.7 describes how to read the document.

Contents
1.1 Context . 6

1.2 Challenges and Objectives . 9

1.3 Overview of Scientific Contributions . 12

1.4 Research Methods . 13

1.5 Supervision . 15

1.6 Grants, Contracts, and Projects . 16

1.7 Organization of the manuscript . 16

5

6 CHAPTER 1. INTRODUCTION

1.1 Context

There is no doubt that the world is becoming increasingly dependent on software. It is now
an essential element of many organizations (finance, retail, public sectors) and even our daily
lives depend on complex software-intensive systems, from banking and communications to
transportation and medicine. For decades, the challenge for the research community and
the industry has been to provide the right languages, abstractions, models, methods, and
tools to assist software developers in building high-quality software capable of fitting various
requirements, contexts, and usages. Society expects software to deliver the right functionality,
in a short amount of time and with fewer resources, in every possible circumstance whatever
are the hardware, the operating systems, the compilers, or the data fed as input.

For fitting such a diversity of needs, it is common that software comes in many variants
and is highly configurable through configuration options, runtime parameters, conditional
compilation, command-line options, configuration files, plugins, etc. Web browsers like Fire-
fox or Chrome are available on different operating systems, in different languages, while
users can configure hundreds of preferences or install numerous 3rd parties extensions (or
plugins). Web servers like Apache, operating systems like the Linux kernel (see Figure 1.1(c)
and 1.1(d)), or a video encoder like x264 (see Figure 1.2(d) and 1.2(c)) are additional examples
of software systems that are highly configurable at compile-time or at run-time for delivering
the expected functionality and meeting the various desires of users. As there is no one-size-
fits-all solution, software variability ("the ability of a software system or artifact to be efficiently
extended, changed, customized or configured for use in a particular context") has been studied the
last two decades and is a discipline of its own [295, 251, 33, 276]. It is also known in the
research community as Software Product Line (SPL) engineering. For decades, international
conferences like SPLC or VaMoS have brought together numerous academics and industrials.
Different problems are considered in the community and target software product lines, con-
figurable systems, dynamic adaptive systems, and variability-intensive systems in general.
SPL engineering pursues the goal of developing a family of related products (aka variants),
by embracing the ideas of mass customization and software reuse. It focuses on the means
of efficiently producing and maintaining multiple similar software products, exploiting what
they have in common and managing what varies among them.

This is analogous to what is practiced in the automotive industry, where the focus is on
creating a single production line, out of which many customized but similar variations of a
car model are produced. It should be noted that the automotive industry is now facing the
challenge of embedding custom software into their car model. Stated differently, product
line engineering is also a software product line engineering problem. Figure 1.1(a) and 1.1(b)
give another intuition of SPL engineering: when variability is well managed, it is easier
to produce variants. Of course, the underlying artefacts as well as the number of possible
variants in real-world systems are much more complex than this kids’ puzzle.

1.1. CONTEXT 7

(a) Kids’ puzzle (variability is a mess) (b) Re-engineering variability (ready to assemble)

(c) Linux menuconfig (general) (d) Linux menuconfig (security)

(e) Customizable model (3D printing)

Figure 1.1: Software variability in the wild: A gallery

8 CHAPTER 1. INTRODUCTION

(a) JHipster variability (Java)

(b) JHipster variability (Maven)

(c) Variability in x264 code

(d) x264 command-line options

Figure 1.2: Software variability in the wild: A gallery

1.2. CHALLENGES AND OBJECTIVES 9

In SPL engineering as in many software engineering contexts, software variability is a key
concern. Different kinds of users are intensively relying on software variability:

- end-users through e.g., menu preferences or configurators [179], potentially non com-
puter experts;

- administrators, release or product managers in charge of configuring, compiling and
deploying software systems in variable settings [275];

- developers in charge of implementing, maintaining, and testing software variabilty;

- scientists that rely on software to analyze data and need to calibrate their solutions [77];

- software systems themselves are capable of automatically varying on-demand [137, 221,
169, 298].

Software variability spans multiple application domains (see Figure 1.1, 1.2 and 1.3):
operating systems, 3D printing, document generation, video encoding, computer vision,
puzzles/games, Web applications, etc. Different kinds of artefacts, involving different soft-
ware languages, are subject to variations (e.g., videos, Java, C, LaTeX, or Python programs,
Maven files).

1.2 Challenges and Objectives

Though highly desirable, software variability also introduces an enormous complexity due
to the combinatorial explosion of possible variants. For example, the Linux kernel has 15000+
options and most of them can have 3 values: "yes", "no", or "module". Overall, there may be
more than 105000 possible variants of Linux (the estimated number of atoms in the universe
is 1080 and is already reached with 300 Boolean options). Though there are numerous con-
straints among Linux options, the number of possible variants is enormous. Furthermore,
building one configuration of the Linux kernel is costly: around 8 minutes on average on a
recent machine [5]. Linux is an extreme case, but other systems quickly induce combinat-
orial issues related to variability. The video encoder x264 provides a help page of 400 lines,
documenting dozens of options (see Figure 1.2(d)). In the 3D printing area, a customizable
model may provide dozens of Boolean and numerical options leading to billions of possible
variants (see Figure 1.1(e)). In practice, it is hardly possible to fully explore and understand
all software options, in all possible settings. This situation has several consequences. On the
one hand, developers struggle to maintain, understand, and test variability spaces since they
can hardly analyze or execute all variants in every possible settings. According to several
studies [275, 135], the flexibility brought by variability is expensive as configuration failures
represent one of the most common types of software failures. On the other hand, end-users
fear software variability and stick to default configurations [323] that may be sub-optimal
(e.g., the software system will run very slowly) or simply inadequate (e.g., the quality of the
output will be awful).

10 CHAPTER 1. INTRODUCTION

(a) VaryLATEX [26] (b) Feature interaction https://www.cs.bgu.ac.il/
~yoavg//tech-notes/heblatex/

(c) Web generator [48] (entertainment)

(d) Chess puzzle variants http://blog.mathieuacher.com/
ProgrammingChessPuzzles/

(e) Video variant [7] (f) Video variant [7] (bis)

Figure 1.3: Software variability in the wild: A gallery (cont’n)

https://www.cs.bgu.ac.il/~yoavg//tech-notes/heblatex/
https://www.cs.bgu.ac.il/~yoavg//tech-notes/heblatex/
http://blog.mathieuacher.com/ProgrammingChessPuzzles/
http://blog.mathieuacher.com/ProgrammingChessPuzzles/

1.2. CHALLENGES AND OBJECTIVES 11

There are several research questions that can be addressed:
- Is there a common language to express variations in artefacts as different as videos, 3D

model, Java source code, Maven file, or operating systems? Owing to the diversity of
situations (see Figure 1.1, 1.2 and 1.3), finding an universal formalism might be hard.
Hence a more reasonable objective is to find reusable constructs that can be applied for
systematically expressing variability.

- How to verify and validate variability-intensive systems? There are subtle interactions
among options (or features) that cause bugs (see Figure 1.3(b)). Looking at the Java
code snippet of Figure 1.2(a), the reader can feel the underlying complexity: Will the
Java code compile whatever options’ values fed to the generator? Will this Java code
be running consistently with the variations also expressed in the Maven file (see Fig-
ure 1.2(b))? The challenge is mostly to deal with the combinatorial explosion, which
requires adapting verification techniques or considering a limited sample of configura-
tions.

- How to assist users in configuring software systems? Among the numerous possible
configurations and variants, the objective is to find a subset that fits e.g., performance
requirements. For instance, what parameters’ values should be set for the video encoder
x264 (see Figure 1.2(d)) in case a fast execution time is a top priority? A challenge is
again the enormous variability space: it is practically impossible to execute and measure
all configurations a priori.

- Where is software variability in the wild? Can we identify, extract, re-engineer, or
improve such variability? Figure 1.1, 1.2 and 1.3 give some examples, but there are
many other domains, systems, and engineering contexts worth considering.

The list of questions is of course non-exhaustive but I consider them as quite representat-
ive of the open problems investigated in the field. A requirement that is common to all these
questions is the ability to synthesize the right abstractions (models) for expressing, verifying,
validating, and configuring software variability. Without a proper representation of the vari-
ability, it is hard, not to say impossible, to explore, observe, and reason about the space of
possible variants. In short, a key and central question addressed in this HDR manuscript is:

How to model software variability?

12 CHAPTER 1. INTRODUCTION

reverse modelling

learning

variability

Figure 1.4: Modelling, reverse engineering, and learning software variability

1.3 Overview of Scientific Contributions

I am not formulating a complete answer to the question now and here, Chapter Conclusion
will. I have followed three different paths to model variability (see Figure 1.4).

Firstly, I contribute to support the persons in charge of manually specifying feature mod-
els, the de facto standard for modeling variability. I develop an algebra together with a lan-
guage for supporting the composition, decomposition, diff, refactoring, and reasoning of
feature models [16, 20, 47]. A key idea is to rely on logics to provide guarantees about the
configuration semantics. I further establish the syntactic and semantic relationships between
feature models and product comparison matrices, a large class of tabular data [271, 52]. I then
empirically investigate how these feature models can be used to test in the large configurable
systems with different sampling strategies [135, 249]. Throughout this path, I continuously
report on the attempts and lessons learned when defining the "right" variability language [27].

Secondly, I contribute to synthesize variability information into models and from various
kinds of artefacts. I develop foundations and methods for reverse engineering variability
models from satisfiability formulae [47, 51], product comparison matrices [49, 102], depend-
encies files and architectural information [54], and from Web configurators [179, 178]. The
underlying objective of this research direction is to automate the task of modeling variabil-
ity and exploit opportunities to mine variability information informally expressed here and
there. I also report on the degree of automation and show that the involvement of developers
and domain experts is beneficial to obtain high-quality models.

Thirdly, I contribute to learning constraints and non-functional properties (performance)
of a variability-intensive system [298–300, 28, 209, 200, 25]. I describe a systematic process [29]
"sampling, measuring, learning" that aims to enforce or augment a variability model, captur-
ing variability knowledge that domain experts can find it difficult to express. I show that
supervised, statistical machine learning can be used to synthesize rules or build prediction
models in an accurate and interpretable way. This process can even be applied to a huge
configuration space, such that of the Linux kernel one [25, 208].

1.4. RESEARCH METHODS 13

Finally, I show that the three contributions "modeling", "reverse engineering", and "learn-
ing" (1) have pros and cons, (2) can be combined to produce an integrated variability model
of a system under study (see coloured part of Figure 1.4).

1.4 Research Methods

As part of my research in software variability, software product line engineering, and config-
urable systems, I am trying to consider:

- as much as possible application domains (medical imaging and grid computing during
my PhD, and then video processing, 3D printing, paper generation, Web applications,
operating systems, etc.). A key lesson I learned during my PhD is the added value of
collaborating with domain experts to better understand the specificites of their prob-
lems. The diversification of application domains is also a good way to question your
proposal, being a theory, a method, or a tool. Section "In search of the right variability
language and models" gives a good example of this questioning;

- widely-used, realistic open source projets (JHipster, Linux, x264, etc.) or industrial sys-
tems (collaborations with Thales, DGA, etc.). It is related to the first point: working on
real-world projects challenges your contributions. There is also the ambition to have
concrete impact on the practices and quality of software projects (see Section "Effect-
iveness of sampling strategies for testing", Section "Reverse engineering architectural
variability models" and Section "Learning variability constraints" for examples);

- classes of general problems e.g., reverse engineering and more recently "learning" soft-
ware variability spaces. Decomposing the variability problem is definitely helpful. A
challenge and actually a contribution is to identify such relevant sub-problems (see the
three next chapters) and then connect them together (see the conclusion of the manus-
cipt);

- different techniques at the intersection of software engineering and artificial intelligence
(SAT solving/CP programming, supervised machine learning, software testing/per-
formance engineering, model-driven engineering, etc.). As part of the research, there
are two aspects to consider: i) identifying what is suited for the targeted problem; ii)
properly combining the techniques. There are many examples in this manuscript;

- both foundational and empirical approaches: On the one hand, I am convinced formally
defined solutions with guaranteeing properties (e.g., soundness) are sometimes possible.
On the other hand, identifying what kinds of distributions are relevant to the “real
world software” is a key issue. Overall, the two approaches are complementary and
my ultimate goal is to understand what kinds of algorithms perform well on software
variability data drawn from the kinds of distributions we care about. For instance, the
foundations for reverse engineering Web configurators have been designed thanks to
an in-depth, empirical study (see Section Reverse engineering Web configurators);

- variability techniques beyond the engineering of "pure" software product lines: see
above the application domains, but also publications related to Wikipedia [271, 142] or
testing (e.g., multimorphic testing [296]). I consider the scope of software variability is
still expanding and should not be restricted to classes of software systems (e.g., software
product lines).

14 CHAPTER 1. INTRODUCTION

Case studies. I have used different research methods (controlled experiments [249, 28], sur-
vey [29, 23], etc.). The tradeoff to find between internal and external validity is one of the
most challenging issue I faced as a researcher and academic [286]. However I must admit
I have been much more comfortable with case study research. More specifically, I like to
focus on one specific subject system or domain at a time. As a researcher, you can deeply
understand the specificities of the problem, report on qualitative insights, and possibly con-
front quantitative insights (e.g., metrics) with domain experts. It is quite difficult to repeat the
effort for as many systems or at least to comprehensively report on the findings into a paper.
On the other hand, you cannot generalize from one case; it is simply not the goal. The hope
is that other studies are performed to validate or refute your findings, methods, or theories.
Besides, some works consider a large number of of systems. However, when digging into
the individual systems, I have observed that the assumptions made about the systems and
the problem do not hold – and so the solution. Stated differently, some papers are trying
to mitigate external validity with the inclusion of many systems, but what if the individual
systems are superficially treated? Do not get me wrong: there are plenty of excellent papers
with multiple systems that do not have such limitations; we definitely need them. My point
is that this phenomenon can be better controlled with the focus on specific cases.

The role of teaching software variability I like very much teaching, especially when it is re-
lated to advanced research topics and open problems (e.g., see my report of a representative
year http://blog.mathieuacher.com/Teaching1819/ in non-COVID era). In fact I
consider that teaching can be beneficial for research. I have tried to follow the moto "Teach or
perish!": What is the point of doing research in the software variability field if you are unable
to disseminate your results and train the engineers of tomorrow? As other colleagues advoc-
ated [23], teaching software variability is challenging. I toke this challenge as an opportunity
to question my own research and results of the state of the art. For instance, interactions
with students strongly influenced the work on product comparison matrices, since the rela-
tionship with feature models was not crystal clear. I also use courses to explore some ideas
(e.g., metamorphic domain-specific languages [19], multimorphic testing [296]). Overall I see
teaching as an interesting feedback-loop for testing and refining variability-related works.

From this perspective, I am co-leading a worldwide initiative http://teaching.variability.
io/ for disseminating the constantly growing body of software product line knowledge. This
repository aims to share and deliver teaching material related to variability, configurable sys-
tems or generative approaches. It is notably the result of three international workshops I have
co-organized and various surveys [23].

Software development Together with students and colleagues, I have developed numerous
software projects mainly to support reseach activities but also with the objective of hav-
ing concrete impacts. FAMILIAR (see Section FAMILIAR, a language for combining fea-
ture model operators), OpenCompare (see Section Feature models and product comparison
matrices), VM (see Section In search of the right variability language and models), TuxML
(see Section Transfer learning across variants and versions: the case of Linux) are the most
visible and have required substantial effort. Some of these projects are unfortunately no
longer maintained. Finding a sustainable model is a difficult challenge that goes beyond
academic concerns. Despite relative failures, I am still a strong supporter of developing soft-
ware. First, you can find new research opportunities along the way, potentially outside your

http://blog.mathieuacher.com/Teaching1819/
http://teaching.variability.io/
http://teaching.variability.io/

1.5. SUPERVISION 15

Name Rate Period Funding Topic Position

Sana Ben Nasr 60%
2013-2016

(defense: apr. 2016)
CONNEXION project

(with EDF)
Mining and

modeling variability
PhD student

Guillaume Bécan 70%
2013-2016

(defense: sep. 2016)
MESR

Reverse engineering
and synthesis

PhD student

Paul Temple 50%
2015-2018

(defense sep. 2018)
MESR Learning variability PhD student

Quentin Plazar 50%
2015-2018

(not defended)
ANR SOPRANO Automated reasoning PhD student

Hugo Martin 50%
2018-2021

(defense: planned)
ANR VaryVary Learning variability PhD student

Luc Lesoil 50% 2020-2023 ANR VaryVary Deep Variability PhD student
Juliana Alves Pereira 100% 2018-2020 ANR VaryVary Learning variability Post-doc

Jin Hyun Kim 50% 2014-2016 SAD (Britany region) Formal verification Post-doc

Mauricio Alvares 50% 2012-2014
MOTIV project

(DGA+Bertin+InPixal)
Modeling variability Post-doc

Xhevahire Tërnava 100% 2020-2022 SLIMFAST Debloating variability Post-doc

original domain of expertise (see e.g., [19, 45]). Second, you can understand in a fine-grained
way some (software) engineering problems through practice. I am still developing with my
students and hope to continue. Third, I consider reproducible software is mandatory to con-
duct research (see also Section Software Variability and Science). Fourth, I still have hope
that one day we will be able to develop mainstream solutions.

Community and collaborations Finally, my research activities are strongly grounded in
many collaborations. Most of the results are acknowledged to the various Master and PhD
students, software engineers and post-doctoral researchers that I have been pleased to su-
pervise (see Section 1.5). Also, the vision I developed has been motivated and evaluated on
case studies provided by industrial partners which are essential to keep focus and problem-
driven the research activities (see Section 1.6). Finally, most of the ideas result from various
discussions and collaborations with colleagues around the world, either within collaborative
projects or through informal discussions in scientific events (visits to universities, workshops,
seminars and conferences).

1.5 Supervision

The work presented here results from collaborations I have had with many researchers all
over the world, my colleagues in the DiverSE team, as well as students I supervised dur-
ing their Masters and PhD thesis, and post-docs I supervised and worked with on specific
projects. I have co-supervised 4 PhD theses, 3 of which were defended in April 2016, Septem-
ber 2016, and December 2018, and one thesis not defended (despite publications at IJCAI
2017 [248] and ICST 2019 [249]). I am currently co-supervising 2 PhD theses. I have also
supervised 3 post-docs and I am currently supersing 1 post-doc as part of SLIMFAST.

In addition to the PhD students I officially supervised at University of Rennes 1, France, I
also enjoyed to closely work with various other PhD students in their research projects [271,
106, 267]. I was in the PhD defense of Bosco Filho, Ebrahim K. Abbasi, and in the PhD
committee of José Galindo.

16 CHAPTER 1. INTRODUCTION

I have also supervised Master thesis oriented towards research: Axel Halin and Alexan-
dre Nuttinck (University of Namur) [135, 136], Benoit Amand (University of Namur) [31],
Georges Aaron Randrianaina (ENS Rennes), Paul Le Gall, Bruno Merciol.

Finally, I have have been fortunate to supervise a number of students for developing
software related to research activities (FAMILIAR, opencompare, TuxML, etc.).

1.6 Grants, Contracts, and Projects

The research work presented in this document has been supported by various research grants,
bilateral contracts with industry, as well as international and national collaborative projects.
They provided the necessary funding to realize the research work, including the research staff
(internships, PhD students, post-doctoral researchers and software engineers) and scientific
environment. These collaborations also provided great opportunities to motivate, challenge,
experiment, and possibly validate our solutions in industrial settings.

Among others, the ITEA2 MERgE (http://www.merge-project.eu/) supported the devel-
opment of the research work related to variability in systems engineering, especially thanks to
collaborations with Melexis and Thales [313, 198]; the Inria-Thales bilateral contract VaryMDE
2011-2015 (Variability in Model Driven Engineering, http://varymde.gforge.inria.
fr/) supported the research work related to the reuse and variability management of mod-
eling languages; the CONNEXION project (collaboration with EDF) challenged us to mine
variability in textual documents; the MOTIV project (collaboration with DGA, Bertin, and
InPixal) investigated variability in the video domain.

More recently, I am fortunate to lead the VaryVary ANR JCJC (see https://anr.fr/
Projet-ANR-17-CE25-0010 and https://varyvary.github.io/). I am also leading
the SLIMFAST project (funded by Britany region and DGA).

1.7 Organization of the manuscript

How to read this manuscript? I am using two kinds of boxes throughout the 12 sections
of the 3 core chapters. First, I am mentioning the main publications related to each section.
There are three reasons: (1) I am intensively reusing the material of such publications; (2) the
interested reader can find more details; (3) the publications are representative of a research
line I have investigated.

Second, I have made the effort to verify whether my work can be potentially reproduced.
I am mentioning online resources that reference tools, data, script, documentation, models,
etc. developed as part of the conducted studies. The interested reader can use these resources
to continue the research. From a personal perspective, I found this exercise interesting, but it
also raises some questions (see also Section Software Variability and Science).

replication

http://varymde.gforge.inria.fr/
http://varymde.gforge.inria.fr/
https://anr.fr/Projet-ANR-17-CE25-0010
https://anr.fr/Projet-ANR-17-CE25-0010
https://varyvary.github.io/

1.7. ORGANIZATION OF THE MANUSCRIPT 17

Terminology The term "feature" is used all over the manuscript. Features can refer to very
different concepts, at different levels of abstractions (e.g., from a portion of code in a C pro-
gram to a high-level description of a product functionality). In a sense, the meaning of feature
is specific to a context and I have tried to clarify it in the dedicated sections. A more prob-
lematic usage of feature is when features actually correspond to a feature in a video, in an
image, or to a predictive variable in a statistical learning problem. For this reason, I am using
the term "option" (or configuration option) to make the distinction between "features" as used
in related domains. However, for some parts of the manuscript, it is simply too difficult and
I stick to "features".

Another potential issue with the terminology is related to configuration vs product vs
variant. Generally speaking, configuration is used at the problem space level and corres-
ponds to an assignment of options’ values. Variants (and products) are used at the solution
space level and are typically built and executed. A configuration is fed to a build system, a
generator, a software product line, or a configurable system to produce and execute a variant
(or product) of the system. However, there are exceptions here and there in the manuscript.
For instance, in a product comparison matrix (see e.g., Section 2.2), the description of product
is rather abstract and resides at the problem space level (i.e., at the same level of abstraction
than a configuration).

I have done my best to use a consistent and unified terminology throughout the manu-
script. Yet, I would not be surprised that some inconsistencies remain. I would appreciate
any feedback to pinpoint some errors.

Novelty As mentioned, I reuse lots of material from previous publications. Beyond a careful
editing, what is new in this manuscript is:

- the contextualization of each chapter and section;

- the "Wrap up, applicability, and limitations" sections at the end of the 3 core chapters
for summarizing a line of research in an original way;

- the "Conclusion" section that answers the question of Section 1.1 and connects the dots
between the three chapters;

- the "Perspectives" section that describes new directions and ideas;

- some retrospective analysis and new concept/terminology (e.g., approximate configur-
ation oracle) in some sections.

Remainder In the rest of this document I first present contributions related to the modeling
of variability (Chapter 2). Chapter 3 describes contributions for reverse engineering models
of variability. Chapter 4 details how learning techniques can be used to refine or augment
variability models. Chapter 5 concludes this document with a wrap-up of the research activ-
ities conducted during the last decade and the main outcomes. Finally, Chapter 6 introduces
a broader vision and four main research directions.

18 CHAPTER 1. INTRODUCTION

Chapter 2

Modelling Software Variability

In this chapter I present a set techniques and formalisms to specify models of variability. I
consider that a model is an abstraction of a system under study (some details are hidden or
removed to simplify and focus attention) [187]. Models are created to serve particular pur-
poses, for example, to present a human understandable description or to present information
in a form that can be mechanically analyzed. This chapter mainly focuses on scenarios in
which persons (domain experts, developers, testers, etc.) elaborate and write models, pos-
sibly with automated facilities to support their (meta-)modelling activities. It is in contrast
with the two next chapters in which, as I will detail, models are automatically obtained, re-
fined or augmented. This chapter also questions the language suited to specify models of
variability. I first focus on the formalism of feature models, then I explain the design of a
metamodel for modelling product comparison matrices, and finally the development of the
VM language to meet the requirements of an industrial video generator.

Section 2.1 describes a generic solution together with a language (FAMILIAR) for com-
posing, decomposing, diffing, and refactoring feature models. Section 2.2 studies so-called
product comparison matrices, their relationships with feature models, and details the data-
driven design of specific metamodels. Section 2.3 investigates how feature models can be
used to test in the large configurable systems with different sampling strategies. Section 2.4
reports on our experience in modelling variability in the video domain.

Contents
2.1 Automated feature model management . 20

2.1.1 Composing and decomposing feature models 22

2.1.2 FAMILIAR, a language for combining feature model operators 30

2.2 Feature models and product comparison matrices 33

2.3 Sampling feature models’ configurations . 44

2.3.1 Effectiveness of sampling strategies for testing 44

2.3.2 Scalability and quality of uniform samplers 55

2.4 In search of the right variability language and models 61

2.5 Wrap-up, applicability, and limitations . 71

19

20 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

2.1 Automated feature model management

The content of this section is adapted from the following publications:
M. Acher, P. Collet, P. Lahire and R. France, ‘FAMILIAR: A Domain-Specific Lan-
guage for Large Scale Management of Feature Models’, Science of Computer Program-
ming (SCP) Special issue on programming languages, vol. 78, no. 6, pp. 657–681, 2013. doi:
{http://dx.doi.org/10.1016/j.scico.2012.12.004}
M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire and R. B. France, ‘Composing
your Compositions of Variability Models’, in ACM/IEEE 16th International Conference
on Model Driven Engineering Languages and Systems (MODELS’13), 2013
G. Bécan, M. Acher, B. Baudry and S. Ben Nasr, ‘Breathing Ontological Knowledge
Into Feature Model Synthesis: An Empirical Study’, Empirical Software Engineering
(ESE), vol. 21, no. 4, pp. 1794–1841, 2016. doi: 10.1007/s10664-014-9357-1.
https://hal.inria.fr/hal-01096969

Designing, developing and maintaining software systems for one customer, one hardware
device, one operating system, one user interface or one execution context is no longer an
option. When properly managed, variability can lead to order-of-magnitude improvements
in cost, time-to-market, and productivity of products. Models are traditionally employed to
formally identify, organize and configure variability of a system, automate the generation
of products as well as their verification. A variety of models may be used for different
development activities and artifacts – ranging from requirements, source code, certifications
and tests to user interfaces. In this line of work, our contributions provide automated support
for composing, decomposing, diffing, and refactoring feature models (see Section 2.1.1). This
support comes with the FAMILIAR language that can be used to address different scenarios
when modelling variability (see Section 2.1.2).

Background about feature models

Feature Models are a widely used formalism for modelling and reasoning about commonality
and variability of a system [94]. A recent survey of variability modelling showed that feature
models are by far the most frequently reported notation in industry [59].

A feature model is a hierarchical organization of features that aims to represent the con-
straints under which features occur together in product configurations. When decomposing
a feature into subfeatures, the subfeatures may be optional or mandatory or may form Xor- or
Or-groups (see Figure 2.1(a) for a visual representation of a feature model). Not all combina-
tions of features (configurations) are authorized by a feature model. Importantly, the hierarchy
imposes some constraints: the presence of a child feature in a configuration logically implies
the presence of its parent (e.g., the selection of F5 implies the selection of F2). The hierarchy
also helps to conceptually organize the features into different levels of increasing detail, thus
defining an ontological semantics.

https://doi.org/{http://dx.doi.org/10.1016/j.scico.2012.12.004}
https://doi.org/10.1007/s10664-014-9357-1
https://hal.inria.fr/hal-01096969

2.1. AUTOMATED FEATURE MODEL MANAGEMENT 21

F6

F2

S

F4F1

F5

fm1

(a) f m1

J f m1K = {{S, F2, F6},
{S, F2, F5, F1},
{S, F2, F5, F4},
{S, F2, F5, F1, F4},
{S, F2, F6, F1},
{S, F2, F6, F4}}
(b) Configurations

φ f m1 = S // root
∧ F2⇔ S // mandatory
∧ F1⇒ S // optional
∧ F4⇒ S // optional
// Xor-group
∧ F5⇒ F2∧ F6⇒ F2
∧ F2⇒ F5∨ F6
∧ ¬F5∨ ¬F6

(c) Boolean formula

Figure 2.1: Feature model, set of configurations and Boolean logic encoding

A valid (or legal) configuration is obtained by selecting features in a manner that respects
the hierarchy and the following rules: i) If a parent is selected, the following features must
also be selected - all the mandatory subfeatures, exactly one subfeature in each of its Xor-
groups, and at least one of its subfeatures in each of its Or-groups; ii) propositional constraints
must hold. A feature model defines a set of valid feature configurations (see Definition 1).
Figure 2.1(b) displays the set of valid configurations characterized by the feature model of
Figure 2.1(a).

Definition 1 (Configuration Semantics) A configuration of an feature model f m1 is defined as a
set of selected features. J f m1K denotes the set of valid configurations of f m1 and is a set of sets of
features.

A feature model is usually encoded as a propositional formula, denoted φ, and defined
over a set of Boolean variables, where each variable corresponds to a feature [99] (see Fig-
ure 2.1(c) for the propositional formula corresponding to the feature model of Figure 2.1(a)).
The terms feature model and feature diagram are employed in the literature, usually to denote
the same concept. In this manuscript, we make a distinction. We consider that a feature
diagram (see Definition 2) includes a feature hierarchy (tree), a set of feature groups, as well
as human readable constraints (implies, excludes). The syntactical constructs offered by such
feature diagrams are not expressively complete w.r.t propositional logics. Similar to [284],
we thus consider that a feature model is composed of a feature diagram plus a propositional
formula ψ (see Definition 3).

Definition 2 (Feature Diagram) A feature diagram FD = 〈G, EMAND, GXOR, GOR, I, EX〉 is
defined as follows: G = (F , E, r) is a rooted, labeled tree where F is a finite set of features, E ⊆ F ×F
is a finite set of edges and r ∈ F is the root feature ; EMAND ⊆ E is a set of edges that define mandat-
ory features with their parents ; GXOR ⊆ P(F)×F and GOR ⊆ P(F)×F define feature groups
and are sets of pairs of child features together with their common parent feature ; I a set of implies
constraints whose form is A⇒ B, EX is a set of excludes constraints whose form is A⇒ ¬B (A ∈ F
and B ∈ F).

Definition 3 (Feature Model) A feature model is a tuple 〈FD, ψ〉 where FD is a feature diagram
and ψ is a propositional formula over the set of features F .

22 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

2.1.1 Composing and decomposing feature models

In an increasing number of scenarios, support for (de-)composing models and their variability
is becoming more and more crucial [16, 68, 72, 261, 139, 140, 69, 163, 11, 265, 83, 155, 278].

Multiple systems When a multitude of subsystems (modular systems such as software
services) or artifacts must be combined, several variability descriptions are to be related, or-
ganized and finally composed to form a consistent result. This context of use is broad, with
first needs on organizing several software product lines (SPLs) with shared variabilities [72],
evolving to compositional SPLs [68], in which a complex domain is captured and organ-
ized [155] into multiple SPLs [140, 265, 307] with relations between input product lines’
variability models. Handling these relations lead to both reasoning about the represented
configuration sets and maintaining a understandable organization (i.e., a feature hierarchy).
However these various usages necessitate different interpretations of the feature model com-
position operation to reflect the captured variable assets.

Multiple stakeholders Together with multiple product lines comes the need to handle dif-
ferent stakeholders on one or several SPLs. Researchers have developed techniques for feature
models that reflect organisational structures and tasks. For example, Reiser et al. [261] address
the problem of representing and managing feature models in SPLs that are developed by sev-
eral companies in the automotive domain. Several feature models are used and structured
hierarchically, so that they can be managed separately by suppliers. The feature model com-
position is then concerned with the propagation of local changes through the hierarchy. In a
similar situation, Hartmann et al. [139] used a feature model in the context of multiple SPLs
supporting several dimensions. It requires the definition of a merging process for feature
models during their pre-configuration.

Multiple perspectives The need for reasoning on feature model compositions while manip-
ulating a consistent feature model hierarchy is also emphasized by the separation of concerns on
variability models. With their increasing complexities and usages, practitioners may define
different viewpoints according to different criteria or concerns. The most used viewpoints
are the ones defining the user-oriented view (external variability) from the technical features
(internal one) [251]. These views have many usages [163, 162, 279], i.e., defining abstrac-
tion layers, reflecting organizational structure with specific stakeholders [207], supporting
collaborative design [214] or multi-level staged configurations [96]. For instance, multiple
feature models are used when modelling variability of the software and the context where
the software is executed (see example in Section Learning contextual variability models or
our contributions with dynamic SPLs [18, 12]). Separation of these views (or concerns) also
means that some relations and compositions must be done at some point to reason over the
whole SPL, with references, constraints [14], a reduced form of composite model, and even
in a semi-automatic way to synthesize an integrated model [16, 265].

As a result, several modelling artifacts, each coming with their own variability and pos-
sibly developed by different stakeholders, should be combined together. Our contributions
are: i) the identification of composition mechanisms and semantic properties for building
more complex composition-based operators on feature models; ii) the development of four
possible variant implementations of such composition-based operators; iii) a reading frame-
work to help select the right composition according to qualities and representative scenarios.

2.1. AUTOMATED FEATURE MODEL MANAGEMENT 23

F6

F2

S

F3F1

F5

(a) f m2

F6

F2

S

F4F1

F5<<implies>>

(b) f m3

F6

F2

S

F3F1

F5

F4
F3 <<excludes>> F4
F3 <<implies>> F1

Ѱ = (F1 v F3 v ~F4 v ~F5 v ~F6)
^ (F1 v F3 v F4 v ~F5 v ~F6)

(c) f mmunion

Figure 2.2: f mmunion is a possible composition of f m1 (of Figure 2.1(a), page 21), f m2, and f m3

Meanings of Composition-based Operators

We first show that several salient variants of composition operators can actually be defined,
depending on the syntactic and semantic properties expected in the composed feature model.

A first illustrative example. Let us consider the composition of f m1, f m2 and f m3 (see
respectively Figure 2.1(a), Figure 2.2(a) and Figure 2.2(b)). We denote by ◦ a composition
operator over feature model that computes a new feature model. In our specific example,
we consider that the composed feature model, denoted f mmunion , should represent the union
of input sets of configurations of f m1, f m2 and f m3, that is: J f mmunionK = J f m1K ∪ J f m2K ∪
J f m3K. Such a composition is typically used to build a new SPL offering all the possible
configurations supported in at least one of the products or SPLs of an organization or a
supplier. Two possible resulting feature models are depicted in Figure 2.2(c) and Figure 2.3.
Intuitively, when features are selected in the composed feature model, it means that the
selection of corresponding features (i.e., with the same names) is valid in either f m1 or f m2
or f m3. For instance, a partial configuration involving the selections of features F1, F2,
and F3 is valid in f mmunion since the combination of features F1, F2, and F3 is also valid in
f m2. However it is not possible to both select features F3 and F4 in f mmunion since no valid
configurations of f m1, f m2 and f m3 support this combination.

Meanings. Obviously, the semantics of the previous composition can be in contradiction
with the intentions, requirements or simply modelling objectives of a practitioner. First there
are different ways of interpreting the way features match and are related to each other (e.g.,
the mapping is not necessarily one-to-one). Second the configuration semantics expressed in
the composed feature model may differ (stakeholders may want to compute the intersection,
the reduced product, the difference, etc. of configuration sets instead of the union). Finally
the conceptual organization of the features in the resulting feature model is another variation.
Due to the variety of compositional scenarios exposed in the introduction, there is no one-
size-fits-all interpretation when feature model have to be composed. In order to address the
variations’ meanings, we identify common mechanisms and present a generic framework to
devise (new) composition-based operators.

24 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

F6

F2

S

F4F1

F5 F6

F2

S

F3F1

F5 F6

F2

S

F4F1

F5<<implies>>

F6

F2

S

F3F1

F5

F4

R

InputFMs

fm1

FMr union

fm2 fm3

(F1 ⬄ (fm1.F1 v fm2.F1 v fm3.F1)) ^
atmost1 (fm1.F1, fm2.F1, fm3.F1) ^
(F6 ⬄ (fm1.F6 v fm2.F6 v fm3.F6)) ^
atmost1(fm1.F6, fm2.F6, fm3.F6) ^
(F4 ⬄ (fm1.F4 v fm3.F4)) ^
atmost1(fm1.F4, fm3.F4) ^
(S ⬄ (fm1.S v fm2.S v fm3.S)) ^
atmost1(fm1.S, fm2.S, fm3.S) ^
(F2 ⬄ (fm1.F2 v fm2.F2 v fm3.F2)) ^
atmost1(fm1.F2, fm2.F2, fm3.F2) ^
(F5 ⬄ (fm1.F5 v fm2.F5 v fm3.F5)) ^
atmost1(fm1.F5, fm2.F5, fm3.F5) ^ (F3 ⬄ fm2.F3)

Ѱr union =

Figure 2.3: Composition of f m1, f m2, and f m3, somehow equivalent to f mmunion . The term
atmost1 (F1, . . . , Fn) is equivalent to ∧i<j(¬Fi ∨ ¬Fj)

S

F4

F8

S

F56

F3

R

InputFMs

fm1

FMr other

fm2 fm3

F8 ⬄ (fm2.F3 v fm1.F4 v fm3.F4) ^
F3 ⬄ (fm1.F3) ^
F4 ⬄ (fm1.F4 v fm3.F4) ^
F56 ⬄ (fm1.F5 v fm2.F5 v fm3.F5 v
fm1.F6 v fm2.F6 v fm3.F6)

S S

Ѱr other =

Figure 2.4: Another composition of f m1, f m2, and f m3 with different matching/merging
strategies and semantic properties

Different Strategies for Matching and Merging The previous strategy for matching/mer-
ging feature models is rather basic and straightforward: features match if they have the same
names while the merging consists in simply creating new features with the same names S, F1,
. . . , F6. However more sophisticated matching and merging mechanisms are needed espe-
cially when input feature models are coming from different sources (e.g., suppliers) or when
the composed feature model should reflect a view of the system that does not necessarily
include all the original details or feature names.

We give an example in Figure 2.4. Firstly, F56 is mapped to features F5 and F6 of input
feature models. The intuition is that either selecting F5 or F6 is sufficient to realize the feature
F56. In a sense, F56 abstracts features F5 and F6 since no distinction is made between F5 and
F6 at the level of abstraction of the view (coloured features). Secondly, F1 is no longer present
in the composed view. It is another form of abstraction: unnecessary details are removed.
Thirdly another feature, named F8, is present in the view and aims to better structure the
feature model, considering that features F3 and F4 are ontologically closed.

Different Semantic Properties The matching and merging mechanisms are the basics for
devising a composition operator. However they do not state what are the properties of the
composed feature model in terms of configuration semantics and ontological semantics. Let us
consider once again the composition of f m1, f m2, f m3 and assume that features F3 match in
the three feature models and are merged as a new feature F3 in the composed feature models.
There is still need to establish the meaning of the new feature F3 in terms of configuration,
i.e., what is the impact of a selection and deselection of F3 in the composed feature model?

2.1. AUTOMATED FEATURE MODEL MANAGEMENT 25

Configuration semantics A first interpretation is that the selection of F3 in the composed
feature model involves the selection of F3 in one and only one input feature model. (It corres-
ponds to the union of configuration sets as considered in the first illustrative example.) The
direct impact of this specific semantics is that the selection of F3 induces in turn the selection
of F1 (see Figure 2.2(c) and Figure 2.3), since there is no SPL that supports F3 without F1.
Another more restrictive interpretation is that the selection of F3 in the composed feature
model forces the selection of all features named F3 in input feature models. If this interpret-
ation is applied on all features, the composition intuitively corresponds to the intersection of
configuration sets. Yet another (less restrictive) interpretation is that the selection of F3 in the
composed feature model forces the selection of at least one features named F3 in input feature
models.

Ontological semantics Another important aspect of feature models is the way features are
conceptually organized in the tree-based hierarchy. Given a set of configurations, there still
exists different candidate feature models yet with different hierarchies [284]. Therefore what
the most appropriate feature hierarchy is should be part of the composition. For instance, a
practitioner may consider that the feature F3 is more appropriately located below the feature
F1 than below the root S in Figure 2.3.

Variations in the Compositions of Feature Models

A composition operator ◦ takes as input a set of FMs and can be customized for supporting
different matching/merging strategies and semantic properties (being related to configur-
ation or ontological aspects) in the resulting FM. The following section addresses another
important and related problem: How to implement these compositions? Different variants
are indeed worth to consider, each having strengths and weaknesses.

Denotational-based Composition (Logic-based) The logic-based implementation consists
in i) encoding the expected configuration set of the composed feature model as a Boolean for-
mula φc ii) synthesizing the feature diagram from φc. Figure 2.5(a) summarizes the process.
The first step is to compute φc. All input FMs (resp. f m1 and f m2) are encoded as Boolean
formula (resp. φ1 and φ2). Then the composition operator is denoted (or translated) in the
Boolean logic. If we consider the case of union (see the first illustrative example), the de-
notational operator roughly corresponds to a disjunction of formulae (details have been given
in [14]). Similar denotations can be applied for computing the intersection, diff, reduced
product, etc. of configurations sets. The second step determines an appropriate hierarchy
and synthesizes variability information. First we compute the binary implication graph of φc.
It is a directed graph BIGc = (V, E), V being the set of nodes corresponding to variables of
the formula, while the set of edges is formally defined as E = {(fi, f j) | φ ∧ fi ⇒ f j}. BIGc
is a representation of all logical implications between two variables in φc and corresponds in-
tuitively to all possible hierarchies of f mc. Second we compute a directed minimum spanning
tree (MST) of BIGc that maximises the parent-child relationships of input hierarchies. Finally,
other components of the feature diagrams can be synthesized [32, 21]. In Figure 2.2(c), the
resulting synthesized feature model corresponds to the first illustrative composition of f m1,
f m2 and f m3 (union mode, name-based matching strategy).

26 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

fm1 fm2

φ1 φ2 φc

fmco

o' =

=

(a) Logic-based

fm1 fm2o =

fmr

fmc

(b) Reference-based

fm1 fm2

φref

o =

fmr

fmc

(c) With local synthesis

fm1 fm2

φref

o =

fmr

fmc

φc'

(d) With slicing

Figure 2.5: Variants of composition-based operator implementation

Operational-based Composition (Reference-based) Another radically different implement-
ation is to reference input feature models. The key idea is to build a separated feature model
(i.e., a view) that typically contains features with the same names of the inputs. The features of
the view are then related to input features through a set of logical constraints. The result is a
feature model that both aggregates the input models, the view, and the constraints. Figure 2.3
depicts the resulting feature model on the same kind of composition (union) as previously
considered. Other kinds of configuration semantics (e.g., intersection) can be realized by
defining another view and logical mapping.

The main difference is that features of input FMs are still present (i.e., the merging strategy
differs compared to the denotation-based implementation). Yet it is worth to observe that the
configuration semantics expressed in f mrunion (see Figure 2.3) is equivalent to f mmunion (see
Figure 2.2(c)). The equivalence is defined as follows:

J f mmunionK = J f mrunionK |Frview

where Frview is the set of features in the view (coloured features in Figure 2.3) and A |B de-

notes the projection of two given sets A and B such that: A |B
4
= {a′ | a ∈ A ∧ a′ = a ∩ B} =

{a ∩ B| a ∈ A}. Intuitively it means that the exact same combinations of S, F1, . . . , F6 are
authorized in f mrunion and f mmunion . This is due to ψrunion that constrains the way features
S, F1, . . . , F6 of f mrunion can be combined. For instance, ψrunion states that the selection of F2
should correspond to at least and at most one of the following features: f m1.F2, f m2.F2, or
f m3.F2. Therefore F2 is actually mandatory in ψrunion (as in ψmunion). The semantic operator
that produces a projection of a feature model (a slice) with respect to a set of selected fea-
tures (slicing criterion) is called slicing. (A formal definition can be found in Section Reverse
engineering architectural variability models, Definition 9.)

Hybrid. The semantic equivalence of the denotational and operational-based implement-
ations and the last remarks give the idea of going further by correcting the view of the
reference-based FM. Two equivalent solutions are considered. In both cases, the principle
is to i) denote the reference-based feature model as a formula φre f and then ii) synthesize a
new feature diagram (see Figure 2.5(c) and Figure 2.5(d)).

2.1. AUTOMATED FEATURE MODEL MANAGEMENT 27

Reference-based and Local Synthesis. Ideally the composed feature model only contains
features of Frview . However φre f contains many Boolean variables that may disturb reasoning
procedures. For instance the computation of the implication graph is likely to contain nodes
and edges that are actually not relevant. Furthermore considering all variables of φre f can
increase the computation time when reasoning. We thus adapt the synthesis procedure so that
operations are only applied over relevant variables ("locally"). For instance, the computation of
the implication graph is achieved by the checking of implications between features of interest
only. On the previous example, the synthesis of the variability information leads to the same
exact feature diagram as depicted in Figure 2.2(c).

Reference-based and Slicing. Another variant is to eliminate disturbing variables in φre f
and obtain a new formula φc′ . Intuitively, non relevant variables are removed by existential
quantification in φre f .

Definition 4 (Existential Quantification) Let v be a Boolean variable occurring in φ. φ|v (resp.
φ|v̄) is φ where variable v is assigned the value True (resp. False). Existential quantification is then
defined as ∃v φ =de f φ|v ∨ φ|v̄ .

In case of union, intersection, etc. φc′ is equal to φc (the formula obtained with a denotational-
based approach), i.e., the formula logically represents the exact same valid configurations and
the set of variables is exactly the same. Therefore φc′ can be used afterwards to synthesize an
FM: the feature diagram obtained is the same as Figure 2.2(c).

A Framework for Composing your Compositions

Users of composition operators for FMs have to define a specific semantics (or reuse an
existing one, e.g., union, intersection) and then select an appropriate implementation (e.g.,
reference-based and slicing). In this section, we provide a reading grid and practical illustrations
in order to assist users in customizing a composition adapted to their requirements.

We now discuss and compare the pros and cons of each implementation variant.
Quality of the Feature Diagram The feature diagram (see Definition 2) can be seen as a

syntactical view of the configuration set s that practitioners or automated tools usually ex-
ploit in a forward engineering phase. The following qualities are expected from a feature
diagram: (1) maximality [99]: as much variability information as possible should be repres-
ented in the resulting feature diagram to approximate or fully represent s. For instance,
the operational-based composition does not produce a maximal feature diagram: the feature
F2 is optional in the feature diagram whereas it is always included in every configuration;
(2) soundness and completeness w.r.t. configuration semantics: in the reference-based FM, it
may happen that the retained hierarchy is not a spanning tree of the implication graph, with
the consequence of either precluding some valid configurations (incomplete) or all possible
configuration (unsound) – see an example in Figure 2.6 (the feature model is incomplete).

Reasoning A composition-based operator computes a feature model that can be exploited
afterwards for reasoning, for example, when performing assisted configurations (decision
verification and propagation, auto-completion, scheduling of configuration tasks, etc.), when
automating analysis over the FMs (e.g., debugging of FMs, comparison of two FMs) [55, 303].
The question we address here is: how to reason about the configurations once the resulting

28 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

A

B

C

A

C

B

A

B

C

A

C

B

fm4 fm5 fm6

(A ⬄ (fm4.A v fm5.A v fm6.A)) ^
atmost1 (fm4.A v fm5.A v fm6.A) ^
(F6 ⬄ (fm1.F6 v fm2.F6 v fm3.F6)) ^
(B ⬄ (fm4.B v fm5.B v fm6.B)) ^
atmost1 (fm4.B v fm5.B v fm6.B) ^
(C ⬄ (fm4.C v fm5.C v fm6.C)) ^
atmost1 (fm4.C v fm5.C v fm6.C) ^

InputFMs
R

A

CB

Figure 2.6: Composition of f m4, f m5, and f m6 (union): in left-part, the hierarchy leads to an
incomplete feature model ; in the right-part, a complete and sound FM.

Denotational-based (Logic-based) Operational-based (Reference-based) Reference-based + Local Synthesis Reference-based + Slicing
Diagram quality A C A A
Reasoning A C C A
Customizability C B A A
Traceability C A A A
Composability A C B A
Performance OI OI OI OI

Table 2.1: Comparison of approaches (A: best ; C: worst; OI: open issue)

feature model has been synthesized? The drawback of a reference-based approach is that
the reasoning should be performed over (a large amount of) features that are sometimes not
relevant. For instance, if we want to perform a configuration over the features F1, F2, . . . , F6,
it necessarily involves considering the referenced features f m1.F1, f m1.F2, . . . , f m3.F6.

Traceability Features are usually mapped to development artefacts, such as components,
models and user documentation. The preservation of the traceability between the feature
model and the artefacts is essential for automatic derivation of products from the configura-
tion of the composed FM. In the case of a denotational-based technique, the mapping between
the input FMs is not kept intact because they are replaced by a merged FM. As a result, the
selections of features in the composed model may correspond to as many corresponding
features in the input FMs.

Customizability In the previous section, we have shown that there are different mechan-
isms that can be customized to specify the meaning of a composition. The denotational-based
strategy is the most rigid since the matching strategy is assumed to be one-to-one and based
on feature names while the merging process creates a new feature with the same name. The
reference-based techniques are more general since any kinds of logical mappings between i)
the features planned to be present in the composed feature model and ii) the features in the
input FMs can be defined.

Composability Let us consider the composition in union mode and a matching strategy
based on feature names (as the example explained in Figure 2.3). The reference-based tech-
nique is neither associative nor commutative, e.g., ◦(◦(f m1, f m2), f m3) 6= ◦(◦(f m1, f m3), f m2) 6=
◦(f m1, f m2, f m3). Though the configuration set represented is the same, the feature diagrams
are different. On the contrary the denotational-based and hybrid techniques are associative
and commutative (in the case of union) since the Boolean formulas obtained are the same as
previously and the logical operations do have the properties.

Table 2.1 summarizes the discussions and results by classifying the best and the worst
solution in a given dimension. Some implementation variants are equivalent for some criteria
(e.g., denotational and hybrid techniques compute the same feature diagram). The slicing-
based technique fulfils all the criterion and, as such, can be considered as the most suited in
the general case. Yet, its performance has to be confronted to other composition variants in

2.1. AUTOMATED FEATURE MODEL MANAGEMENT 29

practical settings (with different kinds of input FMs, matching and semantic properties, etc.).
The performance of compositional approaches is marked OI (for open issue) in the table since
a quantitative evaluation has not been done. We leave it as future work since it is a knowledge
compilation problem [101] that deserves a focused and careful attention.

Overall, depending on the variability modelling scenarios and needs (e.g., modular model
checking of SPLs, modelling variability of independent suppliers, engineering of configur-
ators, hierarchical SPLs), there are tradeoffs to consider when choosing the composition ap-
proach. Existing works [261, 140, 14, 15, 326] can benefit from the new proposed techniques
when reasoning, aligning feature models or simply devising new composition-based operat-
ors.

Iterative generalization

A few comments on this line of work. Firstly, I consider this contribution nicely generalizes
our past attempts [14, 15, 13, 17] on composing and decomposing feature models. Retro-
spectively, prior efforts seek to:

- define the right meanings i.e., what does it mean to compose feature models? The
answer was not straightforward since, as our research has shown, many semantics can
actually be defined, with different properties of the resulting models. Hence it is not
surprising we did not anticipate all possible semantics in the first place (e.g., in our
seminal work about composing feature models [15]);

- motivate the use of multiple feature models: the need to support composition and
decomposition (slicing) of large feature models was not crystal clear when we started
our research. The concepts of multiple SPLs or dynamic SPLs were either not defined
or quite novel at that time. As a result, there are now more and more papers that report
on similar composition or decomposition needs, in many engineering contexts;

- implement operators for feature models: we first tried with rule-based approaches, but
quickly found limitations. The use of logics has been eye-opening and here I would
like to highlight the strong influence of seminal papers [99, 43] about logics and feature
models.1

- apply feature modelling in realistic settings: we have tried to use feature models in
the medical imaging, grid computing, and video processing domains. This experience
was key for the points previously mentioned and helped us to refine the semantics and
implementations of the support.

Secondly, we have developed other operators for feature models, like the diff (for differ-
ence) or the refactoring of feature models [21, 22]. Such operators can be combined with
composition and decomposition operators. In a sense, we have developed a practical al-
gebra for feature models. Also, we further generalize the definition of operators with an
ontology-aware solution [47]. This solution synthesizes sound and complete feature models

1Little anecdote here: I met Krzysztof Czarnecki at the SLE’09 conference, a bit randomly (at lunch), after the
presentation of M. Acher, P. Collet, P. Lahire and R. France, ‘Composing Feature Models’, in 2nd International Con-
ference on Software Language Engineering (SLE’09), ser. LNCS, LNCS, Oct. 2009, p. 20. Krzysztof suggested that I look
at the synthesis work described in his paper K. Czarnecki and A. Wasowski, ‘Feature diagrams and logics: There
and back again’, in SPLC’07, 2007. This nice hint did not give a full solution, but definitely pushed me in the right
direction. Would that happen with a virtual conference?

30 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

while taking feature hierarchies into account. Thanks to ontological heuristics, it is applic-
able without prior knowledge or artefacts, and can be used either to fully synthesize a feature
model or guide the user during an interactive process. I do not detail this contribution [47]
here, but will get back to it in reverse engineering scenarios (i.e., in Chapter Reverse Engin-
eering Software Variability).

Thirdly, the explanations made in this section may seem abstract and not useful in prac-
tice. I use on purpose abstract feature names (e.g., F1, F56) in order to focus on salient
properties of resulting feature models. However, I want to highlight the fact that these oper-
ators have been used in different application domains and kinds of systems. Some examples
are given in the next sections or in related contributions.

replication

The tutorial https://github.com/FAMILIAR-project/familiar-
documentation/blob/master/manual/composition.md contains executable scripts,
written in FAMILIAR (see below), to replay the different (de-)composition scenarios.
The ontologic-aware synthesis procedure as well as experiments are also available
https://github.com/gbecan/FOReverSE-KSynthesis.

2.1.2 FAMILIAR, a language for combining feature model operators

Our previous research addressed the management of feature models mainly from a theoret-
ical perspective. Yet, a practical solution is still missing for importing, exporting, composing,
decomposing, manipulating, editing and reasoning about FMs. It is especially important for
modelers since numerous feature models and management operations have to be combined
in practice.

We have developed FAMILIAR (for FeAture Model scrIpt Language for manIpulation and
Automatic Reasoning) [16]. FAMILIAR is a domain-specific language with a textual syntax.
The language includes facilities for performing operations over multiple feature models and
their configurations. Two reasoning back-ends (SAT solvers using SAT4J and BDDs using
JavaBDD) are internally used over propositional formulae. FAMILIAR is used in different
teaching contexts, for conducting research, or for collaborating within projects or with in-
dustry. FAMILIAR can be used: i) with an executable JAR and an interactive REPL; ii) with
the source code and a Java API; iii) online through a Web application; iv) inside Eclipse with
a REPL; v) within a Docker.

The code snippet below illustrates how to use the four implementation variants on the
illustrative example of the previous subsection. It is a simplified excerpt of the companion,
online page [89] that provides a comprehensive tutorial and numerous examples.

The script first loads three feature models f m1, f m2 and f m3 (the rest of the script will be
explained in detail hereafter). It should be noted that f m1, f m2 and f m3 actually correspond
to feature models used in the paper H. Hartmann, T. Trew and A. Matsinger, ‘Supplier
independent feature modelling’, in SPLC’09, IEEE, 2009, pp. 191–200 and in the previous
subsection (see Figure 2.1(a), Figure 2.2(a), and Figure 2.2(b)). We use a specific, textual
notation for specifying feature models, inspired by guidsl [43] and grammar notation. Other
formats are supported for importing feature models. FAMILIAR is a DSL for managing
feature models – the scope is beyond the sole specification of variability models.

https://github.com/FAMILIAR-project/familiar-documentation/blob/master/manual/composition.md
https://github.com/FAMILIAR-project/familiar-documentation/blob/master/manual/composition.md
https://github.com/gbecan/FOReverSE-KSynthesis

2.1. AUTOMATED FEATURE MODEL MANAGEMENT 31

1 /**** input feature models ****/
2 // F1, F4 optional, F5 and F6 mutually exclusive
3 fm1 = FM (S : F1 F2 F4 ; F2 : (F5|F6) ;)
4 // F5, F6 still subfeatures of F2 but optional, F1 mandatory
5 fm2 = FM (S : F1 F2 F3 ; F2 : F5 F6 ;)
6 // F5 implies F1
7 fm3 = FM (S : F1 F2 F4 ; F2 : F5 F6 ; F5 -> F1 ;)
8

9 // logic-based
10 fmMUnion = merge union { fm1 fm2 fm3 }
11 // reference-based
12 fmRUnion = aggregateMerge union { fm1 fm2 fm3 }
13

14 // basic, syntactic extraction (features are all optionals)
15 fm6 = extract fmRUnion.S
16

17 // slicing (same FD + formula than fmMUnion)
18 fm7 = slice fmRUnion including fmRUnion.S*
19 assert ((compare fm7 fmMUnion) eq eq REFACTORING)
20

21 // local synthesis (same FD but formula differs)
22 fm8 = ksynthesis fmRUnion over fm5.S*
23 assert ((compare fm8 fmMUnion) eq eq GENERALIZATION)

Back to our script, we want to compose the three feature models. In particular, we are
targeting the following scenario. fm1, fm2 and fm3 are representing three product lines
maintained by three different suppliers. We want to build a new product line offering every
possible product offered by suppliers (no more, no less). In terms of feature modelling, we
want to compute a new feature model (a composed feature model) that represents the union
of input sets of configurations.

Merge (logic-based) Line 10 implements the merge operation with a logic-based approach.
The principle is to encode each feature model as a formula and then compute a "composed"
formula. This can be achieved by denoting into the Boolean logic the configuration semantics
(e.g., of "union"). A hierarchy is then automatically selected and variability information is
synthesized [6]. The result f mMUnion corresponds to the feature model depicted in Fig-
ure 2.2(c), page 23.

Reference-based approach. Another approach is to reference input feature models. A com-
posed view, containing the features that are of interest for the composition, is specified. Then
features of the view "reference" features of input feature models through (logical) constraints.

32 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

To implement a reference-based approach, the following steps are: (1) definition of the
composed view; (2) definition of the set of constraints to establish correspondences with
input features aggregate the composed view, (3) definition of the constraints as well as the
input feature models together. However, the constraints to be specified can be huge, thus
making the process time-consuming and error-prone. Another (more technical) problem is
that the existing aggregate operator of FAMILIAR assumes that features’ names are unique
(in order to make a distinction between features).

Therefore we develop and provide another operator to automate this task, called aggreg-
ateMerge (see Line 12). It takes as input a set of feature models and a "mode" (e.g., union,
intersection). The operator works as follows. First, a new feature model, playing the role of
the view, is created. The features of this view are the union of all features of input feature
models, assuming that features are equals whenever they have the same name. Furthermore,
all these features are syntactically optional. Second, the input feature models are copied and
aggregated with the new view into a composed feature model. Features’ names are auto-
matically rewritten to guarantee unicity e.g., to avoid having four features named S. Finally,
constraints between features of the view and features of input feature models are added.

The interest of the aggregated feature model, here f mRUnion, is to obtain a semantically
equivalent representation of the set of configurations. Indeed, the combinations of features
authorized in the composed view of f mRUnion are exactly the same as in f mMUnion, thus
realizing the configuration semantics of union. It is straightforward to understand why: the
constraints force the selection of at least one and at most one corresponding feature (if any)
in the input feature models. However, there is another remaining problem: features are all
optional in the view. In the code snippet, the extracted view f m6 is a syntactical copy of
the subtree rooted at feature S. As a result, you cannot use the view (f m6) independently.
Furthermore the view contains anomalies, since the syntactical constructs are not conformant
to the actual meaning. In particular, F2 is modeled as optional but is actually mandatory ;
F3 and F4 are mutually exclusive ; F3 implies the selection of F1. It is clearly not the case in
f m6. It is a very rough over-approximation of the actual configuration set. Therefore it not
acceptable to exploit f m6 afterwards.

Two techniques are conceivable for improving the quality of the "view".

With slicing. A first one is to rely on the slice operator. It takes as input a feature model
and a set of features (slicing criterion). It computes a new feature model containing only
the features of the slicing criterion. Importantly the resulting feature model characterizes
the projected set of configurations onto the slicing criterion. In our case, we are only in-
terested by features of the view (see green features of Figure 2.3, page 24). In line 18, we
slice f mRUnion (resulting from the aggregateMerge operator) with f mRUnion.S∗ that returns
feature S as well as all features below S (i.e., all green features of Figure 2.3). Intuitively, the
projected set of configurations is the same set of configurations of the input feature model
without the features not in the slicing criterion. Obviously, the slice operator is not internally
implemented like this. Enumerating all configurations and then computing the projected
configurations with set operations is not efficient and scalable even for small feature models.
Instead a Boolean formula, free for non relevant variables, is computed. Then satisfiability
techniques are used to synthesize a comprehensive feature model [6]. In the example, a key
benefit is that the computed feature model f m7 is exactly the same as f mMUnion. That is,
the formulas are the same as well as the synthesized feature diagram.

