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Abstract—In-band Network Telemetry (INT) has recently
emerged as a means of achieving per-packet near real-time
visibility into the network. INT capable network devices can
directly embed device internal state such as packet processing
time, queue occupancy and link utilization information in each
passing packet. INT is enabling new network monitoring appli-
cations and is currently being used in production for providing
fine-grained feedback to congestion control mechanisms. The
microscopic network visibility facilitated by INT comes at the
expense of increased data plane overhead. INT piggybacks
telemetry information on user data traffic and can significantly
increase packet size. A direct consequence of increasing packet
size for carrying telemetry data is a substantial drop in network
goodput. This paper aims at striking a balance between reducing
INT data plane overhead and the accuracy of network view
constructed from telemetry data. To this end, we propose LINT,
an accuracy-adaptive and Lightweight INT mechanism that
can be implemented on commodity programmable devices. Our
evaluation of LINT using real network traces on a fat tree
topology demonstrates that LINT can reduce INT data plane
overhead by ≈25% while ensuring more than 0.9 recall for
monitoring queries trying to identify congested flows and switches
in the network.

Index Terms—Network telemetry, Programmable networks

I. INTRODUCTION

Network monitoring is fundamental to network manage-
ment and is the basis of many network Operations, Ad-
ministration and Management (OAM) activities such as fault
management [1], traffic engineering [2], threat detection and
mitigation [3], [4], and capacity planning, accounting and
billing [5], among others. Traditionally, network monitoring
has been pull-based, i.e., a centralized control plane or network
management system periodically reads the counters from the
network devices [2], [6]. A drawback of pull-based monitoring
is the coarse time granularity of monitoring the network,
typically in the order of seconds or minutes. In response to
the limitations of pull-based monitoring, push-based streaming
telemetry has been recently emerging as a paradigm where
network devices directly stream telemetry information to data
collection and analytics engines [7]–[9], providing near real-
time and microscopic visibility into the network.

Along the same vein of streaming telemetry, In-band Net-
work Telemetry (INT) [10] has recently emerged as a means
to obtain per-packet real time view of the network. INT is
an outstanding effort to enable network devices (e.g., software
and hardware switches, Network Interface Cards (NICs)) to

embed device internal state such as packet processing latency,
queue depth and link utilization into each passing packet,
consequently, facilitating a real-time and microscopic view
into network traffic. Such fine-grained telemetry capability is
enabling new use-cases such as pin-pointing the root cause
of congestion and packet drops through switch queue pro-
filing [11] and per-packet fine-grained feedback to support
low-latency data center transport [12], which are otherwise
difficult to perform with traditional network monitoring. As
of today, INT is supported by commodity hardware such as
fixed function and programmable switches [11], [13], and
SmartNICs [14], [15], and is being deployed in production
telecommunications and data center networks [12], [16].

The microscopic telemetry capabilities enabled by INT
come at the expense of increased data plane overhead [17],
[18]. This overhead is attributed to each INT capable network
device on a packet’s path augmenting the packet with telemetry
data, thus increasing the packet’s size in proportion to the
path length. For instance, collecting three telemetry data items
on a 5-hop path in a data center results in more than 40%
additional bits (compared to the original packet size) added to
a packet (details in Section II). Packet size increase for car-
rying telemetry data can have several negative consequences.
First, it reduces data plane goodput since a lesser fraction of
the bits in a packet now become usable for transporting user
data traffic [18]. Furthermore, packet size increase beyond the
Maximum Transport Unit (MTU) fragments the packet, adding
the overhead of packet reassembly and potentially increasing
latency. In this context, we set out to answer the following
question: can we reduce INT data plane overhead without
severely degrading the quality of network monitoring queries
that rely on telemetry data collected through INT?

In this paper, we aim at reducing the data plane overhead
of INT while reaping its benefits as much as possible. Our
objective is to identify and filter the less interesting obser-
vations of telemetry data directly in the data plane without
negatively impacting the quality of collected telemetry data.
In this context, we use quality of results produced by different
network monitoring queries as an indicator of the quality of
the telemetry data. To this end, we propose LINT, an accuracy-
adaptive and Lightweight INT mechanism that runs in the data
plane. Specifically, we make the following contributions:

• We analyze several publicly available real network traces
to quantify INT data plane overhead. Our study comple-



ments the one presented in [18] that uses synthetic traffic.
• We present LINT, an accuracy-adaptive and lightweight

INT mechanism for programmable data plane. Network
devices employing LINT independently decide on se-
lectively reporting telemetry data on passing packets,
without any explicit coordination and intervention from
a control plane.