2.2. FEATURE MODELS AND PRODUCT COMPARISON MATRICES 33

With local synthesis. Another strategy for correcting the "view" of f mRUnion is possible.
Instead of computing a new Boolean formula (like with the slice, see above), we can directly
exploit the original formula of f mRUnion and perform reasoning over the relevant Boolean
variables. We use the operator ksynthesis that can perform over the set of features specified
(see Line 22). The local synthesis procedure makes it best for producing a maximal feature
diagram. But it is well-known that feature diagrams offer syntactical constructs that are not
expressively complete w.r.t. Boolean logics (see Definition 3). It is the case of f m8 that author-
izes two configurations not valid in f mMUnion (i.e., f m8 is a "generalization" of f mMUnion).

replication

The repository https://github.com/FAMILIAR-project/familiar-language contains
the source code of the language including the grammar, Java API and interpreters.
There are many scripts and Java test cases to demonstrate the usage of FAMILIAR.

2.2 Feature models and product comparison matrices

The content of this section is adapted from the following publications:
N. Sannier, M. Acher and B. Baudry, ‘From Comparison Matrix to Variability Model:
The Wikipedia Case Study’, in 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE’13), Palo Alto, USA, 2013. http://hal.inria.fr/hal-
00858491
G. Bécan, N. Sannier, M. Acher, O. Barais, A. Blouin and B. Baudry, ‘Automating the
formalization of product comparison matrices’, in ASE, 2014

On the one hand, a feature model is an abstraction to compactly represent a set of related
products. On the other hand, tabular data – and more specifically what we call product
comparison matrices – can be used to document a set of related products w.r.t. different cri-
teria (e.g., features supported or not). Are feature models and product comparison matrices
two sides of the same coin? It is quite natural to question the relationship between the two
formalisms from a syntactic and semantic point of view. In this contribution, we address
the following question: Is feature modelling an adequate formalism to represent variability
information encoded in product comparison matrices? We also seek to understand product
comparison matrices themselves, independently from traditional variability models like fea-
ture models.

Product Comparison Matrices (PCMs)

An example of an PCM is depicted in Figure 2.7(a). PCMs are specific tabular data. Specific-
ally, PCMs provide a simple and convenient way to express properties on products and com-
pare them to several different others from the same family. Companies use PCMs to present
and advertise different facets of their product series, typically through comparators [272]. PCMs
provide a global view of several different competing products, showing the presence, ab-
sence, limitations of a facet, expressing commonality and variability between products under
comparison.

https://github.com/FAMILIAR-project/familiar-language
http://hal.inria.fr/hal-00858491
http://hal.inria.fr/hal-00858491

34 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

We first start with an empirical study in order to understand what and how variability
information is expressed within PCMs. We consider the Wikipedia case study. Wikipedia
manages one of the most important source of PCMs from various domains and for different
kinds of products.

We introduce an illustrative example mined from Wikipedia and propose a first set of
observations on variability information found in these PCMs. Then we evaluate the observa-
tions against a systematic analysis of 50 PCMs and perform a second automatic analysis on
a larger set of PCMs.

Anatomy of a Wikipedia PCM: a First Example

We analyze a PCM about webmail providers mined from Wikipedia2 and present a sample
of the PCM in Figure 2.7(a). This PCM compares 15 different products (A© in the figure)
against 12 different criteria (B© in the figure). This Wikipedia page also proposes different
comparison perspectives (C©) and, consequently, several PCMs related to these perspectives.
However, our example focuses on the PCM of figure 2.7(a), which includes 180 different cells
to analyze.

The first observation we make is related to the different comparison criteria, found as
headers of the PCM. A PCM is composed of a list of heterogeneous criteria with different
levels of precision and flexibility. Consequently, product values regarding these criteria can
be of various kinds such as:

- 1© Boolean yes/no values. This kind of variability deals with the straight, non ambigu-
ous, presence or absence of the comparison criteria. We observe that pairs of tokens like
"yes/no", "true/false", etc. are potential candidates for this kind of variability informa-
tion.

- 2© Constrained/Partial/ambiguous yes/no values. This kind of cell has to be inter-
preted as: "the criterion is satisfied under the condition of, with the following limitation,
etc"."Only", "if", "through", can be candidate words to recognize this kind of value. The
token "partial" is the most significant evidence of the presence of the value type. One
can also see a "yes" with a footnote or followed by one or several elements that express
a condition or limitation.

- 3© Single-value. This kind of information has to be interpreted as: "the criterion is
satisfied using this element". It forms a unique way to satisfy the criteria. The purpose
of this information is not to know whether or not the criterion is satisfied but how.

- 4© Multi-values. This kind of information has to be interpreted as: "the criterion is
satisfied using these elements". It forms a set of elements that contributes to satisfy the
criterion. It should be noted that there is no homogeneity, within the same matrix, in
the way of expressing such enumerations. A same product can be delivered with all of
these elements, or deliver different versions for each element.

- 5© Unknown value. One does not know if the criterion is satisfied. Cells are generally
filled with "?", "unknown". This information is rather hard to manage. It cannot be fully
interpreted as a boolean "no" answer, as it can prevent the product from being selected,
despite the domain reality that is unknown.

2Available online at http://en.wikipedia.org/wiki/Comparison_of_webmail_providers, last access
10th may 2013

http://en.wikipedia.org/wiki/Comparison_of_webmail_providers

2.2. FEATURE MODELS AND PRODUCT COMPARISON MATRICES 35

(a) Example of a Wikipedia Product Comparison Matrix

Features

XMPP => Email client access
Premium account only => XMPP
...

Or

Xor

Mandatory

Optional

Mutex
0...1

Email

Automatic
Forwarding

Email client
access

Client Email for
other server

Domain Name
customization

Interface script
technique

Premium account only
Paid account only
Plus members only

Javascript Ajax HTML

POP3 IMAP SMTP SSL

Java

Integration with
IM service

XMPP AOL IMWindows
Live M.

feature
attributes

(b) A possible corresponding feature model of the PCM (excerpt)

Figure 2.7: A family of online emails products: PCMs and feature models

36 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

- 6© Empty cell. This information is hard to interpret, i.e., whether it should be analyzed
as a strong boolean "no" and accordingly assessed as the absence of the feature or
should this be analyzed as an unknown answer ?

- 7© Inconsistent value. The provided value is partial, ambiguous or lightly related
to the analyzed criterion. For instance, in Figure 2.7(a), it is mentioned that "Yahoo!
Mail" has a "$35 yearly" interface, whereas all other products mention the underlying
technology of their interface.

- 8© Extra Information. The provided cell value offers additional information such as
latest dates, versions. Though not present in Fig 2.7(a), this pattern exists.

It should be noted that the eight information types defined above are not necessarily
expressed in a regular way for a given criteria/header. Specifically, a same header can refer
to a specific value for one product, be unknown for another one, or conditionally active
in another case, etc. An example is given for the header Client access for email Server (see
Figure 2.7(a)).

Further remarks. Beyond the eight information types defined above, we report some
qualitative observations. Colors of the cell in the PCM have a specific meaning, sometimes
undocumented or even non apparent from a user perspective. In our example, "yes" values
seem to correspond to green color, "no" values to red colors and "partial" values to yellow
colors. This meaning is not explicit neither is systematic over PCMs. Colors can mean more
than expected. For instance, software licences of a product may be documented through a
specific value (e.g., LGPL or Apache license) complemented with a color. Here the color aims
to characterize the kind of software licence (free or proprietary). This kind of information is
usually available in the source code of a Wikipedia page.

footnotes are also worth considering. They may influence the meaning of a cell value,
e.g., restricting the validity of a cell value to particular conditions. This makes the PCM
information a bit more scattered and ambiguous.

A Qualitative Analysis of 50 Wikipedia PCMs

We want to further confirm our intuition over PCM contents. For this purpose, we analyze a
sample of 50 Wikipedia PCMs. We selected the sample according to the following steps:

- We extracted all the pages from Wikipedia using the following search criterion: the
page title must contain the following words substrings "comparison" or "comparison
of", "comparison between". We retrieved 381 Wikipedia pages;

- We then analyzed the retrieved pages and rejected the ones that did not contain any
comparative table and that were not relevant to our study. We kept 300 "relevant" pages
from various domains, including economy, linguistic, technology, defense, etc.;

- We classified the set of candidate pages according to the number of comparison criteria
they have: [1-10],[11-20] ..., [91-100], and [100+] and obtained a PCM distribution. When
a comparison page contains more than one table, we consider a page with merged tables
with the addition of all criteria, and a maximum value when looking at the products;

- We sampled the candidate set and randomly picked 50 Wikipedia PCMs according to
the distribution to have a representative state of practice of PCMs in Wikipedia;

- We manually assessed the 50 retained pages using our catalog of 8 value types.

2.2. FEATURE MODELS AND PRODUCT COMPARISON MATRICES 37

Table 2.2: Value types frequencies for 300+ Wikipedia PCMs

1© 2© 3© 4© 5© 6©
amount 111309 1788 45903 33922 16823 15279
% 49.4 0.8 20.4 15.1 7.5 6.8

We provide some information about the 381 pages we automatically retrieved. More than
half of the pages have between 1 and 20 criteria (Families 1 and 2). There exist very large
PCMs. 17 PCMs have more than 100 criteria. The largest comparison page is the "Comparison
of Nvidia graphics processing units" with 55 different tables for a maximum of 64 products
under comparison and a total amount of 1387 criteria. 11 analyzed pages contain over 1000
cells, which make these pages understandability and usage even harder.

More detailed information about the 50 Wikipedia pages is available online at https://
github.com/FAMILIAR-project/familiar-documentation/tree/master/manual/
Wikipedia. These 50 pages contain 165 tables and about 29500 different cells. The 50 pages
mainly deal with computer systems, architectures, programming at various levels but also
include topics like linguistic, mechanics, politics, defense, among others.

We observe a large variety of value type frequencies at the individual page level and
family level (1© varies from 21.02% to 73.13%, 5© varies from 2.54% to 27.66%). This is due to
the large variety of comparison criteria and their level of precision. This heterogeneity also
reflects Wikipedia’s diversity in terms of domains, collaborative authors, etc.

Concerning "uncertainty", information that is not a straightforward variability informa-
tion (2©, 5©, 6©, 7©, and 8©), it represents a mean of 25.6% per page. It is a significant number
of cells that cannot stand as-is in a feature model. On the other hand, around 75% of PCMs
content is rather direct information and allow a direct mapping to feature models.

A Quantitative Analysis of 300+ Wikipedia PCMs

To gain further statistical evidence about the frequency of the eight patterns, we implemented
an automated extraction process for operating over 300+ Wikipedia pages. We used the state
of the art parser Sweble [111] to process the source of each Wikipedia page. In addition, we
implemented automated techniques to recognize the pattern of a cell value, following the
observations of the qualitative study. We do not seek to automatically detect patterns 7© and
8© since they are mainly based on human perception. In total, we analyzed 31097 products
and 225024 cell values. The results are reported in Table 2.2.

We now compare the results with those previously obtained in the qualitative study. The
frequency of Boolean values has slightly increased (49.4 versus 47.3) and still important, con-
firming the importance of the pattern 1© . Similarly, the frequency of single values (pattern 3©)
remains important (slight decrease with 20.4 versus 22.75). The frequency of multi-values 4©
has increased to a large proportion (15.1 versus 4.37). We can hypothesize that part of the val-
ues can actually belong to pattern 7© or 8© (two patterns we do not detect and that are usually
constituted of multiple values). The frequency of pattern 2© has decreased significantly (0.8
versus 3.71) but still constitutes a minor pattern.

The most important result is that we confirm patterns 1© and 3© are by far the most
widely used, constituting almost 75% of the content of PCMs.

https://github.com/FAMILIAR-project/familiar-documentation/tree/master/manual/Wikipedia
https://github.com/FAMILIAR-project/familiar-documentation/tree/master/manual/Wikipedia
https://github.com/FAMILIAR-project/familiar-documentation/tree/master/manual/Wikipedia

38 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

Figure 2.8: Modelling product comparison matrices

Summary and implications. We proposed a catalog of 8 kinds of variability information
and report on qualitative as well as quantitative insights that help understanding the gap
between PCMs and feature models. This study shows that PCMs potentially provide lots of
rich and useful information but present many drawbacks such as lack of formalization, lack
of tool support and understandability. One possibility to tackle these concerns is to translate
PCMs into feature models, giving a clear semantics and enabling the automatic analysis of a
family of products. Around 75% of PCM content can be directly translated to Boolean-based
feature models but the handling of numeric attributes or uncertainty requires more effort to
fit with the current state of practice of PCMs. Figure 2.83 summarizes the situation. Specific
PCMs can be encoded with (attributed) feature models, but not all of them. As feature
modelling does not cover all variability constructs needed to encode any PCM found in the
wild, another modelling approach is needed. Based on these results, we have followed two
research directions:

- automatic synthesis of (attributed) feature models out of PCMs: Section Synthesizing
attributed feature models out of tabular data in the next Chapter Reverse Engineering
Software Variability details our contributions;

- the development of a PCM metamodel capable of encoding all variability constructs of
PCMs: the next subsection will detail this direction.

Formalizing product comparison matrices

Though apparently simple, synthetic, or easy to design, PCMs hide, in practice, an important
complexity while expressing commonalities and variabilities among products. PCMs can be
seen as a special form of spreadsheets and thus share some of their problems [148, 240, 4, 151,
153, 93, 75, 150, 152, 92, 91, 3, 80, 119, 113, 219]. Specifically, the underlying reasons of the
complexity of PCMs are: (1) ambiguity: PCMs are mainly written in uncontrolled natural lan-

3All credits go to Guillaume Bécan who has realized this figure as part of the concluding chapter of his PhD
thesis.

2.2. FEATURE MODELS AND PRODUCT COMPARISON MATRICES 39

preprocessing extracting
information

exploitingparsing

conforms to

PCM metamodel

Automated formalization

configuration file

Wikipedia code

HTML file

CSV file

...

PCM

PCM editor

comparator

...

Applications

PCM
model

PCM
model

PCM
model

2

4

5

3

1 RQ1

RQ2

RQ3

Figure 2.9: Overview of the automated formalization of PCMs

guage, mixing scopes, granularity, and heterogeneous styles; (2) scalability: as a PCM grows,
its readability dramatically decreases; (3) equality: all the information is equally presented
as textual assets; (4) lack of support and services: the previous points are emphasized by the
limited number of advanced services tackling these limits.

The problem impacts three kinds of users: i) data writers (e.g., Wikipedia contributors):
how to add a new product entry when everything around is heterogeneous and there is no
standard way to edit data? How to give a proper structure and semantics to the data? ii)
developers (e.g., data scientists or product analysts) in charge of processing, transforming,
and analyzing PCMs; iii) end-users that want to understand or interact with PCMs.

A systematic engineering approach with dedicated tools is needed to improve the current
practice of editing, maintaining, and exploiting PCMs. The general problem of transforming
raw data to formal models has a long tradition [230]. There are two key challenges:

- metamodelling (1) to abstract from heterogeneity, reinforce structure and give a clear
semantics to data; (2) to enable the specification of raw data transformation into models
conformant to a metamodel;

- model transformations to automatically (1) parse and encode data into a suitable
format, despite heterogeneity (2) normalize data to give a proper semantics (3) devise
new editing tools.

The research problem we address in this contribution can be summarized as follows:
How to automate the encoding of heterogeneous, ambigous and large-scale data of PCMs into well-
structured, well-typed, well-formalized models?

An Iterative Process Driven by Data, Users and Services

Figure 2.9 provides an overview of our approach, from raw data of PCMs (e.g., as expressed
in Wikipedia) to models conforming to a metamodel.

We first propose a PCM metamodel (see À of Figure 2.9). Metamodels provide a defin-
ition for the main concepts of a domain and their properties as well as the organization of
these concepts by providing a set of associations. Using this metamodel, we can develop
a transformation chain (see Á, Â, and Ã of Figure 2.9) for producing PCM models. To
gather feedback from end-users, we use an editor dedicated to PCMs and built on top of
our metamodel. The editor allows to present the concrete syntax of the PCM models to the
evaluator instead of directly presenting the metamodel or a model in graph notation (e.g.,

40 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

the object diagram notation of UML). The main advantage of using the concrete syntax is to
display a familiar view of a PCM. As such, there is no need for modelling knowledge to check
that our formalization is correct. The feedback gathered can be used to refine our metamodel
and transformation through an iterative process.

The PCM Metamodel. Figure 2.10 presents the PCM metamodel we defined as our uni-
fying canvas. This metamodel was obtained while observing various PCMs either on the
internet or real ones in magazines or shops and discussions all along the past year.

This metamodel describes both the structure and the semantics of the PCM domains. In
this metamodel, PCMs are not individual matrices but a set of different matrices that contain
cells. This happens when comparing a large set of products or features. In order to preserve
readability, PCM writers can split the PCM content into several matrices. Cells can be of 3
types: Header, ValuedCell, and Extra. Header cells identify products or features.

On the semantic side, PCM express commonalities and differences between products. As
a consequence, formalizing such domains necessarily requires introducing some concepts
from the variability and product line engineering community but also introducing new ones.

The interpretation of a valued cell is given according to different variability patterns and
information types defined as sub-concepts of Constraint in the metamodel.

- Boolean: states that the feature is either present or absent

- Integer: integer numbers

- Double: real numbers

- VariabilityConceptRef: reference to a product or a feature

- Partial: states that the feature is partially or conditionally present

- Multiple (And, Or, Xor): composition of values constrained by a cardinality

- Unknown: states that the presence or absence of the feature is uncertain

- Empty: the cell is simply empty

- Inconsistent: the cell is inconsistent with the other cells bound to the same feature
The domain of a feature is represented as a set of Simple elements (Boolean, Integer, Double

or VariabilityConceptRef) which define the valid values for the cells that are related to this
feature. The domain allow us to detect invalid values and reason on discrete values such as
features but also use the properties of boolean, integers and real values.

The transformation toolsuite. Having a formalizing canvas with a metamodel is only one
means to a larger end. Formalizing PCMs in their whole diversity and heterogeneity requires
a set of transformation steps. These steps include:

- parsing: extracting the PCM from its original artefact (e.g., MediaWiki code);

- preprocessing: normalizing the PCM;

- extracting information: interpreting cells and extracting variability concepts and fea-
ture’ domains.

After the preprocessing phase, it remains to interpret the cells in order to extract the
variability information that a PCM contains. In this phase, we progressively enrich the model
with new information. This is by far the most difficult part: automated techniques can be
inaccurate because of the set of transformation rules implemented. Several iterations are
needed.

2.2. FEATURE MODELS AND PRODUCT COMPARISON MATRICES 41

Figure 2.10: The PCM Metamodel

Evaluation

To assess our model-based formalization, we address the following research questions:

- RQ1: Is our metamodel complete and relevant to the formalization of PCMs? The
metamodel should precisely represent the domain of PCMs and be able to formalize
existing examples. The large diversity and number of PCMs make the formalization
process error-prone and time consuming.

- RQ2: What is the precision of our transformation of raw PCMs to PCM models? The
transformation is quite complex and the interpretation of variability information can be
inaccurate.

Dataset. We selected 75 PCMs from Wikipedia. Though most of them are related to
software (audio player software, browser synchronizers, application launchers, disc images,
etc.) our sample also covers a very large spectrum of domains. This includes domains such as
photography and technology (digital SLRs, embedded computer systems), sports and hobbies
(ski resorts, video games), economy (tax preparation, enterprise bookmarking), electronics
and hardware (fanless switches, chipsets, radio modules), history (World War II), healthcare
(dental practice management, dosimeters, birth control) among others.

Formalization of PCMs. Following our automated process, depicted by Figure 2.9, the 75
selected PCMs were first parsed into models that conform to our PCM metamodel. Then, we
manually configured the preprocessing step in order to specify the headers of each matrix.
Finally, we executed the extracting information step without configuration and only with
default interpretation rules.

42 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

These 75 Wikipedia PCMs are made of a total of 211 matrices from various sizes, going
from 2 to 241 rows, and 3 to 51 columns for a total of 47267 cells. Among them, 6800 (14.39%)
are Headers, describing either products or features. Another 992 (2.10%) are Extra cells that do
not carry any valuable information. Finally 39475 (83.51%) cells are considered as ValuedCells.

Participants. To evaluate our research questions, each analyzed PCM was evaluated by
at least one person among a panel of 20 persons (mainly researchers and engineers) that were
not aware of our work. That is, they have never seen either our elaborated metamodel or our
tooling before the experiment.

Evaluation Sessions. We organized two evaluation sessions where the evaluators were
explained the goal of the experiment. We provided a tutorial describing the tool they will have
to use, as well as the concepts they were about to evaluate and related illustrative examples.
The checking process consists of looking at each cell of a PCM to identify cells for which
computed formalism does not match the expected one. In such a case, the evaluators have
to state whether the expected domain value exists in the metamodel, provide a proposition
of a new concept, claim that there is no possible interpretation, or declare that he/she does
not know at all how to analyze the cell. In addition to the validation task using the interface,
evaluators were allowed to leave comments on an additional menu and to exchange with us.

Evaluation Scenario. The tool proposes a randomly chosen PCM in a way to assure the
global coverage of the 75 PCMs. Consequently, during the group session, no two evaluators
have the same PCM to evaluate. Right clicking on a cell displays options to validate or not
its proposed formalization. To avoid painful individual validation, evaluators are allowed
to make multiple selections for collective validation or corrections. Once evaluated, the cells
are colored in green, but it is still possible to modify the evaluation. Once the evaluation of
one matrix is finished, evaluators can check the interpretation of the other ones in order to
complete the PCM evaluation. At the end, they submit their evaluation to a database and
possibly start a new evaluation.

Evaluated cells. Among the 39475 cells of the 75 PCMs, 20.83% were ignored (the
evaluator declared that he/she does not know how to analyze the cell) or omitted (no results)
by our evaluators and 3.02% were subject to conflicts between evaluators (difference in the
correction). As a consequence, 30061 cells are evaluated and present analyzable results. In
the following, we will answer the research questions according to these evaluated cells.

Answer to RQ1. During the experiment, 95.72% of the evaluated cells were validated or
corrected with concepts of the metamodel. The most used concepts are Boolean, Variabil-
ityConceptRef and Unknown. Only 4.28% of cells were not validated and the evaluators
proposed a new concept. Our metamodel thus proposes a set of relevant concepts. Three
new concepts have emerged (dates, dimensions, and versions). Furthermore, while exchan-
ging with our evaluators, one difficulty that emerged was related to the semantics of the
Multiple cell that expresses a composition with an AND, OR or XOR operator. The semantics
of Multiple looks simple at first glance, but is not intuitive and hard to determine at the PCM
level.

Answer to RQ2. Regarding a fully automated approach (excepting the very first prepro-
cessing steps described in the protocol), our automated approach has been able to qualify
our data set with a precision of 93.11%. Overlapping concepts, missing concepts, missing
interpretation rules, or implementation errors are the four reasons why our transformation
is sometimes inaccurate. The development of specific rules or the manual correction can
improve the quality of PCM models.

2.2. FEATURE MODELS AND PRODUCT COMPARISON MATRICES 43

Large-scale experiments, Multi-Metamodel, and Opencompare

Based on these encouraging results, we have applied the approach on a larger dataset con-
sisting of all tabular data contained in 1+ million Wikipedia pages (English version). Prior to
the large-scale experiments, we have modified the metamodel as well as the transformations.
The reason is that the original metamodel of Figure 2.10 suffered from drawbacks when de-
veloping specific services and tools (RQ3 in Figure 2.9). Specifically, although the metamodel
correctly represents the core concepts, the metamodel was not satisfactory for addressing all
requirements and tasks related to interoperability, edition, and manipulation. We came to this
conclusion after several experiments with engineers and students that did use the metamodel
with non-trivial programming tasks.

We addressed this problem by developing a domain metamodel and separating each con-
cern in a task-specific metamodel – an approach called a multi-metamodel in Guillaume
Bécan’s thesis [45]. We also toke the opportunity to add new concepts as suggested by the
participants of our previous experiment (see RQ1 and RQ2). We evaluated our revised solu-
tion on more than 1,500,000 PCMs of Wikipedia.

Results showed that the concepts in our domain metamodel are used in the context of
modelling PCMs (RQ1). Compared to the original metamodel, our domain metamodel is
simpler but still provides the necessary concepts for the domain of PCMs. Related to RQ2,
our importing and exporting capabilities are able to handle a large variety of PCMs with
a precision of 91%. The formalization errors mainly come from the presence of tables that
are not PCMs in our dataset as well as the incorrect detection of the orientation of the PCMs
(i.e., when products are perceived as features, and vice-versa). Finally, the domain metamodel
was easier to present and the different students and researchers did not have difficulty under-
standing it. In a few lines of code, they were able to manipulate a PCM and extract relevant
information. For more complex development (e.g., product charts), the participants benefited
from the task-specific metamodels.

The new approach presented and the related services have been integrated in an initiative
called OpenCompare. The objective of OpenCompare was to create a community of PCM
contributors and users. For that purpose, OpenCompare provided innovative services for
PCMs in the form of a website with an editor, a comparator, a configurator, importing and
exporting facilities, and an API.

replication

Data and results of the preliminary Wikipedia analysis are
available here: https://github.com/FAMILIAR-project/familiar-
documentation/tree/master/manual/Wikipedia. Tools developed as part of the user
study are here: https://github.com/gbecan/Tools4PCM. I also strongly recommend
the PhD thesis of Guillaume Bécan: G. Bécan, ‘Metamodels and feature models : com-
plementary approaches to formalize product comparison matrices’, Theses, Université
Rennes 1, Sep. 2016. https://tel.archives-ouvertes.fr/tel-01416129
that contains many details about the experiments.

https://github.com/FAMILIAR-project/familiar-documentation/tree/master/manual/Wikipedia
https://github.com/FAMILIAR-project/familiar-documentation/tree/master/manual/Wikipedia
https://github.com/gbecan/Tools4PCM
https://tel.archives-ouvertes.fr/tel-01416129

44 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

2.3 Sampling feature models’ configurations

The content of this section is adapted from the following publications:
Q. Plazar, M. Acher, G. Perrouin, X. Devroey and M. Cordy, ‘Uniform Sampling of
SAT Solutions for Configurable Systems: Are We There Yet?’, in ICST 2019 - 12th In-
ternational Conference on Software Testing, Verification, and Validation, Xian, China, Apr.
2019, pp. 1–12. https://hal.inria.fr/hal-01991857
A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin and B. Baudry, ‘Test them
all, is it worth it? Assessing configuration sampling on the JHipster Web develop-
ment stack’, Empirical Software Engineering (ESE), vol. 24, no. 2, pp. 674–717, Jul. 2019,
Empirical Software Engineering journal. doi: 10.07980. https://doi.org/10.
1007/s10664-018-9635-4

Out of a feature model, developers can sample configurations of interest e.g., for testing
their systems. The hope is that the subset of configurations is a good representative of the
whole configurations’ set. There are many ways of sampling configurations depending on
e.g., testing objectives. We have contributed to this rich area along two directions. First, we
performed an empirical study to determine which sampling strategies are the most effective
to find configurations’ failures and bugs (Section 2.3.1). Second, we assessed the scalability
and quality of existing sampling techniques w.r.t. uniform sampling (Section 2.3.2).

2.3.1 Effectiveness of sampling strategies for testing

A major challenge for developers of configurable systems is to ensure that all combinations
of options (configurations) correctly allow the software to compile, build, and run. Config-
urations that fail can hurt potential users, miss opportunities, and degrade the success or
reputation of a project. Though formal methods and program analysis can identify some
classes of defects [302] – leading to variability-aware testing approaches (e.g., [231, 181, 180])
– a common practice is still to execute and test a sample of (representative) configurations.
Indeed, enumerating all configurations is perceived as impossible, impractical or both. Prior
empirical investigations (e.g., [211, 270, 269]) suggest that using a sample of configurations is
effective to find configuration faults, at low cost. However, evaluations were carried out on a
small subset of the total number of configurations or faults, constituting a threat to validity.
They are usually based on a corpus of faults extracted from problem tracking systems and
are therefore incomplete. Knowing all the failures of the whole configurable system provides
a unique opportunity to accurately assess the error-detection capabilities of sampling tech-
niques with a ground truth.

This contribution aims to grow the body of knowledge (e.g., in the fields of combinatorial
testing and software product line engineering [211, 270, 212, 154, 143, 87]) with a new re-
search approach: the exhaustive testing of all configurations. While practitioners can hardly
enumerate all configurations at each commit or even release, we believe researchers have a lot
to learn by rigorously and exhaustively testing a configurable system. Specifically, gathering
the ground truth of the whole configuration space is an unique opportunity for assessing the
relative effectiveness of sampling strategies. We consider the case of JHipster, a popular code
generator for web applications. Our goals are:

https://hal.inria.fr/hal-01991857
https://doi.org/10.07980
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 45

- to investigate the engineering effort and the computational resources needed for deriv-
ing and testing all configurations (RQ1), and

- to discover how many failures and faults can be found using exhaustive testing in order
to provide a ground truth for comparison of diverse sampling strategies (RQ2).

We describe the effort required to distribute the testing scaffold for the 26,000+ configurations
of JHipster, as well as the interaction bugs that we discovered. We cross this analysis with
the qualitative assessment of JHipster’s lead developers (RQ3). Overall, we collect multiple
sources that are of interest for

- researchers interested in building evidence-based theories or tools for testing configur-
able systems;

- practitioners in charge of establishing a suitable strategy for testing their systems at
each commit or release.

In short, we report on the first ever endeavour to test all possible configurations of an
industry-strength open-source configurable software system: JHipster.

Case Study

JHipster is an open-source, industrially used generator for developing Web applications [135].
Started in 2013, the JHipster project has been increasingly popular (18000+ stars on GitHub)
with a strong community of users and 600+ contributors in February 2021.

From a user-specified configuration, JHipster generates a complete technological stack
constituted of Java and Spring Boot code (on the server side) and Angular and Bootstrap
(on the front-end side). The generator supports several technologies ranging from the data-
base used (e.g., MySQL or MongoDB), the authentication mechanism (e.g., HTTP Session or
Oauth2), the support for social log-in (via existing social networks accounts), to the use of
microservices. Technically, JHipster uses npm and Bower to manage dependencies and Yeo-
man4 (aka yo) tool to scaffold the application [258]. JHipster relies on conditional compilation
with EJS5 as a variability realisation mechanism. Figure 1.2(a), page 8 presents an excerpt of
class DatabaseConfiguration.java. The options reactive, elatsicsearch, h2Disk, h2Memory operate
over Java annotations, fields, methods, etc. The options are also present in the Maven file
(pom.xml), see Figure 1.2(b), page 8.

JHipster is a complex configurable system with the following characteristics: i) a variety
of languages (JavaScript, CSS, SQL, etc.) and advanced technologies (Maven, Docker, etc.)
are combined to generate variants; ii) there are 48 configuration options and a configurator
guides the user throughout different questions. Not all combinations of options are possible
and there are 15 constraints between options; iii) variability is scattered among numerous
kinds of artefacts (pom.xml, Java classes, Docker files, etc.) and several options typically
contribute to the activation or deactivation of portions of code, which is commonly observed
in configurable software [171]. This complexity challenges core developers and contributors
of JHipster. Unsurprisingly, numerous configuration faults have been reported on mailing
lists and eventually fixed with commits.6 Though formal methods and variability-aware
program analysis can identify some defects [302, 231, 86], a significant effort would be needed
to handle them in this technologically diverse stack. Thus, the current practice is rather to

4http://yeoman.io/
5http://www.embeddedjs.com/
6e.g., https://tinyurl.com/bugjhipster15

http://yeoman.io/
http://www.embeddedjs.com/
https://tinyurl.com/bugjhipster15

46 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

execute and test some configurations and JHipster offers opportunities to assess the cost
and effectiveness of sampling strategies [211, 270, 212, 154, 143, 87]. Due to the reasonable
number of options and the presence of 15 constraints, we (as researchers) also have a unique
opportunity to gather a ground truth through the testing of all configurations.

Methodology. We address these questions through quantitative and qualitative research.
We initiated the work in September 2016 and selected JHipster 3.6.17 (release date: mid-
August 2016). The 3.6.1 corrects a few bugs from 3.6.0; the choice of a “minor” release avoids
finding bugs caused by an early and unstable release.

The two first authors of [135] worked full-time for four months to develop the infra-
structure capable of testing all configurations of JHipster. They were graduate students,
with strong skills in programming and computer science. They came to Rennes as part of
their Master’s thesis and I collaborated with them in Brittany. Through physical and virtual
meetings, we gathered several qualitative insights throughout the development. Besides, we
decided not to report faults whenever we found them. Indeed, we wanted to observe whether
and how fast the JHipster community would discover and correct these faults. We monitored
JHipster mailing lists to validate our testing infrastructure and characterize the configuration
failures in a qualitative way.

RQ1: What is the feasibility of testing all JHipster configurations?

Insights about modelling JHipster variability. The first step towards a complete and thor-
ough testing of JHipster variants is the modelling of its configuration space. JHipster comes
with a command-line configurator. However, we quickly noticed that a brute force tries of
every possible combinations has scalability issues. Some answers activate or deactivate some
questions and options. As a result, we rather considered the source code from GitHub for
identifying options and constraints. Though options are scattered amongst artefacts, there is
a central place that manages the configurator and then calls different sub-generators to derive
a variant.

We essentially consider prompts.js, which specifies questions prompted to the user during
the configuration phase, possible answers (a.k.a. options), as well as constraints between the
different options. Listing 2.1 gives an excerpt for the choice of a databaseType. Users can
select no database, sql, mongodb, or cassandra options. There is a pre-condition stating that
the prompt is presented only if the microservice option has been previously selected (in a
previous question related to applicationType). In general, there are several conditions used for
basically encoding constraints between options.

We specified JHispter’s variability using a feature model (see Section 2.1). Though there
is a gap with the configurator specification (see Listing 2.1), we can encode its configuration
semantics and hierarchically organize options with a feature model. We decided to interpret
the meaning of the configurator as follows:

1. each multiple-choice question is an (abstract) feature. In case of “yes” or “no” answer,
questions are encoded as optional features (e.g., databaseType is optional in Listing 2.1);

2. each answer is a concrete feature (e.g., sql, mongodb, or cassandra in Listing 2.1). All
answers to questions are exclusive and translated as alternative groups in the feature
modelling jargon. A notable exception is the selection of testing frameworks in which
several answers can be both selected; we translated them as an Or-group;

7https://github.com/jhipster/generator-jhipster/releases/tag/v3.6.1

https://github.com/jhipster/generator-jhipster/releases/tag/v3.6.1

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 47

1 (...)
when: function (response) {

3 return applicationType === ’microservice’;
},

5 type: ’list’,
name: ’databaseType’,

7 message: function (response) {
return getNumberedQuestion(’Which *type* of database would you like to use?’,

applicationType === ’microservice’);},
9 choices: [

{value: ’no’, name: ’No database’},
11 {value: ’sql’, name: ’SQL (H2, MySQL, MariaDB, PostgreSQL, Oracle)’},

{value: ’mongodb’, name: ’MongoDB’},
13 {value: ’cassandra’,name: ’Cassandra’}

],
15 default: 1

(...)

Listing 2.1: Configurator: server/prompt.js (excerpt)

Figure 2.11: JHipster specialised feature model used to generate JHipster variants (only an
excerpt of cross-tree constraints is given).

3. pre-conditions of questions are translated as constraints between features.

Based on an in-depth analysis of the source code and attempts with the configurator, we
have manually elaborated8 an initial feature model presented in Figure 2.11: 48 identified
features and 15 constraints (we only present four of them in Figure 2.11 for the sake of
clarity). The total number of valid configurations is 162,508.

Our goal was to derive and generate all JHipster variants corresponding to feature model
configurations. However, we decided to adapt the initial model as follows:

1. we added Docker as a new optional feature (Docker) to denote the fact that the deploy-
ment may be performed using Docker or using Maven or Gradle.

8In the original publication [135], we use the terminology "reverse engineering" to refer to the fact we have made
explicit the variability and semantics of the JHipster configurator. However, as the process was manual (i.e., there
was no automation), I consider in this manuscript that modelling is a better terminology.

48 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

2. we excluded client/server standalones since there is a limited interest for users to con-
sider the server (respectively client) without a client (respectively server): stack and
failures most likely occur when both sides are inter-related;

3. we included the three testing frameworks in all variants. The three frameworks do
not augment the functionality of JHipster and are typically here to improve the testing
process, allowing us to gather as much information as possible about the variants;

4. we excluded Oracle-based variants. Oracle is a proprietary technology with technical
specificities that are quite hard to fully automate.

Strictly speaking, we test all configurations of a specialized JHipster, presented in Fig-
ure 2.11. This specialization can be thought of a test model, which focusses on the most
relevant open source variants. Overall, we consider that our specialization of the feature
model is conservative and still substantial with a total of possible 26,256 variants.

Human Cost (RQ 1.1)

The development of the complete derivation and testing infrastructure was achieved in about
4 months by 2 people (i.e., 8 person * month in total). For each activity, we report the duration
of the effort realized in the first place. Some modifications were also made in parallel to
improve different parts of the solution – we count this duration in subsequent activities.

Modelling configurations. The elaboration of the first major version of the feature model
took us about 2 weeks based on the analysis of the JHipster code and configurator.

Configuration-aware testing workflow. Based on the feature model, we initiated the develop-
ment of the testing workflow. We added features and testing procedures in an incremental
way. The effort spanned on a period of 8 weeks.

All-inclusive environment. The building of the Debian image was done in parallel to the
testing workflow. It also lasted a period of 8 weeks for identifying all possible tools and
settings needed.

Distributing the computation. We decided to deploy on Grid’5000 at the end of November
and the implementation has lasted 6 weeks. It includes a learning phase (1 week), the optim-
ization for caching dependencies, and the gathering of results in a central place (a CSV-like
table with logs).

Answering RQ1.1: What is the cost of engineering an infrastructure capable of automatically
deriving and testing all configurations? The testing infrastructure is itself a configurable system
and requires a substantial engineering effort (8 man-months) to cover all design, implement-
ation and validation activities, the latter being the most difficult.

Computational Cost (RQ 1.2)

We used a network of machines that allowed us to test all 26,256 configurations in less than a
week. Specifically, we performed a reservation of 80 machines for 4 periods (4 nights) of 13
hours. The analysis of 6 configurations took on average about 60 minutes. The total CPU time
of the workflow on all the configurations is 4,376 hours. Besides CPU time, the processing of
all variants also required enough free disk space. Each scaffolded Web application occupies
between 400MB and 450MB, thus forming a total of 5.2 terabytes.

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 49

We replicated three times our exhaustive analysis (with minor modifications of our test-
ing procedure each time); we found similar numbers for assessing the computational cost
on Grid’5000. As part of our last experiment, we observed suspicious failures for 2,325 con-
figurations with the same error message: “Communications link failure”, denoting network
communication error (between a node and the controller for instance) on the grid. Those
failures have been ignored and configurations have been re-run again afterwards to have
consistent results.

Answering RQ1.2: What are the computational resources needed to test all configurations? Test-
ing all configurations requires a significant amount of computational resources (4,376 hours
CPU time and 5.2 terabytes of disk space).

RQ2: To what extent can sampling help to discover defects in JHipster?

The execution of the testing workflow yielded a large file comprising numerous results for
each configuration. This file allows one to identify failing configurations, i.e., configurations
that do not compile or build. In addition, we also exploited stack traces for grouping together
some failures. We present here the ratios of failures and associated faults.

Bugs: A Quick Inventory. Out of the 26,256 configurations we tested, we found that
9,376 (35.70%) failed. This failure occurred either during the compilation of the variant or
during its packaging as an executable Jar file (that includes execution of the different Java
and JavaScript tests generated by JHipster). We also found that some features were more
concerned by failures. Regarding the application type, for instance, microservice gateways and
microservice applications are proportionally more impacted than monolithic applications or UAA
server with, respectively, 58.37% of failures (4,184 failing microservice gateways configura-
tions) and 58.3% of failures (532 failing microservice applications configurations). UAA au-
thentication is involved in most of the failures: 91.66% of UAA-based microservices applications
(4,114 configurations) fail to deploy.

Statistical Analysis. Previous results do not show the root causes of the configuration
failures – what features or interactions between features are involved in the failures? To
investigate correlations between features and failures’ results, we decided to use the As-
sociation Rule learning method [132]. It aims at extracting relations (called rules) between
variables of large data-sets. The Association Rule method is well suited to find the (combin-
ations of) features leading to a failure, out of tested configurations. Formally and adapting
the terminology of association rules, the problem can be defined as follows.

- let F = { f t1, f t2, . . . , f tn, bs} be a set of n features (f ti) plus the status of the build (bs),
i.e., build failed or not;

- let C = {c1, c2, . . . , cm} be a set of m configurations.
Each configuration in C has a unique identifier and contains a subset of the features in F
and the status of its build. A rule is defined as an implication of the form: X ⇒ Y, where
X, Y ⊆ F. The outputs of the method are a set of rules, each constituted by:

- X the left-hand side (LHS) or antecedent of the rule;

- Y the right-hand side (RHS) or consequent of the rule.
For our problem, we consider that Y is a single target: the status of the build. For example,

we want to understand what combinations of features lead to a failure, either during the
compilation or the build process. An example rule could be:

{mariadb, graddle} ⇒ {build failure}

50 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

Table 2.3: Association rules involving compilation and build failures

Id Left-hand side Right-hand
side

Support Conf. GitHub
Issue

Report/Correction
date

MoSo DatabaseType=“mongodb",
EnableSocialSignIn=true

Compile=KO 0.488 % 1 4037 27 Aug 2016 (report
and fix for milestone
3.7.0)

MaGr prodDatabaseType=“mariadb",
buildTool=“gradle"

Build=KO 16.179 % 1 4222 27 Sep 2016 (report
and fix for milestone
3.9.0)

UaDo Docker=true,
authenticationType=“uaa"

Build=KO 6.825 % 1 UAA is
in Beta

Not corrected

OASQL authenticationType=“uaa",
hibernateCache=“no"

Build=KO 2.438 % 1 4225 28 Sep 2016 (report
and fix for milestone
3.9.0)

UaEh authenticationType=“uaa",
hibernateCache=“ehcache"

Build=KO 2.194 % 1 4225 28 Sep 2016 (report
and fix for milestone
3.9.0)

MaDo prodDatabaseType=“mariadb",
applicationType=“monolith",
searchEngine=“false",
Docker=“true"

Build=KO 5.590% 1 4543 24 Nov 2016 (report
and fix for milestone
3.12.0)

Meaning that if mariadb and gradle are activated, configurations will not build.
As there are many possible rules, some well-known measures are typically used to select

the most interesting ones. In particular, we are interested in the support, the proportion of
configurations where LHS holds and the confidence, the proportion of configurations where
both LHS and RHS hold.

Table 2.3 gives some examples of the rules we have been able to extract. We parametrized
the method as follows. First, we restrained ourselves to rules where the RHS was a failure:
either Build=KO (build failed) or Compile=KO (compilation failed). Second, we fixed the con-
fidence to 1: if a rule has a confidence below 1 then it is not asserted in all configurations
where the LHS expression holds – the failure does not occur in all cases. Third, we lowered
the support in order to catch all failures, even those afflicting smaller proportion of the con-
figurations. For instance, only 224 configurations fail due to a compilation error; in spite of
a low support, we can still extract rules for which the RHS is Compile=KO. We computed re-
dundant rules using facilities of the R package arules.9 As some association rules can contain
already known constraints of the feature model, we ignored some of them.

We first considered association rules for which the size of the LHS is either 1, 2 or 3. We
extracted 5 different rules involving two features (see Table 2.3). We found no rule involving
1 or 3 features. We decided to examine the 200 association rules for which the LHS is of size 4.
We found out a sixth association rule that incidentally corresponds to one of the first failures
we encountered in the early stages of this study. We conclude that six feature interaction
faults explain 99.1% of the failures.

Qualitative Analysis. Table 2.3 gives the support, confidence for each association rule.
We also confirm each fault by giving the GitHub issue and date of fix. There are 6 import-
ant faults, caused by the interactions of several features. Specifically, only two features are
involved in five (out of six) faults, and four features are involved in the last fault.

9https://cran.r-project.org/web/packages/arules/

https://cran.r-project.org/web/packages/arules/

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 51

Testing infrastructure. We have not found a common fault for the remaining 242 configur-
ations that fail. We came to this conclusion after a thorough and manual investigation of all
logs.10 We noticed that, despite our validation effort with the infrastructure (see RQ1), the
observed failures are caused by the testing tools and environment. Specifically, the causes of
the failures can be categorized in two groups: (i) several network access issues in the grid
that can affect the testing workflow at any stage and (ii) several unidentified errors in the
configuration of building tools (gulp in our case).

Answering RQ2.1: How many and what kinds of failures/faults can be found in all configur-
ations? Exhaustive testing shows that almost 36% of the configurations fail. Our analysis
identifies 6 interaction faults as the root cause for this high percentage.

Sampling Techniques Comparison (RQ2.2)

We first discuss the sampling strategy used by the JHipster team. We then use our dataset to
make a ground truth comparison of six state-of-the-art sampling techniques.

JHipster Team Sampling Strategy. The JHipster team uses a sample of 12 representative
configurations for the version 3.6.1, to test their generator (see [136] for further explanations
on how these were sampled). During a period of several weeks, the testing configurations
have been used at each commit. These configurations fail to reveal any problem, i.e., the
Web-applications corresponding to the configurations successfully compiled, build and run.
We assessed these configurations with our own testing infrastructure and came to the same
observation. We thus conclude that this sample was not effective to reveal any defect.

Comparison of Sampling Techniques. As testing all configurations is very costly (see
RQ1), sampling techniques remain of interest. We would like to find as many failures and
faults as possible with a minimum of configurations in the sampling. For each failure, we as-
sociate a fault through the automatic analysis of features involved in the failed configuration
(see previous subsections).

Sampling techniques. We address RQ2.2 with numerous sampling techniques considered
in the literature [211, 246, 172, 1]. For each technique, we report on the number of failures
and faults.

t-wise sampling. We selected 4 variations of the t-wise criteria: 1-wise, 2-wise, 3-wise and
4-wise. We generate the samples with SPLCAT [172], which has the advantage of being
deterministic: for one given feature model, it will always provide the same sample. The 4
variations yield samples of respectively 8, 41, 126 and 374 configurations. 1-wise only finds 2
faults; 2-wise discovers 5 out of 6 faults; 3-wise and 4-wise find all of them. It has to be noted
that the discovery of a 4-wise interaction fault with a 3-wise setting is a ‘collateral’ effect [247],
since any sample covering completely t-way interactions also yields an incomplete coverage
of higher-order interactions.

One-disabled sampling. Using one-disabled sampling algorithm, we extract configura-
tions in which one feature is disabled at a time. To overcome any bias in selecting the
first valid configuration, as suggested by Medeiros et al. [211], we applied a random selection
instead. We therefore select a valid random configuration for each disabled feature (called

10Such configurations are tagged by “ISSUE:env” in the column “bug” of the JHipster results CSV file available
online https://github.com/xdevroey/jhipster-dataset.

https://github.com/xdevroey/jhipster-dataset

52 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

Table 2.4: Efficiency of different sampling techniques (bold values denote the highest efficien-
cies)

Sampling technique Sample size Failures (σ) Failures eff. Faults (σ) Fault eff.
1-wise 8 2.000 (N.A.) 25.00% 2.000 (N.A.) 25.00%
Random(8) 8 2.857 (1.313) 35.71% 2.180 (0.978) 27.25%
PLEDGE(8) 8 3.160 (1.230) 39.50% 2.140 (0.825) 26.75%
Random(12) 12 4.285 (1.790) 35.71% 2.700 (1.040) 22.5%
PLEDGE(12) 12 4.920 (1.230) 41.00% 2.820 (0.909) 23.50%
2-wise 41 14.000 (N.A.) 34.15% 5.000 (N.A.) 12.20%
Random(41) 41 14.641 (3.182) 35.71% 4.490 (0.718) 10.95%
PLEDGE(41) 41 17.640 (2.500) 43.02% 4.700 (0.831) 11.46%
3-wise 126 52.000 (N.A.) 41.27% 6.000 (N.A.) 4.76%
Random(126) 126 44.995 (4.911) 35.71% 5.280 (0.533) 4.19%
PLEDGE(126) 126 49.080 (11.581) 38.95% 4.660 (0.698) 3.70%
4-wise 374 161.000 (N.A.) 43.05% 6.000 (N.A.) 1.60%
Random(374) 374 133.555 (8.406) 35.71% 5.580 (0.496) 1.49%
PLEDGE(374) 374 139.200 (31.797) 37.17% 4.620 (1.181) 1.24%
Most-enabled-disabled 2 0.683 (0.622) 34.15% 0.670 (0.614) 33.50%
All-most-enabled-disabled 574 190.000 (N.A.) 33.10% 2.000 (N.A.) 0.35%
One-disabled 34 7.699 (2.204) 0.23% 2.398 (0.878) 0.07%
All-one-disabled 922 253.000 (N.A.) 27.44% 5.000 (N.A.) 0.54%
One-enabled 34 12.508 (2.660) 0.37% 3.147 (0.698) 0.09%
All-one-enabled 2,340 872.000 (N.A.) 37.26% 6.000 (N.A.) 0.26%
ALL 26,256 9,376.000 (N.A.) 35.71% 6.000 (N.A.) 0.02%

one-disabled in our results) and repeat experiments 1,000 times to get significant results.
This gives us a sample of 34 configurations which detects on average 2.4 faults out of 6. Ad-
ditionally, we also retain all-one-disabled configurations (i.e., all valid configurations where
one feature is disabled and the other are enabled). The all-one-disabled sampling yields a
total sample of 922 configurations that identifies all faults but one.

One-enabled and most-enabled-disabled sampling. In the same way, we implemented
sampling algorithms covering the one-enabled and most-enabled-disabled criteria [211, 1].
As for one-disabled, we choose to randomly select valid configurations instead of taking the
first one returned by the solver. Repeating the experiment 1,000 times: one-enabled extracts a
sample of 34 configurations which detects 3.15 faults on average; and most-enabled-disabled
gives a sample of 2 configurations that detects 0.67 faults on average. Considering all valid
configurations, all-one-enabled extracts a sample of 2,340 configurations and identifies all
the 6 faults. All-most-enabled-disabled gives a sample of 574 configurations that identifies
2 faults out of 6.

Dissimilarity sampling. We also considered dissimilarity testing for software product lines
[143, 133] using PLEDGE [146]. We retained this technique because it can afford any testing
budget (sample size and generation time). For each sample size, we report the average
failures and faults for 100 PLEDGE executions with the greedy method in 60 secs [146]. We
selected (respectively) 8, 12, 41, 126 and 374 configurations, finding (respectively) 2.14, 2.82,
4.70, 4.66 and 4.60 faults out of 6.

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 53

●

●

●

●

●

●

0

250

500

750

0 500 1000 1500 2000 2500
Configurations

Fa
ilu

re
s

fo
un

d

Sampling

●

●

●

●

●

●

1−wise

2−wise

3−wise

4−wise

All−most−en.−dis.

All−one−dis.

All−one−en.

Most−en.−dis.

One−dis.

One−en.

PLEDGE(12)

PLEDGE(126)

PLEDGE(374)

PLEDGE(41)

PLEDGE(8)

Random

(a) Failures found by sampling techniques

●

●

●

●

●

●

2

4

6

0 500 1000 1500 2000 2500

Configurations

Fa
ul

ts
 fo

un
d

Sampling

●

●

●

●

●

●

1−wise

2−wise

3−wise

4−wise

All−most−en.−dis.

All−one−dis.

All−one−en.

Most−en.−dis.

One−dis.

One−en.

PLEDGE(12)

PLEDGE(126)

PLEDGE(374)

PLEDGE(41)

PLEDGE(8)

Random

(b) Faults found by sampling techniques

Figure 2.12: Defects found by sampling techniques

Random sampling. Finally, we considered random samples from size 1 to 2,500. The ran-
dom samples exhibit, by construction, 35.71% of failures on average (the same percentage
that is in the whole dataset). To compute the number of unique faults, we simulated 100
random selections. We find, on average, respectively 2.18, 2.7, 4.49, 5.28 and 5.58 faults for
respectively 8, 12, 41, 126 and 374 configurations.

Fault and failure efficiency. We consider two main metrics to compare the efficiency of
sampling techniques to find faults and failures w.r.t the sample size. Failure efficiency is the
ratio of failures to sample size. Fault efficiency is the ratio of faults to sample size. For both metrics,
a high efficiency is desirable since it denotes a small sample with either a high failure or fault
detection capability.

The results are summarized in Table 2.4. We present in Figure 2.12(a) (respectively, Fig-
ure 2.12(b)) the evolution of failures (respectively, faults) w.r.t. the size of random samples.
To ease comparison, we place reference points corresponding to results of other sampling
techniques. A first observation is that random is a strong baseline for both failures and
faults. 2-wise or 3-wise sampling techniques are slightly more efficient to identify faults than
random. On the contrary, all-one-enabled, one-enabled, all-one-disabled, one-disabled and
all-most-enabled-disabled identify less faults than random samples of the same size. Most-
enabled-disabled is efficient on average to detect faults (33.5% on average) but requires to
be “lucky". In particular, the first configurations returned by the solver (as done in [211])
discovered 0 fault. This shows the sensitivity of the selection strategy amongst valid con-
figurations matching the most-enabled-disabled criterion. Based on our experience, we re-
commend researchers a random strategy instead of picking the first configurations when
assessing one-disabled, one-enabled, and most-enabled-disabled.

PLEDGE is superior to random for small sample sizes. The significant difference between
2-wise and 3-wise is explained by the sample size: although the latter finds all the bugs
(one more than 2-wise) its sample size is triple (126 configurations against 41 for 2-wise). In
general, a relatively small sample is sufficient to quickly identify the 5 or 6 most important
faults – there is no need to cover the whole configuration space.

54 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

A second observation is that there is no correlation between failure efficiency and fault
efficiency. For example, all-one-enabled has a failure efficiency of 37.26% (better than random
and many techniques) but is one of the worst techniques in terms of fault rate due to its high
sample size. In addition, some techniques, like all-most-enable-disabled, can find numerous
failures that in fact correspond to the same fault.

Answering RQ2.2 How effective are sampling techniques comparatively? To summarise:
- random is a strong baseline for failures and faults;

- 2-wise and 3-wise sampling are slightly more efficient to find faults than random;

- most-enabled-disabled is efficient on average to detect faults but requires to be lucky;

- dissimilarity is superior to random for small sample sizes;

- a small sample is sufficient to identify most important faults, there is no need to cover
the whole configuration space; and

- there is no correlation between failure and fault efficiencies.
(RQ2.3) How do our findings compare to other studies w.r.t. sampling effectiveness?
We aim to compare our findings with state-of-the-art results: Are sampling techniques as

effective in other case studies? Do our results confirm or contradict findings in other settings?
This question is important for i) practitioners in charge of establishing a suitable strategy
for testing their systems; ii) researchers interested in building evidence-based theories or
tools for testing configurable systems. We perform a literature review of case studies of
configuration sampling approaches to test variability intensive systems. We select existing
studies (specifically, see references [211, 269, 241, 294, 36]) based on different criteria e.g., we
discard evaluations that are solely based on feature models.

Our main findings are as follows:
- From a practical point of view: We concur with previous findings that show that most-

enabled-disabled is an interesting candidate to initiate the testing of configurations. For
identifying further faults (and possibly all), we confirm that 2-wise or 3-wise provides
a good balance between sampling size and fault-detection capability.

- From a researcher point of view: Our results show that the assessment of sampling
techniques may highly vary depending on the metrics used (failure or fault efficiency).
Besides, a corpus of faults coming from an issue tracking system (GitHub) is a good
approximation of the real, exhaustive corpus of faults. It is reassuring for research
works based on a manually collected corpus.

Q3: Practitioners Viewpoint

We interviewed the JHipster lead developer, Julien Dubois, for one hour and a half, at the end
of January 2017. We prepared a set of questions and performed a semi-structured interview
on Skype for allowing new ideas during the meeting. We then exchanged emails with two
core developers of JHipster, Deepu K Sasidharan and Pascal Grimaud. Based on an early draft
of our article, they clarified some points and freely reacted to some of our recommendations.
We wanted to get insights on how JHipster was developed, used, and tested. We also aimed
to confront our empirical results with their current practice.

(RQ3.1) What is the most cost-effective sampling strategy for JHipster? Exhaustive testing
sheds a new light on sampling techniques:

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 55

- the 12 configurations used by the JHipster team do not find any defect;

- yet, 41 configurations are sufficient to cover the 5 most important faults;
(RQ3.2) What are the recommendations for the JHipster project? Recommendations (and chal-

lenges) are:
- for a budget of 19 configurations, dissimilarity is the most appropriate sampling strategy;

- the trade-off between cost, popularity, and effectiveness suggests to further experiment
with multi-objective techniques;

- crowdsourcing the testing effort would help to face the computational cost of testing
JHipster;

- the development and maintenance of a configuration-aware testing infrastructure with a
feature model to drive the sampling strategy is mandatory to automate JHipster testing.

replication

Data, scripts, and results are available at https://github.com/xdevroey/jhipster-
dataset/

2.3.2 Scalability and quality of uniform samplers

As explained in previous study, there are many ways of sampling configurations (e.g., t-
wise, one-enabled, random). In the absence of constraints between the options, Arcuri et al.
theoretically demonstrate that a uniform random sampling strategy may outperform t-wise
sampling [37]. Random sampling thus typically serves as a baseline to evaluate and compare
sampling strategies. Sampling is crucial for testing configurable systems, but also for learning
functional or non-functional properties of configurations (see Chapter 4). In the context of
configurable system, random sampling is widely used to either compare sampling strategies
(e.g., see Section Learning variability performance) or simply as a pragmatic strategy to ef-
fectively predict. In general, uniform or near-uniform generation of solutions for large satis-
fiability (SAT) formulas is a problem of theoretical and practical interest e.g., for the testing
community.

To sum up, the current body of knowledge emphasizes the importance of random uni-
form sampling and its specific potential for configurable systems. To assess the applicability
of random sampling in practice, we aim to assess actual state-of-the-art implementations
on feature models. To this end, we selected two approaches from the literature, UniGen
[79, 78] and QuickSampler [116] because they exhibit interesting trade-offs with respect to
uniformity and scalability (e.g., QuickSampler sacrifices some uniformity for a substantial
increase in performance). In the specific context of highly-configurable software systems and
feature models, it is unclear whether UniGen and QuickSampler can scale and sample uni-
form software configurations. While there exist benchmarks [116] that evaluate and compare
these tools, those do not consider feature models and their peculiarities. For example, the
uClinux-config model, representing the configuration options of an embedded Linux for
micro-controllers, has 7.7 ∗ 10417 possible solutions. In contrast, the largest formula used by
UniGen and QuickSampler has ≈ 1048 solutions [116]. Considering these differences, our

https://github.com/xdevroey/jhipster-dataset/
https://github.com/xdevroey/jhipster-dataset/

56 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

objective is to investigate: (i) whether UniGen and QuickSampler are efficient enough (in
terms of computation time) to be applied on such feature models and (ii) whether they do
so while guaranteeing to generate a reasonably-uniform sample of configurations. In this
contribution, we perform a thorough experiment on 128 real-world feature models.

Study Design

Research Questions. Uniform sampling is an interesting approach to testing configurable
systems. However, practitioners and researchers ignore whether state-of-the-art algorithms
are applicable over feature models. Specifically, we aim to address three research questions:

- RQ1 (scalability and execution time): Are UniGen and QuickSampler able to generate
samples out of feature models? We aim to study the execution time needed for sampling
over real-world feature models. It might be the case that samplers are unable to sample
and do not scale.

- RQ2 (uniformity): Do UniGen and QuickSampler generate uniform configurations out of fea-
ture models? We aim to assess the quality of the sample with respect to uniformity (prior
work [116] suggests that QuickSampler is close to uniformity for some SAT instances
(non-feature models).

- RQ3 (relevance for testing): How do QuickSampler’s sacrifices on uniformity impact its bug-
finding ability in JHipster? By relating sampled frequencies of features with their associ-
ated bugs on the JHipster case, we perform an early exploration of how these techniques
behave with respect to bug distribution [37].