• We evaluate LINT using a combination of network emu-
lation and simulation, and publicly available real network
traces. Our simulation results show that LINT can reduce
INT data plane overhead by about 25% while achieving
more than 90% recall (compared to regular INT) for
monitoring queries trying to identify flows with high
latency and congested switches in the network.

The rest of the paper is organized as follows. We first briefly
describe how INT operates in Section II. In the same section,
we also present an empirical study demonstrating the extent of
incurred INT data plane overhead using real network traces.
Then, we present our solution in Section III followed by the
evaluation of LINT using real network traces in Section IV.
We discuss the related works and contrast our work with state-
of-the-art in Section V. Finally, we conclude with some future
research directions in Section VI.

II. BACKGROUND AND MOTIVATION

A. In-band Network Telemetry (INT)
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Fig. 1. INT operation

INT is a standardization effort from the P4 applications
working group for gaining near real-time microscopic visibil-
ity into the network [10]. As mentioned earlier, INT enables
network devices to embed telemetry information directly into
the passing packets. The INT specification makes the follow-
ing conceptual classification of network devices:

INT source: The first network device on a packet’s path
that initiates INT and embeds telemetry data in the packet.
This INT source can be a software switch, a SmartNIC, or an
INT capable top-of-rack switch or a border router.

INT transit: The network devices on a packet’s path that
embed telemetry data in the packets.

INT sink: The last INT capable device on a packet’s path.
An INT sink strips off all the telemetry information from
a packet, constructs an INT report according to the INT
specification [10] and sends the INT report to a collector. The
INT sink can be configured to send all or selectively some of
the reports to the collector based on pre-defined policies.

The operation of INT is summarized in Fig. 1. An INT
source can be configured to initiate telemetry data collection
for each packet or for packets matching a watchlist. The
INT source initiates the telemetry data collection process by

TABLE I
EXAMPLE OF TELEMETRY DATA

Telemetry data Description

Switch ID Identifier associated with a device
Ingress Port ID Identifier of the packet’s arriving port
Egress Port ID Identifier of the packet’s outgoing port
Ingress/Egress Timestamp The packet’s time of arrival/departure
Hop Latency Time spent by the packet in the device
Egress port TX utilization Utilization of the packet’s output port
Queue occupancy The packet’s observed outgoing queue size

encapsulating the packet using one of the protocols described
in the INT specification and inserting an INT metadata header
(12 bytes) into a packet. An INT header contains control
information such as the maximum number of INT capable
devices on the packet’s path, the encapsulation protocol to
use for INT and the set of telemetry data that each INT transit
device should add to the packet. Then, each INT transit device
adds telemetry data to the packets carrying INT metadata
header. Finally, the INT sink strips the telemetry information
from the packets, removes the encapsulation and INT metadata
headers, and restores the original packet before sending it to
its destination. The sink can be configured to send all or a
subset of reports to a collector based on pre-defined policies
(e.g., report only when total path latency exceeds a threshold).

The current INT specification defines a set of telemetry
data items (4 bytes each) as presented in Table I [10].
However, programmable switches and SmartNICs enabled by
the Protocol Independent Switch Architecture (PISA) [22] can
be programmed using the P4 programming language [23] for
computing other functions on the packets and the flows (e.g.,
mean packet size, moving average of queue occupancy), and
augment the packets with the result. Telemetry data collected
through INT can be used for answering network monitoring
queries that require per-packet information (e.g., identifying
flows that have a congested switch on its path, computing
per-packet end-to-end latency distribution, per-switch queue
profiling for identifying root cause of congestion or increased
tail latency, among others) or provide feedback to control and
management applications (e.g., congestion control [12]).

B. INT Overhead

There are several sources of overhead in INT. First, the
INT source adds a 12 byte INT metadata header to each
packet [10]. Then, each INT transit node adds one or more
telemetry data items to the packet according to the instruction
embedded in the INT metadata header. The INT specifica-
tion reserves 4 bytes for each telemetry data item to be
added [10]. Therefore, a switch reporting 3 data items such as
its SwitchID, the hop latency and the queue occupancy will
add 12 bytes to the passing packets. Since each transit node on
a packet’s path adds telemetry data to the packet, INT overhead
increases linearly with the path length of the packet. For
instance, if a packet goes through 5 INT switches (including
the INT source) and each switch is adding 3 telemetry data
items, then the packet will have 72 bytes added to it when
it reaches the INT sink. For MTU size packets (1500 bytes
for Ethernet), the bit overhead can translate to ≈5% increase
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(a) FB-WS [19]
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(b) UNIV1 [20]
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(c) CAIDA (Equinix 2016) [21]
Fig. 2. Packet size increase due to INT
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Fig. 3. Mean normalized goodput of a link by varying the INT hops (i.e.,
the per-packet overhead) and link utilization (considering packet sizes from
the UNIV1 trace [20])

in packet size. However, the mean and median packet sizes in
most networks are typically much smaller than the MTU (e.g.,
median packet size is close to 250 bytes in data centers [19],
[20]), resulting in higher per-packet bit overhead due to INT.

More recently, an empirical study in [18] sheds light on
the extent of network goodput degradation due to INT’s bit
overhead in the data plane. This study used ns3 simulation on
a fat-tree data center network [24] with synthetic traffic gener-
ated from a web search workload. The results show that INT’s
bit overhead in the data plane can reduce network goodput by
as much as ≈ 20%. In this paper, we present a complementary
study to that presented in [18], demonstrating the extent of per-
packet bit overhead on some publicly available real network
traces. Specifically, we analyze the traces from Facebook’s
production web service cluster (FB-WS) [19], a campus data
center network (UNIV1 data set from [20]) and a wide-area
network traffic capture from CAIDA (Equinix 2016) [21].
Unlike the UNIV1 and CAIDA traces, the FB-WS trace does
not contain packet captures. Rather, it contains meta-data
extracted from sampled packets (e.g., packet size, source and
destination racks and pods) from the end-hosts.

The result of our analysis is presented in Fig. 2. For this
analysis, we assumed collecting three telemetry data items
from each switch on a packet’s path. We varied the number
of INT devices on a packet’s path (i.e., Hops in the figure)
from 1 to 5. To provide some context, in a fat-tree data center
network [24], a path between servers within the same pod
and different pods is 2 and 4 hops, respectively. For wide
area networks such as the autonomous system level graph, the
median path length lies between 5 and 6 [25]. Note that for the
FB-WS trace, we leveraged the meta-data describing a packet’s
source and destination pod and rack, and correlated that with

Facebook’s data center network architecture [26] to identify
the number of hops. All the clusters in Facebook’s production
network exhibited similar behavior, except for the Hadoop
cluster, where almost all the packets were MTU sized. For the
other traces, no such meta-data was made available, hence, we
experimented with a range of hop counts. In Fig. 2, we plot
the distribution of per-packet overhead (the box represents the
quartiles and the bars’ end points represent the extremes) in
terms of percent increases from original packet size.

For the FB-WS, UNIV1, and CAIDA traces, the median
packet size increase is ≈40%, ≈40%, and ≈10% compared
to the original packet size, respectively, for collecting three
telemetry data items on a 4-hop path. On the higher end of the
distribution, we observe the 75-th percentile overhead under
the same setting to be ≈70%, ≈90%, and ≈30%, respectively,
which is significant. A direct consequence of packet size
increase for transporting telemetry data is reduced network
goodput since lesser fraction of the bits in a packet remain
available for transporting the original network traffic.

We also conduct another analytical study to measure the
impact of INT data plane overhead on network goodput. For
this study, we consider a 10 Gbps network link carrying
traffic similar to that of the UNIV1 trace [19]. We assume
the packet sizes to be uniform and equal to the median packet
size in UNIV1 trace. With this assumption, we compute that
link’s goodput considering different levels of utilization and
normalize the result with that from the case when INT is not
used. We can see from the results in Fig. 3 that even for one
hop, INT data plane overhead can reduce network goodput by
≈20%. Moreover, on a typical pod-to-pod path in a fat-tree
topology (i.e., 4 hops), the goodput can reduce by ≈30% due
to packet size increase. These analytical results motivate the
need for mechanisms that can strike a balance between INT
data plane overhead and the quality of collected telemetry data
for answering network monitoring queries.

III. THE LINT ALGORITHM

We can draw an analogy between INT and sensor networks.
INT capable devices are similar to sensors that measure and
report certain metrics from the environment to a collector or
sink. Sensors are typically resource constrained (e.g., limited
battery life and limited network bandwidth), therefore, need to
carefully measure and report without abusing the constrained
resources. Albeit not constraint, however, INT needs to work
in a way to not incur significant data plane overhead, thereby,



negatively impacting regular network operations. Given the
similarity, we leverage techniques from model-driven data
acquisition, a well-studied topic in the sensor networking
literature for reducing data transmission from sensor nodes
to the sinks [27]. We propose LINT, an accuracy-adaptive
and lightweight INT mechanism that can run in programmable
data plane. LINT selectively reports telemetry data items on
passing packets by estimating accuracy loss at the collector.
LINT can be implemented within the constraints of commodity
programmable PISA devices, and can work without any global
coordination and intervention from a control plane.