UniGen and QuickSampler. Several SAT samplers exist in the literature [79, 78, 116, 318,
183, 120, 121] and achieve varying compromises between performance and theoretical prop-
erties of the sampling process (e.g., uniformity, near-uniformity). We will focus our study on
two samplers that achieve state-of-the-art results, UniGen [79, 78], and QuickSampler [116].
A recent ICSE’18 paper [116] compares the two algorithms on large real-world benchmarks
(SAT instances), showing that QuickSampler is faster than UniGen, with a distribution reas-
onably closed to uniform.

On the one hand, UniGen uses a hashing-based algorithm to generate samples in a nearly
uniform manner with strong theoretical guarantees: it either produces samples satisfying a
nearly uniform distribution or it produces no sample at all. These strong theoretical proper-
ties come at a cost: the hashing based approach requires adding large clauses to formulas so
they can be sampled. These clauses grow quadratically in size with the number of variables
in the formula, which can raise scalability issues.

On the other hand, QuickSampler’s algorithm is based on a strong set of heuristics, which
are shown to produce samples quickly in practice on a large set of industrial benchmarks
[116]. However, the tool offers no guarantee on the distribution of generated samples, or
even on the termination of the sampling process and the validity of generated samples (they
have to be checked with a SAT solver after the generation phase).

Input Feature Models. We use a large number of well-known and publicly available
feature models in our study, which are of various difficulty. Specifically, we rely on the
benchmarks used in [202, 184, 189]. Specifically, feature models were used to assess the SAT-
hardness of feature models, to investigate the properties of real-world feature models [184]
and to evaluate a configuration algorithm for propagating decisions [189].

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 57

Feature model benchmark properties In total, we use the feature models of 128 real-world
configurable systems (Linux, eCos, toybox, JHipster, etc.) with varying sizes and complexity.
We first rely on 117 feature models used in [184, 189]. The majority of feature models
contain between 1,221 and 1,266 features. Of these 117 models, 107 comprise between 2,968
and 4,138 cross-tree constraints, while one has 14,295 and the other nine have between 49,770
and 50,606 cross-tree constraints [184, 189]. Second, we include 10 additional feature models
used in [202] and not in [184, 189]; they also contain a large number of features (e.g., more
than 6,000). Third, we also add the JHipster feature model to the study (see Section 2.3.1), a
realistic but relatively smaller feature model (45 variables, 26,000+ configurations). We later
refer to these benchmarks as the feature model benchmarks.

Once put in conjunctive normal form, these instances typically contain between 1 and
15 thousand variables and up to 340 thousand clauses. The hardest of them, modelling the
Linux kernel configuration, contains more than 6 thousand variables, 340 thousand clauses,
and is generally seen as a milestone in configurable system analysis.

Replication of [116] In addition to these feature models, we have replicated the initial ex-
periments on industrial SAT formulas as conducted in [116]. We use these results as a sanity
check, to ensure that we are using the tools with the same configurations that were previously
compared. Moreover, since these original formulae are much smaller than the feature models
we use (typically a few thousand clauses), they will provide a basis of results for statistical
analysis, in case a solver cannot produce enough samples on the harder formulas. We later
refer to these benchmarks as the non-feature model benchmarks.

Experimental Setup. We are interested in several characteristics of the samplers under
study, which include scalability (execution time) as well as the quality of generated samples
(regarding their statistical distribution). For scalability, we evaluate execution time by run-
ning each sampler on every benchmark, until it generates 1 million samples or execution
times out after 2 hours. For QuickSampler, the timeout duration is split equally between
sample generation and validity check (one hour each). Experiments were run on an Intel(R)
Core(TM) i7-5600U (2,6 GHz, 2 cores), 16GB RAM, running Linux Fedora 22.

Frequency of features The quality of a sampler’s distribution is very hard to evaluate on
large benchmarks, since the huge size of the solution space makes standard statistical test-
ing inapplicable. For example, the uClinux-config feature model has 7.7 ∗ 10417 possible
solutions. Instead, we rely on an approximate measure of statistical indicators, namely the
frequency of observation of certain features in the samples generated. These indicators are
not sufficient to show if the distribution of samples is uniform. However, our indicators can
pinpoint flaws in the sampling process that are critical for testing purposes, such as a feature
never being selected in the produced samples (despite the ground truth states this feature
should be selected 80% of the time). More details about the computation of this indicator are
available in [249].

Independent support As a final note, both QuickSampler and UniGen can benefit from the
knowledge of an independent support for the formula they sample. An independent support
is a subset of the formula’s variables which, when assigned a truth value, leaves at most
one possible satisfying valuation for the remaining variables. We chose not to use independ-
ent support for feature models in our experiments (details and reasons why can be found
in [249]).

58 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

Results

RQ1 (scalability and execution time). UniGen is not able to produce samples for any
of the feature model benchmarks (except the smallest one, JHipster) and thus cannot be
used in the context of large configurable systems. QuickSampler does scale and is able to
produce one valid sample per millisecond on most feature models. In general, the heuristic
of QuickSampler is effective to select valid configurations, but can also exhibit low valid ratios
for some feature models [249].

RQ2 (uniformity). QuickSampler does not generate uniform samples out of real-world
feature models; the difference with a uniform distribution is much more severe than with
non-feature models (as in [116]). The majority of features exhibit frequencies that deviate
above 50%. Some features have up to 800% frequencies differences or are never part of the
sample (despite their theoretical presence). The JHipster feature model provides another
compelling argument about the non-uniformity of QuickSampler (see below).

RQ3 (case study: JHipster). To derive further insights on the relevance of QuickSampler
samples for testing, we consider the feature model of JHipster used in Section Effectiveness of
sampling strategies for testing (45 features and 26,256 configurations). Importantly, features
and feature interactions causing the bugs have been identified. With the JHipster case, we
have an interesting opportunity to investigate the quality of the sampling w.r.t. bug-finding
ability. This section thus addresses RQ3.

As the JHipster feature model is manageable (only 26,256 configurations), both UniGen
and QuickSampler can sample a statistically significant number of samples. Therefore we can
plot and exploit the histogram that counts how many times each configuration (SAT solution)
has been sampled. Figure 2.13 shows that UniGen is indistinguishable from uniform, but
QuickSampler is not close to uniform behavior. In the following, we consider UniGen as uni-
form (thus having same bug-finding ability as random uniform sampling study of JHipster)
and therefore focus only on QuickSampler’s ability to find bugs.

To better understand the difference with a uniform distribution, we apply our feature
frequency methods (see Figure 2.14). Beyond the clear difference with UniGen, for Quick-
Sampler, we can notice that 18 features have above 10% frequencies deviations and 5 features
deviate above 50%:

- dev(MongoDB) = 116%

- dev(Cassandra) = 107%

- dev(UaaServer) = 94%

- dev(Server) = 87%

- dev(MicroserviceApplication) = 84%
Table 2.5 lists all features involved in the 6 interaction faults that cause 99% of failures. We

also report rdev for showing the positive or negative frequencies deviations for QuickSampler.
For instance, the frequency of Uaa in QuickSampler samples is greater than the ground truth
(+45%) while MariaDB is less frequent as it should be (-7%).

Specifically, for the different configuration bug reported by Halin et al. [135], we have:
MOSO, the 2-interaction of MongoDB and SocialLogin (0.49% out of 35.70% of failures):
It is the less important source of bugs. MongoDB is much more present than it should be
(+116%), which has a positive incidence of the finding of this bug. It should be noted that
the theoretical frequency of MongoDB is very low, since this feature appears in a very few
configurations. MAGR, the 2-interaction of MariaDB and Gradle (16.179% out of 35.70%

2.3. SAMPLING FEATURE MODELS’ CONFIGURATIONS 59

Figure 2.13: JHipster feature model: comparison of UniGen, QuickSampler and ground truth
(uniform)

(a) QuickSampler (b) UniGen

Figure 2.14: Frequency deviations on the JHipster Feature Model

60 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

feature fobs fth dev rdev

MongoDB 0.039 0.018 116.0 116.0
Uaa 0.248 0.171 45.0 45.0
ElasticSearch 0.408 0.485 16.0 -16.0
Hibernate2ndLvlCache 0.573 0.647 11.0 -11.0
SocialLogin 0.237 0.268 11.0 -11.0
Docker 0.545 0.500 9.0 9.0
MariaDB 0.302 0.324 7.0 -7.0
Gradle 0.518 0.500 4.0 4.0
Monolithic 0.651 0.675 4.0 -4.0
EhCache 0.313 0.324 3.0 -3.0

Table 2.5: Features involved in JHipster bugs and their frequencies deviations in Quick-
Sampler

of failures): It is the most severe source of bugs. Yet MariaDB is under-represented (-7%) in
QuickSampler samples while being important and present in 32% of configurations. UADO,
the 2-interaction of Docker and Uaa (6.825 % out of 35.70% of failures). Both features are
over-represented (resp. +45% and +9%). As a result, there are more chances to find this fault.
OASQL, the 2-interaction of Uaa and Hibernate2ndLvlCache (2.438 % out of 35.70% of
failures). Unfortunately Hibernate2ndLvlCache is under-represented (-11%) despite a
high presence in all configurations (65%). UAEH, the 2-interaction of Uaa and EhCache
(2.194% out of 35.70% of failures). EhCache is sightly under-represented (-3%). MADO, the
4-interaction of MariaDB, Monolithic, Docker and ElasticSearch (5.59% out of 35.70%
of failures). ElasticSearch is under-represented (-16%, only 40% of appearance versus
48% theoretically), as well as MariaDB and Monolithic.

Overall, QuickSampler is not uniform but is fortunate to over-represent Uaa (a feature
involved in 3 interaction faults) while other large deviations have luckily no incidence on bug
finding.

Practical implications for JHipster. In practice, executing and testing a JHipster configura-
tion has a significant cost in resources and time (10 minutes on average per configuration).
The exhaustive testing of all configurations at each commit or release is not an option. De-
velopers and maintainers of JHipster rather have a limited testing budget at their disposal (i.e.,
a dozen of configurations, see Section 2.3.1). As a result, we cannot take the whole sample of
QuickSampler or UniGen and we rather need to take an excerpt of this sample. Various sub-
sampling strategies can be considered [211, 315] either based on random, t-wise, etc. Without
an uniform distribution, the sub-sampling process will operate over a non-representative
configuration set, which may incidentally promote or underestimate some features. Overall,
it is an open issue how to effectively sub-sample out of UniGen and QuickSampler solu-
tions. Whatever the sub-sampling strategy would be, our study has shown that the sample of
QuickSampler is not representative of the real features’ distribution of JHipster while UniGen
is uniform.

2.4. IN SEARCH OF THE RIGHT VARIABILITY LANGUAGE AND MODELS 61

replication

We provide a Git repository with all feature models of the benchmarks, Python
scripts to execute experiments, Python scripts to compute plots, figures, and stat-
istics of this study as well as additional ones, and instructions to reuse our work:
https://github.com/diverse-project/samplingfm

2.4 In search of the right variability language and models

The content of this section is adapted from the following publication:
M. Alférez, M. Acher, J. A. Galindo, B. Baudry and D. Benavides, ‘Modeling Variabil-
ity in the Video Domain: Language and Experience Report’, Software Quality Journal,
vol. 27, no. 1, pp. 307–347, 2019. doi: 10.1007/s11219-017-9400-8. https:
//doi.org/10.1007/s11219-017-9400-8

Variability techniques have been successfully applied in many domains such as automot-
ive, avionics, printers, mobile, or operating systems [251, 33]. However, different application
domains pose specific challenges to variability engineering, both in terms of modelling lan-
guage and implementation. Practitioners need empirically-tested techniques and languages
for efficiently modelling and implementing variability in a systematic and scalable manner.
Berger et al. [59] warn that the lack of experience reports on variability modelling techniques
may impede the progress of variability research. This questioning is especially relevant w.r.t.
to my own previous research: To what extent are prior works on feature modelling applic-
able?

Though I have always tried to work with concrete variability problems in different do-
mains, research in software engineering seems an endless beginning. In 2013, I had the
opportunity to confront existing variability techniques in the video domain and in an indus-
trial setting (let us call it the MOTIV project). To overcome the specific issues of MOTIV, we
developed a new variability modelling language, called VM. In this section, I want to report
on our experience. Specifically, we address the following research questions:

- RQ1: What are the practical considerations of applying our variability language VM? We rely
on different dimensions of the framework of Savolainen et al. [274] for reporting on our
variability experiences carried out in an industrial setting.

- RQ2: What are the practical benefits of a variability-based approach? As we are in an applied
research context, we aim to identify the improvements of our proposal with regards to
existing industrial practice.

- RQ3: What are the commonalities and differences between constructs of VM and state-of-the-art
variability languages? We discuss the literature and provide a comparison table.

In the remainder of this section, I briefly introduce the MOTIV project and the variability
approach based on VM. I then address RQ1 – RQ3.

https://github.com/diverse-project/samplingfm
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8

62 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

MOTIV: Industrial Problem and Overview of the Solution

Video analysis systems are ubiquitous and crucial in modern society [242, 252]. Their ap-
plications range from video protection, crisis monitoring, to crowd analysis. Video sequences
(videos in short) are acquired, processed and analyzed to produce numerical or symbolic in-
formation. The corresponding information typically raises alerts to human observers in case
of interesting situations or events.

Depending on the goal of video sequence recognition, signal processing algorithms are
assembled in different ways. Each algorithm is a complex piece of software, specialized in a
specific task (e.g., segmentation, object recognition, tracking). Even for a specific task, a one-
size-fits-all algorithm, capable of being efficient and accurate in all settings, is unlikely. The
engineering of video sequence analysis systems, therefore, requires to choose and configure
the right combination of algorithms [252].

The goal of the MOTIV project was to improve the evaluation of computer vision al-
gorithms such as those used for surveillance or rescue operations. Two companies were part
of the MOTIV project as well as the DGA (the French governmental organization for defense
procurement). The two companies develop and provide algorithms for video analysis. A
targeted scenario is usually as follows. First, airborne or land-based cameras capture on-
the-fly videos. Then, a video processing chain analyzes videos to detect and track objects,
for example, survivors in a natural disaster. Based on that information the military person-
nel triggers a rescue mission quickly based on the video analysis information. The DGA
typically consumes video algorithms of the two companies for implementing the processing
chains. The diversity of scenarios and signal qualities poses a difficult problem for all the
partners of MOTIV: which algorithms are best suited given a specific application? From the
consumer side (DGA), how to choose, select and combine the algorithms? From the pro-
vider side (the two companies), how to guarantee that the algorithms are appropriate for the
targeted scenarios and robust to varying situations?

In practice, the engineering of such systems is an iterative process in which algorithms
are combined and tested on various kinds of inputs (video sequences). Practitioners can
eventually determine what algorithms are likely to fail or excel under certain conditions
before the actual deployment in realistic settings such as using those algorithms in rescue
operations. Admittedly, practitioners rely on empirical and statistical methods, based on
numerous metrics. Also, the major barrier remains to find a suitable, comprehensive input set of
video sequences for testing analysis algorithms.

Actual Practice and Early Attempts. The current testing practice is rather manual, very
costly in time and resources needed, without any qualitative assurance (e.g., test coverage)
of the inputs. Specifically, our partners need to collect videos to test their video analysis
solutions and detection algorithms. They estimated that an input data set of 153000 videos
(of 3 minutes each) would correspond to 320 days of video footage and requires 64 years of
filming outdoors (working 2 hours a day). These numbers were calculated at the starting
point of the project, based on the previous experiences of the partners. Moreover videos
themselves are not sufficient; video practitioners need also to annotate videos in order to
specify the expected results (i.e., ground truths) of video algorithms. This activity increases
the amount of time and effort as well.

2.4. IN SEARCH OF THE RIGHT VARIABILITY LANGUAGE AND MODELS 63

Another possible approach is to modify or transform existing videos. The first attempt
was therefore to create a video generator for producing customized videos – based on user
preferences that were hard-coded during the first versions. For deriving a variant, our part-
ners had to manually comment lines or modify variable values directly in the video generator
code to change the physical properties and objects that appear in each video.

When the video generator was more mature, the partners together with us decided to
create configuration files to communicate input values instead of scattering the parameters
in different source code files. In particular, they employed Lua configuration files that have
a simple structure based the pattern parameter = value. Then, developers used Lua code and
proprietary C++ libraries, developed by a MOTIV partner, to process those configuration files
and execute algorithms to alter, add, remove or substitute elements in base videos. Lua is a
widely used programming language (http://www.lua.org/). It should be noted that the
generator not only computes a video variant but also some annotations, thus avoiding the
manual specification of expected results. The Lua configuration files used helped to decouple
implementation from input data.

However the effort still remains tedious, undisciplined, and manual. It was still hard
to construct large datasets – our partners have to manually modify the configuration file,
with the additional problem of setting non conflicting values. Also they ignore what kinds
of situations are covered or not by the set of videos, i.e., some kinds of videos may not be
included in the dataset. Overall, more automation and control were needed to synthesize video
variants in order to cover a large diversity of testing scenarios.

Variability Modelling Approach: An Overview

To overcome previous limitations, we introduced a variability-based approach (see Figure 2.15).
The key idea is that practitioners now explicitly model variability using VM a variability lan-
guage we have developed in the project. This approach was developed from scratch but
clearly inspired with: First, FaMa [57] and FAMILIAR [16] languages as because they were
developed by members of the project. Second, by other more recent variability modelling
languages such as Clafer [40]. Using the VM language, variability is typically expressed in
terms of mandatory, optional, mutually exclusive features, but also attributes for encoding
non-Boolean values (integers, floats or strings). As detailed in [27], numerous other advanced
constructs can be used for describing what can vary in a video. An excerpt of a variability
model written in VM is depicted in Figure 2.15: constructs like delta or @NT are usually not
available with feature modelling languages. delta is a way to reduce the number of accept-
able numeric values. For instance, “real distractors.butterfly_level [0.0..1.0] delta 0.25" states
that possible values are 0.0, 0.25, 0.5, 0.75, and 1.0. It allows to control the domain values and
solvers can exploit this construct to operate over a reduced space of possible values. @NT (for
non translatable) states that constraint solvers should not encode some features or attributes
as variables. For instance, it has no interest to reason about “sequence.comment". The intent
is that experts can reduce the complexity of the constraint problem and solvers can better
scale.

A VM model is an abstraction of all possible Lua configuration files. It has the merit (1)
of enforcing constraints over attributes and values (precluding invalid configurations); (2)
reasoning techniques (e.g., constraint programming or satisfiability techniques) can operate
over the model to assign values to features and attributes in an efficient and sound way; (3)
generative techniques can process the model to automatically produce configuration files.

http://www.lua.org/

64 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

Figure 2.15: From a VM model, we generate configurations that are fed to a Lua generator
for synthesizing video sequences. VM configurations are obtained through sampling and
constraint solving (see previous sections). A VM configuration is translated into a Lua con-
figuration file (each feature/attribute has a corresponding Lua parameter).

Specifically we developed reasoning operations for producing configuration sets that
cover the t− wise criteria (while handling constraints and some objective functions over at-
tributes). Overall we can generate Lua configuration files (from a VM model) that the video
generator can exploit to produce numerous video variants. The level of illumination, the
distractors, or the blur levels have three different values and are examples of what can vary
in a video.

Practical Considerations (RQ1)

I report an excerpt of key lessons learned; the interested reader can find more details in [27].
Model creation. This task was the one that took more time; it required to understand

the domain, the requirements, and to discuss with video experts. We produced six differ-
ent versions of the video variability model during a period of about nine months. These
versions were made after four large meetings with all the project partners (these meetings
focused on different topics apart from variability modelling, including administrative issues
and technical issues in the video analysis domain), and two individual meetings with the
main developer of the video generator.

2.4. IN SEARCH OF THE RIGHT VARIABILITY LANGUAGE AND MODELS 65

Completeness. “How complete is the feature model?" [274]. In the video domain, the re-
sources are limited and there are too many possible videos to generate. Therefore, we
modeled extra variability including as much information as possible to restrict the number
of combinations of features and attribute values to the minimum.

Stakeholders. “Who puts effort into and who gains the benefits of the model? What know-
ledge about feature modelling methods in general and the product line in question do the stakeholders
have?" [274]. VM was developed mainly by a team composed of two people (a doctoral and
postdoctoral researcher) and one lecturer at Inria, which knew about product lines, and some
feature modelling methods. This team created the language infrastructure, implemented a
translation from VM to a CSP (presented on a previous work [124]), and work to connect the
VM tool with the video generator. The main video generator developer is also a video expert
that provided feedback for improving the VM design. In addition, he wrote an initial and
not exhaustive description of the important aspects that may be varied in a video that were
important to test a predefined set of video algorithms. Based on the description, the devel-
opment team wrote the first version of the VM model and used that version to communicate
with the rest of the partners in the following meetings. Stakeholders from the DGA provided
comments that were addressed in the following iterations and model versions. However, the
role of the members of the DGA was mainly to review that the video sequences synthesized
were realistic. Taking into account the variety of stakeholders, we took the decision of di-
viding the VM language by blocks, each one addressing a different concern. Video experts
without too much technical expertise can focus on concerns described in the relationships,
model information, definitions, and objectives blocks. Developers and video experts with a
programming background can focus on adding annotations, constraints, deltas, or further
defining the objectives and attributes blocks.

Domain. “Does the model represent the problem or solution domain? Does the model represent a
current or planned product line?" [274]. VM can be used to model either the problem or solution
domain; both sides influence the design of VM or to represent a current or future product line.
In our experience, we first modeled the video domain from a problem domain perspective
(during meetings with domain experts), and then realize variability through configuration
files and Lua code.

Commonality. “How much commonality is represented?" [274]. Although VM mainly targets
variability modelling, it also supports commonality modelling through the notion of common
features. Attribute values can be fixed as well. However, common attributes are not described
in details to not make the model unnecessarily too large. In our case, commonality rather
emerged for specializing the variability model to specific testing scenarios (e.g., when fixing
a value to the luminance attribute).

Correspondence. “What elements of the product line does the feature model correspond to?" [274].
1-to-1 mappings between features in the problem space and their realizations in the solution
space ease their co-evolution. For example, many features in the video domain VM model
have a 1-to-1 relationship with code modules that implemented the video generator. In a
similar way, feature attributes tend to match input parameters of Lua functions. Using 1-to-1
mappings is not a strict rule. In fact, we also modeled features that are not mapped to any
specific module to group other features or attributes. For example, the feature “objects" does
not map directly to any module, but helped to group conceptually the “vehicles" and “man"
features that have concrete mappings to the code. One important highlight regarding cor-
respondence was that we decided not to use VM to model all possible variability in a video
sequence. In particular, we decided not to model or provide constructs to determine the time

66 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

and order in which events happen in a video sequence or the path of moving vehicles and
people in an scene. Our partners already had a way to orchestrate events and to create and
manage paths in predefined backgrounds. However, we are considering the integration of
those aspects in future versions of VM.

Constraints. “What do the constraints represent?" [274] VM addresses the challenge of man-
aging and representing constraints through a set of functions and operations over features,
attributes and sets of features (e.g., “ClonesOf"). Constraints are also important for specializ-
ing the VM model to specific testing scenarios. For instance, experts want to synthesize only
videos with a specific background (such as desert or urban) or luminance; some values are
thus fixed, but the other features or attributes are still subject to variations.

Notation. “What constructs and representation should different stakeholders use?" [274] The VM
language provides a textual notation for expressing variability. In contrast to diagrammatic
languages, participants continue to use well-established efficient tools in the industry such as
code editors. Furthermore, numerous attributes, meta-information, and cross-tree constraints
have been specified; by construction they are textual information.

Benefits of Modelling Variability (RQ2)

In this section, we retrospectively compare the three approaches used throughout the project.
In applied research, the objective is to create technology that is better in some manner than those
already developed [164]. Here we show the improvements of a variability-based approach
in terms of automation and control thus participating to the creation of large-scale datasets
(videos).

Non generative approach (A0) At the starting point of the project, the testing practice was
either to collect existing videos or to film new videos. Then algorithms that perform over the
videos and metrics are computed to determine the accuracy or the response time. Based on
the results and statistical methods, practitioners can determine the strengths and weaknesses
of their solutions.

We recall here two severe limitations. First, not only is the collection of videos a costly
and time-consuming activity but also the annotations to specify what are the expected results
and thus evaluate the algorithms. Another limitation is that the collected dataset is usually
small in size and not representative of testing scenarios. Some benchmarks exist (for example,
for event recognition, see, e.g., [235]) but are specific to vision analysis tasks and cannot be
seamlessly reused (e.g., for military scenarios).

Summary: the practice we have observed at the beginning of the project suffers from a lack of
automation – precluding the establishment of large datasets – and a lack of control over the testing
videos.

With the generator (A1) With the development of a video generator (see Figure 2.15), prac-
titioners can envision to build a larger, more diverse, and representative dataset of videos for
testing their algorithms. At that time, the elaboration of a dataset consists in setting some
values to a configuration file and then executes the generator to produce a variant.

Compared to a non generative approach (A0), the use of a video generator has the ad-
vantage of providing (1) more automation: there is neither the need to film nor to annotate
videos; (2) more control: practitioners can tune the parameters to produce the video variant
they want.

2.4. IN SEARCH OF THE RIGHT VARIABILITY LANGUAGE AND MODELS 67

However some limitations remain. The approach still requires human intervention for
specifying each configuration file. The setting of values is tedious and impractical when a
large number of configuration files has to be set. This is evident in the current VM model
that notably describes 84 attributes (out of which a large proportion are reals) and 2,161,711
individual11 attribute values in total can be set.

With a manual elaboration of configuration files, practitioners eventually ignore what test
cases (video variants) are covered. Moreover it is hard to augment the dataset because of the
lack of automation and the lack of knowledge of what test cases are missing. This covering
knowledge is very important since the most situations are covered, the more practitioners
are confident in terms of robustness, performance and reliability of their algorithms. It is
especially important for an institution like DGA to have a strong coverage guarantee. It
is as important for the two industrial partners to cover a maximum kind of situations and
determine if the algorithms behave accordingly.

Another limitation related to the previous observations is the difficulty of controlling the
synthesis for the synthesis of specific datasets. For instance, the synthesis of video variants in
which the global luminance only varies between, say, 0.6 and 0.8, is tedious and error-prone.
In this case, practitioners have to manually set the value while ensuring it is not dependent of
another parameter; the random modification of the luminance values and the whole process
should be repeated for each configuration file. It is again impractical w.r.t. to the number of
attributes and possible domain values.

Summary: the development of a video generator still suffers from a lack of automation – precluding
the establishment of large and diverse datasets – and a lack of control over the testing videos.

Variability-based approach (A2) The use of a VM model to pilot the generator allows prac-
titioners to have more automation and more control. Instead of manually modifying each
configuration file (see A1), an automated operation processes a VM model and fully generates
all configuration files. The effort of the practitioners is thus dramatically reduced. Another
benefit is that constraints over or across parameters’ values are valid by construction.

A variability-based approach also helps to specialize the synthesis. Different alternatives
can be employed for this purpose:

- putting additional constraints and specializing the VM model for specific scenarios. For
instance, a specific Background (e.g., Urban) can be set up since the application is known
to be deployed in a specific military ground. In turn the testing machinery will then
consider only configurations with Urban. The benefit is that practitioners can focus on
specific testing scenarios, specializing the test suite to realistic cases;

- optimizing different objective functions over attributes: practitioners can specify the
relative importance or cost of a feature, fix some parameters, etc. Again it aims at
customizing test suite to fit realistic needs;

- precluding some features or attributes, not relevant for testing, with the use of meta-
information.

11Each attribute has a domain size, which corresponds to the number of individual values an attribute can take.
We consider deltas [27] for the computation of domain size. It should be noted that the number of possible configur-
ations is significantly greater than the sum of possible individual values – since a configuration is a combination of
individual attribute values.

68 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

In terms of covering, a variability-based approach grants, by construction, the validity
of the T-wise (e.g., pair-wise) criterion. The covering criterion can be combined with other
specialization mechanisms.

Finally, we were able to inject constraints into the variability model for avoiding the gen-
eration of irrelevant videos. This increase in quality was possible because of an explicit
variability model. Without such an abstraction and without a variability approach in general,
we simply could not realize our idea and thus enforce the video generator.

Summary: the introduction of variability techniques on top of the generator induces important
benefits in terms of automation and control. Practitioners can now synthesize large, suitable, and
diverse datasets – something practically impossible with previous practices A0 and A1.

Comparison with Existing Variability Languages (RQ3)

Numerous languages, being textual or graphical, have been designed to model variability.
For instance, feature models have become more and more sophisticated since 1990 and their
dialects have been detailed in comprehensive surveys, for example, by Schobbens et al. [277],
Benavides et al. [55] and Eichelberger and Schmid [117]. Table 2.6 summarizes the comparison
of VM with some representative languages in terms of the requirements that they address as
a goal. We have relied on recent comprehensive surveys [59, 117] to select the languages. It
is important to note that while most of the characteristics are not that novel, they could not be found
in a single language or are addressed but with restrictions.

Most common characteristics. Boolean constructs of feature models (as supported by
FODA [175], FDL [109], SXFM [216], VELVET [266] or FAMILIAR [16]) are useful in the video
domain, but not sufficient. New dialects (e.g., UTFM [316], CLAFER [40], SALOON [256],
VSL [2], TVL [85] and FAMA [57]) have emerged to overcome the expressiveness limitations
of feature models, for instance, to deal with attributes or multi-features.

Most of the languages do not allow to explicitly change a default value for features and
attributes so, we considered that they do not address that characteristic as a goal. FDL is
an example of a language that addresses this characteristic with restrictions. It includes the
construct “default" however, it only uses it to declare a selected-by-default atomic feature in
a group and not a default attribute value.

Another case of characteristics that are addressed only partially is the constraints. While
constraints have been addressed by all the languages, in most of the cases they did not
consider constraints including features, attributes values (e.g., in FODA, FDL SXFM) and
multifeatures (e.g., VSL and FAMA).

Less common characteristics. The main differences between VM and the other approaches are
mainly the use of meta-information associated to features or attributes. For example, VM
users can include: i) deltas, ii) elements definitions –model, features and attributes information,
iii) multi-ranges and multi-deltas, iv) meta-information annotations such as “not translat-
able", “not decidable", and “runtime", and v) objective functions. As reported in [27], our
industrial experience strongly motivates the introduction of these new constructs. We also
show the importance of the constructs in terms of reasoning scalability [27].

The comparison highlights two important aspects of variability languages. First, some
common needs for modelling variability are emerging such as the support for attributes and
multi-features. Second, specific constructs are also needed and were a prerequisite for success-
ful adoption in the case of VM– similar observations have been reported in other domains.

2.4. IN SEARCH OF THE RIGHT VARIABILITY LANGUAGE AND MODELS 69

FO
D

A

FD
L

SX
FM

FA
M

IL
IA

R

V
EL

V
ET

U
TF

M

C
LA

FE
R

Sa
lo

on

V
SL

TV
L

FA
M

A

V
M

Characteristic / Approach [175] [109] [216] [16] [266] [316] [40] [256] [2] [84] [57]

Multifeatures # # # # # #

Attributes # # # # #

Default values # H# # # # # #

Deltas # # # # # # # # # # #

Elements definition # # # # # # # # # #

Constraints H# H# H# H# H# H# H#

Multi-ranges, multi-deltas # # # # # # # # # # H#

Run-time annotation # # # # # # # # # # #

NT # # # # # # # # # # #

ND # # # # # # # # # # #

Objectives # # # # # # # # H# #

 addressed as goal, H#addressed but with restrictions, #not regarded as goal

Table 2.6: Summary of comparison between languages w.r.t. specific requirements of the
MOTIV project and video domain

The variability languages do not address some of the requirements of the MOTIV project
simply because they have not been design to. Similarly, some languages for variability offer
specific constructs that VM does not (e.g., CLAFER provides advanced specialization mech-
anisms [40]).

Variability languages and empirical insights: discussion of [283]. Sepulveda et al. per-
formed a systematic literature review of requirements modelling languages for software
product lines [283]. The study includes variability modelling languages developed from 2000
to 2013.

Interestingly our work confirms some findings of the IST article [283]. First Sepulveda et
al. report that “some constructs (feature, mandatory, optional, alternative, exclude and require) are
present in all the languages, while others (cardinality, attribute, constraint and label) are less common".
Second there is a concern for generating proposals with higher levels of expressiveness. It is in
line with our previous comparison of variability languages. Meanwhile our work contributes
to the lack of empirical validation and adoption in industry (as identified in [283]). For
example, it is stated that “57% of the languages have been proposed by the academia, while 43%
have been the result of a joint effort between academia and industry". Our research is precisely a
tight collaboration with industrial partners to capture the right level of expressiveness for VM
and to fully develop a video generator.

70 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

In search of the right variability language

This experience showed how specific needs, encountered in the MOTIV project and in the
video domain, have shaped the design of a textual variability language with advanced con-
structs and reasoning support. We learned the important lessons from our industrial experi-
ence. First, basic variability mechanisms à la FODA – Boolean (optional) features, hierarchy,
group and cross-tree constraints – are useful but not enough and attributes and multi-features
are of prior importance. Second, meta-information is relevant for (1) performing efficient
computer-aided analysis of VM models, and (2) controlling the generation of testable con-
figurations (e.g.,, to focus on specific attributes of features). Third, different iterations were
needed to identify and implement additional specific constructs (e.g., deltas and binding
mode) when connecting VM to the video generator developed by the industrial partners [7].

The point of this section is not to present yet another variability language. We rather want
to highlight the specific requirements we faced throughout the project, in the video domain,
leading to the design and use of existing (or novel) variability constructs. Our experience, as
others [59, 115, 60], question the existence of a one-size-fits-all variability solution applicable
in any industry. Yet some common needs for modelling variability are becoming apparent
(e.g., support for attributes and multi-features [40, 90, 327]).

To conclude this part, I want to highlight two intiatives I have been involved in. First, the
Common Variability Language (CVL) a domain-independent language for specifying and
resolving variability. CVL, originally supported by the OMG, brought together several aca-
demic and industrial partners. CVL pursued a larger goal than providing a feature modelling
language (like VM), with a strong emphasis on expressing variability withing base models.
Though CVL is no longer active, ideas developed there are worth revisiting. Second, the
MODEVAR workshop https://modevar.github.io/ brought together researchers, tools
or developers and calls to find a possible consensus on a simple feature modelling language.
Overall, the definition of a "common" variability language is still an open question in the
community – the VM language is one experience among others.

In search of the right variability model

It is one thing to have a language, it is another to develop models with this language. Another
lesson learnt with the MOTIV project is the difficulty of elaborating sound and complete
variability models, especially the writing of constraints among features and domain values.
We elaborate more on this aspect in Section Learning variability constraints with a more
radical approach.

replication

Interested readers can find the complete implementation code and grammar of VM
online as well as the variability models we elaborated in the industrial project
https://github.com/ViViD-DiverSE/VM-Source

https://modevar.github.io/
https://github.com/ViViD-DiverSE/VM-Source

2.5. WRAP-UP, APPLICABILITY, AND LIMITATIONS 71

2.5 Wrap-up, applicability, and limitations

Modelling variability in the sense of manually developing a model of variability is a complex
activity. It is easy to forget a constraint and unintentionally alter the configuration semantics.
I have first described a comprehensive support for the widely used formalism of feature
model. The FAMILIAR language can be used to manipulate an algebra of feature models
with well-defined properties and on top of satisfiability solvers. This support proved to
be crucial for various compositional scenarios of software product line engineering. I then
studied how feature models relate to product comparison matrices aka PCMs. I showed that
there is a gap between the two formalisms and reported on the design of a specific metamodel
to encode PCMs. Our journey with variability formalisms also included the design of the VM
language with advanced constructs in such a way video experts can comprehensively express
variability information.

As shown in this chapter, modelling variability can be used in a variety of scenarios: for
testing a system, for developing and controlling generators, for abstracting multiple concerns
of multiple system, or for analysing a domain. A variability model is mandatory to set up
a sampling strategy for effectively finding bugs or controlling the generation of a diverse set
of video variants. Throughout this line of research, I have considered different application
domains (medical imaging, video processing, Web applications, computer vision, etc.). mod-
elling has the advantage of integrating knowledge about a domain or a system. Developers,
domain experts, and testers can express their intention, define a scope, and control in a fine-
grained way the variabilty information. According to Collins dictionary, "-ing" as a suffix
forming nouns refers to "the action of, process of, result of, or something connected with the
verb". Modeling is one kind of process, with possibly different iterations to find the good
abstraction or the good language.

This process, however, has some instrinsic limitations. First, modelling variability is time-
consuming. The JHipster and MOTIV cases show that several months were needed to elab-
orate the variability models. Second, the process is error-prone. Features can be forgotten
as well as complex relationships among multiple models, features, or numerical attributes.
Third, systems frequently evolve: new versions are released, together with a new code and
possibly new features and constraints. The manual effort can hardly be repeated. It is partly
why, for instance, we did not continue the testing effort for subsequent versions of JHipster.
Finally, the knowledge can be imprecise or simply difficult to formally express.

All these limitations have pushed us to look at two research directions: reverse engineer-
ing and learning software variability.

72 CHAPTER 2. MODELLING SOFTWARE VARIABILITY

Chapter 3

Reverse Engineering Software
Variability

In this chapter I present a set of methods and techniques to reverse engineer models of
variability. Chikosfky and Cross define reverse engineering as “the process of analyzing a subject
system to identify the system’s components and their relationships, and to create representations of
the system in another form or at a higher level of abstraction“ [82]. Though one section of this
chapter is about architecture and components (plugins), the goal I am pursuing is both more
specific and general: It is to create variability representations of artefacts in another form or
at a higher level of abstraction. This chapter mainly focuses on scenarios in which persons
(domain experts, Web developers, architects, etc.) automatically obtain models of variability
out of existing descriptions of a system or a domain.

Section 3.1 describes the foundations to synthesize attributed feature models out of a
class of product comparison of matrices. Section 3.2 develops methods and techniques to
synthesize product comparison matrices out of textual descriptions of individual products.
Section 3.3 develops methods and techniques to reverse engineer Web configurators (client-
side). Section 3.4 develops methods and techniques to supervise and control the reverse
engineering of architectural feature models throughout evolutions.

Contents
3.1 Synthesizing attributed feature models out of tabular data 74

3.2 Mining variability out of textual descriptions 82

3.3 Reverse engineering Web configurators . 90

3.4 Reverse engineering architectural variability models 96

3.5 Wrap-up, applicability, and limitations . 108

73

74 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Configuration
Matrix

Attributed Feature Model
(AFM)

Product Comparison Matrices
Feature Lists
Spreadsheets

Disjunctive
Constraints

Manual
Elaboration

Understanding a domain
Communication with

stakeholders

Forward
EngineeringReasoning

synthesis

Figure 3.1: Core problem: synthesis of attributed feature model from configuration matrix

3.1 Synthesizing attributed feature models out of tabular data

The content of this section is adapted from the following publication:
G. Bécan, R. Behjati, A. Gotlieb and M. Acher, ‘Synthesis of Attributed Feature Mod-
els From Product Descriptions’, in 19th International Software Product Line Conference
(SPLC’15), (research track, long paper), Nashville, TN, USA, Jul. 2015

Section Feature models and product comparison matrices has established syntactic and
semantic relationships between product comparison matrices and feature models. From now
on, we will use the term configuration matrix to refer to a subset of product comparison
matrices (see Figure 2.8, page 38) that can be automatically translated to feature models. This
subset contains non-Boolean information and the challenge is to synthesize Attributed Feature
Models (AFMs), a formalism that is more expressive than basic feature models considered
in e.g., Section 2.1 and 2.3.1. Overall we are addressing a reverse engineering scenario in
which we want to create representations of an artefact (configuration matrix) in another form
(AFM).

Figure 3.1 summarizes our motivation for synthesizing an AFM from a configuration
matrix. As shown in the upper part of Figure 3.1, the input to the synthesis algorithm is a
configuration matrix (see Definition 5).

Definition 5 (Configuration matrix) Let c1, ..., cM be a given set of configurations. Each configur-
ation ci is an N-tuple (ci,1, ..., ci,N), where each element ci,j is the value of a variable Vj. A variable
represents either a feature or an attribute. Using these configurations, we create an M× N matrix C
such that C = [c1, ..., cM]t, and call it a configuration matrix.

Configuration matrices act as a formal, intermediate representation that can be obtained
from various sources, such as (1) spreadsheets and product comparison matrices (e.g., see
[52]), (2) disjunction of constraints, or (3) simply through a manual elaboration (e.g., practi-
tioners explicitly enumerate and maintain a list of configurations [58]).

For instance, let us consider the domain of Wiki engines. The list of features supported
by a set of Wiki engines can be documented using a configuration matrix. Figure 3.2 is a
very simplified configuration matrix, which provides information about eight different Wiki
engines.

3.1. SYNTHESIZING ATTRIBUTED FEATURE MODELS OUT OF TABULAR DATA 75

Id
License License Language Lang WYSI

Type Price Support uage WYG
W1 Commercial 10 Yes Java Yes
W2 NoLimit 20 No – Yes
W3 NoLimit 10 No – Yes
W4 GPL 0 Yes Python Yes
W5 GPL 0 Yes Perl Yes
W6 GPL 10 Yes Perl Yes
W7 GPL 0 Yes PHP No
W8 GPL 10 Yes PHP Yes

Figure 3.2: A configuration matrix for Wiki engines.

Commercial => LicensePrice = 10
LicensePrice = 10 => Commercial
Commercial => Java
Java => Commercial
GPL => LicensePrice <= 10

NoLimit => ¬LanguageSupport
¬LanguageSupport => NoLimit
GPL => LanguageSupport
NoLimit => LicensePrice >= 10
¬PHP => WYSIWYG
Python => LicensePrice = 0

Wiki engine

LanguageSupport LicenseType
Language: {Java, Python,
 Perl, PHP}

LicensePrice: {0, 10, 20}

GPL Commercial NoLimit

WYSIWYG

Φ = ¬WYSIWYG <=> PHP ∧ LicensePrice = 0

Figure 3.3: One possible attributed feature model for representing the configuration matrix
in Figure 3.2

The resulting AFM (see lower part of Figure 3.1) can as well be used to document a
set of configurations and open new perspectives. First, state-of-the-art reasoning techniques
for AFM can be reused (e.g., [302, 40, 90, 236]). Second, the hierarchy helps to structure
the information and a potentially large number of features into multiple levels of increasing
detail [97]; it helps to understand a domain or communicate with other stakeholders [55, 58,
97]. Finally, an AFM is central to many product line approaches and can serve as a basis for
forward engineering [33] (e.g., through a mapping with source code or design models).

Overall, configuration matrices and feature models are semantically related and aim to
characterize a set of configurations. The two formalisms are complementary as they pro-
pose different views on the same product line; we aim to better understand the gap and
switch from one representation to the other. For instance, Figure 3.3 depicts an attributed
feature diagram as well as constraints that together provide one possible representation of the
configuration matrix of Figure 3.2.

76 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

RC ::= bool_factor ‘⇒’ bool_factor
bool_factor ::= feature_name | ‘¬’ feature_name | rel_expr
rel_expr ::= attribute_name rel_op num_literal
rel_op ::= ‘>’ | ‘<’ | ‘≥’ | ‘≤’ | ‘=’

Figure 3.4: The grammar of readable constraints.

Attributed Feature Models

Several formalisms supporting attributes exist [40, 85, 56, 118]. In this chapter, we consider
an extension of FODA-like feature models including attributes and inspired from the FAMA
framework [55, 56]. An AFM is composed of an attributed feature diagram (see Definition 6
and Figure 3.4) and an arbitrary constraint (see Definition 7).

Definition 6 (Attributed Feature Diagram) An attributed feature diagram (AFD) is a tuple 〈F,
H, EM, GMTX , GXOR, GOR, A, D, δ, α, RC〉 such that:

- F is a finite set of boolean features.
- H = (F, E) is a rooted tree of features where E ⊆ F× F is a set of directed child-parent edges.
- EM ⊆ E is a set of edges defining mandatory features.
- GMTX , GXOR, GOR ⊆ P(E\Em) are sets of feature groups. The feature groups of GMTX , GXOR

and GOR are non-overlapping and each feature group is a set of edges that share the same parent.
- A is a finite set of attributes.
- D is a set of possible domains for the attributes in A.
- δ ∈ A→ D is a total function that assigns a domain to an attribute.
- α ∈ A→ F is a total function that assigns an attribute to a feature.
- RC is a set of constraints over F and A that are considered as human readable and may appear in

the feature diagram in a graphical or textual representation (e.g., binary implication constraints
can be represented as an arrow between two features).

A domain d ∈ D is a tuple 〈Vd, 0d,<d〉 with Vd a finite set of values, 0d ∈ Vd the null value of
the domain and <d a partial order on Vd. When a feature is not selected, all its attributes bound by α
take their null value, i.e., ∀(a, f) ∈ α with δ(a) = 〈Va, 0a,<a〉, we have ¬ f ⇒ (a = 0a).

For the set of constraints in RC, formally defining what is human readable is essential
for designing automated techniques that can synthesize RC. In this paper, we define RC as
the constraints that are consistent with the grammar in Figure 3.4. Some examples of such
constraints can be found in the bottom of Figure 3.3. We consider that these constraints are
small enough and simple enough to be human readable. In this grammar, each constraint
is a binary implication, which specifies a relation between the values of two attributes or
features. Feature names and relational expressions over attributes are the boolean factors
that can appear in an implication. Further, we only allow natural numbers as numerical
literals (num_literal).

The grammar of Figure 3.4 and the formalism of attributed feature diagrams (see Defini-
tion 6) are not expressively complete regarding propositional logics. Therefore the formalism
of AFD cannot represent any set of configurations (more details are given in [49]). To enable
accurate representation of any possible configuration matrix, an AFM is composed of an AFD
and a propositional formula:

3.1. SYNTHESIZING ATTRIBUTED FEATURE MODELS OUT OF TABULAR DATA 77

Definition 7 (Attributed Feature Model) An attributed feature model is a pair 〈AFD, Φ〉 where
AFD is an attributed feature diagram and Φ is an arbitrary constraint over F and A that represents
the constraints that cannot be expressed by RC.

Example. Figure 3.3 shows an example of an AFM describing a product line of Wiki
engines. The feature WikiMatrix is the root of the hierarchy. It is decomposed in 3 features:
LicenseType which is mandatory and WYSIWYG and LanguageSupport which are optional.
The xor-group composed of GPL, Commercial and NoLimit defines that the wiki engine has
exactly 1 license and it must be selected among these 3 features. The attribute LicensePrice is
attached to the feature LicenseType. The attribute’s domain states that it can take a value in
the following set: {0, 10, 20}. The readable constraints and Φ for this AFM are listed below
its hierarchy (see Figure 3.3). The first one restricts the price of the license to 10 when the
feature Commercial is selected.

The main objective of an AFM is to define the valid configurations of a product line. A
configuration of an AFM is defined as a set of selected features and a value for every attribute.
A configuration is valid if it respects the constraints defined by the AFM (e.g., the root feature
of an AFM is always selected). The set of valid configurations corresponds to the configuration
semantics of the AFM (see Definition 8).

Definition 8 (Configuration semantics) The configuration semantics JmK of an AFM m is the set
of valid configurations represented by m.

Two main challenges of synthesizing an AFM from a configuration matrix are (1) pre-
serving the configuration semantics of the input matrix; and (2) producing a maximal and
readable diagram for a further exploitation by practitioners (see Figure 3.1).

To avoid the synthesis of a trivial AFM (e.g., an AFM with the input matrix encoded in
the constraint Φ and no hierarchy, i.e., E = ∅), we define the property of maximality for
attributed feature models (see details in [49]). Given a set of configurations sc, the problem is
to synthesize an AFM m such that JscK = JmK (i.e., the synthesis is sound and complete) and
m is maximal.

Synthesis parametrization

Despite the maximality property, the solution to the problem may not be unique. Given a set
of configurations (i.e., a configuration matrix), multiple maximal AFMs can be synthesized.

It has already been observed for the synthesis of Boolean FMs [47, 284, 285]. Extending
boolean feature models with attributes exacerbates the situation. In some cases, the place of
the attributes and the constraints over them can be modified without affecting the configura-
tion semantics of the synthesized AFM.

78 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Figure 3.6: Web-based tool for gathering domain knowledge during the synthesis

GPL Commercial NoLimit

WYSIWYG

Wiki engine
Language: {Java, Python, Perl, PHP}

LanguageSupport

LicensePrice : {0, 10, 20}

LicenseType

Commercial => LicensePrice = 10
LicensePrice = 10 => Commercial
Commercial => Java
Java => Commercial
GPL => LicensePrice <= 10
NoLimit => ¬LanguageSupport

¬LanguageSupport => NoLimit
GPL => LanguageSupport
NoLimit => LicensePrice >= 10
¬PHP => WYSIWYG
Python => LicensePrice = 0
¬LanguageSupport => Language = "--"

Φ = ¬WYSIWYG <=> PHP ∧ LicensePrice = 0

Figure 3.5: Another attributed feature model representing the configuration matrix in Fig-
ure 3.2

Example. Figures 3.3 and 3.5 depict two AFMs representing the same configuration matrix
of Figure 3.2. They have the same configuration semantics but their attributed feature dia-
grams are different. In Figure 3.3, the feature WYSIWYG is placed under Wiki engine whereas
in Figure 3.5, it is placed under the feature LicenseType. Besides the attribute LicensePrice
is placed in feature LicenseType in Figure 3.3, whereas it is placed in feature Wiki engine in
Figure 3.5.

3.1. SYNTHESIZING ATTRIBUTED FEATURE MODELS OUT OF TABULAR DATA 79

To synthesize a unique AFM, our algorithm uses domain knowledge, which is extra in-
formation that can come from heuristics, ontologies or a user of our algorithm. This domain
knowledge can be provided interactively during the synthesis or as input before the synthesis.
Our synthesis tool (Figure 3.6 shows the workflow) provides an interface for collecting the
domain knowledge so that users can:

- decide if a column of the configuration matrix should be represented as a feature or an
attribute;

- give the interpretation of the cells (type of the data, partial order);
- select a possible hierarchy, including the placement of each attribute among their legal

possible positions;
- select a feature group among the overlapping ones;
- provide specific bounds for each attribute in order to compute meaningful and relevant

constraints for RC.

All steps are optional; in case the domain knowledge is missing, the synthesis algorithm
takes arbitrary yet sound decisions (e.g., random hierarchy).

Example. The domain knowledge that leads to the synthesis of the AFM of Figure 3.3 can
be collected with our synthesis tool. Users specify what constitutes an attribute or a feature.
For instance, the column Language represents an attribute (for which the null value is "- -").
In further step, users can specify hierarchy and also precise that, e.g., "10" is an interesting
value for LicensePrice when synthesizing constraints.

Synthesis algorithm

The two inputs of the algorithm are a configuration matrix and some domain knowledge
for parametrizing the synthesis. The output is a maximal AFD. In complement to the AFD,
we compute the constraint Φ [49]. The addition of Φ and the AFD forms the AFM. The
first step of the synthesis algorithm is to extract the features (F), the attributes (A) and their
domains (D, δ). A follow-up and important step of the synthesis is to extract binary implic-
ations between features and attributes. It is used to select hierarchy and synthesize requires
constraints.

An original and costly step concerns the synthesis of relational constraints i.e., all the
constraints following the grammar described in Figure 3.4 and involving at least one attribute.
Admittedly there is a huge number of possible constraints that respect the grammar of RC.
Our synthesis algorithm relies on some domain knowledge (see Figure 3.6) to restrict the
domain values of attributes considered for the computation of RC. In case the knowledge is
incomplete (e.g., users do not specify a bound for an attribute), we randomly choose a value
in the domain of the attribute. Example. From the configuration matrix of Figure 3.2, we can
extract the following binary implication: GPL⇒ LicensePrice ∈ {0, 10}. We also note that the
domain of LicensePrice is {0, 10, 20}. Therefore, the right side of the binary implication can be
rewriten as LicensePrice <= 10. As this constraint can be expressed by the grammar of RC,
we add GPL⇒ LicensePrice <= 10 to RC (see Figure 3.3). In general, more details about the
synthesis algorithm can be found in references [49, 50].

80 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Evaluation

We developed a tool that implements the synthesis algorithm. The tool is mainly imple-
mented in Scala programming language with appropriate data structures (e.g., HashMap and
HashSet) for efficient computation of implications. For the computation of or-groups, we rely
on the SAT4J solver [197].

Evaluation on random matrices. To provide an insight into the scalability of our procedure,
we experimentally evaluate the runtime complexity of our AFD synthesis procedure. For
this purpose, we have developed a random matrix generator, which takes as input three
parameters:

- number of variables (features and attributes)
- number of configurations
- maximum domain size (i.e., maximum number of distinct values in a column)
We first perform some initial experiments on random matrices. We quickly notice that

computation of the or-groups poses a scalability problem. It is not surprising since this part
of the synthesis algorithm is NP-hard, leading to some timeouts even for Boolean feature
models (e.g., see [285]). Our experiments confirm that the computation of or-groups quickly
becomes time-consuming. The 30 minutes timeout is reached with matrices containing only
30 variables. With at least 60 variables, the timeout is always reached. Therefore, we deactiv-
ated the computation of or-groups in the following experiments.

Scalability results. Our main observations are as follows: The square root of the time
grows linearly with the number of variables. The time grows linearly with the number of
configurations. The synthesis time grows quadratically with the maximum domain size. Be-
sides, results show that the major part of the algorithm is spent on the computation of binary
implications and relational constraints for RC. The rest of the synthesis represents less than
10% of the total duration. According to our theoretical analysis (see [49] for details), the two
hard parts of the synthesis algorithm are the computation of mutex-groups (exponential com-
plexity) and or-groups (NP-complete). We note that 93.8% of the configuration matrices in
our dataset produce mutex graphs that contain absolutely no edges. In such cases, comput-
ing mutex-groups is trivial. The rest of the algorithm has a polynomial complexity, which is
confirmed by the experiments.

Evaluation on real-world matrices. To provide an insight into the scalability of our ap-
proach on realistic configuration matrices, we executed our algorithm on configuration matrices
extracted from Best Buy is a well known American company that sells consumer electronics.
On their website, the description of each product is completed with a matrix that describes
technical information. Each matrix is formed of two columns in order to associate a feature
or an attribute of a product to its value. The website offers a way to compare products that
consists in merging the matrices to form a single configuration matrix which is similar to the
one in Figure 3.2.

Experimental Settings We developed an automated technique to extract configuration matrices
from Best Buy website. The procedure is composed of 3 steps. First, it selects a set of products
whose matrices have at least 75% of feature and attributes in common. Then, it merges the
corresponding matrices of the selected product to obtain a configuration matrix. Unfortu-
nately, the resulting configuration matrix may contain empty cells. Such cells have no clear

3.1. SYNTHESIZING ATTRIBUTED FEATURE MODELS OUT OF TABULAR DATA 81

Table 3.1: Statistics on the Best Buy dataset.

Min Median Mean Max
Variables 23 50.0 48.6 91

Configurations 11 27.0 47.1 203
Max domain size 11 27.0 47.1 203

Empty cells before interpretation 2.5% 16.1% 14.4% 25.0%

0 10 20 30 40 50 60 70 80 90 10
0

Binary implications
Mutex

Relational constraints
Other steps

Or

Figure 3.7: Time complexity distribution of the synthesis algorithm on the Best Buy dataset

semantics from a variability point of view. The last step of the procedure consists in giving
an interpretation to these cells. If a feature or an attribute contain only integers, the empty
cells are interpreted as "0". Otherwise, the empty cells are interpreted as "No" which means
that the feature or attribute is absent.

With this procedure, we extracted 242 configuration matrices from the website that forms
our dataset for the experiment. Table 3.1 reports statistics on the dataset about the number
of variables, configurations, the maximum domain size and the number of empty cells before
interpretation.

In the following experiments, we measure the execution time of the algorithm on the
Best Buy dataset. We execute the algorithm on the same cluster of computers in order to
have comparable results with previous experiments on random matrices. We also execute the
synthesis 100 times for each configuration matrix of the dataset in order to reduce fluctuations
caused by other programs running on the cluster and the random decisions taken during the
synthesis.

Scalability results. We measure the execution time of the synthesis algorithm with the
computation of or-groups activated. On the Best Buy dataset, the execution time is 0.8s in
average with a median of 0.5s. The most challenging configuration matrix has 73 variables,
203 configurations and a maximum domain size of 203. The synthesis of an AFM from this
matrix takes at most 274.7s. Figure 3.7 reports the average distribution for the dataset. It
shows that the computation of binary implications, or-groups and the relational constraints
are the most time-consuming tasks. It confirms the results of the experiments on random
matrices. However, we note that on the Best Buy dataset, the computation of or-groups can be
executed in a reasonable time. Our results also indicate that the execution time on the most
challenging matrix of the Best Buy dataset has the same order of magnitude as the execution
time on a similar random matrix.

replication

The complete source code of the synthesis algorithm can be found in
https://github.com/gbecan/FOReverSE-AFMSynthesis. The repository
https://github.com/gbecan/FOReverSE-AFMSynthesis-Evaluation gives details
about the evaluation (data, R scripts, etc.).

https://github.com/gbecan/FOReverSE-AFMSynthesis
https://github.com/gbecan/FOReverSE-AFMSynthesis-Evaluation

82 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

3.2 Mining variability out of textual descriptions

The content of this section is adapted from the following publications:
S. Ben Nasr, G. Bécan, M. Acher, J. B. Ferreira Filho, N. Sannier, B. Baudry and
J.-M. Davril, ‘Automated Extraction of Product Comparison Matrices From Informal
Product Descriptions’, Journal of Systems and Software (JSS), vol. 124, pp. 82–103, 2017.
doi: 10.1016/j.jss.2016.11.018. https://hal.inria.fr/hal-01427218
J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang and P. Heymans,
‘Feature model extraction from large collections of informal product descriptions’, in
ESEC/FSE, 2013

Domain analysis is a crucial activity that aims to identify and organize features that are
common or vary within a domain [251, 33, 259]. At their respective level, domain experts,
product managers, or even customers on their daily life activities need to capture and un-
derstand the important features and differences among a set of related products [166]. For
instance, the motivation for a customer is to choose the product that will exhibit adequate
characteristics and support features of interest; when several product candidates are identi-
fied, she or he will compare and eventually select the "best" product. In an organization, the
identification of important features may help to determine business competitive advantage
of some products as they hold specific features.

Manually analyzing and modelling a set of related products is notoriously hard [75, 103,
259, 138, 73]. The information is scattered all along textual descriptions, written in informal
natural language, and represents a significant amount of data to collect, review, compare
and formalize. A case-by-case review of each product description is labour-intensive, time-
consuming, and quickly becomes impractical as the number of considered products grows.

Given a set of textual product descriptions, we propose an approach to automatically
synthesize product comparison matrices (PCMs). Our approach extracts and organizes inform-
ation despite the lack of consistent and systematic structure for product descriptions and the
absence of constraints in the writing of these descriptions, expressed in natural language.

With the extraction of PCMs, organizations or individuals can obtain a synthetic, struc-
tured, and reusable model for the understanding and the comparison of products. Instead of
reading and confronting the information product by product, PCMs offer a product line view
to practitioners. It is then immediate to identify recurrent features of a domain, to under-
stand the specific characteristics of a given product, or to locate the features supported and
unsupported by some products.

Techniques have been developed to mine variability [32, 176, 226] and support domain
analysis [103, 259, 138, 73, 74, 81, 232, 30, 39, 165, 260, 123, 223], but none of them address the
problem of structuring the information in a PCM. Many papers including our own work aim
to elaborate a feature model as an outcome of the domain analysis. It is not our goal here:
the outcome of our proposal is the synthesis of a PCM. As elaborated in Section 2.2, PCMs
have a value per se, can be used with specialized tools or for deriving other services (e.g.,
configurators and comparators). Furthermore, the synthesis of a feature model out of PCM
can be envisioned if need be (as in [103] or as in Section 3.1). In fact, it is worth noticing that
many works that synthesize feature models actually assume the presence of tabular data and
PCM. An example is given in Figure 3.8, extracted from [103]. This "product–feature matrix",
as named in [103], is what we call a product comparison matrix in this manuscript. It has been

https://doi.org/10.1016/j.jss.2016.11.018
https://hal.inria.fr/hal-01427218

3.2. MINING VARIABILITY OUT OF TEXTUAL DESCRIPTIONS 83

Figure 3.8: Features published on SoftPedia for a selection of typical antivirus products. The
table has been manually elaborated in [103]. Our goal in this contribution is precisely to
reverse engineer a product comparison matrix out of informal textual descriptions.

used to build a feature model. The matrix has been obtained through manual inspection of
informal descriptions and feature lists of dozens products. It is time-consuming, error-prone,
and hard to replicate when information is updated. Our goal in this contribution is precisely
to reverse engineer a product comparison matrix out of informal textual descriptions.