In the following, we first give a brief overview of model-
driven data acquisition that forms the basis of our solution
(Section III-A) followed by the description of LINT (Sec-
tion III-B). We also present LINT-flow (Section III-C), an
extension of LINT that takes the flow-context of the packets
into consideration. Finally, we conclude this section with some
implementation considerations for LINT (Section III-D).

A. Overview of Model-driven Data Acquisition

In the model-driven data acquisition paradigm, a prediction
model is used to determine if sensors should be queried for
new data or to filter the data at the sensor. The prediction
model is devised for capturing the pattern of the measurements
or to correlate measurements of different metrics. At one
extreme of the approach is the one presented in [27], where
the model is solely used for determining if a query engine
should query the sensor nodes for measurements or not. The
query engine queries a sensor only when it determines that the
model output is not sufficient for maintaining a satisfactory
level of accuracy. In contrast, the Spanish Inquisition Protocol
(SIP) [28] is on the other extreme where a predictor is used to
solely determine if a sensor reading should be transmitted to
a sink or can be dropped at the sensor. The sensors using SIP
use a predictor function to forecast what the sink is expecting
next to receive. When the estimation indicates that the current
sensor reading is far off from what the sink is expecting, only
then the sensors send their readings to the sink. Our problem
is close to the latter, i.e., determining from the data plane if
telemetry data items should be reported. Hence, we will use
SIP as a basis for our solution. A comprehensive survey of
model-driven data acquisition techniques can be found in [29].

B. LINT: Accuracy-adaptive and Lightweight INT

1) Overview: While designing LINT, our goal is to keep
it lightweight. In other words, LINT should be capable of
running within the constraint of commodity PISA devices such
as no floating point operations, limited to no multiplication
and no division, no loops or recursion, limited number of
match-action stages and limited match-action entries per-stage,
and only one stateful register memory read-modify-write per
packet processing stage [22], [30]. Furthermore, executing
LINT should not consume substantial amount of device re-
sources and should leave enough resources for running other
applications (e.g., [31]–[34]) on a PISA device.

Algorithm 1: LINT Algorithm
Input: p = The current packet; D = metrics to monitor; α =

weight parameter of EWMA; δ = error threshold
1 function LINT(p,D, α, δ)
2 foreach d ∈ D do
3 vald ← current observation of d
4 s← dnext

D , t← dnext
C

5 dnext
D ← αvald + (1− α)s

6 deviation← |dnext
D − t|

7 if deviation > δdnext
D then

8 p.add telemetry observation(d, vald)
9 dnext

C ← αvald + (1− α)t

Therefore, to keep LINT simple, we build on SIP presented
in [28]. For each packet with an INT metadata header that
arrives at a PISA device, LINT makes the decision of reporting
a telemetry data item according to Algorithm 1 as follows. A
device running LINT tries to estimate the amount of error that
can be introduced at the collector if the requested telemetry
data items are not piggybacked on the current packet. For
estimating this error, the device uses a predictor function for
each telemetry data item of interest. The predictor function for
a telemetry data item d is used for computing the following:

• dnextD : the predictor function applied on all past observa-
tions of d in this device.

• dnextC : the predictor function applied on the observations
of d reported to the collector.

Essentially, the quantity dnextC denotes what the collector
will predict about the observation of d if the current ob-
servation is not reported. The device decides to report the
currently observed value of d if the difference between dnextD

and dnextC is within an operator defined fraction δ of dnextD ,
i.e., |dnextD − dnextC | ≤ δ × dnextD (line 4 – 7). In other words,
when the device estimates that the prediction error at the
collector can go above an acceptable threshold, it reports the
current observation. Otherwise, the device skips reporting the
current observation of d. In this way, LINT adapts telemetry
data reporting to estimated error. Note that we can choose the
parameter δ to be in the form 2−m, in this way replace the
multiplication operation by a bit shift operation.