Motivation

Organizations describe the products they sell on their website using different categories of
text forms. It goes from plain text in a single paragraph, formatted text with bullets, to
matrices with product specifications. There is a spectrum of product descriptions ranging
from structured data (matrices) to informal descriptions written in natural languages. Both
have strengths, weaknesses, and have the potential to comprehensively describe a set of
products. For instance, BestBuy provides descriptions for hundreds of thousands of products,
including: (1) product overviews, text describing features of products using natural language
(see Figure 3.9); (2) technical specifications, which describe the technical characteristics of
products through feature lists.

Figure 3.9 illustrates the common scenario in which a customer needs to buy a laptop
on BestBuy website and has to decide among a diversity of products. He/she has to go
through many textual descriptions (product overviews) and reason over the different features
of the product. A typical question is to figure out if a particular feature is supported by
existing products (if any) and what are the alternatives. In domain analysis, the biggest
challenge is related to the number of products and the number of features an analyst has to
gather and organize. The more assets and products, the harder the analysis. Our goal is to
automate the manual task of analyzing each product with respect to its textual description
and clustering information over several products, and provide a reader with an accurate and
synthetic product comparison matrix (PCM), as shown in Figure 3.9.

84 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Figure 3.9: Automatic synthesis of a PCM from 4 textual product descriptions. Portions of
texts in yellow have been identified and exploited to synthesize features’ names and cell
values. High-quality images and voice recognition (in red) are features only described in the
text i.e., these features are not described in the technical specifications (feature list) of the
same 4 products.

3.2. MINING VARIABILITY OUT OF TEXTUAL DESCRIPTIONS 85

Automated extraction

Automating the extraction comes with a set of challenges, mostly due to the informal and
unstructured nature of textual overviews.

Our automated approach relies on Natural Language Processing (NLP) and mining tech-
niques to extract PCMs from text. The proposed method takes the descriptions of the different
products as input, and identifies the linguistic expressions in the documents that can be con-
sidered as terms. In this context, a term is defined as a conceptually independent expression.
Then, the method automatically identifies which terms are actually domain-specific. We also
rely on information extraction to detect numerical information, defined as domain relevant
multi-word phrases containing numerical values. The task of building the PCM involves
computing terms (resp., information) similarity, terms (resp., information) clustering, and
finally features and cell values extraction.

The approach has been implemented in a tool, MatrixMiner: It is a web environment
with an interactive support for automatically synthesizing PCMs from informal product de-
scriptions [53]. MatrixMiner also maintains traceability with the original descriptions and the
technical specifications for further refinement or maintenance by users.

MatrixMiner targets domain analysts, software practitioners, customers, or organisations
that want to build and maintain PCMs. Afterwards users can, from PCMs, (1) generate
other domain models, such as feature models [32, 103, 205]; (2) recommend features [138] (3)
perform automatic reasoning (e.g., [236, 223]); (4) devise configurators or comparators; or (5)
simply understand a set of related products.

Figure 3.10: Extraction process; the resulting PCM can be visualized/edited in a Web envir-
onment (see Figure 3.11)

The extraction process of MatrixMiner is summarized in Figure 3.10 and consists of two
primary phases. In the first phase, domain specific terms are extracted from a set of informal
product descriptions (steps Ê and Ë), while in the second phase the PCM is constructed
(steps Ì to Ï). For step Ê, the raw product descriptions are extracted. Currently, we have im-
plemented a mining procedure on top of BestBuy API [156] for retrieving numerous product
pages along different categories. We also provide means to either (1) manually select the
products to be included in the comparison; or (2) group together closest product within a
category. The gathering of data can be generalized to other sources of Web information
(beyond BestBuy). We outline in the following the rest of the procedure.

86 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Terms Mining. Step Ë is based on a novel natural language processing approach, named
contrastive analysis [67], for the extraction of domain specific terms from natural language
documents. In this context, a term is a conceptually independent linguistic unit, which can be
composed by a single word or by multiple words. A multi-word is conceptually independent
if it occurs in different context (i.e., it is normally accompanied with different words). For
instance, "Multiformat Media Reader" is a term, while "Reader" is not a term, since in the
textual product descriptions considered in our study it often appears coupled with the same
word (i.e., "Media"). Combining single and compound words is essential to detect features
and their values.

Our multi–word term extraction method is based on a combination of "termhood" meas-
ures, assessing the likelihood of being a valid technical term, and contrastive methods. In
particular, multi–word term extraction is carried out by identifying multi–word terms can-
didates in an automatically Part–Of–Speech (POS) tagged and lemmatized text, making use
of different kinds of linguistic features. POS-tagging aims at representing a text as an abstract
syntax tree with textual tokens annotated a nouns, verbs, noun phrases, etc. These candidates
are then weighted with the C–NC value, currently considered as the state–of–the–art method
for terminology extraction [67]. This metric establishes how much a multi-word is likely to
be conceptually independent from the context in which it appears. The ranking of identified
multi–words terms is then revised on the basis of a contrastive score calculated for the same
domain-specific terms.

Building the PCM. Once the top list of terms is identified for each product, we start the
construction of the PCM. This process requires creating some intermediate structures. In
step Ì we divide the set of terms in two categories: quantified terms containing measures
(e.g., "1920 x 1080 Resolution") including intervals (e.g., "Turbo Boost up to 3.1 GHz"); and
descriptive terms containing noun phrases and adjectival phrases (e.g., "Multiformat Media
Reader"). The key idea is to perform separately descriptive terms (DTs) clustering from quan-
tified terms (QTs) clustering. A DTs cluster gives the possible descriptor values (e.g., "Mul-
tiformat") while a QTs cluster provides the potential quantifier values (e.g., "1920 x 1080")
for the retrieved feature. In step Í we compute terms similarity to generate a terms rela-
tionship graph for each category. The goal of this step is to determine a weighted similarity
relationship graph among terms within the same category. To identify coherent clusters, we
first determine the similarity of each pair of terms by using syntactical heuristics. In step Î

we apply term clustering in each graph to identify descriptive and quantified term clusters.
The underlying idea is that a cluster of tight-related terms with different granularities can be
generated by changing the clustering threshold value [81]. Finally, step Ï extracts features
and cell values to build the PCM. To extract the feature name from a cluster, we developed
a process that involves selecting the most frequently occurring phrase from among all of the
terms in the cluster. This approach is similar to the method presented in [161] for summar-
izing customer reviews. For example, "1920 x 1080 Resolution" and "1366 x 768" Resolution"
represent QTs clusters that gives "Resolution" as a features name and two potential values:
"1920 x 1080" and "1366 x 768". Terms which are not clustered will be considered as boolean
features. Finally we distinguish different types of features (see Figure 3.11): boolean which
have Yes/No values, quantified when their values contain measures (e.g., "Resolution", "Hard
Drive", etc.), descriptive if their values contain only noun and adjectival phrases (e.g., "Media
Reader"), and empty values. The resulting PCM can be visualized and refined afterwards (see
next section).

3.2. MINING VARIABILITY OUT OF TEXTUAL DESCRIPTIONS 87

Figure 3.11: The editor of MatrixMiner in action

MatrixMiner offers an interactive mode where the user can import a set of product de-
scriptions, synthesize a complete PCM, and exploit the result [53].

Our early empirical insights suggested that human intervention is beneficial to (1) re-
fine/correct some values (2) re-organize the matrix for improving readability of the PCM. As
a result we developed an environment for supporting users in these activities. MatrixMiner
provides the capability for tracing products and features of the extracted PCM to the ori-
ginal product overviews and the technical specifications. Hence the PCM can be interactively
controlled, complemented or refined by a user. Moreover users can restructure the matrix
through the grouping or ordering of features. Overall, the functionalities available are the
following:

- select a set of comparable products. Users can rely on a number of filters (e.g., category,
brand, sub categories, etc.. See Figure 3.11, A);

- ways to visualize the PCM with a traceability with original product descriptions. For
each cell value, the corresponding product description is depicted with the highlight of
the feature name and value in the text. For instance, "500GB Hard Drive" is highlighted
in the text when a user clicks on "500GB" (see Figure 3.11, B and C);

- ways to visualize the PCM with a traceability with the technical specification (see Fig-
ure 3.11, D). For each cell value, the corresponding specification is displayed including
the feature name, the feature value and even other related features. Regarding our run-
ning example, "Hard Drive Capacity" and two related features ("Hard Drive Type" and
"Hard Drive RPM") are depicted together with their corresponding values;

- basic features of a PCM editor. Users can remove the insignificant features, complete
missing values, refine incomplete values or revise suspect values if any – typically based
on information contained in the textual description and the technical specification;

88 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

- advanced features of a PCM editor: means to filter and sort values (see Figure 3.11, E
and F); ways to distinguish Yes, No and empty cells using different colors to improve
the readability of the PCM; prioritise features by changing the columns order, etc.

Evaluation

Our evaluation is made of two major studies.
Empirical Study. We aim to measure some properties of the extracted PCMs. Is our

extraction procedure able to synthesize comparable information and compact PCMs? Is there
an overlap between synthesized PCMs and technical specifications?

User Study. We aim to evaluate the quality of the information in the synthesized PCMs.
How correct are features’ names and values in the synthesized PCMs? Can synthesized PCMs
refine technical specifications? Such a study necessitates a human assessment. We have in-
volved users to review information of our synthesized PCMs using MatrixMiner traceabilities.

We evaluate our tool against numerous categories of products mined from BestBuy [156],
a popular American company that sells hundreds of consumer electronics. Specifically, we
selected 9 products categories that cover a very large spectrum of domains (Printers, Cell
phones, Digital SLR Cameras, Dishwashers, Laptops, Ranges, Refrigerators, TVs, Washing
Machines) from BestBuy. Currently, we have implemented a mining procedure on top of
BestBuy API [156] for retrieving numerous product pages along different categories. We
mined 2692 raw product overviews using the BestBuy API. Another important property of
the dataset is that product descriptions across and within different categories do not share
the same template. The absence of template challenges extractive techniques. By design, our
approach does not assume any regular structure of product descriptions.

Our empirical results show that the synthesized PCMs are compact and exhibit numerous
quantitative, comparable information. Specifically:

- Our approach is capable of extracting numerous quantitative and comparable informa-
tion (12.5% of quantified features and 15.6% of descriptive features).

- A supervised scoping of the input products reduces the complexity (in average 107.9 of
features and 1079.7 of cells) and increases the homogeneity and the compactness of the
synthesized PCMs (only 13% of empty cells).

- An open issue is that the size of PCMs can be important while PCMs, being from
overviews or technical specifications, can be incomplete. It motivates the study of the
complementarity of the two kinds of PCMs.

– From the complementary perspective of product variability sources, a significant por-
tion of features (49.7%) and cell values (26.2%) is recovered in the technical specifica-
tions.

– The proportion of overlap of overview PCMs regarding specification PCMs is signi-
ficantly greater than the overlap of the latter regarding overview matrices. This is
explained by the fact that the natural language is richer, more refined and more de-
scriptive compared to a list of technical specifications.

– Overall, users can benefit from an interesting overlap. They can reduce the complexity
of the PCMs by only focusing on overlapping features’ names and values. They can also
complete missing cell values or even refine some information of PCMs. It motivates the
next "user study".

3.2. MINING VARIABILITY OUT OF TEXTUAL DESCRIPTIONS 89

Our previous study does not evaluate the quality of the information in the synthesized
PCMs. For example, we do not know how correct are features’ names and values in the
synthesized PCMs coming from informal and textual overviews.

User study. We considered the same set of supervised overview PCMs used earlier in the
empirical study. These PCMs cover a very large spectrum of domains (Printers, Cell phones,
Digital SLR Cameras, Dishwashers, Laptops, Ranges, Refrigerators, TVs, Washing Machines,
etc.). These PCMs are made from various sizes, going from 47 to 214 columns (features), and
10 rows (products).

The PCMs were evaluated separately by 20 persons, each using their own computers.
Participants were computer science researchers and engineers at Inria (France).

The evaluators have to validate features and cell values in the PCM against the information
contained in the original text. Specifically, the evaluators had to specify for each column
whether the PCM contains more/less refined information (features and cell values) than
in the specification: We displayed one column at a time. The evaluators have to validate
the feature and cell values. To this end, the tool provides ways to visualize the PCM with a
traceability with original product descriptions. For each cell value, the corresponding product
overview is depicted with the highlight of the feature name and the value in the text. Once
the evaluation of one column is finished, the evaluator submits his/her evaluation and starts
again a new evaluation for a new column. We obtained 118 evaluated features and 1203
evaluated cell values during an evaluation session of one hour. Overall, 50% of evaluated
features belong to ranges, 24.57% come from laptops, 16.10% are related to printers, and
9.32% correspond to features of refrigerators, TV and washing machines. On the other hand,
45.95% of evaluated cell values are about ranges, 22.61% are contained in laptops PCMs,
16.90% of values belong to printers and 14.52% are related to refrigerators, TV and washing
machines.

The user study shows that we can retrieve a significant portion of correct information.
Specifically:

- Our automatic approach retrieves 43% of correct features and 68% of correct cell values.
Users can rely on MatrixMiner’s traceability to control, edit or remove some features’
names and values without having to review the entire textual descriptions.

- Results show that we have as much or more information in the synthesized PCMs than
in the technical specifications for a significant portion of features (56%) and cell values
(71%). Again, users can rely on MatrixMiner to refine or expand the information in
both sources.

Overall, we provide empirical evidence that there is a potential to complement or even
refine technical information of products thanks to our extraction. The evaluation insights
drive the design of the MatrixMiner, a web environment with an interactive support for syn-
thesizing, visualising and editing PCMs. The presented work has the potential to crawl
scattered and informal product descriptions that abound on the web. Other inputs such
as online reviews of products can be considered as well. The identification of relation-
ships between features (e.g., conflict) is also an interesting perspective. Although http:
//matrix-miner.variability.io is no longer available at the time of writing, there is
a demonstration of MatrixMiner: https://www.youtube.com/watch?v=ezKx-S0LiNQ

http://matrix-miner.variability.io
http://matrix-miner.variability.io
https://www.youtube.com/watch?v=ezKx-S0LiNQ

90 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

replication

The specific source code of the extraction procedure is available online: https://
github.com/sbennasr/matrix-miner-engine. Our Web environment reuses
the editor of OpenCompare https://github.com/gbecan/OpenCompare

.

3.3 Reverse engineering Web configurators

The content of this section is adapted from the following publications:
E. Khalil Abbasi, M. Acher, P. Heymans and A. Cleve, ‘Reverse Engineering Web
Configurators’, in 17th European Conference on Software Maintenance and Reengineering
(CSMR’14), IEEE, Ed., Antwerp, Belgium, Feb. 2014
E. Khalil Abbasi, A. Hubaux, M. Acher, Q. Boucher and P. Heymans, ‘The Anatomy
of a Sales Configurator: An Empirical Study of 111 Cases’, Anglais, in 25th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE’13), M. Norrie
and C. Salinesi, Eds., Valencia, Espagne, Jun. 2013. http://hal.inria.fr/hal-
00796555

A Web Configurator is an online product configuration environment for choosing or cus-
tomizing products that match individual needs. Customers gradually select the configuration
options to be included in the final product. A configurator provides an interactive graphical
user interface (GUI) that guides the users throughout the configuration process (see Fig. 3.12
for an example). Web configurators are complex systems [179, 264, 306]: numerous kinds of
constraints govern the options, the configuration process can be multi-step and non linear,
and advanced capabilities are provided to check consistency, automatically complete unde-
cided options, etc.

Our previous empirical study of 111 Web configurators [179] revealed the absence of
specific, adapted, and rigorous methods in their engineering. Some of the Web configurators
are developed like any other typical Web applications: proceeding this way leads to reliability,
runtime efficiency, and maintainability issues. Specifically, we identified a large number of
bad practices (incomplete reasoning, counter-intuitive representation of options, losing of all
decisions when navigating backward, etc.) in the 111 configurators. Some of our industrial
partners face similar problems and are now trying to migrate their legacy configurators to
more reliable, efficient, and maintainable solutions [70].

To decrease the cost of migration, we propose to systematically re-engineer these applic-
ations. This encompasses two main activities: (1) reverse engineering a legacy configurator
and encoding the extracted data into dedicated formalisms, and then (2) forward engineering
new improved, customized configurator based on models [70]. The use of variability models
to formally capture configuration options and constraints, and state-of-the-art solvers (e.g.,
SAT, CSP, or SMT) to reason about these models, would provide more effective bases (see
Chapter Modelling Software Variability).

https://github.com/sbennasr/matrix-miner-engine
https://github.com/sbennasr/matrix-miner-engine
https://github.com/gbecan/OpenCompare
http://hal.inria.fr/hal-00796555
http://hal.inria.fr/hal-00796555

3.3. REVERSE ENGINEERING WEB CONFIGURATORS 91

Figure 3.12: Audi Web configurator (http://configurator.audi.co.uk/)

In this contribution, we focus on the reverse-engineering process. It consists of extracting
configuration-specific data such as options, their associated descriptive information, and con-
straints, altogether called variability data, from the Web pages of the configurator, and then
constructing a variability model, for instance, a feature model. Building a complete feature
model requires, ideally, analysing both the client and the server sides of a configurator. We
investigate here the visible parts of configurators, i.e., the GUI of the Web client because it is
the entry point for customer orders and most of the variability data is somehow represented
in Web pages.

The major difficulty is that Web configurators, despite having a common goal and similar
features, vary significantly: variation in implementation and presentation of configuration-
specific objects as well as the way constraints govern the selection of options. For example,
some options are all located in the same Web page; in other configurators, some options
only appear in a new Web page once a certain selection has been performed. To the best
of our knowledge, the problem of extracting feature models from Web configurators has not
been studied. Existing techniques for reverse engineering feature models assume a formal
representation of the constraints (e.g., through a formula [47, 49, 284, 32]) or exploit specific
artefacts (e.g., product descriptions (see Section Mining variability out of textual descriptions),
dependency files (see Section Reverse engineering architectural variability models), source
code [284, 330]). Methods for reverse engineering Web GUIs (e.g., see [218]) do not propose
dedicated techniques for (1) locating options in a Web page or for (2) analyzing the dynamics
and the specificity of a configuration process.

Method

This contribution presents a novel tool-supported and supervised approach to reverse en-
gineer Web configurators. The reverse-engineering tool consists mainly of two collaborative
components: Web Wrapper and Web Crawler. A Web Wrapper extracts variability data from
a Web page and transforms it into structured data in a semi-automatic way. A Web Crawler
focuses on the runtime behaviour of configurators. It explores the configuration space (i.e., all

92 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

objects representing configuration-specific data) and simulates (some of) users’ configuration
actions. The Crawler systematically generates dynamic variability data which is then extrac-
ted by the Wrapper. The Wrapper and the Crawler operate over the notion of variability data
extraction pattern (vde pattern in short).

Due to the high diversity of presentations and implementations found in Web configur-
ators [179], a fully automated approach is neither realistic nor desirable. We consider that
the data extraction process should be supervised. A user manually marks and names data to
be extracted by giving it a meaningful label in a vde pattern specification. Consequently, (1)
the user distinguishes configuration-specific data from the other irrelevant and noisy data,
(2) she explicitly and accurately organizes data items in the extracted data records by assign-
ing them different labels, and (3) representing the extracted data in a predefined data model
becomes feasible, because the types and logical relationships of data to be extracted from
Web pages of a configurator are rather known. Users can specify a vde pattern, expressed in
an HTML-like language, to extract the variability data from Web pages. The Web Wrapper,
given a vde pattern (i.e., the specification of the structure of objects of interest), locates in a
Web page code fragments (implementing objects of interest) that structurally conform to that
pattern and then extracts their data .

Fig. 3.13 depicts our proposed supervised and semi-automatic reverse-engineering process.
Interactive (I) and automatic (A) activities are distinguished. The process starts with the
specification of vde patterns for a given Web page (Ê). The user inspects the source code of
the page, identifies templates from which the page is generated, specifies the appropriate
vde pattern defining the structure of those templates, and marks the required data in the
pattern. The specified vde pattern is given to the Web Wrapper. The Web Wrapper is a
program that takes as input specification of a vde pattern and a Web page, seeks and finds
code fragments in the page that structurally match the given pattern, and extracts as output
data items from those code fragments corresponding to the marked data in the pattern (Ë).
The extracted data is hierarchically organized and serialized using an XML format. Most
likely, the analysed Web page does not contain all configuration-specific data objects. New
configuration content may be added to the page based on some selections of options. The
Crawler simulates some of users’ configuration actions in order to automatically generate
dynamic content (Ì). The newly added data is extracted by the Wrapper (Ë). The content
extracted in steps Ë and Ì can be edited (Í). The clean XML file is then given to a module
which transforms it into a feature model (Î). We rely on the Text-based Variability Language
(TVL) to represent feature models [85]. At the end of the reverse-engineering process there are
typically several generated TVL models (e.g., each corresponding to a specific configuration
step). To produce a fully-fledged TVL model, all these models are fed to FAMILIAR (Ï)
that provides operators to merge incomplete feature models into a single feature model (see
Section Automated feature model management).

Variability Data Extraction Pattern. Client-side source code is usually developed or gen-
erated from a number of Web templates. Web Configurators are no exceptions. Each Web
page consists of a number of template instances which are syntactically identical fragments
except for variations in values for data slots (text elements and tag attribute values) as well
as minor changes to their structures. We take advantage of templates used in Web pages to
extract the required data.

3.3. REVERSE ENGINEERING WEB CONFIGURATORS 93

Figure 3.13: The reverse engineering process

All vde patterns required to extract data are specified in a configuration file. A configuration
file contains the specification of at least one data pattern and one region pattern. A data pattern
marks text elements and attributes carrying the content of interest, denoting code fragments
(i.e., template instances) that match certain properties and thus contain the relevant data.
A region pattern highlights a portion of the source code where the Wrapper will operate.
The syntax of vde patterns as well as the pattern matching algorithm can be found in [178].
Previous extensive empirical observations on 100+ Web configurations [179] drive the design
of this specific pattern language and algorithm.

Crawling the configuration space. The configuration space may be distributed over
multiple pages each having a unique URL (multi-page user interface paradigm) or all the
configuration-specific objects are contained in a page (single-page user interface paradigm).
For configurators following the single-page paradigm, one common scenario is that when a
Web page is loaded, the configuration space contains some configuration-specific objects and
as the application is executing, new objects may be added to the page, and existing objects
may be removed or changed. Configuring an option and exploring configuration steps are
common actions to change the content of the page. By configuring an option its consistent
options are loaded in the page. For instance, the selection of an option in the “Model line"
group in Fig. 3.12 loads new options to the “Body style" group. Configuring an option may
also change the configuration state of other impacted options. For instance, the selection
of “High-beam assist" makes unavailable “Light and rain sensors". Note that both cases indicate
that there are underlying constraints between those options, consequently, these constraints
should be extracted as well. Activation of a step makes available its options in the page and
makes unavailable those of other steps.

To extract dynamic data, we need to automatically crawl the configuration space in a
Web page. Automatically crawling requires (1) the simulation of users’ configuration and
exploration actions to systematically generate new content or alter the existing content and
then (2) the analysis of the changes made to the page to deduce and extract configuration-
specific data. The Web Crawler and the Wrapper collaborate together to deal with these
cases.

94 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

At present, the Crawler is able to simulate some users’ actions, for instance, the selec-
tion of items from a list box and the click on elements (e.g., button, radio button, menu,
image, etc.). The simulation of user actions may change the content of the page, therefore,
after simulating every clickable element, the page’s content must be analyzed to identify the
newly added content and to deduce from that the configuration-specific data. We observed
that when a configuration action is performed by the user, a few identifiable regions on the
page are impacted and their content may be changed. Consequently, rather than analyzing
the whole page, only those regions should be investigated. Based on this observation, we
divide the configuration-specific regions of a page into two groups: independent and depend-
ent regions. When a configuration action is performed on a configuration-specific object in
an independent region, new objects are added to the dependent regions or existing ones are
changed.

It may happen that no new option is added to the page once a selection is performed.
Instead, the configuration states of existing objects are changed. For instance, in the “Equip-
ment" step in Fig. 3.12, when an option is given a new value, the configurator automatically
propagates the required changes to all the impacted options. In this case, crawling is a way
to instantiate and then extract such constraints. Technically, when the Crawler configures an
option, the Wrapper extracts all the contained options and their states. Therefore, at the end
of the process all the visited configuration states of all the options are documented in the out-
put XML file. These state changes are then analyzed to identify which constraints logically
impact (e.g., through exclusions or implications) other options.

Tool Support. We developed a Firebug1 extension that consists of the Wrapper and the
Crawler components. The extension generates an XML file which presents the output data.
The generated XML file is then given to a Java application which converts it to the corres-
ponding TVL model.

Evaluation

Goal and scope. Our approach aims to reverse engineer feature models from Web con-
figurators. We want to (1) evaluate the ability of the approach to deal with variations in
presentation and implementation of variability data, (2) assess the accuracy of the extracted
data, and (3) measure the users’ manual effort required to perform the extraction.

Questions and metrics. We address four questions (Q):

- Q1. How accurate is the extracted data?

- Q2. How expressive is the pattern language?

- Q3. How applicable is the crawling technique?

- Q4. How much manual effort is needed to perform the reverse-engineering process?

Data set. We considered five configurators: S1 is the Dell’s laptop configurator. We took
the “Inspiration 15" model in this experiment. S2 is the car configurator of BMW. For this study,
we chose the “2013 128i Coupe" model. S3 is a dog-tag generator, in S4 the customer can choose
her chocolate and create its masterpiece and ingredients, and S5 is a configurator that allows
customers to design their shirts.

For each question, we compute specific metrics (e.g., number of patterns required to ex-
tract data for Q2).

1http://getfirebug.com/

http://getfirebug.com/

3.3. REVERSE ENGINEERING WEB CONFIGURATORS 95

Execution. The first author of the paper E. Khalil Abbasi, M. Acher, P. Heymans and
A. Cleve, ‘Reverse Engineering Web Configurators’, in 17th European Conference on Software
Maintenance and Reengineering (CSMR’14), IEEE, Ed., Antwerp, Belgium, Feb. 2014 supervised
the extraction process. For each Web page, we first inspected its source code to find out which
templates are used and then specified the required patterns to extract data.

Accuracy of the extracted data (Q1). For the cases on which we applied the proposed
approach, the accuracy of the extracted data is promising. Hundreds of configuration op-
tions, their attached descriptive information, and constraints defined over these options are
automatically extracted and hierarchically organized. 99% of the extracted options and 99.4%
of the extracted constraints are precise data.2

Expressiveness of the pattern language (Q2). We could specify patterns to cover all
code fragments that implement configuration-specific objects. Pattern-specific elements and
operators we designed in the language gave us a lot of support in specification of patterns for
templates we identified in this experiment. We specifically observed that there are frequent
patterns that are shared across configurators. We also found the notion of multiplicity of an
element very practical in this experiment. For instance, the items of list boxes in configurator
S5 and the list of attached sub-options in configurator S2 are examples of multi-instantiated
elements that we could model them in the patterns.

Applicability of the crawling technique (Q3). Using the crawling technique, we could
study the dynamic nature of the configuration process. We gain numerous additional con-
figuration options and constraints with the crawling technique. 18% of the automatically
extracted options and 16.3% of the constraints are identified and extracted using the crawling
technique. Moreover, dependency between patterns allowed us to document the parent-child
relationships between options. All this data are collected by specifying eight dependencies.
Nevertheless, we cannot claim that the crawling technique can detect and extract all objects
that may be dynamically generated at runtime. We neither have base models to which we
could compare our generated models nor have access to the developers of the studied con-
figurator who can validate our models. It is worth to mention other experiences in reverse
engineering contexts (e.g., see [102, 284] or in this manuscript Section Synthesizing attributed
feature models out of tabular data, Reverse engineering architectural variability models Min-
ing variability out of textual descriptions) showing that incomplete feature models may be
obtained, thus calling for the intervention of the user or any kind of knowledge/artefact to
further refine the model [145].

The manual effort required to perform the extraction process (Q4). In this experiment,
overall we specified 13 region and 19 data patterns, wrote 322 lines of code for these patterns,
and executed them 38 times to extract all data. 3.7% of the collected options and 8.5% of the
constraints are manually added to the automatically extracted data. The manual writing of
322 lines of code to specify the required patterns in this experiment led to generating TVL
models with 4478 lines of code. We believe that our semi-automatic and supervised approach
provides a realistic mix of manual and automated work. It acts as an interesting starting point
for re-engineering a configurator while mining the same amount of information manually is
clearly daunting and error-prone.

2A limitation of our study is that we did not report on recall. However, metrics about the number of options,
groups and constraints suggests that a significant amount of variability data has been recovered.

96 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Summary. Experimental results show that the proposed language is expressive such that
using a few patterns the user can extract hundreds of options presented in a page. They
also confirm the ability of the Crawler to dynamically and automatically mine numerous
additional configuration options and constraints.

replication

The specification of the pattern language, tools, and the complete set of data are avail-
able at http://info.fundp.ac.be/~eab/result.html

3.4 Reverse engineering architectural variability models

The content of this section is adapted from the following publications:
M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien and P. Lahire, ‘Reverse Engineer-
ing Architectural Feature Models’, in 5th European Conference on Software Architecture
(ECSA’11), long paper, ser. LNCS, Essen (Germany): Springer, Sep. 2011, p. 16
M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien and P. Lahire, ‘Extraction and
Evolution of Architectural Variability Models in Plugin-based Systems’, Software and
Systems Modeling (SoSyM), 2013

Large software systems are now commonly organized around a more or less explicit ar-
chitecture, which defines entities, their properties and relationships. When software product
line (SPL) engineering principles are followed from the start, it is feasible to manage variab-
ility through one or more architectural feature models and then associate them to the system
architecture [243]. The major architectural variations are then mapped to given features, al-
lowing for automated composition of architectural elements when features are selected to
configure a particular software product from the line. A resulting property of crucial import-
ance is to guarantee that the variability is not only preserved but also kept consistent across
all artefacts [98, 34, 204].

In many cases, however, one has to deal with (legacy) software systems not initially de-
signed as SPLs [284, 11, 141, 321, 257, 322]. When the system becomes more complex, with
many configuration and extension points, its variability must be handled according to SPL
techniques. In this context, the task of building an architectural feature model is very arduous
for software architects. They typically have to deal with lots of plugins (usual customizations
of the Eclipse IDE are made with several hundreds of plugins, corresponding to dozens of
high-level features [130, 250]), for which safe composition is the topmost requirement [204].

It is then necessary to recover a consistent feature model from the actual architecture.
On a large scale both automatic extraction from existing parts and the architect knowledge
should ideally be combined to achieve this goal. In particular, a software architect should
be able to determine whether her (high-level) representation complies with an automatically
extracted model, and to what extent they differ from each other (e.g., in the style of reflex-
ion models [224]). Moreover, since the software architecture and functionalities are naturally
evolving over time, it is also necessary to ensure that an architectural feature model is main-
tained consistent with these changes. In the case of modern dynamic software architectures,
which are based on plugins, these modifications can be very complex to handle, especially

http://info.fundp.ac.be/~eab/result.html

3.4. REVERSE ENGINEERING ARCHITECTURAL VARIABILITY MODELS 97

in the presence of hidden dependencies between (different versions of) plugins. In this con-
text, evolving the architectural feature model along the modified architecture is tedious. It is
therefore needed to reproduce the extraction process and to reason on the new architectural
feature model and on its differences.

The FraSCAti Plugin-based System Case Study

We motivate and illustrate our proposal on a case study related to the FraSCAti platform [217],
an open source implementation of the OASIS’s Service Component Architecture (SCA) stand-
ard [233]. SCA is a technology-agnostic component-based standard for building distributed
composite service-oriented applications mixing various programming languages and frame-
works (e.g., Java, C, C++, WS-BPEL, Spring Framework) for implementing business compon-
ents, various interface definition languages (e.g., WSDL, Java) for describing business services,
and various network communication protocols (e.g., Web Service, Java Messaging Service) for
interconnecting distributed applications.

Main SCA component-based concepts are quite generic and present in numerous other
component models: a composite is a component composed of a set of components, a compon-
ent encapsulates a business logic implemented with a programming language/framework, a
service and a reference are named interfaces respectively provided/required by a component,
an interface is a set of methods implemented or used by a component, a binding explains how
both service and reference are accessible via a network communication protocol, and a wire
connects a source reference to a target service.

Started in 2007, the development of FraSCAti began with a framework based on a ba-
sic implementation of the standard, that has then been incrementally enhanced. After six
major releases, it now supports several SCA specifications and provides a set of extensions
to the standard, including component implementation types binding implementation types,
interface description types, and runtime APIs for component introspection and reconfigura-
tion [281, 282].

As its capabilities grew between releases, FraSCAti has itself been refactored and com-
pletely architected as an SCA-based application, i.e., an assembly of SCA components. The
FraSCAti architecture is composed of three main SCA composites:

- The SCA parser is responsible to load business SCA composite files into memory. As
the SCA composite language is extensible, its grammar is described by several meta-
models (MM). Then FraSCAti supports various SCA meta-models (e.g., MMFrascati,
MMTuscany).

- The Assembly Factory is responsible to check SCA composites and orchestrate their
instantiation. The assembly factory is composed of several plugins for dealing with
the various forms of component implementations, interface definition languages, and
service bindings (e.g., rest, http).

- The Component Factory is in charge of instantiating SCA components. This factory gen-
erates and compiles Java code for component containers. This factory has two plugins
for supported Java compilers (i.e., JDK6 and JDT).

Thanks to its new component-based architecture, different variants of FraSCAti can be
built in order to meet various application requirements and target system constraints. Each
SCA application running on FraSCAti could have different requirements in terms of SOA
features like supporting SOAP, WSDL, WS-BPEL, REST, OSGi, JMS. All these SOA features

98 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

are implemented as SCA components which are plugged to the FraSCAti architecture. Then,
application developers could select all the FraSCAti plugins required for their applications.
Orthogonally, the target system on which applications are deployed could impose some con-
straints.

FraSCAti

SCAParser

Java Compiler

JDK6 JDT

Assembly Factory

resthttp

Binding

MMFrascati

Component Factory

Metamodel

MMTuscany

constraints
rest implies MMFrascati
http implies MMTuscany

fm1

Optional

Mandatory

Xor-Group

Or-Group

Figure 3.14: Architectural feature model (simplified from our
case study)

For instance, in case a FraS-
CAti variant should support
the compilation of Java code
on the fly, then an em-
bedded Java compiler is re-
quired. FraSCAti supports
two distinct Java compilers:
The standard JDK6 compiler
and the Eclipse JDT compiler.
FraSCAti plugins could have
dependencies, e.g., the REST
binding plugin requires the
FraSCAti meta-model while
the HTTP binding plugin
requires the Tuscany meta-
model. These FraSCAti plugin
dependencies are captured via Apache Maven3 XML-based descriptors.

FraSCAti version 1.5 contains around 60 plugins for a total of around 250.000 lines of
code. So, FraSCAti is representative of a large plugin-based system, i.e., a system composed
of plugins, each of which is implemented as a set of SCA components that adds specific
abilities to FraSCAti.

With all these capabilities, the FraSCAti platform has become highly (re-)configurable in
many parts of its own architecture. It exposes a larger number of extensions that can be
activated throughout the platform, creating numerous variants of a FraSCAti deployment. It
then became obvious to FraSCAti technical leaders that the variability of the platform should
be more systematically managed in order to better drive and control its evolution. A possible
feature model of FraSCAti is depicted in Figure 3.14 – the reader can recognize features that
have been introduced in the text (e.g., MMFrascati, MMTuscany).

Reverse engineering process along evolution

We present a comprehensive, tool supported process for reverse engineering and evolving
architectural feature models. Specifically, we develop automated techniques to extract and
combine different variability descriptions of a software architecture, integrating the hierarch-
ical decomposition of the architecture and inter-plugin dependencies. The basic idea is that
variability and technical constraints of the plugin dependencies are projected onto an archi-
tectural model. After the extraction, alignment and reasoning techniques are applied to
integrate the architect knowledge and reinforce the extracted FM. In addition, we show how
the extraction process can be reiterated when the architecture evolves. This notably enables
the architect to re-integrate his knowledge and to reason about the differences between two
successive architectural feature models.

3Maven (http://maven.apache.org/) is a software tool for managing a project’s build, reporting and docu-
mentation

http://maven.apache.org/

3.4. REVERSE ENGINEERING ARCHITECTURAL VARIABILITY MODELS 99

1 2

Software
Artefacts

3

implies

fmPlugfmArch150

implies

Enforced
Architectural FM

fmFull

fmArch

Aggregation

Slicing (Π)

Mapping

propositional
constraints

Extraction of 150%
Architectural FM

Extraction of Plugin
Dependencies

Figure 3.15: Process for Extracting f mArch

Extraction process

The general principle of the extraction is to combine two sources (an architectural model
and a set of plugin dependencies) in order to synthesize a new integrated feature model
representing the features of the architecture as well as their variability and their technical
constraints. Fig. 3.15 summarizes the steps needed to realize the extraction process.

As a first step, a raw architectural feature model, noted f mArch150 , is extracted from a 150%
architecture of the system (see À). The latter consists of the composition of the architecture
fragments of all the system plugins. We call it a 150% architecture because it is not likely that
a FraSCAti configuration may contain them all. Consequently, f mArch150 does include all the
features provided by the FraSCAti SPL, but it still constitutes an over approximation of the set
of valid combinations of features of the FraSCAti family. Indeed, some features may actually
require or exclude other features, which is not always detectable in the architecture. Hence
the need for considering an additional source of information. We therefore also analyze
the specification of the system plugins and the dependencies declared between them, with
the ultimate goal of deriving inter-feature constraints from inter-plugin constraints. To this
end, we extract a plugin feature model f mPlug, that represents the system plugins and their
dependencies (see Á). Then, we automatically reconstruct the bidirectional mapping that
holds between the features of f mPlug and those of f mArch150 (see Â). Finally, we exploit this
mapping as a basis to derive a richer architectural FM, noted f mArch, where additional feature
constraints have been added. As compared to f mArch150 , f mArch more accurately represents
the architectural variability provided by the system.

100 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Extracting f mArch150 The architectural feature model extraction process starts from a set
of n system plugins (or modules), each defining an architecture fragment. In order to extract
an architectural feature model representing the entire product family, we need to consider
all the system plugins at the same time. We therefore produce a 150% architecture of the
system, noted Arch150. It consists of a hierarchy of components. In the SCA vocabulary,
each component may be a composite, itself further decomposed into other components. Each
component may provide a set of services, and may specify a set of references to other services.
Services and references having compatible interfaces may be bound together via wires. Each
wire has a reference as source and a service as target. Each reference r has a multiplicity,
specifying the minimal and maximal number of services that can be bound to r. A reference
having a 0..1 or 0..N multiplicity is optional.

Note that Arch150 may not correspond to the architecture of a legal product in the system
family. For instance, several components may exclude each other because they all define a
service matching the same 0..1 reference r. In this case, the composition algorithm binds only
one service to r, while the other ones are left unbound in the architecture.

Since the extracted architectural feature model should represent the variability of the
system of interest, we focus on its extension points, typically materialized by optional refer-
ences [9]. The root feature of the extracted feature model (froot) corresponds to the main
composite (root) of Arch150. The child features of froot are the first-level components of root,
the latter being considered as the main system features. The lower-level child features are
then added through a recursive function. This function looks for all the optional references
r of component c and, for each of them, creates an optional child feature fr, itself further
decomposed through a XOR or an OR group (depending on the multiplicity of r). The child
features fcs of the group correspond to the set of all components cs providing a service com-
patible with r.

An algorithm, detailed in [9], specifies how to retrieve this set of matching components from
the 150% architecture. The set of components matching a given 0..N reference r are obviously
those providing a service bound to r via a wire. In the case of a 0..1 reference, in contrast, all
compatible services are not necessarily bound to it. Thus, the matching components are all
those that provide a service having an interface compatible with reference r.

Extracting f mPlug The extraction of the plugin feature model f mPlug starts from the set of
plugins P = {p1, p2, . . . , pn} composing the system. This extraction is straightforward: each
plugin pi becomes a feature fpi of f mPlug. If a plugin pi is part of the system core, fpi is
a mandatory feature, otherwise it is an optional feature. Each dependency of the form pi
depends on pj is translated as an inter-feature dependency fpi requires fpj . Similarly, each pi
excludes pj constraint is rewritten as an excludes dependency between fpi and fpj .

Mapping f mArch150 and f mPlug When producing Arch150, we keep track of the relation-
ship between the input plugins and the architectural elements they define, and vice versa. On
this basis, we specify a bidirectional mapping between the features of f mArch150 and those of
f mPlug by means of requires constraints. This mapping allows us to determine (1) which plu-
gin provides a given architectural feature, and (2) which architectural features are provided
by a given plugin.

3.4. REVERSE ENGINEERING ARCHITECTURAL VARIABILITY MODELS 101

Ar3 => Pl1
Pl2 => Ar5

R

Ar2

Ar5 Ar6

Ar1

Ar3 Ar4

Arch

fmArch

fmFull

Ar2

Ar5 Ar6

Ar1

Ar3 Ar4

Arch

fmArch

Ar3 => Ar5

Pl3Pl2Pl1

Plugin

Pl1 => Pl2

fmPlug150

〖	 fmFull 〗 = {{Ar1,Ar2,Ar4,Ar6,Arch,R,Pl3,Plugin},
{Ar1, Ar2, Ar3, Ar5, Arch, R, Pl1, Pl2, Pl3, Plugin},
{Ar1, Ar2, Ar4, Ar5, Arch, R, Pl2, Pl3, Plugin},
{Ar1, Ar2, Ar4, Ar5, Arch, R, Pl1, Pl2, Pl3, Plugin},
{Ar1, Ar2, Ar4, Ar5, Arch, R, Pl2, Plugin},
{Ar1, Ar2, Ar4, Ar5, Arch, R, Pl3, Plugin},
{Ar1, Ar2, Ar3, Ar5, Arch, R, Pl1, Pl2, Plugin},
{Ar1, Ar2, Ar4, Ar5, Arch, R, Pl1, Pl2, Plugin}}

〖	 fmArch150 〗 = {{Ar1,Ar2,Ar4,Ar6,Arch},
{Ar1, Ar2, Ar3, Ar5, Arch},
{Ar1, Ar2, Ar3, Ar6, Arch},
{Ar1, Ar2, Ar4, Ar5, Arch}}

〖	 fmArch 〗 = {{Ar1,Ar2,Ar3,Ar5,Arch},
{Ar1, Ar2, Ar4, Ar6, Arch},
{Ar1, Ar2, Ar4, Ar5, Arch}}

Slicing (Π) onto
{ Arch, Ar1, …, Ar6 }

Figure 3.16: Enforcing architectural feature model using aggregation and slicing: an example

Deriving f mArch We now explain how we derive f mArch using f mArch150 , f mPlug, the
mapping between f mPlug and f mArch150 , and an operation called slicing. We then illustrate
the procedure using the example of Fig. 3.16. Intuitively, the variability and technical con-
straints induced by the plugin dependencies are projected onto the architectural model. In our
case the use of plugin dependencies restricts the scope of the architectural feature model by
precluding some unauthorized configurations in f mArch150 .

Projecting Variability onto the Architectural Model. First the two feature models f mPlug
and f mArch150 are aggregated under a synthetic root FtAggregation so that the root features
of the inputs are mandatory child features of FtAggregation. The aggregation operation
produces a new FM, called FMFull (see Fig. 3.16). The propositional constraints relating
features of f mPlug to features of f mArch150 are also added to FMFull .

Second, we compute the projected set of configurations (see Definition 10) of FMFull onto
the set of features of f mArch150 (i.e., F f mArch150

= {Arch, Ar1, . . . , Ar6}).

To realize the projection, we use an operation called slicing (see Definition 9). Given a
subset of features, the slicing operator produces a new FM characterizing the projected set of
configurations (see Definition 10).

Definition 9 (Slicing) We define slicing as an operation on FM, denoted ΠFslice (f m) = f mslice
where Fslice = { f t1, f t2, ..., f tn} ⊆ F is a set of features (called the slicing criterion) and f mslice is a
new feature model (called the slice).

Definition 10 (Slice and projected set of configurations) The result of the slicing operation is
a new FM, f mslice, such that: J f msliceK = { x ∩ Fslice | x ∈ J f mK } (called the projected set of
configurations).

102 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

As several yet different feature models can represent a given set of configurations [284],
we also take the feature hierarchy into account. In particular, we want to avoid slice feature
models that are not readable and maintainable (e.g., for a software architect or for users
configuring the architecture) due to an inappropriate hierarchy. Therefore we consider that
the new feature model produced by the slicing operation should have a hierarchy as close as
possible to the hierarchy of the original feature model. Formal details can be found in [9].

Implementation of the projection (slicing). Syntactical strategies have severe limitations to
accurately represent the set of configurations expected in the slice, especially in the presence
of cross-tree constraints. Reasoning directly at the semantic level is required. The key ideas
of our approach are to i) compute the propositional formula representing the projected set
of configurations and then ii) reuse the reasoning techniques proposed in [49, 99, 32, 46] to
construct a feature model from the propositional formula.

Example In the example of Fig. 3.16, the resulting slice is called f mArch. As we want to focus
on the variation points of the architecture, it only contains the features’ name of f mArch150 .
Formally:

ΠF f mArch150
(f mFull) = f mArch

We can verify that the relationship (see Definition 10) between the input FM, J f mFullK, and
the slice FM, J f mArchK, truly holds:

J f mArchK = { x ∩ {Ar1, Ar2, Ar3, Ar5, Arch}

| x ∈ J f mFullK }
Importantly, we can notice that one configuration of the original f mArch150 is no longer

present in f mArch:

J f mArch150K \ J f mArchK = {Ar1, Ar2, Ar3, Ar6, Arch}

Indeed the slice feature model f mArch contains an additional constraint Ar3 ⇒ Ar5, that
was not originally restituted as such in f mArch150 .4 It should also be noted that the hierarchy
of the slice correctly restitutes the hierarchical decomposition of the architecture.

This very simple example already shows two key benefits of combining different variabil-
ity sources and using the slicing operator. First, constraints, not originally present in the 150%
architectural FM, are automatically restitued in a new architectural variability model and can
be reported back to the software architect. Second, restrictions are applied on the over ap-
proximated configurations set characterized by the 150% architectural feature model. There-
fore some configurations, actually not supported by the architecture, are now precluded.

Supporting the evolution of architectural feature mdoels

For each version of a plugin-based system like FraSCAti, the architectural feature model
synthesized by the extraction procedure should be validated by the software architect (SA). In
particular, the SA should control that the variability information and the characterized set
of configurations do not contradict his/her intention and knowledge of the architecture. For
example, the SA may consider that the mandatory status of some features in the extracted
feature model is not appropriate.

4Similarly, the constraint Ar4 ⇒ Ar6 could be restituted in the model (using the information of the implication
graph, see above). The slicing operator does not add this constraint because of the redundancy with Ar3⇒ Ar5.

3.4. REVERSE ENGINEERING ARCHITECTURAL VARIABILITY MODELS 103

SA View

renaming,
projection,

removal

Aligned SA
View

Extracted
Architectural FM

Aligned
Architectural FM

renaming,
projection,

removal

fmSA

fmSA’fmArch’1

fmArch1

Reconciling FMs
(e.g., vocabulary and
granularity alignment)

Comparison

FM differences

Refinement

fmArch’

Figure 3.17: Process for integrating the SA knowledge

For assisting the SA, the extracted feature model can be compared with his/her mental
representation and with older versions of architectural feature models. As a result, an ap-
propriate support for comparing two feature models and reasoning about an evolution of a
feature model is highly needed. We now detail some requirements and our tool-supported
techniques.

First evolution. At the starting point of the re-engineering of FraSCAti as an SPL, an
intentional model of the variability was elaborated by the SA. The resulting FM, denoted
f mSA, was the first available representation of the FraSCAti architecture (version 1.3, see
Table. 3.2). The extraction process previously described was then applied to produce another
representation (f mArch1) for the same version of the architecture. Therefore, f mArch1 can be
seen as an evolution of f mSA given that the feature model originally elaborated by the SA has
now evolved to an automatically extracted feature model.

The absence of a ground truth – a feature model for which we are certain that each com-
bination of features is supported by the SPL architecture – makes uncertain the accuracy of
the variability specification expressed in f mArch1 as well as in f mSA. As both the software
architect FM and f mArch1 may represent differently the variability of the architecture, there
is need to reconcile and refine the two feature models. The result of this process is a new FM,
f mArch′1

, that integrates the intentional variability and the SA knowledge of f mSA and the
explicit variability expressed by f mArch1 .

Versions and evolutions. As any software project, the FraSCAti architecture evolves. Many
features and dependencies are added and removed. Naturally, the extraction procedure is re-
iterated on different versions (e.g., version 1.4) of a FraSCAti architecture, producing different
feature models. Nevertheless, the confidence of the resulting feature models remains unclear:
i) the extraction procedure may be faulty (e.g., inadequate for a specific version of FraSCAti);
ii) the variability and the constraints may not be correctly documented in the architecture
artefacts; iii) the SA knowledge may not be taken into account.

104 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Managing the evolutions. For controlling and hopefully validating the evolution of an FM,
the SA should be able to understand and exploit the differences between two feature models.
A possible solution is to elaborate, for each version of a FraSCAti architecture, a new feature
model representing the current variability and then compare it with the extracted FM. Never-
theless, the elaboration from scratch of a new feature model (like the SA did for version 1.3)
is time-consuming and error-prone. There is an opportunity to reuse feature models resulting
from a previous version.

Support for managing evolutions. Fig. 3.17 presents the overall process for comparing two
feature models (e.g., for comparing an extracted feature model with a feature model designed
by the SA). In the following, we describe dedicated techniques related to the evolution of
feature models for supporting the SA activities, namely reconciliation, comparison and re-
finement.

Reconciling feature models Let us consider f mSA and f mArch of Fig. 3.17. The SA should
be able to determine if the variability choices in f mSA comply with what is expected by
himself (i.e., as specified in f mArch), and vice-versa. In case variability representations are
conflicting, the SA can refine the architectural feature model. Similar observations can be
made when reasoning about two different versions of a FraSCAti architecture.

There are three steps to support the SA architect in reconciling feature models. The first
one is to apply pre-directives for renaming features due to vocabulary mismatch among the
feature models. The second step is to deal with the granularity mismatch (e.g., some features
in one feature model are not present in the other model). The SA needs to remove features,
potentially involved in many cross-tree constraints. For a sound removal of features, we use
the slicing operation. For example, the removal of two features Felix and Equinox of f mSA,
leading to a new feature model f m′SA, corresponds to the following slicing operation:
f m′SA = ΠF f mSA

\ {Felix,Equinox} (f mSA)

Once feature models have the same vocabulary and granularity of information, it is pos-
sible to compare feature models. The third step is here to compute and present differences of
the two feature models in a comprehensible manner to the SA. The problem of feature model
differences is a general problem that may occur in other contexts (see Section Automated
feature model management). We present here only the techniques relevant to our specific
context.

Comparison through syntactic and semantic diff. From a syntactical perspective, the ele-
ments to be considered in the diff are features, feature hierarchies, feature groups or implies
/ excludes. For instance, it is useful to determine feature groups (Xor and Or) that are in a
feature model but not in in the other. (We consider that two feature groups are equal if and
only if their parent features match and their child features match.)

Though the syntactic diff is useful, a practitioner also wants to understand the difference
between the two feature models in terms of configuration semantics (i.e., in terms of sets of
configurations). We now address semantically the list of differences. We translate the two
feature models into two formulae. Working at the level of abstraction for Boolean variables
may produce unexploitable results for a practitioner. Stated differently, a practitioner wants
to understand differences in terms of feature modelling concepts rather than in terms of a
propositional formula. We thus take care of producing meaningful information based on the

3.4. REVERSE ENGINEERING ARCHITECTURAL VARIABILITY MODELS 105

analysis of the two formula. A first strategy consists in analyzing separately each formula
and then performs the differences of the information produced. For instance, we can report
on the differences w.r.t. implications or exclusions. A second general strategy consists in
producing relevant information based on the logical combinations of the two formula.

Step-wise refinement. Once differences have been identified and understood, the SA can
edit the two feature models: i) change the variability associated to features (e.g., set optional a
mandatory feature); ii) add and remove some constraints (e.g., implies constraints); iii) modify
the feature hierarchy.

The edits to a feature model (e.g., f mArch) change its syntactic and semantic properties.
Once edits are applied, the differences with another feature model (e.g., f mSA) should be
re-computed. Therefore managing differences is a multi-step, incremental process. Edits
are incrementally applied on the two feature models until obtaining a satisfying relationship
between the two feature models.

Implementation. We need a practical support for using the techniques previously described:
- Extraction support: the procedure aiming to extract the variability model of the plugin-

based architecture at a certain time (f mArch).

- Evolution support: the set of feature model operations designed to assist the architect in
monitoring the evolution of the plugin-based architecture.

For both tasks, we rely on FAMILIAR, a language for combining feature model operators.

Evaluation

Performance evaluation. Theoretically, slicing and difference’ operations can induce severe
computational costs. However, we found that the order of complexity of feature models
encountered in FraSCAti is manageable. Feature models exhibit lots of constraints but at
worst only 123 features (see Table 3.2, page 106) when combining f mArch150 and f mPlug for
the version 1.5. At this scale, we observed no difficulty. The operations on feature models can
be efficiently executed in a few seconds using our implementation of the slicing operation
and differencing techniques.

Practical evaluation. We applied the tool-supported techniques previously described on
different versions of FraSCAti (see Table 3.2). P. Merle, principal FraSCAti developer for six
years now, plays the role of the SA in this study. Specifically, we aim at assessing them
regarding the two main challenges:

- (RQ1) Extraction of variability: Is the extraction procedure accurate or faulty? Are the
properties of the produced feature models coherent with what is expected by the SA?
To what extent is the SA knowledge needed for recovering the architectural variability?
For this purpose, we determine the variability information inferred by the extraction
procedure and analyze the differences between f mArch and f mSA. We also report qual-
itative insights gained when the SA validates the extracted feature model.

- (RQ2) Evolution of variability: Are the differencing techniques exploitable for the SA?
Can an evolution be controlled and validated by the SA? We apply previous techniques
and report similar quantitative and qualitative observations for two other versions of
FraSCAti.

106 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

Version f mArch150 f mPlug mapping f mArch core implies bi-implies
features constraints constraints
(deduced) (deduced) (deduced)

1.3 50 features 41 features 12
81 constraints 78 constraints 9 5

≈ 1011 config. ≈ 106 config.
1.4 53 features 56 features 12

87 constraints 80 constraints 10 5
≈ 1011 config. ≈ 107 config.

1.5 60 features 63 features 12
96 constraints 92 constraints 13 7

≈ 1014 config. ≈ 108 config.

Table 3.2: Experimental results: properties of the feature models

Extraction (RQ1, key results) Considering different versions of the FraSCAti project (see
Table 3.2), the extraction procedure deduces many constraints and drastically restricts the
configuration set of f mArch150 . The SA validates the variability recovered by the procedure. It
even encourages him to correct his initial model. We gain better confidence in the accuracy of
the extraction procedure by reiterating the process on different versions of FraSCAti. In some
specific cases though the extracted feature model contains faulty variability information. In
this case, we have to rely on the knowledge of the SA.

Evolution (RQ2, key results) The differencing techniques appear to be meaningful for
the SA. It allows the SA to control the properties of extracted feature models and in turn
integrate his knowledge. It also allows the SA to understand and validate the evolutions
of the FraSCAti architecture, for example, by controlling what implies constraints have been
added and removed between two versions.

Insights about RQ1 and RQ2 I report an excerpt of qualitative insights – more details can
be found in [9].

Insight #1 (software architect corrections) For the version 1.4 of FraSCAti, we identified 13
features that are present in f mArch but not in f mSA. Among others, two metamodels used by
the SCA parser, three bindings, two SCA properties, two implementations and one interface
were missing. Several reasons were given by the SA:

- accidental complexity: the SA recognizes that some features were missing in his feature
model. Given the complexity of the FraSCAti project, this is not surprising that the SA
forgets some features. Some oversights are related to “helper” features of FraSCAti
(such as the features features binding factory or juliac) that are generally not used by
developers, while other oversights were qualified as more relevant from a configuration
perspective (additional metamodels and binding types).

- modelling intention: the SA reveals that he intentionally ignored some features in f mSA.
He argued that there are mandatory features (e.g., every FraSCAti configuration has
a Java interface) and that his focus was on variability rather than commonality. We
indeed verify the mandatory nature of the features (e.g., sca_interface_java) in f mArch
(see above).

3.4. REVERSE ENGINEERING ARCHITECTURAL VARIABILITY MODELS 107

Another example related to the way features are modeled concerns a feature of f mArch,
juliac, not modeled in f mSA. By simplification, features juliac and delegate-membrane-
generation have been merged by the SA into an unique feature MembraneGeneration.

- obsolete features: for the feature services, the SA explains that this architectural element
is an empty composite that “could have been used but have not yet an interest”.

Insight #2 (debating with automated extraction) Three subtle situations of variability mis-
match have been encountered and are interesting to explain:

- feature generators is optional and its children tinfi_oo_1, osgi are forming an Or-group
in f mArch whereas feature generators is mandatory and its children tinfi_oo_1, osgi are
all optional in f mSA. At first glance, the difference seems important but the intention
of the SA is actually similar to the variability expressed in f mArch. In terms of sets of
configurations, f mSA authorizes four combination of features {generators, tinfi_oo_1,
osgi}, {generators, osgi}, {generators, tinfi_oo_1}, and {generators}. f mArch authorizes
exactly the same set, except {generators}. It means that in both cases a configuration
of a FraSCAti architecture may have zero or some concrete generators (i.e., {tinfi_oo_1,
osgi}). The feature {generators} can be seen as an abstract5 feature.

As a result, the two feature models, though modelling differently the variability, have
the same intention. It has been decided by the SA to keep the solution of the extraction
procedure.

- feature fractal_bootstrap_class_provider is mandatory in f mSA and one of its child fea-
ture tinfi_oo is mandatory. On the contrary, fractal_bootstrap_class_provider is op-
tional in f mArch, and its children form an Or-group. The discussions with the SA
reveal that, indeed, the architecture of FraSCAti authorizes a configuration without
fractal_bootstrap_class_provider. The initial intent of the SCA was to state, that this
feature is often6 necessary. He explained the mandatory status of the feature tinfi_oo
as a default implementation. Nevertheless, the SA recognized that f mArch accurately
restitutes the flexibility of the architecture.

- the feature compiler_provider is optional in f mArch but mandatory in f mSA. The SA
confirms that a FraSCAti architecture has not necessarily to embed a complete Java
compiler – minimal (≤ 4Mo) FraSCAti architecture for embedded systems can thus be
derived and deployed. Therefore f mArch accurately models the variability of the feature
compiler_provider.

Insight #3 (missing constraints) For each version (see Table 3.2), we identified a dozen of
implies constraints expressed in f m Arch but not in f mSA. All constraints were validated by
the SA, recognizing that the constraints have been forgotten.

Concluding remarks. Overall the results show the software architect increases the qual-
ity of architectural feature models (i.e., better specifying variability and thus avoiding some
unsafe configurations) compared to a feature model that is manually designed or that does
not integrate all variability descriptions of the system. Furthermore the architectural feature
model takes into account both the software architect viewpoint and the variability actually
supported by the system. Without the feature model management support exposed in the

5In [304], Thüm et al. define a feature as abstract, “if and only if it is not mapped to any implementation artifacts”.
They “call all other features non-abstract or concrete, i.e., a concrete feature is mapped to at least one implementation
artifact”. It corresponds to our case.

6Many constraints of f mArch involve features tinfi_oo, osgi_provider, julia, thus confirming that their parent
feature fractal_bootstrap_class_provider is needed in many configurations.

108 CHAPTER 3. REVERSE ENGINEERING SOFTWARE VARIABILITY

article, obtaining similar results would not be possible. Qualitative insights validate the ad-
equacy of our support for reverse engineering variability. They also show the limits of a
modelling approach (as done by the SA) as well as the limits of a reverse engineering ap-
proach. In other words, both variability modelling (see Chapter 2) and reverse engineering
techniques (this chapter) should be combined.

replication

Further details and material (including feature models and FAMILIAR scripts) about
the experiment are available here: https://github.com/FAMILIAR-project/
FraSCAtiVariabilityEvolution

3.5 Wrap-up, applicability, and limitations

I have shown that reverse engineering can provide the necessary automation for obtaining
high-quality variability models. The presented techniques can also mine variability inform-
ation that is otherwise time-consuming and error-prone to synthesize. Several kinds of arte-
facts can be considered: informal, textual descriptions of individual products; architectural
information and dependencies files; client-side artefacts of a Web configurator; or tabular
data. It should be noted that the applicability is far broader to what I have presented in this
chapter. For instance, we described how to reverse engineer a family of languages in [308]. In
fact, there is a large community involved in reverse engineering variability (see, e.g., the REVE
workshop http://reveworkshop.github.io/, co-organized with the SPLC conference
since 2013).

In a sense, reverse engineering is a possible answer to the limitations identified in pre-
vious chapter. The process can be repeated and variability knowledge can be automatically
extracted. Yet, as shown, reverse engineering can be incomplete and unsound as well, since
targeted artefacts may contain partial variability information. For instance, the reverse en-
gineering procedure of FraSCAti has limited interest in case the software architect does not
correct some inconsistencies. Another limitation is that automation pays off under the con-
ditions some knowledge is injected into the reverse engineering. Attributed feature models
obtained out of tabular data can be unreadable and unexploitable without expert knowledge.
From this regard, I have contributed to the foundations, design, and development of tech-
niques to supervise the reverse engineering process.

Overall, the potential of reverse engineering mostly resides in the ability to i) automate
some tedious and error-prone modelling tasks; ii) confront, refine, and augment an existing
variability model with variability information. In both cases, the involvement of an expert or
developer seems either beneficial or mandatory to obtain an integrated, high-quality model
of variability. Reverse engineering is an interesting toolbox, but some limitations remain. It
is time to explore the third research direction of this manuscript.

https://github.com/FAMILIAR-project/FraSCAtiVariabilityEvolution
https://github.com/FAMILIAR-project/FraSCAtiVariabilityEvolution
http://reveworkshop.github.io/

Chapter 4

Learning Software Variability

In this chapter I present a set of methods and techniques based on supervised, statistical ma-
chine learning to model variability constraints and non-functional properties (performance)
of a configurable system. This chapter mainly focuses on scenarios in which persons (de-
velopers, maintainers, testers, etc.) aim to refine or augment variability models. Compared
to the two previous chapters, learning-based approaches require the actual build, executions,
and observations of a system under study.

Section 4.1 introduces and evaluates a systematic process based on "sampling, observing,
learning" for inferring constraints among options. Section 4.2 introduces the use of ad-
versarial machine learning to enforce a configuration classifier or pinpoint problematic cases.
Section 4.3 evaluates the effect of sampling strategies on the effectiveness of learning methods
for performance prediction. Section 4.4 shows that learning techniques can be effective in the
huge configuration space of the Linux kernel and remain so for a period of 3 years provided
that suitable transfer techniques are used.

Contents
4.1 Learning variability constraints . 110

4.1.1 Using machine learning to infer constraints 111

4.1.2 Learning contextual variability models 121

4.2 Adversarial learning for variability . 124

4.3 Learning variability performance . 131

4.4 Transfer learning across variants and versions: the case of Linux 138

4.5 Wrap-up, applicability, and limitations . 152

109

110 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

4.1 Learning variability constraints

The content of this section is adapted from the following publications:
P. Temple, J. A. Galindo Duarte, M. Acher and J.-M. Jézéquel, ‘Using Machine Learning
to Infer Constraints for Product Lines’, in Software Product Line Conference (SPLC’16),
Beijing, China, Sep. 2016. doi: 10.1145/2934466.2934472. https://hal.
inria.fr/hal-01323446
P. Temple, M. Acher, J.-M. Jézéquel and O. Barais, ‘Learning-Contextual Variability
Models’, IEEE Software, vol. 34, no. 6, pp. 64–70, Nov. 2017. https://hal.inria.
fr/hal-01659137

Not all combinations of options (a.k.a. configurations) are possible in a software configur-
able system. Without proper constraints and a too permissive configuration space, users may
derive invalid products and developers would deliver products full of bugs or of bad quality.
Unfortunately, the specification of constraints is known to be a time-consuming and error-
prone task. The number of potential interactions and dependencies grows as the number of
options increases in a software system. In particular, it is easy to forget a constraint and thus
mistakenly authorize some invalid products. Developers thus struggle to identify and track
constraints throughout the (re-)engineering of more and more complex systems. In essence,
capturing constraints of an existing system boils down to anticipating all possible combina-
tions of features and making explicit the configuration knowledge that is somewhat implicit in
various kinds of artefacts (documentation, code, test cases, etc.). The domain knowledge of
experts and developers may not be sufficient or up-to-date to capture all constraints. Stated
differently, there are shortcomings and limitations to only rely on a manual effort as exposed
in the Chapter Modelling Software Variability. Furthermore, the static analysis of artefacts,
though extremely useful and effective in many situations (see Chapter 3 about reverse engin-
eering variability) may be hard to develop or exhibit limitations in terms of soundness and
completeness.

Another approach, more and more considered, is to dynamically execute the software
system over different configurations and statistically learn what combinations of options are
not appropriate and thus should be used to further constrain the system. In practice, a first
key step is to gather a sample of configurations together with their labels. It requires compil-
ing (or executing) some configurations. The resulting qualities of the derived product (e.g.,
whether it builds or fails) are automatically observed and labels are attached to configur-
ations. Then, statistical machine learning algorithms can identify what individual features
or combinations of features (if any) are causing their non-validity (e.g., a product does not
build). The generated sample from the first step is exploited to train a classifier (e.g., a de-
cision tree) that can classify any remaining product of the system, even those that have never
been tested. Some constraints can eventually be extracted out of a classifier to avoid the
derivation of products classified as invalid.

https://doi.org/10.1145/2934466.2934472
https://hal.inria.fr/hal-01323446
https://hal.inria.fr/hal-01323446
https://hal.inria.fr/hal-01659137
https://hal.inria.fr/hal-01659137

4.1. LEARNING VARIABILITY CONSTRAINTS 111

Figure 4.1: Sampling, testing, learning: process for inferring constraints of product lines

I am giving more details about this learning approach in the two next subsections. Sec-
tion 4.1.1 first introduces the seminal ideas developed in the context of Paul Temple’s thesis.
I describe how the approach can be used to find subtle constraints of an industrial video
generator used in the MOTIV project. Section 4.1.2 extends this line of work along two per-
spectives: (1) the learning of constraints can be parameterized by a high-level, performance
objective; (2) constraints among the contextual features and the software configuration space
can be automatically synthesized.

4.1.1 Using machine learning to infer constraints

We describe a general method in which we leverage machine learning techniques to infer the
constraints of a product line.

Learning constraints: rationale and method

Figure 4.1 describes the process we followed. We assume that there is a variability model that
documents the configuration options of the product line under consideration. In such a vari-
ability model, options can be Boolean features or numerical attributes. From a configuration
(see Definition 11), product line artifacts are assembled and parameters are set to derive a
product. The variability model may already contain some constraints that restrict the possible
values of options (e.g., the truth value of a Boolean feature implies the setting of a specific
numerical value of an attribute).

Definition 11 (Configurations, variability model) A configuration is an assignment of values
for all options of a variability model. A configuration is valid if values conform to constraints (e.g.,
cross-tree constraints over attributes). A variability model VM characterizes a set of valid configura-
tions denoted JVMK.

112 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

A first step in the process is configuration sampling. It consists in producing valid con-
figurations (see Definition 11) of the original variability model VM. The set of sampled
configurations is a subset of JVMK. Numerous strategies can be considered such as the gen-
eration of T-wise configurations, random configurations, etc. [211, 87, 172, 124, 144, 245, 134,
273]

Second, an oracle is reused or developed. It tests the validity of the derived products
corresponding to configurations. The notion of validity is specific to a product line and a
usage context. It may refer to the fact the product does compile, does not crash at run-time,
passes the test suite, and/or does meet a particular quality of service. In the remainder, we
use the term "faulty" configuration for referring to such irrelevant products (see Definition 12).
An oracle is used to create two classes of configurations: It labels the configurations in the
sampling as either faulty or "non faulty".

Definition 12 (Oracle and faulty configuration) An oracle is a function that takes a derived product
as input and returns true or false. A faulty configuration is a configuration for which the oracle returns
false when taking as input the corresponding derived product.

A third step is to use a machine learning procedure that operates on the labeled config-
urations and automatically infers constraints. A new variability model VM′ is created by
adding the newly identified constraints to the original variability model. Therefore, the new
variability model VM′ is a specialization [303] of VM and JVM′K ⊂ JVMK. In other words,
VM′ forbids faulty configurations that were initially considered as valid in VM.

Instead of using machine learning, an alternate and sound approach is to remove faulty
configurations from the original variability model. It consists in negating all faulty config-
urations and then making their conjunctions (see Definition 13). However, this approach is
very limited since (1) it only removes a typically small number of configurations – only those
that have been sampled and tested; (2) it does not identify which configuration options and
values are involved and the root causes of the fault.

Definition 13 (Sound approach) Given a set of faulty configurations { f c1, f c2, ..., f cn} a sound
approach computes a new variability model VM′ such that VM′ = VM ∧ ε where ε =

∧
i=1..n ¬ f cn

A simple removal of faulty configurations is thus not a viable solution for product lines
exhibiting a large number of configuration options or numerical values. As an oversimpli-
fied example, let say we have faulty configurations { f c1, f c2, f c3, . . . , f cn}. Among values of
attributes and features, the attribute A varies as follows: A = 0.265 in f c1, A = 0.26 in f c2,
A = 0.275 in f c3, . . ., A = 0.29 in f cn. With a basic case by case extraction, we cannot infer
that (perhaps) 0.26 < A < 0.3. The use of machine learning can improve the inference of
constraints through the prediction of ranges of values that make configurations faulty.

The expected benefit is to discard much more faulty configurations with the inference of
constraints: Figure 4.2 summarizes the potential of machine learning. A rectangle is used to
represent JVMK. The set of configurations that can be detected as faulty is represented as
red clouds/rectangles in Figure 4.2. The precise set is a priori unknown; this is precisely the
problem.

4.1. LEARNING VARIABILITY CONSTRAINTS 113

original set of configurations

x
x

x

x x

(unknown) set of faulty configurations

x faulty configuration of the sampling

x xx
x

x

o

o

o

o

o

o

o

o

o o

o
o

o valid configuration of the sampling

set of faulty configurations discarded with
constraints inferred by machine learning

Figure 4.2: Constraining the configuration space

Faulty configurations detected by an oracle, are included in this set (see crosses in Fig-
ure 4.2). The enumeration and testing of configurations for covering the whole set of faulty
configurations will take a large amount of resources and time. In response, machine learning
can infer a set of constraints delimiting sets of faulty configurations (instead of only forbid-
ding individual configurations). Thanks to learning and prediction, we expect the capture of
additional faulty configurations without the cost of testing those configurations.

The ideal case is that machine learning accurately classifies configurations as faulty, in-
cluding configurations that were not part of the sampling. We represented that as the dashed
rectangle exactly corresponding to the red rectangle (see left-hand side Figure 4.2). However,
machine learning might produce false positives. That is, some configurations are classified
as faulty whereas they are actually valid from the oracle’s perspective. An example is given
in Figure 4.2 with the red cloud and dashed rectangle at the bottom: some configurations
are included outside the red cloud and in the blank area. Another kind of misclassification
can happen when the dashed rectangle is included in the red cloud (see right-hand side
of Figure 4.2). In this case, machine learning fails to classify some configurations as faulty
and is incomplete. Despite specific cases in which machine learning can be unsound and
incomplete, we expect that, in general, learning constraints enables to capture more faulty
configurations than a simple conjunction of negated configurations.

114 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Case Study

In this section we apply and evaluate the proposed method with a real-world product line,
i.e., MOTIV which is a highly-configurable video generator developed in the industry (see
Section In search of the right variability language and models). Our objective is to address
the following research questions:
RQ1) Do extracted constraints make sense for a computer vision expert?
RQ2) What is the precision and recall of our learning approach?
RQ3) What are the strengths and weaknesses of our approach compared to existing techniques?

Problem. The software generator is written in Lua and implements numerous complex,
parameterized transformations for synthesizing variants of videos [7, 124]. Users quickly
noticed that the specification of constraints in the variability model is crucial for the video
generator. Without constraints, many configurations lead to the generation of unrealistic
video variants, due to the incompatibility between features and attributes’ values. Beyond
usability problems, this is an issue for two major reasons. First, the production of videos
has a cost (about half an hour of computation on average per video variant). As a result,
the synthesis of large datasets with thousands of video variants (as originally planned by
industrials) would produce a lot of irrelevant videos, thus wasting resources and computa-
tion. Second, tracking algorithms performed on the synthesized videos are computationally
expensive, which, in case of irrelevant videos, is again a waste of time and resources. Our
early modelling effort in Section 2.4 for properly formalizing the variability was thus not sufficient; we
need to enforce the generator with constraints to make it usable and useful for practitioners.

Although some basic constraints have been manually specified, the generator still pro-
duced irrelevant video variants. In order to capture additional constraints and gather some
knowledge, we have made several iterations with the developers of the video generator
through meetings and mail exchanges. Finally, we came to the conclusion that either an ana-
lysis of the Lua source code or a further effort for manually specifying constraints presents
strong limitations. It is mainly due to the fact that (1) the configuration space is extremely
large (see hereafter for more details); (2) there is not enough knowledge to comprehensively
capture constraints over features and attributes’ values.

A manual exploration of the configuration space requires substantial efforts for both set-
ting configuration values, assessing the quality of the output (videos), and learning from
defects. We thus propose to use the method we described in the previous section to automate
all these tasks, including the inference of constraints with machine learning.

We now detail how we instantiated every part of our method (sampling, testing, learning)
within our case study.

Figure 4.3 presents the entire process of extracting constraints of the video generator. A
set of configuration files is first sampled from the variability model; it acts as a training set.
The Lua generator derives a video variant for each configuration. An oracle is then used
to label videos as faulty or non faulty by computing the quality of each video. Finally, a
machine learning process is executed to extract the constraints and re-inject them into the
original variability model. We now detail each step of the process.

Generating a training set out of the variability model. In the MOTIV case study, the variab-
ility model exhibits numerous features and attributes whose ranges of values are reals and
continuous. In total, the variability model contains: 42 real attributes, 46 integer attributes,
20 Boolean features, and 140 constraints (mainly constraints specified by the experts). The
ranges vary between 0 and 6 for the integers domains, and in average between zero and 27.64

4.1. LEARNING VARIABILITY CONSTRAINTS 115

Variability

model

Sampling

method

Configuration

files

Generating the training set

…

Derivation

(Lua generator)

Oracle (Video Quality

Assessment)

…

Labeling

Machine learning

J48 tree

signal_quality.luminance_dev

signal_quality.luminance_dev

signal_quality.luminance_dev

capture.local_light_change_level

0 (110.0/1.0)

0 (2.0)

1 (27.0)

1 (4.0) 0 (3.0)

> 21.3521<= 21.3521

<= 1.01561 > 1.01561

<=18.1437 >18.1437

<=0.401449 > 0.401449

Variability

model

+
cst1 ^
cst2 ^

…

Constraints

Constraints
extractor

Constraining the original variability model

Testing the training set

Separating model
using machine learning

Figure 4.3: Learning method on the video generator

for the real domains with a precision of 10−5. This would end up in approximately a total of
10103 configurations (not considering constraints): 220 (because of the boolean variables) ×646

(because of the integer variables and) ×276400042 (because of the real variables). Overall the
variability model presents the particularities of encoding a large configuration set with lots
of non-Boolean values.

To generate a training set for the machine learning process, we need to produce a set of
valid configurations. Different sampling techniques [211, 87, 172, 124, 144, 245, 134, 273] can
be considered but some of them are not applicable to our case since we have to deal with
real and integer values. We implemented the following procedure. First we randomly pick a
value for each attribute within the boundaries of its domain. Then, we propagate the attribute
values to other values with a solver; the goal is to avoid invalid values. We continue until
having a complete and valid configuration. We reiterate the process for collecting a sample
of configurations.

Oracle. Some videos of the generator are not of interest for computer vision algorithms
and humans. Typically, these are videos in which the vision system cannot perceive anything
or cannot distinguish moving objects from other ones (e.g., distractors). Image Quality As-
sessment (IQA) typically tries to understand the conditions under which the vision system
is likely to fail this kind of distinction. We implemented an IQA oracle, presented in [112],
that can automatically assess whether a video is faulty. The principle is to perform a Fourier
transformation and to reason about the resulting distribution of Fourier frequencies. Such a
technique evaluates the quality of a single image. To reduce the time and cost of the oracle,
we sample a video into a smaller set of images. After applying the IQA method on sampled
images, we aggregate results to decide whether a video is faulty or not. We empirically set a
threshold: If, at least, half of the images are declared faulty, then the whole video sequence
is considered faulty.

116 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

signal_quality.luminance_dev

signal_quality.luminance_dev

signal_quality.luminance_dev

capture.local_light_change_level

0 (110.0/1.0)

0 (2.0)

1 (27.0)

1 (4.0) 0 (3.0)

> 21.3521<= 21.3521

<= 1.01561 > 1.01561

<=18.1437 >18.1437

<=0.401449 > 0.401449

Figure 4.4: An excerpt of the decision tree built from a sample of 500 configurations/videos

Machine Learning (ML). Using our oracle, we assigned a faulty or non faulty label for each
video of the sample. We use a Machine Learning (ML) algorithm to understand the relationship
between faultiness of videos and features/attributes’ values. Different ML methods exist.
Some of them are sophisticated and hopefully make only a few classification errors. Others
are less advanced but are much more understandable when visualizing the output model. In
our case, we wanted to obtain a high level of understandability when extracting constraints.
Specifically, we employed Binary Decision Trees.

Figure 4.4 presents an excerpt of the decision tree obtained from the Weka1 software. In
this tree:

- ovals represent features (written inside) on which decisions will have to be taken;

- labels over edges represent threshold value to decide which path to take;

- rectangles represent leaves of the tree and groups of configurations that are mainly of
the same class.

Leaves present several pieces of information. First, there is the label of the most repres-
ented class. In our case it is either ’1’ (faulty) or ’0’ (non faulty). Second, the number of
configurations associated to the label. These are classification errors, typically configurations
that are at the boundary of two classes.

As an example, configurations having a value higher than 21..3521 set for feature "sig-
nal_quality.luminance_dev" will reach the leaf in the top right corner of Figure 4.4. It means
that 110 configurations (out of 147) are labelled ’0’ and one is classified as faulty.

Extracting constraints. Once the decision model has been created, we traverse the tree
and reach every leaf. Only leaves labeled ’1’ (faulty) are remembered meaning their path
is extracted. We consider that a path is a set of decisions, where each decision corresponds
to the value of a single feature. We create new constraints by building the negation of the
conjunction of the different decisions to make along the path to reach a faulty leaf. In case
features are repeated, some simplifications are performed. In the example of Figure 4.4, we
can extract the two following simplified constraints:

1http://www.cs.waikato.ac.nz/ml/weka/

4.1. LEARNING VARIABILITY CONSTRAINTS 117

! (s i g n a l _ q u a l i t y . luminance_dev > 1 .01561 && s i g n a l _ q u a l i t y . luminance_dev <= 1 8 . 1 4 3 7)
! (s i g n a l _ q u a l i t y . luminance_dev <= 21 .3521 && s i g n a l _ q u a l i t y . luminance_dev > 18 .1437

&& capture . l o c a l _ l i g h t _ c h a n g e _ l e v e l <= 0 . 4 8 1 4 4 9)

Experiments

Experimental Setup. To generate a training set, we sampled 500 configuration files from the
MOTIV variability model. All of them are given to the video generator to create 20 seconds
videos. The process of deriving associated video variants takes about 30 minutes on average
per video. As we have to create numerous videos, we used a cloud-based architecture for
distributing the computations. To decrease the influence of randomly creating training set
(which could result in advantageous or disadvantageous settings), we run the experiment
of learning and validating results 20 times. After the synthesis of videos, the IQA oracle
assigned "non faulty" or "faulty" labels to videos. In total, the oracle labelled 53 videos as
faulty on average, i.e., roughly 10% of the videos.

We used decision trees with Weka to perform the ML part. Weka offers different imple-
mentations of Binary Decision Trees. We used J48 since it is the most widely used. Various
options can be tuned to increase the classification performances. This process of selecting the
best set of parameters is application-dependent, so we used the default ones set by Weka.

Results. We report on the results of the three research questions.
RQ1) Do extracted constraints make sense for a computer vision expert?
The first research question focuses on the readability and comprehensibility of extracted

constraints from an expert point of view. To be able to answer our question, we asked to a
computer vision expert and an advanced user of the video generator whether the extracted
constraints make sense. The expert told us that constraints are globally understandable and
actually help understanding interactions that can occur between features/attributes. Import-
antly, he noted that constraints are in line with the definition of the oracle: Some combinations
of values can indeed participate in the degradation of the perception of video contents.

Specifically, Figure 4.5 shows a short constraint only constituted by two terms. This con-
straint puts together two image quality criteria (blur and static noise) that can indeed degrade
the quality of videos. In Figure 4.6, the constraint involves other features that have an effect
on the quality of videos: compression and illumination. Interestingly, blur is present again.
In Figure 4.7, blur, compression, and dynamic noise are features that are related to the quality
criteria of videos as well. Overall, all features/attributes previously mentioned make sense
w.r.t. the IQA oracle we implemented. Too much noise, poor illumination and blur: all these
factors can indeed degrade the quality of videos and produce the kind of videos our oracle
is able to detect as faulty.

In general, the extracted constraints make sense and the answer to RQ1 is positive. How-
ever, there is room for improvement. Specifically the expert complains about the presence of
features/attributes that are not relevant and disturb the reading. For instance, in Figure 4.6,
vehicle1.identi f ier <= 11 does not make much sense. Indeed, the kind of vehicles should not
have any influence on the definition of faulty videos. The expert has to somehow ignore this
kind of information.

RQ2) What is the precision and recall of our ML approach?

118 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

! (s i g n a l _ q u a l i t y . b l u r _ l e v e l > 0 && s i g n a l _ q u a l i t y . s t a t i c _ n o i s e _ l e v e l <=0.135519)

Figure 4.5: A constraint extracted from our case study

! (s i g n a l _ q u a l i t y . b l u r _ l e v e l < 0 && s i g n a l _ q u a l i t y . c o m p r e s s i o n _ a r t e f a c t _ l e v e l >
0 .363438 && capture . i l l u m i n a t i o n _ l e v e l <= 0 .609669 && s i g n a l _ q u a l i t y .
c o m p r e s s i o n _ a r t e f a c t _ l e v e l >0.436673 && v e h i c l e 5 . t r a j e c t o r y >6 && v e h i c l e 1 .
i d e n t i f i e r <=11)

Figure 4.6: A constraint extracted from our case study

In the rest of this section, we consider that a ML approach computes a new variability
model denoted VM′ such that VM′ = VM ∧ ∆ where ∆ is a conjunction of inferred con-
straints.

The overall classification performance of ML is not perfect, i.e., 90.56% on average after
training the decision tree on 500 configurations/videos. This is due to the fact that despite a
perfect knowledge over the training data, ML tries to avoid over-fitting to be able to generalize
what have been learnt. To have a better idea of the number of errors that our approach is
likely to perform, we tested the output classification model while producing a new data set
with configurations that were not in the 500 original configurations.

To do that, we generated another set of 4000 configurations and videos. We used again
a cloud-based infrastructure to synthesize these variants. Our oracle labelled every video of
this new data set. It resulted in 370 faulty videos on average. Then we compared the decision
of the oracle with the decision of the variability model augmented with extracted constraints.
We run the experiment 20 times by randomly changing the training set (500 configurations)
as well as the validation set (4000 configurations).

In particular, we are interested to know whether a configuration labelled as faulty with the
oracle is now forbidden by VM′. This comparison is usually performed through a confusion
matrix presented in Table 4.1.

In this table, columns are the labels given by the oracle and rows are labels given by our
variability model. Cells present the average of classification over 20 runs as well as standard
deviation (under parantheses). The main diagonal of this matrix tells us where the two labels
agree. The other diagonal provides classification errors of our variability model compared to
the oracle:

! (s i g n a l _ q u a l i t y . b l u r _ l e v e l <= 0 && s i g n a l _ q u a l i t y . c o m p r e s s i o n _ a r t e f a c t _ l e v e l <=
0 .363438 && s i g n a l _ q u a l i t y . dynamic_noise_level <=0.428141 && s i g n a l _ q u a l i t y .
fo rce_ ba l anc e =0 && capture . i l l u m i n a t i o n _ l e v e l <= 0 . 1 2 1 5 1)

Figure 4.7: Another constraint extracted from our case study

4.1. LEARNING VARIABILITY CONSTRAINTS 119

Oracle
Faulty Non-faulty

variability
model (VM′)

Faulty 234 69.5
(invalid) (±57.899) (±26.973)

Non-faulty 141.1 3566.2
(valid) (±60.440) (±25.804)

Table 4.1: Confusion matrix of our experiment

False Positives (FP) are configurations "faulty"2 in VM′ whereas they are classified as non-
faulty by the oracle. The ML approach has inferred too restrictive constraints that now
uselessly forbid "non faulty" configurations.

False Negatives (FN) are configurations "non faulty" in VM′ whereas they are classified as
faulty by the oracle. The ML approach fails to infer constraints that could have forbid-
den "faulty" configurations.

Precision is the measurement assessing the number of correct classifications performed for
a class (main diagonal) regarding the total number of classification made for this class (sum of
a row). Over the 20 runs, the mean precision for the class "non-faulty" is : Pmean−non− f aulty =

3566.2
3566.2+141.1 ' 0.96. Similarly, precision for the class "faulty" is Pmean− f aulty ' 0.77.

The overall precision is the mean of the two values: Poverall =
0.96+0.77

2 = 0.865, i.e., the
classification will roughly perform well 9 times out of 10.

Recall is the measurement assessing the number of correct classification performed for
a class regarding the total number of configurations declared by the oracle for this class
(sum of a column). Similarly to the precision, recall can be computed for each class and
then combined into an overall measure. This gives : Rmean−non− f aulty = 3566.2

3566.2+69.5 ' 0.98;
Rmean− f aulty ' 0.62 and Roverall =

0.98+0.62
2 = 0.80. Here, recall is lower for the "faulty" class

which gives us an idea of how difficult it is to understand the distribution of this class. This
difficulty can come from the fact that there are fewer examples in the class "faulty" than in
the class "non faulty".

RQ3) What are the strengths and weaknesses of our approach?
We now compare the properties of a sound approach and an ML approach in line with

results of RQ1 and RQ2. We recall that a sound approach (see Definition 13) takes the output
of the oracle and built constraints out of "faulty" configurations/videos. It means that con-
straints will be very specific to the configurations given to the oracle, involving every feature
and attributes with their values.

Meaningfulness of constraints. A consequence is that constraints are typically difficult
to read with a case-by-case extraction. A sound approach would have produced the conjunc-
tion of 53 constraints, each constraint being constituted by the number of feature/attribute’
values of a configuration. As a configuration corresponds to 80+ values in our case, experts

2Strictly speaking, configurations are invalid (resp. valid) in VM′. We use the term "faulty" (resp. "non-faulty")
for keeping an unified terminology with the oracle.

120 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

would have severe difficulties to review and understand what are the precise features and
attributes involved in the fault. Our proposed approach computed 5 constraints on average
with only a few features/attributes. This drastic reduction in size helps a video expert to
better understand the constraints.

One can argue that techniques for reducing constraints (e.g., [263]) can be adapted to
numerical values and perhaps improve a sound approach. However, it is unlikely since the
configurations do not necessarily share common values, especially in continuous domains.
In fact, there is a more fundamental issue: constraints of a sound approach are so precise
they cannot be able to capture other faulty configurations even in their close neighborhood.
Hence, the value of an ML approach resides in the ability to produce more general and
thus meaningful constraints. The fact that constraints are general comes from the way ML
algorithms are designed. They try to infer properties out of few examples resulting in an
approximation of the real behaviors of data. This approximation can be seen as a convex hull
in the space of configuration. The added value of ML algorithms is to allow asperities in the
hull to reduce the number of classification errors that could be made by a simple convex hull
approximation algorithm.

Precision and recall. The strict strategy of a sound approach has another practical implic-
ation. In our case, the sound approach would only remove 53 configurations out of 500 (no
more no less). On the other hand, our ML method removes 234 more faulty configurations
than a sound approach (see Results in Table 4.1). Indeed, when validating our classification
models with 4000 new configurations, the ML approach was able to recognize 234 (as a mean
over 20 runs according to Table 4.1) configurations as faulty – without having to produce
and test the video variants. The sound approach was unable to detect them because these
234 configurations were simply not in the original sample. Hence, the prediction of faulty
configurations with ML gives a factor improvement of (48 + 234)/53 = 5, 3. (The number
of videos classified as faulty during the learning process is 48 since we obtained 90.56% of
classification performance. 234 corresponds to the average number of videos classified as
faulty while validating the built decision tree on 4000 new configurations. Finally, 53 is the
number of faulty videos in the sampling and thus classified as such by the sound approach.)

In order to scale (i.e., capture a similar set of faulty configurations than an ML approach), a
sound approach has to sample a significant number of additional configurations. In our case
study, there are two major drawbacks. First, covering a large percentage of the configuration
space is simply not possible, mainly due to numerical values. Second, the cost of testing a
configuration is very high: half an hour to generate a video and a few seconds to process it
with the oracle. Concretely, the cost in time and resources for 4000 configurations is 4000 ∗
30 = 12000 ≈ 2000 hours for one machine. Hence, the use of a sound approach can be
very costly since we envision to generate even more videos in the future. Overall, the major
strength of ML resides in its ability to reduce the testing cost through the prediction of faulty
configurations.

The prediction capability of ML is also a weakness since it induces some errors. In our
case, out of 4000 (see Table 4.1), in average 141 configurations were classified as non-faulty by
ML (despite being actually faulty). A sound approach is also unable to forbid such configura-
tions in the first place since they are not part of the sample. That is, a sound approach would
have suffered from similar issues. Finally 69.5 configurations out of 4000 were, in average,
classified by ML as faulty (despite being actually non-faulty). In this case, a sound approach
would have kept these configurations and, thus, is superior to a ML technique.

4.1. LEARNING VARIABILITY CONSTRAINTS 121

As a summary there is a trade-off to find. On the one hand, the ability of ML to be one
step ahead can reduce testing effort, produce meaningful constraints, and forbid more faulty
configurations (as in our case study). On the other hand, a sound, conservative approach
(see Definition 13, page 112) can be of interest in cases software practitioners do not want to
unnecessarily lose some configurations.

replication

Data, oracle, scripts about the MOTIV experiments are available:
https://github.com/learningconstraints/SPLC-16

4.1.2 Learning contextual variability models

Modelling how contextual factors relate to the configuration space of a software system is
most of the time a manual and error-prone task, highly dependent on expert knowledge.
Machine learning techniques have the potential to automatically predict what are the accept-
able software configurations of a given context. The key idea is to execute and observe a
sample of software configurations within a sample of contexts, and then learn what factors
of the context are likely to discard or activate some features of the software. As a result,
software developers and product managers can automatically extract the rules that specialize
highly-configurable systems for operating on specific contexts.

The approach is quite similar to the method described in previous Section 4.1.1, except
that features reside at different levels of abstractions and are located in different feature
models. The learning method comes in complement to the modelling effort and supports
separation of concerns in variability modelling (as envisioned in Chapter 2): constraints can
be injected in the different models.

We consider that the context of a software system is itself a configurable entity. It is consti-
tuted of different concerns: execution environment (hardware, operating system, etc.), kinds
of inputs to process, goals and performance to meet (execution time, quality of the result,
etc.). Other factors such as country regulations or marketing strategies can also be part of this
context and have an (indirect) influence on the software [20, 139, 140]. From this mapping,
we expect that given a context configuration, there is at least one corresponding software
configuration. Conversely we also want that for each possible software configuration, there is
at least one corresponding context configuration. If that is not the case, we could prevent this
particular software configuration to be selectable from the beginning through constraints.

Let us take the example of a tracking vision system build on top of OpenCV (see http:
//opencv.org/). A variability model is depicted in Figure 4.8. On the left-hand side,
context configurations involve features such as Camera, Video, Position, Light Source, etc.
Some features are mandatory (e.g., Camera or Video), optional (specific climate conditions),
mutually exclusive (Fog or Heat haze), and some values are numeric (Vibrations or Noise
level). On the right-hand side, we model (a subset of) OpenCV software variability. For
example, Confidence is a parameter of the Detect function. It can be tuned for internally
influencing the results of subsequent computations. In the example of Figure 4.8, the two
variability models are separated and aggregated as in Chapter 2 since several contexts are
involved.

https://github.com/learningconstraints/SPLC-16
http://opencv.org/
http://opencv.org/

122 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Figure 4.8: modelling context and software configurations with intra-constraints inside soft-
ware (or inside context), and inter-constraints between the context and software. The learning
method is capable to discover such inter or intra-constraints

Specific constraints are usually specified for relating features of the context to features
of the software. Figure 4.8 presents possible examples of such inter-constraints in the lower
part. Due to the huge number of configurations and complex relations between context
and software, it is easy to forget or to wrongly specify a constraint, with possible adverse
consequences when the software is deployed. We aim to address the problem of "How to
elaborate a variability model (including constraints) that can be configured for different con-
texts?" with a learning method for capturing constraints. This approach aims to complement
the manual effort of an expert or software developer.

Learning intra and inter-constraints

Figure 4.9 introduces the learning process. All steps can be automated except the user spe-
cification of what is an acceptable configuration (typically below or above a performance
threshold value). First, we generate a sample of N configurations of the variability model. A
configuration is composed of contextual features and software features. Numerous sampling
strategies (e.g.,, random, t-wise) can be used to automatically select valid configurations (see
Section 2.3). The number of configurations N (budget) in the sample can be controlled by the
user.

Second, we execute and observe each software configuration within the context config-
uration. In our running example, a configuration of the tracking vision system is used to
process a video with specific characteristics (see config1, config2, ..., configN in Figure 4.9).
Many properties of a software configuration can be measured: whether it crashes at runtime,
whether it violates some invariants, or whether it meets a certain performance goal.

In the case of vision systems, we are mostly interested in measuring the accuracy and
precision of the system to track objects, as well as the execution time. We obtain a matrix
with N configurations (see Figure 4.9). Third, the user of our learning method specifies
the threshold values for which the performance is considered as acceptable. Performance

4.1. LEARNING VARIABILITY CONSTRAINTS 123

Figure 4.9: From a sample of configurations and measurements, we build a classification tree
out of which we can extract constraints (e.g., see inter-constraint given at the bottom)

measurements are compared to the threshold value and we can classify configurations as
acceptable or non-acceptable. Finally, we address a statistical binary classification3 problem
in which we can predict which context and software features (part of the configurations) lead
to acceptable or non-acceptable configurations.

At the bottom of Figure 4.9, we give an example of a decision tree and an extracted
constraint. Nodes test for the values of a certain feature (e.g., NoiseLevel). Edges correspond
to the outcome of a test and connect to the next node (e.g., >= 0.85). Leaves of the tree predict
the final outcome ("acceptable" or "non-acceptable"). We follow the paths leading to "non-
acceptable", build the conjunction of all decisions NoiseLevel ≥ 0.85∧Denoise == f alse, and
negate the expression.

Results

Feasibility study. We have developed a tracking vision system by strictly following the ap-
proach illustrated throughout this subsection. Specifically, we modeled and implemented
software variability in C++ using a subset of OpenCV. To provide data appropriate to each
context configuration,4 we synthesized videos with various properties like the noise level,
the camera vibration, etc. We used the MOTIV video generator presented in Section 4.1.1

3As recently shown in [209], it is also possible to resolve a regression problem (the prediction of a performance,
quantitative value) and then come down to classification problem (the prediction of whether the performance value
is acceptable).

4It is also possible to use realistic benchmarks as we did in the context of multimorphic testing [296].

124 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

that synthesizes video variants together with their expected results (ground truths). In this
way, we can measure the performance (precision and accuracy of the tracking of objects of
interests, execution time, etc.) of tracking configurations in different contexts. Based on
measurements, we have been able to specialize the configuration spaces and learn non-trivial
constraints, similar to those in Figure 4.8.

Revisiting the MOTIV case study. We have specialized the industrial video generator intro-
duced in Section 4.1.1. Our learning approach allows one to constrain the generator and only
build video variants of a certain quality (size, noise frequency, etc.). For example, the video
generator can synthesize only videos that are less than 500Mb. Hence, we generalize our
previous attempt: users simply have to specify their performance objectives (thresholds) in
order to get different variants of the video generator – ready for specific usages and contexts.

Controlled experiments. We have considered 10 publicly available configurable systems (see
Table 4.2) for which we have reused performance measurements (execution time, footprint,
etc.) of configurations using benchmarks [131, 310, 311]. We used our learning method to
synthesize constraints in such a way we only retain software configurations meeting a certain
performance objective. A practical application is that we can specialize configurable systems
for targeting specific usages, customers, deployment scenarios, hardware settings, in short
any contexts. For example, we can specialize the variability model of the x264 video encoder
for achieving a low energy consumption (e.g., for embedding x264 in resource-constrained
devices). Empirical results are promising for two reasons. First, the learning phase can reach
an accuracy greater than 80% on average for all performance thresholds and for all systems.
We can thus narrow the space of possible configurations to a good approximation. Second,
only a relatively small training set is needed to achieve a high classification accuracy (see
Table 4.2).

Overall, a reasonable number of measurements (from dozens to hundreds) can be suffi-
cient to discover complex relationships that rightly discard a large portion of non-acceptable
configurations, without over-constraining the configurable systems. For more details, we
invite the reader to consult our technical report [297].

replication

The source code of the scripts, experimental data, results and visualisations (e.g., heat-
maps) are available at http://learningconstraints.github.io.

4.2 Adversarial learning for variability

The content of this section is adapted from the following publication:
P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel and F. Roli, ‘Empirical
Assessment of Generating Adversarial Configurations for Software Product Lines’,
Empirical Software Engineering (ESE), Nov. 2020

"Testers don’t like to break things; they like to dispel the illusion that things
work." [174]

http://learningconstraints.github.io

4.2. ADVERSARIAL LEARNING FOR VARIABILITY 125

System Domain Language
Variability
(number of
options)

Number of
valid
configurations

Performance
objectives

Number of measurements
needed to reach 80%
accuracy (on average,
for all perf. thresholds)

Corresponding % of
measurements (wrt
number of valid
configs) needed to
reach
80% accuracy

MOTIV video
generator

Video
Processing

Lua
20 Boolean
88 numerical

~10ˆ100 noise, size 500 10ˆ-98

Apache Web
server

Web server C 9 Boolean 192 response rate 14 7.29

BerkeleyC
Database C 18 Boolean 2560 I/O time 26 1.02

BerkeleyJ
Database Java 26 Boolean 400 I/O time 9 2.25

LLVM
Compiler C++ 11 Boolean 1024 optimization time 31 3.03

SQLite
Database SQLite 39 Boolean 10ˆ6 time 901 0.1

Dune
Solver C++

8 Boolean
3 numerical

2304 solving time 24 1.04

HIPAcc Image Proc. C++
31 Boolean
2 numerical

13485 solving time 135 1

HSMGP Solver N/A
11 Boolean
3 numerical

3456 time 35 1.01

JavaGC Runtime Env. C++
12 Boolean
23 numerical

10ˆ31 time 1670 10ˆ-28

x264
Video
Processing

C
8 Boolean
12 numerical

10ˆ27
energy, speed,
size,
time, watt

691 10ˆ-25

Table 4.2: Experimental results across subject systems and application domains

126 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

A long-standing issue for developers and product managers of an SPL is to gain confidence
that all possible products are functionally viable, e.g., all software-intensive products compile
and run. This is a hard problem since modern software systems can involve thousands of
features inducing a combinatorial explosion of the number of possible products. For example,
in the case study of Section 4.1.1 (the MOTIV video generator), the estimated number of
configurations is 10314 while the derivation of a single product out of a configuration takes
30 minutes on average. At this scale, practitioners cannot test all possible configurations
and the corresponding products’ qualities. To handle this issue, a promising approach is
to sample a number of configurations and predict the quantitative or qualitative properties
of the remaining products using Machine Learning (ML) techniques (see Section 4.1 and
Section 4.3).

However, we need to trust the ML classifier [42, 229] of an SPL in avoiding misclassifica-
tions and costly derivations of non-acceptable products. ML researchers demonstrated that
some forged data, called adversarial, can fool a given classifier [66]. Adversarial machine learning
(advML) thus refers to techniques designed to fool (e.g., [229, 61, 62]), evaluate the security
(e.g., [64]) and even improve the quality of learned classifiers [127]. Even though results are
promising in different contexts, the ML community did not apply advML techniques in the
SPL domain. On the other hand, numerous techniques have been developed to test or learn
software configuration spaces of SPLs, but none of them considered advML [29]. A strength
of advML is that generated adversarial configurations are crafted to force an ML classifier to
make errors, by either exploiting its intrinsic properties or its insufficient training. Further-
more, since advML operates on the classifier, there is no need to derive and test additional
products of an SPL.

Rationale of adversarial learning for variability

The main idea of this contribution is to shift ideas and techniques from advML to the engin-
eering of SPLs or configurable systems. Specifically, the principle is to generate adversarial
configurations with the intent of fooling and improving ML classifiers of SPLs. Adversarial
configurations can pinpoint cases for which non-acceptable products of an SPL can still be
derived since the ML classifier is fooled and misclassifies them. Such configurations are
symptomatic of issues stemming from various sources:

- the variability model (e.g., constraints are missing to avoid some combinations of fea-
tures);

- the variability implementation (e.g., interactions between features cause bugs);

- the testing environment (e.g., some products are wrongly tested and should not be
considered as acceptable);

- or simply the fact that, based on previous observations, configurations are predicted to
meet (non-)functional requirements while they actually fail to do so, asking to be fixed.

4.2. ADVERSARIAL LEARNING FOR VARIABILITY 127

In SPL engineering, ML brings the benefit of partitioning the configuration space based
on a (small) number of assessed variants, which is faster than running the oracle on every
single variant. However, this gain comes at the risk of approximations made by the statistical
ML classifier. That is, the ML classifier can still make prediction errors when classifying
configurations. In a sense, an ML classifier is an approximate configuration oracle.5

Our idea is to “attack” the ML classifier through the generation of so-called adversarial
configurations able to fool it. The objective is to synthesize configurations for which the ML
classifier performs an inaccurate classification. Such adversarial configurations have a value
per se. Developers can debug and eventually improve the system (including the tests) based
on insights brought by adversarial configurations. Another application is to augment the
original training set with adversarial configurations: the hope is to obtain a more accurate
ML classifier since problematic cases have been included as part of the training phase.

Adversarial learning and evasion attacks

In this part, we detail the foundations, algorithms, and processes to generate adversarial
configurations.

AdvML and evasion attacks. According to Biggio et al. [66], deliberately attacking an ML
classifier with crafted malicious inputs was proposed in 2004. Today, it is called adversarial
machine learning and can be seen as a sub-discipline of machine learning. Depending on the
attackers’ access to various aspects of the ML system (e.g., access to the data sets or ability to
update the training set) and their goals, various kinds of attacks are available [61, 62, 64, 65,
63]. A categorization of such adversarial attacks can be found in [42, 66]. In this contribution,
we focus on evasion attacks: these attacks move labeled data to the other side of the separation
(putting it in the opposite class) via successive modifications of features’ values. Since areas
close to the separation are of low confidence, such adversarial configurations can have a
significant impact if added to the training set. To determine in which direction to move
the data such that it reaches the separation, a gradient-based method has been proposed by
Biggio et al. [62]. This method requires the attacked ML algorithm to be differentiable (e.g.,
algorithms building models for which the classification decision is based on a confidence
metric which is not binary; this is the case for SVMs or Bayesian predictors which compute
a likelihood to belong to a class). One of such differentiable classifiers is the Support Vector
Machine (SVM), parameterizable with a kernel function.6

A dedicated evasion algorithm. For generating adversarial configurations, we develop
an adaptation of Biggio et al.’s evasion attack [62] (see Algorithm 1). First, we select an initial,
random configuration x0 to be moved labeled with the class from which the attack starts.
Then, we set the step size (t), a parameter controlling the convergence of the algorithm.
Large steps induce difficulties to converge, while small steps may trap the algorithm in a
local optimum. While the original algorithm introduced a termination criterion based on
the impact of the attack on the classifier between each move (if this impact was smaller
than a threshold ε, the algorithm stopped; assuming an optimal attack), we chose to set a
maximal number of displacements nb_disp in advance and let the technique run until the
end. This allows for a controllable computation budget, as we observed that for small step

5I introduce this terminology for the first time in this manuscript. A configuration oracle is a procedure capable
of determining the property of any configuration. The oracle can be an approximation as opposed to a perfect oracle
that would typically necessitate the costly execution of individual configuration

6The most common functions are linear, radial-based functions and polynomial.

128 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Algorithm 1 A dedicated algorithm conducting the gradient-descent evasion attack inspired
by [62]

Input: x0, the initial configuration; t, the step size; nb_disp, the number of displacements; g,
the discriminant function
Output: x∗, the final attack point

(1) m = 0;
(2) Set x0 to a copy of a configuration of the class from which the attack starts;
while m < nb_disp do

(3) m = m+1;
(4) Let ∇F(xm−1) a unit vector, normalisation of ∇g(xm−1);
(5) xm = xm−1 − t∇F(xm−1);

end while
(6) return x∗ = xm;

sizes the number of displacements required to meet the termination criterion was too large.
We assume that there is a differentiable function g : X 7→ R that maps a configuration to
a real number. It is the discriminant function7 and is defined by the ML algorithm being
used. Only the sign of g is used to assign a label to a configuration x. Thus, f : X 7→ Y can
be decomposed in two successive functions: first g : X 7→ R that maps a configuration to
a real value and then h : R 7→ Y with h = sign(g). However, |g(x)| (the absolute value of
g) intuitively reflects the confidence the classifier has in its assignment of x. |g(x)| increases
when x is far from the separation and surrounded by other configurations from the same
class and is smaller when x is close to the separation.

Concretely, the core of the algorithm consists of a while loop that iterates over the number
of displacements. Statement (4) determines the direction towards the area of maximum im-
pact with respect to the classifier (explaining why only a unit vector is needed). ∇g(xm−1) is
the slope of the gradient of g(xm−1). Since evasion attacks is a technique based on gradient
descent, the direction of interest towards which the adversarial configuration should move is
the opposite of this value. This vector is then multiplied by the step size t and subtracted to
the previous move. The final position is returned after the number of displacements has been
reached. For statements (4) and (5) we simplified the initial algorithm [62]: we do not try to
mimic as much as possible existing configurations as we look forward to some diversity.

In SPLs, the feasible region is given by valid configurations (defined by, among others,
allowed features’ combinations). However, being able to state all cross-tree constraints and
potential domain values remain difficult. This task is nonetheless very important for the
adversarial attack algorithm. In this work, we opted for a quite simplistic way of handling
constraints. We only took care of the type of features and attribute values (natural integers,
floats, Boolean). For example, if a constraint forbids a value to go below zero but a displace-
ment tries to do so, we reset to zero this value (since it is the lower bound that this value can
take); a similar principle is done for Boolean values (that can take only values 0 or 1).

7The term discriminant function has been used by Biggio et al. [62] and should not be confused with the unrelated
discriminator component of generative adversarial nets (GANs) by Goodfellow et al. [127]. In GANs, the discrimin-
ator is part of the “robustification process”. It is an ML classifier striving to determine whether an input has been
artificially produced by the other GANs’ component, called the generator. Its responses are then exploited by the
generator to produce increasingly realistic inputs. In this work, we only generate adversarial configurations, though
GANs are envisioned as follow-up work.

4.2. ADVERSARIAL LEARNING FOR VARIABILITY 129

Surrogate
Classifier

Surrogate
Classifier

Dedicated
Algorithm

Test
Set

1. Data preprocessing

2. Adversarial Attacks Generation

3. Attack
Effectiveness
Measurement

4. Attack Impact Assessment

Training
Set

Surrogate
Classifier’

Training
Set

Test
Set

Machine Learning

CLASSIFIER

Horse

Figure 4.10: Adversarial Pipeline

Implementation. We rely on SecML8 a Python library that has been developed by re-
searchers from the Pattern Recognition and Applications Laboratory (PRALab), in Sardinia,
Italy. This library provides different advML techniques and embeds utilities to create a cus-
tomized pipeline according to the data to attack, their representations, the ML model that is
used in the system to attack among other parameters.

Figure 4.10 presents a generic adversarial pipeline. The first step is to prepare the data that
are shared by the original classifier and by the adversarial pipeline. Generally, an adversarial
framework relies on a surrogate classifier that is learned from the same data when the attacker
does not have access to the target classifier or when the attack cannot be conducted directly.
Since there is evidence that attacks conducted on a specific ML model can be transferred
to others [108, 107, 71], using a surrogate classifier is a legitimate approach in a black-box
scenario.

Once the classifier is learned, we can use our dedicated and SecML algorithms to generate
attacks in a second step. The third step evaluates the effectiveness of generated adversarial
configurations forming the test set. In particular, we check the validity of generated ad-
versarial configurations and their ability to be misclassfied. Finally, the fourth step learns a
new classifier with an augmented training set composed of the original training set and some
adversarial configurations.

Evaluation

We apply the adversarial generator within two contexts: JHipster and MOTIV. For each case,
we address the following research questions: RQ1: How effective is our adversarial generator to
synthesize adversarial configurations? Effectiveness is measured through the capability of our
evasion attack algorithm to generate misclassified configurations:

- RQ1.1: Can we generate adversarial configurations that are wrongly classified?

- RQ1.2: Are all generated adversarial configurations valid w.r.t. constraints in the VM?

8https://secml.gitlab.io/index.html

https://secml.gitlab.io/index.html

130 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

- RQ1.3: Is using the evasion algorithm more effective than generating adversarial con-
figurations with random modifications?

- RQ1.4: Are attacks effective regardless of the targeted class?

RQ2: What is the impact of adding adversarial configurations to the training set regarding the per-
formance of the classifier?

Specific details about the data, parameterization of the algorithms, etc. are available
in [300]. I briefly explain the interest of adversarial learning and provide key results hereafter.

MOTIV. First, we consider the industrial video generator (MOTIV) introduced in Sec-
tion 4.1.1. A highly challenging problem is to identify and even prevent MOTIV configura-
tions that lead to non-acceptable products (videos).

AdvML to the rescue. An ML classifier can make errors, preventing acceptable videos (false
positives) or allowing non-acceptable videos (false negatives). Most of these errors can be
attributed to the confidence of the classifier coming from both its design (i.e., the set of ap-
proximations used to build its decision model) and the training set (and more specifically the
distribution of the classes). Areas of low confidence exist if configurations are very dissimilar
to those already seen or at the frontier between two classes. In the remainder, we investig-
ate the use of advML to quantify these errors and their impact on the MOTIV SPL and ML
classifier.

Key results (RQ1, MOTIV). Our generated adversarial attacks are: 100% effective (always
misclassified, RQ1.1), do not depend on the target class (RQ1.4), and yield valid configura-
tions (RQ1.2) if parameterized properly. In contrast, our random baseline was only able to
achieve 62.5% of effectiveness at best (RQ1.3). The balance in the data sets does not affect
these results and the targeted class affects show the same trends despite small differences
(RQ1.4).

Key results (RQ2, MOTIV). When data sets are balanced, configurations generated by eva-
sion attacks can be used and added to the training set to improve the prediction performances
of the classifier. This step requires careful empirical tuning. Overall, with only 25 configura-
tions added, we can improve classifier accuracy by up to 3%.

JHipster is an open-source generator for developing Web applications [170]. We introduce
the case early in the manuscript, see Section 2.3.

AdvML to the rescue. Instead of deriving all JHipster variants, one can use ML and only
a sample of configurations to eventually prevent non-acceptable variants and avoid a costly
build. As an outcome, we can identify features of JHipster that cause non-acceptable vari-
ants (i.e., build failures) and re-inject this knowledge into the feature model. Build failures
can occur in various circumstances such as: (1) implementation bugs in the artefacts, typ-
ically due to a dependency wrongly specified in a Maven file or due to unsafe interactions
between features in the Java source code; (2) un-properly building environments in which
some packages or tools are incidentally missing because some combinations of features were
not assessed before. Once the learning process is realized, the question arises as to the quality
of the ML classifier and the whole JHipster SPL. Again, we can apply advML.

Key results (RQ1, JHipster). Similar as MOTIV, the two implementations of the evasion
attack are able to generate configurations that are systematically misclassified (after tuning
the parameters of the implementations) in the context of JHipster.

4.3. LEARNING VARIABILITY PERFORMANCE 131

Key results (RQ2, JHipster). Most of our attempts to improve the performance of the clas-
sifier failed since the accuracy remained the same as the baseline accuracy (i.e., without ad-
versarial configurations). This may be due to the low number of adversarial configurations
that we added to the training set or it may be the nature of the classification problem that
is too easy and achieving performance improvements is more challenging since accuracy is
close to perfect in the first place.

replication

Scripts and data are available: https://github.com/templep/EMSE_2020

4.3 Learning variability performance

The content of this section is adapted from the following publication:
J. Alves Pereira, M. Acher, H. Martin and J.-M. Jézéquel, ‘Sampling Effect on Per-
formance Prediction of Configurable Systems: A Case Study’, in International Confer-
ence on Performance Engineering (ICPE 2020), 2020. https://hal.inria.fr/hal-
02356290

Options often have a significant influence on performance properties that are hard to
know and model a priori. There are numerous possible option values, logical constraints
between options, and subtle interactions among options [29, 273, 131, 287, 173] that can have
an effect while quantitative properties such as execution time are themselves challenging to
comprehend.

Measuring all configurations of a configurable system is the most obvious path to e.g.,
find a well-suited configuration w.r.t. performance, but is too costly or infeasible in practice.
Machine-learning techniques address this issue by measuring only a subset of configurations
(known as a sample). Then these configuration measurements are used to build a performance
model capable of predicting the performance of other configurations (i.e., configurations not
measured before).

Contrary to Section 4.1, the focus is on predicting configurations properties that are quant-
itative, numerical, continuous (e.g., execution time in seconds) as opposed to qualitative, cat-
egorical (e.g., "acceptable" or "non-acceptable"). Hence, the statistical learning problems enter
in the family of regression problems as opposed to classification ones. Though problems
differ, the learning process follows a similar scheme "sampling, measuring, learning" [29].

A crucial step is the way the sampling is realized, since it can drastically affect the per-
formance model accuracy [29, 173]. Ideally, the sample should be small to reduce the cost
of measurements and representative of the configuration space to reduce prediction errors.
The sampling phase involves a number of difficult activities: (1) picking configurations that
are valid and conform to constraints among options – one needs to resolve a satisfiability
problem; (2) instrumenting the executions and observations of software for a variety of con-
figurations – it might have a high computational cost especially when measuring performance

https://github.com/templep/EMSE_2020
https://hal.inria.fr/hal-02356290
https://hal.inria.fr/hal-02356290

132 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

aspects of software; (3) guaranteeing a coverage of the configuration space to obtain a rep-
resentative sample set. An ideal coverage includes all influential configuration options by
covering different kinds of interactions relevant to performance. Otherwise, the learning may
hardly generalize to the whole configuration space.

With the promise to select a small and representative sample set of valid configurations,
several sampling strategies have been devised in the last years (see our technical report [29]
for the specific topic of learning but also Section 2.3). For example, random sampling aims to
cover the configuration space uniformly while coverage-oriented sampling selects the sample
set according to a coverage criterion (e.g., t-wise sampling to cover all combinations of t se-
lected options). Kaltenecker et al. [173] analyzed 10 popular real-world software systems
and found that their novel proposed sampling strategy, called diversified distance-based
sampling, dominates five other sampling strategies by decreasing the cost of labelling soft-
ware configurations while minimizing the prediction errors.

In this line of work, we conduct a replication of this preliminary study by exclusively
considering the x264 case, a configurable video encoder. Though we only consider one par-
ticular configurable system, we make vary its workloads (with the use of 17 input videos) and
measured two performance properties (encoding time and encoding size) over 1,152 config-
urations. Interestingly, Kaltenecker et al. [173] also analyzed the same 1,152 configurations
of x264, but a fixed input video was used and only the time was considered. The goal of
our experiments is to determine whether sampling strategies considered in [173] over dif-
ferent subject systems are as effective on the same configurable system, but with different
factors possibly influencing the distribution of the configuration space. A hypothesis is that
practitioners of a configurable system can rely on a one-size-fits-all sampling strategy that is
cost-effective whatever the factors influencing the distribution of its configuration space. On
the contrary, another hypothesis is that practitioners should change their sampling strategy
each time an input (here: videos) or a performance property are targeted.

We investigate to what extent sampling strategies are sensitive to different workloads
of the x264 configurable system and different performance properties: What are the most
effective sampling strategies? Is random sampling a strong baseline? Is there a dominant
sampling strategy that practitioners can always rely on? To this end, we systematically report
the influence of sampling strategies on the accuracy of performance predictions and on the
robustness of prediction accuracy.

Design Study

Figure 4.11 summarizes our design study, including research questions, subject systems,
sampling strategies, and metrics.

Research Questions. We conducted a series of experiments to evaluate six sampling
strategies and to compare our results to the original results in [173]. We aim at answering the
following two research questions:

- (RQ1) What is the influence of using different sampling strategies on the accuracy of
performance predictions over different inputs and non-functional properties?

- (RQ2) What is the influence of randomness of using different sampling strategies on
the robustness of prediction accuracy?

4.3. LEARNING VARIABILITY PERFORMANCE 133

Sampling
configurations

x264 --no-cabac --no-fast-pskip --ref 9
-o video0.264 video0.y4m

Measuring
configurations

Learning

Performance
prediction

model

video1
video0

video16
…

(configuration sample aka training set)

prediction errors
(MRE)

random distance-
based

coverage-
based

Input
videos

(workload)

What is the influence of a sampling
strategy, over different workloads and
performance properties of x264, on the

accuracy of performance predictions and on
the robustness of prediction accuracy?

(on the same
hardware)

(x264 version is the same for all experiments)

…

Figure 4.11: Design study: sampling effect on performance predictions of x264 configurations

It is not new the claim that the prediction accuracy of machine learning extensively de-
pends on the sampling strategy. The originality of the research question is to what extent
are performance prediction models of the same configurable system (here: x264) sensitive
to other factors, such as different inputs and non-functional properties. To address RQ1,
we analyze the sensitivity of the prediction accuracy of sampling strategies to these factors.
Since most of the considered sampling strategies use randomness, which may considerably
affect the prediction accuracy, RQ2 quantitatively compares whether the variances (over 100
runs) on prediction accuracy between different sampling strategies and sample sizes differ
significantly. We show that the sampling prediction accuracy and robustness hardly depends
on the definition of performance (i.e., encoding time or encoding size). As in Kaltenecker et
al. [173], we have excluded t-wise sampling from RQ2, as it is also deterministic in our setting
and does not lead to variations.

Subject System. We conduct an in-depth study of x264, a popular and highly config-
urable video encoder implemented in C. We choose x264 instead of the other case studies
documented in Kaltenecker et al. [173] because x264 demonstrated more promising accuracy
results to the newest proposed sampling approach (i.e., diversified distance-based sampling).
With this study, we aim at investigating, for instance, whether diversified distance-based
sampling also dominates across different variations of x264 (i.e., inputs, performance proper-
ties). As benchmark, we encoded 17 different input videos from raw YUV to the H.264 codec
and measured two quantitative properties (encoding time and encoding size).

- Encoding time (in short, time): how many seconds x264 takes to encode a video.

- Encoding size of the output video (in short, size): compression size (in bytes) of an
output video in the H.264 format.

All measurements have been performed over the same version of x264 and on a grid
computing infrastructure called IGRIDA.9 Importantly, we used the same hardware charac-
teristics for all performance measurements. We consider 17 input videos. This number of
inputs allows us to draw conclusions about the practicality of sampling strategies for diver-
sified conditions of x264. To control measurement bias while measuring execution time, we
have repeated the measurements several times [28].

9http://igrida.gforge.inria.fr/

http://igrida.gforge.inria.fr/

134 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Sampling strategies. Several sampling strategies have been proposed in the literature
about software product lines and configurable systems [29, 302, 315]. We now present an
overview of six sampling strategies also considered in [173] and used in our study. All
strategies have the merit of being agnostic of the domain (no specific knowledge or prior
analysis are needed) and are directly applicable to any configurable system.

Random sampling aims to cover the configuration space uniformly. Throughout this section,
we refer to random as uniform random sampling. The challenge is to select one configura-
tion amongst all the valid ones in such a way each configuration receives an equal probability
to be included in the sample. An obvious solution is to enumerate all valid configurations
and randomly pick a sample from the whole population. However, enumerative approaches
quickly do not scale with a large number of configurations. Oh et al. [234] rely on binary de-
cision diagrams to compactly represent a configuration space, which may not scale for very
large systems [215]. Another line of research is to rely on satisfiability (SAT) solvers. For
instance, UniGen [79, 78] uses a hashing-based function to synthesize samples in a nearly
uniform manner with strong theoretical guarantees. These theoretical properties come at a
cost: the hashing-based approach requires adding large clauses to formulas. In Section 2.3.2,
we show that state-of-the-art algorithms are either not able to produce any sample or un-
able to generate uniform samples for the SAT instances considered. Overall, a true uniform
random sampling may be hard to realize, especially for large configurable systems. At the
scale of the x264 study [173], though, uniform sampling is possible (the whole population is
1,152 configurations). The specific question we explore here is whether random is effective
for learning (in case it is applicable as in x264).