2) Device and collector coordination: The value of dnextD is
updated whenever a packet arrives with INT metadata header
instruction for reporting d. However, dnextC is updated only
when the device reports an observation of d piggybacking
on a packet. The collector replaces any missing telemetry
data item d not reported by a device on the packet’s path
by using the same predictor function as the device. In this
way, both the device and the collector stay in sync about the
extent of the error due to not reporting an observation of a
telemetry data item d. Also, each device independently makes
their own decision. Indeed, additional information about the
error estimate can improve the quality of decision making for a
device. However, that would require coordination between the
devices and is not a desirable for keeping LINT lightweight.

3) Choice of predictor function: The concrete realization
of LINT requires deciding on a predictor function that can
be computed within the constraints of PISA devices. In this



regard, we chose from the moving average family of predictor
functions since they have a constant memory footprint, have
less number of parameters to tune and are computationally
lightweight. We leave the exploration of more computationally
demanding predictor such as machine learning based predic-
tion [35] for a future exploration. Specifically, we chose to
use Exponentially Weighted Moving Average (EWMA) [36]
for LINT. EWMA computes moving average of a data stream
by applying exponentially decaying weights to the items in the
stream according to the order they appear. As time progresses,
observations further in the past have lesser and lesser impact
on EWMA. We can recursively compute EWMA for a stream
of observations x̃ = 〈x0, x1, . . . xt〉 as follows:

S0 = x0

St = αxt + (1− α)St−1 (0 < α < 1)

Here, xt is the observation at the current time t, St is the
EWMA at time t computed from xt and St−1. The weight
α determines how much importance will be given to the past
observations. The multiplication term involving the fraction α
can be avoided by choosing α of the form 2−m (for some
integer m > 0) [30]. By doing so, we can rewrite the EWMA
computation equation as follows:

St = St−1 + 2−m(xt − St−1) (m > 0) (1)

The multiplication by 2−m (m > 0) in (1) can be performed
by shifting bits to the right m times, which is supported by
commodity programmable hardware.

C. LINT-Flow: Flow-context aware LINT

Very often packets from the same network flow exhibit
similar behavior (e.g., often due to packets of the same flow
belonging to the same application) and are subjected to same
operational policies (e.g., packets from the same flow sent
to the same output queue based on flow priority). Therefore,
applying the predictor function with a packet’s flow context in
consideration has the potential to reduce errors. In this regard,
we propose LINT-flow, an extension of LINT that also takes
a packet’s flow context into consideration while applying the
predictor function.

In contrast to maintaining a pair of EWMA values for
each telemetry data item (i.e., EWMA of all observations
in a device and EWMA of the observations reported to the
collector from the device), we maintain a pair of EWMA
values for each observed flow in a hash table. Without loss of
generality we assume the network flows are identified by the
five tuple (source IP, destination IP, network protocol, source
port, destination port). When a packet with INT metadata
header arrives at a device, LINT-flow identifies the hash table
entries corresponding to the flow that the packet belongs to
and updates the EWMA values accordingly. Subsequently,
LINT-flow considers the difference between the EWMA values
corresponding to the packet’s flow while deciding which
telemetry data item(s) should be reported on a packet.

D. Implementation Considerations

Realizing LINT on programmable data plane will require
changes to the INT protocol message formats. One key issue
that must be addressed is how to communicate to the collector
that only a subset of the originally requested telemetry data
items have been reported. One solution is to embed a bitmap
at each INT transit node, representing the telemetry data items
that the node is reporting. To avoid consuming more bits, this
bitmap can share unused space in other fields such as the
SwitchID. Devising a robust solution for this issue requires
further investigation and we leave it for future exploration.

Our ongoing implementation effort is mostly simulation-
centric and in part is around bmv2, the P4 reference software
switch. A full-fledged implementation on a programmable
PISA hardware is yet to be done. In this section, we briefly
describe the potential data plane resource requirements for
LINT. For LINT, we need two stateful registers per telemetry
data item for maintaining the EWMA of the observations at the
device and the EWMA of the observations sent to the collector.
Therefore, a total of 2|D| processing stages and 2|D| register
entries will be needed for dealing with a set telemetry data
items D. For instance, to selectively report hop latency and
queue occupancy (i.e., D = {hop latency, queue occupancy}),
we will require 4 processing stages and 8 register entries in
total. The parameters α and δ are not expected to change
very frequently and we can specify them as constants during
pipeline configuration.

For LINT-flow, we will need 4|D| processing stages con-
sidering a flow cache implementation similar to that in [34].
However, at each processing stage we will require a hash table
that can be implemented using a register array for keeping
track of the active set of flows and their corresponding EWMA
values. Indeed, keeping track of all flows per processing stage
will be impractical. However, one observation is that most
network flows are short-lived, especially in data centers [19],
[20]. Therefore, the active set of flows will be changing fast,
which creates the opportunity for applying cache eviction
policies to track only a subset of flows at a time. We present
a simulation to study demonstrating the impact of tracking a
limited number of flows per processing stage in Section IV-E.