When random sampling is not applicable, several alternate techniques have been pro-
posed typically by sacrificing some uniformity for a substantial increase in performance.

Solver-based. Many works rely on off-the-shelf constraint solver, such as SAT4J [197] or
Z3 [105], for sampling. For instance, a random seed can be set to the Z3 solver and internally
influences the variable selection heuristics, which can have an effect on the exploration of
valid configurations. Henard et al. noticed that solvers’ internal order yields non-uniform
(and predictable) exploration of the configuration space [144]. Hence, these strategies do not
guarantee true randomness as in uniform random sampling. Often the sample set consists of
a locally clustered set of configurations.

Randomized solver-based. To weaken the locality drawback of solver-based sampling, Henard
et al. change the order of variables and constraints at each solver run. This strategy, called
randomized solver-based sampling in Kaltenecker et al. [173], increases diversity of configura-
tions. Though it cannot give any guarantees about randomness, the diversity may help to
capture important interactions between options for performance prediction.

Coverage-based sampling aims to optimize the sample with regards to a coverage criterion.
Many criteria can be considered such as statement coverage that requires the analysis of the
source code. In this section and as in Kaltenecker et al. [173], we rely on t-wise sampling [87,
172, 193]. This sampling strategy selects configurations to cover all combinations of t selected
options. For instance, pair-wise (t=2) sampling covers all pairwise combinations of options
being selected. There are different methods to compute t-wise sampling. As in [173], we rely
on the implementation of Siegmund et al. [288].

4.3. LEARNING VARIABILITY PERFORMANCE 135

Distance-based. Kaltenecker et al. [173] propose distance-based sampling. The idea is to
cover the configuration space by selecting configurations according to a given probability
distribution (typically a uniform distribution) and a distance metric. The underlying benefit
is that distance-based sampling can better scale compared to an enumerative-based random
sampling, while the generated samples are close to those obtained with a uniform random.

Diversified distance-based sampling is a variant of distance-based sampling [173]. The prin-
ciple is to increase diversity of the sample set by iteratively adding configurations that contain
the least frequently selected options. The intended benefit is to avoid missing the inclusion
of some (important) options in the process.

Experiment Setup. In our experiments, the independent variables are the choice of the
input videos, the predicted non-functional-property, the sample strategies and the sample
sizes.

For comparison, we used the same experiment design as in Kaltenecker et al. [173].
To evaluate the accuracy of different sampling strategies over different inputs and non-
functional-properties, we conducted experiments using three different sample sizes. To be
able to use the same sample sizes for all sampling strategies, we consider the sizes from
t-wise sampling with t=1, t=2, and t=3. (Recall that t-wise sampling covers all combina-
tions of t configuration options being selected.) We learn a performance model based on
the sample sets along with the corresponding performance measurements defined by the dif-
ferent sampling strategies. Several machine-learning techniques have been proposed in the
literature with this purpose [29], such as linear regression [81, 287, 173, 167, 185, 317, 225,
268, 203], classification and regression trees (CART) [298, 299, 273, 167, 225, 227, 228, 309,
312, 320, 325, 191, 253, 329, 328, 293], and random forest [31, 309, 255, 41, 301]. In this study,
we use step-wise multiple linear regression [287] as in Kaltenecker et al. [173]. According to
Kaltenecker et al. [173], multiple linear regression is often as accurate as CART and random
forests.

To calculate the prediction error rate, we use the resulting performance models to predict
the performance of the entire dataset of valid configurations C. We calculate the error rate of
a prediction model in terms of the mean relative error (MRE - Equation 4.1). MRE is used to
estimate the accuracy between the exact measurements and the predicted one.

MRE =
1
|C| ∑

c∈C

|measuredc − predictedc|
measuredc

(4.1)

Where C is the set of all valid configurations used as the validation set, and measuredc and
predictedc indicate the measured and predicted values of performance for configuration c
with c ∈ C, respectively. The exact value of measuredc is measured at runtime while run-
ning the configuration c, and the predicted values of predictedc is computed based on the
model built with a sample of configurations t. To address RQ1, we computed the mean
error rate for each input video and sample size. A lower error rate indicates a higher ac-
curacy. Then, we use a Kruskal-Wallis test [192] and pair-wise one-sided Mann-Whitney
U tests [206] to identify whether the error rate of two sampling strategies differs signific-
antly (p < 0.05) [38]. In addition, we compute the effect size Â12 [314] (small(>0.56), me-
dium(>0.64), and large(>0.71)) to easily compare the error rates of two sampling strategies.

136 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

To address RQ2, we compute the variance across the error rates over 100 runs. A lower
variance indicates higher robustness. First, we use Levene’s test [201] to identify whether
the variances of two sampling strategies differ significantly from each other. Then, for these
sampling strategies, we perform a one-sided F-tests [292] to compare pair-wisely the variance
between sampling strategies.

To reduce fluctuations in the values of dependent variables caused by randomness (e.g.,
the random generation of input samples), we evaluated each combination of the independent
variables 100 times. That is, for each input video, non-functional property, sampling strategy
and sampling size, we instantiated our experimental settings and measured the values of all
dependent variables 100 times with random seeds from 1 to 100.

Key results

Much more details about the data, results, and insights can be found in [28]. I report and
discuss an excerpt of key results hereafter.

Observations. For the property encoding time, uniform random sampling yields the most
accurate performance models. Diversified distance-based sampling produces good results
when a very limited number of samples are considered (i.e., t=1) and almost reaches the
accuracy of random when the sample sizes increase. In terms of robustness, diversified
distance-based sampling is more robust than the other sampling strategies.

For the property encoding size, random sampling and randomized solver-based sampling
outperform all other sampling strategies for most of the input videos with sample sizes t=2
and t=3; and solver-based sampling outperforms for sample sizes t=1. Overall, random, ran-
domized solver-based, solver-based, and diversified distance-based present good and similar
accuracy for t=2 and t=3. Differently from our previous results (for time), there is not a clear
winner. In terms of robustness, uniform random sampling is more robust than the other
sampling strategies.

An important result is that the property of interest (encoding time or encoding size) as
well as the inputs (videos) can drastically change the overall conclusions about the effective-
ness of sampling strategies w.r.t. accuracy and robustness.

Answering RQ1 (accuracy) Is there a “dominant" sampling strategy for the x264 con-
figurable system whatever inputs and targeted quantitative properties? For the property
encoding time, there is a dominant sampling strategy (i.e., uniform random sampling) as
shown in Kaltenecker et al. [173], and thus the sampling can be reused whatever the in-
put video is. For the property encoding size, although the results are similar around some
sampling strategies, they differ in a noticeable way from encoding time and suggest a higher
input sensitivity. Overall, random is the state-of-the-art sampling strategy but is not a domin-
ant sampling strategy in all cases, i.e., the ranking of dominance changes significantly given
different inputs, properties and sample sizes. A possible hypothesis is that individual op-
tions and their interactions can be more or less influential depending on input videos, thus
explaining the variations’ effect of sampling over the accuracy. Our results pose a new chal-
lenge for researchers: Identifying what sampling strategy is the best given the possible factors
influencing the configurations’ performances of a system.

Answering RQ2 (robustness). We have quantitatively analyzed the effect of a sampling
strategy over the prediction variance. Overall, random (for size) and diversified distance-
based (for time and size) have higher robustness. We make the observation that uniform
random sampling is not necessarily the best choice when robustness should be considered

4.3. LEARNING VARIABILITY PERFORMANCE 137

(but it is for accuracy). In practical terms, practitioners may have to find the right balance
between the two objectives. As a sweet-spot between accuracy and robustness, diversified
distance-based sampling (for time), and either random or randomized solver-based sampling
(for size) are the best candidates. We miss however an actionable metric that could take both
accuracy and robustness into account.

Our recommendations for practitioners are as follows:

- uniform random sampling is a very strong baseline independent to the inputs and
performance properties. In the absence of specific-knowledge, practitioners should rely
on this dominant strategy for reaching high accuracy;

- in case uniform random sampling is computationally infeasible, distance-based sampling
strategies are interesting alternatives;

- the use of other sampling strategies does not pay off in terms of prediction accuracy.
When robustness is considered as important, uniform random sampling is not the best
choice and here we recommend diversified distance-based sampling.

The impacts of our results on configuration and performance engineering research are
as follows:

- as uniform random sampling is effective for learning performance prediction mod-
els, additional research effort is worth doing to make it scalable for large instances.
Recent results (see Section Scalability and quality of uniform samplers) show some
improvements, but the question is still open for very large systems (e.g., Linux, see
Section Transfer learning across variants and versions: the case of Linux);

- some sampling strategies are surprisingly effective for specific inputs and performance
properties. Our insights suggest the existence of specific sampling strategies that could
prioritize specific important (interactions between) options. An open issue is to discover
them for any input or performance property;

- performance measurements with similar distributions may be grouped together to en-
able the search for dominants sampling strategies;

- beating random is possible but highly challenging in all situations;

- it is unclear how factors such as the version or the hardware influence the sensitivity
of the sampling effectiveness (and how such influence differs from inputs and perform-
ance properties);

- we warn researchers that the effectiveness of sampling strategies for a given configur-
able system can be biased by the workload and the performance property used.

replication

We provide general instructions on how to reproduce the results of the study: ht-
tps://github.com/jualvespereira/ICPE2020. We also provide the variability model
and the measurements of each video input for encoding time and encoding size. Our
awarded paper [28] got the ACM badges "Artifacts Available" and "Artifacts Evaluated
– Reusable"

https://github.com/jualvespereira/ICPE2020
https://github.com/jualvespereira/ICPE2020

138 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

4.4 Transfer learning across variants and versions: the case of
Linux kernel size

The content of this section is adapted from the following publication:
M. Acher, H. Martin, J. A. Pereira, A. Blouin, J.-M. Jézéquel, D. E. Khelladi, L. Lesoil
and O. Barais, ‘Learning Very Large Configuration Spaces: What Matters for Linux
Kernel Sizes’, Inria Rennes - Bretagne Atlantique, Research Report, Oct. 2019. https:
//hal.inria.fr/hal-02314830
H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, ‘Transfer
learning across variants and versions: The case of linux kernel size’, Transactions on
Software Engineering (TSE), 2021

With now more than 15,000 configuration options, including more than 9,000 just for
the x86 architecture, the Linux kernel is one of the most complex configurable open-source
system ever developed. If all these options were binary and independent, that would indeed
yield 215000 possible variants of the kernel. Of course not all options are independent (leading
to fewer possible variants), but some of them have tri-states values: yes, no, or module instead
of simply boolean values (leading to more possible variants). The Linux kernel is mentioned
in numerous papers about configurable systems and machine learning for motivating the
problem and the underlying approach. However, only a few works truly explore such a huge
configuration space. In this line of work, we take up the Linux challenge.

Specifically, we consider a quantitative, non-trivial property of kernels – binary size. The
goal is to predict the binary size of any configuration of Linux without actually building it.
Linux kernels are used in a wide variety of systems, ranging from embedded devices and
cloud services to powerful supercomputers [305]. Many of these systems have strong re-
quirements on the kernel size due to constraints such as limited memory or instant boot [158,
237]. As elaborated in [25], the effort of the Linux community to document options related to
kernel binary size is highly valuable, but mostly relies on human expertise, which makes the
maintenance of this knowledge quite challenging on the long run. Furthermore, numerous
works have showed that quantifying the performance influence of each individual option is
not meaningful in most cases [29, 273, 131, 287, 173]. That is, the performance influence of n
options, all jointly activated in a configuration, is not easily deducible from the performance
influence of each individual option. As our empirical results will show, the Linux kernel bin-
ary size is not an exception: options such as CONFIG_DEBUG_* or CC_OPTIMIZE_FOR_SIZE
have cross-cutting, non-linear effects and cannot be reduced to additive effects, hence basic
linear regression models, which are unable to capture interactions among options, give poorly
accurate results.

In the first part of this section, I am reporting the results of learning methods used in
the state-of-the-art over Linux. The Linux case indeed questions whether learning methods
used in the state of the art would scale (w.r.t. training time), provide accurate models, and
interpretable information at such an unprecedented scale. We aim to predict a non-functional
property (the binary size) of the Linux kernel by considering all 9K+ options without a priori
selection based on documentation or expert knowledge. At this scale, applying machine learning
to Linux has never been done before. Prior works considered only a few options and con-
figurations. Sincero et al. [291] considered 352 options and 146 random configurations for
the non-functional property scheduling performance. Siegmund et al. [290, 289] considered

https://hal.inria.fr/hal-02314830
https://hal.inria.fr/hal-02314830

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX139

v4.13 . . . v4.15 . . . v4.20 . . . v5.0 . . . v5.4 . . . v5.7 . . . v5.8

Evolution-Aware
Model Shifting

Model A Model B

v4.13
predictions

v4.13
measured
configurations

v5.8
measured

configurations

v5.8
predictions

Model A’

Transfer
Knowledge

Figure 4.12: An overview on how to predict the performance of Linux kernel configurations
over versions 4.13 and 5.8.

25 options and 100 random configurations for binary size. In this study and in contrast to
prior works, we make no assumption about the supposed influence of some options and our
experiments consider the entire 9K+ options of the Linux kernel on the x86_64 architecture.
We also considered a baseline of 95K+ different configurations for 4.13 version and 20K+
configurations for 7 other versions. Beyond Linux, only dozens of options over a few config-
urations are usually considered in the literature of configurable systems [29]. The gap with
the Linux case is substantial, up to the point some learning algorithms, including the ones
proposed in the literature, may not scale or have poor accuracy.

In the second part, we first show that a size prediction model learned from one specific
version quickly becomes obsolete and inaccurate, despite a huge initial investment (15K hours
of computation for building a training set of 90K configurations). In response, we developed
a heterogeneous transfer evolution-aware model shifting (tEAMS) learning technique (see
Figure 4.12). tEAMS is capable of handling new options that appear in new versions while
learning the function that maps the novel effects of shared options among versions. Our
results show that the transfer of a prediction model leads to accurate results (the prediction
error remains low and constant) without the need of collecting a very large corpus of meas-
urements configurations. With only 5K configurations, we can transfer the model made in
September 2017 for the 5.8 version released in August 2020 with similar accuracy.

140 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Learning methods to the test of Linux

In this part, we present empirical results with the Linux kernel (version 4.13). More details
about the study design, data, and insights are available in [25].10

Gathering configuration data. Our approach, like other learning-based performance
models, requires engineering effort to measure non-functional properties (here: binary size
of a Linux kernel) out of a sample of configurations. We have developed the tool TuxML to
build the Linux kernel in the large i.e., whatever options are combined. TuxML uses Docker
to host the numerous packages and tools needed to compile, build, and measure the Linux
kernel. Inside Docker, a collection of Python scripts automates the build process. Docker
offers a reproducible and portable environment – clusters of heterogeneous machines can be
used with the same libraries and tools (e.g., compiler versions). In particular, we can use a
grid computing or a cloud infrastructure to build a large set of configurations.

The two main steps followed by TuxML to measure kernel binary sizes are as follows:

1. Sampling configurations. For this step, we relied on on randconfig to randomly generate
Linux kernel configurations. randconfig has the merit of generating valid configurations
respecting the numerous constraints between options. It is also a mature tool that
the Linux community maintains and uses [213]. Though randconfig does not produce
uniform, random samples, there is still a wide diversity within the values of options
(being ‘y’, ‘n’, or ‘m’). We use this sample to create a .config file.

2. Kernel size measurement. Given a set of .config files, TuxML builds the corresponding
kernels. Throughout the process, TuxML measures the size of vmlinux, a statically linked
executable file containing the kernel. We saved the configurations and the resulting
sizes in a database.

The outcome is a dataset of Linux configurations together with their binary size. Each line
of the dataset is composed of a set of configuration option values and a quantitative value.
Due to discrepancy in vocabulary between the configurable systems domain and the machine
learning domain, we clarify how both terms, "option" and "feature" will be used hereafter. An
option is a variable in a configuration of a system. In the Linux case, every available option
has a value in the configuration file .config.11 A feature is an independent variable given to a
machine learning algorithm.

Feature encoding Learning algorithms targeting regression problems requires encoding
three possible values of options (e.g., ‘y’, ‘n’, ‘m’) into numerical values. An encoding of ‘n’
as 0, ‘y’ as 1, and ‘m’ as 2 is the most obvious solution. However, some learning algorithms
(e.g., linear regression) will assume that two nearby values are more similar than two distant
values (here ‘y’ and ’m’ would be more similar than ‘m’ and ‘n’). This encoding will also be
confusing when interpreting the negative or positive weights of a feature. There are many
techniques to encode categorical variables (e.g., dummy variables [114]). We observe that the
‘m’ value has no direct effect on the size since kernel modules are not compiled into the

10In fact a revised version of this preliminary report is available in Hugo’s Martin PhD thesis. Hugo has signific-
antly improved the report with new experiments, better explanations and insights. He has investigated the use of
tree-based feature selection as a means to identify a subset of relevant options for a learning model. Empirical results
show that tree-based feature selection can achieve low prediction errors over a reduced set of options and even out-
performs the accuracy of learning without feature selection. Furthermore, the interpretable information extracted
from learning models is consistent with experts’ knowledge of Linux.

11Technically, the Linux options that are not specified in a .config file have the value ’n’.

https://github.com/TuxML/tuxml

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX141

Algorithm
MAPE

N=10 N=20 N=50 N=80 N=90
OLS Regression 74.54±2.3 68.76± 1.03 61.9 ± 1.14 50.37±0.57 49.42±0.08
Lasso 34.13±1.38 34.32±0.12 36.58±1.04 38.07±0.08 38.04±0.17
Ridge 139.63±1.13 91.43±1.07 62.42±0.08 55.75±0.2 51.78±0.14
ElasticNet 79.26±0.9 80.81±1.05 80.58±0.77 80.57±0.71 80.34±0.53
Decision Tree 15.18 ± 0.13 13.21 ± 0.12 11.32±0.07 10.61± 0.10 10.48± 0.15
Random Forest 12.5±0.19 10.75±0.07 9.27±0.07 8.6±0.07 8.4 ±0.07
GB Tree 11.13±0.23 9.43±0.07 7.70±0.04 7.02±0.05 6.83±0.10
N. Networks - 13.92 ± 0.99 9.46 ± 0.15 8.29 ± 0.18 8.08 ± 0.12
Polynomial Regression - - - - -

Table 4.3: MAPE of learning algorithms for the prediction of vmlinux size, with N being the
percentage of the dataset used as training

kernel and can be loaded as needed. Therefore, we consider that ‘m’ values have the same
effect as ‘n’ values, and these values can be merged. For non-tri-state options, which are only
319, we simply discarded them. With this encoding, the hypothesis is that the accuracy of
the prediction model is not impacted whereas the problem is simpler to handle for learning
algorithms and easier to interpret.

(RQ1) How do state-of-the-art techniques perform on large configurable systems? Most
of the studied techniques could perform their task in the time and memory limits we had set.
We however failed to get results from two of the techniques we have tried: SPLConqueror
and Polynomial regression:

- Importing the Linux dataset into SPLConqueror raises an error about insufficient memory
and cannot perform anything on the dataset.12 As stated in [185], for p options, there
are p possible main influences, p × (p − 1)/2 possible pairwise interactions, and an
exponential number of higher-order interactions among more than two options. In the
worst case, all 2-wise or 3-wise interactions among the 9K+ options are included in the
model, which is computationally intractable. Even if a subset of options is kept, there
is a combinatorial explosion of possible interactions. It may hinder the scaling of the
method or dramatically increase the training time. Kolesnikov et al. [185] reported that
it take hundreds of minutes for systems with less than 30 options, which is far from
9K+ options. Furthermore, linear regressions, used as part of the stepwise process to
keep relevant options or interactions, are not accurate enough in the context of Linux
(see Table 4.3).

- Polynomial regression integrates interactions among features (in the same vein as performance-
influence model) and does not scale for a degree 2.

Table 4.3 reports the highly variable accuracy in mean absolute percentage error (MAPE) of all
successfully tested techniques with various training set sizes. Most of the selected algorithms
are sensitive to hyperparameters, which may affect accuracy results. Selecting the right values
for hyperparameters should not be neglected. Otherwise, the best algorithm could be sub-
optimal after the hyperparameter optimization. We optimize their hyperparameters, and
explore a wide range of values as part of our study using grid search and cross-validation.

12We used SPLConqueror from commit 9b68ce on Ubuntu 20.04 LTS and got the message "Sys-
tem.OutOfMemoryException: Insufficient memory to continue the execution of the program."

142 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

For decision trees, we find the best hyperparameters to be at max depth of 27 and minimum
samples split of 45. For random forests, a maximum depth of 20 and a minimum samples
split of 10, over 48 estimators (to match the 4 cores/8 threads capacity of the machine). For
gradient boosting trees, the maximum depth was 15 and the minimum sample split was 100,
over 50 estimators. Our implementation of neural networks is a multilayer feed forward
network. Linux configurations go through three dense layers with ReLU activation functions.
We rely on an Adam Optimizer [182], since in our case, it had better convergence properties
compared to a standard stochastic gradient descent. Besides, the architecture of the neural
network has not been designed for relatively small training sets. For this reason, we only
experiment with 20K+ configurations. We fed the network with batches of 50 configurations.

We can distinguish multiple groups of similar performance and techniques:

- Linear regression based techniques: OLS Regression, Ridge, ElasticNet and Lasso all
present poor results, with Lasso being the only one with less than 50% MAPE, but still
34% at best. The results show that linear regressions are not suited for Linux and that
the problem of predicting size cannot be trivially resolved with a simple additive, linear
model (as hypothesized early in the section);

- Tree-based techniques: Decision Tree, Random Forest and Gradient Boosting Tree all
show MAPE at less than 20% even with "only" 10% of the dataset, even reaching 6.83%
for Gradient Boosting Tree at 90% of the dataset. Decision Trees is inferior to Random
Forest and Gradient Boosting Tree;

- Neural Networks work quite well but require much more data to be efficient compared
to tree-based techniques.

Key results (RQ1). At the exception of Performance-Influence model and Polynomial Re-
gression, most of the techniques studied can handle the Linux dataset in reasonable time and
memory limits. On the accuracy side, we can notice that Linear regression based techniques
do not present very accurate results, and only Tree-based and neural network technique are
suited for Linux.

Impacts of Linux evolution on learning models

As any software system, configurable systems evolve with many commits that may modify
the entire architecture and source code. In addition, options may be added or removed during
evolution. All these modifications can have an impact on the performance distribution of the
configuration space: the effects of individual options may change as well as the interactions
among them. Thus, for large and complex configurable systems, one has to manage both the
combinatorial explosion of possibly thousands of options (yielding variants, i.e., variability
in space) and the continuous rapid evolution (yielding versions, i.e., variability in time). In
general, learning variability in both space and time is indeed challenging. Linux is an extreme
case of a highly complex configurable system that rapidly evolves [195, 196, 262, 244, 110].

We aim to quantify the impact of Linux evolution (i.e., the release of a new kernel version)
on configuration binary size. Mühlbauer et al. [222] investigated the history of software
performance to isolate when a performance shift happens over time. If we know evolution
can impact the performance of a configurable software, we do not actually know if and how
much it can impact a performance prediction model.

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX143

A hypothesis is that the evolution has no significant impact and the Linux community
can effectively reuse a binary size prediction model across all versions. The counter hypo-
thesis is that the evolution changes the binary size distributions: in this case, a measurable
and practical consequence would be that a binary size model becomes inaccurate for other
versions. In other words, if the degradation of the accuracy of a prediction model is to be
expected, it is necessary to know whether such degradation is sharp enough to be a problem
for the Linux community. However, none of these hypotheses have been investigated in the
literature. Therefore, quantifying the impact of evolution is crucial and boils down to address
the following research question: (RQ2) To what extent does Linux evolution degrade the ac-
curacy of a binary size prediction model trained on a specific version? To address it, we
measure the accuracy of a performance prediction model, specifically a binary size prediction
model, trained in one specific version (i.e., 4.13), when applied to later versions (e.g., up to
5.8).

Datasets. We compiled and measured Linux kernels on seven different versions. Table 4.4
further details each considered release version:

- 4.13: this release was the starting point of our work with huge investments (builds and
measurements of 90K+ configurations);

- 4.15: the release was the first to deal with the serious chip security problems melt-
down/spectre [254] that mainly apply to Intel-based processor (x86 architecture). A
broad set of mitigations has been included in the kernel, which can have an effect on
kernel sizes;

- 4.20: the last version before 5.0, with several x86/x86_64 optimizations. As part of the
in-depth analysis on the evolution of core operation performance in Linux [262], Ren et
al. identified several changes in latency for versions between 4.15 and 4.20;

- 5.0: interestingly, this version has been the subject of some debates about the decrease
of kernel performance on some macro-benchmarks (e.g., see [159]);

- 5.4: it is a long term support release that will be maintained 6 years. This version also
includes modifications for dealing with Linux performance [159, 157];

- 5.7: a recent version, more than a half-year after 5.4;

- 5.8: Linus Torvalds commented13 "IOW, 5.8 looks big. Really big." and reported "over 14k
non-merge commits (over 15k counting merges), 800k new lines, and over 14 thousand files
changed", suggesting an important and challenging evolution to tackle.

As depicted in Table 4.4, the continuous evolution from 4.13 to 5.8 is significant in terms
of numbers of added/deleted options, delta of the commits and the changes files. Note that
those changes are computed for each release w.r.t. 4.13. For all versions, we specifically tar-
geted the x86-64 architecture, i.e., technically, all configurations have values CONFIG_X86=y
and CONFIG_X86_64=y. Overall, we span different periods during 3 years, with some modi-
fications (security enhancements, new features) suggesting possible impacts on kernel non-
functional properties (e.g., size). For each version, we build thousands of random configur-
ations (see Table 4.4 column [Examples]). Owing to the computational cost, we balance the
budget to measure at least and around 20K+ configurations per version. Such data is used
to test the accuracy of a prediction model. We used TuxML and relied on randconfig to ran-

13https://lore.kernel.org/lkml/CAHk-=whfuea587g8rh2DeLFFGYxiVuh-bzq22osJwz3q4SOfmA
@mail.gmail.com/

144 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Version Release Date Examples Seconds/config Options Features Deleted features New features

4.13 2017/09/03 92,562 271† 12,776 9,468 - -
4.15 2018/01/28 39,391 263† 12,998 9,425 342 299
4.20 2018/12/23 23,489 225 13,533 10,189 468 1,189
5.0 2019/03/03 19,952 247 13,673 10,293 494 1,319
5.4 2019/10/24 25,847 285 14,159 10,813 663 2,008
5.7 2020/05/31 20,159 258 14,586 11,338 715 2,585
5.8 2020/08/02 21,923 289 14,817 11,530 730 2,792

Table 4.4: Dataset properties for each version. The number of deleted/new features are
w.r.t. 4.13. † for versions 4.13 and 4.15, the build time (number of seconds to build one
configuration) should be interpreted with caution since we used heterogeneous machines
and did not seek to control their workload

domly generate Linux kernel configurations. The distribution of binary size in our dataset
varies depending on the version. While the mean binary size on version 4.13 is 47 MiB, for
other versions that mean value is between 89 MiB and 118 MiB. The minimum size for all
version is around 10 MiB and the maximum around 2 GiB.

Base prediction models We chose gradient boosting trees (GBTs) that obtain the best results
whatever the training set size on version 4.13. We trained GBTs with 85.000 examples on
version 4.13. As a performance model only matches a specific set of features (here: the
features of 4.13), we deleted features only contained in further, target versions (e.g., 4.15).

Results (RQ2). Figure 4.13 shows the degradation of models trained on the Linux Kernel
version 4.13 by plotting their error rate (meaning lower is better) on later versions. The
models get on average 5% MAPE on 4.13, and less than two versions after, on 4.15, the error
rate is 4 times higher at 20%. It keeps this error rate for multiple versions, at least up to 5.0,
and goes even higher, at 32% for the version 5.7 and 5.8, i.e., an error rate 6 times higher.
Note that the degradation does occur independently from the training set size, i.e., with both
20K and 85K configurations.

A direct reuse of the prediction model is inaccurate for the early version 4.15 and sub-
sequent ones (4.20, and 5.0). Moreover, the degradation slightly decreases between 5.7 and
5.8. A possible explanation is that the binary size distributions of 5.8 is closer to 4.13, at least
for the way the basic transfer is performed. It also suggests an effect of the evolution between
5.7 and 5.8. Besides model reuse with 20K is more accurate than model reuse with much
more budget (85K) for all target versions, except 5.8. It is not what we would have expected
for a learning model: a larger training set for the source model should lead to improved
accuracy. This shows that despite the evolution changes both at the code and options level
among the releases (see Table 4.4), reusing a model does not follow a logical or explainable
reason from a machine learning point of view. Thus, overall, simply reusing a prediction
model is neither accurate nor reliable: the evolution of the configurations binary size is not
captured. We also measured the degradation of prediction models trained on other versions
with 15K (see Figure 4.13). We can observe that the degradation is less immediate than with
the version 4.13 but is still happening, especially on version 5.8 as error rate is raising to 40%
- 50%.

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX145

Figure 4.13: Accuracy of prediction models, trained on 4.13, with training set size 20K and
85K, when applied on later versions.

One of the main results is that the prediction models cannot be reused as such and de-
grade over time, regardless of the size of the training set. It calls to a more accurate and
sustainable solution like transfer learning [29, 312, 168].

Insights about evolution and options. We compare feature importances from models trained
on versions 4.13, 4.15, and 5.8. To do so, we rely on feature importance a model agnostic,
widely considered score for computing the increase in the prediction error of the model
after we permuted the feature’s values [220]. Feature importance provides an integrated
and global insight into the prediction model of a given version: the score takes into account
both the main feature effect and the interaction effects on model prediction. We perform
the computation out of GBTs. Our observations show that numerous features involved in
different evolution patterns can cause the degradation of a prediction model. The impact
of new features, unknown by the old model, but also the changes in importance of known
features, challenge a prediction model trained on a specific version. Interestingly, we did not
find important features that were removed between version 4.13 and 4.15. Another important
insight is that a large subset of features remain important across versions. For example, when
comparing 4.13 and 4.15, out of the top 50 features from both list (the top 50 representing 95%
of the feature importance), 29 are the same. One can leverage this knowledge for building
a prediction model. Overall, there is a potential to transfer a model from one version to
another under the conditions new features together with the effects of important features are
correctly handled. In fact, the insights drive the design of tEAMS: more details hereafter.

Key results (RQ2) The evolution does impact configuration prediction and the degrad-
ation quickly occurs: from less than 5% to 20% (only after 4 months of evolution) and up
to 32% for recent versions. The reuse of a prediction model on different versions is not a
satisfying solution, calling for other approaches.

146 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Transfer learning across variants and versions

To overcome this issue, we propose to transfer the learning across versions. Figure 4.12,
page 139 gives the general principle about how transfer learning works. Here, to make
predictions over the Linux kernel version 5.8, we could directly reuse the performance model
A built from the source version 4.13. Basically, the source model A is adapted to consider the
aligned set of features from both source and target domains (i.e., model A’). Finally, the target
model B is trained with only a few measured configurations in the target domain B plus the
knowledge from the modified source model A’.

Heterogeneous transfer learning problem However, the evolution of Linux brings a specific
scenario for transfer learning: configuration options for the source version (e.g., 4.13) are not
the same as further, target versions (e.g., 5.8). In terms of machine learning, since options
are encoded as features, the feature spaces between the source and target version are non-
equivalent. Since the feature space (i.e., the set of configuration options) can change across
versions, our approach falls under the category known as heterogeneous transfer learning,
opposite to homogeneous transfer learning, that assumes the feature space remains unchanged
during evolution. Identifying how to efficiently apply transfer knowledge of the learned
model as the systems evolve is challenging. This is indeed a well-known general problem
in machine learning [239, 319], made even more difficult because of the heterogeneity of
configuration spaces (due to the fact that features come and go across versions) may cause
bias on cross-version feature representation [104].

Principles. The intuition is that, for Linux, the shared set of features can be exploited
to effectively transfer predictions. We now present evolution-aware model shifting (tEAMS),
a method to transfer a prediction model for a given source version onto a target version.
The major challenge is to bridge the gap between the feature spaces. We rely on two steps:
(1) feature alignment, which deals with the differences between features’ sets among two
versions; (2) the learning of a transfer function that map features’ source onto target size. For
realizing feature alignment, we distinguish three cases:

- commonality: options that are common across versions (i.e., options have the same
names) are encoded as unique, shared features. There are two benefits: we can reuse
a prediction model obtained over a source version "as is", without having to retrain it
with another feature scheme; we do not double the number of features, something that
would increase the size of the learning model up to the point some learning algorithms
might not scale. The anticipated risk is that some Linux options, though common across
versions, may drastically differ at the implementation level, thus having different effects
on sizes. We deal with this risk through the learning of a transfer function that aims to
find the correspondences between the source and the target (see below);

- deleted features: options that are in the source version, but no longer in the target
version: we add features in the target version with one possible value, "0" or "1".
Observations show that putting "1" as the default always gives slightly better accuracy.

- new features: options that are not in the source version, but only introduced in the
target version: we ignore them when predicting the performance value since the source
model cannot handle them, but we keep them in the target dataset.

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX147

Feature alignment alone is not sufficient; it is mainly a syntactical mapping at this step.
There is a need to capture the transfer function, i.e., the relationship between the source fea-
tures, the source labels (kernel size of each configuration under source version), the target
features, and the target labels. This transfer function should be learned. Owing to the com-
plexity of the evolution, a "simple" linear function is unlikely to be accurate – our empirical
results confirm the intuition, see next section. In contrast to existing works that rely on lin-
ear regression models for "shifting" the prediction models [312, 168, 190], we rely on more
expressive learning models, capable of capturing interactions between source and target in-
formation. Note that the feature alignment is a completely automated process and relies on
the high similarity between the features spaces. In case of too disjoint features spaces, this
solution would likely fail, and other solutions should be considered [104]

Algorithm. There are four key steps as part of tEAMS (a Python-like pseudocode is also
given below): À Target dataset and Source model acquisition: Train or acquire a robust model
on measurements from the source version and a dataset from the target version; Á Feature
alignment: If the source and the target do not have the same set of options, an alignment of
the feature spaces is applied (e.g., as previously described); Â Target prediction: Using the
source model, predict the value of the target data and add this prediction as a new feature in
the target dataset; Ã Shifting model training: Using the enhanced target dataset, train a new
model (e.g., with a Gradient Boosting Tree algorithm capable of handling interactions).

def model_shi f t ing (source , t a r g e t) :
Training source model on the source data
source_model = GBT . t r a i n (source)
Align f e a t u r e from source to t a r g e t
t a r g e t = feature_al ignment (source . columns)
P r e d i c t the performance of the t a r g e t data
using the source model
pred_perf = source_model . p r e d i c t (t a r g e t)
Include the p r e d i c t i o n
in the t a r g e t d a t a s e t
t a r g e t [" pred_perf "] = pred_perf
Train another model
on the enhanced t a r g e t data
shi f t ing_model = GBT . t r a i n (t a r g e t)
re turn source_model , shi f t ing_model

Note that the source model is usually already trained beforehand, and its training step
can be skipped in this case. Overall, our solution is fairly easy to implement and deploy.

Variant: Incremental Transfer A possible variant of this technique is to use it in an in-
cremental fashion, and to replace the source model by an already transferred model for a
previous version. In the end, such a model consists of a source model, shifted multiple times
in a row through multiple intermediate target versions until the final target version. This
variant could potentially give more accurate results, since the complexity of the transfer is
spread over multiple models. The farther two versions are from each other, in terms of soft-
ware evolution, the more performances-impacting changes can happen. A transfer model
that handles two distant versions has to deal with all changes between these two versions

148 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

at once, while in an incremental process, each model only has to deal with a fraction of the
changes. On the other hand, we know that machine learning models are imperfect and error
prone, even if the error is limited. Relying on a series of machine learning models can turn
out to be risky, as these errors can be spread and amplified over the multiple models.

Effectiveness of transfer learning

Our goal is to evaluate the cost-effectiveness of our approach tEAMS in the context of Linux
evolution. The effectiveness is the accuracy of the prediction model and its ability to minimize
prediction errors as much as possible. If the source version and the target have very little in
common, configuration performance knowledge may not transfer well. In such situations,
transfer learning can be unsuccessful and can lead to a "negative" transfer [104]. Specifically,
we consider that the transfer is negative when learning from scratch directly onto the target
version – without transfer and using only the limited measured target data available for
transfer – leads to better accuracy than a transfer model with the same budget. Thus, we aim
to answer the following research question:

(RQ3) What is the accuracy of our evolution-aware model shifting (tEAMS) compared
to learning from scratch and other transfer learning techniques? The accuracy of tEAMS
depends on the investment realized for creating or updating the prediction models. Specific-
ally:

- the number of configuration measurements over the target model used to train the
prediction model: non-transfer learning (i.e., from scratch) uses the same training set
and we can confront our results;

- the number of configuration measurements over the source version used to train the
prediction model: from large training sets to relatively small ones;

Hence, we address RQ2 through different cost scenarios and we can identify for which in-
vestments tEAMS is effective.

Experimental settings. For training and validating the prediction models, we use the
same kernel versions and configuration measurements as in Table 4.4.

Training size for targeted versions We vary the number of configuration measurements
amongst the following values {1K, 5K, 10K}. 5K corresponds to around 5% of the 95K con-
figurations in the dataset of 4.13: it is representative of a scenario in which a relatively small
fraction is used to update the model for a target version. As we have invested around 20K
per version, we needed to take care of having a sufficiently large testing set for computing the
accuracy. In particular, we cannot use the whole configuration measurements since otherwise
we cannot simply compute the accuracy of the models. We stop at 10K since then the testing
set can be set to around 10K too. Moreover, we repeat experiments 5 times with different
training sets and report on standard deviations.

We compare tEAMS with different methods. We give some details hereafter.
Source prediction model for tEAMS: We use a prediction model trained with 4.13. It is the

oldest version in our dataset and as such, we investigate an extreme scenario for the evolu-
tion and potentially the most problematic for transfer learning. We rely on GBTs, the most
accurate solution whatever the training set size is. We train GBTs over 4.13 with two differ-
ent budgets: 85K configurations and 20K configurations. Hereafter, we call these prediction
models 4.13_85K and 4.13_20K respectively.

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX149

Figure 4.14: Accuracy of tEAMS 4.13_85K compared to other techniques using 5K examples
for the target

Incremental tEAMS: We use the incremental method in the same way as without incre-
ment, only changing the base model for each increment by the model trained on the previous
version. We also have two different series of increments, one based on the 4.13_85K model,
the other on the 4.13_20K model. For instance, the first series starts with the transfer from
model 4.13_85K to version 4.15 with a shifting model T4.15. This process creates a prediction
model 4.15 composed of the two models : 4.15 = T4.15(4.13_85K). The next step is to transfer
that model to version 4.20 : 4.20 = T4.20(4.15). At the end of that series, we have a model
looking like this :

5.8 = T5.8(T5.7(T5.4(T5.0(T4.20(T4.15(4.13_85K))))))

Learning from scratch: The simplest way to create a prediction model for a given version
is to learn from scratch with an allocated budget. We use the GBTs algorithm to create pre-
diction models from scratch, for each version of our dataset. As previously shown, GBTs are
a scalable and accurate solution compared to other state-of-the-art ones. Furthermore, the
superiority of GBTs is more apparent when small training sets are employed. This quality
of GBTs is even more important when learning for the target version where the budget for
updating the model is typically limited – we investigate budget with less than 20K measure-
ments (see above "Training size for targeted versions"). We replicated the experiments of 4.13
on other versions: linear models, decision trees, random forests, and neural networks give
inferior accuracy compared to GBTs, especially for small sampling size (e.g., 10K). Thus, we
do not report results of other learning algorithms and keep only GBTs, the strongest baselines
for learning from scratch or for transfer learning techniques.

tEAMS with linear-based transfer function In most state-of-the-art cases, model shifting pro-
cesses use a simple linear learning algorithm to create a shifting model and they perform
quite well (e.g., [312, 190]). We rely on such a linear transfer function and also apply feature
alignment as part of tEAMS.

150 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

Results (RQ3). Figure 4.14 depicts the evolution of the MAPE for the reuse of the model
4.13_85K (i.e., 4.13 with a 85K of training set), and the 4 studied techniques trained using
5K examples. We can quickly see that linear model shifting has more than 40% MAPE over
all versions and is not accurate at all. It is surprisingly the worst by far, in particular, in
comparison with the direct reuse of the prediction model. The standard deviation for Linear
model shifting is between 1.5 and 3, while all other techniques are much more stable with a
standard deviation always at 0.1 or less. Moreover, learning from scratch with 5K examples
allows to create models having an MAPE between 8.2% and 9.2% quite consistently. On the
other side, tEAMS with the same budget offers a lower MAPE from 5.6% on version 4.15 to
6.8% in version 5.8 with a peak at 7.1 in version 5.7. It is worth noting that tEAMS MAPE
increases a little bit at each version. However, the increase is not significant and remains low.
Comparing tEAMS with its incremental variant shows a very slight but constant advantage
over the variant, which also shows better results than learning from scratch.

Table 4.5 gives the results for MAPE with combinations of different models used (4.13_20K
and 4.13_85K) and training set sizes (1K, 5K, 10K) for the scratch baseline, tEAMS and In-
cremental tEAMS. The other techniques performing poorly, Table 4.5 hence focuses on the
three best solutions of Figure 4.14. We now report on their results.

Impact of training set size over target. As illustrated in Table 4.5, when decreasing the train-
ing transfer set for the newer versions to 1K examples (1% of the original set), the MAPE
increases to 14.9%-16.7% depending on the version. Whereas, the MAPE for tEAMS only
increases to 6.7%-10.6%, with the same trend consistently increasing MAPE over time (and
versions). For Incremental tEAMS, the error rate increases faster up to 13.3% on version 5.8.
On the other hand, if we increase the training set to 10K (10% of the original set), accuracy
when learning from scratch gets better, with 7.0% to 7.7% MAPE. For tEAMS, the accuracy
also gets better, from 5.2% MAPE on version 4.15 to 6.1% on version 5.7 and then slightly
further improves to 6.1% on version 5.8. We observe the same trend for Incremental tEAMS,
going up to 6.5% on 5.7 and then to 6.2 on 5.8.

Impact of the tEAMS source model. We measured the same variations using the model
4.13_20K as the source model, which was built from 20,000 examples instead of 85,000. This
affects tEAMS by slightly increasing the MAPE. In particular, we observe that for tEAMS: 1)
with 1K, the MAPE varies from 8.5% to 11.6%, 2) With 5K, it varies from 6.7% to 7.9%, and 3)
with 10K, it varies from 6.2% to 6.7%. Whereas for learning from scratch, we observe that: 1)
with 1K, the MAPE varies from 14.9% to 16.7%, 2) With 5K, it varies from 8.3% to 9.2%, and 3)
with 10K, it varies from 7.04% to 7.67%. Therefore, our results show that tEAMS outperforms
the two baselines, regardless of the size of training sets. In this situation, Incremental tEAMS
also shows slightly better results than tEAMS in some cases. At 10k, Incremental tEAMS
beats tEAMS on all versions except 5.7, and at 5k, only for versions 4.20 and 5.0. Given the
fair increase in error rate at 1k, Incremental tEAMS seems to be very sensitive to higher error
rate from previous versions.

Computational cost of training. We performed our experiments on a machine with an Intel
Xeon 4c/8t, 3,7 GHz, 64GB memory. Training from scratch with 1K, 5K and 10K examples
takes respectively 21, 195 and 407 seconds. Learning with tEAMS takes a little more time
with 60, 288 and 604 seconds for the same number of examples. The training time of tEAMS
for updating a prediction model is thus affordable and negligible compared to the time taken
to build and measure the kernel configurations. The overall cost of training is mainly due

4.4. TRANSFER LEARNING ACROSS VARIANTS AND VERSIONS: THE CASE OF LINUX151

Version
Scratch tEAMS Incremental tEAMS

4.13_20K 4.13_85K 4.13_20K 4.13_85K
1k 5k 10k 1k 5k 10k 1k 5k 10k 1k 5k 10k 1k 5k 10k

4.15 16.72 9.19 7.46 8.46 6.69 6.21 6.73 5.56 5.19 8.46 6.69 6.21 6.73 5.56 5.19
4.20 16.39 8.60 7.12 8.85 6.94 6.22 7.64 5.96 5.44 9.49 6.89 6.15 8.39 6.08 5.46
5.0 15.50 8.99 7.07 9.14 7.04 6.34 7.80 6.03 5.48 10.32 6.99 6.15 8.84 6.24 5.63
5.4 16.06 9.14 7.67 9.76 7.06 6.39 9.01 6.45 5.71 11.64 7.23 6.10 10.56 6.66 6.07
5.7 15.63 8.96 7.59 11.56 7.85 6.69 10.13 7.09 6.12 13.77 7.90 6.75 12.57 7.51 6.50
5.8 14.91 8.29 7.04 11.47 7.27 6.41 10.62 6.88 6.06 13.82 7.58 6.39 13.29 7.26 6.19

Table 4.5: MAPE for learning from scratch and tEAMS, with varying source models and
training set sizes for the target

to the training of the source model (details can be found in [208]) which is done only once.
As a final note, building kernels and gathering configuration data (see Table 4.4) is by far
the most costly activity – the time needed to train the prediction model out of data through
either transfer learning or from scratch (a few minutes) is negligible.

Key results (RQ3, summary). tEAMS and Incremental tEAMS are more accurate solu-
tions than learning from scratch and linear model shifting to predict Linux Kernel size on dif-
ferent versions. Also, Incremental tEAMS shows results that are mostly worse than tEAMS
and without significant improvement. Even with different source models and training set
sizes, tEAMS keeps better and acceptable accuracy with 6.9% MAPE on the latest 5.8 version
leveraging a model trained on 3 years old data.

Integration of tEAMS in the Linux project. We envision to integrate tEAMS as part of
the ongoing continuous integration effort on the Linux kernel. We have released a tool, called
kpredict,14 that predicts the size of the kernel binary size given only a .config file. kpredict is
written in Python, available on pip, and supports all kernel versions mentioned in this article.
A usage example is as follows:

> curl -s http://tuxml-data.irisa.fr/data/configuration/167950/config -o .config

> kpredict .config

> Predicted size : 68.1MiB

whereas the actual size of the configuration (see http://tuxml-data.irisa.fr/data/
configuration/167950/ for more details) is 67.82 MiB.

Recently KernelCI [177], the major community-effort supported by several organizations
(Google, Redhat, etc.), has added the ability to compute kernel sizes and this functionality is
activated by default, for any build. tEAMS will benefit from such data. Besides, the current
focus of KernelCI and many CI effort is mostly driven by controlling that the kernels build
(for different architectures and configurations). It is not incompatible with the prediction
of kernel sizes since we did not employ a sampling strategy specifically devoted to this
property. We rely on random configurations that are used to cover the kernel and find bugs
(see e.g., [24]). In passing tEAMS can benefit from kernel sizes data while the CI effort
continues to track bugs.

14https://github.com/HugoJPMartin/kpredict/

http://tuxml-data.irisa.fr/data/configuration/167950/
http://tuxml-data.irisa.fr/data/configuration/167950/
https://github.com/HugoJPMartin/kpredict/

152 CHAPTER 4. LEARNING SOFTWARE VARIABILITY

replication

Scripts (e.g., notebooks), analysis about Kconfig documentation, and data about 4.13
are available: https://github.com/TuxML/size-analysis/. We also provide a replic-
ation package with all artifacts (including datasets for the 7 versions and learning
procedures): https://zenodo.org/record/4960172.

4.5 Wrap-up, applicability, and limitations

I have described a systematic process "sampling, measuring, learning" with a high applic-
ability. Many subject systems and non-functional properties can be considered (see our sur-
vey [29]), even on the huge configuration space of Linux. The key idea is that statistical,
supervised machine learning techniques operate over a sample of configurations’ observa-
tions. I have shown how variability knowledge can be recovered: constraints among options
can be synthesized and (performance) prediction models can be derived. Such information is
usually hard to know or formalize since it requires the knowledge of the whole configuration
space. As shown, developers, maintainers, or testers can use machine learning to discover
unknown variability knowledge. Learning variability can thus play two roles: (1) reinforcing
a variability model and improving its quality; or (2) augmenting a variability model with
non functional properties (e.g., performance). Learning as reverse engineering has the merit
of pushing automation and being linked to the actual (artefacts of the) system. The process
can be repeated (e.g., throughout evolutions).

Despite all these qualities, it is worth noticing that statistical learning is unsound and
incomplete. In the quest of generalizing, bias (and prediction errors) is a by-product rather
than an explicitly enforced property. The effectiveness (accuracy) depends on the quality and
quantity of dynamic observations, which may exhibit a high cost. A pre-requisite to apply
learning techniques is the availability of procedures to observe the system. It is challenging to
deploy at scale and at reasonable costs reliable measurements of thousands of configurations.
Yet, developers, maintainers or performance engineers can embrace such limitations: they
would be unable to formalize or know this knowledge anyway. Besides, learning also benefits
from human supervision (e.g., for encoding variability data). In a sense, learning is effective
when jointly used with modelling.

Overall, the process of learning variability has the potential to provide an accurate con-
figuration oracle capable of predicting a property of interest. Yet, the underlying costs and
the prediction errors can be a show-stopper (e.g., for critical systems). It is also worth noting
that a human (e.g., a developer) can well elaborate a perfect variability model at zero compu-
tational cost. For these reasons, I have focused on and contributed to learning process that
synthesizes interpretable variability information. Developers, maintainers, or users can read,
understand, review, and possibly re-inject this information as part of a global, integrated
process.

https://github.com/TuxML/size-analysis/
https://zenodo.org/record/4960172

Chapter 5

Conclusion

This document described the research I conducted from 2012 to 2021 at University of Rennes
1 in the DiverSE team (IRISA, Inria). The presented work concerns the rich field of software
variability. As early illustrated in Section 1.1 and I hope demonstrated in the manuscript,
software variability is ubiquitous in numerous domains, systems, artefacts, and engineering
scenarios. When teaching, I am asking the students for examples of software systems with
variability. The conclusion of the discussions is most of the time a question: Are there systems
without variability?

Variability is challenging mainly due to the combinatorial explosion of possible variants.
It is also a source of opportunities to better understand a domain, create reusable artefacts,
deploy performance-wise optimal systems, or find specialized solutions to many kinds of
problems. In both cases, a model of variability is either beneficial or mandatory to explore,
observe, and reason about the space of possible variants. For instance, without a variability
model, it is impossible to establish a sampling strategy that would satisfy the constraints
among options and meet coverage or testing criteria. I thus address a central question in this
HDR manuscript: How to model software variability?

My answer is a supervised, iterative process (1) based on the combination of reverse en-
gineering, modelling, and learning techniques; (2) capable of integrating multiple variabil-
ity information (e.g., expert knowledge, legacy artefacts, dynamic observations). Modelling
in the sense of manually developing a model (Chapter 2) has the advantage of integrating
knowledge about a domain or a system, expressing an intention and defining a scope, but
is insufficient. The knowledge can be incomplete, unsound, not available, hard to formally
express, and in the long run, when systems frequently evolve, the manual effort cannot be
repeated. Reverse engineering (Chapter 3) can provide the necessary automation and mine
variability information that even experts cannot synthesize. Yet, reverse engineering can
be incomplete and unsound as well, since targeted artefacts may contain partial variability
information. Another limitation is that automation pays off under the condition some know-
ledge is injected into the reverse engineering process. In a sense, reverse engineering can
benefit to modelling but also needs modelling. Learning techniques (Chapter 4) have a high
potential to recover variability knowledge related to e.g., constraints and performance. By
construction, it is worth noticing that statistical learning is unsound and incomplete. The
effectiveness (accuracy) also depends on the quality and quantity of dynamic observations,

153

154 CHAPTER 5. CONCLUSION

which may exhibit a high cost. Yet, developers, maintainers or performance engineers can
embrace such limitations: they would be unable to formalize or know this knowledge any-
way. Similarly as reverse engineering, learning also benefits from human supervision (e.g.,
for encoding variability data).

Overall, modelling, reverse engineering, and learning alone can well be not sufficient. Go-
ing back to Figure 1.4, page 12, modelling as well as reverse engineering and learning approx-
imate the actual variability space (coloured part). I have provided some evidence in this ma-
nuscript. Section Using machine learning to infer constraints shows that, despite months of
modelling effort and construction of specific languages (Section In search of the right variab-
ility language and models), the constraints were incomplete. Hence, modelling is not enough:
learning and modelling should be combined. Section Reverse engineering architectural vari-
ability models shows that an intentional variability model of the architecture was unsound
and incomplete. On the one hand, reverse engineering techniques were crucial to enforce the
original variability model. On the other hand, reverse engineering alone would provide an
incomplete view of the variability. As suggested, modelling as well as reverse engineering
alone are not enough and should rather be combined. The key thus resides in the combina-
tions ("and"): the supervised process is about modelling, reverse engineering, and learning.

M.C. Escher, Knots, Woodcut,
1965. © 2021 The M.C. Es-
cher Company – the Nether-
lands. All rights reserved.
Used by permission. www.
mcescher.com

In fact, the manuscript could well be entitled "Model-
ling software variability" (i.e., simply "Modelling"). After all,
each of the contributions is about finding the right models.
However, the process to eventually obtain the models differs.
Modelling is one kind of process, similarly as reverse engin-
eering and learning. We can argue that reverse engineering
(resp. learning) is modelling. I tend to agree, especially if
we consider that reverse engineering (resp. learning) leads
to high quality models under the conditions experts injects
some models of knowledge. However, the considered arte-
facts, the degree of automation, the underlying assumptions,
the cost differ from a traditional modelling activity, thus justi-
fying to distinguish reverse engineering and learning. I also
think the distinction helps to identify the applicability i.e.,
when to apply reverse engineering, modelling, and/or learn-
ing.

I have contributed together with students, colleagues, and
partners in providing a toolbox for capturing variability in
a wide range of situations. How to systematically use this
toolbox as part of a supervised process is specific to an en-
gineering context. A research direction is thus to assess the
different techniques and their combinations, and if possible,
to identify what is missing in this toolbox. For instance, can
we use reverse engineering techniques to improve the learning of the Linux kernel variability
space? How to involve a community of users for modelling variability of Linux or reducing
the cost of learning? How to communicate the outcome of the learning to developers, integ-
rators, or users of Linux? Similar questions can be formulated for many software systems.
I plan to investigate these questions in the context of real-world software-intensive projects
together with the whole variability community.

www.mcescher.com
www.mcescher.com

Chapter 6

Perspectives

In this section, I outline four possible research directions. It is mainly the result of discussions
and work with students, colleagues, and partners. Some of the ideas presented here are
adapted from an ERC starting grant1 I have written in 2018. Some of the research directions
are ongoing, others are more prospective.

A central observation is that variability in software systems is deep and spans different
layers (hardware, operating system, build, input data, etc.). So-called deep variability is both
a threat to the generalization of (variability) models (e.g., performance prediction models)
and a source of opportunities to specialize or tune software systems (e.g., w.r.t. security).
As deep variability exacerbates the combinatorial explosion, we need "smart" techniques to
explore in a cost-effective way such large spaces. The challenge is to provide tomorrow’s
developers, engineers, scientists and citizens with the means to abstract, explore and reason
about variability in and with software.

6.1 Deep Software Variability

The content of this section is adapted from the following publication:
L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel, ‘Deep Software Variability: Towards
Handling Cross-Layer Configuration’, in VaMoS 2021 - 15th International Working Con-
ference on Variability Modelling of Software-Intensive Systems, Krems / Virtual, Austria,
Feb. 2021. https://hal.inria.fr/hal-03084276

Software systems can be configured to reach specific functional and performance goals,
either statically at compile time or through the choice of command line options at runtime.

An observation is that only considering the software layer might be naive to tune the
performance of the system or test that the functionality behaves correctly. In fact, many layers
(hardware, operating system, input data, etc.), themselves subject to variability, can alter
performance or the functionalities of software configurations (see Figure 6.1). For instance,

1The project was called "REVARY for Resurrecting Software Variability". The cut was 29% and I was ranked
between 30% and 40%. Despite rejection, the writing effort was really worth doing

155

https://hal.inria.fr/hal-03084276

156 CHAPTER 6. PERSPECTIVES

configuration options of the x264 video encoder may have very different effects on x264’s
encoding time when used with different input videos, depending on the hardware on which
it is executed [199]. That is, only considering the software layer might provide non-optimal
values for configuration options of the software.

…
 if(!framecnt)
 {
 if(h->param.rc.b_mb_tree)

 x264_macroblock_tree(h, &a, frames, 0, keyframe);
 return;
 }

 /* This is important psy-wise: if we have a non-scenecut
keyframe,
 * there will be significant visual artifacts if the frames just
before
 * go down in quality due to being referenced less, despite it
being
 * more RD-optimal. */
 if((h->param.analyse.b_psy && h->param.rc.b_mb_tree) ||
vbv_lookahead)
 num_frames = framecnt;
 else if(h->param.b_open_gop && num_frames < framecnt)
 num_frames++;
 else if(num_frames == 0)
 {
 frames[1]->i_type = X264_TYPE_I;
 return;
 }

-I, --keyint <integer or "infinite"> Maximum GOP
size [250]
 -i, --min-keyint <integer> Minimum GOP size
[auto]
 --no-scenecut Disable adaptive I-frame
decision
 --scenecut <integer> How aggressively to
insert extra I-frames [40]
 --intra-refresh Use Periodic Intra
Refresh instead of IDR frames
 -b, --bframes <integer> Number of B-frames
between I and P [3]
--no-mbtree Disable mb-tree

ratecontrol.

 --qcomp <float> QP curve compression
[0.60]
 --cplxblur <float> Reduce fluctuations in
QP (before curve compression) [20.0]
 --qblur <float> Reduce fluctuations in
QP (after curve compression) [0.5]
 --qpfile <string> Force frametypes and
QPs for some or all frames

Hardware

Operating System

Compiler

Input Data

 16000+
options

200+
options

CLang

Linux kernel

infinite
variability

infinite
variability

Software

(documentation) (code)

100+
options

Variability

layers

(in time

and

in space)

Figure 6.1: x264 deep variability

We call deep software variability the interaction of all variability layers that could modify
the behavior or non-functional properties of a software. Deep software variability calls to
investigate how to systematically handle cross-layer configuration (see Figure 6.1).

Though there is preliminary evidence [28, 200, 167, 199, 238, 126, 88], we ignore to what
extent deep software variability impacts the performance of software at this step of the re-
search. May configurable systems be more or less sensitive to deep variability, depending
on quantitative properties of interest (e.g., energy consumption, execution time)? Empirical
studies and controlled experiments are definitely needed. Once their effects have been iden-
tified and quantified, the influential variability factors can be leveraged to improve software
performance, while the others remain fixed and can be forgotten (e.g., when benchmarking
or transfer learning).

6.2. SOFTWARE VARIABILITY AND SECURITY 157

The diversification of the different layers is also an opportunity to test the robustness and
resilience of the software layer in multiple environments. That is, developers and ops can
exploit deep software variability to detect and hopefully prevent more (performance) bugs.
Assisting users in charge of configuring software is a still an open issue per se; deep software
variability exacerbates this problem. Impacts of different layers are only partially reported
in the documentation. Another interesting challenge is to tune the software for one specific
executing environment. Instead of enduring deep software variability, the goal would be to
pre-select the right environment for the software, tuning each layer separately in such a way
it improves the overall software performance.

Overall, there are many challenges and opportunities. In essence, deep software variab-
ility questions the generalization of the configuration knowledge. Stated differently, deep
software variability is a potential threat to all variability models that have been reverse en-
gineered, elaborated by experts, or learned (e.g., in a fixed computational environment).

6.2 Software Variability and Security

6.2.1 Debloating software variability

The ability of varying is a mandatory feature of any modern (sub-)system. Despite its ubi-
quitous presence, variability is also an enormous source of complexity with a combinatorial
explosion of possible configurations. Several works observed that configuration options can
be the source of compilation failures, can crash the system, can compute wrong results, or
can degrade the performance [324].

There is another important issue: the attack surface of configurable systems, dynamic
adaptive system or software product line is extremely large. Each (combination of) option
can be subject to an attack. For example, an attacker can inspect many configuration-related
paths in a program. Overall, our observation is twofold:

- "variability is pointless": users do not need necessarily the ability to configure their
systems, especially at deployment time. A default configuration can be sufficient for
a majority of the use cases while most of the options will simply never been used;

- "variability is a security threat": configuration options are not only pointless, they are an
unnecessary opportunity and entry point for attackers [48, 8].