IV. EVALUATION

We employ a combination of network emulation and sim-
ulation to evaluate the effectiveness of LINT and LINT-
flow. Before describing the evaluation results we first briefly
describe the methodology. The goal of our evaluation is
to contrast between different aspects of LINT with that of
performing INT for each packet in the network. To accomplish
this, we first deploy a network consisting of bmv2 switches
(P4 software switch) using Mininet. The bmv2 switches run
a P4 program that implements INT (a modified version of
the int.p4 implementation provided with the ONOS SDN
controller). After subjecting the deployed network with traffic
through different hosts, we collect the generated INT reports
by passively capturing packets on relevant INT sink switch
interfaces. These INT reports provide us with the ground truth



to compare against. Then, we simulate LINT and LINT-flow
on the captured INT reports to obtain modified INT reports
that LINT and LINT-flow would generate when deployed
in the network. These generated INT reports are then used
for executing several network monitoring queries and the
results are compared against the query results obtained using
the ground truth. Since network emulation does not provide
predictable and reproducible timing behavior, it is difficult to
reproduce the same per-packet latency and queue occupancy
in the switches in successive runs and compare between
approaches, hence, our hybrid approach.

In the following, we first describe the setup (Section IV-A)
and the evaluation metrics (Section IV-B). Then we present
our evaluation results focusing on the following scenarios:
(i) evaluation of INT data plane overhead reduction by us-
ing LINT (Section IV-C); (ii) evaluation of the impact of
selectively reporting telemetry data items by LINT on the
result of network monitoring queries (Section IV-D); and (iii)
evaluation of LINT-flow, including studying the impact of
limiting the memory for tracking flows (Section IV-E).

A. Setup

1) Topology and Workload: We used a 4-port fat-tree data
center network topology (20 switches, 32 links) for our evalu-
ation. Each top-of-the-rack switch in each pod was connected
with a traffic generating host. We enabled jumbo Ethernet
frames on all the interfaces to avoid packet fragmentation
during our experiments. For the workload, we used the packet
capture from UNIV1 trace [20]. We divided and distributed the
capture files to the Mininet hosts, and replayed them using the
tcpreplay tool. We used ONOS controller for path setup and
for configuring the bmv2 switches to embed SwitchID, hop
latency and queue occupancy on all packets. Out of the 4 pods
in the topology, the hosts from pod 0 and pod 3 sent traffic to
the hosts in pod 1 and pod 2, creating an aggregation traffic
pattern (similar to partition–aggregate or reduce workload).
This pod-to-pod path consists of 4 INT hops.

2) Network Monitoring Queries: We used the INT reports
for answering the following questions about the network:

• (QTail) Tail latency [11]: Which flows have at least one
packet with total hop latency in the tail latency zone? For
our experiment, we use the 95-th percentile of total hop
latency from all collected INT reports as the threshold
for tail latency zone.

• (QCongestion) Congested switch identification: Which
flows have a congested switch on their path? We define
a congested switch to be a switch where a packet is
experiencing more than x% of its path’s total hop latency.
We set this threshold to 40% in our experiments.

• (QLatency) Path latency: What is the total hop-latency
experienced by each of the packets?

• (QQueue) Queue profiling [11]: Obtain the time series of
queue occupancy in a switch within a given time window.

3) Parameter Selection: We experimented with different
values of α (in the form 2−m) and consistently obtained the
best results for α = 2−1, hence, used this value for reporting

all the results. We varied δ between 2−6 and 2−1 in multiples
of 2 in the experiments.

B. Evaluation Metrics

1) Recall: We evaluate queries QTail and QCongestion using
recall, i.e., the fraction of identified flows that are also identi-
fied by the ground truth. For these queries, we are interested
in measuring the fraction of the culprit flows that can still be
identified by LINT, hence, the choice of using recall.

2) Normalized Root Mean Squared Error (NRMSE): We
evaluate QLatency and QQueue by measuring the deviation from
the ground truth using NRMSE. For the metrics of interest
in these queries, we first compute the root mean squared
error (RMSE) across all the collected INT reports. Then we
normalize the RMSE by the range of values of that metric and
express as percentage.