Our idea is conceptually simple: as configuration options are pointless and represent a threat,
we should automatically remove them from the system.

To realize this idea, there are however a number of challenges to address, the more difficult
and important being to automatically remove configuration-related code out of programs.

Identification of irrelevant/relevant options. Depending on the intended usage of the system,
the set of important or unimportant options can differ. Some options are mandatory because
of the functionality one wants to achieve while some other should be deactivated because
they have no effect on the execution time. Previous works show that it is possible to learn
important options of a system given an objective (e.g., execution time, see Chapter 4). In the
context of sensitive applications, we plan to bring more attention to security concerns as part
of the identification process of options.

158 CHAPTER 6. PERSPECTIVES

Tracing configuration options in the code. Once the set of options to be removed is identified,
we first need to locate where they are in the source code. Static analysis can be used but has
some limitations since options are scattered in the source code and their manifestation may
only occur at runtime. For this reason, we also plan to rely on dynamic analysis techniques
(e.g., testing) typically to identify what are the paths of program impacted by options.

Removing options in the code. An unexplored problem is to automatically remove variability
identified as irrelevant. So far, developers and researchers tend to focus on the problem of
extending software and adding more and more options [33, 35]. Removing variability code
is both counter-intuitive and difficult. An option most likely interacts with other options and
its implementation is scattered in different files.

Program specialization is somehow related to the idea [210, 280]. It is a software engin-
eering technique that adapts a program to a given execution context. Information about this
context can be provided by the programmer or derived from invariants present in the code.
In contrast to compiler optimizations, program specialization is explicitly initiated by the
programmer, and thus can adopt a very aggressive strategy for propagating such informa-
tion [210, 280].

Recently, software debloating has been proposed to keep only the "features" that users
utilize and are deem necessary. Some applications and promising results (operating systems,
libraries, Web servers like Nginx, OpenSSH, etc.) [149, 194, 186] have been reported. The
notion of features is usually coarse-grained and debloating is applied over entire source files.
Our idea follows a similar direction, but our focus is on the removal of run-time options that
are scattered in the source code of a program. Overall, we believe software debloating has
an important potential but has to be adapted to efficiently remove configuration options and
variability of systems.

Specializing the configuration space of a software system has a long tradition since the
seminal paper of Czarnecki et al. [298, 209, 163, 96, 95]. However, specialization of configur-
able systems is focused on the specialization of variability models where constraints among
individual options (or across several options) are added to enforce the configuration space (as
done in Chapter Learning Software Variability). A missing part (and our idea) is to propag-
ate this specialization to the source code. The a priori knowledge of options’ values can be
leveraged to produce a new specialized source code: some portions of code (functions, func-
tion calls, loops, etc.) related to run-time options can be eliminated (aka. debloated). There
are at least some specificities and challenges to tackle. First, irrelevant or must-be-included
options will initiate the removal. The removal will be on-demand, depending on contextual
factors and driven by specific objectives. Second, automatic removal of portions of code im-
pacted by variability is challenging, since variability crosscuts many artefacts, its location is
not necessarily made explicit, and there is a risk of breaking original functionality and other
options.

Variability specialization can occur offline, but not all variability will be removed since
there are options that can still be relevant and selected depending on contextual changes. For
this reason, variability specialization can also occur online. Both research directions have not
been considered in the literature.

Demonstrating the benefits for security. When options are removed, we aim to show that
some attacks are no longer possible while the usability or the functionality of the system is
not altered. We plan to study real-world systems, attacks, and options to empirically study
the effectiveness of our techniques. We also plan to provide some theoretical guarantees
about our removal process.

6.2. SOFTWARE VARIABILITY AND SECURITY 159

The work about software debloating is ongoing through the SLIMFAST project funded by
the Brittany region and the DGA (see Section 1.6).

6.2.2 Variability data and security

The work about Reverse engineering Web configurators can also be revisited from a security
point of view. The motivation is as follows: if it is straightforward or at least possible to
reverse engineer variability information of a Web system, is not it a threat to the business of
a company?

Products, options, and the underlying constraints a configurator is in charge of are key
information of an organization. Such information is particularly interesting from the per-
spective of (online) market intelligence (also called competitive intelligence). Market intelligence
can be defined as the "information relevant to a company’s markets, gathered and analyzed
specifically for the purpose of accurate and confident decision-making in determining market
opportunity, market penetration strategy, and market development metrics." Lixto, a com-
pany offering data extraction tools and services, showed that it is technically feasible to ac-
quire and exploit unstructured and semi-structured data in several case studies (e.g., in the
domain of computers and electronics consumer goods [44]).

Most information on pricing, product availability, product options, and product con-
straints is potentially available on Web sales configurators. Specifically, competitors can use
this information (1) for getting a comprehensive overview of the options and constraints in
the market; (2) to be (continually) informed about strengths and weaknesses of other com-
petitors’ product lines; (3) to publicly reveal a certain superiority or marketing practice, etc.

Web data extraction systems [44, 122] can be specialized for acquiring configurators’ in-
formation. Our attempts in Section Reverse engineering Web configurators showed that it
is indeed feasible. Static analysis techniques can locate templates of options and some con-
straints in a Web page. Combined with crawling techniques for deep navigation and dynamic
content pages, there is the potential to comprehensively gather relevant information. In case
the static and dynamic analysis of variability can be seamlessly realized, there is a risk for
companies developing Web configurators to reveal trade secrets [48, 8].

6.2.3 Linux configurations and security

In Section Transfer learning across variants and versions: the case of Linux, we have targeted a
specific property of Linux kernels: binary size. By no means our approach is restricted to this
quantitative property. Learning techniques can be used to prevent and diagnose build failures
of Linux configurations [24]. Also, other non-functional properties of configurations like
build-time, ability to boot, boot time, and resilience to fuzzing are in our view. In addition,
one could well observe security properties of Linux kernel configurations. Technically, it
would require to extend TuxML to boot the kernel (in a virtual machine or in physical devices)
and then automatically test security aspects at runtime. We have made recent progress to
reuse some specific procedures of KernelCI. Overall I am confident we can gather a large
number of configurations’ measurements related to security. Then the challenge will be to
identify whether specific (combinations of) Linux options are likely to increase or decrease
security. An open question is whether learning techniques will be as effective as with binary
size and produce accurate and/or interpretable models.

160 CHAPTER 6. PERSPECTIVES

6.3 Smart Build of Software Configurations

The goal of this research direction is to develop what we call incremental build of config-
urations. Given a base configuration, we want to modify it (through the re-setting of some
options values) and then build it without starting from scratch (e.g., without a "make clean").
Similarly, we aim to build a given set of (random) configurations without starting from scratch
each time. The promise is to dramatically reduce the cost of building software, a stressing
topic when you think about the environmental and financial costs that companies and public
organizations should have to bear. Society relies on software, but building software has an
enormous cost: we aim to mitigate this trend.

The usual compilation and build process works quite well when small modifications are
made (e.g., modification of one source file), but building several configurations involve large
modifications that span numerous source files. There are two extremes: (1) small modific-
ations, with very low cost since the incremental compilation is fast (2) large modifications,
with high cost since almost everything should be recompiled. In-between, we want to find a
good trade off between diversity of the configurations and cost of compiling them.

In a sense, we want to explore the configuration space in a smart, efficient way. There are
at least four research questions:

- RQ1 Is incremental build of configurations safe? (e.g., Do we obtain the same exact
binary as with a standard compilation?)

- RQ2 What is the gain of applying incremental compilation? The expected gain is here
the time needed to build e.g., the Linux kernels.

- RQ3 Can we explore a diverse set of configurations with incremental builds?

- RQ4 Is there a build strategy that reduces the cost of builds without trading diversity?

Several subject systems can be considered, with different languages, compilers, and build
properties. A clear case is the Linux kernel. We have built 95K+ configurations (for version
4.13.3) with a high computational cost (8 minutes on average per configuration, and thus
thousands of CPU machines). We believe incremental, smart build can save a large amount
of resources since we can reuse shared compilations among configurations. Other systems,
like JHipster or Chromium, are also targeted.

The ultimate goal is to integrate our idea in mainstream testing infrastructure (e.g., Ker-
nelCI), for exploring further configurations at lower cost. The outcome of this research is
to formulate the foundations of incremental build, invent new algorithms integrated into
mainstream compilers and build systems, and assess the solution on widely used software
projects.

6.4. SOFTWARE VARIABILITY AND SCIENCE 161

6.4 Software Variability and Science

Software is the new lingua franca2 of science. Biology, medicine, physics, astrophysics: all
these scientific domains need to process large amount of data with more and more com-
plex software-intensive pipelines. The promise of software is that a result obtained by an
experiment can be achieved again with a high degree of agreement. Unfortunately, several
studies reports that the same data analyzed with different software can lead to different res-
ults. For instance, applications of different analysis pipelines [188, 76], alterations in software
version [126], and even changes in operating system [129] have both shown to cause variation
in the results of a neuroimaging study. Similar observations have been made in the machine
learning community [147].

I am seeing this problem as a manifestation of "deep software variability" (see Section 6.1):
many factors (operating system, libraries, versions, inputs, the way the software is compiled,
etc.) themselves subject to variability can alter the results, up to the point it can dramatic-
ally change the conclusions of some scientific studies. On a modest scale, Section Learning
variability performance showed that a variation in dataset could change the conclusion about
the effectiveness of a sampling strategy. In our study, it can arguably be seen as an empir-
ical contribution but in general the complexity of modern software engineering studies can
hide accidental threats. Besides, studies about climate modelling and change are based on
complex software analysis operating over large data [160]. Unfortunately, the knowledge and
recommendations built on top these simulations can be subject to variability threats. These
are all refutable hypotheses worth looking at in the near future.

From a dissemination point of view, I want to raise awareness of the variability of some
scientific, software-based results. I am convinced it is more and more urgent to develop
critical thinking in society. A change in some software parameters (and thus underlying as-
sumptions of a study) may radically change the conclusion and is a way to criticize or nuance
an experiment. Here the variability problem would not be accidental: It is just explained by
the assumptions you put in your study through software. I am planning to revisit existing
studies and provide decision-making tools (e.g., configurators) to play with such paramet-
ers on important society questions. That is, software variability will be a means to discuss
tradeoffs and potentially explore alternatives.

As a final note, deep software variability also calls to consider ethical decisions and the
role of machines in our society, since dramatic consequences can occur. What would you do
if a system deciding on the release of a prisoner changes its prediction when slightly varying
its executing environment? The brittleness of such systems and the trend to automate and
abstract everything, without questioning the underlying "decisions" made by a machine, are
threats to our society.

2We are at the end of the manuscript and it is time to exagerate (overclaim) a bit. From an etymological point
of view, "lingua franca" is a Mediterranean Lingua Franca, used as the main language of commerce and diplomacy
from late medieval times to the 18th century [100]. It is composed of Old French, Italian, Spanish as well as Arabic
and Turkish and other languages. The terminology usage of lingua franca usually refers to a bridge or common
language that can be make communication possible between groups of people (e.g., scientists). Some people argue
that mathematics is the lingua franca of science, others argue that it is English or TEX [125]. On the other hand, Paul
C. Clements (BigLever) argued in a talk at SPLC 2015 that features are the lingua franca of software product line
engineering [128]. I argue that software can play the role of a medium to support communication among scientists
and the whole society. An important promise is the reproducibility that software is supposed to bring.

162 CHAPTER 6. PERSPECTIVES

Abstract

The society expects software to deliver the right functionality, in a short amount of time and
with fewer resources, in every possible circumstance whatever are the hardware, the operat-
ing systems, the compilers, or the data fed as input. For fitting such a diversity of needs, it
is common that software comes in many variants and is highly configurable through config-
uration options, runtime parameters, conditional compilation directives, menu preferences,
configuration files, plugins, etc. As there is no one-size-fits-all solution, software variability
("the ability of a software system or artifact to be efficiently extended, changed, customized
or configured for use in a particular context") has been studied the last two decades and
is a discipline of its own. Though highly desirable, software variability also introduces an
enormous complexity due to the combinatorial explosion of possible variants. For example,
the Linux kernel has 15000+ options and most of them can have 3 values: "yes", "no", or
"module". Variability is challenging for maintaining, verifying, and configuring software sys-
tems (Web applications, Web browsers, video tools, etc.). It is also a source of opportunities
to better understand a domain, create reusable artefacts, deploy performance-wise optimal
systems, or find specialized solutions to many kinds of problems. In many scenarios, a model
of variability is either beneficial or mandatory to explore, observe, and reason about the space
of possible variants. For instance, without a variability model, it is impossible to establish
a sampling strategy that would satisfy the constraints among options and meet coverage or
testing criteria. I address a central question in this HDR manuscript: How to model soft-
ware variability? I detail several contributions related to modelling, reverse engineering, and
learning software variability.

I first contribute to support the persons in charge of manually specifying feature models,
the de facto standard for modeling variability. I develop an algebra together with a language
for supporting the composition, decomposition, diff, refactoring, and reasoning of feature
models. I further establish the syntactic and semantic relationships between feature models
and product comparison matrices, a large class of tabular data. I then empirically investigate
how these feature models can be used to test in the large configurable systems with different
sampling strategies. Along this effort, I report on the attempts and lessons learned when
defining the "right" variability language. From a reverse engineering perspective, I contrib-
ute to synthesize variability information into models and from various kinds of artefacts. I
develop foundations and methods for reverse engineering feature models from satisfiabil-
ity formulae, product comparison matrices, dependencies files and architectural information,
and from Web configurators. I also report on the degree of automation and show that the
involvement of developers and domain experts is beneficial to obtain high-quality models.
Thirdly, I contribute to learning constraints and non-functional properties (performance) of a
variability-intensive system. I describe a systematic process "sampling, measuring, learning"
that aims to enforce or augment a variability model, capturing variability knowledge that
domain experts can hardly express. I show that supervised, statistical machine learning can
be used to synthesize rules or build prediction models in an accurate and interpretable way.
This process can even be applied to huge configuration space, such as the Linux kernel one.

Despite a wide applicability and observed benefits, I show that each individual line of
contributions has limitations. I defend the following answer: a supervised, iterative process
(1) based on the combination of reverse engineering, modelling, and learning techniques;
(2) capable of integrating multiple variability information (e.g., expert knowledge, legacy
artefacts, dynamic observations).

6.4. SOFTWARE VARIABILITY AND SCIENCE 163

Finally, this work opens different perspectives related to so-called deep software variabil-
ity, security, smart build of configurations, and (threats to) science.

164 CHAPTER 6. PERSPECTIVES

Bibliography

[1] I. Abal, C. Brabrand and A. Wasowski, ‘42 variability bugs in the linux kernel: A
qualitative analysis’, in Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE ’14, Vasteras, Sweden: ACM, 2014, pp. 421–
432, isbn: 978-1-4503-3013-8 (cit. on pp. 51, 52).

[2] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren and M. Weber, ‘The CVM frame-
work - A prototype tool for compositional variability management’, in Fourth Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems, 2010, pp. 101–105.
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.
pdf (cit. on pp. 68, 69).

[3] R. Abraham and M. Erwig, ‘Type inference for spreadsheets’, in Proceedings of the 8th
ACM SIGPLAN International Conference on Principles and Practice of Declarative Program-
ming, ser. PPDP ’06, Venice, Italy: ACM, 2006, pp. 73–84, isbn: 1-59593-388-3. doi: 10.
1145/1140335.1140346. http://doi.acm.org/10.1145/1140335.1140346
(cit. on p. 38).

[4] R. Abraham and M. Erwig, ‘Ucheck: A spreadsheet type checker for end users’, J. Vis.
Lang. Comput., vol. 18, no. 1, pp. 71–95, 2007 (cit. on p. 38).

[5] M. Acher, ‘Learning the Linux Kernel Configuration Space: Results and Challenges’,
in ELC Europe 2019 - Embedded Linux Conference Europe 2019, Lyon, France, Oct. 2019,
pp. 1–49. https://hal.inria.fr/hal-02342130 (cit. on p. 9).

[6] M. Acher, ‘Managing Multiple Feature Models: Foundations, Language and Applica-
tions’, 2011, p. 246 (cit. on pp. 31, 32).

[7] M. Acher, M. Alferez, J. A. Galindo, P. Romenteau and B. Baudry, ‘ViViD: A Variability-
Based Tool for Synthesizing Video Sequences’, Anglais, in 18th International Software
Product Line Conference (SPLC’14), tool track, Florence, Italie, 2014. http://hal.
inria.fr/hal-01020933 (cit. on pp. 10, 70, 114).

[8] M. Acher, G. Bécan, B. Combemale, B. Baudry and J.-M. Jézéquel, ‘Product lines can
jeopardize their trade secrets’, in Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering (ESEC/FSE’15), 2015, pp. 930–933 (cit. on pp. 157, 159).

[9] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien and P. Lahire, ‘Extraction and
Evolution of Architectural Variability Models in Plugin-based Systems’, Software and
Systems Modeling (SoSyM), 2013 (cit. on pp. 96, 100, 102, 106).

165

http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
https://doi.org/10.1145/1140335.1140346
https://doi.org/10.1145/1140335.1140346
http://doi.acm.org/10.1145/1140335.1140346
https://hal.inria.fr/hal-02342130
http://hal.inria.fr/hal-01020933
http://hal.inria.fr/hal-01020933

166 BIBLIOGRAPHY

[10] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien and P. Lahire, ‘Reverse Engineer-
ing Architectural Feature Models’, in 5th European Conference on Software Architecture
(ECSA’11), long paper, ser. LNCS, Essen (Germany): Springer, Sep. 2011, p. 16 (cit. on
p. 96).

[11] M. Acher, A. Cleve, G. Perrouin, P. Heymans, P. Collet, P. Lahire and C. Vanbene-
den, ‘On Extracting Feature Models From Product Descriptions’, in Sixth International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS’12), ser. VaMoS,
Leipzig, Germany: ACM, Jan. 2012, p. 10. https://nyx.unice.fr/publis/
acher-cleve-etal:2012.pdf (cit. on pp. 22, 96).

[12] M. Acher, P. Collet, F. Fleurey, P. Lahire, S. Moisan and J.-P. Rigault, ‘Modeling Con-
text and Dynamic Adaptations with Feature Models’, in 4th International Workshop
Models@run.time at Models 2009 (MRT’09), Oct. 2009, p. 10 (cit. on p. 22).

[13] M. Acher, P. Collet, A. Gaignard, P. Lahire, J. Montagnat and R. France, ‘Composing
multiple variability artifacts to assemble coherent workflows’, Software Quality Journal
(special issue: Quality Engineering for Software Product Lines), pp. 1–46, 2011 (cit. on p. 29).

[14] M. Acher, P. Collet, P. Lahire and R. France, ‘Comparing Approaches to Implement
Feature Model Composition’, in 6th European Conference on Modelling Foundations and
Applications (ECMFA), vol. LNCS, Springer, Jun. 2010, p. 16 (cit. on pp. 22, 25, 29).

[15] M. Acher, P. Collet, P. Lahire and R. France, ‘Composing Feature Models’, in 2nd
International Conference on Software Language Engineering (SLE’09), ser. LNCS, LNCS,
Oct. 2009, p. 20 (cit. on p. 29).

[16] M. Acher, P. Collet, P. Lahire and R. France, ‘FAMILIAR: A Domain-Specific Lan-
guage for Large Scale Management of Feature Models’, Science of Computer Program-
ming (SCP) Special issue on programming languages, vol. 78, no. 6, pp. 657–681, 2013. doi:
{http://dx.doi.org/10.1016/j.scico.2012.12.004} (cit. on pp. 12, 20, 22,
30, 63, 68, 69).

[17] M. Acher, P. Collet, P. Lahire and R. France, ‘Separation of Concerns in Feature Mod-
eling: Support and Applications’, in Aspect-Oriented Software Development (AOSD’12),
ser., ACM, Mar. 2012. http://hal.inria.fr/docs/00/76/74/23/PDF/acher-
collet-etal-2012.pdf (cit. on p. 29).

[18] M. Acher, P. Collet, P. Lahire, S. Moisan and J.-P. Rigault, ‘Modeling Variability from
Requirements to Runtime’, in 16th International Conference on Engineering of Complex
Computer Systems (ICECCS’11), ser., Las Vegas: IEEE, Apr. 2011 (cit. on p. 22).

[19] M. Acher, B. Combemale and P. Collet, ‘Metamorphic Domain-Specific Languages: A
Journey Into the Shapes of a Language’, Anglais, in Onward! Essays (co-located with
SPLASH and OOPSLA), Portland, États-Unis, Sep. 2014. doi: 10.1145/2661136.
2661159. http://hal.inria.fr/hal-01061576 (cit. on pp. 14, 15).

[20] M. Acher, B. Combemale, P. Collet, O. Barais, P. Lahire and R. B. France, ‘Composing
your Compositions of Variability Models’, in ACM/IEEE 16th International Conference
on Model Driven Engineering Languages and Systems (MODELS’13), 2013 (cit. on pp. 12,
20, 121).

[21] M. Acher, P. Heymans, A. Cleve, J.-L. Hainaut and B. Baudry, ‘Support for reverse
engineering and maintaining feature models’, in VaMoS’13, ACM, 2013 (cit. on pp. 25,
29).

https://nyx.unice.fr/publis/acher-cleve-etal:2012.pdf
https://nyx.unice.fr/publis/acher-cleve-etal:2012.pdf
https://doi.org/{http://dx.doi.org/10.1016/j.scico.2012.12.004}
http://hal.inria.fr/docs/00/76/74/23/PDF/acher-collet-etal-2012.pdf
http://hal.inria.fr/docs/00/76/74/23/PDF/acher-collet-etal-2012.pdf
https://doi.org/10.1145/2661136.2661159
https://doi.org/10.1145/2661136.2661159
http://hal.inria.fr/hal-01061576

BIBLIOGRAPHY 167

[22] M. Acher, P. Heymans, P. Collet, C. Quinton, P. Lahire and P. Merle, ‘Feature model
differences’, in CAiSE’12, ser. LNCS, Springer, 2012, pp. 629–645 (cit. on p. 29).

[23] M. Acher, R. E. Lopez-Herrejon and R. Rabiser, ‘A Survey on Teaching of Software
Product Lines’, Anglais, in Eight International Workshop on Variability Modelling of Software-
Intensive Systems (VaMoS’14), Nice, France: ACM, Jan. 2014. http://hal.inria.
fr/hal-00916746 (cit. on p. 14).

[24] M. Acher, H. Martin, J. Alves Pereira, A. Blouin, D. Eddine Khelladi and J.-M. Jézéquel,
‘Learning From Thousands of Build Failures of Linux Kernel Configurations’, Inria ;
IRISA, Technical Report, Jun. 2019, pp. 1–12. https://hal.inria.fr/hal-
02147012 (cit. on pp. 151, 159).

[25] M. Acher, H. Martin, J. A. Pereira, A. Blouin, J.-M. Jézéquel, D. E. Khelladi, L. Lesoil
and O. Barais, ‘Learning Very Large Configuration Spaces: What Matters for Linux
Kernel Sizes’, Inria Rennes - Bretagne Atlantique, Research Report, Oct. 2019. https:
//hal.inria.fr/hal-02314830 (cit. on pp. 12, 138, 140).

[26] M. Acher, P. Temple, J.-M. Jézéquel, J. A. Galindo Duarte, J. Martinez and T. Zi-
adi, ‘VaryLaTeX: Learning Paper Variants That Meet Constraints’, in 12th Interna-
tional Workshop on Variability Modelling of Software-intensive Systems (VaMoS’18), Mad-
rid, Spain, Feb. 2018. https://hal.inria.fr/hal-01659161 (cit. on p. 10).

[27] M. Alférez, M. Acher, J. A. Galindo, B. Baudry and D. Benavides, ‘Modeling Variab-
ility in the Video Domain: Language and Experience Report’, Software Quality Journal,
vol. 27, no. 1, pp. 307–347, 2019. doi: 10.1007/s11219-017-9400-8. https:
//doi.org/10.1007/s11219-017-9400-8 (cit. on pp. 12, 61, 63, 64, 67, 68).

[28] J. Alves Pereira, M. Acher, H. Martin and J.-M. Jézéquel, ‘Sampling Effect on Per-
formance Prediction of Configurable Systems: A Case Study’, in International Confer-
ence on Performance Engineering (ICPE 2020), 2020. https://hal.inria.fr/hal-
02356290 (cit. on pp. 12, 14, 131, 133, 136, 137, 156).

[29] J. Alves Pereira, H. Martin, M. Acher, J.-M. Jézéquel, G. Botterweck and A. Ventresque,
‘Learning Software Configuration Spaces: A Systematic Literature Review’, Journal of
Systems and Software (JSS), Jun. 2021. doi: 10.1145/nnnnnnn.nnnnnnn (cit. on
pp. 12, 14, 126, 131, 132, 134, 135, 138, 139, 145, 152).

[30] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson, C. Pohl and
A. Rummler, ‘An exploratory study of information retrieval techniques in domain
analysis’, in SPLC’08, IEEE, 2008, pp. 67–76 (cit. on p. 82).

[31] B. Amand, M. Cordy, P. Heymans, M. Acher, P. Temple and J.-M. Jézéquel, ‘Towards
Learning-Aided Configuration in 3D Printing: Feasibility Study and Application to
Defect Prediction’, in VaMoS 2019 - 13th International Workshop on Variability Modelling
of Software-Intensive Systems, Leuven, Belgium, Feb. 2019, pp. 1–9. https://hal.
inria.fr/hal-01990767 (cit. on pp. 16, 135).

[32] N. Andersen, K. Czarnecki, S. She and A. Wasowski, ‘Efficient synthesis of feature
models’, in Proceedings of SPLC’12 (cit. on pp. 25, 82, 85, 91, 102).

[33] S. Apel, D. Batory, C. Kästner and G. Saake, Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer-Verlag, 2013 (cit. on pp. 6, 61, 75, 82, 158).

[34] S. Apel and C. Kästner, ‘An overview of feature-oriented software development’,
Journal of Object Technology (JOT), vol. 8, no. 5, pp. 49–84, Jul. 2009 (cit. on p. 96).

http://hal.inria.fr/hal-00916746
http://hal.inria.fr/hal-00916746
https://hal.inria.fr/hal-02147012
https://hal.inria.fr/hal-02147012
https://hal.inria.fr/hal-02314830
https://hal.inria.fr/hal-02314830
https://hal.inria.fr/hal-01659161
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8
https://hal.inria.fr/hal-02356290
https://hal.inria.fr/hal-02356290
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://hal.inria.fr/hal-01990767
https://hal.inria.fr/hal-01990767

168 BIBLIOGRAPHY

[35] S. Apel, C. Lengauer, B. Moller and C. Kästner, ‘An algebra for features and feature
composition’, in 12th Int’l Conference on Algebraic Methodology and Software Technology
(AMAST), ser. LNCS, vol. 5140, Springer-Verlag, 2008, pp. 36–50. doi: http://dx.
doi.org/10.1007/978-3-540-79980-1_4 (cit. on p. 158).

[36] S. Apel, A. von Rhein, P. Wendler, A. Größlinger and D. Beyer, ‘Strategies for Product-
line Verification: Case Studies and Experiments’, in Proceedings of the 2013 Interna-
tional Conference on Software Engineering, ser. ICSE ’13, Piscataway, NJ, USA: IEEE, 2013,
pp. 482–491, isbn: 978-1-4673-3076-3 (cit. on p. 54).

[37] A. Arcuri and L. Briand, ‘Formal analysis of the probability of interaction fault de-
tection using random testing’, IEEE Transactions on Software Engineering, vol. 38, no. 5,
pp. 1088–1099, Sep. 2012, issn: 0098-5589 (cit. on pp. 55, 56).

[38] A. Arcuri and L. Briand, ‘A practical guide for using statistical tests to assess ran-
domized algorithms in software engineering’, in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11, Waikiki, Honolulu, HI, USA: ACM,
2011, pp. 1–10, isbn: 978-1-4503-0445-0 (cit. on p. 135).

[39] E. Bagheri, F. Ensan and D. Gasevic, ‘Decision support for the software product line
domain engineering lifecycle’, English, Automated Software Engineering, vol. 19, no. 3,
pp. 335–377, 2012, issn: 0928-8910 (cit. on p. 82).

[40] K. Bak, K. Czarnecki and A. Wasowski, ‘Feature and meta-models in clafer: Mixed,
specialized, and coupled’, in SLE’10, Eindhoven, The Netherlands, 2011 (cit. on pp. 63,
68–70, 75, 76).

[41] L. Bao, X. Liu, Z. Xu and B. Fang, ‘Autoconfig: Automatic configuration tuning for dis-
tributed message systems’, in IEEE/ACM International Conference on Automated Software
Engineering (ASE), ACM, 2018, pp. 29–40 (cit. on p. 135).

[42] M. Barreno, B. Nelson, R. Sears, A. D. Joseph and J. D. Tygar, ‘Can machine learning
be secure?’, in Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, Taipei, Taiwan: ACM, 2006, pp. 16–25 (cit. on pp. 126, 127).

[43] D. S. Batory, ‘Feature models, grammars, and propositional formulas’, in SPLC’05,
ser. LNCS, vol. 3714, 2005, pp. 7–20 (cit. on pp. 29, 30).

[44] R. Baumgartner, G. Gottlob and M. Herzog, ‘Scalable web data extraction for online
market intelligence’, PVLDB, vol. 2, no. 2, pp. 1512–1523, 2009. http://www.vldb.
org/pvldb/2/vldb09-1075.pdf (cit. on p. 159).

[45] G. Bécan, ‘Metamodels and feature models : complementary approaches to formalize
product comparison matrices’, Theses, Université Rennes 1, Sep. 2016. https://
tel.archives-ouvertes.fr/tel-01416129 (cit. on pp. 15, 43).

[46] G. Bécan, M. Acher, B. Baudry and S. Ben Nasr, ‘Breathing Ontological Knowledge
Into Feature Model Management’, Anglais, INRIA, Rapport Technique RT-0441, Oct.
2013, p. 15. http://hal.inria.fr/hal-00874867 (cit. on p. 102).

[47] G. Bécan, M. Acher, B. Baudry and S. Ben Nasr, ‘Breathing Ontological Knowledge
Into Feature Model Synthesis: An Empirical Study’, Empirical Software Engineering
(ESE), vol. 21, no. 4, pp. 1794–1841, 2016. doi: 10.1007/s10664-014-9357-1.
https://hal.inria.fr/hal-01096969 (cit. on pp. 12, 20, 29, 30, 77, 91).

https://doi.org/http://dx.doi.org/10.1007/978-3-540-79980-1_4
https://doi.org/http://dx.doi.org/10.1007/978-3-540-79980-1_4
http://www.vldb.org/pvldb/2/vldb09-1075.pdf
http://www.vldb.org/pvldb/2/vldb09-1075.pdf
https://tel.archives-ouvertes.fr/tel-01416129
https://tel.archives-ouvertes.fr/tel-01416129
http://hal.inria.fr/hal-00874867
https://doi.org/10.1007/s10664-014-9357-1
https://hal.inria.fr/hal-01096969

BIBLIOGRAPHY 169

[48] G. Bécan, M. Acher, J.-M. Jézéquel and T. Menguy, ‘On the Variability Secrets of an On-
line Video Generator’, in Variability Modelling of Software-intensive Systems (VaMoS’15),
Hildesheim, Germany, Jan. 2015, pp. 96–102. doi: 10.1145/2701319.2701328.
https://hal.inria.fr/hal-01104797 (cit. on pp. 10, 157, 159).

[49] G. Bécan, R. Behjati, A. Gotlieb and M. Acher, ‘Synthesis of Attributed Feature Mod-
els From Product Descriptions’, in 19th International Software Product Line Conference
(SPLC’15), (research track, long paper), Nashville, TN, USA, Jul. 2015 (cit. on pp. 12,
74, 76, 77, 79, 80, 91, 102).

[50] G. Bécan, R. Behjati, A. Gotlieb and M. Acher, ‘Synthesis of Attributed Feature Models
From Product Descriptions: Foundations’, Inria Rennes, Rapport de Recherche RR-
8680, Feb. 2015. https://hal.inria.fr/hal-01116663 (cit. on p. 79).

[51] G. Bécan, S. B. Nasr, M. Acher and B. Baudry, ‘WebFML: Synthesizing Feature Models
Everywhere’, in SPLC’14, 2014 (cit. on p. 12).

[52] G. Bécan, N. Sannier, M. Acher, O. Barais, A. Blouin and B. Baudry, ‘Automating the
formalization of product comparison matrices’, in ASE, 2014 (cit. on pp. 12, 33, 74).

[53] S. Ben Nasr, G. Bécan, M. Acher, J. B. Ferreira Filho, B. Baudry, N. Sannier and J.-M.
Davril, ‘Matrixminer: A red pill to architect informal product descriptions in the mat-
rix’, in Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2015, Bergamo, Italy: ACM, 2015, pp. 982–985, isbn: 978-1-4503-3675-8
(cit. on pp. 85, 87).

[54] S. Ben Nasr, G. Bécan, M. Acher, J. B. Ferreira Filho, N. Sannier, B. Baudry and
J.-M. Davril, ‘Automated Extraction of Product Comparison Matrices From Informal
Product Descriptions’, Journal of Systems and Software (JSS), vol. 124, pp. 82–103, 2017.
doi: 10.1016/j.jss.2016.11.018. https://hal.inria.fr/hal-01427218
(cit. on pp. 12, 82).

[55] D. Benavides, S. Segura and A. Ruiz-Cortes, ‘Automated analysis of feature models 20
years later: A literature review’, Information Systems, vol. 35, no. 6, 2010 (cit. on pp. 27,
68, 75, 76).

[56] D. Benavides, S. Segura, P. Trinidad and A. R. Cortés, ‘Fama: Tooling a framework for
the automated analysis of feature models.’, VaMoS, 2007 (cit. on p. 76).

[57] D. Benavides, P. Trinidad, A. R. Cortés and S. Segura, ‘Fama’, in Systems and Software
Variability Management, 2013, pp. 163–171 (cit. on pp. 63, 68, 69).

[58] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki and A. Wasowski, ‘Three cases
of feature-based variability modeling in industry’, in MODELS, 2014 (cit. on pp. 74,
75).

[59] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki and A. Wasowski,
‘A survey of variability modeling in industrial practice’, in VaMoS’13, 2013 (cit. on
pp. 20, 61, 68, 70).

[60] T. Berger, S. She, R. Lotufo, A. Wasowski and K. Czarnecki, ‘A study of variability
models and languages in the systems software domain’, IEEE Transactions on Software
Engineering, vol. 99, no. PrePrints, p. 1, 2013, issn: 0098-5589. doi: http://doi.
ieeecomputersociety.org/10.1109/TSE.2013.34 (cit. on p. 70).

https://doi.org/10.1145/2701319.2701328
https://hal.inria.fr/hal-01104797
https://hal.inria.fr/hal-01116663
https://doi.org/10.1016/j.jss.2016.11.018
https://hal.inria.fr/hal-01427218
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2013.34
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2013.34

170 BIBLIOGRAPHY

[61] B. Biggio, L. Didaci, G. Fumera and F. Roli, ‘Poisoning attacks to compromise face
templates’, in 2013 International Conference on Biometrics (ICB), Madrid, Spain: IEEE,
Jun. 2013, pp. 1–7. doi: 10.1109/ICB.2013.6613006 (cit. on pp. 126, 127).

[62] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto and F.
Roli, ‘Evasion attacks against machine learning at test time’, in Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, Dublin, Ireland: Springer
Berlin, 2013, pp. 387–402 (cit. on pp. 126–128).

[63] B. Biggio, G. Fumera and F. Roli, ‘Pattern recognition systems under attack: Design
issues and research challenges’, International Journal of Pattern Recognition and Artificial
Intelligence, vol. 28, no. 07, p. 1 460 002, 2014 (cit. on p. 127).

[64] B. Biggio, G. Fumera and F. Roli, ‘Security evaluation of pattern classifiers under at-
tack’, IEEE transactions on knowledge and data engineering, vol. 26, no. 4, pp. 984–996,
2014 (cit. on pp. 126, 127).

[65] B. Biggio, B. Nelson and P. Laskov, ‘Poisoning attacks against support vector ma-
chines’, in Proceedings of the 29th International Coference on International Conference on
Machine Learning, ser. ICML’12, Edinburgh, Scotland: Omnipress, 2012, pp. 1467–1474,
isbn: 978-1-4503-1285-1. http://dl.acm.org/citation.cfm?id=3042573.
3042761 (cit. on p. 127).

[66] B. Biggio and F. Roli, ‘Wild patterns: Ten years after the rise of adversarial machine
learning’, Pattern Recognition, vol. 84, pp. 317–331, 2018 (cit. on pp. 126, 127).

[67] F. Bonin, F. Dell’Orletta, G. Venturi and S. Montemagni, ‘A contrastive approach to
multi-word term extraction from domain corpora’, in Proceedings of the “7th Interna-
tional Conference on Language Resources and Evaluation”, Malta, 2010, pp. 19–21 (cit. on
p. 86).

[68] J. Bosch, ‘Toward compositional software product lines’, IEEE Software, vol. 27, pp. 29–
34, 2010, issn: 0740-7459. doi: http://doi.ieeecomputersociety.org/10.
1109/MS.2010.32 (cit. on p. 22).

[69] M. Bošković, G. Mussbacher, E. Bagheri, D. Amyot, D. Gašević and M. Hatala, ‘Aspect-
oriented feature models’, in Proceedings of MODELS’10 workshops, ser. MODELS’10,
Oslo, Norway: Springer-Verlag, 2011, pp. 110–124, isbn: 978-3-642-21209-3. http://
dl.acm.org/citation.cfm?id=2008503.2008518 (cit. on p. 22).

[70] Q. Boucher, E. Abbasi, A. Hubaux, G. Perrouin, M. Acher and P. Heymans, ‘To-
wards More Reliable Configurators: A Re-engineering Perspective’, in Third Interna-
tional Workshop on Product LinE Approaches in Software Engineering at ICSE 2012 (PLEASE’12),
ser., Zurich, Jun. 2012 (cit. on p. 90).

[71] T. Brown, D. Mane, A. Roy, M. Abadi and J. Gilmer, ‘Adversarial patch’, https://arxiv.org/pdf/1712.09665.pdf,
2017 (cit. on p. 129).

[72] S. Buhne, K. Lauenroth and K. Pohl, ‘Modelling requirements variability across product
lines’, in RE ’05: Proceedings of the 13th IEEE International Conference on Requirements
Engineering, Washington, DC, USA: IEEE Computer Society, 2005, pp. 41–52, isbn: 0-
7695-2425-7. doi: http://dx.doi.org/10.1109/RE.2005.45 (cit. on p. 22).

[73] J. Carbonnel, ‘L’analyse formelle de concepts: Un cadre structurel pour l’étude de la
variabilité de familles de logiciels’, PhD thesis, Université Montpellier, 2018 (cit. on
p. 82).

https://doi.org/10.1109/ICB.2013.6613006
http://dl.acm.org/citation.cfm?id=3042573.3042761
http://dl.acm.org/citation.cfm?id=3042573.3042761
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2010.32
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/MS.2010.32
http://dl.acm.org/citation.cfm?id=2008503.2008518
http://dl.acm.org/citation.cfm?id=2008503.2008518
https://doi.org/http://dx.doi.org/10.1109/RE.2005.45

BIBLIOGRAPHY 171

[74] J. Carbonnel, M. Huchard, A. Miralles and C. Nebut, ‘Feature model composition as-
sisted by formal concept analysis’, in ENASE: Evaluation of Novel Approaches to Software
Engineering, SciTePress, 2017, pp. 27–37 (cit. on p. 82).

[75] J. Carbonnel, M. Huchard and C. Nebut, ‘Modelling equivalence classes of feature
models with concept lattices to assist their extraction from product descriptions’,
Journal of Systems and Software, vol. 152, pp. 1–23, 2019, issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2019.02.027. https://www.sciencedirect.
com/science/article/pii/S0164121219300378 (cit. on pp. 38, 82).

[76] J. Carp, ‘On the plurality of (methodological) worlds: Estimating the analytic flexibility
of fmri experiments’, Frontiers in neuroscience, vol. 6, p. 149, 2012 (cit. on p. 161).

[77] M. Cashman, M. B. Cohen, P. Ranjan and R. W. Cottingham, ‘Navigating the maze:
The impact of configurability in bioinformatics software’, in Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Mont-
pellier, France, September 3-7, 2018, 2018, pp. 757–767. doi: 10 . 1145 / 3238147 .
3240466. http://doi.acm.org/10.1145/3238147.3240466 (cit. on p. 9).

[78] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia and M. Y. Vardi, ‘On parallel
scalable uniform SAT witness generation’, in Tools and Algorithms for the Construction
and Analysis of Systems TACAS’15 2015, London, UK, April 11-18, 2015. Proceedings, 2015,
pp. 304–319 (cit. on pp. 55, 56, 134).

[79] S. Chakraborty, K. S. Meel and M. Y. Vardi, ‘A scalable and nearly uniform generator
of sat witnesses’, in International Conference on Computer Aided Verification, Springer,
2013, pp. 608–623 (cit. on pp. 55, 56, 134).

[80] C. Chambers and M. Erwig, ‘Automatic detection of dimension errors in spread-
sheets’, J. Vis. Lang. Comput., vol. 20, no. 4, pp. 269–283, Aug. 2009, issn: 1045-926X.
doi: 10.1016/j.jvlc.2009.04.002. http://dx.doi.org/10.1016/j.jvlc.
2009.04.002 (cit. on p. 38).

[81] K. Chen, W. Zhang, H. Zhao and H. Mei, ‘An approach to constructing feature models
based on requirements clustering’, in RE’05, 2005, pp. 31–40, isbn: 0-7695-2425-7. doi:
10.1109/RE.2005.9 (cit. on pp. 82, 86, 135).

[82] E. J. Chikofsky and J. H. Cross II, ‘Reverse engineering and design recovery: A tax-
onomy’, IEEE Softw., vol. 7, no. 1, pp. 13–17, Jan. 1990 (cit. on p. 73).

[83] D. Clarke and J. Proenca, ‘Towards a Theory of Views for Feature Models’, in Proceed-
ings of the First Intl. Workshop on Formal Methods in Software Product Line Engineering
(FMSPLE 2010). Technical Report, University of Lancaster, U.K., vol. 2, Lancester Univer-
sity, Sep. 2010, pp. 91–100 (cit. on p. 22).

[84] A. Classen, Q. Boucher and P. Heymans, ‘A text-based approach to feature modelling:
Syntax and semantics of TVL’, Science of Computer Programming, Special Issue on Software
Evolution, Adaptability and Variability, vol. 76, no. 12, pp. 1130–1143, 2011 (cit. on p. 69).

[85] A. Classen, Q. Boucher and P. Heymans, ‘A text-based approach to feature modelling:
Syntax and semantics of TVL’, Sci. Comput. Program., vol. 76, no. 12, 2011 (cit. on pp. 68,
76, 92).

https://doi.org/https://doi.org/10.1016/j.jss.2019.02.027
https://doi.org/https://doi.org/10.1016/j.jss.2019.02.027
https://www.sciencedirect.com/science/article/pii/S0164121219300378
https://www.sciencedirect.com/science/article/pii/S0164121219300378
https://doi.org/10.1145/3238147.3240466
https://doi.org/10.1145/3238147.3240466
http://doi.acm.org/10.1145/3238147.3240466
https://doi.org/10.1016/j.jvlc.2009.04.002
http://dx.doi.org/10.1016/j.jvlc.2009.04.002
http://dx.doi.org/10.1016/j.jvlc.2009.04.002
https://doi.org/10.1109/RE.2005.9

172 BIBLIOGRAPHY

[86] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay and J.-F. Raskin, ‘Fea-
tured Transition Systems: Foundations for Verifying Variability-Intensive Systems and
Their Application to LTL Model Checking’, IEEE Transactions on Software Engineering,
vol. 39, no. 8, pp. 1069–1089, Aug. 2013 (cit. on p. 45).

[87] M. Cohen, M. Dwyer and Jiangfan Shi, ‘Constructing Interaction Test Suites for Highly-
Configurable Systems in the Presence of Constraints: A Greedy Approach’, IEEE Trans-
actions on Software Engineering, vol. 34, no. 5, pp. 633–650, 2008 (cit. on pp. 44, 46, 112,
115, 134).

[88] M. Colmant, R. Rouvoy, M. Kurpicz, A. Sobe, P. Felber and L. Seinturier, ‘The next
700 CPU power models’, J. Syst. Softw., vol. 144, pp. 382–396, 2018. doi: 10.1016/j.
jss.2018.07.001. https://doi.org/10.1016/j.jss.2018.07.001 (cit. on
p. 156).

[89] Companion web page, https://github.com/FAMILIAR-project/familiar-
documentation/blob/master/manual/composition.md (cit. on p. 30).

[90] M. Cordy, P.-Y. Schobbens, P. Heymans and A. Legay, ‘Beyond boolean product-line
model checking: Dealing with feature attributes and multi-features’, in ICSE, 2013 (cit.
on pp. 70, 75).

[91] J. Cunha, M. Erwig and J. Saraiva, ‘Automatically inferring classsheet models from
spreadsheets’, in Visual Languages and Human-Centric Computing (VL/HCC), 2010 IEEE
Symposium on, Sep. 2010, pp. 93–100. doi: 10.1109/VLHCC.2010.22 (cit. on p. 38).

[92] J. Cunha, J. P. Fernandes, H. Ribeiro and J. Saraiva, ‘Towards a catalog of spreadsheet
smells’, in Proceedings of the 12th International Conference on Computational Science and
Its Applications - Volume Part IV, ser. ICCSA’12, Salvador de Bahia, Brazil: Springer-
Verlag, 2012, pp. 202–216, isbn: 978-3-642-31127-7. doi: 10.1007/978- 3- 642-
31128-4_15. http://dx.doi.org/10.1007/978-3-642-31128-4_15 (cit. on
p. 38).

[93] J. Cunha, J. Visser, T. L. Alves and J. Saraiva, ‘Type-safe evolution of spreadsheets’, in
FASE’11, ser. LNCS, vol. 6603, 2011, pp. 186–201 (cit. on p. 38).

[94] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid and A. Wąsowski, ‘Cool features
and tough decisions: A comparison of variability modeling approaches’, in Proceedings
of VaMoS’12, Leipzig, Germany: ACM, 2012, pp. 173–182, isbn: 978-1-4503-1058-1. doi:
10.1145/2110147.2110167. http://doi.acm.org/10.1145/2110147.
2110167 (cit. on p. 20).

[95] K. Czarnecki, S. Helsen and U. Eisenecker, ‘Formalizing Cardinality-based Feature
Models and their Specialization’, in Software Process Improvement and Practice, 2005,
pp. 7–29 (cit. on p. 158).

[96] K. Czarnecki, S. Helsen and U. Eisenecker, ‘Staged configuration through specializa-
tion and multilevel configuration of feature models’, Software Process: Improvement and
Practice, vol. 10, no. 2, pp. 143–169, 2005 (cit. on pp. 22, 158).

[97] K. Czarnecki, C. H. P. Kim and K. T. Kalleberg, ‘Feature models are views on ontolo-
gies’, in SPLC, 2006 (cit. on p. 75).

https://doi.org/10.1016/j.jss.2018.07.001
https://doi.org/10.1016/j.jss.2018.07.001
https://doi.org/10.1016/j.jss.2018.07.001
https://github.com/FAMILIAR-project/familiar-documentation/blob/master/manual/composition.md
https://github.com/FAMILIAR-project/familiar-documentation/blob/master/manual/composition.md
https://doi.org/10.1109/VLHCC.2010.22
https://doi.org/10.1007/978-3-642-31128-4_15
https://doi.org/10.1007/978-3-642-31128-4_15
http://dx.doi.org/10.1007/978-3-642-31128-4_15
https://doi.org/10.1145/2110147.2110167
http://doi.acm.org/10.1145/2110147.2110167
http://doi.acm.org/10.1145/2110147.2110167

BIBLIOGRAPHY 173

[98] K. Czarnecki and K. Pietroszek, ‘Verifying feature-based model templates against well-
formedness ocl constraints’, in GPCE’06, ACM, 2006, pp. 211–220, isbn: 1-59593-237-2.
doi: http://doi.acm.org.gate6.inist.fr/10.1145/1173706.1173738
(cit. on p. 96).

[99] K. Czarnecki and A. Wasowski, ‘Feature diagrams and logics: There and back again’,
in SPLC’07, 2007 (cit. on pp. 21, 27, 29, 102).

[100] J. Dakhlia, ‘Lingua franca. histoire d’une langue métisse en méditerranée’, 2008 (cit. on
p. 161).

[101] A. Darwiche and P. Marquis, ‘A knowledge compilation map’, J. Artif. Intell. Res.
(JAIR), vol. 17, pp. 229–264, 2002 (cit. on p. 29).

[102] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang and P. Heymans,
‘Feature Model Extraction from Large Collections of Informal Product Descriptions’,
in European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE’13), 2013, pp. 290–300 (cit. on pp. 12,
95).

[103] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang and P. Heymans,
‘Feature model extraction from large collections of informal product descriptions’, in
ESEC/FSE, 2013 (cit. on pp. 82, 83, 85).

[104] O. Day and T. M. Khoshgoftaar, ‘A survey on heterogeneous transfer learning’, Journal
of Big Data, vol. 4, no. 1, p. 29, 2017 (cit. on pp. 146–148).

[105] L. De Moura and N. Bjørner, ‘Z3: An efficient smt solver’, in International conference on
Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2008, pp. 337–
340 (cit. on p. 134).

[106] T. Degueule, J. B. F. Filho, O. Barais, M. Acher, J. Lenoir, O. Constant, S. Madelenat, G.
Gailliard and G. Burlot, ‘Tooling Support for Variability and Architectural Patterns in
Systems Engineering’, in 19th International Software Product Line Conference (SPLC’15),
(demonstration and tool track), Nashville, TN, USA, Jul. 2015 (cit. on p. 15).

[107] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru and
F. Roli, ‘On the intriguing connections of regularization, input gradients and trans-
ferability of evasion and poisoning attacks’, CoRR, vol. abs/1809.02861, 2018. arXiv:
1809.02861. http://arxiv.org/abs/1809.02861 (cit. on p. 129).

[108] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea, C. Nita-Rotaru and
F. Roli, ‘Why do adversarial attacks transfer? explaining transferability of evasion and
poisoning attacks’, in 28th USENIX Security Symposium (USENIX Security 19), Santa
Clara, CA: USENIX Association, 2019. https://www.usenix.org/conference/
usenixsecurity19/presentation/demontis (cit. on p. 129).

[109] A. van Deursen and P. Klint, ‘Domain-specific language design requires feature de-
scriptions’, Journal of Computing and Information Technology, vol. 10, no. 1, pp. 1–17,
2002 (cit. on pp. 68, 69).

[110] N. Dintzner, A. van Deursen and M. Pinzger, ‘FEVER: an approach to analyze feature-
oriented changes and artefact co-evolution in highly configurable systems’, EMSE,
vol. 23, no. 2, pp. 905–952, 2018. doi: 10.1007/s10664- 017- 9557- 6 (cit. on
p. 142).

https://doi.org/http://doi.acm.org.gate6.inist.fr/10.1145/1173706.1173738
https://arxiv.org/abs/1809.02861
http://arxiv.org/abs/1809.02861
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis
https://doi.org/10.1007/s10664-017-9557-6

174 BIBLIOGRAPHY

[111] H. Dohrn and D. Riehle, ‘Design and implementation of the sweble wikitext parser:
Unlocking the structured data of wikipedia’, in WikiSym’11, ser. WikiSym ’11, ACM,
2011, pp. 72–81 (cit. on p. 37).

[112] R. W. Dosselman and X. D. Yang, ‘No-reference noise and blur detection via the fourier
transform’, University of Regina, CANADA, Tech. Rep., 2012 (cit. on p. 115).

[113] W. Dou, S.-C. Cheung and J. Wei, ‘Is spreadsheet ambiguity harmful? detecting and
repairing spreadsheet smells due to ambiguous computation’, in ICSE’14, 2014 (cit. on
p. 38).

[114] N. R. Draper and H. Smith, Applied regression analysis. John Wiley & Sons, 1998, vol. 326
(cit. on p. 140).

[115] C. Dumitrescu, R. Mazo, C. Salinesi and A. Dauron, ‘Bridging the gap between product
lines and systems engineering: An experience in variability management for automot-
ive model based systems engineering’, in SPLC, 2013, pp. 254–263 (cit. on p. 70).

[116] R. Dutra, K. Laeufer, J. Bachrach and K. Sen, ‘Efficient sampling of SAT solutions for
testing’, in Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 549–559. doi: 10.1145/
3180155.3180248. http://doi.acm.org/10.1145/3180155.3180248 (cit. on
pp. 55–58).

[117] H. Eichelberger and K. Schmid, ‘A systematic analysis of textual variability modeling
languages’, in SPLC’13, 2013. doi: 10.1145/2491627.2491652. http://doi.
acm.org/10.1145/2491627.2491652 (cit. on p. 68).

[118] H. Eichelberger and K. Schmid, ‘Mapping the design-space of textual variability mod-
eling languages: A refined analysis’, English, STTT, pp. 1–26, 2014, issn: 1433-2779.
doi: 10.1007/s10009-014-0362-x. http://dx.doi.org/10.1007/s10009-
014-0362-x (cit. on p. 76).

[119] G. Engels and M. Erwig, ‘Classsheets: Automatic generation of spreadsheet applica-
tions from object-oriented specifications’, in Proceedings of the 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE ’05, Long Beach, CA, USA:
ACM, 2005, pp. 124–133, isbn: 1-58113-993-4. doi: 10.1145/1101908.1101929.
http://doi.acm.org/10.1145/1101908.1101929 (cit. on p. 38).

[120] S. Ermon, C. P. Gomes, A. Sabharwal and B. Selman, ‘Embed and project: Discrete
sampling with universal hashing’, in Advances in Neural Information Processing Systems,
2013, pp. 2085–2093 (cit. on p. 56).

[121] S. Ermon, C. P. Gomes and B. Selman, ‘Uniform solution sampling using a constraint
solver as an oracle’, arXiv preprint arXiv:1210.4861, 2012 (cit. on p. 56).

[122] E. Ferrara, P. D. Meo, G. Fiumara and R. Baumgartner, ‘Web data extraction, applica-
tions and techniques: A survey’, Knowledge-Based Systems, vol. 70, no. 0, pp. 301–323,
2014 (cit. on p. 159).

[123] A. Ferrari, G. O. Spagnolo and F. dell’Orletta, ‘Mining commonalities and variabilities
from natural language documents’, in SPLC, 2013 (cit. on p. 82).

[124] J. A. Galindo, M. Alferez, M. Acher, B. Baudry and D. Benavides, ‘A variability-based
testing approach for synthesizing video sequences’, in International Symposium on Soft-
ware Testing and Analysis (ISSTA’14), 2014 (cit. on pp. 65, 112, 114, 115).

https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/3180155.3180248
http://doi.acm.org/10.1145/3180155.3180248
https://doi.org/10.1145/2491627.2491652
http://doi.acm.org/10.1145/2491627.2491652
http://doi.acm.org/10.1145/2491627.2491652
https://doi.org/10.1007/s10009-014-0362-x
http://dx.doi.org/10.1007/s10009-014-0362-x
http://dx.doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1145/1101908.1101929
http://doi.acm.org/10.1145/1101908.1101929

BIBLIOGRAPHY 175

[125] E. Ghys, La lingua franca des mathématiciens https://images.math.cnrs.fr/la-lingua-franca-
des-mathematiciens.html, 2014 (cit. on p. 161).

[126] T. Glatard, L. B. Lewis, R. Ferreira da Silva, R. Adalat, N. Beck, C. Lepage, P. Rioux,
M.-E. Rousseau, T. Sherif, E. Deelman et al., ‘Reproducibility of neuroimaging ana-
lyses across operating systems’, Frontiers in neuroinformatics, vol. 9, p. 12, 2015 (cit. on
pp. 156, 161).

[127] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Cour-
ville and Y. Bengio, ‘Generative adversarial nets’, in Advances in neural information
processing systems, 2014, pp. 2672–2680 (cit. on pp. 126, 128).

[128] S. P. Gregg, R. Scharadin and P. Clements, ‘The more you do, the more you save: The
superlinear cost avoidance effect of systems product line engineering’, in Proceedings
of the 19th International Conference on Software Product Line, SPLC 2015, Nashville, TN,
USA, July 20-24, 2015, D. C. Schmidt, Ed., ACM, 2015, pp. 303–310. doi: 10.1145/
2791060.2791065. https://doi.org/10.1145/2791060.2791065 (cit. on
p. 161).

[129] E. H. Gronenschild, P. Habets, H. I. Jacobs, R. Mengelers, N. Rozendaal, J. Van Os
and M. Marcelis, ‘The effects of freesurfer version, workstation type, and macintosh
operating system version on anatomical volume and cortical thickness measurements’,
PloS one, vol. 7, no. 6, e38234, 2012 (cit. on p. 161).

[130] P. Grünbacher, R. Rabiser, D. Dhungana and M. Lehofer, ‘Model-Based Customization
and Deployment of Eclipse-Based Tools: Industrial Experiences’, in Proceedings of the
2009 IEEE/ACM International Conference on Automated Software Engineering, ser. ASE ’09,
Washington, DC, USA: IEEE Computer Society, 2009, pp. 247–256, isbn: 978-0-7695-
3891-4. doi: 10.1109/ASE.2009.11. http://dx.doi.org/10.1109/ASE.
2009.11 (cit. on p. 96).

[131] J. Guo, K. Czarnecki, S. Apel, N. Siegmund and A. Wasowski, ‘Variability-aware per-
formance prediction: A statistical learning approach’, in ASE, 2013 (cit. on pp. 124,
131, 138).

[132] M. Hahsler, B. Grün and K. Hornik, ‘Arules – A computational environment for min-
ing association rules and frequent item sets’, Journal of Statistical Software, vol. 14,
no. 15, pp. 1–25, Oct. 2005, issn: 1548-7660 (cit. on p. 49).

[133] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau and G. Saake, ‘IncLing: efficient product-
line testing using incremental pairwise sampling’, in Proceedings of the 2016 ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences -
GPCE 2016, ACM, 2016, pp. 144–155 (cit. on p. 52).

[134] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau and G. Saake, ‘Similarity-based prior-
itization in software product-line testing’, in SPLC’14 (cit. on pp. 112, 115).

[135] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin and B. Baudry, ‘Test them
all, is it worth it? Assessing configuration sampling on the JHipster Web development
stack’, Empirical Software Engineering (ESE), vol. 24, no. 2, pp. 674–717, Jul. 2019, Empir-
ical Software Engineering journal. doi: 10.07980. https://doi.org/10.1007/
s10664-018-9635-4 (cit. on pp. 9, 12, 16, 44–47, 58).

https://doi.org/10.1145/2791060.2791065
https://doi.org/10.1145/2791060.2791065
https://doi.org/10.1145/2791060.2791065
https://doi.org/10.1109/ASE.2009.11
http://dx.doi.org/10.1109/ASE.2009.11
http://dx.doi.org/10.1109/ASE.2009.11
https://doi.org/10.07980
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1007/s10664-018-9635-4

176 BIBLIOGRAPHY

[136] A. Halin, A. Nuttinck, M. Acher, X. Devroey, G. Perrouin and P. Heymans, ‘Yo Variab-
ility! JHipster: A Playground for Web-Apps Analyses’, in 11th International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS’17), Eindhoven, Netherlands,
Feb. 2017, pp. 44–51. doi: 10.1145/3023956.3023963. https://hal.inria.
fr/hal-01468084 (cit. on pp. 16, 51).

[137] S. O. Hallsteinsen, M. Hinchey, S. Park and K. Schmid, ‘Dynamic software product
lines’, IEEE Computer, vol. 41, no. 4, pp. 93–95, 2008. doi: 10.1109/MC.2008.123.
http://dx.doi.org/10.1109/MC.2008.123 (cit. on p. 9).

[138] N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang and B. Mobasher, ‘Sup-
porting domain analysis through mining and recommending features from online
product listings’, IEEE Transactions on Software Engineering, vol. 99, no. PrePrints, p. 1,
2013, issn: 0098-5589. doi: http://doi.ieeecomputersociety.org/10.1109/
TSE.2013.39 (cit. on pp. 82, 85).

[139] H. Hartmann and T. Trew, ‘Using feature diagrams with context variability to model
multiple product lines for software supply chains’, in SPLC’08, IEEE, 2008, pp. 12–21
(cit. on pp. 22, 121).

[140] H. Hartmann, T. Trew and A. Matsinger, ‘Supplier independent feature modelling’, in
SPLC’09, IEEE, 2009, pp. 191–200 (cit. on pp. 22, 29, 30, 121).

[141] E. N. Haslinger, R. E. Lopez-Herrejon and A. Egyed, ‘Reverse engineering feature
models from programs’ feature sets’, in WCRE’11, IEEE, 2011, pp. 308–312 (cit. on
p. 96).

[142] M. Heinz, R. Lämmel and M. Acher, ‘Discovering Indicators for Classifying Wikipedia
Articles in a Domain: A Case Study on Software Languages’, in SEKE 2019 - The 31st
International Conference on Software Engineering and Knowledge Engineering, Lisbonne,
Portugal, Jul. 2019, pp. 1–6. https://hal.inria.fr/hal-02129131 (cit. on
p. 13).

[143] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans and Y. Le Traon, ‘By-
passing the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-
Wise Test Configurations for Software Product Lines’, IEEE Transactions on Software
Engineering, vol. 40, no. 7, pp. 650–670, 2014 (cit. on pp. 44, 46, 52).

[144] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans and Y. L. Traon, ‘By-
passing the combinatorial explosion: Using similarity to generate and prioritize t-wise
test configurations for software product lines’, IEEE Trans. Software Eng., 2014 (cit. on
pp. 112, 115, 134).

[145] C. Henard, M. Papadakis, G. Perrouin, J. Klein and Y. Le Traon, ‘Towards automated
testing and fixing of re-engineered feature models’, in ICSE ’13 (NIER track), 2013 (cit.
on p. 95).

[146] C. Henard, M. Papadakis, G. Perrouin, J. Klein and Y. L. Traon, ‘Pledge: A product line
editor and test generation tool’, in Proceedings of the 17th International Software Product
Line Conference Co-located Workshops, ser. SPLC ’13 Workshops, Tokyo, Japan: ACM,
2013, pp. 126–129, isbn: 978-1-4503-2325-3 (cit. on p. 52).

[147] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup and D. Meger, ‘Deep re-
inforcement learning that matters’, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018 (cit. on p. 161).

https://doi.org/10.1145/3023956.3023963
https://hal.inria.fr/hal-01468084
https://hal.inria.fr/hal-01468084
https://doi.org/10.1109/MC.2008.123
http://dx.doi.org/10.1109/MC.2008.123
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2013.39
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TSE.2013.39
https://hal.inria.fr/hal-02129131

BIBLIOGRAPHY 177

[148] D. Hendry and T. Green, ‘Creating, comprehending and explaining spreadsheets: A
cognitive interpretation of what discretionary users think of the spreadsheet model’,
International Journal of Human-Computer Studies, vol. 40, no. 6, pp. 1033–1065, 1994, issn:
1071-5819. doi: 10.1006/ijhc.1994.1047 (cit. on p. 38).

[149] K. Heo, W. Lee, P. Pashakhanloo and M. Naik, ‘Effective program debloating via re-
inforcement learning’, in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18, Toronto, Canada: ACM, 2018, pp. 380–394,
isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3243838. http://doi.acm.
org/10.1145/3243734.3243838 (cit. on p. 158).

[150] F. Hermans, M. Pinzger and A. v. Deursen, ‘Detecting and visualizing inter-worksheet
smells in spreadsheets’, in ICSE’12, IEEE, 2012, pp. 441–451, isbn: 978-1-4673-1067-3
(cit. on p. 38).

[151] F. Hermans, M. Pinzger and A. van Deursen, ‘Automatically extracting class diagrams
from spreadsheets’, in ECOOP’10, ser. LNCS, vol. 6183, Springer-Verlag, 2010, pp. 52–
75 (cit. on p. 38).

[152] F. Hermans, M. Pinzger and A. van Deursen, ‘Detecting code smells in spreadsheet
formulas’, in ICSM, IEEE, 2012, pp. 409–418, isbn: 978-1-4673-2313-0 (cit. on p. 38).

[153] F. Hermans, M. Pinzger and A. van Deursen, ‘Supporting professional spreadsheet
users by generating leveled dataflow diagrams’, in Proceedings of the 33rd International
Conference on Software Engineering, ser. ICSE ’11, Waikiki, Honolulu, HI, USA: ACM,
2011, pp. 451–460, isbn: 978-1-4503-0445-0 (cit. on p. 38).

[154] A. Hervieu, B. Baudry and A. Gotlieb, ‘PACOGEN: Automatic Generation of Pairwise
Test Configurations from Feature Models’, in IEEE 22nd International Symposium on
Software Reliability Engineering - ISSRE ’11, IEEE, 2011, pp. 120–129 (cit. on pp. 44, 46).

[155] G. Holl, P. Grünbacher and R. Rabiser, ‘A systematic review and an expert survey
on capabilities supporting multi product lines’, Information and Software Technology,
vol. 54, no. 8, pp. 828–852, Aug. 2012, issn: 09505849. doi: 10.1016/j.infsof.
2012.02.002 (cit. on p. 22).

[156] http://www.bestbuy.com, Bestbuy, 2014 (cit. on pp. 85, 88).

[157] https://kernelnewbies.org/Linux_5.4, TKernelNewbies: Linux_5.4, Nov. 2019
(cit. on p. 143).

[158] https://tiny.wiki.kernel.org/, Linux kernel tinification, last access: july 2019 (cit. on
p. 138).

[159] https://www.phoronix.com/scan.php?page=article&item=linux-416-
54&num=1, The Disappointing Direction Of Linux Performance From 4.16 To 5.4 Kernels,
Nov. 2019 (cit. on p. 143).

[160] https://www.wcrp-climate.org/, World climat research program (wcrp) (cit. on p. 161).

[161] M. Hu and B. Liu, ‘Mining and summarizing customer reviews’, in Proceedings of
the tenth ACM SIGKDD international conference on Knowledge discovery and data mining,
ACM, 2004, pp. 168–177 (cit. on p. 86).

https://doi.org/10.1006/ijhc.1994.1047
https://doi.org/10.1145/3243734.3243838
http://doi.acm.org/10.1145/3243734.3243838
http://doi.acm.org/10.1145/3243734.3243838
https://doi.org/10.1016/j.infsof.2012.02.002
https://doi.org/10.1016/j.infsof.2012.02.002
http://www.bestbuy.com
https://kernelnewbies.org/Linux_5.4
https://www.phoronix.com/scan.php?page=article&item=linux-416-54&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-416-54&num=1

178 BIBLIOGRAPHY

[162] A. Hubaux, M. Acher, T. T. Tun, P. Heymans, P. Collet and P. Lahire, ‘Domain engin-
eering: Product lines, conceptual models, and languages (editors: Reinhartz-berger,i.
and sturm, a. and clark, t. and bettin, j. and cohen, s.)’, in. Springer, 2013, ch. Sep-
arating Concerns in Feature Models: Retrospective and Multi-View Support (cit. on
p. 22).

[163] A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder and E. K. Abbasi, ‘Supporting
multiple perspectives in feature-based configuration’, Software and Systems Modeling,
pp. 1–23, 2011 (cit. on pp. 22, 158).

[164] S. Ida and S. Ketil, ‘Technology research explained’, Tech. Rep., 2007 (cit. on p. 66).

[165] N. Itzik and I. Reinhartz-Berger, ‘SOVA - A tool for semantic and ontological variabil-
ity analysis’, in Joint Proceedings of the CAiSE 2014 Forum and CAiSE 2014 Doctoral Con-
sortium, 2014, pp. 177–184. http://ceur-ws.org/Vol-1164/PaperDemo06.pdf
(cit. on p. 82).

[166] S. Iyengar, The Art of Choosing. Twelve, 2010 (cit. on p. 82).

[167] P. Jamshidi, N. Siegmund, M. Velez, A. Patel and Y. Agarwal, ‘Transfer learning for
performance modeling of configurable systems: An exploratory analysis’, in IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE Press, 2017, pp. 497–
508 (cit. on pp. 135, 156).

[168] P. Jamshidi, M. Velez, C. Kästner and N. Siegmund, ‘Learning to sample: Exploiting
similarities across environments to learn performance models for configurable sys-
tems’, in Proceedings of the 2018 26th ACM Joint Meeting on European Software Engin-
eering Conference and Symposium on the Foundations of Software Engineering, ACM, 2018,
pp. 71–82 (cit. on pp. 145, 147).

[169] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund and P. Kawthekar, ‘Transfer learning
for improving model predictions in highly configurable software’, in Proceedings of
the 12th International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), Buenos Aires: IEEE Computer Society, May 2017, pp. 31–41. doi:
http://dx.doi.org/10.1109/SEAMS.2017.11 (cit. on p. 9).

[170] JHipsterTeam, JHipster website, https://jhipster.tech, accessed Feb. 2021., 2021. https:
//jhipster.tech (cit. on p. 130).

[171] D. Jin, X. Qu, M. B. Cohen and B. Robinson, ‘Configurations everywhere: implications
for testing and debugging in practice’, in Companion Proceedings of the 36th International
Conference on Software Engineering - ICSE Companion 2014, ACM, 2014, pp. 215–224 (cit.
on p. 45).

[172] M. F. Johansen, Ø. Haugen and F. Fleurey, ‘An algorithm for generating t-wise cov-
ering arrays from large feature models’, in Proceedings of the 16th International Software
Product Line Conference on - SPLC ’12 -volume 1, vol. 1, ACM, 2012, p. 46 (cit. on pp. 51,
112, 115, 134).

[173] C. Kaltenecker, A. Grebhahn, N. Siegmund, J. Guo and S. Apel, ‘Distance-based sampling
of software configuration spaces’, in Proceedings of the International Conference on Soft-
ware Engineering (ICSE), 2019 (cit. on pp. 131–136, 138).

[174] C. Kaner, J. Bach and B. Pettichord, Lessons Learned in Software Testing. New York, NY,
USA: John Wiley & Sons, Inc., 2001, isbn: 0471081124 (cit. on p. 124).

http://ceur-ws.org/Vol-1164/PaperDemo06.pdf
https://doi.org/http://dx.doi.org/10.1109/SEAMS.2017.11
https://jhipster.tech
https://jhipster.tech

BIBLIOGRAPHY 179

[175] K. Kang, S. Cohen, J. Hess, W. Novak and S. Peterson, ‘Feature-Oriented Domain
Analysis (FODA)’, SEI, Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990 (cit. on pp. 68, 69).

[176] C. Kästner, A. Dreiling and K. Ostermann, ‘Variability mining: Consistent semiauto-
matic detection of product-line features’, IEEE Transactions on Software Engineering,
2013, (to appear) (cit. on p. 82).

[177] Kernelci. https://kernelci.org/ (cit. on p. 151).

[178] E. Khalil Abbasi, M. Acher, P. Heymans and A. Cleve, ‘Reverse Engineering Web
Configurators’, in 17th European Conference on Software Maintenance and Reengineering
(CSMR’14), IEEE, Ed., Antwerp, Belgium, Feb. 2014 (cit. on pp. 12, 90, 93, 95).

[179] E. Khalil Abbasi, A. Hubaux, M. Acher, Q. Boucher and P. Heymans, ‘The Anatomy
of a Sales Configurator: An Empirical Study of 111 Cases’, Anglais, in 25th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’13), M. Norrie
and C. Salinesi, Eds., Valencia, Espagne, Jun. 2013. http://hal.inria.fr/hal-
00796555 (cit. on pp. 9, 12, 90, 92, 93).

[180] C. H. P. Kim, D. S. Batory and S. Khurshid, ‘Reducing combinatorics in testing product
lines’, in AOSD’11 (cit. on p. 44).

[181] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros and M. d’Amorim,
‘Splat: Lightweight dynamic analysis for reducing combinatorics in testing configur-
able systems - esec/fse ’13’, in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ACM, 2013, pp. 257–267 (cit. on p. 44).

[182] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.
6980 [cs.LG] (cit. on p. 142).

[183] N. Kitchen and A. Kuehlmann, ‘Stimulus generation for constrained random simu-
lation’, in Proceedings of the 2007 IEEE/ACM international conference on Computer-aided
design, IEEE Press, 2007, pp. 258–265 (cit. on p. 56).

[184] A. Knüppel, T. Thüm, S. Mennicke, J. Meinicke and I. Schaefer, ‘Is there a mismatch
between real-world feature models and product-line research?’, in Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Pader-
born, Germany, September 4-8, 2017, 2017, pp. 291–302. doi: 10.1145/3106237.
3106252. http://doi.acm.org/10.1145/3106237.3106252 (cit. on pp. 56,
57).

[185] S. Kolesnikov, N. Siegmund, C. Kästner, A. Grebhahn and S. Apel, ‘Tradeoffs in mod-
eling performance of highly configurable software systems’, Software & Systems Model-
ing, vol. 18, no. 3, pp. 2265–2283, Jun. 2019, issn: 1619-1374. doi: 10.1007/s10270-
018- 0662- 9. https://doi.org/10.1007/s10270- 018- 0662- 9 (cit. on
pp. 135, 141).

[186] H. Koo, S. Ghavamnia and M. Polychronakis, ‘Configuration-driven software debloat-
ing’, in Proceedings of the 12th European Workshop on Systems Security, ser. EuroSec
’19, Dresden, Germany: ACM, 2019, 9:1–9:6, isbn: 978-1-4503-6274-0. doi: 10.1145/
3301417.3312501. http://doi.acm.org/10.1145/3301417.3312501 (cit. on
p. 158).

[187] J. Kramer, ‘Is abstraction the key to computing?’, Commun. ACM, vol. 50, no. 4, pp. 36–
42, Apr. 2007, issn: 0001-0782. doi: 10.1145/1232743.1232745. https://doi.
org/10.1145/1232743.1232745 (cit. on p. 19).

https://kernelci.org/
http://hal.inria.fr/hal-00796555
http://hal.inria.fr/hal-00796555
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1145/3106237.3106252
http://doi.acm.org/10.1145/3106237.3106252
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1145/3301417.3312501
https://doi.org/10.1145/3301417.3312501
http://doi.acm.org/10.1145/3301417.3312501
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/1232743.1232745
https://doi.org/10.1145/1232743.1232745

180 BIBLIOGRAPHY

[188] D. Krefting, M. Scheel, A. Freing, S. Specovius, F. Paul and A. Brandt, ‘Reliability
of quantitative neuroimage analysis using freesurfer in distributed environments’,
in MICCAI Workshop on High-Performance and Distributed Computing for Medical Ima-
ging.(Toronto, ON), 2011 (cit. on p. 161).

[189] S. Krieter, T. Thüm, S. Schulze, R. Schröter and G. Saake, ‘Propagating configuration
decisions with modal implication graphs’, in Proceedings of the 40th International Con-
ference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
2018, pp. 898–909. doi: 10.1145/3180155.3180159. http://doi.acm.org/10.
1145/3180155.3180159 (cit. on pp. 56, 57).

[190] R. Krishna, V. Nair, P. Jamshidi and T. Menzies, ‘Whence to learn? transferring know-
ledge in configurable systems using beetle’, IEEE Transactions on Software Engineering,
pp. 1–1, 2020 (cit. on pp. 147, 149).

[191] T. Krismayer, R. Rabiser and P. Grünbacher, ‘Mining constraints for event-based mon-
itoring in systems of systems’, in IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), IEEE Press, 2017, pp. 826–831 (cit. on p. 135).

[192] W. H. Kruskal and W. A. Wallis, ‘Use of ranks in one-criterion variance analysis’,
Journal of the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952 (cit. on
p. 135).

[193] D. Kuhn, D. Wallace and A. Gallo, ‘Software fault interactions and implications for
software testing’, IEEE Transactions on Software Engineering, vol. 30, no. 6, pp. 418–421,
Jun. 2004, issn: 0098-5589 (cit. on p. 134).

[194] A. Kurmus, A. Sorniotti and R. Kapitza, ‘Attack surface reduction for commodity os
kernels: Trimmed garden plants may attract less bugs’, in Proceedings of the Fourth
European Workshop on System Security, ser. EUROSEC ’11, Salzburg, Austria: ACM,
2011, 6:1–6:6, isbn: 978-1-4503-0613-3. doi: 10.1145/1972551.1972557. http:
//doi.acm.org/10.1145/1972551.1972557 (cit. on p. 158).

[195] J. Lawall and G. Muller, ‘Coccinelle: 10 years of automated evolution in the linux
kernel’, in 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18), 2018,
pp. 601–614 (cit. on p. 142).

[196] J. Lawall and G. Muller, ‘Jmake: Dependable compilation for kernel janitors’, in 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2017, Denver, CO, USA, June 26-29, 2017, 2017, pp. 357–366. doi: 10.1109/DSN.
2017.62 (cit. on p. 142).

[197] D. Le Berre and A. Parrain, ‘The sat4j library, release 2.2’, Journal on Satisfiability,
Boolean Modeling and Computation, vol. 7, no. 2-3, pp. 59–64, 2010 (cit. on pp. 80, 134).

[198] J. Le Noir, S. Madelénat, C. Labreuche, O. Constant, G. Gailliard, M. Acher and O.
Barais, ‘A Decision-making Process for Exploring Architectural Variants in Systems
Engineering’, in Software Product Lines Conference (SPLC), Beijing, China, Sep. 2016.
doi: 10.1145/1235. https://hal.inria.fr/hal-01374140 (cit. on p. 16).

[199] L. Lesoil, M. Acher, A. Blouin and J.-M. Jézéquel, ‘Deep Software Variability: Towards
Handling Cross-Layer Configuration’, in VaMoS 2021 - 15th International Working Con-
ference on Variability Modelling of Software-Intensive Systems, Krems / Virtual, Austria,
Feb. 2021. https://hal.inria.fr/hal-03084276 (cit. on pp. 155, 156).

https://doi.org/10.1145/3180155.3180159
http://doi.acm.org/10.1145/3180155.3180159
http://doi.acm.org/10.1145/3180155.3180159
https://doi.org/10.1145/1972551.1972557
http://doi.acm.org/10.1145/1972551.1972557
http://doi.acm.org/10.1145/1972551.1972557
https://doi.org/10.1109/DSN.2017.62
https://doi.org/10.1109/DSN.2017.62
https://doi.org/10.1145/1235
https://hal.inria.fr/hal-01374140
https://hal.inria.fr/hal-03084276

BIBLIOGRAPHY 181

[200] L. Lesoil, M. Acher, X. Tërnava, A. Blouin and J.-M. Jézéquel, ‘The Interplay of Compile-
time and Run-time Options for Performance Prediction’, in SPLC ’21 - 25th ACM Inter-
national Systems and Software Product Line Conference - Volume A, Leicester, United King-
dom, Sep. 2021. doi: 10.1145/3461001.3471149. https://hal.archives-
ouvertes.fr/hal-03286127 (cit. on pp. 12, 156).

[201] H. Levene, ‘Robust tests for equality of variances’, Contributions to probability and stat-
istics. Essays in honor of Harold Hotelling, pp. 279–292, 1961 (cit. on p. 136).

[202] J. H. Liang, V. Ganesh, K. Czarnecki and V. Raman, ‘Sat-based analysis of large real-
world feature models is easy’, in Proceedings of the 19th International Conference on Soft-
ware Product Line, ser. SPLC ’15, Nashville, Tennessee: ACM, 2015, pp. 91–100, isbn:
978-1-4503-3613-0. doi: 10.1145/2791060.2791070. http://doi.acm.org/10.
1145/2791060.2791070 (cit. on pp. 56, 57).

[203] M. Lillack, J. Müller and U. W. Eisenecker, ‘Improved prediction of non-functional
properties in software product lines with domain context’, Software Engineering 2013,
2013 (cit. on p. 135).

[204] R. E. Lopez-Herrejon and A. Egyed, ‘On the need of safe software product line ar-
chitectures’, in Proceedings of the 4th European Conference on Software Architecture (ECSA
2010), ser. LNCS, vol. 6285, Springer, 2010, pp. 493–496 (cit. on p. 96).

[205] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Benavides, S. Segura
and A. Egyed, ‘An assessment of search-based techniques for reverse engineering fea-
ture models’, Journal of Systems and Software, 2014, issn: 0164-1212 (cit. on p. 85).

[206] H. B. Mann and D. R. Whitney, ‘On a test of whether one of two random variables
is stochastically larger than the other’, The annals of mathematical statistics, pp. 50–60,
1947 (cit. on p. 135).

[207] M. Mannion, J. Savolainen and T. Asikainen, ‘Viewpoint-oriented variability mod-
eling’, in Proceedings of the 33rd International Computer Software and Applications Con-
ference (COMPSAC’09), IEEE, 2009, pp. 67–72, isbn: 978-0-7695-3726-9. doi: http:
//dx.doi.org/10.1109/COMPSAC.2009.19 (cit. on p. 22).

[208] H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J. Jézéquel and D. E. Khelladi, ‘Transfer
learning across variants and versions: The case of linux kernel size’, Transactions on
Software Engineering (TSE), 2021 (cit. on pp. 12, 138, 151).

[209] H. Martin, J. A. Pereira, M. Acher and J. Jézéquel, ‘A comparison of performance
specialization learning for configurable systems’, in SPLC ’21: 25th ACM International
Systems and Software Product Line Conference, ACM, 2021 (cit. on pp. 12, 123, 158).

[210] D. McNamee, J. Walpole, C. Pu, C. Cowan, C. Krasic, A. Goel, P. Wagle, C. Consel, G.
Muller and R. Marlet, ‘Specialization tools and techniques for systematic optimization
of system software’, ACM Trans. Comput. Syst., vol. 19, no. 2, pp. 217–251, 2001. doi:
10.1145/377769.377778. http://doi.acm.org/10.1145/377769.377778
(cit. on p. 158).

[211] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi and S. Apel, ‘A comparison of 10
sampling algorithms for configurable systems’, in ICSE’16, 2016 (cit. on pp. 44, 46,
51–54, 60, 112, 115).

https://doi.org/10.1145/3461001.3471149
https://hal.archives-ouvertes.fr/hal-03286127
https://hal.archives-ouvertes.fr/hal-03286127
https://doi.org/10.1145/2791060.2791070
http://doi.acm.org/10.1145/2791060.2791070
http://doi.acm.org/10.1145/2791060.2791070
https://doi.org/http://dx.doi.org/10.1109/COMPSAC.2009.19
https://doi.org/http://dx.doi.org/10.1109/COMPSAC.2009.19
https://doi.org/10.1145/377769.377778
http://doi.acm.org/10.1145/377769.377778

182 BIBLIOGRAPHY

[212] J. Meinicke, C.-p. Wong, C. Kästner, T. Thüm and G. Saake, ‘On essential configuration
complexity: measuring interactions in highly-configurable systems’, in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering - ASE
2016, Singapore, Singapore: ACM Press, 2016, pp. 483–494 (cit. on pp. 44, 46).

[213] J. Melo, E. Flesborg, C. Brabrand and A. Wasowski, ‘A quantitative analysis of variab-
ility warnings in linux’, in Proceedings of the Tenth International Workshop on Variability
Modelling of Software-intensive Systems, ser. VaMoS ’16, Salvador, Brazil: ACM, 2016,
pp. 3–8, isbn: 978-1-4503-4019-9 (cit. on p. 140).

[214] M. Mendonca and D. Cowan, ‘Decision-making coordination and efficient reasoning
techniques for feature-based configuration’, Science of Computer Programming, vol. 75,
no. 5, pp. 311–332, 2010 (cit. on p. 22).

[215] M. Mendonca, A. Wasowski, K. Czarnecki and D. Cowan, ‘Efficient compilation tech-
niques for large scale feature models’, in Int’l Conference on Generative programming and
component engineering, 2008, pp. 13–22 (cit. on p. 134).

[216] M. Mendonça, M. Branco and D. D. Cowan, ‘S.p.l.o.t.: Software product lines online
tools’, in OOPSLA Companion, 2009, pp. 761–762 (cit. on pp. 68, 69).

[217] P. e. a. Merle, OW2 FraSCAti Web Site, http://frascati.ow2.org, 2008 (cit. on
p. 97).

[218] A. Mesbah, A. van Deursen and S. Lenselink, ‘Crawling ajax-based web applications
through dynamic analysis of user interface state changes’, ACM Trans. Web, vol. 6,
no. 1, 3:1–3:30, Mar. 2012, issn: 1559-1131. doi: 10.1145/2109205.2109208 (cit. on
p. 91).

[219] H. Miyashita, H. Tai and S. Amano, ‘Controlled modeling environment using flexibly-
formatted spreadsheets’, in ICSE’14, 2014 (cit. on p. 38).

[220] C. Molnar, Interpretable Machine Learning. Lulu. com, 2020 (cit. on p. 145).

[221] B. Morin, O. Barais, J. Jézéquel, F. Fleurey and A. Solberg, ‘Models@ run.time to
support dynamic adaptation’, IEEE Computer, vol. 42, no. 10, pp. 44–51, 2009. doi:
10.1109/MC.2009.327. http://dx.doi.org/10.1109/MC.2009.327 (cit. on
p. 9).

[222] S. Mühlbauer, S. Apel and N. Siegmund, ‘Identifying software performance changes
across variants and versions’, in 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2020, pp. 611–622 (cit. on p. 142).

[223] A. Murashkin, M. Antkiewicz, D. Rayside and K. Czarnecki, ‘Visualization and ex-
ploration of optimal variants in product line engineering’, in 17th International Software
Product Line Conference, SPLC 2013, Tokyo, Japan - August 26 - 30, 2013, T. Kishi, S. Jarza-
bek and S. Gnesi, Eds., ACM, 2013, pp. 111–115. doi: 10.1145/2491627.2491647.
https://doi.org/10.1145/2491627.2491647 (cit. on pp. 82, 85).

[224] G. C. Murphy, D. Notkin and K. J. Sullivan, ‘Software reflexion models: Bridging
the gap between design and implementation’, IEEE Trans. Softw. Eng., vol. 27, no. 4,
pp. 364–380, Apr. 2001, issn: 0098-5589. doi: 10.1109/32.917525. http://dx.
doi.org/10.1109/32.917525 (cit. on p. 96).

http://frascati.ow2.org
https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1109/MC.2009.327
http://dx.doi.org/10.1109/MC.2009.327
https://doi.org/10.1145/2491627.2491647
https://doi.org/10.1145/2491627.2491647
https://doi.org/10.1109/32.917525
http://dx.doi.org/10.1109/32.917525
http://dx.doi.org/10.1109/32.917525

BIBLIOGRAPHY 183

[225] I. M. Murwantara, B. Bordbar and L. L. Minku, ‘Measuring energy consumption for
web service product configuration’, in Proceedings of the 16th International Conference
on Information Integration and Web-based Applications & Services, ser. iiWAS, Hanoi, Viet
Nam: ACM, 2014, pp. 224–228, isbn: 978-1-4503-3001-5 (cit. on p. 135).

[226] S. Nadi, T. Berger, C. Kästner and K. Czarnecki, ‘Mining configuration constraints:
Static analyses and empirical results’, in ICSE, Hyderabad, 2014 (cit. on p. 82).

[227] V. Nair, T. Menzies, N. Siegmund and S. Apel, ‘Using bad learners to find good con-
figurations’, in Proceedings of the European Software Engineering Conference/Foundations
of Software Engineering (ESEC/FSE), 2017, pp. 257–267 (cit. on p. 135).

[228] V. Nair, Z. Yu, T. Menzies, N. Siegmund and S. Apel, ‘Finding faster configurations
using flash’, IEEE Transact. on Software Engineering, 2018 (cit. on p. 135).

[229] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini, C. A. Sutton,
J. D. Tygar and K. Xia, ‘Exploiting machine learning to subvert your spam filter.’, LEET,
vol. 8, pp. 1–9, 2008 (cit. on p. 126).

[230] S. Nestorov, S. Abiteboul and R. Motwani, ‘Inferring structure in semistructured data’,
SIGMOD Rec., vol. 26, no. 4, pp. 39–43, Dec. 1997, issn: 0163-5808. doi: 10.1145/
271074.271084. http://doi.acm.org/10.1145/271074.271084 (cit. on
p. 39).

[231] H. V. Nguyen, C. Kästner and T. N. Nguyen, ‘Exploring variability-aware execution for
testing plugin-based web applications’, in Proceedings of the 36th International Conference
on Software Engineering - ICSE ’14, ACM, 2014, pp. 907–918 (cit. on pp. 44, 45).

[232] N. Niu and S. M. Easterbrook, ‘Concept analysis for product line requirements’, in
AOSD’09, K. J. Sullivan, A. Moreira, C. Schwanninger and J. Gray, Eds., ACM, 2009,
pp. 137–148, isbn: 978-1-60558-442-3 (cit. on p. 82).

[233] OASIS, Service Component Architecture, http://www.oasis-opencsa.org/sca/,
2007 (cit. on p. 97).

[234] J. Oh, D. S. Batory, M. Myers and N. Siegmund, ‘Finding near-optimal configurations
in product lines by random sampling’, in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8,
2017, 2017, pp. 61–71 (cit. on p. 134).

[235] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee, J. K.
Aggarwal, H. Lee, L. Davis, E. Swears, X. Wang, Q. Ji, K. Reddy, M. Shah, C. Von-
drick, H. Pirsiavash, D. Ramanan, J. Yuen, A. Torralba, B. Song, A. Fong, A. Roy-
Chowdhury and M. Desai, ‘A large-scale benchmark dataset for event recognition in
surveillance video’, in Proceedings of the 2011 IEEE Conference on Computer Vision and
Pattern Recognition, ser. CVPR ’11, Washington, DC, USA: IEEE Computer Society,
2011, pp. 3153–3160, isbn: 978-1-4577-0394-2. doi: 10.1109/CVPR.2011.5995586.
http://dx.doi.org/10.1109/CVPR.2011.5995586 (cit. on p. 66).

[236] R. Olaechea, D. Rayside, J. Guo and K. Czarnecki, ‘Comparison of exact and approxim-
ate multi-objective optimization for software product lines’, in SPLC’14, 2014, pp. 92–
101 (cit. on pp. 75, 85).

[237] M. Opdenacker, Bof: Embedded linux size, Embedded Linux Conference North-America,
2018 (cit. on p. 138).

https://doi.org/10.1145/271074.271084
https://doi.org/10.1145/271074.271084
http://doi.acm.org/10.1145/271074.271084
http://www.oasis-opencsa.org/sca/
https://doi.org/10.1109/CVPR.2011.5995586
http://dx.doi.org/10.1109/CVPR.2011.5995586

184 BIBLIOGRAPHY

[238] Z. Ournani, M. C. Belgaid, R. Rouvoy, P. Rust, J. Penhoat and L. Seinturier, ‘Taming
energy consumption variations in systems benchmarking’, in ICPE ’20: ACM/SPEC
International Conference on Performance Engineering, Edmonton, AB, Canada, April 20-24,
2020, J. N. Amaral, A. Koziolek, C. Trubiani and A. Iosup, Eds., ACM, 2020, pp. 36–47.
doi: 10.1145/3358960.3379142. https://doi.org/10.1145/3358960.
3379142 (cit. on p. 156).

[239] S. J. Pan and Q. Yang, ‘A survey on transfer learning’, TKDE, vol. 22, no. 10, pp. 1345–
1359, 2009 (cit. on p. 146).

[240] R. R. Panko, ‘Thinking is bad: Implications of human error research for spreadsheet
research and practice’, CoRR, vol. abs/0801.3114, 2008 (cit. on p. 38).

[241] J. A. Parejo, A. B. Sánchez, S. Segura, A. Ruiz-Cortés, R. E. Lopez-Herrejon and A.
Egyed, ‘Multi-objective test case prioritization in highly configurable systems: A case
study’, Journal of Systems and Software, vol. 122, pp. 287–310, 2016 (cit. on p. 54).

[242] J. R. Parker, Algorithms for image processing and computer vision. Wiley. com, 2010 (cit. on
p. 62).

[243] C. A. Parra, A. Cleve, X. Blanc and L. Duchien, ‘Feature-based composition of software
architectures’, in ECSA’10, ser. LNCS, vol. 6285, Springer, 2010, pp. 230–245 (cit. on
p. 96).

[244] L. T. Passos, L. Teixeira, N. Dintzner, S. Apel, A. Wasowski, K. Czarnecki, P. Borba and
J. Guo, ‘Coevolution of variability models and related software artifacts - A fresh look
at evolution patterns in the linux kernel’, Empirical Soft. Eng., vol. 21, no. 4, pp. 1744–
1793, 2016. doi: 10.1007/s10664-015-9364-x (cit. on p. 142).

[245] B. Pérez Lamancha and M. Polo Usaola, ‘Testing Product Generation in Software
Product Lines Using Pairwise for Features Coverage’, in Testing Software and Systems:
22nd IFIP WG 6.1 International Conference, ICTSS 2010, Proceedings, A. Petrenko, A.
Simão and J. C. Maldonado, Eds. Springer, 2010, pp. 111–125 (cit. on pp. 112, 115).

[246] G. Perrouin, S. Sen, J. Klein, B. Baudry and Y. l. Traon, ‘Automated and scalable t-wise
test case generation strategies for software product lines’, in Proceedings of the 2010
Third International Conference on Software Testing, Verification and Validation, ser. ICST
’10, Washington, DC, USA: IEEE Computer Society, 2010, pp. 459–468, isbn: 978-0-
7695-3990-4 (cit. on p. 51).

[247] J. Petke, S. Yoo, M. B. Cohen and M. Harman, ‘Efficiency and early fault detection
with lower and higher strength combinatorial interaction testing’, in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013, Saint
Petersburg, Russia: ACM, 2013, pp. 26–36, isbn: 978-1-4503-2237-9 (cit. on p. 51).

[248] Q. Plazar, M. Acher, S. Bardin and A. Gotlieb, ‘Efficient and Complete FD-Solving for
Extended Array Constraints’, in IJCAI 2017, Melbourne, Australia, Aug. 2017. https:
//hal.archives-ouvertes.fr/hal-01545557 (cit. on p. 15).

[249] Q. Plazar, M. Acher, G. Perrouin, X. Devroey and M. Cordy, ‘Uniform Sampling of
SAT Solutions for Configurable Systems: Are We There Yet?’, in ICST 2019 - 12th
International Conference on Software Testing, Verification, and Validation, Xian, China, Apr.
2019, pp. 1–12. https://hal.inria.fr/hal-01991857 (cit. on pp. 12, 14, 15, 44,
57, 58).

https://doi.org/10.1145/3358960.3379142
https://doi.org/10.1145/3358960.3379142
https://doi.org/10.1145/3358960.3379142
https://doi.org/10.1007/s10664-015-9364-x
https://hal.archives-ouvertes.fr/hal-01545557
https://hal.archives-ouvertes.fr/hal-01545557
https://hal.inria.fr/hal-01991857

BIBLIOGRAPHY 185

[250] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer and S. Kowalewski, ‘Model-driven
support for product line evolution on feature level’, Journal of Systems and Software,
vol. 85, no. 10, pp. 2261–2274, 2012 (cit. on p. 96).

[251] K. Pohl, G. Böckle and F. J. van der Linden, Software Product Line Engineering: Found-
ations, Principles and Techniques. Springer-Verlag, 2005, isbn: 3540243720 (cit. on pp. 6,
22, 61, 82).

[252] J. Ponce, D. Forsyth, E.-p. Willow, S. Antipolis-Méditerranée, R. d’activité-RAweb, L.
Inria and I. Alumni, ‘Computer vision: A modern approach’, Computer, vol. 16, p. 11,
2011 (cit. on p. 62).

[253] A. Porter, C. Yilmaz, A. M. Memon, D. C. Schmidt and B. Natarajan, ‘Skoll: A process
and infrastructure for distributed continuous quality assurance’, IEEE Transactions on
Software Engineering, vol. 33, no. 8, pp. 510–525, 2007 (cit. on p. 135).

[254] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M. Houle, M.
Hubbell, M. Jones, A. Klein et al., ‘Measuring the impact of spectre and meltdown’, in
2018 IEEE High Performance extreme Computing Conference (HPEC), IEEE, 2018, pp. 1–5
(cit. on p. 143).

[255] R. Queiroz, T. Berger and K. Czarnecki, ‘Towards predicting feature defects in soft-
ware product lines’, in Proceedings of the 7th International Workshop on Feature-Oriented
Software Development, ACM, 2016, pp. 58–62 (cit. on p. 135).

[256] C. Quinton, D. Romero and L. Duchien, ‘Cardinality-based feature models with con-
straints: A pragmatic approach’, in 17th International Software Product Line Conference,
SPLC 2013, Tokyo, Japan - August 26 - 30, 2013, 2013, pp. 162–166. doi: 10.1145/
2491627.2491638. http://doi.acm.org/10.1145/2491627.2491638 (cit. on
pp. 68, 69).

[257] A. Rabkin and R. Katz, ‘Static extraction of program configuration options’, in ICSE’11,
Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 131–140, isbn: 978-1-4503-0445-0 (cit. on
p. 96).

[258] M. Raible, The JHipster mini-book. C4Media, 2015 (cit. on p. 45).

[259] I. Reinhartz-Berger, ‘Can domain modeling be automated? levels of automation in
domain modeling’, in SPLC ’14, 2014, p. 359 (cit. on p. 82).

[260] I. Reinhartz-Berger, A. Sturm and Y. Wand, ‘Comparing functionality of software sys-
tems: An ontological approach’, Data Knowl. Eng., vol. 87, pp. 320–338, 2013. doi:
10.1016/j.datak.2012.09.005. http://dx.doi.org/10.1016/j.datak.
2012.09.005 (cit. on p. 82).

[261] M.-O. Reiser and M. Weber, ‘Multi-level feature trees: A pragmatic approach to man-
aging highly complex product families’, Requir. Eng., vol. 12, no. 2, pp. 57–75, 2007
(cit. on pp. 22, 29).

[262] X. Ren, K. Rodrigues, L. Chen, C. Vega, M. Stumm and D. Yuan, ‘An analysis of
performance evolution of linux’s core operations’, in Proceedings of the 27th ACM SOSP,
2019, pp. 554–569 (cit. on pp. 142, 143).

[263] A. von Rhein, A. Grebhahn, S. Apel, N. Siegmund, D. Beyer and T. Berger, ‘Presence-
condition simplification in highly configurable systems’, in ICSE, 2015 (cit. on p. 120).

https://doi.org/10.1145/2491627.2491638
https://doi.org/10.1145/2491627.2491638
http://doi.acm.org/10.1145/2491627.2491638
https://doi.org/10.1016/j.datak.2012.09.005
http://dx.doi.org/10.1016/j.datak.2012.09.005
http://dx.doi.org/10.1016/j.datak.2012.09.005

186 BIBLIOGRAPHY

[264] T. Rogoll and F. Piller, ‘Product configuration from the customer’s perspective: A com-
parison of configuration systems in the apparel industry’, in PETO’04, 2004 (cit. on
p. 90).

[265] M. Rosenmüller, N. Siegmund, T. Thüm and G. Saake, ‘Multi-dimensional variability
modeling’, in VaMoS’11, ACM, 2011, pp. 11–20 (cit. on p. 22).

[266] M. Rosenmüller, N. Siegmund, T. Thüm and G. Saake, ‘Multi-dimensional variability
modeling’, in VaMoS, 2011, pp. 11–20 (cit. on pp. 68, 69).

[267] H. Samih, H. Le Guen, R. Bogusch, M. Acher and B. Baudry, ‘An Approach to Derive
Usage Models Variants for Model-based Testing’, Anglais, in 26th IFIP International
Conference on Testing Software and Systems (ICTSS’2014), Madrid, Espagne: Springer,
Sep. 2014. http://hal.inria.fr/hal-01025124 (cit. on p. 15).

[268] F. Samreen, Y. Elkhatib, M. Rowe and G. S. Blair, ‘Daleel: Simplifying cloud instance
selection using machine learning’, in NOMS 2016-2016 IEEE/IFIP Network Operations
and Management Symposium, IEEE, 2016, pp. 557–563 (cit. on p. 135).

[269] A. B. Sánchez, S. Segura, J. A. Parejo and A. Ruiz-Cortés, ‘Variability testing in the
wild: The drupal case study’, Software & Systems Modeling, vol. 16, no. 1, pp. 173–194,
2017, issn: 1619-1374 (cit. on pp. 44, 54).

[270] A. B. Sanchez, S. Segura and A. Ruiz-Cortes, ‘A Comparison of Test Case Prioritization
Criteria for Software Product Lines’, in 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation - ICST, IEEE, 2014, pp. 41–50 (cit. on pp. 44,
46).

[271] N. Sannier, M. Acher and B. Baudry, ‘From Comparison Matrix to Variability Model:
The Wikipedia Case Study’, in 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE’13), Palo Alto, USA, 2013. http://hal.inria.fr/hal-
00858491 (cit. on pp. 12, 13, 15, 33).

[272] N. Sannier, G. Bécan, M. Acher, S. Ben Nasr and B. Baudry, ‘Comparing or Configur-
ing Products: Are We Getting the Right Ones?’, Anglais, in 8th International Workshop
on Variability Modelling of Software-intensive Systems (VaMoS’14), A. Wasowski and T.
Weyer, Eds., Nice, France: ACM, Jan. 2014 (cit. on p. 33).

[273] A. Sarkar, J. Guo, N. Siegmund, S. Apel and K. Czarnecki, ‘Cost-efficient sampling for
performance prediction of configurable systems (t)’, in ASE’15, 2015 (cit. on pp. 112,
115, 131, 135, 138).

[274] J. Savolainen, M. Raatikainen and T. Männistö, ‘Eight practical considerations in ap-
plying feature modeling for product lines’, in ICSR, 2011, pp. 192–206 (cit. on pp. 61,
65, 66).

[275] M. Sayagh, N. Kerzazi, B. Adams and F. Petrillo, ‘Software configuration engineering
in practice: Interviews, survey, and systematic literature review’, IEEE Transactions on
Software Engineering, 2018 (cit. on p. 9).

[276] I. Schaefer, L. Bettini, V. Bono, F. Damiani and N. Tanzarella, ‘Delta-oriented program-
ming of software product lines’, in International Conference on Software Product Lines,
Springer, 2010, pp. 77–91 (cit. on p. 6).

http://hal.inria.fr/hal-01025124
http://hal.inria.fr/hal-00858491
http://hal.inria.fr/hal-00858491

BIBLIOGRAPHY 187

[277] P.-Y. Schobbens, P. Heymans and J.-C. Trigaux, ‘Feature diagrams: A survey and a
formal semantics’, in RE ’06: Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE’06), Washington, DC, USA: IEEE Computer Society, 2006,
pp. 136–145, isbn: 0-7695-2555-5. doi: http://dx.doi.org/10.1109/RE.2006.
23 (cit. on p. 68).

[278] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux and Y. Bontemps, ‘Generic semantics of
feature diagrams’, Comput. Netw., vol. 51, no. 2, pp. 456–479, 2007 (cit. on p. 22).

[279] J. Schroeter, M. Lochau and T. Winkelmann, ‘Multi-perspectives on feature models’,
in MoDELS’12, ser. LNCS, vol. 7590, 2012, pp. 252–268 (cit. on p. 22).

[280] U. P. Schultz, J. L. Lawall and C. Consel, ‘Automatic program specialization for java’,
ACM Trans. Program. Lang. Syst., vol. 25, no. 4, pp. 452–499, Jul. 2003, issn: 0164-0925.
doi: 10.1145/778559.778561. http://doi.acm.org/10.1145/778559.
778561 (cit. on p. 158).

[281] L. Seinturier, P. Merle, D. Fournier, N. Dolet, V. Schiavoni and J.-B. Stefani, ‘Reconfig-
urable SCA Applications with the FraSCAti Platform’, in Proceedings of the 2009 IEEE
International Conference on Services Computing (SCC 2009), IEEE, 2009, pp. 268–275 (cit.
on p. 97).

[282] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni and J.-B. Stefani, ‘A Component-
Based Middleware Platform for Reconfigurable Service-Oriented Architectures’, Soft-
ware: Practice and Experience, vol. 42, no. 5, pp. 559–583, May 2012. doi: 10.1002/
spe.1077. http://hal.inria.fr/inria-00567442 (cit. on p. 97).

[283] S. Sepúlveda, A. Cravero and C. Cachero, ‘Requirements modeling languages for soft-
ware product lines: A systematic literature review’, Information & Software Technology,
vol. 69, pp. 16–36, 2016. doi: 10.1016/j.infsof.2015.08.007. https://doi.
org/10.1016/j.infsof.2015.08.007 (cit. on p. 69).

[284] S. She, R. Lotufo, T. Berger, A. Wasowski and K. Czarnecki, ‘Reverse engineering
feature models’, in ICSE’11, 2011 (cit. on pp. 21, 25, 77, 91, 95, 96, 102).

[285] S. She, U. Ryssel, N. Andersen, A. Wasowski and K. Czarnecki, ‘Efficient synthesis of
feature models’, Information and Software Technology, vol. 56, no. 9, 2014 (cit. on pp. 77,
80).

[286] J. Siegmund, N. Siegmund and S. Apel, ‘Views on internal and external validity in
empirical software engineering’, in 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1, A. Bertolino, G. Can-
fora and S. G. Elbaum, Eds., IEEE Computer Society, 2015, pp. 9–19. doi: 10.1109/
ICSE.2015.24. https://doi.org/10.1109/ICSE.2015.24 (cit. on p. 14).

[287] N. Siegmund, A. Grebhahn, C. Kästner and S. Apel, ‘Performance-influence models
for highly configurable systems’, in ESEC/FSE’15, 2015 (cit. on pp. 131, 135, 138).

[288] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory, M. Rosenmüller
and G. Saake, ‘Predicting performance via automated feature-interaction detection’,
in International Conference on Software Engineering (ICSE), 2012, pp. 167–177 (cit. on
p. 134).

https://doi.org/http://dx.doi.org/10.1109/RE.2006.23
https://doi.org/http://dx.doi.org/10.1109/RE.2006.23
https://doi.org/10.1145/778559.778561
http://doi.acm.org/10.1145/778559.778561
http://doi.acm.org/10.1145/778559.778561
https://doi.org/10.1002/spe.1077
https://doi.org/10.1002/spe.1077
http://hal.inria.fr/inria-00567442
https://doi.org/10.1016/j.infsof.2015.08.007
https://doi.org/10.1016/j.infsof.2015.08.007
https://doi.org/10.1016/j.infsof.2015.08.007
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2015.24

188 BIBLIOGRAPHY

[289] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel and S. S. Koles-
nikov, ‘Scalable prediction of non-functional properties in software product lines: Foot-
print and memory consumption’, Inf. Softw. Technol., vol. 55, no. 3, pp. 491–507, 2013.
doi: 10.1016/j.infsof.2012.07.020. https://doi.org/10.1016/j.
infsof.2012.07.020 (cit. on p. 138).

[290] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel and S. S. Koles-
nikov, ‘Scalable prediction of non-functional properties in software product lines’, in
Software Product Line Conference (SPLC), 2011 15th International, 2011, pp. 160–169 (cit.
on p. 138).

[291] J. Sincero, W. Schroder-Preikschat and O. Spinczyk, ‘Approaching non-functional prop-
erties of software product lines: Learning from products’, in Software Engineering Con-
ference (APSEC), 2010 17th Asia Pacific, 2010, pp. 147–155 (cit. on p. 138).

[292] G. W. Snedecor and W. G. Cochran, ‘Statistical methods, 8thedn’, Ames: Iowa State
Univ. Press Iowa, 1989 (cit. on p. 136).

[293] C. Song, A. Porter and J. S. Foster, ‘Itree: Efficiently discovering high-coverage con-
figurations using interaction trees’, IEEE Transactions on Software Engineering, vol. 40,
no. 3, pp. 251–265, 2013 (cit. on p. 135).

[294] S. Souto, M. D’Amorim and R. Gheyi, ‘Balancing Soundness and Efficiency for Prac-
tical Testing of Configurable Systems’, in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE), IEEE, 2017, pp. 632–642 (cit. on p. 54).

[295] M. Svahnberg, J. van Gurp and J. Bosch, ‘A taxonomy of variability realization tech-
niques: Research articles’, Softw. Pract. Exper., vol. 35, no. 8, pp. 705–754, 2005, issn:
0038-0644. doi: http://dx.doi.org/10.1002/spe.v35:8 (cit. on p. 6).

[296] P. Temple, M. Acher and J.-M. Jézéquel, ‘Empirical Assessment of Multimorphic Test-
ing’, IEEE Transactions on Software Engineering (TSE), pp. 1–21, Jul. 2019. doi: 10.
1109/TSE.2019.2926971. https://hal.inria.fr/hal-02177158 (cit. on
pp. 13, 14, 123).

[297] P. Temple, M. Acher, J.-M. A. Jézéquel, L. A. Noel-Baron and J. A. Galindo, ‘Learning-
Based Performance Specialization of Configurable Systems’, IRISA, Inria Rennes ;
University of Rennes 1, Research Report, Feb. 2017. https://hal.archives-
ouvertes.fr/hal-01467299 (cit. on p. 124).

[298] P. Temple, M. Acher, J.-M. Jézéquel and O. Barais, ‘Learning-Contextual Variability
Models’, IEEE Software, vol. 34, no. 6, pp. 64–70, Nov. 2017. https://hal.inria.
fr/hal-01659137 (cit. on pp. 9, 12, 110, 135, 158).

[299] P. Temple, J. A. Galindo Duarte, M. Acher and J.-M. Jézéquel, ‘Using Machine Learning
to Infer Constraints for Product Lines’, in Software Product Line Conference (SPLC’16),
Beijing, China, Sep. 2016. doi: 10.1145/2934466.2934472. https://hal.
inria.fr/hal-01323446 (cit. on pp. 12, 110, 135).

[300] P. Temple, G. Perrouin, M. Acher, B. Biggio, J.-M. Jézéquel and F. Roli, ‘Empirical
Assessment of Generating Adversarial Configurations for Software Product Lines’,
Empirical Software Engineering (ESE), Nov. 2020 (cit. on pp. 12, 124, 130).

https://doi.org/10.1016/j.infsof.2012.07.020
https://doi.org/10.1016/j.infsof.2012.07.020
https://doi.org/10.1016/j.infsof.2012.07.020
https://doi.org/http://dx.doi.org/10.1002/spe.v35:8
https://doi.org/10.1109/TSE.2019.2926971
https://doi.org/10.1109/TSE.2019.2926971
https://hal.inria.fr/hal-02177158
https://hal.archives-ouvertes.fr/hal-01467299
https://hal.archives-ouvertes.fr/hal-01467299
https://hal.inria.fr/hal-01659137
https://hal.inria.fr/hal-01659137
https://doi.org/10.1145/2934466.2934472
https://hal.inria.fr/hal-01323446
https://hal.inria.fr/hal-01323446

BIBLIOGRAPHY 189

[301] C. Thornton, F. Hutter, H. H. Hoos and K. Leyton-Brown, ‘Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms’, in Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining,
ACM, 2013, pp. 847–855 (cit. on p. 135).

[302] T. Thüm, S. Apel, C. Kästner, I. Schaefer and G. Saake, ‘A classification and survey of
analysis strategies for software product lines’, ACM Computing Surveys, 2014 (cit. on
pp. 44, 45, 75, 134).

[303] T. Thüm, D. Batory and C. Kästner, ‘Reasoning about edits to feature models’, in
ICSE’09, Vancouver, Canada: ACM, 2009, pp. 254–264 (cit. on pp. 27, 112).

[304] T. Thüm, C. Kästner, S. Erdweg and N. Siegmund, ‘Abstract features in feature mod-
eling’, in SPLC’11, Munich: IEEE, Aug. 2011, pp. 191–200 (cit. on p. 107).

[305] L. Torvalds, ‘The linux edge’, Communications of the ACM, vol. 42, no. 4, pp. 38–38,
1999 (cit. on p. 138).

[306] A. Trentin, E. Perin and C. Forza, ‘Sales configurator capabilities to prevent product
variety from backfiring’, in Workshop on Configuration (ConfWS), Montpellier, France,
2012 (cit. on p. 90).

[307] S. Trujillo, C. Kästner and S. Apel, ‘Product lines that supply other product lines: A
service-oriented approach’, in SPLC Workshop: Service-Oriented Architectures and Product
Lines - What is the Connection?, Kyoto, Japan, Sep. 2007 (cit. on p. 22).

[308] E. Vacchi, W. Cazzola, B. Combemale and M. Acher, ‘Automating Variability Model
Inference for Component-Based Language Implementations’, Anglais, in 18th Inter-
national Software Product Line Conference (SPLC’14), P. Heymans and J. Rubin, Eds.,
Florence, Italie: ACM, Sep. 2014. http://hal.inria.fr/hal-01023864 (cit. on
p. 108).

[309] P. Valov, J. Guo and K. Czarnecki, ‘Empirical comparison of regression methods for
variability-aware performance prediction’, in SPLC’15, 2015 (cit. on p. 135).

[310] P. Valov, J. Guo and K. Czarnecki, ‘Empirical comparison of regression methods for
variability-aware performance prediction’, in SPLC’15 (cit. on p. 124).

[311] P. Valov, J. Petkovich, J. Guo, S. Fischmeister and K. Czarnecki, ‘Transferring perform-
ance prediction models across different hardware platforms’, in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering, ICPE 2017, L’Aquila,
Italy, April 22-26, 2017, 2017, pp. 39–50. doi: 10.1145/3030207.3030216. http:
//doi.acm.org/10.1145/3030207.3030216 (cit. on p. 124).

[312] P. Valov, J.-C. Petkovich, J. Guo, S. Fischmeister and K. Czarnecki, ‘Transferring per-
formance prediction models across different hardware platforms’, in Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering, ACM, 2017,
pp. 39–50 (cit. on pp. 135, 145, 147, 149).

[313] D. Van Landuyt, S. Op De Beeck, A. Hovsepyan, S. Michiels, W. Joosen, S. Meynckens,
G. De Jong, O. Barais and M. Acher, ‘Towards Managing Variability in the Safety
Design of an Automotive Hall Effect Sensor’, Anglais, in 18th International Software
Product Line Conference (SPLC’14), industrial track, Florence, Italie, Jul. 2014. http:
//hal.inria.fr/hal-01018938 (cit. on p. 16).

http://hal.inria.fr/hal-01023864
https://doi.org/10.1145/3030207.3030216
http://doi.acm.org/10.1145/3030207.3030216
http://doi.acm.org/10.1145/3030207.3030216
http://hal.inria.fr/hal-01018938
http://hal.inria.fr/hal-01018938

190 BIBLIOGRAPHY

[314] A. Vargha and H. D. Delaney, ‘A critique and improvement of the cl common language
effect size statistics of mcgraw and wong’, Journal of Educational and Behavioral Statistics,
vol. 25, no. 2, pp. 101–132, 2000 (cit. on p. 135).

[315] M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi and I. Schaefer, ‘A
classification of product sampling for software product lines’, in Proceeedings of the
22nd International Conference on Systems and Software Product Line - Volume 1, SPLC 2018,
Gothenburg, Sweden, September 10-14, 2018, 2018, pp. 1–13. doi: 10.1145/3233027.
3233035. http://doi.acm.org/10.1145/3233027.3233035 (cit. on pp. 60,
134).

[316] V. Weber, ‘Utfm - a next generation language and tool for feature modeling’, PhD
thesis, Faculty of Electrical Engineering, Mathematics and Computer Science of the
University of Twente, Aug. 2014. http://essay.utwente.nl/65854/ (cit. on
pp. 68, 69).

[317] M. Weckesser, R. Kluge, M. Pfannemüller, M. Matthé, A. Schürr and C. Becker, ‘Op-
timal reconfiguration of dynamic software product lines based on performance-influence
models’, in International Systems and Software Product Line Conference (SPLC), ACM,
2018, pp. 98–109 (cit. on p. 135).

[318] W. Wei, J. Erenrich and B. Selman, ‘Towards efficient sampling: Exploiting random
walk strategies’, in AAAI, vol. 4, 2004, pp. 670–676 (cit. on p. 56).

[319] K. Weiss, T. M. Khoshgoftaar and D. Wang, ‘A survey of transfer learning’, Journal of
Big data, vol. 3, no. 1, p. 9, 2016 (cit. on p. 146).

[320] D. Westermann, J. Happe, R. Krebs and R. Farahbod, ‘Automated inference of goal-
oriented performance prediction functions’, in IEEE/ACM International Conference on
Automated Software Engineering (ASE), ACM, 2012, pp. 190–199 (cit. on p. 135).

[321] N. Weston, R. Chitchyan and A. Rashid, ‘A framework for constructing semantically
composable feature models from natural language requirements’, in SPLC’09, ACM,
2009, pp. 211–220 (cit. on p. 96).

[322] D. Wille, S. Holthusen, S. Schulze and I. Schaefer, ‘Interface variability in family model
mining’, in Proceedings of the 17th International Software Product Line Conference co-located
workshops, 2013, pp. 44–51 (cit. on p. 96).

[323] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy and R. Talwadker, ‘Hey, you have given
me too many knobs!: Understanding and dealing with over-designed configuration in
system software’, in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September 4, 2015, 2015, pp. 307–
319. doi: 10.1145/2786805.2786852. http://doi.acm.org/10.1145/
2786805.2786852 (cit. on p. 9).

[324] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou and S. Pasupathy,
‘Do not blame users for misconfigurations’, in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP ’13, Farminton, Pennsylvania:
ACM, 2013, pp. 244–259, isbn: 978-1-4503-2388-8. doi: 10.1145/2517349.2522727.
http://doi.acm.org/10.1145/2517349.2522727 (cit. on p. 157).

[325] C. Yilmaz, M. B. Cohen and A. A. Porter, ‘Covering arrays for efficient fault charac-
terization in complex configuration spaces’, IEEE Transactions on Software Engineering,
vol. 32, no. 1, pp. 20–34, 2006 (cit. on p. 135).

https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1145/3233027.3233035
http://doi.acm.org/10.1145/3233027.3233035
http://essay.utwente.nl/65854/
https://doi.org/10.1145/2786805.2786852
http://doi.acm.org/10.1145/2786805.2786852
http://doi.acm.org/10.1145/2786805.2786852
https://doi.org/10.1145/2517349.2522727
http://doi.acm.org/10.1145/2517349.2522727

BIBLIOGRAPHY 191

[326] L. A. Zaid, F. Kleinermann and O. D. Troyer, ‘Feature assembly: A new feature mod-
eling technique’, in Conceptual Modeling (ER’10), 2010, pp. 233–246 (cit. on p. 29).

[327] W. Zhang, H. Yan, H. Zhao and Z. Jin, ‘A bdd-based approach to verifying clone-
enabled feature models’constraints and customization’, High Confidence Software Reuse
in Large Systems, pp. 186–199, 2008. http://dx.doi.org/10.1007/978-3-540-
68073-4_18 (cit. on p. 70).

[328] Y. Zhang, J. Guo, E. Blais, K. Czarnecki and H. Yu, ‘A mathematical model of performance-
relevant feature interactions’, in International Systems and Software Product Line Confer-
ence (SPLC), ACM, 2016, pp. 25–34 (cit. on p. 135).

[329] W. Zheng, R. Bianchini and T. D. Nguyen, ‘Automatic configuration of internet ser-
vices’, ACM SIGOPS Operating Systems Review, vol. 41, no. 3, pp. 219–229, 2007 (cit. on
p. 135).

[330] T. Ziadi, L. Frias, M. A. A. da Silva and M. Ziane, ‘Feature identification from the
source code of product variants’, in CSMR, T. Mens, A. Cleve and R. Ferenc, Eds.,
IEEE, 2012, pp. 417–422, isbn: 978-1-4673-0984-4 (cit. on p. 91).

http://dx.doi.org/10.1007/978-3-540-68073-4_18
http://dx.doi.org/10.1007/978-3-540-68073-4_18

	1 Introduction
	1.1 Context
	1.2 Challenges and Objectives
	1.3 Overview of Scientific Contributions
	1.4 Research Methods
	1.5 Supervision
	1.6 Grants, Contracts, and Projects
	1.7 Organization of the manuscript

	2 Modelling Software Variability
	2.1 Automated feature model management
	2.1.1 Composing and decomposing feature models
	2.1.2 FAMILIAR, a language for combining feature model operators

	2.2 Feature models and product comparison matrices
	2.3 Sampling feature models' configurations
	2.3.1 Effectiveness of sampling strategies for testing
	2.3.2 Scalability and quality of uniform samplers

	2.4 In search of the right variability language and models
	2.5 Wrap-up, applicability, and limitations

	3 Reverse Engineering Software Variability
	3.1 Synthesizing attributed feature models out of tabular data
	3.2 Mining variability out of textual descriptions
	3.3 Reverse engineering Web configurators
	3.4 Reverse engineering architectural variability models
	3.5 Wrap-up, applicability, and limitations

	4 Learning Software Variability
	4.1 Learning variability constraints
	4.1.1 Using machine learning to infer constraints
	4.1.2 Learning contextual variability models

	4.2 Adversarial learning for variability
	4.3 Learning variability performance
	4.4 Transfer learning across variants and versions: the case of Linux
	4.5 Wrap-up, applicability, and limitations

	5 Conclusion
	6 Perspectives
	6.1 Deep Software Variability
	6.2 Software Variability and Security
	6.2.1 Debloating software variability
	6.2.2 Variability data and security
	6.2.3 Linux configurations and security

	6.3 Smart Build of Software Configurations
	6.4 Software Variability and Science

	Bibliography