3) Overhead reduction: We express overhead reduction as
the ratio of the number of telemetry data item observations
that were not reported by LINT (and LINT-flow) to the total
number of observations collected in the ground truth.

4) Per-packet overhead: Per-packet overhead is computed
as the percent increase in packet size due to INT.

C. Data plane Overhead Reduction
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Fig. 4. Overhead comparison between LINT and INT

Our first set of results demonstrate the effectiveness of LINT
in reducing data plane overhead compared to regular INT.
In Fig. 4(a), we present the percentage overhead reduction
by LINT compared to regular INT for different values of δ.
The parameter δ provides a tuning knob in our algorithm to
increase or decrease overhead while having an opposite effect
on how often telemetry data items are reported from the data
plane. As we can see, even with a very small δ (= 2−6), LINT
can reduce 20% data plane overhead compared to regular INT.
We can clearly see that a higher δ also increases the gain in
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Fig. 5. QTail and QCongestion Recall

overhead reduction. However, this savings in overhead comes
at the cost of degrading the quality of results of the monitoring
queries as we will discuss in Section IV-D.

We also present the distribution of per-packet overhead
incurred by both LINT and INT in Fig. 4(b). The boxes in
this figure represent the quartiles of the distribution while
the bars’ endpoints represent the extremes of the distribution.
Although LINT’s overhead in the extreme can be as bad as
INT, however, the higher quartiles are significantly smaller
for LINT. For instance, for δ = 2−4, LINT reduces the 75th-
percentile overhead of INT from ≈90% to ≈60%.

D. Query Performance

We demonstrate LINT’s capability of retaining useful in-
formation even after deciding not to report some observations
of the telemetry data items. We evaluate QTail and QCongestion
using recall and QLatency and QQueue using NRMSE.

1) QTail and QCongestion: In Fig. 5, we present the recall
of queries QTail and QCongestion computed using the telemetry
data obtained through LINT and compared against the ground
truth. As noted earlier, δ is a tuning knob to find a trade-off
between overhead and accuracy, which is also evident in this
figure. Increasing δ causes recall of both of the queries to
degrade. For QTail, the recall starts to degrade slowly and then
falls sharply. This is because errors due to selectively reporting
telemetry data items causes the tail latency threshold to diverge
further from that computed using the ground truth.

However, QCongestion can tolerate more noise in the data as
long as the ratios of latency values collected from different
switches remain similar. As a result, even after estimating
some of the missing values with EWMA, QCongestion retains
a very high recall. For instance, for the highest δ used in our
experiments (δ = 2−1) QCongestion’s recall is still more than
0.95, only a few points below its best recall (for δ = 2−6).
However, the precision of QCongestion degrades with higher δ
(not shown), increasing the chances of raising false alarms.

Comparing between the quality of the query results and the
overhead reduction, we find δ = 2−5 to be a good trade-
off in our experiment setting. With δ = 2−5, we still have a
substantial overhead reduction of about 25% while maintaining
a recall above 0.9 for both of the queries.

2) QLatency and QQueue: We present the NRMSE of the
results of QLatency and QQueue in Fig. 6 and Fig. 7, respectively.
For QLatency, we compute the NRMSE of the total hop latency
for all INT reports collected through LINT (Fig. 6). For QQueue,
we compute the NRMSE of the stream of queue occupancy
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Fig. 6. NRMSE of total hop latency
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Fig. 7. Mean NRMSE of queue occupancy for all switches

observations for each of the switches collected through LINT
and present the mean along with standard deviation across
the switches in Fig. 7. We observe a similar trend as the
previous queries, i.e., a higher δ degrades the quality of the
query results. However, for the previously identified operating
point, δ = 2−5, the NRMSE is minute for both QLatency(less
than 2%) and QQueue(less than 0.25%).

E. LINT-flow Performance and Trade-offs

100 200 300 400 500
Number of flows tracked per processing stage

0.0
0.2
0.4
0.6
0.8
1.0

R
ec

al
l

QTail QCongestion

Fig. 8. Impact of number of track flows per-stage on QTail and QCongestion

We demonstrate the impact of having limited memory on
LINT-flow by fixing the number of simultaneously tracked
flows per processing stage (between 100 and 500) and employ-
ing least recently used (LRU) eviction policy for the old flows.
We present the results on QTail and QCongestion recall in Fig. 8.
For these results we set δ to 2−5. Our first observation is that
considering flow-context while selectively reporting telemetry
data items substantially improves the recall for both queries.
Although not shown here for space constraints, the same holds
for higher δ as well. However, the number of flows that can
be simultaneously tracked at each stage had very little impact
on the recall. We also observed similar behavior for overhead
reduction. This behavior can be attributed to a combination of



factors such as the short-lived nature of the flows, the use of
LRU policy to exclude the old flows, and the reduction in IP
address entropy due to rewriting the IP addresses in the trace
with the ones of the Mininet hosts in the network. However,
we plan to investigate further to identify the root cause.
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Fig. 9. Overhead reduction by LINT-flow

Even for LINT-flow, the overhead reduction is dominated
by the δ parameter. We present results on overhead reduction
in Fig. 9 by fixing the number of flows simultaneously tracked
at each stage to 100 and varying δ. Indeed, considering
flow-context leads to reporting more telemetry data items for
keeping the per-flow error estimate within bounds, conse-
quently, reducing the gain. However, the overhead reduction
still remains within 15% –25% range.

V. RELATED WORKS

INT promises to provide unprecedented visibility into the
network that was not possible with traditional network mon-
itoring technologies. Since the release of initial specification
many applications of INT for network operations and manage-
ment have been proposed, including for failure detection [37],
[38], congestion control [12] and tracking the data plane rules
matched by the flows [11], [39], among others. Although INT
was initially proposed for IP networks, several extensions of
INT have been proposed such as for wireless networks [40]
and multi-layer IP-over-Optical networks [41]–[43]. It is worth
mentioning that INT is one of several concurrent efforts
towards performing in-band network telemetry using live net-
work traffic (cf. In-situ Operations, Administration, and Main-
tenance (IOAM) standardization effort within the IETF [44]).

A classic issue in network monitoring, also applicable to
INT is the trade-off between monitoring accuracy and the over-
head of monitoring. Several research works have attempted
to address this issue for INT from different perspectives. For
instance, some research works have proposed to use INT only
for specially crafted probe packets instead of for live network
traffic [45], [46]. Probing the network in this way requires
carefully crafting the probe packets and planning the probe
paths for maximum network coverage. Pan et al., addresses
this problem by proposing an optimization based approach
in [45]. However, probe packets are often not subjected to the
same treatment as the live network traffic, therefore, can obtain
an incorrect view of the network.

Several approaches have been proposed to reduce INT
overhead for live network traffic. For instance, Marques et

al., have proposed an offline optimization approach for INT
in [47]. Their approach assumes the knowledge of all network
flows and devises an offline schedule for what telemetry data
item should be collected by packets of which flows while
considering constraints such as MTU limitations. An online
approach for reducing INT overhead is presented by Tang et
al., in [17]. They implement INT capabilities in Open vSwitch
and employ sampling for deciding which packets should be
subjected to INT along the way. A central controller adjusts
the sampling rate at the end hosts and configures a watchlist
of flows to monitor. In contrast to these aforementioned
approaches, we propose an online mechanism that works
completely in the data plane without the intervention of a
centralized controller. Also, each switch independently decides
on which telemetry data items to report without any global
coordination. In contrast to the sampling-based approaches
such as those presented in [17], [37], we propose to adapt
telemetry data reporting based on error estimates computed
within the data plane devices.

Very recently PINT [18] proposed a randomized algorithm
for INT. PINT fixes the bit overhead allowed on a packet for
INT. Then, each network device makes a random decision
for embedding INT data. Since switches randomly decide
on embedding INT data, therefore, the requested telemetry
data items can be reported across multiple packets. PINT also
proposes mechanisms for minimizing the number of packets
required to collect all required telemetry data items. PINT
is effective for executing network monitoring queries that
work with aggregate data and when network flows are not
short-lived. In contrast to PINT, we propose a complimentary
approach for supporting network monitoring queries that rely
on per-hop telemetry data and is oblivious to flow duration.

VI. CONCLUSION

In this paper, we presented LINT, an accuracy-adaptive
and lightweight INT mechanism. LINT operates entirely in
the data plane without any control plane intervention and
without any global co-ordination. We also proposed LINT-
flow, an extension of LINT that takes each packet’s flow-
context into consideration for selectively reporting telemetry
data. We evaluated LINT using a real data-center traffic trace.
Our evaluation results demonstrated the effectiveness of LINT
in reducing data plane overhead by 25% while maintaining
more than 0.9 recall for network monitoring queries trying
to identify flows with high latency and flows with congested
switches in the network. We plan to have a full-fledged
implementation of LINT on commercially available PISA
devices. We also plan to investigate the use of information
theory measures for quality of information aware adaptive
telemetry collection.
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